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Abstract

Future galaxy redshi� surveys will observe the large scale structure (LSS) of the universe

with unprecedented precision. As an example, the Euclid satellite [1] planned launch is around

the end of 2022. It will map around 1.5 billion of galaxies over a solid angle of 15000 deg
2

and

at redshi�s up to∼ 2. Euclid will be the one of the greatest galaxy survey and the major source

of cosmological information for the next decade.

�e analysis of the huge amount of data from these surveys will need theoretical modelling

to be both accurate and �exible in order to constrain the cosmological parameters and, possibly,

explore models beyond the standard ΛCDM model.

My PhD project focuses on the study of the role played by symmetries, in particular the

(extended) galilean invariance, in providing cosmological tests that are as independent as pos-

sible from any cosmological model or computational scheme and its related approximation.

Among the results obtained in this program so far, we proposed a new method to measure

galaxy bias, bg, and the linear growth function, f , by combining the bispectrum (three-point

correlation function) and power spectrum measurements, [2, 3]. �e method is based on so-

called consistency relations (CR) for the LSS [4, 5, 6, 7], which are non-perturbative statements

based on symmetry principles, and therefore can potentially provide a theoretically clean and

model-independent determination of bg and f . We have tested this method against N-body

simulations, validating the pipeline and providing accurate estimates of these crucial cosmo-

logical observables. We are currently using this CR-based approach within the Euclid mission,

applying the procedure formulated in our previous works to the Euclid “�agship simulations”,

for which the results will be published soon.

More recently, we have developed the “LSS bootstrap” [8], a symmetry-based approach

to constrain the kernels that appear in the perturbative expansion. It allows to determine to

what extent the analytic structure of the kernels is dictated by symmetries, independently

from the particular equations of motion considered. �is approach provides a systematic way

to construct the kernels at each perturbative order using only symmetry principles, and it can

therefore naturally applied to non-standard cosmological models that satisfy the symmetries.



As a �rst application, I discuss an example of non standard gravity theory, the nDGP model [9],

and show the constraining power of the approach.

We are currently working on the implementation of nDGP in the PyBird code [10], a fast

code based on the FFTLog technology for the evaluation of the 1-loop integrals for biased

tracers in redshi� space. Some preliminary results on possible constraints on this model from

BOSS-like survey [11] are shown.

�e results presented here will manifest their practical value when applied to future gen-

eration survey, like the Euclid mission, of which I have been part for all the duration of my

PhD studies.
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Chapter 1

Introduction

�e next decade has the full potential of being a scienti�c golden age for cosmology, since the

forthcoming generation of galaxy surveys will sample the large scale structure of the universe

(LSS) over large volumes, making it possible to test cosmological models with unprecedented

precision [1, 12, 13]. According to the current cosmological standard model, ΛCDM, at primor-

dial times the universe expansion was driven by a scalar �eld, the in�aton, whose quantum

perturbations are the seeds for the formation of primordial density perturbations. A�er the

in�ationary period, the in�aton decayed and �lled the universe with relativistic particles.�is

event is usually called reheating, a�er which the standard hot big bang phase begun, in which

the universe energy budget is dominated �rst by radiation and then by non relativistic ma�er.

During the ma�er-dominated epoch, the structures that we observe in the universe, such

as the clusters of galaxies, developed through gravitational instability. At more recent times,

around z∼ O(0.5), the dark energy component (Λ) started dominating, causing the present

accelerated expansion of the universe.

�e ΛCDM model matches with extraordinary agreement the observations from the cosmic

microwave background (CMB) [14, 15], the LSS of the late time universe [11] and measure-

ments of the late time accelerated expansion [16, 17].

A LSS feature of particular relevance for precision cosmology is the baryon acoustic oscil-

lations (BAO) peak in the two-point correlation function of galaxies, �rst detected in [18],

see also [19, 20, 21]. �e BAO peak is a direct signal coming from the interaction between

baryonic ma�er and radiation in the early universe [22, 23, 24, 25]. Since the physical scale of
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this sound horizon at recombination is a robust prediction, it can be used as a standard ruler

to measure the expansion of the universe, and could give us insights on the nature of dark

energy, responsible for the acceleration of the expansion of the universe [26].

All these cosmological observations and theoretical predictions have driven us to under-

stand the composition of our universe at a very precise level, but some intriguing questions

and issues remain to be faced. �e unknown nature of dark ma�er and dark energy (which

compose the 95% of the total ma�er-energy of the universe), possible non gaussianity of the

primordial perturbations coming from the in�ationary period, neutrino masses, and possible

deviations from general relativity (GR) are only few examples of the open questions we need

to address to complete the puzzle.

�e main focus of this thesis will be the study of analytical models for the description of

galaxy clustering from linear to mildly non-linear scales. �e well established approach for

the description of the dark ma�er �eld is the standard perturbation theory (SPT, for a review

see [27]). �is method consists in writing the non-linear �elds as a perturbative expansion

of initial linear �elds, that are convolved, in momentum space, with some PT kernels. �ese

convolution kernels are found by solving perturbatively the equation of motion of the density

perturbations. �is procedure, truncated at third order (1-loop), fails to reproduce the power

spectrum (PS) on non linear scales, k > kNL ' 0.2 h/Mpc, where k is the wavenumber.

Going to higher orders does not improve the situation [28]. Physically, the failure of PT is

due to the perfect �uid approximation, which breaks down at small scales (higher k’s) and late

times (lower z’s) due to multistreaming [29, 30, 31, 32, 33, 34, 35]. �e e�ective �eld theory

of LSS (EFTofLSS), see [36, 37, 38, 39], provides an accurate method for the calculation of the

e�ect of non-linear scale physics on linear scales, adding appropriate UV counterterms to the

perturbative expansion, incorporating physics beyond the perfect �uid approximation.

Moreover, when considering the galaxy �eld, which is what we actually observe, one has

to take into account many other e�ects. First, one has to provide a relation between the dark

ma�er perturbation and the galaxy number perturbation: this is usually realized by writing

the la�er as an expansion in derivatives of the gravitational potential [40]. �e coe�cients

of this expansion are the bias parameters, which describe how galaxies trace the underlying

potential, sourced by dark ma�er. Moreover one has to take into account the so-called redshi�



space distortions. We infer the distance of a source that emits light by using the Hubble law,

a�er having measured the redshi� of the source. �e peculiar velocity of galaxies add up to

the Hubble velocity producing distortions in 3D maps of the sky obtained by redshi� surveys.

For a complete review of all these e�ects see [41].

�e practical applicability of the EFTofLSS approach has been greatly enhanced by Fast

Fourier Transform (FFT) methods to evaluate the momentum integrals appearing in the com-

putation of the PS beyond linear order [42, 43, 44], which allow a fast and accurate imple-

mentation of Markov Chain Monte Carlo algorithms for cosmological parameter estimation.

�e EFTofLSS has recently been applied to the BOSS dataset [11] to extract cosmological pa-

rameters [45, 46], see also [47], leading to cosmological constraints independent from CMB

observations. Moreover, within the BOSS collaboration, the bispectrum (BS) has been mea-

sured and analyzed, see [48, 49, 50].

All these recent results show, on one side, the great accuracy of the ΛCDM model in de-

scribing the history of the universe from primordial recent times. On the other side, these

accurate predictions will need an increasing computational e�ort, given the accuracy required

and the huge amount of data from future LSS observations.

In this thesis we explore the role played by symmetries in providing model independent

predictions for the LSS.

A �rst step toward this direction was provided by [4, 5] were the Consistency Relations for

the LSS (CR’s) were derived. �e content of the CR’s is essentially kinematic: once the equiv-

alence principle (EP) is assumed, they describe the e�ect of a long wavelength displacement

�eld on short distance �uctuations. �erefore they are completely general and not based on

any particular cosmological model or approximation scheme.

�e simplest CR relates the squeezed limit of the BS, the con�guration in which one mo-

mentum is taken much smaller that the other two, to the logarithmic derivative of the PS

evaluated at the large momentum scale. �e coe�cient in front of the logarithmic deriva-

tive of the PS is protected against non-linearities by the equivalence principle. For a feature-

less PS, the protected term is of the same order of other, un-protected ones. However, as we

showed in [2, 3], the wiggly BAO feature imprinted in LSS spectra provides a way to isolate



the CR-protected contribution to the BS from unprotected ones. �e la�er, although being

parametrically of the same order in the squeezed limit, are either smooth or suppressed by

factors O(2π/(krBAO)) with respect to the protected ones, where rBAO is the BAO acoustic

scale and k is the wavenumber of the short scale considered. �erefore, by comparing the

BAO amplitudes in the BS and in the PS we were able to measure the CR coe�cient, which

depends on the linear bias parameter bα, and, in redshi� space, also on and the growth func-

tion, f = d lnD/d ln a. We discuss this procedure in detail, and present a pipeline for the real

data analysis, in view of the Euclid mission.

Moving ahead in the direction of providing symmetry-based cosmological predictions, we

have explored the role played by symmetries in dictating the structure of the PT kernels, inde-

pendently on the details of the equations of motion: we called this approach the bootstrap

of LSS [8], as it is similar in spirit to bootstrap approaches in �eld theory [51] and in�a-

tion [52, 53]. �is is particularly relevant when considering models beyond ΛCDM, such as for

dark energy and modi�ed gravity. In particular, we will show that the structures of the kernels

in all dark energy and modi�ed gravity models with the same symmetries as ΛCDM are the

same. Only a few time-dependent coe�cients change, depending on the particular expansion

history and possible time-dependence of the modi�ed gravity parameters.

One symmetry plays a crucial role in �xing the structure of the kernels both for dark mat-

ter and for generic biased tracers: our results are based on the assumption that the dynamics

is invariant under uniform spatial translations with arbitrary time dependence, which follows

from di�eomorphism invariance in the non-relativistic limit [6]. We will refer to this as ex-

tended Galilean invariance (EGI) [54, 55] to distinguish it from the usual Galilean invariance

relating inertial frames by a boost. �is requirement translates in constraints on the analytic

structure of the PT kernels.

We identify a hierarchy of EGI constraints, depending on the PT order of the induced dis-

placement �eld. �e order of the constraints is dictated by the number of momenta for which

the sum vanishes. �e leading order (LO) constraints, for example, �x the pole structure of

the kernels as one of its external momenta goes to zero. �e next-to-leading (NLO) constraints

dictate the kernel structure as the sum of two external momenta vanishes, and so on.

In the case of biased tracers we end up with seven independent coe�cients, equivalently



to the other bias expansions discussed in the literature for �xed cosmologies.

�is approach provides a useful tool in two respects. On one hand, the deep role played by

EGI provides a systematic way to derive the structure of the PT kernels for biased tracers at

orders beyond the third, when NNLO, and so on, constraints start to play a role. On the other

hand, the framework presented is optimal if one is interested in model-independent analyses

of beyond ΛCDM scenarios, since, as we will see, we will be able to single out coe�cients

which depend only on cosmology and not on the tracer type.

We will investigate a particular modi�ed gravity model, the nDGP model [9]. Here it is as-

sumed that our universe is embedded in a 4-dimensional brane of a higher (5-)dimensional

spacetime. �e scale rc at which the �ve-dimensional gravity start behaving as the four-

dimensional one is called crossover scale. In this model a cosmological constant causing the

accelerated expansion is provided by assuming this modi�cation of gravity on large scales and

it respects the same symmetries as ΛCDM.

�e thesis is structured as follows. In chapter 2 we introduce SPT, with a detailed descrip-

tion of the perturbative scheme in the EdS approximation. A brief introduction to EFTofLSS

follows. We will then illustrate the connection between the dark ma�er density �eld and the

observed galaxy density �eld. Finally, the expression for the one-loop PS and the tree-level BS

will be derived. �en, in chapter 3, we present a generalization of this approach to models with

an exact time dependence beyond the EdS approximation. We will brie�y review the Green’s

function approach and show some results from MCMC analysis of N-body data. We will intro-

duce the nDGP model and present the novel implementation of this model within the public

code PyBird [10], which will be used for MCMC analysis. In chapter 4 we will explore the use

of CR’s for model independent parameter estimation and show the results obtained against

N-body simulations. We also provide a well-based pipeline for the extraction of the BS in the

squeezed con�guration and the measurement of the prefactor of the CR’s. �is pipeline will

be applied to the Euclid �agship simulations, both in real and redshi� space, and it will then be

used for the future data analysis. Chapter 5 presents the full formalization of the LSS bootstrap

and highlights the advantages of a new approach based only on symmetry. We conclude in

chapter 6 with some remarks and possible future developments of this research.



Chapter 2

Perturbation theory and large scale

structure

In this �rst chapter, we present and discuss the standard paradigm for the study of the large

scale structure (LSS) of the universe. We will introduce the linear and non-linear perturbation

theory of dark ma�er overdensity, and we will outline the standard procedure to construct

actual observables. �en, we will discuss the connection between dark ma�er �eld and the

galaxy density �eld, introducing observational e�ects such as the galaxy biasing, redshi� space

distortions, small scales e�ects and the correct modelling of the BAO feature. We will conclude

with a short review of the state of the art.

2.1 Standard perturbation theory

�e starting point is considering the dynamics of the dark ma�er particles within a FLRW

background metric

ds2 = −dt2 + a2(t)δijdx
idxj , (2.1)

where t is the cosmic time as measured by a comoving observer. In the following we will make

use of a new time variable, the conformal time τ de�ned as a(t)dt = dτ .

Following [27] we consider a collection of dark ma�er particles of mass m in the non-

relativistic limit and interacting only via gravitational interaction. �e equation of motion for

7



a particle of velocity v at position r reads

dv

dt
= Gm

∑
i

ri − r

|ri − r|3
, (2.2)

which can be rewri�en, assuming a large number of particles, in terms of a smooth gravita-

tional potential caused by the particle distribution,

dv

dt
= −∇rφ, φ(r) = G

∫
d3r′

ρ(r′)

|r− r′|
, (2.3)

with ρ being the dark ma�er density distribution. From eq. (2.1) we can now write the Fried-

mann equations in terms of the conformal time τ

(Ωm + ΩΛ − 1)H2(τ) = k, (2.4)

∂H(τ)

∂τ
= −Ωm(τ)

2
H2(τ) +

Λ

3
a2(τ) ≡

(
ΩΛ −

Ωm

2

)
H2, (2.5)

where k is the space curvature, that we always consider to be null, andH(τ) = d ln a(τ)/dτ

is the conformal Hubble parameter. �e functions Ωm and ΩΛ are, respectively the ma�er

and the cosmological constant energy density parameters. �ey are de�ned as the ratio be-

tween the ma�er energy density and the critical energy density, i.e. Ωm(τ) ≡ ρm(τ)/ρcr(τ),

and analogously for the cosmological constant. Notice that in eq. (2.4) and (2.5) we are not

considering relativistic components of the universe, like radiation and neutrinos, because we

will consider the ma�er perturbations in the ma�er domination epoch (also called Einstein-de

Si�er model). We will discuss later the accuracy of this prescription, o�en adopted in LSS.

We de�ne the dark ma�er overdensity δ(x) as

ρ(x, τ) ≡ ρ̄ [1 + δ(x, τ)] , (2.6)

where ρ̄ indicates the mean background density; we also de�ne the peculiar velocity

v(x, τ) ≡ Hx + u(x, τ). (2.7)

Finally, we can split cosmological gravitational potential Φ spli�ing into the one generated by

the background homogeneous ma�er distribution and the one sourced by the density �uctu-

ations, φ,

Φ(x, τ) ≡ −1

2

∂H
∂τ

x2 − φ(x, τ), (2.8)



where φ is normalized in such a way to satisfy the Poisson equation

∇2φ(x, τ) =
3

2
Ωm(τ)H2(τ)δ(x, τ). (2.9)

�e evolution of the ma�er �eld is described by its phase space density function f(x,p; τ),

where p = amu is the comoving momentum perturbation. �e equation governing the phase

space density function evolution is the collisionless Boltzmann equation

df(x,p; τ)

dτ
=
∂f

∂τ
+
∂x

∂τ
∇xf +

∂p

∂τ
∇pf = 0 , (2.10)

which can be rewri�en, using

dp

dτ
= −am∇xφ(x, τ) , (2.11)

as the well known Vlasov equation(
∂

∂τ
+

pi

am

∂

∂xi
− am∇i

xφ(x, τ)
∂

∂pi

)
f = 0 . (2.12)

In writing eq. (2.12) we have assumed GR in the sub-horizon, or Newtonian, limit. Eq. (2.12)

is in general hard to solve, even numerically. �e general approach used in literature is to

consider the evolution equations of the moments of the phase space function, de�ned as

ρ(x, τ) =

∫
d3p f(x,p, τ) ,

ρ(x, τ)ui(x, τ) =

∫
d3p

pi

am
f(x,p, τ) ,

ρ(x, τ)σij(x, τ) =

∫
d3p

pi

am

pj

am
f(x,p, τ)− ui(x, τ)uj(x, τ)ρ(x, τ) .

(2.13)

�ese �rst three moments are, respectively, the ma�er density, the velocity and the velocity

dispersion �elds. Note that the number of possible moments is, in theory, in�nite, as one can

add to eq. (2.13) an in�nite hierarchy of moments, see [39]. �is becomes even more clear

when taking di�erent moments of eq. (2.12)

∂δ(x, τ)

∂τ
+

∂

∂xi
[
(1 + δ(x, τ))ui(x, τ)

]
= 0 ,

∂ui(x, τ)

∂τ
+H(τ)ui(x, τ) + uj(x, τ)

∂

∂xj
ui(x, τ) =

− ∂

∂xi
φ(x, τ)− 1

ρ(x, τ)

∂

∂xj
(
ρ(x, τ)σij(x, τ)

)
,

. . . ,

(2.14)



where the dots indicate the equations for the higher moments. �e �rst equation of (2.14) is the

continuity equation and it couples the zeroth moment of the distribution function, i.e. ρ, to the

�rst moment, the velocity. Moreover, the second equation is the Euler equation and couples the

velocity to the velocity dispersion σij , which is the second moment of the distribution function.

In general, each of these equations describes the time evolution of the n-th moment, which is

coupled to the n+1-th moment; this means that we need a prescription in order to truncate this

hierarchy of equations. For instance, is we consider a negligible velocity dispersion σij = 0

the continuity and Euler equations, together with the Poisson equation, form a closed system.

Since the velocity dispersion quanti�es the spread of the velocities of the particles at a certain

position around the mean velocity u, se�ing it to 0 means that the �uid is characterized by

one single �ow (or stream) and that at every position there is only one value for the particle

velocity. �is approximation, denoted as single stream approximation, is known to be valid

for large scales and early times, while it breaks down a�er the particle trajectories cross each

other, the so called shell crossing, and velocities start to virialize. Taking into account multi

streaming phenomena is very di�cult also for dark ma�er, since highly non-linear and non-

perturbative physics starts playing an important role. Some a�empts has been done in this

direction, see for example [29, 30, 31, 32, 33, 34, 35].

Let us investigate a bit more eq. (2.12). We are implicitly assuming that eq. (2.12) is the

evolution equation for the microscopic distribution function of the dark ma�er particles, that

can be expressed as a sum of Dirac delta functions

f(x,p; τ) =
∑
n

δD (x− xn(τ)) δD (p− pn(τ)) , (2.15)

where the sum runs over all the N particles. In cosmology we are actually interested in scales

much larger than the mean inter-particle distance. �erefore, we can smooth the microscopic

distribution function by averaging over a resolution scale [37]

f̄(x,p; τ, R) ≡ 1

V

∫
d3yW

(∣∣∣y
R

∣∣∣) f(x + y,p; τ) , (2.16)

where W (|x|) is a smoothing window function normalized to unity

1

V

∫
d3yW

(∣∣∣y
R

∣∣∣) = 1 . (2.17)



Applying the �ltering operation to the Vlasov equation, we obtain(
∂

∂τ
+

pi

am

∂

∂xi
− am∇i

xφ̄(x, τ ;R)
∂

∂pi

)
f̄(x,p; τ, R) = C[f ](x,p; τ) , (2.18)

where C[f ] is the (pseudo-)collisional term generated by the smoothing operation

C[f ](x,p; τ, R) = am〈∇i
xφ(x, τ)

∂

∂pi
f(x,p, ã)〉 − am∇i

xφ̄(x, τ)
∂

∂pi
f̄(x,p, τ) , (2.19)

where we have de�ned

〈g〉(x) ≡
∫
d3yW

(∣∣∣y
R

∣∣∣) g(x− y) . (2.20)

We can de�ne the �rst three moments of the smoothed distribution function

ρ̄(x, τ) =

∫
d3p f̄(x,p, τ) = ρ0(τ)(1 + δ̄(x, τ)) ,

ρ̄(x, τ)ūi(x, τ) =

∫
d3p

pi

am
f̄(x,p, ã) ,

ρ̄(x, τ)σ̄ij(x, τ) =

∫
d3p

pi

am

pj

am
f̄(x,p, τ)− ūi(x, τ)ūj(x, τ)ρ̄(x, τ) ,

(2.21)

where ρ0 is the spatial average of ρ(x, τ) introduced in eq. (2.14). �e (smoothed) density

perturbation satisfy the Poisson equation

∇2
xφ̄(x, τ) =

3

2
H2(τ)Ωm(τ)δ̄(x, τ) . (2.22)

�e �rst two moments of the �ltered Vlasov equation are

∂

∂τ
δ̄(x, τ) +

∂

∂xi
[(

1 + δ̄(x, τ)
)
ūi(x, τ)

]
= 0 (2.23)

∂

∂τ
ūi(x, τ) +H(τ)ūi(x, τ) + ūj(x, τ)

∂

∂xj
ui(x, τ) = − ∂

∂xi
φ̄(x, τ)− J i , (2.24)

where the new source in the Euler equation can be wri�en as

J i = J iφ + J iσ , (2.25)

with

J iφ(x, τ) =
1

ρ̄
〈(1 + δ)∇iφ〉(x, τ)−∇iφ̄(x, τ) ,

J iσ(x, τ) =
1

ρ̄(x, τ)

∂

∂xj
(
ρ̄(x, τ)σ̄ij(x, τ)

)
.

(2.26)



Eq. (2.26) suggests what is the nature of the di�erent source terms. J iσ accounts for the e�ects

due to the (smooth) velocity dispersion σ̄ij , which was present also in eq. (2.14). J iφ appears due

to the �ltering operation on the gravitational potential φ, and it is just the �rst moment of the

collisional term in eq. (2.19), which disappears when the microscopic distribution function is

considered. �ese two sources describe the e�ect of the smoothing operation on linear scales,

i.e., when the small scale non-linearities are integrated. For the rest of this section we will not

consider this e�ect and we will �nd solutions for the system in eq. (2.14). In section (2.2) we

will brie�y introduce the e�ective �eld theory of LSS (EFTofLSS), which provides a rigorous

approach to take into account the contributions coming from small-scale perturbations.

We are now ready to solve perturbatively the system in eq. (2.14). From now on we will

use the new time variable

dη = d ln a = Hdτ , (2.27)

and we will rewrite the equations of motion in Fourier space using the notation

δ(x, η) =

∫
d3k

(2π)3
e−ik·xδ̃(k, η) . (2.28)

In general, the velocity �eld can always be wri�en as the sum of a divergence and a vorticity

component

ui(k, η) = −i k
i

k2
f+(η)H(η)θ(k, η) + iεijk

kj

k2
wk(k, η) , (2.29)

where we have de�ned the (rescaled) velocity divergence as

θ(x, η) = − ∂iu
i

f+H
, θ(k, η) = i

k · uk
f+H

, (2.30)

and the vorticity component as wk(k, η) = iεijkk
iuj . In particular, one can see that the la�er

is only sourced by the velocity dispersion σij , meaning that we can neglect it in the following

and consider it only to higher perturbative orders, see [37]. �e de�nition of the velocity

divergence, eq. (2.30), includes the (scale-independent) growth function, which is de�ned as

the logarithmic derivative of the linear growing function

δL(x, η) ≡ D+(η)δL(x, ηin) , and f+(η) ≡ d lnD+(η)

dη
, (2.31)



where D+(η) describes the time evolution of the linear density �eld δL, as we will show soon.

�e function D+ describes the time evolution of the linear perturbations and it depends both

on the cosmological model and the theory of gravity considered.

�e system in eq. (2.14) reads, in Fourier space

∂ηδk − f+θk = f+Ik,q1,q2α(q1,q2)θq1δq2 ,

∂ηθk − f+θk −
3

2

Ωm

f+

(δk − θk) = f+Ik,q1,q2β(q1,q2)θq1 , θq2 ,
(2.32)

where we have omi�ed the tilde and the time dependence to avoid clu�er. In eq. (2.32) we

have de�ned, using q1...n = q1 + · · ·+ qn

Ik,q1,...,qn ≡
∫

d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

δD(k− q1...qn) . (2.33)

Note that in eq. (2.32) the Poisson equation (2.9) has been used inside the Euler equation, and

we have de�ned the two functions

α(q1,q2) ≡ q1 · (q1 + q2)

q2
1

, β(q1,q2) ≡ |q1 + q2|2 q1 · q2

2q2
1q

2
2

. (2.34)

�ese two functions encode the non-linear coupling between di�erent modes in the evolution

of the density and the velocity �elds. Considering only the linear equations

∂ηδk − f+θk = 0 ,

∂ηθk − f+θk −
3

2

Ωm

f+

(δk − θk) = 0 ,
(2.35)

and considering the time evolution for the (growing) linear density �eld as

δL(k; η) = D+(η)δL(k; ηin) , (2.36)

we obtain the well-known relation between the linear density �eld and the linear velocity

divergence: δL(k; η) = θL(k; η). �en, we can look at the evolution equation for the linear

growth function D
∂2D

∂η2
+

(
1 +

∂ lnH
dη

)
∂D

∂η
− 3

2
ΩmD = 0 . (2.37)

If we consider a Einstein-de Si�er universe (EdS) completely �lled with non-relativistic pres-

sureless ma�er, i.e. Ωm = 1 and ΩΛ = 0, we �nd two solutions of the the type D(η) ∝ esη,



with s = 1 representing the growing mode, since the growth factor grows with the scale factor

D+ ∼ a, and, analogously, s = −3/2 is the decaying mode, with D− ∼ a−3/2
.

We are now ready to consider the nonlinear case. �e usual prescription is to expand the

density and velocity �elds around their linear solutions. Here we present the solutions in the

EdS case, the simplest one in which we can �nd exact perturbative solutions. We can expand

as

δk(η) =
∞∑
n=1

enηδ
(n)
k , θk(η) = −H(η)

∞∑
n=1

enηθ
(n)
k (η) , (2.38)

where n = 1 represents the linear solution shown in eq. (2.31), δ(1) = θ(1) = δL. We can now

write a perturbative solution of the system in eq. (2.32)

δ
(n)
k = Ik,q1,...,qnFn(q1, . . . ,qn)δL(q1) . . . δL(qn) , (2.39)

θ
(n)
k = Ik,q1,...,qnGn(q1, . . . ,qn)δL(q1) . . . δL(qn) . (2.40)

Fn and Gn are homogeneous function of the momenta {q1, . . . ,qn} and are constructed from

the fundamental mode coupling functions α(q1,q2) and β(q1,q2), de�ned in eq. (2.34), ac-

cording to the recursion relation (valid for n ≥ 1)

Fn(q1, . . . ,qn) =
n−1∑
m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)
[(2n+ 1)α(q1...m,qm+1...n)Fn−m(qm+1, . . . ,qn)

+ 2β(q1...m,qm+1...n)Gn−m(qm+1, . . . ,qn)] ,

(2.41)

Gn(q1, . . . ,qn) =
n−1∑
m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)
[3α(q1...m,qm+1...n)Fn−m(qm+1, . . . ,qn)

+ 2nβ(q1...m,qm+1...n)Gn−m(qm+1, . . . ,qn)] .

(2.42)

For n = 2 we have the following symmetrized expressions

F
(s)
2 (q1,q2) =

5

7
+

q1 · q2

2q1q2

(
q1

q2

+
q2

q1

)
+

2

7

(q1 · q2)2

q2
1q

2
2

, (2.43)

G
(s)
2 (q1,q2) =

3

7
+

q1 · q2

2q1q2

(
q1

q2

+
q2

q1

)
+

4

7

(q1 · q2)2

q2
1q

2
2

. (2.44)

It is possible to perform a fully analogous calculation for a general cosmology, considering the

exact time dependence, as we will show in chapter 3.



�e quantity we are interested in in cosmology is the power spectrum (PS) of the ma�er

perturbation de�ned as

〈δk(η)δk′(η)〉 ≡ (2π)3δD(k + k′)P (k, η) . (2.45)

If we substitute the perturbative expansion of eq. (2.38) and eq. (2.39) in the expression for the

PS, the expectation value becomes a perturbative expansion in the initial n-point correlation

functions, 〈δ(q1, ηin) . . . δ(qn, ηin)〉. Assuming gaussianity for the initial conditions, we can

apply the Wick’s theorem, which ensures that the expectation values of an odd number of

�elds (with zero mean) vanish, while those of an even number of �elds reduce to a sum of

products of initial PS’s, explicitly

〈ϕ(q1) . . . ϕ(q2p+1)〉 = 0 ,

〈ϕ(q1) . . . ϕ(q2p)〉 =
∑

all contractions

∏
pairs (i,j)

〈ϕ(qi)ϕ(qj)〉.
(2.46)

�is means that the �rst non linear contributions to the PS will contain four initial �elds

δ(k, ηin), that is, two initial PS. Explicitly we have

P (k, η) = e2ηPL(k) + e4ηP1−loop(k) + . . . , (2.47)

where we have de�ned the (initial) linear power spectrum

〈δL(k, ηin)δL(k′, ηin)〉 = (2π)3δD(k + k′)PL(k) , (2.48)

and the 1-loop PS

P1−loop(k) = P22(k) + P13(k) , (2.49)

with

P22(k) = 2

∫
d3q

(2π)3

[
F

(s)
2 (k− q,q)

]2

PL(q)PL(|k− q|) , (2.50)

and

P13(k) = 6

∫
d3q

(2π)3
F

(s)
3 (k,q,−q)PL(q)PL(k) . (2.51)

It is possible to go beyond the 1-loop correction, and consider also 2-loop corrections and so

on. �is approach, standard perturbation theory (SPT), is know to perform well at large scales

(k ≤ 0.15 h/Mpc) and for early redshi� (z ≥ 2).



As you can see in eq. (2.47) in the EdS approximation the time dependence factorizes,

and the n-th perturbative order evolves like ∼ an = enη. �e usual prescription adopted for

the generalization to ΛCDM model is to substitute the scale factor with the growth function

a → D+. �is approximation has been tested to be accurate to be�er than 1% for mildly

non-linear scales, see [56].

We will also consider the BS, de�ned as

〈δk1(η)δk2(η)δk3(η)〉 ≡ (2π)3δD(k123)B(k1,k2,k3; η) . (2.52)

�e interest in the BS is increasing, due to the possibility to measure it in future large scale

survey [57, 58, 59, 60, 61, 62] (see [50, 63] for measurements of the BS with the BOSS obser-

vations, for other novel approaches to BS see [64, 65, 66, 67]). Substituting the perturbative

solution for the ma�er density eq. (2.39), and assuming again gaussian initial condition for the

linear �eld we obtain the leading order (LO) expression for the ma�er BS

BLO(k1,k2,k3; η) = 2e2ηF s
2 (k1,k2)PL(k1)PL(k2) + 2 perms. . (2.53)

One is tempted to think that going to higher orders would progressively improve the accu-

racy of the SPT approach. Ref. [28] presents the calculation up to 3-loop order and showed that

at redshi� smaller than∼ 1.75 the agreement of the 3-loop correction with N-body simulations

is even worse than the 2-loop, showing that the series is not convergent. At low redshi� and

small scales, the single stream approximations no longer holds, meaning that we have to take

into account also the complicated multi streaming physics happening at these scales. In the

next section we will describe a way to systematically include these unknown short distance

(UV) e�ects on the computation of the PS at intermediate scales.

