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Abstract

Understanding the mechanics lying behind the behaviour of biological materials is not only vital
to the current knowledge of living systems but also a keystone of the design of new materials,
with relevant applications in engineering and related areas. This thesis is dedicated to the fracture
process during cutting of soft biomaterials, specifically those with a porous microstructure such as
the brain tissue.

Various aspects are considered, including (i) the interaction between cutting tools and crack
propagation; (ii) the effect of cracks in soft elastic solids exposed to large deformations; (iii) the role
of rate-dependent energy dissipation during crack propagation. Each point is treated separately,
in order to tackle the complexity of the material behaviour and propose theoretical models based
on simplifying assumptions.

The mechanics of cutting is analysed in depth combining analytical, numerical and experi-
mental data. Focusing on some peculiar aspects of cutting, our investigation is centred on the
stage of cut propagation in elastic materials and carried out borrowing the classical concepts of
fracture mechanics. In particular, the mechanism of propagation during cutting is found to de-
pend on a tool sharpness parameter, whose influence is considered analytically and with respect
to experimental data.

The behaviour of soft biomaterials is analysed taking into account their large strain elastic
response and the presence of rate-dependent effects, associated to various dissipative processes.
Numerical simulations of fracture in soft materials are performed, adopting different models to
describe the behaviour of biological materials. Hyperelastic incompressible models with strain
hardening are adopted to investigate the role of large deformations. Viscoelasticity and poroelas-
ticity are included in the bulk material separately, combined with the hyperelastic behaviour and
with a cohesive model of the crack-tip process zone.

The ultimate goal of our work is to develop efficient and reliable computational tools to sim-
ulate cutting in soft biomaterials, with possible applications in the fields of healthcare, bioengi-
neering, food industry and robotics. A finite element based algorithm is presented, which can
be applied to different cutting tools or needles, providing detailed analyses of the tool-tissue in-
teractions, damage and fracture process in soft materials, and replicating specific features of the
insertion process, including needle steering.

vii



Sommario

Comprendere il comportamento meccanico dei tessuti biologici ¢ un aspetto essenziale, non sol-
tanto per espandere l'attuale conoscenza dei sistemi viventi ma anche per lo sviluppo di nuovi
materiali, con importanti risvolti applicativi. Questa tesi & incentrata sul processo di frattura du-
rante il taglio (o cutting) di materiali biologici soffici, caratterizzati da una microstruttura porosa,
di cui un esempio rilevante ¢ il tessuto cerebrale umano.

Diversi aspetti sono presi in considerazione, tra i quali (i) 'interazione dello strumento di taglio
nella fase di propagazione della frattura; (ii) il comportamento di fessure in materiali soffici con
grandi deformazioni; (iii) 'influenza della dissipazione di energia dovuta a fenomeni dipendenti
dal tempo. Ogni punto viene affrontato separatamente, per indagare il complesso comportamento
dei materiali e formulare modelli analitici basati su ipotesi semplificative.

La meccanica del cutting ¢ analizzata in dettaglio attraverso la combinazione di modelli teorici,
analisi numeriche e dati sperimentali. Lanalisi della fase di propagazione del taglio in materiali
elastici viene affrontata applicando concetti classici della meccanica della frattura, ma tenendo
anche in conto di alcuni aspetti peculiari del cutting. In particolare, il meccanismo di propagazione
dipende da un parametro di sharpness dello strumento di taglio, la cui influenza & stata motivata
sia analiticamente che rispetto a dati sperimentali.

Per studiare il comportamento dei materiali biologici soffici, abbiamo preso in considerazione
la risposta elastica in grandi deformazioni ed alcuni processi dissipativi che determinano I'insor-
genza di fenomeni dipendenti dal tempo. Per valutare I'effetto delle grandi deformazioni, le si-
mulazioni numeriche del processo di frattura hanno adottato modelli iperelastici incomprimibili
con strain hardening. A questo ¢ stato aggiunto, separatamente, un comportamento viscoelastico
e poroelastico, unitamente ad un modello coesivo per simulare la zona di processo all’apice della
fessura.

Lobiettivo finale ¢ giungere allo sviluppo di una tecnica computazionale affidabile ed efficiente,
in grado di simulare il cutting di materiali biologici soffici, orientata al settore della medicina,
della bio-ingegneria, del food processing e della robotica. Nella tesi viene presentato un algoritmo
agli elementi finiti, in grado di simulare dettagliatamente le interazioni tra strumento di taglio e
materiale, il processo di danneggiamento e frattura, e capace di replicare aspetti peculiari, quali ad
esempio lo steering di aghi chirurgici.
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Introduction

The Earth is a living body. Its soul is its ability to grow. Its flesh is the soil, its bones are the strata of
rock, its cartilage is the tufa, its blood is the underground streams, the reservoir of blood around its
heart is the ocean, the systole and diastole of the blood in the arteries and veins appear on the Earth as
the rising and sinking of the oceans.

Leonardo Da Vinci



1. Introduction

n nature, many constituents of living beings can be classified as soft biological materials. Besides
I bones and teeth, almost any other part of the human body, such as skin, muscles, tendons, car-
tilage, blood vessels and organs presents a soft mechanical nature. These are by no means ordinary
materials: thanks to a hierarchical structure that spans multiple length scales, they are able to react
to a variety of external stimuli, absolving to complex biological functions and ensuring exceptional
mechanical properties. For this reason, research on biomaterials has always attracted the attention
of scholars '~*. Nowadays, materials scientists are putting significant efforts in replicating some of
the mechanical properties of natural tissues with synthetically made materials, for applications in
tissue engineering, healthcare, regenerative medicine and smart materials =",

In particular, the mechanics of damage and fracture of natural dissues is a fascinating and
puzzling subject. Each of us might have personally experienced the consequence of a bad injure or
a surgical intervention, in which tissues get damaged and recover. Even the toughest natural tissue
can break if subjected to an excessive force, like any other material. Compared to the classical
fracture mechanics of brittle and ductile hard solids, which is grounded on solid foundations
built in the first half of the last century, fracture of biological materials is still at the centre of
the scientific debate. How these materials get damaged and break, what is the origin of their
strength, what happens when we pierce or cut them with a sharp tool: these are only a few of
the multiple questions which have been sparking the interest of materials scientists, biologists and
bioengineers’. The purpose of this introductory chapter is to present the motivation and aims
of our research and how this thesis is structured.

1.1. What are soft biomaterials?

In the common sense, soft is any material capable of deforming consistently without applying
an excessive force, so that its deformation can be felt by hand or seen with the naked eye. This
simple assessment does not capture the whole of soft matter features, which go far beyond a highly
compliant behaviour. Natural systems rely on the ability of soft materials to accommodate large
deformations with minimal damage and provide protection to vital parts. Skin, for instance, is the
armour of many living beings, but differently from the heavy stiff metallic armours of medieval
knights, it consists of a complex multi-scale network resulting in a tough yet compliant layer '°. If
we wished to tear apart a small stripe of rabbit skin, the task would prove to be almost impossible,
to an extent that a small pre-made cut would not propagate but only deform. By contrast, we
know by experience that even a small flaw in a glass slab can lead to a catastrophic failure of the
component. Glass elastic modulus is orders of magnitude larger than that of skin, so that the
response observed might appear surprising. It is because of this and other unique mechanical
properties that natural tissues are among the most studied, yet less understood materials. Let us
consider their properties more in detail.

