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Main introduction 

 

Water management will soon be one of the most important issues on the international political agenda. 

Although various institutional efforts at international level have been undertaken in order to highlight 

how critical the management of water resources at global level is, water seems to be marginal in 

economics research - considering it not as crucial as other environmental topics such as air pollution, 

waste management, or climate change. The reasons why the debate over water was not of primary interest 

to economists are not easily understandable as water is a basic pillar of life. This was pointed out by 

Adam Smith through the diamond-water paradox, according to which  

 

” Even though life cannot exist without water and can easily exist without diamonds, diamonds are, 

pound for pound, vastly more valuable than water. “  

 

The lack of consideration of water in the economic literature is emblematic, and  can be explained by: its 

intrinsic characteristics, such as its mutability of state (solid, liquid, and gas); its non-transportability as 

a classical commodity; and, its different forms of being both a private and a public good with different 

levels of rivalry, which make water very difficult to be classified as a standard economic good (Garrick 

et al., 2020).  

Although scarcity is one of the key concepts on which economic science is founded, empirical works on 

water economics are still scarce in comparison to other topics of environmental and resource economics 

literature. One of the main reasons for the poor economic debate over water can be related to the general 

scarcity of data on water, and the significant difficulties in applying appropriate conventional empirical 

economic models. Other reasons could be hidden by the disconnection, in developed countries, between 

the high level of water needs satisfactions and users imaginary over real water endowments and water 

availabilities, which might lead to a false perception of an ever-lasting water abundancy (Praskievicz, 

2019). Last (but not least), another explanation may be connected to some kind of political fear towards 

economists, seen as creatures able to commodify everything, even a recognized human right as water. 

This may have created a sort of “taboo” over water issues in economics.  

In any case, water scarcity is endangering many areas of the world, affecting almost four billion people 

globally, and in the coming decades water-related problems will become one of the most crucial 

challenges for human development, environmental conservation, and food security (Unesco et al., 2019).  

Climate change will exacerbate this difficult situation, adding important unexpected stress on water 

resources and reducing its availability for both drinking and food production, with detrimental effects on 

economic growth and social stability. Moreover, increasing population, urbanization, and global 

affluence will converge in an exponential growth of water demand in a world that will face an even more 

erratic precipitation and variability of water supply. This will affect the global socio-economic and 

environmental systems in an unexpected way, because of the strong nexus which links water resources 

to energy and food production, health, rural and urban settlements, and natural ecosystems (World Bank, 

2016). Price spikes as well as unexpected weather shocks such as droughts and floods will 

disproportionately impact the fragile components of societies, exacerbating the already existent 

inequities and social differences between rich and poor, potentially leading to mass migrations, strong 

social conflicts, and political turbulences (Homer-Dixon, 1999).  

Agriculture is one of the biggest drivers of water diversion and water abstraction, which around the globe 

is accounted to be on average 70% of the total water withdrawals. Moreover, agricultural activities are 

one of the heaviest sources of pollution and contamination of water resources, due to extractive and 
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industrial practices used as a main paradigm of rural development since the green revolution of the 

Sixties. A focus of socio-economic research activities on agricultural water management is therefore 

crucial, as this sector is the main nexus which links water with food-health-environment-energy issues. 

 

The Mediterranean basin is one of the most vulnerable areas in terms of water scarcity, while at the same 

time being one of the most agricultural productive areas of the world. With a high level of probability, 

the changes in temperatures and precipitation levels will increase water stresses, thus hampering 

agricultural production and food security. In spite of a relative abundance of precipitations compared to 

other Mediterranean countries, Italy is characterized by a high-level annual precipitation, but with strong 

regional differences in terms of historical water scarcity, water management policies, and agricultural 

structure. Moreover, at national level, increased variability in rainfall and growing temperatures have 

been recorded in the last decades, increasing pressures on water resources for agricultural activities 

(Laureti et al., 2020). The latitudinal diversity within Italy in terms of geographic, climatic, socio-

economic and productive contexts make Italy a good candidate for being a strategic geographical area of 

study for the whole Mediterranean basin, although Italian case studies have been only seldom tackled 

before.  

Policies and economics are essential for the design of adequate interventions in the agricultural sector, 

well-suited to support structural changes towards more sustainable water management for guaranteeing 

food production, rural development, the safeguard of ecosystems, and the resilience of the farming sector 

to climatic shocks at the same time. The European Water Framework Directive (WFD) was a first step 

toward a structural change in water management in Europe which envisaged the transition of agriculture 

towards a more sustainable production model as a cornerstone for improving the conditions of European 

water resources. Even though many steps have been covered, the finish line is still far away, and the time 

for structural changes is running over.  

Many open questions in agricultural water economics literature still persist, predominantly because of 

the scarcity of data available for strong empirical analysis. One of the main issues which are debated in 

the literature are related to irrigation technological innovations adoption from a farmer perspective. Some 

studies have analysed the main socio-economic and environmental determinants of adoption, but only to 

homogenous delimited areas, disregarding the intensity of adoption in terms of irrigated land. The 

effectiveness of sustainable irrigation adoption in terms of economic benefits for adopters has not been 

widely explored. 

Considering these aspects, the first and the second main research questions of this dissertation are: 

 

Research question 1.  

What are the main determinants of sustainable irrigation technology adoption of Italian farmers at 

national level? 

  

Research question 2. 

What are the productive gains of farmers in adopting sustainable irrigation technologies?  

 

Another important aspect, too often overlooked in water economics, is the analysis of water management 

policies and their effectiveness in guiding sustainable and conservation behaviours of farmers. 

Specifically, opinions are polarized over pricing policies effectiveness in driving agricultural water 

savings, as there is not a clear agreement over farmers’ water demand elasticity; which involve 

discordances around whether farmers are responsive to price incentives as in general neoclassical 

economics framework (Scheierling et al., 2006). This implies uncertainties and high potential margins 
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of error for policy makers in setting suitable pricing policies (either market, taxes, or tariffs) towards 

water conservation goals. 

In light of these aspects, the third and the fourth main research questions of this dissertation are: 

 

Research question 3.  

What is the short term water demand elasticity to price of Italian farmers? 

 

Research question 4. 

Can the use of pricing policies cause a reduction of water use in agriculture? 

 

This PhD thesis aims at contributing with in-depth empirical analysis to the existing water economics 

literature and to the policy debate on water conservation in agriculture using Italy as a case study. The 

dissertation is composed of four interconnected empirical essays on water economics in Italy. The papers 

are based on the analysis of vast observational microeconomic datasets at national and provincial level.  

In all the papers farm data have been combined with the main climatic variables such as accumulated 

precipitation, reference evapotranspiration, minimum and maximum temperatures, and aridity index.  

The papers are focused mainly on two topics of water management in agriculture from the demand side. 

The first is the adoption of water conservation and saving technologies (WCST), studying the main 

determinants of adoption and the impacts in terms of production due to WCST. The second topic is linked 

to agricultural water conservation policies, and the reaction of farmers to pricing water on water 

consumption. Both topics are extremely important as there are not many other studies covering these 

issues using panel data econometric analysis at vast scale.  

 

The evidence from the findings of this thesis can be of interest for both academics and policymakers, as 

they highlight some critical points in the water economics debate: the effectiveness of water pricing for 

incentivizing farmers to adopt water conservation strategies, a detailed measure of famers’ water demand 

elasticity to price, the determinants and the intensity of WCST adoption, and the gains in terms of 

production due to the adoption of WCST. 

The first paper “What are the factors driving the adoption and intensity of sustainable irrigation 

technologies in Italy?” authored with Prof. Sabrina Auci and Prof. Massimiliano Mazzanti analyses the 

main determinants of the intensity of WCST adoption at national level using farm panel data analysis 

combining binary choice and tobit models, to identify the main factors which could be used by 

policymakers to boost a sustainable transition through a wide use of WCST. 

The second paper “Innovation in Irrigation Technologies for Sustainable Agriculture: An Endogenous 

Switching Analysis on Italian Farms’ Land Productivity” written with Prof. Sabrina Auci is a novel 

application of the endogenous switching regression model, with the objective of considering differences 

in productive outcomes due to the adoption of WCST avoiding selection biases. This study analyses 

whether the gains in productive terms induced by the use of WCST could furtherly induce adoption of 

sustainable technologies considering it as a win-win solution for both famers and policymakers, as they 

result in higher profits and water saving at the same time.  

The third paper “Water Demand Elasticity in agriculture: the case of Emilia Centrale Irrigation Water 

Districts” authored with Prof. Julio Berbel analyses the elasticity of farmers’ water demand as a proxy 

of reactivity to water consumption to prices. The topic is widely debated in the literature and this 

contribution can be important as our analysis offers an application on different crops, technologies, and 

combinations of them with interesting empirical results. 
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The fourth paper “The impact of volumetric water tariffs in the irrigated agriculture in Northern Italy” 

authored with Prof. Julio Berbel studies the effect of the introduction of a volumetric tariff on farmers, 

analysing their change in water consumption. This study uses a novel application of the difference in 

differences method, adapting it to the empirical situation under analysis. The results of the study provide 

evidence of the effectiveness of water tariffs linked to the reduced farmers’ water consumption even with 

small amount of charges. This empirical application demonstrates that famers react to water prices 

changing from a free public good behaviour to a private commodity inserting water in their cost 

functions. 

 

These analyses are among the first studies in agricultural water economics literature with a strong 

microeconomic framework using observational data at farm level. To the best of my knowledge, no other 

in-depth empirical microeconomic works (using panel data econometrics) have been developed at 

national or regional level in Italy or in other Mediterranean countries before these studies. Moreover, this 

dissertation contributes to economic literature through the application of two novel empirical methods 

(Endogenous Switching Regression and Inverse Difference in differences) which can be replied in other 

policy analyses considering other topics.  

The findings of this dissertation, even if are focused on just one nation, can be easily replicated in other 

countries if similar data are available. The results of this research can be easily translated into practical 

policy suggestions for institutions and public managers contributing to the international debate on water 

resource sustainable management. 
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Abstract 

This paper analyses the determinants of Italian farmers’ adoption and intensity of sustainable irrigation 

technologies such as microirrigation (drips and sprinklers) and subirrigation. To improve farmers’ water 

management, promoting incentivization for climate change adaptation should be encouraged. Italy, like 

other Mediterranean countries, has suffered the most from an increase in the frequency and intensity of 

droughts, higher temperatures and less precipitation. By applying innovative irrigation systems, water 

scarcity and water stress may be monitored if not overcome. Accurate analyses of the determinants of 

the adoption and intensity of these techniques are still scarce. Filling this gap, this study uses a 

microeconomic approach that combines farm data and climatic variables of Italian farmers. Based on an 

unbalanced panel dataset for the period 2012-2016, the determinants of a farmer’s decision to adopt 

irrigation-saving technology are estimated by applying logit, probit and correlated random effects probit 

models, while tobit and correlated random effects tobit models are used for estimating the intensity of 

adoption. Our main findings confirm that farm size, crop typology, land tenure, age, insurance against 

farming risks, internal water sources, geographical and climate characteristics are all relevant factors that 

influence the choice of sustainable irrigation technology adoption as well as adoption intensity. 

 

Keywords: Water conservation and saving technologies; Irrigation technologies; Technology 

adoption; Adaptation to climate change; Italian farmers 

 

 

mailto:sabrina.auci@unipa.it
mailto:massimiliano.mazzanti@unife.it


 

 

6 

 

 

1. Introduction 

Water scarcity and sustainable water management describe two crucial issues that 

humankind will face in the future (Wheeler et al., 2015). Water scarcity affects approximately four 

billion people and will represent the main shortcoming for many developing countries during 

sustainable development (De Angelis et al., 2017; Hoekstra and Mekonnen, 2016). Among all the 

exogenous problems, climate change (CC) and population growth are putting extraordinary 

pressures on water resources in arid and semiarid regions, which are already strongly affected by 

anthropic activities (Fischer et al., 2007). Water resource depletion is deeply related to agricultural 

activities, which may exacerbate global food security and social stability issues (FAO, 2012; 

Alexandratos and Bruinsma, 2012 FAO, IFAD and WFP, 2015). 

The increasing global agricultural water demand is mainly due to intensive irrigation and the 

mass production of crops. In southern Europe, agriculture is responsible for almost 80% of 

freshwater withdrawals (Alcon et al. 2011). In the Mediterranean Basin, which is characterized by 

erratic and inconstant climates, water reservoirs have declined in quantity and quality, causing 

important environmental damage in recent years (AquaStat, 2018; Tilman et al., 2002; Fischer et 

al., 2007). Climate variability involving more frequent, extreme, and adverse climate conditions 

may increase the water demand for irrigation and farmers’ needs (Huang et al., 2017; Lu et al., 

2019) and exacerbate water shortages within water basins due to increasing demand peaks in 

drought periods (Mestre-Sanchís and Feijóo-Bello, 2009; Olsen and Bindi, 2002). Rising water 

withdrawals may intensify competition among alternative uses such as agricultural and civil 

services, as well as natural needs (Iglesias et al., 2009; Alcon et al. 2011). 

Characterized by low levels of water efficiency, the agricultural sector wastes water 

resources due to evaporation, percolation and runoff losses (FAO, 2011; MEA, 2005). Under water 

scarcity conditions and climate variability, substantial efforts should be devoted to improving 

water efficiency. Crop production efficiency should be achieved with less water use and better 

water management (Chartzoulakisa and Bertaki, 2015). Promoting the adoption of water 

conservation and saving technologies (WCSTs), such as drip irrigation, low-pressure 

microsprinkling and subirrigation, may greatly contribute to reducing agricultural activity impacts 

on water resources in the context of water scarcity and water endowment variability (Green et al., 

1996; Pfeiffer and Lin, 2014; Expósito and Berbel, 2019). 

The ratio between irrigation water requirements and withdrawals is generally very low, 

suggesting a scarce irrigation efficiency. Applying innovative irrigation technologies such as 

WCSTs allows farmers to achieve water management improvements (Alcon et al., 2014; Frenken 

and Gillet, 2012; Chartzoulakisa and Bertaki, 2015) mainly through a reduction in the number of 

water applications that are poured directly onto crop roots, which lessens water stress (Pereira, et 
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al. 2002; Schuck et al., 2005; Dasberg and Or, 1999); a decrease in the amount of water per unit 

of time consumed by crops that now receive with higher precision the exact amount of water 

required; and finally, a reduction of water loss due to less evapotranspiration (Taylor and 

Zilberman, 2017; Wheeler et al., 2010). The use of WCSTs may alleviate crop diseases due to 

over-irrigation, salinity and erosion effects (Skaggs, 2001; Alcon et al., 2019), thereby enhancing 

water productivity, i.e., the capability of producing more value with less water (Expósito and 

Berbel, 2019). 

The adoption of a well-defined innovative irrigation system is related not only to interactions 

among institutions, scientists and farmers but also to how much knowledge and technology is 

spread in the economy (Horst, 1998; Turral et al., 2010). According to production theory, to 

maximize their own benefits, farmers should choose the right amount of production inputs based 

on their future expected values (Fleischer et al., 2011). Therefore, a farmer’s choice should include 

the best adaptation strategies for climate change. Deciding to adopt new technology is mainly 

related to expectations about future outcomes, as well as perceptions and information received. 

Therefore, by considering different scenarios of climate change, a farmer may gain the maximum 

benefits, thereby lessening the exploitation of natural resources (Reidsma et al., 2010). Farmers’ 

decisions regarding production and technology adoption may have an effect on natural resource 

management. Thus, analysing the determinants of a farmer’s choices related to adopting 

sustainable water technologies may be important to prevent and mitigate water scarcity and 

droughts, as defined by the European Union (EU)’s Strategy for Water Scarcity and Droughts 

policy, whose main aim is to ensure access to good quality water in sufficient quantities. This may 

contribute to developing a water-efficient and water-saving economy. 

While a relevant stream of literature on irrigation systems is still present (Caswell and 

Zilberman, 1985; Alcon et al. 2011; Alcon et al., 2014; Taylor and Zilberman, 2017; Alcon et al. 

2019), a stream of WCST adoption literature has emerged in recent years (Shrestha and 

Gopalakrishnan 1993; Expósito and Berbel, 2019). Due to data availability, econometric studies 

are mainly based on case studies of specific sub-regional areas in developing countries (Skaggs, 

2001; Shah et al. 2013; Getacher et al., 2014) and developed countries (Caswell and Zilberman, 

1985; Expósito and Berbel, 2019) or on cross-sectional analyses (Shrestha and Gopalakrishnan, 

1993; Kondouri et al 2006). However, both case studies and cross-sectional analyses present some 

drawbacks, such as not considering heterogeneity or endogeneity problems (Greene, 2003). 

This paper fills this gap by collecting a detailed dataset at the farmer level for a well-

developed country, namely, Italy. Thus far, this analysis represents a first attempt to examine the 

farm-level innovation drivers of WCST adoption and intensity. The determinants of farmers’ 

decisions related to adopting water-saving technologies are estimated by applying three binary 

response models (logit, probit and correlated random effects probit models), while tobit and 
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correlated random effects tobit models are used for estimating the intensity of adoption. Accurate 

analyses on the determinants of farmers’ adoption and intensity of innovative irrigation techniques 

are still scarce even though the adoption of sustainable irrigation systems can optimize water 

requirements. Farm-level data representing 13,592 farmers for the period of 2012-2016 are merged 

with climatic indicators. This combined dataset allows us to use panel data methodologies to 

control for unobserved heterogeneity and endogeneity. The point of deepening the understanding 

of farmers’ WCST adoption choices in Italy is mainly related to the diversified orographic and 

microclimatic areas. Dissimilarities among farmers are principally due to geographical, 

socioeconomic, productive, and climatic factors. All these factors make Italy an interesting case 

study within the Mediterranean Basin that shares similar climatic conditions and longitudinal 

positions. 

As found in several previous studies that focused primarily on the determinants of micro-

irrigation system adoption, socioeconomic and geographical factors contribute to affecting 

farmers’ decisions to adopt WCSTs. To these factors, we add other determinants, such as 

environmental and climatic characteristics, which are selected on the basis of economic theory and 

researchers’ perceptions (see Mango et al., 2018 for a review). Moreover, we also contribute to the 

literature by analysing those factors that may affect the intense distribution of WCSTs over the 

total amount of irrigated land. Due to a lack of detailed data, very few analyses have considered 

the intensity of irrigation technology adoption and its drivers (Arslan e al. 2014; Pokhrel et al., 

2018). 

The paper is organized as follows. Section 2 focuses on the literature regarding the 

technology adoption of WCSTs for irrigation. Section 3 develops background information on the 

Italian irrigation context. In Section 4, the empirical framework and data description are presented, 

while in Section 5, the results are shown and discussed. Finally, in Section 6, some main 

conclusions with policy implications are organized. 

 

2. WCST adoption for sustainable irrigation 

Technological innovation can be considered an improvement over past technologies and 

techniques used within a productive and socio-economic process with the aim of improving 

efficiency, effectiveness and higher values of outcomes. The innovation decision-making process 

can be defined as a dynamic process in which an economic agent (i.e., a farmer) passes through 

five steps (knowledge, persuasion, decision, implementation and confirmation) (Rogers, 1971). 

Starting from a disequilibrium in which a farmer does not efficiently use the available 

resources means that information on new innovations is used to reach a new equilibrium. In a long-
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run equilibrium, the final adoption consists of deciding to use the new innovative technology (or 

process) after having considered all the potentials and drawbacks (Feder et al., 1985). 

A relevant literature on technology adoption has emerged since the 1960s. Studies have 

explored the distinctive factors that may influence the decision to implement innovations (Jaffe et 

al. 2002). A growing branch of this literature has focused on the agricultural determinants of 

adopting innovation, such as agroecological constraints, farmers’ characteristics, land features, 

seed supply constraints, risk preferences, or traditional values (Koundouri et al. 2006; Pannell et 

al, 2006; Arslan and Taylor, 2009; Arslan et al., 2014). This topic has started to gain interest, 

especially in the study of developing countries (among others Feder et al., 1985; Neupane et al., 

2003; Sheikh et al., 2003; He et al., 2007; Arslan et al. 2014; Mango et al. 2018), where the focus 

is on the causes that determine the success or failure of agricultural innovations such as improved 

fertilizers, ploughing techniques and pest control (Feder and Umali, 1993; Baidu-Forson, 1999; 

Somda et al., 2002; Herath and Takeya, 2003). 

Within the technology adoption literature, a specific branch is related to water technology 

adoption, which aims to improve water management and water conservation by applying both 

theoretical and empirical approaches (Taylor and Zilberman, 2017). In the empirical analyses, the 

focus on the main factors that may influence the adoption of WCSTs has been based on binary 

response models such as logit, probit and multinomial logit models. These methodologies are used 

to understand the probability of the adoption of a specific technology over the set of several 

technologies that are available. Very few studies (Arslan et al., 2014; Pokhrel et al., 2018) have 

used nested binary models, fractional methods or tobit models to study the intensity of adoption in 

terms of land under a specific technology. In Table 1, the main studies on WCST adoption are 

summarized, highlighting the methods applied in their analyses. 

Among the seminal works on this field, we may recall the analyses of Caswell and Zilberman 

(1985), Shresta and Gopalakrishnan (1993), and Green et al. (1996), which focus mainly on farm 

production features (such as crop type, field size, expected yields), geographical aspects (such as 

type of soil, slope) and water resource characteristics (such as water sources, water price and 

irrigated land size). Subsequently, Skaggs (2001), Moreno and Sunding (2005), Schuck et al. 

(2005) and Foltz (2003) introduce farmers’ characteristics such as age, education, years of 

experience, in-farm and off-farm income, expectations of water availability, access to information 

and extension services. More recently, other studies have enlarged the initial framework by adding 

further interesting factors such as electricity costs (Namara et al., 2007; Wheeler et al., 2010; Singh 

et al., 2015), farming production risks (Koundouri, 2006), social factors—being part of farmers’ 

organizations, the imitation of adopting WCSTs by other colleagues, social networks, etc.—

(Alcon, 2011; Salazar and Rand, 2016; Hunecke et al.) and mechanization levels within farms 

(Mohammadzadeh et al., 2014). The variables of financial aspects (Alcon, 2011), governmental 

incentives (Huang et al., 2017) and water measuring instruments used (Hunecke et al., 2017) have 
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also been considered. All these abovementioned studies substantially agree in confirming that the 

main determinants of adoption are socioeconomic, technical, geographical and productive factors, 

even though the results are contradictory for some factors (Koundouri et al., 2006). 

Finally, further studies have introduced climatic variables as having an effect on WCST 

adoption choice. Among the indicators used to capture these climate effects, we may recall 

evapotranspiration, rainfall, temperature (Negri and Brooks, 1990; Huang et al., 2015), frost-free 

days (Negri and Brooks, 1990; Moreno and Sunding, 2005) and drought aridity events (Schuck et 

al., 2005; Kondouri et al. 2006; Genius et al., 2014; Olen et al., 2015; Knapp and Huang, 2017). 

Moreover, Frisvold and Deva (2013) and Knapp and Huang (2017), which focus on climate and 

irrigation technology adoption, introduce climatic variables considering both different time spans 

(from 5 to 40 years) and the variations and intensities of climatic events. 

The majority of the abovementioned studies, with just a few exceptions, rely on one-year 

case studies based on surveys related to case-specific productive agricultural areas. The use of 

cross-sectional data confines the analysis to the explanation of why a farmer chooses to adopt new 

technology in the particular period considered. This approach may reduce the reliability of 

theoretical dynamic models that focus mainly on farmers’ dynamic processes for choosing 

technology adoption on different dates or for excluding time-related elements such as learning by 

doing, observation and information collection, productive strategy changes, macroeconomic 

events and the individual heterogeneity of farmers (Koundouri et al., 2006). By providing more 

robust and consistent estimates, the use of panel data models can substantially improve the results 

of an analysis by controlling for a dynamic pattern that is either endogenous or exogenous, the 

effects of time-specific events and unobserved individual effects (Greene, 2003). Only a few 

studies have used panel data in developing either continuous, fractional, multichoice or binary 

dependent variable models (Table 1). Moreover, most of the studies conducted in the WCST 

adoption literature have referred to countries and areas with important water problems, such as 

Israel, Iran, Greece, Spain, India, Tunisia, Chile, African countries, the United States and China 

(see Table 1 for references). 

To the best of our knowledge, there are no relevant studies in this literature on Italian 

farmers. Italy represents an interesting case study since its agricultural production is mainly based 

on irrigation. The only studies that consider irrigation water issues are based on a different 

empirical setting. Irrigation water represents a relevant input for a producer’s optimization problem 

in a specific zone of southwest Sardinia (Dono et al., 2011) or a strategic decision made under 

climate-related risk perception for all Italian farmers (Bozzola, 2014). As found in the analysis of 

Pino et al. (2017), which is based on a survey dataset, psychological aspects, such as favourable 

attitudes towards water-saving measures and farmers’ innovativeness, or orientations of 

environmental associations may positively influence the adoption of water-saving measures. A 

more exhaustive analysis is that of Capitanio et al. (2015), who consider the effects of climate 
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change and irrigation decisions over the Italian agriculture sector. Using the FADN dataset and 

applying a panel procedure, Capitanio et al. (2015) find that irrigated land (compared to rainfed 

land) is an important factor in producing agricultural income. Even if this study is interesting, it 

does not consider which are the main determinants for irrigation adoption. Thus, in the Italian 

agricultural sector, a deeper investigation of the drivers of WCST adoption is needed. 

 

Table 1. Main studies on WCST adoption. 

Authors Year Area Country Method 

Caswell and Zilberman 1985 
San Joaquim Valley 

(California) 
United States Multinomial logit 

Shrestha and 

Gopalakirishnan 
1993 Hawaii United States Probit model  

Green et al. 1996 
San Joaquim Valley 

(California) 
United States Multinomial logit 

Skaggs  2001 New Mexico United States Logit model  

Foltz 2003 Cap Bon Tunisia Probit model 

Shuck 2005 Colorado United States Logit and multinomial logit 

Moreno and Sunding 2005 Kern County (California) United States Nested logit model 

Namara et al. 2007 
Gujarat and Maharashtra 

regions  
India Logit model  

Koundouri et al. 2007 Crete Island Greece  Probit model 

Wheeler et al. 2010 Alberta Canada Probit model 

Alcon et al. 2011 Campo de Cartagena Spain Duration analysis 

Mohammadzadeh et al. 2014 Urmia Lake Iran Logit model and ordinal logistic model 

Singh et al. 2015 Dahod district (Gujarat) India Logit model  

Salazar and Rand 2016 All regions Chile 
Probit model with sample selection and 

multinomial probit 

Huang et al. 2017 Arkansas United States Logit and multinomial logit 

Knapp and Huang 2017 
Arkansas, Mississippi, 

Louisiana 
United States FE OLS regression 

Hunecke et al.  2017 
O'Higgins and Maule 

regions 
Chile Partial least squares -SEM model 

Mango et al. 2018 Chinyanja Triangle 
Zambia, Malawi, 

Mozambique 
Logistic model and OLS 

Pokhrel et al. 2018 Various states United States 
Probit model and multivariate fractional 

regression model 

Source: Authors’ elaboration 
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3. Water use in the agriculture sector in Italy 

The issuing of European environmental directives has improved the Italian environmental 

legislation and institutional framework on water quality and use (Massarutto, 1999). In 2000, the 

European Union issued the Water Framework Directive (WFD) n. 2000/60/EC, which included 

the Strategy for Water Scarcity & Droughts policy and placed the basis for common sustainable 

water management within all European members. The main objective of this directive consisted 

of improving the quality of European water basins and their use by 2015 (WFD, 2000). The WFD 

particularly pointed out the importance of water conservation in both quantitative and qualitative 

terms and supported water-saving policies to reach a sustainable use of water resources in the long 

term (Zucaro, 2011). The multidimensional approach used in the WFD was based on the relevance 

of the ecosystem for the sustainable management of water (Berbel and Expósito, 2018). 

Italian water policy is coherent with the common legislation, even if some delays in the 

development of an environmental policy put Italy well behind schedule (Massarutto, 1999). 

However, by the end of the selected timeframe, i.e., the year 2015, some European goals of the 

WFD were reached, while others were still far from being realized. Thus, relevant gaps must be 

filled for both water pollution and water withdrawals. For example, in many Mediterranean 

countries, water extractions persist at a higher level with respect to their natural rate of renovation 

(WFD Report, 2015; Berbel and Expósito, 2018). In the future, the continued lack of proper water 

management based on an efficient allocation of water endowments within agricultural activities 

would cause the failure of national and supranational water policies in achieving European 

sustainable development goals (Sauer et al., 2010; FAO, 2017; Bazzani et al., 2005). Since the 

1970s, Italy has organized each region as being responsible for their own water abstractions and 

water policies. When a basin belongs to more than two regions, a basin authority has been 

established as the competent authority. For water quality controls, regional environmental agencies 

(ARPAs) have been placed in charge only recently (Massarutto, 1999). 

In Europe, differences in water use withdrawals and water availability are substantial among 

countries. Southern countries’ levels of water withdrawals are higher (60% of total water 

withdrawals) than those of northern countries, which exploit water resources mainly for energy 

production (Eea, 2009). Moreover, southern European countries present higher levels of water 

scarcity because of their climate variability. A forecasted increase in the frequency of drought 

spells and a reduction in precipitation frequency and intensity combined with higher temperatures 

have given rise to negative impacts on agricultural yields (Eu, 2011; Euc, 2012). For this reason, 

southern Europe represents an area exposed to climate variability where countries with similar 

geographical and pedoclimatic characteristics share similar problems and challenges related to 

food production and water provisions (Eea, 2018; AWRA, 2018; Milano et al., 2012). The 

Mediterranean Basin is thus highly dependent on water irrigation, and climate variability will 
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definitely affect the agricultural production pattern by influencing both the supply and demand of 

food and increasing economic losses (Olsen and Bindi, 2002; Iglesias et al., 2009). 

Italy, which is one of the major southern European countries, is heavily dependent on water 

demand for irrigation in agricultural production (Eurostat, 2019). After Spain, Italy’s agriculture 

sector represents the second largest consumer of water in Europe; its irrigated land size is equal to 

2.4 million ha of cultivated lands, and 11 million cubic metres is the amount of water it uses for 

irrigation, which represents 4,666 m3/ha on average (Istat, 2010). In Italy, the most water-intensive 

crop is rice (39.8% of total water used), followed by maize (27.9% of total water used), citrus and 

fruits (both 5.5% of total water used) and open-field horticultural crops (5.2% of total water used) 

(Istat, 2010). Italy is also characterized by highly disproportionate volumes of water used among 

macro regions, with the northern regions showing a higher intensity use of irrigation compared to 

that of the central and southern regions (6800 m3/ha compared to 3500 m2/ha, respectively) (Istat, 

2010). These outcomes obviously depend on water consumption, but they also reflects important 

structural and historical differences in production patterns, irrigation systems and geographic 

conditions, which make Italy a highly diversified agricultural water user (Zucaro et al., 2011). In 

northern Italy, the more diffuse irrigation technique is that of using surface water as a source of 

agricultural water mainly distributed through gravity by consortium water basins, whereas the 

central and southern areas of the country are characterized by a reliance on groundwater and 

pressurized distribution (Zucaro et al., 2011; Istat, 2010). 

Regional differences also emerge in agricultural water efficiency, in which the most water-

using regions (in terms of water extracted volume) are the least efficient in terms of total 

production. The most evident examples are those of Lombardy and Piedmont, which are the 

highest agricultural water consumers at 42.2% and 16.6% of the total water withdrawn, 

respectively, with quite a low share of the crop production, 4.4% and 2.9% of the total harvested 

production, respectively (Auci and Vignani, 2020). The majority of the water distribution is made 

using low-efficiency irrigation systems. Approximately 62% of the total water withdrawn is 

distributed using traditional irrigation techniques, such as furrow irrigation (27.2%) and flood 

irrigation (34.8%), whereas sprinkling irrigation represents only 27% of the distribution. In terms 

of land, inefficient irrigation practices account for 79.1% of the irrigated lands, while only 9.6% 

of the total water withdrawn is distributed using an efficient system (such as drip irrigation). The 

land equipped with micro-irrigation systems is approximately 17.5% of the total cultivated land, 

which is mostly distributed in the centre and southern macro areas, especially along the Apennine 

Mountains and the two islands of Sicily and Sardinia (Istat, 2010). 
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4. Empirical strategy and data description 

4.1 The econometric models 

Several studies (among others, Skaggs, 2001; He et al., 2007; Wheeler et al., 2010; 

Afrankhteh, 2014; Singh et al., 2015; Namara et al., 2007; Foltz, 2003; Salazar and Rand, 2016; 

Trinh et al., 2018) have modelled the optimal choice of adopting a new irrigation technology 

system as the probability of farmers adopting or not adopting it. By using a binary discrete 

probability model, such as probit or logit, the actual relationship between farmers’ observed choice 

and some explanatory variables, such as farmers’ characteristics and socioeconomic, territorial and 

climatic factors, can be verified. 

The decision about adopting environmentally friendly technologies by choosing among 

various feasible alternatives has been analysed using cross-sectional data and binary or 

multinomial probability models (Moser and Barrett, 2006; Schuck et al., 2007; Huang et al., 2017; 

Pokhrel et al., 2018) or panel data analysis and correlated random effects probit models (Arslan et 

al., 2014). As suggested by Feder et al. (1985), these two methodologies may capture only whether 

(or not) the adoption decision about the new irrigation technology is made, while not considering 

the intensity of the adoption as measured by the hectares of land dedicated and allocated to this 

innovative technology. In a cross-sectional analysis, Pokhrel et al. (2018) examine farmers’ 

decision to adopt different irrigation technologies in different fractions of land, while in a panel 

data analysis, Arslan et al. (2014) identify which determinants affect farmers’ intensity use of the 

prevalent conservation farming practices in Zambia. For the intensity of adoption estimation, a 

correlated random effects tobit model and a pooled fractional probit model are used (Arslan et al., 

2014; Pokhrel et al., 2018). 

In line with these two last studies, an analysis on adoption and intensity is proposed. First, 

the probability of adopting WCSTs by an Italian farmer is estimated by comparing clustered 

population averaged (PA) logit and probit models with a correlated random effects probit model. 

Second, the intensity of adopting WCSTs when the technology is used is estimated by comparing 

a random effects tobit model with a correlated random effects tobit model to consider censored 

solutions. 

 

4.1.1 Farmers’ Decisions to Adopt WCSTs 

A farmer’s discrete choice of whether to adopt WCSTs is based on a latent variable approach. 

Under the hypothesis of rationality, as in Caswell and Zilberman (1985), a farmer adopts an 

innovation if and only if the expected utility from adopting the new technology is higher than the 

expected utility of not adopting it (Feder et al., 1985; Huang et al., 2017). The latent utility of a 

farmer may be defined as follows: 
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𝑌𝑖𝑡
∗ = 𝑋𝑖𝑡𝛽∗ + 𝑣𝑖 + 𝜀𝑖𝑡

∗  (1) 

 

where 𝑌𝑖𝑡
∗ is the latent net utility of the i-th farmer at time t, 𝑋𝑖𝑡 is a vector of covariates that 

explicate the level of utility derived by the irrigation technology (farms, farmers, financial and 

institutional, water use, and geographical and climatic characteristics), 𝛽∗ is a vector of parameters 

to be estimated including the intercept, 𝜀𝑖𝑡
∗  is a random error uncorrelated with the explanatory 

variables that follows a normal distribution with zero mean and fixed variance, and 𝑣𝑖 represents 

time invariant unobserved effects (Cramer, 2003; Greene, 2003; Wooldridge, 2010). 

However, the utility function is not easily or directly observable. One may only infer the 

unobservable and latent utility function 𝑌𝑖𝑡
∗  of the i-th farmer at time t by modelling the ex-post 

response status on the adoption of WCSTs (Cramer, 2003). Using a binary choice model, a 

farmer’s observable decision on innovation 𝑌𝑖𝑡 is represented by a dummy variable as follows: 

 

𝑌𝑖𝑡 = 1   if     𝑌𝑖𝑡
∗ > 0 

𝑌𝑖𝑡 = 0   if     𝑌𝑖𝑡
∗ ≤ 0 (2) 

 

Therefore, we may predict the likelihood of adopting WCSTs as follows: 

 

𝑃𝑟 (𝑌𝑖𝑡 = 1|𝑋𝑖𝑡, 𝑣𝑖) = 𝜙(𝑋𝑖𝑡, 𝑣𝑖) (3) 

 

where 𝜙(. ) is the distribution function of 𝜀𝑖𝑡
∗  and can be approximated by a logistic distribution or 

a normal distribution function. To estimate the parameters of interest, we focus on the unobserved 

effects logit and probit model. More specifically, random effect logit or probit models are preferred 

since the fixed effects logit or probit models are subject to incidental parameter problems in 

addition to computational difficulties. Thus, the main assumptions required to estimate these 

models are the strict exogeneity of the observed covariates, the conditional independence 

assumption of the predicted variable and the normality assumption (Wooldridge, 2010). These last 

strong assumptions imply independence between 𝑣𝑖 and 𝑋𝑖 and that 𝑣𝑖 has a normal distribution 

as follows: 

 

𝑣𝑖|𝑋𝑖~𝑁(0, 𝜎𝑣
2) (4) 

 

The conditional independence assumption of the predicted variable may be relaxed in two 

different ways. First, when the heterogeneity is averaged out, a population average model is run 

wherein the responses are independent conditional on only 𝑋𝑖. Second, when a particular 

correlation structure between the unobserved effects and the explanatory variables is assumed, a 
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correlated random effects probit model based on the full conditional maximum likelihood 

approach (CMLE) is applied. 

First, to avoid inconsistency in the estimated coefficients due to underestimated standard 

errors, a population averaged clustered approach is applied by using the generalized estimating 

equation (GEE) approach (Neuhaus et al., 1991; Neuhaus, 1992). The population average 

estimation allows no independence of observations among individuals, thus dealing with 

autocorrelation and heteroscedasticity problems. The interpretation of the estimators is related to 

the change in the mean population outcome related to the change in the independent variables 

within the specific cluster of the i-th individual (Hubbard et al., 2010). For the estimation of the 

population average model, clustered-robust standard errors are computed to let vary the standard 

error within clusters and to allow autocorrelation across them but not among them (Ullah and 

Gilles, 2011). 

Second, when a particular correlation structure between the unobserved error and the 

explanatory variables is present, a correlated random effect (CRE) model based on Mundlak’s 

(1978) devises is applied, and some drawbacks of the fixed and random effects models may be 

overcome. The fixed effects model is subject to incidental parameter problems that lead to 

inconsistency of the estimators; at the same time, it does not allow the use of time-invariant 

variables. Conversely, random effects estimation allows time-invariant estimators but is 

constrained to the very strong assumption of no correlation between the error terms and the 

independent variables, which often is not the case, thus leading to bias and inconsistency in the 

estimation results. 

Using Mundlak’s approach, the heterogeneity problem is addressed by relaxing the strict 

assumption of the random effects model (𝐶𝑜𝑣(𝑋, 𝜀) = 0) and allowing unobservables to be 

correlated with some elements of 𝑋𝑖 by assuming the following: 

 

𝑣𝑖|𝑋𝑖~𝑁(𝜓 + 𝑋̅𝑖𝜉, 𝜎𝑎
2) (5) 

 

where 𝑋̅𝑖 is the average of 𝑋𝑖𝑡 in time, and 𝜎𝑎
2 is the variance of 𝑎𝑖 in equation 𝑣𝑖 = 𝜓 + 𝑋̅𝑖𝜉 + 𝑎𝑖. 

From this model, we can consistently estimate the partial effects of the elements of 𝑋𝑖 on the 

response probability at the average value of 𝑣𝑖 (𝑣𝑖= 0). This allows comparing the betas with those 

of the population average model, which represent the partial effects of 𝑋𝑖 on the response 

probability at the average value of 𝑣𝑖. Testing the unconditional normality of 𝑣𝑖 consists of 

verifying whether 𝜉 = 0. We reject this hypothesis in all the specifications and use the CMLE 

approach in modelling adoption decisions (Wooldridge, 2010). 
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4.1.2 Farmers’ Intensity of adoption of WCSTs 

Since farmers can decide to only partially adopt the new technology, the intensity of WCST 

adoption is analysed to determine the relevant drivers. In the presence of a censored dependent 

variable, as in our case, a tobit model is preferred (Tobin, 1958). Since the intensity of adoption is 

represented by the amount of total irrigated land under WCSTs for each i-th farmer and is bounded 

by the range [0, 1], the dependent variable presents pileups at the corners and a continuous 

distribution in between (Arslan et al., 2014). Thus, a two-limit tobit model should be applied, 

meaning that farmers may behave in three different ways, namely, they may irrigate, not irrigate 

or irrigate only a fraction of their cultivated land with the WCSTs (Greene, 2003; Wooldridge, 

2010; Wooldridge, 2013). 

