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Introduction

Maintenance operations on industrial machinery have traditionally been of two types:
corrective or preventive. In the first case, repairs are carried out after the breakdown
has occurred: this leads to inevitable and unexpected machine failures that cause
delays in the manufacturing process. In the second case, on the other hand, it is
established a priori when the equipment will be replaced, regardless of the actual
deterioration state of the equipment that compose it: the risk here is that of not ex-
ploiting components and machinery until the end of their life cycle and therefore
of replacing an asset that is still effectively functioning. These are clearly two inef-
fective and unnecessarily expensive approaches that do not provide any added value
from a 4.0 industrial competitiveness perspective but, despite this, they are still the
two paradigms most used by most companies today. In order to favor the widespread
adoption of smart maintenance, it is crucial to provide systems that can facilitate the
monitoring of the current state of machines and enabling a deepen interaction within
human and machines. In order to bridge the gap between machines and humans, dig-
ital transformation can provide useful services to final users as a consequence of the
processing work on the huge amount of data collected by machine sensors [1, 2].

Given such a complex environment there is a need to develop a smarter supply
chain and, in this sense, the Pharma sector is one of the most fertile grounds for
digital innovation [3, 4]. In fact, in the Pharmaceutical industries, there is a need to
contain costs and improve business results while maintaining high quality standards.
The traditional supply chain approach based on requirements planning is no longer
effective. The solution is an Industry 4.0 that can effectively anticipate failures, i.e.,
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an intelligent supply chain based on digital twin and predictive analytics [5, 6].

As a result, Big Data is becoming an increasingly decisive factor in enabling com-
panies to advance in terms of efficiency, productivity and quality. Big Data Machine
Analytics is a concept that defines the accumulation of data through the use of sensors
placed within an industrial facility [7]. These large amounts of data are accumulated
in efficient databases and then analyzed and interpreted for future purposes. However,
despite widespread recognition of the usefulness of insights gained from IoT data, of-
ten almost all of the information assets collected by companies are not actually used.
In fact, data management remains a critical issue for many companies, primarily due
to two problems. First, there is often a lack of competent figures with respect to in-
formation management. The second problem is due to the fact that most of the data
acquired comes from signals aimed at monitoring manufacturing processes and not
the actual state of components deterioration of the plant itself [8]. This implies that
most of these data are not useful to explain the machine health state and it is very
complex to identify the hidden relations necessary to create a diagnostic model. To
deal with these problems, companies need domain experts, who are familiar with
processes and equipment in the industry, and specialized in computer science and
mathematical modeling, in order to manage and process the acquired data [9]. The
most wanted figure possessing these skills is the Data Scientist [10]. These figures are
able to perform Data Mining, they extract from Big Data the information necessary to
create diagnostic models and simulate the machine status. Predictive maintenance is
one of the most active fields of study for Industry 4.0, as it is expected to significantly
decrease the maintenance costs of the equipment. The big challenge then is to be able
to create concrete solutions that are easy to evaluate.

Study Overview

Two of the main goals of the digital transformation are (i) the development of a pro-
cess simulator that represents a “digital twin” of a machine and (ii) the development
of diagnostic and health management system for the machines. The first objective
allows to develop a tool for simulation-based preliminary tests of changes to the ma-
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chine control system and for the study of process improvements. Thanks to the tools
developed to reach the second goal it is possible to detect and predict the degradation
of machine equipment and to schedule maintenance interventions more efficiently.

With the intention of addressing the first objective, in Chapter 2, we begin with a
theoretical study regarding the heat exchanges that can occur within machines of this
type. We exploit the equivalence that exists between thermal circuits and resistive-
capacitive (RC) networks. We consider the problem of recovering the network con-
nection structure from measured input-output data. We address this problem as a
structured identification one, that is, we assume to have a state-space model of the
system (identified with standard techniques, such as subspace methods) and find a
coordinate transformation that puts the identified system in a form that reveals the
nodes connection structure. We characterize the solution set, that is, the set of all
possible RC-networks that can be associated with the input-output data. We present
a possible solution algorithm and show some computational experiments.

To achieve the second goal and create solutions applicable to pharmaceutical
freeze-dryers, in Chapter 3, we focus on freeze-dryers and the study of their sen-
sor signals. It is often impossible to accurately predict the deterioration of a compo-
nent, as the reliability of predictive models strongly depends on the available sensory
data and on the specific characteristics of the monitored component. So we present
a time-aware clustering-based approach to the analysis of sensory data with the aim
of predicting the temporal evolution of the health status of a machine component in
a pharmaceutical plant. The developed strategy allows to obtain a time segmentation
of the component’s operational points, which are then clustered using the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN). In particular, this
approach has the advantages of being general and making use of a limited amount
of features extracted from a single sensor signal. The proposed approach becomes
attractive when the data collected from a single sensor are not sufficient to build a
physical model capable of identifying changes in the system status.

In some cases, however, having a simple physical model is the key to obtaining a
reliable diagnostic system. In Chapter 4, we therefore focused on studying the Leak
Test process, which verifies the sealing of the machine. In this process, the product
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has to be brought to a very low pressure and the lyophilization chamber has to be
perfectly sealed. Even small external leaks can contaminate the entire drug batch.
Since a single batch may contain thousands of product vials, freeze-dryer leakages
are one of the most critical problems of the entire production chain of lyophilized
drugs. We describe a simple mathematical model for lyophilizer leaks and address the
problem of identifying and separating internal and external leaks. We propose a leak
identification method based on the use of multiple leak detection tests. By using the
real data of a pharmaceutical lyophilizer, we show that the proposed method allows
to identify internal and external leaks and to estimate their evolution in time.

Thesis Structure

Chapter 1 provides the background of the freeze-dryer machine and lyophilization
processes in a pharmaceutical plant. In Chapter 2 is faced the problem of recovering
the network connection structure from measured input-output data of a Resisitive-
capacitive (RC) circuit. Chapter 3 presents a general method to predict the deterio-
ration of machine components thanks to a time-aware clustering-based approach. In
Chapter 4, a mathematical model to identify leaks in a pharmaceutical freeze-dryer
is proposed.
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The Freeze-Dryer Case Study

GlaxoSmithKline plc (GSK) is a British multinational pharmaceutical company head-
quartered in London, England. Established in 2000 by a merger of Glaxo Wellcome
and SmithKline Beecham, GSK is one of the world’s largest pharmaceutical com-
pany. It is a science-led global healthcare company with a special purpose: to help
people do more, feel better, live longer. The company has three global businesses that
research, develop and manufacture innovative pharmaceutical medicines, vaccines
and consumer healthcare products. Legacy products developed at GSK include sev-
eral listed in the World Health Organization’s List of Essential Medicines, some of
which, are freeze-dried products. This means that the supply chain for these products
must always be efficient and high-performing. In addition, freeze-dried biopharm
drugs have an extremely high development and manufacturing cost, therefore the
freeze-drying process is critical and must be constantly monitored and kept under
control.

GSK is also present in Italy with six sites. Thanks to its expertise and ability to
evolve as a manufacturing facility, Parma is a center of excellence in GSK’s industrial
network that distributes its products worldwide. This PhD study is framed within a
project created in collaboration with the digital department of GSK Parma, with the
aim of building monitoring systems for industrial freeze-dryers present within the
site.
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1.1 Freeze-Drying

Freeze-drying is a standard procedure in pharmaceutical industry, used to stabilize,
store and increase the shelf life of drug products.

The freeze-drying (or lyophilization) process is a method to dehydrate a product
and it has important applications in the pharmaceutical and biotechnology industries.
Pharmaceutical freeze-drying is now a standard process used to stabilise, store or
increase the shelf life of drug products. For a detailed description of freeze-drying,
see for instance [11, 12].

Freeze-drying works by freezing the material, then reducing the pressure and
increasing the temperature to allow the frozen water in the material to sublimate. The
cycle consists of three processes: freezing, primary drying, secondary drying.

Figure 1.1: Water state diagram: the blue arrows indicate the three steps performed
during freeze-drying.

• Freezing
During the freezing step the entire product is brought to temperatures below the
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triple point of the product solvent (that is the point at which the solid, liquid and
gas phases can coexist). Most of the solvent contained in the product solidifies
and forms ice crystals. The operating conditions at which freezing takes place
have effects on the final product. More precisely, these conditions determine
the structure of the ice crystals that form, which can have consequences on the
characteristics of the final product.
The solidification is the result of two consecutive phenomena: the nucleation
of the ice crystal and its growth. If solidification occurs in a time prolonged,
growth is faster than nucleation: crystals form with larger sizes, creating a
structure with wider pores during the next drying and reducing the resistance
to transport of steam during sublimation. Moreover, large crystal sizes (due
to long solidification) can irreversibly damage the crystalline structure of the
solid product. Therefore fast freezing is recommended in order to get small ice
crystals, which limited impact on the quality of the product.

• Primary drying (sublimation)
The pressure in the chamber is reduced until the partial pressure of the water
vapor is lower than the value of the triple point shown in Fig. 1.1, and the en-
ergy (heat) is supplied to the product for the frozen water to sublimate. This
step is necessary because the sublimation process is endothermic and, there-
fore, requires energy. During sublimation a dry layer is formed in the material
whose thickness increases over time: the process is thus characterized by a mo-
bile sublimation interface. While the ice sublimates, the generated steam flows
through the dry material and creates empty spaces in the product, leading to a
porous structure which facilitates rehydration. The driving force of the process
is the difference in partial pressure of the water vapor between the sublimation
interface and the freeze-dryer chamber in which the product is contained. The
partial pressure of the steam in the chamber is controlled through a condenser,
which involves the continuous removal of the water eliminated from the prod-
uct by sublimation. At the end of primary drying the product can still contain a
low quantity of water: this water is not removed by sublimation during primary
drying, but is desorbed during the secondary drying phase.
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Figure 1.2: Primary drying process.

• Secondary drying (adsorption)
The remaining water, still adsorbed on the porous surface from the weak bonds
within the dry material, is desorbed into conditions of low pressure and tem-
perature higher than the primary drying phase. This process allows the content
to reach of desired humidity level.

Freezing and secondary drying phases are faster than the primary drying phase.
From the point of view of the quality of the final product, freeze-drying is considered
the best drying method thanks to the low temperatures at which it is carried out.

1.2 The Freeze-Dryer Machine

The freeze-dryer is a steel machine, consists of two chambers: the main chamber,
where the drug bottles are inserted, and the condensation chamber, which is neces-
sary to trap the sublimated water during primary and secondary drying. The main
chamber is made of multiple shelves above which the vials containing the product
to be lyophilized are placed. Inside these shelves silicon oil flows and is heated or
cooled in relation to the phase of the process that is in progress.

Nitrogen flows in the gaseous state in the condensing chamber coils and after
having absorbed heat from the chamber, it comes out in the liquid state. The freeze-
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Figure 1.3: The freeze-dryer machine.

dryer is subject to strong mechanical stresses due to high variations in pressure and
temperature: this requires a continuous maintenance to keep the machine operating
correctly. As the high cost of the freeze dried product, it is necessary to carry out
studies to prevent machine malfunctions, in order to make maintenance operations
more efficient, improve process planning and avoid failure that would have a greater
economic impact. In addition to freeze-drying, other cycles are performed inside the
machine, in order to wash (Cleaning In Place - CIP), sterilize (Steam In Place - SIP)
and test the sealing of the freeze-dryer (Leak Test - LT).

1.3 Cleaning In Place (CIP)

The Cleaning In Place (CIP) process is used to wash the freeze-dryer. During the pro-
cess, the machine is cleaned with purified water: chamber walls, shelves, condenser
walls, and condenser plates are sprayed by nozzles. The water temperature is around
350◦K.

The sequence of phases of the CIP relies on the following mechanical elements:
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Figure 1.4: The CIP phases.

• the valves that allow the water to be poured into the machine: they are four for
the chamber and one for the condenser;

• the valves that allow water to be drained: they are two for the chamber and one
for the condenser;

• the piston that, thanks to the oil under pressure, moves the shelves in order to
rinse the machine better.

Below we describe the phases of the CIP:

1. Before the cleaning process starts, the chamber and condenser must be vented
to atmospheric pressure.

2. Condenser and chamber drain valve are opened.
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3. Water is poured into the chamber: the four sprays inside the chamber are ac-
tivated one by one. Then, a single spray pours water into the condenser. All
sprays have an activation duration of 50 seconds.

4. When the condenser spray finishes pouring water, there is a waiting period to
allow the water to flow out of the drains.

5. The activation sequence of the sprays is repeated a second time and during this
phase machine’s shelves are moved. The hydraulic pump is activated and hanks
to a directly operated proportional valve, the oil flow is directed to move the
piston alternately towards the up or down.

6. There is a waiting time for water drainage: during this time, the plates remain
still.

7. Then the water drain valves are closed and the first chamber spray is activated:
after a set time the spray is turned off and, at this point, the plates are immersed
in water.

8. The shelves are moved several times up and down to allow the water to wash
them.

9. Subsequently, the following phases take place: a new drainage, another phase
of spraying during which the plates are moved and, finally, there a last drainage.

