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Introduction

Among the trending topics of the last years, the Internet of Things (IoT) is one
of those gathering the most attention [1]. In its golden-rule implementation, this
paradigm pursues the ubiquitous exchange of information between every kind of ob-
ject, even those we nowadays perceive as the most irrelevant. Within this vision, the
amount of data collected and produced by our actions should allow for building a
better society, in which new services can be introduced to foster tailored healthcare
and increasing well-being [2].

Although the final implementation of this conception may be perceived as utopian
by most, we are slowly getting in touch with it in our daily lives. In recent years, the
Smart Home concept has been extended from the simple automation and automatic
control of the home appliances to more complex management of the user interaction
with several sensors and actuators deployed in the home environment in order to
pursue the users’ well-being and energy sustainability [3, 4, 5, 6, 7, 8, 9, 10, 11].
Besides, the amount of data produced by users inside their own home environment
can enable useful applications in health management, such as the early detection of
behavioral trends and anomalies otherwise impossible to identify [12, 13, 14, 15, 9,
16, 17].

This new scenario requires a new generation of devices to be developed [18],
aiming at gathering relevant information on how and when the user interacts with the
home environment. One of the best ways to accomplish this task is to exploit both
environmental (e.g. armchair sensors to monitor inactivity periods, toilet proximity
sensors, etc.) and wearable (e.g. a device to be worn at the waist) sensors. In addition,
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if those devices are able to send the collected data over the Internet, data can be
processed and accessed by the various professionals involved (e.g. medical doctors,
caregivers, relatives, and the users themselves) to give the best user-centered service.

At the D2Lab of the University of Parma, a new home monitoring system has
been developed to enable the behavioral analysis of the users inside their homes. Its
working principle relies on a set of battery-powered sensors connected to an Internet
cloud service (Figure 1). The sensors are responsible for gathering information about
the user’s actions inside the home and, at the end of the day, for sending it on the
cloud for the analytics. It is important to notice that the system is not conceived for
real-time reporting, but instead, it aims at providing a set of daily, weekly or monthly
behavioral analyses to the user (or to who is in charge for her/him). This is required
to highlight variations on user’s macro- and long-term patterns (e.g. a decrease in
mobility), and to act with specific prevention programs.

Internet
Cloud Service

Figure 1: Sensors system for behavioral analysis.

Differently from traditional systems featuring low-power, low-cost wireless trans-
mission protocols (e.g. Zigbee [19, 20, 21]), this system relies on Wi-Fi connectivity.
If on the one hand the low-power protocols simplify the energy management of the
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IoT nodes, on the other hand they require completely new and dedicated infrastruc-
ture in each home in which the system is to be deployed, since, typically, a network
compliant with these standards is not already there. Moreover, these low-power pro-
tocols feature a short area coverage and require a set of repeaters and range extenders
to operate across multiple house rooms. These problems can be addressed by using
the Wi-Fi protocol, which features a wider area coverage and whose deployment is
simplified by exploiting a standard Wi-Fi home router (quite often already present in
the homes) for the Internet connection. The result is a more scalable and less expen-
sive final implementation.

This, of course, comes at the expense of increased power consumption, which
may harm the sensors’ battery lifetime. For this reason, dedicated sensor platforms
have been designed at the D2Lab for low-power operation even on Wi-Fi connec-
tivity. An extensive account for the exploited design methodologies is given in [22],
where it is shown that the obtained battery lifetimes are suitable for practical exploita-
tion.

Based on such studies, a complete set of specific environmental sensors have been
developed, providing expressive information relevant to behavioral inference [3]: a
magnetic contact, to sense the opening/closing of drawers or doors; an armchair/bed
pressure sensor to detect the presence of the user on chairs or beds; a Passive InfraRed
(PIR) sensor to reveal the presence of a person inside a room, calibrated to exclude
small-size pets and animals (e.g. cats or small dogs); a toilet proximity sensor, to
catch the user’s interactions with the toilet service. The data collected by the sensors
are sent to an IoT cloud platform for processing and visualization.

Moreover, the capabilities of the system have been extended with the introduction
of a wearable sensor for Human Activity Recognition (HAR) to enrich the behavioral
analysis with activities difficult or impossible to detect with environmental sensors
[23, 24]. The design of the sensor required the same energy-aware techniques to be
used, with particular care to the on-off cycles of the Wi-Fi radio. Typically, HAR
algorithms rely on high sample rates of the motion sensors (e.g. 50Hz [25]), whose
data need to be processed to extract the activity of the user. In this specific case,
if all the computation part was on the cloud, the Wi-Fi radio would be continuously
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uploading the stream of data, negatively affecting the battery lifetime. For this reason,
provided that the energy required for computational activity is much less than that
dissipated by the radio, a part of the computation needs to be moved on the wearable
device to send on the cloud just the final activity of the user. In particular, a machine
learning algorithm has been selected and studied for this application.

This is the context of this thesis, which is focused on the study and further de-
velopment of the aforementioned behavioral analysis ecosystem. The aim is to build
a system capable of addressing the main trade-offs of the state-of-the-art, namely
behavioral analysis complexity and battery power efficiency. To reach this goal, a
performance assessment and optimization of the environmental sensors have been
carried out, and the design and development of the wearable sensor have been per-
formed.

After the first part of related works (chapter 1) and background (Chapter 2), a
work on the set of environmental sensors has been carried out in Chapter 3 for per-
formance assessment. Then, in Chapter 4, the design of the wearable sensor for HAR
is presented, which led to the study of the algorithm and the hardware for the appli-
cation.



Chapter 1

Background

This Chapter is a collection of the theoretical notions this thesis relies on. The con-
cepts described here will then be exploited for the experimental parts of this work.

1.1 Support Vector Machine Algorithms

A Support Vector Machine (SVM) is a machine learning algorithm that, in its simplest
form, can solve a binary classification problem using two or more input values called
features [26]. For example, let us imagine having to distinguish if an object is "an
apple" or "not an apple" based on the weight, height, width, and color of the object.
In this case, we can plan to use this set of information as the features (i.e. the input)
of an SVM algorithm to obtain at the output the classification of the object in the
"apple" or "not apple" class.

To formalize this concept, let us take the case of two generic input features x1 and
x2 of Figure 1.1a (i.e. the features space). The aim of the algorithm is to provide an
output label ŷ = +1 or ŷ = −1 whether the current input features vector x is of the
same set of the black or the white dots, respectively (Figure 1.1b). In other words,
it tries to classify the new input x relying on the information already known by the
algorithm, i.e. the black and white dots provided in the training phase.

To do so, the algorithm makes use of a threshold line as shown in Figure 1.1c.



6 Chapter 1. Background

fx ŷ

x = (x1, x2)

ŷ = [-1,+1]

(a) 0 2-2

0

-2

2

x1

x2

(b)

0 2-2

0

-2

2

-1

+1

x1

x2

(c)

Figure 1.1: Support Vector Machine linear example: (a) input-output function, (b)
features space, (c) features space with threshold line.

If the features input vector x = [x1,x2] is above the line in the features space, it is
classified as +1, if it is below the line, it is classified as -1. This is exactly the aim of
such systems: to classify an input into the proper output class.

Diving deeply into mathematical details, when dealing with a linear classifier as
in the example, the equation used for the function f is

f (x) = sign(⟨w,x⟩+b) = sign

(︄
∑

i
wi · xi +b

)︄
, (1.1)

where ⟨w,x⟩ is the dot product of the input features vector x and a vector of
weights w, and b is a bias term. In two dimensions, this equation is exactly the equa-
tion describing a line on a plane and, indeed, it is the line defined in the features space.
At every new input x, the equation is solved and the sign function detects whether the
input point is below or above such line.

As shown in Figure 1.1c, the key aspect for a proper classification is the position
of that line, which must separate exactly the points already present on the plane. For
this reason, the training phase is used to find the best equation for f.

During the training phase, the training algorithm iteratively aims at finding the
best w and the b which maximize the margin between the points already known by
the system (i.e. the training set) and the line, as shown in Figure 1.2. The set of
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weights w defining the separation of the features space are called support vectors.

0 2-2

0

-2

2

x1

x2

w

w

Figure 1.2: Best fitting threshold line.

Those techniques allow us to define the so-called Linear SVM classifier.

1.1.1 Kernelized Support Vector Machine

The Linear SVM classifier is efficient enough until the classification problem is sim-
ple and the feature space is linearly separable or close to linearly separable. However,
in reality, many classification problems are not that easy and it may be difficult (if not
impossible) to perform the optimum separation.

In such cases, the solution to the classification problem can still be achieved by
using a transformation of the features space in order to switch to a new space where
the classes can easily be separated. The transformation is performed by applying a
function, called kernel, to be used in place of Equation 1.1 with

f (x) = sign(⟨w,k(x,w′)⟩+b), (1.2)

where w’ is the weights vector transformed in the kernel space [27], and k(x,w′)

is the kernel function.
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Several equations are used in literature for the kernel function depending on the
problem to solve. For reference, here are reported the most frequently employed:

• Polynomial: k(x,w′) = (⟨w′,x⟩+ c)n , where n is the polynomial degree;

• Gaussian or Radial Basis: k(x,w′) = exp(−γ ∥x−w′∥2) , where γ is a positive,
non-zero constant;

• Sigmoid: k(x,w′) = tanh(γ ·xT ·w′+b).

To better understand the effect of this solution, let us take a single-feature exam-
ple of the top Figure 1.3a.

x1

x
2

1

(a)
0 2-2

0

-2

2

x1

x2

(b)

0 2-2

0

-2

2

x'1

x'2

(c)

Figure 1.3: Kernelized Support Vector Machine example: (a) single-feature linear
(top) and kernelized (bottom) example, (b) original input feature space with kernel-
ized threshold, (c) kernelized input feature space.

In this case, it is clear that a linear separation (which should be done using a
vertical line) of the black and white classes is not possible. However, the solution
here can still be obtained by transforming the feature space as the bottom Figure
1.3a, in which the x1 axis is squared to introduce a new feature x2

1. With this new
configuration, the points of the features space rely on a paraboloid instead of a straight
line, and the separation turns to be feasible with the same techniques of a linear
classifier.
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This concept can also be extended to the 2-features example of the previous Sec-
tion. Figure 1.5b shows again a features space impossible to be linearly separated.
However, by using a cubic polynomial kernel k(x,w′) = (⟨w′,x⟩+ c)3, the original
features space can be separated and transformed in the new features space of Figure
1.3c.

When using a kernel function to move to another features space, it is suggested
to normalize the features using the information acquired during the training phase.
In fact, any small out-of-scale which would not affect a linear SVM algorithm, may
produce considerable effects in a kernelized implementation due to the amplification
introduced by the kernel function.

This means applying the following standard score statistical normalization equa-
tion:

xnorm =
x−µ

σ · s
, (1.3)

where µ is a vector of mean values, σ is a vector of standard deviation values and
s is a vector of scale values. The output xnorm is the normalized features vector to be
used in place of x in Equation 1.2.

1.1.2 Multiclass Problem

In the real world, it frequently happens that more than two classes need to be distin-
guished at the output. Although the base SVM algorithm only deals with binary clas-
sification problems, multiclass problems can be managed by combining more than
one SVM algorithms together. If m output classes have to be classified, two tech-
niques are possible: one-to-one, requiring m(m−1)/2 binary classifiers, and one-to-
rest, requiring m binary classifiers.

The one-to-one approach performs the classification in pairs and, in the end, the
class with the higher score is used as the final output. The one-to-rest approach in-
stead uses the classification of one class among all the rest of the dataset, actually
classifying the class or the non-class. The class which has obtained the highest score
is then selected as the final output.
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The usage of one technique in place of the other depends on the application re-
quirements.

1.2 Model-Based Design

This Section is about the model-based technique, which has been used as the work-
flow for the development of the SVM core described in Chapter 3.

The design flow of dedicated hardware architectures is traditionally done by start-
ing with a handwritten Hardware Description Language (HDL) and, after subsequent
testing and verification methods, the system is implemented on the destination plat-
form (e.g. MCU or FPGA). However, when dealing with complex systems or in
large-scale projects this can be a challenging task, especially if the documentation
and requirements collection phases address totally different topics than the hardware
design and implementation ones. In fact, in such cases, the workflow must be flexible
enough to allow information to flow from the design part to the software/firmware
part, and vice versa.

The common way to achieve this task is to produce a set of document-based re-
quirements (which may also be carried out by a separate design team) to be used
in the final implementation part (which may also be carried out by a separate soft-
ware/firmware team). Then, after the implementation, tests are carried out to verify
if the requirements were fully and correctly designed for the application. In case of a
testing failure, the process goes backward to the implementation phase and, if no is-
sues are detected, it goes back further to the design phase. Then, after the corrections,
the whole forward flow is repeated until both the requirements and the implementa-
tion are free of issues.

This trial-and-error approach may be enough for simple or standalone applica-
tions, however, if the complexity of the system grows, more design iterations are to
be expected, and the waste of time of this methodology can turn to be consistent
[28, 29]. As proved by different works [30, 31], dealing with model-based frame-
works can help all the phases involved in the process. On the one side, the design
phase can benefit from the advanced testing tools offered in the design environment,
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easing the requirements simulation and verification, and experimenting with virtually
limitless ideas and designs. On the other side, the implementation phase can benefit
from the code generation tools usually included in such model-based frameworks,
which can automatically translate the functionality of the design phase to a verified
low-level code (i.e. C, VHDL, etc.). This can eliminate the time-consuming, error-
prone handwriting phase.

1.3 Posit Numbers Theory

In this Section, the Posit numeric format is introduced to understand the theoretical
background on which the final part of Chapter 3 relies on.

The Posit format is a numeric data type conceived as a drop-in replacement of the
IEEE 754 floating-point standard and which aims at providing an increased dynamic
range with the same representation bits [32].

Compared to the IEEE 754 standard, using a Posit representation gives several
advantages, such as a reduced accuracy loss, a higher dynamic range and, a Not-a-
Real (NaR) notation which substitutes the infinity to avoid overflows or underflows
[33].

Posit numbers have the following general binary representation:

Figure 1.4: Bit-field representation of a Posit number.

where S, R, E, and F are the sign, regime, exponent, and fraction fields, respec-
tively, with their lengths reported on top. The total length of the Posit representation
is indicated with n.

The sign field S is always the most significant bit of the Posit bit-string. Its mean-
ing matches the IEEE 754 format, with a 0 and 1 indicating a positive or negative
sign, respectively.
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The regime field is a sequence of bits starting with r bits of the same value (0 or
1) terminated by a bit of opposite value. As an example, a regime bit sequence can
be “000001”, “1110”, “01”, etc. To be used in computations, this field needs to be
converted to an integer value with the following equation:

k =

{︄
−r, i f string starts with 0

r−1, i f string starts with 1
. (1.4)

where k is the integer regime value. The exponent field is different from the ex-
ponent definition of the IEEE 754 format. To extract the equivalent exponent value to
be used in computations, the following equation needs to be used:

exp = 2es+k · e (1.5)

where exp is the integer exponent value and e is the integer value represented in
the E field. In other words, the exponent exp is the result of the concatenation of k as
the high part and e as the low part. In this thesis, e will refer to the Posit exponent
bit-field value and exp to refer to the converted value to be used in the computations
shown in the following Sections.

The fraction field has the same definition as in the IEEE 754 format: by adding
the hidden 1 at the most significant bit, the fraction is directly represented as a 1.F
fixed-point number. The real decimal value N of the Posit number can be found with
the equation

N = (−1)S ·2exp ·1.F (1.6)

When referring to the Posit numbering system, the notation used embeds infor-
mation about the size of n and es fixed fields:

Posit(n,es) (1.7)

As an example, the notation Posit(8,1) refers to a Posit format with numbers of 8
bits, of which 1 bit is for the exponent e.
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1.3.1 Regime Variable Length

The key concept of Posit numbers is the regime field R, which has been designed
to have a variable bit length r. Since the Posit total size n is fixed, having a longer
sequence of regime bits translates in “stealing” bits from the exponent e and the frac-
tion fields, which are then pushed to the right and outside of the Posit representation.
In the extreme case, the regime field can extend to push out both the exponent e
and the fraction, which are then considered filled with zeros. This property allows us
to “tune” the accuracy of the binary representation of the number by acting on the
regime string.

Let us consider two cases of real numbers representation: a number close to 1
and a number close to the maximum value allowed by the dynamic range. In the first
case, the exponent exp is not needed and all the relevant information will be carried
by the fraction part. Hence, a high number of fraction bits is required. However, in
the second case, the situation is opposite because this time the relevant information
is carried by the exponential notation. The fraction part can be neglected and all the
bits should be dedicated to the exponent exp part.

If the number of total bits n is fixed, the Posit numbers can achieve better per-
formance than the IEEE 754 format in both situations because they can move the bit
depth where more information is needed thanks to the variable size of the regime
field (which concurs to the final exp value as shown in Equation 1.5).

Another outcome of the Posit format is the resource saving. If the project con-
straint of the application is the accuracy and the dynamic range, the Posit numbers
can nearly reach IEEE 754 performance while needing half of the representation bits,
as shown in [34]. The result is that, if using Posit numbers, the computational load
can be lowered while still having a comparable representation quality.

1.3.2 Special Cases

As aforementioned, the Posit standard also identifies two special cases: NaR and Zero.
They have special encodings which must be detected to produce the correct result
during operations. In particular, the NaR case is encoded as a Posit string starting
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with 1 and followed by all 0 and the Zero case is a string of all zeros.



Chapter 2

Related Works

In this Chapter, the state-of-the-art related to this thesis work is presented.

2.1 Smart Home Systems

The concept of a Smart Home has evolved remarkably over the past few decades.
Initially, the Smart Home coincided with Home Automation intended as technolog-
ical solutions applied to the home environment to automatically manage some sit-
uations (e.g., open doors/curtains, control thermostat) and detect dangerous events
(e.g., fire, flood), freeing the user from manual control [35]. Now, the evolution of
ICT (Information and Communication Technologies) has allowed for the addition
of many advanced features to smart homes over time, extending the possible appli-
cations. Among the advancements, the monitoring of human activity in the home
environment has particular importance. Modern systems exploit human monitoring
mainly to improve the energy management of the building [36, 37, 38, 39, 40, 41].
However, data related to the users and how they live in their own home environ-
ment can find straightforward applications in health management, allowing for early
detection of behavioral trends and anomalies possibly relevant to one’s well-being
[12, 13, 14, 15, 9, 16, 17].

To accomplish this task, some new devices have to be developed [18] aimed at
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considering the interaction of the user with the home environment (e.g. armchair sen-
sors to monitor inactivity periods, toilet proximity sensors, etc.). These devices must
be able to send data over the Internet so that, once processed, they can be accessed
by the various professionals involved, for example, medical doctors, caregivers, rela-
tives, and the users themselves.

Applications based on such a system have been presented in past works. For
example, an infrastructure based on a Passive InfraRed (PIR), bed and temperature
sensors were reported in [42]. In this case, the data transmission was based on the
X10 wireless protocol, and a home server was exploited to process data and to send
analyses and alerts to a third person (i.e. the clinician) through emails. Another mon-
itoring system based on temperature, pressure, PIR sensors, and actuators was de-
scribed in [43]. Sensors communicated with a local computer by means of a wireless
ZigBee protocol. Data were processed to monitor the activities of elders, and the re-
sults determined which actions to take. The system proposed in [44] leans on a mix
of ZigBee and Power Line Communication (PLC) transmission protocols. The ar-
chitecture was conceived with distinct ZigBee Wireless Sensor Networks (WSNs) in
each room, which communicate with a central management station through a PLC.
An infrastructure exploiting a custom wireless protocol, the so-called Wellness pro-
tocol, was presented in [45]. The implementation was based on temperature, pressure
sensors, PIR sensors, a manual alert button, and actuators. Another example of such
a system was CARDEA (Computer-Aided, Rule-based Domestic Environment As-
sistant), developed at the University of Parma and specifically aimed at behavioral
analysis. Originally based on the Ethernet protocol [46, 47], the system’s strength is
flexibility. It is conceived to integrate different kinds of sensors and to support smart
interfaces [48, 49], in order to tailor the system’s functions to the specific users’
needs. By supporting a wireless protocol (i.e. IEEE 802.15.4/ZigBee) as well, further
kinds of devices were introduced; the most remarkable is the wearable sensor MuSA
(MUltiSensor Assistant) [50, 51, 52, 53], designed for user motion analysis (e.g. fall
monitoring) and for localization and identification purposes [54, 8].