The censored dependent variable assumes the following form: 

 

𝑌𝑖𝑡 = 0 if 𝑌𝑖𝑡
∗ ≤ 0   

𝑌𝑖𝑡 = 𝑌𝑖𝑡
∗ if 0 < 𝑌𝑖𝑡

∗ < 1 (6) 

𝑌𝑖𝑡 = 1 if 𝑌𝑖𝑡
∗ ≥ 1   

 

where the random effects tobit model for panel data can be specified as follows: 

 

𝑌𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝑣𝑖 + 𝜀𝑖𝑡  where 𝜀𝑖𝑡|𝑋𝑖, 𝑣𝑖~ 𝑁[0, 𝜎𝜀
2]  when equation 6 is verified  (7) 

 

where 𝑌𝑖𝑡  is the ratio of the extension of land irrigated with sustainable irrigation technologies of 

the i-th farmer in the t-th period over the total irrigated lands in the same time; 𝛽 represents the 

coefficients to be estimated; 𝑋𝑖𝑡 represents the vectors of explanatory variables such as farms, 

farmers, financial and institutional, water use, and geographical and climatic aspects; 𝑣𝑖 represent 

the unobserved effects considered as random; and 𝜀𝑖𝑡 is the error term with a zero mean and 

constant variance σ2. 

Accounting for the unobserved heterogeneity issue, a two-limit correlated random effect 

(CRE) tobit model, as in Arslan et al. (2014), is applied, allowing the unobservables to be 

correlated with some elements of 𝑋𝑖𝑡. By introducing Mundlak’s devices, the mean in t of the 

explanatory variables, allows unbiased and consistent estimations of the 𝛽 coefficients. The final 

specification of the two-limit CRE tobit model is as follows: 

 

𝑌𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝜓 + 𝑋̅𝑖𝜉 + 𝑎𝑖 + 𝜀𝑖𝑡  

𝜀𝑖𝑡|𝑋𝑖, 𝑎𝑖~ 𝑁[0, 𝜎𝜀
2] (8) 

𝑎𝑖|𝑋𝑖~ 𝑁[0, 𝜎𝑎
2]  
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All the continuous covariates used in the analysis (except for Age) are transformed in 

logarithmic form to smooth their distribution, thereby reducing heteroscedasticity problems 

(Greene, 2003). The estimated coefficients of the tobit model can be interpreted as the partial 

change due by each covariate in the fraction of irrigated land with WCST over the total irrigated. 

For this model, we test the unconditional normality of 𝑣𝑖 and reject the null hypothesis that 𝜉 = 0. 

Thus, we can apply the two-limit CRE tobit model in modelling the intensity of adoption 

(Wooldridge, 2010). 

Finally, all the estimated econometric models include regional dummy variables to consider 

structural regional differences such as production patterns or different policies adopted at regional 

levels. Time dummy variables are also included to consider macroeconomic shocks or temporal 

breaks. For robustness checks, additional analyses at the regional level are performed for all the 

models examined. 

 

4.2 Data Description 

The dataset used in this study comes from the Italian database of the Agricultural Accounting 

Information Network (Rete di Informazione Contabile Agricola - RICA), which is the basis of the 

European Farm Accountancy Data Network (FADN), the data for which are collected randomly 

through the use of annual surveys over more than 10,000 farms. In this way, a representative 

sample is created for the Italian agricultural sector. Within the RICA datasets, very precise and 

detailed information on farms’ economic, productive, environmental, geographical and social 

factors may be found. All the information that are included in separate datasets have been merged 

to study the relevant aspects of WCST adoption on farmers’ decisions. Moreover, yearly datasets 

have been further merged to obtain a unique unbalanced panel dataset of 13,592 farms for five 

years spanning from 2012 to 2016 for a comprehensive database of 45,837 observations. The same 

database has been used by Van Passel et al. (2017) for Western European countries and Bozzola 

et al. (2019) for Italian farms, as in our case, but with a different time frame that used data from 

2008 to 2011; both authors used FADN for analysing the lung-run relationship between climate 

and agricultural land value. 

To test whether climatic and weather conditions influence sustainable irrigation technology 

adoptions, the assembled panel data from RICA have been combined with climatic data. These 

climatic data have been provided by the division of Impacts on Agriculture, Forests and Ecosystem 

Services (IAFES) of the Euro-Mediterranean Center for Climate Change with 0.5° x 0.5° grid cell 

spatial resolution (25 km2). Extracted from the ERA-Interim dataset of the European Centre for 

Medium-Range Weather Forecasts (ECMWF), this dataset includes seasonal values of reference 

evapotranspiration (ET0) (Allen et al., 1998) and accumulated precipitation (P). Finally, climatic 
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data have been joined with the RICA dataset using the farms’ georeferenced information included 

in this latter database. 

Based on previous empirical studies on farmers’ determinants of WCST adoption in 

developed and developing countries, two dependent variables and a set of explanatory variables 

were selected for the econometric analysis. The definition of each variable used in the models and 

their descriptive statistics are presented in the following. 

Regarding the dependent variables, we consider a dummy for the adoption of innovative 

irrigation farming systems and the proportion of cultivated land under a given WCST practice for 

the intensity of adoption, as presented in Table 2. Figure 1 shows the geographical distribution of 

the WCST adoption choices and intensity in Italy for each farm in 2012. 

 

Figure 1: Adoption of WCSTs (blue) with respect to traditional irrigation technology and intensity 

of WCST adoption (blue) over total irrigated land for each farm in 2012. 

     
 figure (a) figure (b) 
Source: Authors’ elaboration 

 

Regarding the explanatory variables, we grouped them into five main characteristics, as 

shown in Table 2: 1) farms’ characteristics, 2) farmers’ characteristics, 3) financial and 

institutional characteristics, 4) water use characteristics and 5) geographical and climatic 

characteristics. 
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Table 2. Description of the variables specified in the adoption and intensity models. 

Variable 

Acronym 
Description Measurement 

Posited 

Sign 

Supporting 

References 

Dependent variable 

WCSTs dummy 
Whether a farmer adopted irrigation farming 
systems or not 

Dummy (1 if yes, 0 if no)  
Arslan et al. 2014; 
Pokherel et al., 2018 

WCSTs 
intensity 

Proportion of cultivated land that is under a given 
WCSTs practice 

Variable is bounded by the [0,1] 
interval 

 
Arslan et al. 2014; 
Pokherel et al., 2018 

Explanatory variables 

Farms’ characteristics 

Hours worked 
Labour input employed within a farm such as farm 
size and labour intensity. 

The logarithm of total working 

hours spent in a farm (family or 

external work). 

+ 
Boahene et al., 1996; 
He et al., 2007 

Machine power 
Capital input employed within a farm as technology 
ability. 

The logarithm of the total 

machine power within a farm in 

kilowatts/hours. 

+ Pokherel et al., 2018 

Land size Size of land available for cultivation within a farm. 
UAA (Utilized Agricultural 

Area) in ha. 
+ Trinh et al., 2018 

Land value 
Land monetary value as reported in the balance sheet 
of each farm. 

The logarithm of the market 

value of agricultural lands in 

euro. 

+ 
Moreno and Suning, 
2005 

Land Tenure 
The amount of rented land used by farmers for 

cultivations. 

The logarithm of the rented land 

size in ha. 
- 

Alcon et al., 2019; Doss 

and Morris., 2001; 

Moreno and Suning, 
2005; Pokherel et al., 

2018 

High-value 

crops 
Mixed 

production 

Livestock 

Farms are classified in three categories: 
- high-value crop production farms based on olive-

growing, fruticulture, viticulture, horticulture and 
floriculture production;  

- mixed farms based on livestock farming and 

vegetables production; 
- livestock farms based on dairy and cattle farming. 

Three separated dummies (1 if 

crop farming, or mixed farming 
or livestock farming, 0 

otherwise)  

 

+ high value, 

+ mixed 

farms, - 
livestock 

Green et al., 1996 

Family Run  
Whether a farm is prevalently run by the farmer and 

his/her relatives or not. 
Dummy (1 if yes, 0 if no) + Koundouri et al., 2006 

Organic Farms producing certified organic products. Dummy (1 if yes, 0 if no) +  

Farmers’ characteristics 

Female head Gender of household head (farmer). Dummy (1 if female, 0 if male) + or - 
Asfaw et al., 2016; 
Somda et al., 2002 

Age Age of household head (farmer). Years + or - 

Alcon et al., 2011; 

Alcon et al., 2019; 
Skaggs, 2001; Salazar 

and Rand, 2016 

High education 
Educational background of the household head 

(farmer) such as technology skills. 

Dummy (1 if farmer’s education 

level is high school or above, 0 

if farmer’s education level is 
less). 

+ 

Alcon et al., 2019, 

Moreno and Sunding, 
2005; Salazar and 

Rand, 2016; Pokherel et 

al., 2018 

External 

activities 
Extra jobs of household head (farmer)  

Dummy (1 if farmer is engaged 

in external activities, 0 if farmer 

is engaged only within the 
farm). 

- 
Afrakhteh et al., 2015; 
He et al., 2007; Weeler 

et al., 2010 
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Financial and Institutional characteristics 

EU Funds 
Funds directly received from EU through the CAP 

program. 
Log of funds received in euros +  

No EU Funds 
Funds received from other institutions no EU, as 

national and local governments. 
Log of funds received in euros +  

ROI 
Return on investment (ROI), a performance 

measure, to evaluate the efficiency of an investment.  

Log of operating revenues over 

total investments in euros 
+  

Leverage 
Indebtedness of a farm whether with a prevalence of 

own capital or third-party capital. 

Log of total assets over own 

capital (equities) in euros  
- 

Alcon et al., 2016; 

Boahene et al., 1996 

Insurance Insurance from farming risks.  
Log of total amount spent for 

insurance by a farmer in euros. 
+ 

Rogers, 1971; 

Koundouri, 2006 

Water use characteristics 

Internal water 
source 

Area irrigated by water sources, internal to land 

ownership, such as access to water for irrigation 

purposes. 

Log of area irrigated by internal 
wells, ponds and tanks 

+ 

Alcon et al., 2011; 

Moreno and Sunding, 
2005; Salazar and 

Rand, 2016 

Energy, 
electricity and 

water costs 

Energy, electricity and water costs within a farm. 
Log of energy, electricity and 

water costs in euros. 

+ for water – 
for energy and 

electricity 

Moreno and Sunding, 

2005; 

Irrigated land Land irrigated available for cultivation. Log of irrigated area in ha. + Huang et al. (2017) 

Geographic and Climatic characteristics 

Altitude avg. The average altitude level of the farm fields. 
Log of the average altitude level 

of a farm in metres. 
-  

Field slope 
The acclivity of farm fields measured by steep and 

very steep slope fields. 

Log of the area with high 

acclivity within a farm in ha. 
+ 

Afrakhteh et al., 2015; 
Alcon et al., 2019; 

Green and Sunding, 
1997; Negri and 

Brooks, 1990; 

Sherestha and 
Gopalakrishan, 1993 

Sandy soil 
Fields’ surface with loose-textured soil composed by 
sand and loamy sand soil. 

Log of loose-textured soil 
within a farm in ha.  

+ 

Afrakhteh et al., 2015; 

Green et al., 1996; 
Moreno and Sunfing, 

2005; Sherestha and 

Gopalakrishan, 1993 

Mixed soil 
Fields’ surface with medium-textured soil composed 

by loam and silty loam soil. 

Log of medium-textured soil 

within a farm in ha. 
- 

Clay soil 
Fields’ surface with fine-textured soil composed by 
silty-clay, sandy-clay and clay soil. 

Log of fine-textured soil within 
a farm in ha. 

- 

Aridity Index 

(AI) 

Aridity is commonly quantified by comparing long-

term average of water supply measured by seasonal 
accumulated precipitation (P) and long-term average 

of climatic water demand measured by seasonal 

reference evapotranspiration (ET0). 𝐴𝐼 ≥ 0.65 

indicates humid areas, 𝐴𝐼 < 0.65 indicates arid 
areas. 

Ratio between P and ET0. It is 
calculated considering the 

moving average of the last 5 

years in mm*day-1. 

- CGIAR, 2019 

Source: our elaboration 
 

Farms’ characteristics 

Several farm production aspects are extremely important for the choice of WCST adoption. 

These aspects may be related to farm size, typology of production, ownership and management, 
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and economic characteristics. Regarding farm size, the variables hours worked and land size were 

considered. The larger the farm size is, the wider the scale economies and the higher the investment 

or the odds of adopting new irrigation technologies. For the economic characteristics, we introduce 

two monetary values, machine power and land value, which embed the intensity of the capital used 

and the profitability of the agricultural activities employed. Both variables may positively 

influence the propensity to invest in new technology for irrigation (Moreno and Suning, 2005). 

Considering that landowners and family farmers are keen to invest in irrigation systems, ownership 

and management characteristics are captured by land tenure, which may negatively influence 

WCST adoption (Alcon et al., 2019; Doss and Morris., 2001; Moreno and Suning, 2005; Pokherel 

et al., 2018), and family run, which may have a positive effect on irrigation technology adoption. 

Additionally, the typology of production, meaning the farm’s product specialization, may 

influence the WCST adoption. Prevalent farming production may substantially affect the water 

demand and water use of farms (Green et al., 1996). Therefore, three dummy variables indicating 

the prevailing farming production on the basis of RICA classification are defined. Farms are 

distinguished as high-value crop farms when their farming production is mainly based on olive-

growing, fruticulture, viticulture, horticulture and floriculture. Mixed production farms consist of 

farming production that includes both livestock and vegetables, and livestock farms are farms 

where production is based on dairy and cattle farming. We also introduce the organic dummy 

variable, which captures the effect of the organic certification of farming products, since organic 

farmers may have a higher propensity for conservation and sustainable water management 

strategies than conventional farmers. 

 

Farmers’ characteristics 

Distinctive farmers’ factors may strongly influence irrigation strategies and WCST adoption. 

In several studies, household head gender (female head) has been identified as an important driver 

for innovation, especially in developing countries (Asfaw et al., 2016; Somda et al., 2002), whereas 

in developed countries, its effect is unclear. Even though farmer age is crucial for innovation 

adoption choice, the economic literature does not find a prevailing effect (Alcon et al., 2011; Alcon 

et al., 2019; Skaggs, 2001; Salazar and Rand, 2016). Education is another feature that may 

influence both the choice and propensity for innovation and the intensity of adoption. Several 

studies have highlighted that more educated farmers have a higher propensity to invest in new 

technologies (Alcon et al., 2019, Moreno and Sunding, 2005; Salazar and Rand, 2016; Pokherel et 

al., 2018). The propensity to adopt new technologies may depend even on a farmer’s effort level 

spent working within the farm. Some authors have stated that extra jobs, as measured by external 

activities, may be considered a proxy for high risk aversion and generally reduce the choice of 

adopting new technologies (Afrakhteh et al., 2015; He et al., 2007; Weeler et al., 2010). We use a 
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dichotomous variable to describe whether a farmer has an external working activity, which is 

different from distinguishing between in-farm and off-farm income, as in Skaggs (2001), Moreno 

and Sunding (2005), Schuck et al. (2005), Foltz (2003) and Koundouri et al. (2006). 

 

Financial and institutional characteristics 

Farms’ financial structures and socio-political and institutional aspects may substantially 

influence their propensity and intensity to adopt WCSTs. Important elements are economic 

incentives and policies related to technological innovations and agricultural development. External 

funding may influence the adoption of technologies by incentivizing a farmer’s behaviour that 

otherwise would not have been taken (Rogers, 1971). Lacking specific information on WCST 

funding, the total amount of funds from the European community, as well as from other sources, 

has been considered a proxy for farms’ reliance on external funds. Two variables have been used 

for this purpose: EU funds (funds directly received from EU through the CAP program) and no 

EU funds (funds received from national and local institutions). 

Farms’ financial aspects are highly related to WCST adoption choice; thus, we focus on 

farms’ profitability from their operating performance. We consider the return on investment (ROI) 

variable as a proxy for farms’ profitability from new technology investments. Calculated as the 

level of operating revenues over the total investments of a farm, this indicator may represent the 

capability of a farmer to measure the efficiency of an investment in gaining high levels of returns. 

Farm debt size, as a leverage indicator, may suggest farm credit access availability, as well as the 

degree of farmer indebtedness, with respect to internal and external financial resources. This 

indicator is considered a proxy for a farm’s financial strategy (Alcon et al., 2016; Boahene et al., 

1996). Another important aspect is farmer risk aversion. Farming risk may influence farmers’ 

decisions regarding whether to invest in WCSTs. As stated by Rogers (1971) and Koundouri et al. 

(2006), farmers’ attitudes towards farming risks and the propensity to innovate are strictly related. 

Thus, to cover farming risks, the amount spent for insurance by a farmer is considered a proxy for 

farmer risk aversion. The higher the insurance level is, the higher the farmer’s risk aversion; thus, 

the insurance variable may positively affect the adoption and intensity of WCSTs. 

 

Water-use characteristics 

Factors related to water use strictly affect irrigation strategies and technology used within a 

farm. Water costs may directly influence the amount of water demand and used within a farm, 

while energy and electricity costs may negatively affect WCST adoption, which is typically more 

energy-consuming than traditional irrigation systems (furrow and flood). Lacking water prices and 
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tariff details, the energy, electricity and water costs variable is used as a proxy for water, energy 

and electricity consumption. The correlation may not be strictly defined because of the opposite 

effect of water costs with respect to energy and electricity costs. 

Water sources may explain the different farmers’ availability of water and may have an 

influence on the irrigation technology used within a farm. Water pressure, cleanliness, and 

differences in height among several sources may be relevant for the choice of WCST adoption 

(Alcon et al., 2011; Moreno and Sunding, 2005; Salazar and Rand, 2016). Moreover, different 

water sources, which imply different water quantity availability and water quality, may 

substantially influence the irrigation systems and technology used. We thus define internal water 

sources as access to water sources that are internal to a farm’s own fields, such as water withdrawn 

from wells, artificial ponds and water tanks. This is considered in comparison to external water 

sources, such as water distributed by local authority services or pumped from superficial water 

bodies outside the farm. Finally, we introduce the irrigated land areas with the variable irrigated 

land because the higher the irrigated area is, the higher the adoption of more efficient irrigation 

technologies as the WCSTs. 

 

Geographic and Climatic characteristics 

Environmental and territorial contexts, as well as physical and qualitative aspects such as 

weather, altitude and acclivity (slope), may directly influence irrigation system strategies. One of 

the main aspects influencing WCST adoption is soil type. The soil texture, i.e., the combination of 

sand, silt and clay, may influence the water availability in the soil layers, i.e., the rate at which 

water can enter and move through soil and crop water needs. If the soil is mainly sandy, it should 

increase the probability of adopting WCSTs because of the reduced water soil retention and the 

inefficiency and ineffectiveness of traditional irrigation systems (such as flooding or furrow). 

Conversely, when the water soil retention is high, as in clay soil, the probability of adopting 

WCSTs should decrease. To consider the impact of soil texture on farmers’ adoption decisions, 

we introduce a set of variables, sandy soil, mixed soil and clay soil, which distinguish among loose-

, medium- and fine-textured soil, respectively. To capture the territorial context, we also introduce 

the variables of average altitude (altitude avg.) and the slope (field slope) of the fields of a farm 

(Afrakhteh et al., 2015; Green et al., 1996; Moreno and Sunfing, 2005; Sherestha and 

Gopalakrishan, 1993). 

Climate and weather are also key factors influencing WCST adoption. Different studies 

consider climate and weather characteristics as the main drivers affecting farmers’ adaptation 

strategies by using new irrigation technologies, but climatic or weather variables are often 

introduced as yearly averages or variances of temperature and rainfall (among others, Dell et al., 
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2014; Asfaw et al., 2016; Huang et al., 2017; Knapp and Huang; 2017). Similar to Kondouri et al. 

(2006), we introduce an aridity index to capture climate effects; however, differently from these 

authors, we compare the long-term average of water supply to the long-term average of climatic 

water demand. Specifically, we consider a more sophisticated indicator of the aridity index (AI), 

which captures the shortage of water in a particular region as developed by the United Nations 

Environmental Programme. This indicator is computed as the ratio of seasonal accumulated 

precipitation (P) and potential evapotranspiration1 (ET0) (CGIAR, 2019). AI is a measure of 

dryness of the climate at a given location based on how much water needs of crops have been 

satisfied by precipitation as follows: 

 

𝐴𝐼𝑠𝑒𝑎𝑠𝑜𝑛 = 𝑃 𝐸𝑇0⁄  

 

(9) 

 

If ET0 is greater than P, meaning an AI < 0.65, then the climate is considered to be arid, and 

the precipitation does not satisfy the crop water needs. Conversely, if AI values are equal or greater 

than 0.65, then rainfalls do cover the crop water needs, and the climate is considered humid. 

Considering seasonal AI indexes implies that when water deficits occur over shorter periods, then 

a drought period is present. Following Mendelsohn et al. (1994), Bozzola et al. (2017) and Van 

Passel et al. (2017), seasonal aridity indexes for winter AIJFM (AI of January, February, March), 

spring AIAMJ (AI of April, May, June), summer AIJAS (AI of July, August, September), and 

autumn AIOND (AI of October, November, December) are computed on the basis of each farm’s 

geographic ERA coordinates. 

To consider short past weather conditions, seasonal moving averages of the AI index are 

used to test how weather conditions may influence farmers’ water technology strategies. Based on 

the study of Woodill and Roberts (2018), a five-year moving average is applied for each seasonal 

                                                 
1
 Reference evapotranspiration (known also as potential evapotranspiration) (ET0) is the evaporative demand of the 

atmosphere independent of crop type, crop development and management practices. Its value is independent of water 

abundance in the area to which is referred because it is only affected by climatic parameters. It is comparable in time 

and space with other ET0 (Allen et al., 1998). It is measured in mm*day-1. ET0 is a measure of the evaporating power 

of the atmosphere from land surfaces in a specific area and time, independent from crop and soil characteristics. Its 

value represents the amount of water lost by evaporation and plant transpiration, and it is a proxy for water demand 

of crops to compensate natural water losses (Allen et al., 1998; Villalobos and Fereres, 2016). ET0 is calculated through 

the Penman-Monteith method, which is based on a hypothetical grass reference crop, specific height, soil resistance 

in shadow and water standard conditions (Allen et al., 1998). The standard ET0 considers solar radiation (sunshine), 

air temperature, humidity and wind speed from a dataset of standard climatological records. Therefore, it can be 

considered as a comprehensive index of weather conditions for plant water requirements (Allen et al., 1998). 



 

 

26 

 

 

AI index. To calculate the seasonal moving average indexes, 4 years back and the present year are 

included. The time frame of the climatic data considered is 2007-2016. 

In Table 3, the descriptive statistics of the variables included in the estimations are reported. 

Notably, 19% of the farmers adopted WCSTs for irrigation, and 15% of the land was irrigated by 

using WCSTs, with respect to the total irrigated area in farm fields. The density distribution of the 

WCST intensity variable is characterized by two pileups at zero and one that represent the two 

limits of this fractional response variable, as shown in Figure A2 in Appendix A. Since the average 

farm size is 4.04 ha, and 86% of farms are family run, these outcomes confirm that in Italy, farmers 

are smallholders, and farms are managed mainly by families. The average age of the farmers is 55 

years old, they are more often male, and they more often have a low level of education. The 

seasonal aridity indexes show that spring and summer are dry periods where the levels are well 

below the threshold. In contrast, winter and autumn correspond to the humid period; this is 

especially true for autumn, where the aridity index average value is equal to 1.44. In Appendix A, 

Figure A1 confirms that in spring and summertime, the aridity indexes remain stable with low 

variability and below the threshold of 0.5, meaning that those areas may be defined as semi-arid. 

In contrast, during winter and autumn, the aridity indexes are well above the threshold 0.65, and 

the land may be classified as non-drylands or humid. 

 

Table 3. Descriptive statistics. 

Variable mean p50 min max N 

Dependent variable 

WCSTs dummy (d) 0.19 0 0 1 45824 

WCSTs intensity (no) 0.15 0 0 1 45632 

Explanatory variables 

Farms’ characteristics 

Hours worked (h) 8.08 7.99 4.09 12.41 45826 

Land size (ha) 4.04 3.87 3.51 7.06 45830 

Family run (d) 0.86 1 0 1 45830 

High-value crops (d) 0.40 0 0 1 45830 

Mixed production (d) 0.09 0 0 1 45830 

Livestock (d) 0.24 0 0 1 45830 

Organic (d) 0.05 0 0 1 45830 

Machine power (Kw) 4.79 4.82 0 8.13 44285 

Land tenure (ha) 3.14 2.79 2.74 6.65 45830 

Land value (€) 13.19 13.01 12.73 17.16 45830 

Farmers’ characteristics 

Age (years) 55 54 16 97 45830 

Female head (d) 0.22 0 0 1 45830 
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External activities (d) 0.26 0 0 1 45830 

Higher education (d) 0.30 0 0 1 45830 

Financial and institutional characteristics 

Insurance (€) 7.78 7.55 7.38 13.00 45830 

ROI (no) 11.97 11.97 11.93 12.66 45625 

Leverage (no) 7.72 7.72 7.59 8.41 45786 

EU Funds (€) 9.89 9.71 9.43 14.52 45830 

No EU Funds (€) 8.37 8.00 8.00 13.57 45830 

Water use characteristics 

Internal water source (d) 0.99 0.76 0.76 6.04 45823 

Energy, electricity and 

water costs (€) 
8.66 8.43 8.24 13.59 45830 

Irrigated land (ha) 2.61 2.25 2.23 6.91 45632 

Geographical and climatic characteristics 

Altitude avg. (m) 4.99 5.34 0 7.61 45830 

Field slope (m2) 2.06 1.84 1.84 7.28 45830 

Sandy soil (ha) 1.83 1.63 1.63 7.26 45830 

Mixed soil (ha) 3.82 3.65 3.32 7.64 45830 

Clay soil (ha) 1.37 1.17 1.17 6.63 45830 

AIJFM (no) 0.86 0.79 0.19 2.67 271354 

AIAMJ (no 0.39 0.36 0.03 1.45 271354 

AIJAS (no) 0.35 0.27 0.03 1.88 271354 

AIOND (no) 1.44 1.40 0.29 4.43 271354 

Note:(d) stays for dummy variable and (no) stays for unit less variable (e.g. indexes). 

 

5. Main Results and Discussion 

We estimate the probability and intensity of the adoption of innovative irrigation systems 

based on WCSTs. Based on the methodologies described, the results on the whole sample and on 

the macro areas of Italy2 are described and discussed in the following sections. In Table 4, in the 

first three columns, the results for the probability of adopting micro-irrigation technologies based 

on the PA logit model (model 1), the PA probit model (model 2) and the CRE probit model (model 

3) are reported, while in the last three columns, the results for the odds ratio of the PA logit model 

and the average marginal effects (AMEs) of models 1 and 2 are presented. Table 5 shows the 

estimation results for the intensity of WCST adoption based on the RE tobit model (model 1) and 

the CRE tobit model (model 2). In Appendix B, Tables B1 and B2 present the estimation results 

for the probability and intensity of adoption of WCSTs, splitting the sample by the four macro 

areas of Italy. 

 

                                                 
2
 Italy is usually split in four macro areas: northwest, northeast, centre, south and islands. 
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5.1 Results of the probability of adoption of WCSTs (Logit, Probit and CRE Probit model) 

In Table 4, the estimation results for the probability of adopting WCSTs are based on binary 

response models estimating the whole sample of Italian farmers (13,054 farms) and accounting for 

serial correlation across time by computing robust White-Huber standard errors. In addition to the 

odds ratios for the logit model, the AMEs for the logit and probit models are analysed because 

they represent the change in the probability of adoption at the regressors’ mean. Specifically, 

marginal effects or partial effects allow us to define the effects on the conditional mean of the 

dependent variable when a unitary change of a covariate occurs. In other words, the AMEs allow 

us to capture the change in the probability of adoption by, ceteris paribus, a unit change of a 

regressor (Greene, 2003; Wooldridge, 2010). 

The statistical significance of the explanatory variable coefficients remains high and stable 

across all the different estimated models. The signs of all the coefficients seem to be reasonable 

and conform to our expectation; Italian farmers characterized mainly by having small and family 

run farms and by being climatic risk adverse farmers are more likely to adopt WCSTs than are 

other farmers. 

Regarding farms’ and farmers’ characteristics, our findings show that neither energy, 

electricity and water costs nor higher education are significant in determining the adoption of 

WCSTs in any of the models. Therefore, investing in reducing energy and water costs as innovative 

capability (Moreno and Sunding, 2005) and in education as technology skills (Pokhrel et al., 2018) 

is not relevant for adopting new irrigation technologies. 

Even if statistically significant only at 10%, the coefficient of the family run variable of the 

PA logit and CRE probit models provides weak evidence for managing constraints. As shown in 

Kondouri et al. (2006), the negative sign of these coefficients confirms that a family run farm is 

less likely to adopt new irrigation technologies as WCSTs than are non-family run farms. Since 

Italian farms are prevalently dominated by small and family run farms, this reduces the probability 

of WCST adoption. 

The size of a farm as measured by hours worked and land size presents divergent results. 

While the coefficients of the workforce are highly statistically significant with a positive sign, the 

coefficients of land size show statistically significantly negative effects. In terms of AMEs, an 

increase in hours worked results, ceteris paribus, in an increase in the probability of adoption by 

4.6 percentage points (for the logit model), 5.1 percentage points (for the probit model) and 2.4 

percentage points (for the CRE probit model). In contrast, the partial effects of land size are -0.135 

(logit) -0.147 (probit) and -0.157 (Cre probit); therefore, an additional hectare of land for 

cultivation negatively influences the probability of adoption of WCSTs by approximately 15 

percentage points. Thus, an increase in the probability of WCST adoption when increasing the 

time spent on a farm is counterbalanced by a reduction in the probability of adopting WCSTs when 
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land size increases. New irrigation systems are more likely to be observed on small and labour-

intensive farms. This result is partially in contrast with those found in the literature on irrigation 

technology adoption, in which farm size matters positively for WCST adoption decisions (e.g., 

Green et al., 1996; Huang et al., 2017). However, the study of Knapp and Huang (2017), which 

finds a positive relationship between size and traditional irrigation methods but no effects with 

WCSTs, is very close to our results. 

As expected, the coefficient signs of the three farming-type variables are statistically 

significant at 1% for all the models estimated. Both the high-value crops (olives, fruits, viticulture, 

horticulture farming specialization) and mixed production (animal and crop joint production) 

variables positively influence the probability of adopting WCSTs, whereas the livestock variable, 

i.e., farms specializing in cattle rearing (bovines and other herbivorous animals), are less likely to 

adopt WCSTs. The marginal effects are 0.087 (logit), 0.109 (probit) and 0.114 (CRE probit) for 

high-value crops; 0.046 (logit), 0.074 (probit) and 0.086 (CRE probit) for mixed production; and 

-0.137 (logit), -0.124 (probit) and 0.122 (CRE probit) for livestock. Livestock farms are less 

inclined to adopt new irrigation systems, and this type of farming production substantially reduces 

the likelihood of adopting by approximately 14 percentage points for the PA logit model and by 

12 percentage points for the two probit models. In terms of odds ratio, for an average high-value 

crop farming production (an average mixed farming production), the odds of adopting WCSTs are 

estimated to be about two and a half times (one and a half times) as large as the odds of adopting 

innovative irrigation systems for an average low-value crop farming production (an average no-

mixed or specialized production). 

Similar to Moreno and Sunding (2005) and Salazar and Rand (2016), our results confirm a 

negative relationship between land tenure and the probability of WCST adoption, suggesting that 

sustainable irrigation systems are more likely to be observed when land is owned instead of rented. 

Owner farmers, in fact, are more likely to adopt new irrigation technologies that provide further 

benefits over the long term (Soule et al., 2000; Salazar and Rand, 2016). However, the magnitude 

of the rented land impact has a low marginal effect on the likelihood of WCST adoption. The 

partial effects are -0.025 (logit), -0.021 (probit) and 0.020 (CRE probit), meaning that renting land 

increases the probability of adopting micro-irrigation technologies by almost 2 percentage points 

for all the models. 

Since the future profits from yields are incorporated into the monetary value of land, the land 

value variable should increase the propensity of adopting new irrigation technologies. This 

relationship is not confirmed by our results, as all the estimations show statistically significantly 

negative signs. This outcome implies that the higher the value of land is, the less likely it is that 

fields will be irrigated with WCSTs. Nevertheless, the marginal effects present quite low values (-

0.016 for the logit model, -0.023 and -0.026 for the two probit models), suggesting that the land 

value impact is relatively less important in choosing WCSTs as the irrigation system of a farm. 
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Farmers’ characteristics are also quite relevant in the choice of adopting WCSTs. While age 

is significant at the 1% level for only the PA logit and probit models, female head presents a 

different level of significance for each of the three models estimated. Younger and male farmers 

are more likely to adopt new irrigation technologies (Alcon et al. 2011; Asfaw et al., 2016), while 

participating in external activities is not statistically significant for the choice of engaging in a new 

irrigation system, except for in the CRE probit model (Alcon et al. 2011; Asfaw et al., 2016; 

Salazar and Rand, 2016). Regarding the AMEs of the female head and age variables, the impact 

on the probability of WCST adoption is very low. The female head variable’s marginal effect is 

approximately 1 percentage point, whereas for age, the partial effect is paltry. In line with Alcon 

et al. (2019), Mango et al. (2018), Namara et al. (2007) and Huang et al. (2017), our findings 

confirm that being young is not a key driver for WCST adoption. 

Concerning financial and institutional characteristics, it is worth noting that farms’ debts 

(leverage) and the capability to generate an adequate return on investment (ROI index) are 

irrelevant for the choice of which is the best irrigation system to adopt. The estimated coefficient 

of the insurance variable, which is a proxy for farmers’ perceived farming risk, is positive and 

differently statistically significant, suggesting that farmers are risk adverse. Sheltering from 

farming risks is an essential issue when choosing WCSTs, as seen in Koundouri et al. (2007) and 

Bozzola (2014). However, the magnitude of the impact is negligible; in fact, the insurance 

marginal effect is approximately 1 percentage point (0.013 for the logit model and 0.009 and 0.012 

for the two probit models). 

EU funds and no EU funds affect the probability of adopting new irrigation technologies in 

a different way. More specifically, the negative and statistically significant signs of no EU funds 

and the positive and statistically significant signs of EU funds seem to confirm a strong influence 

of national and local governments with respect to EU common agricultural policy. The marginal 

effects for these estimated coefficients are very low at -0.019 (logit) for EU funds and 0.012 (logit), 

0.018 (probit) and 0.012 (CRE probit) for no EU funds. With the due differences, these results are 

in contrast with those of Huang et al. (2017), where local government programs offering financial 

assistance predict lower probabilities of utilizing sprinkler irrigation. This outcome could depend 

on the fact that fruits and horticulture, which use higher levels of WCSTs, are less supported by 

the EU Common Agricultural Policy funds than is the production of cereals and other arable crops, 

which conversely use conventional irrigation methods. 

Among water-use characteristics, the internal water source and irrigated land coefficients 

show positive and statistically significant signs. As in the theoretical results of Caswell and 

Zilberman (1986) and the empirical findings of Green et al. (1996), Alcon et al. (2011), Moreno 

and Sunding (2005), Salazar and Rand (2016) and Huang et al. (2017), increasing the area irrigated 

by using internal water sources as wells, ponds and tanks, as well as the hectares of irrigated area 

for cultivation, has a positive impact on the likelihood of adopting WCSTs. Farmers who use 
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irrigation water endowments for their land ownership have a higher probability of adopting 

WCSTs than do those who rely only on external sources. In addition, the larger the size of the 

irrigated land, the higher the benefit in terms of scale economies. The marginal effects analysis 

shows that irrigated land, whose values are 0.127 (logit) 0.121 (probit) and 0.116 (CRE probit), 

has a higher impact with respect to internal water sources, whose values are 0.038 (logit), 0.048 

(probit) and 0.013 (CRE probit). This means that an additional hectare of irrigated land increases 

the probability of adopting WCSTs by almost 12 percentage points, while an additional hectare of 

area irrigated by an internal water source increases the probability of WCST adoption by almost 4 

percentage points for the PA logit and probit models and only by 1 percentage point for the CRE 

probit model. 

The last types of characteristics—geographical and climatic—are also relevant drivers for 

the probability of adopting sustainable irrigation technologies. Having a higher altitude avg., as 

well as having a mixed soil type, reduces the probability of WCST adoption, while the seasonal 

aridity indexes present diversified signs depending on the season considered. In contrast to the 

literature (Moreno and Sunding 2005; Afrakhteh et al., 2015; Alcon et al., 2019), the slope of the 

field (field slope) is irrelevant for the irrigation system adoption choice. 

Regarding the quality of the soil, Moreno and Sunding (2005) and Caswell and Zilberman 

(1986) underline that drip technologies are soil-quality augmenting. Our results confirm that farms 

having a mixed soil that is not intensive in regard to water consumption are less likely to adopt 

WCSTs (Kondouri et al. 2006). Similarly, altitude avg. negatively influences the probability of 

WCST adoption. For increasing altitude levels, where cultivated crops become less water 

intensive, the AMEs are approximately 3 percentage points. For mixed soil quality, the partial 

effects are -0.055 (logit), -0.041 (probit) and -0.037 (CRE probit). When the hectares of mixed soil 

increase, a farm is less likely to adopt WCSTs by approximately 5.5 percentage points for the logit 

model and 4.1 and 3.7 percentage points for the PA and CRE probit models, respectively. 

From Sherestha and Gopalakrishan (1993) to more recent studies (Kondouri et al 2006; 

Bozzola, 2014; Asfaw et al., 2016; Salazar and Rand, 2016; Huang et al., 2017; Knapp and Huang; 

2017), the effects of climate variability on the probability of adopting new irrigation systems are 

largely confirmed. 

AI-estimated coefficients confirm the relevance of recent past climatic conditions in 

choosing to adopt WCSTs. Focusing on the coefficient signs, the four indexes are statistically 

significant in the logit model, while for the probit model, only summer AI is irrelevant, and for the 

CRE probit model, only the spring and autumn AIs are statistically significant at the 1% level. 

While the growing season (AIAMJ) and summertime (AIJAS) findings present unexpected 

positive signs, for the winter and autumn periods, the negative expected signs are confirmed. The 

higher the level of the Ais is, the higher the humidity level, the lower the deficit of water for plant 
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necessities3, and the higher the probability of adopting WCSTs. Although this may appear 

puzzling, this result is in line with what the literature finds. From Figure A1 of Appendix A, it is 

evident that during spring and summer, the aridity index values remain substantially low, i.e., well 

below 0.65, suggesting a dry period that requires more intense irrigation independent of crop 

cultivation. In other words, spring and summer periods characterized by higher levels of dryness 

are more likely to require additional water for crops to reduce the production risk due to adverse 

climatic conditions such as droughts (Kondouri et al. 2006). The opposite occurs in the more humid 

periods (winter and autumn), where the probability of WCST adoption increases if the AIs are low. 

In making a decision regarding WCST adoption, farmers consider more the climatic variability in 

the humid seasons instead of that in the dry seasons. This is because in spring and summer, low 

levels of precipitation and high evapotranspiration are normal, and farmers are more accustomed 

to maximum temperature peaks or drought periods. Thus, farmers seem to be more reactive to the 

aridity indexes during cold seasons, since increasing temperatures and less precipitation are 

perceived as anomalous and dangerous for agricultural production. Moreover, since farmers are 

rational agents but limited, they have to decide on irrigation technologies on the basis of their own 

perception of climatic variations. 

In terms of partial effects, the highest impact magnitude arises from the spring aridity index 

(AIAMJ), which increases the probability of adopting WCSTs by almost 15 percentage points for 

the logit model and 26 and 33 percentage points for the PA and CRE probit models, respectively. 

An increase in the winter and autumn aridity indexes implying more humidity is instead associated 

with a lower probability of adopting WCSTs by almost 2.6 percentage points and 4.5 percentage 

points for the logit model, respectively, and by 4.7 (2.5) percentage points and 6.3 (4.3) percentage 

points for the PA (CRE) probit model, respectively. 

