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Summary 

English version 

 

Red wood ants (RWA) are ecologically important keystone species that affect a multitude of taxa at 

different trophic levels. In the past century, some RWA species were used as biological control 

agents and exported outside their native range. One of these species is Formica paralugubris, which 

was transplanted from the Italian Alps to the Apennines (Central Italy) but also to Quebec (Canada). 

Recently, it has been demonstrated that some of the introduced populations have acquired some 

invasivity features. 

This PhD thesis investigated the ecology of Formica paralugubris, aiming to assess its impact at 

multiple levels, from single taxa to the forest ecosystem as a whole. To do this, I combined different 

techniques, from direct observations to gas analysis and stable isotopes analysis. I started with 

assessing the effect of the presence of this species on epiphytic lichen communities, and I analyzed 

the myrmecophilous fauna inhabiting the nest mounds of introduced and autochthonous 

populations. I then compared the trophic position of native and introduced populations of this 

species, using Stable Isotopes Analysis (SIA) techniques. Finally, I characterized the microbial 

communities hosted within the nest mounds using molecular techniques and I measured the gas 

emissions from the mounds. To conclude, I have done an overview of the protection status of RWA 

throughout Europe. 

Overall, the results of this thesis confirm the ecological importance of F. paralugubris. This species 

was shown to affect the composition of lichen communities, both from a taxonomic and a functional 

point of view. Its nest mounds host a rich myrmecophilous fauna and diverse microbial 

communities. The species was also found to occupy key positions in the trophic web and to play an 

important role in the carbon dynamics at the forest scale. These results were also discussed in light 

of the nature of F. paralugubris as a peculiar invasive species. Finally, the complex status of RWA 

protection was highlighted, also pointing out paradoxical situations in which the introduced 

populations are protected whereas the native and sometimes declining ones are not.  
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Italian version 

 

Le formiche del gruppo Formica rufa (red wood ants, RWA) sono specie chiave di volta 

ecologicamente importanti che influenzano una moltitudine di taxa a diversi livelli trofici. Durante 

il secolo scorso alcune specie di RWA sono state impiegate come agenti di controllo biologico ed 

esportate al di fuori del loro areale nativo. Una di queste specie è Formica paralugubris, che è stata 

traslocata dalle Alpi italiane agli Appennini (Italia centrale) ma anche in Quebec (Canada). 

Recentemente è stato dimostrato che alcune delle popolazioni introdotte hanno acquisito alcuni 

tratti di invasività. 

Questa tesi di dottorato ha investigato l’ecologia di Formica paralugubris, collo scopo di valutare il 

suo impatto a molteplici livelli, da singoli taxa all’ecosistema forestale nel complesso. Per questo 

scopo ho combinato tecniche differenti, dall’osservazione diretta all’analisi dei gas e all’analisi 

degli isotopi stabili. Ho iniziato valutando gli effetti della presenza di questa specie sulle comunità 

di licheni epifitici ed ho analizzato la fauna mirmecofila abitante gli acervi dei nidi delle 

popolazioni introdotte ed autoctone. In seguito, ho comparato la posizione trofica di popolazioni 

native ed introdotte di questa specie, usando tecniche di analisi degli isotopi stabili (stable isotope 

analysis, SIA). Infine, ho caratterizzato le comunità microbiche presenti all’interno degli acervi 

usando tecniche molecolari ed ho misurato le emissioni gassose degli acervi. Per concludere, ho 

fatto una panoramica sullo stato di protezione delle RWA in Europa. 

In generale, i risultati di questa tesi confermano l’importanza ecologica di F. paralugubris. È stato 

dimostrato che questa specie influenza la composizione delle comunità licheniche, sia da punto di 

vista tassonomico che funzionale. I suoi acervi ospitano una ricca fauna mirmecofila e comunità 

microbiche diverse. È stato anche dimostrato che la specie occupa posizioni chiave nella rete trofica 

ed ha un ruolo importante nella dinamica del carbonio a scala forestale. Questi risultati sono stati 

discussi anche alla luce della natura di F. paralugubris come specie invasiva peculiare. Infine, è 

stato sottolineato il complesso stato di protezione delle RWA, mettendo in evidenza situazioni 

paradossali in cui le popolazioni introdotte sono protette mentre quelle native, e talvolta in declino, 

non lo sono.  
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General introduction 

In the field of animal ecology, the interactions among species play an extremely important role. 

Different species can interact with each other through predation (sensu lato, i.e. including 

herbivory), parasitism, mutualism, or competition (Lang & Benbow 2013). Considering a simplified 

situation with pairwise interactions, predation and parasitism are the relationships in which one 

species increase its fitness by negatively affecting the one of another species (i.e. by eating all or a 

part of the prey and by directly exploiting the host to acquire resources, respectively; Chesson 2013; 

Raffel et al. 2008). Instead, mutualistic relationships are those interactions that result in an increase 

of both species’ fitness and can be either obligate or facultative (Holland & Bronstein 2008). On the 

other hand, in competitive relationships both species have their fitness reduced. This occur when the 

shared resources (e.g. food, shelters, reproductive sites) are limiting (Chase et al. 2002). Two 

mechanisms of competition are distinguished: interference competition and exploitative 

competition. In the former, species directly interfere with each other for the access to the resource, 

while in the latter two species indirectly compete by reducing the available resources for the other 

species (Jensen 1987). Additionally, there can be commensalism, amensalism, and neutralism 

relationships, that are less studied and not completely understood. In these interactions, one species 

positively (commensalism) or negatively (amensalism) affects the other one, while the first species 

(or both in case of neutralism) is almost unaffected (Mathis & Bronstein 2020).  

All these mentioned interactions, in turn, affect many aspects of the ecology of each species, 

and together with other processes (e.g. biogeography, environmental filtering, intraspecific 

interactions), contribute to the structuring of communities (Weiher et al. 2011). Indeed, 

communities are set of species co-occurring in the same habitat, thus tightly interacting among each 

other (Underwood 2008). The interspecific interactions occurring within a community structure the 

trophic webs, where species occupy a trophic level and a trophic niche (Leibold et al. 1997; Pringle 

& Hutchinson 2020). The trophic level occupied defines both the competition for food and 

predatory relationships among species. Indeed, each species generally compete with other species of 

the same trophic level (with which they constitute a ‘guild’) and predates on individuals belonging 

to the trophic level below its one. In this way, species belonging to each trophic level are regulated 

by both the lower trophic level (that provides them energy and nutrients), and the upper trophic 

level (that exerts on them a predatory pressure), that is what is called bottom-up control and top-

down control, respectively (Preisser 2008). However, this simplistic assumption is not always 

supported, since omnivorous species predate on individuals belonging to different trophic levels. 

Consequently, omnivorous species occupy an intermediate trophic level between the one of 

herbivores and the one of predators (Thompson et al. 2007). As the trophic levels are discrete by 



Analysis of introduced and autochthonous populations of the red wood ant Formica paralugubris: ecological interactions and conservation issues 
PhD thesis Paride Balzani 

6 
 

definition, the concept of a continuous measure has been introduced, namely the trophic position 

(Levine 1980). Similarly, competition among members of the same trophic level is not 

straightforward, as there could be small differences in the trophic position of each species, or in 

their trophic niche (e.g. Arribas et al. 2015). Finally, other exceptions are represented by intraguild 

and mutual predation, that are more common than previously thought (e.g. Kinzler et al. 2009; 

Parimuchová et al. 2021). 

Within communities, some species play a critical role. For example, keystone species are 

defined as those species affecting the community of which they are part more strongly than 

expected from their biomass. Typically, keystone species are those that exert a strong predatory 

pressure on the trophic level below them, in other words exerting a strong top-down control. 

Therefore, the removal or exclusion of keystone species from the community results in a trophic 

cascade, potentially leading to the collapse of some populations and the disruption of the 

functioning of the community (Libralato 2008). Another important concept is that of ecosystem 

engineers, that are species that change the physical structure or other properties (e.g. chemical) of 

the habitat where they live or create new habitats (Jones et al. 1994). 

This complex structure of interspecific interactions can be disrupted by many anthropogenic 

factors. Among these, the intentional or accidental introduction of new (allochthonous) species play 

a major role (e.g. David et al. 2017). Indeed, some introduced species establish viable populations 

in the new area, starting to interact with the native species present in the recipient community. Some 

of these allochthonous species become invasive, meaning that they exert an ecological, economic, 

or health impact where they are introduced (Pyšek et al. 2020). The multifaceted impacts of 

invasive species are increasingly recognized (e.g. Mazza & Tricarico 2018; Walsh et al. 2016; 

Ahmed et al. 2021). In particular, invasive species can have detrimental ecological impacts on 

communities, for example by modifying their composition (e.g. Sanders et al. 2003), competing 

with (Balzani et al. 2016) or predating on (Duenas et al. 2021) native species. 

Ants represent an ideal taxon to investigate all these topics. Indeed, they strongly affect 

other species with a plethora of interactions, ranging from predation (Floren et al. 2002; Clark et al. 

2016), competition with other ants (Pontin 1963; Davidson 1985) or taxa (Brown & Davidson 1977; 

Supriya et al. 2020), and mutualism (Way 1963; Mueller et al. 2001). Also, they are important 

keystone species (Underwood & Fisher 2006) and ecosystem engineers (Cammeraat & Risch 2008; 

Del Toro et al. 2012; Meyer et al. 2013; Swanson et al. 2019). Finally, but not less important, some 

ants are relevant invasive species, causing large ecological impacts on the native species, both 

invertebrates (McNatty et al. 2009; Plentovich et al. 2021) and vertebrates (Davis et al. 2008; 

Darracq et al. 2017; Lach et al. 2022). They also are causes of important economic damages 
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(Gutrich et al. 2007; Angulo et al. 2021) and affect human health, too (Kemp et al. 2000; 

Vanderwoude et al. 2021). 

  

Ecology of red wood ants (RWA) 

Red wood ants (RWA) are a group of morphologically and ecologically similar species belonging to 

the subgenus Formica sensu stricto or F. rufa group, with at least 13 species described in the 

Palearctic and a minimum of 19 species reported in the Nearctic (Stockan et al. 2016; Trager 2016; 

Seifert 2021). They are typical dwellers of Eurasian woods, where they inhabit coniferous or mixed 

forests (Baroni Urbani 1971; Risch et al. 2016; Sondej et al. 2021). Although there are some 

species-specific differences in their habitat requirements or preferences (Pavan et al. 1971; 

Glanzmann et al. 2019; Perron et al. 2019; Fitzpatrick et al. 2021) and altitudinal range where they 

can be found (Freitag & Cherix 2009; Freitag et al. 2016a; Vandegehuchte et al. 2017; Antonova & 

Marinov 2021), RWA nests location is mainly driven by their ecological constraints. Indeed, all 

species generally require some degree of exposition to sun, thus preferring forest edges and 

clearings to completely closed canopies (Risch et al. 2016). 

Above the subterranean part of the nest, RWA build a characteristic structure called mound 

(Figure 1), using vegetal material (mainly coniferous needles and twigs) mixed with soil (Risch et 

al. 2016). The mound has a key role in the colony thermoregulation, as it must be exposed to sun so 

that the internal mound temperature is kept higher than that of the external air throughout the year, 

without dropping below 0 °C during the winter (Frouz 2000; Frouz & Finér 2007; Frouz et al. 

2016). Furthermore, though their abandonment and relocation are common phenomena (Punttila 

1996; Sorvari & Hakkarainen 2007a; Punttila & Kilpeläinen 2009; Burns et al. 2020), RWA 

mounds can be long-lasting structures. Indeed, in stable and favorable conditions, a mound can 

persist decades, thus becoming part of the forest landscape (Breen 1979). Consequently, they can 

also be used to easily estimate RWA abundance and monitor their populations (Freitag et al. 2016b; 

Frizzi et al. 2018; Klimetzek et al. 2021). However, RWA mound density can strongly vary 

depending on the local environmental and habitat conditions, reaching in Eurasia up to 20, but 

rarely exceeding 5, mounds per hectare (Risch et al. 2016). 
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Figure 1. Nest mound of Formica paralugubris in the Foreste Casentinesi, Monte Falterona e 

Campigna National Park, Italy (photo provided by Alberto Masoni). 

 

The diet of RWA is based on two types of food resources: animal preys (even scavenged) as 

protein source for the queen and larvae, and honeydew from homopteran aggregations as the 

primary carbohydrate source for workers (Domisch et al. 2016). This latter source is part of a 

mutualistic relationship, called trophobiosis, in which homopterans offer ants food in exchange for 

their protection from predators and parasites (Domisch et al. 2016). The exploitation of this 

persistent, renewable, and highly energetic food source (sugars), allows RWA to build up very large 

colonies, extend their control over large areas, and maintain elevate activity levels (Davidson 1997; 

Gibb & Johansson 2010). Therefore, RWA play a double role in food webs, behaving both as 

generalist predators, and as “herbivores” that consume plant-derived carbohydrates (i.e. aphid 

honeydew; Domisch et al. 2016). 

 

Ecological role of RWA in the community 
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Most European RWA species are ecologically dominant (Johansson & Gibb 2016) and have a key 

role in the structure and functioning of invertebrate communities in temperate and boreal forests 

(Savolainen & Vepsäläinen 1988; Punttila et al. 2004). They are aggressive and territorial species 

(Le Moli et al. 1984; Mabelis 1984), defending their nests, territories, and the resources within them 

from other colonies of the same (Skinner 1980; Sorvari & Hakkarainen 2004) or different species 

(Mabelis 1983; Savolainen & Vepsäläinen 1988, 1989), excluding them from their area (Savolainen 

et al. 1989; Czechowski et al. 2013; Maák et al. 2021). 

Also other taxa are negatively affected by RWA presence, being excluded, predated, or 

outcompeted (Robinson et al. 2016). While herbivorous and xylophagous insects are directly 

impacted by predation (Skinner & Whittaker 1981; Fowler & McGarvin 1985; Punttila et al. 2004; 

Trigos-Peral et al. 2021), predatory arthropods like harvestmen, spiders, and beetles suffer RWA 

competition or aggression (Gridina 1990; Brüning 1991; Halaj et al. 1997; Laakso 1999; Hawes et 

al. 2002; Reznikova & Dorosheva 2004). Carabid beetles, for example, are less abundant (Niemelä 

et al. 1992) and show reduced individual fitness and reproductive success in proximity of RWA 

mounds (Hawes et al. 2013). It has been demonstrated that also parasites (i.e. ticks) are negatively 

correlated with RWA presence, because of direct predation, repellency of the sprayed formic acid, 

or reduction of the vertebrate tick hosts (Zingg et al. 2018). 

Even vertebrates are affected by RWA presence. Small mammals have been found in lower 

number and with a reduced activity within RWA territories (Panteleeva et al. 2016), although 

establishing whether this pattern is due to direct or indirect effects is not straightforward 

(Boryakova & Melnik 2017). On the other hand, insectivorous birds were found to avoid the areas 

occupied by RWA both as feeding sites, as a result of prey depletion by ants, i.e. through 

exploitative competition (Haemig 1992, 1994, 1996; Aho et al. 1997), and as nesting sites, as a 

result of direct attacks by ants (Haemig 1999). It was also demonstrated that birds nesting within 

RWA territories had a diminished reproductive success (Aho et al. 1999; Jäntti et al. 2007).  

Moreover, given the above-described relationships with other organisms, RWA also affect 

plants. However, the net balance of their presence on trees’ growth is variable and depends on local 

factors, in particular on the food source availability for ants. Indeed, while the predation on 

herbivorous arthropods represents a benefit for the plant (Ito & Higashi 1990, 1991), the 

trophobiotic relationship with aphids constitutes an increased cost (Kilpeläinen et al. 2009; 

Domisch et al. 2016), as aphid population generally increase when protected by RWA (McNeil et 

al. 1977; Mahdi & Whittaker 1993). Yet, predation on aphids by RWA can also occur in some 

circumstances, for example when there is a lack of other available preys (Billick et al. 2007; 

Robinson et al. 2016). 
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Ecological role of RWA in the ecosystem 

RWA can be defined as keystone species, given their role in seed dispersion (Gorb & Gorb 1995, 

1999, 2000; Heinken & Winkler 2009; Englický & Šera 2018), their effect on tree growth and ant 

and invertebrate assemblages from multiple trophic levels (Johansson & Gibb 2016; Robinson et al. 

2016; Thunes et al. 2018). The keystone role of RWA was demonstrated in a long-term study where 

the exclusion of Formica aquilonia in a boreal forest in Sweden led to an increase of the herbaceous 

plants coverage, due to the lack of seeds removal by ants, and of the microbial activity, leading to 

increased decomposition rates (Wardle et al. 2011). 

Yet another aspect of their biology that makes RWA keystone species is the fact that their 

nest mounds represent unique biodiversity hotspots for many invertebrate species (Parmentier et al. 

2014; Robinson et al. 2016). This is a consequence of the relatively stable microhabitat (Rosengren 

et al. 1987; Jones & Oldroyd 2006; Kadochová & Frouz 2014; Jílková et al. 2015a), with 

temperature and humidity kept almost constant even under harsh external environmental conditions 

(Frouz & Finér 2007; Jílková et al. 2015a), and the preys or food resources that RWA mounds 

provide (Parmentier et al. 2015). These ant-associated organisms can be obligate or facultative (if 

they occur in the nest mound as well as in the soil, for example) hosts of these microcosms (Fiedler 

2006; Robinson & Robinson 2013; Parker 2016; Härkönen & Sorvari 2018; Parmentier & Claus 

2019), so they can be defined as myrmecophiles sensu lato. Myrmecophiles can be involved in a 

plethora of trophic interactions with the host ants or the other myrmecophiles, ranging from 

predation to parasitic relationships, detritivory, or scavenging (Parmentier et al. 2016, 2018). 

The role of RWA extends beyond the biotic part, also affecting the abiotic compartment of 

the ecosystem they are part of. In fact, RWA can affect the soil properties and the nutrient cycling 

by accumulating high concentrations of nutrients in their mound and in the close proximities (Frouz 

et al. 2005; Domisch et al. 2008; Frouz & Jílková 2008; Jurgensen et al. 2008; Finér et al. 2013; 

Frouz et al. 2016). The accumulation of nutrients is the result of the huge quantity of food (aphid 

honeydew and animal preys) that the ants carry to the nest (Domisch et al. 2009, 2016; Gibb & 

Johansson 2010; Jílková et al. 2012; Frouz et al. 2016) and the organic material (coniferous needles, 

twigs, and resin) that is used by ants to build and maintain the mound itself (Jílková et al. 2011, 

2012; Finér et al. 2013; Frouz et al. 2016). This leads to an increase in the availability of nutrients 

like phosphorus and nitrogen and in the pH in RWA mounds compared to the surrounding soil, and 

to a decrease in these parameters with the distance from the mound (Frouz et al. 1997; Lenoir et al. 

2001; Risch et al. 2005; Kilpeläinen et al. 2007; Jílková et al. 2011; Tsikas et al. 2021) – partly due 

to the microbial activity within the mound (see below). Plants have been shown to exploit this high 
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nutrient concentration by extending their roots in the proximity of and even within the RWA 

mounds (Ohashi et al. 2007). Moreover, these accumulated nutrients are leached and released in the 

soil once the mound is abandoned (Kristiansen et al. 2001; Jílková et al. 2015b), thus becoming 

available again for the surrounding plants. 

The very favorable conditions and the microhabitat provided, together with the high amount 

of nutrients and organic matter transported by ant workers, make RWA mounds perfect candidates 

for hosting rich microbial and fungal communities (Jílková et al. 2015c; Siedlecki et al. 2021). 

Indeed, such communities have been found to be much more abundant and active in mounds 

compared with the near soil (Laakso & Setälä 1997; Frouz et al. 1997; Frouz 2000; Jílková et al. 

2015a; Sorvari & Hartikainen 2021) and are supposed to actively contribute to the heat production 

and resource metabolization (Jílková & Frouz 2014). These communities have profound effects on 

the mound dynamics and biogeochemistry, for example they accelerate the decomposition rate 

(Frouz et al. 1997; Jílková & Frouz 2014) and strongly contribute to high nutrient content of the 

mounds, through the action of methanotrophic and nitrogen-fixing bacteria (Frouz et al. 1997; 

Jílková et al. 2016).  

 Finally, due to the high number of workers that a single colony can host (over a million; 

Rosengren et al. 1987) and to all the organisms cohabiting in these microcosm, RWA mounds are 

also hotspots of CO2 emissions, producing more than the surrounding soil (Ohashi et al. 2005; 

Risch et al. 2005; Domisch et al. 2006; Frouz et al. 2016). As nutrient and carbon dioxide hotspots, 

RWA mounds increase the spatial heterogeneity of forest ecosystems (Jouquet et al. 2006; 

Kilpeläinen et al. 2007), therefore, taking all the above-discussed aspects together, we can define 

RWA as ecosystem engineers (Lenoir 2001). 

 

RWA conservation and introductions 

All RWA are threated mainly by habitat loss and alteration (Sorvari 2016). Indeed, they need wide 

foraging areas to sustain their large colonies (Sorvari 2016), but also, as discussed above, not 

completely closed forest habitats to let solar radiation reach their mounds (Punttila 1996; Risch et 

al. 2016). Forest management activities such as clearcutting have been shown to negatively impact 

on RWA (Sorvari 2013; Sorvari & Hakkarainen 2005, 2007b, 2009), because of both reduced food 

sources availability and quality (Sorvari & Hakkarainen 2009; Johansson & Gibb 2012) and the 

lack of suitable nesting sites (Juhász et al. 2020), causing high frequency of nest abandonment 

(Sorvari & Hakkarainen 2007a; Juhász et al. 2020). The effect of clear cutting extends also to the 

myrmecophile fauna associated with RWA mounds, that is impoverished in clear fells compared to 

mature forests (Elo & Sorvari 2019). 
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 On the other hand, RWA have been – and are still – used as biological control agents against 

forestry pests (Nielsen et al. 2018; Trigos-Peral et al. 2021). Starting in the 50s of the past century, 

large experimental introductions of different RWA species have been carried out in some European 

countries, such as Germany and Italy, to study the suitability of RWA species as useful predators in 

the fight against forest pests (Gösswald 1951; Pavan 1959). One of the mostly employed species in 

these introductions was F. paralugubris (Seifert 1996; Figure 2), that was repeatedly transplanted 

from its original areas in the Alps to other sites of the Italian peninsula, where they were formerly 

absent (Pavan 1959; Ronchetti & Groppali 1995). Most introductions occurred in the Apennines 

mountains, where climatic conditions provided habitats suitable to this cold-climate species, thus 

allowing its successful establishment (Ronchetti et al. 1986; Groppali & Crudele 2005; Masoni et 

al. 2019). The success of these introductions and the effectiveness of F. paralugubris as a predator 

against defoliator insects, together with the echo of the national and international propaganda, led to 

further, overseas, introductions. Indeed, in 1971, F. paralugubris was imported from the Italian 

Alps to Quebec, Canada, and successfully established (Finnegan 1975; Seifert 2016). 

 

 

Figure 2. Worker of Formica paralugubris (photo provided by Christian Bernasconi). 
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 These introduced and established populations have considerably grown. For example, the 

Canadian population, estimated to one million workers in the year of introduction (Finnegan 1975), 

became composed by 95 nests with an estimated worker number of eight million in 2005 (Storer et 

al. 2008), though this was considered an underestimate, with a more accurate estimate (from the 

same data) that is around 19 million workers (Seifert 2016). Likewise, some populations in the 

Apennines, within the Foreste Casentinesi, Monte Falterona e Campigna National Park (Italy), that 

were censused across years, have quickly grown from a total of 70 mounds in 1968, to 135 in 1983, 

to 275 in 1999, to 423 in 2015 (Frizzi et al. 2018). The increase in the total number of mounds was 

also accompanied by a spatial expansion and a strong increase in the total volume of mounds, that 

was 44 m3 in 1968, then 100 in 1983, 239 in 1999, and lastly 749 m3 in 2015 (Frizzi et al. 2018; 

Figure 3). 

 This increasing trend followed an initial lag-phase, in which the introduced populations 

remained stable or even decreased for several years, after which the expansion phase started. This 

dynamic is common in invasive species (Ward 2007; Hui and Richardson 2017), with the time lag 

that could be the result of both external (i.e. environmental) as well as internal (i.e. adaptation) 

processes (Groppali & Crudele 2005; Hui and Richardson 2017). 

 

 

 

Figure 3. Temporal increase in the total volume and number of nests of Formica paralugubris in 

one site within the Foreste Casentinesi, Monte Falterona e Campigna National Park, Italy (modified 

from Frizzi et al. 2018). 
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 The transplants of F. paralugubris colonies, performed by moving entire nests together with 

the mound material (Pavan 1959), could have resulted in the accidental co-introduction of mound-

dweller species, as discussed for the beetle Monotoma conicicollis, whose first (and only) record 

South of the Alps has been found in the mound material of an introduced F. paralugubris 

population (Cianferoni et al. 2019). 

Moreover, these introductions affected the recipient communities. In the Foreste 

Casentinesi, Monte Falterona e Campigna National Park, many taxa (such as Diptera, carabid 

beetles, spiders, and harvestmen) were significantly less abundant in the areas where F. 

paralugubris occurred compared to the control areas. Likewise, all other ant species except for one, 

were excluded from the invaded areas. Furthermore, due to F. paralugubris activity, the predation 

rate was experimentally demonstrated to be significantly higher in the invaded areas compared to 

the control ones (Frizzi et al. 2018). 