Skin and other elastic tissues

Soft elastic tissues, such as skin or blood vessels, are often described as incompressible materi-
als with large deformations, resulting from their molecular structure and elastic restoring forces,
mostly of entropic origin. A sparse population of strong bonds connects molecules together and
prevents macroscopic flow, allowing some molecular motion at the microscopic scale 17, Skin, for
instance, derives its remarkable tearing resistance from the structure of its outer layer, the dermis,
which consists of a tangled network of collagen fibrils and elastin '*'%.

2



1.1. What are soft biomaterials?

Elastic tissues can be considered similar to rubber-like polymers, with a non-linear elastic
stress-strain relationship described by the same models developed for elastomers. Yet, there are
also relevant differences. Unlike most rubbers, the stress-strain curve of biological tissues has a
peculiar J shape, displaying a severe strain hardening which prevents large deformations that could
threaten the tissue integrity '”. This stiffening effect is related to the stretching of fibres along the
direction of load application, which leads to a characteristic anisotropic response 17 In terms of
fracture, the exceptional tearing resistance might be related to the initial horizontal part of the
stress-strain curve. In fact, it has been observed that the low shear modulus results in an increased
resistance to the transmission of energy to crack tips*’~*.

Brain tissue and porous biomaterials

Many biomaterials are composed of an organic matrix swollen by water, forming a solid which is
porous, permeable and deformable. One example is articular cartilage, consisting of an organic
matrix of collagen fibrils with variable diameters, which make about the 20-30% of the total wet
weight, and the larger remaining part occupied by fluid”’. The role of cartilage is to carry loads
and serve as a damper to absorb shocks, with a remarkable resistance to fracture deriving from the
interactions within its microstructure”*.

Another example of a soft and porous material is the brain tissue. Human brain is suspended
inside the skull, floating on the cerebrospinal fluid, a clear and coloutrless liquid not much dif-
ferent from water. Its structure is composed of two main constituents: the grey matter, which
contains the nerve cell bodies and accounts for almost the 30% of the total volume; and the white
matter, characterised by a large proportion of myelinated axons”’. In particular, the grey matter
numerous junctions result in a denser material with respect to the white matter, which therefore
is less permeable to drainage of the cerebrospinal fluid.

The brain is the most complex organ of the human body, not only for its biological func-
tions. Owing to the different microstructure of its components, brain tissue is an inhomogeneous

. . . . . MY Ys
material and its mechanical response has been the subject of extensive studies 26-30 " Below we
summarise some of the main features that need to be considered when studying the mechanical

behaviour of brain:

* the instantaneous response is non-linear elastic, similar to an elastomer with a very low
elastic modulus (average values of the instantaneous shear modulus fall below 1 kPa);

¢ the brain tissue has a different response in tension versus compression, and during loading-
unloading cycles it shows evidences of a Mullins-like effect;

¢ the cerebrospinal fluid might interact with brain deformation, resulting in a volumetric
shrinking observed, for instance, during the administration of hyper-osmotic drugs or in
the brain-shift phenomenon‘;I ;

* human brain shows viscoelastic relaxation, which is assumed to influence the deformation
in particular situations, such as in response to shocks or traumatic injuries.

Although the response of brain to compression-relaxation, cyclic indentation and rheometric
tests has been explored extensively, not much can be found on the topic of brain fracture. Most
results are obtained from compression tests, where brain displays a fracture behaviour typical of
fibrous materials with rate-dependent ultimate properties”®. However, the fracture stress or strain
measured from the experiments only reflect the materials ability of sustaining mechanical loads,




1. Introduction

whereas an appropriate definition of toughness for such materials need to be based on the fracture
energy’”.

Hydrogels and mimicking materials for soft tissues

Dealing with real tissues presents several critical aspects, connected to the availability, costs, ethi-
cal issues and difficulties in the collection of repeatable experimental data because of the variable
microstructure of biological materials. For these reasons, synthetic phantoms mimicking the be-
haviour of natural tissues are used extensively in testing and simulations, for training purposes,
design of robotic aided surgery systems and bio-implants®. There are multiple factors to consider
when choosing a mimicking material, not least the biocompatibility if the artificial compound has
to be implanted in the human body.

Countless alternatives of mimicking materials can be found in the literature. Focusing on
the elastic nature displayed by soft biomaterials, rubber-like polymers are among the most com-
mon options. Silicone rubber, in particular, has been proposed to replace human skin in tensile
and tearing experiments, because the toughness and constitutive response of silicone and skin are
similar*>**, Throughout this research, we have extensively used different types of silicones in
experiments, to investigate the non-linear elastic response and the large strain fracture behaviour
observed in soft biomaterials. Silicones have been proposed to mimic the brain tissue as well,
although hydrogels might offer a more appropriate choice for tissues with a porous network.

From the materials point of view, hydrogels are polymer networks highly swollen with a liquid,
ranging from ten up to thousands of times their dry weight. Actually, we can think of a simple
single-phase gel as a dilute rubber: when the water content is increased, the effect is analogous to
expose a polymer to a temperature surge, so that gels behave as very soft rubbers . Hydrogels can
be classified in terms of the type of cross-links joining the polymeric chains together®:

¢ reversible or physical gels: the polymer networks are held together by molecular entangle-
ments, and/or secondary forces including ionic, H-bonding or hydrophobic forces. All of
these interactions are reversible, and can be disrupted by changes in physical conditions
such as ionic strength, pH and temperature. Gelatines are one of such examples, often used
in food and pharmaceutical industries because they are able to melt in the mouth or in the
stomach;

* permanent or chemical gels, whose networks contain strong covalent cross-links so that the
chemical structure resembles that of elastomers.

It is the role of fluid the most peculiar aspect of the mechanical response of gels. When they
are compressed, water is expelled from the solid network, whereas fluid is taken up in tension,
and the mechanical properties are affected by rate. Certain hydrogels display another type of rate-
dependent behaviour, related to the breaking and re-forming of the cross-links, which result in
a viscous relaxation. It is important to notice that the stress relaxation, as well as the fracture
behaviour, depends on the type of gel ”°. Gelatines, for instance, are brittle compounds showing
little or no rate-dependent behaviour at small to medium strains. On the contrary, parameters like
the ultimate stress and the fracture energy depend on the rate of deformation”*~%. In particular,
the fracture energy of biopolymeric gelatines has been found to vary linearly with the crack velocity,

> . . NS
and the rate sensitivity increases with the amount of physical cross-linking '~

. The local process
leading to macroscopic fracture is different for the two classes: fracture in physical gels is dominated
by a viscoplastic mechanism leading to the pull-out of the polymeric chains’’, whereas chemical

gels fail by scission of the stretched chains, similarly to rubber-like polymers **.

4



1.2. Fracture and strength of soft materials

Various physical and chemical gels have been proposed to replicate the time-dependent be-
haviour of the human brain and other porous biomaterials, including gelatines and composite
hydrogels. We have considered more in detail the mechanical response of a biopolymeric gelatine
and a soft hydrogel ““~*. The latter, thanks to a multicomponent composition, ensures superior
performances in reproducing the mechanics of brain during different loading scenarios, including

fracture tests, and is also suitable to mimic other porous organs™’.

