
UNIVERSITÀ DEGLI STUDI DI PARMA

DOTTORATO DI RICERCA IN
“TECNOLOGIE DELL’INFORMAZIONE”

CICLO XXXIV

DECISION-MAKING, PLANNING AND
CONTROL USING DEEP REINFORCEMENT
LEARNING FOR AUTONOMOUS DRIVING

VEHICLES

Coordinatore:
Chiar.mo Prof. Marco Locatelli

Tutore:
Chiar.mo Prof. Massimo Bertozzi

Dottorando: Alessandro Paolo Capasso

Anni 2018/2021

Alla mia Famiglia

Summary

Introduction 1
0.1 History of Vehicle Automation . 1

0.2 Research Overview . 6

1 Autonomous Driving Architecture 9
1.1 Autonomous Driving Levels . 9

1.2 Autonomous Car Architecture . 11

1.2.1 Sensors . 12

1.2.2 Typical Architecture . 13

1.2.3 End-to-End Architecture 15

2 Deep Reinforcement Learning 19
2.1 Machine Learning . 19

2.1.1 Supervised Learning . 20

2.1.2 Unsupervised Learning . 20

2.1.3 Semi-supervised Learning 21

2.1.4 Reinforcement Learning 21

2.2 Deep Learning . 21

2.2.1 Artificial Neural Network 22

2.3 Reinforcement Learning Theory 27

2.3.1 Markov Decision Process 28

2.3.2 Value Function . 30

ii Summary

2.3.3 Monte Carlo and Temporal Difference learning 31
2.3.4 Model-free vs Model-based Reinforcement Learning 32
2.3.5 On-policy, Off-policy and Offline Reinforcement Learning . 32
2.3.6 Policy Gradient methods 34
2.3.7 Actor-Critic Methods . 37
2.3.8 Asynchronous Advantage Actor-Critic (A3C) 37
2.3.9 Multi-Agent Deep Rinforcement Learning 39

3 Simulators in Deep Reinforcement Learning 43
3.1 OpenAI Gym . 44
3.2 Autonomous Driving Simulators 46

3.2.1 Realistic Graphic Simulators 47
3.2.2 Simulators based on Synthetic Representation of Reality . . 48
3.2.3 Multi-Agent Microscopic Traffic Simulator 50
3.2.4 State Space . 53
3.2.5 HD Simulator . 55

4 Intelligent Roundabout Insertion 57
4.1 Roundabout Insertion . 57
4.2 Training Setup . 58

4.2.1 Input and Output Space . 59
4.2.2 Autonomous Driving Architecture 62
4.2.3 Delayed Asynchronous Advantage Actor-Critic (D-A3C) . . 62

4.3 Reward Function . 63
4.4 Preliminary Results . 65

4.4.1 Algorithms Comparison 65
4.4.2 Aggressiveness Test . 65
4.4.3 Comparison with a Rule-based Method 66
4.4.4 Results on Unseen Scenarios 68

4.5 Generalization Techniques . 69
4.5.1 Multi-environment System 70
4.5.2 Noise Injection . 73

Contents iii

4.6 Generalization Results . 75
4.7 Real-World Test . 78
4.8 Conclusions . 80

5 Continuous Control Actions Handling Intersection Scenarios 81
5.1 Intersection Handling . 82
5.2 Environment . 84

5.2.1 Input Space . 85
5.3 Training Setup . 87

5.3.1 Neural Network Architecture 88
5.4 Reward . 90
5.5 Results . 92

5.5.1 Comparison with the TTC Algorithm 94
5.5.2 Testing the Right of Way Rule 96
5.5.3 Test on Real Data . 97

5.6 Conclusions . 99

6 Tackling Real-World Planning and Control using Deep Reinforcement
Learning 101
6.1 Environment . 102
6.2 Training Settings . 104

6.2.1 Neural Network Architecture 104
6.2.2 Simulating Self-Driving Car Behavior 105
6.2.3 Reward Function . 107

6.3 Real-World Test . 109

7 Conclusions and Future Developments 115

Bibliography 119

List of Figures

1 Radio Corporation of America car and Standford Lab cart 2

2 Mercedes van and Mercedes 500 SEL set up by Ernst Dickmanns and
his team . 2

3 Self-driving Lancia Thema set up by professor Alberto Broggi and
his team at the University of Parma 3

4 Volkswagen Touareg winner of the DARPA Grand Challenge 2005 . 5

5 Chevrolet Tahoe winner of the DARPA Grand Challenge 2007 . . . 5

6 The four self-driving Piaggio Porters developed by VisLab which
travelled from Parma to Shanghai 6

1.1 The Waymo robotaxi able to drive autonomously through the streets
of Phoenix . 11

1.2 Main components of an autonomous driving pipeline 13

2.1 Artificial neuron . 22

2.2 Schematic representation of a neural network architecture showing
the input, hidden and output layers 24

2.3 Convolution operation over images 25

2.4 Markov Decision Process illustrating the interaction between the agent
and the environment . 29

2.5 Asynchronous Advantage Actor-Critic scheme 38

2.6 Multi-Agent Deep Reinforcement Learning with decentralized ap-
proach . 41

vi List of Figures

3.1 Classic control environments provided by OpenAI Gym 45

3.2 Atari games . 45

3.3 CARLA simulator . 48

3.4 SUMO simulator . 49

3.5 Waymo ChauffeurNet . 49

3.6 Top-view of a real roundabout and its synthetic representation . . . 51

3.7 Bicycle model scheme . 52

3.8 Input space of roundabout simulator 54

3.9 Top-view of the HD map simulator and the surrounding view of the
agent . 55

4.1 Full view of the synthetic roundabout simulator and surrounding views
perceived by each agent . 60

4.2 Neural network architecture used for training agents to perform the
roundabout immission . 61

4.3 The autonomous driving architecture pipeline used for the specific
task of the roundabout insertion 62

4.4 Learning curves representing the percentages of episodes ended suc-
cessfully training the system with D-A3C, A3C and A2C 66

4.5 Average speed values and percentages of episode ended successfully
based on aggressiveness levels . 67

4.6 Real roundabout of Parma and its synthetic representation unseen
during the training phase and used to evaluate the generalization ca-
pability of D-A3C . 69

4.7 Synthetic representation of real roundabouts used for training scenar-
ios in the Multi-environment System setting 71

4.8 Real roundabout of Parma and its synthetic representation used as
validation scenarios . 72

4.9 Training pipeline of the Multi-environment System setting using train-
ing and validatio scenarios . 72

List of Figures vii

4.10 Examples of perception and localization noise introduced in the sim-
ulation . 74

4.11 Junction scenario used as additional test to evaluate the generaliza-
tion performance . 77

4.12 The real autonomous driving car used to perform tests on the real
roundabout . 79

5.1 Synthetic representations of three intersections used for training agents
to drive and perform the crossing maneuver 82

5.2 Representation of the input space perceived by agents in the three
intersection scenarios . 86

5.3 Agent priorities calculation . 88

5.4 Neural network architecture used for training agents to cross the in-
tersection and navigate safely along their paths 89

5.5 Test intersection used to compare our approach with the TTC algorithm 95

5.6 Real intersections contained in the inD dataset 98

6.1 HD maps of a neighborhood of Parma illustrating the scenarios used
for training agents to drive following their paths predicting both ac-
celeration and steering angle . 102

6.2 Top-view of a training scenario and the surrounding view perceived
by the agent . 103

6.3 Example illustrating the difference in the response time execution
of the steering angle between the agent in simulation and the real
autonomous car . 106

6.4 Neural network architecture used for training the Reinforcement Learn-
ing planner . 108

6.5 The final architecture implemented and tested on board of the au-
tonomous car in which the typical parts related to planning and con-
trol are represented by a single neural network 110

6.6 A test example showing the longitudinal behavior of the Reinforce-
ment Learning planner deployed in the real autonomous vehicle . . 112

viii List of Figures

6.7 Curvatures predicted by the neural network with the corresponding
actuation values and the effective commands performed by the vehicle 114

Introduction

The autonomous driving field has become a worldwide topic of interest in the last
years both for academia and industrial purposes; its emergence is a direct conse-
quence of the technological growth of recent years, but it mainly derives from the
desire to reduce human error in motor vehicle crashes, which is estimated around
90% ([1]). However, this innovative evolution is not the result of the last few years,
but it has been a process started decades ago which concerned the evolution of hard-
ware and software systems especially in recent years thanks to the rapid growth of
Artificial Intelligence.

In this chapter, a history of vehicle driving automation is given showing such
evolution over the decades as well as a brief overview of the research work carried
out in this three years, explaining the purpose of the project and the technologies used
to implement it.

0.1 History of Vehicle Automation

The history of vehicle automation started about a hundred years ago with Francis
Houdina, which in 1925 developed a radio-controlled car which received radio sig-
nals via an antenna that controlled its speed and direction [2]. The modified Chandler
Sedan drove through the streets of Manhattan without anyone at the steering wheel,
followed by a second vehicle containing the car’s operator trailed.

By the 1950s, the Radio Corporation of America (RCA) replaced radio commu-
nication with guide wires embedded in the road surface to control the vehicle [3].

2 Introduction

(a) RCA Lab car (b) Stanford Lab Cart

Figure 1: (1a) shows the test performed by RCA Labs in which the autonomous vehi-
cle receives signals from electrical wires embedded in the road, while (1b) represents
the Stanford Lab cart able to drive without external support

This test proved the feasibility of the autonomous driving, but the cost to implement
such infrastructure was unsustainable (Figure 1a). For this reason, by the 1960s Stan-
ford University researches focused their attention on building droids (Figure 1b) that
could drive autonomously without external assistance, using cameras to observe the

(a) Mercedes van (b) Mercedes 500 SEL

Figure 2: Mercedes van (2a) and Mercedes 500 SEL (2b) set up by Ernst Dickmanns
and his team

0.1. History of Vehicle Automation 3

environment and computers to process information, following white lines and avoid-
ing obstalces [4].

This new approach combined with the technological progress in CPUs and com-
puter vision, sped up the process of vehicle driving automation. In 1977 the engineers
at the University of Tsukuba’s Mechanical Engineering Lab developed the first self-
driving passenger vehicle able to travel at speeds up to 20 miles per hour on Japanese
roads using two cameras to detect street markings [5]. In 1986 the German engineer
and professor at Bundeswehr University Munich Ernst Dickmanns with his research
group set up a Mercedes van (Figure 2a) with a computer and cameras testing the
system on streets without traffic; as a continuation of such project, they developed
a new self-driving Mercedes 500 SEL (Figure 2b) in 1994 able to detect and track
obstacles and performed more complex maneuvers as lane change [6]. In 1995 the
robotic department of Carnegie Mellon University developed a modified 1990 Pon-

Figure 3: Self-driving Lancia Thema set up by professor Alberto Broggi and his team
at the University of Parma in 1996 driving autonomously along italian highways in a
6-day trip of 1900 km

4 Introduction

tiac Trans Sport driving autonomously for the 98.2% of the trip from Pittsburg to
Los Angeles [7]. The vehicle was equipped with a computer, a camera and a GPS
receiver: it was the first time an autonomous vehicle used this technology.

In those years, also in Italy the first tests of autonomous driving were being car-
ried out. In particular, in 1996 a group of researchers of the University of Parma
guided by professor Alberto Broggi, developed the ARGO project by setting up a
Lancia Thema with two cameras (Figure 3). The project, consisting of a 6-day trip of
1900 km along italian highways, was named Mille Miglia in Automatico (One Thou-
sand Automatic Miles) during which the vehicle was able to drive autonomously for
the 94% of the journey with an average speed of 90 km/h [8].

An important contribution was given by the Defense Advanced Research Projects
Agency (DARPA), which between 2004 and 2007 set three autonomous driving chal-
lenges attracting several researchers and companies from all over the world. In the
first two competitions autonomous vehicles have to drive autonomously for 150 miles
in the Mojave Desert in California; in the first one [9] none completed the chal-
lenge, while the second one was won by Stanford University with a Volkswagen
Touareg [10] (Figure 4). The last competition was helded in a US air force base
set up as urban area and it was won by the Tartan Racing team using a Chevrolet
Tahoe [11] (Figure 5).

Another milestone was reached again by the University of Parma in 2010 through
the group named VisLab. They ran the Vislab Intercontinental Autonomous Chal-
lenge (VIAC) [12], travelling from Parma to Shanghai for 9900 miles in 100 days
with four driverless vehicles equipped with stereo cameras, laser scanners and a GPS
receiver (Figure 6). Given the complexity of the trip, it would be impossible for the
vehicles determine the route; for this reason, in the first vehicle the operators take
control only in the case a decision on the road had to be taken, collecting data for the
whole duration of the trip; the second one drove 100% autonomously, following the
route defined by the first vehicle sent to the following one as GPS waypoints.

The recent advances in artificial intelligence, in particular in Deep Learning tech-
niques [13], have further sped up the automation process for self-driving cars. Nowa-
days we can observe cars equipped with driving support algorithms and even cars

0.1. History of Vehicle Automation 5

Figure 4: Volkswagen Touareg winner of the DARPA Grand Challenge 2005

Figure 5: Chevrolet Tahoe winner of the DARPA Grand Challenge 2007

6 Introduction

Figure 6: The four self-driving Piaggio Porters developed by VisLab which travelled
from Parma to Shanghai

able to drive autonomously on highways, on low-traffic roads and in specific and pre-
determined areas. However, the question concerning on when autonomous cars will
be able to drive on all types of roads and under all kinds of environmental and traffic
conditions, still remains without a certain answer and it seems to be related more to
road infrastructures and human driving habits than to the technological progress.

0.2 Research Overview

The research project consists in the development of Deep Learning techniques and in
particular of Deep Reinforcement Learning [14] algorithms for the implementation
of maneuver execution systems using both discrete and continuous action-space; both
approaches are trained in simulation, but always with a particular focus on the deploy-
ment of such systems in real-world contexts. In particular, we started implementing
a module capable of performing the roundabout immission safely choosing discrete
actions to modulate longitudinal behavior of the vehicle and then testing it in real sce-

0.2. Research Overview 7

narios on board of real sefl-driving car; afterwards, we focused on the development
of an algorithm able to drive the car through intersections predicting both longitudi-
nal and lateral vehicle behaviors. We prove that the development of decision-making
systems through the use of Reinforcement Learning techniques aims at solving the
main limitations of rule-based approaches, typically used for the resolution of such
tasks; indeed, the performance of these systems are strongly inefficient in dense traf-
fic conditions where negotiation and interaction with other road users and a good
understanding of the surroundings dynamics are essential in order to avoid unwanted
behavior.

Finally, in the last part of the project we developed a Reinforcement Learning
planner, implementing a beta version able to drive smoothly and safely in obstacle-
free real-world environments.

Chapter 1

Autonomous Driving Architecture

The development of an autonomous vehicle is a process that involves several steps,
from the architecture of the car itself at hardware level to the design and the imple-
mentation of the software able to drive the vehicle safely. Indeed, considering that
this process began almost one hundred years ago with a radio-controlled car, it is
clear that as well as the techniques involved in the development of self-driving cars,
also the architecture has been subjected to several variations. In this chapter, an ex-
planation of the levels of vehicle automation is given together with a description of a
typical autonomous driving stack.

1.1 Autonomous Driving Levels

The Society of Automotive Engineers (SAE) defines six levels of automation, from
the Level 0 in which there is no driving automation to Level 5, the full autonomous
vehicle; in particular:

• Level 0: there is no automation in this level; the human is fully responsible for
the behavior of the vehicle, even if there could be some driver support system
as the emergency breaking or lane-keeping assistance.

• Level 1: it is the lowest level of automation. This level provides a single auto-

10 Chapter 1. Autonomous Driving Architecture

mated system for the steering or braking and acceleration; an example is the
adaptive cruise control, that allows the car to adapt its speed depending on the
distance to the vehicle ahead, or the lane following assistance.

• Level 2: it consists in advanced driving assistance systems, also called as ADAS.
In this level the vehicle can take the control of both steering and accelera-
tion/breaking in some specific scenarios like highways, but the driver must
always supervised the system all the time. Examples of this technology are the
Tesla Autopilot or the Cadillac Super Cruise systems.

• Level 3: it is also known as conditional driving automation and combines sev-
eral advanced driving assistance and artificial intelligence systems in order to
make complex decision depending on the environmental changes around the
vehicle. Also this level requires that a human driver must remain alert to take
the control of the vehicle in case of system failures.

• Level 4: in this level the human driver supervision is not required in most cir-
cumstances since the vehicle can also handle system failures; however, the
driver has the possibility to take the control of the car. The autonomous ve-
hicle is able to drive in a specific regions under certain weather conditions
and this is the highest level currently present on some roads. An example is
the Waymo robotaxi (Figure 1.1) able to drive autonomously in the specific
Phoenix metropolitan area.

• Level 5: this is the full driving automation in which the vehicle can drive au-
tonomously in all the environment under all weather condition and there is no
need that the driver takes the control of the vehicle.

We are still far away to see Level 5 autonomous cars on our streets, not only for a
technological limitation but also for a social acceptability [15]. This confidence must
be achieved not only by the final customer who will use the autonomous vehicle,
but also by the whole society, from the other road users to the local governments
and authorities that should provide appropriate laws and infrastructures in order to

1.2. Autonomous Car Architecture 11

Figure 1.1: The Waymo robotaxi able to drive autonomously through the streets of
Phoenix

provide the adequate tools for testing and deploying autonomous vehicles on the
streets.

1.2 Autonomous Car Architecture

From the brief historical background given in Section 0.1, it is clear that the techno-
logical progress affected also the autonomous car architecture, starting from a simple
one (Figure 1b) to a more complex architecture (Figure 1.1). It is possible to de-
fine two kind of architectures: generally the first one involves the use of sensors,
perception systems, localization, planning and control, while the second one is the
end-to-end approach in which the information provided by sensors is mapped into a
direct control of the vehicle.

Later in the thesis we will explain how the systems developed in this research
project are embedded in the autonomous driving architecture; before explaining these
two different architectures, we will present the sensor part typically used on board of
the autonomous car.

12 Chapter 1. Autonomous Driving Architecture

1.2.1 Sensors

Even if the two architectures are rather different, they both need sensors. The most
used sensors embedded in autonomous vehicles are:

• Cameras: they provide the vehicle the ability to observe the environment ant
its users. The technological progress in both hardware and software allows the
use of high quality resolution cameras processing frames in real time and per-
forming tasks like object detection and classification. The use of camera pairs
provide the possibility to use the stereo vision obtaining accurate 3D measure-
ments ([16], [17]). However, the quality of images is strongly dependent on
weather and light conditions.

• Lidars (light detection and ranging): they scan the environment emitting laser
beams, measuring the return time of the reflected pulse after hitting a phys-
ical surface; in this way, it is possible to determine the distance between the
autonomous vehicle and the objects in the scenario. It can be used to gener-
ate dense point clouds to perform tasks like 3D object detection and tracking
([18], [19]), but they could produce inaccurate results with bad weather condi-
tions or with particular sun lights angle.

• Radars (radio detection and ranging): they emit electromagnetic waves in spe-
cific directions helping the autonomous car retrieving surrounding object mea-
surements like their angles, ranges and speeds. Radars can work under any
weather condition but it is difficult to use them alone; indeed, they are gener-
ally coupled with cameras or lidars performing more accurate object detection
task ([20]).

• Sonar (sound navigation and ranging): they are used to detect short-range ob-
jects sending sound pulses and listening the return echo from the physical sur-
faces ([21]). They work well in bad weather conditions and low light, but they
hardly detect small objects or multiple objects moving at fast speeds.

• Inertial Navigation Systems (INS): it is a navigation device used to calculate
position, orientation, and velocity of a self-driving car, combining an Inertial

1.2. Autonomous Car Architecture 13

Measurement Unit (IMU), typically composed by accelerometers, gyroscopes
and magnetometers, a global navigation satellite system receiver (GNSS) and
a microprocessor that is used to perform real-time sensor fusion ([22]).

• Global Position Systems (GPS): it is a navigation system using satellites, a
receiver and algorithms to provide location, speed and time ([23]). The accu-
racy can vary from 30 centimeters to 5 meters like in urban scenarios where
buildings and other obstacles may disturb the signal.

1.2.2 Typical Architecture

The typical architecture of an autonomous driving car is composed by a set of sen-
sors, perception algorithms, prediction of the behavior of other road users, localiza-
tion and mapping, planning and control. The scheme proposed in Figure 1.2 aims to
illustrate a simplified architecture, but some of the proposed modules may be unnec-
essary or others may be added to this pipeline based on the tasks to be performed. In
Section 1.2.1 we provided a description of the main sensors embedded in a typical
autonomous driving car, while in the next ones we focus on the remaining modules
illustrated in Figure 1.2.