 

Aims 

Understanding how introduced ant species affect the recipient community and environment at 

various levels is key for improving both the basic knowledge on their ecology as well as the 

determinants of their success (Krushelnycky et al. 2010), subsequently allowing to assess their 

impacts (Lach & Hooper-Bui 2010) and develop efficient management policies (Hoffmann et al. 

2010). Moreover, through metanalyses or the screening of their ecological traits, such results could 

provide a basis for the prediction of new potential ant invaders (Fournier et al. 2019) and their 

associated impacts (Lach & Thomas 2008; Helms 2013; Lach et al. 2020). 

In general, I aimed to disentangle the effect of the introduced RWA F. paralugubris on the 

native community by evaluating the interactions with multiple taxa (Chapter 1), and to quantify the 

ecological role of introduced F. paralugubris within the recipient trophic web (Chapter 2) and 

forest ecosystem (Chapter 3). Finally, I aimed to perform an overall revision of the current 

protection status of RWA throughout Europe (Chapter 4). 

In Chapter 1, I investigated the effect of F. paralugubris on other organisms: the lichen 

assemblage growing on forest trees (Chapter 1.1) and the myrmecophilous (sensu lato) fauna living 

within the mounds (Chapter 1.2):  

a) In Chapter 1.1, I evaluated the effect of the presence of introduced populations of F. 

paralugubris on the structure of epiphytic lichen communities in two white fir forests. 

For this purpose, I compared the lichen species diversity and the taxonomic and 
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functional composition in occupied and unoccupied areas within the two sites in the 

Apennine mountains.  

b) In Chapter 1.2, I studied the invertebrate fauna associated with F. paralugubris nest 

mounds by collecting soil and mound material from three populations of this RWA 

species, one native (from the Alps) and two invasive (from the Apennines). Invertebrates 

were extracted with Berlese funnels and identified, and comparisons were made between 

the mound-living and soil-living organisms as well as across sites. Since springtails and 

oribatid mites are commonly used as ecological indicators of soils and RWA mounds 

(Lenoir et al. 2003; Elo et al. 2016), a focus on these two taxa has been posed. I aimed to 

i) confirm the biodiversity hotspot role played by F. paralugubris mounds also of 

introduced populations; and ii) compare native and introduced populations to assess if 

myrmecophilous species relocation could have occurred together with the 

transplantation of entire RWA nests. 

In Chapter 2, I assessed the trophic positioning and the trophic niche of two native (from the 

Alps) and three invasive (two from the Apennines and one from Canada) populations of F. 

paralugubris. The aim was to assess whether the pattern found in the diet of other invasive ant 

species, namely an increased consumption of aphid honeydew in the invasive compared to native 

populations (Tillberg et al. 2007; Wilder et al. 2011), was followed by F. paralugubris, too. For 

this, for each site I performed carbon and nitrogen stable isotope analysis (SIA) on ant workers as 

well as arthropods belonging to clearly identified trophic levels (herbivores and predators), and 

compared their trophic positioning as determined by their nitrogen stable isotope signatures. 

Moreover, I compared F. paralugubris isotopic niche width across sites, to test if invasive 

populations relied on a more specialized diet respect to the native ones, as previously demonstrated 

on other invasive ants (Wilder et al. 2011). Additionally, for each site the isotopic niche overlap 

between F. paralugubris and other co-occurring ant species was assessed, to test for potential 

competition or niche partitioning for food resources. 

 In Chapter 3, I assessed the role of nest mounds of an invasive population of F. 

paralugubris within a white fir forest ecosystem. To study the dynamics of mound metabolism, I 

quantified the CO2 efflux and internal concentration and characterized its carbon isotopic signature. 

I also checked for temporal (diurnal and seasonal) trends in these measures, related them to the 

mound topology, and estimated the contribution of F. paralugubris mounds to the total CO2 

production at the forest scale. Moreover, to characterize the broad functional role of the microbiota 

associated with the mound material, the carbon isotopic signature of the produced CO2 was 
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experimentally determined and compared between summer and winter seasons. Additionally, I 

experimentally quantified the relative proportion to the overall nest mound gas emissions of its two 

most important contributors, namely ants and microbiota (Jílková & Frouz 2014). Finally, I 

characterized the microbiota associated with F. paralugubris mounds, and tested for seasonal 

differences in taxonomic composition and diversity. 

Lastly, in Chapter 4, I reviewed the threat status and the protection level of RWA across 

European countries, highlighting exemplary cases. The aim was to resume the complex and 

scattered situation in which RWA are not protected in every country, while in some cases the 

invasive populations attracted more attention and preservation efforts compared to the native ones. 

Further, I aimed to highlight the lack of a coordinated framework for the protection of this species 

group.  
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Abstract  

The Formica rufa group comprises several ant species which are collectively referred to as ‘red 

wood ants’ (hereafter RWA). These species have key roles in forest ecosystems, where they are 

ecologically dominant and greatly influence the dynamics of the habitat they colonise. Various 

studies have shown how their trophic activity may affect other organisms, which include both other 

invertebrates and plants. We can therefore hypothesize that their presence could affect the 

taxonomic and functional composition of epiphytes, despite clear information on such an effect is 

lacking. This study aimed to fill this research gap by evaluating whether the presence of red wood 

ants could affect the structure and composition of lichen communities. We selected two sites on the 

Apennine Mountains in Italy, where the red wood ant F. paralugubris was introduced from the Alps 

more than 50 years ago. In each site, lichen assemblages on Abies alba trees located within the 

colonised areas were compared to those from nearby, non-occupied areas. The results allowed for 

the identification of significant effects of F. paralugubris on the structure of lichen communities. 

Although there was no detectable impact on lichen species richness, a significant difference in their 

community composition between colonised and control sites was detected. Furthermore, ant 

presence seemed to be associated with specific lichen functional traits such as asexual reproduction. 

We argue that RWA could affect the lichen community either directly, e.g. by actively dispersing 

the species capable of asexual reproduction through their movements on trees (ant-mediated 

dispersion), or indirectly through herbivore exclusion. Finally, we also observed differences in β- 

diversity among the colonised and non-colonised sites. 
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Introduction 

Animal–plant interactions are widespread and extend beyond the known consumer–resource 

association in a wide array of relationships. As such, these interactions have long ago attracted the 

interest of scientists and today constitute an important field of research (Herrera & Pellmyr 2009, 

CaraDonna et al. 2021). Among the many documented examples, those involving arthropods, 

particularly ants species, are the most intriguing (Rico-Gray & Oliveira 2007). Ants are one of the 

most diverse, abundant, and ecologically dominant animal groups worldwide, and their impact on 

ecosystem function is correspondingly significant (Lach et al. 2010). Most of the available literature 

is biased towards angiosperms, and comparatively little is known about other organisms such as 

lichens.  

Lichens are symbiotic poikilohydric organisms formed by a fungus, the mycobiont, and one 

or more algae, the photobiont (Nash 2008). Together with bryophytes, these cryptogamic organisms 

represent an important component of forest ecosystems and biodiversity. They are key organisms in 

ecosystem functioning, since they are primary producers involved, for example, in water and 

nutrient cycles (Pike 1978, Porada et al. 2018). Several interactions are known to occur between 

lichens and animals (Asplund & Wardle 2017). Lichens can be a feeding substrate for both some 

vertebrates and several invertebrates. For example, gastropods are known to feed on lichens 

(Benesperi & Tretiach 2004) and some species are specialised lichen-feeders (Kerney 1999). On the 

other hand, lichens provide a microhabitat where an organism could find particular temperature or 

moisture conditions. Invertebrates could find protection and food in the interface between the 

thallus and substrate, especially in the case of foliose lichens (André 1985). Moreover, although 

lichens rely mainly on wind for dispersion, several forms of zoochory by both invertebrates and 

vertebrates have been documented. In particular, ants can disperse both lichen soredia (Lorentsson 

& Mattsson 1999) and thallus fragments (Heinken et al. 2007). Soredia can attach to ants' bodies 

during their passage on the surface of lichen thalli, or in some cases, wind-borne spores are carried 

in contact with ant body (Bailey 1970). In the case of thallus fragments, some ants use them to build 

nests, collecting fragments in the surrounding areas and thus providing maintenance of epigeous 

lichen diversity (Heinken et al. 2007). This harvesting behaviour has also been investigated to 

explain the negative correlation between epiphytic macrolichen richness and ants (Thunes et al. 

2018). Nevertheless, to the best of our knowledge, the effect of ants on the overall lichen epiphytic 

community has never been investigated.  

Red wood ants (hereafter RWA) are ecologically dominant species belonging to the 

Formica rufa group, with seven species described in Europe and at least 19 species reported in 
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North America (Stockan & Robinson 2016). RWA are cold-adapted species inhabiting coniferous 

woodlands (Risch et al. 2016), and in the southern part of their range they are restricted to mountain 

areas, rarely occurring below 900 metres a.s.l.. In Italy, these species are widespread along the 

Alpine chain and only the more thermophilic Formica pratensis (Retzius,1783) naturally occurs 

south of the Alps in the Apennine mountains. Moreover, starting in the mid-1900s, colonies of F. 

lugubris (Zetterstedt, 1838), F. polyctena (Foerster, 1850) and F. aquilonia (Yarrow, 1955) were 

repeatedly transplanted as a biocontrol agent for forest insect pests from their original areas in the 

Alps to other sites in the Apennines, where they were formerly absent. The current status of most of 

the introduced populations is unknown. In a few cases, local extinctions have been documented, 

especially in less suitable and warmer areas, whereas some of the introduced populations have 

grown considerably (Frizzi et al. 2018).  

Most RWA have a strong influence on forest ecosystems (Wardle et al. 2011), affecting both 

nutrient cycling and ecosystem function (Frouz et al. 2016). They also affect a wide range of 

cooccurring animal taxa, which includes other ant species (Stockan & Robinson 2016), herbivorous 

insects (Punttila et al. 2004), predatory arthropods (Robinson et al. 2016) and birds (Aho et al. 

1999). Moreover, RWA can affect plant communities both indirectly, mediated by their action on 

aphids or other plant parasites (Domisch et al. 2016), and directly through seed dispersion or soil 

enrichment (Ohashi 2007). In particular, RWA can be effective seed dispersers for plants with 

elaiosome-bearing seeds or fruits that represent a valuable trophic resource (Gorb & Gorb 2003). 

More recently, Thunes et al. (2018) suggested that F. aquilonia colonies can impact lichen species 

richness, removing them from the tree bark along their foraging trails to aphids in the canopy, and 

sometimes collecting them as nest material. Because of these effects, RWA are interesting 

candidates to explore ant–lichen interactions.  

In this study, we investigated the effects of F. paralugubris populations on lichen 

assemblages at two sites in the Central Apennine Mountains, in Italy. In particular, we compared 

the lichen species richness, lichen assemblage composition, community functional traits, and β-

diversity between areas within and outside of the range occupied by F. paralugubris. The 

estimation of β-diversity has proven to a be an effective tool to better understand mechanisms 

determining differences between communities (Nascimbene et al. 2015). 

 

Materials and Methods 

Study areas and sampling 
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The study was carried out in Abetone forest (AB, 44°08′50″ N, 10°40′24″ E) and in the Campigna 

Biogenetic Nature Reserve (hereafter referred to as Campigna, CA, 43°52′20″ N, 11°44′ 41″ E), 

where RWA populations have been transplanted since the late ‘50 (Groppali & Crudele 2005, Fig. 

1). According to IV level Corine Land Cover for the Tuscany region, both sites can be classified as 

coniferous woodlands (CLC code 3123) dominated by white fir (Abies alba). Both sites have 

similar elevational range (1200-1350 m asl) and the mean annual precipitation is 2325 mm and 

1682.1 mm for Abetone (Bartolini et al. 2018) and Campigna (Gonnelli & Bottacci 2009), 

respectively. 

 

Figure 1. Location of the study areas. 

 

In Campigna, the RWA population is subdivided into several independent sub-populations 

displaced in the area, one of which is located in Avorniolo Alto, occupies an area of ~8 hectares, 
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and was chosen for this study (see Frizzi et al. 2020). In the area of Abetone, a single population 

exists and covers an area of ~10 ha. Despite previous identifications described RWA populations in 

both areas as F. lugubris based on morphological characteristics (Groppali & Crudele 2005), here 

the target populations were identified as F. paralugubris following the methods described in 

Masoni et al. (2019). The nest density per hectare was similar between sites (AB ~13 nest/ha, CA 

~12 nests/ha). For each area, we randomly selected three F. paralugubris nests spaced at least 150 

metres from each other. Six Abies alba (Mill., 1759) trees located within 20 m from each nest were 

chosen to sample lichen communities. The fir trees were as evenly spaced in all directions around 

the nests as possible. Additionally, we randomly selected as control sites three points from nearby 

non-occupied areas, where F. paralugubris was known to be never introduced or present (Groppali 

& Crudele 2005). As a result of their reproductive strategy based on colony budding, populations of 

this ant have sharp, easily recognisable boundaries (Chapuisat & Keller 1999). Moreover, as these 

populations are under study since 2015, their boundaries are well mapped (Frizzi et al. 2018). The 

control areas shared similar environmental features of the occupied areas (i.e., altitude, type of 

forest stand, undergrowth, orientation, and slope). For each site, the lichen communities present on 

the randomly selected Abies trees were assessed.  

Epiphytic lichens were sampled using four standard frames of 10×50 cm subdivided into 

five 10×10 cm quadrants as sampling grids, which were vertically attached to the tree trunk at three 

different heights above the soil (with the lower edge at 0, 50, and 100 cm). At 0 and 100 cm, the 

frames were attached at the cardinal points, while at 50 cm, they were rotated by 45° with respect to 

the cardinal points. All lichen species occurring within the frames were listed, and their frequency 

was recorded as the number of quadrats in which the species occurred. Most species were identified 

in the field, while critical specimens were collected and identified in the laboratory using standard 

stereo- and light microscopy techniques and chemical reagents. Following Nimis & Martellos 

(2020), we described lichen diversity considering three functional traits evaluated for each species: 

growth form (GF), reproductive strategy (RS), and presence of lichenic acids (LA) (Table S1), 

which have been previously used to compare lichen communities (Giordani et al. 2016, Hurtado et 

al. 2020). 

 

Data analysis  

Differences in observed lichen species density (defined as the number of species observed in each 

sampled tree), carried out by comparing trees with and without RWA at both sites, were assessed 
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using Generalised Linear Mixed Models (GLMM) with Poisson error distribution, including the 

nest as a random variable (Zuur et al. 2009).  

Compositional differences within sites were investigated using multivariate techniques. The 

multivariate distances among samples were computed using the Bray-Curtis dissimilarity index 

after fourth root transformation to reduce the influence of extreme values. We then performed non- 

Metric Multidimensional Scaling (nMDS) ordination analysis on the resulting distance matrix, 

according to Clarke and Warwick (2001). As described in Anderson (2001), differences in species 

composition were tested within each site using a permutation-based non-parametric Multivariate 

Analysis of Variance (npMANOVA), using the presence of the ants as the main fixed factor and the 

tree replicate as a nested random factor.  

For the analysis of functional traits, we computed the Community Weighted Mean (CWM), 

which represents the weighted mean trait in a community and accounts for the abundance of the 

species that carries the considered trait (Pla et al. 2012). The CWM of categorical traits was 

measured as the relative abundance of the category or group in the community, while the CWM of 

continuous traits was calculated as the trait average value (Lavorel et al. 2008). The computed 

CWM values were fitted onto the ordination axes using the function “envfit” of the Vegan/R 

package.  

β-diversity was computed to evaluate the lichen species diversity and turnover among the 

habitats tested. We applied the SDR simplex approach (Podani & Schmera 2011), comparing for 

both areas the plots with and without F. paralugubris. We computed the three additive components 

of β-diversity: the relativized species replacement (R), the relativized richness difference (D), and 

similarity (S). This method proceeded by comparing all pairs of plots and computing these three 

components of β-diversity to analyse lichen species presence.  

All analyses were carried out in R software v.3.6 using the packages vegan, lme4, FD, and 

BiodiversityR. 

 

Results 

On the 72 A. alba sampled trees we found 65 lichen species (Tab. S1), belonging to 40 genera, 

whose density in both sites did not vary according to RWA presence (z = -0.572, P = 0.567).  

Focusing on lichen species composition within each site, nMDS ordination plots (Fig. 2) for 

both AB (stress = 0.18) and CA (stress = 0.13) showed a clear separation of ant-visited trees 
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compared to those from control sites. In both AB and CA sites, npMANOVA revealed a significant 

effect of ant presence (F1,2 = 27.77, P = 0.001; F1,2 = 11.15, P = 0.001; AB and CA, respectively), 

but also significant variability among plots within each site (F1,4 = 5.50, P = 0.001; F1,4 = 6.68, P = 

0.001; AB and CA, respectively). 

 

Figure 2. Non-Metric Multidimensional Scaling plot of tree lichen composition sample 

dissimilarities in Abetone (a) and Campigna (a), according to ant presence: black symbols, tree 

within the ant range; red symbols, control trees. The significant functional traits are plotted as 

vectors: Growth form: fruticose (GF_F), foliose (GF_Fo), crustose (GF_Cr). Reproduction strategy: 

asexual (RS_A), sexual (RS_S). Presence of lichenic acids: presence (LA_y), absence (LA_n). The 

orientation of vectors represents the correlation direction with ant presence. 
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CWM values varied according to ant presence (Table 1, Fig. 2). At Abetone, the crustose 

growth form (GF_Cr) was negatively associated with RWA presence, while the asexual 

reproductive strategy (RS_A) and the presence of lichenic acids (LA_y) were positively associated 

with ant. This was also evident in the nMDS plot, where their vectors pointed toward the RWA-

sites (Fig 2a). In Campigna (Fig. 2b), the sites with ants were related with a higher abundance of 

lichen species with an absence of lichenic acids (LA_n), asexual reproductive strategy (RS_A) and 

a foliose (GF_Fo) and fruticose (GF_Fr) growth form. On the contrary, these sites were negatively 

related to crustose growth form (GF_Cr), presence of lichenic acids (LA_y), and sexual 

reproductive strategy (RS_S). β-diversity results (Fig. 3) indicated that plots with RWA were more 

variable, with a higher value of species replacement (R = 37.4) and lower values of similarity (S = 

41.5) and relative richness difference (D = 20.9) compared to control areas (R = 29.1, S = 43.8, D = 

27.1). 

 

 Site Trait  r2 P Direction 

Abetone        

  GF_Cr    0.3706 0.001  - 

  GF_Fo 0.0422 0.514   

  GF_Fr  0.0001 0.998  

  RS_A 0.2208 0.021 + 

  RS_S  0.0100 0.859  

  LA_n 0.6009 0.001  n 

  LA_y  0.4068 0.001  + 

Campigna      

  GF_Cr   0.3658 0.002  - 

  GF_Fo 0.1805 0.041  + 

  GF_Fr 0.2723 0.004   + 

  RS_A 0.5062 0.001 + 

  RS_S  0.2833 0.006  - 

  LA_n 0.1829 0.035  + 

  LA_y   0.3484 0.004  - 

 

Table 1. Correlation values between Community Weighted Mean of each functional trait and 

ordination axes at both sites. For traits significantly correlated with axes, the type of effect 

summarizes whether RWA presence has a positive, negative or no influence on the trait. Acronyms 

for traits: Growth form: fruticose (GF_F), foliose (GF_Fo), crustose (GF_Cr). Reproductive 
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strategy: asexual (RS_A), sexual (RS_S). Presence of lichenic acids: presence (LA_y), absence 

(LA_n). 

 

 

 

Figure 3. Three β-diversity components estimated in the areas with (a) and without F. paralugubris 

(b). R, relative species replacement; D, relative richness difference; S, similarity. 

 

Discussion  

Overall, our results showed that the lichen epiphytic communities significantly varied according to 

RWA presence in the two surveyed areas. Ants affected lichen communities in terms of species 

composition. In particular, they seemed to affect lichen functional traits, favouring species with 

asexual reproduction. One possible explanation is that they unintentionally transport lichen 

propagules during their movements, acting as a vector for lichen asexual dispersion in surrounding 

trees (Lorentsson & Mattsson 1999).  

In our sites, lichen richness was not affected by ant presence. Lichen epiphytic diversity, in 

terms of species number, has been shown to be influenced more by macroclimatic factors than 

specific habitat features (Matteucci et al. 2012). Thus, the overall epiphytic lichen diversity may not 

be a good proxy for assessing possible effects on lichen diversity carried out by ants. Our results 

differed from previous studies that found a negative influence of ant presence on lichen species 
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richness (Lorentsson & Mattsson 1999; Thunes et al. 2018). However, these studies focused on both 

lichens growing on trees and on other substrates. Thus, ant effects may differ depending on which 

lichen community is considered (epiphytic vs. terricolous). Thalli fragments of terricolous lichen 

species were usually found in ant mounds, supporting this hypothesis (Heinken et al. 2007). 

Moreover, Thunes et al. (2018) considered F. aquilonia, which could have a distinct behavioural 

pattern compared to F. paralugubris, thus influencing cryptogam communities differently. F. 

paralugubris has been introduced in our forests, so we could also not exclude different behavioural 

patterns compared to the original ants’ populations in the Alps or in other autochthonous areas of 

Europe.  

The major influence of ants on lichen epiphytic communities seemed to be mediated by 

functional traits. Plots with ants displayed a greater presence of lichens with asexual reproduction as 

soredia and isidia and fewer crustose species. Previous research has reported that soredia could 

attach to ants when the latter pass over lichen thalli (Lorentsson & Mattsson 1999). Thus, our 

finding corroborates the hypothesis that ants could act as a dispersion vector of lichen soredia, 

transporting them onto other trees and enhancing their colonisation. To date, evidence of ant 

interaction with isidia is lacking, but we argue that continuous movements over lichen thalli could 

enhance the detachment of these propagules, favouring their dispersion. Wood ants establish 

complex networks of foraging routes that radiate to nearby trees and connect different nests (Ellis & 

Robinson 2016). These trail networks change dynamically to track temporal changes in resource 

availability, mainly aphid colonies, and allow an efficient and almost uniform exploitation of the 

area surrounding the colony (Buhl et al. 2009). As a consequence, isidia and soredia could travel 

through this network, potentially dispersing to other trees in the area surrounding a nest. In this 

way, ants may affect lichen species composition due to temporal changes of the foraging trees 

according to aphid availability.  

Regarding the growth form, control sites had a greater presence of crustose lichen species. 

Epiphytic lichens are often predated by invertebrates such as snails (Benesperi & Tretiach 2004), 

and RWA presence may negatively affect invertebrate assemblages. Frizzi et al. (2018) have 

previously found in the same forest of this study that F. paralugubris negatively impacts 

invertebrates’ presence, describing a clear decrease in their abundance in colonised areas. This 

could suggest that the decreased abundance of invertebrates feeding on lichens may positively 

influence the presence of foliose and fruticose lichens that may be more likely predated (Gauslaa et 

al. 2006).  
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It is also worth reporting that the geographic position seemed to have an effect in 

influencing lichen communities. Several studies have shown that epiphytic lichen species richness 

and composition are mainly influenced by microscale factors such as bark pH, roughness, water 

holding capacity, and tree species, and macroscale factors such as temperature (e.g., Marini et al. 

2011). Moreover, the difference in lichen species could be affected by the wide variety of growth 

forms, reproductive strategies, and photobionts that could allow the replacement of lost species. In 

our work, we tried to avoid the effect of these factors by comparing sites with similar pedoclimatic 

conditions. Additionally, the influence of the phorophyte was not an issue here, as only one tree 

species was present in both sites. However, it is evident that some microscale factors (i.e. at the plot 

scale) could not be controlled for, despite our efforts.  

Our study also revealed a significant difference in β-diversity between sites with and 

without RWA. β-diversity was higher where RWA were present, and all its components (i.e., 

replacement, similarity and richness) were affected. The specific mechanism behind this pattern are 

not known and surely deserve further research, but in principle, the same mechanisms discussed to 

explain the observed differences in lichen functional diversity may apply here. 

 

Conclusion  

Our study revealed a significant effect of the presence of F. paralugubris on lichen communities 

and extended our knowledge on the impact of this introduced species on autochthonous 

communities. Our results suggest both a direct effect, with a physical dispersal of lichen propagules 

by ant workers, and an indirect effect, by ant predatory pressure on lichen herbivores. Our study is 

the first attempt to unveil the possible effects of RWA on lichen epiphytic diversity using a 

functional approach. We stressed that possible effects of the presence of RWA could be 

concentrated on species with specific functional traits. Nevertheless, further studies are needed to 

clarify the mechanisms involved in the interactions between RWA and lichen communities. 
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Abstract 

In the second half of the twentieth century, many red wood ant populations were transferred from 

the Alps to the Apennines as biological control agents. Since the introduction involved the 

relocation of entire nest mounds, it is presumable that the associated fauna was also relocated. 