1.4 Leak Test (LT)

Due to large variations in temperature and pressure, freeze-dryer machines are subject
to considerable mechanical stresses. In particular, cyclic large temperature variations
cause thermal fatigue, due to repeated expansions and contractions of the material
constituting the lyophilization chamber. This may cause microscopic cracks, espe-
cially in tubes and support structures. These cracks may cause a leak, that is an influx
of gas into the drying chamber. Even very small leaks can contaminate the sterile
product environment inside the chamber. In the event of a contamination, the entire
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drug batch must be rejected. Since a single batch may contain thousands of prod-
uct vials, freeze-dryer leakages are one of the most critical problems of the entire
production chain of lyophilized drugs.

In order to monitor possible gas infiltrations, a common practice is to run a
leak detection test before the beginning of the lyophization process. In this test, the
lyophilization chamber is put under vacuum and, then, the trend of growing pressure
over time is monitored. If the rise of pressure with respect to time is above a given
threshold, it is concluded that the lyophization chamber is not correctly sealed and
the machine is not used until the problem is solved.

A typical leak test measures the rise of pressure with time in the lyophilization
chamber, after the air has been removed by a vacuum pump. More precisely, it con-
sists of the following three phases:

1. evacuation: the freeze-dryer is evacuated by vacuum pumps until the chamber
pressure is below 10 µbar;

2. leak test preparation: for a given time interval, the pressure is kept in the in-
terval between 8 and 10 µbar. In order to achieve this behaviour, the vacuum
pumps are switched on (if the pressure exceeds 10 µbar) or off (if it falls below
8 µbar). Note that, in this phase, the pressure rises mainly due to internal leaks;

3. leak test: the vacuum pumps remain switched off, and the freeze dryer is left
in this state for a fixed amount of time (typically between 30 min and 1 hour).

In common practice, in order to quantitatively assess leaks, one measures the
chamber pressure difference ∆p (dimension: [µbar]) between the end and the begin-
ning of the leak test. If V is the volume of the lyophilization chamber (dimension: [l])
and ∆t is the time difference between the ending and initial instants of the leak test
(dimension: [s]) , the overall leak rate can be estimated as (see [13])

QL =
∆pV
∆t

. (1.1)

The unit of measure of the leak rate is typically [mbar l/s] . Namely, in an en-
closed, evacuated vessel with a volume equal to 1 l, there is a leak rate of QL =
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Figure 1.5: The three phases of Leak Test Process.

1 mbar l/s when the pressure rises by 1 mbar per second. In standard practice, if
the measured leak rate is above a given threshold, then the machine is considered
faulty and is stopped for diagnosis and repair. Even though Food and Drug Ad-
ministration (FDA) does not provide clear guidelines for the choice of the leak rate
threshold, common practice in the pharmaceutical industry is to use a value equal to
2×10−2 mbar l/s [14].

1.5 Data Transfer

These studies rely on a large amount of process data that have been historicized over
the years by GSK. Thanks to FDA regulation, pharmaceutical companies are required
to record all production data, so GSK has been historicizing process signals for years.
This is instrumental to train algorithms that describe the behavior of the machine even
without knowing a classical physical model. The tool used to analyze data and create
forecasting models is MATLAB, a versatile and relatively simple tool to use both to
run simulations and to create statistical models. Process data are stored in a Histo-
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rian database. There is no method to directly transfer data from Historian to Matlab,
so that it was necessary to use SQL Server Management Studio as communication
bridge between the two softwares and compress the data.

Figure 1.6: Data transfer sequence.

The method to query Historian with SQL Server is to write a text string that is
passed to Historian via OPENQUERY. The advantage of OPENQUERY is that it
passes the supplied SQL statement as its second argument to the linked server you
supply as its first argument, directly without modification. Once process data are
inserted into a table, it was necessary to create a new table in SQL Server Manage-
ment Studio in which the same but compressed data were inserted. Furthermore, our
strategy was to convert the Tag-name related to the signals from character to whole
numbers. Finally, the timestamp was converted to a numerical value: it was possi-
ble to do so because the data are logged once a second, so that it was sufficient to
calculate the difference in seconds between the recording time of any value and the
process start time. After the application of this method the data was transferred to
Matlab thanks to the Database Toolbox functionalities. The data has been inserted in
a three-dimensional matrix, whose coordinates are:

• the process cycle number;

• the number corresponding to the tag, which refers to a single signal sensor;

• the instant signal integer indicating the time, second by second.
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Figure 1.7: Strategy to transfer data from SQL Server to Matlab.

Only the values of the measured signals are inserted into the matrix. In a first anal-
ysis of the data, it was observed that in some moments all the signals were worth 0:
this happened because Historian had a data loss during the acquisition. Even though
this loss was very marginal (a cumulative maximum of 20 seconds per hour), it was
necessary to eliminate those spikes. In order to do this, an algorithm was therefore
written to automatically identify such data holes and replace them with linearly in-
terpolated values.

To occupy less memory space there are various methodologies that eliminate
repetitive data at successive instants, an example of compression strategies can be
found in [15].
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(a) (b)

Figure 1.8: Example of signal (a) before and (b) after the replace holes algorithm.



Chapter 2

Circuit Identification

2.1 Introduction

When it is required to simulate the behavior of a machine, one of the most common
strategy is to use finite element methods. However, the lyophilizer is a very com-
plex machine, and its behavior varies over time in relation to small modifications
carried out on the machine (weldings, repairs, etc.), difficult to describe in a three-
dimensional model. Various dynamical models of processes in engineering, physics
or biology have the following form

Gẋ(t) = Sx(t)+Bu(t)
y(t) =Cx(t) ,

(2.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, y(t) ∈ Rp is the output. We
assume that S ∈ Rn×n is symmetric, G ∈ Rn×n is diagonal and positive definite, while
B and C have no special structure.

For instance, model (2.1) may represent a generic RC (resistive and capacitive)
network, in which the components of x ∈ Rn are the node potentials, S is the ad-
mittance matrix and the diagonal elements of G are the nodes capacitances. As an
example, consider the RC circuit represented in Fig. 2.1 and assume that the output
is the potential of node 1. The corresponding model has form (2.1):
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R1 C1

R12

C2 R2

1 2

Figure 2.1: Example of an RC-circuit.

1 2
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Figure 2.2: Graph representation of model associated with the circuit in Fig. 2.1.

(
C1 0
0 C2

)(
v̇1(t)
v̇2(t)

)

=

(
−R−1

1 −R−1
12 R−1

12

R−1
12 −R−1

2 −R−1
12

)(
v1(t)
v2(t)

)
,

(2.2)

y(t) =
(

1 0
)( v1(t)

v2(t)

)
.

Here, v1 and v2 represent the potentials of nodes 1 and 2. We can associate a
weighted undirected graph to matrix S in (2.1) by considering S a weighted adja-
cency matrix. Namely, we define a node for each component of vector x and we
define an edge between node i and node j if the entry of row i and column j of S is
nonzero. The numerical value of the entry represents the edge weight. For instance,
Fig. 2.2 represents the graph associated with the model of the circuit in Fig. 2.1. For
simplicity, in the rest of the chapter we will omit self loops when representing the
graph associated to the S matrix of a system in form (2.1).
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Form (2.1) also models those systems that have the same mathematical repre-
sentation of RC-circuits, such as thermal systems, physical network systems ([16]),
dendritic structures ([17]), mammillary systems ([18]), or, more generally, diagonally
symmetrizable compartmental systems (see [19]). Therefore, the RC-circuit model
could also be used to simulate heat exchanges and pressure variations that occur in-
side a freeze-dryer. Note that also other linear circuit models (for instance, lithium
battery models) can be put in form (2.1), for instance by passing to the Cauer form.

Consider a second system of form

ż(t) = Âz(t)+ B̂u(t)
y(t) = Ĉz(t) ,

(2.3)

in which Â, B̂, Ĉ have the same dimensions of S, B, C. In this chapter we consider the
following algebraic problem.

Problem 1. Consider systems (2.1), (2.3), where matrices Â, B̂,Ĉ,B,C are given.
Find, if possible, an invertible matrix T , a symmetric matrix S and a strictly positive
diagonal matrix G such that 

T−1ÂT = G−1S
ĈT =C
T−1B̂ = G−1B .

(2.4)

In other words, we are looking for a state-space transformation of form z = T x
and suitable matrices S and G such that (2.3) takes on form (2.1).

Problem 1 can be interpreted as a structured identification one. Namely, sys-
tem (2.3) represents an identified black-box model, obtained from experimental data
with standard techniques, for instance state space identification methods. Our aim is
to check if this system, after state transformation z = T x, can be given the form of
model (2.1), and, if this is possible, find such a transformation. The structural require-
ments imposed in Problem 1 are the following ones

• The transformed system matrix T−1ÂT must be the product of a positive diag-
onal and a symmetric matrix.
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• The input and output matrices are assigned.

The first requirement ensures that the transformed system matrix can be written as
the product of a diagonal matrix (containing the inverse capacities, in the case of RC-
circuits) and a symmetric matrix (the admittance matrix in the case of RC-circuits).
The reduction to the RC-model form (2.1), gives a meaningful description of the
system. In particular, matrix S can be directly associated with an undirected graph,
which represents the interactions among the states.

The second requirement is due to the fact that, in some cases, the input matrix
B or the output matrix C may be known from structural properties of the system at
hand. For instance, in an RC-circuit we may be able to measure the potentials of the
first n1 nodes, while the potentials of the remaining ones are not accessible. In this
case, C would correspond to the projection matrix on the first n1 components. Note
that we may not have this requirement or know only one among B and C. In this case,
the second, the third condition in (2.4), or both could be omitted.

Furthermore, we consider a more restrictive version of Problem 1, based on the
observation that, in various dynamical models, matrix S in (2.1) is Metzler, that is, all
its off-diagonal entries are non-negative. For instance, in RC-networks, off-diagonal
entries correspond to the values of the resistances connecting the network nodes
(see (2.2)). This suggests the following formulation.

Problem 2. Solve Problem 1 with the additional requirement that S is Metzler.

Further, if Problem 2 has multiple solutions, one may minimize the number of
nonzero components of S, that is, minimize ∥S∥0, the so-called zero-norm of S. This
follows the principle of parsimony of finding the simplest model of form 1 that fits
the data. This leads to the following additional problem.

Problem 3. Find the solutions of Problem 2 in which ∥S∥0 is minimum.

For instance, in an RC-circuit, the nonzero elements of S represent the resistive
connections between the nodes. Hence, minimizing ∥S∥0 corresponds to reducing the
overall number of resistive components.
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2.1.1 Statement of contribution

Regarding Problem 1, we will show that it is convenient to parameterize the set of
solutions as T = PQ

√
G, where P, Q is the polar decomposition of T

√
G
−1

. In par-
ticular,

• Proposition 4 shows that P and G are the solution of a problem with a reduced
number of unknowns. Essentially, this result leverages the symmetry of S. Fur-
thermore, if either the second or the third condition in (2.4) is missing, P and
G are the solution of a convex problem. We will consider this last case in more
detail. We will mention that, in many cases, the solution P, G is unique up to a
scaling factor.

• Proposition 7 parameterizes all solutions of Q corresponding to each solution
P, G.

These results can also be used to reduce the number of unknowns in Problems 2
and 3. Anyway, these last two problems are more difficult than Problem 1. To solve
them, we will resort to general local search algorithms.

2.1.2 Comparison with literature

A problem similar in structure to Problem 1, but more general, consists in solving the
following system with respect to unknown parameter vector θ

T−1ÂT = A(θ)
ĈT =C(θ)

T−1B̂ = B(θ) ,

(2.5)

in which matrices A, B, C depend on θ . Problem 1 may be considered a special
case of (2.5), in which C and B do not depend on θ and the only constraint on A is
symmetry.

Problem (2.5) has been extensively studied in recent literature. A common ap-
proach consists in two phases. First, one finds a black-box model (this is in general
an easy one, for instance, resorting to subspace-based methods). Second, one finds a
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coordinate transformation T and a parameter vector θ that satisfy (2.5). In the general
case, this second step is not an easy task. In fact, even assuming, as commonly done,
that A, B, C are a linear function of θ , Problem (2.5) is bilinear and, thus, nonconvex.

This approach has been introduced in [20] and studied in various subsequent
works. For instance, [21] studied the problem of parameter initialization.
Works [22], [23], [24], [25] present different numerical approaches for the solution.

With respect to these general approaches, this work leverages the special struc-
ture imposed by Problem (2.1), in particular the symmetry of S, to obtain specific
properties (see Propositions 4 and 7) that do not apply to the more general case (2.5).
As far as we know, the results presented in these two propositions are new, perhaps
also due to the specificity of the problem discussed in this chapter.

The literature on network reconstruction has mainly been concerned on deter-
mining conditions ensuring network identifiability. Loosely speaking, this problem
consists in assessing whether the network structure can be uniquely identified from
input/output measurements. Depending on the network model and the assumed prior
knowledge, different formalizations of this problem can arise. For instance, in [26],
the authors consider systems in state-space form, where the network structure is given
by the system matrix A, for which no prior information is available. Reference [27]
shows that, if no prior information is known on matrices A and B, then the presence of
unmeasured nodes is a sufficient condition for network unidentifiability. On the other
hand, it is shown in [28] that, even if there are unmeasured nodes, by assuming that
the boolean structure of the network is known a priori, it is still possible to guarantee
identifiability by appropriately selecting the measured nodes. In [29], identifiability
is discussed for autonomous dynamical networks where all nodes are measured and
matrix A is constrained to be a symmetric, an adjacency or a Laplacian matrix. For
each of these cases different identifiability conditions are derived.