Most of the systems presented in the literature based their connectivity on wire-
less protocols featuring low-cost hardware and low power consumption (e.g. ZigBee
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[19, 20, 21]). Coupling the low power required by a ZigBee transmission with recent
developments in the field of energy harvesting, it is now possible to develop battery-
less IoT nodes [55, 56]. However, powering the ZigBee protocol tasks for prolonged
periods of time (i.e., >10 s) with energy harvesters is not recommended [57]. Some
advanced functions (e.g. localization or identification [58]), useful in Smart Home
systems conceived for the continuous monitoring of the individuals and for behav-
ioral analysis, are likely to be prevented. Moreover, the disadvantage of the ZigBee
(or low-power equivalents) approach is mainly the necessity of completely new and
dedicated infrastructure in each home in which the system is going to be deployed,
since, typically, a network compliant with these standards is not already present. Fur-
thermore, a gateway device has to be considered as an interface between the home
protocol and the Ethernet, in addition to a number of range extenders due to the low
range featured by ZigBee [59].

In the D2Lab research group of Electronic Engineering at the University of Parma,
a new home monitoring system entirely based on Wi-Fi connectivity has been de-
veloped, in a fashion strictly compliant with the Internet of Thing (IoT) paradigm.
Sensors connect to the Internet through a standard Wi-Fi home router, which is quite
often already present in the homes. Some manufacturers are already producing chips
for routers able to support Wi-Fi, Bluetooth, and ZigBee protocols in parallel (e.g.,
Qualcomm QCA4020 and QCA4024 [60]). These solutions could simplify the adop-
tion of multiple protocols in the near future, but do not eliminate the need for build-
ing a complete infrastructure for the ZigBee sensors and in particular for deploying
range extenders in the environment. On the contrary, Wi-Fi features a much wider
range than ZigBee, so that no (or fewer) network extenders are needed, simplifying
the overall approach, lowering the costs, and making the whole system more scalable.
These characteristics open the system to the market, making it particularly attractive
to consumers. This, of course, comes at the expense of increased power consumption,
which may harm battery lifetime. Therefore, dedicated sensor platforms have been
carefully designed at D2Lab for low-power operation composed of both environmen-
tal and wearable sensors. The general system architecture is sketched in Figure 2.1.
It includes a set of sensing devices, a Wi-Fi router, and services installed on a cloud
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environment. Currently, it exploits the IBM Bluemix Watson IoT platform (although
other cloud services are supported, e.g. Amazon AWS, Microsoft Azure, MathWorks
Thingspeak, etc.), which offers a dashboard that enables a handy visualization of
sensors information, as shown in Figure 2.2.

Figure 2.1: Wi-Fi system architecture.

2.2 State of the Art in HAR

Nowadays, human activity recognition is a subject of research interest because of the
benefits it can bring in several fields, i.e. sport, health, security, etc. Several research
groups realized and tested novel approaches to achieve better performance and/or
lower costs mainly following two paths: hardware and firmware/software solutions.
These are two sides of the same coin because the optimization of one gives positive
results in the development of the other and vice versa.

In this Section, the state-of-the-art is reported to figure out the current advance-
ments on this topic. Starting from the wider point of view of HAR, the research is
organized to end with a closer look at HAR with wearable devices. In this journey,
a view on embedded hardware and firmware/software solutions is also given to have
an idea of how the literature is moving on these fields.
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Figure 2.2: IBM Bluemix Watson dashboard reporting Wi-Fi sensors activity and
battery level.

As a starting point, the best way to have an idea of the landscape is to analyze re-
view works on this subject. In [61], the team resumes the state-of-the-art in the activ-
ity detection and classification field exploiting wearable devices. The study is mainly
focused on the hardware type (accelerometer, gyroscope, magnetometer, camera, au-
dio, electrocardiography (ECG), photoplethysmographic (PPG), etc., along with their
location), algorithms employed (decision tree, SVM, K-Nearest Neighbor (KNN),
etc.) and activities recognized (sitting, standing, walking, etc.). The result is an iden-
tification of a set of research works that have been summarized and classified by
type of sensor (accelerometer/gyroscope/magnetometer, camera, or hybrid), number
of used sensors, number of subjects used for testing, and type of classification learner
employed (threshold, unsupervised, supervised).

In [62], Hooshmand et al. review the state-of-the-art algorithms used to lossily
compress bio-signals with the aim to evaluate the best approach to realize efficient
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energy saving in wearable devices. The study considers 1-D bio-signals such as ECG,
heart or respiratory (RESP) rates, and PPG. It presents novel approaches based on
online dictionaries, elucidating their operating principles and providing a quantitative
assessment of compression, reconstruction, and energy consumption performance of
all schemes. In the end, the team considers the most efficient schemes the ones which
allow for reducing the signal size up to 100 times, entailing similar reductions in the
energy demand while still keeping the reconstruction error within 4% of the peak-to-
peak signal amplitude.

2.2.1 Hardware Solutions

The hardware side of a HAR system can be identified by both the sensing parts in-
volved in raw data collection and the processing parts dedicated to data processing.
Depending on the final applications, these two components can reside on the same
device (e.g. MuSA [52], a wearable sensor that signals a detected fall) or can be two
or more distinct devices (e.g. SmartShoe [63], a shoe that sends raw data to the smart-
phone for energy expenditure calculation). In the second case, the hardware dedicated
to the processing phase can be treated as ideal, typically being a system with a high
amount of processing power to make this computational effort negligible. The first
case is instead the most challenging one, as it is the configuration that provides ubiq-
uity but, at the same time, forces to deal with physical size, battery lifetime, and
computing capability.

In literature, several systems are presented, each one proposing the better trade-
offs for the application.

In [64], a monitoring system based on muscular activity is presented. This is com-
monly done by electromyography (EMG) systems, a precise method but too sensitive
to environmental disturbances. Here, the new exploited method relies on air-pressure
sensors and air-bladders. Since the change of the air pressure can be more robustly
measured compared with the change of skin electric signals, the proposed sensing
method is useful for mobile devices due to its great signal-to-noise ratio (SNR) and
fast response time. In the paper, the research group verified the performance of the
system by comparing it with an EMG signal and motion sensor.
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A totally different approach was adopted in [65], in which a monitoring system
able to perform activity recognition by monitoring changes in Wi-Fi signals (hence
without a device that needs to be worn) is presented. The method exploits a Channel
State Information (CSI)-based Human Activity Recognition and Monitoring system,
called CARM. This is a merge of two models: the first is based on a CSI-speed model
that quantifies the relation between CSI dynamics and human movement speeds, the
second is a CSI-activity model that quantifies the relation between human movement
speeds and human activities. This system has been tested with the implementation
on commercial Wi-Fi devices and, after the analysis of True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN), the group achieved
the recognition accuracy of Equation 2.1.

Accuracy =
T P+T N

T P+T N +FP+FN
= 96% (2.1)

Similarly to [65], the work presented in [66] is about PAWS (Passive Human Ac-
tivity Recognition Based on WiFi Ambient Signals) in [66], an indoor localization
system. It uses the RSSI fingerprint of different activities to perform activity recog-
nition in a Wi-Fi environment. To reach the goal, a novel fusion algorithm has been
specifically designed based on the classification tree, resulting in an outperform of
three other well-known classifiers in terms of accuracy and complexity: NaiveBayes,
Bagging, and KNN. The group presented a first prototype version for tests in real-life
conditions.

In [67], the work focuses again on device-free wireless activity recognition and
localization with the aim to simplify the characterization of the target, a key aspect
to increase the accuracy of the recognition system. The solution here was to apply a
sparse auto-encoder network algorithm for wireless features discrimination and then,
with the selected features, a softmax-regression-based machine learning framework
was used. This enables the system to simultaneously perform location, activity, and
gesture recognition with an accuracy of 85%. This value is proved to be higher than
what was obtained by systems using traditional handcraft features.

Another indoor device-free activity recognition technique has been studied in
[68]. Leveraging the subject and analyzing the non-line-of-sight (NLOS) radio fre-
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quency signals, a KNN classifier algorithm has been used on the packet receive rate
to recognize the activity of a person. They also found that the radio frequency of the
signal is proportional to the height of the person, so to extract that information too.
With this method, the group achieved an average accuracy increase of 44% compared
to the fixed-sample RSSI-based method and an accuracy of 76.6% in distinguishing
the height of the moving target.

Wearable shoes (SmartShoe) are used instead in [69], which were equipped with
pressure sensors and an accelerometer to analyze user movements. In the paper, the
group focuses on a comparison between two classifiers (SVM and Multilayer Percep-
tron (MLP)) used for activity recognition, both with rejection. They find out a benefit
using MLP, reaching a 99.8%±0.1% of accuracy.

As a development phase, in [63] the same group explores the feasibility of a sys-
tem in which data acquired by the shoes are sent to a smartphone for the computation
of the Energy Expenditure (EE) and to perform activity recognition. To test the best
algorithm to use, they make a comparison between three classifiers: SVM, Multino-
mial Logistic Discrimination (MLD), and MLP. Tests have been carried out on 15
subjects and the result is that, despite the same accuracy given by all three methods
(~95%), MLD and MLP require less running time and memory by a factor of more
than 103 for activity recognition. No significant differences are present for EE.

With a similar sensing element (shoe) but with different addressees, [70] shows
HAR applied to caregivers during their work. The aim is to detect possible overexer-
tion injuries caused by awkward postures during patients handling. The group uses a
smart wearable device (named Smart Insole 2.0) and a novel spatio-temporal warp-
ing pattern-recognizing framework. The results validation is done by a pilot study on
eight subjects and an overall classification accuracy of 91.7% is achieved.

Another change in hardware occurs in [71], where the focus is on heterogeneous
features learning for RGB-depth (RGB-D) activity recognition using a dedicated
video camera. The group extracted similar hidden structures coming from each of
the four channels and applied a joint learning model to explore shared and feature-
specific components. The uniform system has been called "joint heterogeneous fea-
tures learning (JOULE) and has been proved to successfully recognize human activ-
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ity, focusing on human-objects interactions.

Coming to smartphones, [72] shows a performance analysis of an activity recog-
nition system based on modern mobile phones. By analyzing sensory data sequences
(form accelerometer, gyroscope, light sensor, proximity sensor, barometer, and GPS)
of 10 subjects, the group assigns an F-score number to categorize performances under
various placement settings (arm, hand, pocket, and waist). With the additional imple-
mentation of four different multi-class classifiers (linear and Radial Basis Function
(RBF) kernel SVM, Random Forest, and KNN) they make a complete comparison of
the techniques based on smartphones hardware.

A mixed approach between device-free and wearables is used in [73], in which
a study of an activity recognition system based on Passive Radio-Frequency Identi-
fication (RFID) tags is presented. The idea is to use several RFID tags (which can
be embedded on the clothes) and an RFID reader with two antennas, all worn by the
user. This system is proved to be able to detect human motion by analyzing RSSI
signals between tags and antennas. Data processing is performed in a dedicated on-
line environment that provides the result with a latency of 5 seconds. The outcome is
a non-invasive set of objects that, after two weeks of tests on four subjects, gave an
accuracy of 93.6%.

The same RFID technology with a different application is used in [74]. The aim
here is to perform activity recognition based on objects tracking, hence human-object
interaction. The system relies on one or more RFID tags placed on the object to
track, and several antennas placed around the room. Tracking is performed exploiting
antennas signals trilateration based on RSSI information. In particular, a Gaussian
Mean Weighting Filter is used to correct RSSI instability and Elliptic Trilateration
is used to decrease the error given by the antenna not being omnidirectional. Results
show an average activity identification of 93.3%.

A peculiar HAR system is then presented in [75], which introduces a floor em-
bedding pressure sensors. They use piezoelectric sensors to get pressure information
proportional to the user’s gait and, with this particular technology, large areas such
as train stations, hospitals, or shops can be covered. After some signal conditioning
hardware, that set of information is sent to a central unit for data processing. They
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demonstrated the ability to recognize footsteps, jumps, sitting down into or stand-
ing up from a chair, and impact of objects with an accuracy of 100% using Pearson
Product-Momentum Correlation Coefficients as a classifier.

In [52], the MuSA wearable sensor is introduced, with the ability to perform
localization, identification and, exploiting its on-board sensors, fall detection, heart-
beat, and breathing rate. The sensor is thought to be worn at belt or chest and, with the
other sensors included in CARDEA environment [76], provides an ambient assisted
living to support interaction between users and caregivers.

2.2.2 Firmware and Software

In addition to hardware elements intended to sample and process data, a HAR sys-
tem needs efficient algorithms to obtain the result. Raw data cannot directly provide
information about human activity but must be modified by one or more algorithms
dedicated and possibly optimized to retrieve certain information. Research on this
topic teems of excellent works aimed to find the best approach to extract the infor-
mation of interest, regardless of whether the goal is the computational speed, the
accuracy, or the limited hardware.

In [77], the system performs activity recognition exploiting an accelerometer
placed in different places: waist and ankle. Exploiting a ZigBee connection, the aim
of this study is to find an optimized algorithm for this low-performance hardware and
to increase independence from the sensor position. For data processing, the research
group uses a novel Ensemble Empirical Mode Decomposition (EEMD) to identify
the set of features and cooperation Game theory for features selection (GTFS). In the
end, a consistent increase in accuracy is shown using the EEMD features and, using
the GTFS, a significant reduction in the needed features is obtained.

A different HAR algorithm able to work with few labeled activity data and addi-
tional information from users (i.e. weight, height, etc.) is presented in [78]. So doing,
the system can identify the fitness of others’ models relying on a small amount of
labeled data from the new user. Once placed the new user in the proper shared ac-
tivity model, the algorithm uses Bayesian networks and SVMs to perform activity
recognition. The result is an increase in accuracy (83.4% compared to 77.3% of indi-
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vidual and standard population models). Another aspect arising from this study is that
this new method provides better results than methods based on users’ demographic
information.

A camera-based approach is used in [79], which describes a Fuzzy Segmentation
and Recognition algorithm applied to video recordings of user’s actions. The main
focus is to be able to correctly recognize activities with gradual transitions between
them. To do so, the algorithm performs a segmentation of the video into a sequence of
non-overlapping blocks, each one lasting a short period of time. Then, multivariable
time series are formed by concatenating block-level human activity summaries that
are computed using topic models over local spatio-temporal features extracted from
each block. After encoding the fuzzy event through Fuzzy Segmentation, the system
can correctly apply an activity label with transitions. Results based on six datasets
give an accuracy between 42.6% and 78.9%.

The work presented in [80] introduces the Interest Point features as an improve-
ment in video input sequential modeling for action/activity recognition. To obtain the
result, the algorithm first splits the video sequence into short overlapping segments of
fixed size through a sliding window technique. As the second step, each segment is
described by a local Bag Of Word (BOW) of the histogram of Interest Points (or their
trajectories) enclosed in the segment. As the last step, a first-layer SVM classifier
converts each BOW into a vector of class conditional probabilities that are then given
as input to a second SVM (hidden conditional random field) for actual recognition. A
comparison with state-of-the-art algorithms on three public datasets shows that this
system can outperform or match each leader.

Referring to the same video activity recognition, [81] proposes a system that can
recognize incoming visual content based on the previously experienced activities.
The high-level activity is parsed into consecutive sub-activities, and a context cluster
is built to model the temporal relations. The semantic attributes of the sub-activity
are organized by a concept hierarchy. The dynamical evolution of the brain memory
is mimicked to allow the input information to decay and reinforce, providing a nat-
ural way to maintain data and save computational time. Performances are tested by
comparing this algorithm and traditional incremental learning method [82] on three
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public datasets (CAD-120, MHOI, and OPPORTUNITY). Results demonstrate the
same accuracy with less time cost.

With the addition of depth information on the camera’s signals, the work de-
scribed in [83] shows a novel framework to be applied for HAR. The techniques em-
ployed are first an extension of the surface normal to polynomial by assembling local
neighboring hypersurface normals to jointly characterize local motion and shape in-
formation and then a supernormal vector (SVN) scheme to aggregate low-level poly-
nomials into a discriminative representation (such as a simplified Fisher kernel repre-
sentation). To capture the spatial layout and temporal order, a subdivision of the depth
video into a set of space-time cells is performed using an adaptive spatio-temporal
pyramid. To make a comparison, a linear SVN solver is used on four public datasets
and results are compared to state-of-the-art public HAR algorithms. An increase in
accuracy of up to 3% is obtained.

In [84], the aim is to study the optimum classification method of accelerometer
signals for Activity Recognition (AR) and Movement Recognition (MR) applied to
rehabilitation and elderly monitoring. The work exploits an accelerometer of a smart-
phone to recognize several activities (idle, still, walking, running, going up/down the
stairs, or cycling) and movements (arm circles, arm presses, arm twist, curls, sea-
weed, and shoulder rolls). As a comparison, SVM, decision trees, and dynamic time
warping classifiers are taken into consideration. Results show an accuracy above 90%
in AR and above 99% in MR using SVM-based approaches.

Referring to Ambient Assisted Living (AAL) field, [85] focuses on the difficult
task of estimating the required window for online sensory data streams (coming from
a variety of sensors) to recognize a specific activity. The proposed solution is to split
the problem into two phases. First, an Offline Phase is performed. Starting from an
annotated training set and with the most relevant feature selected (in the study this
is chosen among a number of activations of each sensor, activation duration of each
sensor, number of activated sensors for each activity, and the location of the sensor),
a matrix containing the best fitting sensor for each activity is calculated using Infor-
mation Gain attribute evaluation [86]. The second step is an Online Phase. Here, an
optimum window is calculated by checking if the current active sensor is contained in



2.2. State of the Art in HAR 27

the best fitting matrix. The phase continues then with the extraction of the features to
be used in the subsequent multi-class classification. After all these steps, the activity
is given as result.

In the work presented in [87], the group proposes a bidirectional feature to be
used during the features extraction phase of activity recognition. Because of the two
components of a bidirectional feature, the problem can be treated as a second-order
tensor. For this reason, the research group defines a new tensor-based feature selec-
tion method named Tensor Manifold Discriminant Projections (TMDP). It simulta-
neously applies an optimization criterion that can directly process the tensor spectral
analysis problem, extracts local rank information by finding a tensor subspace that
preserves the rank order information of the within-class input samples, and extracts
discriminant information by maximizing the sum of distances between every sample
and their interclass sample mean. Using Principal Component Analysis (PCA), the
vectorized tensor feature is transformed to the ultimate vector feature representation,
making TMDP robust to the noise by PCA’s noise-filtering role. The algorithm is then
compared to other traditional vector-based feature selection methods such as LDA,
LPP, PCA, DLA, GMSS, HMSS, etc. Results show that TMDP outperforms in each
proposed comparison.