While the introduction of these ants has raised several concerns about their ecological impact, there 

has been no attempt to investigate the introduction of other nest associated species. In this study, we 

collected samples of soil and nest material from three populations of the red wood ant Formica 

paralugubris, one Alpine native and two imported into the Apennines. We aimed to confirm that 

nest mounds are hotspots for soil fauna, detect the occurrence of new myrmecophilous species, and 

compare the nest-associated fauna among sites, to test the hypothesis of mass species relocation. 

We focused our analyses mainly on two taxa, springtails and oribatid mites, two highly 

representative groups of the mesofauna inhabiting nest mounds. The results showed higher richness 

and diversity in nests than soil for oribatids but not for springtails. We found 17 myrmecophilous 

oribatid species, but only two springtail species. Finally, native and imported sites shared only a few 
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oribatid and springtail species, suggesting that massive relocation did not occur with nest 

transplants or it was likely limited. Additionally, we found some species never before collected in 

Italy. 

 

Keywords: Red wood ants, Myrmecophily, Soil fauna, Formica paralugubris, Oribatid mites, 

Springtails, New species 
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Introduction 

Red wood ants (RWA) are typical in Central and Northern Europe, where seven species of Formica 

s.s. or the F. rufa group are known [1]. In contrast to other ants, these species are mostly associated 

with coniferous trees and require cold climates [2]. In the southern portion of their distribution area, 

their presence is limited to higher altitudes [3–6]. In Italy, the species of Formica s.s. are 

widespread along the Alpine chain, and only the more thermophilic Formica pratensis Retzius, 

1783 naturally occurs at more southern locations in the Apennine mountains [7], although its exact 

distribution is still unknown. In the mid-twentieth century, nests of several alpine RWA species, 

such as F. paralugubris Seifert, 1996, F. polyctena Förster, 1850, and F. aquilonia Yarrow, 1955, 

were repeatedly introduced to the Apennines as biocontrol agents for forest insect pests, and in 

some cases, viable populations established and started to spread [8–10]. Their impact on the 

arthropod fauna inhabiting the newly occupied area has been demonstrated [9]. All RWA species 

are known to profoundly affect local communities, from plants to vertebrates, due to their predatory 

ability, dominant status, and capacity to modify the physical properties of the habitats they colonize 

[1,11–13]. The large aboveground nest mound is one distinguishing characteristic of these ants. 

They are formed to maintain stable humidity and temperature in the nest chambers, and often 

contrast with harsh external conditions [14–16]. For example, in F. polyctena mounds, the 

difference between the nest and air temperature during the winter can exceed 20 °C [17]. In cold 

habitats, this microclimatic stability may turn the RWA mounds into “warm islands”, which can be 

attractive for a wide array of organisms [18,19]. More in general, that ant nests can provide shelter, 

food and favorable physical conditions for many litter animals has been established for several ant 

species [e.g. 20,21,22,23,24].  

The invertebrate fauna hosted in RWA nest mounds, assessed in multiple studies, includes a 

broad range of taxa: isopods, spiders, mites, nematodes, springtails and a long list of insects, from 

flies to several beetle species [25–28]. More than 120 obligate myrmecophilous species have been 

found in RWA nest mounds, as well as several other species that occasionally inhabit nests because 

of their combined and often favorable moisture, pH and temperature conditions [19]. Myrmecophily 

can be defined as the partial or complete dependence on ant colonies by non-ant species [29]. This 

relationship can be based upon parasitic, commensal or even mutualistic interactions [30,31]. Thus 

far, more than ten thousand myrmecophilous arthropods are known, and they have evolved 

numerous strategies to inhabit or have access to ant nests [32–34], such as chemical camouflage, 

morphological mimicry and pheromonal attractors [35–37]. In this study, we analyze the 

invertebrate fauna hosted in the nest mounds of F. paralugubris, a highly polydomous and 

polygynous RWA species [38]. Since this species was one of the most often introduced into the 
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Italian peninsula [10], we focus our study on the comparison of the nest myrmecophiles from native 

and introduced populations. Ant translocation involved the movement of entire nest mounds [8], 

and this likely translocated all the associated fauna as well. The main aims of this study are: i) to 

confirm that nest mounds can be attractive for the soil fauna, both in the native and imported 

populations, by comparing assemblages inhabiting nest mounds and soil; ii) to identify potentially 

myrmecophilous species not previously described in the literature; iii) to compare soil and nest 

fauna across sites and evaluate if this difference supports the hypothesis of species relocation. We 

focused on springtails (Hexapoda, Collembola) and oribatid mites (Acari, Oribatida), which were 

used in previous studies as common representative taxa of the mesofauna inhabiting RWA nest 

mounds [39–42]. Among microarthropods, springtails and oribatid mites constitute two of the most 

species-rich taxa of the soil ecosystem [43]. Although quite distant phylogenetically, the two groups 

share several ecological and behavioral features because of their adaptation to similar ecological 

niches. Both groups feed on litter and soil micro-organisms and graze on fungi, and thereby affect 

the dispersion of saprophytic and mycorrhizal species and control fungal populations [44–47]. Their 

community structure is modulated by several natural factors, including plant diversity, litter quality 

and meta-population dynamics. However, these two key groups are also sensitive to anthropogenic 

factors such as land use, soil tillage, environmental pollution, physical disturbance and fire [48–51]. 

 

Materials and methods 

Study area and sampling design 

The sampling was carried out between June and August 2017. Samples of nest material and soil 

were collected from three sites, one in the Alps in the Giovetto di Paline Nature Reserve 

(abbreviated as GP, 45° 57′57′′ N, 10° 7′48′′ E), and two in the Apennines, in the Abetone forest 

(abbreviated as AB, 44° 08′50′′ N, 10° 40′24′′ E) and the Campigna Biogenetic Nature Reserve 

(abbreviated as CA, within the Foreste Casentinesi, Monte Falterona e Campigna National Park, 

43° 52′00′′ N, 11° 44′14′′ E) (Fig. 1). The Alpine site, GP, is the site of origin, where nests later 

imported to both Apennine sites were collected [52]. Nests used for sampling in the Campigna 

Biogenetic Nature Reserve were imported in 1958 [9,52], whereas the exact year of transplants is 

not available for the Abetone forest. However, the period was probably similar (Groppali, personal 

communication). The habitats of the three sites are similar, a mixed forest composed of a dominant 

conifer species and beech (Fagus sylvatica L. 1753). The dominant species in the Alpine site is the 

red fir (Picea abies (L.) H. Karst, 1881), while in the Apennine sites, it is the white fir (Abies alba 

Mill, 1759). The geographic position of all ant nests—including sampled nests—was recorded in 5 
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ha per site by a GPS locator (Garmin eTrex® 10, accuracy ~ 3 m), and the density per hectare was 

evaluated.  

Five nests of F. paralugubris of similar size (height range, 1.3–1.5 m; diameter at the base 

of the mound, 2.3–2.6 m) were chosen in each area. Nests were spaced at least 15 m apart to ensure 

independent sampling of the nest fauna. Moreover, we preliminarily checked for the presence of ant 

trails connecting the selected nests. From each mound, we collected three 1-dm3 samples of nest 

material (total number of samples = 45, 15 per site) and two 1-dm3 samples of soil 3 m from each 

nest (as control) utilizing a soil corer (15 cm diameter, 50 cm height). Nest material was collected at 

40 cm depth from the surface of the mound. Each sample was separately stored in a plastic bag. All 

samples were transferred to the laboratory within 6 h from the time of collection. The material was 

gently stirred and homogenized in a plastic basin and then placed into a Berlese funnel. Samples 

were left in the funnels for 5 days, following Parisi et al. [53]. The specimens collected were 

examined using a stereomicroscope. Oribatids and springtails were identified to the species level, 

while most of the other organisms were identified to a higher taxonomic level. All samples were 

stored in pure ethanol for further analysis. 
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Figure 1. Map of the three sampling sites. The light grey circle is the alpine site of the original 

population, and dark grey circles are the two Apennine sites of the two introduced populations. 

 

Statistical analyses 

Species diversity at the three sites was estimated following Chao et al. [54], using as input the 

abundance data for oribatids and presence/absence for springtails. The use of presence/absence for 

springtails is motivated by the strongly aggregated distribution of several species of this taxon 

[55,56], which may hamper diversity estimates [54]. The method for evaluating diversity is based 

on the estimation of Hill numbers, qD, and yields estimates of total (rarefied and extrapolated) 

species richness (q = 0), and the exponential values of the Shannon diversity (q = 1) and Simpson 

diversity (q = 2) indices. The 95% confidence intervals were obtained from bootstrapping, based on 

4999 replications of the reference sample set. Finally, differences in observed species density 

among sites (defined as the number of species captured in each sample) were assessed using mixed-

effect modelling with Poisson error distribution, including the nest as a random variable [57]. A 

Tukey post-hoc test was then performed to assess the differences in pairs.  

Association of a species with either nests (i.e., myrmecophily) or soil was evaluated by 

analyzing the probability of occurrence in the respective material. Generalized Linear Mixed 

Models (GLMM) were used for this analysis, with the type of habitat (nest or soil) as the main 

factor. For springtails, we used binomial distribution (presence/absence data) in the model, whereas 

for oribatids, given the high difference in abundance between samples, we log-transformed data and 

used a Gaussian distribution. For springtails, we analyzed only species that occurred in at least three 

samples in each site in which they were present. For oribatids, following Elo et al. [42], we tested 

only species that occurred in at least three samples and with at least ten individuals per site. Sites in 

which the species did not occur were omitted from the analysis.  

Compositional differences among sites were investigated using multivariate techniques. 

Rare species (those with less than three observations) and empty samples with no specimens were 

omitted from the following analyses [58]. The multivariate distances among samples were 

computed with the Bray-Curtis dissimilarity index after log transformation of the data, and the 

resulting distance matrix was analyzed by non-metric multidimensional scaling (nMDS) according 

to Clarke and Warwick [58]. Species composition differences were tested with a permutation-based 

non-parametric multivariate analysis of variance (PERMANOVA), using the factor “site” (fixed) 

and “nest” (random, nested) to account for non-independence of observations. β-diversity was 
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computed following Anderson et al. [59], and permuting model residuals were compared to 

generate a permutation distribution of F under the null hypothesis of no difference in dispersion 

between groups. All analyses were conducted using the R software package (ver.3.6) using the 

libraries “vegan”, “iNEXT” and “ecodist”.  

 

Results 

The estimate of nest density was similar among sites (AB ~ 13 nests/ ha, CA ~ 12 nests/ha, GP ~ 12 

nests/ha). We collected a total of 32 springtail species (11 in GP, 21 in CA and 16 in AB) belonging 

to 21 genera, 122 oribatids (49 in GP, 39 in CA and 51 in AB) belonging to 62 genera, 53 

morphospecies of other arthropods, 2 morphospecies of Annelida (Haplotaxida) belonging to the 

Enchytraeidae and Lumbricidae families, and one nematode morphospecies. Of the 53 

morphospecies of arthropods, 39 were insects, subdivided into Coleoptera (23), Diptera (6), 

Hemiptera (4), Lepidoptera (2), Hymenoptera (2), and one each of Thysanoptera and Psocoptera. 

Other arthropods included four Diplopoda, three Chilopoda, three Arachnida, one Protura, one 

Diplura and one Symphila. Detailed lists of the focus groups (Collembola and Oribatida) and other 

morphospecies collected, with their abundance at each site and type of habitat (nest or soil), are 

reported in Supplementary materials S1 and S2, respectively.  

Except for springtails and oribatids, the most represented group was that of beetles. Overall, 

most coleopteran morphospecies were found in nests (20 out of 23, 17 of them exclusively in nests), 

whereas only seven out of 23 morphospecies were collected in soil samples (three of them 

exclusively in soil). Among Coleoptera, Staphylinidae was the most represented taxon, with ten 

total morphospecies collected. Diptera (6 morphospecies) were collected only in the soil samples. 

All three spider morphospecies collected were associated with nests only. None of the other groups 

with more than one morphospecies was exclusive for either of the two types of samples.  

We found three oribatid species new to Italy: Damaeus selgae P´erez- ´I˜nigo, 1966 and 

Scheloribates tuberculatus Pérez-Íñigo jr., Herrero and Pérez-Íñigo, 1987 only known from Spain 

[60], and Dissorhina ornata peloponnesiaca Mahunka, 1974, recorded in Spain [61], Greece [62] 

and recently, Poland [63]. Moreover, the myrmecophilous beetle Monotoma conicicollis Chevrolat, 

1837 (Monotomidae), previously recorded only in the Alps, was recently recorded for the first time 

in the Apennines [64]. Several species of insects, previously known only in the Alps, have often 

been overlooked, and their populations only recently recorded in the northern Apennines and 

surrounding areas [65,66].  



Analysis of introduced and autochthonous populations of the red wood ant Formica paralugubris: ecological interactions and conservation issues 
PhD thesis Paride Balzani 

60 
 

In total, we found 19 species that preferred ant nests (2 springtails and 17 oribatids), 

whereas seven species preferred soil (2 springtails and 5 oribatids) (Supplementary material S1). 

Pooling all sites, no difference in the number of springtail species in soil and nests was found 

(Fisher exact test p = 0.805), whereas oribatid species richness was significantly higher in nests than 

soil (Fisher exact test p = 0.022). The number of species shared between soil and nests differed 

among sites for springtails (Fisher exact test p = 0.022, Fig. 2), but not for oribatids (Fisher exact 

test p = 0.310). The number of species shared among sites is summarized in Table 1. There was no 

difference between the proportion of shared species both in soils and in nests with respect to the 

total number of species in that habitat (Mantel-Haenszel chi-square test with continuity correction: 

χ2 = 2.1, p = 0.147). 

 

Figure 2. Cumulative number of species observed at the three study sites for a) springtails and b) 

oribatids. Black bars = nests, white bars = soil, grey bars = species shared between soils and nests. 

Sites: AB = Abetone (Apennines), CA = Campigna (Apennines), GP = Giovetto di Paline (Alps). 
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Springtails        Oribatids       

 soil    nests    soil    nests   

Group shared total   shared total  shared total   shared total 

AB-CA 3 18  5 17  13 45  19 73 

AB-GP 2 14  4 17  4 45  22 94 

CA-GP 0 19  3 18  6 35  21 75 

AB-CA-GP 0 23   2 22   3 54   12 102 

 

Table 1. Number of species shared between sites, both for soils and nests. Sites: AB = Abetone 

(Apennines), CA = Campigna (Apennines), GP = Giovetto di Paline (Alps). 

 

Focusing on nest samples, CA generally had slightly higher springtail species richness and 

diversity than either AB or GP, although the confidence intervals of the three sites overlapped 

widely (Fig. 3). Species density did not differ among sites for springtails (Type III Wald test: χ2 = 

1.727, df = 2, p = 0.422). For oribatids, CA had lower α-diversity than AB and GP, while species 

density was significantly lower than at AB and GP (χ2 = 18.943, df = 2, p < 0.001; multiple 

comparisons: CA vs AB: z = -3.572, p < 0.001; CA vs GP: z = -4.078, p < 0.001; AB vs GP: z = -

0.525, p = 0.859).  
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Figure 3. Species diversity in the three sites (red = Abetone, Apennines; blue = Campigna, 

Apennines; green = Giovetto di Paline, Alps). Sample-based plots with 95% confidence intervals 

for species richness (q = 0), Shannon (q = 1), and Simpson (q = 2) diversity indexes. Continuous 

lines = observed values; dashed lines = extrapolated values. 

 

The nMDS ordination plot for springtails (Fig. 4a, stress = 0.06) showed a separation among 

groups, whereas nest samples were partially separated by site. The PERMANOVA (Table 2) 

revealed a significant effect of the factor site, but also significant variability among replicate nests 

within each site. A clearer picture emerged from the nMDS ordination plot of oribatids (Fig. 4b, 

stress = 0.17). In this case, the three sites clearly had different soil assemblages, but the two 

introduction sites AB and CA were closer to each other (i.e., more similar) than to GP. The data 

points of the former two were located on opposite sides of the plot of the latter one. Nest 

assemblages were also fairly distinct by site but were more similar than soil samples. All soil 

samples were located in the central part of the plot, in close connection to each other. Notably, 

while the soil samples from the Apennine sites were clearly separated by those from the Alps, the 

nest samples were more similar. Even in this case, PERMANOVA revealed significant differences 

in nest assemblages among sites, both also significant within-site variability (Table 2). Finally, no 

significant difference in β-diversity among sites was found for either springtails (p = 0.054) or 

oribatids (p = 0.431). 

 

Figure 4. nMDS ordination plots for a) springtail and b) oribatid datasets. Colors indicate the sites 

(red = Abetone, Apennines; blue = Campigna, Apennines; green = Giovetto di Paline, Alps), 

symbols indicate sample types (triangles = samples from nests; circles = samples from soils). 
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 Springtails    Oribatids   

Factor df SS F P   df SS F P 

Site 2 2.300 2.35 < 0.001***  2 3.669 4.04 < 0.0001*** 

Nest [Site] 12 5.864 3.12 < 0.0001***  12 5.451 2.24 < 0.0001*** 

Residuals  21 3.288    30 6.076   

 

Table 2. Results of PERMANOVA tests. 

 

Discussion 

Richness and diversity of soil and nest fauna 

The predictions that higher species richness would be found in nest mounds of F. paralugubris than 

in the surrounding soil was confirmed for oribatids, but not for springtails. As for this latter group, 

the presence of red wood ants is known not to be a determining factor affecting their occurrence 

(see Lenoir et al. [40] for a study with F. polyctena). However, little is known about the difference 

in richness and diversity between ant nests and the surrounding soil. Conversely, for oribatids, our 

finding is consistent with Laakso and Setälä [18], who found higher mite richness in nests of F. 

aquilonia than in the nearby soil.  

Our results contrast with those of Elo et al. [42], who found different species but comparable 

species richness in the nest mounds of F. polyctena and the surrounding soil. As no other replicate 

studies on the same ant species are available, it is not possible to know if these differences represent 

specific features of the three species assessed, or, instead, they are driven by local environmental 

determinants, as suggested by Elo et al. [42]. These authors hypothesized that this incongruence 

could be due to differences in the quality of the leaf litter, which is assumed to be poorer in 

coniferous stands than in broadleaf forests. This relative lack of litter might compel mites to 

aggregate within nest mounds more strongly in the former than in the latter. A second suggested 

factor could be nest density: the higher density may drive species to be more distributed and less 

concentrated among ant nests. In our study, the hypothesis regarding leaf litter quality might be 

supported, because all three sites were dominated by coniferous trees (Abies alba and Picea abies), 

as in Laakso and Setälä [18], although a denser understory is present in the Alpine site. Nest density 

may have an effect as well, but we do not have any reference to verify whether the density in our 
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sites is relatively high or low, and therefore how it might influence the aggregative behavior of nest 

symbionts. However, density was very similar among sites; hence this factor should similarly 

influence all three populations.  

Myrmecophilous or soil-preferring species  

Springtails and oribatid mites showed different degrees of potential myrmecophily. Only two 

springtail species, Cyphoderus albinus Nicolet, 1842 and Lepidocyrtus cyaneus Tullberg, 1871 

selectively chose ant nests, and both are known myrmecophilous inhabitants of RWA nest mounds 

[19,26], and other ant species (e.g., C. albinus in Lasius neglectus Van Loon, Boomsma & 

Andrasfalvy, 1990 nests [67]). In contrast, two species, Folsomia penicula Bagnall, 1939 and 

Pseudosinella apuanica Dallai, 1970, both known to occur in Italy [68], preferred soil habitats, even 

though in both cases, the preference was not absolute, as they also occurred in some ant nest 

samples, though to a lesser extent.  

Conversely, a higher number of oribatid species (17 out of 122) were found to be potentially 

myrmecophilous. Four of these, Carabodes labyrinthicus Michael, 1879, Carabodes ornatus 

Stork´an, 1925, Liacarus coracinus Koch, 1841, and Pergalumna nervosa Berlese 1914, have 

previously been described as preferring the nest habitat [42]. Most of the species collected are quite 

common, such as the ones belonging to the Carabodes genus, which can be found both in European 

and American forests, mainly in tree bark where lichens, mosses, and fungi are present [69,70]. 

Since all these latter organisms (or parts of them) can be found within nest mounds, either alive or 

as nesting material [71,72], it is possible that nest habitat is suitable for some Carabodes species. 

Two Pergalumna species were recognized as potentially myrmecophilous, P. nevosa and P. altera. 

Both species have previously been collected in central Italy [73,74]. The species within this genus 

are known predators of nematodes [75,76], which, in turn, may find the particular nest conditions 

favorable for proliferation [77]. Unfortunately, the Berlese funnel is not an accurate tool for 

detecting nematodes, so we cannot provide reliable information on nematode communities.  

Regarding the linkage between Phauloppia lucorum Koch 1841 and ant nests, usually, most 

species of the Phauloppia genus are known to inhabit and feed on lichens [78–80]. Thunes et al. 

[81] found that the occurrence of the RWA F. aquilonia negatively impacted the lichen community, 

probably because of the chemical changes in the environment or by the direct collection of thallus 

fragments, which can be found within RWA nest mounds [72]. However, to our knowledge, it is 

hitherto unclear whether those lichen fragments came from active harvesting by ants or merely from 

the collection of detached lichen fragments. In any case, P. lucorum may feed on the lichens 

transported by ants into the nests, making the nest mound a suitable habitat for this species as well.  



Analysis of introduced and autochthonous populations of the red wood ant Formica paralugubris: ecological interactions and conservation issues 
PhD thesis Paride Balzani 

65 
 

Only a few species, such as two Oppiella species and Minunthozetes pseudofusiger 

Schweizer, 1922 showed a preference for soils. For the latter, the preference for soil instead of other 

habitats, such as grass, roots or litter, is known [82], although studies on their avoidance of ant nests 

are not available. The generalist and eurytopic Oppiella species are known to occur in harsh 

habitats, such as newly burned soils [83], suggesting that in this context, they prefer to occupy 

habitats with more extreme temperatures and moisture conditions [84].  

Comparison of assemblages among sites and species relocation hypothesis  

We detected differences in species richness and diversity across sites only for oribatids but not for 

springtails. Lower oribatid diversity was found at Campigna, whereas the native site of Giovetto di 

Paline and Abetone were very similar. This result is quite surprising, because the two imported 

populations, Campigna and Abetone, are geographically close and very similar in their general 

features (fir-dominated forests, altitude and climate). The Alpine site, although similar in dominant 

tree composition, shows denser understory (Frizzi, personal observation), which may potentially 

affect both springtails and mite diversity [85,86]. However, many factors may influence diversity, 

such as altitude, climate conditions, and geographic location [2]. Moreover, metapopulation rules 

apply to the nest mound fauna of RWA populations, and inter-nest distances may affect diversity 

[87]. Although the mean nest density was similar among sites, the distances between sampled nests 

with neighboring ones were not measured in a precise manner, and a different exchange of 

mesofauna between nests among sites cannot be ruled out. Thus, the reasons behind this apparent 

incongruence are not yet determined and could be a subject for future studies.  

According to the multivariate analysis, the three sites had different springtail and oribatid 

assemblages, both for soil and nest communities. No springtail species and only three oribatid 

species were shared among the three soil sites. The difference in the soil assemblages probably 

reflects the geographic distance, which is shorter between the two imported populations than 

between native and imported sites. On the other hand, notably, the oribatid fauna was more similar 

among nests than among soils, irrespective of the site, which may suggest a wider geographic 

diffusion of some nest-preferring species than of the soil fauna. Indeed, the proportion of shared 

species was nearly twice among nest than soil samples (12 out of 102 in nests, 3 out of 54 in the 

soil). To our knowledge, this is a novel finding and a targeted genetic analysis of these taxa in soils 

and nest mounds could shed light on the effective dispersion history of the species [88,89].  

Nonetheless, the number of species sampled in nests and shared among sites (2 springtails 

and 12 oribatids) was rather low compared to the total number of species collected in all nest 

samples (22 springtails and 102 oribatids). This result may suggest that the number of species 
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transferred from the Alps and established in the Apennines was not high or that some of the species 

already occurred in central Italy. For example, the two springtail species, C. albinus and L. cyaneus, 

are known myrmecophilous species in many parts of Europe [26,67]. Hence it is likely that they 

spontaneously occur at all sites independent of introductions. Thus, possible relocation with nest 

material can be hypothesized only for a few species. For example, we collected a few specimens of 

the oribatid mite Jugatala angulata Koch, 1839 in the nests of all three sites, even though this 

species has never been recorded in Italy except for the Alps [90,91]. Similarly, Cymbaeremaeus 

cymba Nicolet, 1855 was found only in nest samples in both introduction sites, although this species 

has already been recorded in the Italian peninsula, but only in northern and southern sites and not in 

the central regions [73]. For the other nest-preferring species, it is challenging to hypothesize a 

relocation process, because some of them were also recorded in soil samples (Adoristes ovatus 

Koch, 1839, C. labyrinthicus, Hermannia gibba Koch, 1839, Scheloribates pallidulus Koch, 1841). 

It cannot be excluded that individuals of some species—not strictly dependent on ants to survive—

shifted toward inhabiting the soil.  

