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Introduction

Recent advancements in parallel computing hardware and frameworks, cou-
pled with the enormous increase in publicly available annotated datasets, has
caused a resurgence in interest from the research community on the topic of
machine learning and, in particular, neural networks. In the last decade alone,
an extremely wide variety of different neural architectures and models have
been proposed to tackle the most disparate problems, including but not lim-
ited to sentence translation, image generation, image classification, detection,
localization and planning. In particular, the release of increasingly powerful
Graphical Processing Units (GPUs) allowed for the development of more com-
plex neural network designs, giving rise to the research field that is currently
known as deep learning. Amid these designs, perhaps the most important and
notorious one is represented by Convolutional Neural Networks (CNNs), a
category of neural network that utilizes multiple stacked layers of learnable
convolutional kernels to build powerful hierarchical representations of input
images and carry out complex visual tasks [1, 2, 3, 4, 5, 6, 7, 8]. All these
solutions have shown remarkable performance, often surpassing "traditional"
algorithms by wide margins while being more efficient due to their high par-
allelism. As a result, many "classical" algorithms are gradually being replaced
by deep learning-based solutions, bringing about the so-called age of Software
2.0: the software engineer no longer hand-designs the logic of the algorithm
directly, but rather designs the neural network model that learns the most
suitable logic from the data.



2 Introduction

Perhaps one of the industries most affected from this shift in paradigm is
automotive: powered by this emergent technology, extensively researched and
applied to the field of computer vision, Advanced Driver Assistance Systems
(ADAS) and Autonomous Driving solutions have benefitted from tremendous
leaps in performance. Among all the tasks that are required for successful au-
tonomous navigation, one of the most critical is perception, which consists of
interpreting the signals captured by the sensor suite displaced on the vehicle
such that they can successfully be used for the subsequent tasks of tracking,
planning and control. Most of the research on deep learning-based perception
in the field of autonomous driving concentrates on two specific kinds of sen-
sors, RGB cameras and LiDARs, which are characterized by complementary
strengths and weaknesses. Cameras provide a much denser and richer type of
signal, while also being considerably cheaper than the LiDAR solutions cur-
rently available on the market; on the other hand, they do not provide any
information about the distance of the perceived objects from the sensor, and
thus require stereoscopic setups to be able to infer the scene depth. Conversely,
LiDARs provide an accurate reconstruction of the surrounding environment in
the form of a point cloud, but such signal is considerably sparser and does not
contain additional semantic information such as color.

Given this data, many deep learning models and techniques have been
developed that carry out different types of perception tasks. A particularly
important one towards fully automated navigation is object detection, which
can be defined as follows: given an input, which is the signal returned by one
or more sensors, the objective is to identify all entities of interest inside such
input and determine their state. Such state can represent any properties of
the detected object: image-based 2D detectors [9, 10, 11], for instance, usually
estimate an image-aligned bounding box that contains said object, as well as
the class it belongs to. 3D detectors [12, 13, 14, 15, 16, 17] estimate 3D bound-
ing boxes that minimally enclose each object, which are represented by their
position in the world, their dimensions and their orientation. By integrating
additional information, like radar data or past measurements [18], other quan-
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tities can be estimated, such as object velocity or trajectory. By summarizing
the input signal via a finite set of elements, each one representing the state
of a particular detection (e.g. an obstacle on the road), object detectors pro-
vide an output that is very simple and compact, and therefore immediately
useful to the subsequent planning phase, as it requires little to no additional
post-processing. Moreover, deep learning-based object detectors are extremely
flexible, allowing to detect almost any category of interest, as long as there
exist suitable training data for model optimization.

Given its central role in contemporary autonomous driving pipelines, this
thesis focuses on the topic of deep object detection. More specifically, I propose
three different systems, each one working on different input data and tackling
a distinct detection problem.

The first system consists of an deep learning model for parking space de-
tection and vacancy classification on surround-view images [19]. This approach
builds upon the existing two-stage object detector Faster R-CNN [9], modify-
ing its structure and logic to adapt it to the peculiar nature of the task of
parking slot detection. Parking slots can be of different types (e.g. rectangular
or slanted) and can be observed from different angles, rendering the original
implementation, which predicts axis-aligned bounding boxes, ineffective for
accurate slot prediction. As such, I propose a variation to the original model,
removing the anchor-based region proposal and allowing generic quadrilaterals
to be estimated instead of axis-aligned boxes. To train and evaluate the model,
I collected and annotated a small dataset depicting different road scenes and
parking lots, stitching together the bird’s eye view projections of four fisheye
cameras to construct surround-view images. Several experiments show the ef-
fectiveness of the proposed formulation in unobserved situations, as well as
under noise and different observation conditions.

The second work consists in an extention of Faster R-CNN to the task of
monocular 3D car detection. This is accomplished by introducing a simple ad-
ditional neural network module into the original architecture which is tasked
to perform image-based 3D detection, essentially by learning the mapping be-
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tween object appearance on the image plane and the corresponding pose in
the world. To train this module, I propose a novel loss formulation based off
the Generalized Intersection-over-Union [20], disentangling the optimization of
each degree of freedom of each 3D bounding box for additional training stabil-
ity [21]. Experiments on the autonomous driving KITTI [22] dataset show the
effectiveness of the method, despite it being simple and straightforward com-
pared to other state-of-the-art solutions. Additional studies on the presented
GIoU-based loss formulation, conducted by comparing it to different optimiza-
tion strategies and by adopting it to optimize an entirely different detector
[23], validate it as an effective cost function for 3D box prediction.

Finally, the third system consists in a neural network model for perform-
ing car, pedestrian and cyclist 3D detection on LiDAR point cloud data. For
this work, I leverage the existing PointNet-based [24, 25] model Votenet [26],
originally introduced to perform 3D object detection on RGB-D data of indoor
scenes. First, to obtain better performance on the noisier and sparser LiDAR
data, I introduce modifications to the model point sampling strategy as well
as to the classifier logic. Then, I propose to leverage attention mechanisms [27]
to explicitly model inter-point relationships and strengthen the feature extrac-
tion phase. Experiments on the KITTI dataset show competitive performance
against state-of-the-art systems, validating both the proposed modifications
and the choice of using attention to extract stronger point cloud representa-
tions.

This thesis is organized as follows. Chapter 1 provides a brief introduction
to neural networks, CNNs and deep learning in general. It then follows up by
reviewing the first deep convolutional models used for image classification and
segmentation, as well as the most important state-of-the-art object detection
techniques, considering both image-based and LiDAR-based approaches. The
following three chapters illustrate the three proposed systems, detailing the
methodologies, the optimization strategies, tha data used for training, as well
as showing extensive experiments and their corresponding results. Finally, the
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conclusions section summarizes the proposed approaches, highlighting and dis-
cussing the obtained results as well as outlining potential directions for future
research.





Chapter 1

Prior Art

In this chapter I provide an intuitive introduction to Neural Networks start-
ing from the basic linear regression problem. Then, I introduce Convolutional
Neural Networks, explaining the differences compared to linear models and de-
tailing the main building blocks and optimization techniques currently adopted
in the literature. Follows a brief description of the first deep convolutional mod-
els for image classification, and how these evolved into standard components
used in most modern architectures. Finally, I describe some of the most promi-
nent approaches to Object Detection, both in 2D based on image inputs and
in 3D using images and point clouds.

1.1 What are Deep Neural Networks?

1.1.1 Linear Regression

Suppose that we are given a set of dataD = {(xi,yi)}Ni=1, in which each output
yi ∈ RO is generated by an unknown function g applied to its corresponding
input xi ∈ RI plus some additive noise ε, that is we have:

yi = g(xi) + εi i = 1, · · · , N. (1.1)
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Suppose that we are asked, given this dataset, to estimate an approximation
of the function g. A common approach for tackling this problem is linear
regression: this method consists of determining this approximation under the
constaint that it is linear, leading to the following model:

fW,b(x) = x ·W + b. (1.2)

In this formulation, W ∈ RO×I and b ∈ RO are unknown variables used to
parameterize the linear function. Determining the optimal set of parameters
that best fit the given data consists on solving a minimization problem, where
the objective is to minimize the difference between the real output samples yi

in D and those generated by the model fW,b:

Ŵ, b̂ = arg min
W,b

L(fW,b, D). (1.3)

L(·, ·) is called cost function or loss function and quantifies how well the given
model represents the data. A commonly adopted choice for the loss function
in linear regression is the quadratic distance:

L(fW,b, D) =
1

N

N∑
i

‖fW,b(xi)− yi‖2. (1.4)

Given the linear formulation with respect to the weights and fact that the
chosen loss function is quadratic, the optimal parameters Ŵ and b̂ can be
found in closed form. Let:

xi+ =

[
1

xi

]
∈ RI+1, θj =

[
bj

WT
j

]
∈ RI+1 j = 1, · · · , O, (1.5)

where Wj is used to indicate the j-th row of matrix W. The optimal set of
weights Θ can be obtained by solving the normal equations:

Θ̂ =
(
XTX

)−1
XTY, (1.6)

where

X =


xT
1+
...

xT
N+

 ∈ RN×(I+1) (1.7)
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is the design matrix and

Θ̂ =
[
θ̂1 · · · θ̂O

]
∈ R(I+1)×O, Y =


yT
1
...

yT
N

 ∈ RN×O. (1.8)

Another approach for determining the optimal parameters Ŵ and b̂ consists
of gradient descent, which is an process that, given an initial value for the
parameters, iteratively refines them by computing the gradients ∂L/∂W and
∂L/∂b and moves the parameter values in the opposite direction, as to reduce
the loss function value:

bt+1 ← bt − γ ·
∂L

∂bt
, Wt+1 ←Wt − γ ·

∂L

∂Wt
. (1.9)

Generally, this procedure continues until either when a certain number of it-
erations is reached or when a stop condition is met, such as the variation in
the loss function value is small enough. The quantity γ represents the learn-
ing rate, which controls the step of each update and must be chosen carefully
depending on the problem. Differently from solving the normal equations (Eq.
1.6), gradient descent does not necessarily return the optimal solution, but
rather an approximation. Despite this fact, there exist cases when the lat-
ter method is preferrable to the former: solving Eq. 1.6 involves inverting the
matrix XTX ∈ R(I+1)×(I+1), which might be computationally heavy if the di-
mensionality I of the data points is high; in these cases, using gradient descent
will result in much improved execution times.

1.1.2 Linear Basis Function Regression

Given the imposed linearity constraint, the model resulting from this optimiza-
tion is able to describe the data appropriately, and therefore be used effectively
for estimations on new data points, only if the underlying function that gener-
ated the samples is indeed linear. The cases where this mapping is not linear,
but we know the family of functions that it belongs to, can be tackled using
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linear basis function regression. In this case, each input is transformed into a
feature vector by a set of predetermined functions, known as basis functions
Φ(x) = [φ1(x), ..., φM (x)], before being fed to the linear model:

f(x)W,b = Φ(x) ·W + b. (1.10)

The use of this intermediate representation allows to model more complex rela-
tionships between input and output. For instance, if we know beforehand that
x and y are both scalars and the process g generating y from x is a polynomial
of degree n, we could choose Φ(x) = [x,x2, ...,xn] as basis functions, allowing
the model to represent polynomial functions up to degree n. Optimizing via the
minimization of Eq.1.3 would yield the polynomial that best fits the dataset
D.

Despite no longer being linear with respect to the input, this new model is
still linear with respect to the weights, which means that a closed form solution
can be obtained using the normal equations if the quadratic loss (Eq. 1.4) is
adopted: the only difference is that now the design matrix X does not contain
the input values, but rather their feature representations obtained through the
basis functions. Note that simple linear regression can be obtained by setting
Φ(x) = x.

1.1.3 Parametric Basis Functions: The most basic Neural Net-
work

For complex data it is often unfeasible to determine the nature of the under-
lying function g, and therefore a suitable set of intermediate basis functions.
These cases can be approached by utilizing parametric basis functions [28]:

Φ(x) = [φW
1,b1

1 (x), ..., φW
M ,bM

M (x)]. (1.11)

Here, each φW
i,bi

i (x) is commonly a scalar function composed of a parametric
linear mapping followed by a non-linear function:

φW
i,bi

i (x) = σ(x ·Wi + bi). (1.12)
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The non-linear function σ(·), commonly referred to as activation function, is
necessary to allow the set of basis functions to model non-linear relationships
between input and output.

In this formulation, the set of parameters {(Wi,bi)}Mi is also optimized,
allowing for the most suitable intermediate representation to be determined
directly from the training data. Contrarily to the previous two approaches,
however, this model is no longer linear with respect to the parameters, due to
the presence of the activation function σ(·): as a result, the corresponding mini-
mization problem (Eqs. 1.3, 1.4) is no longer convex. This has two implications:
on the one hand, there is no closed form solution for the set of parameters;
on the other hand, there is no guarantee that gradient descent techniques will
reach the global minimum, as the loss function might now contain local minima
and saddle points.

This formulation represents the most basic form of neural network :

• the set basis functions Φ parametrized by {(Wi,bi)}Mi , is commonly
referred to as hidden layer. This name stems from the fact that the in-
termediate representation produced by Φ is generally abstract and not
immediately interpretable by an external observer;

• each Wi ∈ RI represents a weight term, and each bi ∈ R represents a
bias term;

• each element φW
i,bi

i (x) of the feature vector is commonly referred to as
neuron, and the number of neurons in the hidden layer is called width;

• the hidden layer Φ as defined in Equation 1.11 represents a fully-connected
layer, since each output neuron is a function of the entire input;

• the outward linear mapping fW,b, parametrized by {W,b}, represents
the output layer of the network.

The Universal Approximation Theorem [29, 30] states that this neural network
is theoretically capable of approximating any continuous function, under the
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assumption that the activation function σ(·) is non-constant and continuous
and that the width of the network (i.e. the number of basis functions) is suffi-
ciently high. Given that any algorithm can be represented by a function (e.g.
classifying an image can be seen as a function that maps an input matrix of
pixels to a probability distribution), this model could be used to solve any
task. For many practical applications, however, obtaining a sufficiently accu-
rate approximation of the desired function would require an extremely high
width, which leads to prohibitive computational and memory costs. Moreover,
this kind of model exhibits a tendency to overfit the data, expecially when the
dataset is limited. Overfitting is a phenomenon where the model, instead of
learning an approximation of the unknown underlying function generating the
data, it memorizes the training set instead. As a result, the model performs
well on samples belonging to the training set, but exhibits poor results on new,
unobserved data points.

1.1.4 From Shallow to Deep Models

The basic idea in Deep Learning and Deep Neural Networks consists of extend-
ing basic neural networks by applying multiple hidden layers in a cascaded way,
leading to the following formulation:

f(x)W,b = WT ·ΦL ◦ΦL−1... ◦Φ1(x) + b, (1.13)

where Φl(x) = [φW
l,1,bl,1

1 (x), ..., φW
l,Ml ,bl,Ml

M (x)] represents the l-th hidden
layer (i.e.: the l-th set of basis functions) of the model. The number of hid-
den layers that comprise this model is commonly referred to as the depth of
the neural network. A vast amount of research on a wide variety of differ-
ent tasks highlighted how deeper models are capable of attaining comparable
performance to shallow networks (i.e. networks with one or only few hidden
layers) with considerably less parameters, while also being less prone to over-
fitting. The common consensus on why this is the case is attributed to how
deep models extract information from the input compared to shallow ones.
Despite the intermediate representation produced by a network with a single
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hidden layer is enough to ensure the model is a universal approximator, it is
believed to be highly inefficient [31]. Conversely, stacking a sequence of hidden
layers one after the other allows a deeper network to learn a representation of
the input at multiple scales and levels of abstractions, which in turn allows for
more complex function families to be represented more efficiently. Moreover,
this hierarchical structure of intermediate representations actively contributes
to preventing overfitting, as it is more likely to capture meaningful patterns in
the input rather than just memorizing the data points. Increasing the depth,
however, is inevitably met with an higher difficulty in optimizing the model.
Increasing the number of hidden layers leads to more cascaded non-linear ac-
tivations, which in turn renders the cost function highly non-convex.

Early on, common choices for the activation function used to be the logistic
function, or sigmoid σ(x) = (1 + e−x)

−1, and the hyperbolic tangent function
tanh(x) = (1 − e−2x)/(1 + e−2x). When increasing the depth of the model,
however, these functions often cause optimization issues: this is due to the
properties of the gradients of these functions, which is always ≤ 1 (in case
of sigmoid ≤ 1/4) and quickly saturates to zero when moving away from the
origin. As a result, chaining multiple hidden layers that use this kind of non-
linearity leads to gradients that get progressively smaller towards the early
layers. This phenomenon is known as the vanishing gradient problem, and it
hinders optimization as the parameters of these layers cannot update properly.
As a result, most modern deep learning pipelines have gravitated towards non-
saturating functions. The most widely adopted choice is the Rectified Linear
Unit ReLU (x) = max (0, x) [32], whose gradient is constant to 1 in the active
part of the function, thus avoiding the vanishing of the gradient. In order to
have useful training signal for every input value, variations of the ReLU have
been proposed, such as the Leaky ReLU, the PReLU [33] and the SELU [34].

1.1.5 Training Neural Networks

Despite the non-convexity of the loss function, gradient descent techniques can
still be utilized to optimize Neural Networks: while there is no guarantee that



14 Chapter 1. Prior Art

the optimization will converge towards the global minimum of the function,
the hope is that the process will result to a local minimum that is appropriate
enough for the task to perform. In order to compute the gradients to use for
gradient descent, backpropagation [35] is often employed: this method relies
on the ability to determine the gradient of simple functions, as well as on the
chain rule of differentiability, to progressively determine the numerical value
of the gradient of each weight with respect to the loss function. For instance,
given the loss function value L, ∂L/∂f can be computed directly, which can
then be used to recover the derivatives of the weights using the chain rule:

∂L

∂W
=
∂L

∂f
· ∂f

∂W
,

∂L

∂b
=
∂L

∂f
· ∂f

∂b
. (1.14)

Here, ∂f/∂W and ∂f/∂b are trivial to compute given the linear relationship
between the weights and biases and the function f . Given these quantities,
the chain rule can then be enforced iteratively to compute the gradients with
respect to the hidden layer parameters:

∂L

∂WL
=
∂L

∂f
· ∂f

∂ΦL
· ∂ΦL

∂WL
, (1.15)

∂L

∂Wl
=
∂L

∂f
· ∂f

∂ΦL
· ∂ΦL

∂ΦL−1
· . . . ∂Φl

∂Wl
l = 1, . . . , L− 1 (1.16)

.
Again, all the partial derivatives in the above equations can be computed

analytically, as the corresponding functions are either linear or depend on the
non-linearity σ(·) whose derivative should be known.

Modern Neural Networks are often computationally expensive and they are
usually optimized over very large datasets. As a result, applying gradient de-
scent directly for their optimization is often intractable. This is due to the fact
that gradient descent requires the model to be evaluated on all training sam-
ples (i.e. Eq. 1.4) every time a parameter update (Eq. 1.9) is to be performed,
which leads to a prohibitive amount of time necessary to reach the local mini-
mum. As a result, most current models are trained using Stochastic Gradient
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Descent (SGD) instead: in this variant, each optimization step is performed
using only B � N randomly sampled data points at a time, where each group
of B elements is often referred to as batch and B represents the batch size.
Consequently, performing each parameter update is significantly faster, as it
requires only a fraction of the data each time. Once the entire training set is
used to perform updates, an epoch is completed, the training set is re-shuffled
and new batches are created for further training. The theoretical drawback of
this method is that it does not guarantee that even a local minimum will be
reached during optimization. In pratice, however, SGD tends to reach a satis-
factory value for the cost function rather quickly and, by introducing noise into
the training process by randomly sampling batches of data each time, often
acts as a regularizer, reducing overfitting and leading to models that perform
better on new data samples.

Many variations of SGD have been proposed, with the objective of im-
proving and speeding up training. Adding a momentum term [36] allows for a
faster convergence towards a minimum and helps avoid oscillations in badly-
conditioned regions of the loss function. Adagrad [37], instead of updating each
parameter using the same learning rate, adapts the learning rate individually
to each parameter. ADAM [38], one of the most used optimizers currently to-
gether with SGD with momentum, improves upon the idea of Adagrad while
also keeping track of past gradient updates like in momentum SGD.

1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent perhaps the most well-known
and widely-used category of deep learning models. These neural networks are
designed to harness the properties of certain classes of signals of being orga-
nized in hierarchies and presenting local patterns. Examples of these kinds of
signals include:

• natural images, in which neighboring pixels are correlated (the value of
each pixel usually depends on its vicinity) and are organized to form
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spacial patterns and structures;

• videos, where the correlation takes place not only in space but also
through time;

• natural text, where neighboring characters form words and neighboring
words form sentences.

1.2.1 The convolutional operator

Convolution is a fundamental mathematical operator which is widely used in
image processing. It can be interpreted as a way to perform multiplication
between two signals having different numbers of elements. For instance, given
an input image x ∈ RH×W×C , where H ×W represent its spatial dimensions
and C its number of channels, the convolution of this image with a kernel
W ∈ RK1×K2×C can be defined as follows:

y(h,w) = (x ∗W)(h,w) =
∑

(k1,k2)∈S

x(h+ k1, w + k2) ·W(k1, k2), (1.17)

where
S =

[
−
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2

⌋
, . . . ,

⌈
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2
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×
[
−
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K2

2

⌋
, . . . ,

⌈
K2

2

⌉]
(1.18)

The output y ∈ RH′×W ′ preserves the number of spatial dimensions of the
input, and each element (h,w) is the result of a scalar product between the
kernel and the neighborhood of (h,w) in the original image. In other words,
convolution is a function that operates locally and that returns a map of local
responses of the kernel to the input. Due to the fact that convolution cannot
be computed for those positions in which the kernel is not completely inside
the input, the spatial dimensions H ′ × W ′ of y do not necessarily coincide
with those of the input. A commonly adopted technique, especially in deep
convolutional models, to preserve the spatial dimensions consists of padding
the input, commonly with zeros, such that every location can be processed.
Note that, although Eqs. 1.17 and 1.18 describe a bidimensional convolution,
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this operator can be applied to signals having any arbitrary number of spatial
dimensions by choosing the kernels appropriately.

Even before CNNs, convolution has been widely used in computer vision
for many different tasks. For instance, convolution is central in the well-known
Canny edge detector algorithm [39] as it is used both for image smoothing
(using gaussian kernels) and for gradient computation (typically done using
Sobel kernels). Another direct application of convolution in computer vision is
image sharpening, which makes use of high-pass kernels.

1.2.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) can be defined as a Neural Network
in which at least one of its hidden layers is convolutional instead of fully-
connected. A convolutional layer is a layer in which the basis functions in
Φ = {φW

i,bi

i }Mi=1 take the following form:

φW
i,bi

i (x) = σ(x ∗Wi + bi). (1.19)

The differences with respect to a fully-connected layers are as follows:

• each weight term Wi ∈ RK1×K2×C is now a kernel, applied to the input
x ∈ RH×W×C (in case of bidimensional convolution);

• each bias term bi ∈ R is a scalar value which is added independently to
each output of the convolution;

• the activation function σ(·) is applied independently to each element
resulting from the above transformation.

As a result, the output of each function φi is no longer a scalar, but rather
a matrix in RH×W (assuming proper padding is used), and the output of the
convolutional layer Φ is in RH×W×M . A bidimensional convolutional layer can
therefore be interpreted as a layer that takes a signal having spatial dimensions
H ×W and C channels as input, and produces a new signal having the same
spatial size and M channels in which each element is a feature representation
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of the neighborhood of the same element in the input. This output signal is
commonly referred to as feature map, while each of its elements represents a
neuron. The convolutional kernels used to compute the feature maps, instead
of being hand designed to perform specific operations (e.g. smoothing or gra-
dient computation) are learned during optimization, yielding the set of local
transformations that are most appropriate for the task at hand.

Convolutional layers bring several advantages over their fully-connected
counterpart:

• the resulting model contains considerably less parameters. For example,
if the input to a fully-connected layer contains I elements, the weights of
each basis function must contain I elements. For high dimensional inputs,
such as images, this would quickly lead to prohibitively large models. The
number of weights in convolutional layers, on the other hand, depends
only on the amount of channels of the input, which are generally limited
compared to their spatial dimensions;

• the convolutional operation is equivariant to translations in the input.
In other words, if the input signal is shifted along one or more of its
spatial dimensions, the corresponding output value does not change but
it is subject to the same shift. This property is very powerful, as it im-
plies that convolution is able to capture local patterns within an input
independently of where those patterns are. This is in contrast to fully-
connected layers, in which a shift of the input signal leads to an entirely
different output.

The depth of the model plays an especially important role for CNNs, as stacking
multiple convolutional layers one after the other allows the neurons of the
model to progressively expand their receptive field over the input. The receptive
field of a neuron can be defined as the portion of the input that neuron is a
function of. Suppose that the first hidden layer of a CNN is comprised of
kernels having spatial size 3 × 3. The receptive field of the neurons produced
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by this layer would be 3 × 3, as each neuron is a function of a 3 × 3 region
of the input. If we now apply a second convolutional hidden layer, again with
kernel size 3× 3, to the feature map produced by the first layer, the resulting
neurons would have a receptive field of 5 × 5 over the input (IMAGE). By
stacking multiple convolutional layers, it is possible to progressively increase
the receptive fields of the neurons arbitrarily, potentially allowing each one to
"see" the entire input image. This has proven to be very powerful in practice
as it allows for very "strong" hierarchical representations to be learned by
the model: the neurons of the early hidden layers learn to recognize low-level
general patterns, such as edges, dots or other basic shapes. Neurons from later
layers become progressively more specialized and abstract, as they have access
to more contextual information, and learn to recognize high-level structures
that are useful for solving the specific task [40, 41]. This phenomenon is one
of the most important contributors to the robustness of this class of models
to overfitting, as well as their ability to perform well even when trained on
limited data.