Only for robustness purposes, we carried out the same analysis but estimated only the CRE 

effects probit model for each Italian macro area: northwest, northeast, centre, south and islands 

(see Table B1 of Appendix). The results are confirmed in terms of coefficient signs and 

significance for farming production with high-value crops, with mixed production positively 

influencing WCST adoption probability and livestock negatively influencing adoption. Moreover, 

the effects of the seasonal AIs confirm that in winter and autumn, the higher the humidity is, the 

lower the probability of WCST adoption, while negative signs are present for the northeast and 

south areas of Italy in summer and the centre area in spring. 

 

 

                                                 
3
 This means that the need for water is covered by precipitation, reducing the perception of aridity. 
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Table 4. Estimation results for the probability of WCST adoption, odds ratio and AMEs of WCST 

adoption for PA logit and probit models. 

 (1) (2) (3) (4) (5) (6) (7) 

VARIABLES 
PA Logit 

Model 

PA Probit 

Model 

CRE 

Probit 

Model 

PA Logit 

Model 

Odds 

Ratio 

AMEs of 

PA Logit 

Model 

AMEs of PA 

Probit 

Model 

AMEs of 

CRE Probit 

Model 

Farms’ characteristics 

Hours worked 0.505*** 0.311*** 0.145*** 1.657*** 0.0458*** 0.0511*** 0.0237*** 

 (11.57) (10.83) (2.832) (11.57) (11.60) (10.92) (2.833) 

Land size -1.488*** -0.894*** -0.962*** 0.226*** -0.135*** -0.147*** -0.157*** 

 (-5.243) (-5.098) (-8.983) (-5.243) (-5.268) (-5.149) (-9.060) 

Family run -0.131* -0.0642 -0.0475* 0.877* -0.0121* -0.0107 -0.00786* 

 (-1.824) (-1.461) (-1.709) (-1.824) (-1.790) (-1.438) (-1.688) 

High-value 

crops 
0.917*** 0.630*** 0.658*** 2.502*** 

0.0866*** 0.109*** 
0.114*** 

 (14.13) (16.19) (24.51) (14.13) (13.72) (15.31) (23.38) 

Mixed 

production 
0.482*** 0.413*** 0.478*** 1.620*** 

0.0463*** 0.0737*** 
0.0859*** 

 (5.775) (8.651) (13.89) (5.775) (5.501) (8.130) (12.98) 

Livestock -1.956*** -0.918*** -0.903*** 0.141*** -0.137*** -0.124*** -0.122*** 

 (-12.66) (-11.16) (-18.13) (-12.66) (-18.75) (-15.37) (-24.32) 

Organic 0.123 0.0341 0.00749 1.131 0.0114 0.00565 0.00123 

 (1.295) (0.532) (0.172) (1.295) (1.271) (0.527) (0.172) 

Machine power 0.0001 -0.020 
-

0.0371*** 
1.000 0.00001 -0.0033 -0.00607*** 

 (0.00389) (-0.952) (-2.779) (0.00389) (0.00389) (-0.952) (-2.776) 

Land tenure -0.280*** -0.128** -0.122*** 0.756*** -0.0254*** -0.0211** -0.0200*** 

 (-2.709) (-2.052) (-3.023) (-2.709) (-2.705) (-2.053) (-3.026) 

Land value -0.181** -0.142*** -0.161*** 0.835** -0.0164** -0.0233*** -0.0263*** 

 (-2.092) (-2.859) (-5.335) (-2.092) (-2.087) (-2.853) (-5.329) 

Farmers’ characteristics 

Age -0.008*** -0.004*** 0.001 0.992*** -0.0007*** -0.0007*** 0.0001 

 (-3.868) (-3.535) (0.229) (-3.868) (-3.873) (-3.542) (0.229) 

Female head -0.101* -0.0681** 
-

0.0715*** 
0.904* 

-0.00906* -0.0111** 
-0.0115*** 

 (-1.828) (-1.986) (-3.297) (-1.828) (-1.845) (-2.007) (-3.335) 

External 

activities 
-0.0693 -0.0511 -0.0481** 0.933 

-0.00625 -0.00834 
-0.00782** 

 (-1.175) (-1.374) (-2.040) (-1.175) (-1.181) (-1.382) (-2.052) 

Higher 

education 
0.00303 -0.0176 -0.0189 1.003 

0.000275 -0.00288 
-0.00309 

 (0.0515) (-0.511) (-0.895) (0.0515) (0.0515) (-0.512) (-0.897) 

Financial and institutional characteristics 

Insurance 0.145*** 0.056** 0.074* 1.156*** 0.0132*** 0.00917** 0.0120* 

 (3.821) (1.972) (1.940) (3.821) (3.823) (1.972) (1.940) 

ROI 0.547 0.336 0.143 1.728 0.0496 0.0552 0.0233 

 (0.664) (0.455) (0.225) (0.664) (0.664) (0.455) (0.225) 

Leverage 1.729 0.835 0.875 5.635 0.157 0.137 0.143 

 (1.467) (0.908) (0.681) (1.467) (1.467) (0.908) (0.681) 

EU Funds -0.212*** -0.0434 -0.0222 0.809*** -0.0192*** -0.00713 -0.00362 

 (-2.872) (-0.902) (-0.657) (-2.872) (-2.875) (-0.902) (-0.657) 

No EU Funds 0.131*** 0.107*** 0.0745** 1.140*** 0.0119*** 0.0176*** 0.0122** 

 (3.649) (4.072) (2.003) (3.649) (3.647) (4.074) (2.003) 

Water use characteristics 

Internal water 

source 
0.416*** 0.291*** 0.0775** 1.517*** 0.0378*** 0.0479*** 0.0127** 

 (10.47) (12.58) (2.029) (10.47) (10.61) (12.78) (2.029) 

Energy, 

electricity and 
0.0236 0.0257 0.00454 1.024 0.00215 0.00421 0.0007 
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water costs 

 (0.500) (0.873) (0.0763) (0.500) (0.500) (0.874) (0.0763) 

Irrigated land 1.399*** 0.739*** 0.712*** 4.050*** 0.127*** 0.121*** 0.116*** 

 (17.33) (14.77) (9.479) (17.33) (17.96) (15.48) (9.554) 

Geographical and climatic characteristics 

Altitude avg. -0.339*** -0.189*** -0.183*** 0.712*** -0.0308*** -0.0310*** -0.0300*** 

 (-13.08) (-12.49) (-18.81) (-13.08) (-13.41) (-12.67) (-18.99) 

Field slope -0.0525 -0.0125 0.0130 0.949 -0.00477 -0.00206 0.00212 

 (-0.488) (-0.206) (0.356) (-0.488) (-0.488) (-0.206) (0.356) 

Sandy soil -0.00823 0.0221 0.0280 0.992 -0.000747 0.00362 0.00457 

 (-0.0863) (0.386) (0.773) (-0.0863) (-0.0863) (0.386) (0.773) 

Mixed soil -0.604*** -0.252** -0.225*** 0.547*** -0.0548*** -0.0414** -0.0367*** 

 (-2.849) (-2.037) (-2.779) (-2.849) (-2.855) (-2.038) (-2.782) 

Clay soil -0.121 -0.0551 -0.0495* 0.886 -0.0109 -0.00904 -0.00808* 

 (-1.508) (-1.173) (-1.662) (-1.508) (-1.509) (-1.173) (-1.663) 

AIJFM -0.288** -0.290*** -0.154 0.750** -0.0261** -0.0475*** -0.0251 

 (-2.231) (-3.329) (-1.414) (-2.231) (-2.231) (-3.330) (-1.414) 

AIAMJ 1.608*** 1.571*** 2.069*** 4.994*** 0.146*** 0.258*** 0.338*** 

 (3.742) (5.327) (7.624) (3.742) (3.738) (5.302) (7.622) 

AIJAS 0.746** 0.0125 -0.0520 2.109** 0.0677** 0.00206 -0.00850 

 (2.027) (0.0505) (-0.239) (2.027) (2.031) (0.0505) (-0.239) 

AIOND -0.498*** -0.384*** -0.264*** 0.608*** -0.0452*** -0.0630*** -0.0432*** 

 (-5.609) (-5.574) (-3.054) (-5.609) (-5.620) (-5.568) (-3.054) 

Constant -17.01 -9.564 -7.625 0.000    

 (-1.201) (-0.816) (-0.606) (-1.201)    

Regional 

dummies 
Yes Yes Yes Yes Yes Yes Yes 

Time dummies Yes Yes Yes Yes Yes Yes Yes 

Mundlak’s 

devices 
  Yes    Yes 

Observations 43,917 43,917 43,917 43,917 43,917 43,917 43,917 

Number of ID 13,054 13,054 13,054 13,054 13,054 13,054 13,054 

Note: z-statistics with robust adjustment are reported in parentheses, * p-value <0.10; ** p-value <0.05; *** p-value <0.01 

 

5.2 Results for the intensity of WCST adoption (tobit random effects and CRE tobit) 

In the intensity of adoption analysis, the measure of how much irrigated land is dedicated to 

WCSTs by an innovative farmer is estimated. This process allows us to capture how widespread 

the innovation of irrigation systems is in farmers’ lands (Arslan et al., 2014). In Table 5, we report 

the estimated coefficients of the WCST adoption intensity based on the whole sample of Italian 

farmers by applying the RE tobit and the CRE tobit models. In Table B2 of Appendix B, for 

robustness checks, we present the analysis of WCST adoption intensity for each macro area of 

Italy by applying only the CRE tobit model. 

Most of the drivers considered are statistically significant and adhere to the expected signs, 

as in the case of the WCST adoption decision. Several farm characteristic variables are significant 

at 1% in both models. Although family run was not significant in determining adoption decisions, 

this variable decreases the intensity of adoption in both models at the 1% level of significance, 

confirming the relevance of managing constraints. Again, hours worked and land size present 

divergent signs, indicating that while labour constraints do not play a role in farmers’ decisions on 
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WCST adoption, land does. Both high-value crops and mixed production show positive quite high 

magnitude4, while livestock has the highest negative magnitude, followed by land size. 

As in Arslan et al. (2014), female head and external activities present negative effects on 

WCST adoption intensity, meaning that being male and being engaged in only farming activities 

are relevant for increasing the intensity of innovative irrigation systems. As in Pokhrel et al. (2018), 

irrigated land increases the adoption intensity of WCSTs, presenting the highest magnitude of the 

estimations. However, among the typology of soils, only mixed soil shows a negative and 

statistically significant sign, which is surprising since we would expect that a water-intensive soil 

that easily absorbs water such as sandy soil would increase the adoption intensity of WCSTs. 

Regarding climatic variables, similar to the case of WCST adoption choice, the two periods 

with more aridity (spring and summer) represent a stimulus in intensifying irrigation using drip or 

sprinkler systems. In the spring season, the AI estimated coefficients are high and positive, 

indicating that an increase in AIs leads to a more than proportional adoption of WCSTs in terms 

of WCST adoption intensity. In summer, the negative sign for the CRE model confirms the 

necessity of intensifying the adoption of innovative irrigation systems. The magnitude is higher 

for spring AI, with values of 1.335 (RE tobit) and 3.693 (CRE tobit), than for summer AI, with 

values of 0.559 (RE tobit) and -0.693 (CRE tobit). 

The CRE tobit model was also used to analyse the effects on the intensity of WCST adoption 

for Italian macro areas. The overall results respect the above findings for the whole sample. Some 

differences are related to some specific areas. For example, land size is significant in the northwest 

and south areas and in the islands of Italy, suggesting that land is a stringent constraint in farmers’ 

decisions on WCST adoption. For climatic impacts, the results confirm that the higher the winter 

and autumn AIs are, the lower the intensity of innovative irrigation systems, while the higher the 

spring and summer AIs are, the higher the intensity of WCST adoption. The only exception is in 

regard to the negative sign of AIJAS for the northeast and AIAMJ for the centre of Italy. 

 

Table 5. Estimation results for the intensity of WCST adoption. 

 (1) (2) 

VARIABLES RE Tobit Model CRE Tobit Model 

Farms’ characteristics 

Hours worked 0.366*** 0.239*** 

 (11.44) (0.010) 

Land size -1.318*** -1.685*** 

 (-7.805) (0.000) 

Family run -0.292*** -0.152*** 

 (-4.659) (0.003) 

High-value crops 0.637*** 1.342*** 

 (15.24) (0.000) 

Mixed production 0.232*** 0.908*** 

 (4.502) (0.000) 

                                                 
4 We consider strong the values that are higher than 0.5. 
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Livestock -1.562*** -1.680*** 

 (-16.28) (0.000) 

Organic 0.124 -0.095 

 (1.633) (0.249) 

Machine power 0.0138 -0.120*** 

 (0.476) (0.000) 

Land tenure -0.0252 -0.256*** 

 (-0.345) (0.000) 

Land value -0.108* -0.328*** 

 (-1.681) (0.000) 

Farmers’ characteristics 

Age -0.00517*** 0.004 

 (-2.868) (0.568) 

Female head -0.103** -0.094** 

 (-2.217) (0.025) 

External activities -0.0992* -0.116** 

 (-1.911) (0.011) 

Higher education -0.0295 -0.040 

 (-0.580) (0.319) 

Financial and institutional characteristics 

Insurance 0.0720*** 0.091 

 (3.027) (0.177) 

ROI 0.391 0.941 

 (0.450) (0.411) 

Leverage 3.445 2.255 

 (1.123) (0.605) 

EU Funds -0.140*** -0.029 

 (-2.655) (0.619) 

No EU Funds 0.0556** 0.109* 

 (2.176) (0.092) 

Water use characteristics 

Internal water source 0.317*** 0.159** 

 (12.43) (0.031) 

Energy, electricity and 

water costs 
0.0305 -0.033 

 (0.883) (0.753) 

Irrigated land 0.858*** 1.124*** 

 (17.90) (0.000) 

Geographical and climatic characteristics 

Altitude avg. -0.418*** -0.341*** 

 (-17.97) (0.000) 

Field slope -0.0310 0.036 

 (-0.450) (0.534) 

Sandy soil 0.0587 -0.002 

 (0.952) (0.970) 

Mixed soil -0.256** -0.461*** 

 (-1.983) (0.003) 

Clay soil -0.0597 -0.084 

 (-1.076) (0.132) 

AIJFM -0.186* -0.409* 

 (-1.808) (0.051) 

AIAMJ 1.335*** 3.693*** 

 (4.202) (0.000) 

AIJAS 0.559** -0.693* 

 (2.022) (0.096) 

AIOND -0.359*** -0.547*** 

 (-4.570) (0.001) 

Constant -29.08 -26.569 

 (-1.128) (0.460) 

Regional dummies Yes Yes 

Time dummies Yes Yes 
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Mundlak’s devices  Yes 

Observations 43,917 43,917 

Number of ID 13,054 13,054 

Note: z-statistics with robust adjustment are reported in parentheses, * p-value <0.10; ** p-value <0.05; *** p-value <0.01 

 

 

6. Conclusions 

Our study represents the first attempt to estimate the main determinants of the decision to 

engage in sustainable irrigation technology adoption and intensity at the farm level for Italy. The 

variety of geographical, socioeconomic, productive, and climatic factors makes Italy an interesting 

case study, whose findings may contribute to deepening the water scarcity management knowledge 

within the Mediterranean Basin areas that collectively suffer from the same problems. 

Our main findings confirm that farm size, crop typology, land tenure, insurance against 

farming risks, internal water sources, geographical and climate characteristics are all relevant 

factors influencing the choice of sustainable irrigation technology adoption and intensity. Farmers 

with a high probability of adopting WCSTs are male and own their land, which is usually small in 

size and with an internal water source. Education is not a key farmer characteristic in choosing to 

adopt WCSTs. Highly specialized farms with high-value crops and mixed production are more 

likely to adopt WCSTs. 

The innovative farmers prefer to dedicate themselves to internal farming activities and 

present a risk-averse attitude by covering their activities with increasing insurance. Farmers 

receive low levels of EU funds but high levels of local funds. Farmers who adopt WCSTs are more 

sensitive to the effects of the recent seasonal climatic conditions. Because spring and summer are 

characterized by higher dryness, and winter and autumn are characterized by higher humidity, 

farmers, in making their decisions about WCST adoption, focus more on climatic variability in 

humid seasons instead of dry seasons. More specifically, climatic characteristics may influence 

the strategic decision patterns of a farmer in determining their adoption of WCSTs. This is because 

in spring and summer, farmers are more accustomed to maximum temperature peaks or drought 

periods, while during cold seasons, increasing temperatures and less precipitation may be 

perceived as anomalous and dangerous factors for agricultural production. Farmers are quite 

sensitive to the aridity indexes, which seem to be good indicators of climate conditions since they 

combine precipitation (P) and evapotranspiration (ET0). 

Our analysis may suggest to policy-makers some relevant incentives to be applied to spread 

the adoption of WCSTs among farmers. Moreover, it should be easy to enlarge this analysis to 

include other similar countries if more data were available. This analysis places the basis for future 

analyses on the main drivers of sustainable technology adoption in irrigation within the southern 

part of Europe, which suffers the most from droughts. This may strongly help such areas to cope 
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with important challenges that the agricultural sector will face in the future due to climate change 

and water resource scarcity. 
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Appendix A 
 

 
Figure A1. Tendencies of the seasonal aridity indexes  

 
Source: Authors’ elaboration 

Figure A2. Density and Kernel density of WCST adoption intensity 

 
Source: Authors’ elaboration 
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Appendix B 
 

 

Table B1. Estimation results for the probability of adoption of WCST for macro-areas of 

Italy 

 (1) (2) (3) (4) 

VARIABLES CRE Probit Model 

North-West 

CRE Probit Model 

North-East 

CRE Probit Model 

Centre 

CRE Probit Model 

South and Islands 

Farms’ characteristics 

Hours worked 0.026 0.039 0.217** 0.156*** 

 (0.728) (0.527) (0.023) (0.004) 

Land size -0.967** -0.425 -0.086 -1.338*** 

 (0.031) (0.227) (0.852) (0.000) 

Family run -0.254* 0.154 0.207* -0.151** 

 (0.063) (0.189) (0.086) (0.019) 

High-value crops 1.023*** 1.041*** 0.360*** 0.514*** 

 (0.000) (0.000) (0.000) (0.000) 

Mixed production 0.742*** 0.876*** 0.114 0.417*** 

 (0.000) (0.000) (0.255) (0.000) 

Livestock  -0.496** -0.437*** -1.124*** -1.182*** 

 (0.013) (0.002) (0.000) (0.000) 

Organic  0.253 0.337 0.024 -0.149 

 (0.293) (0.127) (0.859) (0.103) 

Machine power 0.059 0.004 -0.178*** -0.010 

 (0.207) (0.936) (0.000) (0.816) 

Land tenure -0.001 -0.118 -0.406*** 0.031 

 (0.996) (0.405) (0.009) (0.780) 

Land value -0.209** -0.184** -0.496*** 0.008 

 (0.023) (0.028) (0.001) (0.949) 

Farmers’ characteristics 

Age (head) 0.009 -0.003 -0.001 -0.001 

 (0.246) (0.525) (0.836) (0.777) 

Female head 0.027 -0.101 -0.069 -0.040 

 (0.768) (0.233) (0.319) (0.481) 

External activities 0.152 -0.071 -0.151* -0.030 

 (0.136) (0.370) (0.055) (0.641) 

Higher education -0.032 -0.025 -0.025 -0.010 

 (0.708) (0.749) (0.725) (0.860) 

Financial and institutional characteristics 

Insurance 0.220*** 0.041 0.073 0.005 

 (0.002) (0.249) (0.370) (0.928) 

ROI -2.690 -1.485 -0.478 0.805 

 (0.361) (0.355) (0.803) (0.558) 

Leverage -3.319 5.109 9.048 -2.138 

 (0.553) (0.672) (0.138) (0.840) 

EU Funds -0.338** -0.327*** -0.002 -0.124* 

 (0.039) (0.001) (0.987) (0.083) 

No EU Funds 0.222*** 0.120*** 0.052 0.002 

 (0.003) (0.001) (0.284) (0.945) 

Water use characteristics 

Internal water source 0.145 0.007 -0.010 0.233*** 

 (0.158) (0.899) (0.911) (0.002) 

Energy, electricity and 

water costs 
0.098 0.041 -0.099 0.052 

 (0.267) (0.603) (0.295) (0.311) 

Irrigated land 0.262 0.641*** 0.928*** 0.918*** 

 (0.273) (0.000) (0.000) (0.000) 
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Geographical and climatic characteristics 

Altitude avg. -0.247*** -0.055* -0.199*** -0.256*** 

 (0.000) (0.099) (0.000) (0.000) 

Field slope 0.186 0.161 -0.170 0.072 

 (0.188) (0.153) (0.149) (0.493) 

Sandy soil -0.170 -0.053 -0.272* 0.248*** 

 (0.253) (0.613) (0.077) (0.007) 

Mixed soil -0.881*** -0.196 -0.443 0.335* 

 (0.002) (0.361) (0.207) (0.093) 

Clay soil -0.301** 0.001 -0.041 0.062 

 (0.034) (0.987) (0.725) (0.380) 

AIJFM -1.805*** 1.531*** -1.452*** -4.854*** 

 (0.000) (0.000) (0.000) (0.000) 

AIAMJ 0.197 7.219*** -3.249*** 4.235*** 

 (0.778) (0.000) (0.003) (0.000) 

AIJAS 1.216* -4.445*** 1.776* -2.346** 

 (0.062) (0.000) (0.092) (0.040) 

AIOND -0.993*** -1.131*** -0.163 -1.853*** 

 (0.002) (0.000) (0.578) (0.000) 

Constant 64.185 -19.556 -60.056 8.093 

 (0.238) (0.839) (0.279) (0.919) 

Regional dummies  Yes Yes Yes Yes 

Time-dummies Yes Yes Yes Yes 

Mundlak’s devices Yes Yes Yes Yes 

Observations 9,955 9,903 9,877 14,182 

Number of ID 2,645 2,874 3,260 4,275 

Note: z-statistics with robust adjustment are reported in parentheses, * p-value <0.10; ** p-value <0.05; *** p-value <0.01 

 

 

 

Table B2. Estimation results for the WCST adoption intensity for macro-areas of Italy 

 (1) (3) (5) (7) 

VARIABLES CRE Tobit Model 

North-West 

CRE Tobit 

Model 

North-East 

CRE Tobit Model 

Centre 

CRE Tobit Model 

South and Islands 

Farms’ characteristics 

Hours worked 0.007 0.019 0.436 0.375* 

 (0.961) (0.903) (0.110) (0.075) 

Land size -0.914** -0.261 -0.186 -3.462*** 

 (0.017) (0.394) (0.788) (0.000) 

Family run -0.266*** 0.177 0.495*** -0.564*** 

 (0.009) (0.108) (0.002) (0.000) 

High-value crops 1.316*** 1.875*** 0.952*** 1.488*** 

 (0.000) (0.000) (0.000) (0.000) 

Mixed production 0.887*** 1.504*** 0.313* 1.068*** 

 (0.000) (0.000) (0.060) (0.000) 

Livestock -0.573*** -0.654*** -2.447*** -2.955*** 

 (0.000) (0.000) (0.000) (0.000) 

Organic  0.134 0.355** 0.168 -0.485*** 

 (0.437) (0.044) (0.471) (0.002) 

Machine power 0.044 -0.005 -0.455*** -0.050 

 (0.206) (0.919) (0.000) (0.415) 

Land tenure -0.093 -0.225* -0.909*** 0.031 

 (0.463) (0.058) (0.000) (0.840) 

Land value -0.315*** -0.314*** -1.145*** 0.183 

 (0.000) (0.000) (0.000) (0.304) 

Farmers’ characteristics 

Age (head) 0.013 -0.005 -0.000 0.000 

 (0.275) (0.690) (0.982) (0.997) 
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Female head -0.003 -0.087 -0.156 -0.007 

 (0.966) (0.286) (0.165) (0.942) 

External activities 0.202*** -0.143** -0.400*** -0.036 

 (0.009) (0.044) (0.003) (0.727) 

Higher education -0.017 -0.092 -0.081 -0.015 

 (0.791) (0.200) (0.455) (0.866) 

Financial and institutional characteristics 

Insurance 0.160* 0.058 0.049 -0.016 

 (0.083) (0.487) (0.837) (0.942) 

ROI -2.335 -3.051 -3.317 2.316 

 (0.261) (0.301) (0.470) (0.334) 

Leverage -8.976 14.441 24.452 -4.929 

 (0.475) (0.648) (0.153) (0.857) 

EU Funds -0.295** -0.599*** 0.045 -0.417*** 

 (0.028) (0.000) (0.805) (0.000) 

No EU Funds 0.154 0.192* 0.131 -0.022 

 (0.146) (0.057) (0.489) (0.888) 

Water use characteristics 

Internal water source 0.226* -0.012 -0.031 0.729*** 

 (0.051) (0.907) (0.880) (0.001) 

Energy, electricity and 

water costs 
0.057 0.083 -0.263 0.006 

 (0.713) (0.613) (0.334) (0.985) 

Irrigated land 0.033 0.850*** 1.950*** 1.800*** 

 (0.892) (0.000) (0.000) (0.000) 

Geographical and climatic characteristics 

Altitude avg. -0.265*** -0.090*** -0.432*** -0.715*** 

 (0.000) (0.005) (0.000) (0.000) 

Field slope 0.226** 0.261** -0.444** 0.163 

 (0.047) (0.010) (0.017) (0.222) 

Sandy soil -0.190 -0.075 -0.790*** 0.493*** 

 (0.129) (0.484) (0.001) (0.000) 

Mixed soil -0.996*** -0.455* -1.099* 0.743** 

 (0.001) (0.052) (0.057) (0.035) 

Clay soil -0.298** 0.006 -0.135 0.180 

 (0.011) (0.948) (0.459) (0.145) 

AIJFM -2.457*** 2.770*** -4.059*** -14.128*** 

 (0.000) (0.000) (0.000) (0.000) 

AIAMJ -0.001 12.313*** -6.427*** 10.237*** 

 (0.998) (0.000) (0.001) (0.000) 

AIJAS 1.672*** -7.457*** 3.529* -8.521*** 

 (0.002) (0.000) (0.084) (0.000) 

AIOND -1.481*** -1.623*** -0.533 -5.715*** 

 (0.000) (0.000) (0.432) (0.000) 

Constant 105.996 -71.420 -140.846 16.277 

 (0.287) (0.771) (0.305) (0.938) 

Regional dummies Yes Yes Yes Yes 

Time-dummies Yes Yes Yes Yes 

Mundlak’s devices Yes Yes Yes Yes 

Observations 9,955 9,903 9,877 14,182 

Number of ID 2,645 2,874 3,260 4,275 

Note: z-statistics with robust adjustment are reported in parentheses, * p-value <0.10; ** p-value <0.05; *** p-value <0.01 
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Abstract 

This paper aims to analyse how the farmer’s choice on adopting innovative and sustainable irrigation 

systems such as water conservation and saving technologies (WCSTs), induced also by the climatic 

variability, would shape the economic resilience of the Italian agricultural farms by improving land 

productivity. A proper water management would increase efficiency in the agricultural activities by 

improving the use of water endowments and rising agricultural economic performances to address a 

sustainable development. By applying a panel endogenous switching regression model, a correlated 

random effects probit model for the selection equation and a correlated random effects model for the 

outcome equation are estimated in a panel data context based on a detailed micro-level dataset of all the 

Italian farms. Our results confirm that adopting WCSTs increases land productivity of adopters 

significantly. 
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1. Introduction 

In this last century, the rate of water use has increased all over the world even doubling population growth 

(UN, 2015). To assure global food security, water scarcity issue will represent one of the main constraints 

that each country will face in the next future (Alexandratos and Bruinsma, 2012). Hence, water shortage 

will become the main socio-environmental challenge even because the increasing variability of climatic 

conditions, as well as desertification and urbanization processes are intensifying the pressure on water 

resources, exacerbating the water use and allocation (De Angelis et al., 2017; Mekonnen and Hoekstra, 

2016). 

Agriculture is responsible for almost 70% of global freshwater withdrawals even though the majority of 

water is used for crop intensive irrigation that in many cases is highly inefficient, with most of the water 

lost through evaporation, percolation, and runoff (EEA, 2019; MEA, 2005). In Europe, the water used in 

agriculture account for around 24% of total water use. However, this share may vary substantially, 

reaching up to 80% in the southern countries of Europe (EEA, 2019, 2009; UN-Water, 2018). Since the 

’70s of the last century, the climate change (CC) and its extremizations have contributed to intensifying 

the water demand for irrigation in agriculture putting additional pressures on water resources. Local water 

authorities will have to face the challenge of maintaining the balance between water demand and supply, 

i.e. available natural water resources (Rosenzweig and Tubiello, 1997; UNESCO and UN-Water, 2020). 

Water shortage and agricultural water use will represent important issues affecting the European 

agricultural activities in terms of both the agricultural production level and capability of assuring a good 

level of food security. In Europe, a clear north-south divide in terms of water stress is projected with 

global warming, with southern countries that will suffer the most. Water requirements are foreseen to 

increase across Europe with peaks in the southern European countries (EEA, 2019; European 

Commission. Joint Research Centre., 2020). This pressure on water resources is and will be particularly 

true for the Mediterranean regions and more specifically for Italy (Goubanova and Li, 2007; IPCC, 2013; 

Rodríguez Díaz et al., 2007), where during winter significant reductions of rainfalls have been recorded 

and will continue up to more than 40% in the next future (Ciscar et al., 2014; EEA, 2019; European 

Commission. Joint Research Centre., 2020). 

Many Italian regions have experienced warmer and drier weather conditions with an increase of extreme 

events and have suffered from water scarcity during these last decades beyond being at risk of future 

water crises due to CC (Brunetti et al., 2004; Senatore et al., 2011; Toreti et al., 2009). Moreover, 

meaningful structural differences in water endowments among Italian regions are continuously 

increasing, making the national agricultural production more fragile and outstandingly dependent on 

water irrigation, especially in water-scarce regions (Auci and Vignani, 2020; Tubiello et al., 2000).  

Small farms are particularly affected by CC events as they present a less capacity for adaptation to 

climatic extreme conditions (EEA, 2015 and 2019). Therefore, the whole Italian agricultural sector is 

intensely at risk to the adverse CC scenarios, as it is mainly composed of small farms with low land 

extensions, run at the family level, and with low levels of diversification. (Eurostat, 2016). One strategy 

that small farmers can undertake is the adoption of technological innovation to allow adaptation of 

agricultural activity to new climatic scenarios.  

Understanding the relationship between innovation in the irrigation system and agricultural yields is an 

important issue for analysing the sustainability of the agricultural sector as a whole. Indeed, innovation 
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within the agricultural sector can be considered as a strategy for adaptation to climate challenges and 

water scarcity issues. Therefore, understanding which are the driving forces for adapting to the climatic 

changes will be crucial, and the analysis of the overall effect induced by CC (either at the economic or 

at the environmental level) may be essential to design suited adaptation policies to influence farmers 

behaviour toward more conservative water uses (Bozzola and Swanson, 2014). 

Innovations and the use of water conservation saving technologies (WCSTs) may reduce the impacts of 

agricultural activities on water resources and have important effects on the improvement of agricultural 

productivity in a context of uncertainties due to climatic adversities (Expósito and Berbel, 2019). The 

WCST use may indeed reduce over-irrigation of plants and optimize crop production in those areas where 

water is scarce and dry seasons accompanied by drought periods are prolonged and severe.  

As far as agricultural innovation is concerned, the majority of literature focuses on the effects of 

agricultural research and development (R&D) expenditure on productivity at the macro level (Alston, 

2010a, 2010b; Alston et al., 2009; Fuglie, 2012; Pardey et al., 2010). Whereas only some studies focus 

primarily on innovation within the agri‐food sector (Ghazalian and Fakih, 2017; Harvey et al., 2017; 

Materia et al., 2017) and very few studies indeed analyse the direct effect of innovation on profit or 

economic sustainability at the farm level (Karafillis and Papanagiotou, 2011; Läpple and Thorne, 2019). 

However, the attention by international and national institutions to foster innovation, supporting the 

starting and the diffusion phase of sustainable technology in the agri-food sector, has determined the 

reform of the National Agricultural Innovation System (AIS) as underlined by Jaffe and Palmer (1997); 

OECD (2013) and Läpple and Thorne (2019). 

This paper wants to contribute to the current debate on how innovation in irrigation systems may have 

an impact on farm productivity (Läpple and Thorne, 2019; Le Gal et al., 2011; Mofakkarul Islam et al., 

2013; OECD, 2013). More specifically, focusing on the Italian farm system, we consider how farmers’ 

WCST adoption choices, as a strategy to cope with climate variability, may have a different effect on 

land productivity to adopters compared to non-adopters. The novelty of our paper is principally in the 

application of the control function approach using panel data as developed by Murtazashvili and 

Wooldridge (2016). We implement a two-stage switching regression model with an endogenous 

switching and an endogenous explanatory variable with constant coefficients combining the Mundlak–

Chamberlain approach for unobserved heterogeneity. This method allows us to consider two different 

sources of endogeneity: the selection indicator and an endogenous explanatory variable.  

In the first step, to take into account the selection indicator related to the WCST choice, a probit-

correlated random effects model is run considering the seasonal aridity indexes as exclusion restrictions. 

In the second step, in the output equation, the selection bias is addressed by adding generalized residuals. 

This equation represents the relationship between farmers’ agricultural economic performance 

(productivity of land) and its main inputs such as, land, irrigation land, labour and capital as well as social 

and economic characteristics of farmers. Then, a counterfactual analysis has been computed in order to 

corroborate whether adopting WCSTs for land irrigation will lead to differences in farmers’ land 

productivity performance. Estimating the average treatments effects on treated (ATET) allows evaluating 

the effects of the treatment, i.e. the decision of adopting WCSTs for irrigation (Imbens and Wooldridge, 

2009). 

The paper is structured as follows: in section 2, a brief literature review on the empirical application of 

endogenous switching regression models within the agricultural innovation is introduced. In section 3 
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the methodology applied is described in more details. Section 4 introduce the dataset used in the analysis, 

section 5 presents the main results which are discussed in section 6. Finally, some conclusions are drawn 

in section 7. 

2. Adoption in WCSTs and Endogenous Switching Models for agricultural 

innovation 

An effective strategy to obtain sustainable irrigation at the high scale level consists of improving water 

use on the demand side (farmers), therefore individual decisions over irrigation technologies may 

influence pressures on water resources at higher scales (EEA, 2009). Improving the efficiency of 

irrigation technologies implies a reduction of the volume of water absorbed effectively by the plant with 

respect to the total amount of water used by a farmer (Berbel et al., 2018). In several situations of water 

scarcity, increasing the adoption of WCSTs can contribute to reduce the pressure on water resources due 

to the limited use of inefficient irrigation practices (Expósito and Berbel, 2019). WCSTs such as drip 

irrigation, low pressure micro-sprinkling and sub-irrigation can optimize the application of water directly 

to plants root reducing water stress through a high frequency water application which decreases the 

difference between evapotranspiration and the plant extraction of water (Dasberg and Or, 1999; Pereira 

et al., 2002; Schuck et al., 2005). In terms of efficiency, the adoption of WCSTs compared to traditional 

irrigation methods (such as furrow, normal sprinkler and flooding) can satisfy both the water 

requirements by crops/plants and the reduction of water losses due to over-irrigation (Taylor and 

Zilberman, 2017; Wheeler et al., 2010). The use of WCSTs can improve water productivity considered 

as the biomass output per unit of water used which can represent an economic valuation of agricultural 

water if the price of crop over the amount of water used is considered (Expósito and Berbel, 2019). 

Moreover, WCSTs can improve fertilizers absorption and reduce soil erosion due to run-off, salinization 

and crop diseases (Alcon et al., 2019; Skaggs, 2001). However, these benefits depend mainly on the 

ability and knowledge of a farmer regarding the application of a new technology (Levidow et al., 2014). 

A relevant branch of innovation literature in economics and sociology has focused on the analysis of the 

factors which may influence the adoption of new technologies in agriculture (Feder, 1982; Feder and 

Umali, 1993; Rogers, 1971; Shrestha and Gopalakrishnan, 1993). Following these studies, the process 

of innovation adoption is dynamic (Rennings, 2000; Stavins et al., 2002) and strongly relies on adopter 

expectations over the results obtained after the decision to adopt. This process is well-described in the 

neoclassical economic theory where the final decision is based on the comparison of several alternatives 

with different levels of expected utility depending on their intrinsic and extrinsic characteristics (Baidu-

Forson, 1999; Somda et al., 2002). The primary motivation is related to the choice of increasing marginal 

benefits within a profit maximization procedure or more generally, to the improvement of adopter’s 

economic conditions. But, there are other elements that might also be considered in the innovation 

decision process which are not always observable such as social networks, cultural factors, shared ideas, 

implementation costs or the ease of innovation adoption (see Pronti et al., 2020). 

The decision of implementing innovations may depend mainly on farmer’ ability and motivations as well 

as her/his expected benefits, in nature or in economic value, that might be gained after the adoption of 

new technologies (Kesidou and Demirel, 2012). During the process of adopting innovations, which could 

be beneficial in environmental terms, other distinctive aspects can arise such as environmental 

responsibility, coping with natural resource scarcity or reducing risks to exogenous shocks. Therefore, 

the choice of adoption is influenced by a farmer’s intrinsic characteristics as well as farm structure i.e., 

motivations and ability, adaptability to changes or green aptitudes. This may determine systematic 
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differences between farmers which do adopt and those that do not. For example, high performing farmers 

could be more willing to adopt innovation than poor performers bringing to selection bias. Because of 

this systematic unobservable differences using naïve method of analysis which simply compare 

differences between adopters and non-adopters would give misleading information over the effect of the 

adoption (Läpple et al., 2013). For accounting the effect of the innovation, selection bias should be 

considered properly in order to obtain unbiased and consistent estimates. 

The endogenous switching regression method (ESRM) was firstly introduced by Lee (1983) as an 

extension of the Heckman’s selection model (Heckman, 1979) for dealing with problems of self-

selection. It has been extensively used for innovation adoption studies especially for empirical analysis 

in the agriculture sector dealing with selection problems. Fuglie and Bosch (1995) have used ESRM for 

studying the N test adoption on fertilizer efficiency among Nebraska corn growers. Di Falco et al. (2011), 

Di Falco and Veronesi (2013) and Zeweld et al. (2020) have followed the ESRM approach for testing 

the effect of climate change adaptation strategy on land productivity in Ethiopia. Abdulai and Hoffman 

(2014) have analysed the effect on land productivity and returns of soil and water conservation technique 

adoption among rice producers in Ghana. 

Other empirical works have applied a ESRM approach for evaluating agricultural development programs 

in Ethiopia and Tanzania (Asfaw et al., 2012), Nigeria (Donkor et al., 2019), Nepal (Paudel et al., 2019), 

Timor-Leste (Noltze et al., 2013), China (Gao et al., 2019; Sha et al., 2019) and India (Mishra et al., 

2017). All the above mentioned studies have used principally regional surveys with small datasets, 

whereas very few analyses had adopted wider dataset at the farmer level for all the country studied such 

as Teklewold (2013) for Ethiopia and Coromaldi et al. (2015) for Uganda. Anyway, all of them relied on 

cross-sectional data structures. 

At the best of our knowledge, no previous studies attempted to apply a ESRM for technological 

innovation in the Italian agriculture using panel data. The only study is that of Teklewold and Mekonnen 

(2017) which have analysed the elements influencing the choices related to tillage strategies and their 

effect on farm returns on income using a random effect ordered probit ESRM. 

Furthermore, the large majority of analyses are focused on developing countries, whereas empirical 

works on ESRM applied to western countries for technological innovation analysis are limited. Only 

Läpple et al. (2013) have used a cross-section ESRM for testing the effectiveness of an extension program 

on profits for dairy farmers in Ireland. Moreover, in terms of agricultural water management, the only 

authors analysing specifically this issue with a cross-section ESRM were Da Cunha et al. (2015) and 

Abdulai and Hoffman (2014). Our study represents the first attempt in addressing the WCSTs innovation 

issue in terms of land productivity at the national level in a western country using a panel data ESRM 

proposed by Murtazashvili and Wooldridge (2016). 

 

3. Methodology 

The decision of adopting innovations depends mainly on firms’ ability and motivation as well as the 

expected value of farmers’ benefits after the introduction of a new technology (Läpple and Thorne, 2019). 

The adoption process should be considered concluded only when the expected profits, obtained by new 

technology implementation, are at the maximum level (Feder, 1982; Feder et al., 1985; Shrestha and 
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Gopalakrishnan, 1993). However, a bundle of observable and unobservable determinants may influence 

the choice of innovation and in turn, the farmer’s utility function (Foster and Rosenzweig, 2010; Rogers, 

1971). So, isolating the effect of innovation on profits may be a challenging issue since farmers who 

innovate are self-selected (Läpple and Thorne, 2019). 