 

Conclusions  

In conclusion, this is the first study to include an introduced population in a comparative analysis of 

the nest-associate fauna in red wood ants. We confirmed that RWA nests are hotspots for arthropod 

biodiversity, particularly for oribatid mites. We found several potentially myrmecophilous species 

that preferred the nest habitat instead of soil, though the symbiotic relationships with ants should be 

further investigated to verify myrmecophily. We used for the first time a comparative approach in 

the analysis of the nest fauna, assessing the differences between a native Alpine population and two 

introduced Apennine populations of the RWA F. paralugubris. Although we might expect some 

clear traces of a large species relocation given the massive transport of nest material during 

introductions, we found only a few species that potentially could have been transferred, suggesting 

that it probably did not occur. More comparative studies are recommended, e.g. on RWA imported 

populations, since the fate of most of them—and the fauna inhabiting their nests—are hitherto 

almost wholly unknown. 
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Chapter 2 

Impact of introduced Formica paralugubris on the community 
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Abstract 

Invasive species are one of the main threats to biodiversity worldwide and the processes enabling 

their establishment and persistence remain poorly understood. In generalist consumers, plasticity in 

diet and trophic niche may play a crucial role in invasion success. There is growing evidence that 

invasive ants, in particular, occupy lower trophic levels in their introduced range compared to the 

native one, but evidences remain fragmented. We conducted stable isotope analysis at five locations 

distributed on two continents to infer the trophic position of the invasive ant Formica paralugubris 

in the native and introduced part of the range. This species forms large colonies and can be a 

voracious predator while feeding on sugar-based resources as well. Whereas native populations had 

trophic positions comparable to that of an omnivore, the introduced populations varied from being 

honeydew specialists to top predators, or omnivore. Where other ant species co-occurred, there was 

no overlap in their trophic niches, and F. paralugubris occupied the lower position, suggesting that 

trophic displacement may enable the coexistence of different ant species. Taken together, our 
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results suggest that shifts in diet associated with changes in the trophic niche of introduced species 

might mediate invasion success and enable long-term coexistence with native species. 

Keywords: ants, impacts, invasive species, niche plasticity, stable isotopes, trophic level 
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Introduction 

Invasive species are one of the primary threats to biodiversity and ecosystem functioning, due to 

their adverse effects on native communities (Bohan et al. 2017). One central question in invasion 

biology is whether some characteristics of introduced species might increase the probability they 

will successfully establish, spread and impact native communities (Ricciardi et al. 2017). In 

particular, the ability of species to adapt to the new conditions they encounter in their introduced 

range might be a key trait facilitating invasion. Indeed, shifts in the ecological niche occupied in the 

introduced range relative to the native range have been widely documented (Da Mata et al. 2010, 

Wei et al. 2017). 

The ability of invasive species to shift their trophic niche is a fundamental aspect of invasion 

success, and there is evidence that trophic plasticity allows overcoming resource availability as an 

establishment constraint (Loureiro et al. 2019). Previous work indeed suggest that invasive species 

can shift their trophic niche in order to avoid interspecific competition and/or to adjust their diet to 

match resource availability in the invaded habitat (Grey and Jackson 2012, Jackson et al. 2012). As 

an example, the ecological success of invasive ants seems to be promoted by the association with 

honeydew producing Hemiptera in the introduced range (Styrsky and Eubanks 2007). This 

phenomenon was demonstrated in some globally invasive ants, like the red imported fire ant 

Solenopsis invicta (Wilder et al. 2011) and probably the yellow crazy ant Anoplolepis gracilipes 

(Wittman et al. 2018), that behaved like predators in their native range but became predominantly 

honeydew-consumers – thus becoming functionally herbivores – in their introduced range (Helms 

2013). Also the Argentine ant Linepithema humile followed this pattern, though a certain variability 

in its trophic position was detected in different introduced areas (Tillberg et al. 2007). 

In this study we investigate the trophic ecology of a red wood ant Formica paralugubris 

native to the Italian Alps and introduced to other parts of Italy and in Canada as biological control 

agent (Seifert 2016, Frizzi et al. 2020). Red wood ants (RWA) are a group of dominant ant species, 

widespread at high latitudes and altitudes in the Northern Hemisphere (Stockan et al. 2016). Recent 

investigations revealed that introduced populations of F. paralugubris are now becoming invasive 

(Seifert 2016, Frizzi et al. 2018). 

We therefore aimed to 1) test whether the trophic positioning of F. paralugubris differs 

between its native and introduced range; 2) compare its trophic niche between its native and 

introduced range; 3) compare the trophic niche of F. paralugubris to that of other co-occurring ants. 

We expected the trophic positioning of F. paralugubris to be lower, and its trophic niche width to 

be smaller, in its introduced range compared to its native range. We also expected low overlap 

between the trophic niche of F. paralugubris and that of co-occurring species. 
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Materials and Methods 

We conducted this study at five different sites: two in the Alps (Swiss National Park, Switzerland – 

SNP; Giovetto di Paline, Italy – GP), representing the native area, two in the Apennines (Abetone 

and Campigna, Italy – AB and CA) and one in Canada (Valcartier, Quebec – VC), representing the 

introduction areas (Supporting information). 

Sampling was performed during summer 2017 (2018 for SNP). In each site, we randomly 

selected 10 Formica paralugubris nests, allowing a distance greater than 25 m from each other, 

from which we collected 10 workers from the surface of nest mounds. To have reference points for 

ants’ trophic positioning, at each site, we also collected herbivorous (caterpillars/grasshoppers, 5 < 

n < 32) and predator (spiders, 8 < n < 20) arthropods, samples of leaves of the dominant tree species 

and the most abundant herbaceous plant (6 < n < 10). Also, we collected workers of all other ant 

species we encountered. At CA and GP, we did not find any other ant in the area dominated by F. 

paralugubris, and samples were collected at the border of its population. 

To remove potential biases due to ingested food, we removed gasters from ants and kept all 

the other arthropods alive for 24 h to let them empty their gut, before being killed by freezing. All 

samples were stored without any chemical at −20°C until they were dried in oven at 60°C for 48 h 

and ground to fine powder. Approximately 0.5 mg (for animals) and 2.0 mg (for plants) of each 

sample were packed into tin capsules and analysed using an isotope ratio mass spectrometer 

connected to an elemental analyser. One pool of 10 workers was analysed for each nest for each 

site. 

Within each site, we obtained the trophic positioning of F. paralugubris by comparing its 

δ15N values with those of herbivores and predators using Welch-corrected ANOVA, followed by 

Holm-corrected t-tests as multiple comparisons, where necessary. We calculated Layman’s metrics 

(Layman et al. 2007) to compare intra-specific niche width: δ15N range (NR) and δ13C range (CR) 

as the differences between the most enriched and the most depleted individual, the total convex hull 

area encompassed by all individuals (TA), the mean Euclidean distance of each individual from the 

centroid of the δ15N–δ13C values (CD), the mean nearest neighbour distance in the δ15N–δ13C space 

(MNND), its standard deviation (SDNND) and the corrected standard ellipse area (SEAc), which is 

less biased from extreme values compared to TA (Jackson et al. 2011). 

To test for differences among co-occurring ant species, we used PERMANOVA (Bray–

Curtis dissimilarity, permutations = 4999), followed by t-tests with Benjamini–Hochberg p-value 

correction (Benjamini and Hochberg 1995) as multiple comparisons. 
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All statistical analyses were performed in R ver. 3.6 (<www.r-project.org>), using the 

packages SIAR (Parnell et al. 2010) and vegan (Oksanen et al. 2020). 

 

Results 

At all sites, we found a significant difference among the δ15N of all groups (SNP: F2,28.61 = 253.7, p 

< 0.001; GP: F2,12.18 = 53.50, p < 0.001; AB: F2,15.64 = 511.78, p < 0.001; CA: F2,17.33 = 82.81, p < 

0.001; VC: F2,9.88 = 152.71, p < 0.001; Fig. 1). More specifically, in both native areas, the δ15N for 

Formica paralugubris were intermediate between those of herbivores and predators, and 

significantly different from both (p < 0.001). In the introduction areas, however, a more complex 

pattern emerged. At CA, similarly to native areas, F. paralugubris showed δ15N intermediate 

between those of herbivores and predators, and distinct from both (p < 0.001). At AB, the δ15N of 

F. paralugubris were significantly higher than that of herbivores (p < 0.001), but equal to that of 

spiders (p = 0.20). Finally, at VC, F. paralugubris δ15N were significantly lower than that of spiders 

(p < 0.001), and lower, although marginally not significant (p = 0.06), than that of herbivores. 
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Figure 1. δ15N (‰) of sampled groups in all sites. GP = Giovetto di Paline (Italy); SNP = Swiss 

National Park (Switzerland); AB = Abetone (Italy); CA = Campigna (Italy); VC = Valcartier 

(Canada). 

 

 

We found no relationship between the intra-specific niche width and the 

autochthonous/introduced status of the populations, or their trophic positioning (Table 1). The 

nitrogen range was highest at SNP followed by Campigna, and lowest at Giovetto and Valcartier; 

the carbon range was highest in Abetone and lowest in Valcartier; the total area was highest in 

Abetone and Campigna, and lowest in Valcartier. Comparable values were obtained for centroid 

distance and mean nearest neighbour distance, while the standard deviation of the mean nearest 

neighbour distance was highest in Switzerland and lowest in Abetone and Valcartier. The corrected 

standard ellipse area confirmed the total area results, being highest in Abetone and lowest in 

Valcartier. 

 

 
Table 1. Layman’s metrics for Formica paralugubris populations. NR (δ15N range) and CR (δ13C 

range) are the differences between the most enriched and the most depleted individual; TA is the 

total convex hull area encompassed by all individuals; CD is the mean Euclidean distance of each 

individual from the centroid of the δ15N–δ13C values; MNND and SDNND are the mean nearest 

neighbor distance in the δ15N–δ13C space and its standard deviation; SEAc is the corrected standard 

ellipse area. 

 

 

Other co-occurring ant species were found only at SNP and VC, while in all the other sites 

other ant species were only found at the edge of F. paralugubris dominated area. In Switzerland and 

Canada, F. paralugubris had an isotopic niche clearly segregated with respect to the native Formica 

exsecta (F1,18 = 68.22, p < 0.001) and Formica glacialis (F1,12 = 121.15, p < 0.001), respectively. 

Differences were evident in both sites for both δ13C and δ15N (p < 0.001 for each test), with F. 

paralugubris having lower δ15N and higher δ13C (Fig. 2). In Italy, ants were overall statistically 

differentiated at GP (F4,15 = 4.25, p < 0.05), but not at AB (F3,14 = 2.26, p = 0.13) and CA (F6,30 = 

1.95, p = 0.05). In particular, in GP post-hoc test found a significant difference between F. 

 

Site NR CR TA CD MNND SDNND SEAc 

Giovetto di Paline (GP) 1.0 1.0 0.5 0.4 0.2 0.1 0.3 

Switzerland (SNP) 2.4 0.5 0.7 0.5 0.3 0.6 0.5 

Abetone (AB) 1.3 1.3 0.8 0.5 0.2 0.1 0.5 

Campigna (CA) 1.8 0.7 0.8 0.5 0.3 0.2 0.5 

Valcartier (VC) 1.0 0.3 0.2 0.3 0.2 0.1 0.1 
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paralugubris and other ants of the genus Formica, Myrmica and Lasius (p < 0.05 for all), while no 

differences were found between F. paralugubris and Camponotus (p = 0.09) (Supporting 

information). 

 

 
 

Figure 2. Isotopic biplot (mean δ15N and δ13C ± SE) for: (a) SNP (Swiss National Park, 

Switzerland) and (b) VC (Valcartier, Canada). 

 

Discussion 

Among several mechanisms determining the success of invasive species is the plasticity of their diet 

or trophic niche (Linzmaier et al. 2020, Rolla et al. 2020). We show that the trophic positioning of 

invasive ants can change in response to local conditions. We observed considerable inter-population 

variability in trophic positioning of Formica paralugubris suggesting trophic niche plasticity. Our 

results suggest that invasive species can adapt to resource availability and/or interactions with other 

co-occurring species in the introduced range by switching diet. 

Within its native range, F. paralugubris behaved like an omnivore, supporting the literature 

demonstrating that RWA rely on both animal preys and aphid honeydew (Domisch et al. 2016), 

even if one species was found to be a first-order predator (Iakovlev et al. 2017), suggesting that 

generalizations are hardly possible for this group. 

Isotopic values of introduced populations of F. paralugubris suggest that invasive ants can 

adopt behaviours ranging from being omnivore to being specialized predators or herbivores. In line 

with our expectations, the Canadian population occupied a trophic positioning of an exudate-

feeding herbivore, indicating an almost complete reliance on aphid honeydew (Brewitt et al. 2015). 
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Indeed, invasive ants are known to form association with honeydew-producing insects in their intro-

duced range which lower their trophic position. Introduced L. humile decreased their trophic level 

compared with native populations, with a shift from predatory habits to greater consumption of 

plant-derived sources (Tillberg et al. 2007). This result was confirmed for S. invicta, whose colonies 

supplied with aphids’ honeydew were also significantly denser than controls (Wilder et al. 2011). 

Similar results were found also for A. gracilipes, whose δ15N in invasive populations was negatively 

correlated with ant density (Wittman et al. 2018). 

Two explanations have been postulated to explain the decrease in trophic position in 

invasive ants: the resource preference hypothesis (RPH) and the resource limitation hypothesis 

(RLH). According to RPH, invasive ants feed on their preferred source (carbohydrates) due to the 

lack of strong competitors. According to RLH, the shift is a consequence of the reduced availability 

of other preferred preys (Shik and Silverman 2013). Solenopsis invicta, which in the invaded range 

monopolized sugar-rich resources, seems to support the RPH (Wilder et al. 2011), while L. humile, 

which lowered its trophic level during its invasion history as a result of prey selection, seems to 

confirm the RLH (Tillberg et al. 2007). Whether the observed shift in the Canadian population of F. 

paralugubris follows the former or the latter hypothesis is not clear, even if evidence in favour of 

RPH is stronger. Indeed, in Valcartier F. paralugubris coexists with the native F. glacialis, which 

relies more on animal preys as indicated by its higher δ15N values, suggesting that prey availability 

may not be an issue here. Moreover, aphid populations markedly increased after the introduction of 

F. paralugubris to Valcartier (McNeil et al. 1977). 

The other introduced populations showed varying behaviours. The Campigna population 

exhibited omnivorous habits, while the Abetone population exhibited predatory habits. At 

Campigna, no other ant species coexist with F. paralugubris, making interspecific competition 

unlikely, and arthropod populations are depleted by ant predation (Frizzi et al. 2018). Though no 

information on the status of arthropod assemblages is available for Abetone, competitive exclusion 

of other ants seems to be less stringent, because in this site some small ant nests occur where F. 

paralugubris density is lower. However, competition with these sparse and small colonies cannot 

explain the lower reliance on aphid exudates. This variability in the trophic positioning of 

introduced populations reflects that found for L. humile, which showed herbivorous, omnivorous 

and predatory habits in different invaded sites (Tillberg et al. 2007). 

The analysis of the trophic niche did not reveal any clear pattern related to the 

autochthonous/introduced status nor the trophic positioning of the populations. This was true for the 

metrics resuming either the carbon and nitrogen variability (i.e. carbon range and nitrogen range) as 

well as the isotopic niche area (e.g. total area and corrected standard ellipse area). In Valcartier, we 
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recorded the highest degree of trophic specialization of F. paralugubris (expressed by the narrowest 

nitrogen range, carbon range, total area and corrected standard ellipse area). The narrow nitrogen 

range suggests the consumption of a single N source, and the narrow carbon range suggests feeding 

on a few aphid species on a limited number of plant species, since honeydew reflects phloem iso-

topic signature (Sagers and Goggin 2007). This specialization could reflect the exclusion of native 

ants from carbohydrate resources, supporting previous results (Tillberg et al. 2007, Wilder et al. 

2011). In contrast, the Swiss population showed the wider nitrogen range values, suggesting the 

consumption of preys belonging to different trophic levels. Interestingly, some inter-colonial 

differences in trophic behaviour were found in the native range, as found in S. invicta (Roeder and 

Kaspari 2017). 

We found coexistence with other species only at a few sites. At Valcartier and in 

Switzerland, F. paralugubris coexisted with F. glacialis and F. exsecta, respectively. These species 

had isotopic values completely separated, suggesting niche partitioning and likely avoiding 

exploitative competition. At both sites, F. paralugubris had a lower trophic positioning than the 

native species and fed on different carbon sources. At all the other sites, F. paralugubris apparently 

excluded most of the other ants, at least from the areas where its population density is higher (Frizzi 

et al. 2018). An overall trophic niche segregation was found in Giovetto, while in the Apennines all 

other ants had overlapping niches with F. paralugubris. However, interspecific competition is likely 

reduced by spatial segregation. 

In conclusion, the expected decrease in trophic position of the introduced populations of F. 

paralugubris is not always supported by our findings. Instead, this species demonstrated 

considerable trophic plasticity, being able to adapt to different ecological scenarios, supporting the 

importance of trophic plasticity as a key feature of invasive ants (Suehiro et al. 2017) and other 

species (Jackson et al. 2017). Our results show that generalizations on trophic shift in invasive 

species are much more difficult than previously thought. As such, further investigation on a wider 

range of taxa are required to investigate whether the absence of clear directional trends is a feature 

of this particular species or is a more common but neglected phenomenon among invasive species. 

Moreover, evaluating whether species exhibiting dietary plasticity are more likely to become 

invasive and impact several trophic levels in the invaded communities through competition and 

predation will be a promising research avenue. Lastly, it will be interesting to expand this line of 

research to other ecosystems and look for spatiotemporal variations in invasive species’ trophic 

plasticity, for example across the invasion stages. 
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Chapter 3 

Impacts of introduced Formica paralugubris on the forest ecosystem 
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Abstract 

Red wood ants are ecologically important species in Europe that form large colonies. Their nest 

mounds are characterized by stable microclimatic conditions, that are favourable to the 

development of rich invertebrate and microbial communities. Through their respiration processes, 

all these inhabitants contribute to the total gas emissions of the mounds. Quantifications of red 

wood ant mounds CO2 production are only available from Northern and Central Europe, and the 

Alps, where these ants are common. During the second half of the last century some species were 

transplanted from the Alps to southernmost sites, where they were not present, to be employed as 

biocontrol agents. No information on the contribution of these low-latitudes populations to the local 

forest CO2 production is available. The microbial communities living within red wood ant mounds 

are also poorly known. In this study, we investigated the CO2 gas emissions and the microbiome of 

the mounds of an introduced population of the red wood ant Formica paralugubris in a Southern 

Europe montane forest. We found that ant mounds produced more CO2 than the forest soil, and that 

their CO2 efflux as well as internal concentration were higher during summer than winter, with a 

lighter CO2 carbon isotopic signature in summer than winter, likely due to an increased ant activity. 

Moreover, the top part of the mound was characterised by higher CO2 efflux and lower CO2 internal 

concentration compared to the bottom, probably due to its internal structure and conditions. The 

isotopic signature of the mound material was similar between summer and winter, suggesting a 

metabolic similarity of the microbial communities. Also, we estimated the ants’ relative 

contribution to the total mound CO2 production to be 83%, whereas the microbiota CO2 

contribution was estimated at 17%. Finally, the mound microbiome composition varied between 
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summer and winter, though no seasonal difference in the diversity indexes or β-diversity was found. 

Our results demonstrate the impacts of the introduced red wood ants on the carbon dynamics of the 

recipient ecosystem. 

 

Keywords: carbon dioxide, carbon stable isotopes, greenhouse gases, coniferous forest, introduced 

ants, microbiome 
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Introduction 

It is well known that all living organisms produce carbon-bearing gases through respiration 

processes; therefore, the greater the biomass of a group, the greater its gas production. Among 

several high-biomass taxa, large colonies formed by social insects are recognized as important 

sources of both CH4 and CO2. It is estimated that termite mounds can contribute 1–4%, and up to 

2% of the CH4 and CO2 global budgets, respectively (Sanderson, 1996; Jamali et al., 2011; Nauer et 

al., 2018). The contribution of ants to greenhouse gases production is less studied, although there is 

growing consensus that in some circumstances these organisms are important emitters due to their 

abundance and biomass in the majority of terrestrial ecosystems (Bender and Wood, 2003; Wu et 

al., 2013, 2015). In Neotropical areas, the most striking example is provided by leaf-cutting ants 

(Sousa-Souto et al., 2012; Fernandez-Bou et al., 2019, 2020), whereas in colder climates, red wood 

ants (RWA) may play a significant role (Ohashi et al., 2005). 

Red wood ants (Formica rufa group) are abundant and ecologically dominant species in 

boreal and Alpine forests in the Holarctic region (Stockan et al., 2016). All the species of this group 

build large aboveground mounds collecting plant material and different types of debris (Risch et al., 

2016), which allow maintaining relatively stable temperature and humidity to buffer the harsh 

environmental conditions faced during winter (Rosengren et al., 1987; Jones and Oldroyd, 2006; 

Kadochová and Frouz, 2014). The temperature within the mound is indeed higher than that of the 

external air, and it is often kept above 0 °C in winter (Frouz and Finér, 2007; Jílková et al., 2015a). 

These “hot islands” are also nutrient hotspots, as ant workers carry inside considerable amounts of 

organic matter (Frouz et al., 2005, 2016; Jílková et al., 2015b). Warm temperature and nutrient 

availability fuel complex trophic chains that include many invertebrate taxa (Parmentier et al., 

2014; Robinson et al., 2016; Frizzi et al., 2020), but also rich microbial and fungal communities 

(Laakso and Setälä, 1997; Frouz, 2000; Jílková et al., 2015b; Sorvari and Hartikainen, 2021), which 

are supposed to actively contribute to heat production and resource metabolization (Jílková and 

Frouz, 2014). Therefore, all these communities contribute to the total metabolism of the nest, 

adding to the gas emissions from ants. Moreover, while invertebrate assemblages associated with 

the mounds are well studied (Robinson et al., 2016), the associated microorganisms are poorly 

known. Available studies evidenced that fungi are more abundant than bacteria in autumn and 

spring whereas bacteria prevail over fungi in summer (Jílková et al., 2015b), and that 

methanotrophic and nitrogen-fixing microorganisms can be found in RWA mounds (Frouz et al., 

1997; Jílková et al., 2016). However, only one study characterized such communities in nests of 

Formica polyctena (Kaczmarczyk-Ziemba et al., 2020). 
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Since RWA mounds host large biomass, they are regarded as hotspots of CO2 emissions, 

producing more gases than the surrounding soil (Ohashi et al., 2005; Risch et al., 2005a; Domisch 

et al., 2006). Gas emissions from the mounds have multiple sources, as all the organisms living 

within them contribute through respiration processes. Disentangling the contribution of each 

component to the total gas emission is tricky; however, previous studies demonstrated that gas 

release predominantly originates from the activity of ants and microbes within the mound (Jílková 

and Frouz, 2014). A single mound can indeed contain up to a few million workers (Rosengren et al., 

1987). On the other hand, microbial respiration in the mound material produces significantly higher 

carbon dioxide quantities than the forest floor (Jílková et al., 2016). Moreover, mound respiration 

rate is influenced by temperature variations, water and carbon content (Jílková et al., 2013). 

Respiration rate is indeed temperature-dependent for both ants and mound material (Jílková et al., 

2015b), and wet mounds are known to respire more than dry mounds (Jílková and Frouz, 2014). 

Consequently, seasonal and diurnal changes of mound CO2 efflux may occur; emissions peak 

during summer and drastically reduce in winter, following the changes in activity and metabolism 

of the ants and other organisms (Domisch et al., 2006; Jílková et al., 2015a). Similarly, emissions 

can be higher during nighttime than during daytime, probably due to the increased number of 

workers within the nest (Risch et al., 2005b; Ohashi et al., 2007). Disentangling the fine-scale 

dynamics of metabolism of RWA mounds can increase the knowledge of carbon balance on a 

broader scale (i.e. the forest scale). Such data are only available for Northern and Central Europe 

and the Alps, but comparatively less is known for populations at lower latitudes. 

In this paper, we focused on the metabolic emissions and the mound-associated microbial 

community of Formica paralugubris (Seifert, 1996), a RWA species native to the Western Alps. 

This ant was repeatedly introduced out of its native range to some southernmost regions in Italy but 

also in Canada as biocontrol agent against forest pests (Pavan, 1959; Storer et al., 2008; Seifert, 

2016; Masoni et al., 2019). Some of the introduced populations are still extant and are experiencing 

an expansion phase, causing negative ecological impacts on other arthropods (Frizzi et al., 2018; 

Balzani et al., 2021). Previous studies quantified RWA mounds' effluxes in boreal, temperate and 

subalpine forests (Risch et al., 2005a; Domisch et al., 2006; Jílková et al., 2015a), but to the best of 

our knowledge no studies have been carried out South of the Alps, nor on introduced populations. 