In practice, modern deep convolutional models do not keep the spatial di-
mensions constant throughout the entire model, but rather they progressively
reduce them, generating increasingly smaller feature maps. This is achieved
either by using strided convolutional layers or pooling operators. Strided con-
volutions operate exactly like normal convolutions, with the difference that
some input locations are skipped. In particular, the stride of this operator de-
termines how many positions the kernel "moves" when computing the next
value: for instance, is the stride is equal to 2 this means that every other el-
ement in the input will be ignored, leading to an output whose spatial size is
half of that of the input. Pooling operators can be seen as a special case of
strided convolutions in which the kernels are not optimized, but rather per-
form a specific kind of operation over the input. The most widely used are Max
Pooling and Average Pooling, in which the kernels perform a max and mean
operation respectively. Normal convolutions can also be seen as a special case
of strided convolution where stride is equal to 1. The advantage of progres-
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sively compressing the feature map size throughout the model is twofold: on
the one hand, it allows to rapidly increase the receptive field over the input;
on the other hand, it lightens the model and speeds-up computation.

Despite being able to learn powerful and abstract representations, CNNs
suffer from the drawback of being computationally expensive to train. Con-
trary to a fully-connected layer, where each basis function generates a single
neuron, each function in a convolutional layer generates a feature map, that is
a matrix of neurons. Since error backpropagation through the model requires
the knowledge of all intermediate values in order to compute gradients, storing
the entire hierarchy of feature maps requires a considerable amount of mem-
ory, especially for deep models and inputs high in spatial size. Moreover, the
amount of multiplications and summation operations required by convolutional
layers is significant. For these reasons, despite being theorized for many years
[42, 43, 44], CNN models have been applied successfully to large-scale datasets
and complex inputs only in recent years, as a result of the development of
modern highly parallel hardware (i.e. GPUs) and programming languages [45].

1.3 The First Large Scale Models for Image Classi-
fication

The first truly large-scale deep Convolutional Neural Network can be identified
in the pioneering work of Krizhevsky et al. [1]. In their work, the authors em-
ployed an 8-layer deep Convolutional Neural Network (later named AlexNet)
to win the 2012 edition of the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [46, 47], reducing the top-5 error rate from the 25.8 % of the
2011 edition down to 16.4 %. The ILSVRC classification challenge consists
of classifying 100.000 RGB images of varying sizes in one of 1000 different
classes, given a dataset consisting of 1.2 million and 50.000 annotated images
for training and evaluation respectively. The impact that this work had on
the computer vision community was considerable: on the one hand, it demon-
strated the vast superiority of deep models compared to shallow ones on large
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scale and complex datasets; on the other hand, it showed that the training of
these kinds of models was feasible using GPU-enabled parallel computing.

Since this discovery, the field of deep learning has seen a spike in interest
from the research community, and new and more powerful models were quickly
developed. In 2014 two new models, VGG [2] and GoogLeNet [48], lowered the
error rate to 7.3 % and 6.6 % respectively. The first one is similar in structure
to AlexNet, but concentrates on smaller kernel sizes and is 19-layers deep. The
second one is 22-layer deep and introduces the inception module, which takes
advantage of kernels having multiple sizes applied to the same input in order
to construct multi-scale representations at each layer as well as to reduce the
computational cost.

In 2015, Ioffe et al. [49] introduced Batch Normalization, which quickly
became a standard operation adopted by most deep models. The purpose of
Batch Normalization was to reduce the internal covariate shift (i.e. varying
distributions of activations within the model) in order to speed-up the training
process. This is achieved by normalizing the activations at each layer to a
zero-mean unit-variance distribution using the elements in each mini-batch as
samples for the normalization. This leads to a better gradient flow through
model, allowing for higher learning rates to be used and, ultimately, a faster
convergence. Moreover, by allowing each sample to be used in conjunction
with all other samples in the batch through the normalization process, Batch
Normalization also acts as a regularizer, improving model generalization. By
employing Batch Normalization in conjunction with a variant of GoogLeNet,
the authors lowered the error rate on ImageNet down to 4.8 %.

The trend of improving performance by employing increasingly deep mod-
els, however, saturated quickly: after a certain number of layers, adding more
depth did not bring further performance advantages. Not only that, but after
a certain point the performance started to degrade. In particular, what was
observed was that this degradation was not caused by overfitting as the mod-
els also exhibited higher error rates on the training set, but was rather due
to the fact that deeper models are intrinsically more difficult to optimize. To
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deal with this increased difficulty, He. et al. in 2015 proposed ResNet [3]. The
intuition behind this work is rather simple: given a model, there exist deeper
models whose training error is no worse than that of the original model. Such
models can simply be obtained by copying the layers of the shallower model
and adding any number of additional layers that perform an identity transfor-
mation. On the back of this intuition, the authors introduced residual layers,
that is layers that encode the desired function in the form of a residual from
the identity mapping. This is in contrast with the previous approaches, where
each layer encoded the desired mapping directly. The hypothesis is that op-
timizing a specific function starting from the identity should be easier than
starting from zero. To force the layers to encode a residual mapping, the au-
thors employed shortcut connections, that is they sum the input of a layer to
its output, introducing no extra memory or computational cost. An example
of the residual block used can be seen in Fig.(FIGURA). ResNet to its core is
simply a network in which multiple residual blocks are stacked one after the
others. The authors demonstrated experimentally that this kind of model is
indeed easier to optimize, and showed that a model as deep as 1000 layers can
be successfully trained to convergence. ResNet-151, a version 151 layers deep,
reached an error rate of 3.57 %, winning the 2015 edition of the classification
competition.

Other than the pioneering works illustrated above, models that use different
achitectures and techniques are continuously being developed. Two notorious
examples are DenseNet [50] and MobileNet [51]. The first one builds upon the
idea of ResNet, and introduces skip connections that connect each layer with
every other layer, allowing for better gradient flow and feature reuse through-
out the model. The resulting architectures require less computation, are lighter
than ResNet counterparts while achieving comparable performance. The sec-
ond one makes use of depth-separable convolutions to drastically reduce model
complexity while retaining good performance. The resulting architectures are
memory and computation light and are targeted towards embedded and mobile
vision applications.
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Despite the low-level differences between the presented architectures for
classification, they all share the same high-level structure:

• an input image x ∈ RH×W×C is processed by a set of convolutional layers
which produces a feature map ΦL(x) ∈ RH′×W ′×C′ . This representation
has lower spatial dimensions compared to the input (H ′ < H, W ′ < W )
and can be thought of as a high-level representation of the input content,
where each pixel encodes information about a different location. This
convolutional part of the model is often referred to in literature as feature
extractor or backbone;

• the feature map Φ(x) is "unrolled" into a vector and processed one or
more fully-connected layers, whose final output is another vector y ∈ RO

which encodes a probability distribution and O represents the number
of possible classes. These fully-connected layers can be interpreted as
the task-specific portion of the model, which consumes the high-level
representation extracted by the backbone and performs the classification
task.

As already stated previously, in convolutional networks the neurons of each
layer have access only to a limited scope of the input. Each convolutional layer
build upon feature representations extracted by the previous layer, progres-
sively increasing the receptive field over the input and extracting more abstract
representations. This hierarchical structure is what makes features extracted
by CNNs particularly robust: not having access to the entire input signal, but
rather having to build upon low-level patterns to extract high-level represen-
tations, makes this class of architectures considerably less prone to memorize
the data they are trained on. In other words, the extracted features show a
high degree of generality, that is they tend to adapt well on new or unseen
patterns, making the underlying models viable for transfer learning. Transfer
learning consists of harnessing the knowledge already acquired to facilitate and
improve the learning on new data and/or new tasks. This proves particularly
useful when the task to be performed is complex and the training data is scarce,
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as it allows to reuse information acquired on other, and potentially larger and
more heterogeneous, datasets. Considering that ImageNet contains over 1 mil-
lion images spanning 1000 different classes, the backbones of the previously
illustrated models have historically been prime targets for transfer learning,
and constitute to the present day a library of default pre-trained model archi-
tectures that are often used as starting point for developing new models and
pipelines.

1.4 Semantic Segmentation

An important task for autonomous vehicles perception is image segmentation,
which can be considered the natural evolution to image classification. In this
task, the objective is no longer to assign a class to the input image, but rather to
assign a class to each input pixel. That is, given an input image x ∈ RH×W×C

the corresponding output is y ∈ RH×W×O, where O is the number of possible
classes and each pixel contains a probability distribution over the classes for
the corresponding pixel in the input. In general, the high-level structure of a
semantic segmentation network is as follows:

• as in image classification, the input x ∈ RH×W×C is processed by a convo-
lutional backbone, which extracts the feature maps ΦL(x) ∈ RH′×W ′×C′ ;

• these feature maps are no longer vectorized and fed to fully-connected
layers, but instead are directly processed by a second convolutional net-
work which gradually upsamples these feature maps back to the origi-
nal spatial size H ×W and predicts a probability vector for each pixel.
Commonly used operators to perform upsampling include interpolation
followed by convolution and transposed convolution [52].

Segmentation data is considerably more costly to annotate compared to classi-
fication data, as it requires a label to be assigned to each pixel of every image.
As a result, most publicly available datasets [53, 54, 55] only contain on average
a few tens of thousands of samples, a fraction of the data present in ImageNet.
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Therefore, the vast majority of research employs transfer learning, adopting
the backbone of a pre-existing model trained on ImageNet and substituting
the fully-connected layers previously used for classification with convolutional
layers that perform segmentation. This way, the weights of the backbone are
not learned from scratch, but are rather fine-tuned from an already good ini-
tialization, as it comes from the training on a much bigger dataset. This is
proven to lead to faster convergence as well as better results, especially if the
dataset for the new task is small. Due to the effectiveness of transfer learning,
approaches that do not adopt pre-existing backbone architectures still pre-train
their feature extractors on the ImageNet classification task before optimizing
the entire model on the task at hand.

One of the first fully-convolutional CNNs for semantic segmentation is FCN
(Fully Convolutional Network) [56]: in this work, the authors directly adapt
AlexNet, GoogLeNet and VGG to the segmentation task by adopting their
pre-trained backbones and replacing the fully-connected classifier with trans-
posed convolutions that upsample the feature maps and predict probability
distributions for each pixel. The lightest model, FCN32s, performs the upsam-
pling using a single layer, which limits the ability of the network to segment
finer details. 32s here indicates that the feature maps before upsampling have
stride 32, that is they have resolution that is 32 times smaller than the input.
To obtain a higher resolution segmentation, the authors propose two archi-
tectural variations, FCN16s and FCN8s, in which they use additional feature
maps from earlier layers (and thus having higher resolution) to perform a more
gradual upsampling, resulting in more fine-grained segmentation masks. Both
of these networks are fine-tuned starting from the pretrained FCN32s model.

In U-Net [8], the authors build on the idea of FCN, and to perform up-
sampling and prediction they adopt a mirrored version of the backbone, in
which each pooling operator is replaced by an upsampling operator. At each
resolution, the upsampled features are concatenated and fused with the corre-
sponding features from the backbone at the same resolution, allowing for more
accurate localization.
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The current state-of-the-art for segmentation models is represented by the
DeepLab family of architectures [4, 57, 58]. In DeepLab [4], the authors adopt
an ImageNet-pretrained VGG16 model as base for the segmentation. To deal
with the limitation that VGG16 produces a feature map at 1/32 the original
resolution (which in turn would produce very coarse segmentation maps), the
authors remove the last two pooling layers of the model, and employ dilated
convolutions in the following layers to make up for the loss of receptive field.
The resulting segmentation map is then upsampled from 1/8 the resolution to
the original input size using bilinear interpolation, and Conditional Random
Fields (CRF) are used to further improve the result and better segment the
finer details. DeepLabv2 [57], extends DeepLab by integrating ResNet as addi-
tional backbone for better performance and by introducing the Atrous Spatial
Pyramid Pooling (ASPP) module, where multiple kernels having multiple dila-
tion rates are used to capture objects at different sizes and scales. DeepLabv3
[58] augments the ASPP module with image-level features and removes the
costly CRF post-processing, while still performing considerably better than its
predecessors.

1.5 Object detection

Semantic segmentation provides very powerful information for autonomous
driving systems. For example, it can be applied to determine the free driving
space, or to locate traffic lanes or other kinds of horizontal traffic signs. It
represents, however, redundant information when the targets for detection are
obstacles such as cars or pedestrians or more complex entities such as vertical
traffic signs. In these cases, since semantic segmentation does not provide an
instance-level distinction but only returns the class each pixel belongs to, addi-
tional post-processing steps would be required to determine the exact location
of each single object.

A class of problems that can be considered complementary to semantic
segmentation is object detection. Object detection can be defined as follows:
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given an input x (e.g. an image, a LiDAR scan etc...), the goal is to locate
within this input all the entities of interest as well as to describe their states
{Si}Ni=1. This state might include the position of the entity, its class and other
properties such as size or velocity. What makes object detection particularly
interesting and challenging is that the number of detections, and therefore
the number of outputs to be returned by system, greatly varies depending
on the input. For instance, one image might display several tens of cars to
be detected or none at all. This is in contrast with the previously presented
problems, where the dimension of the output was independent of the content
of the input: in classification the output is always a single probability vector;
in image segmentation the output is always a probability vector per image
pixel. To deal with this complication, the general approach adopted in deep
learning consists on estimating a very high number of possible objects and
progressively suppress redundant and negative information to obtain the final
set of high-quality estimations.

1.5.1 2D Object Detection on Images

Probably the most researched variant of object detection in deep learning is 2D
object detection on images. In this case, the state for each object is represented
by its class and by the smallest axis-aligned 2D bounding box containing it,
that is Si = (ci, xi, yi, wi, hi), where ci represents the class of the i-th object, xi
and yi the center of its bounding box in the image and hi and wi its dimensions.
Pioneering research in the direction of fully deep learning-based object detec-
tion is represented by R-CNN (Region-based CNN) [5]. In this work, object
detection is achieved via a combination of Selective Search [59] and ImageNet-
pretrained AlexNet. Selective Search is an algorithm that, given an image,
returns a set of bounding boxes that are likely to be located in interesting
regions of the image. The generated set of boxes has high recall (it is likely
to contain all interesting objects), low precision (most of the boxes are wrong,
inaccurate or duplicates) and is generally very large (around ∼ 2000 boxes are
generated for a 600x600 image). Moreover, the algorithm is class-agnostic, that
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is it does not specify what kind of object is within each of the boxes. RCNN
uses Selective Search to determine an initial set of detections, called region pro-
posals; each proposal is then used to generate a new image, of size 227× 227,
by cropping and reshaping its content, that is subsequently given as input to
a pretrained AlexNet model, which is tasked to classify the proposal content
as well as to compute a correction to the box location and size. In particu-
lar, the last fully-connected layer of AlexNet is replaced with two new parallel
layers: a layer having N + 1 outputs, which represents the probability vector
for the desired N classes plus the background class for negative boxes, and
a layer for bounding box regression, which returns four values corresponding
to the box corrections in position and dimensions. While surpassing all other
methods by a large margin, however, RCNN is extremely slow, requiring over
40 seconds per image. This is due to the fact that AlexNet must be applied to
each of the 2000+ region proposals, resulting in a system that is impractical
for autonomous driving situations, where high frame rates are essential.

A step towards improving upon this limitation is the follow-up work Fast
R-CNN [60]. The major contribution of this work consists in feature shar-
ing among different proposals: here the convolutional backbone, which is now
VGG16, is applied to the entire input image, obtaining a feature map that
is shared for all objects. Then, for each region proposal returned by Selective
Search, the corresponding area in the feature map is determined by projecting
the box and warped to a standard 7x7 size using the so called RoI Pooling
operation. This pooled set of features is finally used for classification and box
regression. This formulation has two major advantages over the original design:
on the one hand, applying the convolutional backbone to the entire image in-
stead of once per proposal results in a considerably faster computation, over
200 times faster than RCNN. On the other hand, sharing the same set of fea-
tures for all proposals results in a stronger intermediate representation that is
more aware of the context, which leads to improved performance.

Despite being considerably faster than RCNN, Fast R-CNN is still bot-
tlenecked by Selective Search, which requires around 2 seconds per image to
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generate the proposal boxes, slowing down the entire pipeline considerably. A
solution to this problem is introduced by Faster R-CNN [9]. In this work, a
specific subnetwork, called Region Proposal Network (RPN), is used instead
of Selective Search to estimate the set of proposal boxes. RPN generates the
proposal boxes by assigning to each pixel of the feature map generated by the
backbone a set of predefined boxes, called anchors. For each anchor, it then
estimates whether it is an interesting or a background box, as well as comput-
ing a correction for it. The proposal boxes are finally obtained by removing
the background anchors and by filtering duplicates via Non-Maximum Sup-
pression. These proposals are then processed as in Fast R-CNN to obtain the
final detections. Further details about this approach will be reviewed in the
next chapter, as Faster R-CNN is central to both the proposed Parking Slot
Detection network as well as the 3D Object Detection network. By avoiding
Selective Search, and performing both region proposal and bounding box esti-
mation in a unified forward pass of the model, Faster R-CNN is considerably
faster than its predecessors, allowing for more than 15 images to be processed
per second. Moreover, it achieves top performance, making it one of the current
state-of-the-art approaches. This method is further improved in a subsequent
work [11], where a Feature Pyramid Network is used as backbone in order to
extract feature maps at multiple scales. Anchors and proposal boxes are then
assigned to the proper scale depending on their size.

The R-CNN approaches are widely regarded as two-stage approaches. This
is due to the fact that the final detections are obtained through two separate
phases: first, a set of proposal boxes is generated. Then, each proposal is ana-
lyzed individually (i.e. through the pooling of its features) in order to compute
its class and refine its state. Another class of object detection techniques is
represented by single-stage methods: here, the final detections are obtained
directly, without exploiting an intermediate set of object proposals.

One of the first works in this direction is represented by YOLO (You Only
Look Once) [6]. Here, object detection is cast as a single convolutional (ndr:
there are 2 FC layers tho) neural network that estimates the bounding boxes
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directly from the input image. To achieve this, the input image is divided into
an S×S grid of cells, and the network is tasked to estimate B potential boxes
per cell. To do this, the input is processed by a stack of convolutional and
pooling operations such that an S × S × (B ∗ 5 +C) feature map is obtained.
Each pixel of this map is responsible for returning the boxes for the objects
whose centers lie in the corresponding grid cell of the input: in particular,
the network returns B possible boxes per cell with the respective confidences,
center coordinates and dimensions, as well as a C-class probability vector that
indicates the category of the detected object. The unified design adopted by
this approach allows for extremely fast predictions: the base model, which is
a modified GoogLeNet architecture, is able to perform detection at 45 frames
per second, while the light model, which is similar to the base model but with
less layers, reaches 155 frames per second.

Similarly to YOLO, SSD (Single-Shot Multibox Detector) [7] approaches
object detection using a single, unified, convolutional neural network. Instead
of predicting the boxes directly, however, in SSD the detections are obtained
as refinements of a set of predetermined boxes (similarly to the anchors in
Faster R-CNN). Moreover, instead of using a single feature map to perform
detection, multiple feature maps at different scales are used for prediction:
the low-resolution maps are adopted for bigger predetermined boxes, while the
high-resolution ones are used for smaller predetermined boxes. Harnessing fea-
tures at multiple scales for differently sized boxes allows the resulting detections
to be more accurate, considerably improving performance over YOLO.

YOLO was subsequently improved, leading to two new models: YOLOv2
[10] and YOLOv3 [61]. YOLOv2 is similar to its predecessor with a few tweaks
and changes aimed at improving recall and localization accuracy of the boxes.
Firstly, they improve upon the network architecture: they adopt a new model
similar to VGG16 as base, called Darknet-19, and they integrate Batch Normal-
ization, which speeds up training and improves performance. Moreover, they
strengthen the pretraining on ImageNet. Secondly, they adopt an anchor-based
design, where the predictions are obtained from refining predetermined boxes
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instead of being computed directly. In particular, instead of hand-picking the
anchor dimensions like SSD or Faster R-CNN, they obtain them by running k-
means clustering on the datasets’ ground truth boxes; this way the distribution
of anchors is closer to that of the ground truth boxes, which simpifies optimiza-
tion and leads to improved performance. Finally, they increase the robustness
of the system to different object scales by adopting multi-scale training: every
10 epochs, a new random scale is selected and the model is trained on images
resized to that scale. YOLOv3 further boosts performance by adopting a much
deeper model with residual connections and by performing prediction using
feature maps at multiple scales.

All previous approaches share a common problem: on average, the number
of overall background grid cells or anchors is far greater than those actually
containing objects. This discrepancy often leads to suboptimal optimization of
the classifier, since the gradient value is overwhelmed by background examples.
Some approaches, such as the RCNN family and SSD, deal with this problem
by forcing the loss function to be computed on a balanced set of positive and
negative samples. Even in this case, however, most of the training signal is
dominated by easily classified background examples.

A technique often adopted to deal with this limiatation is OHEM [62]
(Online Hard Example Mining): here, the loss function is applied to all the
samples, but the gradient is computed only for the n samples for which the
network performs the worst, that is the n samples for which the loss value is
highest. This has the effect of forcing the training to focus only on the more
difficult cases, ignoring the easier ones.

Another solution is proposed in [63]. In this work, the authors introduce
RetinaNet, a single-stage object detector. This model adopts ResNet with FPN
as backbone, and performs object detection at multiple scales by classifying
and refining anchors, similarly to SSD. To deal with the inbalance between
positive and negative classes, they introduce the focal loss: in this formulation,
instead of computing the loss value as the average of cross-entropy losses of
each sample, the loss value is computed as the sum of the cross-entropy losses
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for each element, but each one is downweighted depending on how well the
model performs on it. Hard examples will receive high weights, whereas simple
examples will be assigned progressively lower weights. As a result, during op-
timization, training automatically concentrates on the hard examples; this is
contrary to the original cross-entropy formulation, in which the contribution to
the training of the few hard examples is decimated by the averaging operation
over all samples. The focal loss, moreover, carries an advantage over OHEM:
in OHEM easy samples are ignored; instead, when using focal loss all samples
contribute to the optimization, albeit with reduced impact if easy.

1.5.2 Tradeoff between One-stage and Two-stage techniques

The previous paragraph introduced some of the main state-of-the-art object
detectors, categorizing them in two-stage and single-stage pipelines.

Two-stage detectors perform detection in two distinct phases: first, they
generate a set of proposals, that is a set of intermediate detections having
high-recall (most required entities are detected) but low precision (most pro-
posals are wrong or inaccurate). Then, a second part of the model analyzes
each proposal by pooling its features and outputs a classification decision as
well as a correction to its state. Proposal generation can either be performed
using existing algorithms, such as Selective Search, or by employing a Region
Proposal Network. On the other hand, single-stage methods perform estima-
tion directly, without making use of an intermediate set of proposals.

There is no clear winner between the two classes of methods; which paradigm
to use depends on the specific use-case and situation. Single-stage methods tend
to be faster than their two-stage counterpart while also being simpler from a
logical standpoint, requiring less complex code and being more straightforward
to implement and debug. Two-stage methods, on the other hand, have an edge
performance-wise. Where the greatest advantage of two-stage methods lies,
however, is their far greater flexibility: by adopting region proposals and by
pooling their features, it is considerably easier to integrate additional tasks
into the original pipeline.
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The most notorious work in this direction is represented by Mask R-CNN
[64]. Mask R-CNN expands Faster R-CNN to include a segmentation mask pre-
diction for each proposal, on top of the classification and position refinement.
This is achieved by adding an extra convolutional module which processes the
pooled feature map of each object and returns an upsampled binary mask
for that object. To further improve performance and better align the pooled
features for the semantic task, the authors propose RoIAlign, an upgrade to
the RoIPooling operator, which avoids the quantization effects of the latter by
adopting adopting bilinear interpolation.

Another interesting line of research that directly takes advantage of the
two-stage structure is Tracking without Bells and Whistles [65]. In this work,
the authors propose a small modification to Faster R-CNN to directly perform
tracking, without the need for additional training or tracking specific data. In
particular, the detections of each frame are added to the proposal pool for the
successive frame and corrected by the refinement network to directly create
trajectories, while the original set of proposals is used to identify new objects
and initialize new tracks.

Given this extra flexibility and performance, two-stages methods, and es-
pecially Faster R-CNN, constitute the foundation for two of the solutions pro-
posed in this thesis: the parking slot detection network and the monocular 3D
object detection network.

1.6 3D Object Detection

While being useful for applications such as monitoring systems or security
cameras, in autonomous driving detecting objects at image level is often in-
sufficient, as it gives no information on where each instance actually is in the
world. As a result, new systems and algorithms are continuously being devel-
oped that perform detection in 3D. Formally, 3D object detection consists of
locating in the input all instances of objects of interest and return, for each
one:
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• its class c;

• its 3D bounding box, expressed with respect to some frame of reference.
This box is identified by its center point (x, y, z), its dimensions (h,w, l)

and its orientation expressed as roll, pitch and yaw angles (φ, ψ, θ).

In other words, the state of the object i is now represented by the vector

Si = (ci, xi, yi, zi, hi, wi, li, φi, ψi, θi). (1.20)

When operating in driving scenarios, a common assumption is that all objects
of interest lie on a plane, and can therefore be subject only to rotations around
one axis, simplifying the state to Si = (ci, xi, yi, zi, hi, wi, li, θi).

Input data used for 3D object detection systems often include images, either
coming from monocular or stereo camera setups, and point clouds, obtained
by disparity map triangulation or LiDAR sensors.