2.2 UV counterterms and E�ective Field �eories

Our starting point is the smoothed Vlasov eq. (2.18) leading to the continuity and Euler equa-

tions (2.21). As we can see, in the Euler equation a source term appears, given in eq. (2.25) [37].

It can be interpreted as −∂j τ̄ ij/ρ̄, where τ̄ ij is the (smooth) e�ective stress tensor which car-

ries the pressure and the viscosity forces induced by the small-scales �uctuations, see [36, 38].

�e EFTofLSS is based on an expansion of τ̄ ij over long wavelength �eld.



〈τ̄ij〉δ̄ = pbδij + ρ0

[
c2
s δ̄δij −

c2
bv

H
δij∇k

xūk −
3

4

c2
sv

H

(
∇i

xūj +∇j
xūi −

3

2
δij∇k

xūk

)]
+ . . . ,

(2.54)

where the form of the expansion is dictated by rotational symmetry and the equivalence prin-

ciple. In eq. (2.54), pb, cs, cbv and csv are, respectively, the e�ective pressure, the adiabatic speed

of sound, the bulk viscosity coe�cient, and the shear viscosity coe�cient, which depend on

the smoothing scale R, see eq. (2.16). �ese function are not �xed by the SPT and they need

to be measured from, for example, N-body simulations. In principle, one could calculate them

numerically following a peak-background split argument, see [41]. �e �rst EFT contribution

to the density perturbation appears at third order

δct,(3)(k) = −c(η,R)D3(η)
k2

k2
NL

WR(k)δ(1)(k, η) , (2.55)

whereD is the linear growth function,WR(k) is the Fourier transform of the window function

introduced in eq. (2.16) and kNL is the non-linear scale. �e e�ective coe�cient c corresponds

to an e�ective sound speed, with limR→0 c = c2
s . �e non-linear scale can be de�ned as the

scale where the dimensionless linear ma�er power spectrum becomes unity [41]

k3PL(k)

2π2

∣∣∣∣∣
k=kNL

= 1 . (2.56)

�is is a rough estimate for the scale at which the non-linear corrections become of order one,

and this scale corresponds to kNL(z = 0) ' 0.25 h/Mpc and kNL(z = 0.5) ' 0.35 h/Mpc,

using a cosmology with the parameters of [68].

When we consider redshi� space distortions (see section (2.3.2)) we have to take into ac-

count other two terms which depends on the orientation of the momentum k wrt the line-of-

sight (see [69, 70])

δct,(3)
g,s (k) = cct,0k

2δ(1)(k, η) + cct,1fµ
2
k k

2δ(1)(k, η) + cct,2f
2µ4

k k
2δ(1)(k, η) , (2.57)

where cct,i are new parameters that will enter in the PS. In eq. (2.57) we have included in the

de�nition of cct,i all the time dependencies appearing in eq. (2.55).

In the next section we will see how to connect the dark ma�er perturbations to the (ob-

servable) galaxy density perturbation, or, more generally, to a generic tracer overdensity. We



will make use again of the standard approach that consists of a perturbative expansion around

the dark ma�er linear solution. We will also see how to take into account observable e�ects

like the redshi� space distortions (RSD) and discreteness e�ect.

2.3 From dark matter to galaxies

In the previous section we have showed the SPT results for the dark ma�er overdensity �eld,

but what we actually observe are galaxies, HI emission lines, Lyman-α forests or any generic

tracer which emits light
1
. What we usually do is to �nd a perturbative solution to (2.10) for the

dark ma�er overdensity and then introduce some new parameters, the bias parameters, which

describe the connection between the underlying gravitational potential generated by the dark

ma�er �eld and the galaxy number density.

In order to create a 3D map of the sky we have to measure the distance of the particular

tracer we are interested in, and we do it by inferring the distance by assuming the Hubble law.

�is procedure is limited by the fact that any tracer has in general a peculiar velocity, which

adds to the Hubble one. �is e�ect causes a distortion in the distribution of tracers which

goes under the name of redshi� space distortions. We will see how to take into account this

e�ect and how to exploit it to measure cosmological parameters. �e last ingredient we will

consider is the discreteness e�ect.

2.3.1 Bias expansion

�e galaxy density δg depends in general on the two quantities we have used so far to describe

the dark ma�er �eld, the overdensity δ and the peculiar velocity u, which is completely de�ned

by its divergence θ at the order we are interested in. In order to consider also the non-locality

introduced by gravity, we have to consider the dependence of the galaxy density on the local

gravitational potential �eld, φ, which can be expressed in terms of δ using the Poisson equation

(2.9). �e equivalence principle ensures that a homogeneous shi� in the gravitational potential

can always be reabsorbed by a change of coordinates, which suggests that the galaxy density

should only depend on the �rst derivative of the potential ∂x,iφ. Furthermore, terms like ∂x,iφ

1
Weak lensing observations allow to directly measure the gravitational potential, for recent results see [71].



causes a uniform force which cannot be measured by any local observer as well. Only terms

containing tidal e�ects, i.e., with at least two spatial derivatives of the gravitational potential

∂x,i∂x,jφ, are measurable and should enter in the perturbative expansion of the galaxy density.

�erefore, we can de�ne the quantity [40]

sij ≡
2

3ΩmH2
∂x,i∂x,jφ(x, τ)− 1

3
δijδ(x, τ) =

[
∂x,i∂x,j
∇2

− 1

3
δij

]
δ(x, τ) ≡ γijδ(x, τ) , (2.58)

which is a trace-free part tensor. Since at linear order θ(1) = δ(1)
, we can de�ne two quantities

which will appear at second order in the perturbative expansion

η(x, τ) ≡ θ(x, τ)− δ(x, τ) , (2.59)

and

tij(x, τ) ≡
[
∂x,i∂x,j
∇2

− 1

3
δij

]
η(x, τ) = γijη(x, τ) . (2.60)

It turns out that at second order, in the EdS approximation

η
(2)
k =

2

7
s

(1) 2
k − 4

21
δ

(1) 2
k = −2

7
Ik,q1,q2

(
1− (q1 · q2)2

q2
1q

2
2

)
δ(1)
q1
δ(1)
q2
, (2.61)

suggesting that a new variable that appears only at third order can be de�ned

ψ(x, τ) ≡ η(x, τ)− 2

7
s2(x, τ) +

4

21
δ2(x, τ) , (2.62)

where we have de�ned s2 ≡ sijsij . Assuming homogeneity and isotropy, we can infer that

the galaxy density should depend only on scalar quantities that can be constructed using δ,

sij , tij , η and ψ. �e combinations sii and tii are zero by construction and up to third order

we can construct s2
, st ≡ sijtij and s3 ≡ sijsjkski. It can be shown that s3

can be expressed

in term of the other quantities, see [41], meaning that the galaxy density will depend on the

following seven terms

1st order : δ ,

2nd order : δ2 , s2 ,

3rd order : δ3 , δs2, ψ, st ,

(2.63)

or, brie�y,

δg(x, τ) =
∑
O

bO(τ)O(x, τ) , (2.64)



whereO stands for each the operator listed in eq.(2.63). �e bias parameters bO depends only

on time and not on space, as one could think in general. �is is true as long as we consider

only the impact of long-wavelength perturbations on the galaxy density: we have ignored so

far the in�uence of small-scale perturbations on the formation of galaxies, which is stochastic,

since we have implicitly assumed that the small-scale initial conditions are not correlated over

long distance, i.e., we have assumed gaussian initial conditions. For the moment we will not

consider the e�ect of stochastic terms, and they will be described in sec. (2.3.3).

We can write, in Fourier space

δg(k) = b1δ(k) + b2δ
2(k) + bs2s

2(k)+

b3δ
3(k) + bδs2δs

2(k) + bψψ(k) + bstst(k) .
(2.65)

�e various bi are the (deterministic) bias parameters. �e terms appearing in eq.(2.65) are,

explicitly

δ2(k) = Ik,q1,q2δq1δq2 , δ3(k) = Ik,q1,q2,q3δq1δq2δq3 , (2.66)

s2(k) = Ik,q1,q2S(q1,q2)δq1δq2 , (2.67)

δs2(k) =
1

3
Ik,q1,q2,q3 [S(q1,q2) + S(q1,q3) + S(q2,q3)] δq1δq2δq3 , (2.68)

st(k) =
1

3
Ik,q1,q2,q3 [S(q1,q23) (Gs

2(q2,q3)− F s
2 (q2,q3)) + 2 perms.] δq1δq2δq3 , (2.69)

ψ(k) = θ(k)− δ(k)− 2

7
Ik,q1,q2

[
S(q1,q2) +

2

3

]
δq1δq2 , (2.70)

where we have de�ned

S(q1,q2) ≡ (q1 · q2)2

q2
1q

2
2

− 1

3
. (2.71)

2.3.2 Redshi� space distortions

Following [72] we can write the radial coordinate s of an observed galaxy as a sum of its

Hubble �ow, the position measured using the Hubble law, and the distortion caused by its

peculiar velocity u. �e mapping between redshi� space and real space can be wri�en as

s = x + fuz(x)ẑ , (2.72)

where f is the growth function and uz is the peculiar velocity component on the line-of-sight,

here assumed to be the z axis, also called plane-parallel, or distant observer, approximation.



Assuming that the number density is conserved in the redshi�-real space mapping, we can

write

(1 + δg,s)d
3s = (1 + δg)d

3x , (2.73)

where δs(s) is the the overdensity �eld in redshi� space. Using eq. (2.72) we have d3s =

J(x)d3x, where

J(x) ≡ 1 + f∂zuz(x) (2.74)

is the exact Jacobian of the mapping, we obtain

δg,s(s) =
δg(x) + 1− J(x)

J(x)
=
δ(x)− f∂zuz(x)

1 + f∂zuz(x)
. (2.75)

We will work in Fourier space,

δg,s(k) =

∫
d3s eik·sδg,s(s) =

∫
d3x eik·xe−ifkzuz(x) [δg(x)− f∂zuz(x)] . (2.76)

Eq. (2.76) describes the exact non-linear density �eld in redshi� space as a function of the

real space one in the plane-parallel approximation. Before we proceed with the perturbative

approach, we can make some comments on eq. (2.76): �rst of all, the terms inside the square

brackets express the squashing e�ect, the increase in the clustering amplitude due to linear

falling. �is e�ect was �rstly studied in ref. [73] and goes under the name Kaiser e�ect. More-

over the exponential describes a non-linear e�ect, usually referred to as Fingers-of-God (FOG)

e�ect, which erases power due to velocity dispersion along the line-of-sight, see for exam-

ple ref. [74] and references therein. Our perturbative approach is based on the perturbative

expansion of the exponential inside eq. (2.76) which gives

δg,s(k) =
∞∑
n=1

Ik,q1,...,qn

[
δg(q1) + fµ2

1θ(q1)
] (fµkk)n−1

(n− 1)!

µ2

q2

. . .
µn
qn
θ(q2) . . . θ(qn) , (2.77)

where we have de�ned µi ≡ q̂i · ẑ.

If we consider only the linear terms, i.e. n = 1, we recover the well known formula of the

Kaiser e�ect for the ma�er density

δs(k) = (1 + fµ2)δ(k) . (2.78)

Similarly to what was presented in section (2.1) for the real space ma�er density, we can write

the redshi� space density as a perturbative convolution (in Fourier space) of the linear ma�er



density �eld, see eq. (2.39) and (2.40)

δ(n)
g,s (k) = Ik,q1,...,qnZn(q1, . . . ,qn)δL(q1) . . . δL(qn) , (2.79)

where Zn(q1, . . . ,qn) are the redshi� space kernels. Using eq. (2.65) and expanding at each

order eq. (2.77) we can de�ne the redshi� space kernels for the galaxy density: at leading order

(LO) we have δ
(1)
g (k) = b1 δL(k) so

δg,s(k) = δg(k) + fµ2δ(k) =
(
b1 + fµ2

)
δL(k) , (2.80)

which de�nes

Z1(q1) = b1 + fµ2
1 . (2.81)

Analogously, going to second order yields explicitly

δ(2)
g (k) = Ik,q1,q2 [b1F2(q1,q2) + b2 + bs2S(q1,q2)] δL(q1)δL(q2) , (2.82)

and

δg,s(k) =Ik,q1

[
δ(2)
g (q1) + fµ2

1θ
(2)(q1)

]
+ Ik,q1,q2

[
δ(1)
g (q1) + fµ2

1θ
(1)(q1)

]
fµkk

µ2

q2

θ(1)(q2) ,
(2.83)

which gives

Z2(q1,q2) =b1F
s
2 (q1,q2) + fµ2

kG
s
2(q1,q2) + bs2

(
(q1 · q2)2

q2
1q

2
2

− 1

3

)
+ b2 +

fµkk

2

[
(b1 + fµ2

1)
µ2

q2

+ (b1 + fµ2
2)
µ1

q1

]
.

(2.84)



With analogous steps we can obtain the expression for the third order kernel

Z3(q1,q2,q3) =b1F
s
3 (q1,q2,q3) + fµ2

kG
s
3(q1,q2,q3)

+ bψ [Gs
3(q1,q2,q3)− F3(q1,q2,q3)] + b3[

2b2F
s
2 (q1,q2) + 2bs2S(q1,q2)F s

2 (q2,q3)

+ bstS(q1,q23)
(
Gs

2(q2,q3)− F s
2 (q2,q3)

)
− 4bψ

7
S(q1,q23)F s

2 (q2,q3)

+ fµkk
µ1

q1

[
b1F2(q2,q3) + fµ2

23G2(q2,q3) + bs2S(q2,q3)
]

+ fµkk

[(
b1 + fµ2

1

) µ23

q23

G2(q2,q3)

]
+

(fµkk)2

2

[(
b1 + fµ2

1

) µ2

q2

µ3

q3

]
+ 2 perms.

]
.

(2.85)

2.3.3 Stochastic terms

�e perturbative bias expansion described in Sec. (2.3.1) implicitly assumes that the in�uence

of non-linear scales on galaxy formation is negligible, and we have not accounted for this

e�ect so far. In order to take into account this e�ect in our galaxy density we have to introduce

stochastic �elds in the bias relation. We will denote the stochastic �elds as ε, and they will be

of order one in the perturbative expansion.

�e set of stochastic contributions consists of all the terms of the deterministic bias expan-

sion O in eq. (2.64), and we will indicate them with εO. In general we can write [41]

δg(x, τ) =
∑
O

[
bO(τ) + εO(x, τ)

]
O(x, τ) + ε(x, τ) (2.86)

with

1st order : ε ,

2nd order : εδδ ,

3rd order : εδ2δ2, εs2s
2 .

(2.87)

Note that since the εO are assumed to be uncorrelated with the large-scale perturbations,

meaning that 〈εOO′〉 = 0 for eachO andO′, they are completely described by their moments

〈εOεO′〉, 〈εOεO′εO′′〉, and so on.



In this work we will consider only the ε �eld as this is the main stochastic term considered

in current LSS analysis, see [45, 46]. In particular, since the galaxy density contrast will depend

non-locally from the dark ma�er perturbations, we have to consider also higher derivative

terms for the stochastic �eld. In Fourier space this translates into an expansion in k2
(for

symmetry reason)

〈ε(k)ε(k′)〉′ = P {0}ε + P {2}ε k2 + P {4}ε k4 + . . . , (2.88)

where 〈. . . 〉′ indicates the correlator divided by (2π)3
and the Dirac delta. We will explicitly

calculate the P {0} term of this expansion. We will keep only the k2
term, as it is the one

relevant at the order we are interested in this work; at this order we have [75, 70]

δstoch,(3)
g,s (k) = cε,1ε+ cε,2k

2ε+ cε,3fµ
2
kk

2ε . (2.89)

As we mentioned above, the stochastic �eld ε is completely determined by its moment 〈εε〉

and in the following we will show the result for this correlator when considering only Poisson

shot noise. �e Poisson shot noise appears when we consider a discrete �eld (like, e.g., the

number density of galaxies) and we approximate it with a continuous one. Indeed, considering

the Poisson model, the number density of galaxies is

n(x) =
∑
i

δD(x− xi) , (2.90)

while the (discrete) density contrast is given by

δd(x) =
n(x)

n̄
− 1 , (2.91)

where we have de�ned the mean number density as n̄ = 〈n(x)〉. At this point, following [76]

we can calculate the two-point correlation function of the discrete �eld

ξd(x1,x2) = 〈δ(x1)δ(x2)〉 =
1

n̄2
〈n(x1)n(x2)〉 − 1 . (2.92)

�e two-point of the number density �eld can be wri�en as

〈n(x1)n(x2)〉 = 〈
∑
i

δD(x1 − xi)δD(x2 − xi)〉+ 〈
∑
i,j

δD(x1 − xi)δD(x2 − xj)〉 , (2.93)

where we have separated the contributions coming from di�erent points (the second term in

the rhs of eq. (2.93)) and those coming from the same point, which will be responsible for the



shot noise term. In particular the former can be parametrized using the two-point correlation

function of the smooth �eld

〈
∑
i,j

δD(x1 − xi)δD(x2 − xj)〉 = n̄2 [1 + ξ(|x1 − x2|)] , (2.94)

so that we obtain, for the discrete �eld,

ξd(x1,x2) = ξ(|x1 − x2|) +
1

n̄
δD(x1 − x2) . (2.95)

Going to Fourier space we obtain the well known result

Pd(k) = P (k) +
1

n̄
, (2.96)

and, in the Poisson model, we can identify the two-point correlation function of the stochastic

�eld as

〈εε〉 =
1

n̄
. (2.97)

Similarly, for the three-point function of the discrete �eld we have

ζd(x1,x2,x3) = 〈δd(x1)δd(x2)δd(x3)〉 =
〈n(x1)n(x2)n(x3)〉

n̄3
−
[
〈n(x1)n(x2)〉

n̄2
+ 2cyc.

]
+ 2 .

(2.98)

Analogously to eq. (2.93) we can rewrite the three-point correlator of the number density �eld

as

〈n(x1)n(x2)n(x3)〉

= 〈
∑
i

δD(x1 − xi)δD(x2 − xi)δD(x3 − xi)〉

+

[
〈
∑
i,j

δD(x1 − xi)δD(x2 − xj)δD(x3 − xj)〉+ 2cyc.

]

+ 〈
∑
i,j,k

δD(x1 − xi)δD(x2 − xj)δD(x3 − xk)〉

= δD(x1 − x2)δD(x1 − x3)n̄+
[
δD(x2 − x3)n̄2(1 + ξ12) + 2cyc.

]
+ n̄3 (1 + ξ12 + ξ13 + ξ23 + ζ) ,

(2.99)

where ζ is the three-point function of the continuous �eld. We use the notation ξij ≡ ξ(|xi −

xj|). Using eq. (2.94) and (2.99) we obtain

ζd(x1,x2,x3) =
1

n̄2
δD(x1 − x2)δD(x1 − x3) +

[
1

n̄
δD(x2 − x3)ξ12 + 2cyc.

]
+ ζ123 . (2.100)



Going to Fourier space we get the discrete bispectrum

Bd(k1,k2,k3) = B(k1,k2,k3) +
1

n̄
[P (k1) + PL(k2) + PL(k3)] +

1

n̄2
, (2.101)

where B is the continuous bispectrum. From eq. (2.101) we can write the shot noise contribu-

tion to the bispectrum as

Bε(k1,k2,k3) ≡ 1

n̄2
+

1

n̄
[PL(k1) + PL(k2) + PL(k3)] . (2.102)

Possible generalization of the stochastic contribution can be performed using the basis in

eq. (2.87) presented in [41] or, for example, parametrizing possible deviations from the pois-

sonian shot noise with additional parameters, see [61, 77].

2.4 1-loop power spectrum and tree-level bispectrum

From eqs. (2.79), (2.89) and (2.57) we can write the full galaxy density �eld at third order in

redshi� space

δ(3)
g,s(k, η) =Z1(k, µk)δ

(1)(k, η)

+ Ik,q1,q2Z2(q1,q2)δ(1)(q1)δ(1)(q2)

+ Ik,q1,q2,q3Z3(q1,q2,q3)δ(1)(q1)δ(1)(q2)δ(1)(q3)

+ δstoch,(3)
g,s + δct,(3)

g,s ,

(2.103)

where the �rst three lines represent the deterministic and perturbative relation between galaxy

and ma�er overdensities, while the last line include the UV and stochastic e�ects.

From eq. (2.103) we can calculate the 1-loop PS, which is given by

Pg,s(k, µk) =Z1(k, µk)
2PL(k) + 2

∫
d3q

(2π)3
[Z2(k− q,q)]2 PL(q)PL(|k− q|)

+ 6Z1(k, µk)PL(k)

∫
d3q

(2π)3
Z3(k,q,−q)PL(q)

+ cct,0k
2PL(k) + cct,1fµ

2
kk

2PL(k) + cct,2f
2µ4

kk
2PL(k)

+
1

n̄

(
cε,1 + cε,2k

2 + cε,3fµ
2
k

)
.

(2.104)

In actual data analysis we consider angle-averaged multipoles of the PS, de�ned as

P (l)
g,s(k) =

2l + 1

2

∫ 1

−1

dµkPg,s(k, µk)Pl(µk) , (2.105)



where Pl(x) are the Legendre polynomials of order l.

Using eq. (2.103) we can also write the tree-level bispectrum. At this order we can neglect

the e�ect of higher derivative terms, see [41], and write

Bg,s(k1,k2,k3) =2Z1(k1)Z1(k2)Z2(k1,k2)PL(k1)PL(k2) + 2 cyc.

+Bε(k1,k2,k3) ,
(2.106)

where Bε is the shot noise contribution, given in eq. (2.102). Eqs. (2.104) and (2.106) are the

fundamental predictions to be compared with observations. In recent data analysis, [45, 46, 47],

the full one-loop PS has been used to constrain the cosmological parameters {As, ns,Ωm, H}.

�e results of these analysis has shown the power of late-time observations, giving results in

good accordance with those from the Planck mission [15].

2.5 IR resummation

At more recent times the non-linear structure formation a�ects the shape of the BAO peak,

which is the imprint le� by the interaction between the photons and baryons in the primor-

dial �uid, see [18] and references therein. In particular, the main non linear e�ect are long

wavelength displacements of order ∼ 10 Mpc caused by bulk �ows, which cause a damping

of the BAO peak in the linear correlation function [78]. In Fourier space this e�ect translates

into an exponential damping of the oscillating part of the power spectrum. �is means that

evolving the initial linear power spectrum considering only the linear e�ects of the growth

of overdensity leads to larger (undamped) BAO at lower redshi�s than those observed in the

actual power spectrum. �ese bulk �ow e�ects have to be taken into account in order to obtain

unbiased estimates of the cosmological parameters.

�e displacement due to bulk �ows can always be wri�en as an integral of the velocity

perturbation

s(x, η) =

∫ η

dη′
u(x, η′)

H(η′)
. (2.107)

Since we are interested on the e�ect of large (IR) scales on mildly non linear scales, we can

assume that, in Fourier space, the displacement s has support for modes q < Λ, where Λ is

an infrared scale. Let us introduce now the new density �eld δ̄ which represents the density



perturbation where the e�ect of the IR displacement has been subtracted, explicitly

δ(x, τ) = δ̄(x− s(x, τ), τ) . (2.108)

�e �eld δ is the true �eld which contains the e�ect described above, while δ̄ is the �eld where

the e�ect of IR displacements has not been taken into account. We are interested in resumming

the e�ect of the IR displacement in the true �eld δ.Going to Fourier space, we obtain from

eq. (2.108)

δ(k) =

∫
d3x eik·xδ̄(x− s(x)) '

∫
d3x eik·(x+s(x))δ̄(x) , (2.109)

where in the second equality we have neglected the x-dependence of the displacement. If we

calculate the power spectrum we obtain

〈δkδk′〉 =

∫
d3xd3x′ ei(k·x+k′·x′)〈ei(k·s(x)+k′·s(x′))δ̄(x)δ̄(x′)〉 . (2.110)

Translational invariance imposes that the argument of the angular brackets depends only on

the modulus of the distance r ≡ |x− x′| and a convenient change of coordinates

x =
r

2
−R ,

x′ = −r

2
−R ,

(2.111)

gives

〈δkδk′〉 = (2π)3δD(k + k′)

∫
d3r eik·r〈eik·(s(−r/2)−s(r/2))δ̄(−r/2)δ̄(r/2)〉 . (2.112)

We are interested in the e�ect of large scales (< Λ) on small scales (> Λ) and this separation

of scales is re�ected in eq. (2.112): we can break the correlator into his small and large scale

part, since these two, at the order we are interested in, do not correlate. Explicitly this means

that we can write

〈e−ik·(s(−r/2)−s(r/2))δ̄(−r/2)δ̄(r/2)〉 = 〈e−ik·(s(−r/2)−s(r/2))〉〈δ̄(−r/2)δ̄(r/2)〉 . (2.113)

Given the range of scales on which the displacement s has support, we can treat it as a linear

gaussian �eld (Zel’Dovich approximation, ZD, see [79]), from eq. (2.107)

s(x) = −i
∫

d3p

(2π)3
e−ip·x

p

p2
δL(p) (2.114)



and from eq. (2.113)

〈e−ik·∆s(r)〉 = e−
1
2
〈(k·∆(r)s)2〉 , (2.115)

where we have de�ned

∆s(r) ≡ s(−r/2)− s(r/2). (2.116)

A�er some algebra, one �nds

Σ2(k, r,Λ) ≡ 1

2
〈(k ·∆s(r))2〉 =

∫ Λ d3p

(2π)3

(k · p)2

p4
(1− cos (p · r))PL(p) (2.117)

=
k2

6π2

∫ Λ

dpPL(p)((1− j0(pr) + 2j2(pr))) , (2.118)

where jn(z) are the n-th order reduced Bessel functions, we can write

P (k) =

∫
d3r eik·re−Σ2(k,r,Λ)ξ̄(r), (2.119)

where ξ̄ is the two point correlation function of the density �eld without the IR displacements.

Expanding the exponential factor at zeroth order we obtain

P (k) =

∫
d3rd3q

(2π)3
ei(k−q)·rP̄ (q) = P̄ (k) , (2.120)

which tells us that, at the lowest order, the power spectrum of the density perturbations is the

same of the one where the bulk �ows e�ect was subtracted. At the �rst perturbative order we

obtain the �rst IR correction

P (k)(1),IR = −
∫

d3q

(2π)3

(k · q)2

q4
PL(q)

[
P̄ (k)− 1

2

(
P̄ (k+) + P̄ (k−)

)]
, (2.121)

where we have de�ned k± ≡ |k ± q|. By expanding the di�erence inside the parentheses in

eq. (2.121), the �rst non-vanishing contribution to the integral, a�er angular integration, is

of order ∼ q2∂2P (k)/∂k2
, which, multiplied ((k · q)/q2)2

, is O(q0). �erefore, unless an en-

hancement factor comes out from the momentum dependence of the PS, then the contribution

of eq. (2.121) is of order

PL(k)
∂ lnPL(k)

∂ ln k

∫ Λ

d3qPL(q) ∼ PL(k)σ2
δ (Λ) , (2.122)

where we have de�ned

σ2
δ (Λ) ≡

∫ Λ

d3qPL(q) . (2.123)



We can see that eq. (2.123) is parametrically of the same order of other terms that we are

neglecting in this calculations. In other words, there is no clear criterium for resumming these

contributions with respect to others.

On the other hand, if the linear power spectrum presents an oscillatory feature, the new

scale introduces an enhancement factor at each PT order. Considering the BAO’s, we can split

the linear PS into an smooth and a oscillating component

P (k) = Pnw(k) + Pw(k) , (2.124)

where the wiggly part is given by

Pw(k) = A(k) sin (krBAO + φ(k)) , (2.125)

with A(k) and φ(k) smooth functions of the momentum in the BAO range. If we consider

the IR correction to the wiggle part of the power spectrum we obtain for the terms inside the

parenthesis in eq. (2.121)[
P̄w(k)− 1

2

(
P̄w(k+)− P̄w(k−)

)]
= P̄w(k) (1− cos (qµ rBAO)) , (2.126)

where µ ≡ k̂ · q̂. By expanding this result for small q’s and multiplying by ((k · q)/q2)2
, we

can see that the wiggly part of eq. (2.121) is of order ∼ k2r2
BAOσ

2
δ (Λ), that is, enhanced with

respect to eq. (2.122) by a k2r2
BAO factor, that we want to resum at any order in PT. Using

(2.126) in (2.121) we obtain

P (1),IR
w = −Σ2(k, rBAO,Λ)Pw(k) . (2.127)

At the leading order we can calculate the e�ect of the IR displacement and resum it at all

orders, at second order one �nds

P (2),IR
w = −1

2
Σ2(k, rBAO,Λ)P (1),IR

w =
1

2
Σ4(k, rBAO,Λ)Pw(k) , (2.128)

and we can easily generalize our results at order n+ 1

P (n+1),IR
w (k) = − 1

n+ 1
Σ2(k, rBAO,Λ)P (n),IR

w (k) =
1

(n+ 1)!
Σ2n(k, rBAO,Λ)Pw(k) . (2.129)

At leading order we can write

PLO(k) = P̄ nw
L (k) + e−Σ2(k,rBAO,Λ)P̄w

L (k) . (2.130)



Since we are interested to the 1-loop power spectrum, we have to go the next-to-leading order

(NLO). We start by looking at the IR limit of the oscillating part of the 1-loop power spectrum

in eq. (2.49), which gives

Pw
1−loop(k > Λ) ' 1

2

∫ Λ d3q

(2π)3

(k · q)2

q4
PL(q) [Pw

L (|k + q|) + Pw
L (|k− q|)− 2Pw

L (k)]

= −Σ2(k, rBAO,Λ)Pw
L (k) .

(2.131)

Now we can apply directly the same procedure that lead us to eq. (2.130), obtaining

P (k) =P̄ nw
L (k) + P̄ nw

1−loop

+ e−Σ2(k,rBAO,Λ)
[
1 + Σ2(k, rBAO,Λ)

]
P̄w
L (k) + e−Σ2(k,rBAO,Λ)P̄w

1−loop(k) ,
(2.132)

where we have used the fact that when replacing Pw(k) with the 1-loop power spectrum

already contains Σ2(k, rBAO,Λ)Pw
L (k).

�e results described above can be easily generalized to biased tracers, assuming that the

equivalence principle holds, by substituting the ma�er power spectra with the biased trac-

ers ones. On the other hand, going to redshi� space requires a generalization of our results,

meaning [80]

P IR,res,LO+NLO
g,s (k, µk) =Z2

1(k, µk)
(
P nw
L (k) +

(
1 + Σ2

tot(µ)
)
e−Σ2

tot(µk)Pw
L (k)

)
+ P 1−loop

g,s [P nw
L ] + e−Σ2

tot(µk)P 1−loop,w
g,s ,

(2.133)

where

Σ2
tot(µk) ≡ (1 + fµ2

k(2 + f))Σ2(k, rBAO,Λ) + f 2µ2
k(µ

2
k − 1)δΣ2(k, rBAO,Λ) , (2.134)

and

δΣ2(k, rBAO,Λ) =
1

18π2

∫ Λ

dpPL(p) j2(prBAO) . (2.135)

In eq. (2.133), with P 1−loop
g,s [P nw

L ] we mean that this term is calculated using the linear no-

wiggle PS inside the 1-loop integrals, see the deterministic part of eq. (2.104). �e wiggly part

of the one loop power spectrum is given by

P 1−loop,w
g,s (k, µ) =4

∫
d3p

(2π)3
[Z2(k− p,p)]2 P nw

L (p)P nw
L (|k− p|)e−Σ2

tot(µp)

+ 6Z1(k, µk)e
−Σ2

tot(µk)Pw
L (k)

∫
d3p

(2π)3
Z3(k,p,−p)P nw

L (p)

+ 6Z1(k, µk)P
nw
L (k)

∫
d3p

(2π)3
Z3(k,p,−p)Pw

L (p)e−Σ2
tot(µp) .