Moreover, no studies have measured the carbon isotopic analysis of CO2 produced by these RWA 

mounds, even though this methodology can provide interesting insights on the gas sources (Venturi 

et al., 2019; Balzani et al., 2020). Further, investigations on microbes associated with ants’ nest 

environments have recently been growing (Kellner et al., 2015). The MinION™ (Oxford Nanopore) 

platform represents a promising portable sequencing technology capable to produce long sequences 
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(>10 kb in length) in real-time, using nanopores to sequence a single DNA molecule per pore with 

an accuracy of 98.9–99.6% (Kasianowicz et al., 1996; Sahlin and Medvedev, 2021). This powerful 

technology was recently tested for the full 16S rRNA gene (about 1500 bp) analysis, showing 

promising results (Mitsuhashi et al., 2017; Shin et al., 2018; Matsuo et al., 2021). Therefore, 

applying a multimethodological approach to investigate the gas production and the composition of 

microbial communities in this population may help fill a gap in the literature and provide novel 

insights. The specific aims of this study were to i) measure daily and seasonal variation in CO2 

production of the nest mounds; ii) assess whether CO2 emission varies according to the mound 

topology; iii) estimate the relative contribution of ants and the microbial communities associated 

with the mound material to the overall CO2 emission of mounds; and iv) characterize and test for 

seasonal differences in the taxonomic composition of the mound microbial community, which 

represent the main living component of the mound material. 

 

Materials and methods 

The study site (43°52′20″ N, 11°44′41″ E) is a white fir (Abies alba) montane forest within the 

Foreste Casentinesi, Monte Falterona, and Campigna National Park, at the border between Tuscany 

and Emilia-Romagna (central-northern Apennines). Sampling was performed during the summer 

(July 2018 and 2019) and the winter (February 2019). The two seasons (winter and summer) were 

chosen as they are the extremes of temperature variation and ant activity, with spring and autumn 

probably showing a pattern intermediate between these extremes. Within the study site (7.9 ha), the 

nest mounds were randomly selected so that they were at least 30 m apart one from the other, to 

ensure independence and guarantee sufficient spatial variation. The first survey (July 2018) was 

devoted to compare the overall CO2 efflux and isotopic (13C/12C ratios) signature from the surface 

of 10 ant mounds, and the surrounding soil. CO2 efflux measurements and gas samples from the soil 

were collected at 48 points spaced 2 m apart corresponding to the nodes of a regular 6 × 8 grid 

centred on each sampled mound. 

The second (February 2019) and third (July 2019) surveys were devoted to measure the 

seasonal variations of gas emissions, and if these differ in different parts of the mound. To this 

purpose, we randomly chose eight F. paralugubris nests of comparable sizes (mean height: 160 

cm). From each of these mounds, CO2 efflux from the surface was measured, and air samples from 

the inner part of each mound at three different height levels (L1: top; L2: middle; L3: bottom) were 

collected. Sampling was carried out in the central part of the day (from 13:00 to 15:00 h), but for 
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two randomly selected nests, all the measurements were also repeated 1 h after sunrise and 1 h 

before sunset to acquire more information about the daily trends of gas emission. 

In the field, fluxes were measured using the accumulation chamber (AC) method (Chiodini 

et al., 1998; Elío et al., 2016). The chamber, consisting in a cylindrical pot (basal area: 200 cm2; 

inner volume: 3060 cm3) with a rubber edge, was placed firmly on either the mound or soil surface, 

avoiding outside air entering the AC. The gas accumulating in the chamber was continuously 

pumped through a low-flux pump (20 ml/s) to an Infra-Red (IR) spectrophotometer Licor® Li-820 

(measurement range: 0–20,000 ppm; accuracy: 4%) and reinjected into the chamber to minimize 

gas flux disturbance. The CO2 flux was determined from the measured increase in time of CO2 

concentration inside the chamber (dC/dt) considering the geometry of the measuring equipment and 

the air temperature and pressure, as described in Venturi et al. (2019). CO2 efflux measurements in 

the field can be affected by the different porosity and openings density on the mound surface, 

resulting in different gas releases. To reduce this bias, replicate measures were taken from eight 

points across the two main axes of each mound, and these values were subsequently averaged for 

subsequent statistical analyses (Risch et al., 2005a). 

Gas samples for carbon isotopic analysis of CO2 released from soil were taken placing a 

PVC static closed chamber (SCC; basal area: 177 cm2; inner volume: 4415 cm3) on each sampling 

point (Tassi et al., 2015), wherein gases were let to accumulate for 48 min before gas sample 

collection. Gas samples from the interior of the mounds were collected using a stainless-steel 

sampler (5 mm diameter) inserted into the mound at 80 cm depth. The sampler was equipped with a 

3-way valve connected to a syringe that allows collecting 60 ml of gas into a 1 l Supelco's Tedlar® 

gas sampling bag equipped with a push/pull lock valve (Venturi et al., 2019). The stainless-steel 

samplers were positioned at the same inclination (ca. 30°) for each of the three sampled levels (L1, 

L2, L3). The carbon isotopic signature of CO2 (δ13C–CO2, expressed as ‰ vs. V-PDB) was 

determined using a Picarro G2201-i Analyzer, based on Cavity Ring-Down Spectroscopy (CRDS), 

by directly connecting the gas sampling bags to the instrument inlet line. According to the operative 

range of the Picarro G2201-i Analyzer, gas samples with CO2 > 2000 ppm were diluted with high 

purity chromatographic air. Moreover, the instrument inlet line was equipped with a Drierite trap to 

avoid water vapor interferences (Venturi et al., 2019). Contextually, the mound internal temperature 

(surface, 20, 40, 60, 80, 90 cm depth) was measured throughout the day (morning, midday, 

afternoon). To estimate the water content, 50 ml of mixed (pooled) mound material samples at 

about 20 cm depth were collected from each mound. Samples were weighed using an electronic 

balance (Gilbertini E42, accuracy 0.01 mg), dried at 60 °C for 48 h, and then weighed again. 
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To characterize the isotopic signatures of the mound material (proxying the signature of the 

mound microbiome), we performed laboratory measurements on this component following the 

protocol described in Balzani et al. (2020). We collected 500 ml of mixed (pooled) mound material 

at about 20 cm depth from each mound during each season. After removing all the occurring 

invertebrates, a subsample of 100 ml of material from each mound was placed into a 3 l jar and 

acclimated for 12 h at constant temperature (resembling that recorded in the field, namely 4 °C in 

February and 19 °C in July). Four empty jars were used as controls. The jars were then closed with 

a screw lid having a 3-way valve sealed and kept in the dark at constant temperature (4 or 19 °C for 

February and July, respectively) to reproduce the within-mound conditions. The air in the jars was 

sampled at the beginning of the experiment (h0), and after 6 and 24 h (h6, h24). Before sampling, 

the air in the jar was mixed and 50 ml of air were collected using a 60 ml syringe connected to the 

valve. Samples were stored into 1 l plastic gas bags (Supelco's Tedlar®) and analysed for CO2 

concentration and δ13C–CO2 value by CRDS, as described in Balzani et al. (2020). 

The same experimental setup was used to estimate the relative proportion of CO2 produced 

by ants and the mound microbiome. Measurements from ants were only possible during the summer 

(July 2019), since in winter the ants moved into the underground chambers and mounds could not 

be excavated. For ants, 50 workers were collected from each nest and transferred to each jar. The jar 

walls were coated with Fluon® in the upper part to avoid ants escaping and a wet cotton wad was 

inserted to maintain humidity (Balzani et al., 2020). The CO2 in the respiration jars was a mixture of 

gas produced by ants or mound material during the experiment and atmospheric air already present 

in the jar. To estimate the signature of the CO2 produced, Keeling plots (Keeling, 1958, 1961; 

Carleton et al., 2004) were used separately for each jar. Keeling plots are biplots of time-repeated 

measurements with the δ13C values on the y-axis and 1/[CO2] on the x-axis. In the biplot, the y-

intercept of the regression line between time-repeated measures represents the case in which the 

CO2 concentration is infinitely high and the ambient CO2 is negligible (Balzani et al., 2020). 

To identify the main components of respiration from mound material, the associated 

microbiome was characterized by collecting 50 ml of mixed (pooled) material from each mound in 

a sterile Falcon tube during each season and preserving it at −80 °C till laboratory analyses. 

Bacterial DNA was extracted from 0.5 g of homogenised material for each sample using the 

DNeasy PowerSoil Pro Kit (Quiagen), following manufacturer protocol, and then quantified with 

Qubit 4 Flourometer (ThermoFisher Scientific) using Qubit™ 1X dsDNA HS Assay Kit. The full-

length 16S rRNA gene (⁓1500 bp) was amplified by PCR using two universal primers 27F and 

1493R contained in the 16S Barcoding kit (SQK-RAB204, Oxford Nanopore) and using 
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LongAmp® Taq DNA Polymerase (New England BioLab). Each PCR was carried on a total 

volume of 50 μl, containing 5 μl 10x buffer, 5 μl dNTP mix, 2.5 μl of each forward and reverse 

primer, 0.25 μl Long Amp® Taq, 1 μl template DNA, and 33.75 μl nuclease free molecular grade 

water. PCR temperature conditions and cycles were set according to the manufacturer protocol. All 

PCR products were purified using Ampure XP beads (Beckman Coulter, Brea, CA, USA) and 

normalized to 45 μl containing 1 μg of purified PCR products. Primers with barcode index and 5’ 

tags (which facilitate the ligase-free attachment of Rapid Sequencing Adapters), and all the reagents 

needed to generate the two sequencing libraries were contained in the 16S Barcoding kit (SQK-

RAB204, Oxford Nanopore) that we used for the analysis. Two amplicon libraries were prepared 

according to the 16S Nanopore Barcoding recommendations, each contained 8 barcoded samples (4 

samples for the summer and 4 for the winter of the same nest mounds). All sequencing runs were 

conducted using the MinION MIN-101B device and using a Nanopore FLO-MIN106D flow cell, 

according to the sequencing protocols developed by Oxford Nanopore. The two libraries were 

sequenced in two consecutive runs of 10 h, using the same flow cell, washed immediately following 

the completion of the previous sequencing run using the nanopore washing kit (EXP-WSH004). 

All statistical analyses were performed using the software R (version 3.6; R Core Team, 

2020). Log-transformed effluxes and CO2 isotopic signatures from ant mounds and soils were 

compared using a linear model. To estimate CO2 production at the forest scale, we estimated the 

mean efflux of 1 ha by summing the mean soil efflux with the mean mound efflux multiplied with 

the mean mound surface and nest density (4.50 m2 and 12.27/ha, respectively, retrieved from Frizzi 

et al., 2018). We applied a linear mixed effect model to log-transformed CO2 efflux, concentration 

and isotopic signature to test for differences among seasons, mound levels (L1, L2, L3) and their 

interaction, with nest as random effect. Significant factors were then tested using Tukey tests for 

multiple comparisons. Daily trends of CO2 efflux, concentration and isotopic signature for the two 

monitored nests were plotted for the two seasons. For each season, the fixed effect of day period 

(morning, midday, afternoon), depth and their interaction were tested on temperature using a linear 

mixed effect model with nest as random effect. Linear mixed effect models with nest as random 

factor were used to test for seasonal differences in log-transformed mean mound temperature and 

water content. All log-transformations were performed using the natural logarithm to improve the 

normality of the data and homogeneity of variances. 

For the respirometric chamber experiments, linear mixed effect models with time as fixed 

effect and jar as random effect were applied to test for differences in log-transformed CO2 

concentration and isotopic signature. Seasonal differences in the pure isotopic signature of mound 
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material between seasons were tested with a linear mixed effect model with nest as random factor. 

For the experiments aiming to measure the relative amounts of CO2 produced by ants and mound 

material, we applied a linear mixed effect model with time as fixed effect and jar as random effect 

to log-transformed CO2 concentration and isotopic signature for the respirometric chambers. The 

isotopic composition of the air in the nest can be described by the following two-endpoint mixing 

model: 

(1) δ13CNEST = p (δ13CANTS) + (1-p) (δ13CMATERIAL), 

where δ13CNEST represents the mixed isotopic signature measured in the field, p is the proportion of 

CO2 produced and δ13CANTS and δ13CMATERIAL are the pure isotopic signatures of ants and mound 

material, respectively. The latter two were obtained by averaging the pure isotopic signatures 

estimated by the intercepts in the Keeling plots, while the δ13CNEST value was obtained by averaging 

the isotopic signature measured at the three mound heights in the field. Solving the mixing model 

equation, we estimated the proportion p: 

(2) p = (δ13CNEST - δ13CMATERIAL) / (δ13CANTS - δ13CMATERIAL). 

For microbiota analysis, we followed the Meta-barcoding pipeline for analysing ONT data in 

QIIME 2 framework, emulating EPI2ME 16S workflow (Oxford Nanopore) developed by Maestri 

et al. (2019) and Maestri (2021). The raw FAST5 files obtained for each sequencing run were base-

called and converted to pass reads in FASTQ format for downstream analysis using GUPPY toolkit 

(Oxford Nanopore) with high accuracy base calling algorithm. Primer sequences and adapter were 

trimmed with the same software while reads demultiplexing and filtering were carried out using 

QIIME 2 package (Bolyen et al., 2019). Sequences with ambiguities, homopolymers (greater than 

six nucleotides in length), chimeric sequences and those with an average quality score <7 were 

removed. Operational taxonomic unit (OTU) picking was conducted via SILVA ver. 132 (Quast et 

al., 2012) as reference database and VSEARCH aligner, first clustering the sequences into de novo 

operational taxonomic units (OTUs) at 97% similarity and then assigning them a microbial 

taxonomic classification (confidence threshold of 0.8). The taxonomic composition of the microbial 

community of each mound across the two seasons was represented with barplots at phylum level 

using QIIME 2 package. We focused our analysis at genus level because, although the whole 16S 

was amplified and sequenced, taxonomic identification of many OTUs stopped at this level without 

species assignment. Seasonal differences in microbial community composition were represented 

with a non-metric multidimensional scaling (nMDS) and tested with a permutational analysis of 

variance (PERMANOVA) using Jaccard similarity index and 9999 permutations on 

presence/absence data at the genus level of OTUs. The β-diversity was computed according to 
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Anderson et al. (2006) and permuting model residuals were compared to generate a permutation 

distribution of F under the null hypothesis of no difference in dispersion between the two seasons 

(9999 permutations). Moreover, OTU diversity at the two seasons was estimated following Chao et 

al. (2014), using the presence/absence data as input. The method for evaluating diversity is based on 

the estimation of Hill numbers (qD) and yields estimates of total (rarefied and extrapolated) species 

richness (q = 0), and the exponential values of the Shannon diversity (q = 1) and Simpson diversity 

(q = 2) indices. The 95% confidence intervals were obtained from bootstrapping, based on 9999 

replications of the reference sample set. 

 

Results 

CO2 efflux (measured in the first sampling) was significantly higher in mounds than soil (F1,56 = 

532.15, P < 0.001; Fig. 1A), as well as the CO2 isotopic signature (F1,56 = 25.62, P < 0.001; Fig. 

1B). The mean soil efflux amounted to 21.15 g m−2 day−1, while the mean mound efflux was 820 g 

m−2 day−1. The estimated CO2 efflux of one forest hectare was 256,670.3 g ha−1 day−1, 

corresponding to 69,985.08 kg C ha−1 day−1. 

 

 

Figure 1. Overall CO2 efflux (A) and CO2 carbon isotopic signature (B) values for nest mounds and 

soils measured during the first sampling survey (summer 2018).  
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The fitted models (Table 1) showed a significant effect of the season on CO2 efflux, 

concentration and isotopic signature (P < 0.001 for all), and a significant effect of the mound level 

for both the CO2 efflux and concentration (P < 0.01 and P < 0.001, respectively). In particular, CO2 

efflux and concentration were higher in summer than in winter (Fig. 2A and B), and the CO2 

isotopic signature was higher during winter than the summer (Fig. 2C). A consistent pattern among 

mound levels occurred in both seasons, with CO2 efflux higher at the top (L1) than the bottom (L3) 

of the mound (P < 0.05; Fig. 2A) and CO2 concentration higher at the bottom (L3) than the top (L1) 

of the mound (P < 0.01; Fig. 2B). On the contrary, CO2 isotopic signatures did not significantly 

vary within the mound (Fig. 2C). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Analysis of Deviance Table (Type II Wald chi-square tests) for linear mixed effect models 

with log-transformed CO2 efflux, concentration and isotopic signature as response variables and 

season, mound level and their interaction as predictors, with ant nest as random effect. 

 

Response variable Fixed effect Chisq df P 

CO2 efflux season 52.85   1 < 0.001 

level 11.53   2 < 0.01 

season:level 0.50   2 0.78     

CO2 concentration season 90.66   1 < 0.001 

level 15.27   2 < 0.001 

season:level 0.80   2 0.67     

δ13C-CO2 season 28.57   1 < 0.001 

level 3.40   2 0.18     

season:level 2.14   2 0.34     
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Figure 2. CO2 efflux (A), concentration (B), and carbon isotopic signature (C) measured for ant 

mounds at three mound levels (L1, L2, L3) in the two seasons (winter and summer 2019). 

 

Daily trends of CO2 efflux, concentrations and isotopic signatures did not show any general 

clear pattern, except for the CO2 efflux from the top level (L1) that decreased during the day (Figure 

S1). Mound temperature changed with depth and day period in both winter and summer (Fig. 3; 

Table 2). The temperature increased with increasing depth and overall from the morning to the 

afternoon. Seasonal differences were found in mean mound temperature (F1,7 = 1099.6, P < 0.001) 

but not in water content (F1,7 = 0.13, P = 0.73). 
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Figure 3. Ant mound internal temperatures measured at different depths from the mound surface in 

three different period of the day (morning, midday, and afternoon) in the two seasons (summer and 

winter). 

 

Response variable season Fixed effect Chisq df P 

temperature 

winter 

day period 166.24   2 < 0.001 

depth 326.41   5 < 0.001 

day period:depth 17.95 10 0.06 

summer 

day period 14.35   2 < 0.001 

depth 55.19 5 < 0.001 

day period:depth 7.24 8 < 0.001 

 

Table 2. Analysis of Deviance Table (Type II Wald chisquare tests) for linear mixed effect models 

with temperature as response variable and day period (morning, midday, afternoon), depth and their 

interaction as predictors, with ant nest as random effect. 

 

 

In the laboratory experiments, during the winter, controls did not show any significant trend 

in CO2 concentration (F1,7 = 1.37, P = 0.28) nor isotopic signature (F1,7 = 1.08, P = 0.33), whereas 

significant temporal changes in mound material were observed in both CO2 concentration (F2,14 = 

5.66, P < 0.05) and isotopic signature (F2,14 = 22.01, P < 0.001). Similarly, no differences in terms 

of CO2 concentration (F1,10 = 0.26, P = 0.62) and isotopic signature (F1,10 = 0.17, P = 0.69) were 

recorded in summer controls, whereas significant variations were found across time in the mound 

material for both CO2 concentration (F2,14 = 74.14, P < 0.001) and isotopic signature (F2,21 = 46.93, 

P < 0.001). The mean pure isotopic signature of mound material was found to be −29.6 and −26.4‰ 

in winter and summer, respectively, and this difference was not significant (F1,7 = 4.16, P = 0.08). 

As for the ant experimental setup, significant differences across time were found for both 

CO2 concentration (F2,14 = 19.15, P < 0.001) and isotopic signature (F2,14 = 7.51, P < 0.01). The 

mean pure isotopic signature for ants in summer was found to be −29.2‰ and that estimated for 
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mound material was −26.4‰. The mean isotopic signature of gas sampled from mounds (in the 

field) was −28.7‰. Therefore, in summer, the proportion of CO2 produced by ants (p) was 

calculated to be 83%, whereas the proportion of CO2 produced by the microbial community (1-p) 

was computed at 17%. 

The bacterial dataset contained 3,154,908 good quality reads, 98% of them with a length of 

1551 nucleotides. More than 150,000 reads were produced and analysed for each sample identifying 

28 bacterial phyla in total (Fig. 4). Overall, the most frequent phylum was Proteobacteria, followed 

by Acidobacteria, Bacteroidetes, Planctomycetes, Actinobacteria, and Firmicutes. The microbial 

community composition was significantly different between the two seasons (Fig. 5; F1,14 = 2.63, P 

< 0.001). No significant differences were found in β-diversity values between the two seasons (F1,14 

= 0.13, P = 0.71). Moreover, there were no differences in the number of OTUs nor in the diversity 

indices between the two seasons (Figure S2). 
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Figure 4. Relative frequency of microbial phyla for each ant mound in the two seasons (summer 

and winter). The legend is shown following a decreasing frequency order, from the top to the 

bottom.  

 

 

Figure 5. nMDS of nest mound microbial community composition at the genus level in the two 

seasons (blue triangles: winter; red squares: summer). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the Web version of this article.) 

 

Discussion 

Soil respiration accounts for 50–95% of the total ecosystem respiration (Yuste et al., 2005). In 

particular, CO2 efflux from forest soils is an important process in the forest C cycle, accounting for 

almost 80% of the total respiration in temperate boreal forests (Law et al., 1999; Janssens et al., 

2001; Etzold et al., 2011). Red wood ant emissions contribute up to almost 1% to the total CO2 

emissions of forest ecosystems (Ohashi et al., 2005; Domisch et al., 2006). In this study, as 

expected, the mounds were found to be CO2 hotspots during the ants’ active season, producing on 

average 39 times the carbon dioxide produced by the forest soil, thus significantly contributing to 

the local heterogeneity. However, comparing our results with those from previous studies revealed 

that while the soil efflux was comparable to those found in the same season for some regions 

(Finland 27.12 g m−2 day−1, Domisch et al., 2006) but higher than others (Finland: 13.68 g m−2 
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day−1, Ohashi et al., 2005; Czech Republic: 2.69 g m−2 day−1, Jílková et al., 2015a), the mean 

mound efflux was considerably higher. Indeed, studies carried out in Finland reported mound efflux 

values ranging from 13.68 to 168 g m−2 day−1 in summer (Ohashi et al., 2005, 2007; Domisch et al., 

2006), and similar values were reported for the same season in the Czech Republic (14.45 g m−2 

day−1; Jílková et al., 2015a) and Switzerland (144 g m−2 day−1; Risch et al., 2005 b). The mean 

mound efflux observed in our study (820 g m−2 day−1) was almost five times the highest reported 

value, showing that the studied population could contribute much more to the global carbon budget 

in the studied forest. Whether this is due to the southernmost position of our study site or to the 

peculiar ant population studied is not known, but probably both factors contribute to the final result. 

Seasonal differences in CO2 production were found in ant mounds, supporting previous 

findings (Risch et al., 2005a; Ohashi et al., 2007; Jílková et al., 2015a). This could be due to either a 

higher metabolic activity of the nest mound inhabitants or a higher number of workers in 

summertime. Within the mound, the top level emitted more CO2 than the medium and bottom 

profiles, in agreement with previous data on respiration from a Finnish birch forest (Jílková et al., 

2013) and a Swiss mixed coniferous forest (Risch et al., 2005a). On the contrary, Jílková et al. 

(2013) found significant differences only in a birch forest but not in another forest type (pine). They 

explained the differences found in the birch forest with the top part of the mound having a higher 

moisture, while the lack of differences was explained with similar moisture and a higher C:N ratio 

in the top compared to the bottom of the mound. Unfortunately, such data were not available for 

this work, but a combination of these and possibly other, not measured environmental variables 

together with the internal structure of the mound can better explain these differences on a local 

scale. 

Although no clear pattern was evident in within-mound daily trends, this may be due to the 

low number of monitored nests (n = 2). Previous investigations, indeed, found lower CO2 emission 

in the middle of the day, likely due to a higher number of workers outside of the nest (Risch et al., 

2005b; Ohashi et al., 2007). Moreover, in contrast to Ohashi et al. (2007), a significant relationship 

between mound temperature and day period was recorded, suggesting that some temperature 

fluctuation can occur within the nest mound in both seasons. Interestingly, both these fluctuations 

and the inter-mound variability in temperature were much smaller during winter, highlighting the 

insulating properties of the mound. On the contrary, the higher variability in the mound temperature 

recorded during summer was probably due to the different sun exposure of mounds. 

Ants majorly contributed to the overall nest CO2 production. While this was already 

hypothesized for RWA (Lenoir et al., 2001), the sole other experimental quantification has been 
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only recently performed (Jílková and Frouz, 2014). These authors estimated that the ants' proportion 

of CO2 produced was about 75%, while the associated microbes produced about 25%. Our results 

suggest an even more important role of ants in the overall nest metabolism. This could be due to 

several factors. First, Jílková and Frouz (2014) studied a different species, F. polyctena. Second, our 

study site is climatically warmer, possibly leading to higher metabolic activity of ants. Third, it is 

known that large ant mounds respire more than the smaller ones, probably due to a high workers' 

number (Risch et al., 2005a; Ohashi et al., 2012). Though our nest mounds did not differ in their 

dimensions and presumably age, some could be bigger than those from the previous study. Finally, 

we cannot exclude the possibility that the ants' higher relative contribution may have resulted from 

a lower microbes’ metabolic activity, possibly due to the low water content registered in the 

mounds. Nonetheless, it should be stressed that these results refer to the summer season. During the 

cold season, all ant workers gather in the underground part of the nest, reducing their metabolism 

and relying on energy reserves stored during the active season. Therefore, it is possible that their 

isotopic signature as well as their relative contribution to the overall CO2 production of the mound 

would change in this period. 