Then, in [88], the research team investigates the use of template matching for
recognizing sports activities using one single accelerometer worn at the wrist. This
work differs from the others because of its limited sensing hardware (a single ac-
celerometer) and the final generalized application target in terms of subject, sensor,
and measurement-axis. Relating to this last aspect, the aim is to evaluate the abil-
ity of a template-matching classification algorithm to generalize on a population of
overweight subjects. The system is evaluated by processing data collected in a gym
environment, and results are compared with four popular classifiers: Decision Trees,
Naive Bayesian, Logistic Regression, and Artificial Neural Network. The low accu-
racy obtained with the best template-matching metric is imputed to the lower accu-
racy in classifying cross trainer and rowing activities.
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2.2.3 Wearable Devices

Among HAR systems, those exploiting wearable wireless devices are the most chal-
lenging. Differently from fixed sensors, a wearable sensor faces some constraints:
1) size and weight must be so to make the device less invasive as possible; 2) bat-
tery lifetime must be long enough to not force the user to frequent recharges; 3) the
accuracy must be comparable with other fixed devices.

It is clear that each point is constraining each other (e.g. a lower size may lead
to a lower battery capacity and so to less lifetime) so an application-related trade-off
has to be found after context evaluation.

Referring to point 2), several research activities have been done to demonstrate
how that goal can be reached by acting on both the hardware and firmware side.

Optimization for Battery Lifetime

One of the main key points of a wearable device is the battery lifetime. To provide the
right user experience, a wearable device must be able to work continuously as much
as possible, so as to avoid the user charging (and not using) it too frequently. The first
and easier solution is to increase the battery capacity. This is a good practice until the
object becomes too big and heavy to carry. Excluding the battery capacity increase,
some ways to achieve the result have been tested by several research groups.

In [89], a Wi-Fi wearable system suitable for ambient assisted living is shown.
The challenge here is to build a Wi-Fi-based system (as to be able to exploit the
existing home wireless and internet user infrastructure) capable to provide ambient
assisted living features. This work focuses on the energy management of the Wi-Fi
module, a communication system that lacks strong energy policies and born to sup-
port higher-speed transfer rates and wider area coverage when compared to systems
typically employed in home environments (e.g. Zigbee, Bluetooth, etc.). Thanks to
a deep study of both hardware and firmware techniques, the group obtains a proto-
type wearable device able to match the operational lifetime of sensors relying on the
aforementioned energy-aware communications systems.

A different approach has been used in [90], where the energy saving is achieved
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by dynamically set the sampling rate of the sensible element (an accelerometer) to
reduce the transmitted packets over time. By evaluating the motion magnitude of
the sensor, the algorithm is able to set a high sample rate if the sensor is moving or
a low sample rate if it is steady. The lower sample rate configuration is defined as
guaranteeing a minimum and predefined activity recognition accuracy. It is clear that
this operating mode brings a trade-off between accuracy and energy saving, with the
proposed method shown to have an overall energy saving of 45.9% when compared
with the same device continuously streaming at the maximum sampling frequency
(12 Hz). The observed accuracy loss in the activity recognition is 0.41%.

Another dynamic power solution has been identified in [91], this time on smart
wearable systems used in infants’ sleep monitoring. The technique is based on a
Transmission Power Control (TPC) mechanism that changes its characteristics ac-
cording to the scenario of operation. It uses Inertial Measurements Unit (IMU) sen-
sors to determine the position of the infant and, based on that, predicts the current
state of the channel by evaluating RSSI signals. In the end, a comparison is done con-
sidering other state-of-the-art TPC algorithms and different infant positions. When
compared with the same device at full transmission power (0 dBm), the proposed
TPC mechanism reaches a maximum energy saving of up to 47% depending on the
infant position.

In [92], the Authors introduce NEON, a wearable fall detector based on a low
power MCU (Texas Instruments MSP480), two accelerometers, a barometer, an RF
transceiver, and a single 3V, 1Ah coin cell battery. In addition, the paper reports a
study on the classification features to be selected to build an energy-efficient fall de-
tection wearable device. The group analyses a large set of data coming from a single
accelerometer collecting data at 50 Hz and related to 10 young healthy volunteers,
each one performing predefined actions to be classified as falls or non-falls. Those
data have been then processed to find the best energy-efficient features (in terms of
computational power required by the MCU in the calculation) to be used in the binary
decision tree algorithm of choice. After the features selection, the system has been
assessed and proved to have a power saving of 75.3% when using four out of ten
of the most used features for this task in literature. The reduced number of features
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affected the system with an error rate of 7.1% in the recognition accuracy.

The same NEON wearable device was exploited in [93] to propose further energy-
saving techniques, which are somehow similar to [91]. In addition, to describe the
right low-power hardware, the system here also benefits of particular accelerometers
configuration: one accelerometer serves as the "static" sensor (ACCsm, sampling in
low-power at 6 Hz) and the other one is used as the "dynamic" sensor (ACCfd, sam-
pling in the power-hungry 50 Hz frequency). If the system is in a stationary mode,
only ACCsm is on and, once ACCsm senses an intense motion, ACCfd is also turned
on to catch a possible fall. This technique, combined with a computation-efficient
features extraction to be used in the SVM classifier, led to a system with an estimated
battery lifetime of 1,125 days.

Coming to running analysis systems, in [94] the team presented Gazelle, a com-
pact, lightweight, accurate, and highly energy-efficient wearable device born to per-
form online running analysis to prevent injuries. The main aspect of this device is
the energy consumption, kept low thanks to the proposed Sparse Adaptive Sensing
(SAS) technique. Similarly to [93], the system exploits two accelerometers, one fea-
turing low performance and low energy consumption, and one with opposite charac-
teristics. With the first one always on, the second one is triggered only on significant
motion. Once turned on, the second accelerometer’s energy consumption is still kept
under control by adapting its sample rate to the actual activity. Since 2014, Gazelle
has been used in real-world testing by over 100 runners (of different skill-level) and
data show an accuracy of 97.7% and an average energy saving of 83.6% when com-
pared with the same device recognizing the same activities and constantly sampling
the high-performance accelerometer at 200 Hz. The system is reported to reach more
than 200 days of continuous high-precision operation using a single coin-cell battery.

In [95], the authors propose the usage of multiple cells battery pack as the power
source with a scheduling algorithm to decide which cell has to work based on the
remaining energy. Differently from other battery management systems, in this case,
the selection of the operating cell is done using the kinetic battery model (KiBaM)
instead of a linear one. Experimental results show that in real conditions the battery
is not constantly providing energy but behaves differently depending on the working
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state of the sensor. In particular, an increase in battery voltage is observed during low-
load periods. This behavior is not included in linear battery models and this leads to
errors in battery charge evaluations. Using KiBaM algorithm (i.e. a better active cell
selection), simulations show an increase of 75% in battery lifetime when compared
to sequential scheduling.

A deep dive into the energy accumulation technology is presented in [96], where
the group analyses non-ideal properties of batteries and how these properties may
impact power-performance trade-offs in wearable computing applications. The study
covers both ideal and non-ideal aspects of batteries such as "C" rating and recovery.
Using Doyle’s Li-ion battery discharge model during simulations, the group ends up
with a summary of key points to consider during battery lifetime estimation, dimen-
sioning, and usage.





Chapter 3

Environmental Sensors

This part of thesis was aimed at the assessment of the performance of the environ-
mental sensors by means of a series of tests carried out both in a laboratory and in a
real home environment. In detail, four sensors were involved in the tests (Magnetic
Contact, Armchair/Bed, Passive InfraRed (PIR), and Toilet proximity sensors) and,
in the end, measurements about the power consumption have been performed and
presented.

Moreover, during the tests, the sensors’ data were logged to carry out a possible
activity profile of the users in order to test the system performance. Although the aim
of this work is not to develop and demonstrate a new behavioral analysis method, this
was useful to assess the new hardware architecture conceived to collect data usable by
behavioral analysis models developed elsewhere [42, 97, 98, 99]. These tests show
the usability and convenience of data collected and demonstrate that it is possible
to take advantage of the flexibility of the Wi-Fi platform while eliminating costs
given by the need for additional hardware (i.e. home servers and routers, adopted in
[16, 17, 18, 42]).

In detail, the environmental Wi-Fi sensors under test are:

• Armchair (or Bed) occupancy sensor, to monitor inactivity periods or sleep
disorders;

• Passive InfraRed (PIR), to monitor the movements inside the house;
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• Toilet proximity sensor, to monitor the toilet accesses;

• Magnetic contact, to detect door and windows opening/closing. The same de-
vice can be used to monitor interaction with other meaningful objects (e.g. a
cupboard door, to monitor feeding habits, or the medicine cabinet, for moni-
toring compliance with therapy prescriptions).

All sensors are directly and individually connected to the Internet through the Wi-Fi
home router. The commissioning procedure is very simple and relies on the Wi-Fi
Protected Setup (WPS) standard. No technical skill is required so that consumers
themselves could manage the installation procedure. Data are sent to the Watson
IoT platform, inside the IBM Bluemix cloud services, via MQTT (Message Queue
Telemetry Transport) protocol with a Quality of Service (QoS) equal to 2. that the
message is received by the broker once and once only. The payload of the message
is a string in a JSON (JavaScript Object Notation) format, reporting the sensor sta-
tus. The device firmware, nevertheless, is suitable for connecting to other platforms
as well (e.g., Amazon AWS (Amazon Web Services), Microsoft Azure, Thingspeak,
etc.).

A Wi-Fi-certified system-on-chip (SoC) (CC3200, Texas Instruments, Dallas,
TX, USA [100]) was chosen as the core of all sensors. It integrates an 80 MHz
clock MCU (MicroController Unit) with a 32-bit architecture and a network pro-
cessor (compliant with the IEEE 802.11b/g/n network radio protocol).

For prototyping purposes, commercial development boards were exploited as the
motherboard for all the devices. By connecting the same motherboard to different
sensing devices, different sensors were built, sharing the architecture, thus reduc-
ing development costs. The sensors are shown in Figure 3.1. All the devices can be
powered from an AC (Alternating Current) outlet (through a standard USB port).
This possibility eliminates the need to control and replace the batteries. However, the
sensors’ position is very important to efficiently monitor the users’ activities. This
position has to be independent of where the outlets have been set up in the house,
but, at the same time, it is necessary to avoid wires in the room or to modify the
existing home electrical system. For this reason, the devices are also conceived for
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Figure 3.1: The sensors prototypes. PIR = Passive InfraRed.

battery-powered operation. In order to preserve battery lifetime, careful management
of the energy budget was implemented. In particular, simple sensors do not need to
fully exploit the Wi-Fi data transmission rate, since a limited quantity of data has
to be exchanged over time. So, taking advantage of such an overabundant data rate,
sleep phases are introduced in the operating cycle. The devices alternate active (data
processing and transmission) and sleep intervals. Among available low power modes
of the MCU, the Low-Power Deep Sleep (LPDS) and the HIBERNATE modes were
exploited. In LPDS mode, the MCU stops its main clock while the radio module is
active and maintains the connection with the network. The device is more reactive to
external interrupts and features low wake-up times. In HIBERNATE mode, the radio
section is also turned off. Hence, HIBERNATE is the most effective in power saving,
but, when awakening from hibernation, the device needs to re-connect to the network.
Wake-up times are in the order of tens of seconds, so hibernation is convenient when
the sleep time is long enough. In our previous study [22], it was shown that the over-
all power performance of LPDS mode is better than HIBERNATE whenever a large
enough frequency of messages (higher than 150 messages/day) is to be managed.
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Considering the fact that all the sensors need to send a keep-alive message (every 15
minutes, in the application at hand), hibernation turns out to be practical whenever
only a few tens of actual “events” per day are expected to occur. Among the sensors
presented in this first implementation of the Wi-Fi system, this characteristic may fit
with Armchair/Bed sensors, Toilet sensors, and the several uses of the Magnetic con-
tact. On the other hand, LPDS mode may be a better fit for higher frequency events,
as it happens for the PIR sensor. Based on such general assumptions, in the following
specific implementation, details are given for each device.

• Armchair/Bed sensor: In [101], a characterization of three different chair sen-
sor elements is presented: a strain gauge, a mechanical switch, and a vibration
sensor. Higher detection accuracy is reported for the mechanical switch, but
this kind of sensor is more difficult to integrate into an ordinary home chair/bed
since it is not straightforward to cover the whole sitting area. For our applica-
tion, the strain gauge seems the most indicated choice. Indeed, resistive pres-
sure pads are being commercialized which can be placed under the bed mattress
or over the chair seat. These pads have been selected as sensing elements. The
resistance change is assessed through a simple voltage divider, which drives a
binary threshold comparator. This, in turn, generates an interrupt to wake up
the MCU. As mentioned, given the relatively low expected number of events,
the HIBERNATE sleep mode is exploited during idle phases.

• Magnetic Contact: The sensing element is a reed switch, coupled to a magnet.
When the two components are close to each other, the switch opens. This con-
figuration is particularly convenient when drawers/doors are supposed to stay
closed most of the time. Since the reed switch is open when they are closed,
the sensor drains no current while in this state. Interrupts are generated to sig-
nal both transitions (close to open, open to close). In this case, the selection of
sleep mode depends on the actual device function. If, for instance, applied to
the home main door, the HIBERNATE mode seems to be more effective again.

• Toilet proximity sensor: The sensing element is a distance/proximity sensor.
The sensor’s purpose is to allow for counting toilet visits (which may be rele-
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vant to many medical conditions), distinguishing them from generic bathroom
presence (due to washing, for instance), which could be assessed through a
PIR sensor. A short-enough, personalized reading range is therefore needed to
cope with the actual placement of the sensor itself. The device has a reading
range from 10 cm to 150 cm. The analog reading is fed to a comparator, which
generates an interrupt signal to the system core. In our experiments, we found
that calibrating the sensor threshold at 65 cm distance was effective in dis-
criminating toilet actual usage from generic bathroom presence. The nature of
this sensor should make it suitable to exploit the benefits of the HIBERNATE
mode. However, due to the high current consumption of the sensing element
during its on-state, the system core needs to power it on only when a distance
reading is needed, keeping it in the off-state otherwise. In our tests, we found
that a period of 3 seconds for power off followed by 0.5 s of power on gives
the optimal system reactivity. Since the sensing element duty cycle is driven by
the MCU, LPDS mode had to be adopted.

• PIR sensor: the sensing device is a standard passive-infrared motion sensor. It
requires a supply voltage in the range of 3.3–5 V. In order to allow the system
to be powered by AA batteries (as a common feature of all devices), a boost
DC-DC regulator (direct current to direct current power converter that steps
up voltage) has been added. The device already has embedded converters and
provides a digital output signal, which is used to wake up the system core
whenever a movement is detected. To avoid communication overload, PIR data
are filtered on board; only status changes are transmitted, besides keep-alive
messages. In the envisaged scenario, however, this results in a number of daily
messages exceeding the above-mentioned threshold, which makes the adoption
of hibernation not suitable and makes the adoption of LPDS mode preferable.

3.1 Power Consumption Analysis

To assess the devices, field tests were carried out for two months. For standby battery-
lifetime evaluation, a full set of sensors was installed in a laboratory environment and
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configured as to not catch any event caused by user interactions. With this setup, the
aim was to only evaluate the power consumption caused by the keep-alive events
sent by the sensors every 15 minutes. In addition, in order to estimate the battery
lifetime in a working condition similar to the real one, another full set of sensors was
installed in a real home environment inhabited by a family. In this case, each sensor
was deployed accordingly to its purpose:

• Armchair sensor: Sensor pad placed on a lunchroom chair.

• Magnetic contact: On the bedroom door.

• Toilet sensor: Inside the bathroom to sense toilet interactions.

• PIR sensor: Inside the bedroom.

In a previous work [22], preliminary laboratory tests about the sensors’ power
consumption were carried out with the assumption that both the connections to the
Wi-Fi network and to the Internet were reasonably stable. In real operation, this is
not always true, and here, in order to consider possible disruptions that a consumer
may experience, two main issues were evaluated:

• Sensor unable to connect to the Wi-Fi network: The system, after power on, is
configured to search for the previously known network (through the WPS pro-
cedure) until connection succeeds; if the network connection is broken (e.g.,
because of a blackout), the device performs a reboot. The system always expe-
riences an energy-expensive boot-loop until the network is restored;

• Sensor connected to the Wi-Fi network but without active Internet access (e.g.,
because of Internet provider issues): This situation arises only after the previ-
ous condition is met. After power on, the device searches and connects to the
known network; it tries to establish a connection with the online cloud. If the
procedure fails (e.g., because the Internet connection is lost), a reboot is per-
formed. The result is the same, with the system always in an energy-expensive
boot-loop until the internet connection is restored.
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To better understand the consequences of this behavior on the actual current con-
sumption, each scenario was reproduced, and current measurements were carried out
using a digital oscilloscope with a bandwidth of 350 MHz, an ADC (Analog to Digital
Converter) resolution of 12 bit, and a maximum sample rate of 1.25 GS/s. To measure
the sensors’ current, a probe with a bandwidth of 50 MHz and a minimum sensitivity
of 10 mA/div was exploited. Results are shown in Figure 3.2. In Figure 3.2a, the de-
vice settles at an almost constant current absorption of 14.2 mA while waiting for the
network connection, with an average 71.4 mA current while searching for a Wi-Fi
connection. In Figure 3.2b, phases in which the system is not using the radio module
(during reboot) with a 101 mA peak current absorption can be identified, as well as
a 74.3 mA peak current when the Wi-Fi connection succeeded and tried to establish
the connection to the cloud. From the analysis of those data, a total mean current of

(a) (b)

Figure 3.2: Current absorption measurements: (a) scenario with missing Wi-Fi net-
work connection; (b) scenario with sensor connected to Wi-Fi but without internet
access.

17.3 mA can be extracted for the first scenario and a total mean current of 34.5 mA
for the second one. This behavior can significantly degrade sensors’ energy perfor-
mance. To overcome this problem, and hence to extend battery lifetime, the device is
forced to follow a duty-cycled sequence of searching and sleeping phases, as shown
in Figure 3.3. The device is allowed to check for the presence of the Wi-Fi network
or the Internet connectivity for a maximum period of 10 s. After this time, if the task
fails, the system enters in a HIBERNATE sleep mode for 60 s to save energy and
preserve battery charge. After the sleeping phase, a new search phase begins. This
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Figure 3.3: Working phases for both Wi-Fi and Internet absence scenarios.

behavior has been tested and compared with the standard one for the same scenarios.
The new current measurements are shown in Figure 3.4. After a larger initial current

(a) (b)

Figure 3.4: Current absorption measurements of sensors running with the introduced
sleep periods: (a) scenario with missing Wi-Fi network connection; (b) scenario with
sensor connected to Wi-Fi but without internet access.

peak needed by the device to boot up, some current peaks are experienced during the
Wi-Fi/Internet check phase and they reach the minimum in the sleep phase. In this
case, the total mean currents over the period are 7.3 mA in the first scenario and 3.1
mA in the second one. Due to the unpredictability of these situations, the advantage
in terms of battery lifetime is not quantifiable; however, with this method, the system
is able to reduce the energy consumption by 42% in the case of Wi-Fi network ab-
sence and by 91% in the case of Internet connectivity absence. Hence, this behavior
has been adopted for all sensors, and the actual battery lifetime during real operation
has been evaluated. As stated before, the sensors’ energy performance was evaluated
in both laboratory and home environments. All sensors were powered with parallel-
series of four AA LR6 alkaline batteries. In the laboratory test, due to the different
activity profiles expected in a public environment, only the standby power consump-
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tion was tested. The only signals sent were periodic (15 min) keep-alive messages. In
the real home environment, instead, the sensors were stressed during the day by three
different members of a family. After two months of testing, only the toilet sensor ran
out of battery: For the other sensors, the laboratory set shows a residual charge of
about 46%, while in the home environment this value is lower at 34%. It is worth
considering that the battery lifetime in a real home environment strongly depends on
the actual interaction with the sensors (e.g., the Magnetic contact can be stressed by
more than one user, affecting the expected daily events and the sensor energetic per-
formance). Moreover, as expected, the toilet sensor has a higher energy consumption
because of the usage of LPDS mode and due to the higher power consumption of the
sensing element. For this reason, the toilet battery lifetime was 30 days.