1.6.1 LiDAR-based 3D Object Detection

LiDAR (Light Detection And Ranging) sensors are commonly adopted choices
for autonomous driving as they are able to provide highly accurate depth in-
formation about the environment. They operate on the time-of-flight principle:
distance from an object is calculated from the time required by a light impulse,
emitted by the sensor itself, to reach the object and be reflected back to the
sensor receiver. The resulting raw data returned by this class of sensors is a
point cloud, that is a set of 3D points in space. Some sensors might also re-
turn additional information for each of these points, such as the reflectivity
of the corresponding objects. The most typically adopted choice in automo-
tive is represented by Velodyne sensors, due to their ability to rapidly perform
360◦ scans while also having reasonable vertical Field-of-View and point den-
sity through the use of multiple emitter-receiver pairs (verify). The resulting
scans usually contain from several tens of thousands to a few hundred thousand
points, depending on the sensor model and the number of scan planes.
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Point clouds are considerably different from images: the latter are dense
grids of elements, organized in a specific structure where position matters. On
the other hand, point clouds are sparse and are not characterized by a specific
ordering: a permutation of a point cloud is equivalent to the original point
cloud. As a result, convolutional models, which are based on the assumption
that the input is dense and regular, cannot be directly applied to this data
type.

An early work in deep learning-based 3D object detection [66] attempts at
bridging the gap between image and point cloud data modalities by projecting
the LiDAR point cloud on a Bird’s Eye View (BEV) plane, which is then used
as input to a convolutional model that directly performs 3D bounding box
prediction and classification. Another similar work is represented by MV3D
[67]: here, both LiDAR and image data are fused together to perform detec-
tion. In particular, three separate convolutional backbones are used to extract
feature maps: one from the image, one from a Bird’s Eye View projection of
the LiDAR point cloud and one from a frontal view projection of the same
cloud. Then, the Bird’s Eye view features are used to generate a set of initial
3D proposal boxes via an RPN. Finally, these proposals are projected back on
all three feature maps, whose features are pooled accordingly, fused and used
to estimate the final boxes. AVOD [12] adopts a similar strategy for fusing
image and LiDAR information, but only uses the Bird’s Eye View projection
of the point cloud, generated similarly to MV3D. In this method, however, the
proposal boxes are generated using both image and Bird’s eye view LiDAR
features, resulting in improved recall for small instances.

Despite enabling all previous methods to harness the representational power
of convolutional models and pre-existing architectures, point cloud projection
inevitably leads to information loss, limiting the ability of such models to rea-
son in 3D and ultimately compromising performance. Currently, the state of
the art approaches for 3D Object Detection can be classified in two macro
categories: voxel-based methods and point-based methods.

In voxel-based methods, the input point cloud is first converted into a voxel
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grid, which is then processed using 3D convolutional operators. Considering the
sparsity of a LiDAR scan, however, voxel conversion often results in a very high
(> 90%) percentage of empty voxels. To considerably reduce computational
and memory requirements, voxel grids are often represented and stored as
sparse tensors and 3D convolutions are computed only at locations that contain
non-empty voxels, also known as active sites; these convolutions are often
referred to as sparse convolutions or sub-manifold convolutions as they can be
seen as operating on low dimensional data living in a high-dimensional space
(e.g. surfaces in 3D) [68, 69].

Conversely, point-based methods aim at processing the raw point cloud
directly, without any conversion or quantization. This is achieved using Point-
Nets, specific models designed to handle the permutation invariance property
of point clouds: a permutation of a point cloud corresponds to the same point
cloud, meaning that feeding different permutations to a model must not change
the output of the model. The idea behind PointNets, first introduced in [24],
is rather simple: first, each point is processed independently and identically
using a series of fully-connected layers; then, a global representation, or signa-
ture, for the point cloud is computed by applying a symmetric function (i.e.
a function whose result does not depend on the order of its inputs) to the
processed points. For classification, this representation is further processed by
additional fully connected layers, which convert it into a probability vector.
For segmentation, the signature is concatenated to the features of each point,
in order to enrich them with global information. Then, each point is processed
separately in order to estimate the class. While exhibiting very promising re-
sults on both classification and segmentation in controlled environments (e.g.
single object, small rooms), PointNet suffers from a limitation that inhibits its
applicability to more complex scenarios and tasks: by applying the symmetric
function only once to the entire point cloud, this model in unable to reason
hierarchically and capture local patterns. The follow-up work PointNet++ [25]
improves upon this aspect, allowing hierarchies of local representations to be
built from the input. The core component introduced in this work is the Set
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Abstraction layer, which takes as input a point cloud containing N points and
performs the following operations:

• first, it applies the Farthest Point Sampling algorithm to sample S cen-
troids from the input cloud;

• second, it creates groups of points by assigning to the centroids the points
that are close enough to them;

• third, it applies a simple PointNet to each group to extract global infor-
mation.

The resulting output of this layer is therefore a new point cloud containing S
points, located at the centroids positions, and whose features are a function of
the local neighborhood of each centroid. By stacking multiple set abstraction
layers one after the other with increasing grouping thresholds, it is possible to
model local relationships between points with increasing receptive fields sim-
ilarly to how convolutions do for images. To restore the original point cloud
resolution (e.g. to perform point segmentation), Feature Propagation layers are
used, in which the features from the low-dimensional point clouds are propa-
gated back to the original point locations using distance based interpolation.

One of the first voxel-based approaches can be identified in VoxelNet [70]:
here, a 3D feature volume is computed by subdividing the space into a grid of
equally spaced voxels and by applying a PointNet-like network, called Voxel
Feature Encoding (VFE), to the points inside each voxel. Then, the resulting
voxel grid is processed by several 3D convolutions, which aggregate information
in a progressively larger receptive field in order to capture shape information.
Finally, the processed volume is aggregated along the height direction to gen-
erate a 2D feature map, which is fed to an RPN to perform 3D box prediction
and classification.

SECOND [71] builds upon VoxelNet, proposing an algorithm for the gen-
eration of the indices corresponding to active sites that runs on GPU, leading
to drastically reduced execution times for sparse and sub-manifold convolu-
tions. It also introduces a novel loss function for angle estimation that allows
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to better handle the cases in which the predicted orientation differs from the
ground truth value by ≈ π, and a novel data augmentation procedure that
consists of adding to each point cloud objects from other scenes in order to
obtain richer samples and accelerate and improve training. PointPillars [13]
aims at performing 3D object detection employing only 2D convolutional lay-
ers. This is achieved by operating on pillars instead of voxels: the point cloud
space is discretized only along the width and length axes, while no binning is
performed in the height direction. The points inside each pillar are then en-
coded using a simple PointNet, and the resulting encoded pillars are used as
pixels to create a bidimensional feature map. Finally, this map is processed by
a 2D convolutional backbone followed by a detection head similar to that in
SSD [7] to perform 3D bounding box detection. By adopting this particular
encoding, this approach surprasses in performance the previous two methods
while avoiding the computational bottleneck represented by 3D convolutions,
allowing it to operate at over 60 FPS.

Among the early works on point-based 3D object detection is Frustum-
PointNets [23]. This approach splits the prediction process into two steps by
leveraging both image and 3D data: first, a high-performing 2D object detec-
tion model (e.g. Faster R-CNN) is applied to the image in order to extract a
set of 2D bounding boxes. These boxes are then used to cast viewing frustums
into the 3D space, determining regions that contain objects. The points in-
side each frustum are then selected and given as input to three PointNet-like
models which perform, in sequence: background points removal, object cen-
ter estimation plus point cloud normalization and, finally, 3D box prediction.
This method, while outperforming other fusion-based pipelines such as MV3D,
suffers from several drawbacks: first of all, both image data and 3D data are
required, as the former is necessary to generate frustums for the latter. Second,
the overall system is bottlenecked in performance by the 2D object detector:
if a 2D detection is missed, no frustum is generated and therefore no 3D box
is computed. Likewise, a wrong 2D detection always leads to an erroneous 3D
box, as a 3D detection is always returned for each frustum.
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The first successful purely point-based 3D detection approach on autonomous
driving data is represented by Point R-CNN [14]. In this work, the authors first
leverage PointNet++ to extract a feature representation for each point in the
point cloud. Then, a 3D proposal as well as an objectness propability are es-
timated for each point from this representation. Positively classified proposals
are propagated to a second stage, which pools points that are located in the
vicinity of each proposal and uses this information to perform box correction
and confidence prediction. Despite using only LiDAR data, this approach vastly
outperforms all previously mentioned fusion-based schemes. It also performs
better than the illustrated voxel-based approaches, albeit being slower, as no
quantization (and therefore information loss) is involved. A similar approach,
STD [72], introduces spherical anchors in the first stage to estimate the initial
set of 3D proposals. In the second stage, the points inside each proposals are
converted to a grid of voxels and processed by a VFE before being passed to
the estimation subnetwork. Finally, the estimation subnetwork, other than per-
forming classification box correction, also contains an additional branch which
is supervised to predict the 3D Intersection-over-Union between the predicted
and the ground truth box. This information is used as an additional confidence
measure about the quality of the predicted boxes when performing NMS, im-
proving the overall performance of the pipeline.

Another point-based method can be identified in Votenet [26]. Differently
from Point R-CNN, here no proposals are used and prediction is performed in a
single stage: PointNet++ is again used as backbone, but instead of computing
feature representations for the entire point cloud, these are computed only for
a subset of points, called seed points. Seed points are then processed by a small
fully-connected network, which is supervised to estimate a shift that pushes
the seeds close to the object centers, creating clusters around potential object.
The resulting shifted points, called votes, are clustered together and processed
by a second PointNet that estimates whether each cluster corresponds to an
object and the corresponding 3d bounding box. This formulations outperforms
approaches such as Frustum PointNets in scenarios that are dense of objects,
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such as indoor rooms, but struggles on autonomous driving data, where the
majority of points do not belong to objects of interest. 3DSSD [73] operates
similarly to Votenet: the seed points are again shifted to generate candidate
points, but these are no longer clustered together, but are rather used to pool
the original set of seed points. Arguably the most significative innovation in-
troduced in this work, however, concerns point sampling: instead of adopting
the simple euclidean distance to sample the points at each abstraction layer
of PointNet++, the authors propose a mix of euclidean distance and feature
distance. This has the effect of retaining a higher percentage of "interesting"
points while discarding similar points (i.e. points belonging to the road plane),
leading to an overall improvement to the recall of the system.

Voxels and raw points constitute two fundamentally different representa-
tions for the same data, and as such they share complementary strengths and
weaknesses: voxels are generally easier to manage as they are ordered struc-
tures, akin to images. This makes it relatively simple to adopt similar tech-
niques for their processing, consisting mostly of 3D convolutions applied in a
cascaded way to progressively enlarge the receptive field over the space. More-
over, sparse and sub-manifold convolutions make processing even large volumes
extremely efficient. The quantization process involved in the conversion from
points to voxels, however, limits the resolution of the data, which in turn might
lead to a degradation of the performance. Raw points, on the other hand, are
subject to no quantization so they are able to provide precise localization of
all objects of interest. In turn, they prove to be more challenging to process
as they are sets, and therefore they have no internal organization and are in-
variant to permutations. As such, some recent work focuses on exploiting both
modalities in order to improve efficiency and performance. SA-SSD [74] adopts
a 3D convolutional backbone similar to VoxelNet to extract a pyramid of 3D
features at multiple scales. As in VoxelNet, the last set of features is converted
into a 2D feature map by aggregating the features along the height direction,
which is then processed by a detection head that performs anchor classification
and refinement in order to obtain the final detections. In addition to the above,
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this method also employs a point-based auxiliary network in order to encour-
age the voxel-based backbone to learn the fine-grained structure of the point
cloud: each feature map in the 3D convolutional pyramid is used to generate
point-level features at the original point cloud resolution. This is achieved by
identifying the position of each voxel according to its index and by propagating
the features at the original point locations using a feature propagation layer.
The resulting enhanced point cloud is then used to perform two auxiliary task:
foreground point segmentation and object center prediction. Once the model
is trained, the auxiliary network can then be discarded, leaving only the en-
hanced voxel-based detector. Another recent work leveraging both modalities
is PV-RCNN [75]: here, a VoxelNet-like model is used to produce an initial
set of region proposals. At the same time, a set of keypoints is sampled from
the original point cloud using Farthest Point Sampling, and the precise loca-
tions of keypoints are used to aggregate features from the original point cloud,
the multiscale voxel features extracted by the backbone and the 2D features
generated by the Region Proposal Network. Finally, the resulting enhanced
keypoints are used in a second stage to refine the proposals estimated from the
voxels.

1.6.2 Image-based 3D Object Detection

Range sensors, while particularly suited to 3D detection due to the accuracy
of the data they return, tend to be expensive: a single Velodyne sensor, for
instance, might exceed alone the cost of the rest of the vehicle, which in turn
renders consumer-level products impractical. As a result, a lot of research has
concentrated on performing 3D sensing using cheaper alternatives. In partic-
ular, in autonomous driving it is widespread the use of cameras: this type of
sensor is orders of magnitudes cheaper compared to LiDARs, it returns rich and
dense informantion and, by adopting stereo-camera setups, it can be used to
percieve the 3D structure of the environment, albeit less accurately compared
to the dedicated alternatives.

Currently, there are two main classes of image-based deep learning ap-
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proaches to 3D detection: stereo-based methods, which use pairs of rectified
images as input, and monocular-based methods, which aim at detecting 3D
objects from a single image.

Stereo-based Detection

A recent work on deep learning-based stereo 3D detection can be identified in
Triangulation Learning Network [76]. This approach first proposes a monocular
baseline that performs 3D detection from a single frame, and then extends it
to the stereoscopic case. The baseline operates similarly to Faster R-CNN,
with the difference that all estimations revolve around 3D boxes: in particular,
3D anchors are displaced in the 3D space and then projected on the image to
determine their 2D counterparts. Features from the 2D anchors are then pooled
and processed by the RPN, which determines 3D proposals. Finally, the same
process is repeated using the 3D proposals, whose features are passed to the
detection portion of the model to determine the final predictions. To extend
this framework to stereoscopic data, both left and right frames are processed
in parallel by the network, the 3D anchors and proposals are projected on
both frames and the respective features are fused using an ad-hoc scheme that
accounts for potential mismatches due to different depths. The addition of
the second image and the fusion scheme leads to moderate improvements in
performance; despite this, however, this method performs considerably worse
than other contemporary stereo approaches and is even outperformed by some
monocular pipelines.

Another similar approach is Stereo R-CNN [17], which also builds upon
Faster R-CNN. Instead of relying on 3D anchors or proposals, however, this
method fuses the left and right features computed by the same backbone to
predict matching left-right 2D proposals from 2D anchors. These proposals
are then used to pool the corresponding left-right features, which are finally
employed to estimate the left-right 2D boxes, a set of image keypoints, as
well as the corresponding 3D object dimensions and orientation. Using this
information, the final 3D box is obtained via triangulation. To further improve
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performance, a final alignment phase is performed, in which the depth of the
detections is corrected by minimizing the photometric error of objects in the
left and right images. This correction, in particular, proves to be central to the
method, accounting for most of the performance gain.

A seminal work towards accurate stereoscopic (and monocular) 3D object
detection is represented by Pseudo-LiDAR [77]. The idea behind this research
is surprisingly simple: the performance gap that exists between LiDAR-based
and Stereo-based detectors is not to be attributed solely to the technological
differences between the two types of sensors, but also to the data represen-
tation that is used to train the models. In fact, what the authors observed
is that the point clouds resulting from disparity triangulation are indeed not
inaccurate enough to justify such a wide difference in result quality. To vali-
date this hypothesis, they introduced a two-step pipeline: first, state-of-the-art
approaches are used to extract a disparity map from the stereo pair, which is
then converted into a point cloud; second, state-of-the-art LiDAR-based 3D de-
tectors, such as AVOD and Frustum-Pointnets, are applied to the point cloud
to perform detection. The resulting system decisively outperforms all purely
image-based stereo systems, validating the claim. One of the main reasons as
to why a point cloud representation allows for increased performance com-
pared to an image-based one is as follows: processing point-cloud data, either
by using 3D convolutions, 2D convolutions on BEV representations or Point-
Nets, ensures that the elements that are operated upon together are physically
close in space. Convolutions on images, on the other hand, operate identically
on patches corresponding to objects at different scales (far away objects are
smaller on images compared to nearby objects) or patches in-between objects
and background (and therefore involving entities very far away in physical
space), making them less suitable for reasoning in 3D.

Monocular Detection

Contrary to LiDAR-based or Stereo-based 3D detection, monocular detection is
an ill-posed problem, as a single image does not provide enough information to
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recover the scale of the portrayed scene, and therefore the depth of the objects.
One way to recover a good enough approximation of the position of interesting
objects is to use a priori knowledge about them, such as their dimension.
For instance, if the height of a specific traffic sign is known then it would
be possible, given the camera intrinsic parameters, to infer the approximate
distance from the sensor. Another possible way is by learning the relationship
between the way objects appear in the image plane and their corresponding
state in the world using accurate ground truth and deep learning models. This
would be similar to how humans with one eye covered would still be able
to estimate the 3D structure of the world, despite not having, theoretically,
enough information to do so.

Due to the challenging nature of the problem, to ease learning and improve
performance most monocular 3D detection pipelines embed some form of a
priori knowledge or 3D reasoning mechanism directly within their models. In
Mono3D [15], the authors leverage the assumption that all objects should lie
on the ground plane in order to generate object proposals. In particular, they
use camera calibration information to determine a fixed plane, they generate
3D candidate proposals on this plane and they project them on the image in
order to score them and keep only the most promising ones. The overall score
for each candidate is determined using semantic, instance, shape, location and
context cues, which are computed using external methods. The best candidate
proposals are then processed further by a second stage similarly to Fast-RCNN:
a VGG16 model is used to extract features from the input image, RoIPooling
is used to obtain the features for each proposal and fully-connected layers are
used to estimate the class, the position of the object as well as its orientation.

OFTNet [78] adopts a ResNet backbone to extract multi-scale feature maps
from the input image. Then, an orthographic feature transform is introduced
to map the image-level features to a BEV representation, in order to allow
further computation to reason in 3D without perspective effects. To obtain
this representation, a voxel grid fixed to the ground plane is generated, then
each voxel of the grid is projected onto the feature maps and all features
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within the projection are accumulated into the voxel. Finally, the voxel grid is
collapsed into a 2D representation by accumulating features along the height
direction. As last step, each location of the BEV feature map is processed in
order to classify whether there is an object as well as to determine the center,
dimensions and orientation of the object.

In MonoGRNet [79] the 3D bounding box estimation process is split into
four sequential subtasks performed by a single, unified neural network. In
the first step, image features are computed using a VGG16 backbone and
2D bounding boxes are extracted by adopting a two-stage object detection
pipeline. Given the 2D boxes, RoIAlign is used to pool the respective set of
features which are used for the remaining three steps. First, the depth of each
instance is estimated. Then, given the depth, the true coordinates of each in-
stance center are regressed. Finally, the positions of the eight vertices for each
box are computed with respect to each box local frame of reference placed in
each estimated center.

MultiFusion [80] leverages a pretrained model for monocular depth predic-
tion to compute a depth map for each image. This map is then concatenated to
the image itself and fed to a VGG16 backbone followed by an RPN to extract
region proposals. Given the 2D proposals locations, RoI Max Pooling is used to
extract the corresponding features from the feature map and RoI Mean Pooling
is used to extract a feature representation from the point cloud generated from
the depth map. These two sets of features are then concatenated and used to
classify each proposal and determine their corresponding 3D box.

Deep MANTA[81] detects vehicles via part estimation followed by tem-
plate matching. First, a standard VGG16 backbone followed by an RPN are
applied to the input image to obtain region proposals. Then, these proposals
go through two cascaded refinement stages, involving RoIAlign on the proposal
coordinates followed by box correction. Besides the correction, the second re-
finement stage also outputs, for each box, its classification score, a vector of
2D image coordinates corresponding to the object parts (i.e. tyres, headlights
etc...) as well as an estimation of the similarity of its 3D dimensions with re-
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spect to a set of fixed templates. Follows a final 2D/3D matching phase in
which the predicted similarities as well as the 2D object parts locations are
used to recover the 3D pose of the object as well as the 3D coordinates of
its parts by matching them against a database of templates using the PnP
algorithm [82].

MonoPSR [16], builds upon pre-existing high performance 2D detectors and
uses LiDAR data as additional information during the training of the model to
improve performance. First, a pretrained 2D object detector is applied to the
input image in order to compute the image-level boxes. For each detection, a set
of features is then extracted by fusing together the full-image features pooled
at the box location and a second set of features obtained by applying a ResNet
backbone to an image-level crop of the object. These features are then fed to a
proposal generation module, which estimates the orientation, dimensions and
position of the object. Follows a proposal refinement module, which further
corrects the location of the detection. Finally, this information as well as the
available LiDAR data during training are used to guide an additional instance
reconstruction module to estimate a point cloud representation for each object,
which is then used to setup additional auxiliary loss functions.



Chapter 2

Object Detection for Parking
Slot Detection

In this chapter I present the proposed deep learning method for parking slot de-
tection from surround view images. I first provide motivation for the research,
highlighting the importance of the problem as well as detailing other method-
ologies adopted in literature and their weaknesses. I then briefly review Faster
R-CNN, as it constitutes the baseline object detection model adopted as start-
ing point for this work. I follow up by illustrating the approach and the dataset
used for optimization, including the data preparation process used to create
it. Finally, I describe the experiments performed to validate the effectiveness
and robustness of the system and I discuss the obtained results.

2.1 Prior Art and Motivation

Advanced Driver-Assistance Systems (ADAS) are experiencing a spike in in-
terest from the research community and are currently one the most researched
technologies. Among these systems are, for instance, Adaptive Cruise Control,
which allows the vehicle to automatically maintain a specific distance from
the vehicle in front, or Lane Keeping, which automatically keeps the vehicle
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centered in its lane. Another technology frequently available on modern cars
is the Parking Assistant which monitors the surrounding space and, once it lo-
cates an available parking spot, it assists the driver throughout the maneuver.
The localization of free parking space is often performed using sonar sensors
by detecting enough unoccupied space to allow the maneuver to be completed
successfully. While such a system might work well under the supervision of a
human driver, however, it is unsuitable in the context of a fully automated
vehicle: sonars are only capable of detecting vacant space, not parking slots
directly, and therefore are only useful under the assumption that the vehicle is
in proximity of a parking lot. On the other hand, cameras are able to percieve
horizontal traffic signs and therefore can enable fully automated parking slot
detection.

A lot of research has focused on vision for parking slot localization and
occupancy classification. Many algorithms have been developed that exploit
static cameras to monitor occupancy in order to manage parking lots [83,
84, 85]. From an autonomous driving system point of view, however, these
approaches are unsuitable as they all rely on the a priori knowledge about the
location of each slot, information that is unavailable when the cameras are
dispaced on a moving vehicle.

Research in the direction of automatic parking detection during navigation
started with [86], where color was used as cue to segment parking slot markings
directly in the image. More recent approaches perform detection on a Bird’s Eye
View representation of the image instead, in which horizontal road markings are
mostly free of perspective effects: for instance, in BEV rectangular slots always
appear rectangular, and line thickness does not depend on the vicinity of the
slot to the sensor. Moreover, in order to obtain a complete 360◦ perception of
the surrounding environment, most setups involve multiple calibrated cameras,
whose BEVs are then stitched together to obtain surround view images. These
representations are used in approaches such as [87, 88], in which parking slots
are identified using low level visual features, such as corners and lines. [89] uses
boosting [90] in order to classify cross-points between parking-line segments,
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and then determines the entry point to each slot from those. The classifier is
trained on a dataset comprised of 8600 images, in which the position of each
cross-point and the orientation of each slot is annotated. In [91], sobel filters
followed by a probabilistic Hough transform are used to extract lines from
the surround view images. Then, the available parking slots are detected by
exploiting relations between parallel lines.

All the above approaches, however, suffer from a common limitation: they
all rely on hand-designed visual features, and therefore they tend to perform
well only for the specific and controlled environments for which they are de-
signed. [89], for example, is only able to detect horizontal and vertical slots,
so it tends to fail in presence of slanted parking slots on during the execution
of the parking maneuver. [91] is relatively robust to different observation con-
ditions, but is unable to detect slanted slots and requires a computationally
expensive post processing phase. Color-based approaches such as [86] might fail
in presence of occlusions, noise or variations in illumination conditions. To deal
with these weaknesses, the method proposed in this thesis performs parking
slot detection and occupancy classification from surround-view images directly
using a deep convolutional neural network. The core idea is that, by allowing
the model to automatically learn from data what features are useful for de-
tecting parking slots, the resulting system should, given enough heterogeneous
training data, show higher robustness and adaptability to different observa-
tion conditions and slot types. Before going into detail about the approach, I
briefly review the 2D object detector Faster R-CNN [9], as it constitutes the
foundation for the proposed pipeline.

2.2 Faster R-CNN

As already stated in Section 1.5.1, Faster R-CNN is a two-stage neural network
for 2D object detection from images. In particular, for each detected object, it
returns:

• its class ci;
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• its axis-aligned 2D bounding box, described by its center coordinates
(ui, vi) and its dimensions (hi, wi).

More specifically, this systems is composed of three main modules:

• a Backbone Network, which is used to extract generic feature representa-
tions from the input;

• a Region Proposal Network (RPN), which estimates a high-recall initial
set of potential bounding boxes, called proposals;

• a Detection Head, which analyzes each proposal in order to determine
whether it contains an object, classify the object and compute a correc-
tion to the proposal box to make it better fit the object.

Backbone Network As first step, the image is processed by the backbone,
which is responsible for extracting a high-level feature representation of the
input. The most commonly adopted choice for this network consists of a ResNet
model whose weights are initialized via a training on the ImageNet dataset for
the classification task. Recently, the ResNet model is often enhanced with a
Feature Pyramid following FPN [11], which generates a pyramid of feature
maps at different resolutions by progressively upsampling the last feature map
produced by ResNet and by fusing it with early layers maps.