Figure 1.2: Main components of an autonomous driving pipeline

14 Chapter 1. Autonomous Driving Architecture

Perception

This module processes data coming from sensors in order to extract the most inter-
esting features understanding the surrounding environment. The Perception module
is able to extract features in order to retrieve several environmental information like
lane markings ([24], [25]), curbs ([26], [27]) or traffic signs ([28], [29]), also predict-
ing also the free-space in which the autonomous car could navigate. Moreover, object
detection and classification ([30], [31]) can be performed retrieving road users inside
the scenario and their features (size, position, heading, speed). All these information
can be embedded over time in order to perform obstacle tracking task: in this way it
is possible to know the past positions of a road occupant trying to predict their future
actions.

Prediction

Another important module in the development of an autonomous car concerns the
prediction of other road users behavior, like pedestrians and vehicles. This is par-
ticularly useful to understand the dynamics of the scenario in order to perform safe
actions also based on the predicted future behaviors of other road users ([32]). How-
ever, a perfect prediction of other road users behavior is quite impossible to achieve,
especially for pedestrians which have more degrees of freedom than vehicles, and for
this reason it is necessary to include uncertainties on the predictions.

Localization & Mapping

As well as sensors and perception algorithms play a significant role in understanding
the surrounding scenario, also the localization task is essential to navigate safely since
a localization error of a few meters could have catastrophic consequences. Since the
measurements coming from Global Navigation Satellite Systems are often inaccu-
rate, they should always be flanked by algorithms extracting environmental features
performing tasks like visual odometry ([33], [34]) or SLAM (Simultaneous Local-
ization and Mapping) ([35], [36]). Indeed, the more accurate is the estimation of
the autonomous car position in the world, the more precise will be its relationship

1.2. Autonomous Car Architecture 15

with the other elements in the environment (center lane, curbs, traffic sings, obsta-
cles, road users). In this way, the planning and control modules will know the best
possible measurements between the autonomous car and the other elements in the
scenario, performing the correct maneuver safely.

Another element that can dramatically improve localization are HD Maps (High
Definition Maps [37]), containing not only the information about road topology, but
other relevant data like the exact positions of traffic lights, traffic signs, pedestrian
crossings, stoplines, intersections and much more. In this way, the autonomous vehi-
cle drives in a familiar environment making navigation less complex since it already
knows what and where the static elements in the scenario will be.

Planning

Given the information retrieved and processed in the earlier modules, the autonomous
car should be able to establish which maneuver to perform predicting how to behave
in the short-term future. It is clear that the performance of this module is strictly
related to the measurements coming from the previous modules that should be as
accurate as possible in order to allow the Planning module to compute the path the
vehicle should follow taking the correct high-level decision like lane keeping, lane
changes, overtakings, insertions and many others.

Control

If the Planning module defines what to do in a certain situation, the Control module
determines how to do it. Indeed, it transforms the high-level maneuver coming from
the Planning module in a sequence of low-level actions, controlling steering angle,
throttle and breake, driving the autonomous car smoothly and comfortably.

1.2.3 End-to-End Architecture

A different type of architecture consists of directly mapping sensor data into actions
(acceleration, breaking and steering angle), without using additional modules to pro-
cess environmental features. The typical implementation is based on Deep Learning

16 Chapter 1. Autonomous Driving Architecture

([13]) in which a neural network learns the best features automatically in order to
solve the task efficiently; however, the approach could be rather different based on
the learning process we want to use.

Imitation Learning

The first approach is based on the typical supervised learning in which the system
learns and develops new skills observing an expert behavior; this implementation is
called Imitation Learning (IL) ([38]). The first promising results were achieved by
NVIDIA ([39]), in which they collected a dataset composed by images and steering
angle commands driving manually for several hours. Training a neural network with
this data, the vehicle was able to control the steering angle autonomously on urban
roads, on highways and also in parking lots or on unpaved roads. In this way, they
proved that an end-to-end approach for autonomous driving is possible avoiding to
develop intermediate tasks like lane detection or obstacle detection and thus using
a smaller and more portable system than the one illustrated in Figure 1.2. However,
this implementation suffers from several problems: the learned behavior is strictly
related to the demonstration data collected by the expert and for this reason the system
performance deteriorates in those states outside the dataset; indeed, even without
considering the effort in terms of manual driving hours for collecting data, it is almost
impossible to include all the corner cases in the dataset.

Learning from Trials and Errors

A different approach is based on Deep Reinforcement Learning (DRL) ([14]), con-
sisting in the combination of artificial neural networks and the Reinforcement Learn-
ing (RL) framework ([40]) in which the neural network is trained without observing
expert demonstrations in order to learn a policy through a process of trials and errors.
In particular, this system involves the interaction between one or more agents with
the environment and each time step they execute an action receiving a reward signal
based on the action chosen. The goal of the agent is to maximize the total amount of
discounted reward obtained during the episode.

1.2. Autonomous Car Architecture 17

However, also this approach suffers from several limitations: simulators are typ-
ically required for training Reinforcement Learning algorithms thus increasing the
complexity of deploying the system in real world because of the gap between real
world and simulated data. Moreover, another important limitation is related to the
so called reward shaping ([41], [42]): indeed, the training process is strictly related
to the reward signal and the design of such function is often tricky especially when
trying to solve complex task as in the autonomous driving field.

In the next chapter, the key concepts of Deep Reinforcement Lerarning are ex-
plained in order to understand the theory behind the algoritms used in the implemen-
tation of the system developed during this research project.

Chapter 2

Deep Reinforcement Learning

The use of Deep Reinforcement Learning techniques has grown exponentially in
recent years achieving impressive results not only for the resolution of games like
Atari [43] and Go [44] for discrete control space problems, but also for continuous
ones [45] especially in robotics field. In recent years, Deep Reinforcement Learn-
ing has also proved the ability to solve autonomous driving tasks, in particular those
ones related to the planning and control systems, thus capturing the attention of the
industrial sector.

As we discussed in Section 0.2, Deep Reinforcement Learning algorithms have
been developed and tested in this research project in order to implement maneuver
execution techniques and systems able to control steering angle and acceleration driv-
ing the vehicle autonomously. In this section we will start with a brief introduction
on Machine Learning ([46], [47]) and Deep Learning ([48], [49]) theory and then
focusing on the theory of the Deep Reinforcement Learning techniques used in this
project.

2.1 Machine Learning

Machine Learning (ML) represents one of the fundamental areas of Artificial Intelli-
gence (AI) and deals with the realization of systems based on data for the synthesis

20 Chapter 2. Deep Reinforcement Learning

of new knowledge. Starting from observations, data or experiences, that are typically
called training sets, the system is able to automatically learn without being explic-
itly programmed and without human assistance. Moreover, the performance achieved
should guarantee good generalization capabilities in order to obtain good results also
for those data outside the training set. The learning mechanism could happen in dif-
ferent ways based on the task we want to perform and on the available data; it could
be supervised, unsupervised, semi-supervised or based on reinforcement learning ap-
proach.

2.1.1 Supervised Learning

The supervised learning consists in the use of labeled dataset (the training set) in
which each example or observation is composed by an input and its output value (the
label). The input data is given to the model continuously in order to train it predicting
the desired output. Using this approach it is possible to solve two different problems:

• Classification, in which the model is trained to predict the class/label of spe-
cific data points. It consists in finding a mapping function starting from input
data and assigning the probability that such data belongs to a specific category.
In autonomous driving field this process is mostly used to recognize objects
(pedestrians, vehicles, bicyclists and many others).

• Regression, in which continuous value are predicted learning a curve that ex-
plains the distribution of the given data points; such curve is then used to make
predictions for new data.

Typically, having a large dataset makes the system more robust and should also in-
crease the generalization capibility; however, finding labeled data or the labeling
proccess itself, is often expensive and time-consuming.

2.1.2 Unsupervised Learning

In this process the training set is not labelled, means that we train the model using
the input data but without having a prior knowledge of the desired outcome. The

2.2. Deep Learning 21

system should discover interesting features and information for its own, group the
data based on similarities and learning a compressed format of the data. Clustering or
anomaly detection are two use cases of this learning method. However, the training
process is harder than the supervised learning and the model could require more time
to converge to an optimal solution.

2.1.3 Semi-supervised Learning

Semi-supervised learning is a combination of supervised and unsupervised learning
in which the training set is typically composed by a small amount of labeled data and
a large part of unlabeled observations, thus solving the problem of labeling.

2.1.4 Reinforcement Learning

Reinforcement Learning consists of learning to behave from experience without using
labeled data. One or more agents interact with an environment, performing actions
and noticing the consequences of their decisions and thus receiving a reward signal
that could be positive or negative depending on the action performed. This framework
is well suited to problems in which actions must be performed in sequence and the
goal is long-term like in game-playing or robotics.

2.2 Deep Learning

Deep Learning is a subset of Machine Learning based on learning from input data
and predicting the desired output, using neural networks which try to imitate human
brain mechanisms as we will explain in the next section. The network is composed by
several layers (called hidden layers) able to extract and learn the interesting features
and thus using this knowledge to generalize to data outside the training set. Deep
Learning is particularly useful having large data to process; indeed, the combination
of Big Data with the technological progress in computational computing (GPUs) and
research related to the Artificial Intelligence field, have contributed to make Deep
Learning popular in the last few years.

22 Chapter 2. Deep Reinforcement Learning

2.2.1 Artificial Neural Network

axon from a neuron
synapse

dendrite

activation
function

output axon

Figure 2.1: Artificial neuron

The fundamental element of a neural network is the artificial neuron, whose
schematic representation is illustrated in Figure 2.1. As explained in the previous
section, a neural network tries to imitate a human brain and so the artificial neuron
do the same with biological neuron; the latter receives inputs from other sources,
combines them in some way, performs a generally nonlinear operation on the result,
and then outputs the final outcome. All biological neurons have the same four basic
components: dendrites, soma, axon, and synapses. Dendrites act like input channels
receiving the input through the synapses of other neurons; then, the soma processes
these incoming signals producing an output that is sent out to other neurons through
the axon and synapses. In the same way, an artificial neuron is composed by:

• Input D (dendrites);

• Weights (synapses): wi with i = 0,1, · · · ,D−1 are adjusted continuously dur-
ing the training phase in order to obtain the correct output.

• A function (soma) that combines inputs and weights defining the behavior of
the neuron. Moreover, a non-linear function f (called the activation function) is
applied to simulate the behavior of biological neuron and to avoid the concate-
nation of simple linear transformation that would not be able to approximate
complex functions. Considering all these elements, the final output of the neu-

2.2. Deep Learning 23

ron will be:

O = f
(D−1

∑
i=0

xiwi +b
)

(2.1)

where b is the bias, that is learned as well as the weights and describes how far
the predictions are from their intended values.

• Output O (axon).

Moreover, the most used activation functions are:

• Rectified Linear Unit (ReLU), defined as ReLU(x) = max(0,x);

• Hyperbolic Tangent (tanh), defined as tanh(x) = ex−e−x

ex+e−x ;

• Sigmoid, defined as S(x) = 1
1+e−x .

The artifical neurons are clustered together trying to reproduce what happens in
the human brain, such that information can be processed in a dynamic, interactive,
and self-organizing way. In artificial neural networks it occurs by creating connected
layers, as shown in Figure 2.2.

Although there are useful networks which contain only one layer, or even one
element, most applications require networks that contain at least three types of layers:

• Input Layer: it receives data either from observations (that could be provided
by a dataset or by a simulator as for the case of Reinforcement Learning) or
directly from electronic sensors in real-time applications.

• Output Layer: it is the last layer of the neural network and produces the end
result in order to communicate it to the external world, to another process or to
other devices like mechanical control systems.

• Hidden Layers: they are middle layers between the input and the output layers;
in most networks, each neuron in a hidden layer receives the signals from all
of the neurons of the preceding layer; after a neuron performs its function, it
passes its output to all of the neurons in the next layer, providing a feedforward
path to the output.

24 Chapter 2. Deep Reinforcement Learning

Input Layer Hidden Layers Output Layer

Figure 2.2: Schematic representation of a neural network architecture showing the
input, hidden and output layers

The activation functions and the layers of a neural network have to be differen-
tiable to allow the use of the backpropagation technique [50], that is the key mech-
anism by which the neural network weights are learned automatically. In this way, it
is possible to compute the partial derivatives of the loss function with respect to each
network parameters (that is nothing but the prediction error of the model) and thus
using a gradient-descent optimization algorithm [51] in order to update the weights
of the neural network.

Fully Connected Layer

One of the most used layer implementing a neural network is the Fully Connected
Layer. Each neuron of a layer is connected to all neurons of the previous one, such
that the input/output signals pass through all the neurons of the neural network. Typ-
ically, the last layers of a neural network are fully connected in order to process the

2.2. Deep Learning 25

data extracted by previous layers to produce the final outcome.

Convolutional Neural Network

One of the most important breakthroughs in Computer Vision using Deep Learning
has been made through the use of Convolutional Neural Networks (CNNs). They are
typically composed by a sequence of convolutional layers, in which the first ones

Figure 2.3: Convolution operation over images. A 3×3 filter (the red one) is scrolled
over the whole image (blue square) computing the convolution operation in order to
produce a new feature map (black square). h,w and c represent the heights, widths
and number of channels of the input, output and the filter used for the convolution
operation, while n is the number of filters we want to use

26 Chapter 2. Deep Reinforcement Learning

extract low-level features and finally high-level ones are extracted by last layers, pro-
ducing the final feature map that gives the network a better understanding of the
image.

Also this algorithm is inspired by the behavior of the human brain in which neu-
rons are able to focus on restricted region of the visual field known as receptive field;
the entire visual field is covered by partially overlapping the receptive fields of differ-
ent neurons. In the same way CNNs have the ability to assign importance to objects
or specific regions inside an image, extrapolating spatial and temporal dependencies
through the use of filters/kernels. These are scrolled over the image applying the con-
volutional operation, such that a new matrix with different dimensions and size is
produced.

The values of the filters are the parameters that the network has to learn and since
their dimensions are independent of the image size, the number of learned parameters
are lower than those required by a fully connected layer that performs general matrix
multiplications. Moreover, the learned filters are able to recognize patterns indepen-
dently on the position in the image, thus increasing generalization capabilities.

Figure 2.3 shows how the convolution operation between filters and images works.
The 3×3 filter in figure is sliding over the whole image moving of a stride s at a time,
and the convolution operation is applied to calculate each output element generating a
new feature map. Moreover, a padding p could be applied in order to increase the size
of the image and to avoid loosing information. In the example of Figure 2.3, hi, wi

and ci represent the height, width and the number of channels of the input image (the
blue one) respectively. ci is equal to one in the example, but in a typical RGB image
it will be equal to 3. hk, wk and ck are the height, width and the number of channels
of the kernel respectively. The latter must be equal to the number of channels of the
input image, while nk represents the number of filters we want to use. Finally, ho, wo

and co are the height, width and the number of channels of the output feature map
respectively and while c0 will be equal to nk, ho and wo are computed as follows:

ho =
⌊hi +2p−hk

s
+1

⌋
wo =

⌊wi +2p−wk

s
+1

⌋ (2.2)

2.3. Reinforcement Learning Theory 27

Finally, a pooling layer is typically applied in order to downsample the feature map
produced by the convolutional layer. A patch (generally of 2×2 size) is sliding over
the feature maps, performing one of the following function:

• Average Pooling, which calculates the average value for each patch on the fea-
ture maps.

• Max Pooling, which computes the maximum value for each patch on the fea-
ture maps.

In this way, a downsampling of the feature maps is achieved giving the model the
capability to be invariant to local translation, since small changes in the location of
the input features will result in the same location of the feature map as output.

2.3 Reinforcement Learning Theory

As well as neural networks, and thus artificial neurons, try to imitate the operations
and connections that occur in the human brain, also Reinforcement Learning is in-
spired by how the human being learns his first vital functions from birth and in many
cases without supervision. Indeed, as well as children learn to walk or to play sim-
ply by trying and observing the consequences of their actions, so in Reinforcement
Learning an agent is left free to take sequential actions within an environment with-
out any supervision. The only element the agent receives is a reward signal that gives
an idea about the goodness of the action chosen; the goal of the agent is to maximize
the sum of these future rewards.

It is clear that this approach strongly differs from supervised learning in which
each observation/data is labeled such that we always have the correct prediction dur-
ing the training time. However, Reinforcement Learning also differs from unsuper-
vised learning since there is still a signal that aims to evaluate the behavior of the
agent, while in unsupervised learning the purpose is to discover unknown structures
in the data.

The term Deep Reinforcement Learning comes from the combination of Rein-
forcement Learning and Deep Learning techniques. In this way, the interaction agent-

28 Chapter 2. Deep Reinforcement Learning

environment and the Reinforcement Learning theory (further explained in this chap-
ter) combined with a neural network that predicts the action the agent has to perform,
are the key elements that allow agent to achieve the optimal behavior in order to solve
the desired tasks.

2.3.1 Markov Decision Process

Reinforcement Learning involves the interaction between one or more agents and an
environment. Each time step t, the agent performs an action at in the state st and
receives a reward signal rt that is typically a numerical value, and as a result of the
action performed it will find itself in another state st+1. In this way, the environment
will change as a consequence of the action taken by the agent or because of its natural
evolution. An example of this interaction is illustrated in Figure 2.4.

The Reinforcement Learning process can be defined as a Markov Decision Pro-
cess (MDP), defined as M = (S,A,P,r,γ), where:

• S is the set of states, that could be fully or partially observable as in the case of
Partially Observable Markov Decision Process (POMDP);

• A is the set of actions and they could be discrete, choosing high-level com-
mands like turn left/right or move forward/backward, or they could be con-
tinue, useful for those tasks in which we want the agent learns not only which
the best action is for a specific state, but also how to perform it.

• P is the state transition probability P(st+1|st ,at) in which, as defined by the
Markov property, the next state of the environment only depends on the current
state and the action choosen from the agent;

• r represents the reward function;

• γ is the discount factor ([0,1]) that modulates the importance of future rewards;
the closer will be to 0 the more interested the agent will be in maximizing
immediate rewards.

2.3. Reinforcement Learning Theory 29

Figure 2.4: Markov Decision Process illustrating the interaction between the agent
and the environment. Each time step the agent performs an action at observing a
state st and receives a reward signal rt+1, finding itself in a different state st+1 as a
consequence of the performed action. This interaction continues until a terminal state
is achieved by the agent

In Reinforcement Learning, the episode refers to a sequence of states, actions and
rewards which ends with a terminal state at time T . The aim of the agent is to find
the best policy π that maximizes the discounted sum of the rewards, that is called
expected return defined as follows:

Rt =
T

∑
t

rt + γrt+1 + · · ·+ γ
T−trT (2.3)

The policy π(a|s) is nothing but a mapping function that for each state st ∈ S pre-
dicts an action at ∈ A in order to maximize future discounted rewards, thus achieving
its goal. This does not mean that the agent must always perform what it believes is
the best action, but a good trade-off between exploration and exploitation has to be

30 Chapter 2. Deep Reinforcement Learning

achieved. Exploration consist in taking the action that is not optimal for the agent,
that could be more dangerous but it may reveal new and possibly better behaviors; on
the other hand exploitation consists of taking the best assumed action with respect to
the observed state, namely the safest action for the agent. It is clear that we do not
have a prior knowledge about when it is optimal to explore rather than exploit and
for this reason it is crucial to delineate a strategy with a good trade-off between these
two behaviors. An example is the ε-greedy algorithm in which the agent explores
choosing a random option with ε probability and exploits with 1− ε probability.

In the following sections of this chapter we will give further explanation on the
basic theory of Reinforcement Learning algorithms and techniques related to those
ones used and implemented in this research project.

2.3.2 Value Function

An important element in Reinforcement Learning is the value function Vπ which
evaluates how good is a certain state for the agent to be in. This estimation is defined
in terms of expected future rewards or expected return with respect to the policy π

the agent will follow. Mathematically speaking the state-value function Vπ is defined
as:

Vπ(s) = Eπ(Rt |st) (2.4)

It is possible to estimate which is the best policy, comparing the state-value func-
tions obtained with different policies. In this way the optimal policy π∗ will be the
one that estimates the optimal value function Vπ∗ , namely the one with the maximum
value compared to all the other value functions, such that:

Vπ∗(s) = max
π

Vπ(s) (2.5)

In the same way, in action value function methods such as Q-learning [52], Qπ

gives the expected return under a policy π after performing an action at in a state st :

Qπ(st ,at) = Eπ(Rt |st ,at) (2.6)

2.3. Reinforcement Learning Theory 31

Also in this case it is possible to estimate the optimal action value function Qπ∗

following the optimal policy π∗:

at = max
a∈A

Qπ∗(st ,a) (2.7)

An important property is that for any policy π and state st it is possible to define
the state value function Vπ iteratively, using the value of the next state. This property
is called Bellman equation and is defined as:

Vπ(st) = Eπ(Rt |st) = Eπ(rt+1 + γVπ(st+1)) (2.8)

The same idea can be applied to the action value function Qπ :

Qπ(st ,at) = Eπ(Rt |st ,at) = Eπ(rt+1 + γQπ(st+1|at+1)) (2.9)

2.3.3 Monte Carlo and Temporal Difference learning

Monte Carlo (MC) learning is suitable only for the so called episodic MDP, namely
for those tasks that have a terminal state. Indeed, in MC methods all the rewards are
stored such that at the end of the episode the estimations of the value functions (or
action value functions) are updated in all the visited states. The update formula used
in MC learning is defined as follows:

V (st)←V (st)+α[Rt −V (st)] (2.10)

where α is the learning rate and Rt is the sum of discounted rewards as defined in
Equation 2.3.