3.2 System Performance Analysis

To evaluate the system accuracy, sensitivity, and specificity, one user manually took
note of his interactions with the sensors for the two months of tests. These data were
compared with the events generated by the sensors and automatically collected into
the cloud platform. This analysis could effectively be done, in this scenario, only
with the chair sensor, in fact, data for the Magnetic contact, Toilet, and PIR sensors
cannot be univocally assigned to a specific person, in an environment populated by
more than one end-user. To resolve this situation a user identification mechanism
should be considered [58, 102]. In the case of the chair sensor, a total of 218 events
were detected as follows: 99 True Positives (TP), 109 True Negatives (TN), 0 False
Positives (FP), and 10 False Negatives (FN). Then, the accuracy, sensitivity, and
specificity are carried out [103]:

Accuracy =
T P+T N

T P+T N +FP+FN
= 95% (3.1)

Sensitivity =
T P

T P+FN
= 91% (3.2)
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Speci f icity =
T N

T N +FP
= 100% (3.3)

where TP, TN, FP, and FN are defined as reported in Table 3.1. The results pre-

Symbol Position of the User Where the User is Identified

TP User seated on the chair User detected as seated on the chair
TN User not seated on the chair User not detected as seated on the chair
FP User not seated on the chair User detected as seated on the chair
FN User seated on the chair User not detected as seated on the chair

Table 3.1: Definition of True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN).

sented show that the sensor is definitely capable of providing occupancy information
in a real context. In [101], the reported averaged accuracy for a resistive strain gauge
was 94%. This value is compatible with these results and a safe conclusion is that the
performance of the sensors is attributable to the resistive pressure pad. Nowadays,
the pressure pad is the best choice due to its commercial availability and because
it does not require specialized installation. Better performance could be obtained by
replacing the sensing element, without affecting the system architecture. Some elabo-
rations on the data acquired from all the sensors have been performed to demonstrate
the possibility of identifying patterns in the user’s activity. For each sensor, two dif-
ferent cases have been considered:

• Daily activity: the distribution of the user-sensor interactions during a 24 h
period was analyzed. In Figure 3.5a, Figure 3.6a, Figure 3.7a and Figure 3.8a
the probability of an event in a certain hour of the day is plotted. Values were
obtained through the analysis of the activity per hour of every test day. The
relative probability was calculated with the equation

ν=
ci

N
(3.4)
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where ci is the number of events that occurred in the hour, and N is the total
number of events observed during the test.

• Weekly activity: the interaction was assessed during a week, counting the events
registered in different three-hour intervals in the same day of the week (Figure
3.5b, Figure 3.6b, Figure 3.7b and Figure 3.8b).

Although the aim of this work was not to present a complete behavioral analysis
module, simple trend information might be extracted from the results, demonstrating
data convenience. For instance, a high lunchroom chair interaction can be seen dur-
ing meals; the door openings are concentrated during the weekend, when the user is
usually not at work. This fact can be confirmed by the PIR weekly graphs, in which
the activity distribution shows a higher presence starting from Friday. Looking at
the Toilet sensor activity, a periodic usage can be seen around mealtimes and in the
early morning after waking up. Moreover, as expected, no sensors recorded activities
during night-time, when the user is supposed to be sleeping.

(a) (b)

Figure 3.5: Armchair sensor activity during the day (a) and during the week (b).
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(a) (b)

Figure 3.6: Magnetic contact (door sensor) activity during the day (a) and during the
week (b).

(a) (b)

Figure 3.7: PIR sensor activity during the day (a) and during the week (b).

(a) (b)

Figure 3.8: Toilet sensor activity during the day (a) and during the week (b).



Chapter 4

Wearable Sensor for Human
Activity Recognition

The addition of a wearable device inside the ecosystem presented in Chapter 2 can
introduce behavioral analysis difficult or impossible to perform with environmental
sensors alone [23, 24]. The human activity recognition (HAR) plays here an impor-
tant role: it is indeed recognized that an active lifestyle is the basis for a healthy life
[104]. Therefore, users’ lifestyle can be assessed by monitoring the amount of daily
activity and, eventually, building-up a behavioral model which in turn can be useful
for the early detection of anomalies possibly relevant to well-being [104]. Moreover,
to construct a precise behavioral profile, it is of utmost importance to accurately as-
sess the type of the user’s activity (e.g. walking, climbing stairs up/down, etc.). For
example, a user could continue to move regularly (e.g. walking) but starting to avoid
more difficult movements (e.g. climbing stairs). This behavior could signal an in-
crease in fatigue, which may indicate a possible deterioration in the health conditions
worthy of further study.

Therefore, a first prototype has been developed at the D2Lab as a platform to
experiment and test with the new device.
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4.1 Wearable Sensor Prototype

The prototype data acquisition system is composed by a Wi-Fi wearable sensor send-
ing collected data to the cloud service in an IoT compliant vision. The prototype of the
wearable sensor (Figure 4.1) is based on the MPU9250 integrated inertial measure-
ment unit (IMU, with a 3D accelerometer, gyroscope, and magnetometer) connected
to a development board (LaunchPadXL board) including the CC3200 system-on-chip
(SoC) by Texas Instruments, which integrates the ARM Cortex-M4 MicroController
Unit (MCU). It features a 32-bit architecture at 80 MHz clock and a network pro-

Figure 4.1: The WiFi wearable sensor including the LaunchPadXL board and the
inertial measurement unit (IMU) board.

cessor compliant with the IEEE 802.11b/g/n network protocol radio. From the er-
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gonomic point of view, a more compact board redesign is planned.

The sensors’ full-scales are programmable and a sensing acceleration up to ±8
g and a magnetometer sensitivity of ±4800 µT have been set, while the gyroscope
was set on a full-scale range of ±250 °/s. All the sensors have been configured with
a sampling rate of 50 Hz. The physical sensor output consists of an ordered list of
values (3D output from accelerometer, gyroscope, and magnetometer) corresponding
to signed 16-bit values per axis for a total of 18 bytes.

A key issue in device usability is the network configuration procedure: the wear-
able sensor is directly connected to the Internet through the Wi-Fi home router. The
commissioning procedure is very simple and relies on Wi-Fi Protected Setup (WPS)
standard: the user is asked to push a button on the device, and a single LED signaling
pattern has been implemented to provide feedback. No technical skill is required, so
that the user himself could manage the installation procedure. Data are sent to the
online Watson IoT platform, inside the IBM Bluemix cloud services, via MQTT pro-
tocol with a Quality of Service (QoS) equal to 2: this ensures the necessary reliability
to the transmission process, since the protocol itself guarantees that the message is
received by the broker once and once only. The payload of the message is a string in
a JSON format, reporting sensors’ status. The device firmware, nevertheless, is suit-
able for connecting to other platforms as well (e.g. Amazon AWS, Microsoft Azure,
Thingspeak, etc.). Each wearable device features its own unique ID, so that the asso-
ciation to the cloud environment can be managed by the service provider; this results
in a truly “plug-and-play” approach.

The collected data are in general not significant in themselves, but they need
interpretation to infer meaningful information (e.g., information about user actual
activity such as walking, sitting, etc.). We may think to transmit every sensor sample
to the cloud, for subsequent processing and interpretation. This implies that the radio
section, the most energy-hungry part of the sensor, is always active reducing the
battery lifetime. In order to prove the validity of the whole approach, sensor energy
consumption has to be considered. In order to account for actual use scenarios, a low
capacity battery (Li-Ion 4.2 V, 500 mAh) has been used (battery capacity is limited
due to ergonomic constraints: size and weight).
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The analysis of human motion features requires a sampling rate as high as 50
samples per second [25]: assuming a sampling frequency of 50 Hz, a full 9 degrees-
of-freedom datum sent as soon as sampled and a battery of 500 mAH, it can be
demonstrated [89] that a lifetime shorter than 8 hours could be obtained. This pre-
vents such an approach to be actually usable in a real-life context given the high
power absorption of the Wi-Fi radio in a continuous streaming configuration.

For this reason, the prototype was not conceived for daily battery operation. In
fact, to guarantee a Wi-Fi working behavior comparable to low-power protocols (e.g.
Zigbee), special design techniques are needed, which include careful management of
the on-off cycles of the radio module [22]. Hence, IMU’s data stream can not be sent
directly to the Internet cloud platform in daily usage, but it needs to be processed by
an algorithm inside the device to have a lower data throughput at the output.

4.2 The Human Activity Dataset

The wearable CC3200 Wi-Fi platform has been used to build a dataset of the activi-
ties to be used in the design of the algorithm to be employed onboard for HAR. The
data collection phase involved 15 subjects (12 males and 3 females aging between
25 and 50 years) repeating the same test 9 times on different days. For testing pur-
poses, two bytes have been added to the IMU samples, indicating the identification
number of the user, and a code related to the activity actually performed. The latter
has been obtained by asking the user to follow a specified protocol during the test
(i.e. the activities sequence) and to press a button available on the wearable sensor
at every change in the activity. The push of the button triggers a counter in the de-
vice firmware: every activity the subject was performing was then identified with the
corresponding counter number. No noise filtering was carried out on the data. In de-
tails, Table 4.1) reports the total set of activities of the dataset, and, in Table 4.2 the
activities sequence for a single user. The resulting dataset is a collection of the raw
IMU output (triaxial accelerometer, gyroscope, and magnetometer values) stored in
the form of timeseries, as shown in Figure 4.2.
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Activity ID Activity

1 Walking
2 Stand
3 Sitting-down
4 Stay seated
5 Standing-up
6 Running
7 Climbing stairs down
8 Climbing stairs up
9 Lie-down

Table 4.1: Activity set.

Figure 4.2: Example of the accelerometer x-axis reading. The activities performed
during data acquisition have been highlighted, reporting the corresponding activity
ID.
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Counter Activity ID Activity

1 1 Walking
2 2 Stand
3 3 Sitting-down
4 4 Stay seated
5 5 Standing-up
6 2 Stand
7 6 Running
8 8 Climbing stairs up
9 7 Climbing stairs down
10 1 Walking
11 6 Running
12 8 Climbing stairs up
13 7 Climbing stairs down
14 1 Walking
15 3 Sitting-down
16 1 Stay seated
17 1 Standing-up
18 1 Lie-down

Table 4.2: Activity sequence for each acquisition.
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4.3 Algorithm

The dataset presented in the previous Section has been used in collaboration with the
Computer Engineering research group of the University of Parma to design a deep
learning, Neural Network (NN) algorithm (Convolutional Neural Network [105]).

In parallel, the work of this thesis focused on the hardware implementation of
a core function which can be employed both as a Support Vector Machine (SVM)
algorithm and/or as the activation function of a NN. As shown in Figure 4.3, a NN
algorithm is composed of nodes organized in layers. Each node features an activation
function i, h, or o which, as proved by several works [106, 107], can be customized
to achieve the desired results.
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h22

h23

o0

o1

Input
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Hidden
Layer 1
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Figure 4.3: Example of a neural network with two hidden layers and: five nodes at
the input layer, three nodes at the first hidden layer, four nodes at the second hidden
layer, and two nodes at the output layer.

For the purpose of this work, the implementation of the core in a full SVM is
important because it allows for gathering information also on the implementation of
the core as a node of a NN for further evaluations on the work of [105].
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4.3.1 Training and Inference Computations

In general, machine learning algorithms are composed of a training and an inference
phase, with the former to be considered as the most computationally expensive since
it needs to process the entire (typically wide) training set. For this reason, the machine
learning algorithm to be employed for HAR is conceived to have the training phase
on the cloud and the inference phase on the wearable device. This working principle
allows the system to fit for any new user with the following procedure. The first
time the user wears the device, it is configured in training mode and she/he is guided
through a sequence of the 7 activities to be performed (e.g. Table 4.2). During the
training phase, the collected raw IMU data are sent to the cloud platform, which
hosts the training algorithm and generates the coefficients for the inference phase.
The coefficients are then downloaded and saved into the wearable device, which,
from now on, is in inference mode, executes the inference algorithm, and sends the
results to the cloud for the behavioral analyses.

This enables for keeping the wearable device compact and dedicated to the infer-
ence phase, which is the most frequently required compared to the lump sum training
phase.

4.3.2 Core SVM Selection

The selection of the core SVM algorithm has been performed with the MathWorks®

Classification Learner® tool, in which the training results of the decision tree, dis-
criminant analysis, SVM, KNN and naive Bayes supervised classification learners
[108] have been tested and compared. According to classification learning theory, a
set of features of the dataset samples has been calculated on the dataset of Section 4.2
to be used as the input of the algorithm. In particular, the features employed are the
9 statistical parameters reported in Table 4.4 and calculated over a window of 1.28 s
(which means 64 samples at 50 Hz for each sensor), as found in literature [25]. Since
the IMU has 3 sensors with 3 axes each, the total number of input features for the
algorithm is 81.

The dataset has been split to reserve the 70% to the training set and 30% to the
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Feature

1 Average
2 Mode
3 Median
4 Standard Deviation
5 Variance
6 Minimum
7 Maximum
8 Root Mean Square (RMS)
9 Interquartile Range (IQR)

Table 4.3: Features used as the SVM input.

test set, and a training session has been issued for the interesting algorithms, i.e. the
SVM family ones. As shown in Table 4.4, results show the cubic SVM as the best
performing algorithm for this application.

Algorithm Accuracy
[%]Family Version

SVM Linear 80.9
SVM Quadratic 90
SVM Cubic 91.7
SVM Fine Gaussian 80.1
SVM Medium Gaussian 88.6
SVM Coarse Gaussian 78.1

Table 4.4: Comparison of the training of the SVM algorithms.

The selected Cubic SVM algorithm has been then refined by appending a post-
processing phase to exclude incompatible activity sequences. The applied rules fol-
low the matrix of Figure 4.4 and allowed for a slight increase in the accuracy value
to 93.2%.
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Figure 4.4: Matrix identifying the possible/impossible transitions to be used in the
post-processing algorithm phase.

4.3.3 Core SVM Analysis

The output of the Classification Learner® has then been analyzed to identify the basic
elements to be used in the hardware implementation phase.

The first thing which has been investigated is the approach used by the Classi-
fication Learner ® to solve the multiclass problem, which has been found to be the
one-to-one (Section 1.1). This means the system makes use of 36 binary classifiers
(called Classification Learners) to produce 36 output labels +1 or -1. Then, such
outputs are merged in the last phase, called Final Evaluation, which takes care of
producing the final output of the system, i.e. the activity the user is performing. The
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equation defining the model is

d =

⃓⃓⃓⃓
⃓ 36

∑
i=1

(1− yi ·CodingMatrixi j)

⃓⃓⃓⃓
⃓, (4.1)

where yi is the output of the i-th binary learner, CodingMatrix is a 36 × 9 ma-
trix of weights calculated during the training phase, and d is the 9-element vector
holding the result, i.e. a score value indicating how much a certain class is likely to
be assigned for the input. Hence, the final output label (i.e. a number from 1 to 9
according to Table 4.1) is the index of d where the minimum value is stored:

n = indexd [d = min(d)] , (4.2)

where n is the final output of the system, i.e. the activity the user is performing.
A deep look at the binary learners was also required for the next hardware imple-

mentation. This part of the system is characterized by 36 similar objects (described
by Equation 1.2) to which a polynomial cubic kernel is applied (Section 4.3.2):{︄

y = sign(⟨w,k(x,w′)⟩+1)
k(x,w′) = (⟨x,w′⟩+1)3 . (4.3)

By merging all the equations of the system, it is possible to write the equation
describing a single binary learner as

y = sign(⟨w,k(x,w′)⟩+1) = sign

(︄
81

∑
i=1

(︄
N

∑
j=1

(︁
x j ·w′

j
)︁3

+1

)︄
·wi +1

)︄
, (4.4)

where N is the the number of support vectors calculated in the training phase,
which changes for each binary learner.

4.3.4 Features Calculation

As described in Section 4.3.2, a full SVM algorithm does not take as input the raw
data of the IMU introduced in Section 4.1 but needs a preprocessing phase to calculate
the features of Table 4.3.
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This is done by applying the following equations at each axis of the accelerome-
ter, gyroscope and magnetometer:

Average: avg = ∑
NS
i=1 Xi
NS

Mode: mode = most frequent sample value

Median: median =
Xsorted

[︂
NS
2

]︂
+Xsorted

[︂
NS
2 +1

]︂
2

Standard Deviation: std =

√︃
∑

NS
i=1(Xi−avg)2

NS−1

Variance: var = std2

Minimum: min = min(X)

Maximum: max = max(X)

RMS: RMS =

√︃
∑

NS
i=1 X2

i
NS

IQR: IQR = Q3 −Q1 = Xsorted

[︂
3 · NS+1

4

]︂
−Xsorted

[︂
NS+1

4

]︂

(4.5)

where X is the input vector of NS IMU samples (which is 64, as mentioned in Sec-
tion 4.3.2) and Xsorted is the same input vector with the elements sorted in ascending
order.

The result is an input features vector x of 81 elements, as shown in Figure 4.5.

4.4 Hardware

The state-of-the-art analysis of 2.2 highlights a fragmented scenario, in which a high
number of different solutions have been designed for HAR.

The first conclusion which can be drawn is an inverse proportionality in the ac-
curacy and the number of classes to be recognized, an aspect usually related to the
complexity of the algorithm employed. In fact, most of the proposed systems are im-
plemented on an end-device that needs high-speed computation to be able to catch all
the human movements under study. Since the final platform is usually an embedded
device that must be worn or, at least, near to the user, it usually has poor comput-
ing power compared to existing high-end devices. Moreover, such devices are often
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Figure 4.5: Representation of the features vector x. The numbers are the indexes of
the elements inside the vector.

battery-powered and require careful power management for energy saving. These
constraints force the designers to rely on solutions based either on low-performance
algorithms or on low-performance hardware. The final effect is the same: a decrease
in the accuracy or in the number of classes of the application.

Another aspect highlighted in the research is the polarization of the devices em-
ployed for the applications, which are all based on a MicroController Unit (MCU). If
on the one hand these solutions offer the best trade-off between cost, power-saving,
and design easiness (as opposed to ASICs, for example), on the other hand it may be
the bottleneck on the application performance.

This is the reason why, in this work, a Field Programmable Gate Array (FPGA)
was selected to implement the system. In recent years, FPGA producers have started
to focus on costs and power reduction of their products because of the incoming
market demand [109], and this can be an opportunity to explore new solutions. If on
the one side the FPGA design faces an increase in complexity due to the hardware
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development, on the other side it gives us the possibility to create optimized and
potentially better performing architectures compared to traditional MCUs. All these
aspects may allow hosting more refined and complex algorithms to keep high both
the accuracy and the classes to be recognized.

4.4.1 Support Vector Machine Modeling

The development of the SVM algorithm has been carried out relying on the model-
based design described in Section 1.2, and the MathWorks® suite has been exploited
for this purpose. In detail, Simulink® has been used to design, prototype, simulate,
and test the algorithm used for HAR, and the HDL Coder® tool has been used to
automatically generate and test the VHDL code.

The resulting flow is reported in Figure 4.6, where the basic elements of the
features computation (Section 4.3.4) and the SVM (Section 4.3.2) are depicted.

