DIPARTIMENTO DI SCIENZE MEDICO-VETERINARIE

Corso di Laurea Magistrale a ciclo unico in Medicina Veterinaria

INDAGINE EPIDEMIOLOGICA DI LEISHMANIA INFANTUM IN ITALIA

Canine leishmaniosi (Leishmania infantum) in Italy: a survey

Relatore:
Chiar.ma Prof.ssa Laura H. Kramer

Correlatore:
Chiar.mo Prof. Marco Genchi

Tesi di Laurea di:
Anna Moschi
Matr. n. 269143

Anno Accademico 2019-2020
Sommario

ABSTRACT .. 4

INTRODUZIONE .. 6

CAPITOLO 1 – PARTE GENERALE 8

1. Agente eziologico ... 8
 1.1 Tassonomia .. 8
 1.2 Morfologia .. 9
 1.3 Ciclo biologico ... 11

2. Vettore .. 14
 2.1 Tassonomia .. 14
 2.2 Morfologia ... 15
 2.3 Ciclo vitale .. 16
 2.4 Altre vie di trasmissione di Leishmania 17

3. Patogenesi ... 17
 3.1 Immuno-patogenesi ... 17
 3.2 Cane recettivo .. 18
 3.3 Cane resistente ... 19

4. Sintomatologia .. 19
 4.1 Forme cliniche di leishmaniosi ... 19
 4.2 Forma dei Leishmania nel gatto 22
 4.3 Forma dei Leishmania nell’uomo 22

5. Diagnosi .. 23
 5.1 Diagnosi clinica di laboratorio 23
 5.2 Diagnosi eziologica ... 25

6. Trattamento .. 28
 6.1 Classificazione cane leishmaniotico 28
ABSTRACT

Leishmaniasis is a disease transmitted by vectors, such as sand flies, which afflicts various animals including dogs, cats and humans, and it is caused by the protozoan *Leishmania infantum*. Supervising the spread of this parasitosis is important to limit cases both in dogs and in humans, given its zoonotic character.

In this regard, a questionnaire has been formulated to frame the epidemiological trend in Italy as reported by veterinarians and the behavior that they have towards an exposed, infected and sick dog.

The online questionnaire, consisting of 23 questions, was sent to 3227 veterinary e-mails. With a number of responses equal to 456, and therefore a 14.3% response rate, only 11.2% did not diagnose *Leishmania* cases in their facility in the last year of 2019, while the remaining 88.2% did confirmed from 1 to 5, up to over 20 cases.

For diagnostics, 96.7% of veterinarians rely on serology, mainly carried out by an external laboratory.

As active substance most used in the treatment, we find glucantime with allopurinol (57.5%). As for the exposed dogs, no uniformity in behavior was found, as 19% of medical doctors treat the animal, going against the guidelines for canine leishmaniasis.

Prophylaxis is included in a period between March and November.

The topic of the vaccine was also dealt with, which highlights a preference for a product that does not lead to side effects, does not interfere with serology and has few recalls.

The epidemiology of *L. infantum* shows how according to the perception of the veterinarian, the disease is increasing in areas that were once considered non-endemic, such as northern Italy.

At last, there was talk of regional control plans, not well known enough by veterinarians, as shown by the percentage of 66.5% for negative votes.

La leishmaniosi è una malattia trasmessa da vettori, quali i flebotomi, che affligge vari animali tra cui il cane, il gatto e l’uomo, ed è causata dal protozoo *Leishmania infantum*. Controllare la diffusione di questa parassitosi è importante per limitare i casi sia nel cane di CanL che nell’uomo, visto il suo carattere zoonotico.
A questo proposito è stato formulato un questionario per inquadrare l’andamento epidemiologico in Italia secondo quanto riportato dai medici veterinari e il comportamento che questi hanno nei confronti di un cane esposto, infetto e malato. Il questionario on-line, composto da 23 domande, è stato mandato a 3227 e-mail di medici veterinari. Con un numero di risposte pari a 456, e quindi 14,3% di tasso di risposta, solo l’11,2% non ha diagnosticato casi di *Leishmania* nella propria struttura nell’ultimo anno, 2019, mentre il restante 88,2% ne ha confermati da 1 a 5, fino a sopra 20 casi. Per la diagnostica il 96,7% dei medici veterinari si affida alla sierologia, principalmente attuata da un laboratorio esterno. Come principi attivi maggiormente utilizzati nel trattamento ritroviamo il glucantime con allopurinolo (57,5%). Per quanto riguarda i cani esposti non è stata riscontrata una uniformità nel comportamento, in quanto il 19% dei medici veterinari tratta l’animale, andando contro le linee guida per la leishmaniosi canina. La profilassi è compresa in un periodo tra marzo e novembre. È stato trattato anche l’argomento del vaccino, in cui si evidenzia una preferenza per un prodotto che non porta ad effetti collaterali, non interferisce con la sierologia e ha pochi richiami. L’epidemiologia di *L. infantum* mostra come secondo la percezione del medico veterinario, la malattia stia aumentando nelle aree considerate un tempo non – endemiche, quale il nord Italia. Si è parlato infine dei piani di controllo regionali, non conosciuti abbastanza dai medici veterinari, come mostra la percentuale del 66,5% per i voti negativi.
INTRODUZIONE

I flebotomi, insetti ematofagi, hanno un importante ruolo nella trasmissione della forma cutanea e viscerale di *Leishmania infantum*. Il vettore, in particolare, è rappresentato dalla femmina dei ditteri del genere *Phlebotomus* che inoculano in sede intradermica la forma flagellata di *Leishmania* definita promastigote, la quale tramite replicazione nelle cellule macrofagiche, perde il flagello e assume una forma rotondeggiante denominata amastigote.

Tale malattia ha una importanza a carattere globale dovuto al fatto che è ampiamente distribuita nel mondo e interessa sia gli animali come cani, gatti, volpi, che l’uomo. Il vettore è distribuito nell’ambiente terrestre principalmente in luoghi ricchi di materia organica come cavità degli alberi, radici, tane di animali, letamai, porcilaie fino alle cantine delle case (Kaufman, 2019)

A livello mondiale circa 200 milioni di persone, in 98 paesi, sono a rischio di leishmaniosi con una incidenza stimata a 12 milioni di infezioni e 2 milioni di casi aggiuntivi ogni anno (WHO, 2017)

La forma di leishmaniosi viscerale causata da *Leishmania donovani* in Asia e in Africa e da *Leishmania infantum* nel bacino Mediterraneo, Asia centrale, America centrale e del sud interessa 200.000 – 400.000 persone annualmente e porta a 20.000 – 40.000 morti per anno (Alvar et al., 2012; Burza et al., 2018). Casi umani sono stati riportati in 76 paesi (Organizzazione Americana della Sanità, 2018), di cui nel 2017 il 95% dei casi è stato riscontrato in sette paesi: Brasile, Etiopia, India, Kenya, Somalia, Sudan del Sud e Sudan (Organizzazione Mondiale della Sanità, 2018).

La leishmaniosi canina è endemica nel sud Europa, dove la prevalenza raggiunge il 75% (ESCCAP, 2016).

Per quanto riguarda la situazione in Italia, la leishmaniosi è una condizione endemica, con la diffusione del flebotomo dal sud Italia con le isole, al centro fino al nord Italia (Maroli et al, 2008; Otranto e Dantas-Torres, 2010). Questa situazione si è verificata,
secondo gli autori, in seguito al cambiamento delle condizioni climatico – ambientali e il surriscaldamento globale, che ha conferito una temperatura adatta alla proliferazione dei flebotomi in aree un tempo indenni.

Si ricorda anche l’importanza della presenza di animali portatori sani che fungono da serbatoi per la continua diffusione del protozoo. Troviamo infatti, il 30% dei cani positivi a *Leishmania* nelle zone endemiche (Iatta et al., 2019). È fondamentale quindi, il trattamento vaccinale nel cane e il controllo del parassita tramite l’utilizzo di repellenti insetticidi topici o collari con principio attivo piretroide. Oltre alla leishmaniosi canina CanL, nel bacino mediterraneo si considerano anche i gatti come animali reservoir, con una prevalenza nel sud Italia del 25,8% (Iatta et al., 2019).
1. Agente eziologico

1.1 Tassonomia

La leishmaniosi è una malattia causata da un protozoo emoflagellato appartenente al Phylum **Sarcomastigophora**, Subphylum **Mastigophora**, Classe **Zoomastigophora**, Ordine **Kinetoplastida** Sottordine **Trypanosomatinae**, Famiglia **Trypanosomatidae**. Il protozoo presenta due forme in base all’ospite in cui si sviluppa. Si ha un ospite intermedio quale la femmina di dittero ematofago appartenente al genere *Phlebotomus* e un ospite definitivo, quale il mammifero, nel quale il microrganismo unicellulare eucariote è parassita intracellulare obbligato del sistema monocita-macrofago (Dedet et al., 1999).

La *Leishmania* è stata isolata da un medico militare scozzese Sir William Boog Leishman nel 1903, che effettuò una autopsia di una milza; altro scopritore fu Charles Donovan che confermò il reperto di Leishman nella polpa splenica. Laveran e Ross dettero il nome al parassita in onore dei due scopritori. (Magri et al., 2005). Secondo la classificazione dell’OMS (1990) nel genere *Leishmania* ritroviamo due sottogeneri:

Sottogenere Leishmania

- **Complex: Leishmania donovani** che comprende diverse specie responsabili di della forma di leishmaniosi viscerale tra cui *Leishmania infantum*, la più diffusa nel bacino mediterraneo e responsabile sia di leishmaniosi canina CanL che di leishmaniosi viscerale VL e cutanea CL nell’uomo. *Leishmania donovani*, *L. archiboldi* e *L. chagasi*.

- **Complex: Leishmania tropica** con specie *L. chillicki* e *L. tropica*.

- **Complex: Leishmania mayor**, specie *L. mayor*.