The results on identifiability of [29, 28] are the one that most naturally apply to
our case. However, we take a different approach. Rather than studying the conditions
which guarantee network identifiability for RC-networks, we take for granted that
unidentifiability might arise (especially in the recurrent situation in which the number
of measured nodes is not sufficiently high) and present a complete characterization
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of all possible RC-circuits compatible to the available I/O measurements.

The problem of designing a network reconstruction algorithm is different from
the one of network identifiability. In this work, the network reconstruction problem is
casted into a structured identification one, for which a solution algorithm is proposed.
Other approaches of network reconstruction are available in literature. For instance,
in [30] an adaptive control strategy allows, as a side result, to recover the network
structure for controllable systems. For systems whose state-matrix is constrained to
be a Laplacian matrix (for example, this is the case for consensus networks or even
RC-circuits having G = I and no grounding resistances), the so-called node knockout
procedure for network identification is presented in [31]. In [29], a network identifica-
tion algorithm based on Lyapunov equations is presented for autonomous dynamical
networks without unmeasured nodes.

With respect to these approaches, our work does not require controllability which
is instead required in [30] and might also be needed in [31] to achieve the node knock-
out. With respect to [29], nor we constrain our discussion to autonomous systems and
neither we assume to measure all nodes of the network. Nevertheless, we discuss in
detail the autonomous case in our examples. In this sense the research in [29] is the
most similar to this work.

Notation: Matrix A ∈ Rn×n is diagonalizable if there exist a nonsingular matrix
V and a diagonal matrix Λ such that AV =V Λ. The columns of V are the right eigen-
vectors of A. Set W = V−1, then we have that WA = V−1A = ΛV−1 = ΛW , which
shows that the rows of W are left eigenvectors of A. We also write that (V,Λ,W ) is a
diagonalization of A. We denote the orthogonal group over R by

O(n) = {M ∈ Rn×n such that M is invertible and MT M = I},

that is the set of real orthonormal matrices of dimension n. Given a subspace V ⊂ Rn,
we will denote by V⊥ its orthogonal subspace.
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2.2 Discussion of Problem 1

The following proposition presents a necessary condition for the feasibility of Prob-
lem 1.

Proposition 1. Problem 1 has a solution only if Â is diagonalizable and has real
eigenvalues.

Proof. Assume that Problem 1 has a solution. By the first of (2.4) it follows that
G1/2T−1ÂT G−1/2 = G−1/2SG−1/2. Note that this last matrix is symmetric, hence Â
is diagonalizable and has real eigenvalues, being similar to a symmetric matrix.

Due to the previous proposition, we will make this assumption throughout the
chapter.

Assumption 1. Â is diagonalizable and has real eigenvalues.

Remark 1. By Proposition 1, if Assumption 1 does not hold for Â, then Problem 1
does not have a solution. This means that the identified system has not the structure
of an RC-network.

We will parameterize the set of possible solutions T of Problem 1 as

T = PQ
√

G , (2.6)

where P is a symmetric and positive definite matrix and Q ∈ O(n). Note that PQ cor-
responds to the left polar decomposition of T

√
G
−1

, which is unique, being T
√

G
−1

invertible. In particular, P corresponds to a scaling and Q to a rotation or reflection,
further P =

√
T G−1T T . In the following, we will show that parameterization (2.6)

is convenient since couple P, G can be found separately from Q. As a first step, the
following proposition shows that the feasibility of Problem 1 is equivalent to the ex-
istence of a solution of an equation independent of Q. The proof is presented in the
Appendix.
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Proposition 2. Problem 1 has a solution T,S,G if and only if there exist positive
definite matrices M and G, with G diagonal, such that

ÂM = MÂT

ĈMĈT =CG−1CT

B̂T M−1B̂ = BT G−1B
ĈB̂ =CG−1B.

(2.7)

Moreover, M = P2, where P is defined as in (2.6) .

Note that, with respect to form (2.6), equation (2.7) contains variables M = P2,
G, but does not contain Q. The structure of (2.7) can be simplified by diagonalizing
Â. In particular, if (V,Λ,W ) is a diagonalization of Â (i.e., Â =V ΛW ), the following
proposition shows that the first equation in (2.7) can be substituted with M =V DV T ,
where D is a matrix that commutes with Λ (i.e., DΛ = ΛD).

Proposition 3. Let (V,Λ,W ) be a diagonalization of Â and let M ∈ Rn×n, then the
following statements are equivalent

i) ÂM = MÂT

ii) there exists a matrix D, that commutes with Λ, such that M =V DV T .

Proof. i) ⇒ ii) Substituting Â = V ΛV−1 in i) we obtain V ΛV−1M = MV−T ΛV T ,
which implies ΛV−1MV−T =V−1MV−T Λ. Set D =V−1MV−T , then ΛD = DΛ and
M =V DV T .

ii) ⇒ i) Let D be any matrix such that ΛD = DΛ and set M = V DV T . Then
ÂM = ÂV DV T =V ΛV−1V DV T =V ΛDV T =V DΛV T =V DV TV−T ΛV T = MÂT .

Remark 2. The requirement that D commutes with Λ reduces the actual number of
unknown entries of D. In fact, setting Λ= diag {λ1, . . . ,λn}, D= (di j) commutes with
Λ if and only if

di j = 0, for all i, j such that λi ̸= λ j .

For instance, if all eigenvalues of Â are distinct, D must be diagonal. In the general
case, D has a block-diagonal structure.
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Combining the results of Propositions 2 and 3, we derive the following result.

Proposition 4. Problem 1 has a solution T,S,G if and only if there exist a symmetric
matrix D and a diagonal matrix G such that

D > 0
ΛD = DΛ

G > 0
ĈV DV TĈT =CG−1CT

B̂TW T D−1WB̂ = BT G−1B
ĈB̂ =CG−1B.

(2.8)

Moreover, P =
√

V DV T , where P is defined in (2.6).

In Problem (2.8) the optimization variables are D and G. This problem is non-
convex, since variable D appears in it together with its inverse.

Remark 3. If the third condition is not present in (2.4), the third and fourth condi-
tions disappear from (2.7) and, setting H = G−1, Problem (2.8) reduces to the convex
one: 

D > 0
ΛD = DΛ

H > 0
ĈV DV TĈT =CHCT .

(2.9)

If the third condition is not present in (2.4), we do not impose any structural require-
ment on matrix B. Note that the solution of (2.9) is not unique. In fact, if D, H is a
solution of (2.9), any scaling αD, αH, with α > 0 is still a solution. In particular, if
Â has distinct eigenvalues, D must be diagonal and Problem (2.9) reduces to finding
positive diagonal matrices D, H such that

ĈV DV TĈT =CHCT . (2.10)

The set of all solutions of (2.9) corresponds to a polyhedral cone and can be ex-
pressed as a conical combination of a finite set of vertices (by Weyl-Minkowski Theo-
rem), that is, we can find vectors v1, . . . ,vl (called generators) such that the set of all
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solutions of (2.9) is

{α1v1 +α2v2 + . . .+αlvl, α1,α2, . . . ,αl > 0}. (2.11)

These considerations also hold if the second condition of (2.4) is not present.

Remark 4. We present an intuitive discussion on the number of distinct solutions
of (2.9). Assuming Â has distinct eigenvalues, so that D is diagonal, Problem (2.9)
reduces to finding positive diagonal matrices D, H such that (2.10) holds. The so-
lutions of (2.10) are represented by vector x = [diag D,diag H], that contains the
elements on the diagonal of the two matrices D and H.

Note that, since the left and right-hand sides of (2.10) are symmetric p× p ma-
trices, equation (2.10) corresponds to a set of ne = p(p+ 1)/2 equations. We have
nu = 2n unknown terms (the diagonal elements of D and H). Hence, for a generic
choice of problem data (i.e., matrices Â, C, Ĉ are randomly selected) we have a so-
lution consisting of a unique ray (that is, unique up to scaling) if ne ≥ nu −1, that is
p ≥ (

√
16n−7−1)/2, where the −1 term is due to the fact that a ray has dimension

one. However, if the problem data are not generic, we may have multiple solutions
even if this condition is satisfied. For instance, if C is a projection on the first p com-
ponents, then term CHCT does not contain the last n− p elements of the diagonal of
H. Hence, these are left undetermined and can be chosen as arbitrary positive values.
In this case, the number of remaining unknowns is nu = n+ p, so that, if remaining
parameters Â, Ĉ are generic, we have only one solution for D and for the first p
elements of the diagonal of H (up to a scaling factor) if ne ≥ nu −1, that is

p ≥
√

8n−7+1
2

. (2.12)

These considerations intuitively justify the fact that, in generic cases, if p is suffi-
ciently high, equation (2.9) has only one solution (up to a scaling factor). Our nu-
merical experiments confirm this fact, however, we do not have a formal proof.

Example 1. Consider the RC circuit depicted in Fig. 2.3. If x(t) ∈ R4×1 represents
the node potentials, C1 =C2 =C3 =C4 = 1, R1 = R4 = R2 = 1, R3 = 2, the model of
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Figure 2.3: Circuit used in Example 1.

the system corresponds to (2.1) with G = I and

S =


−4 1 1 2
1 −1 0 0
1 0 −2 1
2 0 1 −3

 . (2.13)

We assume that the system is autonomous (i.e., B is not present) and the outputs
are the potentials of the first three nodes, that is

C =

 1 0 0 0
0 1 0 0
0 0 1 0

 .

Suppose that we do not known matrices G and S, but we do know matrix C, since
our output consists in the potentials of the first three nodes. Assume also that, by
using standard identification techniques (for instance subspace-based methods), we
are able to identify a state-space model in form

ż(t) = Âz(t)
y(t) = Ĉz(t) ,
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with

Â =


−10 −4 −23 4

1 −1 3 −1
3 1 7 −2
1 −1 3 −6

 ,Ĉ =

 1 0 3 −1
0 1 0 0
0 −1 1 0

 .

Then, solving Problem 1 consists in finding a coordinate transformation z = T x
and matrices G and S such that (2.4) holds. In particular, matrix S is a key piece of in-
formation since it allows to reconstruct the network structure. Note that Assumption 1
is satisfied. We use parameterization (2.6) and apply Proposition 4 to find matrices P
and G. Since we do not have any requirement on input matrix B, we have to solve the
convex Problem (2.9). Furthermore, since Â has distinct eigenvalues, by Remark 2,
D must be diagonal, so that Problem (2.9) reduces to solving (2.10), in which the
variables are the diagonal matrices D and H. As previously noted, the solution to
this problem is not unique, since, if D and H are a solution of (2.10) for any α ∈ R,
with α > 0, also αD,αH is a solution of (2.10). The solution set has form (2.11), in
particular there are two generators, so that the set of all solutions is given by

x = {v1α1,v2α2}, (2.14)

with v1 =
(

1.98 11.334 7.5 3.186 1 1 1 0
)

,

v2 =
(

0 0 0 0 0 0 0 1
)

.

All solutions are parameterized by positive parameters α1, α2. In particular, α2

is related to the fact that we can not know the capacitance of the unmeasured node.
Moreover, D depends only on α1, so that the P component of the solution T is unique
apart from an unknown scaling factor.

At this point, we compute the rotation component Q of parameterization (2.6). Let
P =

√
M,G be solutions of (2.7) and let T be defined as in (2.6). Then, substituting

T in the second and third of (2.4), we obtain the following conditions

ĈPQ
√

G =C√
GQT P−1B̂ = G−1B .

(2.15)
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These conditions can be rewritten as QZ =W , where

W =
(

PĈT P−1B̂
)
, Z =

( √
G
−1

CT
√

G
−1

B
)
. (2.16)

Note that, by the second, the third and the fouth of (2.7), ZT Z =W TW , so that Z and
W have the same rank.

In the following computations, it is convenient to assume that Z and W are full
column-rank since, in this case, their left inverses Z+ and W+ are well-defined. If
Z and W are not full column-rank, it is possible to reduce them to full column-rank
matrices by right multiplying them by a suitable matrix L, as a consequence of the
following simple algebraic property.

Proposition 5. Let n,m,r be positive natural numbers, Z,W ∈ Rn×m with ZT Z =

W TW, Q ∈ Rn×n and let L ∈ Rm×r be such that ZL is full column-rank and Im ZL =

Im Z, then the following statements are equivalent:
i) QZ =W
ii) QZL =WL.

Proof. i) ⇒ ii). Obvious.
ii) ⇒ i). By Proposition 8, being ZT Z = W TW , there exists Q̂ ∈ O(n) such that

Q̂Z = W . Since Im ZL = Im Z, there exists M ∈ Rr×m such that Z = ZLM. Then,
WLM = Q̂ZLM = Q̂Z =W . Then i) is obtained by right-multiplying ii) by M.

In the following, we will assume that Z is full column-rank. In fact, if this is not
the case, it is sufficient to pick L such that ZL is full column-rank and to redefine
Z = ZL, W =WL.

The following proposition shows that, if (2.7) holds, there always exists an or-
thonormal matrix Q that satisfies QZ =W . We can distinguish two cases. First, in the
trivial case in which rank Z = n (that is, Z is full row-rank), the solution is unique, as
shown in the following Proposition.