(2.136)



With similar arguments, for the tree-level bispectrum of galaxies in redshi� space, we can

write the leading-order prediction for the IR-resummation as [80]

BIR,res,LO
g,s (k1,k2,k3) =Z1(k1)Z1(k2)Z2(k1,k2)

[
P nw
L (k1)P nw

L (k2)

+ P nw
L (k1)e−Σ2

tot(µk2
)Pw

L (k2) + P nw
L (k2)e−Σ2

tot(µk1
)Pw

L (k1)
]

+ 2 cyc.

(2.137)

IR resummation is the last ingredient we need for the calculation of the 1-loop PS for biased

tracers in redshi� space: this will be the quantity that we will compare with observational

data in order to extrapolate measurements of cosmological parameters. other approaches give

analogous results, see [80, 81].

2.6 FFTLog method

�e �nal goal of the study presented so far is to provide an observable to be compared with

actual measurements. In our case the observable is the galaxy power spectrum in redshi�

space. In eq. (2.104) we have accounted for all the observational e�ects and IR-resummation,

described in section (2.5). EFTofLSS was used to perform the analysis of the BOSS cluster-

ing dataset by [45, 46, 47]. In these works, the cosmological parameter space, composed by

{H0, As, ns, ωb, ωc}, was sampled using the MCMC integration method [82, 83, 84, 85], which

fully calculates the theoretical model at each step (varying the cosmological parameters). Stan-

dard numerical techniques takes some minutes to calculate the k-integrals in the one loop

power spectrum for ∼30 points, running similar chains would be an extraordinary cost in

terms of time and computational resources. In [43, 44] it was introduced a novel technique for

the fast evaluation of the one loop integrals based on the FFTLog approach, that we will explain

below. �is technique was implemented in four main codes currently used for parameter esti-

mation: FAST-PT [43, 86], PyBird [10], CLASS-PT [87] and velocileptors [88, 89].

�e main idea behind the approach introduced in [44] is to approximate cosmologies with

a sum of power law universes, kα, with α complex. �is is made possible by using the Fast

Fourier Transform (FFT) of the PS in log k (Log). Given a range of scales, from kmin to kmax,



the linear power spectrum with N k-points is given by

P̄L(kn) =

N
2∑

m=−N
2

cmk
ν+iηm
n , (2.138)

where the coe�cients cm together with the frequencies ηm are de�ned by

cm =
1

N

N−1∑
l=0

PL(kl)
−νk−iηmmin e−2πiml/N , ηm =

2πm

log (kmax/kmin)
. (2.139)

Here we denote the approximation for the linear power spectrum with P̄L(k), while the coef-

�cients cm in eq. (2.139) are de�ned using the exact linear power spectrum PL(k). �e param-

eter ν is a real number, while the powers in the power-law expansion are, in general, complex

numbers. �e interesting part of the decomposition eq. (2.138) is that it reduces the evalu-

ation of a loop diagram for an arbitrary cosmology to evaluation of the same diagram for a

set of di�erent power-law universes with numerical (in general, time dependent) coe�cients.

Power-law momentum integral can be done analytically. In the simplest case of the one-loop

power spectrum, the momentum integral for a power-law universe can be expressed entirely

in terms of gamma functions.

�e decomposition eq. (2.138) is useful because it separates the cosmology dependent por-

tion, encoded entirely in the coe�cients cm, from the loop calculations which have been re-

duced to that of much more tractable cosmologies. For �xed value of bias ν, the momentum

range (kmin, kmax) and the number of sampling points N the di�cult part of the calculation

which involves momentum integrals can be done only once and then used for any cosmology.

Recalling eqs. (2.50) and (2.51), we now express the explicit form of the kernels Fn in terms

of integer powers of k2
, q2

and |k− q|2, obtaining

F2(k− q,q) =
5

14
+

3k2

28q2
+

3k2

28|k− q|2
− 5q2

28|k− q|2
− 5|k− q|2

28q2
+

k4

14|k− q|2q2
, (2.140)



and (see also [90])

F3(q,−q,k) =
1

|k− q|2

[
5k2

126
− 11k · q

108
+ 7

(k · q)2

108k2
− k2(k · q)2

54q4
+

4(k · q)3

189q4

− 23k2k · q
756q2

+
25(k · q)2

252q2
− 2(k · q)3

k2q2

]

+
1

|k + q|2

[
5k2

126
+

11k · q
108

− 7(k · q)2

108k2
− 4k2(k · q)2

27q4

− 53(k · q)3

189q4
+

23k2k · q
756q2

− 121(k · q)2

756q2
− 5(k · q)3

27k2q2

]
.

(2.141)

If we decompose PL(k) in self similar power law cosmologies using eq. (2.138), the one loop

power spectrum becomes a sum of simple momentum integrals of the following form∫
d3q

(2π)3

1

q2ν1|k− q|2ν2
≡ k3−2ν12I(ν1, ν2), (2.142)

where ν1 and ν2 are in general complex numbers. �e function I(ν1, ν2) is dimensionless and

can be easily calculated using the standard technique with Feynman parameters. �e result is

a well known expression see [90]

I(ν1, ν2) =
1

8π3/2

Γ
(

3
2
− ν1

)
Γ
(

3
2
− ν2

)
Γ
(
ν12 − 3

2

)
Γ(ν1)Γ(ν2)Γ(3− ν12)

, (2.143)

where ν12 = ν1 + ν2. Using eq. (2.138) in the P22 term, eq. (2.50) we obtain

P̄22(k) = 2
∑
m1,m2

cm1cm2

∑
n1,n2

f22(n1, n2)k−2(n1+n2)

∫
d3q

(2π)3

1

q2ν1−2n1|k− q|2ν2−2n2
, (2.144)

where cm1 and cm2 are the coe�cients that contains the cosmological information coming from

the FFT, while n1 and n2 are integer powers of q2
and |k− q|2 in the expanded F 2

2 (k− q,q).

�e numerical coe�cients are inside the function f22(n1, n2) and �nally the complex exponent

are νi = −1/2(ν + iηmi). �en using eq. (2.142) we have

P̄22(k) = k3
∑
m1,m2

cm1k
−2ν1 M22(ν1, ν2) cm2k

−2ν2 , (2.145)

where we have de�ned the matrix

M22(ν1, ν2) =

(
3
2
− ν12

) (
1
2
− ν12

)
[ν1ν2 (98ν2

12 − 14ν12 + 36)− 91ν2
12 + 3ν12 + 58]

196ν1(1 + ν1)
(

1
2
− ν1

)
ν2(1 + ν2)

(
1
2
− ν2

) I(ν1, ν2) .

(2.146)



Similar results hold for P13, see ref. [44].

As we said, the cosmology dependence is all inside the cm terms. For �xed number of

sample points N , scale interval [lmin, kmax] and bias ν, the matrix de�ned in eq. (2.146) is

�xed and can be calculated once and for all. �e calculation of the P22 integral then resides

only in the calculation of one FFT in order to determine the cm coe�cients and then perform

a matrix multiplication (2.145). Note that in eq. (2.140) and (2.141) we have shown the EdS

kernels with �xed numerical coe�cients, but we are interested in cosmologies with general

time dependence, like ΛCDM and nDGP, that we will introduce in chapter (3). �e same

arguments leading to QFT-like integrals of the form (2.142) hold for these kind of cosmologies:

as shown in [75] also the tracer density and velocity kernels can be decomposed in power of

k2
, q2

and |k− q|2, allowing us to use FFTLog also for these models.

�is procedure much faster than the direct computation and it has been shown to be quite

accurate for a good choice of the bias parameter ν, [43, 44].

2.7 Conclusions

�e state of the art measurements of cosmological parameters from LSS come from the analysis

of the data from the Baryon Oscillation Spectroscopic Survey (BOSS, [91]). �e full analysis of

the power spectrum and the bispectrum was presented in [48, 49]. In [50] the authors claimed

the detection of the BAO feature in the galaxy bispectrum, with consistent results with the

power spectrum ones.

In [45, 46, 92, 47], the groups employ, for the �rst time, the fully consistent, PT based model

for the anisotropic, redshi�-space power spectrum, based on the EFTofLSS, including infrared

resummation, described in eq. (2.104) and (2.133). �e parameter space has been explored by

using the common MCMC method, with a computation of the theoretical model at each step,

while in most previous analysis the cosmology was �xed to a �ducial one and deviations from

the �ducial cosmology were quanti�ed using the Alcock-Paczynski parametrization [93]. In

particular, the groups found that cosmological parameters constraints can be set independently

from Planck results, i.e., without assuming any prior based on CMB experiments.



Chapter 3

SPT beyond ΛCDM

In chapter 2 we have presented the results for the one-loop PS and the tree-level BS using a

perturbative approach and assuming an EDS background. For standard cosmologies, mean-

ing within general relativity, we have Ωm/f
2
+ ' 1, which is exact in EdS, see [94]. Taking

Ωm/f
2
+ = 1 exactly removes all the explicit time dependencies in the equations of motion of

dark ma�er overdensity and velocity, which re�ects in the time independence of the numeri-

cal coe�cients of the kernels, see eqs. (2.43) and (2.44). A�er performing all the calculations

in a EdS framework, one can substitute the scale factor with the linear growth function, i.e.

a(τ) → D+(τ), in order to have more accurate results, see [95]. �e precision of this ap-

proximation was investigated, for example, by [56] who found that it performs to be�er than

1% at redshi� z = 0 for k ≤ 0.2 h/Mpc, and 0.1% at z = 1 on the same scales scales. For

higher redshi�s, the approximation performs be�er, since one enters the ma�er dominated

era. Although for smaller scales and smaller redshi�s it degrades, this approximation is used

by many perturbative approaches [96, 45, 46], in order to simplify the calculations. In this

chapter we will see how to include exact time dependence both in the equation of motion and

in the perturbative solutions by using the Green’s function approach. �e importance of in-

cluding these e�ects resides in the future possibility of distinguishing between beyond-ΛCDM

models: these can include both time- and scale-dependent modi�cations, like the nDGP model

[97], which will be the subject of study of the second part of this chapter, or the Hu-Sawicki

f(R) model [98]. �ese modi�ed gravity toy models have been studied in detail with N-body

simulations [99] and tested against observations [100, 101, 102].

36



Future surveys like the Euclid satellite will make possible to distinguish between di�erent

models, giving us more insight in the large scale structure of the universe.

3.1 Green’s function approach

We recall that the Fourier space equations of motion for the dark ma�er overdensity, δ, and

the rescaled velocity divergence, θ, are

∂ηδk − f+θk = f+Ik,q1,q2α(q1,q2)θq1δq2 ,

∂ηθk − f+θk +
3

2

Ωm

f+

µ θk +
1

f+

k2

H2
φk = f+Ik,q1,q2β(q1,q2)θq1θq2 ,

(3.1)

where α and β are the standard dark ma�er interaction vertices,

α(q1,q2) = 1 +
q1 · q2

q2
1

and β(q1,q2) =
|q1 + q2|2q1 · q2

2q2
1q

2
2

. (3.2)

�e function µ = µ(η) in the Euler equation carries possible linear modi�cations to the grav-

itational interaction. In GR one simply has µ(η) = 1, and this is the case we will consider

in this section. We will see in section (3.2) a speci�c model in which µ(η) 6= 1. In general

relativity, one closes these two equations with the Poisson equation (2.9). As we will see in

more detail in sec. (3.2), the function µ modi�es the Poisson equation at linear order, while

other functions will be needed in order to take into account non-linear modi�cations.

We are now interested in the exact time dependence evolution within a ΛCDM background,

where

H(η) = H0

√
Ωm,0e−3η + ΩΛ,0, Ωm(η) = Ωm,0

H2
0

H2(η)
e−3η . (3.3)

Note that also in modi�ed gravity models where other forms of dark ma�er or dark energy

are present one usually assumes the background evolution equations in eq. (3.3), and this

is what is also assumed in the N-body simulations where these models are implemented (see

section 3.2 and [99]). In the previous section we have considered the EdS approximation where

Ωm(η) = Ωm,0 = 1, f+ = 1 and H = H0e
− η

2 . �is assumption ensures that the numerical

coe�cients of the kernels that appear in the perturbative solutions of eq. (3.1) are �xed and

time independent.



In the exact time dependence case we will make use of the Green’s functions method to

�nd the perturbative solutions to the equations of motion. We can �nd a n-th order solution

of the form [103]

δ
(n)
k (η) =

∫ η

−∞
dη̃
[
Gδ

1(η, η̃)Sδn(k, η)−Gδ
2(η, η̃)Sθn(k, η)

]
,

θ
(n)
k (η) =

∫ η

−∞
dη̃
[
Gθ

1(η, η̃)Sδn(k, η)−Gθ
2(η, η̃)Sθn(k, η)

]
,

(3.4)

where Sσn , with σ = {δ, θ} are the n-th order source terms of the continuity, for σ = δ, and

the Euler equation, for σ = θ. Substituting this solution into the equations of motion, we have

dGδ
σ(η, η̃)

dη
− f+G

θ
σ(η, η̃) = λσδD(eη − eη̃) ,

dGθ
σ(η, η̃)

dη
− f+G

θ
σ(η, η̃) +

3

2

µΩm

f+

[
Gθ
σ(η, η̃)−Gδ

σ(η, η̃)
]

= (1 + λσ) δD(eη − eη̃)
(3.5)

where λ1 = 1 and λ2 = 0. �e Green’s functions wri�en above describe the response of the

two �elds δ and θ when the continuity equation and the Euler equation are perturbed. �e

system above can be solved analytically by using the linear growth and decay functions D±,

see ref. [75] for a full treatment of this method within wCDM cosmologies.

A�er having calculated all the Green’s functions that account for the time evolution, the

steps towards the 1-loop PS for biased tracers in redshi� space are the same described in

the previous chapter. �e only main di�erence is that the convolution kernels introduced in

eq. (2.39) and (2.40) will be time dependent. Schematically, for the density kernels, we have

Fn(q1, . . . ,qn) −→ Fn(q1, . . . ,qn; η) .

For example, in ΛCDM the second order density kernel is

F2(q1,q2; η) = β(q1,q2) + (αs − β) (q1,q2)Gδ1(η)

= Gδ1(η) +
q1 · q2

2q1q2

(
q1

q2

+
q2

q1

)
+
(
1− Gδ1(η)

) (q1 · q2)2

q2
1q

2
2

,
(3.6)

where Gδ1 is a higher order Green’s function, which, in ΛCDM, is expressed by

Gd1(η) =

∫ η

−∞
dη̃ Gδ

1(η, η̃)f+(η̃)
D2

+(η̃)

D2
+(η)

eη̃ . (3.7)

It is easy to verify that in the EdS limit Gδ1 → 5/7 and the kernel in eq. (3.6) reproduces exactly

the one in eq. (2.43).



�e results for biased tracers in redshi� space follow the same arguments described above.

�e bias expansion introduced in sect. (2.3.1) was derived using only symmetry principles of

the equation of motion. For this reason, all those cosmological models that share the same

symmetries will also need the same number of bias parameters. At third order in PT, the num-

ber of the deterministic biases, for models that satisfy the EP, is seven. For the exact time

dependence, this was explicitly shown in [75]. In chapter (5) we will show how to reproduce

this number of deterministic biases, only by considering symmetry principles without speci-

fying the equations of motion.

�e result for the one-loop power spectrum will simply be a generalization of eq. 2.104, for

a full treatment see [75]. Notice that all these results are obtained for a generic time depen-

dence for the equation of motion and assuming only a ΛCDM background. �is means that

all the results are completely general and are still valid for models where a time-dependent

modi�cation of gravity has been introduced and that satisfy the same symmetries of ΛCDM.

�e Green’s function approach can be used to infer cosmological parameters for any model

that present a time-dependent growth for the inhomogeneities. �e di�erence between di�er-

ent models will reside only in the time dependent Green’s function Gλ
i and the higher order

functions such as Gλi and so on.

3.1.1 Comparison with EdS approximation

In �gures (3.1) we show the result of an MCMC analysis against the N-body simulations pre-

sented in [104]
1
. In particular we show the di�erence between the EdS case and the full exact-

time ΛCDM. As you can see, the e�ect of considering exact-time does not a�ect the analysis,

at least at this perturbative order (1-loop) and for the covariances used (that are, however, very

small compared to the ones used for actual data analysis).

In �g. (3.2) we show the result of an MCMC analysis for the two redshi�s of the BOSS

dataset, CMASS2 (z = 0.61) and LOWZ (z = 0.38). �e theoretical model is the one used

in the EFTofLSS, assuming ΛCDM background. We have used the public code PyBird [10],

where the one loop PS in redshi� space for biased tracers is implemented, together with the

1
All the details about the simulations and the �ducial values of the cosmological parameters can be found

here.

https://www2.yukawa.kyoto-u.ac.jp/~takahiro.nishimichi/data/PTchallenge/
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Figure 3.1: Comparison of the constraints on cosmological parameters using, in one case, the

EdS approximation and, in the other, the exact time dependence of ΛCDM. �e analysis was

performed on the PT challenge simulations [104], for which the true values of the cosmological

parameters are not public.

MCMC code Montepython [84]. �e cuto� used is for both redshi�s kmax = 0.14 h/Mpc, for

which the cosmological parameters measured are unbiased. �e results of this analysis show

compatible constraints between di�erent redshi�s, as one would expect. �ese analysis were

performed without assuming any Planck prior. We only assumed a BBN prior on the baryon

density, following [45, 46].
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Figure 3.2: Posterior distribution for the cosmological parameters a�er the analysis of the PT

challenge simulations using EFTofLSS in ΛCDM.

In the next section we will introduce the MG model nDGP. We will present a forecast of the



constraining power of BOSS-like surveys and introduce the future analysis we will perform

on real data.

3.2 nDGP model

In theories beyond ΛCDM, where the linear growth is still scale-independent, like for instance

in the normal branch of the Dvali, Gabadadze and Porrati (nDGP) braneworld model [9] or

in the EFT of dark energy beyond linear order [105, 106] (see [103] for a comparison with

simulations), new nonlinear couplings emerge. �eir e�ect on the time-dependence of the

coe�cients can be derived by including them on the RHS of eq. (3.1), at the appropriate order.

In particular we will study the DGP model [9] where it is assumed that universe we live

in is a four dimensional brane enclosed in a �ve-dimensional Minkowski spacetime. �us,

gravitational interaction is �ve-dimensional on large scales and reduces to a four-dimensional

force, recovering GR, on small scales. �e transition from �ve to four-dimensional happens at

the so called crossover scale rc, de�ned by the ratio between the �ve and the four-dimensional

gravitational constants

rc =
G(5)

2G(4)
. (3.8)

�e crossover scale represents the only free parameter of the theory. In this case the modi�ed

Friedman equation is given by

ε
H

rc
= H2 (1− Ωm(η)) , (3.9)

where H is the Hubble parameter, Ωm is fractional energy density of dark ma�er and ε = ±1

parametrizes the two DGP models: ε = 1 is the self-accelerated branch (sDGP), which was

found to be unstable, see [107], while ε = −1 represents the normal branch (nDGP), which

will be the subject of this study. In the la�er model, accelerated expansion is achieved through

a dynamical dark energy component [97], which reproduces an analogous behavior to the

cosmological constant in ΛCDM. �e general Hubble parameter is

H(η) = H0

(√
Ωm,0e−3η + ΩDE(η) + Ωrc −

√
Ωrc

)
, (3.10)



where ΩDE is the density parameter of the dark energy component, and

Ωrc =
1

4r2
cH

2
0

. (3.11)

Usually, in N-body simulations, the dark energy component is tuned so that the background

history recovers the ΛCDM one, and only the perturbative corrections are studied. Matching

eq. (3.10) with eq. (3.3) we obtain

ΩDE(η) = ΩΛ + 2
√

Ωrc

√
Ωm,0e−3η + ΩΛ . (3.12)

�e theory also provides a screening mechanism for the small scales, for more details see [9,

97]. From now on, we will consider the ΛCDM background expressed in eq. 3.3.

�e modi�ed Poisson equation entering in the Euler equation (3.1) now reads, in Fourier

space [103, 108]

− k2

H2
φk(η) =

3 Ωm

2
µ(η)δk + S(k, η) , (3.13)

where δk is the dark ma�er overdensity. �e function µ(η) can, in general, depend both on

time and scale and characterize the linear modi�cation to the gravitational interaction. Here

we will study only time-dependent modi�cations to the clustering equations, but, in general,

a scale-dependence could also be present. In the nDGP theory µ reads [106]

µ(η) = 1 +
1

3B(η)
, B(η) = 1 +

H(η)

H0

1√
Ωrc

(
2

3
+

1

3
∂η logH

)
. (3.14)

�e source term S(k, η) in eq. (3.13) is responsible for new mode couplings in modi�ed

gravity theories, including screening mechanism. In nDGP it reads

S(k, η) =µ2(η)

(
3 Ωm

2

)2

Ik,q1,q2γ(q1,q2)δq1δq2

+ µ3(η)

(
3 Ωm

2

)3

Ik,q1,q2,q3γ3(q1,q2,q3)δq1δq2δq3

+ µ22(η)

(
3 Ωm

2

)3

Ik,q1,q2,q3γ(q1,q2)γ(q12,q3)δq1δq2δq3 ,

(3.15)

where the new kernels inside the integrals are given by

γ(k1,k2) = 1−
(
k̂1 · k̂2

)2
,

γ3(k1,k2,k3) = 1 + 2
(
k̂1 · k̂2

)(
k̂1 · k̂3

)(
k̂2 · k̂3

)
−
(
k̂1 · k̂3

)2 −
(
k̂2 · k̂3

)2 −
(
k̂1 · k̂2

)2
,

(3.16)



where k̂ ≡ k/k. We anticipate that the cubic vertex proportional to µ3 does not contribute

to the power spectrum at one loop because it enters as γ3(k,q,−q) = 0 [106], but we have

included it here for completeness. �e new time dependent functions are given by

µ2(η) = −2H2r2
c

(
1

3B

)3

, µ22(η) = 8H4r4
c

(
1

3B

)5

. (3.17)

As discussed above, we do not need to specify µ3. General relativity is recovered by sending

rc →∞, where we have µ(η)→ 1 and µ2, µ22 → 0.

Neglecting the term proportional to µ3, the perturbation equations above then become

∂ηδk − f+θk = Sδk , (3.18)

∂ηθk − f+θk +
3

2

Ωm

f+

µ(θk − δk) = Sθk , (3.19)

with

Sδk =f+Ik,q1,q2α(q1,q2)θq1δq2 ,

Sθk =f+Ik,q1,q2

[
β(q1,q2)θq1θq2 +

µ2

f 2
+

(
3Ωm

2

)2

γ(q1,q2)δq1δq2

]

+
µ22

f+

(
3Ωm

2

)3

Ik,q1,q2,q3γ(q1,q2)γ(q12,q3)δq1δq2δq3 .

From eqs. (3.18) and (3.19) we can �nd the evolution equation for the growth function

d2D

d2η
+

(
1 +

d lnH
dη

)
dD

dη
− 3

2
Ωmµ = 0 , (3.20)

where µ(η) is the time dependent function introduced in 3.14. In �gure (3.3) we show its

time behaviour for di�erent values of Ωrc, chosen following [97]. From now on we can follow

the same steps described in the ΛCDM case: we look for a perturbative solution of the form

(3.4), and we write the galaxy kernels in redshi� space. �e only di�erence now will be in

the time dependent functions {Gλ1 ,Gλ2 ,Uλσ ,Vλσσ̃}, see appendix (A). One can easily verify that

the degeneracies found for the ΛCDM model, are still valid, meaning that the tracers kernel

in redshi� space have the same form of those presented in [75].

3.3 Results

PyBird [10] is a Python code for the evaluation of the power spectrum of biased tracers in

redshi� space. �e theoretical model used to calculate the one loop power spectrum is the
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Figure 3.3: Comparison of µ as a function of the time variable η for di�erent values of Ωrc. �e

ΛCDM case is also shown for comparison.

EFTofLSS, the one described in the previous section and presented explicitly in [75]. �e

modular nature of this code
2

allows an easy implementation of the nDGP model we have

described so far. �e main modi�cation we have implemented consists in solving numerically

the di�erential equation for the growth function and the higher order Green’s functions in

the nDGP model, see app. (A). �is procedure can easily be generalized to MG models with

scale-independent growth, like, for example, clustering quintessence [109] (see [110] for the

implementation of this model inside PyBird and constraints on it within the BOSS analysis).

At the linear level, nDGP modi�es the linear growth function D+ via the function µ in

eq. (3.20). In �gure (3.4) we show the results of the numerical solution for the linear growth

function. As you can see, realistic values for Ωrc, see [102], cause a percent deviation from

ΛCDM for recent times.

�is departure from ΛCDM is even more visible when the non-linear power spectrum, as

shown in �g. (3.5).

�e modi�cation to D+ due to nDGP is completely degenerate with the normalization

of the power spectrum, parametrized by As. �erefore, using only one redshi� observation

2
See here for the public GitHub repository.

https://github.com/pierrexyz/pybird
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Figure 3.6: Fisher forecast using two redshi� measurements of the PT challenge

for the PS will not give precise constraints on Ωrc and As. Here we show, using a Fisher

forecast [111], that using 2 redshi� measurements will help in constraining Ωrc. For the fore-

cast we produce the PS monopole and quadrupole using PyBird with a �ducial cosmology

{ln1010 As, ωcdm, h, ns, ln10 Ωrc} = {3.08, 0.113, 0.652, 0.9816,−3} and for the covariances we

use the public ones of the PT challenge simulations [104].

As you can see, a small value of Ωrc, the �ducial value is Ωrc = 10−3
, causes a measur-

able e�ect on the scalar amplitude As. �is promising result con�rms our expectations on

considering two redshi�s for the analysis. Using di�erent redshi� bins, like, for example, in

the Euclid mission, will increase even more the constraining power on these beyond-ΛCDM

models.

�e new version of the code is currently under testing and it will be used for the analysis

of the BOSS dataset.

3.4 Future developments and conclusions

In this chapter we have brie�y presented the Green’s function approach for the exact-time

dependence in models beyond the EdS approximation. �e simplest model we considered

is the ΛCDM model, and we have shown that the constraints on cosmological parameters



obtained in the two di�erent models are the same, at least at this order, as shown in �g. (3.2).

�is is due to the accuracy of EdS in reproducing the ΛCDM theory, as also noted in ref. [75].

When beyond-ΛCDM models are considered, the exact-time dependence inclusion is cru-

cial. Here we have considered a particular scale-independent MG model, nDGP. We have

shown the results of the implementation inside PyBird, and we analyzed the results of the

Fisher forecast on BOSS-like surveys. Although very promising, we expect to set only an up-

per limit to the new parameter Ωrc when the BOSS dataset will be analyzed, which we leave for

future studies. �e new version of the code will be used for the analysis of the Euclid satellite

dataset.

�e natural prosecution of this work will be the inclusion of scale-dependent models, in

order to account, for example, for massive neutrinos. We leave the exploration of these gen-

eralizations to future work.



Chapter 4

Consistency relations of the large scale

structure

4.1 Equivalence Principle and BAO

�e large scale structure of the Universe (LSS) is governed by nonlinear e�ects of di�erent na-

ture: the evolution of the dark ma�er (DM) �eld, redshi� space distortions (RSD), and the bias

of the �eld for the considered tracers (galaxies, halos…) with respect to the DM one. All these

e�ects limit the application of analytical techniques to rather large scales, thus excluding large

part of the data from actual analyses. It is therefore remarkable that fully nonlinear statements

can be made, in the form of “consistency relations” (CR) [4, 5, 6, 7]. �ese are statements about

the e�ect of perturbations at large scales on small scales ones, expressed in terms of relations

between correlation functions of di�erent order. As highlighted also in [6, 112], the equiva-

lence principle a�rms that one cannot measure a uniform gravitational �eld, φL, produced

by a long-wavelength (linear) mode of a density perturbation with a local experiment. �is

translates into the fact that the e�ect of a uniform gravitational �eld can be reabsorbed per-

forming a change of coordinates. �en, the n-points correlators of the density perturbations

in presence of a long-mode gravitational potential, are the same as the n-points correlators of

density perturbations in absence of the long mode but in transformed coordinates,

〈δ(x1, η1) . . . δ(xn, ηn)|ΦL〉 = 〈δ(x̃1, η̃1) . . . δ(x̃n, η̃n)〉 . (4.1)
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�e content of the CR’s is essentially kinematic: as explicited in eq. (4.1), it describes the

e�ect of a long wavelength displacement �eld on short distance �uctuations. In linear per-

turbation theory, assuming adiabatic and gaussian initial conditions, the displacement �eld is

directly related to a long wavelength ma�er density �uctuation, with a coe�cient growing as

1/q as q → 0, where q is the long wavelength wavenumber. Since a uniform displacement

cannot have any consequence on equal-times correlation functions [54], CR’s exhibit a char-

acteristic 1/q growth only when considering unequal time correlators. On the other hand, for

equal-time correlators the behavior of correlation functions as prescribed by CR’s is in general

‘obscured’ by other terms, whose form is not dictated by the CR’s and are formally of the same

order in q. �erefore the practical use of CR’s appears to be of a limited extent, as unequal-time

correlation functions are not measurable (notice that “unequal-times” does not mean “unequal

redshi�s”, as the la�er involve density �elds in regions inside the past lightcone, which is not

the case for the former).

In particular we will consider the e�ect of a long-wavelength mode on the bispectrum (BS).

Assuming adiabatic and gaussian initial conditions, CR’s single out a nonperturbative con-

tribution to the squeezed limit BS, where by nonperturbative here it is meant that it does not

rely on any approximation scheme (like, for instance Perturbation �eory (PT)) and that the

result holds even beyond the perfect �uid approximation. By further assuming that the very

‘long’ modes at scale q can be described by linear PT (but with no approximation on the ‘short’

ones at scale k!) the CR’s take the form of exact relations between the BS and the PS’s eval-

uated at the scales k and q (see eq. (4.20) below). For the above reasons, the CR’s hold not

only for ma�er but for any tracer, both in real and in redshi� space [113, 114]. �e potential

of CR’s in constraining possible violations of gaussianity of the initial conditions has been

investigated in [7, 115], while for violations of the EP see [113, 116].

At �rst sight, for theories respecting the EP and assuming gaussian initial conditions, the

nontrivial content of the CR’s might look empty, as in this case the contribution to the BS

‘protected’ by the CR’s is parametrically of the same order, O((k/q)0), of other terms induced

by di�erent sources of nonlinearities at any PT order, for which theoretical control is limited

by the reliability of PT in the considered range. However, as it was shown in [2, 3], the wiggly

feature of Baryonic Acoustic Oscillations imprinted in the spectra of the tracers of LSS in



the late-time universe provide a way to isolate the CR-protected contribution to the PS from

unprotected ones. �e la�er, although being parametrically of the same order in k/q in the

squeezed limit, are either smooth or suppressed by factors O(2π/(krs)) with respect to the

protected ones, where rs ' (100 Mpc h−1) is the BAO acoustic scale. �erefore, both in real

and redshi� space, by comparing the BAO amplitudes in the BS and in the PS we were able

to measure the prefactor of the la�er which is related to the linear bias parameter and the

growth function, f = d lnD/d ln a. A�er ��een years of the �rst clear detection of BAO in

the galaxy correlation function by [18], the precision at which the BAO feature can be extracted

from the distribution of galaxies has greatly been improved (see [11] for recent results from

the PS and the correlation function). Furthermore, a high-signi�cance detection of the BAO

feature in the three-point functions has also been reported by [117]. �erefore, we expect that

measurements of the CR’s through the BAO feature in real data would be within the reach of

large-scale experiments planned in the near future, such as LSST [118], Euclid [119], WFIRST

[120].