- **Complex: Leishmania aethiopica**, specie *L. aethiopica*

- **Complex: Leishmania mexicana** che vede quattro specie, quali *L. amazonensis*, *L. ganhani*, *L. mexicana* e *L. venezuelensis*.
Sottogenere *Viannia*

- **Complex: Leishmania braziliensis**
- **Complex: Leishmania guyanensis**

Riconosciamo alcune specie di *Leishmania* che infettano il cane e il gatto in Europa e sono la *Leishmania infantum*, *Leishmania tropica* e *Leishmania major* (ESCCAP, 2016). Con le tecniche diagnostiche più avanzate si è nel tempo tipizzato il DNA del protozoo, andando a individuare le caratteristiche del parassita come isoenzimi, proteine e antigeni. Una tecnica utilizzata è la elettroforesi per la tipizzazione isoenzimatica. Un insieme di ceppi che presentano lo stesso profilo isoenzimatico viene definito zimodema. In particolare, la malattia nel cane e nell’uomo, in Italia, è causata dal parassita della specie *Leishmania infantum*. La forma di CanL è determinata principalmente dallo zimodema Montpellier 1 (MON1) e talvolta dal MON72 (Magri et al., 2005).

1.2 Morfologia

Le leishmanie sono microrganismi dimorfici, in quanto ritroviamo due forme differenti nell’ospite definitivo quale il mammifero, e nell’ospite intermedio ovvero il flebotomo. La forma infettante del mammifero è intracellulare obbligata ed è chiamata **amastigote**. Questo ha un corpo rotondo, globoso, immobile di dimensioni 2-5 μm x 2-3 μm. Presenta un grosso nucleo centrale o eccentrico, il kinetoplasto ovvero DNA extranucleare con forma bastoncellare, situato alla periferia della cellula e un residuo del corpo basale, dopo la perdita del flagello.
La forma che infetta il flebotomo è il **promastigote** insieme al paramastigote. Il promastigote è un microrganismo extracellulare che entra nel canale alimentare dell’ospite intermedio. Presenta una forma allungata a pera, di lunghezza 5-24 µm, con il kinetoplasto anteriore al nucleo. Presenta poi un flagello nella parte anteriore della cellula. Il paramastigote è più ovale e presenta il kinetoplasto laterale (Munstermann, 2019).

La possibilità di nuotare liberamente da parte del promastigote e paramastigote li definisce forme “nectomonad”, a differenza della forma “haptomonad” attaccata all’intestino crasso del flebotomo (Walters, 1993).
1.3 Ciclo biologico

Le leishmanie sono organismi che necessitano di due ospiti per completare il proprio ciclo; si ha quindi il ciclo nell’ospite vettore invertebrato e il ciclo nell’ospite serbatoio definitivo, come il cane.

Partiamo con il ciclo nell’ospite vettore, quale la femmina del dittero del genere *Phlebotomus*. Con il pasto di sangue, il flebotomo assume gli amastigoti, forma infettante delle cellule macrofagiche dell’ospite definitivo. Inizialmente il pasto di sangue è protetto dalla membrana peritrofica. Nel canale alimentare questi microrganismi evolvono in forme extracellulari quali promastigoti e paramastigoti, diventando forme mature nel giro di tre giorni (Munstermann, 2019). A questo punto la forma flagellata si ancora ai microvilli intestinali.

Successivamente la forma di promastigote nectomonade evolve nella forma infettante o forma metaciclica. Questa, in sei giorni, passa dall’intestino medio, all’intestino primitivo fino all’apparato bucale e alle ghiandole salivari da cui verrà poi rilasciata con il pasto di sangue all’ospite definitivo.

Parliamo ora del ciclo nell’ospite definitivo. Con il morso della femmina ematofaga dei flebotomi, viene rilasciata una certa quantità di saliva. Questa, oltre a contenere le leishmanie metacicliche infettanti, è ricca di altre sostanze utili per agevolare il pasto.
Con la lesione della cute, il mammifero reagisce in tre modi, con l’emostasi, infiammazione e immunità che andrebbero ad ostacolare la possibilità di nutrirsi da parte del flebotomo. Questo risponde con il rilascio, tramite la saliva, di sostanze farmacologicamente attive chiamate sialogenine con attività anti-emostatica, antinfiammatoria e immunomodulatrice (Lestinova et al., 2017; Telleria et al., 2018).

La prima linea di difesa dell’organismo ospite sono le cellule natural killer, neutrofili ed eosinofili. Queste attaccano il parassita tramite attività citotossica. È fondamentale quindi che la *Leishmania* invada i macrofagi (Pimenta, Dos Santos e De Souza, 1987). Il legame tra *Leishmania* e macrofago è attribuito ad una serie di molecole di superficie come il recettore CR3 sulla superficie del macrofago e la proteasi di superficie del promastigote, gp63 (McConville et al., 2002; Beverley e Turco, 1998). Il parassita viene internalizzato tramite un fagolisosoma, seguito da un lisosoma che, fondendosi con il primo, crea un vacuolo parassitoforo completo. La forma metaciclica si trasforma rapidamente in amastigote (Awasthi et al., 2004).

All’interno del vacuolo il parassita si divide per scissione binaria, producendo 50-200 nuovi parassiti (Munstermann, 2019). Questo porta alla lisi della cellula macrofagica e alla necessità di *Leishmania* di invadere altre cellule. Tramite il circolo ematico le leishmanie diffonderanno principalmente agli organi emolinfopoietici come fegato, milza, linfonodi e midollo osseo, e nella cute generando una infezione sistemica. Altri flebotomi assumeranno gli amastigoti con il pasto di sangue infetto dando inizio ad un nuovo ciclo.
Figura 3 – Ciclo vitale di Leishmania dal passaggio tramite la “sand fly” all’ospite vertebrato (Kamhawi et al., 2004).
2. Vettore

2.1 Tassonomia

Le specie che ritroviamo in Europa di *Plebotomus spp.* anche denominato pappatacio sono *P. perniciosus*, *P. ariasi*, *P. perfiliewi*, *P. neglectus*, *P. tobbi* e *P. langeroni*. Questi sono responsabili della trasmissione di *Leishmania infantum*. Riconosciamo poi *Phlebotomus sergenti* e *P. arabicus* che trasmettono la *Leishmania tropica* e *P. papatasì* che è vettore di *L. major* (ESCCAP, 2016).

In particolare, in Italia i maggiori rappresentanti sono:

- *Phlebotomus perniciosus* presente sia in ambiente domestico che selvatico. È il vettore più diffuso in Italia, in particolare nelle zone tirreniche e nel sud Italia (Gramiccia et al., 2013). Presente anche nelle regioni peninsulari meridionali.
- *P. perfiliewi* ritrovato largamente nella regione Emilia-Romagna con una prevalenza di *Leishmania* tra il 6% e il 10%. La forma ritrovata è però differente dal ceppo canino; sembra infatti essere correlata alla forma VL umana (Calzolari et al. 2019).
- *P. neglectus* catturato nel 1995 in diversi siti prealpini di cinque regioni (Maroli et al., 2002; Ferroglio et al., 2007).
- *P. ariasi* raro e presente nelle aeree urbane.
- *P. papatasì* è una specie solitamente refrattaria alla Leishmaniosi da *Leishmania infantum*, ma trovata positiva nel sud Italia (Latrofa et al., 2018).
2.2 Morfologia

I flebotomi hanno come caratteristiche salienti un corpo di colore giallo-pallido o giallo ruggine, lungo circa 2-3 mm, coperto da lunghi e fitti peli; il torace e l’addome formano un angolo quasi retto. La testa è allungata e inserita sul collo a formare un angolo di 45°. Occhi voluminosi di colore scuro sono situati ai lati della testa. Presentano dei palpi ovvero appendici articolate in rapporto con l’apparato buccale aventi funzione sensoriale, proboscide corta e diretta verso il basso, ali grandi, pelose e di forma subovale (Magrì et al., 2005).

La denominazione “sand fly” viene dal colore giallo paglierino del corpo.

Mentre i maschi si nutrono di succhi vegetali, le femmine sono ematofaghe e per questo hanno strutture buccali atte a perforare la pelle dell’ospite: presentano un labbro – epifaringe ventralmente scanalato e denticolato alla sua estremità, un’ipofaringe che porta al dotto salivare, due mandibole con estremità seghettata, due mascelle a forma di lama; il tutto è contenuto entro il labbro inferiore “labium” (Magri et al., 2005).
2.3 Ciclo vitale

Il flebotomo è un dittero con ciclo omometabolo, ovvero compie metamorfosi completa. La femmina del flebotomo necessita di un pasto di sangue per completare il ciclo di produzione delle uova. Le cellule del sangue vengono avvolte dalla membrana peritrofica che forma il bolo alimentare; questo viene digerito e assimilato in modo da permettere la maturazione delle uova nel follicolo ovarico. Il ciclo si completa in 5-8 giorni e vengono prodotte dalle 30 alle 60 uova. Si parla di ciclo genotrofico. (Munstermann, 2019).
Le uova sono di forma allungata con le terminazioni arrotondate, di grandezza 0,3 – 0,4 mm. Queste schiudono da 4 a 20 giorni.
Si susseguono quattro stadi larvali in circa 30 – 60 giorni; ciò dipende dalla temperatura, che è favorevole sopra i 18°C, e dal substrato organico su cui sono deposte le uova.
Si ha poi il periodo della pupa, che dura circa una settimana, fino ad arrivare alla forma adulta, la cui durata di vita varia dalle 2 alle 6 settimane.
La pupa è sessata, e la determinazione del sesso si può fare andando a rimuovere la exuvia rimanente dallo stadio larvale a cui è ancorata, per esporre la parte terminale del corpo (Munstermann, 2019).
2.4 Altre vie di trasmissione di *Leishmania*

Sono state indagate modalità alternative di trasmissione di *Leishmania* infantum, dimostrando la possibilità di trasmissione orizzontale tramite trasfusioni di sangue da portatori di infezione, che presentano il 90% dei monociti circolanti contenenti gli amastigoti; via verticale trans-placentare e trans-mammaria (Solano-Gallego et al., 2011). Nei Beagles è stata rilevata una prevalenza di ¾ di trasmissione del parassita ai cuccioli, in seguito a taglio cesareo.