Proposition 6. Let P,G be a solution of (2.7), let W,Z defined as in (2.16) be such
that rank W = n. Set T = PQ

√
G. Then, T is a solution of Problem 1 if and only if

Q =WZ−1 . (2.17)
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Proof. (⇒) By assumption QZ = W has a solution, then, since Z is full rank, it is
invertible and Q =WZ−1. (⇐) Assume that Q is given by (2.17) and set T = PQ

√
G,

where P and G are a solution of (2.7). Note that (2.7) implies that ÂP2 = P2ÂT , that
is P−1ÂP = PÂT P−1, so that P−1ÂP is symmetric. Then, also matrix

GT−1ÂT = G
√

G−1QT P−1ÂPQ
√

G =
√

GQT P−1ÂPQ
√

G

is symmetric, proving the first of (2.4). Moreover, QZ =WZ−1Z =W , which implies
conditions (2.15).

If rank Z < n, the solution Q of QZ =W is not unique, since, if Q satisfies QZ =

W and Q̂ is any orthonormal matrix such that Q̂Z = Z, then also QQ̂Z = W . In fact,
the following proposition shows that the set of possible solutions Q is parameterized
by O(n− rank Z).

Proposition 7. Let P,G be a solution of (2.7), let W,Z be defined as in (2.16) with
rank Z < n and let W̄ , Z̄ be orthonormal matrices such that Im W̄ = (Im W )⊥, Im Z̄ =

(Im Z)⊥. Set T = PQ
√

G. Then, T is a solution of Problem 1 if and only if

Q =WZ++W̄ŪZ̄T , (2.18)

where Ū ∈ O(n− rank Z).

Proof. (⇒) Let P, G be a solution of (2.7) and set T = PQ
√

G. Then, Q satis-
fies (2.15) or, equivalently, QZ =W . Then, the thesis follows from Proposition 9.

(⇐) It is the same as the proof of the necessity of Proposition (6), with the differ-
ence that, in this case, QZ =WZ+Z+W̄ Q̄Z̄T Z =W , which implies conditions (2.15).

Example 1 (continued). We consider again Example 1, and we choose a particular
solution for P and G by setting α1 = α2 = 1 in (2.14). We make this choice in order to
have G= I. We apply Proposition (7) to find the rotation component Q. In this case, B
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is not present and dim(Im W )⊥ = 1. For this reason Ū ∈ O(1), since O(1) = {−1,1},
there are two possible solutions for Q, given by

Q1 =WZ++W̄ Z̄T ,Q2 =WZ+−W̄ Z̄T .

The corresponding transformation matrices T1,T2 are obtained from (2.6) and the
symmetric part S of (2.4) by relation Si = GT−1

i ÂTi, i = 1,2, that is

S1 =


−4 1 1 2
1 −1 0 0
1 0 −2 1
2 0 1 −3

 ,S2 =


−4 1 1 −2
1 −1 0 0
1 0 −2 −1
−2 0 −1 −3

 .

These are all the solutions of Problem 1 that correspond to the chosen values for
P and G. Note that only S1 is Metzler, so that it is the only solution of Problem 2,
moreover S1 = S, where S is in (2.13). Figures 2.4 and 2.5 represent the graphs
associated with matrices S1 and S2. In these and in next graph figures, red nodes
denote unmeasured outputs.
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Figure 2.4: Graph representation of S1
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Figure 2.5: Graph representation of S2

2.3 Discussion of Problems 2 and 3

Proposition 7 shows that, in the general case, Problem 1 has multiple solutions. We
introduced Problems 2 and 3 in order to find specific solutions that satisfy addi-
tional properties. Consider a solution of form (2.6) and assume that P and G are
fully known. Then, Problem 2 consists in finding an orthonormal matrix Q such that
T−1ÂT is Metzler, or equivalently, finding an orthonormal matrix Ū that satisfies the
following equation (√

G
−1

QT P−1ÂPQ
√

G
)

i, j
≥ 0, i ̸= j

Q =WZ++W̄ŪZ̄T
. (2.19)

Note that Problem (2.19) is non-convex due to the orthonormality constraint on
Ū (i.e., ŪTŪ = I). Anyway, because of Proposition 7, the dimension of Ū may be
small, so that, in some cases, solving (2.19) can still be a simple task.

Problem 3 adds the requirement of minimizing ∥S∥0, or, equivalently, minimizing
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∥T−1ÂT∥0. Since the minimization of the zero-norm is a difficult task, as commonly
done (see, for instance, [32]), one can use the 1-norm as a sparsity-promoting objec-
tive function, obtaining the following problem:

min
Ū

∥∥∥√G
−1

QT P−1ÂPQ
√

G
∥∥∥

1
such that (2.19) holds. (2.20)

We can rewrite this problem more explicitly as

min
Ū

∥∥∥√G
−1

QT P−1ÂPQ
√

G
∥∥∥

1

such that(√
G
−1

QT P−1ÂPQ
√

G
)

i, j
≥ 0, i ̸= j

Q =WZ++W̄ŪZ̄T

ŪŪT = I.

(2.21)

2.3.1 Overall algorithm for Problem 3

Leveraging Proposition 4, we can formulate the following algorithm for solving Prob-
lem 3. Here the problem data are the identified model Â, B̂, Ĉ and the required input
and output matrices B, C. The final output is given by matrices P, G and Ū , that give
transformation T by (2.6) and (2.18).

• Solve Problem (2.8) in order to find a solution P, G. Note, that, by Remark 4, in
many cases, this solution is unique up to a scaling factor. As said, if the second
or thid condition in Problem 1 is not present, Problem (2.8) is convex and can
be solved with standard solvers for this class of problems, such as GUROBI or
CPLEX, as we did in our tests. Otherwise, a nonlinear solver such as SNOPT
or IPOPT can be used.

• Solve Problem (2.21) using a nonlinear local search algorithm (we used IPOPT
in our simulations). In our tests we used different randomly generated initial
conditions Ū0 for Ū and selected the best solution.

Some remarks are in order on the choice of the initial conditions Ū0 for Ū . Note
that O(n) has two connected components given by {eSA,S ∈ Rn×n : S = −ST ,A ∈
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{I,M}}, where M is the diagonal matrix with all ones on the diagonal apart from a
term −1 on the first element and S is a skew-symmetric matrix. This comes from the
facts the set of skew-symmetric matrices is the Lie algebra of O(n) and that I and M
belong to each of the two separate connected components of O(n). Hence, we can
generate a random initial guess Ū0 for Ū by setting Ū = eSA, where S is a random
skew-symmetric matrix and A is randomly chosen between I and M.

2.3.2 Case of data affected by noise

Real input and output data are affected by noise. This causes an error in the identifica-
tion of A,B,C matrices. Because of this, Problem 1 and equations (2.8) may not have
an exact solution. To take this fact into account, Problem (2.8) may be substituted
with the following relaxed one:



min∥ĈV DV TĈT −CG−1CT∥2 +∥B̂TW T D−1WB̂−BT G−1B∥2 +∥ĈB̂−CG−1B∥2

subject to
D > 0
ΛD = DΛ

G > 0

.

(2.22)
Note that if the second or third conditions (the requirement on B or C) are not present
in (2.4), Problem (2.22) becomes a convex one. In fact if, for instance, the third con-
ditions is missing, by setting H = G−1 the objective function reduces to the convex
one ∥ĈV DV TĈT −CHCT∥2.

2.4 Examples

In this section, we consider some examples of larger dimension. We considered in-
stances of Problem 1, obtained by randomly generating some autonomous systems
in form (2.1), we call these systems the “true” systems. Since the systems are au-
tonomous, we did not consider condition T−1B̂ = G−1B in Problem 1. This simplifies
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the computation of matrices P and G of form (2.6), since we can obtain them by solv-
ing convex Problem (2.9). To generate the problem instances, we used the following
procedure. Given a number of states n, we set G = I and S =−I KI T , where I is
the incidence matrix of a randomly generated connected graph of n vertices and K is
a diagonal matrix of randomly generated conductances (with integer values). Then,
we computed a random transformation matrix T̃ and set Â = T̃−1AT̃ , Ĉ =CT̃ . Given
a number of outputs m, we considered as output matrix C ∈ Rm×n the projection ma-
trix on the first m state components. In all examples, Â is diagonalizable, with distinct
eigenvalues, and condition (2.12) is satisfied. Hence, for the generic case, P and the
first m component along the diagonal of G have only one solution, up to a positive
scaling factor. The remaining elements of diagonal matrix G are undetermined, since
they do not appear in Problem (2.10). For simplicity, we chose the scaling factor such
that the reconstructed G is the identity. We solved Problem 3 with the algorithm pre-
sented in Section 2.3.1 and computed the corresponding transformation matrix T and
the reconstructed matrix S as Ŝ = GT−1ÂT . Then, we compared matrix S of the true
system with the reconstructed one Ŝ. Note that, for any solution G and P, by Propo-
sition (7), there are multiple choices of Q that solve Problem 1. Hence, in general, S
is going to be different from Ŝ. We considered the following two cases.

2.4.1 Case 1: n = 10, m = 8

In this example, we do not measure the potential of the last 2 nodes, that is, matrix
C in (2.4) is the projection on the first 8 nodes. Generically (see Remark 4), P and
G are unique (up to a positive scaling), apart from the last two components of the
diagonal of G, that are undetermined. By Proposition (7), since dim ker C = 2, the
component Q of (2.6) has multiple solutions, parameterized by Ū ∈ O(2). The algo-
rithm in Section 2.3.1 allows finding one among such solutions. Fig. 2.6 is the graph
associated with S while Fig. 2.7 is the one associated with the reconstructed Ŝ. Note
that the two graphs are similar but not identical. That is, at the end of our procedure,
we found a reconstructed system of form (2.1) which solves Problem 2 (and, approx-
imately, Problem 3), but is different from the true system. This is unavoidable since,
by Proposition (7), there are multiple systems that solve Problem 1 and, in general,



2.5. Conclusion 37

there may be multiple solutions also of Problems 2 and 3.
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Figure 2.6: Case 1: true connections

2.4.2 Case 2: n = 12, m = 6

In this example, we measure the potential of 6 nodes out of 12. Again, Fig. 2.8 refers
to the true matrix S while Fig. 2.9 refers to the reconstructed Ŝ. In this case, Q has
multiple solutions parameterized by Ū ∈ O(6). Again, the reconstructed matrix is
different from the true one, namely, at the end of our procedure, we found one of the
multiple solutions that solve Problem 2.

2.5 Conclusion

Resistive-capacitive (RC) networks are used to model various systems in engineer-
ing, physics or biology. In this chapter, we considered in detail the structured iden-
tification Problem 1 and found its complete solution set. A key element of the pro-
posed approach is the use of the polar decomposition (2.6). In particular, we noticed



38 Chapter 2. Circuit Identification

2

3

4

8

9

10

5

5

5
2

3

3
2

2 7

2

1

5
1

6

5

3

3

5

Figure 2.7: Case 1: reconstructed connections

that matrices P and Q of this form can be found separately and that, in some cases
(see Remark 3), P corresponds to the solutions of a convex problem. Moreover, (see
Proposition (7)) all solutions for matrix Q can be parameterized by the orthonormal
matrix group. From these results, we derived an algorithm (see Section 2.3.1) for
reconstructing the network connections with partial information.

Appendix

The following is a well-known property of Gram matrices (see for instance Theo-
rem 3.1 of [33]) that we will use in the proof of Proposition 2.

Proposition 8. Let A,B ∈ Rn×m be such that AT A = BT B, then there exists Q ∈ O(n)
such that A = QB.
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Figure 2.8: Case 2: true connections

Proof of Proposition 2

(⇒) Assume that (2.4) has a solution T , S, G, then GT−1ÂT is symmetric, which
implies that GT−1ÂT = T T ÂT T−T G, which, setting M = T G−1T T , implies the first
of (2.7). The second of (2.4) implies T TĈT =CT , thus ĈT G−1T TĈT =CG−1CT , that
is the second of (2.7). Similarly, the third of (2.4) implies B̂T T−T GT−1B̂ = BT G−1B,
that is the third of (2.7). Finally, by the second and third of (2.4) CG−1B= ĈT T−1B̂=

ĈB̂.

(⇐) Assume that (2.7) has a solution M,G. Let UUT = M be the Cholesky de-
composition of M. The second, third and fourth conditions of (2.7) imply that

(
ĈU,

B̂TU−T

)(
UTĈT , U−1B̂

)
=

(
CG−1/2

BT G−1/2

)(
G−1/2CT , G−1/2B

)
.
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Figure 2.9: Case 2: reconstructed connections

Then, by Proposition 8, there exists an orthonormal matrix Q such that

(
ĈU
B̂TU−T

)
Q=(

CG−1/2

BT G−1/2

)
, that is

ĈUQ =CG−1/2

B̂TU−T Q = BT G−1/2

and, setting T =UQG1/2, it follows that ĈT =C and T−1B̂ = B. Finally, ÂM = MÂT

implies that Â=MÂT M−1 =UUT ÂTU−TU−1 and GT−1ÂT =GG−1/2QTU−1ÂUQG1/2 =

G1/2QTU−1UUT ÂTU−TU−1UQG1/2 =G1/2QTUT ÂTU−T QG−1/2G=T T ÂT T−T G.
Hence GT−1ÂT is symmetric, which proves the first of (2.4).