After having identified the proper algorithm (Section 4.3.3), a first modeling
phase has been performed. In this step, the mathematical algorithm has been first
designed to validate the numerical behavior of all the involved parts, and then, in a
second modeling phase (Section 4.4.2), a more hardware-friendly model has been de-
signed. This allowed for performing the code generation step through the HDL Coder
tool and to get a VHDL code to be used for the implementation. The last phase was
to perform the timing simulation and implementation on the target FPGA.

The result of the first modeling step is the block diagram depicted in Figure 4.7,
where the vector of the 576 elements (64 samples × 3 sensors × 3 axis) X is used as
input, and the output is the predicted class n.

Each binary learner conforms to the model architecture of Figure 4.8, in which,
after a normalization phase, the kernel and decision functions are executed.

The details of the underlying blocks are reported in the following Subections.

Features

According to Section 4.3.4, the features calculation relies on the system of Equations
4.5. The resulting modeled architecture is reported in Figure 4.9, in which every
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Figure 4.6: Model-based development workflow.
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Figure 4.7: Full activity recognition algorithm model.
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Figure 4.8: Single binary learner model.
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Figure 4.9: Overview of the features calculation modeling.

channel is processed with a dedicated block.

As shown in Figure 4.10, the system takes as input the 576 elements, which are
then split into its 64 samples and given to the proper processing block. The blocks
dedicated to the elaboration of the single channels have all the same design, reported
in Figure 4.10 using the accelerometer’s X-axis as reference.

Binary Learner

The binary learner system is composed of the parts of Figure 4.8, which are replicated
36 times to perform the one-to-one classification. According to the theory of Section
1.1, it holds a first normalization phase, the kernel function, and then the decision
phase. In the following paragraphs, each block is presented in detail.
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Figure 4.10: Modeling example of features computation for the accelerometer’s X
axis, i.e. one of the 9 input channels.

Normalization The normalization part is used to limit the out-of-scale occurrences
which may be introduced by the kernel function, as explained in Section 1.1.1. The
modeling of this part has been carried out by implementing Equation 1.3, hence pro-
ducing the diagram of Figure 4.11.
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Figure 4.11: Modeling of one Binary Learner normalization phase.
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Kernel In Figure 4.12, the modeling of the kernel function is depicted. It is worth
noting here that the result vector k has a length N which is different for every binary
learner. In fact, considering that the transformed support vectors w’ represent a matrix
of 81×N elements and that the Xnorm vector is of 81 elements, the result of the first
element-wise multiplication is again a matrix of 81×N elements but the subsequent
summation enables a switch to the N dimension. Hence, from here on, the size of the
bus is of N elements straight to the output k.
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Figure 4.12: Modeling of one Binary Learner kernel phase.

Decision The Decision phase is depicted in Figure 4.13. Similarly to the kernel
part, here is another switch from the dimension N to 1 because of the summation,
which this time collapses all the vector into a single value. After the sign function,
the output has a value of +1 or -1, according to the binary classification theory of
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Figure 4.13: Modeling of one Binary Learner decision phase.
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Section 1.1.

Final Evaluation

The Final Evaluation block takes as input a 36-element vector holding all the +1 or
-1 outputs of the 36 binary learners. As for the Kernel and Decision blocks, here the
summation is responsible for another switch in the dimension of the bus. Since the
CodingMatrix is a coefficients matrix of 9× 36 elements, the result of the element-
wise multiplication is again a 9× 36 matrix. However, the summation performs the
sum of the rows of the matrix, giving a 9-element vector as the result.

This vector is then given to the idx function, which looks for the index of the
minimum element and produces the output n, i.e. the label of the activity the user is
performing.
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Figure 4.14: Modeling of the Final Evaluation phase of the system.

4.4.2 Support Vector Machine Hardware Design

After testing the functionality of the aforementioned model in Simulink, the next
step was to define a hardware-friendly model to be converted in VHDL code with the
HDL Coder. Since the target now is the final FPGA implementation, it is unlikely to
have a system like the one modeled right now to be hosted in hardware.

The first obstacle would be the size of the resulting architecture. In fact, as shown
in Figure 4.7, 36 identical elements should be implemented to perform the task, each
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of them with a series of mathematical operations which require non-trivial architec-
tures (e.g. the divisions of the Normalization phase). Moreover, as will be discussed
in detail in Section 4.5, the system has been designed to work with an IEEE 754
32-bit standard to ensure a high output numerical quality. Since the complexity of
floating-point arithmetic is consistently heavier than an integer or fixed-point one,
the warning given by the high number of mathematical operations becomes stronger.

The second obstacle would be the memory cells required to host all the coeffi-
cients resulting from the training phase, which have a size of 8.3 Megabytes when
stored in binary format on a PC’s hard disk. This would not be a problem if using a
high-end FPGA but, given the size and energy constraints of the application, the land-
scape here restricts to a low- or mid-end device. For such devices, this requirement is
out of specifications [110, 111].

For this reason, the benefits of the model-based design have been exploited to
experiment with a new model with the same exact functionality as the previous one,
but more hardware-friendly and targeted at FPGA implementation. The overview of
the result can be seen in Figure 4.15.
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Figure 4.15: Architecture of the final system to be implemented in the FPGA.

The problem of the memory usage has been addressed by introducing a Secure
Digital (SD) Card to host and retain the coefficients of the training phase, and a
volatile Static Random Access Memory (SRAM) to be used as high-speed storage
during normal operations. Moreover, a bus has been introduced to allow the coeffi-
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cients to reach the proper areas during the computations of the Binary Learner and
the Final Evaluation blocks.

The details of each element are described in the following Subsections.

Memory Controller

As aforementioned, a set of external memories has been introduced to avoid exceed-
ing FPGA’s internal resources usage. As shown in Figure 4.16, the system was de-
signed with two types of memories:

• SD Card: it is used as a non-volatile memory to retain the coefficients during
power-off. However, it is not suitable for normal operation due to its high read
access time.

• SRAM: given its low read access time, it is used as the work memory to feed
the Binary Learner and Final Evaluation blocks with the proper coefficients.

SD

Card
SD Controller

SRAM ControllerSRAM

Coefficients

Control

Unit

ID Data

Coefficients Bus

Figure 4.16: Memory Controller architecture.

The controller is used to manage the interactions between the two memories and
the Coefficients Bus. At startup, the controller pulls the coefficients from the SD Card
and writes them in the SRAM to prepare the system. After this phase, the controller
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reads the data from the SRAM and pushes it on the Coefficients Bus, which is directly
connected to the rest of the architecture.

As will be seen later on, the organization of the coefficients inside the memories
is not random and it has been defined to allow the system to operate correctly. Each
word of the memory is composed of an ID and a Data field, as shown in Figure 4.16.
The ID is an identification value automatically interpreted by the targets to understand
which coefficient is the Data value related to.

Features

The model of the features block engineered for FPGA implementation is reported in
Figure 4.17.

x

Features
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Controller

Features

Buffer
Features Set

newData

x

Figure 4.17: Features calculation final architecture.

The first difference from the previous model is the elimination of the 9 parallel
blocks, which are here replaced by a single block equivalent to the one of Figure 4.10.
At every new input, the newData bit signals the Controller to take 64 elements of the
576-element input vector X to compute the features’ calculation for that channel.
When the 9-feature result is ready, it is written in the first 9 words of the 81-word
Features Buffer, and the next 64-element input chunk is used to produce the features
for the next channel. After 9 cycles, the Features Buffer is full, and x can be used for
the rest of the system.
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This solution allows for using a single features-generation architecture in place
of 9.

Binary Learner

Similar to the Features part, the 36 Binary Learners are here replaced with a single
object iterated 36 times to produce the results. The internal architecture is depicted
in Figure 4.18 and it is mostly untouched with respect to the previously modeled
version.
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Figure 4.18: Binary Learner final architecture.

The main differences are the Deciders (needed as the interfaces with the Co-
efficients Bus) and two intermediate buffers holding the partial results of the af-
fected vectors. The summation parts are here converted to accumulators to have more
hardware-friendly architectures. Then, in the Normalization phase, the coefficients
of σ and s have been pre-processed and stored inside the memory with its inverse.
This allows us to replace the division operations with a less expensive multiplication
without affecting the rest of the system.

The Decoder blocks are used here to interpret the Coefficient Bus message, and
to understand if and where the current coefficient is to be used in one of its underlying
blocks. In addition, since the Binary Learner has to be iterated 36 times, the Decoders
are also responsible for resetting the buffers and accumulators when a new Binary
Learner computation has started. This is done, again, by listening to the Coefficients
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Bus to detect when a set of coefficients has switched to a set of the next Binary
Learner.

For example, let us imagine that all the 1/s vector elements of the Normalization
are encoded in memory with ID = 5 for the Binary Learner 1 and with ID = 12 for
the Binary Learner 2 (Figure 4.7). In this case, the first time the Decoder detects an
ID = 5 on the bus, it feeds the Data value to the Normalization multiplier and saves
the result in the first cell of the Normal Buffer. Then, when a new ID = 5 arrives,
the Decoder routes Data again to the multiplier and saves the result in the second
cell of the Normalization Buffer. After some cycles, the ID on the bus is ID = 12.
This time the Decoder senses a new set is started and, in addition to routing Data to
the multiplier, it resets the Normalization Buffer and writes the new result in the first
position, meaning a new Binary Learner computation has started.

One concern here may be: is it safe for the Decoder to flush the Normalization
Buffer without knowing if the next block (i.e. the Kernel) has actually processed those
data? The answer is: yes, thanks to a proper ID scheduling inside the memory. In fact,
if the order in which the IDs are fed to the blocks have the proper sequence, the data
can flow from the input to the output without collisions and the Decoders can ignore
the state of each other.

Final Evaluation

The Final Evaluation block is reported in Figure 4.19 and its basic elements rely on
the same concepts of the Binary Learner.

The idx function is modeled as a register updating each time the input is minor
then the saved value, and a counter to keep track of the index of the saved element.
The result is a number that is the label of the activity the user is performing.

4.4.3 FPGA Implementation

The hardware-friendly modeled architecture was then processed by the HDL Coder
tool to generate the VHDL for implementation. After this, the proprietary Integrated
Development Environment (IDE) of the target device is required to be able to produce
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Figure 4.19: Final Evaluation architecture. Here, the CodingMatrix is reported ad
CM.

the bitstream and program the hardware. For this part of the work, an Altera Cyclone
IV FPGA was selected as the target device, and the Altera Quartus II IDE was used
to interact with the device.

After importing the VHDL code generated by the HDL Coder in Quartus, the
implementation workflow has been carried out, and the results are reported in Table
4.5.

The next step was to verify the timing of the circuit, which must fit the require-
ment of 100 MHz to guarantee the whole system to produce the activity at the output

Parameter Resources Usage

Logic Elements 88%
Multipliers 100%

Memory 15%

Table 4.5: Implementation results on a Altera Cyclone IV.
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in less than 1.28 s, i.e. the time window of the input samples (Section 4.3.2).

For this reason, a timing simulation has been carried out to verify the require-
ment and the results demonstrated several violations during the processing, which
led to wrong output values. To solve this issue, several solutions have been taken into
account.

The first one may be to add pipeline stages inside the architecture to break the
critical paths and to increase the slack of the circuit. However, this approach intro-
duces additional issues to the system because of the presence of accumulators. This
solution has been investigated and addressed in Section 4.5.

The second alternative may be to reduce the overall complexity of the system, for
example switching from the IEEE 754 32-bit floating-point arithmetic to fixed-point
or integer. However, this leads to a degradation of the numerical accuracy of the sys-
tem and introduces a trade-off between circuit lightness and numerical quality (hence
output accuracy). This solution has been investigated and a search for alternatives has
been carried out in Section 4.6.

4.5 Hardware Investigation I: Pipelined Accumulators

A solution identified to solve the timing issues of the system is the introduction of
pipeline stages to break the critical paths. However, as aforementioned, this collides
with a potential performance loss introduced by the accumulators. In fact, among the
SVM blocks employed in the dedicated Simulink design, the accumulator is one of
the most frequently used.

The simplest accumulator architecture can be designed by using an adder in
which the first input receives the operand element and the second input is the feed-
back of the output [112]. It is worth noting that general FPGA-based SVM architec-
tures deal with high numeric dynamic ranges; thus, they are based on floating-point
arithmetic, as this is the best solution with data with this requirement [113]. A typ-
ical approach when dealing with hardware floating-point arithmetic is to introduce
pipelined architectures to reduce the critical path timing, potentially increasing the
system clock frequency [114]. When used in the simple accumulator architecture
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described before, pipelined floating-point adders become critical. In fact, new input
should be presented only when the output of the last addition can be fed back to en-
sure correct operation and avoid data hazards independently of the number and the
length of the input vectors [112]. This would limit the applicability of the system,
and different accumulator architectures should be individuated. However, when the
boundary conditions allow this solution to be exploited, the latency T (expressed in
number of clock cycles) of the whole accumulator to process an input vector of n
elements is T = np, where p is the length of the adder pipeline.

Considering model-based designs and, in particular, the Simulink environment,
several accumulator blocks are already available. However, some of them are not suit-
able for the specific application due to incompatibility with the HDL Coder workflow
(such as the Cumulative Sum block) or with the Floating-Point HDL library (as for
the Multiply-Accumulate block). Some others (Sum of Elements and Matrix Sum)
implement the HDL code as a binary tree or a linear chain of floating-point adders
presenting all the input elements in parallel—since the complexity of these solutions
grows with the number of inputs to accumulate, the amount of resources used when
these blocks are exploited in this field should be evaluated [115]. Hence, in this thesis
work, a possible alternative Simulink model for an accumulation circuit based on a
floating-point pipelined adder and fully compatible with the HDL Coder workflow is
presented.

To select the architecture to be implemented, a review of the state-of-the-art ac-
cumulation circuits was carried out. In reference [116], Luo and Martonosi present
the architecture of an accumulator in which a floating-point pipelined adder is bro-
ken down into its mathematical operations (i.e., the ones involving the sign, mantissa,
and exponent) and an internal feedback loop is introduced to embed the accumula-
tion feature. This solution is reported as providing a minimal accumulation latency
of T = p+(n+ 1)+ tnorm, where tnorm is the combinational logic delay of the last
accumulation part of the architecture. However, the exact latency value cannot be de-
termined a priori because it is strongly dependent on the target hardware architecture
[116].

A similar approach is used by Nagar and Bakos in reference [117], in which the
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accumulation latency is independent of the hardware implementation, and tnorm can
be considered as a one clock cycle. However, as for [116], the model-based imple-
mentation of this solution implies the additional development of a new adder archi-
tecture in order to consider the required modification.

In [115], Zhuo et al. present two main architectures based on standard floating-
point adders: the fully compacted binary tree (FCBT) and the single strided adder
(SSA). FCBT is an accumulator derived from a binary adder tree in which the first
level is replaced by one buffer and a single adder, and the rest of the levels are re-
placed by an additional adder shared by ⌈logn⌉−1 buffers. With the proper control
logic, the system can perform the accumulation in T ≤ 3n+(p− 1)⌈logn⌉− 3 for
n < nmax, where nmax is the maximum input vector length that the system has been
designed to work with. Because two different floating-point adders were deployed,
this solution turned out to be undesirable, as it requires large area resources [115].

To overcome this issue and to remove the nmax limitation, the SSA architecture
has been introduced. This architecture is based on a single adder, two buffers, and a
control logic. With this system, the latency has proven to be T ≤ n+2p2.

A different set of architectures are based on the work presented in [118]. Here, an
implementation of an accumulator based on a standard pipelined floating-point adder
is described. The input data vector is split into two different buffers and, at each
clock cycle, one element from each buffer is given to the adder operands. Then, af-
ter p cycles, the vector of adder results is split into two halves again, which serve
as the new input elements. This procedure is repeated until no other couples of
operands are present in the buffers, meaning the accumulation has ended and the
result is ready. This architecture was found to produce the accumulation result in
T = (p− 1)⌈logn⌉+ 3(n− 1). The main limitation of this system is that only one
input vector can be accumulated at a time, resulting in the fact that the subsequent
vectors must wait for the current result to be produced before they can be processed.

The time and the resources needed to perform the accumulation are reduced in
[119]. Compared to the work presented in [118], the input buffers are substituted
by two multiplexers at the input of the adder. One multiplexer can switch between
the input vector and a register holding the adder output, and the other can switch
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between a constant value and the direct adder output. With the proper control of
the multiplexers and the register, the time needed to compute the accumulation is
improved for n>p. Then, the resulted latency is

T =

{︄
(p−1)⌈logn⌉+3(n−1) ,n ≤ p

n+(p−1)⌈log p⌉+4(p−1) ,n > p
. (4.6)

From this work, the total accumulation time of this circuits is found to be

T = Tf +Tm +Td , (4.7)

where Tf is the time needed for all the input elements to get inside the accumulator
(feed phase), Tm is the time needed to process all the partial results given by the cou-
ples of adder input operands (merging phase), and Td is the time needed for the last
result to exit the adder pipeline (drain phase). It can be shown that this formula is ap-
plicable to every accumulator based on the architecture presented in [119]. Moreover,
it can be easily observed that Tf = n and Td = p−1.

In reference [120], an improved control algorithm (i.e., asymmetric method (AM))
for the merging time is presented. In this case, the merging time was found as

T AM
m =

{︄
n⌈logn⌉−2⌈logn⌉+n+(k−n)⌈logn⌉ ,n < p

p⌈log p⌉−2⌈log p⌉+ p ,n ≥ p
, (4.8)

which shortened the total accumulation time by 3(p−1). In reference [121], a mod-
ified AM is proposed, with an improvement for every n < 2p:

T MA
m (n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T AM

m (n)− p ,n ≤ p
T AM

m (n)− p+1 ,n = p+1
T AM

m (n)⌊n/2⌋−D⌊n/2⌋ , p+1 < n < 2p
T AM

m (n) ,n ≥ 2p

, (4.9)

where D is a displacement function that compensates the irregular merging pattern
that characterizes the control logic. In reference [122], Tai et al. propose a modified
version of [121], introducing the delayed buffering (DB) algorithm, in which the
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control logic can further reduce the merging time T DB
m in respect to T MA

m for certain
input set lengths:

T DB
m (n) =

⎧⎪⎨⎪⎩
p⌈logn⌉+2⌈logn⌉+n− p ,n ≤ p
p⌈log p⌉+2⌈log p⌉+n− p ,n = p+1

pL−2L + ⌊G⌋−D+1 ,n > p+1

, (4.10)

where L and G are functions of n and p, which, as the D function, compensate for the
irregular merging pattern.

In [123], a solution requiring a variable number of adders is presented—this in-
creased the reuse and portability of the accumulator, but with a higher occupied area.
For example, for the area-efficient modular fully pipelined architecture (AeMFPA),
two adders are required. More recently, reference [124] presented an accumulator
circuit that can simultaneously add multiple independent vectors; however, the in-
put buffer size is dependent on the number of the inputs, limiting the portability
over different applications. Finally, in reference [125], a more flexible solution is re-
ported—the core of the idea is a new state-based method (SBM) algorithm, a schedul-
ing strategy for buffer management aiming at lower latency and smaller area.

In Table 1, a summary of the performance of the mentioned architectures is re-
ported, along with some practical examples that were computed considering an adder
latency of p = 11, as the latency of Simulink floating point adder intellectual property
(IP), and an input length of n = 15, as well as an adder latency of p = 14 and n = 16 for
comparison with the solution reported in [125]. The system presented in [122] offers
the lowest latency for the accumulation of an input set of data. In this case, the total
accumulation time depends on the input vector length with respect to the pipelined
adder latency as expressed in Equation 4.11.