1.2. Fracture and strength of soft materials

Irrespectively of the material considered, fracture is a matter of large strains at small scale lengths **.
However, the fracture process in a soft material is qualitatively different from what is observed
in metals, rocks, glass and other hard materials*'~".
dependent behaviour: these are the main points affecting the fracture process and toughness of
soft biomaterials.

Large strains, energy dissipation, rate-

Fracture of gels is, in this sense, archetypical. Intrinsically, they are very brittle due to the
large water content which results in a scattered distribution of molecules, with high propensity to
damage and failure because of the low number of highly stretched polymeric chains’*. However,
the amount of dissipated energy due to various mechanisms has the power to increase their frac-
ture resistance by several orders of magnitude %, Materials experts have devised techniques to
build up energy dissipation in the microstructure of artificial materials, in order to develop new
compounds with outstanding fracture properties’>~%. Instead of considering the specific failure
mechanisms at the micro-scale, we might acquire instructive information by analysing the typical

length scales involved in fracture mechanics.

Length scales of fracture mechanics

Rupture or fracture always starts from a pre-existing crack or flaw, the presence of which, when
not introduced deliberately, should be considered as inevitable. Therefore we can focus on the
situation of a propagating crack in an infinite body to distinguish three main regions™" (Fig.1.1):

e the process zone (A). This is the region very close to the crack tip, where local damage and
molecular fracture occur, and in which the stress is determined by the tension required to

break individual bonds;

e the crack-tip region (B). This is where the material is affected by the vicinity of the crack
tip, which in general causes stress concentration, and potentially where energy dissipation
is connected to the propagating crack;

o the far-field region (C). Far away from the crack tip, the material behaviour is unaffected by
the crack and depends on far-field loading: energy dissipation, if relevant, is due to bulk
processes which are independent on the presence of the crack.

Let us begin by considering materials whose bulk behaviour is elastic and energy dissipation
is confined to the process zone, that is assumed much smaller than any other relevant size of
the problem. This is the well-known small scale yielding assumption, which is the founding
hypothesis of linear elastic fracture mechanics (LEFM). Being the dissipative zone indefinitely
small, the crack-tip region is dominated by the elastic fields controlled by a stress intensity factor.

5




1. Introduction

It is the conventional approach adopted in hard materials such as rocks, bones or glassy polymers,
but need to be revised for soft and highly deformable solids.

The definition of soft in fracture mechan-

ics is made on a relative basis: that is, we need
) o external loads

to consider the competition between the elas- DGO

tic strain energy and the effective surface en-

ergy for fracture. A length scale is derived,

which in the literature has been given various

C

blunted crack tip

names, such as the crack-tip radius p (Fig.1.1)
or the length of flaw sensitive failure 2059 Re-
gardless of the interpretation, it characterises
a region of large strains outside of which the
LEFM assumptions remain valid. While in
most hard solids such a region is very small,
usually in the order of the molecular distances,

in soft materials it might become larger than JHdLILILdL

any other significant dimension involved in external loads

the problem. As a result, fracture of soft mate-

rials cannot be studied without first addressing ~ Figure 1.1 Sketch of the crack-tip region and the
various length scales involved in fracture mechanics.
o . . The inset shows the crack tip in a soft material, where
The scenario is further comphcated if en- p is the tip radius characterising the size of the large

ergy dissipation occurs on a large scale. The strain zone

the role of large deformations.

small-scale yielding assumption does not hold
and the amount of dissipated energy has a primary effect on the available energy for fracture. In

such cases, the very existence of a fracture energy as a material parameter needs to be reconsid-
50
ered”’.

1.3. The importance of cutting

During their lifetime, living beings are exposed to numerous external actions, as part of the natural
course of events or coming from unexpected situations. During surgeries, for instance, the affected
biological tissue is subjected to unusual forces by means of tools, which stretch and cut causing a

temporary injure or damage "’

. Incisions by means of scalpels, dissections using surgical scissors,
needle insertions: in the healthcare sector, the range of techniques involving cutting processes is
vast. Another field in which cutting has a central role is the food processing industry. Automated
machines perform cutting operations on a broad variety of foodstuff, many of them characterised
by being soft and viscous, such as cheese, gelatine etc. Cutting is also employed as an alterna-
tive technique to test the mechanical properties of soft materials, whose low elastic modulus and

inherent complex behaviour make the traditional methods problematic o,

Any action causing separation in a material through the application of forces by means of an
external tool — be it a wedge, a pair of scissors or a surgical needle — is the object of the mechanics
of cutting®’. The science of cutting was firstly investigated in relation to metals, applying the
traditional slip-line model of the plasticity theory to wedge indentation“’, and in brittle materi-
als considering a Coulomb-Mohr criterion®*. With respect to these mechanisms, the novelty in
cutting elastic materials is related to the central role played by fracture mechanics®°, and this

6



1.4. Motivation and aim

might explain why a large part of this thesis is centred on fracture and crack propagation.

However, there is one fundamental difference between cutting and fracture, that we wish to
clarify through an intuitive example. Let us consider a soft and extensible piece of material, for
instance a large rubber band with a small cut. If we try to separate this piece by stretching it by
hand, we will soon find out that a considerable amount of force is required. By contrast, we know
that with a sharp blade we can easily cut through it. In more rigorous terms, it is when we attempt
to feed energy to a crack from remotely loaded regions that tearing is difficult, whereas with blades
or other sharp objects the deformation is extremely localised *'. This is the peculiarity of fracture
during cutting: that is, the way in which the external work is provided and converted in surface
energy to feed crack propagation.

1.4. Motivation and aim

From this introduction it can be seen that the analysis of cutting in soft biomaterials requires a
multidisciplinary approach, dealing with physics, contact, fracture mechanics and materials sci-
ence. While we do not pretend to address all the topics discussed above, these represented the
starting point which arose our interest in the subject of soft biomaterials. The need to provide an
exhaustive answer to the implications of cutting in several fields, from materials science to bio-
engineering, was a more practical reason that suggested us to pursuit the investigation presented
in this thesis.

The mechanics of indentation and cutting plays an important role during mechanical testing
of soft materials. Specifically, in order to measure the fracture toughness of very compliant solids,
cutting-based techniques are becoming of widespread use. Recently, wire cutting has been applied
to characterise the ultimate behaviour of the human brain tissue and soft mimicking hydrogels,
which show a complex response affected by non-linearity and rate effects. Wire cutting is adopted
as a model technique in many parts of this work, as it allowed us to study the cutting process in
its entirety with an amenable geometry for numerical simulations.

Among the various cutting techniques adopted in surgery, needle insertions have become pop-
ular for minimally invasive surgeries, which in some cases offer relevant benefits for the patients.
The development of a new type of flexible needles, which are controlled by robots and can steer
inside the target biological tissues, requires a detailed investigation in the mechanics of needle
penetration. The peculiar steering observed in experiments depends on a complex mechanism of
crack propagation, for which accurate and efficient numerical simulations are needed. Among the
main purposes of our work was the development of a refined numerical algorithm, capable of de-
scribing the tool-tissue interaction and predict the process of needle steering. The insight gained
from the analyses constitute an essential tool supporting the production of the surgical needle, and
can also be used for training purposes.