The following proposition is a property of orthonormal transformations.

Proposition 9. Let A,B ∈ Rn×m with AT A = BT B and rank A = m < n, let Ā, B̄ ∈
Rn×(n−m) be such that ĀT Ā = I, B̄T B̄ = I, B̄T B = 0, ĀT A = 0, and let Q ∈ Rn×n. Let
R = {Q ∈ O(n) : QA = B} and S = {BA++ B̄UĀT ,U ∈ O(n−m)}, then R = S .
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Proof. (Proof that R ⊂ S .)
Let Q ∈ R, then QA = B and BT QĀ = (QA)T QĀ = AT Ā = 0. Hence, QĀ is or-

thogonal to B and the image of QĀ belongs to the image of B̄. This implies that there
exists a matrix U such that QĀ = B̄U . Moreover, ĀT QT QĀ = I = UT B̄T B̄U so that

B̄U ∈ O(n−m). Then, Q
(

A Ā
)
=
(

B B̄U
)

. Note that

(
A+

ĀT

)(
A Ā

)
=

I, so that

(
A+

ĀT

)
=
(

A Ā
)−1

and Q =
(

B B̄U
)( A+

ĀT

)
= BA++ B̄UĀT .

(Proof that S ⊂ R.)
Let U ∈ O(n−m), note that(
BT

UT B̄T

)(
B B̄U

)
=

(
BT B 0

0 I

)
=

(
AT A 0

0 I

)
=

(
AT

ĀT

)(
A Ā

)
,

then, by Proposition 8, there exists Q ∈ O(n) such that
(

B B̄U
)
= Q

(
A Ā

)
,

so that QA = B. Finally, since

(
A+

ĀT

)
=
(

A Ā
)−1

, it follows that

Q =
(

B B̄U
)( A+

ĀT

)
= BA++ B̄UĀT .





Chapter 3

Time-aware Data Clustering
Approach

In industrial pharmaceutical plants, the data collected by sensors used to monitor the
manufacturing processes are typically recorded for years [34]. In particular, in sterile
plants, Cleaning In Place (CIP) and Leak Test (LT) processes are almost always fully
automated. More generally, the history of the process data of an industrial plant can
be used to monitor the behaviour of the plant components [35, 36, 37]. The most
commonly used strategies aim at training anomaly classifiers and building predictive
maintenance algorithms based on those data [38, 39]. The efficiency of the developed
models is strongly related to the collected data and the type of components to be
monitored [40].

Predictive maintenance aims at predicting the degradation of a machine, typically
associated with anomalies of its components. However, it is very difficult to predict
imminent failures with high accuracy: in-depth knowledge of the specific system and
its characteristics is often necessary in order to build an accurate prediction model
[41]. However, in many real cases the process data lack fundamental information to
accurately capture the deterioration level of a specific component. In particular, the
collected data typically provide information only on a large set of components. Thor-
ough knowledge of system physics may not be sufficient to understand the cause of a



44 Chapter 3. Time-aware Data Clustering Approach

change in the observed sensor signals [42]. In fact, it may be easy to identify a change
in the state of the overall machine, but it is often difficult to attribute the cause of this
change to a particular component of the machine.

In this chapter, we develop a semi-automatic approach, which allows to evaluate a
Health Indicator (HI) for multiple machine components of an industrial freeze-dryer.
We focus our analysis on two different freeze-drying processes, namely, the CIP and
the LT. We show that the DBSCAN clustering method is useful to pre-process the
collected data in order to identify anomalies, thus leading to a robust classification
system. The used dataset consist, respectively, of (i) the water flow rate signal of a
spray used in the CIP and (ii) the pressure signal recorded during the LT. Both signals
are extracted from the historical data of the same machine.

This chapter is structured as follows. In Section 3.1, we present the two freeze-
drying analysed processes. In Section 3.2, we develop a semi-automatic method to
analyze the water flow and the pressure signal in order to build a HI. In Section 3.3
and in Section 3.4 we present the obtained results for the CIP and the LT, respectively.
In Section 3.5, we draw our conclusions.

3.1 System Background

Freeze-drying or lyophilization, is a process largely used in the pharmaceutical field,
since its operational conditions guarantee that the final product, despite the shape
transformation, keeps all its initial qualities and preserves them over time. Industrial
freeze-drying are designed to reach and maintain specific temperature and pressure
conditions needed for the process to be successful. In addition to the lyophilization
cycle, other automated processes are run in the freeze-dryer with the aim of cleaning,
sterilizing or testing its integrity. Among these additional processes, CIP and LT are
of interest in this work.
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Cleaning In Place

During the CIP process the freeze-dryer is cleaned with purified water: chamber
walls, shelves, condenser walls, and condenser plates are sprayed by nozzles. The
nozzle that sprays hot water in the condenser is subject to strong mechanical and
thermal stresses—in fact, the temperature difference between the water introduced
into the condenser and the steel of the condenser can reach 150°K. This stress may
cause leaks in the spray tube, which would lead to incorrect machine washing: this
is a critical issue for a sterile machine. It is thus necessary to constantly monitor the
status of the spray to keep the machine operating correctly. The components of the
studied system are shown in Fig. 3.1. During the CIP process, valve 1 remains open
while valve 2 opens and closes three times in a fixed time interval (equal to 50 sec).
During this period, the water pushed by the pump flows to the nozzles and enters
into the machine. The Water Flow Rate Sensor (WFRS), used to monitor the process,
measures the water flow rate (dimension:

[
m3/h

]
): the WFRS signal is used to calcu-

late the total amount of water that has been sprayed in the freeze-dryer. The sampling
rate of the WFRS is 1 sample/sec.

The only process signal that can be used to monitor the status of the sprays is
the WFRS signal associated with the water flowing into the machine. During the
CIP, different sprays are activated in disjoint time intervals, so that the water flow
signal is representative of the single spray that pours water into the freeze dryer at the
corresponding time instant.

The water flow rate poured from a spray depends on two factors:

• the structural conditions of the spray, which depend on the deterioration of its
steel components;

• the performance of the pump that pushes water into the nozzles, which can
vary its thrust force depending on the state of health of the pump.

Even though the variations in the WFRS signal are due to both factors mentioned
above, the component most prone to anomalies is the condenser spray, because of
thermal stress.
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Figure 3.1: P&ID of the water supply for the spray.

This study is based on the historical data of the CIP process carried out from
January 2015 to January 2020 through an industrial freeze-dryer of the production
plant of GSK in San Polo di Torrile (Parma, Italy).

Leak Test

The LT is necessary to measure the sealing of the freeze-dryer. In fact, because of
strong thermal variations, microscopical cracks can appear, especially in tubes and
support structures. These cracks may cause a leak, i.e., an influx of gas into the drying
chamber.

Figure 3.2: P&ID of LT main components.

The process signals that can be used to monitor the status of the freeze-dryer
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Figure 3.3: LT pressure signals.

sealing are the pressure signals. In the machine there are many pressure sensors,
those that serve to control the leak test process are inside the main chamber of the
freeze dryer, this study focuses instead on the pressure sensor that is inside the tube
that connects the freeze dryer with the vacuum pump. The signals related to this
sensor are represented in Fig. 3.3. Data are extracted by the pressure sensor shown in
Fig. 3.2 together with the considered section of the plant, which includes a vacuum
pump and four vacuum valves. We underline that, in this case, the pressure increase
measured during the LT cannot be associated with a single component, but it depends
on the health of multiple components which all contribute to lyophilizer sealing.

The analysed historical data refer to the LT carried out from January 2016 to
January 2020 on the freeze-dryer mentioned for the CIP at the end of Subsection 3.1.

3.2 The Proposed Data Analysis Approach

The objective of this chapter is to describe a general strategy, which allows to obtain
a time-series data segmentation expedient to classify the machine component’s op-
erational conditions, so that one can predict the evolution of the health status of the



48 Chapter 3. Time-aware Data Clustering Approach

analysed component over time. In particular, we will show that by applying clustering
methods it is possible to identify cycles with anomalous behavior, which may be due
to a process performed under non-standard conditions or a machine failure. In order
to reach this goal, the proposed strategy uses a standard feature extraction method
combined with the clustering of system states over time: in other words, we consider
time-aware state clustering. As will be shown in Section 3.3 and in Section 3.4, DB-
SCAN will turn out to be the most effective time series clustering method, using the
process cycle number as a fundamental feature. In the remainder of this section we
sketch the main “ingredients" of our approach.

3.2.1 Feature Extraction and Monotonicity

The HI is a one-dimensional indicator that quantifies the “healthiness” of the system
under consideration. Standard strategies for the implementation of this indicator are
known in the literature [43]. However, its applicability and accuracy depend heavily
on the features computed on the signals obtained from the sensors monitoring the
system. There is no a priori rule for feature extraction, as this depends on the specific
situation of interest and requires a thorough knowledge of the underlying process in
order to focus on the most important aspects of available sensor signals.

Smoothing

Since sensor signals are often noisy, “smoothing” them is expedient to better high-
light the underlying trend. In order to do this, a causal moving median filter with a
window of 6 elements is applied to the extracted features, obtaining the following
smoothed signal (associated with the most recent time epoch of the window):

fsmooth(i) = median[ f (i), f (i−1), ..., f (i−5)] (3.1)

where f (i) is the value of feature f in the i-th cycle, i = 6, ...,N, where N is the num-
ber of all available cycles. Note that, for i < 6, fsmooth(i) = median[ f (i), ..., f (1)].
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Once the features are extracted and smoothed, their “potential” to predict the
degradation of one system component must be evaluated. This “potential” is quanti-
fied in terms of monotonicity, which is given by the following formula:

monotonicity( f ,N) =

∣∣∣∣∣N−1

∑
i=1

sgn [ f (i+1)− f (i)]
N −1

∣∣∣∣∣ (3.2)

where f (i) is the value of feature f in the i-th cycle [44]. By definition, the mono-
tonicity is between 0 and 1 and provides a measure of how well a feature describes
the system evolution.

3.2.2 DBSCAN

As anticipated, our strategy to obtain a time-series data segmentation for the classifi-
cation of the machine operational conditions revolve around the use of the DBSCAN.
DBSCAN is a density-based clustering method, which requires two parameters: (i)
the minimum amount of elements per cluster, denoted as minPts, and (ii) the distance
ε that specifies the radius of a neighborhood of a given point in the cluster [44, 45].

The main advantages of this method are the following:

1. it is not necessary to know the number of clusters in advance;

2. it is possible to identify the outliers.

3.3 CIP

With the purpose of computing the HI and highlighting the condenser spray anoma-
lies, we choose to extract the following three intuitive temporal features from the
WFRS signal. An illustrative representation of such features is shown in Fig. 3.4.

• Feature 1 is the time interval between the instant at which the water flow rate
overcomes the threshold of 0.3 m3/h and the time instant corresponding to its
return below this threshold.
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Figure 3.4: WFRS Signal and time intervals associated with possible features.

• Feature 2 measures the time taken by the system to reach the maximum capac-
ity: it corresponds to the time interval between the instant at which the water
flow rate overcomes 0.3 m3/h and the instant at which it reaches the value
13 m3/h.

• Feature 3 corresponds to the average value of the WFRS signal during the
“steady-state,” i.e., the time interval during which the water flow rate is maxi-
mum. In order to extract this feature, we identify the MidPoint (MP) between
the instant at which the water flow rate exceeds 12 m3/h and the instant at
which the water flow rate returns below this threshold. Then, we calculate the
average value of the WFRS signal in an interval equal to 40 sec centered at the
MP.

The monotonicity values of the three temporal features are shown in Table 3.1.
It can be noted that the only sufficiently monotonous feature is Feature 3. For this
reason, we decide to extract other (common) statistical features, listed in Table 3.2,
from the WFRS signal. In this table, {v(t)}n

t=1 corresponds to the WFRS signal in the
(n-sample) interval of Feature 3.
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Table 3.1: Three Features Monotoniicty

Feature 1 Feature 2 Feature 3
Monotonicity 0.01 0.01 0.56
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Figure 3.5: Monotonicity of all the features.

We can calculate the values of the statistical features outlined above for each CIP
cycle, thus obtaining these features as functions of time (an epoch corresponds to a
CIP cycle). In this case as well, we apply smoothing according to Equation (3.1).

In Fig. 3.5, the monotonicity of the extracted statistical features (all statistical
features of WFRS, Feature 1 and Feature 2) is shown. It can be observed that, while
almost all values are below 0.2, the only three features that have good monotonicity
are “Mean,” “RMS,” and “Square Factor.” Since these three features have a correla-
tion of 99%, one of them is representative of the other two. We will thus use Feature 3
(the “Mean”) as the only feature of the WFRS signal relevant for our analysis and we
will refer to it as “FlowMean” feature. It can be expected that FlowMean, properly
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Figure 3.6: FlowMean, as a function of the cycle numbers smoothed with a causal
moving median with a six steps window.

smoothed with the moving median filter in Equation (3.1), will be monotonically in-
creasing. This is confirmed by the results in Fig. 3.6, where the value of FlowMean is
shown as a function of the cycle number. Our goal is to determine a HI which is repre-
sentative of the “healthiness” of the spray watering system. Therefore, we would like
to obtain a HI monotonically related to the health of the freeze-dryer. In particular, a
sudden variation of the feature corresponds to a system modification carried out by
the maintenance technicians. Unfortunately, the HI shown in Fig. 3.6 does not have
the desired behaviour, as its values vary significantly. In this case, it is not possible
to identify a clear trend representing the slow degradation of the system. In order to
overcome this limitation, we introduce a time-aware clustering approach, based on
the use of DBSCAN, to properly pre-process FlowMean.