The interaction among all the observable and unobservable factors may affect farmers’ benefits and costs 

given all the technological alternatives that may influence the decision of adopting WCSTs5. Unobserved 

structural differences in farmers’ performances may be explained by their ability and motivations as well 

as their technology innovation choices. Thus, innovative farmers may obtain higher performances than 

the less innovative ones independently by the decision of technology adoption. Explaining these 

differences considering only innovation efforts might overestimate innovation effects. For this reason, 

taking into consideration the potential selection effect and unobserved heterogeneity represents a 

precondition for the estimation of the WCST adoption impact on farmers’ performance (Imbens and 

Wooldridge, 2009; Läpple and Thorne, 2019). 

Since the selection process is based on a time-varying unobserved heterogeneity, standard regression 

techniques are biased and an ESRM should be applied (Kassie et al., 2018; Wooldridge, 2010). In this 

model, the adoption decision is modelled considering firm-level characteristics and climatic indicators 

while the relationship between the outcome variable and a set of explanatory variables may vary across 

the two discrete regimes (i.e., farmers’ WCST adoption and non-adoption). A two-step approach, based 

on the control function method, implies that in the first stage a binary model (i.e. the self-selection 

equation) is estimated while in the second stage an outcome equation conditional on the treatment effect 

that is the adoption decision is estimated. 

One of the advantages of applying a ESRM regards the interaction between inputs and technology. An 

innovative choice may affect not only the intercept of the outcome equation but also the slope (Kassie et 

al., 2018; Murtazashvili and Wooldridge, 2016). Thus, even if the average values of farms’ characteristics 

may be the same, the adopter and the non-adopter farmer may differently affect the outcome variable 

(Wooldridge, 2010). Estimating the two different situations (adoption or non-adoption) allows 

determining the counterfactual effect on the outcome variable by considering adopters and non-adopters 

characteristics. Another advantage of the ESRM is that allows the unconfoundedness assumption to be 

overcome (Abdulai and Huffman, 2014). This methodology allows controlling for the systematic 

differences between adopters and non-adopters since we may control for unobservable characteristics 

(Abdulai and Huffman, 2014; Smith and Todd, 2005). 

Following Murtazashvili and Wooldridge (2016), an ESRM with an endogenous explanatory variable is 

implemented. This model is based on two sources of endogeneity: the selection indicator and an 

endogenous explanatory variable. Also, the unobserved heterogeneity is controlled through Mundlak’s 

devices. Applying the control function methodology, the two-step procedure implies that the selection 

equation is estimated by using a correlated random effects probit model (CRE probit) (Mundlak, 1978) 

while the outcome equation, when an endogenous continuous explanatory variable is present, is estimated 

by applying a two-stage least squares (2SLS) model with Mundlak’s devices. In this way, the selection 

                                                 
5 The farmer compares all the possible alternative technologies (new and old) and ranks all of the them in terms of overall 

expected utilities and her/his final choice is based on their comparison. For example, if alternatives A and B represent two 

different technologies (an old or a new technology), a farmer will choose the one that will give the highest expected utility 

after having considered all the different technology characteristics (Baidu-Forson, 1999; Somda et al., 2002). 
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bias is addressed by introducing the generalized residuals in the outcome equation. For robustness check, 

no continuous endogenous explanatory variable assumption is introduced, and the standard estimation 

applies. 

We model the impact of WCST adoption on farmers’ benefits by assuming them as an alternative to 

traditional irrigation systems. Under the risk-neutral assumption, a farmer may choose the innovative 

irrigation system when it provides the maximum net benefit. Thus, if the net benefit of a farmer i in the 

period t from the adoption of WCSTs is 𝑦𝑖𝑡
(1)

 and the net benefit from the non-adoption is 𝑦𝑖𝑡
(0)

, we may 

specify the two regimes (0 and 1) as follows: 

 

𝑦𝑖𝑡
(0)

= 𝑥𝑖𝑡𝛽0 + 𝑐𝑖0 + 𝑢𝑖𝑡0 

𝑦𝑖𝑡
(1)

= 𝑥𝑖𝑡𝛽1 + 𝑐𝑖1 + 𝑢𝑖𝑡1 ∀ 𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇 (1) 

 

where the vector of explanatory variables 𝑥𝑖𝑡 includes exogenous explanatory variables as farmers, farms, 

financial and institutional characteristics. Also, it contains a continuous endogenous explanatory variable 

(EEV) that is land value, beyond an intercept and a set of time dummies. As a panel estimation, time-

constant individual-specific unobserved effects (𝑐𝑖10 and 𝑐𝑖11) are introduced in both regimes. Finally, 

𝑢𝑖𝑡10 and 𝑢𝑖𝑡11 are the idiosyncratic errors in the two regimes which are independent of the exogenous 

explanatory variables 𝑧𝑖𝑡1. 

Following Murtazashvili and Wooldridge (2016), the panel ESRM linearly combines the two regimes 

and the outcome equation may be represented as follows: 

 

𝑦𝑖𝑡 = (1 − 𝐴𝐷𝑖𝑡)𝑦𝑖𝑡
(0)

+ 𝐴𝐷𝑖𝑡𝑦𝑖𝑡
(1)

 (2) 

 

where 𝑦𝑖𝑡 represents the outcome of interest i.e., farmers’ land productivity, as a linear combination of 

the two regimes. 𝐴𝐷𝑖𝑡 is the endogenous switching indicator that is 1 when a farmer chooses of adopting 

WCSTs and 0 otherwise. Substituting the two regimes of Eq. (1) into Eq. (2), we obtain: 

 

𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽0 + 𝐴𝐷𝑖𝑡𝑥𝑖𝑡𝛾1 + 𝑐𝑖0 + 𝐴𝐷𝑖𝑡(𝑐𝑖1 − 𝑐𝑖0) + 𝑢𝑖𝑡0 + 𝐴𝐷𝑖𝑡(𝑢𝑖𝑡1 − 𝑢𝑖𝑡0) (3) 

 

where 𝛾1 = 𝛽1 − 𝛽0 and the endogenous switching variable 𝐴𝐷𝑖𝑡 interacts with the time-varying 

endogenous and exogenous explanatory variables (𝑥𝑖𝑡) and time constant unobservable variables (𝑐𝑖0 

and 𝑐𝑖1) as well as with the error term. Assuming that the correlation between farmer-specific unobserved 

effects and exogenous variables is not left unspecified but is linearly related to the mean in time of the 

exogenous variables, we introduce the Mundlak’s devices in the outcome equation, as follows: 

 

𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽0 + 𝐴𝐷𝑖𝑡𝑥𝑖𝑡𝛾1 + 𝑧𝑖̅𝜌0 + 𝐴𝐷𝑖𝑡𝑧𝑖̅𝜌1 + 𝑟𝑖𝑡0 + 𝐴𝐷𝑖𝑡3𝑟𝑖𝑡1 (4) 

 

where the Mundlak’s devices 𝑧𝑖̅ are the mean of the exogenous variables 𝑧𝑖̅ = 𝑇−1 ∑ 𝑧𝑖𝑡
𝑇
𝑡=1 , and 𝑟𝑖𝑡0 and 

𝑟𝑖𝑡1 are the error terms assumed to be independent of the exogenous variables and 𝜌0 and 𝜌1 represent 

the parameters to be estimated. 

Given that farmers choose to adopt WCSTs to increase land productivity, the decision to adopt may be 

represented as an endogenous dichotomous choice. This implies estimating a correlated random effects 

probit model as follows: 

 

𝐴𝐷𝑖𝑡 = 1[𝑘𝑡3 + 𝑧𝑖𝑡𝜋3 + 𝑧𝑖̅𝛿3 + 𝑣𝑖𝑡 > 0], where 𝑣𝑖𝑡~𝑁[0,1] (5) 
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where the vector 𝑧𝑖𝑡 contains all the exogenous variables. This implies that 𝑧𝑖𝑡 includes the exogenous 

variables of the outcome equation, and any instrumental variables that may affect the endogenous and 

the selection variable. 𝑧𝑖̅ is the mean in time of all the variables and 𝑘𝑡3 represents the time-specific 

intercepts. Finally, 𝑣𝑖𝑡 the usual error term normally distributed is independent of all the exogenous 

variables. 

Taking the conditional expectation of eq. (5), we obtain the conditional mean of the error term as a 

function of the generalized residuals (ℎ(. )) (Vella, 1998): 

 

𝐸(𝑣𝑖𝑡|𝐴𝐷𝑖𝑡 , 𝑧𝑖) = ℎ(𝐴𝐷𝑖𝑡 , 𝑘𝑡3 + 𝑧𝑖𝑡𝜋3 + 𝑧𝑖̅𝛿3)  

 = 𝐴𝐷𝑖𝑡𝜆(𝑘𝑡3 + 𝑧𝑖𝑡𝜋3 + 𝑧𝑖̅𝛿3) − (1 − 𝐴𝐷𝑖𝑡)𝜆(−𝑘𝑡3 − 𝑧𝑖𝑡𝜋3 − 𝑧𝑖̅𝛿3) (6) 

 

where 𝜆 = 𝜆(. ) is the inverse Mills ratio function. As underlined by Vella (1998), this term has two 

important characteristics: i) zero mean and ii) no correlation with the explanatory variables of the probit 

model. 

Assuming that 𝑟𝑖𝑡0 and 𝑟𝑖𝑡1, the unobservables error terms of equation (4) follow a linear function and 

combining the estimated generalized residual function (6) with the outcome equation (4), we may obtain 

the final and complete outcome equation as follows:  

 

𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽0 + 𝐴𝐷𝑖𝑡𝑥𝑖𝑡1𝛾1 + 𝑧̅𝑖𝜌0 + 𝐴𝐷𝑖𝑡𝑧̅𝑖𝜌1 + 𝜉0ℎ̂𝑖𝑡3 + 𝜉1𝑦𝑖𝑡3ℎ̂𝑖𝑡3 + 𝑎𝑖𝑡 with 𝐸(𝑎𝑖𝑡|𝑦𝑖𝑡3, 𝑧𝑖𝑡) = 0 (7) 

 

where ℎ̂𝑖𝑡3 is the estimated generalized residuals, which account for the endogeneity of the selection 

variable and 𝑥𝑖𝑡 also incorporates the continuous endogenous explanatory variable. Equation (7) is then 

estimated applying an instrumental variable method for panel data. In this stage, since the estimated 

generalized residuals are included, the standard error should be adjusted through the bootstrapping 

procedure. The only exception to this method arises when the switching model is exogenous. For this 

reason, the joint significance of the parameters 𝜉0 and 𝜉1 should be tested by applying the Wald test. 

In line with Fuglie and Bosh (1995), the adoption of a new technology is a dichotomous choice which 

results from the utility maximization of a farmer and affects other decisions such as agricultural 

productivity. Thus, under the risk-neutral assumption, a farm may choose to follow an innovative 

behaviour if he/she may gain the maximum land productivity (agricultural yields per hectare) and the 

outcome equation represented in eq. (7) may be specified as follows: 

 
𝑔𝑟𝑜𝑠𝑠 𝑜𝑢𝑡𝑝𝑢𝑡𝑖𝑡

ℎ𝑒𝑐𝑡𝑎𝑟𝑒𝑖𝑡

= 𝛽
0

+ 𝛽
1

𝐹𝑎𝑟𝑚 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑡 + 𝛽
2

𝐹𝑎𝑟𝑚𝑒𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑡 +

𝛽
3

𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑎𝑛𝑑 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑡 + 𝛾
2
𝐹𝑎𝑟𝑚 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑡 ∗ 𝐴𝐷𝑖𝑡 +

𝛾
2
𝐹𝑎𝑟𝑚𝑒𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑡 ∗ 𝐴𝐷𝑖𝑡 + 𝛾

2
𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑎𝑛𝑑 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑡 ∗ 𝐴𝐷𝑖𝑡 +

𝜌
0
𝑀𝑢𝑛𝑑𝑙𝑎𝑘 𝑑𝑒𝑣𝑖𝑐𝑒 + 𝜌

1
𝐴𝐷𝑖𝑡 ∗  𝑀𝑢𝑛𝑑𝑙𝑎𝑘 𝑑𝑒𝑣𝑖𝑐𝑒 + 𝜉

0
𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 + 𝜉

1
𝐴𝐷𝑖𝑡 ∗

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 + 𝛿1𝐷_𝑦𝑒𝑎𝑟
𝑡

+ 𝛿2𝑀𝑎𝑐𝑟𝑜 𝑎𝑟𝑒𝑎𝑠𝑖 + 𝑎𝑖𝑡  (8) 

 

where all farm, farmer, financial and institutional characteristics and their interactions with the selection 

variable (𝐴𝐷𝑖𝑡) are included for each year t and farm i. Moreover, the Mundlak’s device and the 

generalized residuals derived from the probit correlated random effect model and their interactions with 

the AD variable are also included. 

Since land value may also be endogenously determined, we develop two models. In model A (our 

principal model), the presence of an endogenous variable (land value) allows us to apply a pooled 
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instrumental variable (IV) estimation based on the two stage least squared (2SLS) procedure. In model 

B (used for robustness check) where land value is considered as exogenous, a pooled OLS estimation is 

run. In the first case (model A), the endogenous variable equation of land value with the following 

exclusion restrictions may be written as follows: 

 

𝑙𝑎𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝛼0 + 𝛼1𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑖𝑡 + 𝛼2𝑚𝑖𝑥𝑒𝑑 𝑠𝑜𝑖𝑙 𝑡𝑒𝑥𝑡𝑢𝑟𝑒𝑖𝑡 + 𝜀𝑖𝑡 (9) 

 

where in addition to the instrumental variables, all the other exogenous variables with their interactions 

with the adoption variable as well as Mundlak’s device and the generalized residuals of the selection 

equation are included. 

Regarding the choice among technology alternatives, the adopted technology depends on the comparison 

between the expected net benefits of adopting and non-adopting. Only if the difference is positive then 

the adoption occurs. The selection equation based on technology adoption can then be modelled as a 

CRE panel probit model as follows: 

 
𝑃(𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 = 1|𝑧𝑖𝑡) = 𝛼0 + 𝛼1𝑊𝑖𝑛𝑡𝑒𝑟 𝐴𝐼𝑖𝑡 + 𝛼2𝑆𝑝𝑟𝑖𝑛𝑔 𝐴𝐼𝑖𝑡 + 𝛼3𝑆𝑢𝑚𝑚𝑒𝑟 𝐴𝐼𝑖𝑡 + 𝛼4𝐴𝑢𝑡𝑢𝑚𝑛 𝐴𝐼𝑖𝑡 +

𝛼5𝑧𝑖𝑡 + 𝜌0𝑀𝑢𝑛𝑑𝑙𝑎𝑘′𝑠 𝑑𝑒𝑣𝑖𝑐𝑒 + 𝛿1𝐷_𝑦𝑒𝑎𝑟𝑡 + 𝛿2𝑀𝑎𝑐𝑟𝑜 𝑎𝑟𝑒𝑎𝑠𝑖 + 𝑣𝑖𝑡 (10) 

 

where in addition to climatic variables measured by the seasonal aridity indexes, which captures the soil 

humidity through the evapotranspiration and rainfalls, all the other variables of the outcome equation 

such as farm, farmer, financial and institutional characteristics and the Mundlak’s device are included. It 

is worth to note that when the Land value variable is assumed endogenous, it is replaced by its 

instruments of eq. (8). 
 

3.1 Counterfactual analysis and treatment effects 

The advantage of the ESRM involves comparing the different impact of the decision of adopting 

innovative irrigation technology on land productivity. By using the counterfactual analysis, we may 

assess the expected agricultural yields in the two regimes. More specifically, the expected value of 

agricultural yields of farmers who adopted may be compared to the counterfactual hypothetical case of 

the same farmers, if they had not adopted. This can be examined by first specifying the expected 

agricultural yield values of farmers that adopted WCSTs (Abdulai and Huffman, 2014; Di Falco and 

Veronesi, 2013; Fuglie and Bosch, 1995). 

For an adopter of WCSTs with all the characteristics already defined, the expected value of the outcome, 

the land productivity, is given as: 

 

𝐸(𝑦𝑖𝑡1
(1)

|𝑦𝑖𝑡3 = 1) = 𝑥𝑖𝑡1𝛽1 + 𝑧𝑖̅𝜌1 + 𝜉1ℎ̂𝑖𝑡3 (11) 

 

By introducing the generalized residuals, we may capture the choice of adopting new irrigation 

technologies and thus we may correct for the selection bias in the outcome equation. This is useful to 

distinguish a farmer who adopted WCSTs that behaves differently from a farmer with the identical 

characteristics but that had chosen not to adopt WCSTs. 

Thus, we derive the expected land productivity value of farmers that adopted WCSTs in the 

counterfactual hypothetical case that they had chosen not to adopt as follows: 

 



 

 

   

 

60 

𝐸(𝑦𝑖𝑡1
(0)

|𝑦𝑖𝑡3 = 1) = 𝑥𝑖𝑡1𝛽0 + 𝑧𝑖̅𝜌0 + 𝜉0ℎ̂𝑖𝑡3 (12) 

 

Following Heckman et al. (2001), Di Falco and Veronesi (2013), Abdulai and Huffman (2014) and 

Imbens and Wooldridge (2009), we may compute the average treatment effect on treated firms (ATET). 

In other words, we may assess the impact of WCST adoption decision on land productivity for those 

farms that receive the treatment as the difference between the expected outcomes in both regimes for the 

treated farmers. Combining equations (11) and (12), we obtain: 

 

𝐴𝑇𝐸𝑇 = 𝐸 (𝑦𝑖𝑡1
(1)

|𝑦𝑖𝑡3 = 1) − 𝐸 (𝑦𝑖𝑡1
(0)

|𝑦𝑖𝑡3 = 1) = 𝑥𝑖𝑡1(𝛽1 − 𝛽0) + 𝑧𝑖(𝜌1 − 𝜌0) + ℎ̂𝑖𝑡3(𝜉1 − 𝜉0)  (13) 

 

which represents the effect of an innovating behaviour induced by climatic variability and other 

observable characteristics on agricultural yield per hectare that actually choose to innovate. It is worth to 

note that if selection is based on comparative advantage, then innovating strategy may give higher 

benefits in terms of land productivity (Abdulai and Huffman, 2014). 

 

4. Data description 

In this panel data analysis, we combined in a longitudinal database all the cross-section datasets of the 

Italian FADN (Farm Accountancy Data Network): a European survey in the agricultural sector, which 

collects yearly data on socio-economic, demographic, geographic and sustainable water management 

aspects at the farm level (RICA, 2020). Climatic variables, coming from the Era-Interim Climate dataset 

of the European Centre for Medium-Range Weather Forecasts (ECMWF, 2020) with 0.25° x 0.25° grid 

cell spatial resolution, were merged with the FADN database using georeferenced specifications in order 

to obtain a unique unbalanced panel dataset at the farm level. Among the climatic variables, quarterly 

accumulated reference evapotranspiration (ET0) and accumulated precipitation (PC) are included. These 

two variables have been used to compute seasonal Aridity Indexes (AIs) at the farm level6 as a backward-

looking rolling means with lag length of 5 years not including the current year (Henderson et al., 2017; 

Woodill and Roberts, 2018). The final unbalanced panel dataset includes 13,592 farms over a yearly time 

frame between 2012 and 2016 with 44,083 observations. 

Table 1 presents the statistics description of all the variables used in the estimation models for adopters 

and non-adopters. In Appendix, Table A1 reports the description of the variables and the descriptive 

statistics for all the sample7. Structural differences between WCST adopters and non-adopters are evident 

from descriptive statistics as shown in Table 1 and the Wald test on the mean difference confirms a 

systematic difference between the two groups. As dependent variable of the outcome equation, we 

consider the productivity of land measured by the ratio between the real profit and loss value and 

cultivated land hectares (euro/ha). The average land productivity for adopters of WCSTs is 20,933,65 

euro/ha while for non-adopters is quite low and equals to 7,965.13 euro/ha. The mean difference between 

the outcome of adopters and no-adopters is very high and equals to 12,968.5 that in percentage change 

                                                 
6
 For each season the Aridity index is measured as: AIseason= Accumulated Pricipitation (PC)/ Accumulated reference 

Evapotranspiration (ET0) (Allen and FAO, 1998). Seasons have been divided quarterly Winter (January, February, March), 

Spring (April, May, June); Summer (July, August, September); Autumn (October, November, December). 
7 For a more detailed description of all the variables considered see Pronti et al. (2020). 
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terms represents 162.82%. This suggests that adopting WCSTs for irrigation may play a significant role 

in increasing land productivity for the Italian farmers.  

As regards the independent variables of the model, we distinguish among production inputs, further 

inputs, farms’ characteristics, farmers’ characteristics, other incomes and financial and accounting 

characteristics. We also add the macro-areas in which Italy is sub-divided. 

The production inputs that affect the most the agricultural production activity are the total level of 

working hours spent within the farm (Working hours), the total machine power available in the farm 

(Machine power) and the market value of the farms’ land (Land value) all expressed in logarithmic term. 

As underlined by Timmins (2006), land value should be considered as an endogenous variable8. Thus, 

we develop two different models. In Model A we overcome the endogeneity of land value by introducing 

a valid set of instrument variables. Following Timmins (2006), we consider three non-climate attributes, 

as instruments for the land value variable. Specifically, we introduce the average altitude of the farm 

fields, as a proxy for land location, the mixed soil texture for capture soil quality, and the external water 

source as a measure of access to irrigation water availability from consortium, river and natural and 

artificial lakes. In Model B, instead, we assume that land value is exogenous, and thus, we estimate land 

productivity considering land value as an input in the outcome equation.  

We also consider further exogenous inputs, as the annual costs of energy, electricity and water and the 

amount spent on insurance to cover from production risks. As control variables, we introduce farms’ 

characteristics such as farm specialization in producing crops exclusively of high value and family-run 

management of a farm. The High value crop dummy variable takes the value of 1 if a farm cultivates 

olives, fruits, vegetables and grapes and 0 otherwise. This allows us to consider the technical-economic 

orientation of a farm while a family-run management suggests a small farm size. We comprise famers’ 

characteristics such as the age of the head of the farm and other two dummies indicating if the farm’s 

head is female, or the farmer holds at least a secondary school education. Further, we control for farmers’ 

other incomes by considering EU funds and no-EU funds as well as external activities and for financial 

characteristics such as return on investments (ROI) and leverage (indicating the dimension of external 

financial resources over the resource generated internally). All the monetary variables are deflated and 

converted to 2000 euros before logged. Moreover, macro regional and year dummies are included in 

order to consider the geographic heterogeneity and some exogenous macroeconomic shocks. 

WCST adopters which show higher levels of land productivity, present a higher figure of working hours 

suggesting more working-intense activities and less capital and land value compared to the non-adopting 

farmers. Moreover, they bear an higher insurance cost as well as higher energy, electricity and water 

costs. In addition, adopting farms are specialized in high value crops and are not family-run. Farmers 

who choose to adopt WCSTs are younger, male, more educated compared to non-WCST adopters. The 

adopters have fewer funds both from EU and national level and are fonder of their own activities without 

searching for incomes coming from other activities. 

                                                 
8 Timmins (2006) refers to endogeneity of land value within a Ricardian model, but it can be extended to other models as ours 

in which land value is considered as an explanatory variable. The author argues that land value can be influenced by many 

unobservable determinants and only in part by climate conditions. Moreover, unobserved determinants of land value may 

differ with land use and its range of available alternatives, in which the wider alternative land uses are the more severe the 

estimation bias is. 
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This first mean comparison underlines how the differences between the adopter and the non-adopter in 

terms of land productivity is relevant but is not enough to explain the adoption of WCST decision across 

the sample famers. Since the process of WCST adoption could depend on farmers unobserved 

heterogeneity we should account for the self-selection issue based on the ease of adopting WCSTs by 

farmers who find these technologies more useful than those who do not adopt by applying a panel ESRM. 
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Table 1. Descriptive statistics 

 
Variable 

Adopters 

(n=8227) 
Non-Adopters 

(n=35849) 
Diff. 

 mean std mean std  

Outcome variable Land productivity (€/ha) 20,933.65 81,326.14 7,965.13 62,657.28 12,968.5*** 

Instruments for Land 

value when is 

considered as an 

endogenous variable 

External water source (d) 5.45 16.35 7.22 28.85 -1.766*** 

Mixed soil texture (%) 44.73 32.32 58.34 59.84 -13.61*** 

Altitude avg. (m) 174.05 194.98 302.24 286.11 -128.2*** 

Production inputs 

Working hours (h) 5,744.46 9,650.80 4,021.25 4,218.35 1,723.2*** 

Machine power (Kw) 157.25 168.87 188.63 202.12 -31.38*** 

Land value (€) 270,638.20 550,722.60 292,077.80 772,073.40 -21,439.6* 

Further inputs 

Energy, electricity and 

water costs (€) 
4,919.01 20,417.87 3,632.73 11,416.46 1,286.3*** 

Insurance (€) 2,594.30 10,675.00 1,445.71 5,105.74 1,148.6*** 

Farms’ characteristic 
High value crop (d) 0.78 0.41 0.32 0.47 0.464*** 

Family run (d) 0.74 0.44 0.89 0.32 -0.146*** 

Farmers’ 

characteristics 

Age (years) 53.51 13.24 55.10 13.68 -1.586*** 

Female head (d) 0.20 0.40 0.21 0.41 -0.0126* 

High education (d) 0.34 0.47 0.29 0.45 0.0454*** 

Other incomes 

EU Funds (€) 8,244.64 22,764.86 13,866.22 41,361.35 -5,621.6*** 

No EU Funds (€) 5,173.33 11,456.52 6,204.37 9,797.57 -1,031.0*** 

External activities (d) 0.24 0.43 0.25 0.44 -0.0112* 

Financial and 

accounting 

characteristics 

ROI (no) 346.20 3,356.09 186.71 1,932.01 159.5*** 

Leverage (no) 1.35 5.37 1.26 12.19 0.0882 

Macro-areas  

North-west (d) 0.13 0.34 0.25 0.43 -0.114*** 

North-east (d) 0.23 0.42 0.22 0.42 0.01* 

Centre (d) 0.16 0.37 0.24 0.43 -0.077*** 

South (d) 0.33 0.47 0.20 0.40 0.130*** 

Islands (d) 0.14 0.35 0.09 0.29 0.05*** 
Note: * p<0.05, ** p<0.01, *** p<0.001;in the units of measurement (d) stays for dummy variable and (no) stays  for unit less variable (e.g. index).
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Table 2: Climatic variability descriptive statistics 

 
Variable Description 

Micro-

irrigation=1 

(n=8228) 

Micro-

irrigation=0 

(n=35855) 
Diff. 

 mean std mean std  

Climate 

variables 

(instruments 

for the 

selection 

indicator: 

Micro-

irrigation) 

AIJFM 
Winter Aridity 

Index 
1.041 0.325 1.156 0.281 0.114*** 

AIAMJ 
Spring Aridity 

Index 
0.442 0.319 0.491 0.252 0.0492*** 

AIJAS 
Summer Aridity 

Index 
0.346 0.365 0.368 0.299 0.0223*** 

AIOND 
Autumn Aridity 

Index 
1.376 0.708 1.556 0.596 0.180*** 

Note: The Aridity Index is the ratio between P and ET0 and it is calculated considering the moving average of the last 5 years 

in mm*day-1. If 𝐴𝐼 ≥ 0.65 indicates humid areas, 𝐴𝐼 < 0.65 indicates arid areas. * p<0.05, ** p<0.01, *** p<0.001 

 

In the selection equation as dependent variable a variable indicating the adoption of WCST technologies 

in each year has been used. This dummy variable assume the value of 1 if a farmer irrigates using drip, 

micro-sprinklers and sub-irrigation system and 0 otherwise. In the CRE probit model, as climate 

variables, seasonal AIs are introduced. These represent the exclusion restrictions of the selection 

indicator to account for the endogeneity of the famer’s choice of adopting WCSTs (Murtazashvili and 

Wooldridge, 2016). In Table 2, we present the descriptive statistics of climate variability distinguishing 

for adopters and non-adopters, while in Table A2 of Appendix A, we report the descriptive statistics for 

all the sample. In spring and summer period, the mean values show that Italy suffers for dryness since 

the period should be classified as semi-arid, while in winter and autumn season, the AIs measure a degree 

of humidity in line with the climatic zone. This difference is confirmed even when we distinguish 

between adopters and non-adopters. In the selection model, all the exogenous explanatory variables used 

in the outcome equation are also added to the exclusion restrictions as described in Murtazashvili and 

Wooldridge (2016).  

 

5. Empirical results  

Results of the empirical analysis are reported in Table 3 and 4. In Table 3, the main results of the selection 

equation based on the CRE probit model where the dependent variable is the adoption of WCSTs are 

summarized. In Table 4, the estimated coefficients of the outcome equation are reported where the natural 

logarithm of land productivity value represents the dependent variable. In both tables, the results are 

presented distinguishing between two different models. The first model (Model A) is based on the 

estimation of the switching regression model considering two different endogenous sources: an 

endogenous explanatory variable due to land value and an endogenous switching indicator due to micro-

irrigation system. The second model (Model B) instead considers only one endogenous variable: the 

switching indicator representing the farmer’s choice in adopting WCSTs while land value is considered 

exogenous. Within each model, two alternative estimations are presented. The first estimation is based 
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on all farmers of the Italian agricultural sector (first two columns for Model A and B), while the second 

estimation regards only a restricted sample i.e. farmers who cultivate only crops excluding livestock 

productions (the second two columns for Model A and B). 

Table 3 shows the results of the binary choice model which estimated coefficients of the main 

determinants of WCST adoption where the seasonal AIs are considered as exclusion restrictions. More 

specifically, the probability of adopting WCSTs decreases when the AIs for winter, summer and autumn 

increase. This confirms that a significant reduction of rainfalls over evapotranspiration needs increases 

water scarcity and thus influences farmers in choosing to adopt WCSTs. Nevertheless, other factors may 

affect the decision of adopting WCSTs.  

 

Table 3. First-stage probit coefficient estimates: What factors determine micro-irrigation adoption? 

Dep. Var.:  

Micro-irrigation adoption 

Model A Model B 

Endogenous Land value Exogenous Land value 

All farmers Only crop farmers All farmers Only crop farmers 

AIJFM -0.719*** -0.686*** -0.861*** -0.735*** 

 (0.064) (0.072) (0.063) (0.073) 

AIAMJ 3.722*** 4.224*** 2.679*** 3.414*** 

 (0.170) (0.195) (0.170) (0.197) 

AIJAS -1.166*** -1.293*** -1.291*** -1.418*** 

 (0.118) (0.140) (0.117) (0.142) 

AIOND -0.217*** -0.625*** -0.149* -0.219** 

 (0.084) (0.055) (0.083) (0.096) 

External water source 0.240*** 0.184***   

 (0.046) (0.021)   

Mixed soil texture -0.345*** -0.475***   

 (0.027) (0.035)   

Altitude avg. -0.239*** -0.254***   

 (0.007) (0.009)   

Land value   0.008 -0.011 

   (0.018) (0.022) 

Constant -37.029 -0.494 -47.272 -15.638 

 (36.015) (14.367) (33.939) (34.438) 

Control variables 

Working hours; Machine power; Energy electricity and water costs; Insurance; High-

value crops; Age; Age2; Female head; Family run; High education; EU Funds; No EU 

Funds; External activities; ROI; Leverage. 

Dummy Year Yes Yes Yes Yes 

Macro Regional Dummy Yes Yes Yes Yes 

Mundlak device Yes Yes Yes Yes 

Observations 44,083 27,565 44,083 27,565 

Wald Chi-squared 7918 5045 7141 4477 

p-value 0.000 0.000 0.000 0.000 

Note: The entire results for the reported regressions are available upon request. Bootstrapped standard errors for the CF 

approaches are shown in parentheses and *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Final-stage coefficient estimates: the IV and the pooled-OLS regressions 

Dep. Var.: 

Land productivity 

Model A Model B 

Endogenous Land value Exogenous Land value 

All farmers Only crop farmers All farmers Only crop farmers 

Non-adopters Adopters Non-adopters Adopters Non-adopters Adopters Non-adopters Adopters 

Land value -0.753*** -1.246*** -0.537*** -1.35*** -0.015*** -0.113*** 0.008 -0.138*** 

 (0.065) (0.146) (0.092) (0.154) (0.005) (0.015) (0.005) (0.018) 

Working hours 0.032** 0.064 0.020 0.072 0.060*** 0.118** 0.040*** 0.12*** 

 (0.014) (0.045) (0.015) (0.044) (0.011) (0.029) (0.012) (0.030) 

Machine power -0.024*** -0.169*** -0.061*** -0.181*** -0.080*** -0.226*** -0.101*** -0.237*** 

 (0.007) (0.013) (0.008) (0.015) (0.003) (0.009) (0.004) (0.010) 

Energy, electricity and 

water costs  
0.075*** 0.055 -0.025 -0.046 0.082*** 0.072 0.062** 0.075 

 (0.025) (0.062) (0.028) (0.071) (0.019) (0.044) (0.024) (0.044) 

Insurance -0.004 0.002 0.006 0.023 0.011 0.026 -0.006 0.019 

 (0.017) (0.037) (0.014) (0.037) (0.010) (0.022) (0.011) (0.024) 

High-value crops 0.006 0.015 -0.142*** -0.228 0.018 0.022 -0.052*** -0.096 

 (0.019) (0.044) (0.019) (0.060) (0.012) (0.029) (0.015) (0.036) 

Age 0.000 0.006 0.000 0.005 0.001 0.007 -0.003 0.002 

 (0.005) (0.015) (0.005) (0.015) (0.003) (0.010) (0.004) (0.010) 

Age2 -0.0001 0.0001 0.0001 0.0001 -0.0001 0.0001 0.0001 0.0001 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Female head -0.024*** -0.073** -0.026*** -0.08** -0.018*** -0.037 -0.013** -0.024 

 (0.006) (0.021) (0.007) (0.021) (0.005) (0.015) (0.006) (0.016) 

Family run -0.099*** -0.023*** -0.040** -0.02 -0.026*** 0.007** 0.019** 0.029 

 (0.015) (0.028) (0.016) (0.027) (0.009) (0.017) (0.008) (0.017) 

High education 0.016** 0.024 0.010 0.04 -0.031*** -0.063 -0.024*** -0.052 

 (0.008) (0.022) (0.009) (0.024) (0.005) (0.013) (0.006) (0.015) 

EU Funds 0.051** 0.118 -0.030 0.183*** -0.169*** -0.282*** -0.147*** -0.245*** 

 (0.022) (0.050) (0.023) (0.054) (0.007) (0.019) (0.008) (0.023) 

No EU Funds -0.010 -0.017 0.003 -0.003 -0.003 -0.024 -0.006 -0.027 

 (0.011) (0.041) (0.013) (0.046) (0.005) (0.016) (0.007) (0.022) 

External activities 0.016** -0.095*** 0.016* -0.104*** -0.001 -0.078*** -0.011* -0.091*** 

 (0.007) (0.022) (0.010) (0.023) (0.005) (0.014) (0.006) (0.014) 

ROI 0.953 0.781 0.542 0.873 0.573 0.697 0.350 0.645 

 (0.876) (1.412) (0.706) (1.261) (0.858) (1.213) (0.751) (1.188) 

Leverage -0.314 3.159 -0.408 2.493 -0.274 2.819 -0.463 2.952 

 (2.761) (8.879) (2.418) (7.429) (2.033) (5.888) (2.190) (5.062) 

North-west 0.157*** 0.325*** 0.191*** 0.361*** 0.164*** 0.268*** 0.186*** 0.309*** 

 (0.008) (0.041) (0.009) (0.039) (0.006) (0.029) (0.007) (0.030) 

North-east 0.279*** 0.384** 0.212*** 0.414*** 0.128*** 0.059*** 0.093*** 0.058 

 (0.017) (0.051) (0.025) (0.052) (0.006) (0.023) (0.007) (0.029) 

South -0.088*** -0.434*** -0.156*** -0.517*** -0.019*** -0.317*** -0.132*** -0.425*** 

 (0.008) (0.032) (0.011) (0.034) (0.007) (0.029) (0.009) (0.032) 

Islands -0.088*** -0.513*** -0.270*** -0.64*** -0.076*** -0.371*** -0.270*** -0.497*** 

 (0.010) (0.035) (0.014) (0.036) (0.009) (0.030) (0.015) (0.036) 
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Generalised residuals -0.559*** -0.353*** -0.577*** -0.437*** -0.138*** 0.07*** -0.484*** -0.132*** 

 (0.032) (0.030) (0.029) (0.032) (0.041) (0.023) (0.041) (0.025) 

Constant 79.339**  42.042  -64.092***  -53.675**  

 (35.832)  (61.040)  (20.320)  (21.516)  

Dummy Year Yes  Yes  Yes  Yes  

Mundlak device Yes  Yes  Yes  Yes  

Observations 44,076  27,562  44,076  27,562  

Underidentification test 925.6  159.5      

p-value 0  0      

Weak identification test 157.3  25.17      

p-value 0  0      

Note: Results in extended form are available in appendix in which data are presented using the analytical notation in which the coefficients γ of the interactions 

between the treatment variable (WCST) and the other covariates represent the difference between the coefficient of adopters (𝛽1) and non-adopters (𝛽0), in which 

𝛾 = 𝛽1 − 𝛽0. In this table the coefficient of the two groups are shown directly with the adopters’ equal to the non-adopters coefficient plus the γ (𝛽1 = 𝛾 + 𝛽0). 

The entire results for the reported regressions are available upon request. Bootstrapped standard errors for the CF approaches are shown in parentheses and *** 

p<0.01, ** p<0.05, * p<0.1 
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The most important characteristics which positively affect the adoption of WCSTs are working hours, 

insurance against agricultural risks (not for crop growers subsample) and, to a lesser extent, high-value 

crops, Energy, electricity and water costs (only for crop growers), external activities (only for model A), 

machine hours (at the 5% and 10% level of significance), no EU funds (only at 10% level of significance) 

and external activities. As in other empirical work, among others Green et al. (1996) and Huang et al. 

(2017), new irrigation systems are more likely to be observed on labour-intensive farms. The total amount 

of labour force measured as total working hours can be considered as proxy of the economic size of a 

farm, thus higher levels of adoption are more likely in large farms than in small ones. As regards 

insurance, farmers’ risk aversion increases the adoption of irrigation technologies to reduce agricultural 

production risk confirming the main findings of Fuglie and Bosch (1995) and Feder et al. (1985).  

Conversely, there are other factors which affect negatively the adoption of WCSTs. High-education has 

a negative impact on the probability of adopting WCSTs (not for all the farms sample in Model A). This 

result is contrary to the main literature that has found an opposite and significant sign (Alcon et al., 2019; 

Moreno and Sunding, 2005; Pokhrel et al., 2018; Salazar and Rand, 2016). Moreover, if the head of a 

farm is a female, the farm is run at the family level, and the funds come mainly from the EU institutions, 

it is less likely to adopt WCSTs. As regards the geographical variables, the signs of the coefficients 

confirm the descriptive analysis where the WCST distribution over the country is dominant in the South 

and Island macro-areas. Farms placed in the southern part of Italy or in the two islands are more likely 

to adopt WCSTs compared to those farms located in the Centre while farms in the northern-west and east 

(for Model A) parts of Italy are more likely to adopt. 

In the hypothesis of the presence of a continuous endogenous variable as land value, the instrumental 

variables – External water source, Mixed soil texture and Altitude average – show significant coefficients 

meaning that these variables are important determinants in the choice of WCST adoption. More 

specifically, the use of external water source positively influences the adoption of WCSTs, whereas the 

quality of soil (mixed soil texture) and the average height of fields (Altitude avg.) negatively affects the 

adoption of WCSTs. Thus, having a higher average altitude, as well as a mixed soil texture type, reduces 

the probability of WCST adoption. For a deeper discussion of the marginal effects and elasticities of the 

different characteristics of the WCST adoption within the selection equation, one may refer to the 

analysis of Pronti et al. (2020). 

By considering the outcome equation results as reported in Table 4, findings on land productivity for 

WCST non-adopters are compared to WCST adopters. The relevance of general residuals, confirmed by 

the Wald test, indicates that, in all the models, the self-selection is present and the use of WCSTs can 

improve substantially land productivity. When assuming land value as an endogenous variable (Model 

A), the effect of land value and machine power on land productivity is predicted to be statistically 

different for non-adopters with respect to adopters. The effect of the intense use of capital (machine 

power) and land value is negative for both types of farmers and this effect is stronger if a farmer who 

does innovate. This confirms that controlling for endogeneity allows land value to have a higher negative 

impact on land productivity if farmers innovate than if they do not. Considering labour intensity, the 

coefficient is statistically significant only for non-adopters (only for the full sample with livestock), but 
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not for adopters. Therefore, labour does not influence land productivity if adopting WCST, whereas for 

non-adopters each hour spent working in the farm affect positively land productivity9.  