È dubbia la trasmissione da parte di altri artropodi ematofagi come pulci e zecche. È stata osservata la possibilità di far maturare forme di promastigoti infettanti per i topi di laboratorio da parte della zecca *Rhipicephalus sanguineus*, in cui però lo studio del processo di digestione nelle specie *Ixodidae* è reso alquanto difficile a causa del lento e prolungato processo di alimentazione che avviene continuamente mentre la zecca è a contatto con l'ospite (Paz et al., 2010).

3. Patogenesi

3.1 Immuno-patogenesi

La forma infettante di *Leishmania*, ovvero il promastigote metaciclico, si insedia nella cellula macrofagica dell’ospite definitivo, andando a assumere l’aspetto dell’amastigote. L’amastigote all’interno del macrofago sopravvive grazie a una serie di azioni che lo proteggono, dalla capacità di inibire l’attività del complemento, alla possibilità di interferire con l’apoptosi della cellula sia impedendo che questa avvenga, che accelerandola, a seconda dell’esigenza del parassita.

Il macrofago è una cellula del sistema reticolo-istiocitario, presente nel sangue come monocita, nel tessuto connettivo come istiocita, nel fegato come cellula di Kuppfer e anche nella milza, nel midollo osseo e nei linfonodi come macrofago fisso (Magri et al., 2005).

Il macrofago tissutale con le cellule di Langherans e le cellule dendritiche sono definiti “*Antigen Presenting Cell*” APC; queste dopo aver fagocitato l’amastigote espongono i suoi antigeni sulla superficie tramite complesso maggiore di istocompatibilità, MHC II.
La risposta autoimmune che si innesca, a partire dal linfocita T helper CD4+, può essere una resistenza verso *Leishmania*, nel caso in cui si attivi la reazione cellulo-mediata con Th-1, oppure abbiamo la disseminazione della malattia da reazione Th-2.

La risposta immune orientata in senso Th-1, si associa al profilo citochinico IFN-γ / Il-12, alla produzione di IgG2a fissanti il complemento, all’attivazione delle cellule NK e dei macrofagi, all’azione citotossica CD8+, cui compete la distruzione delle cellule infettate da patogeni intracellulari.

La risposta immune orientata in senso Th-2 si caratterizza per la prevalenza delle citochine IL-4, IL-5, IL-10 e IL-13, con la stimolazione dei linfociti B e quindi la produzione di anticorpi umorali (soprattutto IgG, IgE e IgA) diretti verso patogeni extracellulari (Magrì et al., 2005). La prevalente produzione di IFN-γ, IL-2, TNF-α e IL-12 da parte delle cellule Th-1 è associata alla risoluzione dell’infezione e quindi alla protezione nei soggetti infetti. Al contrario la prevalente produzione di IL-4, IL-5, IL-6, IL-10 ed il fattore di stimolazione dei linfociti B (BSF-1) ad opera del fenotipo Th-2, è responsabile della progressione dell’infezione verso la malattia (Magrì et al., 2005).

L’andamento della risposta infiammatoria da Th-0 a Th-1 o Th-2 dipende da fattori legati al protozoo, in relazione al suo potere patogeno, alla dose di antigene e anche alla persistenza di questo. Si ha poi una predisposizione genetica del cane in relazione agli epitopi antigenici di *Leishmania*.

3.2 Cane recettivo

L’animale recettivo presenta una lieve o assente risposta Th-1 e una esagerata risposta Th-2.

I linfociti CD4+ Th-0 sotto influenza di un eccesso di produzione di IL-4, portano allo sviluppo di Th-2. Con la continua sollecitazione delle cellule immunocompetenti, indotta dai parassiti posti al riparo nei macrofagi, si ha uno squilibrio del sistema immunitario, con iperfunzione della risposta umorale, non protettiva, e anomalie in quella cellulo-mediatata: il tutto si traduce in uno stato immunopatologico caratterizzato essenzialmente da immunodepressione e dalla produzione di immunocomplessi (Ic) circolanti (Magri et al., 2005).
3.3 Cane resistente

L’animale resistente è clinicamente sano, caratterizzato da una lieve o assente risposta Th-2 e dalla presenza di una risposta Th-1 specifica contro *Leishmania*.

4. Sintomatologia

4.1 Forme cliniche di leishmaniosi

La malattia nel cane può manifestarsi con una sintomatologia varia che va da quadri asintomatici fino a condizioni cliniche gravi e spesso fatali.

Secondo uno studio retrospettivo delle forme cliniche di *Leishmania*, la metà dei cani presi in esame avevano più di cinque anni e nessuno andava sotto i nove mesi di età; non è stata riscontrata una predisposizione di sesso (Koutinas et al., 1999).

Nel 37,9% dei casi si hanno sintomi cutanei (Mignone, 2015) caratterizzati da dermatite esfoliativa generalizzata, papule, noduli, ulcerazioni, croste e alopecia. Nel 16,9% dei casi si evidenzia insufficienza renale (Mignone, 2015), condizione che porta più frequentemente alla morte. Altri sintomi sono la linfadenomegalia generalizzata, anemia, dimagrimento, epistassi, lesioni oculari, diarrea cronica, zoppia, atrofia muscolare, onicogrifosi. Il 12,9% dei cani che siero-convertono rimangono invece asintomatici (Mignone, 2015).

I proprietari si accorgono principalmente delle lesioni cutanee, seguite da perdita progressiva del peso, diminuzione dell’appetito e intolleranza all’esercizio (Koutinas et al., 1999).

4.1.1 Sintomi cutanei

I primi segni sono osservati a livello cutaneo, dove i flebotomi hanno trasmesso il parassita. I punti dove il flebotomo punge sono soprattutto i padiglioni auricolari, il naso, l’addome e le zampe. Essendo il vettore attratto dalla CO\(_2\), vola soprattutto nelle zone dove il gas si deposita, quindi il muso. Spesso tali lesioni passano inosservate o sono confuse con punture di altri insetti.

Si presentano come lesioni papulari ulceranti singole o in gruppo, che permangono per alcune settimane per poi regredire spontaneamente. In questo periodo i cani possono
essere sieronegativi, poi man mano che l’infezione progredisce, il 25% circa siero-converte (ESCCAP, 2016).
Le forme cutanee generalizzate sono di norma non pruriginose, simmetriche e molto spesso cheratoseborroiche, ma possono presentarsi anche in forme ulcerative, papulare o con pustole, o meno frequentemente, nodulari (ESCCAP, 2016).
Nello studio sopra citato il 64,1% dei cani presentano una dermatite esfoliativa con eccesso di seborrea secca, il 34,4% lesioni cutanee ulcerative e nel 24,2% dei casi si ha un pioderma secondario alle lesioni primarie (Koutinas et al., 1999).
È caratteristica la lesione cutanea intorno agli occhi che porta l’animale ad assumere l’aspetto di cane con gli occhiali (Magri et al., 2005).

Figura 5 – 6 Cani leishmaniotici con lesioni cutanee quali alopecia intorno agli occhi (5), lesioni cheratoseborroiche su muso e arti (6).
4.1.2 Sintomi sistemici

I disturbi che si riscontrano sono legati alla deposizione nei tessuti di immunocomplessi Ic; questi vanno a creare un insulto anche a livello renale con conseguente insufficienza renale, rilievo clinico che secondo gli studi ha prognosi più riservata. Gli Ic portano a glomerulonefrite, ischemia peritubilare, necrosi tubulo-interstiziale. Il danno tubulare è correlato ad un mancato riassorbimento di acqua e sodio Na⁺, con il risultato di poliuria e polidipsia secondaria.
Dal punto di vista ematologico si ha anemia immunomediata per osponizzazione dei globuli rossi da parte delle immunoglobuline, con conseguente riduzione dell’emivita delle emazie perché fagocitate prima dalla milza. Inoltre, in vista del danno renale, si ha anche una ridotta produzione di eritropoietina EPO.

Sebbene le alterazioni clinico-patologiche possano essere variabili, vi sono numerosi dati che caratterizzano l’infezione quali l’anemia normocromica, normocitica, non rigenerativa e, meno di frequente, trombocitopenia e eucopenia (ESCCAP, 2016).

Il profilo ematobiochimico e la elettroforesi delle proteine sieriche mostrano un quadro di iperproteinemia, iperglobulinemia in particolare gammaglobulinemia. Ipoalbuminemia, riduzione del rapporto albumina/globuline; aumento degli enzimi epatici, proteinuria e iperazotemia renale (LeishVet, 2018).

La proteinuria con alterazione dell’azotemia, accompagnate da un aumento del rapporto proteine/creatinina, conseguente alla glomerulonefrite immunomediata, è da considerarsi un fattore prognostico negativo (ESCCAP, 2016).

4.2 Forma dei *Leishmania* nel gatto

La forma di leishmaniosi felina FeL è valutabile quando si fanno test per malattie virali come la leucemia felina FeLV e la immunodeficienza felina FIV; rimane però sottostimata in quanto trascurata nella pratica veterinaria, dato dal fatto che si presenta come forma subclinica.

La patogenesi della FeL è poco conosciuta, anche perché la maggior parte degli studi provengono da singoli “case report”, dove i felini spesso manifestavano segni clinici aspecifici o associati ad altre malattie virali (FIV/FeLV) o tumorali (carcinoma squamocellulare) tipiche dei gatti (Colella, et al 2016).

Le manifestazioni cliniche più frequenti sono le lesioni dermatologiche, talvolta gli unici segni osservabili all’esame obiettivo.

4.3 Forma dei *Leishmania* nell’uomo

Si distinguono tre forme morbide di leishmaniosi umana, in base alla distribuzione geografica, alla specie di *Leishmania* coinvolta e alla immunocompetenza dell’ospite. Di nostro interesse riconosciamo la leishmaniosi da *Leishmania donovani* complex, che comprende *L.infantum* e conferisce la forma viscerale.
Si hanno anche una forma cutanea denominata “bottone d’oriente” da *Leishmania tropica* complex e leishmaniosi monocutanea da *L. braziliensis* complex. (IZS Teramo, 2011).