In this chapter we follow the analysis �rst performed in [2, 3] both in real and redshi�

space, in which the CR’s coe�cients depend both on the large scale bias and the large scale

growth function, f = d lnD/d ln a (where D is the linear growth rate) thereby providing a

way to break the degeneracy between the two. We will analyse large volume N-body simu-

lations, con�rming the validity of CR’s. We will �nd that CR’s alone are mostly sensitive to

the bias bα (where bα is the linear bias of the tracer α ), giving weak constraints on the pa-

rameter βα = f/bα. However, by combining the CR analysis with the independent extraction

of the parameter βα from the PS quadrupole to monopole ratio, the f − βα degeneracy can

be successfully broken. Moreover, we estimate the constraining potential of future surveys,

in particular, Euclid [119], showing that it can reach be�er than 10% precision on the bias

parameter, and therefore on f as well, in a manner completely free from assumptions on the

biasing prescription as well as the underlying gravity theory.

�e chapter is organised as follows. In sect. (4.2) we derive the CR’s in the most general

way for biased tracers in redshi� space and show explicitly the relation between CR’s and

BAO physics; in sect. (4.3) we study the case when real space correlators are considered and

measure the large scale galaxy bias against numerical simulations; in sect. (4.4) we generalize



the analysis to redhis� space, de�ning the multipoles approach and presenting also a forecast

of the constraining power of this methodology when applied to future data from the Euclid

survey. Finally in sect. (4.6) we summarize our conclusions and give our outlook on future

developments.

�e results of this chapter have been published in the two papers

• M. Marinucci, T. Nischimici and M. Pietroni, Measuring Bias via the Consistency Relations

of the Large Scale Structure, Phys. Rev. D100 (2019), no. 12 123537
1
,

• M. Marinucci, T. Nishimichi and M. Pietroni, Model independent measurement of the

growth rate from the consistency relations of the LSS, JCAP 07 (2020) 054
2
,

and we have included these articles or part of them according to the journals copyright policies.

4.2 Consistency relations of the large scale structure

In this section, we derive the CR’s in a way convenient for the purpose of this thesis, and,

moreover, we specify to the equal-time limit, which was not treated in the original papers

[4, 5].

4.2.1 General derivation

We consider the most general Boltzmann equation,(
∂

∂τ
+

pi
am

∂

∂xi
− am ∂

∂xi
Φ(x, τ)

∂

∂pi

)
f(x,p, τ) = C[f, . . .](x,p, τ) , (4.2)

where f(x,p, τ) is the distribution function of a given species, not necessarily cold dark mat-

ter. �e collision term at the RHS, takes into account possible non-gravitational interactions,

and it involves f itself as well as the distribution functions of the other species taking part in

the interactions. f could also represent the distribution of halos in a given mass range, or a

1
Reprinted article with permission from M. Marinucci, T. Nischimici and M. Pietroni, Measuring Bias via the

Consistency Relations of the Large Scale Structure, Phys. Rev. D100 (2019), no. 12 123537 Copyright (2021) by the

American Physical Society.

2
© IOP Publishing Ltd and Sissa Medialab. Reproduced by permission of IOP Publishing. All rights reserved.



given type of galaxies, and in that case C would describe processes which change the comov-

ing number density of these tracers, such as merging (see eq. (2.12) for the collisionless case).

Eq. (4.2) is invariant under the time-dependent frame change

x→ x̄ = x + d(τ) , p→ p̄ = p + amḋ(τ) , (4.3)

provided we make the replacements

f(x,p, τ)→ f̄(x,p, τ) = f(x− d(τ),p− amḋ(τ), τ) ,

∂

∂xi
Φ(x, τ)→ ∂

∂xi
Φ̄(x, τ) =

∂

∂xi
Φ(x− d(τ), τ)−Hḋ(τ)− d̈(τ) ,

(4.4)

and if the collisional term satis�es

C[f̄ , . . .](x,p, τ) = C[f, . . .](x− d(τ),p− amḋ(τ), τ) , (4.5)

that is, the interaction rate is the same in the two frames. �e transformation above is nothing

but the equivalence Principle (EP), also called in this context the extended galilean invariance.

Since it is an invariance of the Boltzmann equation, its consequences are not restricted to

perturbation theory, but are valid at the fully nonlinear level, also including nonperturbative

e�ects such as shell-crossing and multistreaming. Moreover, one should keep in mind that the

symmetry holds for an arbitrary displacement d(τ), independently on the identi�cation of it

as the in�nite wavelength limit of a large scale cosmological perturbation. �e last observation

is crucial in order to disentangle the dynamical content of the consistency relation from the

statistical one, related to the statistical properties of the cosmological perturbations such as

adiabaticity and gaussianity.

�e dynamical content is encoded in constraints on the mode-coupling vertices in the so�

limit, that is, when one of the modes goes to zero. It is best analyzed in Fourier space, by

replacing the homogeneous displacement d(τ) with a scale dependent one,∫
d3x eix·qd(τ) = (2π)3δD(q)d(τ)→ d̃(q, τ) , (4.6)

and then considering the q → 0 limit. We will focus on the BS in redshi� space

B
(S)
αβγ(q,−k+,k−; τα, τβ, τγ) ≡ 〈δ(S)

α (q; τα)δ
(S)
β (−k+; τβ)δ(S)

γ (k−; τγ)〉′ , (4.7)
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Figure 4.1: Graphic representation of the notation used for the triangle parametrization.

where the superscript (S) indicates that we are considering the redshi� space quantities, k± =

k± q
2
, q = |q|, k± = |k±|, and the prime indicates that the expectation value has been divided

by a (2π)3δD(0) factor. δ
(S)
α,β,γ indicate the density contrasts for di�erent tracers (e.g. DM,

baryons, a given galaxy type, …), evaluated at times τα,β,γ , respectively.

By moving to another frame, the transformations (4.3)-(4.5) dictate the transformation of

the BS. �e density contrasts (obtained from the �rst moments of the distribution function)

transform as

δ(S)(k, τ)→ δ̄(S)(k, τ) = δ(S)(k, τ) + iIk;q′,pp · d̃(q′, τ)δ(S)(p, τ) + · · · , (4.8)

where

Ik;p1,p2 ≡
∫

d3p1

(2π)3

d3p2

(2π)3
(2π)δD(k− p1 − p2) , (4.9)

and the dots indicate higher orders in d̃. Inserting it in (4.7) the additional contributions to

the BS induced by the change of frame are obtained,

iI−k+;q′,p〈p · d̃(q′, τβ)δ(S)
α (q, τα)δ

(S)
β (p, τβ)δ(S)

γ (k−; τγ)〉′

+ (−k+ ↔ k− , β ↔ γ) + (−k+ ↔ q, β ↔ α) ,
(4.10)

where the two parentheses at the second line stand for two contributions obtained from the

one at the �rst line by performing the replacements indicated. When the uniform limit for

the displacement (that is, the inverse of (4.6)) is taken, the sum of the three new contributions

gives the BS itself multiplied by the coe�cient

− i (k+ · d(τβ)− k− · d(τγ)− q · d(τα)) , (4.11)



which vanishes for τα = τβ = τγ , as a consequence of the EP and translational invariance.

�is holds indeed at every order in d, as it was shown in [54].

In order to obtain the CR’s, one has to identify the displacement d̃(q, τ) with the large

scale displacements induced by the velocity perturbations, that is, one has to give a statistical

content to it. Assuming that at large scales linear PT holds, we will then identify, in redshi�

space,

d̃(q, τ) =
1

Hf
(v(q, τ) + fv(q, τ) · ẑ ẑ) = −iδm(q, τ)

q2
(q + f q · ẑ ẑ) , (4.12)

with δm(q, τ) the real space ma�er density �eld, which is related to the velocity �eld by the

continuity equation, the �rst of eq. (2.32). Implicitly, we have assumed that all the di�erent

species fall, at large scales, with the same velocity �eld, which follows from the assumption

of adiabatic initial conditions and, again, the EP. Inserting (4.12) in the �rst term in (4.10) we

get, in the q/k → 0 limit,

' k

q
(µ+ fµqµk) 〈δ(S)

α (q, τα)δm(−q, τβ)〉′〈δ(S)
β (−k−, τβ)δ(S)

γ (k−, τγ)〉′ , (4.13)

where

µ ≡ k · q
kq

, µq ≡
q · ẑ
q

, µk ≡
k · ẑ
k

. (4.14)

A contribution proportional to k/q is obtained also from the second term in eq. (4.10), while

the third one vanishes. Consistently with our assumption that linear PT holds at the scale q,

we use the Kaiser relation to express the real space ma�er �eld in terms of the redshi� space

one for the tracer α,

δm(q, τ) =
1

bα + fµ2
q

δ(S)
α (q, τ) , (4.15)

where both f and bα are evaluated at the time τ . So, combining with eq. (4.12), we have

d̃(q, τ) = − i

q2

q + f q · ẑ ẑ

bα + fµ2
q

δ(S)
α (q, τ) . (4.16)

Finally, we get

lim
q/k→0

B
(S)
αβγ(q,−k+,k−; τα, τβ, τγ)

= −k
q

µ+ fµkµq
bα + fµ2

q

P (S)
αα (q; τα, τα)

[
D(τγ)

D(τα)
P

(S)
βγ (k+; τβ, τγ)−

D(τβ)

D(τα)
P

(S)
βγ (k−; τβ, τγ)

]
+O

(( q
k

)0
)
,

(4.17)



where the PS’s are de�ned as

P
(S)
αβ (k; τα, τβ) ≡ 〈δ(S)

α (k; τα)δ
(S)
β (−k; τβ)〉′ , (4.18)

D(τ) is the linear ma�er growth factor and we have assumed the linear behavior of the PS

time dependence at the so� scale q, P
(S)
αα (q; τα, τβ) = P

(S)
αα (q; τα, τα)D(τβ)/D(τα). On the

other hand, as we have already emphasized, the dynamics at the hard scale, k is completely

nonlinear. �e key point is that the structure of the �rst term at the RHS is protected against

any kind of, perturbative and non-perturbative, nonlinear e�ect. By contrast, the form of the

remaining terms, indicated as O((q/k)0), is not protected and will be modi�ed in a less and

less controllable way at increasing k values and decreasing redshi�s.

When the hard scale PS is evaluated at di�erent times, τβ 6= τγ , the BS in the squeezed

limit goes as PL(q)/q, and in real space (f = 0) the contribution to the BS is a dipole, as it

is proportional to µ/bα. Physically, this contribution can be interpreted as the e�ect of the

di�erent large scale displacements, d̃(q, τβ) and d̃(q, τγ) experienced by the two short-scale

�elds δ
(S)
β (k, τβ), and δ

(S)
γ (k, τγ) at the two di�erent times τβ and τγ . �is e�ect grows with

the coherence length of the displacement, which explains the 1/q behavior, and moreover it

depends on the orientation between the large scale and the short scale modes, which explains

the dipole behavior.

�e coe�cient in front of the PS’s goes (again, in real space) as−µ2/bα×O((q/k)0). �e µ2

behavior can be understood as follows. As we have already recalled, see eq. (4.11), a perfectly

uniform displacement �eld cannot give any contribution to the equal times BS. �erefore, the

e�ect can depend only on the gradient of the large scale displacement/velocity �eld. More

precisely, the i − th spatial component of the displacement �eld can a�ect the clustering on

short scales along the j−th direction only via its ∂jd
i(x) component, leading to a contribution

to the con�guration space three point function proportional to

〈δα(−R)δα

(r

2

)
δα

(
−r

2

)
〉

= 〈δ̄α(−R + d(−R))δ̄α

(r

2
+ d

(r

2

))
δ̄α

(
−r

2
+ d

(
−r

2

))
〉

= rj
∂ξα(r)

∂ri
〈δα(−R)

∂di(r)

∂rj

∣∣∣∣
r=0

〉+ · · · ,

=
2

3H2

rirj

r2

∂ξα(r)

∂ ln r
〈δα(−R)

∂2Φ(r)

∂ri∂rj

∣∣∣∣
r=0

〉+ · · ·

(4.19)



where ξα(r) is the correlation function and Φ(r) the gravitational potential, which has been

related to the displacement d by means of linear PT. In Fourier space (see eq. (4.12)), ∂jd
i(r)

gives−qiqj/q2× δm(q) which, contracted to ki∂Pα(k)/∂kj = (kikj)/k2 dPα(k)/d ln k , gives

the −µ2
dependence.

�e reason of the 1/bα factor comes about because we want to trade the velocity �eld

(which is responsible for the CR protected term) with the directly observable density �eld for

the α tracer.

4.2.2 CR and BAO’s

�e equal-times CR for a single tracer, α, in redshi� space, given eq. (4.17), reads,

lim
q/k→0

Bα(q,−k+,k−)

Pα(q)Pα(k)
= lim

q/k→0
−k
q

µ+ fµkµq
bα + fµ2

q

Pα(k+)− Pα(k−)

Pα(k)
+O

(( q
k

)0
)

= −µ
2 + fµµkµq
bα + fµ2

q

∂ lnPα(k)

∂ ln k
− µk(µ+ fµkµq)(µq − µµk)

bα + fµ2
q

∂ lnPα(k)

∂ lnµk
+O

(( q
k

)0
)
,

(4.20)

where k ≡ |k|, q ≡ |q|, k± ≡ k± q/2, µ ≡ k · q/(k q), µk ≡ k · ẑ/k, and µq ≡ q · ẑ/k, with

ẑ being the direction of the line of sight. We have omi�ed the time dependence and used the

fact that, in the far observer approximation, the redshi� space PS, Pα(k), depends only on k

and µk. In the following, we will consider dark ma�er (α = m), halos (α = h), and galaxy

(α = g) tracers.

We stress that the ‘linear bias’ bα appearing in the CR is not a parameter of a bias expansion,

but is de�ned precisely as the limit between the real space PS for the tracer α and the α-ma�er

cross-correlator (see [2] and the section (4.2.1)),

bα ≡ lim
q→0

Pαα(q)

Pαm(q)
, (4.21)

the only assumptions entering this de�nition being the EP and adiabatic initial conditions,

who ensure that all species move with the same velocity �elds at large scales, and that linear

PT holds at scales q → 0.

Unlike the non-equal times CR’s [113], the CR-protected contributions on the RHS of the

equal times CR, namely the �rst term on the �rst line and the �rst two terms at the second one,



cannot be distinguished from the unprotected ones, the O((q/k)0) terms, by looking at a pole

in q as the squeezed limit is approached. �is is, at �rst sight, unfortunate, as the unequal-

times BS is, di�erently from the equal-times one, not measurable from data. However, as it

was discussed in [2] and will be elaborated on in the following, BAO oscillations provide a

way to single out the CR protected terms.

Among the two terms at the last line of eq. (4.20), there is a hierarchy. �e amplitudes of

the oscillations in the logarithmic derivative of the PS with respect to k are enhanced with

respect to the ones of the derivative with respect to µk. �is can be understood by looking at

models for the redshi� space PS, such as [121], which can be cast in the form

Pα(k) ' Ffog(kµkfσv)(bα + fµ2
k)

2
(
P 0(k) + ∆P 1−loop

α (k, µk)
)
, (4.22)

where Ffog(x) is a phenomenological smooth function, usually a gaussian or a lorentzian,

which parametrizes the Fingers-of-God e�ect, P 0(k) is the linear PS, and ∆P 1−loop
α (k, µk) are

contributions of 1-loop order. In presence of a feature in the PS, like the BAO, we can write

P 0(k) = P 0
nw(k) (1 + A(k) sin(krs)) , (4.23)

where P 0
nw(x) is the smooth component of the linear PS, and rs = O(100) h Mpc−1

is the BAO

scale, we see that the oscillating part of the logarithmic derivative of the PS with respect to

ln k is of order

∂ lnPα(k)

∂ ln k
∼ A(k) krs cos(krs) + smooth/higher orders contributions , (4.24)

while

∂ lnPα(k)

∂ lnµk
∼ ∂∆A(k)

∂ lnµk
sin(krs) + smooth/higher orders contributions , (4.25)

where ∆A(k) is the µk-dependent part of the 1-loop contribution to the amplitude of the

oscillating part of the PS. �erefore, comparing the two oscillating contributions, we see that

besides being of 1-loop order as opposed to linear, the la�er is suppressed by an extra factor

of order 1/krs,
1

krs

∆A(k)

A(k)
=

ks
2πk

∆A(k)

A(k)
, (4.26)

where we have de�ned ks = 2πr−1
s ' 0.06 h Mpc−1

, and can then be safely neglected in the

BAO range of scales for squeezed con�gurations.



Coming now to the oscillating part of the O
((

q
k

)0
)

terms in eq. (4.20), a perturbative

analysis shows that they are of order

∆Pα(k)

P 0
nw(k)

A(k) sin(krs) , (4.27)

where ∆Pα(k) is a one-loop order contribution to the PS. �erefore, compared to the leading

oscillatory contribution, (4.24), this one is parametrically suppressed as the ones in (4.26), and

therefore will be neglected too. In section (4.3.2) and (4.4.2), we will verify from simulations,

in real space and in redshi� space respectively, that the di�erence between the LHS and the

�rst term at the RHS of (4.20) is indeed smooth in the squeezed limit.

Summarising, in our analysis we will consider only the �rst term of eq. (4.20), that is,

lim
q/k→0

Bα(q,k−,−k+) = −µ
2 + fµµkµq
bα + fµ2

q

Pα(q)
∂Pα(k)

∂ ln k

+ smooth/higher orders contributions.

(4.28)

4.3 Real space

Here we describe the analysis presented in ref. [2]. We will study the equal-time CR in real

space both, which, from eq. (4.28), reads

lim
q/k→0

Bα(q,k−,−k+)

Pα(q)
= −µ

2

bα

d logPα(k)

d log k
+O

(( q
k

)0
)
. (4.29)

4.3.1 Check in Perturbation�eory

As a �rst test of the CR, we compute the ma�er BS in real space in the squeezed limit at lowest

order in SPT. It is given by, see eq. (2.53)

lim
q/k→ 0

BSPT
mmm (q, k−, k+)

Pm,L(q)Pm,L(k)
= −µ2d logPm,L(k)

d log k
+

13 + 8µ2

7
+O

( q
k

)
, (4.30)

where Pm,L ≡ Pmm,L denotes the linear ma�er PS. Notice that the second term at the RHS is

scale independent, as it is proportional to (Pm,L(k+) +Pm,L(k−))/Pm,L(k)→ 2. On the other

hand, the �rst term, although subdominant, can be isolated from the rest thanks to its scale

dependence, which is induced mainly by BAO oscillations. To see this, one writes the PS as

Pm,L(k) = P nw
m,L(k)(1 + A(k) sin(krs)), (4.31)
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Figure 4.2: Comparison between the tree-level BS (divided by P 0(q)P 0(k)) (black-solid lines)

and the RHS of eq. (4.30) (blue-dashed lines) as a function of k for two values for q. �e blue-

do�ed lines are obtained by using the “no-wiggle” linear power spectrum, P nw(k), in place of

P (k).

where rs is the comoving sound horizon and both P nw
m,L(k) and A(k) are featureless functions.

Performing the logarithmic derivative, we get the �rst term at the RHS of (4.30) as

− µ2
[

(cos (krs) + α(k) sin (krs))
krsA(k)

1 + A(k) sin (krs)
+
d logP nw

m (k)

d log k

]
, (4.32)

where we de�ned

α(k) ≡ 1

krs

d logA(k)

d log k
, (4.33)

which takes values around 10 % in the k range of interest. So, the squeezed BS contains an

oscillating component whose amplitude is enhanced by krs ' 2πk/(0.05 h Mpc−1) with re-

spect to eq. (4.31) and whose phase is shi�ed by ∼ π/2 − α(k), and a smooth component

given by the second line of eq (4.32). �e result is shown in �g. (4.2), for q = 0.02 h Mpc−1

and q = 0.05 h Mpc−1
and for three di�erent values for µ. We see that the CR (eq. (4.30))

reproduces the BS as long as the squeezed limit (q/k � 1) holds. When q/k is not small, extra

scale dependent terms come into play. However, the amplitudes of the oscillations in the RHS

and in the LHS are still related by the CR, as we will show quantitatively in the next section.

4.3.2 Check in simulations

Once nonlinear e�ects are included, the CR (4.29) ensures that the �rst line in eq. (4.30) is mod-

i�ed just by changing the linear PS with the nonlinear one, while the second line is changed in



an uncontrolled way. However, due to parity invariance, the BS is symmetric under k+ ↔ k−,

or, equivalently, µ→ −µ, which implies that the leading non-protected term in the squeezed

limit should be proportional to (Pm(k+) + Pm(k−))/Pm(k), that is, still featureless, although

with an unknown coe�cient.

To check this explicitly in fully nonlinear dynamics, we use 10 realizations of N -body

simulations with N = 20483
mass elements performed in periodic cubes with the side length

of 4h−1Gpc. �e error bars presented in this paper are obtained from the sca�ering among

the 10 realizations.

�e mass distribution evolved with theGadget2 code [122] and the halo catalogs extracted

by Rockstar algorithm [123] at z = 0 will be presented in what follows (see the “�ducial cos-

mology” in [124] for other cosmological/numerical parameters). We measure the bispectrum

using the quick FFT-based algorithm presented in [125] with the aliasing correction follow-

ing [126]. We �rst store the data in bins of (k, q, µ) and check the results a�er summing up

B(q, k, µ)/[P (q)P (k)] for di�erent q bins up to some qmax weighting by the number of trian-

gles.

We compare the oscillating part of the squeezed BS to that of the logarithmic derivative of

the PS, and check if their amplitudes are related by the−µ2/bα(q) factor of eq. (4.29). In order

to extract the oscillating part, we will subtract smooth functions (“poly” in the �gures) of the

form

p(k, qmax, µ
2) =

n∑
i=−2

ai(qmax, µ
2)ki . (4.34)

�e negative powers in k, at each �xed qmax, account for subleading terms in the squeezed

limit, of order up to q2
max/k

2
, while the positive powers account for the extra scale dependence

induced for instance by the d logP nw
m /d log k contribution. �e coe�cients ai(qmax, µ

2) are

�xed such that p(k, qmax, µ
2) is the best �t to the chosen data (BS or logarithmic derivative);

then the function is subtracted from the data to obtain only the oscillatory part, which is not

captured by the �t for small enough n. We truncate our �t at n = 2, since with this value a

satisfactory reduced χ2
(see below) is obtained.

To quantify the goodness of the CR we measure the bias bα(qmax) in each µ bin, by mini-



mizing the χ2
function

χ2 =
N∑
i=1

[(
B
PP
|i − pBi

)
− 1

bα

(
−µ2 d lnP

d ln k
|i − pPi

)]2

σ2
i

, (4.35)

where all the qmax, k and µ dependencies are omi�ed. We denote with pBi and pPi the ��ing

curves relative to, respectively, the LHS and the RHS of the CR. σi are the errors for the BS

in the i − th k-bin, since the errors on the power spectra are much smaller. We use N = 26

linearly spaced bins from kmin = 0.05 h Mpc
−1

to kmax = 0.30 h Mpc
−1

. First, we performed
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Figure 4.3: Comparison of the oscillating parts of the two sides of the CR, eq. (4.29), for di�erent

µ bins and di�erent qmax, for ma�er at redshi� z = 0. �e red dots correspond to the BS, the

blue lines are the oscillating part of the logarithmic derivative of the PS multiplied by−µ2/bm,

with bm the best �t value of tab. (4.1). �e green-dashed lines are computed assuming the

expected value, bm = 1.

the test on ma�er, for which the expected value is bm(qmax) = 1. In �g. (4.3) we show the



oscillating part of the BS (red points with error bars, estimated from the sca�er among the 10

realizations) and of the logarithmic derivative of the PS multiplied by−µ2/bm (blue lines), for

di�erent µ-bins (rows) and for two di�erent values for qmax (columns). In tab. (4.1) we give

the best �t values for bm in the di�erent µ-bins and the relative 1− σ errors and reduced χ2
.

As expected, going to higher qmax the quality of the �ts gets worse, both because the squeezed

limit is farther, and because the error bars are smaller since the number of BS con�guration

increases. �e best �t values are always compatible with bm = 1 for qmax . 0.019 h/Mpc.

q = 0.019 h/Mpc

µ bm σb χ̃2

0.9 1.04 0.05 1.28

0.7 0.94 0.05 0.56

0.5 1.0 0.1 0.78

0.3 1.35 0.47 0.65

q = 0.035 h/Mpc

µ bm σb χ̃2

0.9 1.00 0.06 8.68

0.7 0.84 0.04 4.22

0.5 0.74 0.04 1.91

0.3 0.8 0.1 0.84

q = 0.061 h/Mpc

µ bm σb χ̃2

0.9 1.2 0.3 184

0.7 1.0 0.1 56

0.5 1.0 0.1 15

0.3 1.0 0.2 6

Table 4.1: Best �t values for bm (expected value, bm = 1) at z = 0 for di�erent values of the

maximum allowed q.

Having tested the CR on the ma�er �eld, we then used them to measure the bias of a

given halo population, bh(qmax), via the −µ2/bh(qmax) modulation of the BAO oscillations,

and compare the results with those obtained via the de�nition in eq. (4.21). We considered

halos of masses M > Mmin = 1013M� at z = 0. �e expected bias, as measured from

eq. (4.21), is bh = 1.46± 0.03.

�e results are shown in �g. (4.4), where, comparing the blue lines with the green-dashed

ones, we see the e�ect of the halo bias in reducing the amplitude of the BAO oscillations with

respect to the ones present in the logarithmic derivative of the PS. As shown in �g. (4.5) and

Tab. (4.2), the extracted values for bh are compatible with the expected one within the error

bars, also for qmax = 0.061 h Mpc
−1

, which gave bad �ts in the DM case.

We have repeated the analysis for simulation data at redshi� z = 1, �nding qualitatively

similar results (see �g. (4.6)). �e only nonlinear e�ect limiting the e�ectiveness of our method

is the damping of the BAO wiggles, which is stronger at lower redshi�s.
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Figure 4.4: Same as �g. (4.3) for halos of mass M > Mmin = 1013M� at z = 0.
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Figure 4.5: Values of the bias extracted for halos of mass M > Mmin = 1013M� at z = 0

for di�erent µ-bins and for di�erent values for qmax. �e shaded area represents the values

extracted from the simulations using eq. (4.21) at 1-σ.
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Figure 4.6: Same as �g. (4.5) at z = 1.



q = 0.019 h/Mpc

µ bh σb χ̃2

0.9 1.40 0.09 0.8

0.7 1.3 0.1 0.6

0.5 1.7 0.4 1.1

0.3 2.5 1.9 0.6

q = 0.035 h/Mpc

µ bh σb χ̃2

0.9 1.44 0.09 1.1

0.7 1.34 0.2 0.6

0.5 1.5 0.2 1.0

0.3 1.9 0.8 0.6

q = 0.061 h/Mpc

µ bh σb χ̃2

0.9 1.5 0.1 1.6

0.7 1.38 0.07 0.6

0.5 1.5 0.2 1.1

0.3 1.7 0.6 0.7

Table 4.2: Bias values for halos with M > Mmin = 1013M� at z = 0. �e expected value from

eq. (4.21) is bh = 1.46± 0.03.

4.3.3 Discussion

Extracting bias from a PT-based approach di�ers substantially from the approach discussed

here. �e PT prediction (at tree level as well as at higher orders) requires assuming: 1) a

cosmological model, namely, the linear ma�er power spectrum, its normalization σ8 and the

growth factor, and, 2) a bias model.

On the other hand, we are not assuming any model, neither for the cosmology nor for

bias. Moreover, we are not relying on a computational scheme either, being it PT expansion

or numerical simulations.

�e crucial point is that what we call bias is not a model parameter, but a physical quantity.

�anks to the consistency relation, the cross correlator Pαm(q), and then bα(q), can be mea-

sured by comparing two directly measurable quantities, namely, the amplitude of the BAO

oscillations in the logarithmic derivative of the nonlinear power spectrum and that in the

bispectrum, normalized as in eq. (4.29). �e assumptions beyond our result are just the EP,

adiabatic initial conditions, and the linear continuity equation at the very large scale q, which

ensure that all tracers, and in particular ma�er and halos, fall with the same velocity �eld.

�is, from a theoretical point of view, singles out our proposal as being of a qualitatively dif-

ferent nature, rooting its robustness in being intrinsically nonperturbative and based on very

general physical assumptions.

Moreover, in a PT approach, even at tree level, three bias parameters enter, namely, the

linear bias b1 and the second order bias parameters, b2 and the “tidal bias” bs (see e.g., [127]).
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Figure 4.7: Fit to the full bispectrum in PT by using one, two, and three bias parameters

If we try to �t the measured bispectrum with this expression, these parameters are degener-

ate with each other, with the normalization of the power spectrum, and possibly with other

cosmological parameters.

Together with the subtleties in the treatment of the scale-dependencies of the bias param-

eters, the end result of the ��ing with the tree-level SPT template is clearly not as robust, from

a theoretical point of view, as what we are proposing in this work.

To see this explicitly, we produced three plots, see �g. (4.7), in which we show the halo

bispectrum at z=0 with di�erent values of µ (in di�erent colors) at a �xed q (=0.04 h Mpc
−1

) as

a function of k. �e tree level calculation, but with di�erent bias models (one for each �gure, as

indicated by the title) is �t to the data points, considering two di�erent values of kmax, below

which the ��ing was performed, klow
max = 0.08 h Mpc

−1
(solid lines), and khigh

max = 0.3 h Mpc
−1

(do�ed lines). We can see that, clearly, the tree-level PT does not provide a good �t over the

BAO scale. We can see it quantitatively in �g. (4.8), which shows the reduced chi-squared for

the three bias models as a function of kmax. Indeed, it is close to unity only at very small kmax.

For completeness, we summarize below the best �t bias parameters at the two values of

kmax in Tab. (4.3). As we can see, the value of b1, and, to a larger extent, those of b2 and bs,

are a�ected by the choice of the bias model as well as the maximum wavenumber.

Moreover, we must keep in mind that these �ts are performed by �xing the cosmological

parameters of the PT computation to the true ones used in the simulation. In a real data

analysis a scan over these parameters is needed, inducing an higher level of degeneracy.
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Figure 4.8: �e reduced χ2
from the three PT �ts shown in �g. (4.7), as a function of kmax.

bias model b1(klow
max) b1(khigh

max) b2(klow
max) b2(khigh

max) bs(k
low
max) bs(k

high
max)

b1 1.347 1.389 - - - -

b1, b2 1.336 1.357 0.0355 0.1332 - -

b1, b2, bs 1.393 1.497 -0.1021 -0.3468 -0.1371 -0.3447

Table 4.3: Bias values for halos with M > Mmin = 1013M� at z = 0, extracted from PT �ts

including one, two, and three bias parameters. Results for two di�erent values for kmax are

reported, with klow
max = 0.08 h Mpc

−1
and khigh

max = 0.3 h Mpc
−1

. �e expected value for bh

de�ned in eq. (4.21) is bh = 1.46± 0.03.

4.4 Redshi� space

When we consider redshi� space, the advantages of the method presented so far becomes

even more clear. It is known that, besides for very large scales, redshi� space distortions, in

particular, Fingers of God e�ects are particularly di�erent to model, requiring some measure

of empirical parameterization. Our approach is free from this problem, as the redshi� space

version of the CR assumes the Kaiser relation only where it is reliable, namely, at the large

scale q, while no modelling is required at the short scale k, see section (4.2.2) and eq. (4.28).