Instead, Temporal Difference (TD) learning does not require the end of the episode
to update the value function of a given state, but it only needs the next time step as
in the Bellman equation (Equation 2.8). Indeeed, the simplest TD method known as
TD(0) uses the obtained reward rt+1 and the estimate V (st+1) to update V (st):

V (st)←V (st)+α[rt+1 + γV (st+1)−V (st)] (2.11)

where the part in the brackets is called TD error. Estimating a value starting from
another estimation is called bootstrapping.

32 Chapter 2. Deep Reinforcement Learning

2.3.4 Model-free vs Model-based Reinforcement Learning

As explained in the previous section, the agent performs an action at after observing
a state st , receives a reward rt+1 and thus finding itself in another new state st+1.
For complex environment, the states perceived by the agent may change not only
because of its behavior, but also for other external factors making impossible having
a full knowledge of the environment and thus predicting how the state will evolve
from st to st+1 and what would be the future reward rt+1. These two distributions
represent the model of the environment and in Model-based Reinforcement Learning
it is learned by the agent, thus predicting how will be the future state st+1 and future
reward rt+1 given the action performed in st ; in this way, the number of trials and
errors the agent has to execute to reach an optimal policy is reduced, increasing the
sample efficiency of the solution.

A different approach is represented by Model-free Reinforcement Learning in
which the model is not learned and the only aim of the agent is to perform an ac-
tion observing the state st without making any assumption on st+1 and rt+1 and the
dynamics of the environment is implicitly learned by the model.

2.3.5 On-policy, Off-policy and Offline Reinforcement Learning

On-policy, Off-policy and Offline Reinforcement Learning are different methods that
generate data in different ways. The firts one aims at improving the latest learned
policy that has been used to collect data and take actions; an example is SARSA (state,
action, reward, state’, action’), where state’ and action’ are the new state-action pair.
The method is explained in the pseudo-code in Algorithm 1.

In Off-policy methods the agent appends its experience in a buffer (or replay
buffer) collecting this data with different policies πk such that the buffer is composed
by observations retrieved with π0,π1, · · · ,πk; data are sampled from the buffer and
used to obtain the new policy πk+1. An example is Q-learning, whose pseudo-cose is
illustrated in Algorithm 2.

Both On-Policy and Off-policy methods belong to the category of the so called
Online Reinforcement Learning, since in both cases the agent interacts with the envi-

2.3. Reinforcement Learning Theory 33

Algorithm 1 SARSA, On-policy TD learning
1: Initialize discount factor γ and learning rate α

2: Initialize Q(s,a) for all s ∈ S, a ∈ A
3: for each episode do
4: Initialize s
5: Choose a from s using policy derived from Q (e.g., ε-greedy)
6: for each step of the episode do
7: Take action a, observe r and s′

8: Choose a′ from s′ using policy derived from Q (e.g., ε-greedy)
9: Q(s,a)← Q(s,a)+α[r+ γQ(s′,a′)−Q(s,a)]

10: s← s′

11: a← a′

12: end for
13: Until s is terminal
14: end for

Algorithm 2 Q-learning, Off-policy TD learning
1: Initialize discount factor γ and learning rate α

2: Initialize Q(s,a) for all s ∈ S, a ∈ A
3: for each episode do
4: Initialize s
5: for each step of the episode do
6: Choose a from s using policy derived from Q (e.g., ε-greedy)
7: Take action a, observe r and s′

8: Q(s,a)← Q(s,a)+α[r+ γmaxa′Q(s′,a′)−Q(s,a)]
9: s← s′

10: end for
11: Until s is terminal
12: end for

34 Chapter 2. Deep Reinforcement Learning

ronment updating the policy using the experience gathered during the training phase.
A completely different approach is represented by Offline Reinforcement Learning,
which involves a static dataset of fixed interactions used by the agent to learn the best
policy. In this case there is no more interaction with the environment and the dataset
is not updated with the agent experience.

2.3.6 Policy Gradient methods

In contrast to value function or action value function methods that improve the value
estimation improving the policy implicitly, Policy Gradient algorithms follow gradi-
ents with respect to the policy thus updating the policy itself.

In Policy Gradient methods, that belong to Model-free Reinforcement Learning
algorithms, the policy π is defined by a set of parameters θ by which π(a|s,θ) repre-
sents the probability of taking action a in state s following the policy π parametrized
with θ . Then, the aim of such methods is to update such parameters θ in order to find
the optimal policy π∗(a|s).

Considering the parametrized policy πθ with the purpose of maximizing the ex-
pected return through the objective function J(πθ):

J(πθ) = Eπθ

[T−1

∑
t=0

rt

]
= Eπθ

[Rτ] (2.12)

It is possible to maximise the objective function J(πθ) in order to maximise the
expected return adjusting the parameters θ of the policy. The gradient of the objective
function is ∇J(πθ) = ∇Eπθ

[Rt] and the update formula is defined as follows:

θt+1 = θt +α∇J(θ) = θt +α∇Eπθ
[Rτ] (2.13)

2.3. Reinforcement Learning Theory 35

We can rewrite the gradient in this form:

∇J(θ) = ∇Eπθ
[Rτ]

= ∇θ ∑
τ

P(τ|θ)R(τ)

= ∑
τ

∇θ P(τ|θ)R(τ)

= ∑
τ

P(τ|θ)∇θ P(τ|θ)
P(τ|θ) R(τ)

= ∑
τ

P(τ|θ)∇θ logP(τ|θ)R(τ)

= Eπθ
(∇θ logP(τ|θ)R(τ))

(2.14)

in which the log-derivative trick (∇θ log(z) = ∇θ z
z) is used to obtain ∇θ logP(τ|θ).

Then, considering that:

∇θ logP(τ|θ) = ∇θ log p(s0)+
T−1

∑
t=0

(∇θ logP(st+1|st ,at)+∇θ logπθ (at ,st))

=
T−1

∑
t=0

∇θ logπθ (at ,st)

(2.15)

and replacing the result of the Equation 2.15 in Equation 2.14 we obtain the final
formula of the gradient of the objective function:

∇J(θ) = Eπθ

(T−1

∑
t=0

∇θ logπθ (at ,st)R(τ)
)

(2.16)

Finally, the update formula in Equation 2.13 can be written as follows:

θt+1 = θt +αR(τ)
∇θ πθ (at |st ,θ)

π(at |st ,θ)
(2.17)

This update uses the gradient ascent rule since we want to increase the probability
of taking action at in the observed state st ; moreover, this increment is proportional
to the obtained return, but it is normalized by the probability of the action in order to
compensate the fact that more likely actions will be taken more often.

36 Chapter 2. Deep Reinforcement Learning

Algorithm 3 Advantage Actor-Critic

1: Initialize parameters θ π and θ v

2: Initialize step counter t← 1
3: Initialize episode counter E← 1
4: Set n as the number of steps required to perform an update
5: while E < Emax do
6: ∆π = 0, ∆v = 0
7: tup = t
8: get st

9: while st not terminal and (t− tup)< n do
10: Execute at following the policy π(at |st ,θ

π)

11: Get the reward rt and new state st+1

12: t← t +1
13: end while

14: R =

⎧⎨⎩0, if st is terminal

V (st ,θ
v), otherwise

15: for i ∈ t−1, · · · , tup do
16: R = ri + γR
17: ∆π = ∆π +∇θ π logπ(ai|si,θ

π)[R−V (si,θ
v)]

18: ∆v = ∆v +∇θ vR−V (si,θ
v)2

19: end for
20: θ π = θ π +απ∆π

21: θ v = θ v +αv∆v

22: E← E +1
23: end while

2.3. Reinforcement Learning Theory 37

2.3.7 Actor-Critic Methods

An approach that combines the action value algorithms with the policy gradient learn-
ing is the Actor-Critic method. In such case, the policy is parametrized and optimized,
as in policy gradient methods (Section 2.3.6), but at the same time the state value
function is estimates thus reducing the variance of the updates and permitting boot-
strapping using the TD-learning algorithm.

Moreover, the name actor-critic is related to the fact that two networks are used:
one to predict the action, namely the policy network (the actor) parametrized as θ π ,
and the other one to predict the state value function (the critic) parametrized as θ v.

In the so called Advantage Actor-Critic, the return Rτ used in Equation 2.17 is
replaced by th Advantage (Ab), that tell us if a state is better or worse than expected,
namely how is the executed action with respect to the expected action:

Ab = rt + γrt+1 + · · ·+ γ
b−1rt+b−1 +V (st+b,θ

v)−V (st ,θ
v) (2.18)

where b is the number of the obtained reward before bootstrapping. If the Advantage
is greater than zero it means that the chosen action is better than expected and the
updates will be directed towards a more frequent execution of that action, otherwise
we will encourage the agent to take the opposite of such action. The update formulas
of actor and critic parameters are defined as:

θ
π
t+1 = θ

π
t +απAb

∇θ π π(at |st ,θ
π)

π(at |st ,θ π)
= θ

π
t +απAb∇θ π logπ(at |st ,θ

π) (2.19)

θ
v
t+1 = θ

v
t +αvAb∇θ vV (st ,θ

v) (2.20)

where απ and αv are the learning rates for the actor and critic respectively. Algo-
rithm 3 shows the pseudo-code of the Advantage Actor-Critic in which the updates
defined in Equation 2.19 and 2.20 are performed each n-steps or when a terminal
state is reached.

2.3.8 Asynchronous Advantage Actor-Critic (A3C)

The asynchronous version of the Advantage Actor-Critic (A3C) [53] involves the
use of multiple instances of the environment in which the actor-learners are inde-

38 Chapter 2. Deep Reinforcement Learning

Environment

Instance 1

Input

Network

Actor-Learner 1

Input

Network

Global Network

Instance 2

Input

Network

Actor-Learner 2

Instance n

Input

Network

Actor-Learner n

Figure 2.5: Asynchronous Advantage Actor-Critic scheme in which it is possible to
notice the different instances of the environment that allow actor-learners to collect
update not correlated to each other and to have an indipendent environment configu-
ration. The agents retrieve the last version of the global network at the beginning of
each episode: this is executed asynchronously as well as the policy updates during
the episode

2.3. Reinforcement Learning Theory 39

pendent with each other; they only share a global network, pulling the last version
of it (both the actor and the critic) at the beginning of each episode. Each actor-
learner computes the accumulated gradients during the episode and send them to the
global network asynchronously every n−steps: in this way, the agents involved in the
learning phase may have different version of the global network thus increasing the
exploration process. This element combined with a different and independent envi-
ronment configuration perceived by each agent that makes the actor-learners updates
not correlated to each other, increases the learning process stability. A scheme of this
learning process is illustrated in Figure 2.5, while a pseudo-code of A3C is shown in
Algorithm 4.

2.3.9 Multi-Agent Deep Rinforcement Learning

In previous sections we only considered the case in which a single agent interacts
with the environment or with a single independent instance of it. In this way, the
environment perceived by the agent changes as a result of the agent actions or ac-
cordingly to deterministic rules. For example, an environment could be populated
by agents not involved in the learning process, following a rule-based behavior; pre-
dicting, even implicitly, the behavior of those entities is not a difficult task for the
actor-learner, but designating an environment governed by deterministic rules makes
the system unsuitable for the real wolrd, in which uncertainty elements will surely be
encountered.

On the other hand, a Multi-Agent approach consists in the use of two or more
agents sharing the same environment or the same instance of it and they are both
involved in the learning process. The approach could be centralized or decentral-
ized: in the first case a single brain/controller is deployed across all the actor-learners
and it has a full knowledge of the environment; the action predicted by the single
brain will be broadcast to all agents and possibly decoded into different sub-actions.
Instead, in the decentralized approach the agents act independently using different
policies or slightly different versions of the same shared policy or global network,
as illustrated in Figure 2.6. In this case, the environment will change not only as a
consequence of a single agent actions, but also because of other actor-learners, that

40 Chapter 2. Deep Reinforcement Learning

Algorithm 4 Asynchronous Advantage Actor-Critic (A3C)

1: // The global shared parameters are θπ (actor) and θv (critic)
2: // The specific actor-learner parameters are θ ′π (actor) and θ ′v (critic)
3: Initialize parameters θπ and θ ′v
4: Set ninst as the number of environment instances
5: Set n as the number of steps required to perform an update
6: Run ninst environment instances
7: for environment e = 1, · · · , ninst do [running concurrently until termination]
8: Initialize step counter t← 1
9: θ ′π = θπ , θ ′v = θv

10: ∆′π = 0, ∆′v = 0
11: while st not terminal do
12: tup = t
13: Get st

14: while st not terminal and t− tup < n do
15: Execute at following the policy π(at |st ,θ

′
π)

16: Get the reward rt and new state st+1

17: t← t +1
18: end while

19: R =

⎧⎨⎩0, if st is terminal

V (st ,θ
′
v), otherwise

20: for i ∈ t−1, · · · , tup do
21: R = ri + γR
22: ∆′π = ∆′π +∇θ ′π logπ(ai|si,θ

′
π)[R−V (si,θ

′
v)]

23: ∆′v = ∆′v +∇θ ′vR−V (si,θ
′
v)

2

24: end for
25: θ π = θ π +απ∆′π
26: θ v = θ v +αv∆′v
27: end while
28: end for

2.3. Reinforcement Learning Theory 41

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Environment

Global Network

Figure 2.6: Multi-Agent Deep Reinforcement Learning using a decentralized ap-
proach in which an arbitrary number of agents (5 in the proposed example) inter-
act with the same environment and with each other. The actor-learners involved in
the training process share a global network and each agent will behave following a
slightly different version of it, but updating and improving the same policy

42 Chapter 2. Deep Reinforcement Learning

will not follow deterministic rules thus increasing the complexity of predicting other
agent intentions. However, the introduction of noise and uncertainty elements (as
the non-deterministic behavior of the actor-learners populating the environment) will
surely reduce the gap between simulated and real-world scenario, thus increasing the
robustness of the model.

In Multi-Agent configuration, agents interact not only with the environment, but
also with each other; especially in those cases where a common goal has to be reached
and a cooperative behavior should emerge during the training process, a communica-
tion or a negotiation should be achieved among the actor-learners in order to perform
actions safely and thus reaching the goal. Depending on the task, a communication
channel or a shared memory accessible by the agents, could be provided in order to
share information about the environment or their internal states, thus facilitating the
interaction and negotiation processes. However, when this communication protocol is
not provided, the agents have to implicitly learn to negotiate and predict other agent
intentions.

In this research project, both single-agent and multi-agent approaches have been
developed, providing a novel implementation of the Asynchronous Advantage Actor-
Critic (A3C). Moreover, as explained in Section 2.3.4, the learning phase of Model-
free methods is based on the trials and errors process and for this reason the use of
simulators is required for training agents. In the next chapter a brief overview on the
use of simulator in Reinforcement Learning is given as well as a description of the
one used in this reasearch project.

Chapter 3

Simulators in Deep Reinforcement
Learning

A key role in the Reinforcement Learning training pipeline is played by simulators
that represent nothing but the environment, or the set of environments, in which one or
more agents are trained. As we will explain in the next sections of this chapter, there
are different kind of simulators and the choice of which one to use is strictly related to
the task we want to solve: in the game theory they are simply virtual environments on
which agents are trained to solve a specific task or game, while in robotics field they
are used to simulate real-world scenarios (sometimes using a synthetic representation
of them) or to provide a physics engine.

Moreover, as explained in the previous chapter, the typical Reinforcement Learn-
ing training is based on the process of trails and errors, in which agents learn how to
behave in specific environments through experience, performing actions and observ-
ing the consequences of them. In Deep Reinforcement Learning this process is sup-
ported by a neural network that has to learn the relevant features of the environment,
understanding its dynamics and then figuring out how to act properly, thus achieving
the desired behavior. Moreover, during the training phase we want the agent takes
actions that lead to catastrophic outcomes, since only observing the consequences of
different actions it can learn how to behave correctly and thus reaching an optimal

44 Chapter 3. Simulators in Deep Reinforcement Learning

policy. Especially in robotics field, training a robot in a real environment is not always
feasible for different reasons:

• The trials and errors process requires thousands or millions of episodes, but de-
pending on both the hardware we have at disposal and clearly the task we want
to solve, this process could require only few hours in simulation. Instead, a
training performed in a real-world environment is more time and resource con-
suming since a human supervision on the robot would be required throughout
training.

• The actions taken by a policy during the training process may be catastrophic
causing serious damages to the users involved in the environment and to the
real robot itself.

In the following sections we will analyze the different types of simulators, show-
ing the most used ones in particular in the autonomous driving field, and finally pre-
senting the simulators used in this research project.

3.1 OpenAI Gym

OpenAI Gym [54] is a collection of environments, from games to physics-based ones,
provided for developing and comparing reinforcement learning algorithms in order
to increase their reproducibility. This is a very useful tool since researchers have to
implement only the code of the algorithm they wants to test without being concerned
about the environment implementation, and most importantly a detailed benchmark
for each environment is provided in order to compare the performances of their algo-
rithm with the existing ones.

There are different available tasks to solve on OpenAI Gym:

• Classic control games, like Acrobot [55], CartPole [56], MountainCar [57] and
Pendulum (Figure 3.1), and toy text.

• Algorithmic calculations.

3.1. OpenAI Gym 45

Figure 3.1: Classic control environments provided by OpenAI Gym (from left to the
right: Acrobot, CartPole, MountainCar and Pendulum)

• Atari games, including Pong, Space Invaders, Breakout and many others (Fig-
ure 3.2).

Figure 3.2: Some of Atari games widely use for training and testing Reinforcement
Learning algorithms

• 2D and 3D Robot control using a physics engine called MuJoCo (Multi-Joint
dynamics with Contact [58]), that allows testing complex dynamic systems
with contact-rich behaviors.

46 Chapter 3. Simulators in Deep Reinforcement Learning

3.2 Autonomous Driving Simulators

Simulators play an essential role also in the development of autonomous driving sys-
tems. They allow to observe the behavior of an algorithm before testing and deploy-
ing its final version on the real self-driving car, thus saving time and resources in
the development phase; in this way, if we notice unexpected behavior in simulation,
we keep improving the algorithm without spending time on testing non-functioning
systems in real-world and thus ensure the safety of other road users as well as self-
driving drivers. Moreover, in simulation it is possible to reproduce particular condi-
tion (or traffic condition) that in real life are rare or may require a long time.

Simulators are not only used for testing autonomous driving systems before de-
ploying them in real-world environments, but also for training Reinforcement Learn-
ing algorithms or even for the creation of datasets used for supervised or unsupervised
learning.

However, some approaches based on Reinforcement Learning do not use simula-
tors for training agent performing planning and control tasks, but they only provide
scalar parameters containing environmental information like positions, velocities and
headings of other road users, or information related to the topology of the road like
positions or the number of lanes. This kind of approach strongly reduces the com-
plexity of what would be the agent surroundings and thereby simplifying the learning
process, but exposes the system to a high risk of overfitting on the training scalar
parameters. Indeed, the achievements of the last decades on convolutional neural net-
works (Section 2.2.1) allow the agent to learn relevant features of the environment,
achieving a better understanding of its dynamics and thus better generalizing to envi-
ronments unseen during the training phase.

In this section we focus on those simulators used for training Reinforcement
Learning agents and in particular illustrating two different types of simulators: re-
alistic graphic simulators that aim to reproduce real-world scenarios and those ones
based on a synthetic representation of the reality, namely reproducing the informa-
tion of the environment in a different and simplified scheme and thereby reducing
the complexity of the model input. Finally, an explanation on simulators used in this

3.2. Autonomous Driving Simulators 47

reasearch project is given showing their major components and functionalities.

3.2.1 Realistic Graphic Simulators

Realistic graphic simulators aim at reproducing realistic scenarios trying to provide
camera images as similar as possible to real images. Thanks to its very realistic
physics engine, Grand Theft Auto V (GTA V) video game is one of the most real-
istic graphics simulators [59] widely used to create pseudo-realistic labeled datasets
reducing time and cost due to the collection and labelization of real images. How-
ever, this kind of simulators do not facilitate the environment customization and they
do not allow to use an arbitrary number of sensors on the same vehicle. In addition,
it does not provide feedback regarding erroneous driving behaviors or traffic rules
violations.