4.3.1 Forma viscerale

La forma cronica è quella che si presenta con più frequenza; è un’infezione che può riattivarsi in soggetti immunodepressi (pazienti HIV-positivi) dopo 2-4 mesi di incubazione. La forma promastigote migra verso il Sistema Reticolo-Endoteliale (SRE; milza, fegato, midollo osseo, linfonodi) e compaiono febbre ondulante, perdita di peso, epatosplenomegalia, linfoadenomegalia, iperplasia macrofagica del midollo osseo (anemia, leucopenia e trombocitopenia), edema, dissenteria e cachessia. Spesso la malattia non risponde alla terapia, rendendo la prognosi infausta (exitus entro 1-2 anni). (IZS Teramo, 2011).

5. Diagnosi

L’approccio diagnostico parte con il segnalamento e la anamnesi. È importante sapere se il cane vive o ha soggiornato in aree endemiche, se ha ricevuto trattamenti preventivi efficaci contro i flebotomi o terapie in grado di interferire con l’efficienza del sistema immunitario (Castagnaro et al., 2007; Oliva et al., 2008). Dopo aver fatto l’esame fisico dell’animale, per approfondire la diagnosi di sospetto di leishmaniosi, si attuano una serie di esami di laboratorio, seguiti infine dalla diagnosi eziologica che conferma il sospetto.

5.1 Diagnosi clinica di laboratorio

5.1.1 esame ematologico

Si attua un esame emocromocitometrico che può evidenziare una anemia scarsamente o non rigenerativa, leucogramma da stress, leucopenia ed eventuale trombocitopenia (Oliva et al., 2008). Andando ad osservare il profilo coagulativo si può ritrovare un tempo di coagulazione prolungato, con tempo di attivazione parziale della tromboplastina aPTT e tempo di protrombina PT prolungati. Più comune è la iperoagulabilità nei cani affetti da una grave
nefropatia proteino-disperdente con perdita a livello di glomerulo della antitrombina III ATIII (Paltrinieri et al., 2016).

5.1.2 profilo biochimico
Il profilo biochimico evidenzia una iperproteinemia, ipoalbuminemia, iperglobulinemia, alterato rapporto Albumine/Globuline A:G. Azotemia e aumento degli enzimi epatici (Oliva et al., 2008). Si è visto che a livello renale il danno da parte del deposito degli immunocomplessi porta ad una nefropatia proteinurica, insufficienza renale cronica CKD e glomerulosclerosi. La CDK si associa alla azotemia e alla ipertensione sistemica. Come esame è quindi indicata anche la misurazione della pressione arteriosa sistemica PAS, oltre che la quantificazione delle proteine urinarie e dei marker di funzionalità renale come il peso specifico urinario e la concentrazione sierica della creatinina (Paltrinieri et al., 2016). Per quanto riguarda le proteine sieriche si attua l’elettroforesi che evidenzia una riduzione delle albumine, che vengono perse a livello renale, e una iperglobulinemia per la risposta umorale in atto e produzione di IgG. La riduzione del rapporto A:G è considerato da alcuni autori il test più sensibile per la leishmaniosi canina, e la ipoalbuminemia è considerata un fattore prognostico negativo (Paltrinieri et al., 2016).

5.1.3 esame delle urine
Tramite “dip-stick” urinario, si valutano vari fattori tra cui il pH e le proteine urinarie. Con il refrattometro si misura il peso specifico che tende a diminuire nei cani con danno tubulo-interstiziale per la perdita della capacità di concentrazione delle urine. L’analisi del sedimento è una componente importante nella valutazione di un cane leishmaniotico (Paltrinieri et al., 2016). Per classificare il livello di proteinuria, deve essere definito il rapporto proteine urinarie – creatinina urinaria Pu/Cu. Cani non proteinurici hanno una ratio < 0.2, range di proteinuria borderline è compreso tra 0.2 e 0.5, mentre il cane proteinurico vede un rapporto > 0.5 (Lees et al, 2004; Littman MP et al, 2013).
5.2 Diagnosi eziologica

5.2.1 diagnosi parassitologica diretta

Come metodi diagnostici ritroviamo l’esame citologico che permette di rilevare la presenza di amastigoti nei macrofagi intralesionali, da campioni cutanei, mediante ago-infissione o opposizione, dal midollo osseo e dai linfonodi, in presenza di segni clinici riferibili ad un loro interessamento come la linfoadenomegalia. Altre sedi dal quale si prendono campioni sono i fluidi biologici. Se il risultato citologico ha esito negativo si può attuare comunque una PCR (Oliva et al., 2008).

Il parassita può essere evidenziato anche tramite esame istologico in sezioni allestite e colorate con ematossilina-eosina (Oliva et al., 2008).

Si ha poi la possibilità di isolare Leishmania tramite coltura, esame che però richiede un laboratorio di ricerca specializzato e ha delle tempestive lunghe fino ad un mese (Solano-Gallego et al., 2011).

5.2.2 diagnosi molecolare diretta

La “polymerase chain reaction” PCR è una tecnica che permette di amplificare le sequenze del genoma di Leishmania ed è un metodo molto sensibile, soprattutto se va ad amplificare sequenze genomiche “multicopia”, presenti cioè in numero elevato in ogni singolo parassita, quali il DNA dei minicircoli del kinetoplasto (Cortes et al, 2004).

Nella leishmaniosis canina o felina (CanL o FeL), i tamponi congiuntivali hanno dimostrato di essere una valida alternativa ad altri campioni clinici più invasivi, come aspirati di sangue, midollo osseo o linfonodali. Anche i tamponi nasali, orali o auricolari sono stati testati con successo. (Galluzzi et al., 2018).

Si riconoscono varie tecniche, come la PCR convenzionale per cui il DNA di Leishmania è amplificato usando una coppia di “primers”, sequenza di basi complementari alla sequenza bersaglio (Oliva et al., 2008). Altra metodica è la “real-time” PCR anche definita PCR quantitativa, che permette di analizzare la fluorescenza del DNA di Leishmania dopo la amplificazione.

I limiti della PCR sono possibili risultati falsi positivi a causa della contaminazione del DNA, in più non rivela lo stato immunologico e non può essere eseguita come unica tecnica diagnostica per la conferma della malattia perché un risultato positivo conferma l’infezione da Leishmania, ma non la malattia (Solano-Gallego et al., 2001).
5.2.3 *diagnosi sierologica qualitativa*

Esistono dei test rapidi che sfruttano la **immunomigrazione rapida**, di facile esecuzione nelle strutture ambulatoriali.

Si parla di test immunocromatografici ICT che sono kit basati su antigeni singoli o multipli ricombinati di *Leishmania*, incubati con siero, plasma o sangue intero. La specificità di questi test è accettabile, ma la sensibilità è bassa 30-70% e dipende dallo stadio di leishmaniosi (Paltrinieri et al., 2016).

Nel caso di risultato positivo il limite risiede nel fatto che il test non consente di valutare il titolo anticorpale, che può essere utile nell’identificare i soggetti con disseminazione del parassita e nel monitorare la risposta terapeutica (Oliva et al., 2008).

5.2.4 *diagnosi sierologica quantitativa*

Per confermare e quantificare il titolo anticorpale, in seguito all’ICT positivo, oppure se il test rapido è negativo, ma i sintomi clinici sono molto evidenti, è consigliabile fare un test sierologico quantitativo quale IFAT o ELISA (Paltrinieri et al., 2016).

Il test **ELISA** “Enzime-Like ImmunoSorbent Assay” vede il siero in esame posto in micropiastrine rivestite di antigeni di *Leishmania*. In caso di positività, si apprezza una reazione colorimetrica quantificabile spettrofotometricamente e quindi non soggetta a variabili legate all’operatore. È un test specifico e ha sensibilità medio-alta (70-100%). La sensibilità è molto elevata quando vengono utilizzati test basati sull’associazione di più antigeni dei promastigoti, in modo da aumentare il numero di epitopi che possono fissare eventuali anticorpi presenti (Oliva et al., 2008).

Il test **IFAT** “ImmunoFluorescence Antibody Test” è il test di referenza per la sierologia nel cane, dato dal fatto che ha specificità e sensibilità intorno al 100% (Paltrinieri et al., 2016).

Il test IFAT viene eseguito ponendo il siero in esame su vetrini su cui sono presenti promastigoti di *Leishmania*. Gli anticorpi eventualmente presenti si legano ai promastigoti e la positività viene evidenziata utilizzando anti-anticorpi fluorescenti (Oliva et al., 2008).

È possibile determinare il titolo anticorpale utilizzando diluizioni seriali del siero in esame. Si parte da una diluizione 1/40, seguita da diluizioni successive 1/80, 1/160, 1/320,
1/640, 1/1280. Si incubano i vetrini a 37°C a +/-2°C per 30 minuti circa, dopo di che si lavano e si aggiungono gli anti-anticorpi, anti-IgG di cane coniugate FITC con fluorescine. Incubare nuovamente i vetrini, come indicato precedentemente e lavare. Osservare infine i vetrini coperti con goccia di glicerina tamponata e vetrino coprioggetto, al microscopio a fluorescenza, in camera oscura, a 400 ingrandimenti, spostandosi in almeno cinque diversi campi per vetrino (IZS del Piemonte, Liguria e Valle d’Aosta, 2016).

L’interpretazione del risultato nel test IFAT dipende dall’occhio dell’operatore. Il titolo anticorpale è rappresentato dalla ultima diluizione positiva e la sua determinazione permette di differenziare i cani infetti ma non malati, che avranno tendenzialmente un titolo basso, da quelli malati e con disseminazione del parassita, che avranno un titolo tendenzialmente elevato. La definizione di titolo “basso” o “elevato” va sempre rapportata alle soglie di positività riportate dal laboratorio di riferimento. La maggioranza dei laboratori considera negativi i cani con titoli IFAT inferiori a 1:40, positivi quelli con titoli uguali o superiori ad 1:80 e dubbi i cani con titolo compreso tra 1:40 e 1:80 (Oliva et al., 2008).