The study of the microbial community composition associated with the ant nests is rapidly 

developing (Ramalho et al., 2017; Lindström et al., 2018; Di Salvo et al., 2019). While previous 

works functionally described the microbiota of RWA mounds (Frouz et al., 1997; Jílková et al., 

2016), this study is one of the few investigations (Kaczmarczyk-Ziemba et al., 2020) aimed at also 

characterizing the taxonomic composition of such communities, to identify the main contributors to 

CO2 production from mound material. The overall taxonomic composition of mound microbiota is 

in line with that of the nest mounds of the congeneric species F. polyctena (Kaczmarczyk-Ziemba et 

al., 2020) and Formica exsecta (Lindström et al., 2019, 2021). Some of the phyla recorded in all 

three studies, like Acidobacteria, Actinobacteria, and Proteobacteria, typically occur in the soils of 

coniferous forests (Baldrian et al., 2012). We found some genera that are commonly associated with 

ants: Pseudonocardia, Burkholderia, Methylobacterium, Streptomyces, and Brevundimonas (Jaffe et 

al., 2001; van Borm et al., 2002; Kost et al., 2007; Folgarait et al., 2011). These genera were also 

recognized in the mound material of F. exsecta and were supposed to form symbiotic relationships 

with the ants (Lindström et al., 2019), as they were recorded as core indicators of ant nests 

(Lindström et al., 2021). In particular, the genera Burkholderia, Streptomyces, and Pseudonocardia 

produce antifungal compounds and were reported in the nest of leaf-cutting ants (Santos et al., 

2004; Haeder et al., 2009; Barke et al., 2010). On the other hand, other genera such as 

Frondihabitans and Methylobacterium, also found in F. exsecta mounds, are frequently associated 

with coniferous needles, thus their presence can simply be due to the nest mound material 
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(Lindström et al., 2019). In this study, other bacterial genera, previously recorded with other ant 

species, were found, including: Opitutus (Kautz et al., 2013), Candidatus and Sodalis (Ramalho et 

al., 2017), Conexibacter, Rhizomicrobium, Caulobacter, Phenylobacterium, Sphingomonas, and 

Mycobacterium (Lindström et al., 2021), Neokomagataea, Asaia, Gluconobacter, and Acetobacter 

(Chua et al., 2018), Erwinia, Vibrio, Inquilinus, Citrobacter, and Hydrogenophaga (Di Salvo et al., 

2019). 

Potential pathogenic bacteria also occurred as reported in other ant species, like 

Pseudomonas (Johansson et al., 2013), the endoparasites Rickettsia (Eilmus and Heil, 2009; 

Kaczmarczyk-Ziemba et al., 2020), Rickettsiella (Di Salvo et al., 2019) and Spiroplasma (Funaro et 

al., 2011; Kautz et al., 2013), as well as endosymbiont bacteria, such as Wolbachia (Wenseleers et 

al., 1998; Eilmus and Heil, 2009; Russell, 2012; Kaczmarczyk-Ziemba et al., 2020), Saccharibacter 

and Entomoplasma (Johansson et al., 2013). This latter genus seems to be more frequent in 

predatory ants, as well as the phylum Firmicutes (Funaro et al., 2011). Interestingly, some nitrogen-

fixing taxa previously reported to be associated with other ant species (van Borm et al., 2002; 

Eilmus and Heil, 2009; Pinto-Tomás et al., 2009), like the phylum Cyanobacteria, the orders 

Rhizobiales, Burkholderiales, and Pseudomonadales, and the genera Klebsiella, Azospirillum, 

Serratia and Pantoea, were found. This supports the findings of previous studies, since nitrogen-

fixing (Frouz et al., 1997) and type II – but not type I – methanotrophic bacteria (Jílková et al., 

2016) have been found in RWA mounds. Noteworthy, Serratia, that was present in all mounds 

except one, is thought to be involved in the chemical mimicry of myrmecophilous hosts (Di Salvo 

et al., 2019). 

Our results also highlight an interesting insight into the temporal dynamics of the mound 

microbiota. While Lindström et al. (2021) found that the microbiota in F. exsecta mounds is 

temporally stable across months and years within the same season (summer), we found that it 

differs between extreme seasons (summer and winter) within the same year. On the other hand, the 

pure isotopic signatures of CO2 produced by mound material was found to be similar across the two 

seasons, suggesting that, despite taxonomic differences, the microbial communities associated with 

the mound material were metabolically similar. 

Our results can contribute to the debate on the ecosystem-level effects of invasive species. 

The studied population of F. paralugubris can be considered locally invasive due to its recognized 

effects on several autochthonous taxa (Frizzi et al., 2018; Di Nuzzo et al. in press). In addition to 

direct impacts on other organisms, invasive species can also affect ecosystem functioning (Crooks, 

2002), especially when they are also ecosystem engineers (Frelich et al., 2006; Jochum et al., 2021). 
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Recent investigations on a few terrestrial invasive engineers have demonstrated their effect on the 

aboveground carbon cycle (Papier et al., 2019; O'Bryan et al., 2021). Ants are indisputably 

important ecosystem engineers (Lenoir, 2001) and targeted studies on the effect of their invasive 

populations on the ecosystem carbon balance are only now beginning (Milligan et al., 2021). 

  

Conclusions 

The nest mounds of the introduced population of F. paralugubris were demonstrated to be hotspots 

of CO2 emission, significantly contributing to the overall forest gas emissions. The gas release was 

mainly produced by ants, but there was an important contribution by the hosted microbiota. This is 

the southernmost population studied to quantify the gas release by ants in Europe and the first one 

aiming at a fine taxonomic characterization of the bacteria associated with mounds of F. 

paralugubris. Further studies are nevertheless needed to increase the knowledge on gas emissions 

by ant nests. Many ant species can form large colonies, thus contributing to the soil gas production. 

Last, the functional role of the bacteria associated with RWA mound seems to be a promising 

research area for future studies. 
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Abstract 

Red wood ants (RWA) are a group of keystone species widespread in temperate and boreal forests 

of the Northern Hemisphere. Despite this, there is increasing evidence of local declines and 

extinctions. Here, we review the IUCN threat classification and give an overview of the current 

protection status of RWA throughout Europe. Only some RWA species have been assessed at a 

global scale, while not all national red lists of the countries where RWA are present include these 

species. Moreover, different assessment criteria and risk categories are used in different countries, 

and data deficiency is frequent. The legislative protection is even more complex, with some 

countries protecting RWA implicitly together with the wildlife fauna, while others explicitly protect 

the whole group or particular species. This complexity often extends within countries, for example 

in Italy, where, outside of the Alps, only the introduced species are protected, while the native ones 

in decline are not. Therefore, an international, coordinated framework is needed for the protection 

of RWA. However, this firstly requires that the conservation target should be defined. Due to the 

similar morphology, complex taxonomy and frequent hybridization, protecting the whole RWA 

group seems a more efficient strategy than protecting single species, though with a distinction 
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between autochthonous and introduced species. Second, an update of the current distribution of 

RWA species is needed, especially in the southern countries where this information is scarcer. 

Third, a protecting law cannot be effective without the collaboration of forest managers, whose 

activity influences RWA habitat. Finally, we stress that RWA nest mounds offer a peculiar 

microhabitat, hosting a multitude of taxa, some of which are obligate myrmecophilous species listed 

in the IUCN Red List. Therefore, RWAs’ role as umbrella species could facilitate their protection if 

they are considered not only as target species but also as providers of species-rich microhabitats. 

 

Keywords: insects, red wood ants, Formica rufa group, forest diversity. 
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Introduction 

With at least 13 species described in the Palearctic and up to 19 species reported in North America, 

red wood ants (RWA, i.e. species belonging to the Formica rufa group) are ecologically dominant 

species (Stockan et al., 2016). RWA are considered to be keystone species in temperate and boreal 

forests of Eurasia. Due to their large and long-lasting nests they impact functioning of mainly forest 

ecosystems in many ways and across several trophic levels, e.g. by controlling forest pest species 

(Trigos-Peral et al., 2021). Although these species are still abundant in many parts of their 

distribution range, their conservation raises increasing concerns (Dekoninck et al., 2010; Cherix et 

al., 2012; Breen, 2014; Mabelis & Korczyńska, 2016). Indeed, there is evidence of local decline or 

even extinction. For example, F. uralensis went extinct in Switzerland (Cherix & Maddalena-Feller, 

1986), while the scattered relict populations of this species in France, Germany and Poland are 

facing high extinction risks (Stankiewicz et al., 2005; Wegnez & Mourey, 2016). Moreover, local 

information is scattered and sometimes contradictory. For example, F. pratensis is reported as 

extinct in mainland Britain since at least 1988 (Nicholson, 1997). However, its presumed extinction 

is frequently erroneously dated to 2005, the year of the last update for this species on the Bees 

Wasps and Ants Recording Society (BWARS, www.bwars.com), although the page clearly reports 

that “The last known nest, near Wareham, died out in 1987”. 

The main threats for these species have already been discussed in detail by Sorvari (2016). 

However, it is worth stressing that the relative importance of these threats varies considerably in 

different parts of their Palearctic distribution range. In the southernmost countries RWA are 

restricted to mountain areas, whereas at northernmost sites they also occur at lower altitudes 

(Stockan et al., 2016), and threatening factors may thus differ. Additionally, their problematic 

taxonomy, with some species identifiable only through molecular analysis (Bernasconi et al., 2010), 

the presence of cryptic species (Bernasconi et al., 2011; Seifert, 1996, 2021) and widespread 

hybridization (Seifert et al., 2010; Beresford et al., 2017), makes it difficult to efficiently assess 

population size and distribution. 

Despite their ecological importance and widespread distribution, Hymenoptera, with the 

exception of wild bees (Kleijn et al., 2015; Drossart & Gérard, 2020), lag behind other insect taxa, 

like Lepidoptera or Coleoptera, as conservation targets (Leandro et al., 2017). Ants (particularly 

RWA) were an early group to be defined as vulnerable and worthy of protection (Wells et al., 

1983). Given the importance of RWA in forest pest management, already in 1965 the European 

Council recommended all the member states to adopt legal provisions for protecting these species, 
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highlighting their decline and the need for conservation (Pavan, 1981). However, more than 50 

years later there is no unique legal framework, and contradictory measures are sometimes taken. 

The importance of the focus on RWA protection extends beyond the conservation of these species 

per se. Indeed, they are important ecosystem engineers and umbrella species, so their conservation 

is relevant also for a wide range of other taxa. Moreover, RWA are perfect flagship species, 

providing an important example for the establishment of a supranational scheme aimed at the 

conservation of an invertebrate group. In this paper, we review the legal aspect of RWA protection 

and discuss how conserving these species must have support in national laws in Europe. 

We will briefly review their position in the IUCN red list, then give an overview of their 

protection at the European level and, finally, we provide examples representative of the many 

contradictions and paradoxes that characterize the protection of these species. It is not the aim of 

this paper to list all the laws in all European countries, but instead to provide a wide overview with 

some in-depth analysis of specific cases, the importance of which extends beyond their specific 

limitations, as they can be paradigmatic of the difficulties encountered in the protection of many 

other invertebrate taxa. 

  

RWA: a neglected target for conservation 

According to the IUCN Red List (accessed 8th October 2021), RWA species are classified as Near 

Threatened at a global level, but only some species (F. rufa, F. lugubris, F. polyctena, F. aquilonia, 

F. pratensis, and F. uralensis) have been assessed. Previous assessments (from 1983 to 1994) 

classified all the above RWA species as Vulnerable except F. uralensis that was classified as 

Indeterminate (from 1986 to 1994). 

RWA (and in general, ants) are not included in the European Red List 

(https://ec.europa.eu/environment/nature/conservation/species/redlist/index_en.htm, accessed 11th 

October 2021). On the national or regional level, the situation is more complex. Not all European 

countries include ants, or even insects, in national red lists (https://www.nationalredlist.org/, 

accessed 11th October 2021). For example, in Ireland, no red list has been produced that covers ants 

at all, even though all RWA species present are in urgent need of local protection (Breen, 2014). 

Moreover, when RWA are considered, there is no consensus across different national red lists on 

which species to include, assessment criteria differ, some risk categories are not fully comparable, 

and data deficiency is frequent (Appendix S1). In addition, it is unclear how hybrids, an often-
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occurring phenomenon in RWA, should be treated. For example, only the provisional Red List of 

the ants of Flanders explicitly assessed hybrids (F. rufa x polyctena; Dekoninck et al., 2003, 2005).  

The lack of RWA risk assessments is not surprising, as only 149 out of the approximately 

14,000 globally known living ant species (https://www.antweb.org/statsPage.do, accessed 4th 

January 2022) are listed in the IUCN Red List, and for all of them, the last official assessment dates 

back to 1996, and needs therefore to be updated. RWA currently face increasing threats throughout 

their distribution range, but the available information on both threats and distributions is highly 

variable (Sorvari, 2016). The situation may be particularly critical in the countries at the southern 

margin of their distribution (Italy, Greece, Turkey), where the effects of climate change are 

probably stronger (Rebetez & Reinhard, 2008), and information limited (Kovats et al., 2014). Since 

in these regions RWA are restricted to high elevations, the upward shift of populations will 

progressively be limited by a lower habitat availability. Moreover, only species included in official 

Red Lists (following the IUCN criteria) can be protected by law in some countries (e.g. Belgium). 

Despite their ecological importance, RWA protection receives limited attention, and no effort has 

been made to standardize protection measures at least in Europe. The complexity of the legal status 

between and within countries, and the diversity of protection measures taken by different States 

necessitate the development of broad-scale conservation actions and the deployment of common, 

coordinated strategies. 

  

RWA protection 

Several countries protect RWA (Figure 1; Appendix S2). Some of them, such as Austria, implicitly 

protect them by protecting all the wildlife fauna, while others explicitly mention RWA, at least as a 

group. For example, in Estonia and Poland, all RWA are protected species, and in Hungary RWA 

are protected and their nests assigned a monetary value. In Switzerland, RWA are listed as 

protected since 1966 and all species are explicitly included in the Annex 3 of protected species in 

the Ordinance on the Protection of Nature and Landscape of the Swiss Federal Council. In 

Germany, besides being protected by the Federal Law for the protection of nature 

(Bundesnaturschutzgesetz, BNatSchG) like all wildlife, all mound-building RWA are additionally 

listed as especially protected in Germany (like all wild bees and a few wasp species) under the 

Federal Ordinance on species protection (Bundesartenschutzverordnung, BArtSchV), which 

includes a list of protected species. It is thus prohibited to disturb or destroy their nests or remove 

workers or other life-stages. Moreover, F. polyctena x rufa hybrids are implicitly protected as well 
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since the parental species are protected. In Belgium, all RWA species were protected by a law of 

1980. Later, Belgium became a federal state and in 2009 the governments of the Flanders and 

Wallonia published a law in which 3 (for Flanders) and 2 (for Wallonia) species were protected, 

whereas Brussels protects only one species (F. polyctena). Finally, some other countries explicitly 

prioritize the protection of particular RWA species. In Bulgaria, some RWA species have been 

protected since 1959, though the obsolete scientific names included have never been updated, and 

F. rufa is protected by the 2002 Bulgarian Biodiversity Act. In the United Kingdom, F. pratensis is 

a UK British Action Plan (BAP) priority species, i.e. those species “that were identified as being the 

most threatened and requiring conservation action”, being also listed in the Species of Principal 

Importance in England. Also, F. aquilonia is included in the Northern Ireland priority species list. 

 

 

 

Figure 1. Map of red wood ant protection status across European countries. 
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The Italian paradox 

Italy is paradigmatic of what happens in the countries at the southern limit of RWA distribution, 

where less information is available, and public awareness is lower. In Italy, these species are typical 

dwellers of the Alps (Pavan et al., 1971), where they occur at elevations between 450 and 2000 

meters, with some species-specific differences. However, this information dates back to several 

decades ago and it is to be taken cautiously, since a shift of the distribution area towards higher 

elevations due to warming as documented in other insect taxa (Hagen et al., 2007; Moret et al., 

2016) is possible. Further south, the situation is more complex. The only autochthonous species 

outside of the Alps is Formica pratensis, occurring also in the Apennine mountains. This species is 

the most thermophilic of RWA, forms smaller colonies than the other species, occurs at lower 

elevations, and prefers open sunny habitats at the margin of wooded areas (Seifert, 2018). Its actual 

distribution and abundance are however unknown, and the few existing reports are outdated 

publications (Pavan et al., 1971), personal observations, and sparse, often unconfirmed notes on 

platforms (e.g. iNaturalist). It is clear, however, that some of the Apennine populations have 

recently disappeared or significantly decreased in number (G. Santini personal observation). This 

declining trend is in line with the tendency observed in other countries, such as Switzerland, 

Belgium, Romania and Turkey (Dekoninck et al., 2003; Freitag et al., 2008; Kiss & Kobori, 2010; 

Çamlıtepe & Aksoy, 2019), as well as the British mainland (Nicholson, 1997). 

This situation is further complicated by the fact that since the 1950s to 1980s, several 

introductions were carried out by transplanting entire RWA nests from the Alps to the Apennine 

mountains as biological control agents (Pavan, 1959). Most of these introduced populations 

belonged to the species F. paralugubris (Masoni et al., 2019). These introductions had varying 

success. Some populations introduced in Southern and warmer areas (e.g., Sicily and Elba Island) 

are now extinct (Ronchetti & Groppali, 1995), some lack updated information (e.g. F. aquilonia and 

F. rufa in Sardinia; Ronchetti & Groppali, 1995), while others like F. paralugubris in the 

Apennines have grown considerably, are developing traits of invasiveness, and have harmful effects 

on the native fauna (Frizzi et al., 2018; Balzani et al., 2021). 

In Italy, no national law protects RWA (nor any other ant), despite an aborted attempt to 

include the whole group in a law in 2001 (N. 5013 – Rules for the protection of the heterotherm 

fauna), which was not approved. Instead, each local Authority (Region) legislates on the matter and 

imposes the protection of particular species. Several Regions grant some type of protection 

(Appendix S3) either by generally protecting ant nests, mentioning the “Fomica rufa group”, or 
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specifying the names of some species (sometimes with misspelled names).  Some other Regions 

protected the group in the past with laws that were abrogated and substituted by a law that does not 

mention RWA. Interestingly, one of these new regional laws currently grants protection to other ant 

species, including Formicoxenus nitidulus, an obligate myrmecophilous ant listed as Vulnerable at a 

Global level (IUCN Red List) cohabiting within the nests of various RWA species (Härkönen & 

Sorvari, 2017). Similarly, in the UK, F. nitidulus is a BAP priority species for conservation, but its 

wood ant hosts are not protected. How to protect an obligate myrmecophile without protecting its 

host ant is unfortunately not specified. 

 The most peculiar situation occurs in the Regions straddling the Tuscan-Emilian Apennine, 

where both the native F. pratensis and the introduced F. paralugubris occur, the former declining 

and the latter spreading. Quite surprisingly, protection laws were formulated for the introduced 

species, and protection started soon after the first introductions in the 1950s (Pavia, Prefectoral 

Decree 6th April 1956). Moreover, efforts to increase public awareness of the introduced species 

have been done, whereas the declining F. pratensis did not receive comparable attention. 

  

What to protect? 

One key decision point is whether to focus conservation efforts on single species or to consider the 

entire group as a target. Protecting single species has the great advantage of allowing for 

individually tailored protection policies based on the specific needs of species or local populations. 

This approach, however, has the associated cost of the harmonization of legal frameworks across 

Countries and requires considerable and informed expertise to support the legal actions. The 

examples provided here suggest that this is not always the case and that establishing legal protection 

to the entire group is by far a much simpler task. Moreover, protection at the species level also faces 

the many difficulties stemming from the taxonomy of these species, starting from the fact that 

species identification may prove difficult. Furthermore, should we protect hybrids? Hybridization 

occurs frequently in RWA and is probably one of the mechanisms promoting speciation 

(Bernasconi et al., 2011). As pointed out by Robinson and Stockan (2016), conservation measures 

should allow the preservation of evolutionary processes like this, but how to translate it into laws? 

Targeting the group could be an easier way to cope with such problems, although care should be 

taken into distinguishing between autochthonous and introduced species, as the case F. pratensis – 

F. paralugubris in Italy shows. 
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The need for updated information on distribution 

Establishing a common and unambiguous legal framework is, however, only the first step toward 

the effective protection of RWA. One of the main difficulties in achieving effective conservation 

strategies is the non-systematic, and sometimes anecdotal information on their distribution, making 

it impossible to monitor populations over time. In turn, the lack of such data hinders the 

compilation of Red Lists based on the IUCN criteria. Moreover, habitat requirements are often 

recorded at a local scale from presence-only recording, running into false absence biases 

(Vandegehuchte et al., 2017). Switzerland is an important exception, as a mapping of RWA mounds 

(especially Formica lugubris and F. paralugubris) was carried out within the fourth National Forest 

Inventory (https://www.waldwissen.net/en/forest-ecology/forest-fauna/insects-invertebrates/red-

wood-ants-in-switzerland#c97108). However, these data are incomplete, as the sampling design - 

oriented to trees - did not allow the obtaining of suitable data for less frequent species such as F. 

rufa and F. polyctena, or species living outside forests such as F. pratensis. Of course, public 

engagement and citizen science projects contribute greatly to mapping efforts in particular because 

RWA nests are usually conspicuous. Successful cases are the Swiss “Ameisenzeit” 

(https://www.ameisenzeit.ch/) and “Opération fourmis” (Avril et al., 2019; Freitag et al., 2020), the 

activities of amateur associations such as the Ameisenschutzwarte 

(https://www.ameisenschutzwarte.de/) in Germany, Nest Quest (https://www.buglife.org.uk/get-

involved/surveys/nest-quest/) in the UK, and the results obtained by Sorvari (2021) in Finland. 

However, to enable a European-level risk assessment a common, standardized international 

monitoring strategy for RWA would be vital and would allow the collection of data on RWA 

habitat requirements in each country. Furthermore, such a scientifically coordinated monitoring 

scheme would allow reducing the inevitable bias related to any survey involving lay organizations. 

Indeed, RWA occurrence correlates with many environmental features (e.g. Berberich et al., 2016; 

Vandegehuchte et al., 2017). This will finally allow the determination of whether common 

protection strategies can be applied, or more fine-grained strategies are needed (e.g. between 

Northern and Southern countries). 

  

How to protect 
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The existence of a law protecting RWA does not guarantee effective protection. In Switzerland, for 

example, the application of the law depends on each of the 23 cantons, which does not facilitate the 

ants’ protection. It is also often difficult to define what the right protective measures are or should 

be. When nests are located in areas where work is to be carried out (road widening, new 

construction, etc.), the ant nests are usually moved. Unfortunately, the success rate of these 

translocations is often low (Serttaş et al., 2020). Forestry practices must also be considered. Even if 

nests are not directly destroyed during logging, their survival is often reduced due to the major 

disruption of the environment (Sorvari & Hakkarainen, 2007; Sorvari, 2016), although this effect 

depends on the species and there is evidence of RWA tolerance towards anthropogenic habitat 

disturbances (Fitzpatrick et al., 2021). On the other side, the natural closure of the forest canopy can 

eliminate the habitat suitable for RWA species (Vandegehuchte et al., 2017; Fitzpatrick et al., 

2021). Viable solutions must therefore be proposed to foresters to reconcile logging and the 

protection of the RWA. In particular, to achieve effective conservation results, there is the need to 

train foresters to apply ecologically-sound management plans that take into account specific RWA 

needs on a local base. Examples are the creation of forest gaps and clearings where canopy closure 

is excessive or, at the other extreme, reducing the extensions of clearcut areas to facilitate the 

recolonization of disturbed sites. Also, RWA colony foundation can sometimes rely on temporary 

social parasitism over colonies of species belonging to the subgenus Serviformica (Maeder et al., 

2016). The protection of these species could, therefore, facilitate the successful establishment of 

new RWA colonies.  

  

RWA as umbrella species 

RWA host many myrmecophiles that thrive within their nest mounds, some of which are obligate 

mutualists and cannot survive outside RWA nests (Robinson et al., 2016). Some of these obligate 

guest species are listed in the IUCN Red List. Clearly, conserving RWA is integral to protecting 

these organisms, most of which belong to invertebrate groups even less likely to have been assessed 

for conservation than the Hymenoptera (Parmentier et al., 2014; Robinson et al., 2016). Since the 

conservation of a species strongly depends on the conservation of its habitat, a thorough revision of 

the conservation status of myrmecophilous species could be very useful in updating the 

conservation status of RWA. Considering RWA not only as target species but also as providers of 

species-rich microhabitats might prove a key strategy to conserve not only them, but all their 

associated guest species.  
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We hope with this work to ignite the construction of an international network aimed at the 

conservation of this important group, at least at the European level. 
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General conclusions 

The overall aim of this thesis was to deepen the comprehension of the ecological importance of 

RWA in general, investigating their effects on various other taxa, and particularly to investigate the 

ecological role and impacts of introduced RWA populations on the recipient community and 

ecosystem using a multi-methodological approach. 