At this purpose, the open-source simulator CARLA (CAR Learning to Act) [60]
(Figure 3.3) has been developed upon the Unreal game engine in order to support the
development, training, and validation of autonomous driving systems. This simulator
allows to collect data, setting different traffic driving behaviors, but it can also be used
to train and test planning algorithms. Moreover, it supports a flexible customization
of vehicles and scenarios, enabling the use of different sensors and the creation of
several scenarios and weather conditions.

However, despite the realistic graphics, a domain gap between simulated scenar-
ios and real images is a relevant factor, especially if the final purpose is to deploy
the training system in real-world environments. At this purpose, several works aim at
reducing the difference between the two domains (composed by simulated and real
images) through the use of Generative Adversarial Neural Networks (GAN) [61].
This still remains an open problem even if recent achievements have shown promis-
ing results ([62]).

Moreover, especially for the training of Reinforcement Learning algorithms for
planning and control tasks, an other relevant gap is related to the behaviors between
real and simulated traffic cars; these latter often follow rule-based behaviors, making
difficult the prediction of human driving intentions for the system when deployed in
real-world scenarios. Finally, the trained agent dynamics in simulation should be as

48 Chapter 3. Simulators in Deep Reinforcement Learning

Figure 3.3: CARLA simulator

similar as possible to the one on board of the real self-driving car used for real tests;
however, trying to replicate the real vehicle dynamics in simulation is not always an
easy task and for example CARLA simulator allows the user to set up some vehicle
physics parameters.

3.2.2 Simulators based on Synthetic Representation of Reality

A different approach involves the use of simulators which do not try to reproduce real-
world scenarios, but to provide a synthetic representation of the reality. These kind
of tools are useful for the development of planning and control algorithms, traffic
modeling, maneuver execution systems and motion forecasting. In this way, agents
will learn a simplified version of the environment, no longer characterized by features
derived from complex scenarios or particular elements involved in the simulation, but
rather a schematic representation of information processed by sensors on board of the
real vehicle.

Typically, the environment populated by agents will be characterized by a sim-

3.2. Autonomous Driving Simulators 49

Figure 3.4: SUMO simulator

Figure 3.5: Waymo ChauffeurNet

50 Chapter 3. Simulators in Deep Reinforcement Learning

plified top-view representation as in the case of SUMO (Simulation of Urban MO-
bility) [63] (Figure 3.4), that is an open-source, microscopic traffic simulator mostly
used for traffic forecasting, including the evaluation of traffic lights and route selec-
tion, but it also used for testing vehicular communication systems. Another example
of simplified simulator is given by Waymo ChauffeurNet [64] (Figure 3.5) in which,
as in SUMO, the vehicles are represented by two-dimensional oriented boxes such
that the learning process of the agent will be mostly focused on the behavior to solve
a specific task instead of learning complex environmental features.

In this way, the domain gap between simulated and real images no longer exists,
but if we are interested in deploying our system in real-world scenarios we need to
focus on the problems related to the difference between real and simulated traffic
behaviors and the dynamics of the trained agents. Such problems are mostly relevant
for Online Reinforcement Learning methods since the agent is entirely trained with
simulated data, while in other approaches like Imitation Learning (Section 1.2.3),
the agents are trained observing realistic data both related to other road users and
ego-vehicle behaviors.

In the next section we will present the microscopic traffic simulator developed
in [65] and its upgraded version based on High-Definition Maps developed in the last
part of this research project.

3.2.3 Multi-Agent Microscopic Traffic Simulator

In the first part of this research project, we started using the simulator implemented
in [65] developed with Cairo graphic library [66] used to reproduce synthetic rep-
resentations of a real environment as illustrated in Figure 3.6. The simulator was
developed for training agents to drive safely inside the roundabout illustrated in Fig-
ure 3.6a, thus achieving an intelligent traffic road users. The purpose indeed, was to
reduce the gap between real and simulated traffic behavior and thereby overcoming
the lack of interaction and negotiation that could occurr when using agents follow-
ing rule-based rules. Indeed, agents were trained in a multi-agent fashion on several
instances of the same environment, such that actions taken by an actor-learner may af-
fect not only its own state but also those of other agents, as explained in Section 2.3.9.

3.2. Autonomous Driving Simulators 51

(a) Synthetic roundabout representation (b) Real roundabout

Figure 3.6: On the left (3.6a) is illustrated the synthetic representation of a real round-
about in Parma (3.6b), implemented with Cairo graphic library for training agents (the
blue boxes in 3.6a) to navigate safely inside the roundabout

As a result, agents learn to cooperate and negotiate implicitly in order to achieve
the common goal, driving safely without crashing with each others. In particular,
the Asynchronous Advantage Actor-Critic (A3C) (Section 2.3.8) algorithm has been
used, training a neural network that predicts discrete actions in order to control the
longitudinal behavior of the vehicle, while the lateral control was not learned since
agents simply follow the waypoints representing the center lanes of the route.

Agents follow the kinematic bicycle model which consists in a 4-wheel model
combining the front and the rear wheels to form a two-wheeled model (or bicycle
model). However, we can use such model making some assumptions:

• No-slip condition, namely that there is no lateral or longitudinal slip in the
wheels.

• The vehicle has a lumped mass acting at the center of mass.

• Vehicle are moving on a 2D pane.

52 Chapter 3. Simulators in Deep Reinforcement Learning

v
L

v

r

ic

Figure 3.7: An example scheme of the bicycle model

A simple example is illustrated in Figure 3.7 in which ic represents the instanta-
neous centre of rotation, namely the point around which the car is rotating at a given
instant, and it is positioned at the intersection of the perpendiculars of the two wheels.
We can define the x and y components of the velocity v and the angular velocity θ̇ as
follows:

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ =
v
r

(3.1)

where r is the radius of rotation. However, we know that the angle intersecting the
front and rear perpendicular lines is still the steering angle δ , and for this reason we
can also define tan(δ) = L

r ad so r = L
tan(δ) , thus writing:

θ̇ =
v
r
= v

tan(δ)
L

(3.2)

Another way to calculate the angular velocity consists in using the curvature κ

defined as the inverse of the radius of rotation r; finally, we can define the final model

3.2. Autonomous Driving Simulators 53

with acceleration a and curvature k as inputs:

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ =
v
r
= vκ

v̇ = a

(3.3)

3.2.4 State Space

Each actor-learner involved in the environment perceives a surrounding of 50× 50
meters, illustrated by the green square in the example in Figure 3.8, observing 40
meters forward, 25 left and right and 10 backward; in the first version of the simulator
developed in [65], such surrounding is split in different channels of 84× 84 pixels
composed by:

• Navigable space (Figure 3.8b) inside which the agent can drive.

• Path (Figure 3.8c) the agents have to follow.

• Obstacles (Figure 3.8d) represented by vehicles inside the 50×50 meters sur-
rounding (blue boxes in Fgure 3.8) included the ego-agent itself (the green
one).

The information illustrated in Figure 3.8 can be retrieved by data perceived by
sensors and processed by perception and localization systems embedded on the self-
driving: the navigable space can be provided by topological maps (or HD maps)
known a priori as well as the path the agent should follow, but they could also be
computed by perception systems. Finally, the obstacle channel can be reproduced
using object detection systems able to detect and track the road users involved in the
surrounding of the ego-agent; in this simulators, only vehicles are embedded in the
obstacle channel, however any static or dynamic obstacles could be included in such
channel by resizing the boxes according to the type of object.

54 Chapter 3. Simulators in Deep Reinforcement Learning

(a) Simulated roundabout

(b) Navigable space (c) Path (d) Obstacles

Figure 3.8: Synthetic representation of a real roundabout in Parma (3.8a) in which the
green square represents the 50×50 meters surrounding perceived by the green agent;
anyway, each actor-learner involved in the scenario perceived this kind of view. The
information contained in such area is split in three different channels representing the
navigable space (3.8b), the path (3.8c) the agent will follow, and the obstacles (3.8d)
including the ego-vehicle (the green agent)

3.2. Autonomous Driving Simulators 55

3.2.5 HD Simulator

For the last part of the research project, we developed a new version of the simulator
illustrated in Figure 3.6 using HD Maps (developed internally by the research team),
in order both to speed up the creation process of scenarios and to have more infor-
mation available during the training process, like stop line positions, speed limits,
lane boundaries, traffic signs and much more. An example is illustrated in Figure 3.9
showing the full view of the scenario (Figure 3.9a) and the agent surrounding (Fig-
ure 3.9b); the information contained in such view is then split in different channels
as illustrated in Figure 3.8.

(a) Full view (b) Agent view

Figure 3.9: (3.9a) represents the synthetic top-view representation of the real round-
about in Figure 3.6b created using HD Maps, while in (3.9b) is illustrated the 50×50
meters surrounding perceived by the green agent. White and yellow lines represent
centers and lane boundaries respectively

Chapter 4

Intelligent Roundabout Insertion

In this chapter we will explain the first system developed in such research project,
which consists in the implementation of a module able to perform the immission
maneuver in roundabout scenarios [67]. At the beginning, we started exploring the
capabilities of a novel version of the Asynchronous Advantage Actor-Critic (A3C)
(Section 2.3.8), training agents performing such maneuver in the roundabout illus-
trated in Figure 3.6a through the training of a neural network that predicts a discrete
output value to modulate the longitudinal acceleration of the vehicle. The lateral con-
trol is not learned since the agent simply follow the center lanes of the route. Then,
we continue increasing the generalization capabilities of the system, thus deploying
and testing the model on a real-world roundabout on-board of a self-driving vehicle.

4.1 Roundabout Insertion

Typical approaches that attempt to solve the immission maneuver in roundabout sce-
narios are based on rule-base methods including time slots and space reservation
([68], [69]); however, such strategies often lead to undefined waits because of their
overly cautious behavior especially in case of heavy traffic conditions. Other meth-
ods are based on vehicle-to-vehicle (v2v) communication system as in [70], but this
is unsuitable in those scenarios also populated by manually driven vehicles.

58 Chapter 4. Intelligent Roundabout Insertion

For this reason, we develop a system based on Deep Reinforcement Learning
such that agents learn to perform the roundabout insertion safely, implicitly reaching
negotiation and communication capabilities and thus achieving better performances
compared to rule-based methods. The traffic agents populated the scenario are rep-
resented by those ones trained in [65] which do not follow rule-based methods, but
have a more realistic behavior since they have the capability to negotiate and interact
implicitly among them driving safely inside the roundabout. In this way, we obtain a
scenario fully populated by intelligent agents which are able to negotiate the immis-
sion in the roundabout as well as human drivers do in real roundabout scenarios. We
will refer to the traffic agents as passive agents while those ones specifically trained
to perform the immission maneuver as active agents.

Moreover, as well as each human driver has its own driving style, the model
driving behavior is tuned through the use of a learned parameter that simulates the
impetus of the maneuver; in this way, the model learns to perform the immission
with different levels of impetus, proving that agents with higher aggressiveness tend
to take more risks.

4.2 Training Setup

During the training process we create multiple instances of the scenarios, such that
active agents learn how to enter in the three-entry-roundabout of Figure 3.6a from all
the entries simultaneously; in this way, we achieve a sufficient amount of agents for
the learning process to be stable, allowing multiple copies of the agents to learn from
every entry in indipendent instances of the roundabout.

In each instance of the environment, a single active agent performs the immission
starting from the same entry lane and finishing the episode after completing the im-
mission maneuver: in this way, the active vehicle can focus on learning the specific
entry maneuver. Instead, passive vehicles start their episodes from the other two lanes
choosing one of them randomly as well as the exit lane (one of the three available).
So, each instance of the scenario will be populated by only one active agent and at
most eight passive cars simultaneously.

4.2. Training Setup 59

4.2.1 Input and Output Space

Compared to the channels illustrated in Figure 3.8 and used in [65], for the develop-
ment of the entry maneuver task we add an additional channel representing the stop
line (Figure 4.1e), namely the position where the active agent should stop in case it
has to give way to other passive cars inside the roundabout. In this way, the 50×50
meters surrounding of the active vehicle will be split in four channels 84×84 pixels
(navigable space, path, obstacles and stop line) as illustrated in Figure 4.1.

The agents are trained using a neural network illustrated in Figure 4.2, that re-
ceives two different kind of input: a visual and a numerical one. The visual input
consists in a sequence of four temporal frames of the four channels illustrated in Fig-
ure 4.1 of size 4×4×84×84, while the non-visual sensory channel is composed by
four elements:

• Agent speed: the current velocity of the agent.

• Target speed: the maximum velocity that agent should not exceed; it can be
interpreted as the speed limit of the road and it is sampled randomly at the
beginning of each episode.

• Aggressiveness: it is the parameter learned from the model to tune the agent
behavior. Such value is kept fixed during the whole episode and it is chosen
randomly between [0,1].

• Last action: the last output value predicted by the neural network.

The neural network outputs the probabilities of three possible actions together
with the state-value function estimation. The discrete actions the agent could perform
are:

• Permitted: in this case the agent perceives the entry area of the roundabout
as free and the neural network predicts that performing the immission will be
safe. This state results in a comfort maximum acceleration amax (+2 m

s2) unless
the target speed is reached.

60 Chapter 4. Intelligent Roundabout Insertion

(a) Simulated roundabout

(b) Navigable space (c) Path (d) Obstacles (e) Stop line

Figure 4.1: Full view of the synthetic simulator (4.1a) illustrating the active agent (the
green one) and the passive ones. The 50×50 meters surrounding of the active is split
in the four different 84×84 pixels channels representing the navigable space (4.1b),
path (4.1c), obstacles (4.1d) and stop line (4.1e)

4.2. Training Setup 61

Figure 4.2: The neural network architecture used to train agents performing the im-
mission maneuver task. It receives the last four frames of the four channels illustrated
in Figure 4.1 and some scalar parameters, predicting the probabilities of three possi-
ble actions together with the state-value function estimation

• Not Permitted: the entry area is perceived as busy by the agent and the im-
mission would be dangerous; the results will be a deceleration computed as
min(dmax,dstop_line), where dmax is the maximum deceleration permitted fol-
lowing feasible constraints and dstop_line is the decelaration applied to stop the
active vehicle at the stop line. If the agent has already passed the line, the de-
celeration will assume the dmax value.

• Caution: the agent predicts the entry area as not completely free such that
the behavior should be cautious, approaching the roundabout with prudence
both to improve the agent view and to negotiate the entering with a passive
car populating the roundabout. In such state the maximum speed permitted is
1
2 targetspeed and the acceleration a can be:

a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
amax

2 , if agent speed < target speed
2

dmax
2 , if agent speed > target speed

2 +h

0, otherwise

(4.1)

62 Chapter 4. Intelligent Roundabout Insertion

whre h is set to 0.5.

4.2.2 Autonomous Driving Architecture

Given the structure of the simulator used to develop the proposed maneuver planning
system, the architecture used on board of self-driving car will be similar to the one
explained in Section 1.2.2, since we need a pipeline able to reproduce a topological
map of the environment, to localize the car on such map and to detect the obstacles
in the surroundings of the autonomous driving car.

In this way, in the particular case of the roundabout insertion, the proposed ma-
neuver planning system replace the decision-making part of the Planning module
(Section 1.2.2), and its output will be one of the input of the Control module (Sec-
tion 1.2.2), resulting in an architecture similar to the one illustrated in Figure 4.3.

Figure 4.3: The autonomous driving architecture pipeline used for the specific task of
the roundabout insertion. The decision making module output is represented by the
neural network prediction that will be one of the input of the Control module

4.2.3 Delayed Asynchronous Advantage Actor-Critic (D-A3C)

We designed and developed a new version of the original Asynchronous Advantage
Actor-Critic (A3C) (Section 2.3.8) called Delayed-A3C (D-A3C). In such configura-
tion, each agent begins the episode with a local copy of the last version of the global
network, while the system collects all the actors’ contributions; the agent updates

4.3. Reward Function 63

their local copy of the network at fixed time intervals but all the updates are sent to
the global network only at the end of the episode, while in the classical A3C algo-
rithm this exchange is performed at fixed time intervals. Active agents act in separate
multiple instances of the scenario performing the maneuver form the three different
entries simulataneously, but they could have a slightly different version of the same
policy, thus increasing the exploration and at the same time reducing the synchro-
nization burden, since the number of parameter exchanges diminishes compared to
the classical A3C.

In Section 4.4.1, we demonstrate that D-A3C achieves better performance in the
proposed tasks than both the typical A3C and A2C [71], that is the synchrounous
variant of A3C.

4.3 Reward Function

The reward function designated for the proposed task consists of several factors, and
it can be described by the following formula:

rt = rdanger + rterminal + rindecision + rspeed (4.2)

rdanger is a penalization related to dangerous behaviors of the active agent, and it
is defined as:

rdanger =−wds ·α ·ds−wc f ·α · c f (4.3)

where,

• ds is a binary variable which is equal to 1 when the active vehicle violates the
safety distance that is computed as the space traveled from the active agent in
one second, and it is represented by the yellow region in Figure 4.1. When the
safety distance is mantained the value of ds is 0;

• c f is a binary variable and it is set to 1 when the active agent passes in the front
area of a passive vehicle; this area is equal to three times the distance traveled
from the passive vehicle in one second and it is illustrated by the orange region

64 Chapter 4. Intelligent Roundabout Insertion

in Figure 4.1. If the actor learner does not cut in front a passive car, the value
of c f is 0.

• α is related to the aggressiveness level of the active agent and it is defined
as α = (1−aggressiveness). For the whole episode the aggressiveness is kept
fixed and chosen randomly between 0 and 1: higher values of aggressiveness
should lead the agent to perform the maneuver with more impetus but conse-
quently, dangerous actions will be less penalized.

• wds and wc f are constants set to 0.002 and 0.005 respectively.

rterminal depends on the terminal state of the agent, namely how the episode ends,
and it can assume the following values:

• +1: the active agent ends the episode safely without crashing with other passive
vehicles;

• −β − γ ·α: in this case a crash occurred between the active car and another
traffic agent. β is a costant set to 0.2 and γ is the weight of α set to 1.8. More-
over, in this terminal state we modulate rterminal based on the aggressiveness,
as explained for rdanger.

• -1: the time available to end the episode expires.

rindecision is a penalization given to the agent when performing frequent changes
of conflicting actions in two consecutive time steps. In particular, we penalize the
active agent when the action passes from Permitted to one of the others. Calling L1
and L2 the last and the second to last outputs respectively, rindecision can be designed
in the following way:

rindecision =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.05, if L2 = Permitted

and L1 = Caution

−0.15, if L2 = Permitted

and L1 = Not Permitted

0, otherwise.

(4.4)

4.4. Preliminary Results 65

Finally, rspeed is a positive reward which encourages the active agent to increase
the speed reaching the target speed, and it is defined as:

rspeed = ψ · current speed
target speed

(4.5)

where ψ is set to 0.0045.

As explained in Section 1.2.3, the reward shaping is a well-known problem in
literature and even if the function designed for such task is the result of several trials,
it is also true that it allowed the achievement of the desired comfort behavior, learning
the agent to follow the basic road rules like the right of way and the safety distance.

4.4 Preliminary Results

4.4.1 Algorithms Comparison

We compared our implementation of D-A3C with the classical A3C and A2C, in
order to prove if our approach improves the learning performances of the system for
the proposed task. From Figure 4.4, we can notice how D-A3C reaches an optimal
solution in less episodes compared to A3C, while A2C converges on a suboptimal
solution, consisting on always outputting the Permitted state independently on the
occupancy of the roundabout.

Some examples of immissions performed by active agents in the simulated round-
about are illustrated at the following video1.

4.4.2 Aggressiveness Test

As explained in Section 4.2.1, the aggressiveness parameter aims at simulating dif-
ferent driving style behavior, as well as each human driver as its own, from the most
cautious to the most impetuous. Using such parameter as one of the input of the neural
network and shaping the reward based on such value, the system learns to modulate
its behavior accordingly to the aggressiveness value; this is proved in Figure 4.5, in

1https://youtu.be/qVwRCad5K9c

https://youtu.be/qVwRCad5K9c

66 Chapter 4. Intelligent Roundabout Insertion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

p
o
s
it

iv
e
 e

p
is

o
d
e
s
 [

%
]

episode

A2C
A3C

D-A3C

Figure 4.4: Learning curves representing the percentages of episodes ended success-
fully training the system with D-A3C (green), A3C (red) and A2C (blue)

which the D-A3C system is tested on a busy roundabout varying the aggressiveness
level.

Each test is composed by 3000 episodes and we can notice that tests performed
with higher values of aggressiveness increase the impetus of the active vehicle which
tends to take more risks, rising the percentages of crashes with a consequent decrease
of the positive episodes ratio, but also increasing the average speed values. Moreover,
it is interesting to notice that the behavior of the system is consistent also for those
aggressiveness values outside the range used during the training phase ([0,1]).