In ogni caso, visto l’alto coefficiente di variazione che caratterizza le prove sierologiche, come in molte altre malattie infettive è opportuno considerare come “elevati” solo i titoli che si discostino di almeno 4 volte rispetto al valore soglia di positività del laboratorio di riferimento (ad es., se il laboratorio considera “positivo” un titolo uguale-superiore a 1:80 si considera “elevato” un titolo superiore a 1:640) (Oliva et al., 2008).
6. Trattamento

Prima di descrivere il trattamento anti-leishmaniotico, è necessario individuare lo stato clinico e sierologico del paziente attraverso una classificazione data dalle linee guida del Gruppo di Studio sulla Leishmaniosi Canina GSLC.

6.1 Classificazione del cane leishmaniotico
(Oliva, Castagnaro e Paltrinieri, 2008)

6.1.1 stadio A: cane esposto
Cane senza alterazioni clinico-patologiche dimostrabili, nel quale i test diagnostici parassitologici risultano negativi, ma sono evidenziabili titoli anticorpali specifici, non
superiori a 4 volte il valore soglia del laboratorio di riferimento. I cani esposti solitamente soggiornano o hanno soggiornato in un’area dove è accertata la presenza di flebotomi. Questi cani non vanno trattati farmacologicamente ma ricondizionati clinicamente e dal punto di vista sierologico e parassitologico dopo 8-16 settimane dal primo riscontro di positività sierologica.

6.1.2 stadio B: cane infetto
Cane senza alterazioni clinico-patologiche dimostrabili, nel quale è possibile mettere in evidenza il parassita, con metodi diretti (microscopia, coltura o PCR) e con metodi indiretti (presenza di anticorpi specifici). In questo caso i cani devono essere trattati farmacologicamente se l’evidenza del parassita è associata a sieroconversione. In assenza di sieroconversione i soggetti non vanno trattati, ma strettamente monitorati clinicamente e sierologicamente ogni 8-16 settimane, per almeno un anno.

6.1.3 stadio C: cane malato
Cane infetto, nel quale è dimostrabile qualunque alterazione clinico-patologica riferibile a leishmaniosi, la presenza del parassita o titoli anticorpali superiori a 4 volte il valore soglia del laboratorio di riferimento. I cani devono essere trattati con farmaci anti-Leishmania. In questi soggetti, un esame fisico completo e l’esecuzione di un accurato screening di laboratorio consentono di valutare la necessità di terapie collaterali.

6.1.4 stadio D: cane malato con quadro clinico grave
Cane malato affetto da: nefropatia proteinurica, insufficienza renale cronica, gravi malattie oculare e articolari che possono comportare la perdita funzionale, motoria e/o richiedere terapie immuno-depressanti, gravi malattie concomitanti, di natura infettiva, parassitaria, neoplastica, endocrina o dismetabolica. I cani in questo stadio devono essere trattati con farmaci anti-Leishmania e con terapie di supporto suggerite dal quadro clinico del paziente.
6.1.5.1 *stadio E: Ea cane refrattario*

Cane malato refrattario al trattamento.

Bisogna escludere una “falsa positività”, rivalutare le alterazioni clinico-patologiche, escludere altre patologie come patologie trasmesse da zecche; rivalutare il protocollo terapeutico (dosi, tempi, correttezza di somministrazione, “*compliance*” del proprietario); valutare l’utilizzo di un protocollo terapeutico alternativo.

6.1.5.2 *stadio E: Eb cane recidivo*

Cane malato sottoposto a trattamento, con recidiva precoce.

Vale quanto esposto per il sottogruppo Ea, dando particolare enfasi all’esclusione di altre patologie e alla rivalutazione del protocollo adottato. Le considerazioni riguardanti i cani dello stadio E derivano dalla constatazione che i casi di chemioresistenza sicuramente dimostrati nel cane sono rari, per cui, prima di decidere di sottoporre l’animale ad un protocollo terapeutico alternativo, è necessario escludere tutto ciò che possa interferire con la guarigione e/o la stabilizzazione clinica dell’animale.

6.2 *Terapia anti-Leishmania*

Le linee guida di GSLC, dopo revisione della letteratura, hanno evidenziato come terapia d’elezione l’associazione di *Antimoniato di N-metilglucammina* e *Allopurinolo*.

Il dosaggio di antimoniato di N-metilglucammina è di 100 mg/kg una volta al giorno sottocutanea per 4 settimane e di 10 mg/kg due volte al giorno per os per l’allopurinolo, per un periodo di almeno 4-6 mesi. Il dosaggio dell’antimoniato di N-metilglucammina può essere suddiviso in due dosi da 50 mg/kg due volte al giorno e protratto, a giudizio del medico veterinario, da un minimo di 4 fino ad un massimo di 8 settimane (Oliva et al., 2008).

Il meccanismo d’azione dell’antimoniato sembra essere legato alla inibizione di alcuni enzimi della glicolisi del parassita, con effetto parassitocida, mentre l’allopurinolo interferisce con la sintesi dell’acido urico con attività parassitostatica.

È stato evidenziato che sia l’antimoniato di N-metilglucammina che l’allopurinolo riducono la carica del parassita e migliorano il quadro clinico dell’animale, ma non determinano guarigione parassitologica, come dimostrato dalle recidive (Oliva et al., 2008).
Altro farmaco che possiamo ritrovare nel trattamento del cane leishmaniotico è la miltefosina, la cui attività anti-Leishmania è determinata da alterazioni indotte al metabolismo dei fosfolipidi del parassita. La dose indicata nel cane è di 2 mg/kg per os, con una durata del trattamento di 28 giorni (Oliva et al., 2008).

Si è visto che la associazione della miltefosina con il parassitostatico allopurinolo, porta a buoni risultati nella terapia di CanL (Foglia Manzillo et al., 2009; Gonçalves et al., 2019).

<table>
<thead>
<tr>
<th>farmaci</th>
<th>dosaggio</th>
<th>Vie di somministrazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimoniato di meglumina</td>
<td>75-100 mg/kg (BID) per 4-6 settimane</td>
<td>Iniezione sottocutanea</td>
</tr>
<tr>
<td>Allopurinolo</td>
<td>10-20 mg/kg (BID o TID) per 6-18 mesi (dose minima giornaliera 20 mg/kg)</td>
<td>Orale</td>
</tr>
<tr>
<td>Miltefosina</td>
<td>2 mg/kg una volta al giorno per 4 settimane con il cibo</td>
<td>Orale</td>
</tr>
<tr>
<td>Antimoniato di meglumina + allopurinolo</td>
<td>vedi sopra per entrambi i principi attivi</td>
<td>Iniezione sottocutanea + orale</td>
</tr>
<tr>
<td>Miltefosina + allopurinolo</td>
<td>vedi sopra per entrambi i principi attivi</td>
<td>Entrambi per via orale</td>
</tr>
</tbody>
</table>

Tabella 1 – *Chemioterapia della leishmaniosi canina*, (ESCCAP, 2016).

6.3 Terapia di supporto

6.3.1 terapia della proteinuria

Il corretto impiego della terapia nei confronti del protozoo, come l’utilizzo di allopurinolo e antimoni pentavalente, porta ad una diminuzione degli immunocomplessi circolanti.

Come conseguenza si ha un ridotto numero di Ic a livello di glomerulo con risultati positivi sull’integrità del nefrone.

Si possono associare poi ACE-inibitori come l’enalapril che porta ad una diminuzione della pressione endocapillare (Oliva et al., 2008).
Importante funzione ha anche la dieta, che deve essere ipoproteica. È da considerare il singolo caso clinico, poiché una dieta povera di proteine ha ripercussioni sul peso corporeo e massa muscolare dell’animale, che nel cane leishmaniatico sono già ridotti (Oliva et al., 2008).
È dimostrato un effetto renale protettivo da parte di supplementi dietetici come gli acidi grassi essenziali omega-3 (Oliva et al., 2008).

6.3.2 terapia dell’ipertensione
Una buona azione antipertensiva si ottiene mediante l’impiego del calcio-bloccante amlodipina besilato (0,1-0,5 mg/kg/q12-24h, PO). Dal momento che il farmaco potrebbe determinare un aumento della pressione nei capillari del glomerulo, al fine di migliorare l’emodinamica glomerulare è indicato associare un farmaco ACE-inibitore (Oliva et al., 2008).

7. Profilassi
Si considera prevenzione il controllo del flebotomo, vettore di Leishmania, tramite repellenti, insetticidi topici a lento rilascio. Esistono formulazioni “spot-on” a base di piretroidi sinetici, permetrina o deltametrina che forniscono una protezione per un periodo di tre o quattro settimane. Altro metodo è l’utilizzo di collari sempre a base di insetticidi, come deltametrina con la durata di cinque o sei mesi, oppure collari a base di flumetrina in grado di proteggere il cane fino a otto mesi (Solano-Gallego et al., 2011). Se ci si sposta in una zona endemica si applica il repellente spot-on almeno due giorni prima, il collare una o due settimane precedentemente alla partenza.
Oltre ad una protezione farmacologica è consigliabile tenere il cane in casa soprattutto nelle ore notturne, ridurre i microhabitat che possono favorire la presenza di flebotomi, usare insetticidi anche nell’ambiente domestico (Solano-Gallego et al., 2011).
Il periodo da considerare per la copertura insetticida nel cane varia a seconda della zona geografica in cui l’animale vive. Si consiglia un lasso di tempo tra aprile e novembre, in cui si ha attività dei flebotomi.
Sono presenti anche dei vaccini che possono essere utilizzati in aggiunta alla copertura profilattica con i repellenti.

Un primo vaccino è stato creato nel 2011 sulla base di antigeni secreti/escreti di *L. infantum*, e adiuvato con una saponina. Il protocollo vaccinale consiste in tre iniezioni, con intervalli di 21 giorni. La protezione si ottiene un mese dopo la terza inoculazione. Il richiamo è annuale.

Entrambi i vaccini presenti in Europa possono essere inoculati solo in soggetti sani sieronegativi, di almeno sei mesi di età. Essi non prevengono l’infezione, ma la progressione della malattia e riducono la probabilità di sviluppare segni clinici (LeishVet, 2018).