3.3.1 DBSCAN-based Data Clustering

DBSCAN is applied to two features:

• the average value of the WFRS signal (FlowMean);
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Figure 3.7: Clusters found by the DBSCAN (MinPts = 5, ε = 17). CIP process.

• the cycle number of the CIP process (denoted as CycleNumber).

In order to make these two features comparable to each other, we normalize them.
In this specific case, we first normalize FlowMean and, then, multiply it by a fac-
tor of 100. This “heuristic” normalization makes FlowMean have a size comparable
to that of Cycle Number. The chosen (MinPts, ε) configuration for the DBSCAN is
MinPts = 5 and ε = 17. In Fig. 3.7, the outcome of DBSCAN based clustering of
the historical data is shown. It is important to note that the borders between adja-
cent clusters correspond to modifications carried out in the system (e.g., maintenance
acts). Nevertheless, a “strange” behaviour is shown by cluster 3, as it overlaps tem-
porally with cluster 2, but the two clusters have clear distinct FlowMean values. The
physical cause of this anomaly is not clear, but it is remarkable that this anomalous
behaviour is detected by an automatic method. It can be noted that the DBSCAN
also manages to identify, in addition to the anomalous cluster, all the isolated points,
classifying them as outliers.

Cleaning data from outliers and detecting anomalies are fundamental for the con-
struction of a robust HI. In Fig. 3.8, the HI of the condenser spray, obtained after dis-
carding outliers and anomalous clusters through the DBSCAN algorithm, is shown.
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Figure 3.8: Health Indicator of the spray

The vertical green lines are associated with maintenance acts carried out on the pump.
In particular, the first two maintenances are the events delimiting cluster 4 in Fig. 3.7.
The state of the system is altered with the first maintenance and, then, returns to the
starting state with the second. These two maintenance acts are very close in time and
change the status of the pump, not of the spray. Therefore, in order to describe the
spray deterioration one could eliminate cluster 4 to build a more robust HI. The red
vertical line of Fig. 3.8 represents the only maintenance carried out on the spray—in
particular, a leak was identified and welded. It can be seen that the indicator grows
linearly from the initial data instant to the welding date (red vertical line at cycle
88): after this event, the slope of the straight line that interpolates the values of the
HI is approximately equal to 0, which indicates that the leak has been eliminated
(i.e., the machine state remains approximately the same). The green line at cycle 104
refers to a process modification intervention on the water distribution system, which
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intentionally leads to an increase in water flow rate from that cycle onward.

3.3.2 DBSCAN versus K-Means

In order to justify the use of the DBSCAN we compare its performance with that of
another relevant clustering algorithm, namely K-Means. K-Means partions a set of n
observations into k clusters, so that the intercluster similarity is minimized and the
intracluster similarity is maximized. Similarity is expressed as the mean value of the
observations in a cluster [46]. Unlike DBSCAN, the number of clusters k must be
set a priori. This is critical for the application at hand, especially when the amount
of data to be clustered keeps on increasing with real-time data acquisition and the
number of clusters is expected to increase over time.

In Fig. 3.9, the clusters identified by K-Means are shown. It can be observed that
for k = 7, i.e., for a value of k equal to the number of clusters found by DBSCAN in
Fig. 3.7, the detected clusters differ from the ones predicted by DBSCAN. In partic-
ular, it can be noticed that cluster 4 in Fig. 3.7 is not correctly detected by K-Means;
rather, it is included in cluster 7 of Fig. 3.7 with many other cycles belonging to the
two adjacent states. This highlights a major problem of k-means: if the clusters rep-
resenting the machine state have very different sizes (in terms of number of cycles),
k-means is not able to separate the data correctly.

Moreover, unlike DBSCAN K-Means cannot automatically identify the outliers.
However, cluster-based or distance-based methods, which allow to remove the out-
liers and can be used together with K-Means, have been proposed [47]. Nevertheless,
using these methods requires to set additional parameters, such as the cardinality of
the k-nearest neighbors set NP. Therefore, it can be concluded that, for our prob-
lem, the most efficient clustering approach is DBSCAN, since it can simultaneously
identify the right machine states and the outliers, without any further action.

3.4 Leak Test

The same semi-automatic HI computation strategy applied to the CIP process and
described in Section 3.2 can be applied also to the analysis of LT. In this case as
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Figure 3.9: Clusters found by the K-Means (k=7). CIP process.

well, the only feature taken into account is the mean value of the pressure signal. In
fact, in Section 3.3 it has been observed that the mean value (of the WFRS signal)
was a feature sufficient to describe the whole process. We will refer to this feature as
“PressureMean." After smoothing by means of the moving median filter modelled in
Equation (3.1), the monotonicity can be computed and turns out to be 0.5 (the results
are not shown here for the sake of conciseness). This monotonicity value justifies the
use of the PressureMean feature for anomaly detection.

As happened for the FlowMean feature in Fig. 3.6, in this case as well the prop-
erly smoothed PressureMean is not an effective HI. In fact, as shown in Fig. 3.10,
there are significant oscillations that prevent a clear identification of the system be-
haviour.
At this point, DBSCAN can be applied to the two following relevant features:

• the average pressure (PressureMean);

• the cycle number of the Leak Test (CycleNumber).

In order to make these two features comparable to each other, the same ”heuristic”
normalization method previously adopted for FlowMean is applied to PressureMean.
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Figure 3.10: PressureMean, as a function of the cycle numbers smoothed with a
causal moving median with a six steps window.

In the LT case, a good machine state identification is obtained setting MinPts = 5 and
ε = 17: the corresponding cluster data are shown in Fig. 3.11. The chosen (MinPts,
ε) configuration is the same which allows to obtain, for the CIP, the data clusters
shown in Fig. 3.7. It can be noticed that the clusters’ separations correspond to repair
activities carried out on the analysed freeze-dryer and, consequently, to changes in
the machine operational conditions. The outliers can be detected and removed in
order to compute a robust HI, which is shown in Fig. 3.12. It can be observed that
three time intervals, associated with the evolution of the state of the machine, can be
clearly identified: during each of these interval the HI remains relatively stable. In
correspondence to the separation instants between adjacent intervals, changes were
made to the machine was subject to changes which led to a degradation (higher HI).

It is remarkable that the same DBSCAN-based semiautomatic method can be
used to describe the evolution of the state of two different components, starting from
two signals of different nature, namely, water flow rate and pressure. But for the dif-
ferent natures of the used sensors, the used metholodogy (including their parametric
values) was the same.
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Figure 3.11: Clusters found by the DBSCAN (MinPts= 5,ε = 17). Leak Test process.
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Figure 3.12: Health Indicator which describes the deterioration of the multiple com-
ponents contribute to the sealing of the machine.

3.5 Conclusion

In this chapter, we have proposed a time-aware clustering approach to the derivation
of an HI of an industrial pharmaceutical machine (namely, a freeze-dryer), with refer-
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ence to two different signals acquired during two different automated processes. Our
results show that, on the basis of a time-aware DBSCAN-based clustering, we can
obtain a temporal data “segmentation" into clusters which characterize different op-
erational conditions of the analyzed machine. A comparison with another clustering
method has been carried out, highlighting the validity of our approach. By combin-
ing the proposed clustering approach with knowledge of the maintenance acts, it is
possible to identify outliers and distinguish anomalous clusters from those useful to
describe the degradation of the monitored components.
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Table 3.2: Time Domain Statistical Features of a time-discrete signal {v(t)}n
t=1. The

mean of the WFRS signal is Feature 3.

Feature Math expression

Mean µ =
1
n

n

∑
t=1

v(t)

Standard Deviation (Std) σ =

√
1
n

n

∑
t=1

(v(t)−µ)2

Skewness

1
n

∑
n
t=1(v(t)−µ)3

σ3

Kurtosis
1
n ∑

n
t=1(v(t)−µ)4

σ4

Peak2Peak max{v(t), t = 1...n}−min{v(t), t = 1...n}

Root Mean Square (RMS)

√
1
n

n

∑
t=1

v2(t)

Crest Factor

max v(t)
t = 1...n
RMS

Shape Factor
RMS

1
n ∑

n
t=1 |v(t)|

Impulse Factor

max v(t)
t = 1...n

1
n ∑

n
t=1 |v(t)|

Margin Factor

max v(t)
t = 1...n(

1
n

∑
n
t=1 |v(t)|

)2

Squared Factor
n

∑
t=1

v2(t)



Chapter 4

Leak Detection and Diagnosis

Leaks in lyophilizers can be classified in two groups: external and internal. External
leaks are due to openings of the lyophilization chamber to the external environment.
They can be due to the deterioration of the chamber isolation valves or to cracks in the
tubes that carry the fluid used for thermal regulation. Internal leaks are due to cracks
in hollow components located inside the chamber, such as support structures. There
is a fundamental difference between the two types of leaks. External leaks contami-
nate the chamber since they are associated with the non-sterile external environment.
Instead, internal leaks are not contaminating, since they are associated with gas flows
coming from the interior of the chamber sterile environment.

Because of this difference, it is important to separate external and internal leak
contributions. This is often difficult, in fact, citing [48], “in most cases both phenom-
ena will occur simultaneously so that separating the two causes is often difficult if not
impossible.” As will be shown by the mathematical model presented in Section 4.1,
flows associated with internal and external leaks vary differently in time. In fact, ex-
ternal leaks are constant, while internal leaks decrease exponentially. However, their
correct detection and separation is difficult for the following reasons.

• Internal leaks originating from very small cracks are almost constant in time
and, hence, indistinguishable from external ones.

• Leaks are estimated from special low pressure sensors. The measured signals
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are often irregular and affected by noise and artifacts.

In this chapter, we address the problem of identifying and separating internal and
external leaks, using the lyophilization pressure signals acquired in multiple leak de-
tection tests, spanning various months of operation. A key element of the proposed
method is the use of multiple leak detection tests. This allows to identify more pre-
cisely the model parameters and to estimate the time evolution of internal and external
leaks.

Chapter outline. In Section 4.2, we propose an optimization-based method for
the identification of the model parameters from a sequence of leak detection cycles.
In Section 4.3, we present a method for automatically identifying new leaks. In Sec-
tion 4.4, we present experimental results obtained from a real data set provided by
GlaxoSmithKline’s production plant in San Polo di Torrile (Parma, Italy). Finally,
Seciton 4.5 concluded the chapter.

Statement of contribution. The problem of leak identification in lyophilizers has
not received much attention in the literature. Indeed, to the best of our knowledge, this
is the first work that addresses this problem by using data acquired from multiple leak
detection cycles. The main novelties of this chapter can be summarized as follows:

• The development of the simplified model (4.5), that describes internal and ex-
ternal leaks.

• The combined use of multiple leak tests, obtained in several months of opera-
tion. This allows to identify model parameters more accurately. In fact, pres-
sure signals used for leak detection are noisy and subject to artifacts, and the
data obtained from a single test are not sufficient for a precise model identi-
fication. Moreover, the use of multiple cycles allows finding trends in model
parameters and detecting new leaks.

Note that we do not claim that the used regularization techniques (which will
be described by equation (4.10)) is new, since similar methods are used in Magnetic
Resonance Imaging (MRI). In fact, MRI problems are described by a mathematical
model which is equivalent to the one used to describe leaks (which will be modeled
with equation (4.5)).
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Notation. Given a matrix A=(ai j)∈Rn×m, we denote by ∥A∥1,1 =∑
n
i=1 ∑

m
j=1 |ai j|

its entrywise 1-norm. Given matrices A=(ai j)∈Rn×m and B∈Rp×q, their Kronecker

product is A⊗B =


a11B · · · a1mB

...
. . .

...
an1B · · · anmB

 ∈ R(np)×(mq).

4.1 Leak Modeling

4.1.1 A Simplified Leak Model

In this subsection, we present a simplified model for the lyophilization chamber pres-
sure p during a leak test. In the machine there are many pressure sensors, those that
serve to control the leak test process are inside the main chamber of the freeze dryer,
this study focuses instead on the pressure sensor that is inside the freeze-dryer main
chamber. The signals related to this sensor are represented in Fig. 4.1. As depicted in

Figure 4.1: Simplified P&ID of LT components involved.

Fig. 4.2, we assume that the lyophilizer is modelled as a closed chamber containing
an ideal gas at low pressure. During evacuation and leak test preparation, a vacuum
pump extracts gas from the chamber. The pump is stopped during the leak test phase
and, in the case of perfect sealing, the chamber pressure remains constant. However,
the internal pressure may increase over time due to leaks.
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Figure 4.2: Lyophilization chamber model, including k containers that originate the
internal leaks.