Moreover, in redshi� space, the possibility of measuring, besides bias, the growth function



f = d logD/d log a opens. Indeed, looking at eq. (4.28), one realizes that the µ2/bh prefactor

of eq. (4.29) now becomes

µ+ µk µq f

bh + µ2
qf

µ , (4.36)

where µk = k̂ · ẑ, µq = q̂ · ẑ are the angles between the two modes and line of sight, here taken

to be the z axis. �erefore, by considering di�erent orientations of the triangles, or di�erent

multipoles, or again combining di�erent tracers, f and bh can be measured independently.

In this section we will perform this analysis for the redshi� space version of the CR. In

particular, we will investigate it using a multipoles decomposition, by integrating over the

angular dependencies.

4.4.1 Multipoles

We will deal with the angular dependence of the BS by considering multipole expansions. In

the following, we discuss the redshi� space case, eq. (4.28), from which the real space results

can be derived by taking f → 0 and reinterpreting the PS’s and the BS’s as being the real

space ones.

�e BS in redshi� space (in the distant observer approximation) depends on 5 coordinates:

3 of them (for instance q, k, and µ, see �gure (4.1)) identify the triangular shape, while the

remaining 2 are needed to de�ne the orientation of the plane of the triangle with respect to

the line of sight. �erefore, keeping q and k �xed, we are le� with 3 angular coordinates, over

which we will integrate with the measure∫
d2k̂

4π

∫
d2q̂

4π
(2π)δD (φk + φq) =

∫ 1

−1

dµk
2

∫ 1

−1

dµq
2

∫ 2π

0

dφ

2π
, (4.37)

where the delta-function in the �rst integral enforces rotation invariance around the z-axis,

and we have de�ned φ = φk − φq. �e cosine µ is given in terms of the three independent

variables as

µ = µ(µk, µq, φ) =
√

(1− µ2
k)(1− µ2

q) cosφ+ µkµq. (4.38)

�e PS’s will be expanded in Legendre polynomials, Pl(µk), as usual,

Pα(k) =
∞∑
l=0

P (l)
α (k)Pl(µk) , (4.39)



where

P (l)
α (k) ≡ 2l + 1

2

∫ 1

−1

dµk Pα(k)Pl(µk) . (4.40)

Concerning the PS at the large scale q, Pα(q), we will use the same expansion as above, with

the additional assumption that linear PT holds at the scale q, which is consistent to what we

have already assumed in deriving the CR. �is implies that the Kaiser relation [73] can be used

for the PS at this scale,

Pα(q) = (bα + fµ2
q)

2PL(q) , (4.41)

leading to the well known expressions for the linear monopole and quadrupole,

P (0)
α (q) = b2

α

(
1 +

2

3
βα +

1

5
β2
α

)
PL(q) ,

P
(2)
α (q)

P
(0)
α (q)

=
4βα
21

7 + 3βα
1 + 2

3
βα + 1

5
β2
α

, (4.42)

where βα ≡ f/bα.

Using the relations above, the RHS of (4.28) can be wri�en as

− P
(0)
α (q)(

1 + 2
3
βα + 1

5
β2
α

) (µ2

bα
+ βα µµkµq

)(
1 + βα µ

2
q

) ∂Pα(k)

∂ ln k
. (4.43)

While the de�nition of the PS multipoles is unique, concerning the BS, di�erent multipoles

can be de�ned, as we can weight the angular integrations with Legendre polynomials in µ, µk,

or µq. From eq. (4.38), we de�ne BS multipoles with respect to µ as

B(l)
α (q, k) ≡ (2l + 1)

∫ 1

−1

dµk
2

∫ 1

−1

dµq
2

∫ 2π

0

dφ

2π
Bα(q,k−,−k+)Pl(µ(µk, µq, φ)) . (4.44)

�e CR’s for the monopole and the quadrupole in µ then read,

lim
q/k→0

B
(0)
α (q, k)

P
(0)
α (q)P

(0)
α (k)

=−
[

1

3bα
+
bα − 1

9 bα
βα

1 + 3
5
βα

1 + 2
3
βα + 1

5
β2
α

]
d lnP

(0)
α (k)

d ln k

− 2βα[2 + bα(5 + 3βα)]

225 bα
(
1 + 2

3
βα + 1

5
β2
α

) P (2)
α (k)

P
(0)
α (k)

d lnP
(2)
α (k)

d ln k
+ · · · ,

(4.45)

lim
q/k→0

B
(2)
α (q, k)

P
(0)
α (q)P

(0)
α (k)

=− 2

[
1

3bα
+

(bα − 1)

9 bα
βα

1 + 3
5
βα

1 + 2
3
βα + 1

5
β2
α

]
d lnP

(0)
α (k)

d ln k

− 2βα[77 + bα(98 + 75βα)]

2205 bα
(
1 + 2

3
βα + 1

5
β2
α

) P (2)
α (k)

P
(0)
α (k)

d lnP
(2)
α (k)

d ln k

− 8β2
α

735
(
1 + 2

3
βα + 1

5
β2
α

) P (4)
α (k)

P
(0)
α (k)

d lnP
(4)
α (k)

d ln k
+ · · · ,

(4.46)



where dots indicate smooth/subdominant contributions. Taking multipoles with respect to µk

and µq, de�ned as

B
(lk,q)
α (q, k) ≡ 2lk,q + 1

2

∫ 1

−1

dµk
2

∫ 1

−1

dµq
2

∫ 2π

0

dφ

2π
Bα(q,k−.− k+)Plk,q(µk,q), (4.47)

we get the same monopole equation as above, while, for the quadrupoles, we get,

lim
q/k→0

B
(lk=2)
α (q, k)

P
(0)
α (q)P

(0)
α (k)

=− 2βα
45 bα

2 + bα(5 + 3βα)

1 + 2
3
βα + 1

5
β2
α

d lnP
(0)
α (k)

d ln k

− 105 + 43βα + 55bαβα + 33bαβ
2
α

315 bα
(
1 + 2

3
βα + 1

5
β2
α

) P
(2)
α (k)

P
(0)
α (k)

d lnP
(2)
α (k)

d ln k

− 4βα
315bα

2 + bα(5 + 3βα)

1 + 2
3
βα + 1

5
β2
α

P
(4)
α (k)

P
(0)
α (k)

d lnP
(4)
α (k)

d ln k
+ · · · ,

(4.48)

and

lim
q/k→0

B
(lq=2)
α (q, k)

P
(0)
α (q)P

(0)
α (k)

=− 2βα
63 bα

7 + bα(7 + 6βα)

1 + 2
3
βα + 1

5
β2
α

d lnP
(0)
α (k)

d ln k

− 42 + 22βα + 28bαβα + 24bαβ
2
α

315 bα
(
1 + 2

3
βα + 1

5
β2
α

) P
(2)
α (k)

P
(0)
α (k)

d lnP
(2)
α (k)

d ln k
+ · · · .

(4.49)

Notice that, unlike the quadrupole in µ, those in µk and µq are proportional to βα, and therefore

are non-vanishing only in redshi� space.

4.4.2 Results in simulations

We analyse the same set of simulations already presented in ref. [2] and presented in sec-

tion (4.3.2).

We measure the PS and the BS using fast Fourier transform. We �rst assign the particle

mass or the halo number density on to 10243
grid points using Cloud-in-Cells (CIC) algorithm

[128] in con�guration space. A�er transforming to the Fourier space, we mitigate the aliasing

e�ect [129] using the interlacing technique [126] and then divide the �eld by the CIC window

function. We store the products of the resulting �elds into bins to form the estimator of either

the PS and the BS. In case of the PS, we prepare bins with the interval of 0.005 h Mpc−1
. �is

is su�cient to resolve the BAO feature in detail. �e product, |δk|2, is averaged in the bins

to obtain our estimator of the PS. In redshi� space, we also consider P`(µk)|δk|2 to estimate



the multipole moments. In case of the halo PS, we subtract the standard Poissonian shot noise

contribution, V/Nh, where V is the simulation volume and Nh is the number of halos, from

the monopole moment.

�e estimator of the BS can be constructed in an analogous manner. We re�ned the bin-

ning scheme from that adopted in ref. [2] to be�er capture its con�guration dependence. We

consider a pair of wavevectors (k,q) and form a triangle (q,−k+,k−). We bin the triangles

in q and k at every 0.01 h Mpc−1
, and then we sum the ratio of the bispectrum to the linear

PS in q up to a given qmax, weighting the sum with the number of triangles in each q-bin,

∑
q≤qmax

Ntri(q, ki)
B

(l)
α (q, ki)

P
(0)
α (q)

≡ B
(l)
α

P
(0)
α

(qmax, ki) . (4.50)

�e remaining degree of freedom, the angle between the two wavevectors (and also the relative

angle with respect to the line-of-sight direction in case of redshi� space), is integrated to obtain

the moment estimators: in ref. [2], we instead kept the angle dependence and estimated the BS

in bins of q, k and µ. Since we know the expected angle dependence of the oscillatory feature,

that is simply µ2
, we can fully express it with the �rst two even moments, monopole (` = 0)

and the quadrupole (` = 2). �is helps to obtain the BAO feature with smaller error bars.

We subtracted the shot noise, (V/Nh)2 + (V/Nh)[Ph(q) + Ph(k+) + Ph(k−)] from the halo

monopole BS.

We are now ready to describe the procedure we have used to evaluate the bias parameter

bα and the parameter βα = f/bα from the simulations, by using the CR’s.

In order to do that, we have to �t, in k, the LHS’s of the CR, binned up to a given qmax, see

eq. (4.50),

1

P
(0)
α (ki)

B
(l)
α

P
(0)
α

(qmax, ki) , (4.51)

with the RHS’s, which we will model as

−
∑
l′=0,2

C(l,l′)(bα, βα)

(
d lnP

(l′)
α (ki)

d ln k
− d lnP

(l′)
α (ki)

d ln k

∣∣∣∣∣
smooth

)
e−c(qmax)k2

+ p({a(l)
i (qmax)}; ki) ,

(4.52)

where the coe�cients C(l,l′)(bα, βα) can be read from eqs. (4.45) and (4.46), while the smooth

functions p({a(l)
i (q)}; k) are going to �t the smooth contributions from the derivatives of the



PS multipoles together with the other smooth and or subdominant contributions discussed

in sect. (4.2.2). �e contribution of the PS hexadecapole (l = 4) to eqs. (4.46), is numerically

negligible, and we do not include it in our analysis.

We have isolated the smooth contributions from the derivatives of the PS monopole and

quadrupole by subtracting a spline �t. We tested alternative algorithms to extract the smooth

contributions obtaining stable results for the extracted parameters. Moreover, we introduced a

scale dependent BAO damping term, e−c(qmax)k2
, which models possible correlations between

the long mode and the FoG damping beyond the squeezed limit.
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Figure 4.9: �e BS to PS’s ratios of eq. (4.51) (blue lines with error bars), and the oscillating

part of the terms containing the logarithmic derivatives of the PS’s in eq. (4.52) (red lines).

�e di�erence between the two is given by the black lines, together with the smooth ��ing

functions described in the text (green-dashed lines). �e red lines include a constant o�set for

graphical purposes. �e �ducial values for bα, βα and the best ��ing values for the nuisance

parameters have been used to produce these plots.

�e form of the ��ing functions p({a(l)
i (q)}; k) is chosen in order to reproduce the leading

expected contributions. It contains a term constant in k, as the lowest order PT result in the

squeezed limit. �en, we include a negative contribution proportional to k2
, accounting for

the leading contribution to the logarithmic derivative of the nonlinear PS from the Fingers

of God e�ect. �is can be understood by looking at the pre-factor in eq. (4.22). Finally, we
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Figure 4.10: Comparison between the oscillating parts of the BS to PS ratios in eq. (4.51) (do�ed

lines) and that of eq. (4.52) (solid lines) both for the monopole (blue) and the quadrupole (red)

components of the BS. �e �ducial values for bα, βα and the best ��ing values for the nuisance

parameters have been used to produce these plots.

include also a k−2
term to control possible (small) deviations from the squeezed limit, which

we expect to scale as (qmax/k)2
.

Summarizing, the smooth function we will use in the CR’s for the monopole and the

quadrupole of the BS takes the form

p({a(l)
i (qmax)}; k) = a

(l)
−2(qmax)

(
k

qmax

)−2

+ a
(l)
0 (qmax) + a

(l)
2 (qmax)

(
k

k̄

)2

, (4.53)

where we have �xed the pivot scale k̄ = 0.06 h Mpc−1
. We have also considered extended

polynomial ��ing formulas, obtaining consistent results for the parameter estimations.

�e smoothness of the di�erence between the LHS and the �rst term at the RHS of the CR

can be veri�ed from simulations, as we show in �g. (4.9), where we plot the ratio (4.51) of the

BS to the PS’s (blue lines), the sum of the logarithmic derivative of the PS multiplied by the

appropriate coe�cients, as in (4.52), without the subtraction of the smooth part (red lines), the

di�erence between the two curves (black lines) and the smooth interpolation used to �t the

la�er, given by the sum of the terms containing the spline �ts to the logarithmic derivatives of

the PS’s and the polynomial p({a(l)
i (qmax)}; ki (green-dashed lines). �e �ducial values of bh

and f have been used to evaluate the coe�cients in these curves. �e error bars in these plots



are dominated by those of the BS. As we can see, the di�erence between the BS to PS ratios in

(4.51) and the terms in the logarithmic derivatives of the PS is smooth, with residual oscillations

increasing as one moves away from the squeezed limit, by increasing qmax. On the other hand,

by increasing qmax the statistical errors are reduced, as more triangle con�gurations contribute

to the BS, so a compromise has to be found between statistical power and the goodness of the

squeezed limit approximation.

In �g. (4.10) we show the oscillating components of the BS to PS ratios, both for monopoles

(do�ed blue) and quadrupoles (do�ed red) compared to the oscillating parts of eq. (4.52).

We introduce the following Log-likelihood function,

χ2
CR(bα, βα, {a(l)

i (q)}, qmax) ≡
∑
i

(
r2

(0)(ki)

σ2
(0),i

+
r2

(2)(ki)

σ2
(2),i

)
, (4.54)

where the r(l)(ki)’s are the di�erences between eq. (4.52) and eq. (4.51), and σ(l),i’s are the

corresponding errors on the BS measured from the simulations, evaluated in the i’th k-bin.

We neglect the error on the PS as it is much smaller than that on the BS, and we assume

diagonal covariances.

�e CR’s in eqs. (4.45) and (4.46) and (4.48), depend both on bα and βα, so, in principle,

one can break the degeneracy between these two parameters by using the CR’s alone. �is

is indeed the case, as we show in �g. (4.11). �e BS monopole, as the µ− quadrupole (from

eqs. (4.45) and (4.46)) are mostly sensitive to bα but insensitive to βα. On the other hand,

when we combine the monopole with the µk or µq quadrupoles of eqs. (4.48) or (4.49) we can

constrain also βα, although only at the ∼ 40 % level. We do not combine di�erent bispectrum

quadrupoles, as they are not independent, and their cross-covariance would be non-trivial.

More e�ective constraints on βα can be obtained by combining the CR’s with measure-

ments of the ratio between the PS quadrupole and monopole, in the linear regime, see the

second of eqs. (4.42). �is relation is valid in the Kaiser approximation [73], whose validity is

limited to small k′s. �erefore we will �t this ratio only up to kKmax . 0.02 − 0.03 h Mpc−1
,

where the ratio exhibits the plateau shown in �g. (4.12). Notice that in deriving the CR’s we

have assumed the validity of linear theory, and therefore of the Kaiser approximation, up to

qmax, so this procedure will be consistent as long as kKmax . qmax. �erefore, we will add to
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Figure 4.11: 1 and 2-σ constraints in the bm− βm plane from CR’s on the ma�er BS at redshi�

z = 0, (le�) and z = 1 (right). �e green contours are obtained combining the monopole and

the µ-quadrupole of the BS ( eq. (4.46)). Combining the monopole with the BS quadrupole in

µk ( eq. (4.48)), or the one in µq ( eq. (4.49)), constrains also βm as shown by the red and purple

contours, respectively. Adding information on the PS quadrupole to monopole ratio, eq. (4.56),

gives the blue contours. �e do�ed lines indicate the �ducial values for bm and βm.
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Figure 4.12: PS quadrupole to monopole ratio for halos of Mmin = 1013h−1M� at z = 0.



(4.54) the function

χ2
K(βα) =

∑
j

r2
K(βα; kj)

σ2
K,j

, (4.55)

where

rK(βα; kj) =
P

(2)
α (kj)

P
(0)
α (kj)

− 4βα
21

7 + 3βα
1 + 2

3
βα + 1

5
β2
α

, (4.56)

and σK,j is the error on the ratio between the PS quadrupole and monopole. We will show

combined constraints obtained by minimizing the sum

χ2
TOT = χ2

CR(bα, βα, {a(l)
i (q)}, qmax) + χ2

K(βα) . (4.57)

Summarizing, in our analysis we have 9 parameters, the physical ones {bα, βα} and the ��ing

ones {a(l)
−2, a

(l)
0 , a

(l)
2 , c}, with l = 1, 2, over which we will marginalize.

We �rst check our procedure for ma�er, for which we expect to extract values compatible

with the �ducial ones, bfidm = 1 and βfidm = f fid. We sample the log-likelihood function

(4.57) using the MCMC Python library emcee3
[130]. �e results of the analysis for ma�er

are shown in Table (4.4) and in �g. (4.13), the plots are obtained using the plot library of

Getdist
4
[131].

As the constraining power of CR comes from the BAO’s, we choose k values in the range

in which they are present in the bispectra. For dark ma�er we take kmin = 0.045 h Mpc−1
and

kmax = 0.30 h Mpc−1
. Higher values of kmax do not improve our determinations of bα and βα.

In �g. (4.13) we show the 68 % and 95 % con�dence level regions in the bm − βm plane for

two di�erent values of qmax (= 0.02, 0.03 h Mpc−1
), and, with do�ed lines, the �ducial values.

As we see, increasing qmax improves the constraints, due to the higher number of triangular

con�gurations included in the BS measurement. Both values of qmax give unbiased values

for the parameters. �is is not the case by taking qmax = 0.04 h Mpc−1
, which shows that

this value is too far from the squeezed limit, as could have been anticipated also by looking

at Figs. (4.9) and (4.10). �erefore, in our analysis on halos we will consider only qmax =

0.02, 0.03 h Mpc−1
.

A�er having validated the procedure for dark ma�er we proceed in the analysis for ha-

los with di�erent masses at di�erent redshi�s. �e results are presented in Table (4.5) and

3
h�ps://emcee.readthedocs.io/en/stable/

4
h�ps://getdist.readthedocs.io/en/latest/intro.html
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Figure 4.13: 1- and 2-σ constraints in the bm−βm plane for dark ma�er at redshi� z = 0 (le�)

and z = 1 (right), and for di�erent values of qmax. �e do�ed lines are the expected values for

bm and βm.

�g. (4.14) and are evaluated using kmin(z = 0) = 0.035 h Mpc−1
, kmax(z = 0) = 0.26 h Mpc−1

and kmin(z = 1) = 0.035 h Mpc−1
, kmax(z = 1) = 0.28 h Mpc−1

. �e results are compatible

with the theoretical �ducial values at the 1−σ level, with the expected values measured from

the simulations using eq. (4.21) for bfidh , and eq. (4.42) for βfidh .
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Figure 4.14: 1- and 2-σ constraints on bh and βh for halos of Mmin = 1013h−1M� at z = 0

(right) and z = 1 (middle) Mmin = 1014h−1M� at z = 0 (right) for two di�erent values of

qmax (= 0.02, 0.03 h Mpc−1
). �e do�ed lines are the expected values, obtained from direct

measurements.

Our analysis shows that it is possible to break the degeneracy between the linear bias and

the growth rate (or the β-parameter) with a good accuracy. In Table (4.4) and Table (4.5) we

report the 68 % CL measurements we obtained for qmax = 0.02, 0.03 h Mpc−1
. We can see



z = 0

qmax (h/Mpc) bm bfidm f = βm f fid

0.020 1.11+0.12
−0.10 1 0.532+0.010

−0.009 0.528

0.030 1.01+0.05
−0.05 1 0.533+0.009

−0.009 0.528

z = 1

qmax (h/Mpc) bm bfidm f = βm f fid

0.020 0.99+0.09
−0.08 1 0.880+0.012

−0.012 0.877

0.030 1.02+0.04
−0.04 1 0.880+0.012

−0.012 0.877

Table 4.4: Best �t values for bm and f at di�erent redshi�s for di�erent values of the max-

imum allowed q. For each parameter, the quoted errors correspond to the 68% CL. of the

one-dimensional probability distribution function.

that the results of the analysis for biased tracers in redshi� space are fully consistent with the

�ducial ΛCDM value for the growth function f .

Notice that, both for ma�er and halos, CR constrain mainly the bias parameter bα, while

the parameter βα is constrained mostly by the independent measurement of the PS quadrupole

to monopole ratio. As the la�er is measured at be�er than 5 % accuracy for our simulations,

the error on the derived growth function f is dominated by that on the bias parameter.

4.4.3 Estimating constraining power

We here present a forecast of the expected constraining power using the CR on the oscillatory

part of the spectra alone, that is, not in conjunction with the PS quadrupole to monopole ratio.

Since we have seen that the impact of the redshi� space distortion is rather weak, a separate

constraint on the tracer bias bα and the growth rate parameter f from the consistency relation

alone would be di�cult. We thus focus on the constraint on bα ignoring the redshi� space

distortions, that is, se�ing f = 0 in the CR’s. As discussed earlier, we can then combine

with the constraint on βα from the redshi� space distortion on the PS, to disentangle the

degeneracy between the two parameters. Another simpli�cation that we have made for the



Mmin = 1013h−1M� z = 0

qmax (h/Mpc) bh bfidh f = βhbh f fid

0.020 1.58+0.15
−0.13 1.47 0.57+0.06

−0.06 0.528

0.030 1.53+0.08
−0.08 1.47 0.55+0.04

−0.04 0.538

Mmin = 1013h−1M� z = 1

qmax (h/Mpc) bh bfidh f = βhbh f fid

0.020 2.85+0.39
−0.32 2.686 0.93+0.14

−0.14 0.877

0.030 2.58+0.17
−0.16 2.686 0.82+0.07

−0.07 0.877

Mmin = 1014h−1M� z = 0

qmax (h/Mpc) bh bfidh f = βhbh f fid

0.020 3.40+0.83
−0.61 2.446 0.73+0.18

−0.18 0.528

0.030 2.29+0.21
−0.18 2.446 0.49+0.06

−0.06 0.528

Table 4.5: Determination of bh and βh from the CR’s for halos, for di�erent values of qmax. For

each parameter, the quoted errors correspond to the 68% CL. of the one-dimensional probabil-

ity distribution function.

forecast is to ignore nonlinear damping of BAOs. Including this e�ect would weaken the

constraint especially from high wavenumbers, and thus the results presented here would give

us the best-case scenario, but the purpose here is to give a rough idea on the statistical power

brought by the consistency relations and the simpli�ed treatment here must be �ne.

We start with the construction of the BAO template based on the linear ma�er PS. As dis-

cussed in sect. (4.4.2), we take the logarithmic derivative, d lnP 0(k)/d ln k, and then subtract a

B-spline �t to extract the oscillatory part. We use this as the template model a�er multiplying

by (1/3bg)Pg(q)Pg(k) for the monopole and by (2/3bg)Pg(q)Pg(k) for the quadrupole of the

galaxy BS, where Pg(k) = b2
gP

0(k) is the linear galaxy PS with the bias parameter bg. We

then estimate the covariance matrix of the galaxy BS, which is diagonal under the Gaussian



Table 4.6: Survey parameters considered in the forecast.

redshi� V [h−3Gpc3] (ng/10−4) [h3Mpc−3]

0.65 < z < 1.25 22.64 15.86

1.25 < z < 1.65 20.66 8.86

1.65 < z < 2.05 22.69 2.61

assumption [132]:

[∆Bg(k1, k2, k3)]2 =
V

Ntri

[
Pg(k1) + n−1

g

] [
Pg(k2) + n−1

g

] [
Pg(k3) + n−1

g

]
, (4.58)

(4.59)

where Ntri is the number of Fourier triangles in a bin, which scales as V 2
, and ng is the galaxy

number density speci�ed later assuming a future survey se�ing. Since we specify the triangles

by (q, k) and average over the angular dependence in our case, Ntri a�er taking this average

can be expressed as

Ntri =

(
2π

3

)2 (q3
bin,max − q3

bin,min)(k3
bin,max − k3

bin,min)

k6
f

, (4.60)

where qbin,min and qbin,max specify the minimum and the maximum wavenumber of the q bin

and similarly for the k bin. We adopt the bin spacing of 0.005 h Mpc−1
for this forecast, and

have con�rmed that the results are virtually unchanged when we adopt a �ner binning. In

the above, we have excluded the contribution from redundant triangles (e.g., a triangle with

negative qz is equivalent to another with positive qz) due to the reality condition, δ−q = δ∗q, and

denote the fundamental wavenumber by kf = 2π/V 1/3
. �e error on the monopole moment

of the BS is estimated using eq. (4.59) assuming that P 0(k1) = P 0(q) and P 0(k2) = P 0(k3) =

P 0(k) approximately hold over the triangles in a bin, and that of the quadrupole is obtained

by further multiplying a factor 5 to eq. (4.59) to account for the weighting by the Legendre

polynomial and our normalization convention. We ignore the error on the PS, which should

be much smaller than that in the BS. We consider a Euclid-like survey and take the survey

parameters from Table 3 in ref. [119]. Instead of considering the tomographic analysis with

the 14 thin redshi� bins over 0.65 < z < 2.05 listed in that table, we consider three thick



redshi� bins with similar volume as summarized in Table (4.6). We consider the survey area of

15, 000 deg2
and take the values in “reference” case for the galaxy number density, averaged

over the relevant �ne redshi� bins weighted by the volume. We propagate the error on the

monopole and the quadrupole moment of the bispectra to the only parameter of the model

template, bg, to give the estimate of the statistical power of the consistency relation. We �x

bg = 1.5 as the �ducial value for all the three bins. Changing this would give us a slight change

in the relative contribution of the shot noise, but the �nal forecast is almost unchanged when

we modify this to e.g., bg = 1.6.
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Figure 4.15: Forecast of the constraint on the galaxy bias parameter bg from a Euclid-like survey

in three tomographic redshi� bins coming from the oscillatory part of the consistency relation

alone. �e results are shown as a function of the maximum hard wavenumber kmax for some

values of the corresponding so� wavenumber limit, qmax.

We show in �g. (4.15) the expected 1-σ error on the bias parameter as a function of the max-

imum wavenumber included in the analysis. While the limit of the hard wavenumber, kmax, is

indicated by the x-axis, we consider four values of qmax, the counterpart for the so� wavenum-

ber, 0.01, 0.02, 0.03 and 0.04 h Mpc−1
. �e smaller qmax is, we are restricting to more squeezed

triangles and the resultant constraint is weaker. As we already see explicitly in previous sec-

tions, we can push to qmax to 0.03 h Mpc−1
quite safely without introducing a sizable bias

in the consistency relation. While qmax = 0.04 h Mpc−1
might be slightly optimistic the im-

provement from qmax = 0.03 h Mpc−1
is smaller compared to that from qmax = 0.02 h Mpc−1

to qmax = 0.03 h Mpc−1
.

It is clear from the �gure that we can achieve a be�er than ten percent determination of the

bias parameter for all the redshi� bins, with the highest redshi� bin slightly worse due to the

larger shot noise error. Since the nonlinear damping of BAO is not very signi�cant for scales
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Figure 4.16: Squeezed limit of the BS in the BAO range for di�erent values of the cosine µ, see

�g. 4.1. �e BAO feature is clearly visible and its amplitude get smaller for smaller µ values,

as we expect from eq. (4.29). For comparison we show also the logarithmic derivative of the

PS, divided by the expected bias value.

k < 0.1 h Mpc−1
and the most of the constraining power is coming from the k < 0.2 h Mpc−1

,

above which the shot noise error gets prominent, our estimate should be a good approximation

even when the nonlinear e�ects are considered.

4.5 Future applications

A�er having presented a Fisher forecast on Euclid-like observations, we present here the ap-

plication of the method presented so far to realistic simulations.

We are currently testing the accuracy of the CR-based method on estimating bias when ap-

plied to Euclid-like N-body simulations. �ese are simulations for the dark ma�er halos in real

space with the speci�cs (volume, redshi� range, number density of the sources) of the future

Euclid satellite [1]. First, we provided a rigorous pipeline for the extraction of the squeezed

limit of the BS. At this stage, we mapped the (k1, k2, k3) triangular bins to (k, q, µ) and ob-

tained the squeezed BS using the procedure described in sec. (4.4.2). In �g. (4.16) we show the
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Figure 4.17: qmax dependence of the ��ing parameters.

result of this procedure for di�erent values of µ, verifying eq. (4.29). Here we will consider

only the gaussian errors for the BS, since the PS errors are much smaller. �e logarithmic

derivative showed in �g. (4.16) is divide by the expected linear bias, bexp, measured using the

SPT model for the BS of biased tracers, see [61]. We have then calculated the monopole of

eq. (4.29) and for the analysis we will use the relation

B
(0)
t (k, qmax; z)

P
(0)
t (qmax; z)P

(0)
t (k; z)

=− 1

3bt(qmax; z)

d logPt(k; z)

d log k

+ a0(qmax; z) + a2(qmax; z)k2 +
a−2(qmax; z)

k2
.

(4.61)

Notice that in general the measured bias and coe�cients of the smooth functions ai’s depend

on qmax and on the redshi� z. While the la�er is a physical motivated dependence, the former

is only due to our choice for qmax. If the procedure we adopt is correct all these values will

be independent on the qmax choice. On the other hand, we are considering the limit in which

q/k → 0, and considering higher values of qmax will make our CR much more unreliable. In

�gure (4.17) we show the MCMC analysis for the PS and BS monopoles at redshi� z = 0.90.

Figure (4.17) shows that up to qmax ' 0.05 h/Mpc the CR-based approach gives unbiased
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Figure 4.18: Results of the analysis for z = 0.90, 1.19.

and (almost) qmax-independent values for bt and ai’s. �is results shows at what qmax our

results are reliable and accurate, since higher values correspond to higher triangle numbers

and a higher signal-to-noise ratio. �e results of the analysis for the redshi�s z = 0.9 and

z = 1.19 are presented in �g. (4.18). �ese preliminary results show a model independent

measurement of bt with errors∼ 8% for z = 0.90 and∼ 14% for z = 1.19, using kmax = 0.26

h/Mpc.

As mentioned above, a fundamental step would be the application of the CR-based method

to actual observations. Despite the observation of the BAO features in the bispectrum of BOSS,

[63], the width of the binning in the dataset
5

is too high to resolve the BAO in the squeezed

limit of the BS. Here we have shown that Euclid observations will enable us to use the CR’s

to measure in a model-independent way the linear bias. �e results of this analysis will be

published soon within the Euclid collaboration.

4.6 Conclusions

In this chapter, we have investigated the CR’s as a way to measure the large scale bias and

the large scale growth rate in a model independent way. We have derived the relevant CR’s in

5
�e PS monopole and quadtrupole and the BS monopole can be found here.

https://www.ub.edu/bispectrum/bispectrum_public/boss_public.html


redshi� space for the BS monopole and quadrupole and veri�ed their validity on a set of large

volume N-body simulations, both for DM and for halos of di�erent mass, at di�erent redshi�s.