4.4.3 Comparison with a Rule-based Method

We also demonstrate that our approach based on D-A3C achieves better performances
than a classical rule-based approach consisting in setting four different tresholds (25,
20, 15 and 10 meters) corresponding to the minimum distances required between a

4.4. Preliminary Results 67

−0.2 0 0.2 0.4 0.6 0.8 1 1.25 1.5 1.75 2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Aggressiveness

p
os
it
iv
e
ep
is
o
d
es

[%
]

0

1

2

3

4

5

6

av
er
ag
e
sp
ee
d
[m
s
]

positive episodes
average speed

Figure 4.5: Average speed values (red curve) and percentages of episode ended suc-
cessfully (blue curve) based on the aggressiveness level used for each test

passive vehicle and the active one for starting the entering maneuver.

The metrics used to evaluate the performances of the proposed approaches are:
Reaches, Crashes, Time-overs corresponding to the percentage of episodes ended
successfully, with a crash or when the available time has expired respectively. Every
test is composed by three different experiments composed by 3000 episodes each,
and using three different traffic conditions: low, medium and high, corresponding
to a maximum number of passive vehicles populating the roundabout of 4, 6 and 8
respectively. The Table 4.1 shows the average percentages of the metrics used for this
test, and we can notice that even the percentages of Crashes achieved by the rule-
based method are rather low, such approach could lead to undefined waits due to its

68 Chapter 4. Intelligent Roundabout Insertion

lack of negotiation and interaction capabilities that allows the vehicle to perform the
immission maneuver only when the roundabout is completely free.

Rule-based
D-A3C

25m 20m 15m 10m

Reaches % 0.456 0.732 0.831 0.783 0.989

Crashes % 0.0 0.002 0.012 0.100 0.011

Time-overs % 0.544 0.266 0.157 0.117 0.0

Table 4.1: Comparison between the results achieved by our D-A3C model and a clas-
sical rule-based algorithm.

4.4.4 Results on Unseen Scenarios

To evaluate the generalization capabilities on onseen scenarios, we tested the system
on a new test roundabout (Figure 4.6), not seen during the training phase, comparing
the results achieved by our D-A3C with two different baselines: the first one ob-
tained using a policy that always outputs the Permitted state independently of road
occupancy, while the second one using random actions. Given the larger area of such
roundabout, we consider as low, medium and high traffic conditions a maximum
number of 10, 15, and 20 passive cars respectively, populating the roundabout simul-
taneously. From Table 4.2, we can notice that the system features some generalization
capabilities, but a crash percentage of 8.5% makes the module unsuitable for testing
it in real scenarios where a great generalization capability is required given the un-
certainty and the novel situations encountered in real-world environment [72].

D-A3C Random Permitted
Reaches % 0.910 0.684 0.676

Crashes % 0.085 0.270 0.324

Time-overs % 0.003 0.046 0.0

Table 4.2: Results on the unknown roundabout of Figure 4.6.

4.5. Generalization Techniques 69

(a) Real test roundbout (b) Synthetic test roundabout

Figure 4.6: Real roundabout of Parma (4.6a) and its synthetic representation (4.6b)
unseen during the training phase and used to evaluate the generalization capability of
D-A3C system

4.5 Generalization Techniques

An important problem in Deep Reinforcement Learning algorithms is related to the
generalization capabilities of such systems when tested in unknown environments;
moreover, also the deployment of a DRL algorithm in a real-world context requires
a high ability to handle new and unseen situations given the uncertain nature of the
elements populated real scenarios.

Many approaches create different training levels of increasing difficulty showing
that in this way they reduce the risk of overfitting ([73], [74]); however, they also
show that agents have a high capacity of memorizing levels of the training set but
the performances on test scenarios depend on the complexity of levels or the training
set size. Moreover, especially if we are interested in deploying the system in real-
world environments as in robotics field, techniques aim at reducing the gap between
simulated and real world should be considered, since the states observed by an agent
in simulation could be very different from those perceived in real scenarios.

For this reason, we try to increase the generalization capability of our system

70 Chapter 4. Intelligent Roundabout Insertion

combining two main ideas:

• The design of a Multi-environment System using a pipeline similar to the one
adopted in the typical supervised learning approach consisting in training, val-
idation and test scenarios.

• The injection of different sources of noise in the simulator trying to reduce the
difference between the states observed during the training phase and on board
of real self-driving vehicle.

We prove that in this way we achieve impressive results in unseen scenarios,
making the system more robust to uncertainties introduced by real-world environ-
ments and thus testing such system on a real roundabout on board of an autonomous
vehicle [75].

4.5.1 Multi-environment System

The first improvement introduced regards the implementation of a Multi-environment
System inspired by the typical supervised learning pipeline consisting of splitting the
scenarios in training, validation and test set. All the environments are a synthetic
representation of real roundabouts in Parma, and they are composed by four training
roundabouts (Figure 4.7), one used as validation (Figure 4.8) during the training
phase to evaluate the performance of the policy, and finally a test scenario (Figure 4.6)
that is the same used in Section 4.4.4.

During the training phase, we evaluate the performance of the policy on the val-
idation roundabout (Figure 4.8a) in order to save the best model based on the results
obtained on this scenario and thus reducing the risk of overfitting on the training en-
vironments; the active vehicles acting in the validation roundabout do not compute
or send back the gradient, but they perform the maneuver with the latest network
weights pulled at the beginning of each episode. A simple scheme of the learning
process is illustrated in Figure 4.9.

Given the diversity of the scenarios in terms of shape and length, we also need
traffic vehicles able to behave as well as possible in such roundabouts. For this reason,

4.5. Generalization Techniques 71

(a) Training roundabout 1 (b) Training roundabout 2

(c) Training roundabout 3 (d) Training roundabout 4

(e) Real roundbout 1 (f) Real roundbout 2 (g) Real roundbout 3 (h) Real roundbout 4

Figure 4.7: Synthetic representation of real roundabouts used for training scenarios
in the Multi-environment System setting

we also retrained the passive agents in all the environments (training, validation and
test roundabouts) following the same settings used in [65]. We did not apply the gen-
eralization techniques proposed for training the active agents since we are interested
in obtaining traffic agents that behave as well as possible in all the environments.

72 Chapter 4. Intelligent Roundabout Insertion

(a) Validation roundabout (b) Real roundabout

Figure 4.8: Real roundabout of Parma (4.8b) and its synthetic representation (4.8a)
used as validation scenarios

Training Environments

Environment 1

Training agents

Environment k

Training agents

Validation Environment

Environment 1

Test agents

Global Network Parameters
R/W

R/W

Figure 4.9: Training pipeline used for the Multi-environment System setting. Active
agents performing the immission on the training scenarios update the global network
following the D-A3C algorithm (Section 4.2.3), while those ones acting on the vali-
dation roundabout do not compute the gradient and they are not involved in the update
of global network parameters

4.5. Generalization Techniques 73

However, it is clear that the same generalization techniques can be also applied to the
passive vehicles.

The maximum numbers of passive vehicles populating each instance of the en-
vironments are illustrated in Table 4.3 and can vary depending on the shape and the
length of the roundabout, allowing the active agent to observe and handle different
traffic conditions. For each environment we create as many instances as the number
of entry lanes such that in every instance only one active agent performs the immis-
sion from a specific entry, as explained in Section 4.2. Indeed, the number of active
cars involved in the five roundabouts (four training environments and one for valida-
tion) during the training phase is 19, interacting with 119 passive vehicles, namely
the sum of the maximum number of traffic cars used for every single instance of each
environment (Table 4.3) multiplied for the number of entry lanes of each roundabout.

Roundabout Instance #Passives
Training roundabout 1 6

Training roundabout 2 3

Training roundabout 3 6

Training roundabout 4 6

Validation roundabout 9

Table 4.3: Maximum number of traffic cars allowed in each instance of training
(Fig. 4.7) and validation (Fig. 4.8) environments.

4.5.2 Noise Injection

The second improvement adopted aim at reducing the gap between simulated and
real-world observations is the injection of noise during the training phase. Indeed, the
data distributions observed in simulation can be very different from those perceived
in real scenarios, both for the stochastic nature of real world environments and for the
errors that perception or localization systems on board of the autonomous driving car
may introduce. In order to reproduce such noise and thus training our agents to handle

74 Chapter 4. Intelligent Roundabout Insertion

the uncertainties of real world elements, we introduce different artificial elements in
the simulation:

• Perception noise: this noise aims at simulating possible errors introduced by
perception systems on board of self-driving car, or simply to reproduce im-
perfect human driving behaviors. Indeed, we inject noise in the position (x,y
coordinates), size (width and height) and heading of passive vehicles perceived
from the active one as illustrated in Figure 4.10a. Finally, we also introduce de-
tection errors of passive cars: each time step a traffic car has a probability of not
being detected by the active one, such that the four sequential obstacle channel
images (Figure 4.1d) given as input to the neural network may contain some
detection errors.

• Localization noise: this element has been introduced both to simulate localiza-
tion errors and to train the active agent to observe the state not always from the
center lane, but also being sligthly away from a perfect position. At this pur-
pose, we generate a new virtual path starting from the original one and using
Cubic Bézier curves [76] as illustrated in Figure 4.10b.

(a) Perception noise (b) Localization noise

Figure 4.10: Examples of perception (4.10a) and localization (4.10b) noise aim at
simulating errors that systems on-board vehicle may introduce

4.6. Generalization Results 75

Finally, we introduce an additional noise element by simply modifying the shape
of the entry lanes every 1000 episodes, in order to train the active agent to perform
the immission observing different navigable spaces.

4.6 Generalization Results

We test the system in the unknown scenario of Figure 4.6b in order to evaluate the
generalization capabilities of the system. As for the previous tests, we performed
three experiments, each one composed by 3000 episodes with different traffic condi-
tions, low, medium and high, corresponding to a maximum number of passive vehi-
cles populating the test roundabout to 10, 15 and 20 respectively. The metrics used in
this test is the same used in Section 4.4.4, except for the Time-overs metric that has
been replaced by Total Steps, namely the average number of steps required to end the
episode; indeed, for such test we let the agent performing the insertion without time
limit. For this reason, we also performed a new test with the model obtained training
the system on the single roundabout of Figure 4.1, which we will call Single_env,
using the new metrics and using the updated version of traffic vehicles.

Moreover, in order to prove the improvements introduced by the generalization
techniques exaplained in Section 4.5, we analyzed the generalization performances
on the test roundabout using several models obtained with different training configu-
rations explained as follows:

• Single_env: such model is obtained training the system on the single round-
about of Figure 4.1, without using any generalization techniques (Section 4.5).

• Five_envs: the agents are trained both on the four training roundabouts (Fig-
ure 4.7) and on the one of Figure 4.8, without using the latter as validation
scenario and without introducing noise (Section 4.5.2) in the simulation.

• Five_envs+noise: this module is trained in the same way as Five_envs, but with
the injection of noise (Section 4.5.2) during the training phase.

76 Chapter 4. Intelligent Roundabout Insertion

• Multi_env: the system is trained following the Multi-environment System set-
ting (Section 4.5.1) thus using the roundabout of Figure 4.8 as a validation
scenario, but without introducing noise (Section 4.5.2) in the simulation.

• Multi_env+noise: such module is obtained using both the generalization tech-
niques exaplained in Section 4.5, thus using the roundabout of Figure 4.8 as
validation scenario and the noise injection during the training.

From the results illustrated in Table 4.4 we can state that the simple addition of
training environments as performed in Five_envs does not guarantee better general-
ization performances; on the contrary, the percentage of episode ended successfully
by Single_env overcome the one obtained by Five_envs even if it reaches excellent
results in the training scenarios (> 98% of Reaches). Finally, we can observe that
best results are achieved by such model trained using the Multi-environment System
setting with the validation scenario and the noise injection; indeed, even if the intro-
duction of unpredictable elements were designed to reduce the gap between simulated
and real data, they also allow the system to achieve better performances on the test
scenario.

Further demonstrations on the capabilities achieved by Multi_env+noise are rep-

Reaches % Crashes % Total Steps
Single_env 0.907 0.093 103.489

Five_envs 0.891 0.109 100.460

Five_envs+noise 0.979 0.021 116.356

Multi_env 0.952 0.048 108.237

Multi_env+noise 0.991 0.009 137.438

Table 4.4: Results obtained on the test scenario (Fig. 4.6b) achieved by the different
modules on the test roundabout (Figure 4.6b). The values reported in the table are
computed as the average of the three experiments with different traffic conditions
(low, medium, high).

4.6. Generalization Results 77

resented by tests performed on the validation scenario and on a completely different
type of environment that is the junction scenario illustrated in Figure 4.11. We com-
pare the performances achieved by Multi_env+noise and Single_env to show how the
generalization techniques (Section4.5) introduces in the model dramatically improve
the capabilities of the system.

(a) Real junction (b) Synthetic junction

Figure 4.11: Junction scenario used as additional test to compare the performances
obtained by Multi_env+noise and Single_env models.

In both tests, we conducted the experiments using the same setup and metrics
of the previous ones, namely performing three tests with different traffic conditions,
each one composed by 3000 episodes. In such cases, low, medium and high traffic
conditions correspond to a maximum number of passive vehicles populating the sce-
narios simultaneously of 6, 12 and 18 for the validation roundabout (Figure 4.8a)
and 2, 4 and 6 for the highway in the junction scenario (Figure 4.11). Moreover, to
better evaluate the maneuver in the junction scenario, we reshape its entry lane at the
beginning of each episode such that the junction angle could assume different values
during tests. Table 4.5 and Table 4.6 illustrate the performance comparison between
Multi_env+noise and Single_env obtained on the validation roundabout and on the
junction scenario respectively. We can notice how the generalization techniques ex-
plained in Section 4.5 dramatically improve the capabilities of the system even in

78 Chapter 4. Intelligent Roundabout Insertion

those scenarios completely different from roundabout environments.

Single_env Multi_env+noise
Reaches % 0.920 0.994

Crashes % 0.080 0.006

Total Steps 88.906 115.741

Table 4.5: Performances achieved by Single_env and Multi_env+noise on the valida-
tion roundabout (Fig. 4.8a).

Single_env Multi_env+noise
Reaches % 0.919 0.970

Crashes % 0.081 0.030

Total Steps 97.011 128.182

Table 4.6: Comparison between Single_env and Multi_env+noise models on the junc-
tion scenario (Fig 4.11).

4.7 Real-World Test

The final experiment was conducted deploying Multi_env+noise and Single_env mod-
els on board of the real self-driving car illustrated in Figure 4.12, testing them in the
real roundabout of Figure 4.7g. We chose this scenario for two main reasons: the first
one is related to the fact that both the tested models were trained on such roundabout
in simulation, and secondly because at the time of such tests this roundabout was
included in one of the few areas in which autonomous driving tests were allowed in
Parma.

The autonomous driving pipeline developed to perform the experiments is the one
shown in Figure 4.3: in particular, combining a topological map with localization and

4.7. Real-World Test 79

Figure 4.12: The real autonomous driving car used to perform tests on the real round-
about of Figure 4.7g.

detection systems embedded on the self-driving car, we extract the visual channels
illustrated in Figure 4.6.

The comparison between the two tested models on the real roundabout allows us
to understand the real impact of the generalization techniques (Section 4.5) of the
system. Indeed, even if Single_env model was trained only on the synthetic represen-
tation of such scenario, it was infeasible to perform the immission using such model
since its behavior was unsure, with continuous changes of output due to uncertainty
and noise introduced by localization and perception systems on board of the self-
driving vehicle. On the contrary, Multi_env+noise has proved to be more robust to
these uncertain elements, behaving safely and performing more than 100 immissions
in the real roundabout from the three different entry lanes. The following video2

shows some immission maneuvers performed by the self-driving vehicle equipped

2https://youtu.be/QmgB0YH2BdQhttps://youtu.be/QmgB0YH2BdQ

80 Chapter 4. Intelligent Roundabout Insertion

with the Multi_env+noise model.

4.8 Conclusions

The proposed approach proved the feasibility of Reinforcement Learning techniques
deployment in real-world scenarios, in which the whole training phase was totally
performed with simulated data using a non-graphic simulator (Figure 4.1). The re-
sults obtained represent a promising starting point for the development of maneuver
execution systems through the use of Reinforcement Learning techniques and their
corresponding deployment on board of real self-driving vehicles; moreover, such ap-
proach also proved to achieve excellent generalization capabilities both in unseen and
real-world scenarios without the need of using real data during the training phase.

However, one of the main limitation of the system proposed in this chapter lies in
the use of discrete actions; indeed, even if the aggressiveness input parameter mod-
ulates the behavior of the agent during the whole episode making the agent more
cautious or more impetuous, it is also true that the output of the neural network ar-
chitecture (Figure 4.2) makes impossible to modulate the impetus of the acceleration
during the immission maneuver, thus using the same acceleration (or deceleration)
independently on the traffic conditions. At this purpose, as a natural extension of
such system, we developed a new system explained in the next chapter, based on
continuous actions and trained on intersection scenarios.

Chapter 5

Continuous Control Actions
Handling Intersection Scenarios

In the previous chapter we explored the capability of a Deep Reinforcement Learn-
ing algorithm in solving the specific task of roundabout insertion, training a neu-
ral network which predicts discrete actions to control the longitudinal behavior of
the sel-driving car. As a natural evolution of such approach, we try to implement a
more complex model which directly outputs both longitudinal and lateral continuous
control values and able to handle intersections in which only traffic signs are pro-
vided [77]. In this way, we overcome the limitation analyzed in the previous chapter
for which discrete actions do not allow the system to modulate its behavior depending
on the observed state.

We develop a multi-agent system, using a continuous, model-free Deep Rein-
forcement Learning algorithm training a neural network through the multi-agent ver-
sion of D-A3C (Section 4.2.3) for predicting both the acceleration and the steering
angle values in order to safely navigate in intersection scenarios. In particular, we
create three different training environments (Figure 5.1) corresponding to three dif-
ferent difficulty levels (easy, medium and hard), using CAIRO graphic library [66]
as for the roundabout scenarios, training the agents to follow the basic rules needed
to handle intersections; moreover, we no longer use the distinction between active

82 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

(a) Easy intersection (b) Medium intersection (c) Hard intersection

Figure 5.1: Synthetic representations of three intersections representing three differ-
ent difficulty levels: easy (5.1a), medium (5.1b) and hard (5.1c). As in the roundabout
case, each agent in the scenario observes an area of 50× 50 meters: green squares
show some examples of these surroundings perceived by green vehicles

and passive agents as in the roundabout scenarios, since in this case all the agents in-
side the environments are involved in the training phase updating the global network
following the D-A3C algorithm.

We also demonstrate that agents learn both to understand the priorities of other
vehicles involved in the environment and to drive safely in order to reach safely the
common goal, namely crossing the intersection without causing accidents. Moreover,
we prove that our approach achieves better performance compared to a classical rule-
based method especially with dense traffic conditions and finally, we test our module
using real recorded traffic data on different scenarios, proving that the proposed sys-
tem is able to generalize both to unseen environments and to different traffic condi-
tions.

5.1 Intersection Handling

We focus on intersections regulated only by traffic signs since those ones ruled by
traffic lights could be solved by simple rule-based methods in which the autonomous
vehicle behavior is closely related to the traffic light states; for those cases, inter-

5.1. Intersection Handling 83

esting solutions consist in mitigating traffic congestions through reservation-based
systems [78] or intelligent traffic lights ([79], [80], [81]). However, our work does
not focus on solving the problem related to the traffic congestion, but rather to the
direct control of the autonomous vehicle.

At this purpose, a typical rule-based method widely used to handle intersection
scenario is base on the time-to-collision (TTC) algorithm [82] that could be useful
for simple cases but it has several limitations; for example, it assumes costant speed
of traffic vehicles, it does not understand the dynamic of the scenario and the possi-
ble intentions of other agents, leading consequently to unnecessary delays. Instead,
in [83] authors propose a multi-agent approach in which road rules emerge as opti-
mal solution to the traffic flow problem; in [84] and [85] a single agent is trained to
handle unsignalized intersections using Deep Q-Networks (DQNs) [86]. However, in
such works a single agent is trained predicting discrete actions facing environments
populated by traffic vehicles which follow the Intelligent Driving Model (IDM) algo-
rithm [87] to control their speed. In this way, the trained agent cannot learn to interact
and negotiate the immission since the traffic vehicles do not have such ability, which
instead is an innate behavior of human drivers. In this way, the trained agent will
observe traffic behaviors different from those ones adopted by human drivers, thus
increasing the gap between simulated and real data making difficult the deployment
of such system in real-world environments.