Una raccomandazione nell’uso del vaccino è che questo può andare a complicare l’interpretazione della sierologia in quanto non è ancora disponibile una pratica di laboratorio che discrimini tra risposta umorale da infezione di *Leishmania* e da animale vaccinato (Paltrinieri et al., 2016).
CAPITOLO 2 – PARTE SPERIMENTALE

1. Materiali e metodi

A gennaio del 2020 è stato creato un questionario anonimo di 23 domande sul tema di *Leishmania infantum* e della leishmaniosi.

Tra giugno e agosto 2020 il questionario è stato inviato tramite e-mail istituzionale (@unipr.it) a tutte le strutture ambulatoriali, cliniche e ospedaliere dei piccoli animali presenti in Italia. Sono state inviate un numero complessivo di 3227 e-mail per 107 province. Le strutture veterinarie sono state estrapolate dal sito della anagrafe delle strutture ambulatoriali, banca dati gestita dalla FNOVI, Federazione Nazionale Ordini Veterinari Italiani.

Oltre al mandato iniziale del primo giugno, sono stati fatti due re-invii per le province che non avevano raggiunto il 10%.

Il questionario è stato accompagnato da una lettera di presentazione, che inquadrava l’argomento trattato e le motivazioni che avevano portato alla sua realizzazione.

Lo scopo delle domande volgeva ad ottenere un quadro generale sulla distribuzione e abbondanza di *L. infantum* e del tipo di gestione attuata dai medici veterinari per quanto riguardava il trattamento e la profilassi di questa parassitosi.

Le domande erano generali, con la possibilità di rispondere in modo aperto, oltre che con le opzioni elencate. Gli argomenti toccati variavano dal tipo di struttura, al numero di casi riscontrati nella propria struttura nel corso dell’ultimo anno, l’iter diagnostico e al tipo di trattamento e profilassi che veniva applicato. Inoltre, sono state poste delle domande per comprendere la conoscenza da parte dei medici veterinari dell’aspetto zoonotico della leishmaniosi, sulla conoscenza delle linee guida nazionali ed internazionali e sulla esistenza di un piano di controllo/prevenzione nella regione di appartenenza.

Il sondaggio è stato condotto utilizzando il programma Microsoft Forms, al quale i veterinari hanno avuto accesso mediante un collegamento ipertestuale allegato alla lettera di presentazione nella e-mail.
2. Risultati

Con 34 e-mail su 3227 non valide, quindi l’1%, il tasso di risposta è stato del 14,3%, con un totale di 456 risposte.
Trentino con 5,5% (2/36 e-mail) e Friuli – Venezia Giulia con 8,57% (6/70), sono le uniche due regioni che non hanno soddisfatto il tetto di risposta del 10%, mentre le province nelle quali nessuna struttura veterinaria ha risposto sono state Belluno, Rimini, Viterbo, Crotone, Vibo Valentia e Medio Campidano.

Domanda 1 – la struttura in cui lavori è:
L’ambulatorio è la struttura più diffusa sul territorio con 78% di risposte (356/456), seguito da cliniche con degenza che rappresentano il 16,7% (76/456) e infine ospedali con il 4,6% (21/456). Si ha anche un 0,7% (3/456) che comprende due laboratori di analisi e una struttura pubblica.

Grafico 1 – Strutture veterinarie sul territorio italiano, sulla base delle risposte ottenute.

Domanda 2 – la struttura in cui lavori è in provincia di:
La distribuzione delle risposte sul territorio presenta un tasso medio di risposta regionale del 13,6%.
Come indicato nella mappa 2, è possibile osservare che la regione con minor percentuale di risposta è stata il Trentino, con 5,5% (2/36). A seguire troviamo il Friuli – Venezia
Giulia con 8,57% (6/70). La regione con più risposte è stata la Sardegna con il 26,25% (21/80).

Mappa 2 – Tasso di risposta % per regione.

Domanda 3 – quanti casi di *Leishmania* hai avuto nell’arco dell’ultimo anno:
I range di risposta andavano da zero casi, 1 – 5 casi, 5 – 10 casi, 10 – 20 casi e sopra i 20.
Con il 47% (213/456) la media di casi nell’ultimo anno, 2019, è da 1 a 5 casi.

Mappa 3 – Casi di Leishmania infantum nel cane, anno 2019, registrati dai medici veterinari.
Domanda 4 – che tipo di esame utilizzi per fare diagnosi:

I risultati, come mostrati nel grafico 2, evidenziano come test d’elezione la sierologia 96,7% (441/456), seguita dalla elettroforesi con il 68% di risposte (310/456).

Vista la possibilità in questa domanda di selezionare più di una risposta, nel 27% dei casi i medici veterinari hanno associato la sierologia alla elettroforesi, seguito poi dalla tecnica dell’ago aspirato con striscio. Si ha poi la PCR sul sangue e su agoaspirato linfonodale, affiancate ad un test sierologico. Di minor uso è la PCR con campioni cutanei.

![Grafico 2 – Tipologia di esame utilizzato per la diagnosi.]

Domanda 5 – utilizzi un laboratorio esterno per la diagnosi:

Nel 92,8% dei casi (423/456) il medico veterinario si avvale di una struttura esterna per la diagnostica di leishmaniosi canina, mentre il 7,2% no (33/456). Delle 33 risposte negative, 9 strutture sono cliniche o ospedali con degenza, mentre 20 attuano solo sierologia.
Domanda 6 – se sì, per quale esame:
A questa domanda aperta i medici veterinari indicano come esami diagnostici i test sierologici, quali IFAT e ELISA, PCR ed elettroforesi. Altri esami elencati sono la citologia e l’emocromo. Il 13% (54/420) si affida a laboratori esterni per tutte le indagini diagnostiche che hanno indicato.

Domanda 7 – come ti comporti con un animale esposto:
Associato a questa domanda è stata messa la definizione di animale esposto, secondo le linee guida del gruppo di studio di leishmaniosi canina GSLC, per cui vengono definiti “esposti” i cani clinicamente sani nei quali i test diagnostici cito-istologici, parassitologici e molecolari risultano negativi, ma sono evidenziabili titoli anticorpi specifici, non superiori a 4 volte il valore soglia del laboratorio di riferimento (Oliva et al., 2008).
I risultati hanno mostrato come il 52% non tratti il cane (239/456) mentre il 19% lo tratta (85/456).
Il restante 29% (132/456) ha indicato comportamenti alternativi che dipendono dalla sintomatologia del singolo animale e da un approfondimento della diagnosi. Inoltre, chi non tratta ricontrolla l’animale ogni 3/6 mesi.
Domanda 8 – nel caso di un animale infetto/sintomatico, che principio attivo utilizzi: I principi attivi indicati nelle risposte erano glucantime, miltefosina e allopurinolo. Il 57,5% (262/456) predilige l’associazione glucantime + allopurinolo, rispetto al 30,5% (139/456) che sceglie miltefosina + allopurinolo. Un 7,5% (34/456) ha indicato come risposta alternativa l’utilizzo del domperidone, associato sia all’allopurinolo, che al glucantime.

Grafico 4 – Comportamento del medico veterinario nei confronti di un animale esposto.

Grafico 5 – Principio attivo utilizzato nei confronti di un animale infetto/sintomatico.
Domanda 9 – quali parametri utilizzi per monitorare la risposta alla terapia:

Come valori indicati ritroviamo titolo anticorpale, proteinuria, rapporto A:G (albumine : globuline), emocromo e altro. Il veterinario aveva la possibilità di risposta multipla.

La maggioranza dei veterinari monitora la risposta anticorpale 60,5% (276/456), insieme al rapporto A:G 58% (264/456) e alla proteinuria 53,5% (244/456). L’emocromo rappresenta il 30,5% (139/456).

Nella risposta alternativa 34,6% (158/456) è stata nominata l’elettroforesi con il 66% (104/158). Altri valori considerati sono la misurazione della ferritina, profilo biochimico renale e i parametri clinici.

Grafico 6 – Parametri utilizzati per monitorare la risposta alla terapia.

Domanda 10 – sospendi la terapia quando hai:

Il 75% dei medici veterinari (342/456) sceglie di interrompere la terapia quando l’animale non mostra più sintomatologia clinica, insieme al rientro nella norma del rapporto A:G 45% (272/456). Il 33,5% (153/456) ha indicato la scomparsa della proteinuria, il 28% (127/456) il titolo anticorpale negativo e il 15,3% (70/456) la PCR negativa.
Grafico 7 – Parametri da considerare per la sospensione della terapia.

Domanda 11 – nella tua esperienza quale è la percentuale di animali che recidivano post-trattamento:
Secondo il 46,1% degli intervistati (210/456) nel 1 – 10% dei casi gli animali recidivano, il 25,4% (116/456) ha indicato una percentuale di recidiva del 10-20%, il 17,3% (79/456) una recidiva > 20%, mentre l’11,2% (51/456) ha indicato come risposta zero animali.

Grafico 8 – Percentuale di recidiva dopo sospensione del trattamento.
Domanda 12 – dopo quanto tempo recidivano:
In questo caso la risposta era aperta. Circa il 37% dei medici veterinari (146/395 risposte) ha indicato come periodo che intercorre tra la fine del trattamento e la recidiva, 1 – 2 anni, il 14% (55/395) già dopo sei mesi.

Domanda 13 – in che mese inizi a fare profilassi per *Leishmania infantum* nel cane:
Con 112 risposte su 456, il mese di marzo rappresenta la maggioranza 24,6%, seguito da aprile 23,5% (107/456) e maggio 11,8% (54/456). L’11% (50/456) ha indicato che attua una profilassi continuativa, quindi per tutto l’anno. Si ha poi un 8% (37/345) che sceglie il mese di febbraio per la vaccinazione, seguita poi dall’applicazione di repellente nei mesi estivi.

Domanda 14 – in che mese finisci di fare profilassi per *Leishmania infantum* nel cane:
Collegato alla domanda precedente, il 37% (169/456) finisce di fare profilassi a novembre, il 22% (101/456) ad ottobre.