T = Tf +T DB
m +Td =

⎧⎪⎨⎪⎩
n+ p−1+ p⌈logn⌉+2⌈logn⌉+n− p, n ≤ p
n+ p−1+ p⌈log p⌉+2⌈log p⌉+n− p, n = p+1

n+ p−1+ pL−2L + ⌊G⌋−D+1, n > p+1

.

(4.11)
This model was exploited in the proposed model-based implementation and in the
SVM kernel. It was fully tested in an FPGA implementation and, to validate the re-
sults, it was compared with the simple iterative accumulator solution [112], SBM
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Method
sadf

Generic p=11, n=15 p=14, n=16

SSA[115] ≤ n+2p2 257 408
FCBT[115] ≤ 3n+(p−1)⌈logn⌉ 85 100
AM[120] n+ p−1+T AM

m 64 83

MA[121] n+ p−1+T (
mMA) 58 71

A2eMFPA[123] n+ p⌈log p+2⌉ 81 100
[124] n+T AM

m + ⌈p/2⌉ 60 104
SBM[125] Not available - 75
DB[122] n+ p−1+T DB

m 57 71

Table 4.6: State-of-the-art hardware accumulator architectures..

[125], and the built-in Sum of Elements Simulink block. Then, the proposed accumu-
lator was used in a model-based implementation of the SVM kernel function.

4.5.1 Model-Based Single-Set DB

The proposed Simulink model is shown in Figure 4.20. To design the proposed
model, basic Simulink blocks have been used. However, since in Simulink a spe-
cific block modeling an adder with latency is missing, an Adder With Latency block
has been created as a cascade of an adder and a delay block. This approach also al-
lows us to configure the adder’s latency with a customizable value of p. The rest of
the architecture features three Switch blocks (R_Switch, A_Switch and B_Switch) and
three main Logic blocks (External Signaling Logic, Main Control Logic and Adder
Supervisor Logic). The Switch blocks are used as routing elements and their behav-
ior is equivalent to the Register Transfer Level (RTL) multiplexer element. With this
configuration, the Register can be shared by both A and B operands. Moreover, as
a control logic rule, the input data can only be used as operand A while operand B
comes from the feedback path each time the adder output is valid. The Logic blocks
are subsystems that produce the control signals for the entire architecture. In detail:
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• Main Control Logic: it is the core control unit of the system. As explained in
[122], it controls the data path of the input data stream, the Register and the
adder to avoid data collisions and data loss. The detailed operation of the logic
is reported in Table 4.7 and an execution example is shown in Table 4.8;

• External Signaling Logic: it is the logic dedicated to the management of the
data_last input flag and to produce the result_ready output flag. The output can
be considered ready when all the input conditions are verified: data_last raised
by the user, internal adder pipeline empty (meaning no other operands are to
be processed) and last adder result placed in the Register. The first condition is
evaluated by capturing the user data_valid assertion through a Set-Reset (S-R)
Flip-Flop (FF), the second is directly given by the pipeline_empty signal from
the Adder Supervisor Logic and the third is evaluated by verifying whether
the R_sel bus is equal to one. The FF S-R is reset by the result_ready signal
delayed by one clock cycle (result_ready’), so to set the system ready for the
next streaming accumulation. The circuit dedicated to this task is shown in
Figure 4.21a;

• Adder Supervisor Logic: by checking if a new couple of inputs are presented
to the adder, it notifies if any data is inside the pipeline. In addition, it signals
when a sum operation has been completed and the adder output is valid. The
internal logic is shown in Figure 4.21b. The new_input bit signal goes high
each time a new couple of operands is presented to the adder and it is used
as the input of the shift register represented by the FF1, FF2, . . . , FFp, with p
the length of the internal adder pipeline. When the sum_valid bit goes high, p
clock cycles are elapsed, meaning the addition result is ready. Moreover, if the
pipeline_empty bit is low, no new operands have been presented in the last p
clock cycles, i.e. the internal adder pipeline is empty.

In Table 4.8, an example of the running algorithm is shown with the internal adder
latency configured to be 2 clock cycles.

For simplicity, in this use case, four data elements are read, one every clock cy-
cle, while the adder is a two-stage pipeline operator. At cycle 0, the first element is
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Figure 4.20: The Simulink accumulator model based on the work of [119]. In this
example, the system has been configured to model a pipelined accumulator with an
adder latency of p clock cycles.
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Condition Behavior

1 Input valid Input in register R

2 Adder output valid, data in register R
Adder output fed back to adder input,
register R value to adder input

3 Input valid, data in register R
Input directly to adder, register R
value to adder input

4 Input valid, adder output valid
Adder output fed back to adder input,
Input directly to the adder

5
Input valid, adder output valid, data in
register R

Adder output fed back to adder in-
put, Input directly to adder, register R
holding data

Table 4.7: Main Control Logic working behavior.
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(a)

(b)

Figure 4.21: (a) External Signaling Logic function; (b) Adder Supervisor Logic func-
tion.

Cyc. Data A B R Result

0 X1 X1

1 X2 X2 X1

2 X3 X3

3 X4 X4 X1 +X2 X3 X1 +X2

4 X3

5 X3 X1 +X2 +X4 X1 +X2 +X4

6

7
4

∑
i=1

Xi

Table 4.8: Main Control Logic working behavior.
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presented. Since the adder produces a valid output only with a pair of input operands,
the element is stored in the Register. At the next cycle, a new input data is ready
and now the two operands can be pushed in the adder pipeline. The working mode
repeats these steps until the first sum is generated by the adder, here at cycle 3. In this
situation, the Register is already storing a value (X3), so the control logic pushes into
the adder the new incoming input together with the sum just generated. The Register
is set in a hold state. At cycle 5, when a new couple of data is available, the adder
is fed with the value stored in Register and the last generated sum. After two clock
cycles (i.e. the adder pipeline latency), the final accumulation value becomes valid.

Results

The presented model has been compared with Xilinx Floating-point accumulator In-
tellectual Property (IP) core for FPGA implementation. To have comparable results,
both architectures have been configured to have a total accumulator latency of 30
clock cycles. For the Simulink model, this means using an adder pipeline latency p
of 11 clock cycles and an input streaming length n of 5 values, as found by using the
DB architecture equation of Table 4.6.

In Figure 4.22, a Simulink example of an input stream of 5 random floating-point
values in the range -100 to 100 is reported. As shown, the input flags data_valid and
data_last are attached to the input stream to notify whether the value is valid and
the last. After the data_last flag has been asserted and the whole system finishes its
internal processing, the ouput_ready flag is raised for one clock cycle. This notifies
the user about the result readiness.

To test the HDL Coder compatibility, a non-target-specific VHDL code genera-
tion has been carried out for an architecture based on the 32-bit floating-point format.
The generate code has then been imported in Vivado software and, after synthesis and
implementation elaborations for a Xilinx Artix-7 XC7A100T-CSG324 FPGA target
device, results have been reported in Table 4.9. Both systems perform the same data
processing: accumulation of a 32-bit floating-point input stream, with a total latency
of 30 clock cycles and an input of 5 streaming values.

As shown, the presented model features lower resources usage than Xilinx IP im-
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Figure 4.22: Example of an execution of the accumulator model: (a) Input data values;
(b) External data valid input signal (data_valid); (c) External input signal to notify
the last value of the set (data_last); (d) Output value (result); (e) Internally generated
output signal to notify the output is valid (result_ready).
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Presented accumulator IP accumulator

Slice LUTs 635 3275
Slice Registers 723 3067

Table 4.9: Post-implementation resources usage report generated by Xilinx Vivado.

plementation. This result was expected because the internal fixed-point accumulator
of the IP had to be configured to match the full data range and precision of the 32-bit
floating-point format.

4.5.2 Model-Based Multiple-Set DB

In reference [122], two versions of the DB algorithm with different input processing
properties are described. The first one, the single-set DB, is able to process one in-
put vector at a time and its model-based design and test have been described in the
previous Section. The main drawback of such a solution is that if more than a single
vector has to be accumulated, each vector has to wait for the result of the previous
one before being processed.

The second algorithm is the multi-set DB, which is able to process a continuous
stream of input vectors without the need to wait for the output results to be produced.
Because the data is processed in a streaming fashion in the SVM context, in this
thesis the focus is on the multi-set DB version, although it required a more complex
design with respect to the single-set design. In Figure 4.23, the proposed Simulink
model-based accumulator is shown.

As for the Single-Set version, the design of the Multiple-Set accumulator model
entirely relies on basic Simulink blocks and, even if the working principle is almost
entirely similar, the architecture requires consistent modifications.

The core of the architecture is the Adder With Latency block, which processes
floating-point inputs and has already been introduced in the previous section. The re-
mainder of the architecture features two multiplexers (modeled with Simulink Switch
blocks A_Switch and B_Switch); two multiple-word registers (Input Buffer (IBUF)
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Figure 4.23: Simulink multi-set delayed buffering (DB) accumulator implementation.
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and Result Buffer (RBUF)); and a control logic that is composed of three blocks: Set
IDentification (SID) Generator, Adder Supervisor Logic, and Main Control Logic.
The SID Generator takes care of the tagging of the input elements to track each el-
ement of different sets. Each time the data_last flag is asserted together with the
data_valid flag, the SID value is increased by one and it is merged into the internal
bus together with the data value. Thus, all the data in the operands path are a pair of
input data and a SID. The size of the counter (i.e., the maximum value of the SID)
can be precisely set by knowing that, as found in [122], there cannot be more than
⌉5p/3⌈ sets at the same time inside the architecture. The Adder Supervisor Logic,
instead, tracks all the SIDs to notify whether the current adder output is of the same
set of any other set inside the adder pipeline (sum_internal_compare) or the current
adder output is of the same set of the input (sum_input_compare) or, finally, a new
adder output is produced (sum_valid). To achieve this result, the internal architecture
exploits comparators and simple logic functions. As for the Single-Set version, the
Main Control Logic is the core control unit of the system. The model-based imple-
mentation relies on the pseudocode of Table 4.7 and exploits full combinational logic.
The inputs of the logic function are flags indicating relevant events (if new data are
available, if a new sum is ready, etc.) and, at the output, produce the configuration
setups for all the involved elements (i.e., IBUF, RBUF, A and B working modes, and
when the output accumulation is ready). No sequential logic was used for this block,
resulting in an output update rate independent of the system clock.

As mentioned, in a Multi-Set DB, two different buffers are needed. The IBUF
buffer stores all the input elements that cannot enter the adder immediately because
a couple of the same set (i.e., with the same SID) is not yet available. It is com-
posed of an array of memory cells and two controllers, one for read and one for write
operations. The model-based architecture is shown in Figure 4.24.

The memory cells array can store the data values along with their SIDs. The
model-based implementation of this part exploits the For Each Simulink subsystem,
which can scale and replicate its internal architecture (i.e., the single memory cell,
in this case) based on a parameter N. According to the SSDB version, N was set to
⌈p/2⌉ to guarantee no storage overflow. When a write operation is issued, the write
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Figure 4.24: Architecture of the Input Buffer (IBUF) block.

controller drives the input data to the first empty cell of the array by setting the proper
IBUF_write array value to 1.

The read controller takes as input the content of all the cells, the SIDs of the
input and the sum, the mode of operation, and the read flag. When a read operation
is requested by setting the read bit, the content of one or two cells are presented at
the A_data and B_data ports depending on the mode input signal. When mode is
equal to 1, one value is read and is assigned to A_data, which is managed by the A-
Switch (Figure 4.23) accordingly to the main control logic combinational function,
and eventually set as the input of the adder. In this case, B_data value is kept un-set,
leaving the other input of the internal accumulator adder to be driven by the main
control logic through the B_Switch (Figure 4.23). If mode is equal to 2, a pair of
data of the same set has to be read. The controller logic automatically selects the
pair having the same and oldest SID, giving priority to the oldest accumulation result
production. The read data are assigned to A_data and B_data. When mode is equal
to 3, the behavior is specular to mode 1: the single read value is assigned to B_data,
and A_data is not used.

The remainder of the output signals serve as inputs for the Main Control Logic
and are produced by combinational logic. In particular, the sum_compare and in-
put_compare signals are produced by looking for the cells with the same SID_sum
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and the SID_input. The internal_compare signal is computed by comparing the inter-
nal content of the memory cells and it is used to notify if two or more memory cells
hold data of the same set.

The purpose of the RBUF is quite similar, except that it holds all the adder out-
puts that cannot be re-introduced yet as inputs, as there are not a couple of operands
with the same tag to be processed already. The implementation results in a subset
of the architecture of IBUF. In fact, its input signals are only the read, write, and
data_in values and its output signals are the sum_compare and A_data values. For
this architecture, the value of N was set to ⌈2p/3⌉.

4.5.3 Stand-Alone Model-Based Accumulator Implementation

To assess the performance of the proposed accumulator, Simulink simulations were
carried out. The standard Simulink IP adder was exploited in the accumulator archi-
tecture. This block featured an internal latency of p = 11 cycles. Two mathematical
series were exploited as input, and the correct accumulation results were evaluated.
In particular, the inputs were the Euler’s number e and the Leibniz π mathematical
approximation series, defined as

e =
∞

∑
k=0

1
k!
, (4.12)

π =
∞

∑
k=0

4 · (−1)k

2k+1
. (4.13)

The series was generated in MATLAB environment as a 50-element vector for the
Euler’s number series and as a 200-element vector for the Leibniz π series to obtain
an approximation error lower than 0.5%. Then, the two vectors were imported in
Simulink with the From Workspace block and presented as input to the accumulator.
In Figure 4.25, the results of the accumulation of two input vectors are shown.

The two vector series were presented to the input of the accumulator as a data
stream, Euler’s series first (at t = 0µs), and then the Leibniz series (at t = 0.5µs)
(Figure 4.25a). The last element of a single vector was highlighted by the data_last
signal (Figure 4.25b). The data_valid signal was high until a valid data is given to
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(a)

(b)

(c)

(d)

(e)

Figure 4.25: Input and output signals of the multi-set DB accumulator in Simulink
simulation: (a) Input vector values, (b) Data_last signal, (c) Data_valid signal, (d)
Accumulator output value, and (e) Result_ready signal.
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the accumulator input (Figure 4.25c). The accumulation outputs (Figure 4.25d) were
evaluated when the result_ready signal was asserted (Figure 4.25e). From this simula-
tion, the correctness of the results can be assessed. From Equation (4.11), considering
a latency of p = 11 cycles and a simulation step of 10 ns, the first result was produced
99 cycles after the first input element. Then, the second result was produced 200
cycles after the first result. These time intervals can be verified from Figure 4.25.

Once the functionality of the accumulator architecture was verified, VHDL code
was automatically generated from the Simulink model and used to synthesize the
circuits in Xilinx Vivado software. Here, results were evaluated in terms of FPGA
look-up tables (LUTs), flip-flops (FFs), and (Digital Signal Processor) DSP usage,
and maximum achievable clock frequency. For this purpose and to show portability,
two different platforms were considered: a Xilinx Artix-7 XC7A100T FPGA device
along with Xilinx Vivado 2019.1 software and an Altera Cyclone 10 LP 10CL010
with Quartus 19.1. All the simulations and timing results were carried out considering
a clock frequency of 100 MHz. In these experiments, a stream of 200 vectors, each
one of 100 elements, was considered to highlight the capability of the models to
process subsequent vectors in a short timeframe, without the need for complex input
synchronization logic.

The performance of the proposed accumulator model was compared to that of
the available Simulink solution. The Simulink IP block takes as input a set of data
in parallel to perform the sum. If the input values are fed serially, an input buffer is
needed to host all the elements. The time needed for this buffering stage is equal to
the length of the input stream, and the length of the buffer represents the maximum
vector length the system can accumulate. This, in a VHDL implementation, limits
the input streaming vector length. During the VHDL generation process, the accu-
mulator architecture is designed as a binary tree adder or a linear adder chain. For
this comparison, the input buffer was set to 100 samples and the architecture to the
one offering the lowest implementation resource usage, i.e., the linear adder chain. In
Table 4.10, the post-implementation results for Xilinx are reported, whereas data for
Altera are shown in Table 4.11.

As shown in Tables 4.10 and 4.11, the proposed accumulator outperformed Simulink
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Proposed Model Simulink IP

Slice LUTs 1643 40198
Slice Registers 1239 33450

DSPs 0 0
BRAM 0 0

Fmax (MHz) 105 109
Latency (cycles) 49 989

Table 4.10: Simulink accumulator resource usage, maximum frequency, and latency
on Xilinx Artix 7.

Proposed Model Simulink IP

Logic Elements 2483 47430
DSPs 0 0

Memory (bits) 154 436648
Fmax (MHz) 108 N.A.

Latency (cycles) 49 989

Table 4.11: Simulink accumulator resource usage, maximum frequency, and latency
on Altera Cyclone 10 LP.
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IP in both area and time. In particular, from the area point of view, in Xilinx im-
plementation, the proposed model used 2.6% of available LUTs and 0.97% of slice
registers, whereas Simulink IP used 63.4% and 26.4%, respectively. Moreover, in the
Altera implementation, although the number of logic elements (LEs) of the proposed
accumulator corresponded to 24%, the Simulink IP could not be implemented; in
fact, the occupied area saturated the resources, resulting in a 460% quantity of logic
elements. For this reason, the achievable maximum frequency was not reported in
this case. The advantage of the new model over the available IP appears evident. It
is worth noting that, despite the low area occupied, the proposed solution does not
require DSP slices, resulting in the independence of the presence of these blocks in
the selected platform, enhancing portability.

To evaluate the performance of the proposed model-based accumulator, once gen-
erated, in respect to other solutions, some comparisons were made with other accu-
mulator architectures and available IPs: iterative accumulator, single-set DB, SBM,
and Vivado floating-point accumulator IP. These architectures, Vivado IP in particu-
lar, are not suitable for automatic code generation; however, these data can give some
information about the applicability of the whole process and can confirm the choice
of the architecture. In Table 4.12, the Xilinx Artix 7 post-implementation results of
the compared accumulator architectures are reported.

The Xilinx Floating-Point IP is made of a fixed-point accumulator wrapped by
floating-point conversions at the input and the output stages. To support the full pre-
cision and range of the 32 bits floating-point format, the internal fixed-point accumu-
lator register must be correctly configured. The DSP slice usage was disabled to make
a fair comparison with the proposed model. Moreover, the architecture optimization
was set to produce the lowest latency—with this configuration, the internal fixed-
point adder latency value resulted in 23 cycles. As shown in Table 4.12, the proposed
model occupied less than a half in the area, without a significant difference in maxi-
mum frequency. Furthermore, the achievable frequency of the proposed accumulator
is compatible with the maximum frequency allowed by the target FPGA.

Regarding the comparison with other architectures presented in the literature, the
proposed accumulator outperforms the iterative and the single-set DB architectures
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Proposed
Accumu-

lator

Single-
Set DB
[126]

Iterative
[112]

SBM
[125]

Vivado IP

Logic Elements 1643 749 658 1411 3245
Slice registers 1239 811 534 1027 3120
DSPs 0 0 0 0 0
BRAM 0 8.5 8.5 0 0
Fmax (MHz) 105 112 126 102 134
Latency (cycles) 49 9800 200,200 54 23

Table 4.12: Post implementation accumulator resource usage, maximum frequency,
and latency on Xilinx Artix 7 FPGA.

in terms of latency needed to produce the result. It is important to note that this dif-
ference arises from the fact that the selected architecture is designed to process a
stream of consecutive vectors, whereas both the iterative and the single-set DB solu-
tions do not have this capability. The greater the number of vectors to be processed,
the greater the latency associated with the latter two architectures. Furthermore, the
buffers used for the management of the inputs synchronization must be carefully de-
signed by considering the size of the vectors stream. SBM architecture performs well
in terms of the occupied area. As a percentage, it occupies the 2.3% of the available
LUTs and the 0.8% of the available slice registers. However, these numbers are close
enough to that observed for the proposed model. The same goes for the maximum
frequency, with a slight advantage for the selected accumulator. The new model also
presents good results in latency, confirming the correct choice of the architecture also
compared to the newer solutions presented in the literature.