 The results supported the previous literature on RWA and demonstrated that the impacts of 

their introduced populations of are diverse and manifold, acting at multiple levels, from single taxa 

to communities to ecosystems. Specifically, I found that Formica paralugubris: i) affect the 

composition and structure of various communities; ii) their nest mounds act as biodiversity 

hotspots; iii) they occupy key trophic positions in the community; iv) they significantly contribute 

to the carbon dioxide dynamics of the forest ecosystem they live in; v) their nest mounds host 

complex and diverse microbial communities. These findings confirmed the role of RWA as 

keystone species (Wardle et al. 2011; Robinson et al. 2016) and ecosystem engineers (Lenoir 2001) 

and contributed to a deeper understanding of their ecology. 

 The main result of Chapter 1 is that F. paralugubris is a key element in the structuring of 

other assemblages. Indeed, the presence of this species significantly drove the lichen epiphytic 

community composition as well as its functional structure (Chapter 1.1). This could be the result 

either of a direct influence on lichen propagules dispersal by ant workers, or an indirect effect on 

lichens’ consumers (i.e. herbivorous invertebrates). This study is also relevant as only another study 

previously investigated the impact of an invasive animal on this taxon. Indeed, Gheza et al. (2018) 

found that the invasive rabbit Sylvilagus floridanus negatively impacts the lichen richness in dry 

grasslands. On the other hand, F. paralugubris mounds hosted a wide variety of myrmecophiles 

(sensu lato), as discussed in Chapter 1.2. Of these species, some could have been translocated when 

their host ant was introduced in the Apennines, as they were not previously recorded there. 

However, the conclusion of accidental introductions of other taxa – and thus the incurrence of new 

allochthonous species – has to be considered with caution because the local myrmecophile fauna, 

like the pedofauna, is generally scarcely studied (e.g. von Beeren et al. 2021). 

 In Chapter 2, I demonstrated that F. paralugubris is capable of great trophic plasticity, being 

able to adapt its diet depending on the local environment where it occurs. The factors that probably 

drive this behavioral plasticity are resource availability and the presence of competitors. I found that 

F. paralugubris spatially excluded other ant species, as it is common with RWA (Mabelis 1983; 

Savolainen & Vepsäläinen 1988, 1989; Savolainen et al. 1989), or had separated trophic niches, 

suggesting niche partitioning. The results also question the commonplace that RWA mainly rely on 
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aphid honeydew (Wellenstein 1952; Rosengren & Sundström 1991; Finér et al. 2013), since in only 

one site out of five they were found to occupy such a trophic positioning. Contrariwise, in the other 

sites, they behaved like omnivores, suggesting that the consumption of animal preys is much more 

important than previously thought. This result parallels the findings of Fiedler et al. (2007), who 

described, for eight Formica species (four of which RWA) in Central Europe, nitrogen stable 

isotope values – a proxy for the trophic position – between those of predatory species like Myrmica 

spp. and those of clearly herbivorous (i.e. trophobiotic) species like Camponotus spp. Moreover, in 

one site F. paralugubris occupied the same trophic positioning of predators, further supporting this 

idea. This is not the first study reporting a predatory behavior in RWA, at least in some species. 

Indeed, studying the isotopic composition of F. aquilonia in Siberia, Iakovlev et al. (2017) found 

this species to behave like a first-order predator. Moreover, with this study I questioned the validity 

of the paradigm according to which invasive ants lower their trophic level in the invaded areas 

compared to the native ones (Tillberg et al. 2007; Wilder et al. 2011), as a consequence of a greater 

reliance on aphid honeydew (Styrsky & Eubanks 2007; Helms 2013). Although the displacement or 

out competition of other ant species seem to take place, the results indicate that a preference for a 

plant-derived carbohydrates diet is not straightforward. I found evidence that invasive ants do not 

follow any deterministic pattern, nor their success is necessarily driven by specific mechanisms. 

Rather, they take advantage of their trophic plasticity to better exploit the locally available 

resources, as other invasive species do (Jackson et al. 2017; Linzmaier et al. 2020; Rolla et al. 

2020). 

 In Chapter 3, F. paralugubris was found to significantly contribute to the forest carbon 

dioxide balance and to increase the heterogeneity of the forest soil, as found in other RWA species 

(Ohashi et al. 2005; Risch et al. 2005a; Domisch et al. 2006). The results are particularly relevant as 

they show a much higher CO2 production by ant mounds compared to that reported from previous 

studies (Ohashi et al. 2005, 2007; Risch et al. 2005b; Domisch et al. 2006; Jílková et al. 2015). This 

outcome can result from the different ant species studied, but also from the geographical position of 

our study site. Indeed, it is important to underline that this is the southernmost study on ants’ 

gaseous emissions, thus representing an important step towards a more complete understanding of 

the global carbon dynamics (Woodwell et al. 1978; Perruchoud et al. 1999; Amundson 2001; 

Mukhortova et al. 2015; Friedlingstein et al. 2020). This study is important also in the context of 

Invasion ecology, as I presented a quantification of the impacts of an invasive ant on the local 

carbon dioxide emissions. Although this is not the first study on this topic (Bender & Wood 2003), 

this subject has been only weakly stressed as a local impact of the introduced species to the 

recipient environment. Indeed, we are only now beginning addressing targeted studies on the effect 
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of invasive ants on the ecosystem carbon balance (Milligan et al. 2021). However, this lack of 

information is not confined to ants, since only few terrestrial invasive species have been recently 

demonstrated to significantly affect the aboveground carbon cycle (Papier et al. 2019; O’Bryan et 

al. 2021). As pointed out by O’Bryan et al. (2021), we would like to underline that “we know little 

about the global carbon footprint of invasive species”. 

 Finally, in Chapter 4, I outlined the complex scenario for the protection of RWA species. I 

highlighted the need for a framed and coordinated conservation program, but I also highlighted the 

difficulties that such programs could encounter. In particular, there is the operational need to choose 

the conservation unit that should be targeted, namely the whole group or the single species, given 

the complicated taxonomy of RWA. Also, a discrimination between autochthonous and introduced 

populations should be considered, to avoid paradoxical cases such as that happening in Italy, where 

the introduced species are protected by local authorities whereas the declining ones are not. 

Unfortunately, this is not the only case reported in the literature. Other invasive species are tolerated 

or even protected, especially when they represent an economic resource (Nuñez et al. 2012). In our 

case, the invasive populations of RWA are protected by antiquated laws as they represented a form 

of protection for trees, thus increasing timber production (Pavan 1961; Cotti et al. 1962). This is a 

clear example of discrepancy between the scientific results and policy makers and managers, 

probably due an obsolete point of view by these latter. Additionally, to effectively protect RWA 

species, there is an urgent need for updating the information on their distribution. Although not easy 

to achieve, RWA protection is very important, as they are umbrella species hosting a multitude of 

taxa within their mounds (e.g. Parmentier et al. 2014; Parmentier & Claus 2019), some of which are 

obligate myrmecophilous species listed in the IUCN Red List. Therefore, I proposed to consider 

RWA not only as species worth of conservation, but also as a peculiar microhabitat – provided by 

their mounds – that is vital for many other species. 

 

Formica paralugubris as a peculiar invasive ant 

Invasive species are widely recognized as one of the primary threats to biodiversity and ecosystem 

functioning, due to their adverse effects on native communities (Bellard et al. 2016; David et al. 

2017; Mollot et al. 2017). New alien species continue to be introduced and the negative impacts that 

some of them cause after becoming invasive are increasing (Seebens et al. 2017). Consequently, 

complete understanding the features facilitating the ecological success of invasive species, such as 

trophic plasticity, is of utmost importance in order to prevent new invasions (Fournier et al. 2019) 

and to control the spread and mitigate the adverse ecological effects of already established invaders 
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(Hoffmann et al. 2016; Ricciardi et al. 2017). Further, because the evolution of invasiveness also 

raises important questions in the realm of evolutionary ecology (Colautti et al. 2017; Bock et al. 

2018), any progress in this field has a relevance that extends beyond the management of invasive 

species. 

Among invasive species, ants deserve a special mention. Despite representing a small 

fraction of all known ant species, ants contribute 19 out of the 360 invasive species listed by the 

IUCN (Bertelsmeier et al. 2017), some of which are highly destructive invaders (Lach & Hooper-

Bui 2010). At least five of them (the Argentine ant Linepithema humile, the yellow crazy ant 

Anoplolepis gracilipes, the little fire ant Wasmannia auropunctata, the red imported fire ant 

Solenopsis invicta, and the big-headed ant Pheidole megacephala) are currently listed among the 

world’s 100 worst invasive species (Bertelsmeier et al. 2016). Also, invasive ants cause 

considerable associated economic costs worldwide, though these are largely underestimated 

(Angulo et al. 2021). All the recognized invasive ant species share some ecological features that 

contribute to their invasion success. Among these, the ability to cope with unfavourable 

environmental conditions, and the possibility to switch to super- or unicoloniality are worth 

mentioning (Giraud et al. 2002; Tsutsui and Suarez 2003; Jackson 2007; Krushelnycky et al. 2010). 

Another important point is their capacity to adapt their feeding strategy to novel environmental 

features (Sagata and Lester 2009). Nevertheless, the underlying mechanisms that enable these 

species to become so dominant in their invasive range are not fully elucidated. 

In this thesis, I demonstrated the multifaceted impacts of the introduced populations of a 

RWA species, that is ecologically dominant and has acquired strong invasivity features (Frizzi et al. 

2018). Nonetheless, it is of utmost importance to stress that several of the ecological traits of F. 

paralugubris make it a peculiar invasive ant. First, as all RWA, it is a cold-adapted species and 

cannot tolerate warm habitats, thus limiting its spread (Vandegehuchte et al. 2017). Second, its 

dispersal ability is limited by its reproductive strategy, which mostly relies on colony budding 

rather than nuptial flights (Chapuisat et al. 1997). The expansion of F. paralugubris populations is 

therefore slow and somehow limited (Seifert 2016). 

  

Future perspectives 

These studies opened further research questions that need to be addressed by focused future studies. 

 Our findings highlighted the importance of extending and increasing the studies on the 

impacts of F. paralugubris on other taxa. First, the effect of F. paralugubris on the lichen 

community was tested only in invaded areas, while it could be very interesting to assess whether 
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this strong effect occur also in the native range of this RWA species, as it was demonstrated for 

others (Heinken et al. 2007; Thunes et al. 2018). Second, to disentangle whether some species 

associated to F. paralugubris mounds were transplanted together with their nests, a comparative 

analysis of the myrmecophiles (sensu lato) occurring within the mound of the native F. pratensis in 

needed. Third, the overall impact of RWA on vertebrate taxa have been scarcely documented, 

except for birds (Aho et al. 1997,1999; Haemig 1996,1999; Jäntti et al. 2007). It would be very 

interesting to assess whether the communities of the lesser fauna, such as amphibians, reptiles, or 

micromammals, are affected by the presence of RWA. The introduced populations in Italy offer a 

great opportunity for this, by providing nearby occupied and unoccupied areas within the same sites 

and, consequently, identical habitat conditions. 

 Further, the trophic ecology of RWA should be reconsidered after these results, and more 

studies investigating their trophic niche are needed. In particular, it would be interesting to assess 

how the diet, and consequently the trophic position of RWA vary throughout the year according to 

the colony needs and brood presence (Mooney & Tillberg 2005; Dussutour and Simpson 2009; 

Platner et al. 2012). Indeed, seasonal changes in the isotopic signatures of RWA have been reported 

in F. aquilonia (Iakovlev et al. 2017), thus the impact of this species on the community might be 

not constant, but instead vary throughout the year. Additionally, I found a non-negligible variability 

in the trophic positioning of individual F. paralugubris colonies, so that it would be interesting to 

assess the degree of trophic specialization of each colony. Previous studies showed that such 

specializations could be a factor allowing S. invicta to reduce intercolonial competition and reach 

high abundances (Roeder & Kaspari 2017). The variability in the trophic positioning occupied by 

the invasive populations reopens the way for further research on the feeding ecology of other 

invasive species. Moreover, the trophic position of the autochthonous F. pratensis has never been 

assessed, while information on the trophic behavior of this species is needed to understand its role 

in the community. This is a very important point to be addressed, as F. pratensis populations are 

declining (Dekoninck et al. 2003; Freitag et al. 2008; Kiss & Kobori 2010; Çamlıtepe & Aksoy 

2019), so that fully understanding its feeding ecology and requirements can help in disentangling 

the causes of this decline. Also, this knowledge could help identifying the areas where 

reintroduction efforts, that might be key to the protection of this species, could be concentrated or 

avoided. 

 In a biogeochemistry context, further investigations are needed to disentangle the fine 

dynamics of RWA mounds, and the functional role of the hosted microbial communities. For 

example, methane is one of the most important greenhouse gases and its natural production by 
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insects such as termites was demonstrated to be relevant to the global CH4 budget (Jamali et al. 

2011; Nauer et al. 2018; Chakraborty et al. 2021). Given the biomass that RWA can reach within an 

ecosystem and the complex nature of RWA mounds, research on their methane emissions compared 

to the surrounding forest soil is needed. Furthermore, the presence of methanotroph as well as 

methanogenic bacteria within their mounds is determinant to shape the outcome of these tradeoffs, 

so a functional investigation on the microbiota role seems promising. Finally, also the gas emissions 

of F. pratensis mound should be measured to precisely quantify the change in CO2 (and CH4) 

production of the recipient forest ecosystem following the introduction of F. paralugubris. Indeed, 

the colonies F. pratensis do not reach the huge dimensions of those of the introduced species, they 

rather remain quite small (Pavan et al. 1971).  
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Supplementary material for “Red wood ants shape epiphytic lichen assemblages in montane 

white fir forests” 

Table S1. Functional traits of lichen species. Growth form: Fruticose (Fr), Crustose (Cr), Foliose 

(Fol). Reproductive strategy: Sexual (S), Asexual (A). Presence of lichenic acids: presence (y), 

absence (n). 

Species  Growth Form  Reproductive Strategy  Presence of lichenc acids  

Acrocordia gemmata (Ach.) A. Massal. var. gemmata  Cr  S  n  

Arthonia radiata (Pers.) Ach.  Cr  S  n  

Arthopyrenia sp.  Cr  S    

Bacidia rosella (Pers.) De Not.  Cr  S  n  

Buellia griseovirens (Sm.) Almb.  Cr  S  y  

Candelariella reflexa (Nyl.) Lettau  Cr  A y  

Catillaria sp.  Cr  S    

Cladonia fimbriata (L.) Fr.  Fr  A  y  

Cladonia sp.  Fr     

Dimerella sp.  Cr  S    

Coenogonium pineti (Ach.) Lücking & Lumbsch  Cr  S  n  

Evernia prunastri (L.) Ach.  Fr  A y  

Flavoparmelia caperata (L.) Hale  Fo A  y  

Fuscidea stiriaca (A. Massal.) Hafellner  Cr  S  y  

Hypogymnia physodes (L.) Nyl.  Fo  A  y  

Hypogymnia tubulosa (Schaer.) Hav.  Fo  A  y  

Lecania naegelii (Hepp) Diederich & van den Boom  Cr  S  n  

Lecania sp.  Cr     

Lecanora albella (Pers.) Ach.  Cr  S  y  

Lecanora argentata (Ach.) Malme  Cr  S  y  

Lecanora carpinea (L.) Vain.  Cr  S  y  

Lecanora chlarotera Nyl. subsp. chlarotera  Cr  S  y  

Lecanora expallens Ach.  Cr  A  y  

Lecanora pulicaris (Pers.) Ach.  Cr  S  y  

Lecanora sp.  Cr  S    

Lecanora strobilina (Spreng.) Kieff.  Cr  S  y  

Lecanora symmicta (Ach.) Ach.  Cr  S  y  

Lecidella elaeochroma (Ach.) 

M. Choisy var. elaeochroma f. elaeochroma  Cr  S  y  

Lepra albescens (Huds.) Hafellner  Cr  A  y  

Lepra amara (Ach.) Hafellner  Cr  A  y  

Lepraria sp.  Fo    

Melanelixia glabratula (Lamy) Sandler & Arup  Fo  A  y  

Melanelixia subaurifera (Nyl.) O. Blanco, A. 

Crespo, Divakar, Essl., D. Hawksw. & Lumbsch  Fo  A  y  

Micarea sp.  Cr  S    

Naetrocymbe punctiformis (Pers.) R.C. Harris  Fu  S  n  

Naevia punctiformis (Ach.) A. Massal.  Cr  S  n  

Normandina pulchella (Borrer) Nyl.  Sq  A  n  
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Ochrolechia parella (L.) A. Massal.  Cr  S  y  

Ochrolechia sp.  Cr  S    

Parmelia saxatilis (L.) Ach.  Fo  A  y  

Parmelia submontana Hale  Fo  A  y  

Parmelia sulcata Taylor  Fo  A  y  

Parmelina tiliacea (Hoffm.) Hale  Fo  A  y  

Parmeliopsis ambigua (Hoffm.) Nyl.  Fo A  y  

Pertusaria coccodes (Ach.) Nyl.  Cr  A  y  

Pertusaria flavida (DC.) J.R. Laundon  Cr  A  y  

Pertusaria leioplaca (Ach.) DC.  Cr  S  y  

Pertusaria pertusa (L.) Tuck. var. pertusa  Cr  S  y  

Pertusaria sp.  Cr     

Pertusaria sp. 2  Cr      

Pheophyscia sp.  Fo     

Phlyctis agelaea (Ach.) Flot.  Cr  S  y  

Phlyctis argena (Spreng.) Flot.  Cr  A  y  

Physcia adscendens H. Olivier  Fo  A  y  

Platismatia glauca (L.) W.L. Culb. & C.F. Culb.  Fo  A  y  

Pleurosticta acetabulum (Neck.) Elix & Lumbsch  Fo  S  y  

Pseudevernia furfuracea (L.) Zopf var. furfuracea  Fo  A  y  

Punctelia subrudecta (Nyl.) Krog  Fo  A  y  

Ramalina fastigiata (Pers.) Ach.  Fr  S  y  

Ramalina fraxinea (L.) Ach.  Fr  S  y  

Ramalina sp.  Fr  S    

Rinodina sp.  Cr  S    

Scoliciosporum umbrinum (Ach.) Arnold  Cr  S  n  

Xanthoria parietina (L.) Th. Fr.  Fo  S  y  
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Supplementary material for “A comparative study of the fauna associated with nest mounds 

of native and introduced populations of the red wood ant Formica paralugubris” 

Table S1. Species of springtails and oribatids collected, with their abundance and the estimated 

preference for nest or soil according to results of models. Pref = preference. Sites: AB = Abetone 

(Apennines), CA = Campigna (Apennines), GP = Giovetto di Paline (Alps). 

Springtails AB 
 

CA 
 

GP 

  

 

Species Nest Soil   Nest Soil   Nest Soil   Pref 

 

Anurophorus atlanticus 1 - 
 

- - 
 

- - 

  

 

Ceratophysella armata - 2 
 

- 10 
 

- - 

  

 

Cyphoderus albinus 2277 - 
 

24 - 
 

438 2 

 

Nest 

 

Desoria sp. 1 - 
 

9 1 
 

- - 

  

 

Entomobrya nivalis - - 
 

- - 
 

4 - 

  

 

Entomobrya sp. 3 2 
 

1 - 
 

- - 

  

 

Folsomia manolachei 6 - 
 

- 12 
 

- - 

  

 

Folsomia penicula 5 39 
 

- - 
 

32 25 

 

Soil 

 

Folsomia sp. - - 
 

- 3 
 

- - 

  

 

Friesea mirabilis 24 - 
 

6 - 
 

- - 

  

 

Hypogastrura viatica - - 
 

- - 
 

1 - 

  

 

Isotomurus sp. - - 
 

- 3 
 

- - 

  

 

Lathriopyga longiseta - - 
 

3 - 
 

- - 

  

 

Lepidocyrtus violaceus - - 
 

9 - 
 

- - 

  

 

Lepidocyrtus cyaneus 8 - 
 

21 - 
 

56 1 

 

Nest 

 

Lepidocyrtus lanuginosus - - 
 

- - 
 

1 - 

  

 

Lepidocyrtus lignorum - - 
 

- - 
 

1 1 

  

 

Mesaphorura sp. - - 
 

- - 
 

- 1 
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Paratullbergia callipygos - 1 
 

1 - 
 

- - 

  

 

Parisotoma notabilis 18 1 
 

- - 
 

6 1 

  

 

Protaphorura armata - 1 
 

1 1 
 

- - 

  

 

Protaphorura campata - 1 
 

- - 
 

- - 

  

 

Protaphorura cancellata - - 
 

2 - 
 

6 1 

  

 

Pseudachorutes dubius - - 
 

- 2 
 

- - 

  

 

Pseudachorutes sp. - - 
 

- 1 
 

- - 

  

 

Pseudosinella alba - - 
 

- 1 
 

- - 

  

 

Pseudosinella apuanica 6 13 
 

- 1 
 

- - 

 

Soil 

 

Tetracanthella pilosa - - 
 

- 2 
 

- - 

  

 

Tomocerus minor - 2 
 

- - 
 

- - 

  

 

Vertagopus arborea - - 
 

2 - 
 

- - 

  

 

Xenylla maritima - - 
 

- - 
 

4 - 

  

 

Xenylla schillei 29 -   - 1   - -     

            
Oribatids AB 

 
CA 

 
GP 

 

 

Species Nest Soil   Nest Soil   Nest Soil   Pref 

 

Achipteria coleoptrata - - 
 

25 7 
 

19 - 
  

 

Achipteria italica - - 
 

6 2 
 

- - 
  

 

Acrogalumna longipluma 55 - 
 

32 - 
 

- - 
 

Nest 

 

Adoristes ovatus 19 - 
 

64 2 
 

111 1 
 

Nest 

 

Atropacarus clavigerus - - 
 

- - 
 

19 - 
  

 

Atropacarus platakisi - - 
 

- - 
 

3 - 
  

 

Banksinoma lanceolata - - 
 

1 - 
 

- - 
  

 

Belba bartosi - - 
 

- - 
 

1 - 
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Berniniella (Berniniella) hauseri 3 - 
 

- - 
 

- - 
  

 

Berniniella bicarinata 7 1 
 

- 14 
 

- - 
  

 

Berniniella coronata  - - 
 

- - 
 

- 1 
  

 

Berniniella (Hypogeoppia) dungeri - 9 
 

- - 
 

- - 
  

 

Camisia horrida - - 
 

- - 
 

2 - 
  

 

Camisia spinifer 4 - 
 

- - 
 

- - 
  

 

Carabodes areolatus 2 - 
 

- - 
 

2 - 
  

 

Carabodes labyrinthicus 149 3 
 

3 5 
 

13 1 
 

Nest 

 

Carabodes manganoi 3 - 
 

4 - 
 

- - 
  

 

Carabodes marginatus - - 
 

4 - 
 

5 - 
  

 

Carabodes ornatus 11 - 
 

5 - 
 

19 - 
 

Nest 

 

Carabodes palmifer 1 - 
 

- - 
 

- - 
  

 

Carabodes reticulatus - - 
 

- - 
 

1 - 
  

 

Cepheus pegazzonae 1 - 
 

- - 
 

- - 
  

 

Cerachipteria minuscula 23 1 
 

1 8 
 

- - 
  

 

Ceratozetes gracilis - - 
 

59 21 
 

2 - 
  

 

Ceratozetes minutissimus - - 
 

- - 
 

2 - 
  

 

Ceratozetes peritus 2 13 
 

- - 
 

- - 
 

Soil 

 

Chamobates cuspidatus - 1 
 

- - 
 

1 - 
  

 

Chamobates pusillus 23 1 
 

- - 
 

- - 
  

 

Chamobates rastratus - - 
 

- - 
 

271 - 
  

 

Chamobates voigsti - - 
 

- - 
 

5 6 
  

 

Cymbaeremaeus cymba 9 - 
 

3 - 
 

1 3 
  

 

Damaeus selgae - - 
 

- - 
 

60 - 
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Dissorhina ornata peloponnesiaca - 4 
 

- - 
 

- - 
  

 

Eniochthonius minutissimus - - 
 

- - 
 

24 - 
  

 

Eremaeus cordiformis - - 
 

4 - 
 

5 - 
  

 

Eueremaeus oblongus 340 - 
 

- - 
 

- - 
 

Nest 

 

Eueremaeus silvestris - - 
 

52 9 
 

- - 
  

 

Eueremaeus valkanovi - - 
 

- - 
 

7 - 
  

 

Eulohmannia ribagai - - 
 

- 1 
 

- - 
  

 

Eupelops acromios 3 - 
 

- - 
 

3 - 
  

 

Eupelops affinis 1 - 
 

- - 
 

- - 
  

 

Eupelops torulosus 1 - 
 

1 - 
 

46 - 
 

Nest 

 

Euzetes globulus - 1 
 

- - 
 

- - 
  

 

Fosseremus laciniatus - - 
 

- - 
 

- 1 
  

 

Hemileius initialis - - 
 

- - 
 

1 - 
  

 

Hermannia gibba 48 1 
 

2 2 
 

29 - 
  

 

Hypochthonius luteus - - 
 

- - 
 

8 - 
  

 

Jugatala angulata 2 - 
 

2 - 
 

1 - 
  

 

Lepidozetes singularis - - 
 

6 - 
 

6 2 
  

 

Liacarus coracinus 30 1 
 

- - 
 

197 3 
 

Nest 

 

Liacarus perezinigoi - - 
 

- - 
 

1 - 
  

 

Liacarus subterraneus - - 
 

4 - 
 

- - 
  

 