Instead, our system is based on a multi-agent training such that vehicles implicitly
learn to interact and negotiate among them, as the actions of an agent affect the state
of others and viceversa as explained in Section 2.3.9. Moreover, in [84] and [85] it is
assumed that the trained agent has always the lowest priority compared to the other
traffic cars, such that it should only choose a discrete action in the right time step to
perform the maneuver correctly; for this reason, such system is not suitable to handle
more complex intersections where vehicles should understand the priorities of other
cars in order to perform the immission efficiently both in terms of time and safety.
Indeed, in our approach the agents learn to understand the priorities of all the vehicles
involved in the environment, since they are trained to follow the priority to the right
rule, that is a right of way system typically used in countries with right-hand traffic:

84 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

in this way, when two vehicles are approaching the intersection and their trajectories
may intersect, the car coming from the right has the priority in the case both agents
have the same traffic sign or when no sign is present; otherwise, the priority is defined
by traffic signs.

5.2 Environment

The environments in which agents are trained are illustrated in Fig. 5.1, in which
the easy and medium levels correspond to two different single-lane crosses, while
the hard scenario is a double-lane intersection. Since agents control both longitudinal
and lateral behaviors, they learn to drive inside their paths (that is computed at the
beginning of each episode), such that they may end the episode in one of the following
terminal states:

• Reaches: the agent crosses the intersection safely and driving without going
out of its path reaching the goal position.

• Crashes: the vehicle crashes with another vehicle during the crossing maneu-
ver.

• Off-roads: the agent goes out of its path.

• Time-overs: the time available to finish the episode expires.

Moreover, even if the hard scenario is a double-lane intersections, we do not allow
lane changes, meaning that if the agent goes out of its path we consider the episode
ended as a failure. In addition, only one agent can start from each entry lane, such
that the maximum number of vehicles involved simultaneously in the environment is
equal to the number of entry lanes of the scenarios: 3 cars for the easy intersection,
4 for the medium and 8 for the hard one. In order to let agent perceiving different
state configurations, a new path and a new traffic sign are randomly computed at
the beginning of each episode; however, since the hard scenario is a double-lane
intersection, we assume that both lanes of the same branch have the same traffic sign
and for this reason we randomly change the traffic signs at fixed time intervals: for

5.2. Environment 85

this reason, we restart the episodes of all the learners in such scenario simultaneously,
avoiding changing the traffic signs configuration during the execution of the crossing
maneuver.

5.2.1 Input Space

As for the roundabout case, each agent involved in the environment perceives a
50×50 meters surrounding which is split in four different channels of 84×84 pixels
representing navigable space, path, obstacles and traffic sign as illustrated in Fig-
ure 5.2, that will be one of the input of the neural network. Given the narrow view of
the agent, it is almost impossible handling larger intersections; for this reason future
works may be directed towards the use of a more powerful encoder like Variational
Autoencoder (VAE) [88] in order to achieve a satisfactory compression of larger ar-
eas.

The choice of using grayscale images allows us to embed more information in the
traffic sign and obstacle channels. Indeed, in order to train agents to understand the
different types of traffic signs it may encounter at intersections, these could assume
different values representing a:

• Stop sign: it will be drawn as a red segment in the top-view of the simulator
and as a black segment in the traffic sign view (Figure 5.2e);

• Yield sign: it is drawn as a yellow segment in the simulator and as a white
segments in the traffic sign channel (Figure 5.2e);

• None: no traffic sign is provided as if such lane was the main road; it means
that the agent has the priority on vehicles with the stop or yield signs; however,
it must always give the priority to those cars without traffic signs coming from
its right (as expected by the priority to the right rule).

Obstacle channel provides information about both the positions of the vehicles
in the surrounding view of the ego-agent and their priority levels. Indeed, the ego-
vehicle could perceive the other cars in two different ways in the obstacle channel:

86 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

(a) Simulator (b) Map (c) Path (d) Obstacles (e) Traffic sign

Figure 5.2: Examples of views perceived by learners in the three different intersec-
tions. The first column (5.2a) shows the top-views of the simulator, while (5.2b),
(5.2c), (5.2d) and (5.2e) represent the information contained in the green squares,
namely navigable space (map), path, obstacles including the ego-vehicle (green cars
in 5.2a) and the traffic sign of the green agents respectively. The traffic sign could be
black or white representing the stop line and yield line respectively; however, if it is
not present it means that no traffic sign is present, as if that lane belonged to the main
road. Also the obstacles could be black, in case of those cars with higher priority
than the ego-vehicle, or white representing both the ego-agent and those ones which
should give the right of way to the ego-car

• White agents: they represent both the ego-agent and those vehicles on which
the ego-car has the right of way.

• Black agents: they are the vehicles with higher priority than the ego-car.

This prior knowledge about vehicle priorities is computed depending on the traf-

5.3. Training Setup 87

fic signs and the priority to the right rule, and it is embedded in the obstacle channel
(Figure 5.2d), such that agents can learn this basic rule in order to handle the cross-
ing maneuver, negotiating the immission with other vehicles with different priority
levels. To clarify how the priority to the right rule works, Figure 5.3 illustrates some
simple examples with the corresponding obstacle channel views perceived by the
green agents. In the first example (Figure 5.3a), the vehicle A has the highest priority
since both B and C have the yield sign; for this reason, agent A will perceive the other
two vehicles as white obstacles in the dedicated channel. Then, even if agents C and
B have the same traffic signs, C should pass before B as established by the priority to
the right rule1. In the second example (Figure 5.3b), agent C has the lowest priority
since it is the only one with the stop sign. Then, car A should wait that B has passed
before crossing the intersection, as defined by the priority to the right rule.

Moreover, such prior knowledge contained in the traffic sign and obstacle chan-
nels can be easily retrieved on board of a self-driving car using perception systems
and high-deifinition maps, thus obtaining information related to the road topology
and vehicle priorities, the latter computed based on traffic signs and the right of way
rule.

5.3 Training Setup

As for the roundabout case, agents follow the kinematic bicycle model using values
in the interval [−0.2,0.2] for the steering angle and [−3.0 m

s2 ,+3.0 m
s2] for the accelera-

tion. At the beginning of the episode, each agent starts driving in its path with differ-
ent speed, randomly chosen inside the range [3.0 m

s ,6.0
m
s] and different target speed

([5.0 m
s ,8.0

m
s]) that is the maximum speed the agent should not exceed. Since we do

not use traffic vehicles, but instead the traffic flow is represented by the actor-learners,
each agent waits a random delay ([delaymin,delaymax]) before starting a new episode,
thus ensuring to use different traffic density during the training phase. Given the

1When two vehicles are approaching the intersection and their trajectories may intersect, the car
coming from the right has the priority in the case both agents have the same traffic sign or when no sign
is present; otherwise, the priority is defined by traffic signs.

88 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

(a) Example 1 (b) Example 2

Figure 5.3: Three examples illustrating how the priorities of the vehicles are embed-
ded in the obstacle channel of each agent. The surrounding views proposed in these
examples are those one perceived by the green agents, but the same considerations
can be done also for all the other cars involved in the simulation

difference in terms of space and lengths between the three intersections (Figure 5.1),
this delay range can assume different values depending on the the intersection: [0,30],
[0,50] and [0,100] seconds for the easy (Figure 5.1a), medium (Figure 5.1b) and hard
(Figure 5.1c) scenario respectively.

5.3.1 Neural Network Architecture

The goal of the agents is to handle intersection scenarios learning the priority to the
right rule in order to perform the maneuver efficiently in terms of time and safety;
they perform such maneuver learning to drive along their paths through the training
of a neural network that control the longitudinal and lateral behaviors of the agent,
predicting both the acceleration and the steering angle every 100 milliseconds.

The neural network architecture is illustrated in Figure 5.4 and it is composed by

5.3. Training Setup 89

Figure 5.4: The neural network architecture used to train agents to cross the inter-
section and navigate safely along their paths. The net is composed by two different
sub-modules receiving the same four visual input, each one composed by the last four
sequential frame images 84×84 pixels in order to give the agent a history of the past
states in order to understand how the environment is changing. The neural network
produces two different outputs corresponding to the means (µacc,µsa) of two different
Gaussian distribution from which the acceleration and the steering angle performed
by the agent are sampled using a standard deviation σ that decrases linearly from
0.65 to 0.05 during the training phase

two main sub-modules, the first one to handle the acceleration (acc) and the second
one the steering angle (sa) output. The two sub-modules receive the same visual
input, consisting in four sequential frames for each channel (navigable space, path,
obstacles and traffic sign) of size 84×84 pixels. Together with this visual input, the
network receives two scalar parameters representing the speed of the agent and the
target speed. In order to guarantee exploration, the actions performed by the agent are
sampled by two Gaussian distributions centerd on the outputs of the two sub-modules
(µacc,µsa), such that the acceleration and the steering angle are computed as:

acc = N (µacc,σ) (5.1)

90 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

sa = N (µsa,σ) (5.2)

where σ is a tunable parameter that decreases linearly from 0.65 to 0.05 during
the training phase. Finally, along with µacc and µsa, the network produces the cor-
responding state-value estimations (vacc and vsa) using two different reward func-
tions Racc,t and Rsa,t related to the acceleration and steering angle respectively. In
this way, the state-value estimations can be defined as vacc(st ;θ vacc) = E(Racc,t |st)

and vsa(st ;θ vsa) = E(Rsa,t |st) and the update formula for the actor parameters (Equa-
tion 2.19) results as follows:

θ
µacc
t+1 = θ

µacc
t +α ·Aacc,t

∇π(at |st ;θ
µacc
t)

π(at |st ;θ
µacc
t)

=

θ
µacc
t +α ·Aacc,t

∇N (acc|µacc(θ
µacc
t))

N (acc|µacc(θ
µacc
t))

=

θ
µacc
t +α ·Aacc,t

acc−µacc

σ2 ∇µacc(θ
µacc
t) (5.3)

θ
µsa
t+1 = θ

µsa
t +α ·Asa,t

∇π(at |st ;θ
µsa
t)

π(at |st ;θ
µsa
t)

=

θ
µsa
t +α ·Asa,t

∇N (sa|µsa(θ
µsa
t))

N (sa|µsa(θ
µsa
t))

=

θ
µsa
t +α ·Asa,t

sa−µsa

σ2 ∇µsa(θ
µsa
t) (5.4)

where the two Advantages Aacc,t and Asa,t are defined as:

Aacc,t = Racc,t + vacc(st+1;θ
vacc)− vacc(st ;θ

vacc) (5.5)

Asa,t = Rsa,t + vsa(st+1;θ
vsa)− vsa(st ;θ

vsa) (5.6)

5.4 Reward

In the previous section, we defined two different state value estimations depending
on two different reward signals to evaluate the acceleration (Racc,t) and the steering

5.4. Reward 91

angle (Rsa,t) in order to obtain a more precise estimation of the performed actions.
Since we do not allow lane changes as explained in Section 5.2, we assume that a
crash between two vehicles just depends on the acceleration, while the off-road case
only on the steering angle output.

In this way, Racc,t and Rsa,t functions could be defined as follows:

Racc,t = rspeed + rterminal (5.7)

Rsa,t = rlocalization + rterminal (5.8)

rspeed is a positive reward given to Racc,t in order to encourage the agent to reach
the target speed and it is defined as:

rspeed = ξ · current speed
target speed

(5.9)

where ξ is a constant set to 0.005.
rterminal is assigned both to Racc,t and Rsa,t and it depends on the terminal state

achieved by the agent (Section 5.2):

• Goal reached: the agent achieves the goal position driving and crossing the
intersection safely, without going outside its path or without crashing with an-
other vehicle. In this case, the value assigned to rterminal is +1.0 both for Racc,t

and Rsa,t signals.

• Crash: an accident between two vehicles has occurred. Since the lane change
is not allowed, we assume that this is only cause by an inaccurate estimation of
the acceleration output and for this reason rterminal will be 0 for Rsa,y. Instead,
for Racc,t signal, we modulate rterminal value based on the coding explained in
Section 5.2.1, by which an agent should give the right of way to those ones rep-
resented as black cars in the obstacle channel, but it has the priority on white
vehicles (Figure 5.2d). By using such information, we are able to assign the
penalization depending on the priorities of the vehicles involved in the acci-
dent, setting the value of rterminal to −1.0 for the agent with the lowest priority,
namely if it crashes with a black car, otherwise it will be −0.5.

92 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

• Off-road: the agent goes off its path and we assume that it is caused by an
inaccurate estimation of the steering angle output. For this reason rterminal will
be 0.0 for Racc,t and −1.0 for Rsa,t .

• Time-over: the time available to end the episode expires and this is strictly
related to a conservative acceleration behavior; rterminal will be 0.0 for Rsa,t

and −1.0 for Racc,t .

Finally, rlocalization is a penalization assigned to Rsa,t and given to the agent when
its position (x,y coordinates) and its heading (ha) differs from the center lane and the
heading (hp) of the path respectively, such that:

rlocalization = φ · cos(ha−hp)+ψ ·d (5.10)

where φ and ψ are constants set to 0.05 and d is the distance between the position of
the agent and the center of the path it has to follow.

5.5 Results

We analyze the results achieved on the training intersections (Figure 5.1), using the
metrics illustrated in Section 5.2: Reaches, Crashes, Off-Roads and Time-overs cor-
responding to the percentages of the episodes ended successfully, with a crash, with
the agent off its path and with the depletion of available time respectively. Moreover,
we also study a further metrics, namely the Average Speed of the agents in the three
different intersections based on the traffic signs assigned to their lane.

We performed several experiments, analyzing how the agents behave differently
depending on the traffic signs and thus proving that they learn the right of way in or-
der to reach the common goal safely. Each test is composed by 3000 episodes using
different traffic conditions depending on the random delay [delaymin,delaymax] that
agents must wait before starting a new episode, such that for lower values of delay
range the traffic conditions will be denser. The values of delaymin and delaymax are
set to 0 and 10 respectively and for each test we increase delaymax of 10, perform-
ing as masy tests as delaymax achieves the maximum value used during the training

5.5. Results 93

phase. Recalling that the delaymax values used in the three intersections during the
training phase are 30, 50 and 100 for the easy (Figure 5.1a), medium (Figure 5.1b)
and hard scenario (Figure 5.1c) respectively, we performed three experiments for the
easy intersection, five for the medium one and ten for the hard scenario.

Easy Intersection
No Sign Yield Sign Stop Sign

Reaches % 0.998 0.995 0.992
Crahes % 0.002 0.005 0.008

Off-roads % 0.0 0.0 0.0
Time overs % 0.0 0.0 0.0

Average Speed [m
s] 8.533 8.280 8.105

Medium Intersection
No Sign Yield Sign Stop Sign

Reaches % 0.995 0.991 0.992
Crahes % 0.005 0.009 0.008

Off-roads % 0.0 0.0 0.0
Time overs % 0.0 0.0 0.0

Average Speed [m
s] 8.394 7.939 7.446

Hard Intersection
No Sign Yield Sign Stop Sign

Reaches % 0.997 0.991 0.972
Crahes % 0.003 0.009 0.012

Off-roads % 0.0 0.0 0.0
Time overs % 0.0 0.0 0.016

Average Speed [m
s] 8.224 7.365 5.855

Table 5.1: Results obtained in the training intersections (Figure 5.1) with the three
different traffic signs.

Table 5.1 shows the results achieved by the agents in the three different intersec-
tions facing the three different traffic signs proving that agents learn to handle those

94 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

environments driving and performing the crossing maneuver safely. We can notice
that handling the intersection with the stop sign is the hardest task since the vehicle
has always the lowest priority. The Average Speed metric shows how agents mod-
ulate their behavior based on their traffic signs and hence on their priorities, while
the Off-roads cases never happen proving that agents learn to drive correctly without
going off their paths. The following video2 shows how the agents handle the three
intersection scenarios facing different traffic signs and traffic conditions.

5.5.1 Comparison with the TTC Algorithm

To prove that the obtained model behaves efficiently not only in terms of safety but
also of time, we compared our system with the time-to-collision (TTC) algorithm in
the hard intersection. In particular, we use such scenario performing two different
experiments: the first one testing the agents trained with our D-A3C algorithm, while
the second one with agents which simply follow the center of the path, choosing the
right time to cross the intersection using the TTC algorithm. Both the tested agents
(the green ones in Figure 5.5a) start their episodes from the branch with the stop sign
as illustrated in Figure 5.5a, while traffic vehicles start from the two adjacent lanes
following the center lane and using the Intelligent Driving Model (IDM) algorithm to
modulate their speed. In this configuration, the green agents performing the crossing
maneuver have always the lowest priority compared to the traffic cars.

In the TTC experiments, agents start the episode decelerating in order to reach the
stop sign with zero speed; then, a single threshold is used to estimate when accelerate
to cross the intersection, such that considering an imaginary line aligned with the
longitudinal axis of the agent, the time-to-collision is computed as the time a traffic
vehicle reaches this line, assuming that it drives with constant speed. In this way,
if we find that the lowest TTC of a traffic car exceeds a specific threshold, the agent
accelerates using a value of 3.0 m

s2 , otherwise it continues waiting at the stop line. This
threshold is chosen in order to obtain the best results with the TTC method and zero
percent of Crashes.

2https://www.youtube.com/watch?v=x28qRJXiQfo

https://www.youtube.com/watch?v=x28qRJXiQfo

5.5. Results 95

(a) Test scenario

[0,100]

[0, 80]

[0, 60]

[0, 40]

[0, 20]

0.4

0.5

0.6

0.7

0.8

0.9

1

delay[s]

re
a
ch
es
[%

]

our module
ttc method

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Reaches

[0,100]

[0, 80]

[0, 60]

[0, 40]

[0, 20]

0

0.1

0.2

0.3

0.4

0.5

delay[s]

ti
m
e-
ov
er
s[
%
]

our module
ttc method

0

0.1

0.2

0.3

0.4

0.5

(c) Time-overs

Figure 5.5: (5.5a) shows the intersection used as a test scenario to compare the perfor-
mance achieved by our module with those obtained by the TTC method. The tested
agents (the green ones) perform the maneuver while traffic vehicles (the white obsta-
cles) follow the center of the path using the Intelligent Driver Model (IDM) algorithm
to control their speeds. (5.5b) and (5.5c) show the comparison between the percent-
ages of episodes ended successfully and the percentage of time-overs obtained by
ourmodule (the blue curves) and the TTC algorithm (the red curves) respectively,
showing that reducing the delay range the traffic vehicles have to wait (and thus in-
creasing the traffic congestion) the difference between the two appraches becomes
more relevant

96 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

Both the learned agents and those ones following the TTC algorithms have the
same available time to finish the episode, and as the previous experiments we use
different traffic condition levels: low, medium and high, corresponding to a maximum
number of traffic vehicles involved simultaneously in the environment to 4, 8 and 12
respectively.

We performed several experiments, in which traffic agents should wait different
delay ranges illustrated in the graphics of Figure 5.5 in order to gradually increase
the traffic congestion and thus the difficulty of the crossing maneuver. The results
obtained using low and medium traffic levels by the TTC method and the D-A3C
algorithm are impressive since they both reach almost 99% of episodes ended suc-
cessfully for every delay range configuration. Instead, with the high traffic condition,
the performance achieved by TTC method drops leading the agent to unnecessary
waits. The comparison between the results obtained by the D-A3C algorithm and
TTC is illustrated in Figure 5.5, and we can notice how the difference between the
two approaches becomes more and more evident increasing the traffic level of the
environment, namely reducing the delay range traffic cars must wait before starting a
new episode.

5.5.2 Testing the Right of Way Rule

Even if the results illustrated in Table 5.1 obtained in the training scenarios and the
comparison achieved between our module and the TTC method show that our agents
learned to drive handling the intersections predicting both the acceleration and the
steering angle safely in terms of time and safety, we have not yet proved that our
agents learn the priority to the right rule.

At this purpose, we performed a test on the training scenarios in which agents
start the episode using the same current and target speed such that they approach the
intersection almost simultaneously. As for the training phase, only one agent can start
from a single lane such that the number of vehicles involved each episode is equal to
3, 4 and 8 for the easy, medium and hard intersection respectively. Only in this way
we can understand if agents with lower priorities give the right of way to those ones
with higher priorities; for this test we consider the episode ended when all the agents

5.5. Results 97

involved reach a terminal state.

Easy Intersection Medium Intersection Hard Intersection

No Infraction % 0.985 0.990 0.863

Infraction % 0.015 0.010 0.137

Table 5.2: Percentages of episodes ended following the right of way rule by all the
agents involved in the episode (No infraction) and with at least an infraction (Infrac-
tion).

For each intersection we perfomed 9000 episodes and in order to properly evalu-
ate the behavior adopted by agents we consider an episode ended without infractions
(No Infraction) if and only if all the agents involved in the episode respect the pri-
ority to the right rule, otherwise it will be considered as a failure (Infraction). From
the results obtained and collected in Table 5.2, we can notice that agents follow the
priority to the right rule in most of the cases and only in the hard intersection there
is a slight decrease in the performances since the larger spaces of such environment
allow vehicles to risk the maneuver more frequently.