An additional difficulty in testing soft biomaterials and their synthetic counterparts is repre-
sented by energy dissipation. Besides the well-known viscoelastic relaxation showed by elastomers,
in soft porous materials rate-dependence might be caused by the process of fluid draining. The
human brain tissue, behaving like a soft hydrogel, show a remarkable effect of the rate of insertion
during wire cutting and needle penetration experiments, the cause of which are still not com-
pletely understood. This last point motivated us to investigate the role played by fluid draining
and viscoelastic relaxation in the crack-tip region of a soft solid, through a combined analytical
and numerical approach.




1. Introduction

1.5. Thesis outline

This thesis is structured in four main chapters, closed by a chapter of conclusions and appendices.
Single chapters address a specific topic of our research and are, to a certain extent, self-contained.
For this reason, we have included an introductory section to the chapters, in order to concentrate
the readers attention on the contents presented and provide a dedicated literature review. The full
list of the chapters is presented below.

* Chapter 2 is about the mechanics of cutting in elastic materials. It provides the background
of the governing equations and introduce an important definition of sharpness. Experi-
mental results, as well as numerical simulations, are presented and discussed with respect to
the analytical models;

¢ Chapter 3 is centred on the effect of large deformations in non-linear elastic materials, as
this is an essential step to understand the mechanics of cutting in soft biomaterials. Al-
though cutting begins with an initial stage of contact and indentation, the main source of
the behaviour observed in the experiments occurs during crack propagation: therefore, the
fracture is what this chapter is centred on. Specifically, the fracture process in cutting is
discussed in terms of the near-tip fields and the role of crack blunting;

¢ Chapter 4 considers the role of rate-dissipation in fracture, in particular with respect to the
human brain and similar soft porous materials, which are treated as soft non-linear elastic
solids with rate-dependent behaviour. Both the role of fluid interaction and of viscoelastic
dissipation are examined;

* Chapter 5 is dedicated to the numerical modelling of the cutting process in soft materials.
An advanced finite element algorithm is presented and applied to simulations of wire cutting
and flexible needles insertion;

¢ Chapter 6 presents the conclusions. The main results are synthetically presented in the form
of bullet points, trying to establish a link among the chapters;

¢ Appendices close the thesis, containing the main theoretical background of non-linear elas-
ticity, viscoelasticity and poroelasticity, with most of the equations that are recalled through-
out the chapters.



The mechanics of cutting in elastic
materials

Sharp knives, of course, are the secret of a successful restaurant.

George Orwell



2. The mechanics of cutting in elastic materials

ost cutting processes essentially consist of two stages, in which the material is initially de-
M formed until an appropriate failure mechanism is activated, and then is separated. When
a cutting tool is pushed into the material, it causes a deformation that may be either reversible
or irreversible depending on the nature of the material itself. Not only the material but also the
tool geometry plays an important role in the type of deformation, a fact that can be understood if
one thinks of the differences between splitting a rock with a thick wedge and perforating a rubber
sheet with a thin needle. In the present thesis, we confine our attention to soft materials, such as
rubber, skin or gels, whose behaviour can be assumed elastic until the occurrence of failure iden-
tified by fracture initiation®’. The first stage of indentation in elastic materials can be treated as
a contact problem. For instance, surgical blades have a wedge-like tip profile and the indentation
can be studied adopting a plane contact geometry, whereas needle indentation might be treated
as an axisymmetric problem. A comprehensive discussion of the contact solutions for wedge and
cone indenters in plane strain or axisymmetric conditions is provided in Truman et al.®”. While
the classical contact mechanics solutions are attractive, we should carefully consider their limits in
relation to the specific nature of the material. For instance, the singular state of stress predicted
by the sharp wedge solution does not exist in practice, because of the effect of edge rounding and
plastic flow®. Moreover, when soft solids are compressed, their deformation is extensive and goes
beyond the small strain framework in which most contact solutions are derived ="'

The mechanics of cutting in elastic brittle materials is different from that in ductile solids,
such as metals. One of the peculiarities is related to the failure mechanism, which in the former
occurs by formation of a crack while in the latter is connected to plastic flow . Focusing on
the separation stage following failure, a cut or crack propagates under the action exerted by the
cutting force until a so-called steady-state may be established. A viable approach is to consider
separation as a process of energy conversion: the work done by the external force applied through
the cutting tool is converted into elastic strain energy, surface energy to propagate a crack and
dissipated energy due to friction”. It might be convenient to employ the energetic equation of
cutting as the starting point of analytical models and equations. Section 2.1 presents an extensive
discussion on the energetic balances in cutting. A simplified analytical model of the steady-state
propagation in a linear elastic material with an elliptical wedge is also included .

Although the mechanisms of propagation during steady-state cutting and tearing are similar,
the way in which bulk energy is converted into surface energy available for crack propagation is
different. More specifically, the crack driving energy during cutting is the result of a local conver-
sion of the external work performed with the tool, as opposed to a remote source in conventional
fracture tests. A fundamental parameter controlling the mechanism of propagation is the tool
sharpness, whose role is analogous to the critical crack-tip radius in fracture tests’*. Several au-
thors have proposed metrics to measure the tool sharpness, and observed how it affects the cutting
forces: for instance, blunt tools require a higher force and the cut surfaces are more irregular if
compared to sharper tools””’°. This is an undesired consequence in the medical field”” and in
the food processing industry '®, for instance. Moreover, the tip shape has also an important ef-
fect on the geometry of the resulting cut™. In §2.2, a definition of sharpness is derived from
the analytical model proposed, and then compared with results of numerical analyses where the
effect of different tool profiles is explored. Experimental cutting tests on polystyrene, an example
of a hard material which can be studied according to linear elastic fracture mechanics, confirm
the implications of tool sharpness and show good agreement with the forecasts of the analytical
model.
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2.1. Models of indentation and cutting

In Section 2.3 we show the results of an experimental investigation in cutting of soft elastic
materials. In addition to measuring the cutting force, we have employed the Digital Image Cor-
relation technique to examine in detail the deformations within the crack-tip region. The results
confirm that crack propagation occurs with a mechanism that is typical of soft matter. These
analyses, suggesting that the role of sharpness is coupled with fracture at large deformations, are
introductory to the study of the crack-tip zone in soft materials, which is the subject of Chapter
3.

While a large part of cutting mechanics in elastic materials is related to crack propagation, there
are certainly other factors that need to be considered. One of them is the role played by friction.
Soft solids, such as food and biological tissues, often have a negligible bending stiffness but exert
a high frictional resistance when cut. Methods to minimise the frictional effects are sought out in
practical applications in order to reduce the cutting force, with the positive implications already
discussed. An infamous example was devised as early as the Middle Age with the guillotine. The
principle upon which it was ideated is known as oblique cutting®’, where the blade inclination
produces a slice-push effect causing a reduction of the cutting force. A similar phenomenon is
experienced in the daily life when cutting food: beside using a sharp knife, the addition of a sliding
action to the push greatly reduces our effort””*". Moreover, the effect of friction is to give an
apparent enhancement of the fracture resistance, which has to be separated from the real material
toughness®'. In §2.4 we discuss the role of blade inclination and friction with an application to
cutting experiments on thin samples of silicone rubber.