Domanda 15 – che tipo di profilassi attui:
Con l’87,6% (224/456) il medico veterinario ha indicato come profilassi l’utilizzo di un repellente. Il 63% (287/456) associa il repellente ad un vaccino, il 32,5% (148/456) consiglia di tenere l’animale al chiuso la notte e il 13,4% (61/456) ha indicato l’uso solo del vaccino.
Come alternative 12% (55/456) sono stati indicati il domperidone e l’applicazione di vari oli naturali come l’olio di aglio e l’olio di neem.
Domanda 16 – quale principio attivo consigli/utilizzi come repellente:
Il 51,7% dei Veterinari (236/456) utilizza la permetrina, seguita dalla deltametrina con il 23,5% (107/456) e dalla flumetrina 15,3% (70/456).
La scelta del principio attivo dipende anche da cosa preferiscono i proprietari come via di somministrazione, quindi se prodotto spot-on o collare.
Sono inoltre stati indicati olii e prodotti solo per ectoparassiti a base di afoxolaner o di fluranalere.

Grafico 10 – Princípio attivo utilizzato/consigliato dai medici veterinari come repellente.
Domanda 17 – se usi un vaccino, quali sono le caratteristiche che prediligi nella tua scelta:
Con 373 risposte su 456, i medici veterinari che utilizzano vaccini scelgono un prodotto che abbia nessuno o pochi effetti collaterali nel 63% dei casi (235/373), che non dia sieroconversione 19,3% (72/373), il 14,8% (55/373) guarda il numero dei richiami. Solo il 2,9% (11/373) considera il costo come metodo di scelta.

Grafico 11 – Caratteristiche che predilige il medico veterinario nella scelta del vaccino.

Domanda 18 – nella tua zona, come pensi che stia cambiando la prevalenza della malattia:
Come evidenziato nella mappa 3, la prevalenza di Leishmania infantum, secondo la percezione dei medici veterinari, ha un andamento stabile, con un aumento nel Nord Italia, in particolare modo in Lombardia.

Domanda 19 – se secondo te la prevalenza è diminuita, ciò è dovuto a:
La prevalenza è diminuita principalmente grazie all’uso di repellenti 66% (159 risposte sulle 241 date) associato ad una maggior consapevolezza dei proprietari 54% (130/241), corretta profilassi 48,5% (117/241) e uso del vaccino 15,3% (77/241). Come altro 9,5% (23/241) è stato indicato una diagnosi più precoce.

Grafico 12 – *Diminuzione della prevalenza, a cosa è dovuto secondo i medici veterinari.*
Domanda 20 – per quanto riguarda l’aspetto di zoonosi, nell’ultimo anno di quanti casi umani sei venuto a conoscenza:
L’82% dei medici veterinari (375/456) hanno segnalato zero casi di leishmaniosi nell’uomo, nell’anno 2019, il 16,5% (75/456) ha individuato da 1 a 5 casi.
Solo un 1,5% (8/456) di colleghi ha indicato da 5 a 20 casi (5/456), fino a più di 20 casi (3/456) nell’ultimo anno, principalmente nelle province di Bologna, Roma, Forlì Cesena, Siracusa, Asti e Ancona.

Domanda 21 – conosci le linee guida per la leishmaniosi canina:
A questo quesito, con 386 risposte su 456, l’84,7% dei medici veterinari conosce le linee guida per la leishmaniosi canina, mentre il restante 15,3% no (70/456).
Grafico 14 – Conoscenza delle linee guida nei confronti della leishmaniosi canina.

Domanda 22 – se sì, quale:
Le linee guida citate, ovvero “Leishmania working group”, “Leishvet” ed ESCCAP “European Scientific Counsel Companion Animal Parasites”, sono conosciute tutte circa allo stesso livello, con maggior predilezione per le linee ESCCAP 30,4% (117/385).

Grafico 15 – Linee guida conosciute dai medici veterinari.
Domanda 23 – nella tua regione esiste un piano di controllo/prevenzione: Con 303 risposte su 456, quindi il 66,5%, i medici veterinari hanno affermato che non esiste un piano di controllo regionale per *Leishmania infantum*, mentre il 33,5% (153/456) hanno indicato che esiste. Solo la Emilia-Romagna con 45 risposte positive e 2 negative e la Campania con 18 risposte positive e 4 negative, hanno raggiunto la maggioranza del sì.

Mappe 5 e 6 – Numero di voti positivi (5) e negativi (6) riguardo alla conoscenza di un piano di controllo regionale nei confronti di *Leishmania infantum*.

© GeoNames, Microsoft

Voti positivi per la conoscenza del piano di controllo regionale

Con tecnologia Bing

© GeoNames, Microsoft

Voti negativi

Con tecnologia Bing

© GeoNames, Microsoft
3. Discussione

I risultati del questionario proposto ai medici veterinari rispecchiano quella che è la percezione di *L. infantum* nella singola realtà ambulatoriale, clinica o ospedaliera. Per questo motivo i dati raccolti non sono da considerare oggettivi e rappresentativi della situazione reale epidemiologica in Italia.

Comparando lo studio attuato, con altri simili (9,1% Genchi et al., 2014; 25% Genchi et al., 2019), il numero di risposte ottenute è nella media, con il 14,3% di tasso medio.

Secondo l’indagine delle FVE Federazione Veterinari Europea del 2015, il 23% delle strutture in Europa è costituito da un solo professionista, il 19% da due professionisti. Quasi i tre quarti delle strutture impiegano meno di 5 professionisti, mentre solo il 13% delle strutture impiega più di 10 persone. (Federazione dei Veterinari Europei, 2015).

Questi dati vanno in accordo con la situazione italiana in cui il 78% delle risposte proveniva da una struttura ambulatoriale, 16,7% da una clinica e solo il 4,6% da un ospedale. Sarebbe stato interessante inserire nel questionario il numero di persone che effettivamente lavorano nella struttura e l’età, in modo da capire come si comportano i medici veterinari giovani rispetto a quelli con una esperienza maggiore, in vista anche del cambiamento della diffusione del flebotomo sul territorio.

Riguardo la presenza del flebotomo in tutta l’Italia, ci sono studi che mostrano come la leishmaniosi, un tempo associata ad aree endemiche quali il centro e il sud Italia, si sia spostata anche nel nord. Un esempio è uno studio attuato nella provincia di Bolzano in cui tre cani autoctoni sono risultati moderatamente positivi alla indagine diagnostica IFAT con titolo anticorpale 1:80 – 1:160 e una ricerca entomologica ha mostrato la presenza di *Phlebotomus perniciosus* (Morosetti et al., 2016).

L’aumento del numero di cani che si spostano da zone endemiche per *Leishmania* verso zone considerate “free” ha portato ad un cambiamento nella epidemiologia di CanL, con un aumento di incidenza di infezione nelle zone non endemiche (Morosetti et al., 2020). Nelle zone endemiche, la maggior parte dei cani infetti rimangono asintomatici (Otranto et al., 2009). L’animale asintomatico gioca quindi un ruolo di mantenimento.
dell’infezione nelle aree endemiche, trasmettendo il parassita ad altri cani o ospiti recettivi come l’uomo (Michalsky et al, 2007). La potenziale diffusione dell’infezione di CanL nelle aree non endemiche, con registrazione delle presenza dei flebotomi, potrebbe essere ridotta combinando l’uso di piretroidi topici e vaccino per Leishmania (Morosetti et al., 2020).

Altro lavoro che mostra come la leishmaniosi abbia variato la sua diffusione è uno studio che compara la distribuzione di malattie da vettori quali la dirofilariosi e la leishmaniosi (Otranto et al., 2009). Fino agli anni ’90 la leishmaniosi canina era considerata una malattia sporadica nel nord, dovuta principalmente a cani che avevano viaggiato nelle regioni del centro e sud Italia (Maroli et al., 2008). Dal 1990 al 2002 sono stati identificati vari foci di leishmaniosi canina autoctona nelle regioni del nord. Anche in questo studio sono state riconosciute alcune specie di flebotomi quale P. perniciosus e P. neglectus. La diffusione dei flebotomi è stata associata ad una riduzione del tempo di sviluppo larvale e dalla estensione delle stagioni di riproduzione per l’aumento delle temperature (Killick; Kendrick, 1996).

Prendendo in considerazione la epidemiologia di Leishmania infantum, si denota come la casistica sul territorio nazionale vada in accordo con i dati degli altri autori sopra citati. Dal punto di vista della distribuzione geografica dei casi (vedi mappa 3) si può osservare come nel nord Italia si abbiano meno casi, zero casi o da 1 a 5, rispetto al Sud Italia e alle isole in cui le strutture hanno registrato più di 20 casi in un anno. Sebbene i casi nel Nord Italia siano minori rispetto al resto della penisola, ricollegandoci alla Mappa 4 della domanda 18, secondo la percezione dei medici veterinari, la prevalenza della malattia sta aumentando principalmente nelle regioni nordiche.

Ritroviamo la Lombardia con la maggior incidenza di aumento dei casi, in cui 57 medici veterinari su 94 hanno risposto che la prevalenza di malattia sta aumentando, 35/94 sostengono che sia stabile, mentre solo 2/94 hanno indicato che sta diminuendo. Non sono da meno il Veneto con metà risposte che indicano un aumento dei casi e l’altra metà un andamento stabile, l’Emilia-Romagna (21/47 sta aumentando) e il Piemonte (18/41 sta aumentando). Il limite di questa indagine epidemiologica è che alcune regioni, come il Trentino e il Friuli-Venezia Giulia, non hanno raggiunto la percentuale per avere un quadro chiaro di come sia la prevalenza sul territorio. Ciò è dovuto al fatto che queste aree sono ancora
considerate, nel pensiero comune, non-endemiche, e quindi un questionario su Leishmania può non essere di interesse del medico veterinario.

Inoltre, bisogna sottolineare che, anche in zone con una elevata incidenza e prevalenza della malattia, possono aver risposto al questionario solo i medici veterinari interessati a questa parassitosi.

Per quanto riguarda l’iter diagnostico che viene svolto dai medici veterinari, è interessante sottolineare come il test di referenza per la sierologia nel cane, ovvero l’IFAT (Paltrinieri et al., 2016), sia effettivamente il test più utilizzato (97,6%). Un altro esame ritenuto necessario per la diagnostica è la elettroforesi delle proteine plasmatiche (68%) che va ad evidenziare una possibile ipergammaglobulinemia, e quindi un alterato rapporto tra albumine e globuline.