5.5.3 Test on Real Data

Finally, we tested our module on real data using the inD dataset ([89]), containing 33
real traffic sequences in four different intersections (Figure 5.6) resulting in a total of
10 hours of recorded data. The dataset contains the tracking and classification of more
than 11500 static and dynamic road users including cars, trucks, busses, bicyclists
and pedestrians collected with a camera-equipped drone. However, we only consider
dynamic road users for such tests, and since pedestrians and byciclists are not used
during the training phase we do not include them during such tests.

During these tests, we assume that the ego-agent (green cars in Figure 5.6) has
always the lowest priority since it is not sensed by traffic vehicles. Moreover, it always
starts from the same lane (the least busy), choosing a random exit each episode; for
this reason, we do not include those traffic vehicles starting from the same lane of the

98 Chapter 5. Continuous Control Actions Handling Intersection Scenarios

(a) Real intersection 1 (b) Real intersection 2

(c) Real intersection 3 (d) Real intersection 4

Figure 5.6: Real intersections contained in the inD dataset [89] and used for testing
our agents (green cars) using the recorded traffic data (white vehicles)

ego-agent. In this way, the total number of traffic road users (cars, trucks and busses)
populating the four real scenarios is 7386, and the episodes performed by our agents
are 2702.

We were able to reproduce the four intersections in simulation with CAIRO
grahic library [66] using the recorded trajectories of the dynamic traffic vehicles.

5.6. Conclusions 99

Using the code provided by [89] on their github page3, we saved data related to our
agent positions, speeds and headings in order to project them on the real scenarios
(Figure 5.6).

The percentage of episodes ended successfully is greater than 99%, with 0% time-
over and 0% off-road cases, and some examples of the behavior adopted by our agents
are illustrated at the following video4. Observing the video we can notice that some
risky maneuvers performed by our agents are emphasized as it is not sensed by traffic
vehicles; nevertheless, these represent promising results, especially considering the
diversity of scenarios and traffic behaviors observed during these tests compared to
those used during the training phase.

5.6 Conclusions

Even if for the specific task of intersection handling, the development of a module
able to predict continuous actions related both to the acceleration and the steering an-
gle, represents the first implementation of a Reinforcement Lerning planner of such
research project. In particular, the system was able both to drive the car along its pre-
determined path safely and to avoid crashing with other vehicles at the intersection,
modulating the steering angle and the acceleration properly. Training the agents on
the intersections of Figure 5.2a, the model learned to follow the priority to the right
rules, achieving impressive results facing intersections and traffic conditions unseen
during the training phase (Section 5.5.3).

However, in order to test such system on board of a real self-driving vehicle we
also need to consider to achieve a smoother driving style to obtain a comfort and
feasible behavior. At this purpose, before testing such module on real world environ-
ments, we first focus on improving the driving style of the system, training agents
using a new simulator in obstacle-free environments as we will explain in the next
chapter.

3https://github.com/ika-rwth-aachen/drone-dataset-tools
4https://youtu.be/SnKUk2k9YCg

https://github.com/ika-rwth-aachen/drone-dataset-tools
https://youtu.be/SnKUk2k9YCg

Chapter 6

Tackling Real-World Planning and
Control using Deep Reinforcement
Learning

The results obtained in the previous chapter proved the great capabilities of the D-
A3C algorithm in handling intersection scenarios training agents in a Multi-agent
fashion, in which they learned both to navigate safely following their paths and to
observe the priority to the right rule.

However, before testing such module on board of a real self-driving car, we fo-
cused on increasing the quality of the driving style obtained by the previous policy.
At this purpose, we developed a Reinforcement Learning planner training agents in
a new simulator based on HD maps (Section 3.2.5), achieving a comfort and safe
driving style both in simulation and in real-world scenarios.

Finally, to obtain simulated agents that execute a target action as similar as pos-
sible the real vehicle would behave, a simple model based on a neural network has
been developed in order to simulate as likely as possible the real self-driving vehicle
dynamic behavior.

102
Chapter 6. Tackling Real-World Planning and Control using Deep

Reinforcement Learning

6.1 Environment

As explained in Section 3.2.5, for the last part of this research project we used a new
simulator based on the HD maps illustrated in Figure 6.1 representing a low-traffic
neighborhood that is included in one of the areas designated for autonomous driving
testing in Parma. The blue streets are the mapped areas from which it can be possible
to create an arbitrary number of scenarios used for the training phase.

The environments extracted from the mapped area and used for training agents,
are those ones circled in red in Figure 6.1 and an example of the full-view of a sce-
nario and the surrounding view of the agent are represented in Figure 6.2.

Figure 6.1: The figure shows the mapped area (the blue roads) of a neighborhood of
Parma. The four parts circled in red represent the scenarios used for training agents
to drive following their paths predicting both acceleration and steering angle

6.1. Environment 103

Moreover, in addition to speeding up the creation process of the training scenar-
ios (that however remain subordinated to the availability of HD maps), during the
training phase it is possible to easily retrieve several information about the external
environments such as positions, headings, widths of the lanes and much more. How-
ever, apart from the information related to the reconstruction of the navigable space,
path and stop line channels which can be easily achievable using only topological
maps, we only use the HD maps to retrieve the additional information related to the
road speed limits.

At this stage of work we only focused on the quality of the driving style, trying
to optimize a policy that behaves as well as possible both in simulation and in real-
world scenarios on board of the real self-driving car illustrated in Figure 4.12. For

Figure 6.2: On the left of the figure is represented an example of the top-view of a
training scenario, while on the right the 50×50 meters surrounding perceived by the
agent, that is then split in the four channels (navigable space, path, obstacles and stop
line) as explained in Figure 5.2

104
Chapter 6. Tackling Real-World Planning and Control using Deep

Reinforcement Learning

this reason, the agents are trained on static scenarios without using obstacles or other
traffic vehicles, but they only focus on driving smoothly and safely following their
paths and observing the speed limits obtained by HD maps.

6.2 Training Settings

The agents are trained in the four scenarios illustrated by the circled regions in Fig-
ure 6.1, using the D-A3C algorithm explained in Section 4.2.3. Each episode the
agent starts with a random initial speed [0.0,8.0], learning to drive smoothly and
safely along its predetermined path following the target speed, which is retrieved
by the road speed limits of HD maps that could vary during the episode as in the
case of roundabout scenarios. The speed limit range in the proposed environments is
[4.0,8.3]m

s .

Agents are trained through a neural network similar to the one implemented in
Section 5.3.1 which predicts acceleration and steering angle every 100 milliseconds.

Since the training is performed in static scenarios, namely without using obstacles
and traffic vehicles, the episode could end in one of the following terminal states:

• Goal reached: the final goal position is achieved by the agent without going
outside its path.

• Off-road: the episode ends with the agent outside its path, because of erro-
noeous predictions of the steering angle.

• Time-over: the available time to finish the episode expires due to a overly cau-
tious behavior of the agent in the prediction of acceleration outputs.

6.2.1 Neural Network Architecture

The neural network used for training agents to navigate smoothly and safely along
their path is similar to the one illustrated in Figure 5.4 thus using two separate
branches predicting the steering angle and the acceleration every 100 milliseconds

6.2. Training Settings 105

and sharing the same feature vector extracted from scalar parameters. The main dif-
ference from the network architecture illustrated in Figure 5.4 consisted in using 5
scalar parameters including the target speed (the road speed limit retrieved by HD
maps), the speed of the agent, the ratio between the current speed and the target
speed, and the last actions related to the steering angle and the acceleration. More-
over, instead of using a predetermined standard deviation σ which linearly decreases
as the number of episodes increases, we let the network predicts and thus modulates
such value during the training phase, such that this prediction can also be interpreted
as an estimation of the model uncertainty.

6.2.2 Simulating Self-Driving Car Behavior

One of the main problems related to the use of simulators consists in the difference
between simulated and real data, that in the case of graphic simulators this gap is
related both to environmental features and the behavior of the road users. However,
we strongly reduce such difference creating synthetic representations of realities, then
reproducing the same channels used in simulation on board of the real self-driving
car using perception, localization and mapping systems. Nevertheless, even in these
non-graphic simulators, techniques aim at simulating some unexpected behaviors of
real prediction or localization systems embedded on the autonomous car are often
essential in order to reduce the gap between simulated and real data (Section 4.5).

Moreover, another relevant problem is related to the difference in how simulated
agents perform a target action compared to how the autonomous car would behave
executing that command. Indeed, a target action computed at time t can ideally be
executed with immediate effect at the same precise instant of time in simulation (blue
curve in Figure 6.3 representing steering angle values), but this not happens on board
of a real vehicle in which such target action will be performed with some delay and
its complete effect will occur at time t +δ . For this reason, it is necessary to simulate
such response time in simulation, in order to train agents to handle such delay on
board of real autonomous car.

In order to achieve such behavior, we initially trained agents adding a fixed delay
in the execution of a target action predicted by the neural network as illustrated by the

106
Chapter 6. Tackling Real-World Planning and Control using Deep

Reinforcement Learning

green curve in Figure 6.3. However, as we can notice from the figure, the difference in
the response time between simulated and real vehicle (the orange curve in Figure 6.3)
still remains relevant, causing unexpected and erroneous behaviors when testing the
system on board of the autonomous car.

Figure 6.3: The proposed example shows the difference in the response time execu-
tion of the steering angle between the simulated agent and the real autonomous car.
The blue curve represents the target action that could be feasible to execute in sim-
ulation but not on board of the vehicle which will behave accordingly to the orange
curve. The green curve represents the agent behavior in simulation applying a fixed
delay in the execution of the target action, implemented to reduce the gap between
autonomous vehicle and simulated agent response time. However, even if such gap is
reduced compared to the difference between the target action and real vehicle curves,
it is still not sufficient to achieve a smooth behavior when testing the whole system
on board of the self-driving car. For this reason, a small neural network aim at im-
itating the vehicle behavior has been developed and its trend in the proposed figure
would basically overlap the orange curve. The same idea has been applied for the
acceleration output

For this reason, a model consisting in a small neural network (which we will call
deep_response) has been developed in order to reproduce as realistically as possible,
the response of the real vehicle to a target action; in other words, the neural network is

6.2. Training Settings 107

trained using a dataset collected on board of the autonomous car (Figure 4.12) com-
posed by random target actions and its actual evolution executed by the vehicle over
time. In this way, we embedded such model in the simulator in order to evolve the
action predicted by agents, thus having a more scalable system aims at reproducing
the autonomous vehicle behavior compared to the usage of fixed thresholds. A plot of
the proposed neural network behavior will be very similar to the orange curve of Fig-
ure 6.3 (the one representing the real self-driving car). Given the absence of obstacles
and traffic vehicles in the training scenarios, the described problem was more evident
for the actuation of the steering angle, but the same idea is applied to the acceleration
output.

Given the complexity introduced by such module, a recurrent layer and in par-
ticular a Long short-term memory (LSTM) [90] has been added at the end of the
two fully connected layers that receive as input the scalar parameters in order to give
agents a memory related to the past performed actions and not just the last one. The
introduction of such layer allows the agent to mitigate the delay introduced by the
deep_response model, thus achieving a smooth and safe behavior testing the whole
system in real-world scenarios. The final architecture of the neural network is illus-
trated in Figure 6.4.

6.2.3 Reward Function

As for the systems described in Chapter 4 and Chapter 5, a reward shaping is essential
to achieve a policy with a smooth and safe behavior. Moreover, also in this case
two reward functions have been designed in order to give a more specific signal to
the acceleration (Racc,t) and to the steering angle (Rsa,t). However, since agents are
trained in static scenarios, without interacting with obstacles or traffic vehicles, we
do not consider a penalization related to accidents between agents as instead it was
defined in Section 5.4. In this way, the two reward functions can be defined as:

Racc,t = rspeed + racc_indecision + rterminal (6.1)

Rsa,t = rlocalization + rsa_indecision + rterminal (6.2)

108
Chapter 6. Tackling Real-World Planning and Control using Deep

Reinforcement Learning

Figure 6.4: The final neural network architecture used for training agents to drive
following their paths and observing the road speed limits. The main differences com-
pared to the neural netwok of Figure 5.4, consist in the introduction of the LSTM
layer after the two fully connected layers that receive the scalar parameters as input
and in the prediction of the standard deviations (σsa and σacc)

rspeed is a signal given to the agent in order to encourage it to reach but not to
overcome the target speeds, which represent the speed limits retrieved by HD maps;
this function depends on the ratio between the current speed and the target speed
(speed_ratio = curr_speed

target_speed) and it is defined as:

rspeed =

⎧⎨⎩speed_ratio ·ζ , if speed_ratio < 1.0

(speed_ratio−1.0) ·ζ , otherwise.
(6.3)

where ζ is constant set to 0.009.
racc_indecision aims at penalizing the agent when the difference between two con-

secutive accelerations (∆acc = |acc(t)− acc(t − 1)|) differs from a fixed threshold
(δacc = 1.0 m

s2), in order to obtain a smooth longitudinal behavior of the vehicle. In
this way, racc_indecision is defined as:

racc_indecision = ψ ·min(0.0,(δacc−∆acc)) (6.4)

6.3. Real-World Test 109

where ψ is a constant set to 0.1.
rlocalization is associated to Rsa,t and it is a negative signal given to the agent when

its heading and position (x,y coordinates) differs from those of the HD maps, such
that:

rlocalization = φ · cos(ha−hp)+χ ·d (6.5)

where ha and hp are the heading of the agent and the point of the HD maps respec-
tively, φ and χ are constants set to 0.05 and d is the lateral distance between the
position of the agent and the nearest point of the HD maps.

In order to obtain a smooth lateral behavior of the vehicle, rsa_indecision is designed
to penalize the agent when the difference of two consecutive predictions of the steer-
ing angle (∆sa = |sa(t)− sa(t−1)|) differs from a fixed threshold (δsa = 0.05), such
that:

rsa_indecision = λ ·min(0.0,(δsa−∆sa)) (6.6)

where λ is a constant set to 0.01.
Finally, the only common member between Racc,t and Rsa,t is rterminal , and it de-

pends on the terminal state achieved by the agent:

• Goal reached: the agent achieves the final position safely and rterminal will be
+1.0 both for Racc,t and Rsa,t .

• Off-roads: the agent ends the episode going outside its path due to erroneous
predictions of steering angle outputs; for this reason rterminal will be −1.0 for
Rsa,t and 0.0 for Racc,t .

• Time-over: the available time to finish the episode expires because of cautious
behavior related to the acceleration output; for this reason, rterminal will be−1.0
for Racc,t and 0.0 for Rsa,t .

6.3 Real-World Test

The architecture for testing the system on board of the autonomous vehicle will be
similar to the one illustrated in Figure 6.5, thus composed by sensors to retrieve data

110
Chapter 6. Tackling Real-World Planning and Control using Deep

Reinforcement Learning

from the environment, perception, localization and HD maps systems in order to
reproduce the four channels related to navigable spaces, paths, obstacles and stop
lines that are given as input to the neural network. Finally, the final parts related to the
planning and control tasks are completely replaced by the neural network that predicts
acceleration and steering angle, resulting in a more simple and scalable architecture
(Figure 6.5).

Figure 6.5: The final architecture implemented and tested on board of the autonomous
car in which the typical parts related to planning and control are represented by a sin-
gle neural network that predicts acceleration and steering angle using the information
processed by the localization, mapping and perception systems

In particular, we tested two different policies over the entire mapped area (the
blue roads in Figure 6.1) analyzing the obtained behaviors:

• Policy 1: it is trained without using both the deep_response model (Section 6.2.2)
and the LSTM layer, but using a fixed delay in the execution of the actions pre-
dicted by the agent as explained in Section 6.2.2 and illustrated by the green
curve of Figure 6.3.

• Policy 2: in this case the system is trained using the deep_response module
(Section 6.2.2) and introducing the LSTM layer in the network architecture as
illustrated in Figure 6.4.

6.3. Real-World Test 111

Both policies behave smoothly and safely in simulation allowing the agents to
achieve 100% of episodes ended successfully both in training scenarios (those ones
circled in Figure 6.1) and in those parts of the mapped area different from the training
environments.

However, the behavior observed testing Policy 1 in real-world scenarios was noisy
and uncomfortable since it was not able to handle the delay introduced by the au-
tonomous car as explained in Section 6.2.2 (Figure 6.3). This brings the autonomous
car to continuous and unexpected corrections especially of the steering angle, often
leading the huma driver to regain the control of the vehicle to avoid running off the
road. This mainly happens because the actions predicted by the neural network on
board of the autonomous car do not have the same effect that they would have in
simulation, thus changing its internal state and the environment unexpectedly.

On the contrary, Policy 2 behaves correctly both in simulation and in real sce-
narios, driving safely for the 100% of tests performend on the whole mapped area
(Figure 6.1) without the need for the human driver to regain the control of the vehi-
cle, with the exception of those cases in which it was necessary to avoid other road
users; we did not consider these cases as failures since both Policy 1 and Policy 2 are
trained in obstacle-free scenarios.

Moreover, the system learned to modulate the velocity accordingly to the speed
limits of the map. Indeed, in order to show a more detailed example of the longi-
tudinal behavior of the real car, we plot the accelerations predicted by the network
(Figure 6.6b) and the vehicle speeds (Figure 6.6c) obtained driving along the route of
Figure 6.6a. In particular, the paths drawn as orange, blue and green of Figure 6.6a
represent those parts of the mapped area in which the speed limits are set to 4, 5 and
8.3 m

s respectively, and following the same color-based rule, we can notice how the
neural network modulates the acceleration and thus the vehicle speed based on the
route speed limits retrieved by the HD map. Finally, it is also important to notice
that even if the acceleration output seems noisy, the difference between two consec-
utive predicted values never exceeds the threshold δacc used in the reward function
(Section 6.2.3), resulting in a smooth and comfort longitudinal behavior perceived
on-board vehicle.

112
Chapter 6. Tackling Real-World Planning and Control using Deep

Reinforcement Learning

(a) Vehicle positions (x,y coordinates) and road speed limits

(b) Acceleration predicted by the neural network

(c) Speed values

Figure 6.6: A test example showing the longitudinal behavior of the Reinforcement
Learning planner deployed in the real autonomous vehicle. In particular, the illus-
trated data refer to the car behavior driving along the route (6.6a), in which in the or-
ange, blue and green paths the road speed limits are set to 4, 5, and 8 m

s respectively.
Following the same color-based rule, (6.6b) shows the acceleration values predicted
by the neural network in the different parts of the route and the corresponding vehicle
speeds (6.6c), proving that the system is able to modulate the longitudinal behavior
in order to follow the road speed limits

6.3. Real-World Test 113

Finally, we also analyzed the lateral behavior achieved by Policy 2, proving that
the introduction of the deep_response module and the LSTM layer in the network ar-
chitecture are useful to learn agents to handle the delay introduced by the autonomous
car. In particular, the red curve in Figure 6.7 represents the curvature values predicted
by the neural network every 100 milliseconds, while the red and blue curves in Fig-
ure 6.7b represent the corresponding predicted values to be actuated and the effective
values performed by the vehicle respectively. It is easily observable the delay intro-
duced by the autonomous car, which however was learned by Policy 2 since it was
trained using deep_response in order to replicate in simulation such delay and the
behavior of the real car as realistically as possible in the execution of target actions.
In this way, the delay observed in Figure 6.7b does not represent an issue for Policy
2 that, unlike the results achieved by Policy 1 during the real tests, is able to navigate
safely and smoothly over all the mapped area of Figure 6.1.

Moreover, as we can see from the following video1, the vehicle is able to drive
correctly both in the training areas and also in those ones unseen during the training
phase, proving that the system does not overfit on the only training scenarios and
showing good generalization capabilities.

The results achieved at this stage of work represent promising results for future
developments which will surely consist in introducing traffic vehicles and multiple
actor-learners sharing the same environment thus achieving a multi-agent training.

1https://drive.google.com/file/d/1gRqkd1R59Qh96f0kWLyh3L0z19h6w_5i/view?usp=sharing

https://drive.google.com/file/d/1gRqkd1R59Qh96f0kWLyh3L0z19h6w_5i/view?usp=sharing

114
Chapter 6. Tackling Real-World Planning and Control using Deep

Reinforcement Learning

(a) Curvature predicted by the neural network

(b) Curvature commands (red) and actual executed values (blue)

Figure 6.7: Curvatures predicted by the neural network (6.7a) and the corresponding
actuation values (red curve in 6.7b). The blue curve represents the effective com-
mands performed by the vehicle showing the delay introduced by the autonomous
car (Section 6.2.2)

Chapter 7

Conclusions and Future
Developments

The main purpose of this research project consisted in exploring Deep Reinforcement
Lerning algorithms applied to autonomous driving field, with a particular focus on
the performance obtained by such techniques in real-world scenarios and with the
final goal of developing a Reinforcement Learning planner able to drive safely and
smoothly both in simulation and in real world.