Energy, electricity and water costs can be considered as a proxy of energy and water intensity, they are 

significant and positive for non-adopters, but not for adopters. This could be explained as the adoption 

of WCST does not put any additional gains in terms of land productivity considering EEW intensity. The 

dummy indicating high-value crops is negatively significant for non-adopters considering the subsample 

of crop growers, this variable is not significant for adopters. This can be interpreted as that high value 

crops have a negative effect on land productivity for non-adopters and that conversely the adoption of 

WCSTs does not involve any incremental negative effect on that. 

The dummies for female head and family run farms are negative and statistically significant indicating a 

negative effect on land productivity for non-adopters (both sample) and adopters (only full sample). Age 

is not statistically significant in any model. Education of the farmer is significant, but with a low 

magnitude for non-adopters considering the full sample, whereas it does not seem a determinant of land 

productivity for WCST adopters. The coefficient indicating external activity of the farmer, as a proxy of 

his/her involvement in running the farm, is positive for non-adopters (in both samples used) whereas it 

is negative for WCST adopters. This may indicate that a less enthusiasm in farming activities requested 

for WCST adopters can be detrimental in terms of economic results, conversely additional income from 

external activities increases land productivity for non-adopters.  

Receiving EU subsidies increase land productivity for both, adopters (only crop growers) and no-

adopters (full sample), whereas receiving other types of funds (No EU Funds) seems to be not 

determinant in influencing land productivity for both groups. 

Since all the estimated coefficients of the models can be interpreted as elasticities, one may observe that 

no evident differences arise among the models and between the two regimes of adoption (adopters and 

non-adopters). Most of the coefficients show low elasticities of land productivity with respect to the 

explanatories (they are mainly lower than 0.5), only land value shows very high level of elasticities, but 

only for Model A which considers the variable as endogenous. This suggests that considering land value 

as endogenous is extremely relevant in terms of reducing the bias of the results.  

Excluding livestock production farms from the sample produces similar results in terms of sign and 

magnitude of the coefficients of most of the explanatory variables as for the whole sample indicating 

robustness of our estimations. Considering land value as an exogenous variable (Model B), and therefore 

performing a OLS instead of 2SLS produces similar results for all the explanatories apart of the exception 

of higher-education, Eu Funds, working hours, family run and external activities. However, the most 

important difference regards land value which shows an important lower magnitude than in Model A 

and, for WCST no-adopters, a statistically insignificant coefficient in the case of the full sample. Again, 

this suggests the presence of endogeneity between land productivity and land value. Thus, the more 

appropriate approach is the ESRM with a continuous endogenous explanatory variable which implies the 

use of the 2SLS method in the estimation of the outcome equation. Furthermore, even in this case the 

Wald tests on generalized residuals confirm endogeneity in the selection process showing that sample 

                                                 
9 Those findings, the negative effect of capital intensity and the positive effect of labour intensity on farm productivity, can 

be explained by the fact that farm productivity (our dependent variable) is normalized per hectare (unit of measure is € per 

Ha). Therefore, the results do not say that capital is negative for productivity, but that considering unitary level of land 

productivity the increase of machinery usage level reduces productivity outcomes per hectare of productive land.  
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selection bias would be present, if the outcome equation has been estimated without considering the 

irrigation adoption decision. The Wald tests on Mundlak’s devices also confirm the correctness in the 

use of this strategy to cope with individual heterogeneity.  

 

5.1 Results on the counterfactual analysis 

Main differences in productive performances are more evident by estimating the average treatment 

effects of WCST adoption as in Table 5 (Abdulai and Huffman, 2014; Di Falco and Veronesi, 2013; 

Fuglie and Bosch, 1995). Differently from the analysis of a simple mean differences of the two groups 

(adopters and non-adopters) which has the disadvantage of confounding the impact of WCST adoption 

on land productivity due to the influence of other characteristics, the ATET estimates allow selection 

bias to be taken into account. This implies that the systematically difference between adopters and non-

adopters is controlled by applying the ESRM. Estimating the average treatment effect on treated (ATET) 

implies to compute the difference in means between the outcome of the treated sample that actually 

adopted WCSTs and the mean of potential outcome of the same sample in the case they had not adopted 

WCSTs on the basis of a counterfactual analysis (Angrist and Pischke, 2009). 

 

Table 5. Impact of WCST Adoption on Land Productivity 

  Mean outcome    

  Adopters 
Non-

Adopters 
ATET t-value 

% 

All 

farmers 

Model A 26,894.98 8,430.97 18464.01 56.05 219.00 

Model B 23,754.51 15,712.30 8,042.21 51.85 51.18 

Only crop 

farmers 

Model A 29,742.07 8,272.85 21,469.22 50.91 259.51 

Model B 24,555.00 8,997.99 15,557.01 77.48 172.89 

Note: ATET, average treatment effect on the treated; values are expressed in euro. *** Coefficient significant at the 1% level. 

 

Results suggest that the adoption of WCSTs significantly increase land productivity of adopters and that 

WCSTs potentially could improve productive performance of non-adopters either. By focusing on the 

ATET values, they are all highly statistically significant in both Models and in either all the farmers or 

only crop farmers sample. In the case of all farmers, Model A presents an ATET value of land 

productivity equals to 26,894.98 euro/ha for adopters who adopt WCSTs compared to the counterfactual 

case in which the same farmers had not adopted (8,430.97 euro/ha). This corresponds to a difference in 

the economic performances of land between the case of WCST adoption with the counterfactual 

hypothesis of non-adoption of the adopters of almost 219%. Considering only crop growers the ATET 

value is even higher 29,742.07 euro/ha. In this case the percentage differences in land productivity 

between WCST adopters and their outcome in the hypothetical case of non-adoption is even higher than 

before and equal to 259.51%. In the case of Model B, the value of ATET is 23,754.51 euro/ha and 24,555 
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euro/ha respectively, for all type of farms and only crop growers. This implies a percentage change of 

adopters compared to non-adopters of respectively 51.18% (full sample) and 172,89% (only crops 

growers). This further confirms that considering endogeneity of land value can release sensibly higher 

level of expected outcome for treated units. The counterfactual analysis on treatment effects shades light 

on the positive effect of WCST adoption on the productive performance of a farmer who adopts. 

 

6. Discussion and concluding remarks 

The overall CC impacts on Italian agriculture are not easily foreseeable. In fact, even if in the short term 

the negative effects of droughts and CC could be possibly balanced by raises of agricultural commodity 

prices due to general scarcities (Musolino et al., 2017, 2018; Feyen et al., 2020), in the long term, the 

impact on national agricultural production will be strongly negative (Bocchiola et al., 2013; Bozzola et 

al., 2018; Toreti et al., 2009; Tubiello et al., 2000; Van Passel et al., 2017; EEA, 2019) influencing 

impressively the Italian socio-economic system as a whole (such as less food security, more 

unemployment, less protection of the environment and worse conditions of public health). 

While there is a growing consensus on the impact of climate variability on agriculture (Burke and 

Emerick, 2016; Deressa and Hassan, 2009; Deschênes and Greenstone, 2007; Mendelsohn et al., 1994; 

Mendelsohn and Dinar, 2009; Schlenker et al., 2005; Van Passel et al., 2017), a better understanding of 

farms’ adaptive capacity (Huq et al., 2004; Seo, 2011) and adaptation strategies in supporting agricultural 

firms productivity are still needed (Di Falco and Veronesi, 2013; Khanal et al., 2018). 

How an agricultural system may react to the different negative CC scenarios may depend mainly on what 

management practices farmers will follow for adapting to the extremization of the climate and increasing 

their resilience to weather fluctuations (Tubiello et al., 2000). Climate policies will have potentially 

significant impacts on the agricultural sector and in particular on the innovation within agriculture. 

Removing distortions and barriers would foster farm-level innovation and facilitating investments in new 

sustainable technologies (OECD, 2013; EEA, 2019; Feyen et al., 2020). Thus, it is worth to consider the 

role that technological change may have as a key element which can contribute to solve long-term 

environmental problems as CC (Popp, 2005). 

Our findings confirm the importance of new agricultural technologies adoption in the improvement of 

farm productivity (OECD, 2013; EEA, 2019; Feyen et al., 2020) and the role of innovation policies to 

achieve an economically sustainable expansion of the agricultural sector in Italy. By boosting the 

adoption of WCSTs, it should be feasible to reduce the impact of agricultural activities on water resources 

through the improvement of the efficient use of scarce natural resources. This in turn may produce an 

increase in land productivity of Italian farmers. In terms of policy suggestion, our analysis confirms the 

relevant role of innovation in the irrigation systems and the fact that more productive farmers are those 

that adopt WCSTs. A policy-maker oriented toward water conservation policies for the agricultural sector 

should take into consideration the wide effect of WCST adoption on production performances as an 

incentive for supporting large scale conversions toward more efficient irrigation technologies. In the next 

future, when climate variability and water scarcity will be substantially more stringent, increasing 

irrigation issues, the strategy of boosting farmers’ technological improvements to enhance water 

productivity and water efficiency might be of crucial importance for sustainable agriculture. 



 

 

 

 

72 

In this paper, we addressed an important issue in agricultural water management using a novel application 

of the theoretical econometric model of Murtazashvili and Wooldridge (2016) dealing with two sources 

of endogeneity in the selection models. Differently from previous applications, we exploited a panel data 

approach considering the case study of Italian farmers which are characterized by geographical, socio-

economic and environmental diversity.  

Our estimation released robust results and some statistical tests evidenced that the adoption WCSTs is 

an endogenous and self-selective process. By using common econometric methods, we would have 

biased and inconsistent results. The climatic variables used in the selection equations indicate that 

weather variability is an important factor in the WCST adoption choice. Other elements based on the 

literature are included and confirm the probability of adopting the new irrigation technologies in the 

agricultural sector. Differences in the outcome equations between adopters and non-adopters are 

significant and the counterfactual analysis highlight that adoption of WCSTs as a strategy to cope with 

water scarcity increase the overall farm productivity.  
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Appendix A 
Table A1. Variable names, definitions, and descriptive statistics for the whole sample  

 
Variable Description 

All the Sample 

(n=44076) 

 mean std 

Outcome variable Land productivity Real profit and loss value per hectare (euro/ha). 10,385.77 66,731.24 

Instruments for Land 

value when is 

considered as an 

endogenous variable 

External water source 
Area irrigated by water sources, external to land ownership, such as access to water from water 

consortium, river and natural and artificial lake for irrigation purposes (ha). 
6.89 26.97 

Mixed soil texture Agricultural area with mixed soil texture (ha). 55.80 55.99 

Altitude avg. Average altitude level of a farm (metre). 278.31 275.99 

Production inputs 

Working hours Total working hours of labour (hour). 4,342.90 5,683.90 

Machine power Total machine power within a farm (Kwh). 182.77 196.72 

Land value Real market value of agricultural lands (euro). 288,076.00 735,871.00 

Further inputs 

Energy, electricity and 

water costs 
Total costs of water, fuel and energy consumed (euro). 3,872.82 13,567.06 

Insurance Total amount spent on insurance by a farmer (euro). 1,660.10 6,532.32 

Farm characteristic High value crop 
Dummy = 1 if a farm cultivates olives, fruits, vegetables and grapes and 0 if a farm cultivates 

other crop types or rears farm animals. 
0.40 0.49 

Farmers’ 

characteristics 

Age Age of household head (farmer) (year). 54.80 13.62 

Female head Dummy = 1 if a farm is managed by a woman and 0 by a man. 0.21 0.41 

Family run Dummy =1 if a farm is family run and 0 otherwise. 0.86 0.35 

High education Dummy = 1 if a farmer has at least a secondary degree or above and 0 otherwise. 0.30 0.46 

Other incomes 

EU Funds Total amounts of funds directly received from EU through the CAP program (euro). 12,816.92 38,638.74 

No EU Funds 
Total amounts of Funds received from other institutions no EU, as national and local 

governments (euro). 
6,011.92 10,135.69 

External activities 
Dummy =1 if a farmer is engaged in external activities and 0 if a farmer is engaged only within 

the farm. 
0.25 0.43 

Financial and 

accounting 

characteristics 

ROI Return of investment (ROI) (euro) 216.48 2,267.59 

Leverage Farms’ leverage (euro) 1.28 11.24 

Macro-areas  

North-west Dummy=1 if regions are Piedmont Liguria Lombardy and Aosta Valley 0.23 0.42 

North-east Dummy=1 if regions are Emilia-Romagna, Veneto, Friuli-Venezia-Giulia, Trentino-Alto-Adige 0.23 0.42 

Centre Dummy=1 if regions are Tuscany, Umbria, Marche, and Latium 0.22 0.42 

South Dummy=1 if regions are Basilicata, Calabria, Campania, Molise, Puglia 0.22 0.42 

Islands Dummy=1 if regions are Sicily and Sardinia 0.10 0.30 
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Table A2: Climatic variability descriptive statistics 

 
Variable Description 

All the Sample 

(n=44083) 

 mean std 

Climate variables 

(instruments for the 

selection indicator: 

Micro-irrigation) 

AIJFM Winter Aridity Index 1.134 0.293 

AIAMJ Spring Aridity Index 0.482 0.267 

AIJAS Summer Aridity Index 0.364 0.312 

AIOND Autumn Aridity Index 1.523 0.622 

 

 

Appendix B 

 
Table B1. First-stage probit coefficient estimates: What factors determine micro-irrigation 

adoption? 

Dep. Var.: Micro-irrigation adoption 

Model A Model B 

Endogenous Land value Exogenous Land value 

All farmers 
Only crop 

farmers 

All 

farmers 

Only crop 

farmers 

Climate variables 

AIJFM -0.719*** -0.686*** 
-

0.861*** 
-0.735*** 

 (0.064) (0.072) (0.063) (0.073) 

AIAMJ 3.722*** 4.224*** 2.679*** 3.414*** 

 (0.170) (0.195) (0.170) (0.197) 

AIJAS -1.166*** -1.293*** 
-

1.291*** 
-1.418*** 

 (0.118) (0.140) (0.117) (0.142) 

AIOND -0.217*** -0.625*** -0.149* -0.219** 

 (0.084) (0.055) (0.083) (0.096) 

Instruments for 

Land value 

External water source 0.240*** 0.184***   

 (0.046) (0.021)   

Mixed soil texture -0.345*** -0.475***   

 (0.027) (0.035)   

Altitude avg. -0.239*** -0.254***   

 (0.007) (0.009)   

Production inputs 

Working hours 0.216*** 0.250*** 0.133*** 0.150*** 

 (0.017) (0.019) (0.045) (0.050) 

Machine power -0.022* -0.021 -0.014 -0.030** 

 (0.011) (0.013) (0.011) (0.012) 

Land value   0.008 -0.011 

   (0.018) (0.022) 

Further inputs 

Energy, electricity and 

water costs 
0.007 0.446*** 0.035 0.074 

 (0.054) (0.027) (0.052) (0.063) 

Insurance 0.069* 0.029 0.078** 0.096** 

 (0.036) (0.020) (0.036) (0.039) 

Farms’ 

characteristic 

High-value crops 0.085 0.705*** 0.095 0.314*** 

 (0.065) (0.027) (0.064) (0.069) 

Family run -0.228*** -0.126*** 
-

0.235*** 
-0.113*** 

 (0.025) (0.027) (0.024) (0.027) 

Farmers’ 

characteristics 

Age 0.004 -0.003 0.001 0.005 

 (0.017) (0.005) (0.017) (0.020) 

Age2 -0.000 -0.000 -0.000 -0.000 
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 (0.000) (0.000) (0.000) (0.000) 

Female head -0.059*** -0.039* 
-

0.074*** 
-0.061*** 

 (0.020) (0.023) (0.020) (0.022) 

High education 0.003 -0.050** -0.035* -0.099*** 

 (0.019) (0.022) (0.019) (0.021) 

Other incomes 

EU Funds -0.247*** -0.257*** 
-

0.313*** 
-0.384*** 

 (0.025) (0.029) (0.022) (0.027) 

No EU Funds 0.059* 0.007 0.053* 0.051 

 (0.032) (0.020) (0.030) (0.035) 

External activities 0.039* 0.053** 0.032 0.033 

 (0.022) (0.025) (0.022) (0.024) 

Financial and 

accounting 

characteristics 

ROI -0.091 -0.703 -0.112 -0.120 

 (1.028) (0.697) (1.039) (1.182) 

Leverage 0.516 0.981 0.431 0.356 

 (1.547) (1.535) (1.472) (1.551) 

Macro-areas 

North-west -0.512*** -0.569*** 
-

0.319*** 
-0.340*** 

 (0.040) (0.043) (0.038) (0.043) 

North-east -0.392*** -0.426*** 0.096** 0.131*** 

 (0.042) (0.048) (0.039) (0.044) 

South 0.305*** 0.484*** 0.211*** 0.397*** 

 (0.032) (0.037) (0.030) (0.037) 

Islands 0.369*** 0.751*** 0.132*** 0.456*** 

 (0.047) (0.056) (0.045) (0.054) 

 Constant -37.029 -0.494 -47.272 -15.638 

  (36.015) (14.367) (33.939) (34.438) 

 Dummy Year Yes Yes Yes Yes 

 Mundlak device Yes Yes Yes Yes 

 Observations 44,083 27,565 44,083 27,565 

 Wald Chi-squared 7918 5045 7141 4477 

 p-value 0.000 0.000 0.000 0.000 

Note: The entire results for the reported regressions are available upon request. Bootstrapped standard errors for the 

CF approaches are shown in parentheses and *** p<0.01, ** p<0.05, * p<0.1 
 

 
Table B2. Results of the outcome equations of Table 4 in the extended form. 

 Model A Model B 

 Endogenous Land value Exogenous Land value 

 
All 

farmers 

Only crop 

farmers 

All 

farmers 

Only crop 

farmers 

     

Land value -0.753*** -0.537*** -0.015*** 0.008 

 (0.065) (0.092) (0.005) (0.005) 

Working hours 0.032** 0.020 0.060*** 0.040*** 

 (0.014) (0.015) (0.011) (0.012) 

Machine power -0.024*** -0.061*** -0.080*** -0.101*** 

 (0.007) (0.008) (0.003) (0.004) 

Energy, electricity and water costs 0.075*** -0.025 0.082*** 0.062** 

 (0.025) (0.028) (0.019) (0.024) 

Insurance -0.004 0.006 0.011 -0.006 

 (0.017) (0.014) (0.010) (0.011) 

High-value crops 0.006 -0.142*** 0.018 -0.052*** 

 (0.019) (0.019) (0.012) (0.015) 

Age 0.000 0.000 0.001 -0.003 
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 (0.005) (0.005) (0.003) (0.004) 

Age2 -0.000 0.000 -0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) 

Female head -0.024*** -0.026*** -0.018*** -0.013** 

 (0.006) (0.007) (0.005) (0.006) 

Family run -0.099*** -0.040** -0.026*** 0.019** 

 (0.015) (0.016) (0.009) (0.008) 

High education 0.016** 0.010 -0.031*** -0.024*** 

 (0.008) (0.009) (0.005) (0.006) 

EU Funds 0.051** -0.030 -0.169*** -0.147*** 

 (0.022) (0.023) (0.007) (0.008) 

No EU Funds -0.010 0.003 -0.003 -0.006 

 (0.011) (0.013) (0.005) (0.007) 

External activities 0.016** 0.016* -0.001 -0.011* 

 (0.007) (0.010) (0.005) (0.006) 

ROI 0.953 0.542 0.573 0.350 

 (0.876) (0.706) (0.858) (0.751) 

Leverage -0.314 -0.408 -0.274 -0.463 

 (2.761) (2.418) (2.033) (2.190) 

North-west 0.157*** 0.191*** 0.164*** 0.186*** 

 (0.008) (0.009) (0.006) (0.007) 

North-east 0.279*** 0.212*** 0.128*** 0.093*** 

 (0.017) (0.025) (0.006) (0.007) 

South -0.088*** -0.156*** -0.019*** -0.132*** 

 (0.008) (0.011) (0.007) (0.009) 

Islands -0.088*** -0.270*** -0.076*** -0.270*** 

 (0.010) (0.014) (0.009) (0.015) 

Generalised residuals -0.559*** -0.577*** -0.138*** -0.484*** 

 (0.032) (0.029) (0.041) (0.041) 

WCST adoption 237.184** 238.642** 185.837*** 167.078*** 

 (98.702) (101.528) (57.583) (57.264) 

Land value * WCST adoption -0.493*** -0.813*** -0.098*** -0.146*** 

 (0.146) (0.154) (0.015) (0.018) 

Working hours * WCST adoption 0.032 0.052 0.058** 0.080*** 

 (0.045) (0.044) (0.029) (0.030) 

Machine power * WCST adoption -0.145*** -0.120*** -0.146*** -0.136*** 

 (0.013) (0.015) (0.009) (0.010) 

Energy, electricity and water costs * WCST 

adoption -0.020 -0.021 -0.010 0.013 

 (0.062) (0.071) (0.044) (0.044) 

Insurance * WCST adoption 0.006 0.017 0.015 0.025 

 (0.037) (0.037) (0.022) (0.024) 

High-value crops * WCST adoption 0.009 -0.086 0.004 -0.044 

 (0.044) (0.060) (0.029) (0.036) 

Age * WCST adoption 0.006 0.005 0.006 0.005 

 (0.015) (0.015) (0.010) (0.010) 

Age2 * WCST adoption -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) 

Female head * WCST adoption -0.049** -0.054** -0.019 -0.011 

 (0.021) (0.021) (0.015) (0.016) 

Family run * WCST adoption 0.076*** 0.020 0.033** 0.010 
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 (0.028) (0.027) (0.017) (0.017) 

High education * WCST adoption 0.008 0.030 -0.032** -0.028* 

 (0.022) (0.024) (0.013) (0.015) 

EU Funds * WCST adoption 0.067 0.213*** -0.113*** -0.098*** 

 (0.050) (0.054) (0.019) (0.023) 

No EU Funds * WCST adoption -0.007 -0.006 -0.021 -0.021 

 (0.041) (0.046) (0.016) (0.022) 

External activities * WCST adoption -0.111*** -0.120*** -0.077*** -0.080*** 

 (0.022) (0.023) (0.014) (0.014) 

ROI * WCST adoption -0.172 0.331 0.124 0.295 

 (1.412) (1.261) (1.213) (1.188) 

Leverage * WCST adoption 3.473 2.901 3.093 3.415 

 (8.879) (7.429) (5.888) (5.062) 

North-west * WCST adoption 0.168*** 0.170*** 0.104*** 0.123*** 

 (0.041) (0.039) (0.029) (0.030) 

North-east * WCST adoption 0.105** 0.202*** -0.069*** -0.035 

 (0.051) (0.052) (0.023) (0.029) 

South * WCST adoption -0.346*** -0.361*** -0.298*** -0.293*** 

 (0.032) (0.034) (0.029) (0.032) 

Islands * WCST adoption -0.425*** -0.370*** -0.295*** -0.227*** 

 (0.035) (0.036) (0.030) (0.036) 

Generalised residuals * WCST adoption 0.206*** 0.140*** 0.208*** 0.352*** 

 (0.049) (0.049) (0.067) (0.062) 

Constant 79.339** 42.042 -64.092*** -53.675** 

  (35.832) (61.040) (20.320) (21.516) 

Observations 44,076 27,562 44,076 27,562 

Dummy Year and its interaction with AD Yes Yes Yes Yes 

Mundlak devices and its interaction with AD Yes Yes Yes Yes 

Underidentification test 925.6 159.5   

p-value 0 0   

Weak identification test 157.3 25.17   

p-value 0 0     

Note: The γ coefficients of the interaction between treated (WCST adopters) and the covariates in this case indicate 

the gap between adopters and non-adopters. The entire results for the reported regressions are available upon request. 

Bootstrapped standard errors for the CF approaches are shown in parentheses and *** p<0.01, ** p<0.05, * p<0.1 
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Abstract 

The elasticity of irrigation water demand is estimated based on a large panel dataset in an 

Irrigation District in Emilia-Romagna region, one of the most important areas for agricultural 

production in Italy. An econometric analysis is applied to the level of irrigation technologies, 

crops and to combinations of both variables by controlling for autocorrelation and 

heteroscedasticity by using a log-log model with a fixed effect and a Feasible General Least 

Squares regression. Results generally show a marked heterogeneity of demand elasticity for 

irrigation water for a variety of crops and irrigation systems. The main finding is the fact that 

water price elasticity increases with the level of system efficiency (i.e., it is more elastic with 

drip vs. furrow irrigation), which implies that response to water pricing in the context of our 

analysis (short-term and full irrigation context) is less effective with traditional irrigation 

technologies. 

 

Keywords: Agricultural water management, Water Demand Elasticity, Water use response 

to price, Emilia-Romagna. 
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Introduction 

Water scarcity is one of the most crucial challenges in terms of both environmental 

conservation and food security that humankind is facing in the near future (Unesco et al., 

2019). Many areas of the world are suffering from structural water scarcity and water-

resource-related problems. Climate change and increasing demand for food worldwide are 

intensifying pressures on water resources for both household access and industrial production 

activities with unpredictable effects on public health, the economy, and on society as a whole 

(Steduto et al., 2012). Agriculture constitutes one of the main causes for pressure on water 

resources, principally in the form of crop irrigation, which accounts on average for 70 % of 

total water withdrawal across the globe (Koohafkan, 2011). Agricultural policies towards the 

conservative use of water can provide effective instruments of adaptation to water scarcity 

and climate change issues, thereby contributing towards sustainable development. 

The international debate on pricing water as a measure to cope with water scarcity started in 

1992 with the Dublin principles during the United Nation International Conference on Water 

and the Environment (United Nations, 1992) in which water was declared as a social 

commodity whose intrinsic economic value should be managed sustainably (Savenije and 

van der Zaag, 2002; Somanathan and Ravindranath, 2006). In the last three decades, 

economic measures have started to be implemented as a tool for environmental policies in 

water resource management based on the polluter-pays and the user-pays principles (Lago et 

al., 2015; Renzetti, 2002). 

Water pricing is an economic tool that stimulates farmers to reduce water use and optimise 

its allocation (Wheeler et al., 2015). Volumetric tariffs can lead to the modification of a 

farmer’s water strategies, such as crop substitution (Varela-Ortega et al., 1998) and 

technological change (Pronti et al., 2020), that reduce over-exploitation by assigning 

opportunity cost to water as an input and guiding water allocation towards the greatest 

economic return (Ward and Michelsen, 2002). Additionally, the price of water plays a major 

financial role in creating revenues for the supplier (Saleth and Dinar, 2005) and in 

implementing cost recovery principles (Dinar and Mody, 2004; Rogers, 2002).  

Assigning a price to each volume of water demanded can also reduce the cost of setting and 

controlling the policy effect, since profit-maximising farmers should consequently adapt 

water demand to their own real cost function (Dinar and Mody, 2004; Massarutto, 2003). 

Irrigators adapt to changes in water prices by basing their calculations on their own marginal 

adjustment costs, thereby reducing the aggregate cost of the policy more than with regulatory 

instruments which target farmers indiscriminately. Moreover, economic tools create 

permanent incentives for the application of technological innovation more than do regulation 

methods, which provide incentives to innovate only until compliance is achieved (Lago et 

al., 2015). Volumetric tariffs had been used as a principal economic measure towards 

sustainable water management, but with ambiguous results in terms of real water 
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consumption with major differences between the various cases of application (Cooper et al., 

2014; Dinar and Mody, 2004; Molle and Berkoff, 2007). 

Effectiveness of water pricing depends upon the demand characteristics and specifically on 

water price elasticity. Price elasticity of demand is a measure of the change in the quantity 

demanded of a product in relation to its change in price (Olmstead et al., 2007). Water price 

elasticity is extremely important for policy-making in agricultural water management in 

terms of responsiveness of farmers to institutional incentives in water use for crop production 

(Somanathan and Ravindranath, 2006; Wheeler et al., 2008). An erroneous assessment of 

water demand elasticity can lead to pricing policy failures due to either overpricing water, 

thereby lowering farmers income due to high water costs, or under-pricing water, thereby 

assigning excessively low opportunity costs which incentivize over-irrigation (Molle, 2009). 

The effect of water price elasticity on the total quantity of water demanded remains  unclear 

in the literature due to the heterogeneous results of empirical analysis, which depend on a 

variety of local conditions linked to water systems and on other aspects, such as socio-

economic, geographical, and institutional factors (Scheierling et al., 2006). Very little applied 

research has been carried out related to this aspect which influences the availability of 

effective analysis on the outcomes and impacts of water policies (Massarutto, 2003). 

The objective of this paper is to analyse the water demand elasticity of farmers by considering 

the heterogeneity of agricultural production and irrigation systems through an empirical 

analysis using a large observational panel dataset at plot level of an Irrigation Water District 

(IWD) in northern Italy. Various econometric models were employed to assess water demand 

elasticity to price by considering different technologies, different crops and their 

combination, while controlling for weather conditions and other heterogeneities between 

observations. 

Panel data econometric methods can partially account for unobserved factors with estimates 

that are not deterministic but instead are based on the stochastic process. There are examples 

of water demand elasticity based on various econometric analyses, although all of them share 

data scarcity mainly based on cross-section analysis (Scheierling et al., 2006). To the best of 

our knowledge, our study is one of the widest-spanning analyses in terms of datasets and 

variety of crops and technologies considered using a panel data approach at plot level.  

The paper is structured as follows: In Section 2, a brief state of the art is presented of the 

literature on water demand elasticity; in Section 3, materials and methods are discussed; in 

Section 4, the results of the analysis are presented; Section 5 introduces a discussion of the 

main findings; and the paper finishes with the concluding remarks of Section 6. 

The price elasticity of water demand in agriculture 

The main element of uncertainty in water pricing interventions in agriculture is linked to the 

response of farmers to the policy which principally depends on their reactions to changes in 

the price of water. Ascertaining water demand elasticity is fundamental for the effectiveness 

of  water pricing policies and for the formulation of ad hoc actions in order to improve water 
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use efficiency by reducing pressure on water resources, while considering the overall effects 

on farmers’ incomes and the revenues raised by such policies (Iglesias et al., 1998). 

Agricultural water demand largely depends on the physical productivity of water, farmers’ 

incomes, local environmental conditions, and market structure while other factors that are 

not directly observable may also influence water demand, such as social, institutional, and 

behavioural aspects (Massarutto, 2003). These elements vary widely across countries and 

regions, depending on their geographic, socio-economic, financial, political, and 

infrastructural conditions, by constraining considerations on water demand and elasticity to 

single case-by-case studies (Dinar and Mody, 2004; Molle and Berkoff, 2007).  

Scheierling et al. (2006) review the elasticity of irrigation water demand and reveal that the 

variability of estimates depends mainly on factors of the case study and find an average 

elasticity of water demand to price of -0.48, which indicates that water demand is, on average, 

inelastic. However, these authors also found a relatively large standard deviation of 0.53 

whose range in absolute terms lies between 0.001 and 1.97. Zuo et al. (2015) confirmed these 

results with a contingent evaluation in Australia estimating a water demand elasticity of -

0.57 considering long-term water entitlements. Conversely, considering the same area, Zuo 

et al. (2016) found farmers’ water demand to be elastic to water prices which ranged from 

0.73 to 3.23 with differences between geographical, demographic, and productive farm 

characteristics. The main differences in the two studies is that, in the latter, elasticity is 

calculated by considering willingness to accept the price threshold to trigger the 

abandonment of farming, which can substantially differ from real water demand elasticity to 

price. 

What emerges in agricultural water demand elasticity is unclear: there are no totally 

convergent visions, since the results depend heavily on intrinsic low external validity and 

methodological choices. Several scholars claim that water demand is totally inelastic 

(Hendricks and Peterson, 2012; Massarutto, 2003; Moore et al., 1994; Ogg and Gollehon, 

1989), others that water demand is elastic (Schoengold et al., 2006), or that it is  elastic only 

for underground water, but not for furrow irrigation using gravity irrigation (Nieswiadomy, 

1985).  

Other studies found that water demand is elastic only after a certain price threshold, and 

remains inelastic below that point (Expósito and Berbel, 2016; Varela-Ortega et al., 1998). 

Wheeler et al. (2008) estimated an average elasticity for water demand of -1.5 by considering 

the Australian water markets and a time-series of total water market allocations, and they 

highlighted significant fluctuations within the irrigation season (-1.71 to -4.14). They had 

estimated a short-term elasticity to have a mean of -0.52, and of -0.89 for that of the long-

term. In a recent study of de Bonviller et al. (2020) based on Australian groundwater markets, 

a unitary elasticity of -1.05 was found. They also highlighted that price is not the only major 

cause of water demand, but that drought, price of products, season, other inputs related to 

irrigation (such as diesel prices and electricity), and type of crop may also influence farmers’ 

demand (de Bonviller et al., 2020; Wheeler et al., 2008). Inelastic water demand has also 

been found in earlier prominent studies (Caswell et al., 1990; Zilberman, 1984).  
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In general, empirical studies presented in the literature indicate that water demand is inelastic 

for both major and minor changes in the price of water and that, in the main, the water demand 

curve is not strongly respondent to water pricing policies owing to a general low water 

demand elasticity of farmers (Dinar and Mody, 2004; Molle and Berkoff, 2007). Moreover, 

for the water price to provoke an effective response, it should be fixed at excessively high 

levels, which would incur a greater effect on agricultural incomes than its possible positive 

effects on the environment and water savings (Expósito and Berbel, 2016;de Fraiture and 

Perry, 2007). Conversely, other studies state that, despite structural levels in which water 

demand is inelastic, water prices can be effective due to the high elasticity of water demand 

segments (Gómez-Limón and Riesgo, 2004). Water demand elasticity is affected by 

threshold effects: for low ranges of water prices, water demand does not respond to higher 

prices:, for medium price ranges, changes in water demand do respond to prices due to 

farmers’ strategies that involve changing to water conservation and saving technologies 

(WCST) (Berbel et al., 2018; Pronti et al., 2020) or to crops with low water needs; whereas 

for high price ranges, water demand is again inelastic owing to the abandonment of the 

market by the farmer (de Fraiture and Perry, 2007; Gómez-Limón and Riesgo, 2004). 

In a low level of prices, threshold effects depend on technical substitution effects (of 

technology and crops) which reflect changes in input composition within the farmer 

production function. Those changes determine the elasticity of the demand curve which 

represents substitutions of water with capital and labour as a strategy adopted by the farmer 

to cope with the increasing price of water (Renzetti, 2002). At certain price levels, the 

demand curve again becomes inelastic due to the end of input substitution possibilities and 

increasing disadvantages in agricultural production due to the excessively high opportunity 

cost of water (Berbel and Gómez-Limón, 2000; de Fraiture and Perry, 2007; Expósito and 

Berbel, 2017). Therefore, no complete agreement exists in the literature regarding the effect 

of pricing water on water demand, and consequently there is no complete agreement on the 

effect of tariff policy on farmers’ irrigation decisions (de Fraiture and Perry, 2002; Molle and 

Berkoff, 2007). 

In empirical works, water demand elasticity has been derived using a variety of methods. 

Those studies that are present in the literature are divided principally into Mathematical 

Programming (MP), Experimental Studies, and Econometric analysis. One of the main 

problems in this field of study involves the very low level of reliable information on both 

water prices and water demand. The absence of observations over a range of different prices 

has encouraged scholars to use MP methods (linear, quadratic, and stochastic approaches) to 

derive water demand elasticity using the simulation of optimisation models (Bontemps and 

Couture, 2002). The principal means for the extraction of elasticity measures with MP is 

through the derivative of the dual solutions, which can be considered as the water shadow 

prices (Elbakidze et al., 2017; Howitt et al., 1980). Mathematical Programming has 

frequently been employed to estimate water demand, whereby the first examples have 

assumed profit maximisation. More recently, however, MP has integrated more realistic 

assumptions in an effort to adapt to observed decisions, such as PMP and MCDM, so that a 

better representation of irrigation can be considered as a stochastic process and not 
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completely deterministic (Antle and Hatchett, 1986; Wheeler et al., 2015). Mathematical 

Programming research relies on strong assumptions and strong constraints on irrigation 

technology (Mieno and Brozović, 2017). Conversely, field experiments link agronomic 

concepts with economic production function studies and use of statistical methods to estimate 

the marginal effects of the application of water on yields in order to modify water demand  

to obtain the best value of output, while still leaving a little room for water demand 

adjustments that lead to structural inelastic demands (Mieno and Brozović, 2017; Scheierling 

et al., 2006).  

Econometric methods rely on real and observational data in order to find statistical inferences 

of various factors on water demand, and use specific marginal effects of the logarithm of the 

variable of interest in order to find elasticities. The principal problems related to econometric 

approaches include those of measurement errors caused by using proxies of water costs when 

real prices are not observed (such as energy or extraction costs), spatially aggregated data 

(Mieno and Brozović, 2017), and of unobserved heterogeneity, which leads to endogeneity 

biases and problems of consistency of the estimations (Havranek et al., 2018). Due to the 

limitations on agricultural water data, most of the econometric analysis present to date in the 

literature is largely cross-sectional and aggregated at a higher level than that of the plot which 

can lead to the under-estimation and unreliability of results of water elasticity (Bontemps and 

Couture, 2002).  

To the best of our knowledge, only the work of Schoengold et al. (2006) on surface water 

and that of Hendricks and Peterson (2012) on underground water deal with the estimation of 

water demand elasticity and they use a panel data approach to endogeneity problems. We 

contribute to the current empirical literature by adding an econometric analysis; by using real 

price data applied at plot level; and by exploring the effect on different technologies, varieties 

of crops, and combinations of crops and irrigation systems while controlling for different 

factors. 

Material and methods  

3.1 Case study and data description 

In Italy, the lowest institutional level of agricultural water management is held by the 

Irrigation Water Districts (IWD) (Consorzi di Bonifica in Italian). These districts are private-

public institutions which started up as irrigators associations in the beginning of the last 

century (Bazzani et al., 2005). Over time, IWD has taken on increasing institutional 

importance in the national water management system, and has been entrusted by national law 

(Gazzetta Ufficiale della Repubblica Italiana, 2006) to address the WFD at local level (Dono 

et al., 2019). Nowadays, IWDs are responsible for the implementation, development, 

maintenance, and management of the irrigation systems serving the farms located in their 

assigned area (Dono et al., 2019; El Chami et al., 2011). There are approximately 500 IWDs 

in Italy, with many differences in management systems, dimensions, and tariff systems. In 

accordance to regional laws, these IWDs must set the price of water services to their users 

(Berbel et al., 2019). Of the water withdrawn for agriculture, 63% comes from IWDs, (34% 
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with a rotation system and 29% with service on demand), with the remaining 37% from 

groundwater (18%) and private superficial sources (15%) (Istat, 2014). 

The Emilia-Romagna Region (ERR) holds the largest share of irrigated land in Italy, and the 

agricultural sector of ERR constitutes one of the major productive areas of the country 

(Pérez-Blanco et al., 2016). In 2017, the value added of agriculture in ERR was 11% of the 

national value with a total value of production of 4.8 billion euros (ERR, 2019a, 2019b; 

Fanfani and Pieri, 2018). The role of irrigation is crucial for the regional production system, 

and, during recent decades, agricultural development has strongly increased the pressure on 

water resources (Pérez-Blanco et al., 2016). Moreover, ERR has been affected by major 

repeated extreme events due to severe droughts during the harvest season since 2003 (Vezzoli 

et al., 2015). 

The ERR regional government implemented several policies based on incentives and 

regulations for the improvement of the conservation of water resources thereby boosting 

improvements in irrigation efficiency and reduction of pollutants, for which a major role has 

been taken by the introduction of pricing instruments for irrigation guided by the Cost 

Recovery Principle (El Chami et al., 2011). 

The database employed in this study comes from water prices and water distribution of the 

Central Emilia Irrigation Water District (CEWD) (in Italian, Consorzio di Bonifica 

dell’Emilia Centrale) in the provinces of Reggio-Emilia and Modena in the Emilia-Romagna 

region (Italy).  