4.5.4 SVM Kernel Implementation

In order to evaluate the accumulation circuits described thus far, they were exploited
in the development of the model-based design of the SVM cubic kernel. Figure 4.26
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Figure 4.26: Simulink cubic kernel implementation.

shows the model-based kernel designed using the pipelined accumulator. It embeds
a multiplier, an accumulator, and a cubic power block. It was tested with different
architectures for the accumulator, as explained in the following sections.

All the data flowing inside the kernel are in IEEE 754 floating-point 32 bit for-
mat. As for the adder block described earlier, the multiplier block was also modeled
with a Simulink floating-point IP cascaded with a delay block in order to take into ac-
count the introduced latency (q). To synchronize all the data paths, several delay lines
were introduced to compensate for the latency of the mathematical operations. For
example, as the cubic power block is implemented as a cascade of two multipliers,
the required synchronizing delay on the result_rdy signal is twice the delay of a sin-
gle multiplier (2q). The input scheduling should be tailored according to the selected
accumulator architecture. In this experiment, a single support vector of 207 × 81 el-
ements related to a single binary problem was selected and used as support_vectors
input of the presented kernel architecture. The same statistical elaboration was ap-
plied to data in the test set—one vector of 81 elements, representing one instance of
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the test set, was exploited as the data input of the kernel architecture.

The kernel function was designed as a model-based block in Simulink. For the
accumulation process, the comparison has been carried out against the Simulink IP.
An HDL code was generated and implemented on the same Xilinx Artix-7 FPGA
exploited for the stand-alone accumulators, with a clock frequency of 100 MHz.

In this practical evaluation, other than Simulink and VHDL post-implementation
simulations, measurements on hardware implementation were performed. Simulink
simulations were performed to compare the proposed model latency with the ones of
the kernel implementation with Simulink IP. In both the implementations, standard
Simulink floating-point adder and multiplier IP were exploited. Similar to the adder
IP, which had an already mentioned latency of p = 11, the internal latency of the
multiplier IP was found as q = 6.

In Figure 4.27, Simulink simulations are shown, in which the result_ready signals
are plotted. The dashed line refers to the time taken to complete the processing of the
dot product of the whole 207 × 81 support vectors and the 1 × 81 data vector. In the
case of the proposed model (Figure 4.27a), the time needed to accumulate the first
vector at the input was equal to 161 cycles. Then, 206 × 81 cycles were needed for
the remaining vectors. Considering a clock frequency of 100 MHz, this corresponded
to 168.5 µs.

In the case of Simulink IP (Figure 4.27b), with an input stream of 81 elements
and p = 11, a total time of 891 cycles were required to obtain the correct accumula-
tion, along with 111 cycles for the remainder of the kernel operations, starting from
when the first element was available. Hence, the kernel processing for the first vector
took 1002 cycles, and then 206 × 81 cycles were needed to complete the processing,
corresponding to 176.9 µs.

The kernel models’ VHDL codes were automatically generated, and performance
was evaluated in Vivado environment in terms of resource usage and maximum
achievable frequency. Moreover, the latencies resulting from Simulink were verified
in the Vivado post-implementation timing simulations. A busy signal was configured
in order to be high from the first element presented at the input to the last kernel
output produced. Examples are shown in Figure 4.28.
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Figure 4.27: Kernel performance in Simulink simulations: (a) Kernel with proposed
accumulator, (b) Kernel with Simulink IP accumulator.

(a)

(b)

Figure 4.28: Xilinx Vivado post-implementation results of the kernel with (a) Kernel
with proposed accumulator, (b) Kernel with Simulink IP accumulator.
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Proposed Accumulator Simulink IP

Slice LUTs 3266 41354
Slice Registers 2791 34700

DSPs 0 0
BRAM 0 0

Fmax (MHz) 106 106
Latency (cycles) 161 1002

Table 4.13: Post implementation kernel resource usage and maximum frequency on
Xilinx Artix 7 FPGA.

Performance in terms of resources usage, maximum achievable frequency, and
latency are summarized in Table 4.13.

The resulted latencies confirmed the Simulink simulations and the results on the
stand-alone accumulators. The proposed model definitely performed better in terms
of occupied area—it used only 5.2% of the available LUTs and 2.2% of the available
registers for the whole kernel. Contrarily, the Simulink IP appeared critical in this
context, with 65% and 27% of the LUTs and registers, respectively. Considering that
many other logic blocks need to be instantiated together with the kernel in a com-
plete SVM implementation, the proposed solution appears a possible valid approach
in this context. Moreover, it is worth noting that in wearable sensors, low power con-
sumption has particular relevance. With the technology advancement in the FPGA
field, as already mentioned, many low power models have been made available and
can be exploited in this context, even considering floating-point arithmetic [127]. The
lowest power platforms have generally a low number of resources available; for this
reason, the occupied area aspect is of utmost importance in these kinds of applica-
tions. Although the maximum operating frequency was the same for both solutions,
the resulting latency for the proposed model was definitely lower.

To further confirm the simulation values, the FPGA was configured with the gen-
erated code and the performance was measured directly on hardware. The busy sig-
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nals were measured using a Tektronix MSO 2024 oscilloscope. Figure 4.29 shows
the experimental setup.

Results are reported in Figures 4.30 and 4.31, which are related to the proposed
architecture and the Simulink IP, respectively.

Figure 4.29: Experimental setup for the hardware measurement.
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Figure 4.30: Measurement of the processing time of the kernel with the proposed
accumulator implemented on the FPGA.

Figure 4.31: Measurement of the processing time of the kernel with Simulink IP
implemented on the FPGA.

Measurements confirm the latencies of the simulations and the correctness of the
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result. The difference between the two processing times was of about 8.4 µs, which
corresponds to 840 clock cycles. As shown in Table 4.13, this result corresponds with
the difference in latency of the two solutions.

4.6 Hardware Investigation II: Posit Numeric Format

Another solution which has been investigated to solve the timing issues of the system
is the numerical representation used to binary-encode numbers across the architec-
ture.

In binary real numbers representation, the trade-off between the complexity and
accuracy given by fixed-and IEEE 754 floating-point formats is a well-known topic
[127]. While the fixed-point format can process real numbers with architectures as
simple as the one involved in integer arithmetic, floating-point numbers [128] require
dedicated and larger architectures which leverages the overall system complexity. On
the other hand, the floating-point architecture consistently extends the dynamic range
of the representation, reducing the errors and potentially satisfying the increasing
accuracy requirement of limited resources devices (e.g. as the IoT edge nodes).

Several works tried to challenge this problem with design techniques based on
traditional floating-point architectures optimized for those incoming fields [129, 130,
131] but, nowadays, this trade-off is supposed to be less critical with the introduction
of the new Posit numerical representation [33]. As shown in Section 1.3, the outcome
of this approach is an increase in the output quality of the computation system, whose
result can be more accurate and better matching the decimal real number to be rep-
resented. Moreover, low-performance devices can take advantage of the Posit format
to produce accurate results with lower resources than the IEEE 754 format. As an
example, if an IEEE 754 32-bits dynamic range is required for the application, about
the same can be achieved with a 16-bit Posit format. This almost halves the resources
needed by the system, potentially enabling the computation on devices with strong
hardware constraints.

Posit mathematical operations rely on the same floating-point structures, plus
few additional steps (called decoding and encoding phases) required to interpret the



4.6. Hardware Investigation II: Posit Numeric Format 99

binary encoded number. In other words, as described in detail later, a Posit mathemat-
ical operator can be seen as a floating-point operator wrapped by a decoding and an
encoding phase, which determines an increase in the hardware complexity. However,
this increase is found to be balanced by the save in resources given by the lower bits
required to represent the number [132, 133].

4.6.1 Architecture of a Posit Multiplier

The typical operations involved in the multiplication of Posit numbers are depicted
in Figure 4.32.

Figure 4.32: Posit multiplier basic elements.

Two numbers A and B are first processed in the decoding phase, which extracts
the elements encoded in the Posit format: the sign, the regime, the exponent e and the
fraction. Moreover, the decoders also gather information about the special cases of
the Posit format, which are the NaR and Zero values.

After the decoding phase, three operations can be performed in parallel in the
Compute block: the special cases evaluation, the exponents’ sum and the fractions’
multiplication. All those steps will be described in detail later.

The results of these operations are then passed to the last encoding phase. Here
the chunks of information obtained in the previous phase are packed together to pro-
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duce a number which fits the correct Posit format.

Since Posit is a relatively new field, the majority of the works found in literature
focuses on designing architectures which provide the minimum set of characteristics
to make the multiplier work and the modifications remain limited [134, 135, 136,
137]. However, some works start to introduce variants to improve the performance
in terms of energy consumption [138], data fusion for Multiply-Accumulate units or
chained operations in general [32, 34, 139, 140], and reconfigurability [141].

4.6.2 Model-Based Multiplier Implementation

The proposed implementation of the Posit multiplier relies on the same workflow
used before: Simulink in combination with its HDL Coder automatic code generation
tool for FPGA implementation.

Decoder The decoding phase used for implementation is derived from the work
presented in [134], which consists of the architecture of Figure 4.33 for an example
of a Posit(8,1) number.

The first step of the system is to separate the sign (located in the 8th bit) from the
rest of the bits. The remaining 7 bits are then two’s complemented if the number rep-
resentation was negative (hence, if the sign bit was “1”). After being sign-corrected,
the bit string holds the regime starting from the 7th bit, and the exp and the fraction
starting from an unknown position which depends on the length of the regime field.

The length of the regime field is extracted in the central path of the architecture,
which involves the Leading One Detector (LOD) presented in [134]. The parametrized
recursive pseudocode of the system is reported in Table 4.14.

The output of the LOD is then used for fraction and exponent e extractions, and
for the regime integer value computation. The fraction and the exponent e are em-
bedded in the Posit bits after the regime bits. Hence, once known the length of the
regime bits, the two values can be extracted by shifting and cutting the input bits.
In addition, a leading 1 needs to be appended at the fraction’s most significant bit to
match the fixed-point representation of the value.
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LOD #(N) (in[N-1:0], K[S-1:0], vld)

1 GENERATE
2 IF( N == 2 )
3 vld = |(in), K = !in[1] & in[0]
4 ELSIF ( N & (N - 1))
5 LOD #(1 « S)({1 « S {1’b0}} | in, K, vld)
6 ELSE
7 K_L[S-2:0], K_H[S-2:0], vld_L, vld_H
8 LOD #(N » 1) (in[(N » 1) - 1:0], K_L, vld_L)
9 LOD #(N » 1) (in[N - 1:N » 1], K_H, vld_H)
10 vld = vld_L | vld_L
11 K = vld_H ? {1’b0, K_H} : {vld_L,K_L}
12 ENDGENERATE

Table 4.14: Pseudocode of the LOD algorithm developed in [134]. N is the bit-size of
the input in, S is equal to log(N), K is the output value, and vld is the control signal
used in the cascade of the blocks.
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Figure 4.33: Posit multiplier decoding block.

The regime value output is produced by processing the LOD output according
to Equation 1.4, hence by evaluating if the 7th input bit was 1 or 0 and acting by
adjusting the count value with a +1 and a two’s complement if needed.

In a separate path, the isNaR and isZero flags are generated by testing if the input
Posit number matches the special values for NaR and Zero.

Encoder

The encoding phase is responsible of repacking in a form compatible to the Posit
standard, and its architecture is depicted in the Figure 4.34, with reference to the
usual Posit(8,1) format:

The fraction coming from the multiplication stage is already formatted and ready
to be included in the last part of the Posit string, hence no processing is required. On
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Figure 4.34: Posit multiplier encoding block.

the other hand, the exponent exp value produced by the adder is a combination of the
regime and the exponent e values required by the Posit format.

The separation is immediate for the exponent e part, which is directly the least
significant bit of the strings. The regime integer value can also be directly extracted
by the rest of the bits, but it requires additional processing to be converted from an
integer value to a sequence of leading bits and a termination bit. This is performed
by defining the regime pattern (i.e. generating the correct first leading bit and the
correct termination bit, “01” or “10”) and how many times the first leading bit must
be replicated to build the full regime bit-string. The first part is performed by the
“regime pattern” area, while the second part is performed by the “regime shift” area.
The result of the “regime pattern” area is appended to the fraction and exponent
e string. Then, this string is arithmetic shifted right by the value computed in the
“regime shift” area to replicate the most significant bit the required number of times.

The final steps perform a negation of the string based on the value of the sign bit,
its insertion on top of the string, and a gating phase which overwrites the output value
if one or both the input Posit numbers were Zero or NaR.

Exponent exp sum and fraction multiplication

In this work, two novel versions of Posit multipliers have been designed for this part,
both relying on the concepts introduced by the Vedic multiplication. The first one is
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based on a traditional Vedic architecture for the multiplier part. The second is based
on a modified Vedic version specifically designed for the Posit multiplication. In fact,
as will be seen, it is able to perform both the fraction multiplication and the exponent
exp sum with a unique, synergistic architecture.

Vedic multiplication The Vedic multiplication is a technique for integer binary
numbers which relies on the “vertical and crosswise” (or Urdhva-Tiryakbhyam) al-
gorithm [142]. In general, the multiplication of two binary numbers A and B involves
two steps: the Partial Products Generation (PPG) and the sum of such partial prod-
ucts. The PPG part of the Vedic multiplier is performed with a sliding window which
splits the input binary strings into substrings. These substrings are then bitwise pro-
cessed with and AND logic function in a crosswise fashion, as shown in the example
of Figure 4.35.

a0a1a2a3

b0b1b2b3

a0a1a2a3

b0b1b2b3

a0a1a2a3

b0b1b2b3

a0a1a2a3

b0b1b2b3

a0a1a2a3

b0b1b2b3

a0a1a2a3

b0b1b2b3

a0a1a2a3

b0b1b2b3

PPG output

Figure 4.35: Partial product generation with Vedic “vertical and crosswise” pattern.

The architecture can be clearly split in independent sections, each one producing
the respective partial products. The number of sections depends on the number of bits
of the inputs A and B. The concept of Figure 4.35 is translated to the blocks of Figure
4.36.
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Figure 4.36: Vedic PPG with AND gates.
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The PPG outputs needs then to be summed using a binary adder. The best per-
forming adder architecture found in literature for Vedic multipliers is the compressor
circuit ([143], with particular reference to the 4:2 version [144]) paired with a Full
Adder (FA).

in1 in2 in3 in4

Cin
Cout

CarrySum

FA

in1 in2

Cin Cout

Sum

4:2

(a)

0
1

0
1

in1
in2

in3
in4

Cin

Cout

Carry

Sum

(b)

Figure 4.37: Vedic adder elements: (a) 4:2 compressor coupled with a FA, (b) circuit
of a 4:2 compressor.

With reference to the example of Figure 4.37, one compressor and full adder cou-
ple is needed for each section to compute the output multiplication result. Therefore,
the final Vedic architecture turns to be organized in columns as shown in Figure 4.38.

0

0

m0 m1 m2 m3 m4 m5 m6 m7

A

B

PPG0 PPG1 PPG2 PPG3 PPG4 PPG5 PPG6

4:2 4:2 4:2 4:2 4:2 4:2 4:2

FA FA FA FA FA FA FA

Figure 4.38: Complete 4-bits Vedic multiplier.

Each column is called stage, and the number of stages depends on the number of
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PPG sections, hence on the number of input bits. In particular, the required number
of stages is equal to 2n – 1, where n is the number of the operands input bits.

If the number of input bits increases, the adder part must scale accordingly. How-
ever, thanks to the modularity of the whole Vedic approach, it is possible to keep the
same 4:2 compressors and FAs as base blocks and change their number and position.
Two examples of stages are reported in Figure 4.39.
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FA
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4:2 4:2
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FA co4

co5

co1

co2

co3

mi

PPGi

(b)

Figure 4.39: Example of stages for (a) 5-bit and (b) 8-bit Vedic architectures.

Standard Posit Multiplier Integration In this solution, the fraction, sign, expo-
nent exp, regime and exceptions computation are reported in Figure 4.40.

The system is made of three paths which can be mostly executed in parallel,
except for the fraction overflow bit interfering with the “exp management” path. The
output sign follows the classical multiplication rule, which is represented by the XOR
logical function. The Zero and NaR output conditions are set if at least one of the
inputs holds those values. Hence, the logical function mapping this behavior is the
OR. The priority of Zero or NaR is defined in the Encoder final part interfacing with
the Posit output. The exponent exp result is performed by the integer sum of the
inputs, which, according to the Posit format, are the concatenation of the regime and
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Figure 4.40: Posit multiplier exponent exp sum, fraction multiplication, and exception
and sign management.

the exponent e as the high and low part, respectively. The computation must also take
into account the fraction overflow. If it occurred, the fraction is right-shifted of one
position and the overflow is transferred to the exponent exp with an increment of one.

The fraction computation is performed by multiplying the input values and then
managing the rounding and the overflow of the result. In Figure 4.40, two conversion
stages are introduced, with two elements at the input and two elements before the
routing switch to create a central area in which all the data are encoded as fixed-
point. This is done to exploit the Simulink rounding features included in the fixed-
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point domain. In fact, the output of the multiplier can be rounded and/or shifted by
simply tuning the properties of the Convert blocks without the need of additional
design effort. Moreover, this approach gives flexibility when choosing the desired
rounding mode since the block allows for selecting among ceiling, convergent, floor,
nearest, round, simplest or zero rounding modes.

The fraction multiplication here is performed exploiting the traditional Vedic ar-
chitecture. In Figure 4.41, an example of fraction multiplication of a Posit(8,1) system
is depicted.

Binary compressorPPG

Fraction1 

Fraction2

0

Fractionm

1 2 3 4 5 6 7 8 10

[4:0]

[4:0]

[10:0]

9

Figure 4.41: 5-bits Vedic multiplier basic blocks to be used for a Posit(8,1) multiplier
system.

As shown, a 5-bit Vedic integer multiplier is used to perform the multiplication in
a Posit(8,1) arithmetic. This is a direct outcome of the Posit rules reported in Section
1.3.

Proposed Posit Multiplier Integration With this solution, the fraction multiplica-
tion and the exponent exp sum are performed in the same block. Hence, the design of
the compute block is the one of Figure 4.42.

All the components have the same function as the ones of Figure 4.41, except the
modified Vedic block, which features the architecture of Figure 4.43.

The design refers to the same Posit(8,1) example and, as in Figure 4.41, the frac-
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Figure 4.42: Posit multiplier exponent exp sum, fraction multiplication, and exception
and sign management.
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Figure 4.43: Modified Vedic multiplier-adder, designed for 5-bit input fractions and
5-bit input exponents exp.
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tion and the exponent exp input numbers directly derives from Equation 1.5.
This modified Vedic block exploits the modularity of the stage-based Vedic ap-

proach to extend the architecture and preserving the modularity. In fact, in the exam-
ple, five additional stages purged by the PPG part are appended to the right of the
multiplier architecture to add the sum functionality needed for the exponent exp pro-
cessing. Moreover, this solution also embeds the overflow detection and correction,
which is provided by the connection of the carry chains.