In our model, we separate internal and external leaks. External leaks are mod-
elled as an aggregate inflow qe from the external environment. Internal leaks are
modelled as k separate inflows q1, . . . ,qk from k internal containers, embedded in
the lyophilization chamber and connected to this by small orifices, corresponding to
cracks. We consider only one aggregate external leak, since, as we will see below,
external leaks are constant over time, so that their contributions can be represented
by a single term. On the other hand, internal leaks decrease, over time, with different
rates (depending on the embedded containers’ sizes and on the cracks areas) and must
be considered separately.

The chamber gas consists of a mixture of nitrogen (N2), that fills the chamber
before the beginning of the leak test, and unwanted atmospheric air, due to external
leaks. From the ideal gas equation, the chamber pressure p(t) satisfies:

p(t)V = [nN(t)+nA(t)]RT (4.1)

where: V is the chamber volume (dimension: [l]), R (dimension: [J/mol ·K])is the
ideal gas constant; T is the chamber temperature (dimension: [K]), assumed to be
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constant during leak detection (this is justified by the fact that the system is kept
at thermal equilibrium). Finally, nN(t) and nA(t) are the numbers of nitrogen and
air moles in the chamber at time t. We denote by qi(t) the inflow corresponding
to internal leak i at time t. Hence, nN(t),nA(t) satisfy the following mass balance
equations:

MAṅA(t) = qe(t)

MN ṅN(t) =
n

∑
i=1

qi(t)
(4.2)

where MN ,MA are nitrogen and air molar masses (dimension: [Kg/mol]), and qe(t) is
the external inflow, at time t.

Since external air pressure is much higher than chamber pressure, we can assume
that the external gas flow is choked, so that it is computed by (3.20) of [49] as

qe =
ApE√

RTe
F(γ)

where: F(γ)=
√

γ

(
1+ γ−1

2

)− γ+1
2(γ−1) ; pE is the external air pressure (dimension: [mbar]);

Te is the external air temperature (dimension: [K]), γ is the gas heat capacity ratio;
and A is the fissure area (dimension: [m2]). We assume that external air pressure and
temperature are constant (air temperature is usually regulated), so that external air
flow can be assumed to be proportional to the fissure area A, which represents the
sum of all areas of external leakage. We assume that A is constant during each leak
detection cycle, but may vary among different cycles. We also assume that the k flows
corresponding to the internal leaks are choked. The internal flow originated from a
container is choked if its pressure is at least 1.9 times the chamber pressure (see for
instance Table 3.2 of [49]). Since the chamber is kept at a very low pressure dur-
ing leak test preparation and Leak Test (LT) phases, and the volume of the chamber
is much higher than the volumes of the embedded containers, a non-choked flow
from a container to the chamber would be negligible. Therefore, we only consider
choked flows. Note that this assumption greatly simplifies the model, since choked
flows depend only on upstream pressure (in our case, the pressure of the k contain-
ers). Furthermore, we assume that the temperature of each container is constant: this
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is justified by the fact that, during LT preparation and LT phases, gas flows are very
small, so that the system can be considered at thermal equilibrium at all times.

Because of the above assumptions, we model the outflows due to internal leaks
as

qi(t) =
Ai pi(t)√

RTi
F(γ) i = 1, ...,k

where: pi is the pressure in the i-th container (dimension: [mbar]); Ai is the corre-
sponding orifice area (dimension: [m2]) i.e., the size of the associated crack; and Ti

is the air temperature inside the container (dimension: [K]). According to the ideal
gas law, pi(t)Vi = ni(t)RTi, where ni is the number of nitrogen moles inside the i-th
container and Vi is its volume. Then,

ṅi(t) =−qi(t)
MN

,

and

ṗi(t) =−qi(t)RTi

ViMN
=−pi(t)

Ai
√

RTi

ViMN
F(γ)

so that, setting

τ
−1
i =

Ai
√

RTi

ViMN
F(γ),

we obtain

qi(t) =−cie
− t

τi ,

where ci ∈ R is a positive constant, that represents the flow from the i-th internal
container at t = 0.

Hence, according to (4.1) and (4.2), when the void pump is not activated, the
chamber pressure obeys the following equation:

ṗ(t) =
qeRT
MAV

+
k

∑
i=1

ciRT
MNV

e−
t
τi (4.3)

which can be rewritten, more concisely, as

ṗ(t) = l +
k

∑
i=1

1
τi

aie
− t

τi (4.4)
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with proper definitions of l and {ai}k
i=1. The factor {τi}k

i=1 guarantees the normaliza-
tion condition ∫ +∞

0

1
τi

e−
t
τi dt = 1, ∀τi.

In this way, in equation (4.4), ai represents the overall pressure increase due to the i-th
internal leak, over an infinite time horizon. In Fig. 4.3, the increments of the chamber
pressure, due to external leaks and to one internal leak, are directly compared. Since
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Figure 4.3: Comparison of the pressure increment in the chamber caused by external
leaks and by an internal leak.

internal leaks decrease exponentially, they are more relevant in the LT preparation
phase than in the LT phase.

Note that fitting model (4.4) to a measured pressure signal p corresponds to de-
composing p in exponential components: this is a recurring problem in the literature
(see, for instance, [50]).

Measuring chamber pressure p is problematic for a number of reasons. First,
since the chamber pressure is very low, a precise measurement is difficult to achieve.
The pressure signal is affected by large noise and exhibits a significant offset that
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drifts with time. For this reason, the employed low pressure sensors need frequent re-
calibrations. Moreover, the pressure signal often presents artifacts, such as the spikes
reported in Fig. 4.4, of unclear origin, that need be removed from the data used for
identification.
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Figure 4.4: A typical raw chamber pressure signal. The black vertical line separates
the LT preparation phase from the LT phase. The signal is noisy and a spike is present
during the LT phase.

Roughly speaking, the main problem that we consider is the following one. the
problem that we consider is the following one. Given the chamber pressure signals
obtained from various successive leak tests, identify the evolution over time of the
parameters of model (4.4), predicting possible future failures before the plant needs
be stopped for repairs.

4.1.2 Spectral Decomposition of Leaks

The identification of parameters l and {ai}k
i=1 in (4.4) presents two main challenges:

(i) we do not know the number N of internal leaks; (ii) the model depends non-



4.2. Parameter Identification 69

linearly on parameters {τi}k
i=1 . To overcome those challenges, we consider the fol-

lowing alternative model:

ṗ(t) = l +
n

∑
i=1

1
τi

aie
− t

τi , (4.5)

where: n is a preassigned number of components; and τ1, . . . ,τn are preassigned time
constants (dimension: [s]. We choose a sufficiently large value of n and we set the
values of {τi}n

i=1 so that they encompass all time-constants that are relevant to our
identification problem (typically between 102 s and 105 s). The choice of n is taken
on the basis of the application context: if n is too small, there is not a sufficient
granularity to distinguish the different leaks; on the contrary, if n is very large, the
computational time increases considerably due to the many variables introduced into
the problem.

Note that model (4.5) represents a spectral decomposition of ṗ, since it describes
ṗ as the sum of a constant term l and various exponential curves, with different time
constants. Mathematically, the problem of finding l and {ai} from (4.5) can also be
considered a discrete inverse Laplace transform problem (see [51], [52] for a more
detailed discussion).

4.2 Parameter Identification

Let {t1, . . . , tr} be the times corresponding to the r chamber pressure samples. We
denote by ṗ(ti) a numerical approximation of the pressure derivative at time ti. We
simply use Euler’s forward approximation ṗ(ti) = p(ti+1)− p(ti)/ti+1 − ti, also other
finite difference approximations could be used. On a single LT, we can identify the
parameters in model (4.5) by solving the following optimization problem:

min
l,ai

∑
r
j=1 [ṗ(t j)− l −∑

n
i=1 ai fi(t j)]

2

subject to ai ≥ 0 i = 1, . . . ,n
l ≥ 0

(4.6)

with fi(t) = e−
t
τi /τi (t ≥ 0). As mentioned above, the main advantage of model (4.5),

with respect to (4.4), is that the parameters {τi} are preassigned and so the model is
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linear with respect to the remaining parameters l,a1, . . . ,an. As a consequence, Prob-
lem (4.6) is a linear programming one and can be solved at low computational cost.
However, due to its large number of variables, Problem (4.6) can be ill-conditioned.
Later, we will return to this point.

We do not focus on a single LT, but on a sequence of them, in order to be able
to capture trends in the evolution of internal and external leaks and to detect possible
future failures. We denote by lq the external leak of cycle q and by ai,q the value of ai

for cycle q. In this way, we can reformulate Problem (4.6) as follows:

min
lq,ai,q

∑
m
q=1 ∑

r
j=1

∣∣ṗq(t j)− lq −∑
n
i=1 ai,q fi(t j)

∣∣
subject to ai,q ≥ 0 i = 1, . . . ,n; q = 1, . . . ,m

lq ≥ 0 q = 1, . . . ,m .

(4.7)

where m is the total number of processes. In the objective function, we have replaced
the squared 2-norm by the 1-norm, that is more robust with respect to outliers. Since
Problem (4.7) is still a linear programming one, with a larger set of variables with
respect to (4.6), it is convenient to rewrite it in the following matrix form:

min
A,L

∥Ṗ−1⊗L−FA∥1,1

subject to A ≥ 0, L ≥ 0
(4.8)

where: Ṗ ∈ Rr×m; (Ṗj,q) = ṗq(t j); 1 = [1, . . . ,1]T ∈ Rr; L = [l1, . . . , lm] ∈ R1×m; F ∈
Rr×n; (Fji) = fi(t j); A ∈ Rn×m; (Ai,q) = ai,q; and ∥ ·∥1,1 is the elementwise matrix
1-norm. The inequalities in (4.8) are intended component-wise.

Remark 5. A problem mathematically similar to (4.7) is addressed in the literature
in the context of inversion of Nuclear Magnetic Resonance (NMR) data (see for in-
stance [53] or [54]).

In our identification procedure, we consider only sampling times ti in which the
void pump is switched off. Admissible sampling times belong to the complete LT
phase, but also to those intervals of LT preparation phase in which the void pump
is not active. For instance, in Fig. 4.5: the blue line represents the chamber pressure
signal in LT preparation and LT phases; orange lines correspond to the samples used
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for identification. As anticipated above, we exclude the samples in which the pump
is active and those corresponding to pressure spikes (a phenomenon of unclear origin
that is not described by model (4.4)). The LT preparation phase is very important for
a correct identification of internal leaks, since the flows due to internal leakages are
stronger (and more informative) than in the later LT phase, because of the exponential
decay. A method that can be used to find samples with positive derivative is described,
for example, in [55].
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Figure 4.5: A raw chamber pressure signal. The orange part of the curve corresponds
to the samples used for identification.

4.2.1 Regularization Techniques

In general, Problem (4.7) is ill-conditioned, due to the large number of variables
(namely, m(n+ 1)) and the fact that functions fi(t), f j(t) are similar if τi and τ j are
close. This problem is well-known in the literature on NMR inversion (a problem
that, as said, is mathematically analogous to (4.7)). For a more detailed discussion,
see for instance [51] or [56]. As we will see later, this problem can be solved by regu-
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larization techniques. Furthermore, we would like to find a solution of (4.7) in which
A is a sparse matrix. In fact, it is reasonable to assume that only a few closed contain-
ers contribute to internal leaks. A possible solution would be to limit the number of
non-zero elements of each column of A: this corresponds to a bound on the so-called
zero norm of the columns of A. However, it is well-known that this is computationally
not convenient, since the resulting optimization problem would be an NP-hard one.
As typically done, we add to the cost function in (4.7) a sparsity-promoting penalty
term proportional to the 1-norm of A, obtaining the following problem:

min
A,L

∥Ṗ−1⊗L−FA∥1,1 +λ1∥A∥1,1

subject to A ≥ 0, L ≥ 0
(4.9)

where λ1 ≥ 0 is a regularization real parameter.

In Fig. 4.6, we show the solution of Problem (4.9) corresponding to real LT data
provided by GlaxoSmithKline. Namely, in Fig. 4.6 we show the entries of matrix A
and vector L in the solution of (4.9): the x-axis represents the different leak detection
cycles and the y-axis the different time constants. The rectangle at position (q, i)
(where q = 1, ...,m and i = 1, ...,n) has a color that depends on the value of aq,i in the
solution of Problem (4.9), according to the color scale on the right-side of the chart.
The last row of the chart represents the external leaks vector L and the fuchsia vertical
line corresponds to a maintenance. As can be observed in Fig. 4.6, internal leaks vary
significantly from one cycle to the next one: this is not realistic. In fact, formations
of new internal leaks are rare events and existing leaks increase slowly. To reduce the
coefficients variations between consecutive cycles, we add two regularization terms
to Problem (4.9), obtaining

min
A,L

f (A,L) = ∥Ṗ−1⊗L−FA∥1,1

+λ1∥A∥1,1 +λ2∥AM∥1,1 +λ3∥LM∥1,1

subject to A ≥ 0, L ≥ 0

(4.10)
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where M =



1 0 . . . 0
−1 1 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1


∈ Rm×(m−1) is a regularization matrix. Note that

∥AM∥1,1 =∑
n
i=1 ∑

m
q=1

∣∣ai,q+1 −ai,q
∣∣, ∥LM∥1,1 =∑

m
q=1

∣∣lq+1 − lq
∣∣. The addition of these

two terms to the objective function of (4.10) penalizes variations in coefficients
{

ai,q
}

and
{

lq
}

from one cycle to the next one. We can assign different weights to terms λ2

and λ3 since we expect larger variations in external leaks
{

lq
}

than in internal leaks
coefficients

{
ai,q
}

. In fact, external leaks can be triggered by many causes, such as the
deterioration of a bolt or a sealing valve, and new external leaks can emerge rather
frequently. Instead, internal leaks are mainly related to the development of micro-
cracks in the chamber internal support structures and are rare, at least according to
the maintenance data at our disposal.