The area served by the CEWD has the highest level of regional production value (ERR, 

2019a), in which many important high-value certified agri-food products are produced (such 

as Parmigiano-Reggiano cheese, Balsamic Modena Vinegar, Lambrusco wine, and crops 

with Protected Geographical Indication) (ERR, 2019b). The CEWD is in charge of the water 

distribution of local farmers with a complex infrastructural network that diverts water from 

the rivers Po, Secchia, and Enza, and serves thousands of farmers annually (CEWD, 2017, 

2015). The most important crops cultivated in the area include: Alfalfa, Maize, Meadows, 

Vineyard, and Orchards (principally Pear and a minority of Apple, Peach, and others). Other 

crops grown are: Soya, Sugar Beet, Tomato, and Watermelon. The principal irrigation system 

adopted is of the sprinkler type, whereas for specific crops, drip irrigation is used 

(Watermelon, Vineyard, and Orchards), and for other crops, furrow is the main irrigation 

system (Meadows, Orchards and Vineyard). In Table 1, the average values per crop and 

irrigation system of observations, water used, water tariffs, and irrigated land within the 

CEWD are summarised.  

Farmers served by the CEWD do not possess large farms and the dimension of each plot on 

average is small. By considering a farm as an agglomeration of single irrigated plots managed 

by the same user, then the average farm dimension is 4.9 ha (SD 6.41 ha) with 99 % of the 

population observed holding less than 29 Ha. However, by considering single irrigated plots, 

the average surface is 3.7 ha (SD 4.04 ha). 
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Table 1.  Mean Irrigated areas and water price considering Crops and Irrigation systems. 

Crop  
Irrigation  

system 

Irrigated  

Area (ha) 

Water  

Volume  

(m3 per ha) 

water  

tariff (€) 

n  

obs. 

Alfalfa  Drip 3.61 775.82 0.0238 10 

Alfalfa  Furrow 3.53 1225.51 0.0253 235 

Alfalfa  Sprinkler 4.74 1023.30 0.0226 3339 

Maize Drip 1.82 1184.19 0.0204 49 

Maize Furrow 2.53 3575.39 0.0321 99 

Maize Sprinkler 3.60 1298.57 0.0230 3947 

Meadows Drip 5.18 1686.91 0.0222 1 

Meadows Furrow 4.92 1277.90 0.0245 5895 

Meadows Sprinkler 6.48 1199.32 0.0244 150 

Orchards Drip 2.40 7695.00 0.0000 817 

Orchards Furrow 2.70 4604.92 0.0258 225 

Orchards Sprinkler 2.82 2234.76 0.0220 1511 

Soya Drip 3.67 1469.49 0.0284 2 

Soya Furrow 1.96 2854.30 0.0289 18 

Soya Sprinkler 2.96 1977.25 0.0278 405 

Sugar Beet Drip 1.73 888.83 0.0248 2 

Sugar Beet Furrow 5.14 1430.06 0.0236 20 

Sugar Beet Sprinkler 5.36 1010.33 0.0253 796 

Tomato Drip 2.65 334.09 0.0274 80 

Tomato Furrow 6.20 996.45 0.0273 5 

Tomato Sprinkler 5.63 849.53 0.0260 486 

Vineyard Drip 6.25 341.22 0.0251 1578 

Vineyard Furrow 3.74 1259.20 0.0238 3031 

Vineyard Sprinkler 5.85 846.79 0.0261 6178 

Watermelon Drip 8.30 1504.83 0.0249 236 

Watermelon Furrow 4.65 4188.69 0.0249 3 

Watermelon Sprinkler 6.64 1886.76 0.0246 73 

 

General descriptive data shows that, for the same crop, the water use is usually lower with 

drip and higher with furrow, with sprinkler use calibrated somewhere in the middle; this is 

an expected result of the water saving achieved by increased precision in irrigated systems. 

Irrigation demand is made directly by farmers to the CEWD, which calculates the total 

amount of water to be diverted to the plot by considering an irrigation plan compiled annually 

by the farmer with details on the irrigation system and the crop plan. Therefore, water demand 

is not controlled by the farmer in the flows, which are optimised by the CEWD supply, but 

instead in the number of times they ask for irrigation during the year. Direct water metering 

is impossible in the area since water is served principally through open canal systems. Each 

water supply is therefore measured indirectly by considering the canal flow rate, the capacity 

of the water structure, and the duration of the delivery (CEWD, 2017). 

Over the years, the CEWD has experimented with various tariff schemes. The CEWD was 

established in 2009 by the fusion of two previous IWDs present in the area (the Consorzio di 
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Bonifica Parmigiana Moglia Secchia and Bentivoglio-Enza) in which irrigators were faced 

with different water tariff schemes (flat and two-part tariffs), which were not modified until 

2015. In 2016, in conformity with its own sustainability aims, which are in line with those of 

the WFD, the CEWD implemented a new pricing plan based on a two-part tariff scheme for 

all its users in order to reduce over-irrigation and to gather financial resources to cover 

operational and maintenance costs using a cost recovery approach. The new two-part tariff 

scheme is composed of a fixed fee to cover the general service of the CEWD, and a 

volumetric part based on a baseline price (BP) multiplied by an economic multiplier 

calculated with a variety of coefficients, which consider different types of service costs, water 

intensity of the crop, and rivalry on water resources. The new two-part tariff scheme is 

synthetized and shown in Equation 1. All the tariffs applied in the CEWD during the years 

of the study are presented in Table 2. 

𝑊𝑃 = 𝐵𝑃 ∗ (𝑅𝐼𝑉 ∗ 𝑆𝐸𝑅 ∗ 𝑀𝑂𝑀 ∗ 𝑊𝐼)   (Eq.1) 

where: 

 WP is the water price of the two-part tariff applied within the CEWD since 2016 to each 

water request. 

 BP is baseline price of 0.025 €/m3 in 2016, and 0.027€/m3 in 2017 and 2018. 

 RIV is the coefficient for rivalry for the water resources. It is applied in areas of the 

Secchia and Enza water basin in which droughts have a high probability of arising, with 

limited water flows in peak demand periods. The coefficient increases the price by a level 

of 1.15 BP. If no rivalry occurs, then RIV is equal to 1. 

 SER is the service coefficient and it works as a recovery of the operational and 

maintenance costs in areas where water withdrawal is more energy intensive (in certain 

areas of the Enza water basin). The coefficient increases the price by 1.2 BP. If the user 

is located in a normal area, then SER is equal to 1. 

 MOM is the momentum coefficient which considers the out-of-season provision of 

services to recover operational costs when the all the water irrigation systems of the 

CEWD is not still fully operational. The coefficient increases the basic price by a range 

between of 1.2 and 1.5 BP. If the request is made during in-season periods, then MOM 

is equal to 1. 

 WI is the crop-water intensity coefficient which considers the crop-water intensity in its 

production cycle. It ranges from 1.1 for crops of a medium water intensity (such as 

watermelon, apples, maize) to 1.3 for crops of high water intensity (such as peaches, rice, 

and kiwis). Neutral water-intensity crops have a WI equal to 1. 
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Table 2. Tariff schemes in the CEWD over the years with frequencies and water basin. 

Period  Tariff scheme Price € per m3 Frequency Water Basin 

2009-2015 Flat tariff 0 2,570 Po 

2009-2015 Volumetric 0.0248358 € 4,596 Po, Secchia 

2009-2015 Volumetric 0.025080 € 7,266 Po, Secchia 

2009-2015 Volumetric 0.0436944 € 255 Enza 

2009-2015 Volumetric 0.0441389 € 399 Enza 

2016-2018 Two-part  0.02508 € * cost-recovery coefficients 5,125 Po, Secchia, Enza 

2016-2018 Two-part  0.027 € * cost-recovery coefficients 10,232 Po, Secchia, Enza 

 

The many different price tariffs imposed over the years resulted in a varied range of prices 

applied to volumetric water use from 0 to 0.0489€. This is a small price range, but can be 

employed in the analysis of water-use behaviour of farmers in the short-term to build a water 

demand curve with a good level of details for both different irrigation schemes and crops. 

The water demand curves were used for the analysis of water demand elasticities to price 

using real observational data of water provision directly released by the CEWD with panel-

data econometric methods.  The observations of the CEWD dataset represent the water 

demand managed by the CEWD in the area for surface irrigation. Water requests have been 

aggregated at a yearly level by considering the total amount of water demanded for the plot 

during the year. Water prices are calculated as the average volumetric water price paid for 

irrigation of the plot in the year while considering differences in price formation as explained 

above. The final panel is unbalanced; it considers a timeframe of six years from 2013 to 2018 

with a total of 28,738 observations and 9,097 different plots. Data has been aggregated at 

yearly level. 

External climatic data has been merged by considering georeferenced data of the 

municipality where the plot was located using the ERA-Interim dataset of the European 

Centre for Medium-Range Weather Forecasts (ECMWF) with 25km2 grid cell spatial 

resolution. Various weather variables have been included at seasonal level (maximum and 

minimum temperatures, accumulated precipitation, and reference evapotranspiration) 

(ECMWF, 2020). Unlike Hendricks and Peterson (2012), who used climatic variables 

separately, we created a seasonal aridity index (AI) for each plot as the ratio between 

accumulated precipitation and reference evapotranspiration (Steduto and Food and 

Agriculture Organization of the United Nations, 2012) in order to consider the relative 

contribution of rain to potential water needs.  

3.2 Theoretical framework and methodological approach  

Elasticity can be defined as the percentage change of the dependent variable of a function 

caused by a unitary change of one of its independent variables. The demand elasticity of a 

commodity to price measures the responsiveness of the demand function to its price;, it 

indicates the relative change in the quantity demanded due to a unitary change of price and 

it can be interpreted as a measure of responsiveness of the demand function to price changes 
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(Varian, 1990). Elasticity is often defined as the ratio between the percentage variation of the 

quantity demanded and the percentage variation of the price (Equation 2). 

𝜀𝑑 =
∆𝑞

𝑞⁄

∆𝑝
𝑝⁄

=
∆𝑞

∆𝑝
∗

𝑝

𝑞
  (Eq.2) 

Elasticity can be thought as the ratio between the slope of the demand curve and the 

relationship between price and quantity (Varian, 1990). At a single point, elasticity can be 

well approximated by the partial derivative of the demand function with respect to price, or 

by the ratio between the marginal function and the average function of the demand function 

(Equation 3) (Chiang and Wainwright, 2013). 

𝜀𝑑 =
𝜕𝑄

𝜕𝑃
=

𝑑𝑦

𝑑𝑥
𝑞

𝑝

⁄   (Eq.3) 

The value of price elasticity is usually negative, since the relationship between quantity and 

price is negative (for anon-inferior commodity), whereas its magnitude indicates the level of 

responsiveness of the function to a unitary change of the dependent variable. It is well 

established that: an elasticity value of 1 in absolute terms indicates constant elasticity with a 

proportional reaction of q for a change of x in 1 unit; a value higher than 1 in absolute terms 

indicates that the curve is elastic, which suggests a more than proportional response of q to 

unitary changes of x; and a value lower than 1  in absolute terms indicates an inelastic curve 

which suggests a less-than-proportional response of q to unitary changes of x (Chiang and 

Wainwright, 2013). The values of elasticity change along the curve and therefore in analysing 

the overall elasticity of a function, we should refer to the average elasticity of the curve 

(Iglesias et al., 1998). Geometrically, water demand elasticity can be regarded as the 

reciprocal of the slope of the water demand curve. Steep demand curves will have small 

changes in water demand due to their low elasticities; conversely, flat water demand curves 

will experience great reactions to water price changes (either increases or decreases) owing 

to their high elasticities (Olmstead et al., 2007). 

Various econometric models have been developed in order to capture water demand elasticity 

in agriculture using real observed data. The basic models employed to capture elasticity with 

econometrics are log-log models, which fit the rate of change of the dependent variable well 

due to a change in the covariates (Greene, 2018). Log-log models are defined using the 

logarithm of the dependent variable and the logarithm of the independent variable of interest, 

while controlling for other factors. Although these are basic econometric approaches, they 

are very effective in approximating the partial effect of an independent variable on the 

dependent variable (Wooldridge, 2010). 

In a stochastic framework, the partial effect of an explanatory variable 𝑥𝑗  can be considered 

as the effect of the conditional expectation on the dependent variable 𝐸(𝑌|𝑋) by an 

infinitesimal change of 𝑥𝑗   while holding the remaining variables constant. In linear models, 

this is expressed by the estimated parameter of the coefficients of each variable in the 

econometric equation (Wooldridge, 2010). Elasticity in a linear regression model can be 
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defined as the change in the average values of the dependent variable Y as each single 

independent variable changes, and it can be approximated by the partial derivative of the 

independent variable of interest while holding the remaining X variables constant, as in 

Equation 4. 

∆𝐸(𝑌|𝑋) =
𝜕𝜇(𝑥)

𝜕𝑥𝑗
∗ ∆𝑥𝑗   (Eq.4) 

where the change of the conditional expectation value of Y on X is the partial derivative of μ 

with respect to x multiplied by the change in x , and where it is assumed that μ is a 

differentiable function which determines the realisation of Y , and 𝑥𝑗 is a continuous variable 

(Wooldridge, 2010). Elasticity is a particular case of partial effect. By considering the 

variables of the model as random, elasticity can be defined as in Equation 4 by interpreting 

it as the approximation of the percentage change in ∆𝐸(𝑌|𝑋) due to a unitary change of xj , 

which can also be defined through the use of logarithms (Equation 5). 

𝜕𝐸(𝑦|𝑥)

𝜕𝑥𝑗
∗

𝑥𝑗

𝐸(𝑦|𝑥)
=  

𝜕𝜇(𝑥)

𝜕𝑥𝑗
∗

𝑥𝑗

𝜇(𝑥)
 ≅

𝜕𝑙𝑜𝑔[E(𝑦|𝑥)]

𝜕log (𝑥𝑗)
  (Eq.5) 

Therefore, the estimated parameter coefficient 𝛽 in the econometric model, specified in the 

form as log(𝑌) = 𝛽 log(𝑋) + 𝜀, releases the elasticities of the dependent variable Y in terms 

of each X explanatory variable (Wooldridge, 2010). 

In this analysis, the Log-Log specification is employed to take advantage of a vast panel 

dataset available at plot level. Through the application of plot-level data, many problems can 

be solved related to biases that arise from macro-geographical aggregations (Mieno and 

Brozović, 2017) and to biases due to problems of endogeneity that arise from the output 

decisions of farms regarding output mix and input use (Hendricks and Peterson, 2012). 

Moreover, the application of a fixed-effect method helps in the consideration of unobserved 

heterogeneity which could otherwise cause endogeneity problems (Wooldridge, 2010). Our 

baseline model is a linear regression fixed-effect model (Equation 6) that uses the logarithm 

of the total yearly water demand at plot level as its dependent variable, and, as its independent 

variable of interest, the logarithm of the yearly average price of water for each cubic metre 

(m3) of water consumed under several controls: 

𝐿𝑜𝑔(𝑦𝑖,𝑡) = 𝛽𝐿𝑜𝑔 (𝑥𝑖,𝑡) + 𝛾𝑍𝑖,𝑡 + 𝜏𝑡 + 𝛿𝑖 + 𝜀  (Eq.6) 

where:  

𝑦𝑖,𝑡 is the volume of water demanded per hectare for each plot i at time t; 𝑥𝑖,𝑡 is the water 

price per m3 of water used for the plot; 𝑍𝑖,𝑡 is a set of control variables. There are numerous 

control variables: the seasonal aridity index (AI) for the plot; the type of crop cultivated on 

the plot (dummy); the irrigation system used for the plot (dummy); and the water basin 

specified for different sub-zones (dummy). 𝜏𝑡 is a year dummy variable for the year  when 

macroeconomic exogenous effects are absorbed; and 𝛿𝑖 is the individual fixed effect at plot 

level for the consideration of individual unobserved heterogeneity (such as unobserved 

characteristics of the farmer, the farm as the ability of the farmer, and the soil quality), which 
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could cause bias and inconsistent estimations of the coefficients (Hendricks and Peterson, 

2012); 𝜀 is the idiosyncratic error with zero mean; and 𝜎2 is the variance (Wooldridge, 2010). 

The aridity index is used as a synthetic dimension of several weather variables, as in 

Kounduri et al. (2006), and it is calculated following CGIAR (2019). Quarterly AIs for 

different seasons10 have been employed as a climatic variable of control and are computed 

as the ratio of the value of the accumulated precipitation (measured in mm) of a specific 

season and reference accumulated evapotranspiration (measured in mm) (Allen and FAO, 

1998; Villalobos et al., 2016) for each season, which results in a unit-less proxy measure of 

the water requirement of the crop that is satisfied by seasonal rainfall (Allen and FAO, 1998; 

CGIAR, 2019). The data used is from the ERA-Interim dataset of the European Centre for 

Medium-Range Weather Forecasts (ECMWF) with a definition at cell level of 25km2 spatial 

resolution (ECMWF, 2020). Values of AI lower than 1 indicate that precipitation in the 

considered period fails to satisfy the water requirement of the crop, while a value greater than 

1 indicates that the accumulated rainfall for the period is higher than the accumulated 

reference evapotranspiration (CGIAR, 2019). Levels of AI less than 0.65 indicate arid areas 

(CGIAR, 2019). 

Crop types have been divided into main macro categories present in the area and are divided 

into: Alfalfa, Maize, Meadows, Pear, Soya, Sugar Beet, Tomato, Vineyard, and Watermelon. 

Other crops with low and negligible observations or with generic definitions that cover 

various crops (e.g., “Orchards” and “Vegetables”) have been omitted. Irrigation systems have 

been divided into macro categories of irrigation used on the plots, such as Drip, Sprinkler, 

and Furrow. Both crops and irrigation technology are fixed for the crop for one year, but may 

be changed from year to year. 

We test for heteroscedasticity and autocorrelation of the data using the White test and the 

Wooldridge test, both of which indicate that the data is heteroscedastic and serially 

correlated, respectively (Wooldridge, 2010). In order to solve this problem and attain 

consistent estimations, clustered robust standard errors are employed at plot level (Bertrand 

et al., 2004; Gehrsitz, 2017; Mieno and Brozović, 2017), which relaxes the assumption of 

homoscedasticity and allows for cross-section change in the individual variance and for 

correlation within individual groups (Hansen, 2007a). This leads to consistent estimations 

when the dimension of the panel is large and there are a sufficient number of clusters 

(Hansen, 2007b). Moreover, to verify robustness, the model is run while using a Feasible 

General Least Squares (FGLS) regression, which relies on first-order autoregressive 

disturbance terms, by producing unbiased, robust, and consistent estimation with 

disturbances in the variance-covariance matrix (Hansen, 2007a).  

The baseline econometric and the FGLS models have been applied to the whole sample and 

then to various subsamples in order to analyse several patterns of elasticities among irrigation 

                                                 
10 Aridity indexes have been calculated as AIseason= AccumPricip/ ET0 for each season. Seasons have been 

divided as Winter (January, February, March), Spring (April, May, June), Summer (July, August, September), 

and Autumn (October, November, December).  
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technologies and crops. Moreover, the same analysis has been carried out for subsamples of 

the most representative combinations of crop and irrigation technologies.  

In order to retain information on the whole demand curve and to prevent the truncation and 

deletion of data, water prices with zero values (occurring when flat tariffs have been applied 

for certain plots)  have been transformed as the logarithm of zero is not defined (Weninger, 

2003). In order to reduce bias, the transformation follows other empirical studies that have 

dealt with logarithmic functions by adding a very small quantity to zero values (Friedlaender 

et al., 1983; Gilligan and Smirlock, 1984; Kim, 1987). Those studies suggest adding a value 

in the order of 0.001 or 10 % of the sample mean in order not to alter the data distribution 

and consequently the logarithmic transformation (Bellégo and Pape, 2019). The zero values 

in our datasets represent 8.5% of the total, and although they constitute a residual part of the 

data, they were transformed in order not to do truncate our sample. Since our analysis deals 

with prices close to 0, we checked the effect of the transformation on the logarithmic function 

with different simulations. The addition of 10 % of the minimum value in the distribution 

was chosen to reduce the noise in the data caused by the transformation. Finally, sensitivity 

checks were made regarding the robustness of the transformation and the avoidance of any 

change in the structure of the model (Bellégo and Pape, 2019) by examining the kernel 

density estimation of the within transformation distribution of both the estimated dependent 

and the independent variable, which fit a normal distribution.  

Results  

We found general water demand to be inelastic to price, since the values of the estimated 

coefficients are all below one, which indicates the demand for water is disproportionately 

responsive to changes in water price. By considering the whole sample analysed, in which a 

variety of crops and technologies are present, a change of 1 % in the water price induces an 

average reduction of 0.27 % in the water demanded at plot level. This result is consistent 

with previous studies, which indicate a generally inelastic water demand in agriculture, such 

as the meta-analysis by Scheierling et al. (2006), who find an average price elasticity of -

0.48. The results of the model estimations for the whole sample and sub-samples of irrigation 

technologies are presented in Table 3, results for sub-samples of crops in Table 4, and results 

for a representative combination of irrigation technologies and crops are laid out in Table 5. 

In each table, the estimation of the elasticities are highlighted for both the main log-log model 

and for the FGLS used for robustness control. The results of the estimations are very similar 

for the two econometric models, which indicates that our econometric estimations are robust. 

Only slight differences in the estimations of the two models arose for Pear and Sugar beet. 

Although water demand has been estimated as inelastic in general, a few differences do arise 

between technologies and crops. When considering sub-samples of irrigation technologies 

(Table 3), furrow irrigation systems are the most inelastic with a coefficient of -0.208. 

Sprinkler and drip irrigation systems show a slightly higher responsiveness to change in water 

price, with coefficients of -0.326 and -0.435, respectively (Table 3). In the Discussion section 
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below, we therefore strive to find an explanation for this result, which deviates from past 

studies. 

By considering single crops, it can be observed that water elasticities change (Table 4). 

Cattle-grazing crops (Alfalfa and Meadows), which are irrigated principally with furrow 

irrigation, are strongly inelastic. Sugar beet and Maize also have a strongly inelastic water 

demand curve although their main irrigation system is that of sprinklers. Conversely, 

Watermelon (drip irrigation) and Tomato (sprinkler irrigation) are more responsive to price 

and their water demand curve is therefore less inelastic, with -0.5 of elasticity. This could 

partially depend on the high water intensity of vegetables compared to grazing crops and on 

the higher marginal value of productivity of water as an input in vegetable production. In 

fact, Alfalfa and Meadows are principally cultivated as an input for dairy farms, which in this 

area produce Parmesan cheese (Parmigiano Reggiano). In the value chain of this cheese, 

water costs represent a negligible part of the total cost of production, while for fruit and 

vegetables (such as Tomato and Watermelon), which are sold directly on the market, the cost 

of water, as a proportion of the final cost of the product, is higher. Therefore, the water 

demand function of Tomato and Watermelon (as for other fruit and vegetables) should be 

more elastic than that of cattle-grazing crops, since the embedded value of water in the final 

product is higher (Renault, 2002). 

The water demand function for the Vineyard category is generally inelastic, and, in this case, 

when considering irrigation technology, that of furrow irrigation (-0.273) is more inelastic 

than it is for the sprinkler method (-0.382), whereas the coefficient for drip irrigation is not 

statistically significant. The explanation may lie in the high value of wine where water is an 

essential input and the cost is a small share of the total cost of the end product. 

Pear crops yield puzzling results. These have no statistically significant estimated 

coefficients for the log-log model, whereas for the FGLS, the estimated coefficients indicate 

elastic water demand to price with a 10% significance for total sample of irrigation systems 

and 5% for drip irrigation. The elasticity of Pear crops was expected since these are both high 

value and have a high demand for water. This difference in the results of the estimations in 

the two models means that these results should be viewed cautiously. Even though the main 

findings reveal a generally inelastic water demand, our estimations indicate that the response 

of water use to price does in fact change according to the particular irrigation system and 

crop, especially if we take into consideration that the level of prices used in this study is low 

(0.00-0.048). Moreover, differences with other models may be explained by the fact that 

simulations in mathematical programming and analytical methods use higher prices and 

make general assumptions regarding the  knowledge held by farmers and consider them to 

be perfect profit maximisers (Elbakidze et al., 2017), which is often far from their real 

behaviour.  
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Table 3. Estimation of water elasticity to price for the whole sample and for sub-samples of 

irrigation technologies 

 (1) (2) (3)  (4) 

VARIABLES Total Sample Drip Sprinkler  Furrow 

Dependent Variable      

Log (Water m3per ha)      

OLS      

Log (Water price) -0.268*** -0.435*** -0.326***  -0.208*** 

 (-25.54) (-5.649) (-17.92)  (-16.01) 

FGLS      

Log (Water price) -0.276*** -0.417*** -0.354***  -0.215*** 

 (-24.91) (-6.293) (-17.88)  (-17.03) 

OLS      

Constant 5.254*** 7.074*** 4.947***  5.105*** 

 (17.35) (5.788) (11.10)  (8.773) 

Observations 28,738 2,670 16,726  9,342 

R-squared 0.230 0.245 0.228  0.273 

Individual demands per plot 9,097 817 6,284  2,495 

Robust S.E. (Clustered) Yes Yes Yes  Yes 

Year FE Yes Yes Yes  Yes 

Individual FE Yes Yes Yes  Yes 

Aridity Index Yes Yes Yes  Yes 

Irrigated Area Yes Yes Yes  Yes 

Crop Type Yes Yes Yes  Yes 

Irrigation Technology Yes Yes Yes  Yes 

Robust t-statistics are given in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Estimation of water elasticity for sub-samples of different crops 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

VARIABLES Alfalfa Maize Meadows Pear Vineyard Watermelon Tomato Sugar Beet Soya 

Dependent Variable          

Log (Water m3per ha)          

OLS          

Log (Water price € per m3) -0.287*** -0.295*** -0.192*** -0.141 -0.329*** -0.555*** -0.565*** -0.299*** -0.280 

 (-11.37) (-7.841) (-13.12) (-0.674) (-5.347) (-5.305) (-7.578) (-3.357) (-1.340) 

FGLS          

Log (Water price € per m3) -0.586*** -0.278*** -0.219*** -1.079*** -0.342*** -0.527*** -0.371* -0.693*** 0.412 

 (-16.55) (-6.227) (-16.42) (-2.902) (-8.614) (-4.357) (-1.782) (-3.884) (1.166) 

          

OLS          

Constant 6.214*** 9.635*** 142.4 73.13 -80.82 -584.0 -1,432 -43.96 -494.0 

 (36.57) (7.977) (1.157) (0.286) (-1.131) (-0.709) (-1.324) (-0.0962) (-0.632) 

Observations 3,584 4,095 6,046 2,100 10,787 312 571 818 425 

R-squared 0.162 0.224 0.298 0.371 0.211 0.297 0.311 0.236 0.122 

CHECK Individual demands per plot 1,925 2,185 1,523 454 2,895 129 348 569 327 

Robust Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Aridity Index Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Irrigated Area Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Crop Type Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Irrigation Technology Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Robust t-statistics in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5. Estimation of water elasticity to price for sub-samples of representative combinations of irrigation technologies and crops. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

VARIABLES Alfalfa 

Sprinkler 

Alfalfa 

Furrow 

Maize 

Sprinkler 

Meadows 

Furrow 

Pear 

Drip 

Pear 

Sprinkler 

Tomato 

Sprinkler 

Watermelon 

Drip 

Sugar Beet 

Sprinkler 

Vineyard 

Drip 

Vineyard 

Sprinkler 

Vineyard 

Furrow 

Dependent variable             

Log (Water m3per 

ha) 

            

OLS             

Log (Water price) -0.311*** -0.127 -0.304*** -0.190*** -0.0690 -0.836 -0.533*** -0.523*** -0.291*** -0.145 -0.382*** -0.273*** 

 (-10.18) (-0.519) (-8.030) (-12.91) (-0.447) (-0.701) (-7.457) (-4.576) (-3.179) (-0.427) (-3.753) (-4.304) 

FGLS             

Log (Water price) -0.324*** 0.381 -0.282*** -0.217*** -

1.020** 

-0.741 -0.425** -0.494*** -0.694*** -0.00640 -0.502*** -0.247*** 

 (-6.995) (0.805) (-6.128) (-16.32) (-2.103) (-1.351) (-2.355) (-3.832) (-3.837) (-0.0397) (-8.462) (-4.688) 

             

OLS             

Constant 151.4 419.8 332.2** 139.6 -363.5 260.5 -629.0 -318.8 -24.19 36.95 -61.57 7.659 

 (0.784) (0.459) (2.058) (1.140) (-0.755) (0.875) (-0.856) (-0.353) (-0.0526) (0.158) (-0.592) (0.0622) 

Observations 3,339 235 3,947 5,895 712 1,352 486 236 796 1,578 6,178 3,031 

R-squared 0.217 0.175 0.233 0.306 0.339 0.438 0.418 0.311 0.242 0.245 0.198 0.254 

CHECK Individual 

demands per plot 

1,802 137 2,113 1,456 173 322 306 91 553 470 1,834 841 

Robust Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Aridity Index Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Irrigated Area Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Crop Type Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Irrigation 

Technology 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Robust t-statistics are given in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Discussion  

Many previous studies found water demand inelastic to price. In an expansive review, 

Scheierling et al. (2006) found that less elastic estimates are found in the presence of high-

value crops, which is also confirmed by our results, although our findings additionally 

highlight a difference in the level of responsiveness between both crops and irrigation 

technology. These findings are relevant for policy-makers since they reveal that farmers in 

the CEWD have a low response to water prices, and imply that water tariffs can be effective 

strategies to cope with over-irrigation issues only if actual water prices are increased 

significantly. Although water demand is generally inelastic it does not necessarily mean that 

farmers remain impervious to pricing policies, but it does indicate that they are responding 

less than proportionally to price changes. It should be borne in mind that the elasticities in 

our estimations are average elasticities that consider actual prices which are very low and are 

placed at the lowest part of the demand curve. In the aforementioned review by Scheierling 

et al. (2006), the elasticity is higher in the long-term at lower prices, and is more inelastic in 

the short-term at higher prices. The interpretation of our results should consider that, for 

higher prices and longer timeframes, the results may differ. 

Our most interesting finding is related to the differences in water demand elasticities between 

irrigation technologies and crops. Our estimated elasticity that considers all technologies and 

all crops suggests that drip irrigation is more elastic than sprinkler irrigation, and that 

sprinkler system is more elastic than furrow irrigation systems, which is slightly in contrast 

with certain theoretical models, such as that by Berbel et al. (2018), which indicates the 

opposite findings. Our results also diverge from other empirical work, such as that by 

Hendricks and Peterson (2012), Caswell et al. (1990), and Zilberman (1984), which state that 

a higher level of precision in irrigation reduces water use, thereby causing an inelastic 

demand, in other words, the demand elasticity for precision irrigation systems (drip and 

sprinkler) should theoretically be lower than that of traditional systems (such as furrow).  

Our models on crops and on combinations of crops and technologies confirm the pattern in 

which drip and sprinkler technologies are more reactive to water price than is furrow 

irrigation technology. This result can be justified as a matter of climate uncertainty and risk 

in farmers’ irrigation decisions. Farmers are strongly affected by crop response to climate 

and the uncertainty regarding water efficiency and crop response to irrigation doses may 

explain the higher use of water in the case of less controllable technologies.  

Our argument suggests that the greater controllability of drip and sprinkler irrigation systems 

results in sharper reactions to price changes. In contrast, furrow irrigation, which has a lower 

level of controllability, is more inelastic to price due to the higher yield loss (and foregone 

profits) when water crop requirements are not covered compared to the low cost of over-

irrigation. This conclusion is the opposite to that drawn by Berbel et al. (2018) and Berbel 

and Mateos (2014), which was based on an analytical model under certainty, whereby 

farmers predict lower elasticity for higher precision systems with standard efficiencies (E) 

for furrow (E=0.60), sprinkler (E=0.85), and drip (E=0.95) irrigation systems. The elasticities 
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have an inverse correlation with to the level of water control in the form of drip (the most 

elastic), sprinkler, and furrow (the least elastic). 

The explanation of our results is consistent with the “just in case” model of Babcock (1992) 

for the use of agricultural inputs. The author stated that for a risk-averse farmer, when 

agricultural yields are difficult to predict and their variations depend strongly on the 

application of a specific input (for Babcock, this was nitrogen fertilisation), farmers tend to 

over-use that input with the aim of reducing the risk of yield loss. This effect is amplified 

when the variance of yields increases due climatic factors, such as precipitation and 

temperature (Babcock, 1992). Our findings are in line with this theory, since the lower the 

level is of control of the irrigation system (e.g., furrow irrigation), the higher the risk of yield 

loss becomes when water application remains below the maximum technical level of 

irrigation, and therefore the higher the level of water over-use becomes. This explains why 

water price elasticity increases from furrow (less elastic) to sprinkler and drip (more elastic). 

Our reasoning is that the higher the control is of the irrigation system, the higher the reaction 

to price changes becomes; this largely depends on the ease and level of certainty for the 

farmer in reaching the maximum technical level of irrigation. 

Other findings in our research refer to differences in elasticity for crops where demand is a 

function of the marginal value of production. For high-value crops where water costs are a 

negligible part of the total cost, water demand is more inelastic, whereas for products in 

which its cost is a sizeable proportion of the final costs, water demand is more elastic, which 

coincides with the majority of the findings by Scheierling et al. (2006). This reflects the value 

of water used in production as an input over the total value of the final product.  

We have found differences between crops as a function of the yield-water relationship, with 

herbaceous crops, such as livestock feed, reacting faster to water stress compared with 

vegetables or orchards where the marketable product (fruit) constitutes a small share of the 

total biomass. Therefore, this hypothesis could also justify why high-value crops are more 

elastic to water prices than are low-value crops, which contradicts what the theory says. 

Additionally, in market-oriented products (such as fruit and vegetables), the higher price for 

higher product quality may prove to be a more profitable strategy than that of increasing 

production yield (Geerts and Raes, 2009).  

Our results highlighted that pricing policies for the reduction of over-irrigation should be 

tailored from the current system in the CEWD of a two-part tariff in which the baseline price 

(0.027€ per m3) considering that crops with more inelastic water demand characterised by 

high levels of over-irrigation, such as Meadows, Vineyard, and Maize, could receive 

additional components of water price in order to stimulate a more conservative usage of 

water. Furthermore, the introduction of any additional parameters related to the irrigation 

system could strengthen the efficacy of the pricing policy of the CEWD with increasing 

coefficients proportional to their elasticity (higher coefficients for furrow and sprinkler 

systems). This could improve the effectiveness of pricing policies by incentivising a more 

conservative use of water for sustainable irrigation. 
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Our study works with average elasticity and considers the whole irrigation season: no 

different levels of seasonal elasticities are considered, as they are in Allen and FAO (1998), 

who state that the flourishing and growing stages should be more inelastic, while  and the 

mature phase of the crop should be more elastic. Furthermore, our study did not consider the 

possible non-linear effect of price on water demand for the analysis of the diminishing effects 

of pricing policies or threshold effects, and therefore different non-linear and segmented 

demand curves should be included in future studies. Further studies could analyse the 

possible evidence of the non-linearity of water demand curves. 

Conclusions 

In our paper, a panel data set is used on water demand and prices with thousands of 

observations at plot level over different years. Observational data of this dimension is not 

common in the literature and it offered us the opportunity to analyse the agricultural water 

district in the Emilia Romagna region, which is of strategic importance for national 

production. Our findings show that, as previous empirical work in this field have found, water 

demand is inelastic to price, but we also increase the knowledge regarding differences 

between the various irrigation systems and crops. Surprisingly, we found that precision 

systems (drip and sprinkler) have a more elastic demand compared to traditional systems 

(furrow), which is the opposite of that predicted by previously published models. This is an 

interesting case study since it is based on extensive observed real data with an econometric 

analysis, which gives us the chance to compare our findings based on deterministic studies 

with other empirical econometric work. A log-log model with fixed effect was employed, as 

was an FGLS for robustness of the estimations. Our results highlight the importance of setting 

ad-hoc water tariffs and of treating water prices, technologies, and crops differently in order 

to boosting effective strategies for conservative water use in agriculture. This could be carried 

out by the management of the CEWD through the modification of the setting of the 

parameters used for the calculation of the two-part tariff, and by introducing an increasing 

coefficient related to water elasticity levels of the various irrigation technologies.
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Abstract 

The impact of water-pricing policy in irrigated agriculture in Emilia Romagna 

(Italy) is evaluated through the analysis of farmers’ water use whereby a flat-rate tariff 

(2013-2015) is replaced by a two-part scheme composed of a flat rate plus a volumetric 

tariff (2016-2018). The policy assessment is performed by an application of the 

Difference in Differences method considering the period of policy intervention in a 

reversed form. The results indicate that farmers reacted to volumetric pricing by reducing 

water use per hectare. The high responsiveness may be explained by the combined impact 

of volumetric metering itself and the small price increase from the previous flat rate (zero 

marginal price) to a moderate volumetric tariff (from 0.025 to 0.044 €/m3).  
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1 Introduction 

 

The state of global water resources is crucial for food production and global food security 

(UN, 2020). Water scarcity constitutes one of the main environmental global problems 

(Wheeler et al., 2015) and will become even more important in the near future due to 

climate change (Misra, 2014). Agricultural activities are one of the main determinants of 

pressures on water resources and are the principal consumers of water resources: they 

account for 70% of total water withdrawal around the world (FAO, 2012). Agricultural 

water use is strictly related to problems with food security, public health, and economic 

growth (UN, 2015, 2006), and with the direct and indirect production of ecosystem 

services (Costanza et al., 1997). 

One of the main problems in agricultural activity involves over-irrigation which can be 

defined as the application of water in greater amounts than the crop water requirement 

(Steduto et al., 2012). Over-irrigation has manifold negative impacts on the environment 

as soil erosion, groundwater leaching, salinization, transportation of nutrients and 

pollutant in downstream waterbodies (Trout, 2000). Excessive irrigation in a river basin 

can have a reduced impact in quantitative terms if the excess water returns to the 

hydrologic systems in the form of return flow, although the impact in qualitative terms 

can be highly relevant if the return flows exports nutrients and chemicals which are many 

times linked also to over-fertilization (since the N and P that are partly lost via return 

flows should be replaced) affecting further diffuse pollution through an increase in the 

export of nutrients and salt from agricultural soils downstream.  

Over-irrigation depends largely on the technology adopted, but also to farmers’ 

expectations and economic behaviour. Therefore, the information available to the farmer 

are extremely important, such as that regarding soil properties, weather, biology, expected 

yield, and other agronomic and productive aspects. The price of water, however, presents 

a crucial aspect in affecting over-irrigation. 

In the European Union, the approval of the Water Framework Directive (WFD) 

established a comprehensive integrated approach towards attaining a good status of all 

water masses in the EU (EU Commission, 2000). The WFD uses economic science 

(economic analysis, cost-benefit analysis, cost-effectiveness analysis) and economic 

instruments (water pricing) as their core discipline to reach the environmental goals that 

constitute the principal objective of the directive. Article 9 promotes cost recovery and 

water pricing as a guiding principle in the Directive that should be implemented in 

national legislation (EU Commission, 2000), by indicating pricing policies as suitable 

instruments to incentivize efficient water use, thereby contributing towards the 

improvement of environmental conditions (Kejser, 2016).  

The response to an increase in water pricing depends upon the characteristics of the 

demand curve, with mixed evidence regarding elasticities, which, in the case of irrigation, 

depend on crop profitability, environmental conditions, and farmer characteristics (Berbel 

and Expósito, 2020). An extensive review of  residential water elasticity by the European 

Environmental Agency reported ‘in some of the case studies, price does not appear to be 

a significant determinant of water demand (..) water pricing still remains a key instrument 

in achieving cost recovery for water services to ensure the maintenance and financing of 

existing and future water infrastructure’ (European Environment Agency, 2017). 

Unresponsiveness of water demand to water price is a key issue also in agriculture 

(Scheierling et al., 2006). This fact has been claimed as one of the main determinants of 

underusing water pricing as a correcting policy instead of basing water tariffs unlinked to 

water consumption (Lago et al., 2015). 



 

 

113 

 

In the case of a no-tariff policy for water, farmers can consider water as a non-

constraining input and a free commodity. Conversely, if water is priced, it enters into the 

farmers’ cost function, who then have to pay a certain fee for each quantity of water 

consumed in their productive activity. Demand-side policies, which apply prices to water 

used for irrigation through volumetric tariffs, can internalize issues and externalities 

regarding public goods (Hardin, 1968) by reducing over-irrigation and directing farmers 

towards the more efficient use of water resources (Cooper et al., 2014; Rogers, 2002; 

Wheeler et al., 2015). 

Economic policy measures operate via incentives, motivation, and voluntary choices 

rather than via complying with prescriptions as do command and control measures. These 

policies tend to be reasonably flexible because they can be adapted to various contexts 

regarding the motivation of individual farmers (Lago et al., 2015) and/or the reduction of 

problems arising from asymmetric information (Johansson, 2002). The pricing of water 

assigns a marginal cost to each amount of water consumed thereby transforming water 

into a binding input in farmers’ productive strategies and influencing the selection and 

allocation of both crops and irrigation technologies.  