Region Proposal Network Given the generated feature map, the RPN
estimates an initial set of bounding boxes potentially enclosing regions of in-
terest. To do so, it exploits a set of predefined boxes, called anchors, as well
as the relationship between each pixel of the feature map and the center of its
receptive field in the input image. The chosen anchors usually span multiple
sizes and aspect ratio, as to be able to cover the vast majority of potential
objects. More specifically, the RPN operates as follows:

• each pixel of the feature map is assigned the same set of k anchors,
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except that the anchors are shifted at the center of the corresponding
pixel receptive field in the image;

• the RPN maps the feature map, using a 3×3 convolutional layer followed
by two parallel 1×1 convolutional layers, into two outputs: a classification
map and a regression map. Both maps have the same spatial size as the
feature map and 2 · k and 4 · k channels respectively.

• the classification map contains the classification decision for each set
of anchors at each location, expressed as a discrete probability vector
p = (p0, p1), where p0 represents the probability that the anchor contains
background and p1 the probability that it contains an object; likewise, the
regression map contains the shift and scale corrections to apply to each
anchor (ua, va, ha, wa) in order to generate the corresponding proposal
box (u, v, h, w), encoded as follows:

tu =
u− ua
wa

tv =
v − va
ha

tw = log
w

wa
th = log

h

ha
(2.1)

In case a feature pyramid is used instead of a single feature map, anchors at
different scales are assigned to different pyramid levels: bigger anchors are as-
signed to low-resolution feature maps, as these maps tend to focus more on
the global context of the input; conversely, smaller anchors are assigned to
high-resolution feature maps, as these embed more local information. Using
bigger feature maps for smaller anchors also means that more of these anchors
are present, which improves recall for smaller objects. This architectural choice
ensures that objects can be effectively detected even if they appear at consid-
erably different scales in the input. Note that the same RPN model is used to
process all feature maps in the pyramid.

Detection Head Given the generated proposals and the feature maps from
the backbone, the detection head is tasked to predict the final set of objects.
In particular, this second stage operates the following way:
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• Non-Maximum Suppression is applied to the proposal boxes to remove re-
dundant detections, using their Intersection-over-Union to compute sim-
ilarity and the predicted objectness probability p1 to determine which
boxes to keep;

• the top-scoring N proposal boxes are selected, their coordinates are pro-
jected onto the feature map and the set of features specific to each one
is extracted using RoIPooling. RoIPooling is an operator that aggregates
features in a region of arbitrary size into a region of fixed size by quantiz-
ing the region, subdividing it into bins and aggregating the information
in each bin via a max pooling operation. Similarly to the RPN, in case a
feature pyramid is used, each proposal is projected onto the appropriate
feature map depending on its size;

• the features pertaining to each proposal are processed by the detection
head, which returns a classification decision as well as a refinement for
each one. This subnetwork is generally quite simple, encompassing a cou-
ple of fully-connected layers followed by two more parallel fully-connected
layers that perform classification and refinement respectively. Assuming
there areM possible object classes, the output of the classification branch
is a discrete probability distribution p = (p0, p1, . . . , pM ), where p0 rep-
resents the probability for the background class, which should be high
in case the proposal does not contain any object of interest. The regres-
sion branch, on the other hand, estimates a shift and scale correction
for each class, leading to 4 ×M outputs. Which correction to apply is
then determined by the estimated probability distribution. The correc-
tions are encoded the same way as they are for the RPN (Eq. 2.1), where
(ua, va, ha, wa) represent the proposals centers and dimensions;

• a class-wise Non-Maximum Suppression is performed in order to remove
duplicates and obtain the final detections.

The additional correction performed in the second stage by the detection
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head allows for more accurate detections to be obtained, as the classification
and refinement decisions are based on regions of the feature map instead of
single pixels, allowing for more information to be used.

2.2.1 Training Procedure

Commonly, all three blocks are optimized simultaneously.
In order to provide the RPN with a balanced set of positive and negative

examples, at each iteration only a subset of N anchors is used for training.
Commonly, 256 anchors are selected per image, with a ratio of up to 1 : 1 be-
tween positive and negative anchors. Positive anchors are defined as the anchors
which share a sufficiently high Intersection-over-Union with at least one ground
truth bounding box. Conversely, if an anchor has low enough Intersection-over-
Union with all ground truth boxes, it is labelled as negative. The overall loss
function for training the RPN is as follows:

LRPN =
1

N
· Lcls (p, c∗) +

λ

Npos
[c∗ >= 1]Lreg (t, t∗) , (2.2)

where Lcls (p, c∗) = − log pc∗ is a standard multi-class cross-entropy loss func-
tion and the loss function for training the refinement takes the following form:

Lreg(t, t∗) =
∑

i∈{u,v,h,w}

smoothL1(ti − t∗i ), (2.3)

where

smoothL1(x) =

0.5x2 if |x| < 1

|x| − 0.5 otherwise.
(2.4)

Here, c∗ represents the index of the ground truth class (in this case c∗ ∈ {0, 1}),
t∗ represents the regression targets for box refinement encoded as in Eq. 2.1,
Npos is the number of positive anchors and λ is a hyperparameter used to
balance the two loss contributions. The Iverson bracket function [c∗ >= 1]

evaluates to 1 for all positive anchors, and 0 otherwise. This has the effect of
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ignoring the regression loss for negative anchor boxes, as they have no associ-
ated ground truth box.

To ensure an equally balanced optimization procedure for the detection
head, during training the second stage operates slightly differently. Instead of
considering the top-scoring N proposals after suppression, a balanced set of
positive and negative proposals is used instead. Like for the RPN, positivity
and negativity are defined according to the Intersection-over-Union of the pro-
posals with the ground truth boxes. In this case, 64 proposals per image are
chosen such that the ratio between positives and negatives is approximately
1:3. The loss function LDET used to train the detection head has the same
formulation as that for the RPN (Eq. 2.2), with some minor differences:

• c∗, instead of representing positivity or negativity, now represent the
ground truth class index (0 if background);

• since the detection head outputs a correction for each possible class, the
regression loss Lreg is computed only on the predictions corresponding
to the ground truth class.

The final loss for training the system is simply given by the sum of the loss
functions for the RPN and the detection head:

L = LRPN + LDET . (2.5)

2.3 Parking Slot Detector

The method ptoposed in this thesis [19] frames parking slot detection as a 2D
object detection problem. In particular, given a surround view image as input,
the task is to locate all parking slots visible in the image, classify whether they
are vacant or occupied and identify their image coordinates. Differently from
the common approach to 2D object detection, however, where each object is
described by an axis-aligned bounding box, in this case each parking slot is
identified by the image coordinates of its four vertices. Formally, the state for
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the i-th parking slot is represented by the vector Si =
(
c(i), q

(i)
1 , q

(i)
2 , q

(i)
3 , q

(i)
4

)
,

where c(i) represents the class of the slot (i.e. occupied or vacant) and q(i)j =(
u
(i)
j , v

(i)
j

)
, j = 1, . . . , 4 represent the ordered set of vertices for the slot. The

reason why the vertex-based representation was chosen is twofold: on the one
hand, it allows the network to model all parking slot types, including slanted
ones which are not rectancular; on the other hand, it enables the model to
operate in scenarios in which the cameras are not perfectly calibrated, which
leads to distortions in the generated surround-view images.

To allow for generic quadrilateral prediction, the model structure of Faster
R-CNN has been adapted accordingly. A visual representation of the various
steps of the proposed pipeline is displayed in Fig. 2.1.

Backbone Network Like in the original model, the backbone processes the
input, which is now a surround view image, in order to extract a feature rep-
resentation. As backbone network of choice I adopted ResNet-34 enhanced by
the first upsampling layer of FPN such that the last feature map has resolution
1/16 of that of the input. This resolution allows for enough proposal boxes to
be generated without being too computationally expensive to process. At the
same time, adopting a pyramid of features at multiple resolutions would bring
close to no benefit to the overall performance, as all parking slots are expected
to have roughly the same size when represented in bird’s eye view.

Anchor-Free Region Proposal Network While an anchor-based region
proposal approach might work well when the boxes to be predicted are axis-
aligned rectangles, it struggles in case the detections are generic quadrilaterals,
as it would require a complex design of the set of anchors, encompassing mul-
tiple scales, shapes and orientations [92], to work well. Therefore, inspired by
[93], I opted for an anchor-free solution in which the coordinates of each pro-
posal are estimated directly. In particular, the proposed Anchor-Free RPN
operates as follows:
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• each pixel of the feature map is assigned a specific location in the in-
put image, called reference point, which corresponds to the center of its
receptive field (Fig. 2.2a);

• for each reference point, the RPN determines whether it is inside a park-
ing slot and estimates the coordinates of its four vertices as a resid-
ual from the reference point location (Fig. 2.2b). More specifically, if
r = (ur, vr) is the position of the reference point and qi = (ui, vi) , i =

1, . . . , 4 represent the estimated parking slot vertices, the output is en-
coded as follows:

t =

{
ti =

qi − r
γ

, i ∈ {1, 2, 3, 4}
}
, (2.6)

where γ is a normalization constant, empirically chosen to be equal to
50. This logic is implemented as two sibling convolutional branches, a
classification branch and a regression branch, each comprised of two con-
volutional layers. In both branches, the first layer is represented by a
3× 3 convolution having 256 output channels followed by batch normal-
ization and ReLU activation. The second layer is a 1 × 1 convolution
with 1 output channel for the classification branch, representing the es-
timated confidence that the corresponding reference point is inside an
instance, and 8 output channels for the regression branch, representing
the estimated coordinate residuals t.

Detection Head Given the generated parking slot proposals, the detection
head is responsible for estimating the final set of detections from them. The
logic is similar to that of Faster R-CNN, with a few modifications:

• all proposal boxes having an estimated confidence below 0.5 are discarded
(Fig. 2.1c). Then, Non-Maximum Suppression is applied to the remaining
detections in order to remove duplicates (Fig. 2.1d). For computational
simplicity and efficiency, NMS is performed using the Intersection-over-
Union of the axis-aligned rectangle minimally enclosing each proposal,
and in case of IoU ≥ 0.5 the proposal having the higher score is kept;
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• the features pertaining to each proposal are extracted by projecting the
proposals on the image plane and by applying RoIAlign [64] on the
axis-aligned rectangle minimally enclosing each proposal. The decision
of adopting RoIAlign over RoIPooling is dictated by need of performing
vertex estimation as accurately as possible. Indeed, while in standard 2D
object detection slight inaccuracies in the predicted boxes positions can
be justifiable, the harsh quantization introduced by RoIPooling could
lead to performance degradation in case of parking slot detection, where
pixel-accurate estimations are required. RoIAlign circumvents this prob-
lem by removing the quantization of bins and performing feature pooling
via bilinear interpolation.

• the detection head processes the extracted set of features in order to
perform classification and vertices estimation (Fig. 2.1e). This part of
the model is comprised by two fully connected layers, having 2048 neu-
rons each, batch normalization and ReLU activation, followed by two
parallel fully-connected layers for classification and estimation respec-
tively. The classification layer outputs a discrete probability distribution
p = (p0, p1, p2), representing the probabilities of no-slot, vacant slot and
occupied slot. The estimation layer adopts the same parametrization as
the RPN (Eq. 2.6), with the difference that the residual is now computed
with respect to center of each proposal aligned rectangle. Correcting with
respect to this center instead of the centroid of the four estimated ver-
tices ensures that the predictions performed by the detection head are
consistent with the information that it processes, which is determined by
RoIAlign on the aligned rectangles.

2.3.1 Training Procedure

The optimization procedure mostly follows the original work (Sec. 2.2.1).
The RPN is trained by selecting, at each iteration, 256 reference points

per image with a ratio of 1:1 between positive and negative samples. If not
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(a) (b)

(c) (d)

(e)

Figure 2.1: Visualization of the intermediate steps of the network. (a): Lo-
cations of the reference points on the image. (b) Region proposals estimated
from the reference points. The green color indicates proposals having objectness
score above 0.5. (c): Pruning of the negative region proposals. (d) Remaining
positive region proposals after NMS. (e): result of the detection head on the
remaining region proposals.
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enough positive samples are present, enough negative samples are selected to
reach 256 elements total. Since no anchors are used at this stage, positivity is
determined simply by whether each reference point is contained in a ground
truth parking slot or not: if it is, it is labelled as positive and associated to
that slot; otherwise, it is labelled as negative. The loss function for training
the RPN is given by:

LRPN =
1

N
· Lcls (pin, c

∗) +
λ

Npos
[c∗ = 1]Lreg (t, t∗) , (2.7)

where Lcls is a standard binary cross-entropy loss:

Lcls(pin, c
∗) = −c∗ · log pin − (1− c∗) · log (1− pin) (2.8)

and Lreg follows Eqs. 2.3 and 2.4. pin and t represent, respectively, the pre-
dicted confidence probabilites and vertices residuals (parametrized as in Eq.
2.6), while t∗ contains the corresponding ground truth residuals, and c∗ is set
equal to 1 for positive reference points and 0 otherwise. The balancing hyper-
parameter λ is empirically set to 3.

The training of the detection head follows Faster-RCNN, with the only
difference that, in this case, a set of 128 proposals per image are used, with
a ratio of 1:1 between positive and negative proposals. In this stage positivity
is determined by measuring the intersection over union between the minimum
enclosing rectangle of each proposal and the minimum enclosing rectangle of
each ground truth quadrilateral. In particular, for each proposal, the ground
truth box having maximum IoU with it is determined. Then, if the IoU is
greater than 0.5, it is labelled as positive and associated with that ground
truth. Otherwise it is marked as negative. The loss function LDET for the
detection head is equal to Eq. 2.2 with λ = 1, and the total loss for the system
is given by the sum of the RPN loss function and the detection head loss
function: L = LRPN + LDET .

The model is trained jointly using Stochastic Gradient Descent with mo-
mentum 0.9, batch size 16 and learning rate 10−3 for 10.000 iterations. During
training, data augmentation is employed in order to enrich the data samples
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and reduce overfitting. In particular, each input image is subject to both hor-
izontal and vertical flipping, applied independently each with probability 0.5,
and is perturbed in brightness, saturation and contrast in the range ±20%, in
order to simulate additional observation conditions.

2.3.2 Dataset Construction and Data Preparation

In order to train the model, a small training dataset composed of 467 surround-
view images was created and manually annotated with the image coordinates
of the corners of each parking slot, as well as the information regarding the
occupancy of the slots. The vertices of each slot have been preprocessed in order
to ensure a consistent ordering among different examples. More specifically, the
vertices are sorted clockwise with respect to the parking slot centroid, identified
as the mean of its four corners. Ensuring the consistency of the vertices order
is crucial to successful optimization, as the model must be able to attribute a
semantic meaning to each one. If ground truth vertices were not ordered, very
similar instances would correspond to different training objectives, which would
lead to instability and inability to reach convergence. Examples of annotation
are visible in Fig. 2.2.

(a) (b)

Figure 2.2: Examples of annotated images. Colors are used to highlight both
vertex ordering and occupancy.
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To obtain the training images, a vehicle setup with four calibrated and
synchronized fish-eye cameras was used to collect several sequences, both of
road scenes and parking lot areas. The images from each camera were then
cast to a Bird’s Eye View representation using the cameras projection model
and stitched together using the calibration to create the surround-view images.
Meaningful frames depicting different scenarios, parking slot types and obser-
vation conditions were then manually selected for annotation. To avoid biasing
the network towards situations in which parking slots are always present, 167
of the 467 chosen frames contain no parking slots. The generated images have
shape 1100 × 900, which is downsampled to 544 × 384 before being given as
input to the model. The reason for downsampling the input is twofold: on the
one hand, reducing the spatial size reduces the computational and memory
costs of the system considerably. On the other hand, the chosen resolution is
divisible by 32 on both dimensions, which simplifies the computation of the
reference points positions.

2.4 Experimental Results

To validate the effectiveness of the presented approach, the trained model was
tested on new sequences acquired under different observation conditions and
containing parking lots unobserved during training. Some qualitative results
are visible in Fig. 2.3. As can be observed, despite the extremely limited train-
ing set, the model exhibits a remarkable capability to generalize to new, unseen
scenes and it is able to correctly identify parking slots that are similar to those
observed during training. In particular, the network is currently capable of
handling parking slots displaying different patterns (Fig. 2.3b) as well as ro-
tated slots (Figs. 2.3c, 2.3d). Moreover, despite the fact that the training set
contains only as few as 20 examples of slanted parking slots, the network is
able to detect them with acceptable accuracy, as shown in Fig. 2.3e. The sys-
tem is also able to withstand noise in the data: in Figs. 2.3c, 2.3d and 2.3e
some dirt is visible in the lenses. Also, the cameras are not perfectly calibrated,
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Results of the network on different types of parking slots under
different observation conditions: (a) the most common scenario. (b) Different
pattern. (c-d) Different rotations. (e) Slanted parking slots. (f) Failure case.
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which leads to misalignments between the four bird’s eye view images. Nev-
ertheless, the network is able to predict the observable slots well enough. The
scarsity of training data, however, might lead to incorrect predictions, where
unobserved horizontal traffic signs and patterns are erroneously interpreted as
parking slots, such as in Fig. 2.3f.

The proposed system is able to run at over 13 frames per second (fps) on
a NVIDIA Geforce GTX 1080 GPU.

2.4.1 Semantic Shift Problem

In the data preparation section (2.3.2) I mentioned the importance of ensuring
a consistent ordering among the four vertices of each ground truth bounding
box, as the network must be able to associate a semantic meaning to each point
(e.g. the first prediction is the top-left point, the second is the top right and
so on) in order to be able to converge. In order to guarantee this consistency,
the vertices were sorted in a clockwise order with respect to the centroid of
each bounding box. There are, however, some specific observation angles for
which the result of the sorting rule changes abruptly, causing what I call a
semantic shift (see Fig. 2.4a for a schematic representation of the problem).
As a consequence, the network exhibits erratic behavior when asked to perform
predictions for instances that are very close to this critical angle (see Figs. 2.4b,
2.4c, 2.4d). This is due to the fact that the model is unable to identify which
is the correct order of the points and, as a result, tends to predict coordinates
that are in between the right ones. Note that this problem is not due to the
specific ordering rule chosen, but rather to any ordering rule. Different ordering
strategies might correspond to different configurations at which the semantic
shift occurs, but the overall problem remains. The hope is that, by increasing
the number of training examples close to the semantic shift, the network can
learn to handle these cases more effectively and narrow down the range of
angles for which the confusion happens. Of course, the ideal way to handle
this problem would be to adopt a representation for the output that does
not depend on any specific ordering, bypassing the semantic shift altogether.
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Figure 2.4: Semantic shift problem. (a) Schematic illustration of the problem.
(b) Output before the shift angle. (c) Output around the shift angle. (d) Output
after the shift angle.
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One such representation might take ispiration from the very recent work Poly-
YOLO [94], in which the authors extend the latest YOLOv3 model to also
predict the semantic mask for each detected object by interpreting each mask
as a set of vertices that are estimated using a polar grid.

2.4.2 Ablation Study

To validate the choice of adopting a two-stage detection approach for added
localization accuracy, I carried out an ablation study that is made up of two
distinct experiments:

• first, I removed the second stage, entrusting the RPN to perform de-
tection directly. To achieve this, the classification branch of the RPN
was modified so that it predicts the class of each reference point (e.g.
background, occupied, vacant) instead of just determining whether each
reference point is contained in a parking slot. The cost function for the
classification was changed accordingly to a standard multi-class cross-
entropy formulation;

• second, the sampling procedure for picking a balanced set of foreground
and background examples at each iteration was removed. Instead, all
reference points are used to compute the loss function LRPN .

To evaluate each experiment, a small test set of 107 unobserved parking
spaces was annotated.

As evaluation metric I chose the Average Precision (AP), utilized to evalu-
ate Object Detection performance in the PascalVOC benchmark [95]. To com-
pute this metric, the outputs of the system are ranked according to their confi-
dence and are then used to determine the precision/recall curve. The AP value
is then obtained by computing the mean precision value at a set of 11 equally
spaced recall intervals. To determine whether it is a true or false positive, each
prediction is checked against the ground truth according to a rule. Commonly,
in traditional Object Detection this rule consists in the Intersection-over-Union
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between the detection and the ground truth boxes. More specifically, in order
to be considered a correct detection, an output of the model must have an IoU
above a certain threshold with at least one ground truth element of the same
class as the prediction. Duplicate detections of the same ground truth instance
are handled as false positives (e.g. if the same ground truth object is detected
3 times, one is considered as true positive and the rest are false positives).
Differently from the training procedure, where the IoU computation has been
approximated using the minimum enclosing rectangle for efficiency, here the
computation is exact, as performance is not a concern.

The results of this study are shown in Tab. 2.1. The displayed mAP (mean
AP) scores are obtained by averaging the AP values for the vacant and occu-
pied classes. The subscript indicates the IoU threshold used to determine the
positivity or negativity of each detection, while no subscript means that the
correspoding values are obtained by averaging the mAP values over multiple
thresholds, from 50% to 95% in intervals of 5%.

Point sampling Second stage mAP mAP50 mAP70

X X 44.9 60.2 54.8
X 20.1 36.5 25.4

14.1 29.6 17.4

Table 2.1: Results over the test set. mAP50 and mAP70 represent the mean
Average Precision using IoU threshold of 50% and 70%, respectively. mAP
represents the mean Average Precision averaged over multiple thresholds (from
50% to 95%, in intervals of 5%).

As can be observed, the introduction of the second stage to the pipeline
accounts for most of the performance gain of the system. This difference in
performance can be justified by the fact that, when the second stage is not
used, the predictions are no longer based on ad-hoc set of features extracted
by RoIAlign, but rather on generic patches of the feature map. These patches
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are not as accurately localized as feature crops, are less informative and have
a smaller receptive field, which hinders the ability of the model to produce
accurate vertex predictions.

Removing the sampling strategy for the reference points during training
further degrades the quality of the results. The reason for this is twofold: on
the one hand, using all reference points at each training iteration inflates the
classification loss with background samples, slowing down progress for positive
reference points; on the other hand, the sampling process provides stochasticity
during optimization, meaning that the same input provides different feedback
every time it is presented to the model. This has a regularizing effect, favor-
ing generalization especially when the training data is limited. Moreover, the
improvement in performance induced by the sampling strategy as well as the
second stage is more pronounced at higher IoU thresholds (i.e. mAP70), which
is representative of a better localization accuracy of the full model. An exam-
ple of the different test-time behavior of the model in the three cases can be
observed in Fig. 2.5.

(a) (b) (c)

Figure 2.5: Results of the ablation study. (a): Network without the detection
head and using all reference points. (b): Network without the detection head
using the usual sampling strategy for the RPN. (c): Full pipeline

It is worth noting that the blurring at the edges of the images caused by
the bird’s eye view transformation, might lead to detection instability in those
regions, resulting in mAP scores for the full model that are not representative
of its true performance. Moreover, some false positives might still be detected
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due to the network being exposed to unobserved road markings (e.g. Fig. 2.3f).
These detections, however, tend to last no more than a couple of frames, and
can therefore be filtered out easily in a post processing phase. Such uncertain-
ties of the model are also very likely to be explained away by adding more
heterogeneous samples to the training data, which is currently quite limited.

2.4.3 Model Simplification and Sparsification

The proposed full two-stage pipeline is comprised of a total of 56.2 million
parameters, distributed as follows:

• the feature extractor, which consists of FPN with ResNet-34 backbone,
contains 23.9 million parameters;

• the RPN contains 2.36 million parameters;

• the fully-connected detection head contains the remaining 29.9 million
parameters.

In this section I illustrate two experiments aimed at obtaining a lighter
model (i.e. a model with a reduced number of parameters) and I analyze the
impact that the proposed modifications have on the performance of the system.

The first thing to notice when looking at the distribution of weights within
the model is that just the detection head comprises more that 50% of the
total number of weights. Such a high number of parameters is mostly due
to the first fully-connected layer, which is tasked to map an input of size
7×7×256 down to 2048 dimensions. Therefore, to lighten the model I propose
a fully-convolutional variant to the detection head: this structure processes
the 7 × 7 input returned by RoIAlign using stacked convolutional layers that
progressively enlarge their receptive field to cover the entire input, and only
contains 1.8 million parameters, a fraction of those contained in the original
architecture. More specifications about the two variants and their structure
are displayed in Tab. 2.2.
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Fully-Connected Convolutional

Features
2048× 12544

2048× 2048
29.9M

256× 256× 3× 3, 0

256× 256× 3× 3, 1

256× 256× 3× 3, 0

1.77M

Classifier 3× 2048 6.14K 3× 256× 3× 3, 0 6.91K
Detector 8× 2048 16.4K 8× 256× 3× 3, 0 18.4K

Table 2.2: Comparison between the original fully-connected architecture of the
detection head (left) and its convolutional counterpart (right), displaying the
layers involved and the corresponding number of parameters. Fully-connected
layers are expressed in the format Cout × Cin, where Cin and Cout represent
the number of input and output channels. Convolutional layers are displayed
as Cout×Cin× k× k, p, where k is the kernel size and p represents the number
of rows and columns of zero-padding applied to the input.

To further simplify the system, I propose to sparsify the model. Sparsifica-
tion consists of forcing a certain percentage of the weights of the network to be
equal to 0 while trying to preserve the original performance as much as possi-
ble. Different techniques have been introduced to perform model sparsification
[96]. The approach adopted in this work is quite straightforward and operates
in the following way:

0. the chosen model is trained until convergence normally. A target sparsi-
fication percentage S ∈ [0, 100] is chosen;

1. for each layer of the model, the weights of the layer are sorted according
to their magnitude (i.e. their absolute value). Then, the S% of weights
having the lowest magnitude are set to 0. Note that this process involves
both the backbone network, the RPN and the detection head simul-
taneously and is only applied to the weights of the convolutional and
fully-connected operators, ignoring biases;



70 Chapter 2. Object Detection for Parking Slot Detection

2. the model obtained from step 1. is trained normally for one iteration;

3. if training has not converged yet, return to step 1., otherwise go to step
4.;

4. the final, sparsified model is obtained by performing step 1. one last time,
in order to force S% of the weights to be equal to 0.