2.1. Models of indentation and cutting

2.1.1. Energetic balance of cutting

A versatile description of a cutting process is provided by an energy balance, in which the external
work performed by a cutting tool pushed into the material is consumed by various contributions.
In elastic cutting by means of a rigid tool the general incremental form of the energy balance is

AWy, = dU, +dU; + dUg, 2.1)

where dW., is the external work input, dUs is the strain energy variation in the solid, dUy is the
energy dissipated due to friction and dUy; is the fracture energy required to separate the material.
When the tool is pushed into the material for an infinitesimal length dD (Fig.2.1), the work done
by the cutting force F is

dw,

ext

= FdD. 2.2)

Any type of cutting begins with indentation, in which the material is deformed without the
creation of new cutting surfaces, until the insertion depth D reaches a critical value D.. From
Egs.(2.1)-(2.2), taking dUg = 0, we obtain

FdD = dU; + dUj. 2.3)

In most cases, the frictional dissipation dU is also neglected until the beginning of separation.
Notice that the condition dUg = 0 can also describe the insertion of a cutting tool in an open
cut, for instance when a blade is inserted for the second time in an already cut material. In such a
case, however, the frictional term in Eq.(2.3) must be included.

11




2. The mechanics of cutting in elastic materials

When D = D, a crack is initiated and the
tool starts to separate the material. There is
a transient stage, generally characterised by a
sudden drop in the cutting force, which even-
tually leads to a steady-state. A required con-
dition of steady-state cutting is that the rate
of creation of new surfaces is equivalent to the
rate of insertion of the tool "°. In other terms,
the displacement increment dD must equal
the increase in cut length da (Fig.2.1). No-
tice that such a condition does not ensure the

steadiness of the cutting force. More specifi-
cally, when the finite dimension of the tool,
measured in the direction of insertion, is small

compared to the size of the substrate, crack Figure 2.1 Two-dimensional sketch of crack
propagation during cutting of an elastic material

propagation occurs at constant force right af-
ter fracture initiation. On the contrary, when
both tool and sample have comparable sizes, a crack is propagated for some time before the steady-
state is attained. The motivation is connected to the length of the contact region, which increases
while the tool is inserted in the material. Asa consequence, both the strain energy and the frictional
term on the right-hand side of Eq.(2.1) increase.

The energy balance in the stage of crack propagation can be written as

Fda = dUs + dUy + dUg. (2.4)

In a two-dimensional framework, the increment in work of fracture dU represents the energy
required to open a new surface of area A = tda, where t is the out-of-plane thickness of the
material. We can write

dUg = Gtda (2.5)
and, from Eq.(2.4), we obtain

(2.0)

t \tda * tda

F (dUs duf)
+—,

t

where G is known as the energy release rate in fracture mechanics.

In the term T = dU,/(tda) we recognise the so-called tearing energy of soft materials**, which
represents the fracture energy per unit area in the absence of an external force input. Methods to
derive this energy are considered in detail in §3.1. The condition to create new crack surfaces
requires that the left-hand side term G attains a critical value I, denoted as the fracture toughness
of the material. If the bulk behaviour of the material is assumed linear elastic, the fracture energy
can be expressed by means of the relation G = K2/E , where K is the stress intensity factor and E
is the Young modulus of the material. In a more general scenario, I" includes dissipative terms due
to inelastic effects and rate-dependence.

In steady-state cutting of soft solids, the contribution of friction is often the dominating term,
whereas the strain energy term dU; may be neglected. This simplifying assumption comes from
considering the offcuts of soft materials being ineffective in storing relevant strain energy. How-
ever, if a pre-strain or a transverse state of compression is induced, for instance due to the clamping
system of an experimental setup, the contribution of strain energy may have to be included. In
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2.1. Models of indentation and cutting

particular, a tensile strain applied during the insertion reduces the cutting force by increasing the
available energy for fracture, at the same time minimising frictional effects 83,

2.1.2. A two-dimensional model of steady-state cutting

The energetic balance of cutting, Eq.(2.1), is suitable for applications in a range of different materi-
als and geometries. In the case of a linear elastic solid we have developed an alternative description
of the cutting process in the steady-state, by solving a two-dimensional boundary value problem
for the stress and displacement fields in an infinite body indented by a rigid tool "”. In particular,
the following assumptions are introduced:

¢ the material is linear elastic and the small strain assumption is retained;
* the contact between blade and material is assumed frictionless;

¢ the blade cross-section consists of an ellipse, with an aspect ratio that is kept constant during
the insertion;

* a quasi-static insertion is considered, so that we can neglect inertia

elastic solid

Figure 2.2 Schematic of the analytic model of cutting, with an elliptic blade inserted in a crack of
length 2a. The enlarged figure shows the blade cross section, where Y(x) is the elliptic profile and a;
is the contact length between blade and material

Let us consider an infinite solid with a centred cut of length 2a. The cross-section of a rigid
blade is represented by an ellipse with semi-axes D and Yy < D (Fig.2.2). As specified in the
hypotheses, we can change the relative length of the major semi-axis with respect to the crack semi-
length but not the aspect ratio, i.e., D/Yy = const. While this assumption is a simplification of
the cutting indentation with commercial blades, it is essential for the solution of the mathematical
problem. In practical terms, a situation described by this model is the insertion of an elliptic

13




2. The mechanics of cutting in elastic materials

conical blade, with a gradually increasing cross section, along a direction parallel to the blade axis.
The equation of the ellipse is written as

Y(x) = EVDZ -2, (2.7)

2D

The radius of curvature at a generic point of the ellipse is given by

2 2 \2
21 X Y
p(x,Y) = (YD) [ﬁ + _Y04) , (2.8)
which at the wedge tips |x| = D is equal to
Y 2
p(x==+D,Y =0) = 30. (2.9)

Formulation of the problem

Because of the double symmetry, only a quarter of the model needs to be considered. The crack
initially extends in the region |x| < a, y = 0, while the ellipse is assumed to be shorter or equal
to the cug, i.e. D <a. Furthermore, let x < a; denote the length along which the ellipse is in
frictionless contact with the material. In this region we impose unilateral contact conditions by
means of the following set of equations

y(x) =Y(x), o,x) <0 forx<a, (2.10)

where y(x) represents the deformed profile of the crack.
Along the free edge of the crack the normal stresses must be null, while in terms of displacement
we have two different conditions. We can write

o,y (%) =0, y(x)>Y(x) fora; < x< D; (2.11a)
oy(x) =0, y(x)>0 for D<x < a. (2.11b)

Ahead of the crack, continuity and symmetry bring the displacements unconditionally to zero,
while no condition on the normal tractions can be established

y(x)=0 forx>a. (2.12)

Finally, shear stresses are null everywhere along the crack plane as a result of the frictionless
contact assumption

Oyy(x) =0 fory=0. (2.13)

Equations (2.10)-(2.13) represent a boundary value problem to be solved for the stresses 0, (x)
and the displacements y(x). The problem is decomposed in two cases which are solved sepa-
rately (Fig.2.3). We begin by considering an elliptic displacement profile which derives from a
well-known solution of fracture mechanics in which a crack is subjected to a uniform stress g **
(Fig.2.3a). Assuming the crack length equal to 2D, in plane stress conditions we obtain