As a �rst step we have veri�ed the CR’s for DM and halos in real space, and we were able to

measure the large scale bias with a ∼ 10% accuracy in a model independent way. �is was

one of the �rst application of the CR’s, see ref. [2, 115].

Subsequently, we have performed an analogous analysis for the redshi� space correlators.

While the coe�cients of the CR’s depend on bα and βα = f/bα separately, the constraining

power on βα from CR’s alone turns out to be very mild. However, when the CR measurements

are combined with those on the PS quadrupole to monopole ratio, the bα − βα degeneracy is

completely broken.

When applied to a Euclid-like survey this approach would provide constraints on these

parameters at be�er than 10% level. It is likely that this result can be further improved by

modelling the leading contributions not protected by the CR’s, and we think it will be very

interesting to explore quantitatively this issue. In any case, while a ten percent error would

not sound to be particularly good in modern cosmology, our constraints come completely free

from model assumptions given as a bonus by just checking certain con�gurations of the BS.

�is, when combined with the redshi� space distortion, which cannot break the degeneracy

between the bias and the growth-rate parameter, would provide a unique way to constrain the

gravitational growth. Moreover this procedure will be applied within the Euclid collaboration

as a novel method for extracting the large scale galaxy bias. We are currently testing this

method against the Euclid �agship simulations, �nding results that are in agreement with our

predictions presented in sect. (4.4.3) and that are compatible with the standard PT model, see

for example [61, 77].

Considering di�erent redshi� bins, the extracted values for f(z) would help constraining

ΛCDM and modi�ed scenarios as well. Having multiple tracers available would provide a

way of testing the universality of the large scale growth rate, constraining possible velocity

bias and violations of the EP. Moreover, a violation of the CR’s can happen in presence of

primordial non-gaussianities, see [115]. CR’s could also be used in the context of those models

that introduce primordial features in the PS, like [133, 134], in order to give be�er constraints

on possible in�ationary models. We leave the exploration of these applications to future work.



Chapter 5

�e Large Scale Structure Bootstrap

In chapter (2) we have introduced SPT, the standard approach currently used for the calculation

of the one-loop PS. �is approach is based on the perturbative solution to the equations of

motion of dark ma�er, eq. (2.32), subsequently used in the perturbative expansion of the galaxy

density.

In this chapter we will describe a novel approach recently proposed in [8] which does

not relies on the equations of motion but only on symmetry principles. �e kernels of the

perturbative solutions for the dark ma�er and the galaxies (or, in general, generic tracers) are

built by using only terms that respect the symmetries considered. �en, symmetries are used

to constrain the analytical form of the kernels, reducing the number of parameters needed. In

the ma�er sector, we �nd that only few time dependent functions inside the kernels are not

constrained by symmetries, but are de�ned by the cosmological model considered.

When galaxy density is considered, instead, we �nd that, at third perturbative order, the

number of bias parameters is de�ned by the symmetries and does not depend on the particular

cosmological model. At this order the number of bias parameters is seven, the same found in

sect. (2.3.1), and we will show that this number is �xed in all the cosmologies that share the

same symmetries. We will present a brief comparison between the ΛCDM and the nDGP

(presented in section 3.2) models. We will also describe the UV e�ects within this approach.

We will conclude with some possible future applications of the approach presented below.

�e results of this chapter have been published in the paper
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• G. D’Amico, M. Marinucci, M. Pietroni and F. Vernizzi, �e Large Scale Structure Boot-

strap: perturbation theory and bias expansion from symmetryes, JCAP 10 (2021) 069, doi

10.1088/1475-7516/2021/10/069
1
,

and we have included this articles or part of it according to the journal (JCAP) copyright

policies.

5.1 Constraints on PT kernels for general tracers

In this section we will see how to generalize the results obtained in PT (see Sec. 2.1) to a general

cosmological model with only time-dependent growth factor.

We will make use of the time variable introduced in chapter 2, the logarithm of the scale

factor de�ned in eq. 2.27 as η ≡ log a/a0. Beside the ma�er density contrast δ(x, η) ≡

ρ(x, η)/ρ̄(η) − 1, where ρ is the energy density and ρ̄ its background value, we will also use

the velocity divergence de�ned in eq. 2.30,

θ(x, η) ≡ − ∇u(x, η)

f+(η)H(η)
. (5.1)

In the following, we will also consider the number density contrast of any tracer �eld δt(x, η),

which can be galaxies, halos, etc. Using perturbation theory we can expand these quantities

as

δ(x, η) =
∞∑
n=1

δ(n)(x, η), θ(x, η) =
∞∑
n=1

θ(n)(x, η), δt(x, η) =
∞∑
n=1

δ
(n)
t (x, η) . (5.2)

For the linear �eld it is convenient to introduce the linear doublet φλk(η) (λ = 1, 2) that

includes the linear density contrast and the linear velocity divergence,

φ1(x, η) ≡ δ(1)(x, η) , φ2(x, η) ≡ θ(1)(x, η) . (5.3)

A�er decomposing it in Fourier space,

φλ(x, η) =

∫
d3k

(2π)3
e−ik·x φλk(η) , (5.4)

1
© IOP Publishing Ltd and Sissa Medialab. Reproduced by permission of IOP Publishing. All rights reserved.
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for each mode k the linear solution reads

φλk(η) = uλf (η)ϕk(η) , uλf (η) ≡

 1

f(η)
f+(η)

 , (5.5)

where ϕk(η) is related to the initial �eld ϕk(0) by the linear growth, ϕk(η) = D(η)ϕk(0), with

D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,

in the following we will assume that the linear �elds are in the growing mode, in which case

uλf+
(η) ≡ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.

5.1.1 Perturbation theory kernels

For the time being, we will consider only deterministic evolution, i.e., that the ma�er density

contrast δ(η,x), the rescaled velocity divergence θ(η,x), and any tracer δt(η,x), are function-

als of the linear ma�er density �eld ϕ(η,x). Later, in sect. 5.4, we will discuss the stochastic

contributions to the �eld evolution induced by small scale modes.

For a deterministic evolution, the non-linear �elds can be wri�en as

δ(x, η) = F [ϕ](x, η) , θ(x, η) = G[ϕ](x, η) , δt(x, η) = K[ϕ](x, η) . (5.6)

In general, the non-linear velocity �eld has also a vorticity component, besides the diver-

gence one. In standard perturbation theory, vorticity decays as 1/a at linear order [27] and,

se�ing its initial condition to zero, it is not generated at any higher order. �erefore, as long as

deterministic evolution is considered, it is consistent to consider a curl-free velocity �eld. On

the other hand, small-scale stochasticity sources vorticity, as discussed in [135, 136], and sym-

metry arguments can be used to constrain these contributions as well. However, as concluded

for instance in [137] the back-reaction of vorticity on the density and velocity divergence cor-

relators is extremely suppressed on the scales reachable by PT methods, therefore we will not

include these e�ects in this work.

Expanding the LHS of eq. (5.6) in perturbation theory using eq. (5.2) in Fourier space and



k

q1

q2

qn−1

qn

φq1

φq2

φqn−1

φqn

δ(n)
t,k

Figure 5.1: Symbolic representation of the Kn(q1, · · · ,qn; a) halo amplitude.

expanding the RHS in the �eld ϕ, we obtain

δ
(n)
k (η) ≡ Ik;q1··· ,qn Fn(q1, · · · ,qn; η)ϕq1(η) · · ·ϕqn(η), (5.7)

θ
(n)
k (η) ≡ Ik;q1··· ,qn Gn(q1, · · · ,qn; η)ϕq1(η) · · ·ϕqn(η), (5.8)

δ
(n)
t,k (η) ≡ Ik;q1··· ,qn Kn(q1, · · · ,qn; η)ϕq1(η) · · ·ϕqn(η), (5.9)

where we have rede�ned
2

Ik;q1··· ,qn ≡
1

n!

∫
d3q1

(2π)3
· · · d

3qn
(2π)3

(2π)3δD

(
k−

n∑
i=1

qi

)
. (5.10)

Notice that the functionals F , G, and K in (5.6) are in general non-local in space and in time.

�e space non-locality is due to the Poisson equation and to the fact that we consider only the

divergence of the velocity �elds. Moreover, the perturbative expansion of the kernels can be

cast in a form that is local in time without any loss of generality, as in eqs. (5.7), (5.8), and (5.9).

Notice also that the kernels Fn and Gn introduced in eqs. 5.7 and 5.8 are, in general, di�erent

from those de�ned in section 2.1 in eq. 2.39 and 2.40, as we will see soon.

�e kernelsFn,Gn andKn can be interpreted as transition amplitudes between n linear and

one nonlinear �elds, represented in Fig. 5.1. As usual, the delta function on the RHS of eq. (5.10)

comes from assuming translational invariance of the �eld equations of motion. Moreover,

rotational invariance imposes that the kernels depend on rotational invariant combinations of

the momenta qi. In writing eqs. (5.7–5.9) we have assumed that the only scales entering the

kernels are the external momenta qi, i.e. there are no other intrinsic scales in the problem (such

as e.g. the neutrino masses, massive �elds in modi�ed gravity, etc.). Indeed, being obtained by

2
Note that, di�erently from eq. (2.33), here we introduce the (1/n!) factor.



a functional expansion around ϕqi(η) = 0, the kernels contain no information on the intrinsic

scales of the initial power spectrum or of higher-order correlators of the initial conditions.

We are also assuming no primordial non-gaussianity as, for biased tracers, it would induce

a coupling between di�erent scales which would a�ect the kernels (see, for instance [138]).

Moreover, the perturbative expansion is well known to break down at short scales. �is is

usually taken into account by suitable counterterms. We ignore these terms for the time being

and we discuss them in sect. 5.4.

�e symmetry of the integration domain and of the multi-dimensional integration measure

in (5.9) translates in the requirement that the amplitude is symmetric under exchange of any

pair of external momenta, i.e.,

Kn(q1, · · · ,qi, · · · ,qj · · · ,qn; η) = Kn(q1, · · · ,qj, · · · ,qi · · · ,qn; η) . (5.11)

Next, we will consider the two sets of symmetries to be imposed on our kernels.

5.1.2 Extended Galilean Invariance

We will use the invariance under time-dependent translations to derive relations between

the kernels at di�erent orders. In the non-relativistic limit, the dark ma�er �uid dynamics is

invariant under the following change of coordinates [4, 5],

η → η̃ = η , x→ x̃ = x + d(η) , (5.12)

followed by an appropriate transformation of the density and velocity �elds,

δ(x, η)→ δ̃(x̃, η̃) = δ(x, η) v(x, η)→ ṽ(x̃, η̃) = v(x, η) +H ∂ηd(η) , (5.13)

while the Newtonian potential transforms as

Φ→ Φ−
[
H∂η(H∂ηd) +H2∂ηd

]
· x . (5.14)

�is is a symmetry regardless of the time dependence of d. However, to derive relations

between the kernels we will impose that the new solution generated by the time-dependent

translation is also the long-wavelength limit of a physical mode satisfying the equations of



motion. As shown in Appendix B this assumption is not necessary but it simpli�es a lot the

derivation of the constraint (5.27).

We can thus consider d(η) as the zero momentum limit of a space-dependent �eld. �us,

at the linear level, in Fourier space we have the transformation

δ
(1)
k → δ̃

(1)
k = δ

(1)
k + i(2π)3δD(k)k · d(1) , v

(1)
k → ṽ

(1)
k = v

(1)
k + (2π)3δD(k)H ∂ηd(1) ,

(5.15)

where d(1)(η) is understood as the linear component of the full displacement �eld d(η). Using

eqs. (5.3) and (5.5), this implies

ϕk → ϕ̃k = ϕk + i(2π)3δD(k)k · d(1) . (5.16)

�e new �elds generated by the time-dependent translation manifestly satisfy the linear con-

tinuity equation, ∂η δ̃
(1)
k = ik · ṽ(1)

k /H. Moreover, imposing that the new solution satis�es the

Euler equation implies [139]

H∂η(H∂ηd(1)) +H2∂ηd
(1) = 4πGρ̄a2d(1) , (5.17)

i.e., the displacement d(1)(η) evolves in time following the same linear growth as the original

�eld ϕk(η).

As shown by eq. (5.14), this coordinate transformation permits to remove the e�ect of

the long-wavelength gravitational potential and se�le in an inertial frame, as allowed by the

Equivalence Principle [6]. �is symmetry is not limited to the dark ma�er �uid dynamics.

Assuming that all species fall in the same way in the gravitational �eld, it can be directly

applied to any biased tracer such as the galaxy distribution [114, 139], replacing δ with δt in

eq. (5.13),

δt(x, η)→ δ̃t(x̃, η̃) = δt(x, η) . (5.18)

Moreover, the symmetry is non-perturbative, i.e. it remains valid even for very short wave-

lengths of δt, where the complex baryonic physics is di�cult to model perturbatively.

Using eq. (5.18), we can write that under the coordinate transformation (5.12), the �eld

transforms as,

δt(x, η)→ δt(x− d, η) , (5.19)



which, for each Fourier mode k can be wri�en as

δt,k(η)→ eik·d(η)δt,k(η) =
∞∑
m=0

(ik · d)m

m!
δt,k . (5.20)

Notice that both δt,k(η) and d(η) in the equation above are nonlinear quantities, which we will

expand perturbatively. In particular, we will �rst consider the e�ect of the linear contribution

to d(η), d(1)(η), and then the e�ect of the higher orders.

5.1.3 Leading Order

Expanding perturbatively the le�- and RHS of eq. (5.20) using eq. (5.2) and treating d(1)(η) as

the zero momentum limit of a linear �eld gives, for any given order n,

δ
(n)
t,k →

n∑
m=0

(ik · d(1))m

m!
δ

(n−m)
t,k , (5.21)

where we have omi�ed the dependence on η to avoid clu�ering. �is equation shows how the

LHS of eq. (5.9) transforms under (5.12). Let us now consider the RHS of eq. (5.9). If we now

perform the shi� (5.16) on this side of the equation we have, for the n-th order contribution

and omi�ing again the η dependence,

Ik;q1··· ,qn Kn(q1, · · · ,qn)ϕq1 · · ·ϕqn

→ Ik;q1··· ,qn Kn(q1, · · · ,qn)
n∑

m=0

 n

m

 εq1 · · · εqmϕqm+1 · · ·ϕqn , (5.22)

where for compactness we have de�ned εk(η) ≡ i(2π)3δD(k)k·d(1)(η). Notice that them = 0

term in the second line coincides with δ
(n)
t,k (η).

We can now equate the O((d(1))m) contribution on the RHS of eq. (5.21), i.e.,

im

m!

(
k · d(1)

)m
δ

(n−m)
t,k =

im

m!

(
k · d(1)

)m Ik;p1··· ,pn−m Kn−m(p1, · · · ,pn−m)ϕp1 · · ·ϕpn−m ,

(5.23)

with that on the RHS of eq. (5.22), and obtain a relation between the n-th order kernel and the

(n−m)-th one,∫
d3q1 · · · d3qm(2π)3δD (k−Qn,0) Kn(q1, · · · ,qm,qm+1 · · ·qn)q1 · d δD(q1) · · ·qm · d δD(qm)

= (2π)3δD (k−Qn,m)Kn−m(qm+1, · · · ,qn) (k · d)m , (5.24)



where we have de�ned

Qn,m ≡
n∑

i=m+1

qi . (5.25)

Due to the momentum delta functions in the �rst line and the arbitrariness of the shi� d(η),

the above relation �xes the so� limit of the n-th order kernel as

lim
q1,··· ,qm→0

qi11 · · · qimm Kn(q1, · · · ,qm,qm+1 · · ·qn) = Qi1
n,m · · ·Qim

n,mKn−m(qm+1 · · ·qn) +O(q) .

(5.26)

By further contracting by qi11 · · · qimm we get a series of constraints on the pole structure of the

kernel, which reads

lim
q1,··· ,qm→0

Kn(q1, · · · ,qm,qm+1 · · ·qn)

=
q1 ·Qn,m

q2
1

· · · qm ·Qn,m

q2
m

Kn−m(qm+1 · · ·qn) +O((1/q)m−1) . (5.27)

�ese constraints enforce the symmetries of the equations of motions, namely EGI. �ey are

closely related, but not completely equivalent, to the consistency relations of the LSS [4, 5].

Indeed, the la�er involve fully non-perturbative correlators, as opposed to the intrinsically

perturbative kernels appearing in (5.27). On the other hand, in order to derive the consistency

relations, additional assumptions on the state of the system are needed, namely adiabaticity

and gaussianity of the initial conditions. �ese are not necessary here, as least for unbiased

tracers, as we implement the symmetries of the equations of motion, regardless of the state.

5.1.4 Next to Leading Order

Eq. (5.20) can also be read as follows. If the initial conditions, once evolved, produce a long

mode d(η), then, in the limit of in�nitely long wavelength, its e�ect on the nonlinear tracer

�eld should factorize as

eik·d(η)δt,k(η) , (5.28)

where δt,k(η) is d(η)-independent. �is statement holds beyond the assumption we made in

the previous subsection, namely, that d(η) is the long wavelength limit of a linear �eld. Indeed,



the coupling of two linear modes, ϕq1 and ϕq2 gives a displacement �eld, in Fourier space,

d̃(2)
q (η) =

∫ τ(η)

dτ ′ v(2)
q (τ ′)

= −i q

q2

∫ η

dη′f+(η′)Iq;q1,q2 G2(q1,q2; η′)ϕq1(η′)ϕq2(η′) ,

= −i q

q2

∫ η

dη′f+(η′)
D+(η′)2

D+(η)2
Iq;q1,q2 G2(q1,q2; η′)ϕq1(η)ϕq2(η) . (5.29)

In the q = q1 + q2 → 0 limit, the coupling between these two modes gives a contribution

to the nonlinear �eld of the form (5.28). �e lowest contribution is of third order,

ik · d(2)(η)δ
(1)
t,k(η) , (5.30)

where the ‘zero mode’ displacement is de�ned as

d(2)(η) ≡ 1

V

∫
V

d3x

∫
d3q

(2π)3
e−iq·x d̃(2)

q (η), (5.31)

with V = (2π)3δD(k = 0). Using (5.29) in (5.30) then gives

ik · d(2)(η)δ
(1)
t,k(η)

=
1

V
I0;q1,q2

k · q12

q2
12

∫ η

dη′f+(η′)
D+(η′)2

D+(η)2
G2(q1,q2; η′)ϕq1(η)ϕq2(η)K1(k; η)ϕk(η) ,

(5.32)

where we have de�ned qij ≡ qi + qj . NLO EGI requires that this contribution is contained in

the expression for δ
(3)
t,k(η) from eq. (5.9). In order to isolate it, we insert the identity

1 =
(2π)3

V
(δD(q12) + δD(q23) + δD(q31)) +

[
1− (2π)3

V
(δD(q12) + δD(q23) + δD(q31))

]
(5.33)

in the momentum integral. From the �rst term of the identity we get

δ
(3)
t,k(η) ⊃ Ik;q1,q2,q3 K3(q1,q2,q3; η)ϕq1(η)ϕq2(η)ϕq3(η)

(2π)3

V
(δD(q12) + δD(q23) + δD(q31))

=
1

V
I0;q1,q2 K3(q1,q2,k; η)ϕq1(η)ϕq2(η)ϕk(η), (5.34)

which should be identi�ed with (5.32), therefore leading to the relation

lim
q12→0

K3(q1,q2,k; η) ⊃ k · q12

q2
12

K1(k; η)

∫ η

dη′f+(η′)
D+(η′)2

D+(η)2
G2(q1,q2; η′) . (5.35)



Notice that, as we will discuss in Sect. 5.1.6, mass and momentum conservation impliesG2(q1,q2; η) ∼

q2
12 as q12 → 0. �erefore, unlike eq. (5.27), the kernels have no pole when the sum of two (or

more, see next subsection) momenta vanish. Moreover, the term at the RHS of eq. (5.35) might

also not be the leading one in this limit, as, for a generic tracer, constant contributions are also

present. Nevertheless this equation �xes the structure of the terms containing the k · q12/q
2
12

combination in the q12 → 0 limit which, as will see, provides meaningful constraints to the

kernels.

5.1.5 Nl−1LO

It is possible to generalize eq. (5.35) to a general order of the kernel and with the sum of an

arbitrary number of momenta going to zero. Exploiting the coupling between l linear modes,

one can expand the displacement �eld as

d̃(l)
q (η) = −i q

q2

∫ η

dη′f+(η′)

(
D+(η′)

D+(η)

)l
Iq;q1,...,qlGl(q1, . . . ,ql; η

′)ϕq1(η) . . . ϕql(η),

(5.36)

from which we can obtain the general relation for the n-th order kernel

lim
Ql,0→0

Kn(q1, . . . ,ql,ql+1, . . . ,qn) ⊃

k ·Ql,0

Q2
l,0

∫ η

dη′ f+(η′)

(
D+(η′)

D+(η)

)l
Gl(q1, . . . ,ql; η

′)Kn−l(ql+1, . . . ,qn; η) , (5.37)

where we recall that Ql,0 =
∑l

i=1 qi (see eq. (5.25)). �e number of momenta l, for which

the sum is set to zero in eq. (5.37), gives the order of the perturbative expansion for the long-

wavelength displacement. Considering, for example, l = 1 and iterating m times eq. (5.37),

gives the leading order extended Galilean invariance expressed in eq. (5.27). To obtain the NLO

order one should choose l = 2, meaning that the sum of two internal momenta is set to zero,

so that the �rst correction of this type arise for kernels Kn with n ≥ 3, leading to eq. (5.35).

�e explicit calculation of the NNLO condition, which starts to play a role at the fourth PT

order, is presented in Appendix C.



5.1.6 Mass and momentum conservation

In Sec. 5.1.2 we have discussed the behavior of the kernels Kn(q1, · · ·qn; η) as one or more

of the momenta of the linear �elds, qi, vanishes. In this section we inspect the opposite limit,

in which the momentum of the nonlinear �eld, k, is � qi for all i’s. We consider a tracer

that satis�es mass and momentum conservation, such as for instance the dark ma�er density

contrast.

Mass conservation imposes that the �rst term in this expansion vanishes at all times,

δk=0(η) =

∫
d3x δ(x, η) = 0 . (5.38)

Momentum conservation, namely that the center of mass of the dark ma�er distribution is

�xed, imposes that the second term vanishes,

∂δk(η)

∂ki

∣∣∣∣
k=0

=

∫
d3xxi δ(x, η) = 0 . (5.39)

�ese two conditions on (5.2) give the two independent constraints on the kernels,

lim
Qn,0→0

Fn(q1, · · ·qn; η) = 0 ,

lim
Qn,0→0

∂

∂qi1
Fn(q1, · · ·qn; η) = 0 , (5.40)

where the limit is taken by keeping all the individual qi’s non vanishing. �e conditions above

ensure that the density contrast decouples as

δk(η) = O
(
k2/q2

i

)
, (5.41)

when the external momentum is much smaller than the qi’s, i.e. k � qi, as implied by general

arguments on momentum conservation [79, 94, 135, 140].

�e two conditions eq. (5.38) and (5.39) hold for the ma�er density contrast and velocity

divergence [135], so that eq. (5.40) apply to the ma�er and velocity kernels , i.e. Fn and Gn.

However, they do not hold for a generic tracer, such as the galaxy number density, which does

not satisfy a conservation equation and for which eqs. (5.40) do not apply. �erefore, in the

following we will denote as ‘ma�er kernels’ the ones satisfying the conditions in eq. (5.40).

We turn now to derive their explicit forms by imposing the symmetries discussed above.



5.2 Matter Kernels

5.2.1 Imposing the constraints

Here we will implement all the constraints discussed in Sec. 5.1, including the last one, and de-

rive the expressions of the ma�er kernels, i.e. for Fn and Gn. �e details of these calculations

are explicitly given in App. D. We will use isotropy to write the kernels in terms of rotationally

invariant objects constructed from the external momenta. For n = 1 we have one invariant,

i.e. q2
1 = k2

. For n ≥ 2 we need 3n − 3 of them and we can take them from the n(n + 1)/2

scalar products ql · qm. For n = 2 these are q2
1 , q2

2 , q1 · q2, and for n = 3 they are q2
1 , q2

2 , q2
3 ,

q1 · q2, q1 · q3 and q2 · q3. We will then construct, up to third order, the most general dimen-

sionless functions built out of the qi momenta satisfying the above conditions. We restrict to

rational functions, which is consistent with the perturbative nature of the present analysis, as

expressed by eq. (5.2).

For n = 1, the kernel depends only on one momentum, q, but isotropy implies that the

dimensionless rotational invariant is just a numerical constant, implying

F1(q1; η) = 1 . (5.42)

For n = 2 there are two independent external momenta. �e requirement discussed in

sect. 5.1.2 above restricts the order of the poles, when one of the momenta vanishes, at most

to the �rst. �erefore, the rotational invariants we can build out of q1 and q2 are limited to

four:

1 ,
q1 · q2

q2
1

,
q1 · q2

q2
2

,
(q1 · q2)2

q2
1q

2
2

. (5.43)

We �nd it convenient, instead, to use as basis functions the following combinations

1, γ(q,p) = 1− (q · p)2

q2p2
, β(q,p) ≡ |q + p|2 q · p

2q2p2
, αa(q,p) =

q · p
q2
− p · q

p2
,

(5.44)

where the last combination appears only at n ≥ 3. Indeed, requiring total symmetrization,

eq. (5.11), restricts the invariants to three, leading to the most generic form for the second-

order kernel,

F2(q1,q2; η) = a
(2)
0 (η) + a

(2)
1 (η) γ(q1,q2) + a

(2)
2 (η) β(q1,q2) . (5.45)



Imposing the constraints discussed in sect. 5.1 gives a
(2)
0 = 0 from mass conservation, and

a
(2)
2 = 2 from EGI (see App. D), so that the most general ma�er kernel at n = 2 is given by

F2(q1,q2; η) = 2β(q1,q2) + a
(2)
1 (η) γ(q1,q2) , (5.46)

which contains only one independent function of time, a
(2)
1 (η).

For n = 3, the most general ma�er kernel can be obtained by taking the direct product

between the independent structures built out of q1 and q2 and those built out of q12 and q3,

and then symmetrizing over q1, q2, and q3,

(1, γ(q1,q2), β(q1,q2))⊗ (1, γ(q12,q3), αa(q12,q3), β(q12,q3)) + cyclic . (5.47)

�e αa(q1,q2) term in the �rst factor is absent due to symmetrization. �e symmetrization

process is completed by adding the remaining two cyclic permutations. �us, the most general

structure of the third-order kernel starts with 12 terms. Suppressing the dependence on η to

avoid clu�er, this reads

F3(q1,q2,q3) =
1

3
a

(3)
0 + a

(3)
1 γ(q1,q2) + a

(3)
2 γ(q12,q3) + a

(3)
3 β(q1,q2) + a

(3)
4 β(q12,q3)

+ a
(3)
5 γ(q1,q2)γ(q12,q3) + a

(3)
6 β(q1,q2)β(q12,q3) + a

(3)
7 γ(q1,q2)β(q12,q3)

+ a
(3)
8 β(q1,q2)γ(q12,q3) +

(
a

(3)
9 + a

(3)
10 γ(q1,q2) + a

(3)
11 β(q1,q2)

)
αa(q12,q3)

+ cyclic . (5.48)

Imposing the symmetries discussed in sect. 5.1 provides 10 independent conditions on the

12 coe�cients appearing in (5.48) (see again App. D for details), and thus restricts the total

number of independent coe�cients to three, i.e.{
a

(2)
1 , a

(3)
5 , a

(3)
10

}
. (5.49)

In this case the kernel reads

F1(q1) = 1 (5.50)

F2(q1,q2) = 2β(q1,q2) + a
(2)
1 γ(q1,q2) , (5.51)

F3(q1,q2,q3) = 2 β(q1,q2)β(q12,q3) + a
(3)
5 γ(q1,q2)γ(q12,q3)

− 2
(
a

(3)
10 − h

)
γ(q1,q2)β(q12,q3) + 2(a

(2)
1 + 2 a

(3)
10 − h)β(q1,q2)γ(q12,q3)

+ a
(3)
10 γ(q1,q2)αa(q12,q3) + cyclic , (5.52)



where the time-dependent coe�cient h is not independent and is de�ned below (eq. (5.56)).

All the kernel relations above hold analogously for the velocity divergence: Gn can be

rewri�en up to the third order as eq. (5.42), (5.46) and (5.52), i.e.,

G1(q1) = 1 (5.53)

G2(q1,q2) = 2β(q1,q2) + d
(2)
1 γ(q1,q2) , (5.54)

G3(q1,q2,q3) = 2 β(q1,q2)β(q12,q3) + d
(3)
5 γ(q1,q2)γ(q12,q3)

− 2
(
d

(3)
10 − h

)
γ(q1,q2)β(q12,q3) + 2(d

(2)
1 + 2 d

(3)
10 − h)β(q1,q2)γ(q12,q3)

+ d
(3)
10 γ(q1,q2)αa(q12,q3) + cyclic . (5.55)

�e coe�cient h is de�ned as

h(η) ≡
∫ η

dη′ f+(η′)

[
D+(η′)

D+(η)

]2

d
(2)
1 (η′) , (5.56)

with d
(2)
1 being the time-dependent coe�cient of G2 in eq. (5.54).

5.2.2 Time dependence

�e discussion so far did not assume any speci�c cosmological model, namely a background

evolution and a de�nite form of the system of Euler, continuity and Poisson equations. In this

section we show how �xing a cosmology allows to derive the time dependence on the three

parameters in eq. (5.49) and the corresponding ones for the velocity �eld. We will do this �rst

in the standard ΛCDM case and then for a particular modi�ed gravity model.

5.2.3 ΛCDM

Extending the notation of eq. (5.3) to nonlinear �elds, and switching the time variable from η

to

χ ≡ log
D+(η)

D+(0)
, (5.57)

we can write the equation of motion for the n-th order (n > 1) one as (see e.g. [141]),

(δλλ′∂χ + Ωλλ′(χ)) Ψ
λ′,(n)
k (χ) = Ik;q1,q2γλλ′λ′′(q1,q2)

n−1∑
m=1

Ψλ′,(m)
q1

(χ)Ψλ′′,(n−m)
q2

(χ) , (5.58)



where Ψλ
(λ = 1, 2) is the doublet

Ψ1(x, η) ≡ δ(x, η) , Ψ2(x, η) ≡ θ(x, η) . (5.59)

Moreover, assuming ΛCDM, we have

Ω(χ) =

 0 −1

−3
2

Ωm(χ)

f2
+(χ)

3
2

Ωm(χ)

f2
+(χ)
− 1

 , (5.60)

γ121(q1,q2) = γ112(q2,q1) =
1

2

(
1 +

q1 · q2

q2
1

)
,

γ222(q1,q2) = β(q1,q2) ,

(5.61)

and zero otherwise.

Using eq. (5.2) we obtain the evolution equations of the kernels. At order n = 2, noting

that γ112(q1,q2) + γ121(q1,q2) = γ(q1,q2) + β(q1,q2) we get

(∂χ + 2)F2(q1,q2;χ)−G2(q1,q2;χ) = 2
[
γ(q1,q2) + β(q1,q2)

]
,(

∂χ + 1 +
3

2

Ωm(χ)

f 2
+(χ)

)
G2(q1,q2;χ)− 3

2

Ωm(χ)

f 2
+(χ)

F2(q1,q2;χ) = 2 β(q1,q2) .
(5.62)

Moreover, using the form of the kernels in eq. (5.46) and selecting the growing mode initial

condition, we get the system of two coupled equations for the kernel coe�cients,

(∂χ + 1)a
(2)
1 = 2− a(2)

1 + d
(2)
1 ,

(∂χ + 1)d
(2)
1 =

3

2

Ωm

f 2
+

(
a

(2)
1 − d

(2)
1

)
.