Con un 92,8% è assodato che i Veterinari, per una corretta diagnosi di leishmaniosi canina CanL, si affidano ad un laboratorio esterno come può essere l’Istituto Zooprofilattico Sperimentale. Questi dati fanno trapelare una poca fiducia nei confronti degli snap test. Nonostante i risultati della sierologia con snap test e con metodiche IFAT e ELISA siano sovrapponibili, la scelta ricade su un test che indica il titolo anticorpale, quindi il medico veterinario predilige una sierologia quantitativa, rispetto alla qualitativa che evidenzia solo positività o negatività.

La terapia indicata nelle linee guida ESCCAP (ESCCAP, 2016) è seguita dalla maggioranza dei medici veterinari; troviamo infatti l’associazione glucantime + allopurinolo nel 57,5% dei casi e miltefosina + allopurinolo nel 30,5%.

Nelle linee guida Leishvet (Solano-Gallego et al., 2011) è indicato anche il domperidone come principio attivo, il quale viene preso in considerazione dal 7,5% dei Veterinari in associazione ad allopurinolo o glucantime.

Le raccomandazioni delle linee guida del gruppo di lavoro di Leishmania GSLC prevedono l’associazione di N-metilglucammmina e allopurinolo come prima scelta nei soggetti infetti, malati e malati con quadro clinico grave. Non si parla di trattamento nei cani di categoria A ovvero esposti. Secondo però i dati estrapolati dal questionario solo il
52% dei medici veterinari effettivamente non tratta un animale esposto, mentre il 19% lo tratta e il 29% sceglie vie alternative come tenere monitorato l’animale.
Con l’84,7% di risposta per il sì, i medici veterinari che hanno risposto al questionario sostengono di conoscere le linee guida per la leishmaniosi canina. Questo dato va però in contrasto con quello che è il comportamento di chi decide di trattare un animale esposto; per questo motivo, c’è da indagare se il medico veterinario conosce in maniera approfondita le linee guida o ne ha solo sentito parlare.

Un dato sensibile è quello riguardante la recidiva dei cani trattati. Secondo l’esperienza dei medici veterinari solo l’11% ha indicato che non recidiva nessun animale.
Nell’88% di risposte rimanenti, da 1% fino a sopra il 20% degli animali che vengono trattati, si ha una recidiva nell’arco di pochi mesi o di un paio di anni.
C’è da differenziare il concetto di recidiva e quindi una ricaduta della stessa malattia e di reinfezione, dovuta al fatto che l’animale guarito nel tempo torna ad essere sensibile alla infezione e quindi recettivo per Leishmania. È importante che dopo la guarigione clinica dell’animale si continui a fare profilassi con antiparassitario topico anche tutto l’anno.

Come profilassi c’è una certa unanimità di risposta, con solo uno 0,4% di Veterinari (2/456) che non eseguono un piano preventivo di controllo per il parassita e il flebotomo. Secondo le linee guida ESCCAP, la regola generale vede una profilassi che parte nel mese di aprile e termina a novembre. Nelle aree più calde la profilassi può essere estesa a tutto l’anno.
Le linee guida Leishvet indicano come prevenzione nelle aree endemiche l’utilizzo di repellenti durante tutto l’anno o durante la stagione di trasmissione dei flebotomi (se nota) (Solano-Gallego et al., 2011).
L’uso di piretroidi come repellenti, combinati con un vaccino sono il sistema di controllo raccomandato per ridurre il rischio di infezione e di malattia (ESCCAP, 2016).
In questo senso i medici veterinari si attengono alle linee guida con un 63% che utilizza nella profilassi repellente e vaccino.
Per quanto riguarda il vaccino, ad oggi in Italia si hanno due tipologie vaccinali. La prima CaniLeish® ha come caratteristica quella di dare reazione positiva ai test sierologici quali ELISA e IFAT, con la evidenziazione degli anticorpi vaccinali. Il protocollo vaccinale
vede tre dosi sottocute a intervalli di 21 giorni ciascuno e un richiamo annuale. Altro vaccino è il Letifend® che non da sieroconversione e quindi non interferisce con le indagini sierologiche, e ha come metodo di somministrazione una singola dose iniziale sottocute seguita da un richiamo annuale.

Il 19% dei medici veterinari guarda la sieroconversione e il 15% si basa sul numero dei richiami, si può quindi intuire come il vaccino Letifend sia la prima scelta.

Il 63% dei medici veterinari guarda però i possibili effetti collaterali del vaccino.

Osservando il foglietto illustrativo del CaniLeish, sono indicati vari effetti collaterali, dovuti sostanzialmente all'adiuvante contenuto in esso. Consistono in reazioni locali (gonfiore, arrossamento e dolore nel punto di inoculazione) e/o generali (febbre, apatia, vomito o diarrea); questi sintomi sono comunque transitori e scompaiono spontaneamente entro pochi giorni. Il Letifend non avendo adiuvante non dovrebbe provocare gli effetti collaterali sopra elencati. Si riscontra, da foglietto illustrativo, che i cani si grattano in corrispondenza del punto dell’iniezione. È stata osservata la risoluzione spontanea di questa reazione entro 4 ore.

Anche il questo caso quindi la scelta ricade sul vaccino Letifend, il quale, avendo meno inoculazioni da fare, vede un rischio di reazioni avverse minore.

Per quanto concerne l’aspetto di zoonosi, i dati del questionario hanno evidenziato una maggioranza di medici veterinari (82%) che non sono venuti a conoscenza di casi umani di leishmaniosi.

Tra le provincie in cui invece si è sentito parlare di leishmaniosi nell’uomo troviamo Bologna, in cui un ambulatorio e un ospedale hanno riportato da 5 a 20 casi, così come un ambulatorio a Forlì Cesena.

I consigli per il controllo di questa zoonosi sono di tenere il cane in casa la sera e la notte, applicare antiparassitari sull’animale, fare annualmente analisi per la leishmaniosi canina, trattare i cani positivi e segnalare i casi di infezione alla AUSL.

Un dato negativo evidenziato dal questionario è la non conoscenza da parte dei colleghi di un piano di controllo/prevenzione nella propria regione. Calabria, Molise e Valle d’Aosta hanno dato risposta negativa al 100%, mentre nel resto d’Italia solo il 33,5% conosce un eventuale piano. Di questa percentuale il 29,5% (45/153 si) è rappresentata dalla Emilia-Romagna.
Tramite il sito del ministero della salute, è possibile osservare i piani di eradicazione e le azioni di controllo nei confronti di Leishmania. L’attività di sorveglianza si basa su alcune considerazioni quali l’aumento del serbatoio canino in aree non endemiche, habitat dei flebotomi in rapida diffusione, movimentazione interregionale dei cani e miglioramento del flusso informativo tra sanità umana e animale.
Secondo il portale di sanità animale le regioni dove è stato emanato un piano di sorveglianza per la leishmaniosi canina sono Emilia-Romagna, Marche, Lazio, Campani e Calabria, mentre è stato emanato un piano di monitoraggio in Valle d’Aosta, Trentino, Veneto, Friuli-Venezia Giulia e Toscana.
I piani di controllo si basano sul monitoraggio entomologico e sierologico, associato ad una sorveglianza passiva di tutti i cani.
Esiste inoltre una normativa nazionale che comprende il Regolamento di Polizia Veterinaria DPR 320/1954 per quanto riguarda l’obbligo della segnalazione, L. 281/1991 Legge quadro in materia di animali di affezione e prevenzione del randagismo e le linee guida per il controllo del serbatoio canino della leishmaniosi viscerale zoonotica in Italia (Rapporti ISTISAN 04/12).
La normativa regionale in Emilia-Romagna comprende il DGR n. 1326/2007 e il DGR n. 240/2015 “approvazione delle linee guida per il controllo della leishmaniosi canina in Emilia-Romagna”.
Una maggior sensibilizzazione da parte delle regioni verso le realtà ambulatoriali, nei confronti del flebotomo, porterebbe ad una consapevolezza superiore sia nei confronti della malattia che delle linee guida emanate.
In generale si è raggiunta una visione completa di come i medici veterinari si comportano di fronte ad un animale leishmaniotico, dalla diagnostica, al trattamento, alla profilassi con la sua durata, fino ad eventuali recidive, oltre che si ha un quadro rappresentativo della visione del medico veterinario sull’andamento epidemiologico di *Leishmania infantum*.

4. **Conclusioni**

Il questionario ha portato ad una visione esemplificativa di come le strutture ambulatoriali sul territorio italiano si approcciano alla patologia di leishmaniosi canina CanL. Si osserva un andamento epidemiologico tendenzialmente stabile lungo tutta la penisola e le isole, grazie ad una maggior consapevolezza della malattia da parte dei proprietari che quindi attuano una profilassi corretta. Anche la conoscenza delle linee guida da parte dei Veterinari conferisce una metodica di trattamento più standardizzata, che permette di ridurre gli asintomatici “reservoir”, grazie a controlli periodici, e di migliorare la qualità di vita degli infetti attenuando la sintomatologia. Un dato migliorabile è quello di eseguire profilassi anche nelle aree non endemiche, vista la diffusione del flebotomo su tutto il territorio, da Nord a Sud.

ESCCAP, European Scientific Counsel Companion Animal Parasites (2016). Controllo delle malattie trasmesse da vettori nel cane e nel gatto.. Linee Guida ESCCAP.

Press, 33-43.

Ferroglio E., Centaro E., Mignone W., Trisciuoglio A., (2007) Evaluation of an ELISA rapid device for sierological diagnosis of leishmania infantum infection in dog as compared with immunofluorescence assay and western blot. Veterinary parasitology, 144, 162-166

Littman MP, Daminet S, Grauer GF, Lees GE, van Dongen AM (2013). IRIS Canine GN Study Group Diagnosis Subgroup: Consensus recommendations for the

Morosetti, G., Toson, M., Trevisiol, K., Idrizi, I., Natale, A., Lucchese, L., Michelutti,