Despite pricing instruments gaining acceptance as a tool towards achieving sustainability 

in water management, the literature remains divided on the effectiveness of tariff policies 

on agricultural water use. Several scholars claim that water pricing alone cannot lead to 

improvements in water-use efficiency due to the many additional aspects that should be 

considered, such as institutions, physical infrastructures, costs, benefits, equity, and 

transparency (Cooper et al., 2014; Dinar and Mody, 2004; Molle and Berkoff, 2007). 

Moreover, the most important aspect in influencing farmers’ irrigation responses to 

policies is water-demand elasticity to water price whose effect remains unclear from 

empirical analysis (Scheierling et al., 2006) with many contrasting evidences in the 

literature (Hendricks and Peterson, 2012; Schoengold et al., 2006; Wheeler et al., 2008).  

Elasticity to water price represents the responsiveness of the water demand function to 

changes in the price of water and it indicates the relative change in water demanded due 

to a unitary change of water price (Berbel and Pronti, 2020). Elasticity is defined as the 

ratio between the percentage variation of the quantity demanded of water and the 

percentage variation of the price of water (Varian, 1990). For a more detailed focus on 

water elasticity see Berbel and Pronti (2020), Hendricks and Peterson (2012) and 

Scheierling et al. (2006).There is still a relevant gap in the literature on agricultural water 

management regarding the evaluation of economic measures (especially that of pricing) 

due to the lack of ex-post evaluations that arises from important data limitations (Lago et 

al., 2015).  

This paper strives to test the impact of a policy change from a flat rate to a volumetric 

two-part tariff using a natural experiments approach with a backward application 

inverting the two period of analysis commonly used in difference in differences(DiD) 

framework. This paper employs data observed in the Central Emilia Irrigation Water 

District (CEWD) in north eastern Italy and analyses the effect of the application of a 

volumetric tariff as a policy strategy for the improvement of water use by local farmers. 

The results enrich the knowledge regarding the farmers’ response to the introduction of a 

volumetric water tariff based on water use. The main findings of this study show that the 

application of a volumetric tariff contribute to the change in water use of farmers that had 

a flat tariff before the policy converging to a more parsimonious use and similar to other 

farmers who already dealt with volumetric tariffs.  

The paper is structured as follows: in Section 2, a brief introduction to institutional 

background of the case study is presented; in Section 3, material, methods, and our 
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empirical strategy are described; Section 4 presents the main results, which are then 

discussed in Section 5; finally, Section 6 offers the concluding remarks. 

2 Background on the case study 

2.1 Agricultural Water Management in Italy 

Italy is classified as a Mediterranean country, whose high annual precipitations (although 

the annual rainfall is 942mm, which is greater than that in France) are more evenly 

distributed throughout the year than all the other Mediterranean countries. Anyway, 

recently there has been an increase variability in local water availability and increasing 

stress on local ecosystems due to reduced precipitations and increasing temperatures have 

been recorded (Laureti et al., 2020). Despite that, natural environment implies a certain 

abundance in water resources, with hydropower as the dominant use of regulated water 

in Italy, mainly in the Northern regions. Table 1 compares the Italian irrigated sector with 

the large EU Mediterranean countries. The ratio of “Estimated” vs. “Registered” is 

defined as Relative Irrigation Supply (RIS)11 (Playán and Mateos, 2006) and it can be 

observed that is close to 2.0 in Italy suggesting a serious over-irrigation situation at least 

compared with its neighbouring EU countries.  

 
Table 1. Estimated and reported irrigation water demand in selected EU countries. 

 
Irrigated 

Area1 

(th.ha) 

Reported2 

irrigation 

abstractions 

(hm3) 

Irrigation 

demand2 

(hm3) 

Reported 

irrigation2 

(mm/yr) 

Calculated 

irrigation 

requirement 

(mm/yr)1 

RIS 
1,3 

Spain 3.700 21.763 35.919 679 1.120 0.61 

France 1.500 4.872 6.349 311 405 0.77 

Greece 1.159 7.600 12.776 656 1.102 0.60 

Italy 2.866 38.360 22.381 1.565 913 1.71 

Sum 9.225 72.595 77.425 866 923 0.94 

Source: (1) Authors’ own (2)(Wriedt et al., 2008) (3) Reported irrigation/Calculated 

 

Italy has the higher share of irrigated land over total agricultural land (ISTAT, 2019) with 

important regional differences and with northern regions presenting the highest values of 

irrigation (Istat, 2014). The general over irrigation taking place in Italy is probably cause 

of a general water stress (EEA, 2020) observed in many regions. Water scarcity is 

becoming structural beyond the events of extreme weather conditions and recurring 

droughts (Auci and Vignani, 2020; Brunetti et al., 2006; Bucchignani et al., 2016).  

Since the beginning of the last century the needs for an institutionalized management of 

water resources in Italy triggered the creation of the Reclamation and Irrigation Board 

(RIB) (in Italian ‘Consorzio di Bonifica e Irrigazione’), which was initially focused only 

on the drainage of temporarily or annually flooded areas, while water supply distribution 

was gradually integrated later for industries, urban areas, and irrigation. Nowadays, RIBs 

are responsible for the implementation, development, maintenance, and management of 

the irrigation systems serving the farms located in their assigned area (Dono et al., 2019; 

El Chami et al., 2011). There are approximately 500 RIBs in Italy, with many differences 

                                                 
11 RIS is the ratio between irrigation water requirements and effective irrigation, it indicates how much 

water application is close to crop water requirements. If it close to 1 water application is equal to water 

requirements, if it is > than 1 it indicates over-irrigation if it is < than 1 it indicates deficit irrigation (Playán 

and Mateos, 2006). 
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in management systems, dimensions, and tariff systems. In accordance to regional laws, 

these RIBs must set the price of water services to their users (Berbel et al., 2019). Of the 

water withdrawn for agriculture in Italy, 63% comes from RIBs, (34% with a rotation 

system and 29% with service on demand), with the remaining 37% from groundwater 

(18%) and private superficial sources (15%) (Istat, 2014).  

During time RIBs assumed increasing institutional importance in the national water 

management system, and has been entrusted by national law (Gazzetta Ufficiale della 

Repubblica Italiana, 2006) to address the European water framework directive (WFD) at 

local level with the aim of introducing policies for water conservation (both qualitative 

and quantitative) (Dono et al., 2019). The main tool recommended in the WFD is the 

introduction of water pricing in compliance of the user-pay principle and the use of water 

recovery costs in order to both boost more efficient uses of water and recover its 

operational and maintenance costs (Berbel and Expósito, 2018). 

In accordance to WFD, the Italian Government decided to implement a suitable tariff 

systems at national level for all water users considering environmental costs and the full 

cost of the resource as defined by the Decree of the Ministry of Environment no. 39/2015 

(Italian Ministry of the Environment, 2015). Previously, tariffs were defined on a per-

area basis according to the water needs of irrigated land and crops, for further details see 

Zucaro et al.(2011). The introduction of agricultural water tariffs had the aim to boost 

sustainable water use and incentive a more efficient irrigation behaviour through 

technological improvement and the cultivation of low water demanding crops. Local 

RIBs were entrusted by the national government for the implementation of this deep 

transformation. 

2.2 The case of Central Emilia Water District 

The case study is located in the Emilia-Romagna Region (ERR), in the northeast of Italy. 

This region has the largest share of irrigated land, and its water courses have been highly 

modified for agricultural and drainage purposes since the 17th century (Pérez-Blanco et 

al., 2016). The agriculture in the ERR constitutes an important dynamic sector at both 

national and European level, the value-added was 3.4 109 € (year 2017) with irrigation 

playing a major role (ERR, 2019a; Fanfani and Pieri, 2018).  

In recent decades, the ERR has been experiencing major increasing pressures on water 

resources due to extreme drought seasons, reduced precipitation, and increasing 

temperatures, which led to a declaration of the state of emergency for the years 2003, 

2006, 2007 and 2015 (Pérez-Blanco et al., 2016; Vezzoli et al., 2015). The ERR 

government has been at the forefront of the implementation of the WFD at regional level 

with a series of regulations and economic instruments in order to reduce pressures on 

bodies of water by incentivizing technological irrigation efficiency and the reduction of 

water losses and waste. Numerous regional policies have been affected by the 

introduction of pricing instruments for irrigation guided by the Cost Recovery Principle 

(El Chami et al., 2011).  

We studied the case of the Central Emilia Irrigation Water District (CEWD, in Italian 

Consorzio di Bonifica dell’Emilia Centrale) in the provinces of Reggio-Emilia and 

Modena in the Italian Emilia-Romagna region, which is the most important agricultural 

area in the region. The area is famous for being the district of Parmigiano-Reggiano 

cheese, Balsamic Modena Vinegar, Lambrusco wine, and of other agro-food products 

with the Protected Designation of Origin (PDO) or Protected Geographical Indication 

(PGI), such as watermelon, cherries, and pears (ERR, 2019b) with a share of 14.5% of 

the regional total agricultural added value (ERR, 2019a).  
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The CEWD is in charge of the management and distribution of surface water with a 

specific focus on the protection of water bodies, defence against floods, and the 

distribution of water for agricultural and environmental purposes in compliance with the 

WFD (CEWD, 2017). The CEWD has a complex infrastructural network of 3,500 km of 

canals covering 120,000 ha and serving an agricultural area of 24,000 ha that 

encompasses three river basins: Po (average withdrawal 142,7hm3), Secchia (average 

withdrawal 29,2 hm3), and Enza (average withdrawal 10,4 hm3) (CEWD, 2015).  

Farmers annually provide their crop plans and their irrigation systems to the CEWD and 

indicate the size of the irrigated area at plot level. Irrigation water demand from each user 

is made directly by phone. The amount of water to be delivered is calculated directly by 

the CEWD, which considers the canal flow rate, the capacity of the water structure, and 

the duration of delivery. To this end, the CEWD takes into account the irrigation 

technology used by the farmers and their crop water needs in order to lessen the 

information requirements from the farmer, since there is only a partial presence of a direct 

metric pressurized water structure with prevalence of open canal systems. Therefore, 

farmers cannot ask directly for an amount of water, which is calculated by the CEWD 

based on the crop/technology scheme, but they can request water whenever their needs 

arise. At the end of the irrigation scheme, farmers receive a report of their irrigation 

activities and the relative costs to be paid before the next season in order to continue to 

receive the irrigation services (CEWD, 2017). 

The CEWD is a public entity established in 2009 by the fusion of two previous RIBs 

present in the area (the Consorzio di Bonifica Parmigiana Moglia Secchia and 

Bentivoglio-Enza). In the years immediately after the creation of the CEWD (2009-2015), 

water users had inherited their previous tariff schemes from the former IWDs. A minority 

of users coming from the Consorzio di Bonifica Parmigiana Moglia Secchia in which 

flat-rate tariffs were applied continued to pay only an annual fee for general services and 

not for the amount of consumed water. However, users from Consorzio Bentivoglio-Enza 

already had a two-part tariff scheme whose volumetric price lay between 0.024€/m3 and 

0.025€/m3.  

In 2016, in accordance with its own sustainability aims, the CEWD implemented a new 

pricing plan based on a two-part tariff scheme in order to both reduce over-irrigation and 

to gather financial resources to recover operational and maintenance costs as stated by 

the WFD. The two-part tariff scheme is composed of a fixed fee to cover the general 

service of the CEWD together with a volumetric part. The latter involves the basic price 

of 0.025 EUR per m3 (increased to 0.027 EUR per m3 in 2017) multiplied by an individual 

multiplier which considers: the existence of rivalry regarding the water resources (for 

Secchia and Enza water basin which are water scarce in the dry season); the recovery of 

operational and maintenance costs per area in which water withdrawal is more energy 

intensive, out-of-season provision services; and the water intensity of the crop.  

3 Material and Method 

3.1 Empirical strategy 

The Difference in Differences (DiD) approach is one of the most used method of policy 

analysis used in economic literature which was extensively applied for policy assessment 

in many different fields (Imbens and Wooldridge, 2009; Lechner, 2010). Recently the 

DiD method has also been introduced for the evaluation of agricultural water policies, 

although applied works on agricultural water issues are still scarce principally due to the 

limited access to water micro-data in agriculture. Drysdale and Hendricks (2018), Smith 
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et al. (2017) and Smith (2018) studied the effect of water regulations on agriculture related 

to groundwater management using DiD in Kansas and in Colorado, respectively, and 

found, in both locations, that the introduction of economic incentives is effective for the 

reduction of agricultural water use. In China, the DiD framework has been used to assess 

both the causal effect of surface water pollution due to the excessive use of rice pesticides 

derived from a national program that incentivizes agricultural development (Lai, 2017), 

and the effect on the subjective quality of life of participatory water management 

activities (Pan and Guo, 2019). To the best of our knowledge, no other studies related to 

water resources for agriculture have been carried out using the DiD approach.  

Our analysis focuses on the effectiveness of the new imposition of water pricing on the 

behaviour regarding water use of irrigators passing from a flat-rate tariff to a volumetric 

scheme. This situation occurred in the CEWD as a natural experiment in which, from 

2013 to 2015, two separate tariff schemes (flat-rate and volumetric) were applied, 

whereas from 2016 to 2018, all the users were on the same tariff scheme (volumetric). 

The intuition under this analysis is that farmers were facing different types of decision 

patterns regarding their water consumption depending on their perception of water costs. 

Farmers who were already on the volumetric tariff should have previously incorporated 

water costs into their cost functions by considering water as a scarce factor and managing 

it in accordance with its marginal cost and its marginal benefit. Conversely, farmers who 

initially faced flat-rate tariff plans considered water as an unlimited input and used it as a 

free public commodity; this implied an almost zero marginal water cost, which 

encouraged them to over-irrigate. We can therefore test whether the application of a 

water-pricing scheme to farmers who previously had a flat-rate tariff scheme can be an 

effective policy in encouraging a reduction in water use. 

We consider the CEWD case study as a natural experiment in which the effect of the 

volumetric policy on the farmers who had a flat-rate tariff before 2016 can be tested as a 

treated group using farmers who had had a volumetric tariff since 2013 as the control 

group. In classic DiD applications, analysts compare two groups of units that are similar 

in the pre-treatment period and become different in the post-treatment (policy 

implementation) period (Angrist and Pischke, 2009; Frondel and Schmidt, 2005). 

The empirical problem in this specific case study is that data is available in the converse 

form of the classic application used for DiD (Cerulli, 2015). Before policy 

implementation, there were two different groups: one which maintain flat rate until 2016; 

and another group already paying by volume as early as 2013. Conversely, in the post-

policy application periods, there are two homogeneous groups of farmers who are both 

under the same water-pricing scheme. 

Our main interest is focused on the average effect in water demand for those farms which 

experienced a change in their billing policy. Therefore, those farms which did not receive 

the policy (the volumetric tariff) in the pre-treatment period are considered as treated 

farms, contrary to the normal application of the DiD method. We called this approach 

“inverse DiD”.  

One can imagine a classic natural experiment as a medical experiment, in which the 

effectiveness of a drug application is measured as the difference in the average health 

status between the two sub-groups of patients: those who receive the drug (the treatment) 

and those who receive the placebo. In this same context, the “inverse DiD” can be 

considered as a medical experiment, in which, at the beginning of the experiment, both 

groups of patients receive the same drug, then that drug is removed from only one group 

and the measure of the drug effect is measured as the difference in the average health 

status of the two groups of patients. 
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We apply this idea going backwards in time, starting with the analysis from 2018, the 

year in which all the farms received the water-pricing policy, to 2013, the year in which 

the farms had different tariff schemes. Our treatment status is that of being subject to a 

volumetric tariff scheme. The aim of the analysis is to measure the effect of removing the 

treatment (the pricing policy) from our units of interest in the second stage of the 

experiment, and to measure the average effect on farmers’ water demand. Doing this, our 

first stage of analysis is the period in which both types of units had a volumetric tariff 

(2016-2018), while our second stage is the previous period in which the two groups had 

different type of tariff (2013-2015). We make our analysis backward in time, in figure 1 

our method is depicted for simplicity of the readers. 

 

 
Figure 1. Representation of the empirical Strategy adopted. 

 

3.3 Data description 

The data used in this study is composed of a sample of water demand data in the CEWD 

for the provinces of Reggio-Emilia and Modena. Water demands are recorded in the 

CEWD dataset immediately following the irrigator’s requests, which are made by phone. 

The database employed includes all the information at plot level for: the total amount of 

water delivered in m3, crop cultivated, irrigated area, water basin, municipality, and 

irrigation technology used. The CEWD indirectly calculates the amount of water 

delivered in m3 as the multiplication of the duration of opening the channel, the flow of 

water, and the capacity of the channel. 

The data used in this analysis is aggregated yearly and at plot level. No data on yields, 

productivity and no other demographic farmers’ information is available. Climatic data 

of seasonal accumulated precipitation and seasonal average minimum temperature at 

municipal level is merged into the principal dataset. Climatic data is from the ERA-

Interim dataset of the European Centre for Medium-Range Weather Forecasts at 25 km2 

grid level (ECMWF, 2019). In table 2 the descriptive statistics for the main variables 

used. 
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Table 6. Summary statistics. 

 Full sample Treated  Untreated 

Num of observations 12604 3909  8695 

Variable Mean Min Max Median Mean Median  Mean Median 

Water Use (M3/Ha) 2668.576 1.183 49356.000 1540.000 3934.436 2592.000  2099.484 1316.250 

Inv DiD 0.158 0.000 1.000 0.000 0.509 1.000  0.000 0.000 

Size higher than 10 Ha 
(Dummy) 

0.204 0.000 1.000 0.000 0.166 0.000 
 

0.222 0.000 

Post policy time trend 0.315 0.000 3.000 0.000 1.016 0.000  0.000 0.000 

Year 2013 (Dummy) 0.179 0.000 1.000 0.000 0.169 0.000  0.184 0.000 
Year 2014 (Dummy) 0.160 0.000 1.000 0.000 0.169 0.000  0.156 0.000 

Year 2015 (Dummy) 0.171 0.000 1.000 0.000 0.171 0.000  0.171 0.000 
Year 2017 (Dummy) 0.191 0.000 1.000 0.000 0.178 0.000  0.197 0.000 

Year 2018 (Dummy) 0.123 0.000 1.000 0.000 0.139 0.000  0.115 0.000 

Accumulated 

Precipitation JFM 
157.321 70.316 237.986 168.760 155.506 165.272 

 
158.137 168.760 

Accumulated 

Precipitation AMJ 
154.384 93.506 236.310 147.420 153.601 139.909 

 
154.736 147.420 

Accumulated 

Precipitation JAS 
144.905 105.012 222.359 129.242 144.073 129.242 

 
145.279 133.620 

Accumulated 
Precipitation OND 

143.120 98.822 188.072 149.771 141.786 153.999 
 

143.719 149.771 

Minimum Temperature 

JFM 
4.363 2.328 6.765 4.449 4.259 4.301 

 
4.409 4.449 

Minimum Temperature 

AMJ 
15.896 14.502 16.931 15.904 15.835 15.901 

 
15.924 15.944 

Minimum Temperature 
JAS 

20.925 19.027 21.947 21.146 20.840 20.902 
 

20.964 21.146 

Minimum Temperature 

OND 
8.032 6.732 10.051 7.964 7.899 7.775 

 
8.091 8.137 

Drip irrigation 

(Dummy) 
0.027 0.000 1.000 0.000 0.041 0.000 

 
0.021 0.000 

Furrow irrigation 

(Dummy) 
0.445 0.000 1.000 0.000 0.532 1.000 

 
0.406 0.000 

Sprinkler irrigation 

(Dummy) 
0.528 0.000 1.000 1.000 0.427 0.000 

 
0.573 1.000 

Alfalfa (Dummy) 0.182 0.000 1.000 0.000 0.163 0.000  0.191 0.000 

Forage (Dummy) 0.019 0.000 1.000 0.000 0.012 0.000  0.022 0.000 

Maize (Dummy) 0.222 0.000 1.000 0.000 0.157 0.000  0.251 0.000 
Meadows (Dummy) 0.421 0.000 1.000 0.000 0.525 1.000  0.374 0.000 

Melons (Dummy) 0.019 0.000 1.000 0.000 0.021 0.000  0.018 0.000 

Other arable crops 
(Dummy) 

0.035 0.000 1.000 0.000 0.017 0.000 
 

0.043 0.000 

Sylviculture (Dummy) 0.012 0.000 1.000 0.000 0.007 0.000  0.014 0.000 

Tomato (Dummy) 0.031 0.000 1.000 0.000 0.053 0.000  0.021 0.000 
Vegetables (Dummy) 0.060 0.000 1.000 0.000 0.046 0.000  0.066 0.000 

 

The farm plot is assumed as our statistical unit. This can reduce major problems that 

would otherwise arise due to the underestimation of water-demand elasticity caused by 

data aggregation (Bontemps and Couture, 2002). We used an unbalanced dataset over the 

overall period (years between 2013 to 2018) with 12,604 statistical units related to 3,075 

plots. The farm plots within the dataset are divided into the treated, considering farm plots 

that had a flat tariff before 2016, and the control group as the farm plots which already 

had a volumetric tariff before 2016. We have 3,909 treated and 8,695 untreated units, all 

of them are included at least once in both periods of pre and post policy application in 

order to cope with problems due to attrition (Lechner et al., 2016). Irrigation techniques 

and crops are fixed within one year, but can change among different years. Farmers 

cultivate different crops and use different types of irrigation technologies classified in 

three groups: furrow, sprinkler, and drip systems (Table 3). Most of the treated farmers 

in the sample produce meadows, which is used as input for Parmesan Cheese (a local 

high-value product). In the untreated group, meadows are the main cultivated crops, but 

also other crops are present.  

The statistical units considered in the sample using the unbalanced panel represent 40.4% 

of the total CEWD farm plots served between 2013 and 2018 (the total number of plots 
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served is 31,174). We chose to use an unbalanced panel in order to have an extended 

source of data to cope with problems of non-over lapping in the characteristics of treated 

and untreated units therefore improving the robustness of our results and deepen the 

analysis focusing in both specific crops and irrigation systems thanks to a higher statistical 

variety of observed units.  

For robustness check of our results we extent our analysis using a balanced panel of 4,050 

(275 Treated plots totally 1,650 units and 400 Untreated plots totally 2,400 units) 

observations for the same period 2013-2018 (675 farm plot units per year observed for 6 

years). In this second case in each farm plot, only one unchanged irrigation technique 

during all the time frame has been used, whereas crops can differ over the years due to 

crop rotations. We did this in order to consider the price effect while constraining the 

dataset to units without technological change. Even if reducing the dataset in a balanced 

form might have limited statistical units overlapping as a large number of observations 

would be dropped12. In table 3 are shown the number of observations of the two panels 

divided by irrigation system and crop. Table 4 shows the average of yearly water demand 

for both groups. From simple data analysis in both panels of data, there is an evident 

reduction of water demand for treated units in the years immediately following the 

application of the cost-recovery tariff scheme, and an evident decrease in the difference 

between the two groups in both the average water use and the average water requests 

(Table 4).The evidence of water-demand reduction induced by volumetric tariff Table 4 

is the starting point for a more developed analysis based upon a revised version of DID, 

that is described in the next section.  

 
Table 3. Number of observations per type of irrigation technology and crop for Treated and 

Untreated farms in the two samples analysed (Balanced and Unbalanced). 

  Balanced Panel 

 Treated Untreated 

Crops Drip Furrow Sprinkler Total Drip Furrow Sprinkler Total 

Alfalfa 0 0 58 58 0 14 178 192 

Forage 0 0 3 3 0 0 21 21 

Fruits 6 0 0 6 30 0 2 32 

Maize 0 1 70 71 6 1 223 230 

Meadows 0 1469 0 1469 0 1773 5 1778 

Other Arable Crops 0 0 2 2 0 0 28 28 

Sylviculture 0 6 0 6 0 30 0 30 

Tomato 0 0 5 5 0 0 12 12 

Vegetables 18 0 12 30 6 12 59 77 

Total 24 1476 150 1650 42 1830 528 2400 

  Unbalanced Panel 

 Treated Untreated 

Crops Drip Furrow Sprinkler Total Drip Furrow Sprinkler Total 

Alfalfa 0 17 620 637 3 140 1517 1660 

Forage 0 0 45 45 0 5 188 193 

Maize 18 13 582 613 17 63 2101 2181 

Meadows 1 2015 35 2051 0 3190 61 3251 

Melon 75 0 9 84 114 1 41 156 

Other Arable Crops 0 3 62 65 1 18 356 375 

Sylviculture 0 26 1 27 11 89 19 119 

Tomato 43 1 164 208 16 1 165 182 

Vegetables 25 3 151 179 22 22 534 578 

Total 162 2078 1669 3909 184 3529 4982 8695 

                                                 
12 The statistical units considered in this case the sample using the balanced panel represent 26% of the total 

CEWD farm plots served over the periods considered. 
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 Table 4. Average of the yearly water demand per ha and number of water requests and differences between Treated and Untreated units over the 

years (both unbalanced and balanced panel). 

   balanced unbalanced 

  T U T U T-U T-U T U T U T-U T-U 

  (1) (2) (3) (4) (1-2) (3-4) (5) (6) (7) (8) (5-6) (7-8) 

 

Year 

water 

use  

water 

use  

water 

requests 

water 

requests 

Δ in 

water use  

Δ  in water 

requests 

water 

use  

water 

use  

water 

requests 

water 

requests 

Δ in water 

use  

Δ in water 

requests 

 

 

m3/h

a m3/ha n n m3/ha n m3/ha m3/ha n n m3/ha n 
Pre policy 

2013 7,600 4,486 3.60 3.04 3,114 0.56 5,280 2,512 2.90 2.30 2,767 0.60 
Pre policy 

2014 6,410 2,662 3.16 1.88 3,748 1.28 4,505 1,675 2.56 1.62 2,831 0.94 
Pre policy 

2015 7,565 3,385 3.70 2.30 4,180 1.40 5,236 1,989 2.99 1.92 3,247 1.07 
Post policy 

2016 4,743 3,458 2.99 2.33 1,285 0.66 2,950 2,058 2.63 1.82 892 0.81 
Post policy 

2017 5,215 4,515 3.55 3.25 701 0.30 3,193 2,347 3.10 2.37 846 0.73 
Post policy 

2018 2,894 2,493 2.17 1.84 401 0.32 2,183 1,820 2.21 1.78 363 0.43 
 

Average values over the two periods Average values over the two periods 
Pre policy 2013-

2015 

7,192 3,511 3.48 2.41 3,681 1.08 5,006.78 2,058.56 2.82 1.95 2,948.22 0.87 

Post policy 2016-

2018 

4,284 3,489 2.90 2.47 796 0.43 2,774.99 2,074.87 2.65 1.99 700.12 0.66 

Legend: T=treated U=Untreated, Δ=difference. Source: Authors’ elaborations. 
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3.4 Description of the method of analysis “The Inverse DiD” 

The DID will assume as treated farms those with flat tariff in the pre-treatment period 

(2013-2015) meanwhile the control group are farms that already had a volumetric tariff 

from 2013 onwards: As in the classical DiD framework the relevant variable is the 

interaction between the treated group and the period of interest for the policy impact, 

which in our case is the pre-treatment period (2013-2015) (Angrist and Pischke, 2009). 

The model applied to test the policy impact include several variables to make allowance 

for other confounding factors influencing water use and hiding the policy effect, such as 

climatic aspects at seasonal level (accumulated precipitations and average minimum 

temperature), type of crop, irrigation technology, and plot size. A trend variable for the 

post treatment period has also been inserted into the models in order to control for 

structural patterns in the data. Furthermore, lagged and lead variables of order one and 

two have been employed to incorporate anticipatory and forward effects (Angrist and 

Pischke, 2009; Cerulli, 2015). Individual and year fixed effects have been employed to 

consider respectively the unobserved heterogeneity and the external shocks which could 

bias the estimates. 

The econometric model is: 

 

𝑦𝑖𝑡 =   𝛿 +  𝜔𝑖 +  𝜏𝑡+ 𝛼𝑖𝑡𝐹𝑙𝑎𝑡𝑖𝑡 ∗ 𝑃𝑟𝑒𝑃𝑜𝑙𝑖𝑐𝑦𝑖𝑡 + 𝛽𝑖𝑡𝑋𝑖𝑡 + 𝜀𝑖𝑡    (1) 

 

where: 𝑦𝑖𝑡 is the volume of water demanded per ha by the farmer for the plot i in time t; 

𝜔𝑖 is the individual fixed effect; 𝜏𝑡 is the year’s fixed effect, which captures 

macroeconomic and exogenous shock factors;  𝛼𝑖𝑡 is the coefficient of the inverse DiD 

estimator, (our variable of interest) composed of (a) the interaction term of 𝐹𝑙𝑎𝑡𝑖𝑡, which 

is a dummy variable indicating whether the unit is treated (equal to 1 if it had a flat-rate 

tariff before 2016), and of (b) 𝑃𝑟𝑒𝑃𝑜𝑙𝑖𝑐𝑦𝑖𝑡, which is a dummy variable indicating the pre-

policy period (equal to 1 for periods before 2016); 𝛽𝑖𝑡 is a vector of a set of coefficients 

of the 𝑋𝑖𝑡 confounders. 𝑋𝑖𝑡includes: 1) a dummy variable indicating whether the farm 

considering all its plot is higher than 10 ha (which is the value under the 90 percentile), 

2) a set of dummies indicating the crop type cultivated in the plot (namely Alpha-Alpha, 

Forage, Melon, Maize, Meadows, Other Arable crops, Sylviculture, Tomato and 

Vegetables), 3) a set of dummy indicating the irrigation system implemented in the plot 

(namely furrow, sprinkler, drip), and 4) the level of seasonal accumulated precipitation 

and minimum temperature. The climatic variables are expressed in seasonal terms: winter 

(January, February and March), spring (April, May and June), summer (July, August and 

September), and autumn (October, November and December). 𝛿 is the intercept and 𝜀𝑖𝑡 

is the idiosyncratic error term assumed to have zero mean and variance 𝜎2 (Greene, 2008). 

Despite the impressive numbers of DiD applications in the applied economics literature, 

Bertrand et al. (2004) point out the major weakness of many applications due to serial 

correlation problems, which imply strongly biased outcomes in many DiD studies 

(Bertrand et al., 2004). We test for heteroscedasticity and autocorrelation of the data using 

a White test and a Wooldridge test, respectively, and indicate that the data is both 

heteroscedastic and serial-correlated (Greene, 2018). To solve this, clustered standard 

errors were used at individual level (plot level) as in the applied works of Malina and 

Scheffler (2015) and Gehrsitz (2017), This option has the same effect as Feasible General 

Least Squares (FGLS) on serial correlation problems, but without limiting the size of the 
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dataset. Bertrand et al. (2004) and Hansen (2007) propose as rule of thumb the number 

being greater than 4213 and we include  3,075 that should cope with serial correlation. 

Finally, in order to give greater robustness to our results, an additional analysis was 

performed on subsamples of irrigation systems (Furrow, Drip, and Sprinkler) and the 

subsets of most relevant cultivated crops (Meadows, Alpha-Alpha, Melon, Vegetables 

and Tomato) in order to consider whether differences arise in the effect of the policy 

among them. All the additional models are applied to both datasets following the baseline 

specification of the baseline model. In all models in which the number of observation 

were enough, trend, and the anticipatory and delaying effect of the policy are controlled 

for with fixed-effect estimation (Cerulli, 2015; Greene, 2018).  

3.5 Identification assumptions  

The classical DiD approach with panel data in which the coefficient interaction term 

between the treatment indicator dummy (which indicates whether the unit i is part of the 

treated group) and the period of treatment is defined as the DiD estimator (Cerulli, 2015; 

Imbens and Wooldridge, 2009). Under specific assumptions the DiD estimator can 

provide a consistent estimation of the average treatment effect on treated unit (ATET) as 

the average difference of the expected value of the outcome variable between the period 

after the treatment and before the treatment (Angrist and Pischke, 2009; Blundell and 

Dias, 2009). Following Frondel and Schmidt (2005), Blundell and Dias (2009), Lechner 

(2010), and Cerulli (2015) the main DiD assumptions are:  

 

 Stable Unit Treatment Value Assumption (SUTVA). One and only one potential 

outcome is observable for each member of the population; there is just one rule 

for the assignment of treatment and non-treatment, and there is no interaction 

between units that can influence the treatment assignment.  

 Common support Assumption (COSU). This embodies two sub-assumptions: 

first, that both treated and untreated units are observable; and second, that for 

each treated unit there is a comparable untreated unit with similar observed 

characteristics of confounders X. 

 Exogeneity of the control variable assumption (EXOG). The confounders X are 

not influenced by the treatment. 

 Non-effect of treatment on the pre-treatment population in the pre-treatment 

period (NEPT). This assumption is imposed in order to avoid distortions due to 

the anticipatory effect on the variable under study. 

 Common Trend Assumption (CT). This assumes that the differences in the 

expected potential non-treatment outcomes (conditioned to the confounders 

vector X) are unrelated to whether or not the treatment is received, and that both 

sub-populations experience the same trend in the pre-treatment period. This 

implies that if the treatment did not occur then the two groups would have 

experienced the same trend. Therefore, this means that changes occurring in the 

outcome variable depend solely on the effect of the treatment (such as the effect 

of the policy). 

                                                 
13 Only in two cases using subsamples of the balanced panel we have a less number of clusters considering 

drip irrigation as subsample of irrigation system and vegetables as subsample of cropping system. 
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If the above assumption holds the DiD coefficient is a consistent estimator of the policy 

effect on the treated group while considering the effect of other observable confounders. 

Conversely, if the assumptions are violated the estimation of DiD is biased and 

inconsistent and therefore it can give misleading suggestions regarding the policy effects.  

All the above listed DiD assumptions were verified. The assumptions in SUTVA and 

COSU hold due to the nature of the data as farm plots are static and farmers do not interact 

much amongst them for irrigation decision, but they follow their previous knowledge and 

expectations on crops water needs. EXOG and NEPT also hold since the treatment 

assignment is completely exogenous and depends on pre-existing conditions which 

cannot be influenced by any characteristic of the farms. Self-selection of the treated farms 

and spill-over effects due to treatment are excluded because the type of farming is not 

influenced by water costs, which are simply a residual part of production costs. Moreover, 

migrations of farmers among properties between the areas of treatment and the areas of 

the counterfactuals are also excluded due to the assumption that local farmers usually use 

the same lands for generations. In order to control for this migration effect, the plot is 

regarded as a statistical unit. The possibility that farmer change crop patterns as a response 

to water pricing is controlled by using the types of crop cultivated on the plot as a possible 

confounder.  

Furthermore, in order to take possible anticipatory or lead effects related to the NEPT 

assumption into account, lags and leads of order one and two (and order three for lags) as 

interactions of the treatment dummy with each years before and after the application of 

the policy have been also included. We also control for specific structural trend in water 

demand using the interaction of the linear post-trend period and the dummy of treatment.  

The addition of interactions of single years and post-period trend with the treatment 

dummy allows testing the CT assumption as an empirical strategy following Autor 

(2003), Besley and Burgess (2004), Reber (2005) and Furman and Stern (2011). This 

strategy is a standard empirical method used with the aim of avoiding distorted findings 

taking into account the structural differences in groups trends. These methods consider 

the statistically insignificance of trend in the pre-treatment periods and the treatment 

dummy interaction coefficients for testing the CT assumption (Mora and Reggio, 2019). 

The full specification used for testing CT assumption used lags and leads of order one 

and two for the treated units, linear and quadratic trend in the pre-policy period for the 

treated units and interactions of dummies for the irrigation technology (drip used as 

reference) using both time invariant and year fixed effects and a full set of confounding 

factors using the unbalanced panel as shows equation 2 that illustrates the specification 

of the model considering lags, leads, and trend: 

 

𝑦𝑖𝑡 =   𝛿 +  𝜔𝑖 +  𝜏𝑡+ 𝛼𝑖𝑡𝐹𝑙𝑎𝑡𝑖𝑡 ∗ 𝑃𝑟𝑒𝑃𝑜𝑙𝑖𝑐𝑦𝑖𝑡 + ∑ 𝜃𝑖𝑡
𝑇=3(2016)
𝜏=1(2018) 𝜏 ∗ 𝐹𝑙𝑎𝑡𝑖𝑡 +

 ∑ 𝛾𝑖𝑛
𝑁=2015
𝑛=2013 𝜔𝑖𝑛 ∗ 𝐹𝑙𝑎𝑡𝑖𝑡 +  ∑ 𝛿𝑖𝑚

𝑀=2018
𝑚=2017 𝜔𝑖𝑚 ∗ 𝐹𝑙𝑎𝑡𝑖𝑡 +𝜌𝑖𝑡𝐹𝑢𝑟𝑟𝑜𝑤𝑖𝑡 ∗ 𝐹𝑙𝑎𝑡𝑖𝑡 +

𝜋𝑖𝑡𝑆𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟𝑖𝑡 ∗ 𝐹𝑙𝑎𝑡𝑖𝑡 +  𝛽𝑖𝑡𝑋𝑖𝑡 + 𝜀𝑖𝑡   eq. (2) 

 

All the coefficients and variables in eq. 2 are the same as those in the base model in eq. 

1, with the sole additions of the coefficients 𝛾𝑖𝑛 for lags (order 1, 2 and 3) and 𝛿𝑖𝑚 for the 

leads (order 1 and 2) as interaction terms of the policy treatment dummy 𝐹𝑙𝑎𝑡𝑖𝑡 with both 

the dummy  𝜔𝑖𝑛 for the specific years before the policy (lags years 2013, 2014, 2015) and 

the dummy  𝜔𝑖𝑚 for the years after the policy (leads years 2017, 2018). Moreover, the 

coefficient 𝜃𝑖𝑡 of the time trend for the post-policy period14 has been added as suggested 

                                                 
14 In standard empirical works the CT assumption is tested using the interaction of the trend in the pre-

policy period with the treatment dummy and the lags of the DiD estimators as the single years before the 
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by Cerulli (2015) and Mora and Reggio (2019). It can be seen that eq.1 is expanded by 

adding 𝜌𝑖𝑡  and 𝜋𝑖𝑡 as estimators of the interaction between irrigation technology dummies 

and the treatment dummy in order to consider time variant effect due to technology 

change for the treated group. The specification in eq. 2 will be used throughout the models 

without the interaction term of the treatment dummy with irrigation technologies, but 

using dummies for irrigation technology as a classical confounder for the whole sample. 

Appendix 1 shows complete results of the analysis with the result that all coefficients of 

the interaction of the trend 𝜃𝑖𝑡 and the leads 𝛿𝑖𝑡 with the treatment dummy turn to be 

insignificant., Additionally, a robustness test following Lenhart (2017) and Hangoma et 

al. (2018) who dealt with the same problem is done by applying Mora and Reggio (2019, 

2015) robustness check model which allow for testing CT assumption using a fully 

flexible model alternative to standard econometric strategies. The results of the full 

flexible approach of Mora and Reggio (2015) are shown in appendix 2. 

Both tests suggest that our analysis do not violate the CT assumptions considering the 

treatment periods in a reversed way as no evident structural different tendency arose 

among the two group in the post treatment period whereas in the pre-treatment period 

statistically significant differences are present. Therefore, we can consider the tariff 

scheme as the explanatory factor behind the differences within both groups in the pre-

treatment period. Therefore, the model analyses whether the policy (water tariff) 

determines changes in water demand. 

Another test on  CT assumption in water demand between the two groups has been 

verified by considering the parallel trends in the periods after the application of the policy 

using a graphical analysis (Figure 2 and Figure 3) by checking for CT in the periods after 

the application of the policy (Blundell and Dias, 2009; Lechner, 2010). The graphical 

analysis of values of the means of the two groups show parallel trends for treated and 

untreated units after the policy application (in 2018, 2017 and 2016), but that they have 

different paths before the policy (2013, 2014 and 2015). Between the two periods of 

analysis, there is an evident difference in water consumption of the treated farms in the 

pre-policy, with higher water use pre-treatment (2013 – 2015) than in the post-treatment 

period (2016 – 2018). The graphical analysis on the CT has been carried out using both 

the balanced and the unbalanced dataset. 

The difference in means of the two groups reveals a parallel trend after the 

implementation of the policy and a relevant structural break can be seen graphically in 

Figure 4 and Figure 5 between the years 2016-2015 during the introduction of the policy 

with different water use patterns. The same graphical verification was carried out using 

subsamples of the three different irrigation technologies and similar results were found 

for the CT assumption (from Figure 6 to Figure 10 in Appendix). Thus, while the CT 

assumption holds, the effect of the policy can be considered as the only element 

influencing the differences in the trends of the two groups.  