(5.63)

�ese equations are to be solved with the initial conditions

lim
χ→−∞

{a(2)
1 , d

(2)
1 } = {a(2)

1,EdS, d
(2)
1,EdS} , (5.64)

where the Einstein de Si�er values are the solutions corresponding to Ωm/f
2
+ = 1 which are

�nite in the χ→ −∞ limit,

a
(2)
1,EdS =

10

7
, d

(2)
1,EdS =

6

7
. (5.65)

�e analytic solutions are given by

a
(2)
1 (χ) = 2− e−χ

∫ χ

−∞
dχ′ eχ

′
∆a

(2)
1 (χ) ,

d
(2)
1 (χ) = a

(2)
1 (χ)−∆a

(2)
1 (χ) ,

(5.66)
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Figure 5.2: Evolution of the coe�cients of the kernels in ΛCDM (for Ω0
m = 0.27), normalized

to the EdS limit.

where

∆a
(2)
1 (χ) = 2 e−χ

∫ χ

−∞
dχ′ e

χ′−
∫ χ
χ′ dχ

′′
(

1+ 3
2

Ωm(χ′′)
f2
+(χ′′)

)
. (5.67)

Going to the next order, at n = 3, and equating the coe�cients of the di�erent structures

in γ, β and αa, we get the coupled evolution equations for the 6 independent parameters

appearing in the kernels for the density and velocity �elds. �ese, as well as their analytic

solutions, are wri�en in App. E. An example of their behavior is given in Fig. 5.2. Notice that

the deviations of the velocity coe�cients (dashed lines) from the EdS is of order 4% at low

redshi�s, and is more pronounced than that of ma�er (solid lines).

Again, se�ing Ωm/f
2
+ = 1, the analytical solutions recover the results of the EdS limit for

the third-order density-�eld kernels,

a
(3)
5,EdS =

8

9
, a

(3)
10,EdS = −1

9
, (5.68)

and the third-order velocity ones,

d
(3)
5,EdS =

8

21
, d

(3)
10,EdS = − 1

21
. (5.69)



5.2.4 nDGP

We have introduced the nDGP model in section (3.2). In the notation adopted in this chapter,

the analog for nDGP of the equations of motions eq. (5.58) for ΛCDM is

(δλλ′∂χ + Ωλλ′) δ
λ′,(n)
k =Ik;q1,q2γλλ′λ′′(q1,q2)

n−1∑
m=1

δλ
′,(m)

q1
δλ
′′,(n−m)

q2
(5.70)

+
µ2

f 2
+

(
3

2
Ωm

)2

Ik;q1,q2γ(q1,q2)
n−1∑
m=1

δ(m)
q1

(χ)δ(n−m)
q2

(χ)

+
µ3

f 2
+

(
3

2
Ωm

)3

Ik;q1,q2,q3γ(q1,q2)
n−2∑
m=1

n−2∑
l=1

δ(m)
q1
δ(l)
q2
δ(n−m−l)
q3

,

where the explicit dependence on χ has been removed to reduce clu�er and

Ω =

 0 −1

−3
2

Ωm
f2
+
µ 3

2
Ωm
f2
+
µ− 1

 . (5.71)

Again, using eq. (5.2) and the one for the velocity �eld, we obtain the evolution equations

for the kernels in this modi�ed gravity scenario. At order n = 2 and using eq. (5.46) for the

kernels we obtain

(∂χ + 1)a
(2)
1 = 2− a(2)

1 + d
(2)
1 + 2

µ2

f 2
+

(
3

2
Ωm

)2

,

(∂χ + 1)d
(2)
1 =

3

2

Ωm

f 2
+

(
a

(2)
1 − d

(2)
1

)
+ 2

µ2

f 2
+

(
3

2
Ωm

)2

,

(5.72)

to be solved with the same initial condition expressed in eq. (5.64). �e analytic solution is

a
(2)
1 (χ) = 2− e−χ

∫ χ

−∞
dχ′ eχ

′

[
∆a

(2)
1 (χ′)− 2

µ2

f 2
+

(
3

2
Ωm

)2
]
,

d
(2)
1 (χ) = a

(2)
1 (χ)−∆a

(2)
1 (χ) ,

(5.73)

where in nDGP

∆a
(2)
1 (χ) = 2e−χ

∫ χ

−∞
dχ′ e

χ′−
∫ χ
χ′ dχ

′′
(

1+ 3
2

Ωm(χ′′)
f2
+(χ′′)

µ(χ′′)

)
. (5.74)

Analogously to the ΛCDM case we can �nd the di�erential equations and the analytic solu-

tions for the third order kernel and parameters: the result of these calculations are presented

in App. E.2. An example of the behavior of the coe�cients in a nDGP cosmology is presented
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Figure 5.3: Evolution of the coe�cients of the kernels in nDGP (for Ω0
m = 0.27 and two

possible values of the nDGP parameter Ωrc = 0.01, 0.5 in the le� and right plot, respectively),

normalized to the EdS limit.
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Figure 5.4: Comparison of the time evolution of the ma�er kernel coe�cients in nDGP cos-

mologies compared to the ΛCDM ones (Ω0
m = 0.27 and Ωrc = 0.01, 0.5 in the le� and right

plot, respectively).

in Fig. 5.3. Notice that, similarly to what happened in the ΛCDM case, the velocity coe�-

cients (dashed lines) are more sensible to a change in the time behavior of the growing mode

compared to the ma�er ones (solid lines). A comparison between the exact solutions in the

ΛCDM case and the nDGP one is given in Fig. 5.4, for two representative values of the nDGP

parameter Ωrc.



5.3 General tracers

5.3.1 Kernels

�e number density contrast for a generic tracer is not expected to satisfy a continuity equa-

tion, or to ful�ll momentum conservation. �erefore, in order to obtain the most generic non-

linear kernels for biased tracers, the condition from mass and momentum conservation given

by eq. (5.40) should be li�ed, while keeping the ones from EGI and the Equivalence Principle.

�e explicit calculations of the kernels in this case can be also found in App. D. Up to third

order, mass and momentum conservation give four independent constraints. So, compared to

the ma�er case, which is described by three independent coe�cients (one for n = 2 and two

for n = 3), the kernels for general tracers have a total of 7 independent coe�cients, which can

be chosen to be {
c

(1)
0 , c

(2)
0 , c

(2)
1 , c

(3)
0 , c

(3)
1 , c

(3)
5 , c

(3)
10

}
. (5.75)

�e kernels are given by,

K1(q1) = c
(1)
0 , (5.76)

K2(q1,q2) = c
(2)
0 + 2 c

(1)
0 β(q1,q2) + c

(2)
1 γ(q1,q2) , (5.77)

K3(q1,q2,q3) =
1

3
c

(3)
0 + c

(3)
1 γ(q1,q2) + 2c

(2)
0 β(q1,q2)

+ c
(3)
5 γ(q1,q2)γ(q12,q3) + 2 c

(1)
0 β(q1,q2)β(q12,q3)

+ 2(h c
(1)
0 − c

(3)
10 )γ(q1,q2)β(q12,q3) + 2(c

(2)
1 + 2 c

(3)
10 − h c

(1)
0 )β(q1,q2)γ(q12,q3)

+ c
(3)
10 γ(q1,q2)αa(q12,q3) + cyclic , (5.78)

where the coe�cient h has been de�ned in eq. (5.56). Notice that it enters the ma�er kernels

and depends only on the underlying cosmology and not on the type of tracer. For instance, in

the EdS case, it is given by (see eq. (5.65))

hEdS(η) =
3

7
. (5.79)

�e fact that it appears explicitly in the tracer kernels opens the possibility, at least in principle,

to extract cosmological information in a model independent way.



5.3.2 Relation with other bias expansions

Here we compare the present approach to other bias expansions (see [142, 41] for a review

on bias). For instance, we can compare our general kernel expansion up to third order in

Eqs. (5.76), (5.77) and (5.78), with the bias expansion given in [143]. Up to third order in PT,

the density contrast for a given biased tracer in con�guration space is expressed as the sum of

7 independent operators,

δt = b1 δ +
b2

2
δ2 +

b3

3!
δ3 + bG2 G2(Φ) + bG3 G3(Φ) + bδG2 δ G2(Φ) + bGN GN(ϕ2, ϕ1) , (5.80)

where we have omi�ed the time dependence and we have de�ned the two Galilean-invariant

combinations

G2(Φ) ≡ (∇ijΦ)2 −
(
∇2Φ

)2
,

G3(Φ) ≡
(
∇2Φ

)3
+ 2∇ijΦ∇jkΦ∇kiΦ− 3 (∇ijΦ)2∇2Φ ,

(5.81)

where Φ is the Poisson potential normalized in such a way that ∇2Φ = δ, and the Galilean-

invariant “non-local” combination

GN(ϕ2, ϕ1) ≡ ∇ijϕ2∇ijϕ1 −∇2ϕ2∇2ϕ1 , (5.82)

with ∇2ϕ1 ≡ −δ and∇2ϕ2 ≡ −G2(Φ).

�e number of independent bias coe�cients is the same as ours (cf. with eq. (5.75)):

Our basis: 1st
order: c

(1)
0 , 2nd

order: c
(2)
0 , c

(2)
0 , 3rd

order: c
(3)
0 , c

(3)
1 , c

(3)
5 , c

(3)
10 ,

Ref. [143]: 1st
order: b1 , 2nd

order: b2, bG2 , 3rd
order: b3, bG3 , bδG2 , bGN .

Indeed, by expanding the RHS of eq. (5.80) and equating the coe�cients of the independent

operators, we can relate them as

c
(1)
0 = b1, c

(2)
0 = b2, c

(3)
0 = b3,

c
(2)
1 = b1 a

(2)
1 − 2 bG2 , c

(3)
1 = b2 a

(2)
1 − 2 bδG2 ,

c
(3)
5 = b1 a

(3)
5 − 2 bG2a

(2)
1 + 2 bG3 + 2 bGN , c

(3)
10 = b1 a

(3)
10 − bG3 ,

(5.83)



or, inversely,

b1 = c
(1)
0 , b2 = c

(2)
0 , b3 = c

(3)
0 ,

bG2 =
1

2

(
a

(2)
1 c

(1)
0 − c

(2)
1

)
, bδG2 =

1

2

(
a

(2)
1 c

(2)
0 − c

(3)
1

)
,

bG3 = a
(3)
10 c

(1)
0 − c

(3)
10 , bGN =

1

2

((
a

(2)
1

)2

c
(1)
0 − a

(2)
1 c

(2)
1 − a

(3)
5 c

(1)
0 + c

(3)
5

)
− a(3)

10 c
(1)
0 + c

(3)
10 .

(5.84)

Other basis expansions at this order have been given, for instance, in [144, 145, 146, 147, 148,

138, 149]. A comparison shows that, for a �xed cosmology, that is, for �xed a
(2,3)
i coe�cients,

our basis can be related in a similar way as above to those in these references, (see also [150, 75]

for explicit relations between coe�cients).

For ΛCDM cosmology, our bias expansion can also be compared to the one presented

in [75]. Notice that the time-dependent function Y de�ned in that reference, which carries

information about the exact time dependence away from the EdS case, is related to our function

h de�ned in eq. (5.56). More precisely we have: Y = h/2 − 3/14. However, our de�nition

in eq. (5.56) is not restricted to ΛCDM. It applies to any cosmological model sharing the same

symmetries as ΛCDM. Moreover, our derivation clari�es the physical origin of the tracer-

independent function h, that is, EGI.

5.3.3 Relation with Fujita & Vlah

Before closing this section, we discuss in some detail the relation of the present approach to

that of [150], which is the closest one to ours. �e starting point, also in that paper, is to write

down the most general kernels and then to reduce the number of independent coe�cients by

imposing symmetry-related constraints. In particular, the authors impose that the correlators

satisfy the equal-time consistency relations [4, 5]. On top of that, they also impose extra

conditions on the momentum dependence of the so� limit of the four-point function that do

not derive directly from the equal time consistency relations. At third order and for a generic

tracer they �nd 7 bias coe�cients and 2 ‘universal’ ones, which are independent on the tracer

type and depend on the underlying cosmology only. We have shown that EGI at LO �xes one

of these universal coe�cients and at NLO relates the other to the h(η) quantity de�ned in

(5.56).



Let us see this in detail. Ref. [150] implements the requirement that the so� limit of the

equal time mixed three point function

lim
q→0
〈δq(η)δt1,k+(η)δt2,k−(η)〉 , (5.85)

where k± ≡ k±q/2, and ‘t1’ and ‘t2’ indicate two di�erent tracers, has no poles in q. Eqs. (5.76)

and (D.1) give,

lim
q→0
〈δq(η)δt1,k+(η)δt2,k−(η)〉 = −1

2

k · q
q2

(
c

(2)
2,t1

(η)c
(1)
0,t2

(η)− c(2)
2,t2

(η)c
(1)
0,t1

(η)
)
Pl(q; η)Pl(k; η) ,

(5.86)

where Pl(q; η) is the linear power spectrum. Requiring the absence of poles one �nds

c
(2)
2,t1

(η)

c
(1)
0,t1

(η)
=
c

(2)
2,t2

(η)

c
(1)
0,t2

(η)
≡ 2 Cb(η) , (5.87)

where the quantity Cb(η), the �rst ‘universal’ coe�cient de�ned in ref. [150], does not depend

on the tracer type. �e authors also observe that in the EdS case Cb(η) = 1. From eq. (D.4),

this result is completely general, i.e., not limited to EdS. It is a consequence of the EGI of the

system.

�is can also be seen by extending the approach of [150] by using unequal-time consistency

relation, which reads [4],

lim
q→0
〈δq(η)δt1,k+(η1)δt2,k−(η2)〉 = −k · q

q2

(
D+(η2)

D+(η)
− D+(η1)

D+(η)

)
Pl(q; η)Pt1,t2(k; η1, η2) ,

(5.88)

where Pt1,t2(k; η1, η2) is the unequal time cross PS between the tracers t1 and t2. Using again

eqs. (5.76) and (D.1) we get

lim
q→0
〈δq(η)δt1,k+(η1)δt2,k−(η2)〉 =

− 1

2

k · q
q2

(
D+(η2)

D+(η)

c
(2)
2,t2

(η2)

c
(1)
0,t2

(η2)
− D+(η1)

D+(η)

c
(2)
2,t1

(η1)

c
(1)
0,t1

(η1)

)
Pl(q; η)Pt1,t2(k; η1, η2) ,

(5.89)

which reproduces the consistency relation (5.88) if

c
(2)
2,t1

(η)

c
(1)
0,t1

(η)
=
c

(2)
2,t2

(η)

c
(1)
0,t2

(η)
= 2 , (5.90)



thus con�rming Cb = 1 (see eq. (5.87)) in any cosmology respecting the equivalence principle.

On the other hand, the other universal coe�cient, Cd, is indeed cosmology-dependent. By

using the NLO condition (5.35), on the third order kernel in eq. (C.1) of [150], one can verify

that

Cd(η) = 2h(η) , (5.91)

where the non-local in time, tracer-independent coe�cient h(η) is given in (5.56).

5.4 UV e�ects

Up to this point, we have implicitly assumed that PT is able to model the nonlinear behavior

at all scales. As it is well known, this assumption fails at small scales, for wavenumbers larger

than some value kNL. More precisely, the e�ect of “UV” modes with q > kNL on the nonlinear

�eld of a given tracer evaluated at k < kNL is poorly reproduced by PT, see for instance [151].

In fact, the physics at small scales is unknown and its e�ects need to be taken into account as

an expansion in k/kNL [38].

In order to keep track of the UV corrections needed to correct PT up to a given order, we

perform the shi�

ϕq(η)→ ϕq(η) + δϕq(η) , (5.92)

in the expansions (5.7), (5.8), or (5.9), where

δϕq(η) ≡ (ϕ̃q(η)− ϕq(η)) θ(q − Λ) ≡ ϕ̃uv
q (η)− ϕuv

q (η) . (5.93)

ϕ̃uv
q (η) is the ‘true’ UV �eld which replaces the “wrong” one, ϕuv

q (η) so that, once inserted in

the loop corrections, the wrong PT behavior in the UV is replaced by the corrected one. In the

following, we will assume the hierarchy Λ� kNL � k, where k is the momentum associated

to the nonlinear �eld. In this limit, the UV e�ects can be expressed as powers of k2/k2
NL, and

the Λ dependence can be omi�ed
3
, as we did in (5.92) and in the last of (5.93).

3
�e regularization scale Λ is non-physical. �erefore the fully renormalized PT observables should not

depend on it.



Under the shi� (5.92) the nonlinear expansion of the tracer �eld, eq. (5.9), gets extra con-

tributions,

δ
(n)
t,k (η) = Ik;q1··· ,qn Kn(q1, · · · ,qn; η)ϕq1(η) · · ·ϕqn(η),

→
n∑

m=0

 n

m

 Ik;q1··· ,qn Kn(q1, · · · ,qn; η)δϕq1(η) · · · δϕqm(η)ϕqm+1(η) · · ·ϕqn(η) ,

(5.94)

where the m > 0 terms correct the wrong UV behavior of the m = 0 one. We now discuss

the e�ect of these corrections up to n = 3. For n = 1 we have no modi�cation,

δ
(1)
t,k(η)→ K1(k; η) (ϕk(η) + δϕk(η)) = K1(k; η)ϕk(η) , (5.95)

as, within the assumed hierarchy of scales, the UV �eld δϕk(η) has no support on the IR

momentum k. For n = 2,

δ
(2)
t,k(η)→Ik;q1,q2 K2(q1,q2; η)(ϕq1(η) + δϕq1(η))(ϕq2(η) + δϕq2(η))

= Ik;q1,q2 K2(q1,q2; η)ϕq1(η)ϕq2(η)

+ Ik;q1,q2 K2(q1,q2; η)
(
ϕ̃uv
q1

(η)ϕ̃uv
q2

(η)− ϕuv
q1

(η)ϕuv
q2

(η)
)
, (5.96)

where in the last equation we have again made use of the hierarchy of scales. the new term

contains only UV �elds, and, for the ma�er and velocity �elds, in the small k limit, it scales

as k2/k2
NL, due to momentum conservation. �e full correction to the second order �eld will

then have the form,

Ik;q1,q2 K2(q1,q2; η)
(
ϕ̃uv
q1

(η)ϕ̃uv
q2

(η)− ϕuv
q1

(η)ϕuv
q2

(η)
) k→0−→ k2

k2
NL

ε
(2)
δ (η) , (5.97)

where the zero average stochastic �eld ε
(2)
δ (η) will be assumed to be uncorrelated with ϕq(η).

On the other hand, for a general tracer there is no momentum constraint, and the new

term behaves as a scale independent white noise for small k. �erefore, we may write

δ
(2)
k (η) = δ

(2), PT
k (η) +

k2

k2
NL

ε
(2)
δ (η) +O

(
k4

k4
NL

)
,

θ
(2)
k (η) = θ

(2), PT
k (η) +

k2

k2
NL

ε
(2)
θ (η) +O

(
k4

k4
NL

)
,

δ
(2)
t,k(η) = δ

(2), PT
t,k (η) + ε

(2)
t (η) +O

(
k2

k2
NL

)
, (5.98)



where by δ
(2), PT
k (η) and so on we indicate the uncorrected results of the previous sections,

and we de�ne the stochastic �elds ε
(2)
δ,θ,t from the k → 0 limit of the second line in eq. (5.96).

At n = 3 we get

δ
(3)
t,k(η)→δ(3), PT

t,k (η)

+ Ik;q1,q2,q3 K3(q1,q2,q3; η)

[
3 ϕir

q1
(η)
(
ϕ̃uv
q2

(η)ϕ̃uv
q3

(η)− ϕuv
q2

(η)ϕuv
q3

(η)
)

+
(
ϕ̃uv
q1

(η)ϕ̃uv
q2

(η)ϕ̃uv
q3

(η)− ϕuv
q1

(η)ϕuv
q2

(η)ϕuv
q3

(η)
) ]

, (5.99)

where ϕir
q(η) ≡ ϕq(η)θ(Λ− q). �e last line gives again noise terms uncorrelated with ϕq(η)

and with the momentum dependences of eq. (5.98). On the other hand, the second line contains

the IR component of the linear �eld. By taking the functional derivative of δ
(3)
t,k(η) with respect

to ϕir
k(η), this term gives

δ δ
(3)
t,k(η)

δ ϕir
k(η)

= · · ·+ 3

(2π)3

∫
d3q

(2π)3
K3(k,q,−q; η)

(
ϕ̃uv
q (η)ϕ̃uv

−q(η)− ϕuv
q (η)ϕuv

−q(η)
)
, (5.100)

which, again, vanishes as k2/k2
NL for ma�er density and velocity, and goes to a constant for a

generic tracer as k → 0. �e expectation value of the RHS of (5.100) for ma�er and velocity

corresponds to the ‘sound speed’ of the EfToLSS [38, 39, 152, 153],

c2
s,δ(η) = lim

k→0

k2
NL

k2

〈
δ δ

(3)
k (η)

δ ϕir
k(η)

〉
, c2

s,θ(η) = lim
k→0

k2
NL

k2

〈
δ θ

(3)
k (η)

δ ϕir
k(η)

〉
, (5.101)

while, for a generic tracer it gives both a contribution degenerate with linear bias, at O(k0),

and a sound speed one at O(k2). In summary, the n = 3 result of eq. (5.99) can be expressed

as

δ
(3)
k (η) = δ

(3), PT
k (η) +

k2

k2
NL

[(
c2
s,δ(η) + η

(3)
δ (η)

)
ϕk(η) + ε

(3)
δ (η)

]
+O

(
k4

k4
NL

)
,

θ
(3)
k (η) = θ

(3), PT
k (η) +

k2

k2
NL

[(
c2
s,θ(η) + η

(3)
θ (η)

)
ϕk(η) + ε

(3)
θ (η)

]
+O

(
k4

k4
NL

)
,

δ
(3)
t,k(η) = δ

(3), PT
t,k (η) +

[
b̃0,t(η) + η

(3)
t (η) + c2

s,t(η)
k2

k2
NL

]
ϕk(η) + ε

(3)
θ (η) +O

(
k2

k2
NL

)
,

(5.102)

where the stochastic �elds η
(3)
δ,θ,t(η) are given by the �uctuation of eq. (5.99) about its expecta-

tion value (multiplied by k2
NL/k

2
in the case of δ and θ).



5.5 Conclusions

In this chapter we have investigated the role of symmetries in determining the analytic struc-

ture of PT kernels, both for DM and for generic biased tracers. We have highlighted the promi-

nent role played by EGI, and showed that the constraints imposed by this symmetry exhibit

a rich structure. �e role of EGI was already well appreciated in the literature [150], as it is

at the basis of the consistency relations for the LSS [4, 5] (for recent applications see [2, 3]),

which relateN -point correlators toN−m ones asm external momenta vanish independently.

�is limit, and therefore the consistency relations, correspond to the EGI relations at LO in our

language. On the other hand, we showed that the limits in which partial sums of the external

momenta vanish are also governed by EGI, and provide extra constraints on the functional

form of the kernels, as is summarized in eq. (5.37).

�e number of independent EGI constraints increases with the PT order. At second order,

the LO EGI gives one constraint, while, at third order, LO+NLO EGI provide eight independent

conditions. Going to fourth order, one should include also NNLO constraints, and so on. We

leave a systematic discussion of PT kernels beyond third order to future work.

Another noticeable feature of eq. (5.37) is its non-locality in time, which is made explicit

at third order by the coe�cient h(η), de�ned in eq. (5.56). Time non-locality is a well known

feature of the bias (and EFT) expansion (for a discussion, see for instance [147, 148]), where

it is related to the convective time derivatives appearing in the equations of motion. It is not

surprising that, in our discussion, it emerges as a consequence of EGI, which also provides a

systematic way to take it into account at higher orders.

�e symmetry-based framework de�ned in this paper allows for a general treatment of DM

and biased tracers, as the two species di�er only in mass and momentum conservation, which

is enforced for the former but not for the la�er. It also provides a useful language for using

galaxy clustering data for model independent analyses of beyond ΛCDM scenarios, which

could be classi�ed in terms of symmetries rather than speci�c Lagrangians. Considering for

instance the galaxy PS in redshi� space at one loop, the cosmology-dependent coe�cients are

h(η) and the ones appearing in the velocity kernels, d
(2)
1 , d

(3)
5 , and d

(3)
10 . �ey can either be

computed for a given model, as we did for ΛCDM and for nDGP in sect. 5.2.2, or �t from data



in a model independent analysis.

It was shown in [154] that in Horndeski theories EGI symmetry holds and the structure of

the PT kernels is the same as that in ΛCDM. Beyond Horndeski (see e.g. [155, 156, 157]), EGI

symmetry is broken and PT kernels and the bias expansion deviate from the standard ones,

leading for instance to violations of the consistency relations (see [158] for a thorough study of

the consequences of this on observables). It would be interesting to systematically study these

deviations in a general se�ing and constrain them with data. A challenging direction is the

extension of this approach to modi�ed gravity models involving a scale-dependent growth,

such as for instance f(R) or massive neutrinos theories, which we leave for the future.



Chapter 6

Conclusions and outlook

�e focus of this thesis was on the role played by symmetries in providing model independent

statements about cosmological parameters and PT kernels.

Future surveys, such as Euclid [1, 159], will map the distribution of galaxies over volumes

of considerable size and with unprecedent precision: it will represent one of the major sources

of cosmological information for the next decade. �e main observables that have been studied

so far are the power spectrum (PS) and the bispectrum (BS), respectively the Fourier transform

of the two- and three-point correlation function. �e e�ective �eld theory of large scale struc-

ture (EFTofLSS, see [36, 37, 38, 39]) provides a rigorous method for the calculation of these

correlation functions up to mildly non-linear scales, including corrections coming from small

scale non-linearities. In particular, the EFT model for PS at one loop has been recently used

for the analysis of the BOSS dataset [11], giving constraints on cosmological parameters that

are competitive with CMB based observations, see [45, 46, 47]. �e results of these and follow-

ing analysis on current data (constraints on neutrino masses [160, 92], H0 tension [161, 162],

beyond-ΛCDM model [163, 10, 110], RSD [164, 165]) represent a great step forward in the

study of LSS within the EFTofLSS. Moreover, in the BOSS collaboration the BS has been mea-

sured and analyses have been performed [48, 49, 50]. �e �rst detection of the BAO features

in the BS has been claimed in [63]. On the analytical side, the BS is experiencing growing

interest as it can be used to break some degeneracies that are still present when only the PS is

considered, for example the one between the linear growth rate f , the large scale bias b1 and

the power spectrum amplitude σ8. Ref. [60] showed that by performing a joint analysis of the

113



PS and the BS one could reach a 10% accuracy on f , while [59] has shown that using only the

bispectrum monopole reduces signi�cantly the information content of the bispectrum, allow-

ing only for a be�er estimation of the bias parameters. A �rst analysis using the EFT model for

the tree-level BS has been recently performed on numerical simulations [166], which showed

an improvement of 5-15% on the constraints on cosmological parameters.

All these recent results show, on one side, the accuracy of our theoretical modelling of the

cosmological observables and, on the other side, the increasing computational power of the

numerical techniques used for the analysis.

In the last decade, much interest has been paid to the role of symmetries in cosmology.

Refs. [4, 5] derived the so called consistency relations (CR) for LSS, which are exact equalities

between the N -point correlation function and the (N −m)-point one, when m momenta are

sent to zero (so� limit). CR’s are a direct consequence of the (extended) galilean invariance

(EGI) of the system, which means that CR’s represent general relations between observables

that are model independent, non-perturbative and valid also on non-linear scales.

In [2, 3], we have shown how the CR’s provide a reliable way to measure the large scale

galaxy bias, bg, and the linear growth rate, f . �e equal-time CR for the BS takes the form, in

redshi� space,

lim
q/k→0

Bα(q,−k+,k−)

Pα(q)Pα(k)
=− µ2 + fµµkµq

bα + fµ2
q

∂ lnPα(k)

∂ ln k

+ smooth/higher orders contributions .

(6.1)

where µ ≡ k̂ · q̂, µk ≡ k̂ · ẑ and µq ≡ q̂ · ẑ. In eq. (6.1) the bias parameter bα is not a parameter

of a bias expansion, but it is de�ned as the large scale limit of the ratio between the real space

power spectrum for the tracer α and the α-ma�er cross correlator

bα ≡ lim
q→0

Pαα(q)

Pαm(q)
. (6.2)

Isolating the oscillating part of the two members of eq. (6.1), which is due to the presence of the

baryon acoustic oscillations (BAO), it is possible to provide a model independent measurement

of the two parameters bα and f at ∼ 10% precision, depending on the redshi� and the tracer

considered. �ese measurements have the same accuracy level of the constraints that comes



from joint analyses of PS and BS, see [60]. While the la�er always assumes a cosmological

model for the background evolution and a particular perturbative scheme, our method does not

rely on these assumptions, as is the result of symmetry principles only. While current analysis

with the BS reach very small kmax in order to have unbiased estimates of the cosmological

parameters (in [77, 166] the authors used kBSmax ' 0.08-0.09 h/Mpc), we have shown that our

approach can exploit information up to very non-linear scales kmax ' 0.25 h/Mpc in a reliable

and accurate way. �is method is fast, since it uses only a limited number of triangles, and

accurate, since it relies on well established physical motivations, the EGI and the BAO. �e

measurement of the (true) linear bias could be used as a prior for the MCMC analysis of LSS,

making them faster and more reliable.

�e analysis we report for the CR’s are performed against N-body simulations. A crucial

step would be the application of this method to actual observations, for example the BOSS

data. Despite the observation of the BAO features in the bispectrum of BOSS, [63], the width

of the bins in the publicly available dataset
1

is too high to resolve the BAO in the squeezed

con�gurations of the BS, the one we are interested for the use of eq. (6.1).

�is method will be of great use for the analysis of the Euclid future observation. By

now, we are testing the use of CR’s to measure the linear bias against the Euclid Flagship

simulations. �ese are N-body simulations built with the speci�cs of the Euclid satellite, the

observed number density of tracers, the volume and the redshi� range. We have presented

preliminary results of this promising analysis, for which the results will be published soon.

By investigating at a more deep level the role played by symmetries on cosmological scales,

we formulated the �rst LSS bootstrap [8], presented also in this thesis. We found that symme-

tries constrain the analytical structure of the PT kernels. �e symmetry that plays a prominent

role is, again, the EGI, which ensures the invariance of cosmological observables under a gen-

eral time dependent shi� of the coordinates. �e constraints imposed by this symmetry present

a rich structure. �e CR’s used in our previous works and presented above, connect correla-

tion functions of di�erent orders when the sum of subset of external momenta are singularly

sent to 0. We refer to the constraints that follow from taking single momenta in the so� limit

1
�e PS monopole and quadtrupole and the BS monopole can be found here.

https://www.ub.edu/bispectrum/bispectrum_public/boss_public.html


as the leading order (LO). When the sum of two momenta is sent to zero, we have the next-

to-leading order (NLO), and so on. Each order of the EGI gives independent constraint at the

PT order considered. �e number of these independent EGI constraints increases with the PT

order. At second order, the leading order (LO) EGI gives one constraint, while, at third order,

leading order and next-to-leading order (LO+NLO) EGI provide eight independent conditions.

�e N
l−1

LO constraint on the n-th order kernel is provided by the general relation

lim
q1...l→0

Kn(q1, . . . ,ql,ql+1, . . . ,ql) ⊃

k · q1...l

q2
1...l

∫ η

dη′f+(η′)

(
D+(η′)

D+(η)

)l
Gl(q1, . . . ,ql; η

′)Kn−l(ql+1, . . . ,qn; η) ,

(6.3)

where Kn is the n-th order perturbative kernel for a generic tracer, while Gl is the l-th order

velocity (divergence) kernel. Going to fourth order, one should include also NNLO constraints,

and so on. �e EGI constraints are valid for any model and for any tracer that satisfy the

symmetries considered. �is means that the kernels presented in the PT bootstrap can be used

to test a wide variety of models beyond-ΛCDM by performing only one, model independent,

MCMC analysis. �e EGI is a gold mine that still needs to be deeply explored: one could go

to the fourth perturbative order, which is required for the calculation of the BS at one-loop.