200 5
y(x) = % D2 —-x2 for x< D, (2.14)
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2.1. Models of indentation and cutting

from which we can find the normal stresses as

oy (x) =—0g forx<D; (2.152)

o) =an

Now we observe that the normal stress satisfies Eq.(2.10) if we take

- 1) for x >D. (2.15b)

_EY,

O-0_ 2Dr

(2.16)

but in the open part of the crack, i.e. fora; < x < g, the solution needs to be modified, so that the
conditions specified in Eq.(2.11) are respected. In order to equilibrate the normal stresses in the
open part, a superimposed different problem is solved. We can consider a crack of length (a — a;)
(Fig. 2.3b). The following tractions are applied on its surface

o,y(x) =09 fora; <x<D; (2.17a)

X
() = 0o (1 = ————

In terms of displacements we prescribe that

) forD<x<a. (2.17b)

y(x)=0 for x>aandforx<a;. (2.18)

To solve this second part of the boundary value problem, we observe that in general a stress
singularity is expected at both ends x = 41 and x = 4. We immediately rule out the former
by invoking the unilateral contact conditions (Eq.2.10), which prevent negative or positive stress
intensity factors for any internal point. We expect the following conditions

Kis, =0, Kz 20, (2.19)

where K| is the mode-I stress intensity factor (SIF).

The weight function method for SIF computation

There are several available numerical methods to compute SIFs in linear elastic fracture mechanics,
including the weight function method, the boundary collocation approach, the distributed dislo-
cation technique and the finite element method *”. Here we show how to derive the expression of
K;, of Eq.(2.19) through a specific application of the weight function method.

The method of weight functions is based on the application of Green’s functions to express the
stress state in a system subjected to a generic loading, combined with Betti’s reciprocal theorem
and the principle of superposition by Bueckner . The latter is invoked to find the stress state in
a cracked body subjected to generic external loading by following two steps: firstly, stresses in the
uncracked body are found, in particular their distribution along the original crack line. Then, the
system is subjected to equilibrating tractions along the crack, and the global solution is obtained
from the sum of the two steps. A Green function can be used in the second step to find the stress
intensity factor for the equilibrating internal tractions.
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2. The mechanics of cutting in elastic materials
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Figure 2.3 Displacement and stresses in the boundary value problem. a Equivalence between the
elliptic profile and a crack of length 2D with an applied constant stress oy. b A crack of length 2s,
with prescribed stresses on its surface (derived from equilibrium). Notice the discontinuity in the
displacement derivative at x = a

Let us consider two arbitrary loading systems, both resulting in a pure mode-I condition, and
suppose that we know the resulting SIF for the first system. The SIF for the unknown loading is
related to the first by **

Juld
2 _ (2) y
KP = K(l) P f Sedc, (2220)

where f,, are normal tractions applied on the outer boundary C of the system, kept fixed during an
infinitesimal crack advance da, and 1, are the normal opening displacements of the crack. Notice
that we have employed the shear modulus 1 and Kolosov’s constant % to retain general validity.
In plane stress, for instance, ¥ = (3 —v)/(1 + v) and Eq.(2.20) can be written as

Juld
@ _ (2) y
K; (1) 1 f dC (2.21)

Invoking the principle of superposition, we can relate the SIF to normal opening stresses Oy
applied directly on the crack face

K? = f o2 h(x)dx, (2.22)

where c is the crack perimeter and

= —_ 2.2
k+1gl da 2.23)

is referred to as the weight function. Given the arbitrary of the loading systems, /i(x) depends only
on the body geometry and can be interpreted as the SIF generated by a unit force applied to the
crack face at a point x.
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2.1. Models of indentation and cutting

Notice that we can use any arbitrary loading system to obtain K}l) in Eq.(2.23), provided that
it results in pure mode-I loading on the crack faces and the body is assumed infinite. For instance,
the SIF in an infinite body containing a crack of half-length a, centred on x = 0 and subjected to

uniform tension gy, is
KV = gov/ma (2.24)

and the normal displacement is given by

+1
u@l) = K4” oo Vx? —a?, (2.25)

with x = 0 corresponding to the centre of the crack.
Replacing Eqs.(2.24)-(2.25) in Eq.(2.23), the required SIF in Eq.(2.22) becomes

+
K? = (2>, /x 2d (2.26)

Solution of the elliptic wedge problem
Back to the specific problem shown in Fig.2.3b, we consider a crack of half-length s = (a — a1)/2
and introduce a new variable &, such that the crack is centred at & = 0. Equation (2.20) is

transformed in
S + m
I = \/— f yy(é) (227)

by taking x = &£ + (a1 + a)/2. The factor m is equal to -1 for the crack tip at x = 47 and to +1 for
the crack tip at x = a,. Notice that the condition on the SIF at x = a7, which has to be zero, will
be used to find the position of a;. Along the crack of length 2s the normal stress is discontinuous,
as specified by Eq.(2.17), and it is therefore convenient to split the integral of Eq.(2.27) as follows

KW = _ f s+ me 5_ —6oVT; (2.282)
0o D-t+¢ s+ mé
Vs Ji E-H@D-t+8)

where t = D — (ay + a)/2. Introducing the normalised variables E=¢Js,t=t/sand D = DJs,
the resulting SIF is given by

K® = dé, (2.28b)

1 D-#+¢& 1+mé .

K = K + KP = —gym+ 22 f _Dofre mEGE (229)
Ve Ji VE-HeD+E-H N1-me
Taking m = —1 we have the expression for the stress intensity factor in X = 4y, and imposing
the first condition of Eq.(2.19) we find that
1 D-t+& 1-
Kio =K@ + K0P =0 = f < 5d5 o (2.30)
VE-h@D+E-hV1+<
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2. The mechanics of cutting in elastic materials

The integral of Eq.(2.30) is solved with a numerical recursive method which proceeds until a
converged result is obtained after N cycles. At the generic cycle i we solve the following integral

2
1t 1+ (E-Dhig -£.
ki=|= _ 4 ~d&| , with ky=0, (2.31)
ﬂff VE-HR+E =Dy N1+¢ o

where k;j = s/D = 1/D. Fori = N we obtain s = kyD and hence a;/a for any value of the ellipse
semi-axis D.
Taking m = +1 in Eq.(2.28) we have the expression for the stress intensity factor in x = a4

A

1 D-1+& 1+& .
Kl,a = Kl,u<A) + Kl,a(B) = Go\/g f —— — 1 ~dé -1, (2.32)
P NVE-HeD+E-H V1<

where the integral is solved as described above.