This scheme assumes that the magnitude of each weight is a good approxima-
tor of its importance within the model. It is also simple, requiring no complex
logic or additional hyperparameters aside the sparsification percentage S. Ap-
plying the sparsification procedure to each layer individually is crucial to avoid
situations in which all the weights of a layer are set to zero, which would com-
promise the optimization process and cause divergence. These situations are
not unlikely, as weights of different layers are usually drawn from different
distributions, and therefore some layers might contain weights that have, on
average, lower magnitude compared to other layers. Also, allowing deactivated
weights to receive updates at each iteration opens up the possibility for the set
of zeroed out weights to change over time and to recover deactivated weights,
if needed.

The benefits that model sparsification brings are twofold: on the one hand,
the resulting models can be stored more efficiently and occupy less memory,
which is especially advantageous when memory requirements are strict. On the
other hand, by adopting dedicated hardware or sparse representations, such
as those introduced in Sec. 1.6.1 for dealing with sparse voxel volumes, zero
weights can effectively be skipped during computation, leading to considerable
runtime improvements. Note that, differently from voxel grids, in this case
sparsity is a property of the model, not the input.

The results obtained from these experiments are summarized in Tab. 2.3.
As expected, the convolutional detection head exhibits worse performance com-
pared to its fully-connected counterpart. Such difference is especially marked
for very high IoU thresholds (i.e. mAP90) implying that, on average, the con-
volutional variant returns detections having lower localization accuracy. It is
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also interesting to note that the performance degradation is more pronounced
for mAP50 compared to mAP70, which partly contradicts the previous state-
ment. A possible explanation for this behavior might be that the convolutional
model has more difficulty handling noisier cases, such as blurred regions and
distorted or occluded areas, compared to the FC model. When a higher overlap
is required in order to label a detection as correct (i.e. mAP70), however, the
FC model also falls short in predicting hard examples, which leads to a greater
performance loss between mAP50 and mAP70 compared to the convolutional
model. Conversely, the latter appears to have comparable performance on eas-
ier examples, as proven by the smaller gap for the mAP70 case, despite being
slightly less accurate overall as demonstrated by the faster drop when working
with mAP90.

FC Conv Sparsity mAP mAP50 mAP70 mAP90 params
X 0% 44.9 60.2 54.8 15.6 56.2M

X 0% 38.7 55.6 52.1 6.39 28.1M
X 50% 41.1 56.5 54.3 8.56 14.0M
X 85% 39.4 55.4 53.1 6.34 4.2M

Table 2.3: Results of the model simplification and sparsification experiments.
FC and Conv are used to indicate the original and the convolutional detec-
tion heads respectively. The sparsity column indicates the percentage of model
weights set to zero by the sparsification process. Note that such sparsification
is applied to the whole model, and not only on the detection head.

About sparsification, results are shown for two different sparsity values:
50% and 85%. In particular, to aid convergence, the 85% sparse model is ob-
tained by further sparsifying the 50% sparse model. Surprisingly, the 50%
sparse model convincingly outperforms the original, almost matching the FC
model on the mAP70 metric despite having 1/4 of the total parameters. This
result can be explained by keeping in mind two aspects about the system:
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(a) (b)

(c) (d)

Figure 2.6: Output of the different versions of the model on the same input.
(a): Original fully-connected model. (b) Convolutional model. (c): 50% sparse
convolutional model. (d): 85% sparse convolutional model.
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first, the overall network architecture is quite large for the complexity of the
data it is applied on; second, the training set is very limited as it contains
just below 500 samples. As a result, it is not unreasonable to assume that the
hidden representation learned by the model might have a tendency to overfit
the training data. Forcing the model to use only half of its weights could en-
courage more general representations to be learned, which translates to better
generalization, while still retaining, given the model size, enough capacity to
explain the data. Also, the process of repeatedly setting weight values to 0
during the sparsification procedure introduces additional stochasticity to the
optimization, which acts as a deterrent to overfitting. The same benefits are re-
tained when further sparsification is performed, allowing the 85% sparse model
to perform on par with the original one despite having approximately 1/7 of
its weights (and 1/14 with respect to the FC architecture). Relative to 50%,
however, the performance begins degrades, likely due to the limit of minimum
number of required parameters being approached. An example of output of the
four different network variants on the same input is shown in Fig. 2.6: it can
be observed that, despite the difference in number of parameters, the overall
quality of the detections is comparable.

The decision to adopt ResNet+FPN as backbone of choice was dictated
mostly by its availability and the fact that it constitutes arguably the most
commonly used setup for Faster R-CNN based systems. The results obtained
during the sparsification experiments, however, highlighted how such a model
might be oversized with respect to the complexity of the distribution of inputs
it is applied on. It would be therefore interesting to investigate alternative
design choices involving lighter models to begin with, such as MobileNets [51].

2.4.4 Prediction Directly on Spherical Images

To further test the adaptability and effectiveness of the proposed approach to
parking slot detection, I performed additional qualitative experiments where
the model operates on the original images instead of their surround view re-
construction. More specifically, such images are obtained by projecting the raw
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data acquired by fish-eye lenses on a hemisphere using a spherical projection
model. To obtain the ground truth parking slots in this new representation,
I directly reused the previously generated annotations on the bird’s eye view
images, inverting the transformation to obtain their corresponding coordinates
in the spherical images. The generated bird’s eye view images, however, depict
only a limited portion of the observed space, as far away regions are cropped
out due to being too noisy. As a result, since the annotations are reused from
the bird’s eye view case, there exist parking slots that are clearly visible in the
spherical images which are not labelled; also, parking slots that are cut off in
the bird’s eye view but are fully visible in the spherical images would have their
annotations also cut off (see Fig. 2.7 for an example). If such data were to be
used directly to train the system, it would lead to optimization instability and
suboptimal convergence, as the model would receive contraddictory training
signal.

(a) (b)

Figure 2.7: Projections of the annotations generated on surround view images
onto the corresponding spherical images. The yellow polygon is used to high-
light the portion of image visible from its bird’s eye view.

To overcome this limitation, each input image is appended a fourth channel
which is a binary mask highlighting the portion of the image that is visible
in its corresponding bird’s eye view representation. This solution allows the
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model to have knowledge about regions that are valid for prediction while being
considerably cheaper to implement than simply annotating all the missing slots.
An alternative solution to the binary mask could consist in simply zeroing
out all pixels that are not visible in bird’s eye view. This approach, however,
is suboptimal as it would deprive the model from being aware of contextual
information that might prove useful for the final task.

Overall, the resulting training set consists of 1868 images total, as each
original surround-view image is generated from a total of 4 spherical images.
Each spherical image has an original resolution of 1024×992, which is cropped
to 1024 × 704 by removing the rows corresponding to the sky, before using it
as input. The adopted model is identical to the one used on surround view,
with the exception that the first layer of the backbone is modified to accept
4-channel inputs.

Qualitative results on unobserved parkings scenes are visible in Fig. 2.8. It
can be seen that the model is capable of handling relatively well parking slots
observed from very different point of views, and therefore characterized by
very different shapes, sizes and appearances due to the perspective projection.
Moreover, the network appears to have properly learned the semantic meaning
of the input binary mask, as it only returns detections within its area.

Note that the experiments on spherical images were conducted exclusively
to evaluate the performance and robustness of the proposed system to different
conditions and points of observations. Indeed, operating on spherical images
(or even pinhole ones) instead of surround view representations is suboptimal
for the task of parking slot detection, for several reasons. Parking slot markings,
and road markings as a whole, are generally well-behaved in bird’s eye view
as they are mostly free of perspective effects and preserve their shape and size
independently from their distance from the observation point. Also, the bird’s
eye view projection naturally eliminates all information that lies above the
chosen plane, which is mostly useless for the task. For both of these reasons,
surround view images represent a much more suitable domain for the task,
which leads to better model optimization and increased performance. Another
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Results of the model on spherical images. It can be noted that the
network has learned to utilize correctly the information about the field of view.
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non negligible advantage of surround view is that it allows to cover a field of
view of 360◦ with a single input, while at least four inputs would be required
in cases spherical images are used. This translates into higher computational
requirements, as every image would need to be processed by the model to
obtain a 360◦ aware detection.

2.5 Discussion

In this chapter I presented an end-to-end deep learning-based approach to park-
ing slot detection and occupancy classification on surround-view images. More
specifically, I built upon the existing 2D object detection framework Faster
R-CNN, redesigning it to allow for generic quadrilateral prediction instead of
axis-aligned bounding box estimation.

To train and evaluate the system, two small datasets, containing 467 and
107 surround-view images respectively, were collected and manually annotated
with the location and the occupancy of visible parking spaces. The system dis-
played promising results, exhibiting a remarkable capability to adapt to unseen
scenarios containing parking slots of the same type as those observed in the
training set while being robust to noise and misalignments between the stitched
images that constitute the surround-view representations. It also showed the
ability to function properly on an entirely different and more difficult domain,
as proven by its effectiveness when applied on the native spherical images.
Model simplification and sparsification experiments highlighted the fact that
the proposed model is capable of preserving comparable performance by ac-
tively using only 1/14 of its total number of trainable parameters, which leaves
plenty of room for efficiency improvements.





Chapter 3

Monocular 3D Object Detection
via Generalized
Intersection-over-Union
Minimization

3.1 Prior Art and Motivation

A key challenge in ADAS and autonomous driving systems consists of per-
ceiving the surrounding environment and locating obstacles in it, such that
planning and control can be performed accurately. Particularly critical is the
detection of moving entities such as cars, pedestrians and cyclists, as they pose
a major challenge for safe navigation.

Amongst the most researched solutions to 3D object detection are the
LiDAR-based ones, as these kinds of sensors are capable of providing a very
accurate, albeit sparse, reconstruction of the surrounding environment. These
sensors, however, are generally quite expensive, often making up a big fraction
of the total cost of the vehicle. As a result, cameras are usually adopted as a
cheaper, more consumer-friendly, alternative to perception. Cameras have the
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advantage of perceiving richer information compared to LiDAR, as it is denser
and contains color, and can be used to reconstruct the geometry of the envi-
ronment by adopting stereo setups in conjunction with disparity computation
methods [97, 98, 99], albeit not as accurately as LiDARs, especially at long
ranges. This information can then be used either implicitly [100, 76, 17] or
explicitely [77] to estimate the 3D locations of the objects of interest.

Perhaps the most interesting variant of 3D object detection is, however,
the monocular one. Here, the task is to determine a 3D bounding box for every
object of interest using as input only a single image. This problem is evidently
underconstrained, as a single image alone does not provide enough information
to determine the overall scale of the scene and, therefore, the distance of the
objects from the sensor. To determine the depth, additional information about
the scene is required, such as the a priori knowledge about the dimension of
the observed objects. Most contemporary state of the art monocular systems
leverage the availability of this knowledge, which often comes in the form of
ground truth 3D bounding boxes, to train deep models, with the objective of
implicitly encoding the relationship between object appearance on the image
plane and the corresponding position in the world within its parameters, such
that the model can be used to perform detections in new scenarios. Obviously,
for such a system to be able to function accurately, it requires a considerable
amount of training data, and the new environments that it is exposed to must
belong to a domain that is similar to the one it is trained on. For instance,
if the camera intrinsic parameters change from the training set, the system is
unlikely to produce accurate localizations, as the learned underlying mapping
between appearance and position is no longer valid for the new camera model.
Similar problems arise if the camera is positioned differently or if the portrayed
objects are visually very different.

Due to the difficulty of this task, most current 3D object detection frame-
works opt for dedicated models that integrate 3D reasoning mechanisms di-
rectly into their architectures [15, 78, 79, 81, 16], in the hope that the resulting
system learns features that are more suitable for 3D tasks and generalize bet-
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ter to new situations. Please refer to section 1.6.2 for a more in-depth review
of such approaches. Conversely, in the proposed method, I argue that explicit
3D reasoning directly encoded into the network structure is not mandatory for
good monocular 3D detection performance, as long as the underlying model
has sufficient capacity. To this end, I propose an extention to the 2D detector
Faster R-CNN in which a small subnetwork is added to the detection head to
perform 3D box estimation. This subnetwork is simple, does not contain any
kind of explicit 3D reasoning in its structure and is trained jointly with the
rest of the model. See Fig. 3.1 for a schematic representation of the proposed
system.

Faster R-CNN 3D Head

Figure 3.1: Overview of the proposed 3D detection pipeline: I extend
Faster R-CNN with an additional module responsible for estimating 3D bound-
ing boxes given the 2D detections. This extra module is trained end-to-end with
the rest of the network using a novel loss based on the Generalized Intersection-
over-Union.

Commonly, 3D estimators are trained via a loss function that minimizes
the error between the predicted box parameters (i.e. center, dimensions, ori-
entation) and their corresponding ground truths directly. Instead, I propose a
novel objective function that allows to reason in terms of boxes as a whole via
the minimization of an approximation of their Generalized Intersection-over-
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Union [20]. The experiments show that this formulation leads to considerably
better results, likely due to better feature representations induced by a more
suitable choice of the loss function.

3.2 Baseline Model

As already stated in Sec. 3.1, the proposed method consists of an extention
to the vanilla Faster R-CNN model for 2D detection (refer to Sec. 2.2 for an
illustration of this model).

More specifically, as backbone of choice I adopt the standard FPN built
upon an ImageNet-pretrained ResNet-50 model, and I extend it, following [63],
with an additional downsampling stage consisting of a 3×3 convolution having
stride 2 applied to the last feature map returned by ResNet. Formally, the
resulting feature extractor generates a feature pyramid comprised of feature
maps at 5 different resolutions. These maps are usually labelled as P2 to P6,
where Pl identifies the feature map having resolution 1/2l of that of the input.

The Region Proposal Network follows the original implementation. To han-
dle objects having different sizes, the RPN comprises 5 different anchor scales
having areas

{
162, 322, 642, 1282, 2562

}
which are assigned to the levels P2 to

P6 of the feature pyramid. Each scale is made up of three different anchors
having aspect ratios {0.5, 1, 2}, for a total of 15 anchors over the entire pyra-
mid.

Likewise, the detection head follows standard procedure. As pooling method
I adopt RoIAlign, which extracts a 7× 7 fixed-size feature map from the pyra-
mid for each of the top 300 scoring proposals (post NMS) returned by the
RPN. These features are then propagated to the detection head for object
classification and 2D box refinement. Again, in order to handle objects hav-
ing different sizes, each proposal is assigned to the proper level of the feature
pyramid before performing RoIAlign, according to the following rule:

l =

⌊
l0 + log2

(√
w · h
224

)⌋
. (3.1)
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Here, w and h represent the width and height of the region proposal and
l0 represents the level in the feature pyramid that a proposal having area
w · h = 2242 should be mapped to. Following the original implementation of
FPN, I set l0 = 4.

3.3 3D Detection Module

To allow the system to perform detection of 3D bounding boxes, I propose
to extend Faster R-CNN with an additional 3D module. In particular, given
the final 2D detections produced by the detection head, a second RoIAlign
step is performed to extract their specific sets of features, following the same
assignment rule illustrated in Eq. 3.1. Then, given each 2D detection and its
corresponding set of features, the 3D module is responsible for estimating the
3D bounding box B = (x, y, z, h, w, l, θ) corresponding to that object, where
(x, y, z) are its center coordinates with respect to the camera frame of reference,
(h,w, l) are its height, width and length respectively and θ is its orientation,
expressed as a rotation angle around the camera y-axis. See Fig. 3.2 for a bird’s
eye view illustration of the targets to be estimated.

In order to simplify and stabilize training, these values are not estimated
directly by the 3D module, but are rather encoded as follows.

Object Dimensions To estimate the object dimensions, the detection head
outputs the following quantities:(

log
h

h̄
, log

w

w̄
, log

l

l̄

)
, (3.2)

where h̄, w̄, l̄ represent class-specific prior values obtained by averaging the
dimensions of each ground truth object across the entire training set. This
formulation allows to frame the estimation of the dimensions in terms of a
relative correction, where negative values correspond to a reduction in size
with respect to the prior and positive values to an increase in size.
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(x,	y,	z)

Figure 3.2: Visualization of the 3D detection targets from a bird’s eye view
perspective.
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Object Center Inferring the position of the object directly from the feature
crops might prove problematic, as positional information is lost when perform-
ing RoIAlign. Therefore, the center estimation problem is decomposed into two:
the estimation of the center depth and the estimation of the center projection
onto the image plane. Particularly, the center depth is encoded as follows:

z − µz
σz

, (3.3)

where z represents the true depth and µz and σz represent the mean and
standard deviation for depth values computed across the training set. This
ensures that the range of ground truth values follows a distribution with zero
mean and unit variance, simplifying the optimization process. To estimate the
coordinates of the center projection, the following representation is adopted:(

u− pu
pw

,
v − pv
ph

)
, (3.4)

where (u, v) represent the image coordinated of the projected center (x, y, z),
(pu, pv) is the center of the estimated 2D detection and (pw, ph) its dimensions
on the image plane. In other words, the projected center prediction is framed
as a correction with respect to the 2D box center, normalized by the box
size. Having estimated the center projection (u, v) as well as its depth z (both
obtainable by inverting the encodings above), the true object center in 3D can
be obtained by exploiting the pinhole camera model:

x =
z · (u− u0)

f
, (3.5)

y =
z · (v − v0)

f
, (3.6)

where f represents the focal length of the camera and u0, v0 its principal point.

Object Orientation Similarly to the object center case, the object orien-
tation θ is not directly observable from feature crops alone: indeed, identical
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objects having the exact same orientation but a different position appear dif-
ferently on the image plane due to the perspective projection. See Fig. 3.3 for
an illustration of the problem.

�

�

�

�

�

�
�

�

Figure 3.3: The two objects clearly appear differently once projected onto the
image plane, despite having the exact same orientation θ. To avoid ambiguities,
I estimate the observation angle α = θ − β instead, where β = atan2(−x, z),
as this angle correlates with image appearance.

Therefore, instead of predicting the orientation directly, following [101] I
predict the so-called observation angle:

α = θ − atan2 (−x, z) . (3.7)

This transformation compensates for the perspective effect by considering the
angle with respect to the ray that goes through the center of the object instead
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of its absolute orientation More specifically, in order to avoid ambiguities in the
angle prediction, the 3D module is trained to estimate the pair (sinα, cosα).
Given these values, as well as the estimation of the center coordinates, the final
object orientation can be reconstructed by inverting Eq. 3.7.

The architecture of the 3D detection module is relatively simple and generic,
consisting of two fully-connected layers, each having 2048 output neurons and
ReLU activation function, followed by a third fully-connected layer returning
8 values per class, encoded as illustrated above. No normalization techniques
such as Batch Normalization are used in this module.

3.4 Model Optimization

Before going into detail about the proposed training procedure, I briefly review
the concept of Generalized Intersection-over-Union, first introduced in [20], as
it is central in the optimization of the 3D detection module.

3.4.1 Generalized Intersection-over-Union

As already anticipated in Sec. 2.4.2, the most common and widespread met-
ric utilized to evaluate object detectors is the Average Precision, a numerical
value that summarizes the Precision-Recall curve of the system. To determine
this curve, model predictions are associated to the ground truth depending on
their Intersection-over-Union. When optimizing their models, however, most
approaches opt for minimizing the distance between predicted and ground
truth box parameters directly, which does not necessarily strongly correlate
with increasing their IoU. As such, in [20] the authors propose to utilize the
IoU directly as cost function for training the model: theoretically, this approach
should lead to performance gains, given that it is an optimization objective that
is closer to the evaluation metric.

Utilizing the IoU directly as cost function is possible in case all bound-
ing boxes are axis-aligned, as their IoU can be computed in closed form only
through the use of minimum, maximum, multiplication, summation and ReLU
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operators, all of which are differentiable almost everywhere at worst. In case
the predicted and target boxes do not overlap, however, their IoU would be
equal to 0 and provide no gradient, rendering the optimization of this case
impossible. As such, the authors propose the Generalized Intersection-over-
Union (GIoU), an extention to the IoU which accounts for the disjoint case by
introducing an extra term that measures the similarity in space between the
two boxes. Formally, given two boxes P and Q having intersection area I and
union area U , their GIoU is defined as:

GIoU = IoU− E, (3.8)

where

IoU =
I
U

E =
Ac − U
Ac

. (3.9)

Ac is used to indicate the area of the smallest axis-aligned bounding box
containing both P and Q. Intuitively, the extra term E is equal to 0 if one of
the boxes is completely contained in the other, and increases asymptotically
to 1 as the two boxes grow apart in space. Moreover, like the IoU, it can be
computed analytically using only differentiable operators, rendering the GIoU
as a whole differentiable. As a consequence, the GIoU can be used directly as
loss function:

LGIoU = 1−GIoU. (3.10)

This formulation is always within the range [0, 2) and ensures that there is
gradient even in case of disjoint boxes. Also, it is shown that, for boxes sharing
low overlap, the GIoU has the potential of providing a steeper gradient com-
pared to the traditional IoU, making it a more suitable cost function than the
latter. By replacing the original loss functions with the IoU and GIoU-based
ones, the authors improve the overall performance of both YOLOv3 and Faster
R-CNN on two different large-scale datasets, validating the claim.
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3.4.2 Training Procedure

The training of the baseline Faster R-CNN network mostly follows the original
implementation, already introduced in Sec. 2.2.1.

Region Proposal Network To train the RPN, a balanced set of 256 anchors
per image are selected for loss computation, with a ratio of 1:1 between positive
and negative samples. More specifically, an anchor box is assigned to a ground
truth box and labelled as positive either if its IoU with that box is above 0.7 or
if it is the anchor having the highest IoU with that box. This second condition
is necessary to ensure that no ground truth box is ignored during optimization.
If the previous conditions are not met and an anchor has IoU below 0.3 with
all ground truth boxes, it is labelled as negative. Otherwise, it is considered
an ambiguous case and ignored during training. The loss function follows the
original formulation (Eq. 2.2), with the exception that Lreg uses the GIoU
instead of a smooth-L1 based direct minimization.

Detection Head Likewise, to train the detection head, 256 proposals per
image are selected from the top 2000 scoring proposals after NMS, with a ratio
of 1:3 between positive and negative samples. Again, the label assigned to each
proposal is based off its overlap with ground truth boxes: if its IoU is below
0.5, it is marked as negative, otherwise it is considered positive and assigned
to the ground truth box with which it shares the highest overlap. Given the
selections, their features are extracted by the appropriate level of the pyramid
(Eq. 3.1) and propagated to the detection head for loss computation. Like for
the RPN, the loss computation follows the original work with the difference
that the GIoU loss is used instead of the standard smooth-L1 objective for
optimizing the box parameters.

3D Detection Module The 3D detection module is optimized together with
the rest of the network. In this case, unlike at test time, instead of performing
a second RoIAlign step on the final detections returned by the detection head,
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the 3D module operates on the same set of positive proposals also used by the
detection head.

Generally, the commonly adopted approach for training 3D box predic-
tors consists of minimizing directly the adopted parametrization (in this case
Eqs. 3.2, 3.3, 3.4, 3.7) against the ground truth using some sort of distance
function (e.g. Eq. 2.4). Instead, I propose to extend the GIoU formulation
to the 3D case. As already stated in Sec. 3.4.1, the IoU between two axis-
aligned bounding boxes has closed form solution, and this is due to the fact
that their intersection is still an axis-aligned box. Moreover, by approximating
the minimum enclosing box as another axis-aligned box, the GIoU can also be
calculated analytically and has a well-behaved gradient. 3D boxes, however,
are subject to rotations and their intersection is a cuboid only if they have
a relative orientation which is a multiple of π/2. In all other cases, their in-
tersection would be a generic, irregular, polihedron. To ensure the existance
of an analytical solution, I disentangle the estimation of the angle from the
rest of the dimensions, which are optimized via the GIoU by considering their
respective boxes at a canonical orientation. The loss function for this module
is therefore comprised of two distinct components:

L3D = Lang + L3IoU , (3.11)

where Lang is responsible for optimizing the orientation and L3IoU is tasked to
optimize position and dimentions through the GIoU.

Formally, let B = (x, y, z, h, w, l, θ) be the 3D box predicted by the mod-
ule and B̂ =

(
x̂, ŷ, ẑ, ĥ, ŵ, l̂, θ̂

)
its assigned ground truth box. Let α̂ = θ̂ −

atan2 (−x̂, ẑ) be the ground truth observation angle. Lang is defined as the
smooth-L1 loss between the estimated and the target observation angles:

Lang = smoothL1 (sin α̂− sinα) + smoothL1 (cos α̂− cosα) . (3.12)

In order to optimize the position and dimensions of the boxes through the
GIoU, I first prerotate them such that their orientation angle is equal to 0,
yielding:
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B0 = (x, y, z, h, w, l, 0), (3.13)

B̂0 = (x̂, ŷ, ẑ, ĥ, ŵ, l̂, 0). (3.14)

Under this assumption, the boxes can be directly defined in terms of their
opposing corners:

x1,2 = x± l/2 y1,2 = y ± h/2 z1,2 = z ± w/2, (3.15)

x̂1,2 = x̂± l̂/2 ŷ1,2 = ŷ ± ĥ/2 ẑ1,2 = ẑ ± ŵ/2. (3.16)

Given these values, and by approximating the minimum enclosing box as an-
other cuboid having θ = 0, computing the intersection area I, the union area
U and the minimum enclosing area Ac is a trivial extension of the 2D case (see
Alg. ?? for the complete formulation). Finally, given the GIoU value, the loss
function is obtained using Eq. 3.10.