We started implementing a maneuver planning system able to handle the round-
about immission, consisting in training a neural network that predicts a discrete sig-
nal to modulate the longitudinal behavior of the trained agents together with the state
value function. We demonstrated that the module obtained was able to perform the
maneuver safely negotiating the immission with the othe traffic vehicles, but its gen-
eralization capabilities had to be increased in order to test it in real scenarios. At this
purpose, we implemented a Multi-environment System setting, developing the typical
pipeline of supervised approaches consisting in training, validation and test set (in
our case representing by roundabout scenarios). Moreover, in order to reduce the gap
between simulated and real-world data and thus to obtain a more robust policy able
to handle the uncertainties and the novel situations encountered in the real-world, we
injected noisy elements inside the simulator to reproduce errors that perception and

116 Chapter 7. Conclusions and Future Developments

localization systems on board of the autonomous car may introduce. In this way, we
increased the generalization capability of the policy, which was able to behave safely
and correctly both in unseen simulated environments and in a real roundabout used
as a test scenario.

As a natural extension of such system, we increased the difficulty of the task to
solve developing a neural network that predicts continuous values to control both
lateral and longitudinal behaviors. Moreover, at this stage of the research project we
trained the neural network to predict the means of two Gaussian distributions used
to sample the corresponding acceleration and steering angle values with a predeter-
mined standard deviation which linearly decreased during the training phase. In par-
ticular, through the use of such module, agents were trained in a Multi-agent fashion
on several intersection scenarios, learning both to drive safely along their designated
paths and to observe the priorities of other actor learners computed according to the
traffic sign states and the priority to the right rule. We proved that agents learn such
basic rules driving and handling correctly the proposed intersections and also fea-
turing some generalization capabilities testing the system on environments unseen
during the training phase and facing real recorded traffic data.

However, the obtained driving style was not as smooth to test the system on board
of the real vehicle, and for this reason the last part of the research project was con-
ducted on the implementation of a system able to drive smoothly both in simulation
and in real world scenarios. At this purpose, we developed a system able to simulate
the delay introduced by the real vehicle in the execution of target actions. The embed-
ding of such model in simulation, allowed us to obtain agents that behave similarly to
the real vehicle training them through a neural network that predicts both the means
and the standard deviations of two Gaussian distributions used to sample the accel-
eration and steering angle values, and adding an LSTM layer in order to give agents
a memory of the past performed actions. However, at this stage of work, we focused
on the quality of the driving style thus using obstacle-free training environments in
which agents were only trained to follow their paths and to observe the road speed
limits.

We tested the system on a low-traffic neighborhood included in one of the areas

7.0. Conclusions and Future Developments 117

designated for autonomous driving testing in Parma and we observed that the system
was able to drive smoothly both in those parts of the area used as training scenarios
and in unknown areas, proving that the system did not overfit on the only training
environments.

The behavior observed on board vehicle represents an excellent starting point
in developing a full Reinforcement Learning planner able to handle different situ-
ations and tasks. However, increasing the complexity of the task to be solved and
thus adding obstacles, traffic vehicles or simply performing Multi-agent training, the
capabilities of the system has to be improved in order to handle multiple tasks si-
multaneously. In this way, the neural network architecture could be redesigned and it
may be composed by different sub-modules, thus handling different tasks in a hier-
archical fashion, such as obstacle avoidance, overtaking, immission maneuvers and
many others.

Moreover, another main limitation of the system is related to the size of the input
images used for training the neural network. Indeed, as explained in Chapter 3, each
agent in the simulator perceives a surrounding view of 50 meters, observing 40 meters
forward, 25 left and right and 10 backward, obtaining input images of size 84×
84 pixels; this limitation is even more significant if we consider that cameras on
board of the self-driving vehicle (Figure 4.12) used for testing the systems described
in this thesis have a range of 100/150 meters. For this reason, future developments
are also directed towards increasing image input size, allowing the agent to observe
and handle wider areas and thus using higher speed values. However, the increase
of the input size will surely require the use of a more powerful encoder like the
Variational Autoencoder (VAE), that could be useful to speed up the training process
of the reinforcement learning agents: indeed, once the VAE weights are optimized,
there may be no need to retrain the convolutional layers every time, thus updating
only the last layers of the network, typically composed by fully connected layers.

Bibliography

[1] Santokh Singh. Critical reasons for crashes investigated in the national motor
vehicle crash causation survey. 2015.

[2] Carl Engelking. The ’driverless’ car era began more than 90 years ago [online].
2017. URL: https://www.discovermagazine.com/technology/
the-driverless-car-era-began-more-than-90-years-ago.

[3] Evan Ackerman. Self-driving cars were just around the
corner - in 1960 [online]. 2016. URL: https://

spectrum.ieee.org/tech-history/heroic-failures/

selfdriving-cars-were-just-around-the-cornerin-1960.

[4] Taylor Kubota. Stanford’s robotics legacy [online]. 2019.
URL: https://news.stanford.edu/2019/01/16/

stanfords-robotics-legacy/.

[5] Aditya Bhat. Autonomous vehicles: A perspective of past and future trends. In-
ternational Journal of Engineering Technology Science and Research, Volume
4, Issue 10, 2017.

[6] Ernst Dickmanns, R. Behringer, D. Dickmanns, T. Hildebrandt, M. Maurer,
F. Thomanek, and J. Schiehlen. The seeing passenger car ’vamors-p’. Pro-
ceedings of the Intelligent Vehicles ’94 Symposium, pages 68–73, 1994.

https://www.discovermagazine.com/technology/the-driverless-car-era-began-more-than-90-years-ago
https://www.discovermagazine.com/technology/the-driverless-car-era-began-more-than-90-years-ago
https://spectrum.ieee.org/tech-history/heroic-failures/selfdriving-cars-were-just-around-the-cornerin-1960
https://spectrum.ieee.org/tech-history/heroic-failures/selfdriving-cars-were-just-around-the-cornerin-1960
https://spectrum.ieee.org/tech-history/heroic-failures/selfdriving-cars-were-just-around-the-cornerin-1960
https://news.stanford.edu/2019/01/16/stanfords-robotics-legacy/
https://news.stanford.edu/2019/01/16/stanfords-robotics-legacy/

120 Bibliography

[7] Dean Pomerleau and Todd Jochem. No hands across america journal [on-
line]. 1995. URL: https://www.cs.cmu.edu/~tjochem/nhaa/
Journal.html.

[8] A. Broggi, M. Bertozzi, and A. Fascioli. Argo and the millemiglia in automatico
tour. IEEE Intelligent Systems and their Applications, 14(1):55–64, 1999.

[9] R. Behringer. The darpa grand challenge - autonomous ground vehicles in the
desert. IFAC Proceedings Volumes, 37(8):904–909, 2004. IFAC/EURON Sym-
posium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 5-7 July 2004.

[10] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoff-
mann, et al. Stanley: The robot that won the darpa grand challenge. Journal of
field Robotics, 23(9):661–692, 2006.

[11] Chris Urmson, J Andrew Bagnell, Christopher Baker, Martial Hebert, Alonzo
Kelly, Raj Rajkumar, Paul E Rybski, Sebastian Scherer, Reid Simmons, Sanjiv
Singh, et al. Tartan racing: A multi-modal approach to the darpa urban chal-
lenge. 2007.

[12] Alberto Broggi, Paolo Medici, Paolo Zani, Alessandro Coati, and Matteo Pan-
ciroli. Autonomous vehicles control in the vislab intercontinental autonomous
challenge. Annual Reviews in Control, 36(1):161–171, 2012.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[14] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[15] Eva Fraedrich and Barbara Lenz. Societal and Individual Acceptance of Au-
tonomous Driving, pages 621–640. 05 2016.

https://www.cs.cmu.edu/~tjochem/nhaa/Journal.html
https://www.cs.cmu.edu/~tjochem/nhaa/Journal.html
http://www.deeplearningbook.org

Bibliography 121

[16] Massimo Bertozzi, Alberto Broggi, Alessandra Fascioli, and Stefano Nichele.
Stereo vision-based vehicle detection. In Proceedings of the IEEE Intelligent
Vehicles Symposium 2000 (Cat. No. 00TH8511), pages 39–44. IEEE, 2000.

[17] Massimo Bertozzi, Emanuele Binelli, Alberto Broggi, and MD Rose. Stereo
vision-based approaches for pedestrian detection. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-
Workshops, pages 16–16. IEEE, 2005.

[18] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detec-
tion from point clouds. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 7652–7660, 2018.

[19] Muhammad Sualeh and Gon-Woo Kim. Dynamic multi-lidar based multiple
object detection and tracking. Sensors, 19(6):1474, 2019.

[20] Takeo Kato, Yoshiki Ninomiya, and Ichiro Masaki. An obstacle detection
method by fusion of radar and motion stereo. IEEE transactions on intelligent
transportation systems, 3(3):182–188, 2002.

[21] Dirk Langer and Charles E Thorpe. Sonar based outdoor vehicle navigation and
collision avoidance. In IROS, pages 1445–1450. Citeseer, 1992.

[22] Oliver J Woodman. An introduction to inertial navigation. Technical report,
University of Cambridge, Computer Laboratory, 2007.

[23] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and James Collins.
Global positioning system: theory and practice. Springer Science & Business
Media, 2012.

[24] ZuWhan Kim. Robust lane detection and tracking in challenging scenarios.
IEEE Transactions on intelligent transportation systems, 9(1):16–26, 2008.

[25] Yue Wang, Eam Khwang Teoh, and Dinggang Shen. Lane detection and track-
ing using b-snake. Image and Vision computing, 22(4):269–280, 2004.

122 Bibliography

[26] Yihuan Zhang, Jun Wang, Xiaonian Wang, and John M Dolan. Road-
segmentation-based curb detection method for self-driving via a 3d-lidar sen-
sor. IEEE transactions on intelligent transportation systems, 19(12):3981–
3991, 2018.

[27] Wijerupage Sardha Wijesoma, KR Sarath Kodagoda, and Arjuna P Balasuriya.
Road-boundary detection and tracking using ladar sensing. IEEE Transactions
on robotics and automation, 20(3):456–464, 2004.

[28] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and
Christian Igel. Detection of traffic signs in real-world images: The german
traffic sign detection benchmark. In The 2013 international joint conference on
neural networks (IJCNN), pages 1–8. Ieee, 2013.

[29] Arturo De La Escalera, Luis E Moreno, Miguel Angel Salichs, and José María
Armingol. Road traffic sign detection and classification. IEEE transactions on
industrial electronics, 44(6):848–859, 1997.

[30] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 779–788, 2016.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. Advances in neural
information processing systems, 28:91–99, 2015.

[32] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong
Li, and Cordelia Schmid. Vectornet: Encoding hd maps and agent dynamics
from vectorized representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11525–11533, 2020.

[33] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I. Ieee, 2004.

Bibliography 123

[34] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial].
IEEE robotics & automation magazine, 18(4):80–92, 2011.

[35] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[36] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[37] Sven Bauer, Yasamin Alkhorshid, and Gerd Wanielik. Using high-definition
maps for precise urban vehicle localization. In 2016 IEEE 19th Interna-
tional Conference on Intelligent Transportation Systems (ITSC), pages 492–
497. IEEE, 2016.

[38] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne.
Imitation learning: A survey of learning methods. ACM Computing Surveys
(CSUR), 50(2):1–35, 2017.

[39] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[40] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[41] Adam Daniel Laud. Theory and application of reward shaping in reinforcement
learning. University of Illinois at Urbana-Champaign, 2004.

[42] Marek Grzes and Daniel Kudenko. Plan-based reward shaping for reinforce-
ment learning. In 2008 4th International IEEE Conference Intelligent Systems,
volume 2, pages 10–22. IEEE, 2008.

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

124 Bibliography

Georg Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. nature, 518(7540):529–533, 2015.

[44] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[45] Alexander Pritzel Nicolas Heess Tom Erez Yuval Tassa David Silver Timothy
P. Lillicrap, Jonathan J. Hunt and Daan Wierstra. Continuous control with deep
reinforcement learning. 2016.

[46] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives,
and prospects. Science, 349(6245):255–260, 2015.

[47] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. MIT press, 2018.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[49] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[50] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neu-
ral networks for perception, pages 65–93. Elsevier, 1992.

[51] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[52] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

[53] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937. PMLR, 2016.

Bibliography 125

[54] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[55] Richard S Sutton. Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding. Advances in neural information processing
systems, pages 1038–1044, 1996.

[56] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adap-
tive elements that can solve difficult learning control problems. IEEE transac-
tions on systems, man, and cybernetics, (5):834–846, 1983.

[57] Andrew William Moore. Efficient memory-based learning for robot control.
1990.

[58] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012.

[59] Mark Martinez, Chawin Sitawarin, Kevin Finch, Lennart Meincke, Alex
Yablonski, and Alain Kornhauser. Beyond grand theft auto v for training,
testing and enhancing deep learning in self driving cars. arXiv preprint
arXiv:1712.01397, 2017.

[60] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. In Conference on
robot learning, pages 1–16. PMLR, 2017.

[61] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. Advances in neural information processing systems, 27, 2014.

[62] Alex Bewley, Jessica Rigley, Yuxuan Liu, Jeffrey Hawke, Richard Shen, Vinh-
Dieu Lam, and Alex Kendall. Learning to drive from simulation without real

126 Bibliography

world labels. In 2019 International conference on robotics and automation
(ICRA), pages 4818–4824. IEEE, 2019.

[63] Daniel Krajzewicz, Georg Hertkorn, Christian Rössel, and Peter Wagner. Sumo
(simulation of urban mobility)-an open-source traffic simulation. In Pro-
ceedings of the 4th middle East Symposium on Simulation and Modelling
(MESM20002), pages 183–187, 2002.

[64] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learn-
ing to drive by imitating the best and synthesizing the worst. arXiv preprint
arXiv:1812.03079, 2018.

[65] Giulio Bacchiani, Daniele Molinari, and Marco Patander. Microscopic traf-
fic simulation by cooperative multi-agent deep reinforcement learning. arXiv
preprint arXiv:1903.01365, 2019.

[66] Keith Packard and Carl Worth. Cairo graphics library. 2003-2020.

[67] Alessandro Capasso, Giulio Bacchiani, and Daniele Molinari. Intelligent round-
about insertion using deep reinforcement learning. In Proceedings of the 12th
International Conference on Agents and Artificial Intelligence - Volume 2:
ICAART,, pages 378–385. INSTICC, SciTePress, 2020.

[68] Stefano Masi, Philippe Xu, and Philippe Bonnifait. Roundabout crossing with
interval occupancy and virtual instances of road users. IEEE Transactions on
Intelligent Transportation Systems, 2020.

[69] Stefano Masi, Philippe Xu, and Philippe Bonnifait. Adapting the virtual pla-
tooning concept to roundabout crossing. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1366–1372. IEEE, 2018.

[70] Lejla Banjanovic-Mehmedovic, Edin Halilovic, Ivan Bosankic, Mehmed Kan-
tardzic, and Suad Kasapovic. Autonomous vehicle-to-vehicle (v2v) decision
making in roundabout using game theory. Int. J. Adv. Comput. Sci. Appl,
7(8):292–298, 2016.

Bibliography 127

[71] Yuhuai Wu et al. Openai baselines: ACKTR & A2C. 2017.

[72] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jür-
gen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford,
et al. The limits and potentials of deep learning for robotics. The International
Journal of Robotics Research, 37(4-5):405–420, 2018.

[73] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman.
Quantifying generalization in reinforcement learning. In International Confer-
ence on Machine Learning, pages 1282–1289. PMLR, 2019.

[74] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on
overfitting in deep reinforcement learning. arXiv preprint arXiv:1804.06893,
2018.

[75] Alessandro Paolo Capasso, Giulio Bacchiani, and Alberto Broggi. From simu-
lation to real world maneuver execution using deep reinforcement learning. In
2020 IEEE Intelligent Vehicles Symposium (IV), pages 1570–1575. IEEE, 2020.

[76] Huynh Ngoc Phien and Nattawit Dejdumrong. Efficient algorithms for bézier
curves. Computer Aided Geometric Design, 17(3):247–250, 2000.

[77] Alessandro Paolo Capasso, Paolo Maramotti, Anthony Dell’Eva, and Alberto
Broggi. End-to-end intersection handling using multi-agent deep reinforcement
learning. arXiv preprint arXiv:2104.13617, 2021.

[78] Kurt Dresner and Peter Stone. Multiagent traffic management: A reservation-
based intersection control mechanism. In Autonomous Agents and Multiagent
Systems, International Joint Conference on, volume 3, pages 530–537. IEEE
Computer Society, 2004.

[79] Marco A Wiering. Multi-agent reinforcement learning for traffic light control.
In Machine Learning: Proceedings of the Seventeenth International Conference
(ICML’2000), pages 1151–1158, 2000.

128 Bibliography

[80] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. Intellilight: A rein-
forcement learning approach for intelligent traffic light control. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 2496–2505, 2018.

[81] Deepeka Garg, Maria Chli, and George Vogiatzis. Deep reinforcement learning
for autonomous traffic light control. In 2018 3rd ieee international conference
on intelligent transportation engineering (icite), pages 214–218. IEEE, 2018.

[82] Richard Van Der Horst and Jeroen Hogema. Time-to-collision and collision
avoidance systems. In Proceedings of the 6th ICTCT workshop: Safety eval-
uation of traffic systems: Traffic conflicts and other measures, pages 109–121.
Citeseer, 1993.

[83] Avik Pal, Jonah Philion, Yuan-Hong Liao, and Sanja Fidler. Emergent road rules
in multi-agent driving environments. In International Conference on Learning
Representations, 2021.

[84] David Isele and Akansel Cosgun. To go or not to go: a case for q-learning at
unsignalized intersections. 2017.

[85] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo
Fujimura. Navigating occluded intersections with autonomous vehicles us-
ing deep reinforcement learning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 2034–2039. IEEE, 2018.

[86] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement
learning. ArXiv, abs/1312.5602, 2013.

[87] Arne Kesting, Martin Treiber, and Dirk Helbing. Enhanced intelligent driver
model to access the impact of driving strategies on traffic capacity. Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 368(1928):4585–4605, 2010.

Bibliography 129

[88] Y. Pu, Zhe Gan, Ricardo Henao, X. Yuan, C. Li, A. Stevens, and L. Carin.
Variational autoencoder for deep learning of images, labels and captions. In
NIPS, 2016.

[89] Julian Bock, Robert Krajewski, Tobias Moers, Steffen Runde, Lennart Vater,
and Lutz Eckstein. The ind dataset: A drone dataset of naturalistic road user
trajectories at german intersections. In 2020 IEEE Intelligent Vehicles Sympo-
sium (IV), pages 1929–1934. IEEE, 2020.

[90] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

	Introduction
	History of Vehicle Automation
	Research Overview

	Autonomous Driving Architecture
	Autonomous Driving Levels
	Autonomous Car Architecture
	Sensors
	Typical Architecture
	End-to-End Architecture

	Deep Reinforcement Learning
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning

	Deep Learning
	Artificial Neural Network

	Reinforcement Learning Theory
	Markov Decision Process
	Value Function
	Monte Carlo and Temporal Difference learning
	Model-free vs Model-based Reinforcement Learning
	On-policy, Off-policy and Offline Reinforcement Learning
	Policy Gradient methods
	Actor-Critic Methods
	Asynchronous Advantage Actor-Critic (A3C)
	Multi-Agent Deep Rinforcement Learning

	Simulators in Deep Reinforcement Learning
	OpenAI Gym
	Autonomous Driving Simulators
	Realistic Graphic Simulators
	Simulators based on Synthetic Representation of Reality
	Multi-Agent Microscopic Traffic Simulator
	State Space
	HD Simulator

	Intelligent Roundabout Insertion
	Roundabout Insertion
	Training Setup
	Input and Output Space
	Autonomous Driving Architecture
	Delayed Asynchronous Advantage Actor-Critic (D-A3C)

	Reward Function
	Preliminary Results
	Algorithms Comparison
	Aggressiveness Test
	Comparison with a Rule-based Method
	Results on Unseen Scenarios

	Generalization Techniques
	Multi-environment System
	Noise Injection

	Generalization Results
	Real-World Test
	Conclusions

	Continuous Control Actions Handling Intersection Scenarios
	Intersection Handling
	Environment
	Input Space

	Training Setup
	Neural Network Architecture

	Reward
	Results
	Comparison with the TTC Algorithm
	Testing the Right of Way Rule
	Test on Real Data

	Conclusions

	Tackling Real-World Planning and Control using Deep Reinforcement Learning
	Environment
	Training Settings
	Neural Network Architecture
	Simulating Self-Driving Car Behavior
	Reward Function

	Real-World Test

	Conclusions and Future Developments
	Bibliography