The results obtained from Eq.(2.30) and Eq.(2.32) are illustrated in Fig.2.4a as a function of
the normalised length D/a. The ratio D/a represents the part of the initial crack of half-length a
that is filled by the blade. Following a more common definition in cutting, we denote D/a as the
relative insertion of the wedge, keeping in mind that, according to the present model, increasing
D results in an increase of the other semi-axis. The SIF K], is normalised with respect to K, the
stress intensity factor that would develop if the wedge filled the entire crack, i.e. D = a, defined
as

EYy, |m
KR = 0pgVTa = TO ; (233)
a 1.2 b

1.0_—-__K:/_K_R_____(ia_ y\ o<1

] (i) = K, =Ky <K,
0.8 — __//
06l KiK. "L ) Deaa |

- - E
0.4— ‘ |

_ Y a, i
0.2 N T ! ! o1

i Lae 0] ssr K=K <Ky
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Figure 2.4 a Analytic results for the elliptic wedge. The dimensionless stress intensity factor K; ,/Kg
and the position of the separation point a;/a are plotted as a function of the normalised length D/a. b
Crack propagation during the blade insertion is shown with respect to two different critical conditions
(when K; , = K, ), with (i) related to a blunt wedge (© > 1) and (ii) to a sharp wedge (© < 1)
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2.2. The role of blade sharpness

2.2. The role of blade sharpness

The model presented in the previous section is instrumental in exploring the role of the blade
sharpness on the fracture process, specifically at critical conditions for crack propagation. In prac-
tical terms, sharper tools require less force to be pushed into the material, reduce the deformations
and result in smoother cut surfaces. Firstly, we propose a definition of sharpness for the ellip-
tic wedge problem, which considers the geometry and the material properties. With the aid of
numerical analyses, we explore the influence of different tool profiles on the condition for crack
propagation and compare them to the reference case of the elliptic blade. Finally, we show an
application of the proposed model to cutting of a glassy polymer, which we assume to behave
according to linear elastic fracture mechanics. The results obtained from experiments seem to
confirm the role of sharpness in crack propagation during the steady-state cutting .

2.2.1. A definition of sharpness

In a linear elastic material we can express the critical condition for crack propagation as K, = K,
where K, is the fracture toughness. A sharpness parameter can be introduced if we express the
condition for propagation in terms of a critical radius p., to be compared with the radius of
curvature p at the tip. In the elliptic wedge, we can combine Eq.(2.16) and Eq.(2.33) in Eq.(2.9)

to obtain
_ 4 (K (2.34)
P=2\E)" '
where we have assumed D = a. The critical radius p,. is consistently defined as
-2 (K 2 (2.35)
Pe=\E) - :

Then we can introduce a sharpness parameter © from the ratio

2
K
o= pﬂ - (K—R) ) (2.36)

with © <1 identifying a sharp and © > 1 a blunt wedge.

The critical condition for crack propagation is different according to this distinction, as illus-
trated in Fig.2.4b. With the help of the SIF plots (Fig.2.4a) we can discuss the implications of
the sharpness parameter © on crack propagation. As the elliptic wedge is inserted in the crack,
the SIF increases with the normalised length D/a: depending on the wedge sharpness, there are
two different ways in which crack propagation might happen. For the case of blunt wedges with
o>1, K] , increases until the limit imposed by the material toughness K, is attained. Then, the
crack starts to propagate in a stable manner, so that the distance between the current crack tip and
the wedge tip remains constant and equal to a — D. Consequently, the wedge tip never reaches
the crack tip. For © < 1, the sharp wedge is inserted completely into the crack and the SIF rises
up to the value K} , = K, but the critical condition cannot be attained. In order to propagate the
crack and cut through the material, the wedge is pushed against the crack tip and further energy
is required.
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2. The mechanics of cutting in elastic materials

Neglecting friction and the compression of the material caused by the wedge, according to
Eq.(2.6), the increment of cutting force to be provided to the system is

2 _ 12
AF = @t. (2.37)

2.2.2. Influence of tool geometry

The major outcome of the proposed analytical model is the role played by the wedge sharpness on
crack propagation. Still, there are many limitations that need to be addressed if the discussion has
to be applied to cutting with commercial blades.

One of them is related to the material behaviour, which until now we have assumed linear
elastic. In fact, the region where the blade is inserted is affected by high stresses, and it is therefore
obvious to expect some material damaging and inelasticity. For instance, it was found that a small
plastic zone near the crack tip resulted in a visible decrease of K; ,/Kg, the more relevant the more
the wedge was inserted into the material, i.e. for D/a — 17, On the contrary, the position of
the contact point a;/a was not significantly altered by plasticity. Since this material behaviour
is not common in the soft elastic tissues considered throughout the thesis, we are not taking it
into account here. Rather, it is the effect of large deformations that needs to be considered in
soft materials. The role of blade sharpness in soft hyperelastic tissues is explored in the chapter
dedicated to large deformations (§3.4).

Another limitation in our analytic model is
related to the elliptic shape of the blade, which
is far from the features of a commercial blade.

We have explored the impact of the tool ge-
ometry on crack propagation with the help of
finite element (FE) analyses. Instead of mod-
elling the whole propagation process, we have
considered the contact problem between the sharp V-blade
rigid blade and a semi-infinite body with an U-blade
edge-crack of length a. The material is lin-
ear elastic and plane stress conditions are as- blunt V-blade
sumed, as in the analytical model. Unilateral

contact constraints are enforced by means of
no-tension springs (i.e., springs with zero stiff-
ness if the interface stresses are tensile) and ad-
ditional boundary conditions are imposed to  Figure 2.5 Blades with different profiles, characterised
take advantage of the symmetry. The tool ge- by the wedge angle a and the tip radius p;
ometry is defined by the wedge opening angle
a and the wedge tip radius p;. In particular, we have considered three geometries (Fig 2.5): a
sharp V-blade, with an angle @ = 25° and p; ~ 0, a blunt V-blade, with an angle « = 25°, and a
blunt U-blade with a wedge angle & = 0°. Blunt blades are characterised by a non-zero value of
the tip radius p;, which in commercial tools is often in the order of a few micrometres. However,
the grade of mesh refinement attainable in our FE model was not enough to capture the effect
of such a small radius. In the analyses, we have considered p; = 100k, where ki is the smallest
element near the crack tip, in the order of 1073 mm (the crack length is 2 = 1mm).

The results are shown in Fig.2.0, in terms of K| ,/K; p=, and a1/a as a function of the relative
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2.2. The role of blade sharpness

insertion D/a. Notice that we have used K| p—, to normalise the results, which is the SIF obtained
from the numerical analyses for each profile when D = a. For the elliptic wedge this is also equal to
K. The stress intensity factors are obtained from the opening displacements u,, of nodes located
behind the crack tip through the following relationship

K;, = lim uy(r) (2.38)

where 7 is the distance measured from the crack tip. To ensure the best possible accuracy, the
displacements were taken from nodes at a certain distance from the tip and then the SIF was
obtained through a linear extrapolation. A careful design of the mesh in the crack-tip region was
also essential. Additional details on finite elements and mesh specifications for fracture mechanics
analyses are reported in the Appendix A.4.
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Figure 2.6 The dimensionless stress intensity factor K; ,/K; p-, (a) and the position of the separation
point a,/a (b) are plotted as a function of the normalised length D/a. Points are obtained from FE
analyses whereas the black dashed line comes from the analytic solution of an elliptic wedge. The
insets show the initial insertion of blunt blade with tip radius p;

The black dashed lines in Fig.2.6 come from the analytical solution of the elliptic wedge. The
black diamonds are obtained from FE analyses that reproduced the geometry of the elliptic wedge
and show excellent agreement with the analytic solution. With respect to the influence of different
tool geometries, it might be noticed that the main role is played by the tip radius p;, while the
effect of the opening angle a seems to be more limited. Notice that p; is a constant radius of
curvature, whereas in the elliptic wedge the tip radius p changes with the insertion length D.
Since the aspect ratio of the ellipse is kept constant, from Eq.(2.9) we notice that the radius gets
larger when D increases.