More specifically, instead of minimizing the GIoU loss function between
B0 and B̂0 directly, inspired by the disentangling transformation introduced
in [102] I split the optimization into six separate contributions, each responsible
for a single degree of freedom:

L3IoU =
1

6

∑
i∈{x,y,z,h,w,l}

(
1−GIoU

(
B̂0,B

i
0

))
. (3.17)

Here, Bi
0 is used to represent the box obtained from B0 by replacing all values

except for i with the ground truth (e.g. Bz
0 = (x̂, ŷ, z, ĥ, ŵ, l̂, 0))). This for-

mulation leads to a considerable optimization speedup, especially early in the
training where most predictions are disjoint from their corresponding ground
truth boxes. Further analysis will be presented in Sec. 3.5.3.

Training Details The model is trained end-to-end on full resolution images
for 90k iterations, using Stochastic Gradient Descent with batch size 4, weight
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decay 5e-4 and momentum 0.9. The learning rate is initially set to 10−2 and
is reduced by a factor of 10 every 30k iterations. The ResNet backbone is
initialized with ImageNet pretraining values and its Batch Normalization layers
as well as its first two convolutional blocks are kept fixed during training. To
enrich the training data, each sample is independently augmented by random
horizontal flipping with probability 0.5 as well as by jittering its saturation,
brightness and contrast by ±30%.

3.5 Experimental Results

In this section I introduce KITTI [22], the autonomous driving dataset used
to train and evaluate the proposed approach. Then, I perform a quantitative
comparison against current state of the art monocular 3D object detectors.
Finally, I analyze the loss function used for optimizing the 3D module and
compare its effectiveness against other alternatives.

3.5.1 The KITTI Dataset

The proposed system is trained and evaluated on the KITTI [22] dataset, which
currently constitutes the de facto choice of the autonomous driving community
for research.

This dataset provides both image, LiDAR and odometry data, as well as
ground truth annotations for a wide variety of tasks including semantic seg-
mentation, instance segmentation, visual odometry/SLAM, 2D object detec-
tion and tracking, 3D object detection, depth estimation and optical flow.
Image data is acquired using two stereo camera setups, one for greyscale and
one for color, both displaced at the front of the vehicle and providing images
at a resolution of 1382 × 512. Due to rectification, the images provided for
training are smaller and have an approximate resolution of 1240×375. LiDAR
scans are recorded using a 64-planes Velodyne spinning at 10 frames per sec-
ond and capturing approximately 100k points per revolution. The cameras are
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synchronized with the Velodyne and capture images at the beginning of each
revolution, also at 10Hz.

The 2D/3D Object Detection dataset is gathered by annotating dissimi-
lar frames from several recorded sequences with the corresponding observable
2D and 3D bounding boxes, for a total of 7481 training samples and 7518
test samples. The test set annotations are not publicly available and are used
exclusively by the online evaluation server for performance evaluation. More
specifically, KITTI provides box annotations for 7 different classes, that is Car,
Pedestrian, Cyclist, Van, Truck, Sitting Person and Tram, but only the first
three are considered for evaluation by the official benchmark, as the others
are too scarce in number for proper model training. Still, like many current
methods I only consider the Car class for prediction, as it is considerably more
frequent and evenly distributed within the dataset compared to Pedestrians
and Cyclists. Also, each annotated box is attributed one of three categories,
easy, moderate or hard, depending on its size on the image plane and on how
much it is occluded and truncated.

Following previous work [67, 17, 76], I split the available 7481 annotated
images into a training and a validation set, comprised of 3712 ad 3769 samples
respectively. It is important to note that, in order to ensure proper performance
evaluation, these two splits are originated from two disjoint sets of sequences,
such that no similar scenes are shared between training and validation.

3.5.2 Comparison with the State of the Art

I evaluate the 3D localization and detection performance of the system using
the KITTI Average Precision metric for bird’s eye view (APBEV) and 3D de-
tection (AP3D). For a exhaustive comparison, I consider both the official 0.7
IoU threshold and the more permissive 0.5 IoU threshold. The results for the
two tasks are shown in Tab. 3.1 and Tab. 3.2 respectively.

The proposed method exhibits state-of-the-art performance on the valida-
tion set, surpassing all other monocular approaches by a good margin on the
official 0.7 IoU threshold, while also being competitive with the stereo-based
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Results of the proposed method on the validation set. Red bounding
boxes correspond to the ground truth, while green boxes represent the detec-
tions. The LiDAR point clouds are used exclusively for visualization. Best
viewed in color.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: (cont.) Results of our method on the validation set. The red bound-
ing boxes correspond to the ground truth, while the green boxes are our de-
tections. The LiDAR point clouds are used exclusively for visualization. Best
viewed in color.
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approach TLNet [76]. Likewise, at the 0.5 IoU threshold, the presented ap-
proach outperforms all other methods on both tasks except for the moderate
samples on the detection task, where the results are slightly lower than those
of MonoPSR [16]. The relatively larger improvement in performance for the
0.7 IoU case compared to the 0.5 IoU one suggests that the proposed approach
returns, on average, detections having higher localization accuracy.

On a NVIDIA Tesla V100 GPU, the inference time for the 3D detection
module is approximately 5 ms, with slight variations depending on the number
of 2D detections that must be processed by the 3D module. The total inference
time of the entire pipeline is about 50ms on full resolution KITTI images.

3.5.3 Comparison with other Loss Formulations

To validate the choice of utilizing an approximation of the GIoU loss formula-
tion, I conducted several experiments in which different loss formulations are
used.

Is learning each dimension disjointly important? As first experiment,
I investigated whether utilizing a separate loss component for each degree of
freedom of position and dimensions is beneficial to the performance of the
resulting system. In particular, I carried out an experiment where all six pa-
rameters are optimized together in a single loss function. What I noticed was a
tendency of the system to reduce the GIoU loss value in case of non-overlapping
boxes by increasing their size rather than by trying to match their positions in
space. This behavior led to a significant number of spurious detections early
in the training, which in turn caused a plateau of the loss function around the
value of 1, ultimately slowed down the learning process and leading to worse
accuracy. A visualization of this phenomenon on validation images is visible
in Fig. 3.6: as it can be seen, anomalous detections resulting from this behav-
ior are very prominent at the early stages of optimization, and still persist,
although less extremely, once the system is fully trained.
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(a) (b)

Figure 3.6: Anomalous behavior of the 3D detection module when trained with
the joint GIoU. Fig. 3.6a shows a sample result early in the training, while
3.6b shows the same sample at the end of optimization results for the trained
system.

I speculate that this phenomenon is induced by how the Generalized In-
tersection over-Union is formulated: two very similar boxes, close together but
disjoint, always leads to a higher loss value than two very different boxes such
that one is completely inside the other. The reason for this behavior is illus-
trated in Fig. 3.7. This also holds true for very different boxes that share a
low enough overlap such that E > IoU (see Eq. 3.8). As a result, the tendency
of the system, especially during the first half of the training procedure where
most predicted 3D boxes tend not to overlap their associated ground truth, is
to reduce the loss value by increasing the size, such that E is driven to zero.
This behavior was probably not noticed when the GIoU was applied to 2D de-
tection, as most 2D detectors optimize the refinement branch of the detection
head only on anchors or proposals that share a significant overlap with the
ground truth boxes to begin with. As a result, since the final predictions are
obtained as a correction to these prior boxes, it is unlikely that a large portion
of them are disjoint from their corresponding ground truth. Conversely, in the



100
Chapter 3. Monocular 3D Object Detection via Generalized

Intersection-over-Union Minimization

proposed approach, as no 3D prior boxes are used, the estimations could be
anywhere in the space, especially during the early stages of optimization, which
leads to a significant number of non-overlapping samples. Allowing only one
dimension to be optimized at a time avoids this problem altogether: when a
center coordinate is optimized the boxes might be disjoint but the dimensions
cannot be varied. When a dimension is optimized, the boxes must overlap as
they share the same center.

(a) (b)

Figure 3.7: Example of the anomalous behavior of the Generalized Intersection-
over-Union. Two identical non-overlapping boxes (a) correspond to a loss value
that is always greater than two very different boxes where one contains the
other (b).

Comparison with other optimization strategies To further test the ef-
fectiveness of the proposed optimization strategy, following the same training
routine introduced in Sec. 3.4.2, I trained the 3D module considering alterna-
tive loss functions. In particular, I compared against two different formulations:

• the direct regression, which is the approach commonly adopted in the
literature, where the parametrization introduced in Sec. 3.3 is optimized
directly against the ground truth using the smooth-L1 distance as cost
function;



3.5. Experimental Results 101

• the corner loss, first introduced in [23] as a regularization term to im-
prove box localization accuracy. This loss allows for the joint optimization
of all degrees of freedom of the box via the minimization of the distance of
its eight corners with respect to the corners of its corresponding ground
truth box. Formally, given the predicted box B and its associated ground
truth B̂, I compute their corresponding sets of ordered corners p̂ ∈ R8×3

and p ∈ R8×3 to which I apply the smooth-L1 cost:

Lcrn = smoothL1 (p̂− p) . (3.18)

For this formulation, I also tested the disjoint version, where each of the
seven degrees of freedom is optimized by a separate subterm, similarly to
what was done for the GIoU loss. Note that in this case, unlike the GIoU,
the angle can also be optimized using the corner loss, as a differentiable
close form solution always exists.

The quantitative results of these studies are displayed in Tab. 3.3. The
proposed formulation convincingly outperforms all other options, and the cor-
ner loss also performs surprisingly well. As expected, optimizing each degree
of freedom separately leads to considerable improvements for the GIoU-based
loss, as it side-steps the anomalous behavior illustrated in the previous para-
graph. The disjoint formulation also improves, albeit by much smaller margins,
the overall performance of the corner loss, as it simplifies the optimization pro-
cesses. On the other hand, the direct regression falls considerably behind in
terms of performance. This is indicative of the fact that optimizing the model
by reasoning in terms of boxes as a whole, either by maximizing an approxi-
mation of their GIoU or by minimizing the distance between their corners is
more effective than optimizing the parametrization directly. I speculate that
the GIoU performs better than the corner loss as it is a closer surrogate to
the evaluation metric, which is an IoU-based Average Precision. Moreover, the
GIoU loss is overall more stable and easier to integrate into the baseline 2D
detection model, requiring no hyperparameter tuning for successful training.
Conversely, both the direct and corner losses require careful balancing in order
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Loss
AP3D @ 0.7/0.5 IoU

Easy Moderate Hard
Direct 13.26 / 34.40 11.21 / 27.12 10.99 / 23.18
Crn 17.96 / 46.59 14.20 / 32.97 12.14 / 30.79

Crn (D) 18.93 / 48.66 14.35 / 36.76 12.09 / 31.23
GIoU 18.19 / 48.59 14.87 / 36.17 13.84 / 31.71

GIoU (D) 22.48 / 55.70 16.67 / 40.34 15.08 / 34.40

Table 3.3: Results of the ablation study on the loss function for 3D detection.
Direct represents the direct loss, Crn the corner loss and GIoU the proposed
formulation of the Generalized Intersection-over-Union loss. (D) is used to
indicate the disjoint optimization of each parameter.

to avoid spikes early in the training due to outlying detections which would
lead to optimization instability.

3.5.4 Qualitative results

Some qualitative results of the proposed system are shown in Fig. 3.4. In
particular, I display the detection both on the input image and in 3D using
the LiDAR point cloud as reference. The system is capable of detecting most
3D objects with high accuracy, especially at short to medium distances. It
is also capable of locating instances that are not annotated, such as in Fig.
3.4d, for which the correctness of the prediction can be inferred by the LiDAR
point cloud. The most common causes for inaccurate localization are occlusions
(3.4c), which might cause the underlying 2D detection model to fail, leading to
a missed detection, truncation (3.5a) and high distances (3.4e, 3.5b, 3.5e, 3.5f).
Uncommon orientations also prove to be challenging for the model (3.4a, 3.5c),
likely due to the limited amount of training data available for these cases.

In Fig. 3.8 I also show some detections of the trained system for harder
classes such as pedestrians and cyclists. The system exhibits some promising
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results on these categories, as it is able to detect them fairly confidently and
determine their position with acceptable accuracy. The lack of training data
for these cases, coupled with the fact that pedestrians and cyclists are inher-
ently more complex than vehicles due to not being rigid objects, leads to 3D
predictions that are overall noisy, and hinders an adequate evaluation of the
system.

Figure 3.8: Qualitative results for pedestrians and cyclists.
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Algorithm 1: Computation of the Generalized Intersection-over-Union
for equioriented 3D cuboids.

input: Predicted B0 and ground truth B̂0 equioriented boxes:
B0 = (x, y, z, h, w, l, 0),
B̂0 = (x̂, ŷ, ẑ, ĥ, ŵ, l̂, 0)

output: GIoU
1 Compute the opposing corners for each box:

x1,2 = x± l/2 x̂1,2 = x̂± l̂/2
y1,2 = y ± h/2 ŷ1,2 = ŷ ± ĥ/2
z1,2 = z ± w/2 ẑ1,2 = ẑ ± ŵ/2.

2 Compute the predicted box area of B0:
A = h · w · l

3 Compute the ground truth box area of B̂0:
Â = ĥ · ŵ · l̂

4 Compute the intersection area I:
xI1 = min(x1, x̂1) xI2 = max(x2, x̂2)

yI1 = min(y1, ŷ1) yI2 = max(y2, ŷ2)

zI1 = min(z1, ẑ1) zI2 = max(z2, ẑ2)

lI = xI1 − xI2 hI = yI1 − yI2 wI = zI1 − zI2

I =

lI · hI · wI if lI > 0, hI > 0, wI > 0

0 otherwise

5 Compute the union area U : U = A+ Â− I
6 Compute minimum enclosing box area Ac:

xc1 = max(x1, x̂1) xc2 = min(x2, x̂2)

yc1 = max(y1, ŷ1) yc2 = min(y2, ŷ2)

zc1 = max(z1, ẑ1) zc2 = min(z2, ẑ2)

Ac = (xc1 − xc2) · (yc1 − yc2) · (zc1 − zc2)
7 Compute the GIoU:

GIoU = I
U −

Ac−U
Ac
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3.6 A case study:
3D GIoU applied to Frustum-PointNets

To further validate the effectiveness of the proposed loss function to the task
of 3D Object Detection, I conduct a study in which I apply it to the optimiza-
tion of an entirely different 3D detector: Frustum-PointNets [23]. Frustum-
PointNets is a fusion-based 3D detection pipeline that uses both the RGB
image and the LiDAR point cloud as inputs. First, the image is processed by
Faster R-CNN to extract the set of 2D objects. The 2D detections are then
cast to viewing frustums, which are used to determine the portion of point
cloud relative to each object. Each of these point clouds is finally processed by
the 3D detection network, responsible for locating the object within the cloud
and estimating its 3D box. More specifically, the 3D detector is comprised of
three modules, applied in sequence:

• a PointNet for segmentation, responsible for removing the background
points;

• a T-Net (i.e. a small PointNet) that processes the remaining set of fore-
ground points, translated such that their centroid is in the origin, and
estimates the local object center coordinates;

• a second PointNet, which accepts the foreground point cloud traslated
in the center estimated by the T-Net as its input and returns the 3D box
estimation.

Due to requiring existing 2D detections as data for its training, this pipeline
is not trained jointly. Generally, the model for 2D detection and the model
for 3D detection are trained separately from one another, each using its own
optimization routine. In this study, in particular, I modify only the training loss
for the 3D detection module, without affecting in any way the underlying 2D
detector. Moreover, for fair comparison, I adopt the exact same 2D detection
model, with the same optimized set of weights released by the authors.
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3.6.1 3D detector: standard optimization

All three modules involved in the estimation of the 3D box from the sampled
point cloud are optimized jointly, using a multi-task loss function:

L = Lseg + λ (Lc1-reg + Lc2-reg + Lh-cls + Lh-reg + Ls-cls + Ls-reg + γLcorner) .

(3.19)
The segmentation submodule returns a scalar value for each input point,

encoding the probability that said point belongs to the object of interest. As
such, the loss Lseg used to train this submodule takes the form of a standard
binary cross-entropy loss (see Eq. 2.8), averaged over all input points.

The T-Net for center estimation is trained to directly estimate the posi-
tion of the object center given the set of foreground points shifted around their
centroid. It is trained via the loss Lc1-reg, which takes the form of a smooth-L1
distance (Eq. 2.4) between the estimated and the ground truth center.

The second PointNet for 3D box estimation is tasked to return the 3D
box given the set of foreground points shifted at the estimated center coordi-
nates. More specifically, this submodule returns a total of 3 + 4×NS+ 2×NH
outputs, where:

• the first 3 outputs represents the estimated position of the object center
with respect to the input foreground point cloud. These are trained via
the loss Lc2-reg which is a smooth-L1 distance between the predicted and
the ground truth center;

• the subsequent 4×NS outputs encode the dimensions estimation, which
is performed relative to a set of NS predetermined dimension templates.
More specifically, the first NS outputs represent a discrete probability
distribution that determines which template is used, and the following
3×NS values encode height, width and length corrections with respect to
each template. The classification is trained via Ls-cls, which is a standard
multi-class cross-entropy loss (see Sec. 2.2.1). The correction is trained
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via Ls-reg, which is a smooth-L1 distance between the estimated correc-
tion and the ground truth one: note that in this case the loss function is
only computed for the right template, determined by ground truth;

• the last 2×NH outputs encode the orientation estimation which, like for
the dimensions, is split into a classification component and a correction
component. In particular, the 360◦ are divided into NH bins: the first NH
outputs represent a discrete probability distribution that the orientation
angle lies in that bin and the remaining NH values encode corrections
with respect to each bin center. Training follows the one used for the
dimensions: Lh-cls is a multi-class cross-entropy loss for bin classification
and Lh-reg is a smooth-L1 distance computed on the corrected bin, which
is determined by ground truth.

Additionally, to regularize the estimation of the 3D box and improve the ac-
curacy, an additional loss term, the corner loss Lcorner is used, which consists
of minimizing the smooth-L1 distance between the estimated and the ground
truth box corners. In order to compute this loss term, the 3D box originated
using the estimated corrections on the ground truth bins is considered.

3.6.2 3D detector: proposed optimization

I propose to modify the multi-task loss (Eq. 3.19) such that the estimation
of the 3D box center and dimensions is optimized through the proposed dis-
joint 3D GIoU loss. More specifically, I remove the losses previously tasked
to estimate center (Lc2-reg) and dimensions (Ls-reg) as well as the corner loss
(Lcorner), and I subtitute them with the formulation introduced in Eq. 3.17:

L = Lseg + λ (Lc1-reg + Lh-cls + Lh-reg + Ls-cls + γL3IoU) (3.20)

As originally done for the corner loss computation, in order to compute the
GIoU loss value I consider the box obtained from the predicted correction
on the ground truth dimension template. No other modification is done to



108
Chapter 3. Monocular 3D Object Detection via Generalized

Intersection-over-Union Minimization

APBEV / AP3D @ 0.7 IoU
Car Easy Moderate Hard

Original v1 87.82 / 83.26 82.44 / 69.28 74.77 / 62.56
Baseline v1 87.64 / 82.97 83.09 / 71.11 75.75 / 63.43
GIoU v1 87.59 / 85.36 83.89 / 73.47 76.16 / 65.29

Original v2 88.16 / 83.76 84.02 / 70.92 76.44 / 63.65
Baseline v2 88.19 / 83.33 85.38 / 71.74 77.15 / 64.01
GIoU v2 88.41 / 86.08 85.99 / 74.47 77.64 / 66.14

Table 3.4: Results of the study on applying the GIoU as cost function for opti-
mizing Frustum-PointNets. The Car class is considered for evaluation. Origi-
nal and Original v2 indicate the results reported by the original paper [23],
using the PointNet and PointNet++ based architectures respectively. Base-
line and Baseline v2 represent the results obtained by my reimplementation
of the system. GIoU indicates that the reimplemented system makes use of
the GIoU loss formulation in Eq. 3.17 to optimize the estimation of center and
dimensions.

the system: the 3D box orientation and dimensions are still estimated using a
hybrid classification-correction approach, and the model architecture is exactly
the same. Also, I adopt the exact same training routine as the original work.

3.6.3 Experimental Results

The results of the experiments for the Car class are displayed in Table 3.4.
More specifically, I report both the original results shown in the paper [23], as
well as those obtained by my reimplementation of the system in PyTorch. I
experimented woth both versions of Frustum-PointNets:

• version 1 adopts simple PointNet networks for all three modules;

• version 2 utilizes PointNet++ models both for the segmentation module
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and the box estimation module, resulting in a more powerful and context-
aware, albeit quite slower, network.

In order to avoid ambiguities and isolate the analysis to the different train-
ing strategy used to optimize the 3D detection network, at evaluation time I
adopt the exact same set of 2D detections used to evaluate the original system,
which are made publicly available by the authors: this way, no performance
change can be attributed to a difference in behavior of the underlying 2D object
detector.

The models trained with the GIoU loss formulation strongly outperform
their corresponding original versions, especially for the 3D task which is the
one that the loss explicitly aims to optimize. Particularly notable is the fact
that the v1 model, when trained using the proposed loss, distinctly outper-
forms the v2 version optimized with the original loss function, despite being a
considerably simpler model. This is indicative of the fact that an appropriate
optimization strategy might be more important for the final result than the
model architecture.

To further ablate the proposed formulation, in Table 3.5 I also show the
results of the trained models for the Cyclist class. Even in this case, the v1
system trained with the GIoU loss vastly outperform its v2 counterpart with
the standard training procedure. Most surprising, however, is the fact that the
GIoU-optimized v2 model, while still outperforming the original model, per-
forms worse than the GIoU-optimized v1 on the 3D metric. This behavior might
be the result of overfitting: as already stated in Sec. 3.5.1, available Cyclist data
is very limited compared to Car data. As a result, the risk of overfitting such
data is higher, especially when adopting more complex models like the version
2 of Frustum-PointNets. Conversely, the much simpler architecture of version 1
leads to simpler features being learned, which in turn improves generalization
on unseen samples. On the BEV localization task, on the other hand, version
2 firmly outperforms version 1: this is possibly due to the fact that the task
is simpler, and therefore the noisier predictions induced by overfitting do not
affect performance as much.
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APBEV / AP3D @ 0.7 IoU
Cyclist Easy Moderate Hard

Original v2 81.82 / 77.15 60.03 / 56.49 56.32 / 53.37
GIoU v1 83.44 / 81.04 62.09 / 59.88 58.60 / 55.76
GIoU v2 84.77 / 78.53 63.75 / 57.42 59.44 / 53.96

Table 3.5: Results of the proposed system on the Cyclist class, compared
against the original results.

3.7 Discussion

In this chapter, I proposed an extention to the 2D object detector Faster R-
CNN consisting of a simple module responsible for monocular 3D detection
which is trained using a disjoint formulation of the Generalized Intersection-
over-Union (GIoU) loss function. To ensure the existence of an analytical solu-
tion, I disentangled the estimation of the orientation from that of position and
dimensions, rotating the boxes to a canonical angle before computing their
GIoU. Moreover, to avoid an anomalous behavior of the GIoU early during
training, I opted for optimizing each degree of freedom separately by adopting
a dedicated loss function for each.

The resulting system exhibited remarkable performance, surpassing more
complex and model-driven pipelines on the autonomous driving KITTI dataset.
The approach is also simple, as the 3D detection module only consists in a
handful of fully-connected layers, and thus could be incorporated straightfor-
wardly into other existing 2D detection methods.

Most of the performance gain achieved by the proposed system is to be
attributed to the way that the 3D detection module is optimized, as shown by
the study conducted by utilizing more traditional optimization functions. To
further validate this claim, I adopted the GIoU loss function for optimizing the
LiDAR-based 3D detector Frustum-PointNets, and showed that the proposed
formulation can lead to significant improvements even for entirely different
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neural architectures.





Chapter 4

3D Object Detection on LiDAR
scans via Voting and
Self-Attention Mechanisms

4.1 Prior Art and Motivation

Camera-based perception solutions, whilst being currently considerably cheaper
than LiDAR-based ones, suffer from inferior performance, mostly due to the
fact that images do not encode depth information directly. Stereo setups can
be used to estimate depth through disparity calculation; such depth, however,
tends to be considerably noisier, especially at high distances, and tends to fail
in presence of specific patterns or lack of textures. Similarly, networks for 3D
detection trained on monocular images require an enormous amount of data
in order to generalize properly to unobserved scenes and, even then, they still
strongly underperform stereo and LiDAR-based pipelines.

LiDAR sensors, on the other hand, provide extremely accurate, albeit
sparser, depth information in the form of a point cloud of the surrounding
environment. While currently being considerably more expensive than cam-
eras, advancements in sensor technology are consistently reducing the costs of
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LiDAR solutions, and prices are quickly approaching those of stereo-camera
setups. This makes LiDAR based perception techniques worth investigating,
as consumer-friendly LiDAR options are likely to emerge in the near future.

As already mentioned in Sec. 1.6.1, state-of-the-art neural networks operat-
ing on point cloud data are generally divided into two macro categories: voxel-
based methods and point-based methods. Voxel-based methods [70, 71, 13, 23]
first transform the point cloud into a regular grid of voxels, and then process
the transformed data using three-dimensional convolutional operators. Point-
based methods [14, 72, 26, 73], on the other hand, operate directly on the raw
point cloud by leveraging PointNet-like [24, 25] models. Voxel-based methods
tend to be faster than point-based approaches, mostly due to the fact that a
regular grid of voxels is easier to process compared to points and there exist
libraries [68, 69] that allow for efficient convolution computation by ignoring
empty voxels. Conversely, raw point clouds are more challenging to process
directly, as they are sets with no intrinsic internal structure, which makes
point-based methods usually less efficient. However, processing points directly
avoids the quantization introduced by the voxelization process, allowing for
more accurate localization.