Another step forward would be the inclusion of scale-dependent models in order to account,

for example, for massive neutrinos. We leave the exploration of these generalizations to future

work.

�e theoretical modelling must always be accompanied by a su�ciently accurate numer-

ical work. In this thesis we have also presented numerical tools based on the FFTLog tech-

nique [43, 44] for the fast evaluation of the integrals present in the loop corrections of the PS

and the BS. In particular, we have studied a concrete example of modi�ed gravity theory, the

nDGP model, see [9, 97], and we have implemented it in PyBird [10], which is a public code

currently used for the MCMC analysis of the LSS data
2
. We have shown preliminary results

of the constraints on the nDGP parameter from a BOSS-like survey, using the simulation data

from the PT challenge [104]. �is code is being used in the preliminary tests within the Eu-

clid collaboration and will be used for the future data analysis, that will give us more insight

2
�e public repository of the code can be found here.

https://github.com/pierrexyz/pybird


on these models. As mentioned before, the inclusion of scale-dependent models would be of

great interest for the future observations. A �rst step in this direction was reported in [167],

which performs a PT calculations of the PS in presence of massive neutrinos and provides an

accurate approximation for the FFTLog decomposition of the loop integrals. We are currently

working on this issue, for which results will be published in the future.

In conclusion, the symmetry based methods for galaxy clustering represent a �rst step

toward a more general approach to the LSS study. �rough these methods we can provide

model independent constraints on cosmological parameters (using the CR) and general per-

turbative structure (via the LSS bootstrap) that will help us with a reliable description of the

cosmological observables, leading us to a be�er understanding of the universe we live in. �e

techniques presented in this thesis will help us in constraining possible deviations from the

standard ΛCDM cosmological model. Moreover, the results presented here are easily imple-

mented within fast codes used for the analysis of cosmological observations.

�e programmed launch of the Euclid satellite together with the future data release will

represent a signi�cant test �eld for the methods presented in this thesis, and will reveal if the

path we have undertaken is as accurate as it seems to promise.



Appendix A

Time-dependent functions for general

time dependent cosmologies

�e general form for the ma�er kernels in the approach used in chapter 3 up to third order is

K
(1)
λ (q1, η) = 1 , (A.1)

K
(2)
λ (q1,q2, a) =αs(q1,q2)Gλ1 (η) + β(q1,q2)Gλ2 (η) , (A.2)

K
(3)
λ (q1,q2,q3, η) =ασ(q1,q2,q3)Uλσ (η) + βσ(q1,q2,q3)Vλσ2(η) + γσ(q1,q2,q3)Vλσ1(η) .

(A.3)

�e six function that in eqs. A.1-A.3 are

α1(q1,q2,q3) = α(q3,q1 + q2)αs(q1,q2), α2(q1,q2,q3) = α(q3,q1 + q2)β(q1,q2),

β1(q1,q2,q3) = 2β(q3,q1 + q2)αs(q1,q2), β2(q1,q2,q3) = 2β(q3,q1 + q2)β(q1,q2),

γ1(q1,q2,q3) = α(q1 + q2,q3)αs(q1,q2), γ2(q1,q2,q3) = α(q1 + q2,q3)β(q1,q2) ,

while the time dependent functions are, in nDGP

Gλ1 (η) =

∫ 0

−∞

[
Gλ

1(η, η̃)f+(η̃) +Gλ
2(a, η̃)

µ2(η̃)

f+(η̃)

(
3Ωm(η̃)

2

)2
]
D2

+(η̃)

D2
+(η)

e−η̃dη̃ ,

Gλ2 (η) =

∫ 0

−∞
Gλ

2(η, η̃)

[
f+(η̃)− µ2(η̃)

f+(η̃)

(
3Ωm(η̃)

2

)2
]
D2

+(η̃)

D2
+(η)

e−η̃dη̃ ,
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Uλ1 (η) =

∫ 0

−∞

{
Gλ

1(η, η̃)f+(η̃)Gδ1(η̃)

+
Gλ

2(a, η̃)

f+(η̃)

(
3Ωm(η̃)

2

)2 [
µ2(η̃)Gδ1(η̃) +

µ22(η̃)

2

3Ωm(η̃)

2

]}
D3

+(η̃)

D3
+(η)

e−η̃dη̃ ,

Uλ2 (η) =

∫ 0

−∞

{
Gλ

1(η, η̃)f+(η̃)Gδ2(η̃)

+
Gλ

2(a, η̃)

f+(η̃)

(
3Ωm(η̃)

2

)2 [
µ2(η̃)Gδ2(η̃)− µ22(η̃)

2

3Ωm(η̃)

2

]}
D3

+(η̃)

D3
+(η)

e−η̃dη̃ ,

Vλ11(η) =

∫ 0

−∞

{
Gλ

1(a, η̃)f+(η̃)Gθ1(η̃)

+
Gλ

2(η, η̃)

f+(η̃)

(
3Ωm(η̃)

2

)2 [
µ2(η̃)Gδ1(η̃) +

µ22(η̃)

2

3Ωm(η̃)

2

]}
D3

+(η̃)

D3
+(η)

e−η̃dη̃ ,

Vλ21(η) =

∫ 0

−∞

{
Gλ

1(η, η̃)f+(η̃)Gθ2(η̃)

+
Gλ

2(η, η̃)

f+(η̃)

(
3Ωm(η̃)

2

)2 [
µ2(η̃)Gδ2(η̃)− µ22(η̃)

2

3Ωm(η̃)

2

]}
D3

+(η̃)

D3
+(η)

e−η̃dη̃ ,

Vλ12(η) =

∫ 0

−∞
Gλ

2(η, η̃)

{
f+(η̃)Gθ1(η̃)

− 1

f+(η̃)

(
3Ωm(η̃)

2

)2 [
µ2(η̃)Gδ1(η̃) +

µ22(η̃)

2

3Ωm(η̃)

2

]}
D3

+(η̃)

D3
+(η)

e−η̃dη̃ ,

Vλ22(η) =

∫ 0

−∞
Gλ

2(a, η̃)

{
f+(η̃)Gθ2(η̃)

− 1

f+(η̃)

(
3Ωm(η̃)

2

)2 [
µ2(η̃)Gδ2(η̃)− µ22(η̃)

2

3Ωm(η̃)

2

]}
D3

+(η̃)

D3
+(η)

e−η̃dη̃ ,

(A.4)

whereGλ
σ are the Green’s functions, solutions of the equations (3.5). ΛCDM is recovered when

µ2 = µ22 = 0.



Appendix B

Galilean invariance for an arbitrary

time dependence

In this Appendix we show that the constraints from EGI do not require to assume a particular

time dependence for the displacement de�ning the velocity shi�, as we did in eq. (5.15). Since

we are going to have arbitrary time dependence, we have to allow di�erent times for the linear

�elds in the expansion for δt,k(η) in eq. (5.2), namely,

δt,k(η) =p.t.

∞∑
n=1

1

n!

∫
d3q1

(2π)3
· · · d

3qn
(2π)3

×
∫ η

ηin

dη1 · · ·
∫ η

ηin

dηn
δnFt[ϕλq(η)](k, η)

δϕλ1
q1(η1) · · · δϕλnqn(ηn)

∣∣∣∣∣
ϕλq(η)=0

ϕλ1
q1

(η1) · · ·ϕλnqn(ηn)

=
∞∑
n=1

Ik;q1··· ,qn

∫ η

ηin

dη1 · · ·
∫ η

ηin

dηn

× K̂nλ1···λn(q1, · · · ,qn; η; η1, · · · , ηn)f+
q1

(η1) · · · f+
qn(ηn)ϕλ1

q1
(η1) · · ·ϕλnqn(ηn) ,

=
∞∑
n=1

Ik;q1··· ,qn Kn(q1, · · · ,qn; η)ϕq1(η) · · ·ϕqn(η) , (B.1)

where now

Kn(q1, · · · ,qn; η)

=

∫ η

ηin

dη1 · · ·
∫ η

ηin

dηnK̂nλ1···λn(q1, · · · ,qn; η; η1, · · · , ηn)f+
q1

(η1) · · · f+
qn(ηn)

× Dq1(η1)

Dq1(η)
· · · Dqn(ηn)

Dqn(η)
uλ1
f,q1

(η1) · · ·uλnf,qn(ηn) . (B.2)
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Now, let us consider again a shi� of the form

ϕλiqi(ηi)→ ϕλiqi(ηi) + iδλ2(2π)3δD(qi)
qi · ḋ(ηi)

f+
qi

(ηi)H(ηi)
, (B.3)

but with an arbitrary time dependence for d(η). Now, if the so� limit of the multi-time kernels

satis�es

lim
q1···qm→0

qi11 · · · qimm K̂nλ1···λn(q1, · · · ,qn; η; η1, · · · , ηn)

= Qi1
n,m · · ·Qim

n,mK̂n−m,λm+1···λn(qm+1, · · · ,qn; η; ηm+1, · · · , ηn) , (B.4)

When inserted in eq. (B.1), each shi� comes with a time integral of the form∫ η

ηin

dηi f
+
qi=0(ηi)

ḋ(ηi)

f+
qi=0(ηi)H(ηi)

= di(η), (B.5)

(where we have set di(ηin) = 0), which reproduces the k ·d(η) factors in (5.21). Using (B.4) in

(B.2), the EGI constraint of eq. (5.27) is recovered.



Appendix C

Next-to-Next-to-Leading order

In what follows we present a calculation of the Next-to-Next-to-Leading order (NNLO) contri-

bution from the EGI. Going to this order implies that we consider a displacement �eld produced

by the coupling of three linear modes, ϕq1 , ϕq2 and ϕq3 , given by

d̃(3)
q (η) = −i q

q2

∫ η

dη′ f+(η′)

(
D+(η′)

D+(η)

)3

Iq,q1,q2,q3G3(q1,q2,q3; η′)ϕq1(η)ϕq2(η)ϕq3(η),

(C.1)

and the zero momentum displacement

d(3)(η) =
1

V

∫
V

d3x

∫
d3q

(2π)3
e−iq·xd̃(3)

q (η). (C.2)

�e NNLO gives its �rst contribution to the 4-th order kernel. By expanding eq. (5.20) at fourth

order we have

δ
(4)
t,k(η)→δ(4)

t,k(η) (C.3)

+ ik · d(1)(η)δ
(3)
t,k(η) + i

(
k · d(1)(η)

)2
δ

(2)
t,k(η) + i

(
k · d(1)(η)

)3
δ

(1)
t,k(η)

+ ik · d(2)(η)δ
(2)
t,k(η) + ik · d(1)(η) k · d(2)(η)δ

(1)
t,k(η)

+ ik · d(3)(η)δ
(1)
t,k(η),

where we can explicitly see that in the �rst line of the rhs eq. (C.3) we have the LO terms

which give rise to the relation in eq. (5.27), while the NLO terms are collected in the second

line, and give relations similar to eq. (5.35).

In the third line of eq. (C.3) it is shown the �rst NNLO contribution, which will give insights
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on the behavior of the fourth order kernel when the sum of three momenta goes to zero. �is

contribution is generated by the couplings of three momenta and is given by

ik · d(3)(η)δ
(1)
t,k(η) =

1

V
I0,q1,q2,q3

k · q123

q2
123

∫ η

dη′ f+(η′)

(
D+(η′)

D+(η)

)3

×G3(q1,q2,q3; η′)K1(k; η)ϕq1(η)ϕq2(η)ϕq3(η)ϕk(η),

(C.4)

and this contribution should be contained in the expression for δ
(4)
t,k . To isolate it we adopt a

analogous procedure to that presented in Sec (5.1.4), using the identity

1 =
(2π)3

V
[δD(q123) + cyclic] + 1− (2π)3

V
[δD(q123) + cyclic] , (C.5)

so that

δ
(4)
t,k ⊃ Ik,q1,q2,q3,q4K4(q1,q2,q3,q4; η)ϕq1(η)ϕq2(η)ϕq3(η)ϕq4(η)

(2π)3

V
δD(q123) (C.6)

=
1

V
I0,q1,q2,q3K4(q1,q2,q3,k)ϕq1(η)ϕq2(η)ϕq3(η)ϕk(η),

which should be set equal to the contribution in eq. (C.4). We obtain

lim
q123→0

K4(q1,q2,q3,q4; η) ⊃ (C.7)

k · q123

q2
123

∫ η

dη′f+(η′)

(
D+(η′)

D+(η)

)3

G3(q1,q2,q3; η′)K1(k; η) +O

((q123

k

)2
)
.



Appendix D

Detailed calculation of the bootstrap

kernels

D.1 Case n = 2

We start from the most generic form of the kernel,

K2(q1,q2; η) = c
(2)
0 (η) + c

(2)
1 (η) γ(q1,q2) + c

(2)
2 (η) β(q1,q2) . (D.1)

Unless it is necessary, to avoid clu�er we suppress the explicit dependence on η. Now we

impose the constraint eq. (5.27), which implies

lim
q2→0

K2(q1,q2) =
q1 · q2

q2
2

K1(q1) =
q1 · q2

q2
2

c
(1)
0 +O(q0

2) . (D.2)

Taking the same limit in eq. (D.1) we obtain

lim
q2→0

K2(q1,q2) =
1

2

q1 · q2

q2
2

c
(2)
2 , (D.3)

and comparing the two equations give, as anticipated, a relation between the coe�cients of

the kernels at di�erent order,

c
(2)
2 = 2 c

(1)
0 . (D.4)

�erefore, the most generic kernel at n = 2 is given by eq. (5.77).
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For conserved tracers, mass and momentum conservation, eq. (5.40), give

K2(q1,−q1) = c
(2)
0 = 0 ,

∂qi2K2(q1,q2)|q2=−q1 = 0 ,
(D.5)

where, due to the properties of theαs and β functions, the second condition gives no constraint

on the coe�cients. �e most generic ma�er kernel at n = 2 is thus given by eq. (5.46).

D.2 Case n = 3

�e most general momentum structure for K3(q1,q2,q3) is given by
1

K3(q1,q2,q3) =
1

3
c

(3)
0 + c

(3)
1 γ(q1,q2) + c

(3)
2 γ(q12,q3) + c

(3)
3 β(q1,q2) + c

(3)
4 β(q12,q3)

+ c
(3)
5 γ(q1,q2)γ(q12,q3) + c

(3)
6 β(q1,q2)β(q12,q3)

+ c
(3)
7 γ(q1,q2)β(q12,q3) + c

(3)
8 β(q1,q2)γ(q12,q3)

+
(
c

(3)
9 + c

(3)
10 γ(q1,q2) + c

(3)
11 β(q1,q2)

)
αa(q12,q3)

+ 2 permutations . (D.6)

First we apply eq. (5.27), in the single vanishing momentum case,

lim
q1→0

K3(q1,q2,q3) =
(q2 + q3) · q1

q2
1

K2(q2,q3) , (D.7)

while in the same limit eq. (D.6) gives

lim
q1→0

K3(q1,q2,q3) =
(q2 + q3) · q1

q2
1

[
1

2

(
c

(3)
3 + c

(3)
4

)
− c(3)

9 + γ(q2,q3)

(
1

2

(
c

(3)
7 + c

(3)
8

)
− c(3)

10

)
+ β(q2,q3)

(
c

(3)
6 − c

(3)
11

)]
+

(q2 − q3) · q1

q2
1

c
(3)
11 αa(q2,q3) .

(D.8)

Comparing these two equations using the explicit form of K2, eq. (5.77), gives the following

constraints,

c
(3)
3 + c

(3)
4 − 2 c

(3)
9 = 2 c

(2)
0 , c

(3)
7 + c

(3)
8 − 2c

(3)
10 = 2c

(2)
1 , c

(3)
6 − c

(3)
11 = c

(2)
2 , c

(3)
11 = 0 .

(D.9)

1
A contribution of the form (q1 ·q2)(q2 ·q3)(q3 ·q1)/(q21q

2
2q

2
3) can be shown to be linearly dependent from

those generated by the direct product (5.47), and therefore needs not to be added.



�e double limit gives

lim
q1,q2→0

K3(q1,q2,q3) =
1

2

q3 · q1

q2
1

q3 · q2

q2
2

(
c

(3)
6 − c

(3)
11

)
=

q3 · q1

q2
1

q3 · q2

q2
2

K1(q3) , (D.10)

from which we get the (redundant) constraint

c
(3)
6 − c

(3)
11 = 2 c

(1)
0 . (D.11)

Combined with the second and third relations in (D.9), this is equivalent to eq. (D.4).

Imposing eq. (5.35) we have

lim
q12→0

K3(q1,q2,q3) ⊃ q12 · q3

q2
12

c
(1)
0 (η)

∫ η

dη′ f+(η′)

[
D+(η′)

D+(η)

]2

G2(q1,q2; η′) , (D.12)

while eq. (D.6) in the same limit gives

lim
q12→0

K3(q1,q2,q3) ⊃q12 · q3

q2
12

[
1

2
c

(3)
4 + c

(3)
9 + γ(q1,q2)

(
1

2
c

(3)
7 + c

(3)
10

)
+ β(q1,q2)

(
1

2
c

(3)
6 + c

(3)
11

)]
+

q12 · q3

q2
3

(
1

2
c

(3)
4 − c

(3)
9

)
+

(q12 · q3)2

q2
12q

2
3

(
c

(3)
4 − c

(3)
2

)
,

(D.13)

Using the structure of the velocity kernel, i.e.,

G2(q1,q2) = 2 β(q1,q2) + d
(2)
1 γ(q1,q2) , (D.14)

gives other �ve constraints,

1

2
c

(3)
4 + c

(3)
9 = 0,

1

2
c

(3)
6 + c

(3)
11 = c

(1)
0 ,

1

2
c

(3)
7 + c

(3)
10 = h c

(1)
0 ,

c
(3)
4 − c

(3)
2 = 0 ,

1

2
c

(3)
4 − c

(3)
9 = 0 , (D.15)

where we have de�ned

h(η) ≡
∫ η

dη′ f+(η′)

[
D+(η′)

D+(η)

]2

d
(2)
1 (η′) . (D.16)

Note that the last two conditions in eq. (D.15) come directly from the second line of eq. (D.13):

the structure of these two terms is not present in the velocity kernel, see eq. (D.14), due to the

momentum conservation for the velocity �eld, which constraints the kernelG2 as in eq. (5.40).



Only 8 of the above equations are independent, leading to the following relations

c
(3)
2 = c

(3)
4 = c

(3)
9 = c

(3)
11 = 0 , c

(3)
3 = 2 c

(2)
0 , c

(3)
6 = 2 c

(1)
0 , (D.17)

and

c
(3)
7 = −2 c

(3)
10 + 2h c

(1)
0 , c

(3)
8 = 4 c

(3)
10 + 2 c

(2)
1 − 2h c

(1)
0 , (D.18)

leaving with four (i.e. {c(3)
0 , c

(3)
1 , c

(3)
5 , c

(3)
10 }) free coe�cients out of 12. �e form of the kernel

a�er imposing these relations is given in eq. (5.78).

In the case of a conserved tracer, we can also impose the two conditions coming from mass

and momentum conservation, eq. (5.40), which give respectively,

c
(3)
0 +

3

2
c

(3)
1 = 0, c

(3)
3 = 0 , (D.19)

and

c
(3)
1 = c

(3)
3 = c

(3)
9 = 0 , c

(3)
11 = 0 , (D.20)

allowing us to set

c
(3)
0 = c

(3)
1 = c

(3)
3 = 0 , (D.21)

so that only two coe�cients are le� free. �is leads to the ma�er kernel (5.52).



Appendix E

Time-dependence of the bootstrap

kernels

E.1 ΛCDM

In this appendix we give the analytic solutions of the time evolution equations for the coe�-

cients of the third order ma�er kernels, which are given by

(∂χ + 2)a
(3)
5 (χ) =

(
a

(2)
1 (χ) + d

(2)
1 (χ)

)
− a(3)

5 (χ) + d
(3)
5 (χ) ,

(∂χ + 2)d
(3)
5 (χ) =

3

2

Ωm(χ)

f 2
+(χ)

(
a

(3)
5 (χ)− d(3)

5 (χ)
)
,

(∂χ + 2)a
(3)
10 (χ) = −1

2

(
a

(2)
1 (χ)− d(2)

1 (χ)
)
− a(3)

10 (χ) + d
(3)
10 (χ) ,

(∂χ + 2)d
(3)
10 (χ) =

3

2

Ωm(χ)

f 2
+(χ)

(
a

(3)
10 (χ)− a(3)

10 (χ)
)
. (E.1)

�e solutions are given by

a
(3)
5 (χ) = ∆C

(3)
5 (χ) + d

(3)
5 (χ) = ∆a

(3)
5 (χ) + d

(3)
5 (χ) ,

d
(3)
5 (χ) = e−2χ

∫ χ

−∞
dχ′ e2χ′ 3

2

Ωm(χ′)

f 2
+(χ′)

∆a
(3)
5 (χ′) ,

∆a
(3)
5 (χ) = e−2χ

∫ χ

−∞
dχ′ e

2χ′−
∫ χ
χ′ dχ

′′
(

1+ 3
2

Ωm(χ′′)
f2
+(χ′′)

)
a

(2)
+ (χ′) , (E.2)
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where a
(2)
+ (χ) ≡ a

(2)
1 (χ) + d

(2)
1 (χ), can be read from eqs. (5.66), (5.67), and, analogously, by,

a
(3)
10 (χ) = ∆C

(3)
10 (χ) + d

(3)
10 (χ) = ∆a

(3)
10 (χ) + d

(3)
10 (χ) ,

d
(3)
10 (χ) = e−2χ

∫ χ

−∞
dχ′ e2χ′ 3

2

Ωm(χ′)

f 2
+(χ′)

∆a
(3)
10 (χ′) ,

∆a
(3)
10 (χ) = −e

−2χ

2

∫ χ

−∞
dχ′ e

2χ′−
∫ χ
χ′ dχ

′′
(

1+ 3
2

Ωm(χ′′)
f2
+(χ′′)

)
a

(2)
− (χ′) , (E.3)

where a
(2)
− (χ) ≡ a

(2)
1 (χ)− d(2)

1 (χ).

E.2 nDGP

Here we give the analytic solutions of the time evolution equations for the coe�cients of the

third order ma�er kernels in a nDGP cosmology, which are given by

(∂χ + 2)a
(3)
5 (χ) =

(
a

(2)
1 (χ) + d

(2)
1 (χ)

)
− a(3)

5 (χ) + d
(3)
5 (χ) + 2

(
3

2
Ωm

)2(
3

2

Ωm

f 2
+

µ3 +
µ2

f 2
+

a
(2)
1

)
,

(∂χ + 2)d
(3)
5 (χ) =

3

2

Ωm(χ)

f 2
+(χ)

µ(χ)
(
a

(3)
5 (χ)− d(3)

5 (χ)
)

+ 2

(
3

2
Ωm

)2(
3

2

Ωm

f 2
+

µ3 +
µ2

f 2
+

a
(2)
1

)
,

(∂χ + 2)a
(3)
10 (χ) = −1

2

(
a

(2)
1 (χ)− d(2)

1 (χ)
)
− a(3)

10 (χ) + d
(3)
10 (χ) ,

(∂χ + 2)d
(3)
10 (χ) =

3

2

Ωm(χ)

f 2
+(χ)

µ(χ)
(
a

(3)
10 (χ)− a(3)

10 (χ)
)
. (E.4)

�e solutions are given by
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5 (χ) + d
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)2(
3

2

Ωm(χ′)

f 2
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f 2
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a
(2)
1 (χ′)

)]
,

∆a
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χ′ dχ
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(

1+ 3
2
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)
a

(2)
+ (χ′) , (E.5)

and, analogously, by,

a
(3)
10 (χ) = ∆a
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2
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[12] LSST Collaboration, v. Ivezić et. al., LSST: from Science Drivers to Reference Design and

Anticipated Data Products, Astrophys. J. 873 (2019), no. 2 111 [0805.2366].

[13] DESI Collaboration, A. Aghamousa et. al., �e DESI Experiment Part I:

Science,Targeting, and Survey Design, 1611.00036.

[14] Planck Collaboration, N. Aghanim et. al., Planck 2018 results. I. Overview and the

cosmological legacy of Planck, Astron. Astrophys. 641 (2020) A1 [1807.06205].

[15] Planck Collaboration, N. Aghanim et. al., Planck 2018 results. VI. Cosmological

parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209]. [Erratum:

Astron.Astrophys. 652, C4 (2021)].

[16] Supernova Cosmology Project Collaboration, S. Perlmu�er et. al., Measurements of

Ω and Λ from 42 high redshi� supernovae, Astrophys. J. 517 (1999) 565–586

[astro-ph/9812133].

[17] Supernova Search Team Collaboration, A. G. Riess et. al., Observational evidence

from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116

(1998) 1009–1038 [astro-ph/9805201].

http://arXiv.org/abs/2109.09573
http://arXiv.org/abs/hep-th/0008054
http://arXiv.org/abs/2003.07956
http://arXiv.org/abs/1607.03155
http://arXiv.org/abs/0805.2366
http://arXiv.org/abs/1611.00036
http://arXiv.org/abs/1807.06205
http://arXiv.org/abs/1807.06209
http://arXiv.org/abs/astro-ph/9812133
http://arXiv.org/abs/astro-ph/9805201


[18] SDSS Collaboration, D. J. Eisenstein et. al., Detection of the Baryon Acoustic Peak in the

Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Astrophys. J. 633

(2005) 560–574 [astro-ph/0501171].

[19] E. Gaztanaga, A. Cabre and L. Hui, Clustering of Luminous Red Galaxies IV: Baryon

Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z), Mon. Not.

Roy. Astron. Soc. 399 (2009) 1663–1680 [0807.3551].

[20] W. J. Percival et. al., Measuring the ma�er density using baryon oscillations in the SDSS,

Astrophys. J. 657 (2007) 51–55 [astro-ph/0608635].

[21] SDSS Collaboration, M. Tegmark et. al., Cosmological Constraints from the SDSS

Luminous Red Galaxies, Phys. Rev. D 74 (2006) 123507 [astro-ph/0608632].

[22] P. J. E. Peebles and J. T. Yu, Primeval adiabatic perturbation in an expanding universe,

Astrophys. J. 162 (1970) 815–836.

[23] R. A. Sunyaev and Y. B. Zeldovich, Small scale �uctuations of relic radiation, Astrophys.

Space Sci. 7 (1970) 3–19.

[24] J. R. Bond and G. Efstathiou, Cosmic background radiation anisotropies in universes

dominated by nonbaryonic dark ma�er, Astrophys. J. Le�. 285 (1984) L45–L48.

[25] J. A. Holtzman, Microwave background anisotropies and large scale structure in universes

with cold dark ma�er, baryons, radiation, and massive and massless neutrinos,

Astrophys. J. Suppl. 71 (1989) 1–24.

[26] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock, A. C. Pope and A. S.

Szalay, Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS,

Mon. Not. Roy. Astron. Soc. 381 (2007) 1053–1066 [0705.3323].

[27] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the

universe and cosmological perturbation theory, Phys. Rept. 367 (2002) 1–248

[astro-ph/0112551].

http://arXiv.org/abs/astro-ph/0501171
http://arXiv.org/abs/0807.3551
http://arXiv.org/abs/astro-ph/0608635
http://arXiv.org/abs/astro-ph/0608632
http://arXiv.org/abs/0705.3323
http://arXiv.org/abs/astro-ph/0112551


[28] D. Blas, M. Garny and T. Konstandin, Cosmological perturbation theory at three-loop

order, JCAP 1401 (2014), no. 01 010 [1309.3308].

[29] A. Taruya and S. Colombi, Post-collapse perturbation theory in 1D cosmology – beyond

shell-crossing, Mon. Not. Roy. Astron. Soc. 470 (2017), no. 4 4858–4884 [1701.09088].

[30] C. Rampf and U. Frisch, Shell-crossing in quasi-one-dimensional �ow, Mon. Not. Roy.

Astron. Soc. 471 (2017), no. 1 671–679 [1705.08456].

[31] P. McDonald and Z. Vlah, Large-scale structure perturbation theory without losing

stream crossing, Phys. Rev. D97 (2018), no. 2 023508 [1709.02834].

[32] S. Saga, A. Taruya and S. Colombi, Lagrangian cosmological perturbation theory at

shell-crossing, Phys. Rev. Le�. 121 (2018), no. 24 241302 [1805.08787].

[33] A. Halle, T. Nishimichi, A. Taruya, S. Colombi and F. Bernardeau, Power spectrum

response of large-scale structure in 1D and in 3D: tests of prescriptions for post-collapse

dynamics, 2001.10417.

[34] M. Pietroni, Structure formation beyond shell-crossing: nonperturbative expansions and

late-time a�ractors, JCAP 1806 (2018), no. 06 028 [1804.09140].

[35] S.-F. Chen and M. Pietroni, Asymptotic expansions for Large Scale Structure, JCAP 06

(2020) 033 [2002.11357].

[36] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological Non-Linearities

as an E�ective Fluid, JCAP 1207 (2012) 051 [1004.2488].

[37] M. Pietroni, G. Mangano, N. Saviano and M. Viel, Coarse-Grained Cosmological

Perturbation �eory, JCAP 1201 (2012) 019 [1108.5203].

[38] J. J. M. Carrasco, M. P. Hertzberg and L. Senatore, �e E�ective Field �eory of

Cosmological Large Scale Structures, JHEP 1209 (2012) 082 [1206.2926].

[39] A. Manzo�i, M. Peloso, M. Pietroni, M. Viel and F. Villaescusa-Navarro, A coarse

grained perturbation theory for the Large Scale Structure, with cosmology and time

independence in the UV, JCAP 1409 (2014), no. 09 047 [1407.1342].

http://arXiv.org/abs/1309.3308
http://arXiv.org/abs/1701.09088
http://arXiv.org/abs/1705.08456
http://arXiv.org/abs/1709.02834
http://arXiv.org/abs/1805.08787
http://arXiv.org/abs/2001.10417
http://arXiv.org/abs/1804.09140
http://arXiv.org/abs/2002.11357
http://arXiv.org/abs/1004.2488
http://arXiv.org/abs/1108.5203
http://arXiv.org/abs/1206.2926
http://arXiv.org/abs/1407.1342


[40] P. McDonald and A. Roy, Clustering of dark ma�er tracers: generalizing bias for the

coming era of precision LSS, JCAP 08 (2009) 020 [0902.0991].

[41] V. Desjacques, D. Jeong and F. Schmidt, Large-Scale Galaxy Bias, Phys. Rept. 733 (2018)

1–193 [1611.09787].

[42] M. Schmi�full, Z. Vlah and P. McDonald, Fast large scale structure perturbation theory

using one-dimensional fast Fourier transforms, Phys. Rev. D 93 (2016), no. 10 103528

[1603.04405].

[43] J. E. McEwen, X. Fang, C. M. Hirata and J. A. Blazek, FAST-PT: a novel algorithm to

calculate convolution integrals in cosmological perturbation theory, JCAP 09 (2016) 015

[1603.04826].
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and M. Zaldarriaga, Constraining Early Dark Energy with Large-Scale Structure, Phys.

Rev. D 102 (2020), no. 10 103502 [2006.11235].

[164] M. M. Ivanov, O. H. E. Philcox, M. Simonović, M. Zaldarriaga, T. Nishimichi and
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