                                                 
policy. In our case as we want to reverse our analysis we used to test the CT assumption the interaction of 

the trend after the policy introduction (τ=1 with 2018, τ=2 with 2017 and τ=3 with 2016) with the treatment 

dummy and leads of the DiD estimator as the interactions of the years dummies after policy introduction 

(2017 and 2018) with the treatment dummy. 
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Figure 2. Trends of average values of water use by Treated and Untreated units 

using a balanced panel. 

 

 
 

Figure 3. Trends of average values of water use by Treated and Untreated units 

using an unbalanced panel. 
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Figure 4. Difference in means over the whole period (from 2013 to 2018) between 

Treated and Untreated units using a balanced panel. 

 
 

Figure 5. Difference in means over the whole period (from 2013 to 2018) between 

Treated and Untreated units using an unbalanced panel. 

 

 

 

4 Results 

In all the models, the coefficient of the inverse DiD estimator is significant (0.01 

significance level) with a positive sign a part of the model using the sprinkler subsample 

in which the estimator is not significant with opposite sign. This indicates that, 

considering the whole sample, in the pre-treatment period, water demand for treated farms 

was consistently higher than the farms with volumetric tariffs. The water saving after 
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policy implementation in the farms with flat tariff was 2.533 m3 per ha . The specification 

of the model does not influence the statistical significance of the inverse DiD coefficient. 

Indeed, the leads and the time trend (as interactions of the treatment variable with the 

time trend of the post policy period) do not modify the sign nor the magnitude of the 

coefficient of the inverse DiD estimator. The results of the general econometric models 

using the unbalanced panel are shown in Table 5, in column 3 the model is fully specified 

highlighting that CT assumption on the whole unbalanced panel holds. Considering 

irrigation technology sub-samples differences among irrigation systems are evident, but 

in general it is not statistically evident a general difference in trend patterns considering 

the two groups of farms (treated and not treated). The time trend is significant only for 

furrow irrigation when using subsamples of irrigation technology and the balanced panel. 

Including policy delaying effects and the structural trend pattern, the coefficient of the 

inverse DiD is still significant and positive, which indicates that our regression models 

considering both dataset are robust. The results of our analysis consequently suggest that 

a change in water-use behaviour occurred in the treated farms principally due to the 

introduction of the water-pricing policy. 

Furrow irrigation systems shows a higher impact as the reduction from the pre-policy 

period is important (decreasing 4,263 m3 per ha after policy implementation), with lower 

reduction for drip irrigation (1,869 m3 per ha lower after the policy application) (Table 5 

columns from 4 to 6). Using the unbalanced panel, the inverse DiD estimator is not 

significant in the case sprinkler subsample.  

The analysis using balanced panel release similar findings (Table 6), but in this case all 

the irrigation technology sub samples have statistical significant inverse DiD estimators 

with different levels of magnitudes (Table 6 columns from 4 to 6). Using the balanced 

panel Furrow and Drip irrigation systems are similarly the most affected by the policy 

(with respectively ATET of 3,860 m3 per ha and 3,436 m3 per ha), whereas the inverse 

DiD estimator for sprinkler irrigation systems turn to be significant indicating a difference 

1,469 m3 per ha between the pre and post policy periods. Furthermore, in this case, the 

time trend is significant giving evidence that some differences on pattern trend arise using 

different subsamples (in sprinkler and drip time trend is not significant).  

Similarities of results using both balanced and the unbalanced panel datasets give 

robustness to our analytical approach. Moreover, this suggests that the effect of the policy 

is evident both considering good fit of the observable characteristics (unbalanced panel) 

of treated, and untreated groups and removing the effect of technological change during 

time (balanced panel).  

 

The analysis using different crop systems highlights positive effects in terms of water use 

reduction for most of the crops, but with heterogeneous effects (Table 7 and 8). Meadows 

seems to be the more sensitive crop with a mean difference between the two periods of 

4,174 m3 per ha and 3,886 m3 per ha using respectively the unbalanced and balanced 

panel, tomato shown an ATET15 of 3,024 m3 per ha (only unbalanced panel), Alfalfa 

ATET is 820.4 m3 per ha (unbalanced) and 1,707 m3 per ha (balanced), melons 1,809 m3 

per ha (only unbalanced panel) and maize 2,234 m3 per ha (balanced, not significant with 

unbalanced dataset). Even in this case, considering different crop systems, the results 

confirm that the water-pricing policy was effective on the treated sample with the inverse 

DiD coefficients positive and in most of the cases with high statistically significance. 

                                                 
15 ATET in the DiD framework is coefficient of the DiD estimator. 
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Table 5. Results of the econometric models using the unbalanced panel dataset. Columns 1-

3 consider the general specification of the model adding leads of order 1 and 2 

and group time trend in the post-policy period. In columns 4-6 irrigation 

technology subsample are considered. 

 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Model 1. 

General 

Model 2. 

General 

Model 3. 

General 

Model 4. 

Furrow 

Model 5. 

Sprinkler 

Model 6. 

Drip 

       

Dep. variable  

Water Use (M3/Ha) 

      

(Unbalanced Panel)       

Inv DID  2,339*** 3,033*** 2,533* 4,263*** -302.0 1,869*** 
(Treatment x pre policy period) (17.48) (14.18) (1.894) (3.183) (-0.273) (3.100) 

Post policy time trend  345.4*** 125.5 778.5* -605.3 -73.66 
(inverse time trend from 2018 

to 2016 x Treated 
 (4.779) (0.279) (1.729) (-1.643) (-0.357) 

Inv DID Lead1   253.0 206.1 -662.9* -15.28 
(Year 2017 x Treated)   (0.557) (0.427) (-1.736) (-0.0350) 

Inv DID Lead2   -520.0 69.36 -1,097  
(Year 2018 x Treated)   (-0.583) (0.0780) (-1.474)  

Constant 47,901*** 5,939 10,341 -36,704 -4,516 -3,512 

 (4.975) (0.298) (0.522) (-0.967) (-0.250) (-0.0291) 

       

Observations 12,604 12,604 12,604 5,607 6,651 346 

R-squared  0.214 0.216 0.286 0.171 0.256 

Number of Farm Plots 3,075 3,075 3,075 1,181 1,955 123 

Robust Yes Yes Yes Yes Yes Yes 

Cluster SE Plot Plot Plot Plot Plot Plot 

Year FE Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes 

Lags No No No No No No 

Leads No No Yes Yes Yes Yes 

Trend No No Yes Yes Yes Yes 

Controls       

Dimension > than 10 

Ha 

Yes Yes Yes Yes Yes Yes 

Seasonal Min. Temp. Yes Yes Yes Yes Yes Yes 

Seasonal Acc. Precip. Yes Yes Yes Yes Yes Yes 

Irrigation Technology Yes Yes Yes Yes Yes Yes 

Crop Type Yes Yes Yes Yes Yes Yes 
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Table 6. Results of the econometric models using the balanced panel dataset. Columns 1-3 

consider the general specification of the model adding leads of order 1 and 2 and 

group time trend in the post-policy period. In columns 4-6 irrigation technology 

subsample are considered. 

 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Model 1. 

General 

Model 2. 

General Time 

trend 

Model 2.1 

General Time 

trend and Leads 

Model 3. 

Furrow 

Model 4. 

Sprinkler 

Model 5. 

Drip 

       

Dep. variable  

Water Use (M3/Ha) 

      

(Balanced Panel)       

Inv DID  2,673*** 3,890*** 4,013*** 3,860*** 1,469*** 3,436** 
(Treatment x pre policy 

period) 
(10.71) (13.10) (13.43) (10.37) (3.197) (3.116) 

Post policy time 

trend 

 654.9*** 657.0*** 828.3*** -62.13 270.3 

(inverse time trend from 

2018 to 2016 x Treated 
 (6.390) (6.417) (6.445) (-0.500) (1.127) 

Inv DID Lead1   349.0* -252.4 -49.75 862.0 
(Year 2017 x Treated)   (1.758) (-0.958) (-0.168) (1.702) 

Constant 66,574* 34,229 41,714 9,385 115,208*** -443,474 

 (1.684) (0.891) (1.072) (0.177) (2.863) (-1.406) 

       

Observations 4,050 4,050 4,050 3,306 678 66 

R-squared 0.320 0.325 0.325 0.352 0.237 0.504 

Number of ID_Plot 675 675 675 551 113 11 

Robust Yes Yes Yes Yes Yes Yes 

Cluster SE Plot Plot Plot Plot Plot Plot 

Year FE Yes Yes Yes Yes Yes Yes 

Ind FE Yes Yes Yes Yes Yes Yes 

Lags No No No No No No 

Leads No Yes Yes Yes Yes Yes 

Trend No Yes Yes Yes Yes Yes 

Controls       

Dimension > than 10 

Ha 

Yes Yes Yes Yes Yes Yes 

Seasonal Min. Temp. Yes Yes Yes Yes Yes Yes 

Seasonal Acc. 

Precip. 

Yes Yes Yes Yes Yes Yes 

Irrigation 

Technology 

No No No No No No 

Crop Type Yes Yes Yes Yes Yes Yes 
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Table 7. Results of the econometric models considering single cropping systems using the 

unbalanced panel dataset. 

 (1) (2) (3) (4) (5) (6) 

VARIABLES Model 1. 

Meadows 

Model 2. 

Maize 

Model 3. 

Tomato 

Model 4. 

Alfalfa 

Model 5. 

Vegetables 

Model 6. 

Melon 

       

Dep. variable  

Water Use (M3/Ha) 

      

(Unbalanced Panel)       

Inv DID  4,174*** -1,017 3,024** 820.4*** 687.0 1,809*** 
(Treatment x pre policy period) (3.259) (-0.671) (2.456) (2.876) (0.943) (2.936) 

Post policy time trend 865.4** -926.1* -69.48 -133.2 -374.5** -319.6 
(inverse time trend from 2018 

to 2016 x Treated 
(2.005) (-1.848) (-0.177) (-1.152) (-1.969) (-1.083) 

Inv DID Lead1 -206.7 -1,341** -741.1 -77.59 -776.6 -88.66 
(Year 2017 x Treated) (-0.441) (-2.456) (-0.892) (-0.449) (-1.429) (-0.211) 

Inv DID Lead2 71.95 -1,873*     
(Year 2018 x Treated) (0.0847) (-1.809)     

Constant -53,667 10,425 155,380 -27,730 -26,635 -21,219 

 (-1.314) (0.263) (0.992) (-0.932) (-0.452) (-1.140) 

       

Observations 5,302 2,794 390 2,297 757 240 

R-squared 0.297 0.173 0.305 0.137 0.171 0.237 

Number of ID_Plot 1,070 1,166 200 894 389 73 

Robust Yes Yes Yes Yes Yes Yes 

Cluster SE Plot Plot Plot Plot Plot Plot 

Year FE Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes 

Lags No No No No No No 

Leads Yes Yes No No No Yes 

Trend Yes Yes No No No Yes 

Controls       

Dimension > than 10 

Ha 

Yes Yes Yes Yes Yes Yes 

Seasonal Min. Temp. Yes Yes Yes Yes Yes Yes 

Seasonal Acc. Precip. Yes Yes Yes Yes Yes Yes 

Irrigation Technology Yes Yes Yes Yes Yes Yes 
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Table 8. Results of the econometric models considering single cropping systems using the 

balanced panel dataset. 

 
 (1) (2) (3) (4) 

VARIABLES Model 1. Meadows Model 2. Maize Model 3. Alfalfa Model 5. Vegetables 

     

Dep. variable  

Water Use (M3/Ha) 

    

(balanced Panel)     

Inv DID  3,886*** 2,234** 1,707** -1,481 
(Treatment x pre policy period) (10.31) (2.186) (2.007) (-0.595) 

Post policy time trend 880.2*** -81.23 -29.16 -915.8 
(inverse time trend from 2018 

 to 2016 x Treated 
(6.754) (-0.327) (-0.117) (-1.318) 

Inv DID Lead1 -335.9 19.60 -22.34 477.0 
(Year 2017 x Treated) (-1.241) (0.0315) (-0.0501) (0.660) 

Constant -14,084 99,913 56,103 172,176 

 (-0.260) (1.312) (0.780) (1.350) 

     

Observations 3,247 301 250 107 

R-squared 0.356 0.292 0.295 0.310 

Number of ID_Plot 544 76 58 28 

Robust Yes Yes Yes Yes 

Cluster SE Plot Plot Plot Plot 

Year FE Yes Yes Yes Yes 

Ind FE Yes Yes Yes Yes 

Lags No No No No 

Leads Yes Yes No No 

Trend Yes Yes No No 

Controls     

Dimension > than 10 Ha Yes Yes Yes Yes 

Seasonal Min. Temp. Yes Yes Yes Yes 

Seasonal Acc. Precip. Yes Yes Yes Yes 

Irrigation Technology No No No No 

Crop Type No No No No 

The new tariff policy was effective on the treated farms for all the irrigation systems of 

the CEWD and most of the crop systems analysed, but with marked heterogeneities of 

the effect of the water pricing policy. In fact, the analysis of the magnitude of the 

coefficients by irrigation system show that furrow system is the most responding to the 

application of a volumetric tariff in terms of water demand reduction. As expected furrow 

irrigation system is the most sensitive system to water pricing as it is the most inefficient 

method of water applications. Drip is unexpectedly more responsive to water tariff 

introduction than sprinkler and this can depend by the fact that drip irrigation can give a 

higher level of control to the farmer on water applications increasing their capacity to 

price changes adaptation. Sprinkler is the last irrigation system term of in responsiveness 

to price introduction (for unbalanced panel inverse DiD estimator is not significant with 

balanced panel is significant at 0.01, but with a minor magnitude compared to the others). 

This finding is counterintuitive as sprinkler should be higher responsive than drip, this 

could depend by the fact that some irrigation technologies are more linked to specific 

crops and this could influence the water demand elasticity (Berbel et al., 2018). 

Unfortunately, our analysis cannot be deepen running econometric models on subsamples 

of specific crops by each irrigation technologies due to excessive reductions of the unit 

of analysis. The effect of the introduction of the volumetric tariff within the treated group, 

is highlighted in Table 9 in which the ATET of each model is shown divided for cropping 

and irrigation systems. 
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Table 9: Average irrigation use differences between the pre-policy and the post policy 

periods (m3/ha)  

 

ATET (m3/Ha) Unbalanced panel significance Balanced panel  significance 

All sample 2,533 0.10 4,013 0.01 

Irrigation systems 

Furrow Irrigation 4,263 0.01 3,860 0.01 

Sprinkler Irrigation  n/a  n/a 1,469 0.01 

Drip Irrigation 1,869 0.01 3,436 0.05 

Cropping systems 

Meadows 4,174 0.01 3,886 0.01 

Maize  n/a  n/a 2,234 0.01 

Tomato 3,024 0.01 n/a n/a 

Alfalfa 820.4 0.01 1,707 0.01 

Vegetables  n/a  n/a n/a n/a 

Melon 1,809 0.01 n/a n/a 

Note:  1m3/ha =0.1mm 

 

Both all irrigation technologies and all crops (a part of vegetables) show a marked 

response to the policy change in at least one model using either the unbalanced or the 

balanced panel. Table 9 shows that the response to policy is greater for Meadows, Tomato 

and Maize than Alfalfa and Melons. Vegetables (sugar beet, onion, potato, and mixed 

horticulture) seems to be not responsive to the water pricing policy. This may be 

explained by the fact that vegetables are highly water intensive crops with high value 

embedded as most of them are final product for markets flattening the elasticity of water 

demand to water price and that water stress reduces product quality affecting seriously to 

the price. 

 

5 Discussion 

 

Agriculture, especially in Europe, has been considered traditionally as a strategic sector 

protected through governmental support (Abu-Zeid, 2001). This has also occurred in the 

irrigation sector since the cost of water services frequently remain unrecovered 

(Massarutto, 2003). Without cost recovery or distorting tariff structures such as a flat-rate 

tariff, farmers can operate structurally with low levels of marginal water costs, below the 

level of marginal water benefits. This leads to a situation of undervaluing the natural 

resource in the farmers’ production function and in their decisions regarding water 

allocation schemes (Cooper et al., 2014), where water is considered as a public 

commodity with problems of over-exploitation and resource misallocation (Hardin, 

1968). Therefore, in the absence of suitable incentives aimed at internalizing the full cost 

of water resources, management methods can become inefficient (Rogers, 2002) with 

major externalities due to over-withdrawal and over-irrigation (Dinar and Mody, 2004; 

Wheeler et al., 2015). 

Pricing policies for water have been advocated since 1992, with the Dublin declaration in 

which water was recognized as a social commodity with an intrinsic economic value, and 

where water pricing was identified as a good measure for the internalization of 

externalities due to over-irrigation (Dublin Statement, 1992). Transaction costs related to 
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design, implementation of metering infrastructures, and to the costs of control and 

enforcing the policy constitute possible drawbacks of water-pricing policies (Johansson, 

2002). Moreover, there is uncertainty with the outcomes and heterogeneity of the impacts, 

which are case specific, and difficulties arise in creating best-practices and 

generalizations (Lago et al., 2015; Molle and Berkoff, 2007). 

The findings of our study highlight the effectiveness of the pricing policy applied by the 

CEWD as an effective tool for encouraging the efficient use of water by farmers in order 

to sustain water conservation programs. In most of the specifications of the models, the 

coefficients of the application of the inverse DiD are significant and positive, which 

confirms that the introduction of the policy was effective, with reductions between 2,533 

m3per ha and 4,013 m3per ha considering respectively an unbalanced and a balanced panel 

for the analysis. Therefore, our findings highlight that volumetric pricing act as a signal 

of scarcity to the farmer to induce efficient resource use. In our case, farmers reduced 

their water demand even if the water tariff is small, which indicates that simply passing 

from a quasi-zero to a non-zero water price can consistently reduce free-rider attitudes, 

thereby internalizing externalities.  Another relevant factor is that we should consider that 

even if water tariff is zero (flat tariff), water use in irrigation bears certain costs, such as 

labour, information, energy, management, and other opportunity costs to the farmer, some 

explicit and others implicit.  

Our study confirms the findings of Smith et al. (2017), Drysdale and Hendricks (2018), 

and Smith (2018) regarding groundwater, in which they indicate that the introduction of 

economic incentives and water quota restrictions consistently reduces water consumption 

and water saving behaviours. Following those studies, the introduction of a tariff reduced 

the amount of agricultural water extraction by 33% in Colorado (Smith, 2018; Smith et 

al., 2017) and 26% in Kansas (Drysdale and Hendricks, 2018). In our analysis, a 50% 

(unbalanced panel) and 55.816% (balanced panel) average reduction of water demand due 

to the policy was found, which is in line with their findings, but slightly higher. Part of 

the differences in the results to previous studies can be explained by the ex-ante context, 

since groundwater should be pumped so that farmers pay the internal cost of energy, while 

surface water in the CEWD was almost free before the policy implementation. 

Furthermore, there are obvious differences between the agricultural systems of US states 

and those of northern Italy, although in both cases farmers are responsive to economic 

measures in water demand. 

As mentioned earlier, the context before the policy change involved over-irrigation (see 

comments regarding Table 1), which from the hydrological point of view implies that 

excess water is not ‘lost ‘ for the basin since it returns to the system (Berbel and Mateos, 

2014) and can be reused downstream, but the quality is deteriorated because it removes 

nutrients (e.g., N, P, K) in the form of chemicals and salts that are exported from the field, 

and therefore generates diffuse pollution externalities within the basin and into the sea 

and coastal ecosystems. The coastal area of the ERR is highly sensitive to anthropic 

pressures, especially nutrient loads from agriculture. Recently, the run-off of the Po river 

(Enza and Secchia river are tributaries of the Po) caused a significant growth of algae in 

the Northern Adriatic Sea and incurred major damage in terms of ecosystem impacts that 

consequently also affected regional tourism and the fishing sector (Russo et al., 2009). 

Diffuse pollution from the Po river has been estimated to be responsible for at least of 

50% of the eutrophication in the Adriatic sea (de Wit and Bendoricchio, 2001). As 

farmers reduce water use, they are simultaneously improving water quality of return flows 

and therefore environmental conditions downstream in all the related ecosystems of Po 

                                                 
16 Values calculated as the ratio between the ATET (Table 9) for the baseline model and the average use of 

water in the pre-policy period (Table 4 8th row 1st and 5th column) using both datasets. 



 

 

135 

 

river basin. The increase in the efficiency of water use induced by water conservation 

techniques improves water quality by reducing this significant externality of agricultural 

activities in the ERR (Berbel, Expósito et al. 2019).  

One interesting point which arises from the results show a different response in water 

saving considering different irrigation systems. Furrow is the most responsive to the 

policy being the most inefficient, but our findings highlighted that in this study drip 

irrigation systems reacted to the introduction of the water pricing policy more than 

sprinkler irrigation (which was not significant with the unbalanced panel). This is 

counterintuitive according to analytical models of farmer response (Berbel et al., 2018). 

One hypothesis to be tested in the future is considering in the analysis the initial cost due 

to energy use required by irrigation systems17 and the type of cultivated crops by irrigation 

systems as these two elements may explain the unresponsiveness of sprinkler systems to 

the policy. Anyway we consider unobserved heterogeneities between the units using a 

fixed effects approach as a ceteris paribus condition between plots, therefore our models 

take into accounts different initials energy prices and different endowments between 

plots. 

The relevancy of this research is the in-depth econometric analysis on a large sample of 

plot level observations including information regarding the irrigation system and crop. 

One limitation of our approach is related to the unobservability of the effect of metering 

as a distinct element to the price effect. In residential water use there are evidences of the 

impact of just metering water and of information-sharing among users in influencing the 

reduction of water use as a behavioural response (Ferraro and Price, 2013). This can easily 

apply to the agricultural sector (Wallander, 2017), therefore, water metering can have an 

impact by its own on farmers response to water pricing policies without, but this element 

is difficult to be considered in our analysis (Wallander, 2017).  

In our study, reliable metering was introduced since the 2013-2015 in the pre-policy 

phase, however, the metering information remained unused for water use by farmers who 

pay a flat tariff scheme. The farmers’ perception and their behavioural responses to the 

change of paradigm (metering vs. non-metering) is not totally measurable, due to the 

difficulties in splitting the total impact of the policy change between the two components: 

a marginal water-pricing increase and water metering by itself. In our study we observe 

the total effect of two components, further studies might focus on considering the 

separated effects of metering and pricing water. Furthermore, the elasticity of water use 

is difficult to measure with our data for this combined effect of metering and marginal 

price, therefore a different methodology should be undertaken to estimate elasticity of 

water demand, for further details see Berbel and Pronti (2020). 

 

6 Conclusion 

 

The findings of this study indicate that volumetric water pricing is an effective strategy 

for inducing water saving in irrigation also in the case of water abundant regions such as 

North Italy. The case study of the CEWD shows that volumetric pricing triggers an 

increase in water-use efficiency even with a low water price (below 0.05 EUR/m3). 

Volumetric tariffs render marginal costs of water higher than zero, thereby introducing a 

                                                 
17 Initial energy costs of irrigation systems can be different even with flat rate tariff due to different use of 

pressurized water and water distribution to plants. Espinosa-Tasón et al. (2020) show important differences 

of energy costs for sprinkler and drip being respectively 0.21 kwh/m3 and 0.12 kwh/m3. 
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non-zero value of water resources into the cost function of the farmers, who therefore 

start to use the resource as a private commodity instead of a public commodity.  

The overall effect of the policy is positive and this has been demonstrated by the huge 

reduction of water use. However, in our work, a combination of ‘metering’ and ‘small 

price increase’ is introduced almost simultaneously and the individual impact of each 

instrument cannot be easily differentiated. The transition from a zero marginal cost 

(common commodity) to a priced and measured input has been demonstrated to be highly 

effective in our case where instances of ‘over-irrigation’ in the behaviour of farmers was 

previously evident.  

Finally, the inverse-DiD methodological proposal is a novel application of a 

simple and robust method that can be used to test policy innovations. The inverse DiD 

method relies strictly on the classic DiD application, but extends the domain of policy 

cases in which the application of this econometric tool can be applied. The proposed 

approach enables the standard DiD method to be expanded for use in environments other 

than those required by the original method. We hope that future applications of the inverse 

DiD method will demonstrate the utility of this empirical application. 
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Appendix 1 

Robustness check and verification of the Common Trends assumption using 

different models 

 
Table 10. CT test using standard econometric methods adding interactions of dummies for the irrigation 

systems, years and post treatment trend with the treated dummy. 

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

         

Dep variable  

Water Use (M3/Ha) 

        

         

Year 2013 (Dummy) 420.3*** 506.3*** 484.1*** 478.5*** 478.5*** 548.8*** -3,144** -3,144** 

 (7.995) (9.857) (9.304) (9.193) (9.193) (10.79) (-2.577) (-2.577) 

Year 2014 (Dummy) -

571.6*** 

-

486.8*** 

-

507.5*** 

-

513.7*** 

-

513.7*** 

-

472.9*** 

7,518** 7,518** 

 (-11.79) (-10.31) (-10.74) (-10.87) (-10.87) (-10.63) (2.105) (2.105) 

Year 2015 (Dummy) 0.766 87.15* 67.02 59.48 59.48 -53.48 -6,405*** -6,405*** 

 (0.0157) (1.814) (1.386) (1.235) (1.235) (-1.194) (-4.885) (-4.885) 

Year 2017 (Dummy) 449.5*** 542.5*** 484.9*** 467.4*** 467.4*** 467.1*** -

10,390*** 

-

10,390*** 

 (9.991) (12.22) (10.28) (10.10) (10.10) (10.08) (-5.623) (-5.623) 

Year 2018 (Dummy) -

794.2*** 

-

590.5*** 

-

588.3*** 

-

570.8*** 

-

570.8*** 

-

571.0*** 

-5,054*** -5,054*** 

 (-14.11) (-11.06) (-11.13) (-10.98) (-10.98) (-10.98) (-3.125) (-3.125) 

InvDID  

(Treatment x pre policy period) 

2,274*** 2,905*** 3,648*** 2,573* 2,573* 2,307* 2,422* 2,860** 

 (18.57) (14.01) (8.881) (1.865) (1.865) (1.655) (1.759) (2.090) 

Post policy time trend 

(inverse time trend from 2018 to 2016 

x Treated) 

 301.4*** 1,122*** 162.2 -318.5 -357.8 119.4 -646.8 

  (4.219) (2.778) (0.351) (-0.173) (-0.193) (0.259) (-0.353) 

Post policy time trend^2   -203.0**  160.2 170.3  255.4 

   (-2.077)  (0.348) (0.367)  (0.558) 

DID_F1 (Year 2017 x Treated)    108.6 429.1 439.0 327.6 838.3* 

    (0.232) (0.908) (0.923) (0.705) (1.767) 

DID_F2 (Year 2018 x Treated)    -320.5   -510.8  

    (-0.348)   (-0.558)  

DID_L1 (Year 2015 x Treated)      592.5*** 438.4***  

      (3.926) (2.842)  

DID_L2 (Year 2014 x Treated)      118.1 -194.9 -633.4*** 

      (0.828) (-1.257) (-4.548) 

DID_L3 (Year 2013 x Treated)        -438.4*** 

        (-2.842) 

Crop 1       -538.4* -538.4* 

       (-1.856) (-1.856) 

Crop 2       -124.1 -124.1 

       (-0.400) (-0.400) 

Crop 3       -265.2 -265.2 

       (-0.938) (-0.938) 

Crop 4       1,139** 1,139** 

       (2.521) (2.521) 

Crop 5       -161.0 -161.0 

       (-0.449) (-0.449) 

Crop 6       -434.2 -434.2 

       (-1.514) (-1.514) 

Crop 8       929.7*** 929.7*** 
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       (3.110) (3.110) 

Crop 9       -377.1 -377.1 

       (-1.355) (-1.355) 

Min Temp JFM       -3,542*** -3,542*** 

       (-5.137) (-5.137) 

Min Temp AMJ       3,971*** 3,971*** 

       (4.182) (4.182) 

Min Temp JAS       -2,074*** -2,074*** 

       (-3.675) (-3.675) 

Min Temp OND       -1,114* -1,114* 

       (-1.664) (-1.664) 

Acc Precip JFM       -41.75*** -41.75*** 

       (-4.397) (-4.397) 

Acc Precip AMJ       17.07*** 17.07*** 

       (2.801) (2.801) 

Acc Precip JAS       -44.28*** -44.28*** 

       (-5.162) (-5.162) 

Acc Precip OND       -34.87*** -34.87*** 

       (-3.727) (-3.727) 

Furrow  

(Furrow Irrigation Type (Dummy) x 

Treated) 

  808.3      

   (1.291)      

Sprinkler 

(Sprinkler Irrigation Type (Dummy) x 

Treated) 

  -

1,318*** 

     

   (-3.504)      

Constant 2,337*** 2,055*** 1,894*** 2,186*** 2,186*** 2,195*** 25,014 25,014 

 (69.90) (31.16) (10.93) (5.097) (5.097) (5.085) (1.277) (1.277) 

         

Observations 12,604 12,604 12,604 12,604 12,604 12,604 12,604 12,604 

R-squared 0.194 0.196 0.202 0.197 0.197 0.199 0.215 0.215 

Number of ID_Plot 3,075 3,075 3,075 3,075 3,075 3,075 3,075 3,075 

Robust Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Ind FE YES YES Yes Yes Yes Yes Yes Yes 

Lags and Leads No No       

Trend No Yes Yes Yes Yes Yes Yes Yes 

Trend^2 No No No No Yes No No No 

Lags   No No No Yes Yes No 

Leads   No Yes Yes Yes Yes Yes 

Robust t-statistics in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Note: In our case lags, leads and post treatment trend must be considered conversely for the interpretation of anticipatory and post policy 

effects and parallel trends among groups. In fact, we are considering the convergence effect of imposing a pricing tariff to farmers without 

that imposition with farmers that already experienced that policy. 
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Appendix 2 

Robustness check and verification of the Common Trends assumption using the fully 

flexible model of Mora and Reggio (2019) 

 

The approach of Mora and Reggio (2019) deals with the untestable assumption of common trends (CT), 

which is fundamental in the application of the DiD approach for ensuring unbiased and consistent results. 

As discussed in the paper, the authors use a different approach to classic econometric analysis used in 

empirical works for evidencing structural differences between the two groups under analysis (treated and 

control groups), such as the inclusion in the models of the interactions between year dummies and post-

policy trends with the treatment dummy.  

The authors defined an alternative approach using a family of different parallel (q) assumptions with q 

indicating the maximum period of pre-treatment (q ranges from 1 to the number of pre-treatment periods). 

They assume that in absence of treatment the average q-differences in the outcome variable between the 

two tested groups are equal. In other words, they consider that in the absence of treatment, average 

changes (and the speed of the change) in the outcome among treated are equal to the average changes 

among comparable controls (Mora & Reggio, 2015). 

The model they propose is fully flexible to group specific dynamics with less restrictions to standard 

econometric test to identify CT assumption. We applied their approach for robustness check of our 

analysis on CT assumption made with the standard empirical approach (see Appendix 1). For a deeper 

understanding of the econometric approach and of the method used in this appendix see Mora and Reggio 

(2015, 2019). Further details are also available in Hangoma et al. (2018), which uses a similar analysis 

for robustness check of their DiD method. 

We used the didq STATA package implemented by Mora and Reggio (2015) for testing the CT 

assumption using the fully flexible model. We inverted the timeframe of our dataset in order to test the 

CT assumption in the post treatment period of policy application (such as 2018 = t1; 2017 =t2, 2016=t3) 

and the differences in trends in the pre-treatment periods (2015=t4, 2014=t5, 2013=t6). We used the OLS 

model adding the controls used in the baseline model to improve the accuracy of the test (a set of 

dummies for the type of Crop, seasonal minimum temperature, seasonal accumulated precipitations, size 

of the plot higher than 10 ha, interaction of the treated dummy with furrow and sprinkler irrigation 

technology). The CT test used by Mora and Reggio is a Wald test on the joint equivalence of parallel-q 

pre-treatment periods (in our case post-treatment) in which H0 is the hypothesis of CT assumption. In 

our case, the H0 is strongly not rejected in all the cases, therefore we cannot state that there is no CT for 

our period of analysis, which corresponds to the years after the application of the water pricing policy. 

Therefore, CT assumptions in our case hold and our analysis can be considered unbiased and reliable. In 

table 11 all the results of the tests. 
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Table 11. CT test using the fully flexible model of Mora and Reggio (2015,2019). H0 is the hypothesis of 

common trends between treated and controls. 

 
Conditional Fully Flexible Model 

Output: Water Volume (m3/ha) Number of obs = 12604 

Sample Period: 1(2018):6(2013) H0: Common Pre-dynamics =  44.54 

Treatment Period: 4(2015):6(2013) p-value = 2.1e-10 

Robust Standard Errors 

 H0:q=q-1 H0:s=s-1   

  z P> z F Prob>F   

q=1     8.062788 0.01775   

q=2   -72.1109 0.598647 4.186339 0.123296   

q=3   -892.929 0.000181 14.49448 0.000712   

Parallel-1 

 Coef. Std. Err. z P> z   [95% Conf. Interval] 

s=1   2480.781 200.4117 12.38 0 2087.982 2873.581 

s=2   1889.536 193.7183 9.75 0 1509.855 2269.217 

s=3   1986.308 205.1566 9.68 0 1584.208 2388.407 

Parallel-2 

 Coef. Std. Err. z P> z   [95% Conf. Interval] 

       

s=1   2552.892 287.3826 8.88 0 1989.633 3116.152 

s=2   2033.758 396.331 5.13 0 1256.963 2810.552 

s=3   2202.64 512.932 4.29 0 1197.312 3207.969 

Parallel-3 

 Coef. Std. Err. z P> z   [95% Conf. Interval] 

s=1   3445.821 471.8645 7.3 0 2520.984 4370.658 

s=2   4712.544 1044.926 4.51 0 2664.527 6760.562 

s=3   7560.213 1842.713 4.1 0 3948.562 11171.86 
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Graphical analysis of Common Trends among Treated and Untreated for different 

irrigation technologies 
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Main conclusions 

 

The essays in this PhD thesis highlight different important aspects related to water management, with 

several policy implications.  

 

The main message of the first two papers is that an important role for water conservation policies in 

agriculture is played by farmers’ approaches related to irrigation technology adoption. Both the 

determinants and the intensity of adopting sustainable technologies do matter in boosting water 

conservation policies, and those elements should be taken seriously into consideration by policymakers 

for tailoring ad-hoc actions to increase the success of the interventions. Moreover, the additional gain in 

terms of economic outcomes, through a general increase in production, obtained by adopters of WCST 

may furtherly expand the policy effect at higher scales (regional and national), due to the higher 

profitability of sustainable irrigation technologies compared to traditional ones. Policymakers should 

consider the additional profitability of WCST adoption for farmers and employ it as a further basis for 

incentivizing high scale transitions toward sustainable irrigation strategies.  

The adoption of WCST can improve the general level of sustainability of water use in the agricultural 

sector and a key element is the attitude of the farmer over innovation and new technologies. Therefore, 

demand side policies can have higher chances of success if the measures consider all the heterogeneities 

among farmers as economic agents and all the aspects which influence their potential response to 

technological changes. Tailored incentives, technical standards or rules on water use will have higher 

possibilities of success than general and homogenous approaches. Moreover, the economic benefits of 

technological changes might drive farmers to more efficient water-consuming irrigation technologies 

with a double gain for both the productive sector (lower water costs per unit produced) and the socio-

ecological system as a whole (reduced abstraction of water for agriculture). Thus, technological/technical 

changes and the focus of environmental policies on them are crucial for a sustainable transition of the 

agricultural sector toward water conservative schemes. 

 

Other key features for sustainable water management in agriculture have been identified by the last two 

papers, in which farmers’ responses to prices have been analysed in depth. The case of Central Emilia 

Water District highlighted that farmers react to price as an economic incentive reducing their water 

consumption, considering water resources in presence of tariffs (even if very low) a finite and costly 

input in their producing patterns. Moreover, agricultural water demand elasticity to price resulted to be 

diverse and related to crop water needs and the market value of the final product (as the value of each 

drop of water spent for growing varies among crops). In addition, another relevant aspect in the 

responsiveness of farmers to water prices is the level of control that each irrigation system provides to 

the farmer. This last point is slightly in contrast with other theoretical studies on irrigation which claimed 

the opposite (i.e. the higher the level of control of the irrigation system the lower the water demand 

elasticity). 

 

The main message is that, even if water demand is inelastic to prices in general, farmers do react to price 

changes, and therefore volumetric tariffs can be strategic for driving conservative use of water. This is 

confirmed by the analysis of the introduction of a volumetric tariff in the CEWD case study, which 

demonstrates the total change in the behaviour of farmers when shifting from a flat to a volumetric tariff, 

even with very small amounts of money spent for each cubic meter of water consumed. This implies that 

after the introduction of the policy farmers start to integrate water as a variable cost in their cost functions, 

changing their strategies towards water and their approach to its use from a public to a private good 
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framework. In our case, the tariff introduced a cost of less than 4 cents per m3, whereas in some irrigation 

districts in the south of Italy this costs up to 50 cents (ten times more than the CEWD); therefore, there 

is ample room for introducing water specific and non-detrimental pricing policies.  

 

Furthermore, in the analysis of the last two papers the heterogeneity of irrigation technologies and crops 

have drawn attention to the diverse reactions to water pricing of each system. This underlines the 

importance of adopting ad-hoc interventions in order to achieve effective results in environmental terms 

while not lowering farmers’ income excessively. Therefore, water pricing policies are effective, but in 

order to improve their impact in terms of water conservation, pricing schemes should discriminate among 

different producing systems, taking into account that different crops and irrigation system lead to 

different elasticities. To reiterate, this highlights the importance of considering the heterogeneities 

between different types of productions to increase the effectiveness of water conservation policies, which 

should be designed taking into consideration the different propensity to react to water prices of both 

different crops grown and irrigation systems.  

 

With these essays, I contribute to water economics literature in several ways. Firstly, I provide different 

empirical analyses at national and regional level using observational micro data adding climatic variables 

in the econometric models. Moreover, Italian irrigation system has not been explored widely before and 

this area was not covered by previous empirical studies. The main findings of this PhD thesis – although 

limited to one country - can apply to other Mediterranean countries which have similar productive, 

geographical and socio-economic conditions to Italy. Secondly, I introduce some novel analytical 

approaches, such as the use of correlated random effect models, the inverse Did and the endogenous 

switching regression models with panel data; which represents the first application in agricultural and 

environmental economics literature of the control function approach model of Murtazashvili and 

Wooldridge (2016) for considering two sources of endogeneity. Thirdly, the findings contribute to 

current debates in water economics literature, especially to those in which the absence of empirical 

analysis was an important gap, such as the literature on elasticity and on the effectiveness of water pricing 

policies. Moreover, considering the literature on WCST adoption, the use of Italy as a national case study 

adds strong evidence to studies concerning the main drivers of adoption and intensity with important 

multidimensional heterogeneity among farms.  

 

I would like to underline that the analyses conducted were difficult and challenging as in all empirical 

works, but with the additional complication of the structural lack of data in agricultural water 

management studies, on at least two levels. One obstacle was the absence of water databases accessible 

for consultation, as oftentimes these are either private or very difficult to access. As a consequence, one 

of the main difficulties has been the strong effort needed for data mining since the beginning of the 

research. Another obstacle, related to the former, was the lack of empirical studies on agricultural water 

economics using econometrics in the Mediterranean area, which made it difficult to compare and frame 

the research with other relevant studies in the same area. 

  

To conclude, this set of empirical works constitutes a significant contribution to agricultural and 

environmental economics in water issues, which I regard as a first step towards more in-depth analysis 

of an extremely crucial issue which could mine global living conditions. Other issues on water economics 

should be extensively explored, such as the rebound effect of WCST adoption, the effect of droughts on 

the agricultural sector, the social effects of water pollution due to agricultural activities on public health, 

and virtual water trade exchanges for the efficient use of water for agricultural activities. The South of 

Europe and the Mediterranean area will become a critical hotspot for water issues and agricultural water 
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management in the near future. Therefore, it is essential to continue on this line of research expanding 

the current knowledge on agricultural water management with the fundamental contribution of 

economics and social sciences jointly linked to sustainability, ecology, and natural sciences in a systemic 

and holistic way. I hope that this PhD thesis may positively contribute to further research on water 

economics in Italy.  
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