Liebstadia humerata - - 
 

- - 
 

3 - 
  

 

Liebstadia longior 15 - 
 

- - 
 

- - 
 

Nest 

 

Medioppia pinsapi - - 
 

- - 
 

- 2 
  

 

Metabelba parapulverosa - - 
 

- - 
 

35 - 
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Microppia minus - 7 
 

- - 
 

- - 
  

 

Minunthozetes pseudofusiger 5 75 
 

- 53 
 

- - 
 

Soil 

 

Multioppia glabra - - 
 

- - 
 

5 - 
  

 

Nanhermannia nana - - 
 

- - 
 

1 - 
  

 

Neotrichoppia (Confinoppia) confinis 20 9 
 

- 3 
 

84 1 
  

 

Nothrus anauniensis - 1 
 

- 1 
 

- - 
  

 

Nothrus silvestris - - 
 

- - 
 

- 1 
  

 

Odontocepheus elongatus 11 - 
 

- - 
 

2 - 
  

 

Ommatocepheus ocellatus 5 - 
 

- - 
 

- - 
  

 

Ophidiotrichus vindobonensis - - 
 

- - 
 

3 - 
  

 

Oppiella (Moritzoppia) keilbachi - - 
 

- - 
 

140 - 
  

 

Oppiella (Moritzoppia) unicarinata - - 
 

37 - 
 

4 - 
  

 

Oppiella (Oppiella) acuminata 96 - 
 

- - 
 

- - 
  

 

Oppiella (Oppiella) nova 30 39 
 

- 10 
 

25 - 
  

 

Oppiella (Rhinippia) fallax 1 2 
 

- - 
 

- - 
  

 

Oppiella (Rhinoppia) obsoleta - 39 
 

- - 
 

- - 
 

Soil 

 

Oppiella (Rhinoppia) similifallax - 1 
 

- - 
 

- - 
  

 

Oppiella (Rhinoppia) subpectinata 1 97 
 

- 95 
 

8 - 
 

Soil 

 

Oribatella brevipila - - 
 

11 - 
 

58 - 
  

 

Oribatella calcarata - - 
 

- - 
 

4 - 
  

 

Oribatella euthricha - - 
 

2 - 
 

- - 
  

 

Oribatella hungarica 15 - 
 

- - 
 

- - 
  

 

Oribatella quadricornuta - - 
 

- - 
 

7 - 
  

 

Oribatella sexdentata 1 - 
 

- - 
 

- - 
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Oribatula tibialis 4 - 
 

8 3 
 

2 1 
  

 

Pantelozetes paolii - 1 
 

- - 
 

2 - 
  

 

Parachipteria petiti 13 11 
 

- - 
 

- - 
  

 

Parachipteria punctata 1 - 
 

- - 
 

- - 
  

 

Pergalumna altera 39 - 
 

4 - 
 

63 - 
 

Nest 

 

Pergalumna nervosa 131 - 
 

83 - 
 

736 - 
 

Nest 

 

Phauloppia lucorum 17 - 
 

- - 
 

- - 
 

Nest 

 

Phauloppia rauschenensis - - 
 

- - 
 

2 - 
  

 

Phthiracarus anonymus 1 - 
 

- - 
 

8 - 
  

 

Phthiracarus clavatus 2 - 
 

1 - 
 

- - 
  

 

Phthiracarus globosus - - 
 

1 - 
 

- - 
  

 

Phthiracarus italicus - 1 
 

- 3 
 

- - 
  

 

Phthiracarus laevigatus - - 
 

9 - 
 

- - 
  

 

Phthiracarus lentulus 1 1 
 

- - 
 

- - 
  

 

Phthiracarus nitens 1 2 
 

5 1 
 

- - 
  

 

Phthiracarus peristomaticus - - 
 

- - 
 

12 - 
  

 

Platynothrus peltifer - - 
 

- - 
 

1 - 
  

 

Porobelba spinosa 551 - 
 

121 - 
 

- - 
 

Nest 

 

Poroliodes farinosus 2 - 
 

- - 
 

- - 
  

 

Ramusella (Inscuptoppia) elliptica 1 22 
 

- - 
 

- - 
 

Soil 

 

Ramusella (Ramusella) assimilis - - 
 

3 4 
 

1 - 
  

 

Raphigneta numidiana - - 
 

- - 
 

- 1 
  

 

Rhysotritia duplicata - - 
 

10 1 
 

109 1 
 

Nest 

 

Scheloribates laevigatus 1 - 
 

- - 
 

- - 
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Scheloribates pallidulus 565 1 
 

407 - 
 

574 - 
 

Nest 

 

Scheloribates tuberculatus - - 
 

- - 
 

108 3 
  

 

Serratoppia serrata - 1 
 

- - 
 

- - 
  

 

Steganacarus (Steganacarus) applicatus - - 
 

- - 
 

25 - 
  

 

Steganacarus (Steganacarus) donatoi - 1 
 

- - 
 

- - 
  

 

Steganacarus (Steganacarus) hirsutus 19 1 
 

- - 
 

- - 
 

Nest 

 

Steganacarus (Tropacarus) carinatus 1 - 
 

- - 
 

2 - 
  

 

Suctobelbella acutidens - 1 
 

- - 
 

- - 
  

 

Suctobelbella alleonasuta - - 
 

- 2 
 

- - 
  

 

Suctobelbella cf. subcornigera 1 - 
 

- - 
 

- - 
  

 

Suctobelbella opistodentata - - 
 

- 2 
 

- - 
  

 

Suctobelbella sarekensis - 1 
 

- 2 
 

- - 
  

 

Tectocepheus sarekensis 9 1 
 

- 5 
 

1 1 
  

 

Tectocepheus velatus 10 - 
 

2 1 
 

2 - 
  

 

Xenillus clypeator - - 
 

1 - 
 

- - 
  

 

Xenillus tegeocranus 22 - 
 

- - 
 

- - 
 

Nest 

 

Zygoribatula exilis 143 - 
 

4 - 
 

- - 
 

Nest 

 

Zygoribatula propinqua 1 -   - -   - -     
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Table S2. Species not belonging to springtails or oribatids collected, with their abundance. Sites: 

AB = Abetone (Apennines), CA = Campigna (Apennines), GP = Giovetto di Paline (Alps). 

     GB AB CA 

Phylum Class 

Order, Family 

(Subfamily) Species Additional note Nests Soil Nests Soil Nests Soil 

Arthropoda Insecta Lepidoptera  

sp.1 - larva  

('Microlepidoptera') 26 0 0 0 0 0 

Arthropoda Insecta Lepidoptera  

sp.2 - larva  

('Microlepidoptera') 0 0 2 0 0 0 

Arthropoda Insecta 

Coleoptera, 

Chrysomelidae 

(Cryptocephalinae)  larva 0 0 4 0 0 0 

Arthropoda Insecta Coleoptera  larva 0 0 0 0 0 1 

Arthropoda Insecta Coleoptera  larva 0 0 0 0 0 1 

Arthropoda Insecta Coleoptera  larva 0 2 0 0 0 0 

Arthropoda Insecta Coleoptera  larva 20 0 3 9 5 1 

Arthropoda Insecta 

Coleoptera, 

Latridiidae Dienerella sp.  35 0 10 0 6 0 

Arthropoda Insecta 

Coleoptera, 

Latridiidae Corticaria sp.  9 0 4 0 0 0 

Arthropoda Insecta 

Coleoptera, 

Monotomidae 

(Monotominae) 

Monotoma 

conicicollis  0 0 1 0 0 0 

Arthropoda Insecta Coleoptera  

larva Scarabaeoidea/ 

Chrisomelidae 1 0 0 0 0 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae 

(Aleocharinae)  cf. Leptusina 1 0 0 0 0 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae  

cf. Xantholininae  

sp.1 0 0 0 2 1 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae  

cf. Xantholininae  

sp.2 0 0 2 1 0 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae  

cf. Xantholininae  

sp.3 0 0 4 2 2 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae  

cf. Xantholininae  

sp.4 0 0 1 0 0 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae  

cf. Xantholininae  

sp.5 0 0 5 0 3 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae  

cf. Xantholininae  

sp.6 0 0 3 0 0 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae 

(Scydmaeninae) Stenichnus sp.  0 0 0 0 6 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae 

(Scydmaeninae) 

Cephennium 

sp.  0 0 0 0 4 0 

Arthropoda Insecta 

Coleoptera, 

Staphylinidae  cf. Omaliinae 0 0 0 0 1 0 

Arthropoda Insecta 

Coleoptera, 

Nitidulidae   2 0 0 0 1 0 

Arthropoda Insecta 

Coleoptera, 

Scolytidae   0 0 0 0 1 0 

Arthropoda Insecta 

Coleoptera, 

Endomychidae 

Mycetaea 

subterranea  16 0 0 0 0 0 

Arthropoda Insecta 

Coleoptera, 

Ptilidae Ptilium sp.  0 0 5 0 5 0 

Arthropoda Insecta Psocoptera   3 0 1 0 1 0 

Arthropoda Insecta 

Hemiptera, 

Adelgidae   0 3 0 0 0 0 
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Arthropoda Insecta 

Hemiptera, 

Anthocoridae   0 0 2 0 0 0 

Arthropoda Insecta Hemiptera  Sternorrhyncha 1 0 0 1 0 0 

Arthropoda Insecta Hemiptera  Cicadoidea 0 0 0 0 1 0 

Arthropoda Insecta 

Hymenoptera, 

Cynipidae   2 0 1 2 0 0 

Arthropoda Insecta Hymenoptera  cf. Chrysidae 0 0 2 0 0 0 

Arthropoda Insecta Diptera   0 1 0 0 0 0 

Arthropoda Insecta Diptera   0 1 0 0 0 0 

Arthropoda Insecta Diptera   0 0 0 1 0 0 

Arthropoda Insecta Diptera  larva cf. Tipuloidea 0 0 0 1 0 0 

Arthropoda Insecta Diptera  larva 0 2 0 0 0 6 

Arthropoda Insecta Diptera  larva 0 0 0 0 0 1 

Arthropoda Insecta Thysanoptera   0 1 1 0 0 0 

Arthropoda Diplopoda Julida, Julidae   10 0 0 4 0 0 

Arthropoda Diplopoda    9 0 0 0 0 0 

Arthropoda Diplopoda    0 0 0 0 11 0 

Arthropoda Diplopoda   cf. Julidae 0 4 7 0 5 0 

Arthropoda Chilopoda    1 0 1 1 2 0 

Arthropoda Chilopoda   Lithobiomorpha 0 0 0 0 4 0 

Arthropoda Chilopoda   Geophilomorpha 0 0 0 0 7 2 

Arthropoda Symphyla    2 2 0 72 4 1 

Arthropoda Malacostraca Isopoda   21 0 0 0 0 0 

Arthropoda Arachnida Aranea   1 0 4 0 0 0 

Arthropoda Arachnida Pseudoscorpiones  sp. 1 2 0 43 0 38 0 

Arthropoda Arachnida Pseudoscorpiones  sp.2 0 0 0 1 0 0 

Arthropoda Protura   1 0 16 2 15 1 

Arthropoda Diplura   0 0 1 2 0 0 

Nematoda     0 0 2 0 0 0 

Annelida Clitellata 

Haplotaxida, 

Enchytraeidae   0 0 0 0 0 3 

Annelida Clitellata 

Haplotaxida, 

Lumbricidae   0 0 0 0 0 1 
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Supplementary material for “Plasticity in the trophic niche of an invasive ant explains 

establishment success and long-term coexistence” 

 

Supplementary Table. Plasticity in the trophic niche of an invasive ant explains establishment 

success and long-term coexistence. 

 

Site Coordinates Country Native/Introduction  

area 

Site area 

(ha) 

Nest 

density  

(nests/ha) 

Dominant tree species 

Swiss National  

Park (SNP) 

46°40′17″N,  

10°11′12″ E 

Switzerland Native 200 1.8 Pinus mugo, Pinus 

cembra, Picea abies 

Giovetto di Paline  

(GP) 

45°57′57′′ N,  

10°07′48′′ E 

Italy Native 9 12 Picea abies 

Abetone (AB) 44°08′50′′ N,  

10°40′24′′ E 

Italy Introduction 8 13 Abies alba 

Campigna (CA) 43°52′00′′ N,  

11°44′14′′ E 

Italy Introduction 10 12 Abies alba 

Valcartier (VC) 46°56'52" N,  

71°29'55" W 

Quebec,  

Canada 

Introduction 4.6 11 Pinus resinosa, Pinus 

strobus, Pinus banksiana, 

Picea glauca, Picea 

mariana, Larix laricina, 

Abies balsamea, Betula 

papyrifera 
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Supplementary Figure. Isotopic biplot (mean δ15N and δ13C ± standard error) of ant species at the 

edge of the Formica paralugubris range for: a) Abetone (Italy, introduced); b) Giovetto di Paline 

(Italy, native); c) Campigna (Italy, introduced). 
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Supplementary material for “CO2 biogeochemical investigation and microbial 

characterization of red wood ant mounds in a Southern Europe montane forest” 

 

Figure S1. Daily trends of CO2 concentration, efflux, and carbon isotopic signature (C) measured at 

three mound levels (L1, L2, L3) in the two ant mounds in the two seasons (summer and winter). 
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Figure S2. Sample-based estimates of ant mound microbial Hill's numbers in the two seasons 

(summer and winter) with the associated 95% confidence intervals: richness at the genus level (q = 

0), Shannon diversity index (q = 1), and Simpson diversity index (q = 2). Continuous lines refer to 

actual sample numbers, while dashed lines to the extrapolated estimates. 
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Supplementary material for “Red wood ants in Europe: trends, local paradoxes, and a call to 

action” 

 

Appendix S1. Threat status of red wood ant species in Europe according to National Red Lists and 

local sources. 

Species 

Country 

(Region) 

Regional 

status 

Assessmen

t year 

Criterio

n Reference 

F. rufa 

Germany 

(Bayern) endangered 2003 

non 

IUCN Schnittler et al. 1994 

F. rufa Poland 

Near 

threatened 2002 IUCN Glowacinski et al. 2002 

F. rufa Sweden 

Least 

concern 2020 IUCN SLU Artdatabanken. 2020 

F. rufa UK 

Not a species 

of 

conservation 

concern 1991 

modified 

IUCN  Falk 1991 

F. rufa Germany 

Declining 

species 1998 

non 

IUCN Binot et al. 1998 

F. rufa 

Germany 

(Nordrhein

-

Westfalen) Declining  2011 

non 

IUCN https://www.lanuv.nrw.de/ 

F. rufa 

Switzerlan

d 

near 

threatened 1994 

non 

IUCN Agosti & Cherix 1994 

F. lugubris Poland Vulnerable 2002 IUCN Glowacinski et al. 2002 

F. lugubris Sweden 

Least 

concern 2020 IUCN SLU Artdatabanken. 2020 

F. lugubris Germany Endangered 1998 

non 

IUCN Binot et al. 1998 

F. lugubris 

Germany 

(Bayern) endangered 2003 

non 

IUCN Schnittler et al. 1994 



Analysis of introduced and autochthonous populations of the red wood ant Formica paralugubris: ecological interactions and conservation issues 
PhD thesis Paride Balzani 

170 
 

F. aquilonia 

Czech 

Republic Endangered 2005 IUCN Farkac et al. 2005 

F. aquilonia Poland Vulnerable 2002 IUCN Glowacinski et al. 2002 

F. aquilonia Sweden 

Least 

concern 2020 IUCN SLU Artdatabanken. 2020 

F. aquilonia Germany endangered 1998 

non 

IUCN Binot et al. 1998 

F. aquilonia 

Germany 

(Bayern) endangered 2003 

non 

IUCN Schnittler et al. 1994 

F. pratensis Poland 

Near 

threatened 2002 IUCN Glowacinski et al. 2002 

F. pratensis Sweden 

Least 

concern 2020 IUCN SLU Artdatabanken. 2020 

F. pratensis Germany declining 1998 

non 

IUCN Binot et al. 1998 

F. pratensis 

Germany 

(Bayern) endangered 2003 

non 

IUCN Schnittler et al. 1994 

F. pratensis UK 

Endangered: 

extinct on 

the 

mainland; 

occurs on 

Channel 

Islands 1991 

modified 

IUCN Falk 1991 

F. pratensis 

Germany 

(Nordrhein

-

Westfalen) endangered 2011 

non 

IUCN https://www.lanuv.nrw.de/ 

F. pratensis 

Switzerlan

d vulnerable 1994 

non 

IUCN Agosti & Cherix 1994 

F. 

paralugubri

s Germany endangered 1998 

non 

IUCN Binot et al. 1998 

F. polyctena Poland 

Near 

threatened 2002 IUCN Glowacinski et al. 2002 

F. polyctena Sweden Least 2020 IUCN SLU Artdatabanken. 2020 



Analysis of introduced and autochthonous populations of the red wood ant Formica paralugubris: ecological interactions and conservation issues 
PhD thesis Paride Balzani 

171 
 

concern 

F. polyctena Germany declining 1998 

non 

IUCN Binot et al. 1998 

F. polyctena 

Germany 

(Bayern) declining 2003 

non 

IUCN Schnittler et al. 1994 

F. polyctena 

Germany 

(Nordrhein

-

Westfalen) endangered 2011 

non 

IUCN https://www.lanuv.nrw.de/ 

F. polyctena 

Switzerlan

d 

near 

threatened 1994 

non 

IUCN Agosti & Cherix 1994 

F. uralensis Poland endangered 2002 IUCN Glowacinski et al. 2002 

F. uralensis Sweden 

Least 

concern 2020 IUCN SLU Artdatabanken. 2020 

F. uralensis Germany 

critically 

endangered 1998 

non 

IUCN Binot et al. 1998 

F. uralensis 

Switzerlan

d extinct 1994 

non 

IUCN Agosti & Cherix 1994 

F. 

truncorum Poland 

Near 

threatened 2002 IUCN Glowacinski et al. 2002 

F. 

truncorum Sweden 

Least 

concern 2020 IUCN SLU Artdatabanken. 2020 

F. 

truncorum Germany endangered 1998 

non 

IUCN Binot et al. 1998 

F. 

truncorum 

Germany 

(Bayern) 

critically 

endangered 2003 

non 

IUCN Schnittler et al. 1994 

F. 

truncorum 

Germany 

(Nordrhein

-

Westfalen) 

critically 

endangered 2011 

non 

IUCN https://www.lanuv.nrw.de/ 

F. 

truncorum 

Switzerlan

d endangered 1994 

non 

IUCN Agosti & Cherix 1994 

F. aquilonia Estonia Least 2017 IUCN https://elurikkus.ee/lists/public/speciesLists/ 
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concern 

F lugubris Estonia 

Least 

concern 2017 IUCN https://elurikkus.ee/lists/public/speciesLists/ 

F. polyctena Estonia 

Least 

concern 2017 IUCN https://elurikkus.ee/lists/public/speciesLists/ 

F. pratensis Estonia 

Least 

concern 2017 IUCN https://elurikkus.ee/lists/public/speciesLists/  

F. rufa Estonia 

Least 

concern 2017 IUCN https://elurikkus.ee/lists/public/speciesLists/  

F. lugubris UK 

Not a species 

of 

conservation 

concern 1991 

modified 

IUCN  Falk 1991 

F. lugubris Ireland 

In serious 

decline 2014 

non 

IUCN Breen 2014  

F. aquilonia Ireland 

Not formally 

assessed: 

only one 

population 

remains 2014 

non 

IUCN Breen 2014  

F. aquilonia UK Scarce (Nb) 1991 

modified 

IUCN  Falk 1991 

F. polyctena 

Belgium 

(Flanders) vulnerable 2003 

non 

IUCN Dekoninck et al. 2005 

F. pratensis 

Belgium 

(Flanders) vulnerable 2003 

non 

IUCN Dekoninck et al. 2005 

F. rufa 

Belgium 

(Flanders) vulnerable 2003 

non 

IUCN Dekoninck et al. 2005 

F. rufa x 

polyctena 

Belgium 

(Flanders) 

indeterminat

e 2003 

non 

IUCN Dekoninck et al. 2005 

F. aquilonia Czechia 

near 

threatened 2017  Hejda et al. 2017 

F. aquilonia Finland 

Least 

concern 2019 IUCN Paukkunen et al. 2019 

https://elurikkus.ee/lists/public/speciesLists/
https://elurikkus.ee/lists/public/speciesLists/
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F. polyctena Finland 

Least 

concern 2019 IUCN Paukkunen et al. 2019 

F. rufa Finland 

Least 

concern 2019 IUCN Paukkunen et al. 2019 

F. lugubris Finland 

Least 

concern 2019 IUCN Paukkunen et al. 2019 

F. pratensis Finland 

Least 

concern 2019 IUCN Paukkunen et al. 2019 

F. 

truncorum Finland 

Least 

concern 2019 IUCN Paukkunen et al. 2019 

F. uralensis Finland 

Least 

concern 2019 IUCN Paukkunen et al. 2019 

F. aquilonia Norway 

Least 

concern 2021 IUCN 

https://www.artsdatabanken.no/rodlisteforarter/202

1 

F. polyctena Norway 

Least 

concern 2021 IUCN 

https://www.artsdatabanken.no/rodlisteforarter/202

1 

F. rufa Norway 

Least 

concern 2021 IUCN 

https://www.artsdatabanken.no/rodlisteforarter/202

1 

F. lugubris Norway 

Least 

concern 2021 IUCN 

https://www.artsdatabanken.no/rodlisteforarter/202

1 

F. pratensis Norway 

Least 

concern 2021 IUCN 

https://www.artsdatabanken.no/rodlisteforarter/202

1 

F. 

truncorum Norway 

Least 

concern 2021 IUCN 

https://www.artsdatabanken.no/rodlisteforarter/202

1 

F. uralensis Norway 

Near 

threatened 2021 IUCN 

https://www.artsdatabanken.no/rodlisteforarter/202

1 
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Table S2. Protection laws and regulations. 

Country Reference 

Austria NE NSchG, Nature Conservation Act 2000 

Estonia Regulations of the Minister of the Environment of the Republic of Estonia n. 51, RTL 2004, 69, 1134 

Hungary Decree 13/2001 v. 9, art. 2 and annex 5 

Belgium Royal Law Decree 22 September 1980; 

Annex IIIb, M.B. 11th September 1973 and subsequent updates 

Flanders: Forest decree and the Nature decree (annex II, III and IV) 

Brussels: Ordinance for Nature Conservation (annex II.2 and II.3) 

Wallonia: Nature conservation law (annex V) and Directive 2009/147 on the protection of birds 

governs the protection of a series of species in Walloon (annexes I to VII) 

United Kingdom Biodiversity Action Plan 2007, covers Formica pratensis but not Formica rufa, F. lugubris or F. 

aquilonia which have no general protected status in the UK. 

Note however that Formicoxenus nitidulus is a BAP species, and as it is dependent on F. rufa group 

species, this arguably extends some protection to them. 

Scotland (in addition to UK 

regulations above) 

Formicoxenus nitidulus is on the Scottish Biodiversity List but none of the F. rufa group wood ants 

are 

Northern Ireland (in addition 

to UK regulations above) 

F. aquilonia is a Northern Ireland Priority Species (Wildlife and Natural Environment Act (Northern 

Ireland) 2011) 

Ireland Red Lists covering the island of Ireland do not yet cover ants, so there is no protection beyond EU 

regulations (Formica lugubris listed as a “special concern” in the EU Habitats Directive) 

Switzerland Federal law for the protection of nature and landscape, LPN, RS 451, 1966; 

OPN, RO 1991-249, 16th January 1991, updated 1st June 2017 
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Germany BNatSchG of 29th July 2009 -Federal Official Gazette I pag. 2542 / FNA 791-9 

Bundesartenschutzverordnung (16. Februar 2005 (BGBl. I S. 258, ber. S. 896 / FNA 791-8-1) Annex 

1 lists RWA (except for F. sanguinea) as especially protected species. 

Czechia Law about protection nature and landscape 114/1992 Coll give general regulation about protected 

species. Particular species are listed in declaration  395/1992 Col, here Formica spp. are mentioned as 

treaten 

Poland Regulation of the Minister of Environment dated December 16, 2016 on the protected species of 

animals. J. Laws 2016. 

Finland Law for the protection of nature 20.12.2996/1096 (last updates September 3 2021) 
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Tables S3. Protection laws of the Italian Regions. 

Area Region Law Nr 

Alpine 

area 

Veneto L.R. 53/1974 

Friuli Venezia-Giulia L.R. 34/1981 

Liguria L.R. 4/1999; L.R. 28/2009 

Valle d’Aosta L.R. 16/1977 

Autonomous province of Trento L.P. 11/2007 

Piedmont L.R. 32/1982 

Lombardy L.R. 33/1977; L.R. 10/2008 

Autonomous province of 

Bolzano 

L.P. 27/1973; L.P. 6/2010 

Apennines Umbria R.R. 1/1981 (abrogated in 2003); L.R. 28/2001 

Lazio L.R. 4/1999; R.R. 7/2005 

Campania R.R. 3/2017 

Tuscany D.P.G.R. 48/R/2003, Tuscany Forest regulation 

Emilia Romagna General Prescriptions and Forestry Police, approved by regional resolution 

182/1995 
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