4.6.3 Methodology

To assess the performance of the system, the model has been exported in VHDL
through the HDL Coder tool and implemented in the Xilinx Vivado design suite. Af-
ter the implementation process, the metrics of area usage and data timing have been
evaluated in terms of Look-Up Tables (LUTs) usage and logic worst path timing,
which is the time of the path passing through the highest number of LUTs. In this
evaluation, the time contribution given by the interconnections between LUTs has
not been considered since it is highly susceptible to contextual implementation con-
ditions. In fact, it is rare to find implementations of a multiplier as a single component
in a hardware platform, and a practical use case is needed to evaluate the system as
a whole, including the routing. Here, to assess the single multiplier component per-
formance, the only parts taken into account are the ones which are always present
independently of the surrounding system, i.e. the LUTs and their associated timing.

The proposed Posit multiplier has been designed using Simulink basic blocks,
which are then translated to VHDL through the HDL Coder tool. For comparison,
three additional architectures based on typical multiplier and adder algorithms are
introduced to demonstrate the increase in performance of the proposed solution. In
particular, the Decoder and Encoder parts are kept the same, and the central com-
putational part has been changed by introducing one multiplier based on the Booth
radix-4, one based on the Simulink default implementation and one based on a stan-
dard Vedic block.

The modified Vedic model described in the previous Section is the only one able
to process the fraction and the exponent exp in the same block. Hence, in all the other
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systems used for this comparison, the exponent exp is processed using the default
Simulink Sum block. During the code generation, the HDL Coder converts this block
with the “+” VHDL operator, which is in turn mapped with a predefined Intellectual
Property (IP) architecture in Vivado.

Moreover, for further assessment, another set of architectures have been designed
based on the same algorithms but with pipelined techniques. The aim of this exper-
iment was to identify the critical paths of the systems and to evaluate the maximum
performance achievable by reducing them. According to the theory, the high modu-
larity of the Vedic solutions is expected to ease the pipeline design, hence, to reach
better performance.

Combinatorial designs

The first set of tests was carried out on fully combinatorial architectures designed as
follows.

Booth radix-4 multiplier This version is based on the default Simulink adder for
the exponent exp sum and on the Booth radix-4 multiplier [145] for the fractions,
which is shown in Figure 4.44.

The system has been implemented in VHDL (hence without the Simulink mod-
eling) following the typical Booth radix-4 multiplier algorithm. At first, one of the
operands (B, in this case) is processed by the recoding phase. Then, the A operand
is processed with the recoded B operand in the PPG block. As the final step, the
PPG output is summed in the Carry Propagate Adder (CPA) block to produce the
multiplier result M.

Simulink default When dealing with code generation, Simulink is able to offer
default implementations for all the supported blocks. As for the adder, the multiply
block is mapped with the standard VHDL operator “*” when exported with the HDL
Coder tool. Vivado interprets this operator through its IP multiplier embedded in the
design suite.
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Figure 4.44: Booth radix-4 multiplier basic blocks.

Vedic multiplier This version relies on the default adder for the exponent exp sum
and on the traditional Vedic multiplier for the fraction multiplication. The model-
based architecture of this solution is the one presented in Figure 4.40 and, as found
in [144], an improvement in performance is expected compared to the previous solu-
tions.

Proposed solution This is the solution embedding the fraction multiplication and
the exponent exp sum in the same, Vedic-based architecture. It refers to the blocks
reported in Figure 4.42 and Figure 4.43.

Pipelined designs

The first step to designing the pipelines was to divide the architectures with registers
to isolate and check the contributions of Decoder, Compute and Encoder parts, as
shown in Figure 4.45.
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Figure 4.45: Posit multiplier pipeline subdivision to isolate Decoder, Compute, and
Encoder areas.

The modifications have been performed in Simulink following the basic pipeline
techniques [146] and, after the high-level simulations, the model has been exported
to Vivado, in which the implementation has been issued.

Then, further pipeline insertion has been performed to break down the Compute
architecture, as shown in Figure 4.46.

As will be seen, here is where the Vedic architectures show their advantages.
Thanks to the high modularity of the stage-based infrastructure, the process of dis-
tributing the pipeline registers is straightforward and requires less effort than the other
solutions in finding the optimal positions.

Figure 4.46: Posit multiplier pipeline subdivision to isolate decoder, compute and
encoder areas, and to break down the compute area.
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Figure 4.47: Pipelined compute block when the Booth radix-4 multiplier is used. The
pipeline registers are modeled in Simulink with the Delay block, here represented
with the z−1 symbol.

Booth radix-4 multiplier The pipeline break-down of the Compute block has been
performed by inserting pipeline registers at the block level (Figure 4.47) and inside
the Booth multiplier (Figure 4.48).

Moving those registers back or forth of this position determines a decrease in
performance, hence this configuration is considered to be the best performing for this
architecture.

Simulink default Here, the only design margin allowed is at the Compute block
level, since the Multiply Simulink block architecture can not be manually pipelined,
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Figure 4.48: Pipelined Booth radix-4 architecture basic blocks.

as for the “*” VHDL operator. The only possible configuration of the pipeline is the
one of Figure 4.49.

Vedic multiplier Here, the Compute block has the same pipeline registers as in
Figure 4.47 and the Vedic multiplier is internally broken as in Figure 4.50.

Thanks to modularity, it is easy to find the optimal position in which to insert the
pipeline registers. Here, the Vedic architecture is not broken at the center because of
the other logic (rounding and switch) which is present in the path of the fraction, as
shown in Figure 4.47. The center to be considered is the center of that path, not the
center of the Vedic circuit alone.

Proposed solution In this case, the exponent exp is embedded inside the modified
Vedic block, hence the Compute block architecture is the one of Figure 4.51.

The modified Vedic block is the one carrying all the heavy logic given by the
fraction multiplication and exponent exp sum. This means that the pipeline can be
inserted more efficiently because both the multiplier and the adder have the same
modular architecture. The resulting circuit is the one of Figure 4.52.

This time, the optimal position to break the architecture is two stages further
to the right than in Figure 4.50 because of the exponent exp architecture, which is
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Figure 4.49: Pipelined compute block when the Simulink default multiplier is used.
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Figure 4.50: Pipelined Vedic multiplier.
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Figure 4.51: Pipelined compute block when the Modified Vedic multiplier-adder is
used.
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Figure 4.52: Pipelined Modified Vedic multiplier-adder.
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Element A B C D

Fraction
multiplier

Booth radix-4
Simulink
default

Vedic Vedic

Exponent exp
sum

Simulink
default

Simulink
default

Simulink
default

Vedic-based

Table 4.15: Summary of the compared algorithms to perform Posit multiplication.

Parameter A B C D

LUTs 113 104 123 122
Tlogic [ns] 3.8 4.3 2.9 2.7

AT 520.6 550.4 426.3 394.2

Table 4.16: Implementation result of the combinatorial versions.

appended to the fraction multiplier and lengthens the carry path.

4.6.4 Results

The obtained variants differing by computing algorithms are summarized in Table
4.15.

The Posit numeric format chosen for the tests is the Posit(8,1) and the imple-
mentation has been performed on a Xilinx Artix 7 FPGA. The first set of results
are related to the combinatorial implementation of the circuits. The implementation
results are shown in Table 4.16.

As expected by the findings of [144], the classical Vedic implementation (C) has
better performance than the default Simulink (B) and Booth (A) implementations.
However, integrating the fraction and exponent exp computations in the same archi-
tecture (D) demonstrates to reach better performance when observing the area-time
product.

After this assessment, a first pipeline evaluation has been performed to identify
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Parameter A B C D

LUTs 113 104 123 121
FFs 63 63 63 63

T 1logic [ns] 1.2 1.2 1.2 1.2
T 2logic [ns] 2.6 2.9 2.1 2.1
T 3logic [ns] 1.2 1.2 1.2 1.2

AT 457.6 484.3 390.6 386.4

Table 4.17: Implementation result of the 2-stage pipeline versions.

Parameter A B C D

LUTs 113 104 123 121
FFs 88 82 86 87

T 1logic [ns] 1.2 1.2 1.2 1.2
T 2Alogic [ns] 1.5 2.8 1.3 1.4
T 2Blogic [ns] 1.3 1.1 1.5 1.0
T 3logic [ns] 1.2 1.2 1.2 1.2

AT 312 534.8 306 285.6

Table 4.18: Implementation result of the 3-stage pipeline versions.

the most time-critical elements of each system. Hence, two pipeline stages have been
introduced to isolate the decoding, the compute and the encoding parts. The results
are shown in Table 4.17.

The sections of the Decoders and the Encoder are equal in terms of delay time,
and the central Compute part is the one having the worst path. Hence, a breakdown
of the Compute part has been carried out to further evaluate the performance. Results
of the newly obtained pipelined circuits are shown in Table 4.18.

The major performance improvement is obtained with the Vedic-based versions
as a direct consequence of the ability to design a well-balanced pipeline architecture.
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Posit Format Pipeline Stages

Posit(8,0) 1, 2, 3
Posit(8,1) 1, 2, 3
Posit(16,1) 1, 2, 3
Posit(16,2) 1, 2, 3
Posit(32,1) 1, 2, 3, 4, 5
Posit(32,2) 1, 2, 3, 4, 5

Table 4.19: Posit formats and pipeline stages taken into consideration for the com-
parison.

The best performing version is the Proposed solution (D), in which the merging of
the fraction multiplication and exponent exp sum in the same architecture allows for
a better critical path reduction.

As a next evaluation step, the comparison has been further extended taking as
reference the proposed solution (i.e. the best performing) and the Booth Radix-4 im-
plementation. In particular, the solutions have been compared in terms of Posit format
and pipeline stages, as reported in Table 4.19, and results are reported in Figure 4.53.

The proposed solution features better area-time performance in the majority of
cases, with a maximum increase of 26.3% in the case of the Posit(8,1).
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Figure 4.53: Comparison of the Posit multiplier with the proposed and the Booth
solutions.





Conclusion

The work presented in this thesis is related to the development and analysis of a set
of Wi-Fi IoT sensors to be used in a Smart Home context. This solution offers an
alternative to traditional architectures, typically based on ZigBee connectivity. This
kind of network is not typically available in the home environment, and this causes
problems in the practical deployment, mainly due to the necessity of the set-up of a
new and complete network system for every installation.

In the new Wi-Fi IoT vision, the sensors are connected to the Internet through a
standard Wi-Fi router, in an IoT compliant fashion, without the need for additional
dedicated home gateways to ensure connectivity or the range extenders often needed
when using other standard protocols. Hence, a complete set of new devices conceived
to acquire data related to users’ behavior has been designed and developed.

The first part of this thesis is about the performance assessment of two sets of Wi-
Fi sensors composed of an Armchair sensor, a Magnetic contact, a Toilet proximity
sensor, and a PIR sensor, which were run for two months. In fact, since the principal
drawback of the Wi-Fi connectivity is the higher power consumption, low power
design strategies have been considered and applied to demonstrate the possibility of
using this architecture in the context of Smart Homes for behavioral monitoring. The
first set of sensors was used to evaluate stand-by battery lifetime while the second
one was placed in a real home environment, inhabited by a family, to evaluate real
battery lifetime. After the two months of testing, only the Toilet proximity sensor ran
out of battery. For the other sensors, the laboratory set showed a residual charge of
about 46%, while in the home environment this value was 34%. Furthermore, in some
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cases, the network could undergo connectivity issues; in these situations, dedicated
operating cycles were introduced, instead of the standard ones, to reduce the impact
on the battery lifetime. This lead to a reduction in the current absorption of 42% in the
case of Wi-Fi network absence and 91% in the case of a lack of Internet connectivity.

Moreover, in order to validate the possibility of using this system as a hardware
platform for behavioral analyses, a possible activity profile of an occupant has been
extracted from the set of sensors installed in the home environment. A user was as-
signed to take note of each interaction with the sensors for two months to test the
system performance. The accuracy, sensitivity, and specificity were evaluated for the
chair sensor (whose interaction, in our environment, can definitely be attributable to
a single person) resulting in 95%, 91%, and 100%, respectively. These results show
that the developed sensor is definitely capable of providing occupancy information in
a real context.

The next part of the thesis focused on the development of a wearable sensor to be
introduced in the same ecosystem of the environmental sensors to enable the human
activity recognition of the user. The work started from a prototype already defined
[22], which has been used as the base platform to introduce the recognition of 7
activities (walking, stand, sitting-down, stay seated, standing-up, running, climbing
stairs down, climbing stairs up, lie-down) in the system.

For the activity recognition, a core algorithm has been identified which can be
used in both a Support Vector Machine (SVM) classifier and, in general, as the ac-
tivation function of neural networks algorithms nodes. This allowed for testing the
system for the final implementation and, in addition, to gather information for a fur-
ther implementation of a Convolutional Neural Network (CNN) developed in collab-
oration with the Computer Engineering research group of the University of Parma.

For the selection of the SVM algorithm in which to introduce the core for the
study, different training phases have been carried with the MathWorks® Classification
Leaner® tool to compare the performance of several SVM versions, and the Cubic
SVM algorithm demonstrated the best accuracy of 93.2%.

Then, a state-of-the-art analysis has been carried out to figure the current ad-
vancements in terms of algorithms accuracy, number of recognized activities, and
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hardware employed for HAR. The result highlighted difficulties in keeping high both
the accuracy and the number of recognized activities, which appears to be the result
of a trade-off between systems cost, size, and power saving. Another outcome of the
research is the polarization of the hardware, which relies on MCU devices. This led to
the selection of an FPGA device as the computational device, which, at the price of a
more complex design phase, allows for a more optimized and potentially performing
architecture than the one offered by traditional MCUs.

The selected algorithm has been then elaborated for FPGA implementation ex-
ploiting the model-based design approach, which allows the designer to focus on the
test and prototyping of the functionality in the design phase, and the technical con-
cerns in the final implementation phase. The expected result is an overall improve-
ment in both the design and the testing of the system.

In the first step, the SVM has been modeled to test the functionality of the algo-
rithm, and the basic elements of the system have been identified and evaluated. Then,
exploiting the flexibility of the model-based approach, a second version of the model
has been designed taking into consideration the final implementation, i.e. the FPGA
device. This allowed for ending up with a mixed combinatorial and sequential model
which has then been processed by the HDL Coder® tool to generate the final VHDL
code.

The VHDL code has been imported in the Altera Quartus II IDE for the imple-
mentation in an Altera Cyclone IV FPGA. As a result, the system has been imple-
mented with a resource usage of 88% of the Logic Elements, 100% of the Multipliers,
and 15% of the Memory blocks. After this, a VHDL timing simulation has been car-
ried out to evaluate the correctness of the output value. The result of this step turned
to be negative, with the verification of the output always ending with a failure.

Two solutions have been identified as the candidates to solve this issue. The first
one is the introduction of pipeline stages inside the architecture to break the critical
timing paths and to speed up the internal signals. However, this practice introduced
a new issue related to the accumulators (i.e. the objects performing the summation
of a vector) architectures. The simplest version of an accumulator is made by a sum
element in which the first input receives the operand element and the second input is
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the feedback of the output. In such a case, if the sum element produces the result in
one clock cycle, the accumulation result is simply delayed by one clock cycle after
the last input element. However, if the sum element has an internal pipeline of p
stages, the input elements frequency must be scaled to fCK/p, where fCK is the clock
frequency.

Going back to the SVM of this work, this would mean slowing down every ac-
cumulator input, reducing the overall system throughput. In addition, this effect is
amplified in the case of cascades of multiple accumulators, which is the case of the
design presented in this thesis (e.g. Figure 4.18).

For this reason, a state-of-the-art analysis was carried out to look for a solution,
which was identified as the Delay Buffering accumulator. The model-based design
approach has been applied to this part of the system and the functionality of the
proposed accumulator was first tested with behavioral simulation in the Simulink en-
vironment. The tests were carried out using two mathematical series vectors as input,
and the results show the correct output accumulation values for both of them. Then,
the VDHL code was automatically generated and performance was assessed with
post-implementation timing simulations on two different target FPGAs, a Xilinx Ar-
tix 7 and an Altera Cyclone 10 LP, in order to demonstrate portability. Results were
compared with the available Simulink IP supporting HDL code generation, demon-
strating a significant reduction of about 95% in both area and time. Other solutions
presented in the literature [126, 112, 125] and the Vivado IP were compared, as well
as demonstrating the applicability of the HDL code generation process and confirm-
ing the choice of architecture. To frame the accumulator performance in a practical
context, it has been evaluated inside of the polynomial cubic kernel of the SVM core.
Additionally, in this context, better performance was confirmed, greatly reducing the
occupied area and making the solution particularly attractive for implementation in
the context of the wearable sensor. The simulation results were also validated with
hardware measurements on the target FPGA.

The second solution evaluated to solve the timing issues is a replacement of the
IEEE 754 32-bit floating-point format used for the computations inside the system.
This numerical format is needed when dealing with data with high numerical dynamic
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ranges, since the usage of classical integer or fixed-point formats would determine a
loss in accuracy during computations. Hence, in the SVM of this work (and for the
majority of machine learning algorithms in general), the floating-point format seems
to be the only feasible solution.

However, in recent years a new numeric format named Posit has been proposed
as a drop-in replacement of the IEEE 754 standard. Among its characteristics, it fea-
tures higher dynamic range and accuracy, which allows for building systems with
performance similar to floating-point but with fewer bits. As a result, this can reduce
the overall complexity of the architecture.

For this reason, a study on the Posit has been carried out using the model-based
design approach on the Posit multiplier as a use case. Several architectures have been
presented in the literature for this object and, in this work, an improvement to the
state-of-the-art has been introduced with a modified version of the multiplier.

A Posit multiplier is composed of three main elements: a decoding part, a com-
putational part, and an encoding part. In detail, the computational part is equivalent
to the IEEE 745 one: the sum of the exponents, the multiplication of the fractions,
and the management of the sign and the special cases. In this work, the exponents’
sum and the fractions’ multiplication parts have been merged in a single, synergistic
part by using a Vedic-based architecture.

The Vedic architecture is at the heart of the Vedic multiplier for integer numbers.
Like the majority of binary integer multipliers, it is made of a partial product gen-
eration (PPG) part and an adder part. In the Vedic multiplier, the PPG is made by
using a "vertical and crosswise" pattern, whose results are summed up in the adder
using a series of 4:2 compressors paired with Full-adders. The main advantage of this
architecture is the modularity, since the PPG and the 4:2 compressors are configured
in independent columns.

This modularity has been exploited and introduced in the Posit multiplier to re-
place the exponents’ sum and fractions’ multiplication with a unique block. The ar-
chitecture features a traditional Vedic multiplier for the fractions and an adder built
as an extension of the 4:2 compressors columns for the exponents’ sum.

The proposed Posit multiplier has been compared with a traditional solution
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based on a Booth Radix-4 multiplier for the fractions. The comparison has been car-
ried out in terms of Posit numbers bit length (i.e. 8, 16, and 32 bits) and pipeline
stages introduced inside the system (i.e. from 1 to 3 for the 8 and 16 bits, and 1 to 5
for the 32 bits) and results show a performance improvement of up to 26.3% of the
area-time product of the proposed solutions.

In the future development of the system, an integration of the solutions explored
to solve the VHDL timing failure is to be performed to evaluate the effects inside
the SVM core algorithm. This integration process is expected to be facilitated by the
model-based approach which has been at the base of all the thesis work.

Once tested and validated the core system, the next step is the implementation
evaluation of the CNN produced in collaboration with the Computer Engineering
team, which demonstrated a recognition accuracy of 97% in the training phase. The
process is expected to take advantage of the solutions found in this work and, again,
the execution of the workflow of Figure 4.6 can be exploited to reach the hardware
implementation. At this point, it is possible to compare the two systems to identify
the one to adopt for further developments inside the Smart Home ecosystem.
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