In this chapter I investigate self-attantion [27] as a way of strengthening
intermediate feature representations of point-based methods, which all rely on
PointNet-like structures to extract features. More specifically, I build upon
the detection pipeline Votenet, introduced in [26] for performing 3D object
detection on dense point clouds of controlled scenarios, such as room scenes
[103, 104]. As this method does not adapt well to noisier scenarios, such as au-
tonomous driving scenes obtained from LiDAR scans, I introduce some simple
modifications in order to boost performance. Then, I introduce self-attention
as an integral part of the Set Abstraction (SA) layers, with the aim of mak-
ing points aware of each other when computing features, which should lead to
stronger representations and, ultimately, better detection performance.
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4.2 Votenet for 3D Object Detection on Driving Sce-
narios

Before delving into the details of the model, I briefly review PointNet models,
as they represent a central component in point processing pipelines.

4.2.1 PointNets for point cloud processing

Differently from images, point clouds are sets, that is they are not characterized
by any explicit internal structure. As sets, one of the properties they have
is that they are invariant to permutations of their elements, meaning that
shuffling the order of the points does not affect the cloud itself. Due to this
property, particular care must be taken when processing this kind of data using
neural networks, as the resulting model must approximate a function that is
symmetric by construction, meaning that its output must be unaffected by the
order of the input elements.

Currently, the dominant approach in literature for dealing with set inputs
is represented by PointNets [24]. The idea behind this class of models is very
simple: in order for the model to approximate a symmetric function, first each
element of the set is processed individually in order to extract features, and
then a global descriptor of the set is obtained by aggregating the information
about each individual element via a symmetric function:

f ({x1, . . . , xn}) = g (h (x1) , . . . , h (xn)) . (4.1)

Here, f represents the model, h can be any function and g is a symmetric
function. Commonly, in PointNets the function h is approximated by a stack
of fully-connected layers, also called in literature as a Multi-Layer Perceptron
(MLP), while g by max pooling, as the maximum operation is symmetric.
Therefore, the function f as a whole is symmetric, and returns as output a
single element, often called signature, that encodes a global representation
of the input set. Such signature can then be used for further processing: for
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classification, for instance, it can be passed as input to an additional classifier
model. Analogously, for point segmentation, the signature can be fused with
the features of each individual point (i.e. h (xi)) in order to enrich them with
global information before classifying each one.

While being simple and efficient, this formulation suffers from an impor-
tant limitation: by computing a global signature directly via a single symmetric
function g, it is unable to reason hierarchically and extract local structures and
patterns within the input. Therefore, while it works well for simple tasks such
as classification or object part segmentation, it falls short for more complex sce-
narios, where multiple objects are involved, or harder tasks such as detection.
The follow-up work PointNet++ [25] aims to resolve this weakness by extend-
ing PointNet such that hierarchical representations are extracted by looking
at progressively increasing regions within the input. The core component that
allows to generate such hierarchies is the Set Abstraction (SA) layer, which
operates on a set of N input points and performs the following operations:

• first, a subset of S centroids is sampled from the input. To ensure an even
distribution of the samples, sampling is performed using the Farthest
Point Sampling (FPS) algorithm, which returns the S elements withing
the input that are farthest apart from each other according to some
metric. When working with points, the most commonly used metric is
the euclidean distance between the points;

• second, S point groups are formed by assigning the original N input
points to the appropriate centroids, according to some method. The most
common one is Ball Query Sampling (BQS) where, given a radius value
r and a maximum number of points k, each centroid is assigned k points
that lie within a distance r from the centroid. In case not enough points
are present to reach k samples, the group is padded by repeating some
of the points. Often, to create stronger hierarchies, multiple radii are
adopted per centroid, such that features can be computed at different
scales.
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Another viable option for point grouping is k-Nearest Neighbors (kNN),
in which each centroid is assigned the k points closest to it. The upside
of kNN over BQS is that no padding is ever required, as there is no
limitation imposed by radius and therefore k points can always be found.
Also, kNN ensures that the selected points for each centroid are always
the k points closest to it, which is not guaranteed when using BQS. On
the other hand, however, it is less efficient overall and it does not allow
to control the spatial extent of each group: regions that are less dense
often lead to bigger groups, as the search must proceed further in space
to find enough points;

• third, a shared PointNet is applied to each group individually in order to
compute its local signature. In case more than one radius is used to create
groups, a different PointNet is used for each scale, and the signature is
obtained by fusing the outputs of each PointNet.

Note that each input point encodes two pieces of information: its current
feature representation, either computed by preceding SA layers, provided
by the sensor or empty, and its position with respect to its group centroid.
The use of a local systems of reference for each group allows to better
capture the relationships between the points contained in them.

As a result, the output of the SA layer consists of a new set containing S

points, located at the centroid positions and encoding information about their
local neighborhoods. By stacking multiple SA layers in a cascaded way (with
increasing radii in case BQS is used) it is possible to model hierarchies of rep-
resentations, similarly to how CNNs do for images. A schematic representation
of a SA layer is displayed in Fig. 4.1.

Each SA layer induces a subsampling of its input set of points. In order
to restore the original resolution (which might be required for tasks such as
semantic segmentation), Feature Propagation (FP) layers are introduced. FP
layers can be interpreted as the inverse operation to the SA layers, and their
purpose is to propagate representations downwards along the hierarchy: sup-
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Figure 4.1: Schematic representation of the Set Abstraction layer used in Point-
Net++ for hierarchical feature extraction. First, the input points (here dis-
played in red) are sampled. Then, given the samples, point groups are formed,
highlighted using yellow spheres. Finally, each point in each group is processed
by a shared set of layers (commonly implemented as FC-BN-ReLU) followed
by max pooling for feature aggregation, yielding the output features for the
group. Note that the processing and aggregation network is also shared among
different groups.
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pose that the i-th SA layer takes as input the set of points xi−1 containing
Si−1 elements, and returns the set of points xi containing Si elements, where
Si < Si−1. The FP layer operates the following way:

• given each input point in xi−1, it identifies the 3 nearest points in xi;

• the features of the 3 selected points are interpolated by performing a
weighted average based on their inverse distance from the input point;

• the interpolated features are fused with the original features of each input
point using an MLP.

As a result, the output of the FP layer is the original set xi−1 of points, updated
with the extra local information extracted by the subsequent SA layers. By
applying FP layers in cascade it is possible to progressively upsample the point
cloud returned by the SA layers back to its original resolution while retaining
local information.

4.2.2 Baseline Votenet Model for 3D Object Detection

First introduced in [26], Votenet represents a simple yet effective approach for
performing 3D object detection directly from a raw point cloud. It builds upon
PointNet++ and consists of three different modules, each being a different
neural network, applied sequentially to the input:

• backbone: this network is responsible for extracting features from the
input point cloud, originating a subsampled version of it in which each
point encodes information about its neighborhood;

• voter: given the subsampled point cloud returned by the backbone, this
module is supervised to push each point close to the center of the object
it belongs to, leading to the formation of clusters in correspondence to
objects;

• detector: this module is responsible for analyzing each individual cluster
and determine the state of the object it represents (if any).
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Backbone As first step, the raw input cloud is processed by a backbone
network in order to extract feature representations and, at the same time, de-
termine a set of locations in space to use as starting point for detection. The
backbone is implemented as a PointNet++ model having n SA layers followed
by m FP layers, where m < n. The output of this module is therefore a sub-
sampled version of the input point cloud, with each point encoding information
about a local region of the input point cloud. These points are called seeds.

Voter Given the set of seeds returned by the backbone, the voter is respon-
sible for pushing each one close to the center of the object it belongs to (if
any). More specifically, given each seed point si ∈ R3+C , where the first three
dimensions represent its position xi = (xi, yi, zi) in space and the remanining
dimensions encode its features, the voter outputs offsets ∆si ∈ R3+C to apply
to both position and features. The idea behind this module is to aggregate
seeds belonging to the same object together in space to form clusters. Intu-
itively, each of these points encodes information about different regions of the
scene, and therefore different object parts: as a result, each cluster can be in-
terpreted as an entity that sums up the object as a whole by containing all of
its parts, and can thus be utilized to determine the state of said object. This
module is implemented as a MLP applied in parallel to each seed.

Following the original work, I train this module by explicitly supervising
each point belonging to an object to be close to the object center after the
shift. More specifically, if ∆xi represents the positional shift returned by the
voter for the i-th seed and ∆x∗i represents the ground truth shift that would
prefectly align it with its corresponding object center, the loss for the voter is
given by:

Lvote =
1

Npos

∑
i

‖∆xi −∆x∗i ‖ · [si in object] (4.2)

The Iverson bracket function [si in object] indicates that the loss function is
computed only for those points who belong to an object, as background points
do not have an associated center, andNpos represents the number of said points.
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To determine whether each point is background or belongs to an object, it is
checked against each ground truth 3D box: if it is contained in one of them,
it is considered positive and associated to that object. Note that no explicit
supervision is performed on the feature-level shifts.

The shifted points generated by this module are called votes.

Detector Given the set of votes, the detection module is responsible for
clustering them together and processing each cluster in order to estimate the
potential object represented by it. The clustering process is achieved naturally
by applying a SA layer to the votes: FPS selects the cluster centers by randomly
sampling a subset of the votes; given the centers, BQS with a small radius value
is used to determine the clusters; finally, the shared PointNet is applied to each
cluster in order to aggregate the information and compute its signature.

Once the information about the clusters is obtained, a further submodule,
represented by a MLP, is applied to each cluster in parallel to predict the
boxes. The original box encoding mostly follows Frustum-PointNets [23]. More
specifically, the prediction submodule estimates a total of 5 + 4 × NS + 2 ×
NH + NC values per cluster, where:

• the first 2 values represent a discrete probability distribution indicating
whether the cluster is background or belongs to an object;

• the following 3 values encode the correction from the cluster center to
the object center, much like how the voter returns the correction from
each seed to its corresponding object center;

• the subsequent 4 × NS + 2 × NH values encode dimension and orienta-
tion estimations respectively, encoded as classification followed by bin
correction identically to [23] (see Sec. 3.6.1 for more details);

• the final NC values encode a discrete probability distribution over the
possible object classes.
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For simplicity and efficiency, I modify this formulation slightly, outputting
3 + 4×NS + 2×NH values instead:

• first, I notice that in most situations there exists exactly one size template
per class, meaning that NS = NC. When this is the case, the predictor for
the size template and the predictor for the object class carry out exactly
the same task, rendering one of the two redundant. As a result, I opt for
removing the size template predictor, and at test time I choose the right
template according to the predicted object class;

• second, instead of predicting the cluster objectness (2) as well as a dis-
crete probability distribution over the classes (NS), I predict NS individ-
ual per-class objectness values instead.

This alternative formulation performs on-par with the original, whilst being
more compact and requiring 2 + NS less outputs.

Optimization of box centers, dimensions and orientations follows closely
that of Frustum-PointNets, with the difference that in this case these losses
are computed for each positive cluster (i.e. clusters whose center is contained in
a ground truth box), and averaged over their number. To train the objectness
predictor, NS individual binary cross-entropy losses (Eq. 2.8) are applied to
each cluster, one for each class, where the ground truth probability is equal to
1 if the cluster center is inside an object of that class, 0 otherwise. Again, the
final classification loss is obtained by averaging all loss values for all clusters.

At inference time, duplicate detections are handled by using Non-Maximum
Suppression, favoring those having higher objectness score in case of high over-
lap with other detections.

4.2.3 Modifications to the baseline for Autonomous Driving
Scenarios

The Votenet baseline presented above was originally thought to perform 3D
object detection on controlled scenarios, such as the indoor scenes depicted in
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the ScanNet [104] and SUN RGB-D [103] datasets. Here, point clouds tend
to be quite dense, and most points usually belong to objects, with a very
small percentage of them that are background (i.e. points on the room floor
or walls). Driving scenarios captured by LiDAR sensors, on the other hand,
are substantially different: objects of interest (e.g. cars, pedestrians, cyclists
etc...) are very few and far between, which leaves most of the point cloud to
be background. Moreover, LiDAR clouds are generally noisier and sparses. For
these reasons, the original formulation of Votenet does not adapt well to this
new domain, losing performance and often missing detections.

I identify the root cause of this performance loss in the way that cluster
center selection is performed. To recall from the previous section, cluster cre-
ation is accomplished through the use of a SA layer, which first determines
a set of centers via the FPS algorithm and then aggregates information near
each center. In case of controlled scenes, where most points belong to objects,
it is likely that the clusters formed by the votes are far apart from each other,
with relatively few isolated points in between. In driving scenarios, on the
other hand, most points are likely to be background, which leads the clusters
that form in correspondence of objects to be surrounded by numerous isolated
votes. Since FPS determines the centers by starting from a random point and
iteratively selecting the next ones such that they the farthest apart from the
already sampled set, if some noise points near a cluster happen to be selected
by FPS before any of the points belonging to the cluster, then all points of
the cluster might be ignored. This behavior is displayed in Fig. 4.2. When this
happens, no features are extracted by the SA layer for that cluster, which is
subsequently ignored by the detection module. This has two major implica-
tions: due to some objects being missed, less positive samples are propagated
to the detector during training, reducing the amount of feedback and slow-
ing down optimization. Moreover, the same phenomenon might happen at test
time, leading to false negatives that are not caused by misclassifications, but
rather by objects being skipped when sampling. Both of these aspects severely
undermine the overall performance of the model. To limit the performance
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loss induced by missed clusters, I test two different solutions to cluster center
sampling: seed-based sampling and feature distance-based sampling [73].

(a)

1

2

?

(b)
(c)

Figure 4.2: Examples of false negatives originated by the sampling strategy.
(a) Vote points, displayed in red, sampled cluster centers, shown in blue and
ground truth boxes for a car and a cyclist. (b) Schematic representation of
what is happening: if noise points around the object are sampled first, the
entire cluster might be skipped due to vicinity. (c) Resulting predicted boxes:
no object is detected due to no cluster centers being sampled.

Seed-based sampling Mentioned in the original work [26], the idea behind
seed-based sampling is rather simple: when determining the set of cluster cen-
ters from the votes using FPS, instead of using the coordinates of the votes,
the coordinates of their corresponding seeds are used instead. Since seeds are
evenly spread out in space, as they are the result of applying FPS multiple
times on the original point cloud, it is unlikely that all seeds that correspond
to a cluster of votes are skipped when sampling the cluster centers. Whilst
contributing to almost no performance gain when the system is applied on
the ScanNet and SUN RGB-D datasets, this alternative sampling strategy ac-
counts for most of the performance gain when operating on the noisier KITTI
driving scenarios. An example of result is displayed in Fig. 4.3.
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(a) (b) (c)

Figure 4.3: Detection results from the seed-based sampling strategy. (a) Loca-
tions of the seed points used for sampling, displayed in green along with the
ground truth boxes. (b) Vote points, in red, and sampled cluster centers, in
blue, along with the ground truth boxes. It can be observed that multiple
centers per cluster are sampled. (c) Resulting predicted boxes.

Feature distance-based sampling In the recent work 3DSSD [73], the
authors propose F-FPS, a variant of the FPS algorithm in which the metric is
given by the sum of euclidean and feature distance between the set elements, as
opposed to the traditional formulation which only considers euclidean distance
and is therefore labelled as D-FPS. They show that using a combination of
F-FPS and D-FPS, which they call FS (Fusion Sampling), inside the SA layers
of the backbone leads to more object points being kept, which results in higher
recall and overall better detection performance. This improvement is caused by
the fact that F-FPS allows for points that are close to each other to be sampled,
provided that these points encode different entities in space, such as different
object parts. Conversely, background points such as points on the road are
less likely to be chosen, as they tend to have similar feature embeddings. As
alternative solution to seed sampling, I propose to use F-FPS instead of D-FPS
in the SA layer of the detection module: this avoids missed clusters, as points
belonging to said clusters encode different information from the surrounding
background points, and thus are likely to be selected even if the latter are
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chosen first. An example of result is displayed in Fig. 4.4.

(a) (b)

Figure 4.4: Detection results from the feature distance-based sampling strategy.
(a) Vote points, in red, and sampled cluster centers, in blue, along with the
ground truth boxes. This method, on average, leads to more objects points
to be selected when compared to seed-based sampling. (b) Resulting predicted
boxes.

Given the increase in recall shown in 3DSSD, I also opt for adopting FS
in the backbone module, following the original implementation. Moreover, in-
stead of predicting objectness like in the original system, I choose to predict
centerness instead, due to its synergy with the sampling strategies above.

Centerness estimation Whilst sampling cluster centers via D-FPS results
in at most one center per cluster, when using either seed or F-FPS based sam-
pling it is likely that multiple centers per cluster are sampled. As a result,
each object is likely to be detected multiple times by the detection module.
While duplicate detections are handled by NMS, where the estimated confi-
dence/objectness is the determining factor in choosing which of the multiple
detections is kept, there is no real correlation between said confidence and the
true quality of the predicted box. Cluster centers that are closer to their cor-
responding object centers, however, often result in higher quality predictions.
As a result, following [73], instead of predicting a per-class objectness for each
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cluster center like in Sec. 4.2.2, I predict its per-class centerness values instead.
More specifically, if a cluster center is inside a ground truth box of a specific
class, it is trained to predict the following value

pctr = 3

√
min (f, b)

max (f, b)
· min (l, r)

max (l, r)
· min (t, d)

max (t, d)
(4.3)

and 0 otherwise. In the above equation, {f, b, l, r, t, d} stand to indicate the
distances of the cluster center from the front, back, left, right, top and bottom
faces of the assigned ground truth box respectively. By predicting centerness
instead of objectness, the subsequent NMS prioritizes boxes originated from
cluster centers that are closer to the object center, and thus having on average
higher quality, which leads to overall better performance of the system. To
train for centerness prediction, I adopt the standard binary cross-entropy loss
function using as target, instead of a binary 0/1 value like for the objectness,
the ground truth centerness value.

4.3 Enhancing SA layers via Self-Attention

While PointNet++ represents a strong model for extracting features from point
clouds that are local and hierarchical, its structure suffers from a limitation. In
SA layers, the feature aggregation of each group is performed through the use
of a shared PointNet. To achieve permutation invariance, PointNet processes
each point in each group independently using a MLP and then aggregates their
information via a max pooling operation. As a result, the points in each group
are unaware of each other while being processed by the MLP, which likely
leads to suboptimal feature representations.

A possible solution for circumventing this problem has been proposed in
PointWeb [105], where a feature adjustment module is introduced before the
MLP to recalibrate the features of each point according to its relationship
with all other points. Instead, I propose to exploit the attention mechanism to
explicitly model inter-point relationships within each group.
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4.3.1 The attention mechanism

Attention can be defined as a function mapping three sets of elements, called
queries, keys and values into a set of output elements. More specifically, each
query element corresponds to an output, which is given by a weighted sum
of the values where the weight associated to each value depends on the com-
patibility of the query with the key corresponding to that value. Formally, let
Q ∈ Rnq×dk be the set of queries, K ∈ Rnkv×dk the set of keys and V ∈ Rnkv×dv

the set of values, where nq indicates the number of query elements, nkv indi-
cates the number of key/value pairs, dk indicates the dimensionality of queries
and keys and dv the dimensionality of the values. Then, the most commonly
adopted version of attention [27] is as follows:

Att (Q,K, V ) = Ω
(
Q ·KT) · V. (4.4)

Here, the pairwise dot product Q · KT ∈ Rnq×nkv measures how compatible
each query is with each key, and Ω (·) is a function mapping the compatibility
values into weights. Usually, Ω (·) takes the form of a Softmax function, applied
to each row of Q ·KT independently.

The sets of queries, keys and values can be used to model any quantity, so
long as they can be encoded in the form of vectors. Commonly, in deep learning
these quantities are obtained by projecting feature representations extracted
by one or more neural networks:

Q = PQ(xq), K = PK(xk), V = PV (xv). (4.5)

Here, xq, xk, xv could be, for instance, feature maps returned by CNNs or
points extracted by a PointNet++ backbone. In the former case, each pixel
represents an element of the set; in the latter, each point represent an element
of the set. PQ (·), PK (·), PV (·) represent the projection functions used to map
each of these representations into the sets of queries, keys and values. Such
functions are usually optimized together with the rest of the models, and are
commonly implemented using an MLP applied concurrently to each element
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or, in the simplest case, as a matrix multiplication, where the parameters
of the matrices are trainable. In most cases, keys and values are obtained
from the same set of features, that is xkv = xk = xv. Also, by imposing the
dimentionality of the values to be the same as that of the keys and queries
(i.e. d = dk = dv), the outputs returned by the attention function are often
used to update the original set of query features:

y = Att(PQ (xq) , PK (xkv) , PV (xkv)) + xq. (4.6)

The resulting set of features y can therefore be interpreted as an updated
version of the original set of features xq, in which the update depends on the
relationship between each element in the set xq and all the elements in the set
xkv. Note that this operation is invariant to the permutation of the elements
in the set xkv and equivariant to the permutation of the elements in the set
xq, meaning that permuting the elements in xq induces the same permutation
on the set y, but the individual values do not change. Self-attention is a
variant of attention in which queries, keys and values are all derived from the
same set of features, that is x = xq = xk = xv. Self-attention can therefore be
interpreted as an operation that updates each element in x depending on its
relationship with the rest of the elements in same set.

Arguably the first successful application of self-attention is represented by
the seminal work in [27], in which the authors propose an entirely novel neu-
ral architecture to perform the task of machine translation revolving entirely
around the attention mechanism. More specifically, they introduce the Trans-
former, an Encoder-Decoder structure: in the Encoder, self-attention is used to
model the relationship between the different words in the input sentence. In the
Decoder, self-attention is first used to extract information from the translated
sentence generated so far; then, by using these features as queries, and the
features generated by the Encoder as keys/values, additional attention blocks
are used to generate the set of features used for next word prediction. Perhaps
one of the most significant innovations introduced in the Transformer model is,
however, Multi-Headed Attention. The idea behind this concept is as follows:
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instead of projecting the feature sets xq and xkv into a single set of queries,
keys and values, they are projected into h of these sets instead:

PQ (xq) = Q =
[
Q(1), . . . , Q(h)

]
∈ Rnq×(h·dh),

PK (xkv) = K =
[
K(1), . . . ,K(h)

]
∈ Rnk×(h·dh), (4.7)

PV (xkv) = V =
[
V (1), . . . , V (h)

]
∈ Rnk×(h·dh).

Each of these sets is then processed independently and in parallel using atten-
tion, and their outputs are fused together via an additional projection function
PO (·), yielding the output of the Multi-Headed Attention:

MHA (Q,K, V ) = PO ([Att1, . . . ,Atth]) ∈ Rnq×d. (4.8)

Here, [Att1, . . . ,Atth] ∈ Rnq×(h·dh) and Atti = Att
(
Q(i),K(i), V (i)

)
. Again, the

projection function PO (·) is implemented either as an MLP or, more commonly,
as a matrix multiplication with learnable matrix parameters. Like before, the
result of the Multi-Headed Attention is finally used to update the input set of
query features:

y = MHA(PQ (xq) , PK (xkv) , PV (xkv)) + xq. (4.9)

The authors argue that using multiple, independent attention heads allows the
model to concentrate on different aspects of the input at different positions, im-
proving the overall performance of the system. Note that by choosing dh = d/h

and parallelizing the computation of the several attention components, Multi-
Headed Attention introduces no computational overhead compared to the tra-
ditional formulation. To better fuse the input features with those computed
by the Multi-Headed Attention and improve training, each Multi-Headed At-
tention Block (MAB) in the Transformer encoder adopts Layer Normalization
[106] for feature normalization, as well as an additional MLP for performing
additional feature fusion, leading to the following final formulation:

MAB (xq,xkv) = LN (ỹ + MLP (ỹ)) , (4.10)
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where ỹ = LN (y), y is obtained using Eq. 4.9, MLP indicates the MLP used for
feature fusion and LN represent the Layer Normalization operator. A schematic
representation of the MAB block is depicted in Fig. 4.5.

Attention
Block

Attention
Block

Attention
Block

Attention
Mask

LN MLP LN

Figure 4.5: Schematic representation of a MAB block.

4.3.2 Self-attention applied to SA layers

I propose to replace both the MLP for feature extraction and the max-pooling
for feature aggregation inside SA layers with attention-based processing, in
order to enhance the extracted feature representations by explicitly modeling
the relationships between the points within each group. In order to be effective,
such attention-based mechanisms should preserve the property of invariance
to permutations of the original formulation. More specifically, I introduce two
different formulations to replace the MLP.

Full Attention Here, I propose to replace each layer of the SA MLP h (x)

(see Eq. 4.1) with a self-attentive MAB block MAB (x,x), where x ∈ RK×C

represents any single group of points returned by the sampling and group-
ing stages of the SA layer, K is the number of points in the group and C is
the dimensionality of each point. This can be done directly, as MAB (x,x) is
permutation equivariant. Commonly, most models progressively increase the
dimensionality C of the features they extract as their depth increases. To al-
low for the same flexibility when using attention, I introduce an additional
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projection operation PC (·) inside the MAB block

MAB (x,x) = LN (PC (ỹ) + MLP (ỹ)) , (4.11)

which is tasked to project ỹ in a space such that its dimensionality matches
that of MLP (ỹ), much like how projection shortcuts are used in ResNets [3] to
match input and output dimensionalities in residual blocks. This enables the
MLP to extract features having different dimensionality than those of the in-
put, and therefore allows each MAB block to modulate the number of channels
just like FC layers do in the original implementation. Like all other projections,
PC (·) is implemented as a learnable linear transformation, and it is set to the
identity whenever the dimensionality returned by MLP (ỹ) is the same as that
of ỹ. A schematic representation of the proposed full attention is displayed in
Fig. 4.6.

Q

K

V

Attention

Figure 4.6: Schematic representation of the full attention block. For simplicity,
LN operations, projections and additional MLPs for feature fusion are omitted.