Figure 4.6: Representation of the solution of Problem (4.9).

Fig. 4.7 shows the solution of Problem (4.10) on the same dataset used for Fig. 4.6.
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Note that the leak coefficients
{

ai,q
}

remain almost constant over time up to the main-
tenance, that has fixed two internal leaks (two horizontal lines are eliminated).

Figure 4.7: Representation of the solution of the regularized Problem (4.10).

Remark 6. Similar regularization strategies are adopted in NMR inversion (see, for
instance, [57]). In particular, various authors use penalty terms to obtain similar
values on neighboring pixels on the x and y axis of the reconstructed image. The
regularization methods presented in this chapter are indeed inspired by the literature
on NMR inversion.

4.2.2 Choice of Regularization Parameters

The choice of the regularization parameters λ1,λ2, λ3 greatly influences the solution
of Problem (4.10). Let g∗(λ1,λ2,λ3) = ∥Ṗ−1⊗L−FA∥1,1 be the chamber pressure
estimation error, where A and L are the solution of problem (4.10), for the given
values of λ1,λ2,λ3.

If λ1,λ2,λ3 are too large, the obtained optimal solution has a large error term
g∗(λ1,λ2,λ3). On the other hand, if λ1,λ2,λ3 are too small, they do not sufficiently
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regularize the solution. In the literature, a typical strategy for choosing regularization
coefficients consists in selecting them so that

g∗(λ1,λ2,λ3) = (1+α)g(0,0,0) (4.11)

where α is a positive constant. Note that g∗(λ1,λ2,λ3)/g∗(0,0,0) represents the rel-
ative increment of the model error norm due to regularization terms. By choosing α

sufficiently small, one ensures that regularization terms do not increase significantly
the error norm with respect to the non-regularized solution. In our numerical exper-
iments, we chose α = 0.2. In order to determine the relative contributions of λ1 and
λ2, one can set the ratios k2 = λ2/λ1 and k3 = λ3/λ1 . Then, equation (4.11) can be
solved by bisection with respect to λ1.

4.3 Changepoints Detection

Faults or maintenance works generally cause large variations in the parameters of
model (4.4). Instead, we expect that the parameters of model (4.4) do not vary signif-
icantly between one cycle and the next one if no faults or maintenances have occurred
between them. In this section, we present a different approach for the identification
of the parameters of model (4.4) based on this observation. Namely, we assume that
the parameter values remain the same from one cycle to the next one, unless a cycle
is classified as a “changepoint.” We want to detect such changepoints, that we are
expected to correspond to faults or maintenances.

Reference [58] presents a survey of algorithms for offline detection of multiple
changepoints in multivariate time series. In the following, we apply the optimal par-
titioning method presented in [59].

Given m leak detection cycles, set C ⊂ {2, . . . ,m} is a new optimization variable
that denotes the set of changepoints. In Problem (4.10), we require that the parameters
are the same between cycles j−1 and j, provided that j is not a changepoint:

ai, j−1 = ai, j i = 1, . . . ,n, j /∈C
l j−1 = l j, j /∈C .

(4.12)
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Furthermore, we change the objective function in Problem (4.10) by adding the fol-
lowing penalty term:

f̄ (A,L) = f (A,L)+ |C|β (4.13)

where |C| is the cardinality of C and β is a positive constant. The added term |C|β
penalizes solutions with a larger number of changepoints. In general, increasing pa-
rameter β reduces the number of changepoints. Later, we will discuss the choice of
β in more detail.

The optimal partitioning algorithm presented in [59] allows to found the optimal
set C of changepoints. The complexity of this algorithm is quadratic with respect to
the total number of cycles m. This is due to the fact that the algorithm needs to solve
a number of problems of form (4.10), which is quadratic with respect to m.

4.4 Experiments on Real Data

We ran tests on real leak detection tests, carried out on an industrial freeze-dryer
of GlaxoSmithKline’s production plant in San Polo di Torrile (Parma). The freeze-
dryer internal volume V is equal 16000 l. Each leak test cycle is associated with a
chamber pressure signal, recorded with a sampling time of 20 s. The evacuation phase
has a variable duration, due to various factors, such as vacuum pumps efficiency.
On average, it lasts about 60 min. The second phase (pressure stabilization) always
lasts 120 min, while the third phase (leak test) always lasts 90 min. As previously
anticipated, in Problem (4.10) we consider only sampling times in which the void
pumps are switched off, i.e., those intervals of the leak test preparation phase in which
the pumps are switched off and the entire LT phase.

We consider m = 34 consecutive leak detection cycles, carried out over a period
of approximately 8 months. This particular data set represents an interesting case
study, since, in this time period, the lyophilizer had one maintenance for an internal
leak and two maintenances for external leaks. In model (4.5), we consider n = 39
different time constants, logarithmically spaced between 102.5 s and 104.5 s. We set
α = 0.2 in (4.11) and k2 = 20, k3 = 10.
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Fig. 4.8 shows the model fit for a single leak detection cycle. The x-axis represents
the time elapsed from the beginning of the leak test preparation phase and the y-axis
represents pressure differences from the beginning of the leak test preparation phase.
The blue curve is the measured chamber pressure, while the red line corresponds to
the samples times used in model (4.10). Note that these samples cover the complete
LT phase and the portions on the LT preparation phase in which the void pump is off.
The green curve represents the identified chamber pressure curve pq(t), where q is
the cycle index, namely

pq(t) =
∫ t

0 (lq +∑
n
i=1 ai,q fi(τ))dτ. Function pq would be an estimate of the cham-

ber pressure during leak test and leak test preparation if the void pump were not work-
ing. Note also that the effect of internal leaks is much more evident in LT preparation
phase, while the pressure growth during the LT phase is mainly due to external leaks.

Figure 4.8: Estimated pressure curve (in green) obtained from the growth points (in
orange) of the pressure signal

The histogram in Fig. 4.9 represents the obtained values of
{

ai,q
}

and
{

lq
}

, cor-
responding to the decomposition of the chamber pressure derivative according to



78 Chapter 4. Leak Detection and Diagnosis

model (4.5). The x-axis represents the time constants {τi}, in logarithmic scale and
decreasing order. The heights of the bars correspond to weigths

{
ai,q
}

in the fitted
model, with the exception of the first bar, which corresponds to the external leak lq
and is denoted on the x axis by ∞, since a constant term is associated with an infi-
nite time constant. Note that most of the variables are set to 0. This fact is due to
the sparsity regularization term λ1∥A∥1,1 in Problem (4.10). The histogram shows 5
leaks, which is still an excessively large number. In practice, we do not expect that
the chamber has more than 2 or 3 leaks. We are currently working on alternative
methods to reduce the number of non-zero elements in matrix A without increasing
prohibitively the complexity of the resulting optimization problem.
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Figure 4.9: Estimation of parameters lq and aq,i from a single cycle.

Fig. 4.10 shows the overall solution of Problem (4.10), including all leak detec-
tion cycles. In particular, the x-axis indicates the cycle number and the y-axis the time
constants. The rectangle at position (q, i) has a color that depends on the value of aq,i

in the solution of Problem (4.10), according to the color scale represented on the
right-side of the chart. The last row of the chart represents matrix L, associated with
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external leaks. The three vertical lines represent maintenances carried out on the ma-
chine. In particular, the fuchsia line corresponds to a repair on an internal leak, while
the two green lines are related to repairs on external leaks. Note that, after the main-
tenance for the internal leak, various rectangles in the center of the figure decrease in
color intensity. This indicates that this maintenance decreased internal leaks. In the
same way, the intensity of the external leaks (associated with the color of the lowest
row of the plot) decreases after the two repairs, marked by the green lines.

Figure 4.10: Representation of the solution of Problem (4.10).

Fig. 4.11 shows two graphs which are useful for monitoring the status of internal
and external leaks and predicting imminent sealing problems. In both graphs, the x-
axis represents the cycle number. The first chart represents the estimated external leak
parameters

{
lq
}

, for q = 1, . . . ,m. The second one reports the sum ∑
n
i=1 ai,q of all the

values of the internal leaks parameters estimated for each cycle q. This representation
allows to separately view the trend of internal and external leaks. It is important to
remark that it is possible to notice growth trends in the external leak values a few
cycles before they are sufficiently large to constitute a serious contamination and
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lead to a machine halt. This allows to conduct a preventive maintenance that avoids
stopping production. Moreover, the aggregate sum of internal leaks is very high in
all the cycles that precede the maintenance associated with the fuchsia line. In fact,
internal leaks are hardly detected by the standard method of calculating the leak rate
(described in Section 1.4) since, during the LT phase, the overall gas outflow due
to internal leaks is very small. Inspecting previous leak detection cycles, we noticed
that the machine had had undetected internal leaks for more than a year before the
maintenance.

Figure 4.11: Evolution of internal and external leaks in multiple cycles.

Finally, Fig. 4.12 represents the leak rate computed according to the standard
method described in Section 1.4, using the identified model. In other words, the pres-
sure difference in (1.1) is computed by integrating the identified model in the LT
phase, that is ∆p =

∫ t f
ti (lq +∑

n
i=1 ai,q fi(τ))dτ, where [ti, t f ] is the time interval corre-

sponding to the leak test phase and terms lq, ai,q correspond to the solution of (4.10).
We represent separately the contribution to this integral of the external leaks

{
lq
}

and the internal ones ∑
n
i=1 ai,qe−

τ

τi . In Fig. 4.12 the x-axis represents the cycle num-
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ber, while the y-axis represents the leak rate. The color bars indicate the two leak
contributions. Blue bars represent external leaks and purple bars the internal ones.
The horizontal red line is used to indicate the critical threshold, after which the leak
test is considered unsuccessful and the machine is stopped for repairs. As before, the
three vertical lines correspond to maintenances.
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Figure 4.12: Estimated leak rates for various cycles.

We applied the changepoints detection method, presented in Section 4.3, to the
same dataset. To choose the penalty term β in (4.13), we followed the method in
[60]. Namely, with the optimal partitioning algorithm we solved various instances of
Problem (4.10), with added constraint (4.12) and modified objective function (4.13).
In Fig. 4.13, the graph on the left shows the value of the objective function (with-
out the penalizing term |C|β ) as a function of |C| (the number of changepoints). The
method presented in [60] consists in choosing for β the value corresponding to the
most significant increase in the number of changepoints. This corresponds to the "el-
bow" on the left graph of Fig. 4.13, represented by a blue dot. Following this method,
we set the penalty term to β ∗ = 9800. The graph on the right side of Fig. 4.13 repre-
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sents the penalty constant β on the y-axis, while the x-axis shows the corresponding
number of changepoints.
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Figure 4.13: Elbow of Cost vs Number of Changepoints.

Figures 4.14 (a) and (b) have the same meaning of Figures 4.10 and 4.12, with
the difference that the results have been obtained by applying the optimal partition-
ing algorithm to Problem (4.10), with added constraint (4.12) and modified objective
function (4.13), with β ∗ = 9800. The red dashed vertical lines indicate changepoints.
Note that the green vertical lines, representing maintenances, are preceded by change-
points. This shows that changepoints detection may allow revealing initial faults of
the freeze-dryer components, before the machine state becomes critical. In particular,
in case a changepoint is detected on the last cycle, it is advisable to activate an alarm
to alert maintainers of possible faults.
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Figure 4.14: Solutions of Problem (4.13) applied to LT.
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4.5 Conclusion

We presented a simple mathematical model for internal and external lyophilizer leaks
(in equation (4.5)). We proposed a leak identification method from multiple tests,
based on the solution of a regularized optimization problem (see (4.10)). Experimen-
tal results shows that the proposed method allows identifying internal and external
leaks and estimating their evolution in time. Future research will involve searching
for alternative methods to enforce the sparsity of matrix A in (4.10) and to regularize
the problem solution.



Conclusions

In this thesis we present the pharmaceutical freeze-dryer machine and explained
some of the automated processes that take place in the machine. Then, we consid-
ered the problem of recovering the network connection structure from the measured
input-output data of a resistive-capacitive (RC) circuit. We have shown a method to
solve the network reconstruction problem. The model considered is general enough
to describe various phenomena occurring within traditional industrial machines, such
as thermal systems and physical network systems. Then, we focused our study on
freeze-drying machines and used historical real data from their sensor signals to cre-
ate diagnostic models. We presented a time-aware clustering-based approach for an-
alyzing sensor data with the aim of predicting the temporal evolution of the health
status of a machine component in a pharmaceutical plant. Finally, we described a
mathematical model for freeze-dryer leaks and addressed the problem of identifying
and separating internal and external leaks. We proposed a leak identification method
based on the use of multiple leak detection tests. The developed algorithms have been
implemented as monitoring systems used by GSK.
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