Induced Attention Whilst being general and relatively simple, full self-
attention is expensive: the space and time cost for computing and storing the
compatibility matrix Q · KT is quadratic in the number of elements in each
group, that is O

(
K2
)
. If S is the number of groups extracted by the SA layer,

this would bring the total cost up to O
(
S ·K2

)
, which might be intractable if

the number of groups S or the size of each group K is big.
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In [107], the authors introduced a variant to the attention mechanism in
which self-attention on points is not performed directly, but rather through an
intermediate set of elements: the inducing points. First, a MAB block is used to
update the set of inducing points z ∈ RI×C with the input points information:
to do so, the inducing points are used as queries and the input points x are
used as keys/values

z′ = MAB (z,x) , (4.12)

where z′ ∈ RI×C is used to represent the set of updated inducing points. Then,
the update on the input set of points is performed by attending them using
the updated set of inducing points:

o = MAB
(
x, z′

)
, (4.13)

where o ∈ RK×C′ represents the updated set of input points.
In the original work, the set of inducing points z is part of the layer and

optimized during training. In the shown experiments, however, induced atten-
tion is always applied to the entire point cloud, and the datasets used are
mostly toy examples. As a result, such a solution is likely to work poorly when
applied to the parallel processing of the many heterogeneous groups of points
within SA layers. These groups are likely to contain very different structures
and patterns, which renders learning a single set of inducing points to be used
for all of them challenging and suboptimal. For this reason, I propose to learn
a linear transformation that maps the signature of each group into the set of
inducing points instead:

z = LN
(
max (x) ·W T

z

)
, (4.14)

where max (x) ∈ R1×C represents the signature for the group, computed as
usual via max-pooling, Wz ∈ RI·C×C is the matrix of learnable weights map-
ping the signature into the set of inducing points, and LN represents the Layer
Normalization, performed over the C channels. More specifically, the output
of the linear transformation max (x) ·W T

z ∈ R1×I·C is reshaped to be in RI×C
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before applying LN and obtaining the inducing points. This formulation still
allows the inducing points to be learned from data, but does not force the same
set of inducing points to be used for every group, as they are now a function
of the group signature.

In both cases, the resulting induced attention has complexity O (S · I ·K),
which now grows linearly with the number of group elements instead of quadrat-
ically, leading to reduced memory and time costs especially for groups of large
size (K � 1). Moreover, the proposed formulation is still equivariant to permu-
tation, given the permutation invariant nature of the inducing points calcula-
tion. A schematic representation of the proposed induced attention is displayed
in Fig. 4.7.

QMAX

K

V

Q

K

V

Attention

Attention

Figure 4.7: Schematic representation of the induced attention block. Group
points are represented by red dots, whereas inducing points are depicted by
blue triangles. Red arrows are used to represent information flow pertaining
to the group points, while blue arrows represent information flows regarding
inducing points. For simplicity, LN operations and additional MLPs for feature
fusion are omitted.

Besides enhancing feature extraction by using self-attention, following [107]
I also strengthen the aggregation phase g (·) (Eq. 4.1). Instead of using a simple
max-pooling layer, I opt for using the first half of an induced attention layer (i.e.
Eq. 4.12) with a single inducing point to perform aggregation. Like before, the
inducing point is computed using Eq. 4.14. This formulation allows the model
to weigh the contribution of each element, extending the set of functions that
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the SA layer can approximate. Like max-pooling, it is permutation invariant.

4.4 Training Setup

4.4.1 KITTI LiDAR Dataset

Like for the monocular 3D detector presented in the previous chapter, the
proposed system is trained and evaluated on the KITTI [22] autonomous driv-
ing dataset, already introduced in Sec. 3.5.1. Besides providing 7481 training
images with the respective annotated 3D bounding boxes, this dataset also
supplies the corresponding, calibrated, 360◦ Velodyne scans. Since 3D annota-
tions only encompass the field of view of the camera, these scans are filtered
before providing them to the model, keeping only the points within the cam-
era viewing frustum. This leaves each scan to be comprised of approximately
17.000 points: in order to ensure a consistent number of input points among
different samples, I randomly select 16384 points from each scan before for-
warding them to the model. Besides the position of each point, I also provide
its reflectance value returned by the sensor as additional input feature. Again,
following previous work [67, 17, 76], the annotated data is split into training
and validation, comprised of 3712 and 3769 samples respectively.

4.4.2 Model architecture

The proposed model architecture adopted for the experiments, unless stated
otherwise, is depicted in Fig. 4.8.

The backbone is a standard PointNet++ model, comprised of three SA
layers followed by a FP layer, used for feature extraction and seed point cre-
ation. More specifically, the SA layers downsample the input cloud down to
4096, 1024 and 512 points respectively, and the FP layer upsamples it once,
yielding a total of 1024 seed points. For point sampling, I adopt D-FPS in
the first SA layer (as input points do not carry feature representations) and
FS in the following two SA layers, meaning that half the points are sampled
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via D-FPS and the remaining half using F-FPS. For point grouping I adopt
a hybrid approach: in the first SA layer I use BQS, as it allows to control
the receptive field of each center and scales well for a large number of input
points; for the subsequent SA layers I adopt kNN instead. While being less
efficient than BQS, kNN still performs acceptably well on a reduced set of
points; it also avoids point repetition, which might interfere with the attention
mechanism. The drawback of kNN is that the receptive field is not fixed, but
rather it depends on the density of the points in the region: by using atten-
tion, however, the model should be able to detect outlying points, ignoring
them. I embed and test both full-attention and induced-attention in the lay-
ers SA2 and SA3. The integration is rather straightforward: each FC layer of
the original SA layer MLP is swapped with either a full-attention block or
an induced-attention block, maintaining the exact same channel scaling as the
baseline model. I also substitute feature aggregation by max-pooling with its
attention based counterpart, as explained in Sec. 4.3.2. I avoid using attention
mechanisms in SA1 both due to the absence of proper feature representations
associated to the points and due to the high number of groups (4096) and large
size of each group (64), which render attention quite costly to compute.

The voter is implemented as a standard MLP, composed by two fully-
connected layers with batch normalization and ReLU activation followed by a
third fully-connected layer for position and features shift prediction.

The detector is comprised of a SA layer, which identifies 256 clusters
among the votes and processes them, followed by an MLP predictor, applied
to each cluster for bounding box prediction. I adopt F-FPS as default choice for
cluster center sampling, as it avoids the problem of missed clusters. However, I
also test the original setup, which adopts D-FPS, as well as seed-based sampling
in the experiments section. For point aggregation I choose BQS with small
radius, as it exploits the fact that votes should form clusters in space and it
performs better than kNN. The MLP predictor has the same structure as that
of the voter, and the predictions are encoded as presented in Sec. 4.2.2.
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4.4.3 Training Routine

All tested models are trained on the KITTI training split for a total of 80700
iterations, using ADAM as optimizer and batch size 4. The learning rate is
initially set to 5 · 10−4 and reduced by a factor of 10 after 64560 iterations.

Given the relatively limited dataset, I employ heavy data augmentation in
order to favor generalization and improve performance. First of all, I adopt the
so-called mixup augmentation [71], an augmentation technique often adopted
in recent literature when training point-based and voxel-based detectors which
consists in inserting into the current scene objects from other scenes in order to
provide richer training examples to the model. Practically, a database contain-
ing all objects in the training split is generated. Then, at training time, every
time a new training sample is loaded, a certain amount of randomly sampled
objects from this database is pasted into it, taking care that no collisions be-
tween objects are generated in the process. An example of a mixup-augmented
image is shown in Fig. 4.9.

(a) (b)

Figure 4.9: Example of mixup augmentation. (a) original sample with the as-
sociated ground truth boxes. (b) Sample after mixup augmentation.

After mixup augmentation is performed, additional data augmentation is
carried out to further increase the variability of the training data:

• first, the point cloud is flipped with respect to the camera xz-plane with
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probability 0.5;

• second, the point cloud is scaled by a factor randomly sampled within
the interval [0.9, 1.1];

• third, the point cloud is rotated about the camera y-axis by an angle
randomly sampled within the interval [−π/4, π/4];

• fourth, each object, and its associated points, is independently rotated
about its y-axis by an angle randomly sampled within the interval [−π/3, π/3];

• fifth, each object, and its associated points, is shifted along the camera x
and z directions by two quantities randomly sampled within the interval
[−1, 1].

4.5 Experimental Results

In this section, I present the results obtained from the experiments performed
on the proposed system. First, I perform an ablation study on the architectural
design choices presented in sections 4.2.3 and 4.3.2, validating them. Then, I
carry out a more in-depth study on attention, comparing different formulations
against the vanilla model with no attention mechanisms. Finally, I perform a
comparison between the proposed system and other state-of-the-art LiDAR-
based 3D detection models.

I note that, despite the fact that the system is trained on all three main
KITTI classes (i.e. car, pedestrian and cyclist), most comparisons are per-
formed considering only the car class since, given the limited size of the train-
ing and evaluation splits (3712 and 3769 samples respectively), it is the only
class that provides numerous enough ground truth samples to enable reliable
analyses.
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4.5.1 Ablation study on the design choice

The improvements in performance brought about by the modifications to the
original Votenet architecture (Sec. 4.2.3) and by the integration of the attention
mechanism (Sec. 4.3.2) are displayed in Tab. 4.1.

It can be seen that, indeed, the main cause for Votenet poor performance
on noisier autonomous driving scenarios is its inadequate cluster center sam-
pling strategy: just switching to seed-based center sampling leads to a relative
improvement of about ∼ 14%. Note that this performance is not the result of
a different neural architecture, but rather is due to the fact that seed-based
sampling mostly avoids missing clusters, increasing test-time recall. Moreover,
this sampling strategy often leads to the same cluster being processed multiple
times by the box predictior, as it is likely that multiple points inside it end
up being sampled; as a result, the network benefits from increased feedback
during training, which leads to faster and better convergence and therefore
higher quality detections.

Mixup augmentation contributes to a further boost in performance, despite
it being quite limited for the car class and mostly isolated to the hard examples.
This is likely due to the fact that cars are by far the most represented class
in the dataset, while also being the most spread out among different samples.
Conversely, pedestrians and cyclists are far less in number (about 1/5 and 1/10
compared to cars, respectively) and tend to concentrate on a few select samples
[22]. Therefore, forcing each input sample to contain multiple instances of those
classes stabilizes training, which is no longer dominated by cars. This leads to
a considerable gain in performance for pedestrian and cyclist detection, as
displayed in Tab. 4.2.

Estimating centerness over objectness further increases detection accuracy,
since in this case the score assigned by the model to each predicted box better
correlates with the quality of the box itself. This has two implications: on the
one hand, noisy detections and outright false positives are more likely to have
low scores, which causes the Precision-Recall curve to have greater area, im-
proving the AP metric. On the other hand, it is less likely that NMS discards
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better boxes in favor of more inaccurate ones. Unsurprisingly, centerness esti-
mation leads to better improvements for harder samples: since these samples
mostly consist of truncated or far away objects, they tend to be represented by
very few points and therefore are more likely to result in noisier cluster center
predictions.

Experimentally, using F-FPS on votes to sample cluster centers performs
better than seed-based sampling, and thus it constitutes the default choice
for the proposed vanilla model. Extending such model with attention-based
blocks leads to further boosts in performance. A more detailed study related
to attention follows in the next section.

AP3D)
Model class Easy Moderate Hard
Vanilla Ped 36.89 35.03 32.03
SS Ped 53.28 49.96 45.72

SS+MIX Ped 61.84 56.31 51.46
Vanilla Cyc 39.29 27.50 26.79
SS Cyc 67.13 52.52 50.52

SS+MIX Cyc 83.33 64.63 60.50

Table 4.2: Comparison between the vanilla system, the system with seed-based
sampling (SS), and the system with seed-based sampling and mixup augmen-
tation (SS+MIX) on the KITTI evaluation set for the Pedestrian (Ped) and
Cyclist (Cyc) classes.

4.5.2 Ablation study on attention type

Point-based 3D detection methods (i.e. models based off of PointNet++) are,
by construction, non-deterministic: the result of each FPS operator, in fact,
depends on the first selected point in the cloud, which is chosen randomly.
While this phenomenon was shown to have a negligible effect in terms of test
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results stability [25], when coupled with the heavy data augmentation involved
during training and the fact that the training set is relatively limited, it might
lead to non-trivial differences during optimization. Consequently, in order to
perform a more accurate comparison between the vanilla model and the various
attention-based formulations and to reduce the impact of such randomness on
the results, I train 5 identical models of each type, showing the best model out
of the 5 as well as their mean performance and their standard deviation.

The results of this study are shown in Tab. 4.3. As can be observed, all
attention-based models perform, on average, better than their vanilla counter-
part, despite being characterized by higher training instability as indicated by
their higher standard deviation values.

Surprisingly, the induced-attention based models outperform their full-
attention counterparts. The reason for this might be twofold: on the one
hand, induced-attention results in a higher number of trainable parameters,
and therefore in a model having higher representational capacity, compared to
full-attention, as each induced-attention layer is comprised of two multi-headed
attention blocks instead of one (see Fig. 4.7). On the other hand, the use of
inducing points might allow the model to better handle potential outlying el-
ements within each group, reducing their contribution to the output.

Performing feature aggregation via attention instead of max-pooling also
leads to relevant improvements, as it allows the model to specifically modulate
the contribution to the output of each component of the group, allowing the
system to represent a much wider family of functions compared to simply
performing a channel-wise max-pooling. This stronger representational power,
however, also leads to further training instability, as displayed by the increase
in the standard deviation value of the validation AP.

I also test both full-attention and induced-attention applied to the SA layer
of the detection module (SA-C), which is responsible for cluster creation and
grouping. In both cases, despite the higher representational capacity, the re-
sults are inferior to their counterparts using a standard MLP followed by max-
pooling. While induced-attention performs only slightly worse, full-attention
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leads to a more pronounced drop in performance, resulting to a solution that
on average performs worse than the vanilla model. This solution is also consid-
erably more unstable during training, as shown by the standard deviation of
its performance, which is almost four times that of the model with no attention
in SA-C. This degradation in performance is likely to be attributed to the fact
that SA-C utilizes BQS with low radius as grouping algorithm, which leads to
many clusters having repeated points due to padding. This is especially true
for votes that do not belong to objects, which are likely to be isolated in space.
Repeated points lead to instabilities when used in conjuction with attention,
as each one actively contributes to the end result. The obvious solution for
avoiding this problem would be to replace BQS with kNN; this, however, leads
to additional noise in the clusters, as each one is far more likely to include back-
ground noise points or even points from external objects. Considering that the
resulting system performs worse than its BQS-based counterpart (see Tab. 4.4)
while being less efficient, I opt against this kind of solution.

4.5.3 Comparison with State-of-the-Art Systems

Tab. 4.5 shows a comparison between the proposed solution and other LiDAR
and fusion-based state-of-the-art 3D detection systems on the KITTI validation
set.

The vanilla system performs considerably better than all other approaches
barring PointRCNN, which slightly outperforms it at all difficulties. PointR-
CNN, however, is overall slower, exhibiting an inference time of about 100ms
against the 70ms of the vanilla model.

Integrating attention in the backbone network considerably increases per-
formance, allowing the resulting models to convincingly surpass PointRCNN
while only requiring an extra 15ms for full attention and 19ms for induced-
attention. This improvement is particularly relevant for harder objects, which
advocates for the effectiveness of attention mechanisms to deal with harder
and noisier data.
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Car AP3D: mean ± st.d. (max)
Model Easy Moderate Hard
Vanilla 88.45 ± 0.17 (88.49) 78.43 ± 0.17 (78.55) 77.29 ± 0.11 (77.38)
F-23-MP 88.35 ± 0.23 (88.65) 78.59 ± 0.22 (78.90) 77.67 ± 0.19 (77.99)
F-23-AP 88.83 ± 0.24 (89.20) 78.93 ± 0.23 (79.23) 78.03 ± 0.25 (78.35)

I(8)-23-MP 88.61 ± 0.23 (88.72) 78.77 ± 0.15 (78.93) 77.79 ± 0.20 (77.89)
I(8)-23-AP 89.01 ± 0.32 (89.37) 79.00 ± 0.26 (79.40) 78.10 ± 0.24 (78.51)
F-23C-AP 88.29 ± 0.72 (89.07) 78.37 ± 0.82 (79.09) 77.34 ± 0.98 (78.15)
I(8)-23C-AP 88.92 ± 0.15 (89.15) 78.93 ± 0.20 (79.25) 78.03 ± 0.26 (78.43)

Table 4.3: Ablation study on the attention mechanism. Attention-based models
are shown in the format A-B-C: A represents the attention type, where F
indicates full-attention and I(n) indicates induced attention with n inducing
points; B represents the SA layers the attention is applied to, where 2, 3
and C indicates the layers SA-2, SA-3 and SA-C repsectively (see Fig. 4.8);
C represents the technique adopted for performing feature aggregation: MP is
the standard channel-wise max-pooling, AP is the attention-based aggregation.
The results are shown in the format mean ± st.d. (max), over a total of 5
experiments.

Car AP3D: mean ± st.d. (max)
SA-C Easy Moderate Hard
BQS 88.45 ± 0.17 (88.49) 78.43 ± 0.17 (78.55) 77.29 ± 0.11 (77.38)
kNN 88.19 ± 0.23 (88.48) 78.11 ± 0.19 (78.33) 76.82 ± 0.30 (77.19)

Table 4.4: Performance comparison between using BQS and kNN in the SA-C
layer. Both models are without attention.
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Method
APBEV @ 0.7 IoU AP3D @ 0.7 IoU

Easy Moderate Hard Easy Moderate Hard
MV3D [67] 86.55 78.10 76.67 71.29 62.68 56.56
F-PointNet [23] 88.16 84.02 76.44 83.76 70.92 63.65
AVOD [12] - - - 84.41 74.44 68.65
VoxelNet [70] 89.60 84.81 78.57 81.97 65.46 62.85
SECOND [71] 89.96 87.07 79.66 87.43 76.48 69.10
PointPillars [13] - - - - 77.98 -
PointRCNN [13] - - - 88.88 78.63 77.38
Vanilla (mean) 90.08 87.95 84.73 88.45 78.43 77.29
I(8)-23-AP (mean) 90.26 88.34 87.36 89.01 79.00 78.10
F-23-AP (mean) 90.22 88.26 87.30 88.83 78.93 78.03
Vanilla (max) 90.17 88.18 86.03 88.49 78.55 77.38
I(8)-23-AP (max) 90.46 88.58 87.53 89.37 79.40 78.51
F-23-AP (max) 90.36 88.56 87.52 89.20 79.23 78.35

Table 4.5: Performance comparison between the proposed models and state-of-
the-art 3D detection systems on the KITTI validation set for the Car class. I
highlight the best performing models, considering both mean performance and
best performance.
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4.5.4 Qualitative results

In Figs. 4.10 and 4.11 I show the results of the best performing induced
attention-based model on some KITTI validation samples, displaying all three
main classes: Cars, Pedestrians and Cyclists.

As can be observed, the model is capable of detecting objects with high po-
sitional accuracy, while being robust to occlusions and uncommon orientations
(Figs. 4.10a, 4.10b, 4.10c, 4.11a). A common cause for detection inaccuracies
is heavy object truncation, such as in Fig. 4.10d, in which case the predicted
orientation might be noisy. High distances might also be problematic, as they
could lead to false negatives (Fig. 4.10e) especially for the smaller classes, as
the number of points might be insufficient for successful object identification.

Of all the classes, pedestrians are easily the most challenging for a LiDAR-
based system due to the fact that they are small, non-rigid and have no stan-
dard structure like cars or bicycles. As a result, they are difficult to estimate,
especially in terms of orientation (Fig. 4.11a), and might give rise to false
positives as they are easily confused with other entities, such as traffic sign,
poles or small trees. An example of this phenomenon is displayed if Fig. 4.10f,
where a traffic sign is mistakenly interpreted as a pedestrian. Another chal-
lenging scenario for this kind of model is represented by situations in which
many small objects are close together in space, such as groups of pedestrians
(Fig. 4.11d). In these situations, vote points might erroneously gather around
objects that are different from the ones they belong to: when this happens,
certain objects might be left with very small clusters whose features are very
similar to those of neighboring clusters, and therefore run the risk of being
ignored during sampling, originating a false negative.

The examples shown in Fig. 4.11, in particular, highlight cases in which
the model correctly detects objects that are clearly visible, but not annotated:

• the pedestrian on the right in Fig. 4.11a, distinctly visible in both the
image and the LiDAR scan;

• the pedestrian and the cyclist on the right in Fig. 4.11b;
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Results of the proposed method on the validation set. Red bound-
ing boxes correspond to the ground truth, while green, cyan and blue boxes are
car, pedestrian and cyclist detections respectively. Images are used exclusively
for visualization purposes. Best viewed in color.
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(a) (b)

(c) (d)

Figure 4.11: Additional results on the validation set. Examples where the model
correctly detects objects that are clearly visible but not annotated, resulting
in misleading performance degradation.
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• the partially truncated car on the left in Fig. 4.11c;

• many pedestrians in the back occluded in the image by the pedestrians in
the front but visible in the point cloud in Fig. 4.11d. Also, sitting people
are labelled as a different class compared to standing pedestrians.

All these labelling inaccuracies result in misleading performance degrada-
tion, as correct detections are erroneously interpreted as false positives by the
metric. This is particularly problematic for the pedestrian and cyclist classes,
as they appear to be more affected by missing labels while being less numerous,
which renders the evaluation on these classes less reliable for gauging the actual
performance of the system. On the other hand, however, it also means that
the performance obtained by the proposed system is closer to the obtainable
limit on the KITTI dataset than it seems (at least in case of the car class), as
perfect Average Precision cannot be attained due to labelling mistakes.

4.6 Discussion

In this chapter I proposed to modify the point-based 3D object detector Votenet
to make it suitable for the noisier and sparser point clouds returned by Li-
DAR sensors, which are commonly used in autonomous driving contexts. More
specifically, I altered the original technique used for point sampling, as it caused
considerable information loss and led to numerous false negatives, and I ad-
justed the classification logic such that it better correlates with effective box
quality. I also redesigned the Set Abstraction layers, substituting the tradi-
tional MLP used for feature extraction and the max pooling used for feature
aggregation with attention-based mechanisms.

The overall system displayed convincing performance on the autonomous
driving KITTI dataset. Attention, in particular, showed promising results, con-
tributing to a non-trivial improvement to the overall system performance while
requiring minor extra computational resources.
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The limited nature of the KITTI dataset, however, allows to perform only
an initial and superficial evaluation of the proposed system. In order to properly
asses the importance of attention and measure its true potential and usefulness,
further studies on large emergent datasets are warranted.





Conclusions

In this thesis, I researched deep learning-based object detection, which I applied
to solve three distinct problems in autonomous driving contexts.

In chapter 2 I proposed a deep learning pipeline to perform parking slot
detection from surround-view images. To achieve this, I modified the existing
2D image-based detector Faster R-CNN to allow for the prediction of generic
quadrilaterals instead of axis-aligned bounding boxes. To optimize the model,
I collected and annotated a small dataset comprised of diverse road scenes and
parking lots, containing varied parking slot types and recorded under different
observation conditions. The resulting system showed satisfactory results, as it
was capable to withstand significant noise and accurately estimate the location
of unobserved parking slots despite the extremely limited training data it was
trained on, while being able to process over 13 surround-view scenes per sec-
ond. It also displayed remarkable capabilities to adapt to an entirely different
domain, as proven by its ability to perform acceptably well when trained and
tested on the original spherical images used to generate the surround-view,
which advocates for the robustness and effectiveness of the method. Further
studies on model sparsification showed that comparable performance can be
obtained by using just around 7% of the total trainable parameters, which
leaves wide margins for execution time improvements.

In chapter 3 I extended Faster R-CNN to perform the task of monocular 3D
car detection in driving contexts. This was accomplished by introducing an ex-
tra module that is responsible for estimating the 3D bounding box correspond-



154 Conclusions

ing to each image-level detection returned by the original model. To train this
module, I proposed a novel loss function based off the Generalized Intersection-
over-Union, a variant of the Intersection-over-Union originally introduced to
improve the performance of 2D detectors that guarantees a gradient value even
in case of disjoint boxes. To adapt it to the more challenging 3D case, I opted
for disentangling the estimation of orientation from that of position and di-
mensions, computing the GIoU on canonical, equioriented boxes. Moreover,
to speed-up optimization and avoid an anomalous behavior of the proposed
formulation, I further split the optimization of position and dimensions into
six separate loss components, each responsible for one degree of freedom. Tests
conducted on the autonomous driving KITTI dataset show that the proposed
approach is an effective solution to the problem of monocular 3D detection, as
it surpassed many existing and more complex state-of-the-art systems while
retaining real-time speed on existing hardware. The module responsible for 3D
detection, moreover, is very simple and could thus be integrated into other 2D
detection pipelines quite straightforwardly. Several studies conducted on the
proposed system, as well as on an entirely different LiDAR-based 3D detec-
tor, showed that the proposed GIoU-based formulation is effective, and could
therefore be utilized to potentially boost the performance of other existing 3D
pipelines.

Finally, in chapter 4 I investigated 3D object detection on a different type of
input data: LiDAR point clouds. More specifically, I focused on the point-based
method Votenet, as it is conceptually simple and showed promising results on
indoor scenes collected from RGB-D sensors. First, I introduced some modi-
fications to the cluster sampling strategy and to the classifier of the original
pipeline in order to improve performance on the noisier LiDAR scans utilized
in autonomous driving. Then, I studied the effectiveness of attention-based
mechanisms inside the Set Abstraction layers used for point feature extraction
and aggregation, as they should allow to better model inter-point relation-
ships within each point group, resulting in stronger feature representations.
The overall method displayed convincing performance on the KITTI dataset,
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performing on par and above existing state-of-the-art LiDAR-based pipelines.
The proposed attention formulations, in particular, led to promising improve-
ments in the results while requiring minor additional computational resources
compared to the vanilla model, showing their potential effectiveness as a strong
alternative symmetric function for point cloud feature extraction. The rather
limited scope of the KITTI dataset, however, restricts the extent in which the
efficacy of the attention mechanism can be evaluated: further experimentation
of different model formulations on larger and more heterogeneous datasets is
required in order to properly determine its importance and assess its benefits.
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