In Fig.2.6a we observe that the stress intensity factor produced by a sharp V-blade is noticeably
larger than in the other blades, for the same length D/a. In other terms, the condition for crack
propagation is anticipated and the required cutting force is smaller than in the other blade profiles.
In addition, Fig.2.6b shows that, for a given insertion length, the extension of the traction-free
zone (a1 — a) is larger for sharp than for blunt blades. Observing the trends in Fig.2.6a for the
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2. The mechanics of cutting in elastic materials

blunt blades, it should be noticed that the blade shape is fully described by a circular arc during
the initial penetration stage (D/a < 0.2). On the other hand, in the subsequent stage the blade
profile is composed by a circular arc and a straight segment, as shown in the enlarged figures. This
might help to appreciate the peculiar trends of those curves.

2.2.3. Experimental investigation of a glassy polymer

Tool sharpness plays an important role in cutting elastic materials. We have shown how sharper
blades result in higher stress intensity factors and what the different nature of crack propagation
with a sharp tool is. Now we are ready to test the predictions of our analytical model on a case
of real cutting. The combined results of experiments and numerical analyses are illustrated in this
paragraph.

The material that we have chosen is
polystyrene, a thermoplastic glassy polymer
with a rather stiff and brittle behaviour, which
we assume to conform to the assumptions of
the model. Fracture of glassy polymers is char- AF/
acterised by the formation of crazes, planar
crack-like defects near the crack tip, which
might result in a toughening effect and an in-

crease in the fracture resistance of the mate- t
rial®”. In order to apply linear elastic frac- b
. . I *)‘\
ture mechanics, we need to take the maxi- D)o .
. .y . 58 s
mum care in avoiding the formations of such 2h H—*@:us
S
crazes. Tensile tests on a dog-bone shaped e a
specimen allowed us to measure the main me- y

chanical properties, such as the Young modu- W
lus E, the tensile strength ¢,,,, and the ulti-
mate strain €,,,,. Poisson’s ratio is taken from

the literature®. The fracture toughness K,
was measured on a single-edge notched spec-
imen, containing an initial crack made with
a razor blade. The mechanical properties of

Figure 2.7 Sketch of the specimen used in the cutting
tests, with details of the blade shape. The blade is
inserted in control of displacements for a length D
and the cutting force F is measured. A crack of length
a is propagated in the material following the initial
indentation

polystyrene are summarised in Table 2.1.

A sketch of the cutting test geometry is
shown in Fig. 2.7. Thin plate specimens of width w, height 2k and thickness ¢ are cut with a
blade held orthogonally to the plate and pushed into it along the x axis in control of displace-
ments. We have used a commercial, stainless steel cutter blade, whose profile has the following
measures: thickness s = 0,5mm, width b = 18mm, opening angle @ = 20°. The samples are
clamped with a proper system that minimises the risk of unwanted slips and the blade is changed
after each test, in order to avoid any alteration of the tip sharpness. All the tests are performed at
room temperature. Displacements are imposed to the blade at rates ranging from 8 to 100 pm/s,
with the lower rates corresponding to quasi-static testing conditions. Records of the cutting force
F against the imposed displacement D are acquired for each test.

In Fig.2.8a we show the results obtained from a typical cutting test, where the force per unit
thickness F/t is plotted as a function of the insertion displacement D. The relevant dimensions
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2.2. The role of blade sharpness

are included in the plots. The force-displacement curves are characterised by a first stage (i), up
to D = D, = 3 mm, which corresponds to the initial indentation. The external work done by the
tool is mainly consumed by strain energy, according to the equation of cutting shown in Eq.(2.3).
A linear dependence of the penetration force with the displacement is noticed, with a slope of
F/t versus D of about 30 N/mm?. Increasing the applied displacement results in a small drop
in the penetration force, due to the dissipation of strain energy in crack initiation. The second
stage of the curves (ii), up to a penetration depth D = D¢ + b, describes the part of separation
occurring with increasing force. A crack of length a propagates ahead of the cutting tool, with the
force that increases due to the contribution of friction along the blade surfaces in contact with the
material. The slope of the penetration force versus the displacement is about 1.5 N/mm?. In the
third stage (iii), the steady-state is reached because the blade has penetrated completely, so that
the force tends to become constant. Also shown in Fig.2.8a is the curve obtained from a blunt
blade, where blunting was achieved by manually scratching the tip with emery paper. Although
the effect is minimal, we notice that there is no difference until crack propagation begins, which
happen at a slightly higher force with respect to the sharp case.
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Figure 2.8 a Experimental force-displacement curve from cutting tests on the polystyrene specimens,
showing (i) the initial stage of indentation, (ii) the stage of propagation with increasing F and (iii) the
steady-state (iii) (blue points). Points shown in red are related to the same geometry but with a

manually blunted blade tip. b High-definition images of the blade insertion, taken at points

representative of the three different stages of the force-displacement curve. The blade cross-section
is highlighted in red, with the small arrows showing the crack paths. ¢ The relative insertion D/a as a
function of the displacement D, where a identifies the instantaneous position of the crack tip (red

diamonds are those shown in the images)

Focusing on the state of crack propagation with increasing force, the energy balance of cutting
is given by Eq.(2.4), where both the contributions due to the strain energy and the frictional
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2. The mechanics of cutting in elastic materials

dissipation coexist. In the absence of applied stretches, the material is compressed due to the blade
and the clamping system of the test (Fig.2.7). Following elementary calculations, we consider
uniaxial compression by the blade in the affected region, of volume V' = hDt. The strain energy
density derivative is independent of the displacement D

du; s?

= Et—, 2.39

dD 4h (2.39)

where s = 0.5mm is the blade thickness.
Considering Coulomb friction along the contact surface, of area A = 2 Dt, the derivative of

the frictional work increases with D, according to

dUu Es

f
— = —ftD.
dD h ft

With respect to the material parameters (Table 2.1) and the geometry used in the experiments
(h = 20mm, t = 1.2mm and s = 0.5mm), we can work out values of dU;/dDt ~ IN/mm and
of de/th =~ 10N/mm, assuming a coefficient of friction f = 0.3. We believe that the strain
energy contribution might therefore be neglected with reasonable approximation.

In the light of the discussion on the role
of tip sharpness on the condition for prop-

(2.40)

agation, we show in Fig.2.8b three high- 1
definition images taken during the tests. At T T T T T T T K /K
the same time, we report in Fig.2.8c the rel- 08 — o commercial blade ¢7 T LD-a
ative position D/a as a function of the blade 7 9"
inserti i dos— < !
insertion D, where 4 is the length of the crack A 06 /
initiated and propagated by the blade. At the f - Lt /0
very beginning (i) there is no crack propaga- S04 07 P s //,/
tion, therefore we find all the points aligned M a //’ /

. : o Pl
at D/a = 1. Following fracture initiation, a 02 — - ’
sudden increase in the crack length a occurs, _ _ -~ @/d
which takes a while to stabilise in the steady- 0 === o=

S G G S S B

state cutting, and the ratio D/a drops. This
means that the crack is advancing ahead of the
blade tip. Increasing the displacement D, it
seems that the blade tip gets a little closer to the
crack without ever reaching it. The observed
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Figure 2.9 Results of FE analyses. Normalised stress

) ) ) intensity factor K; p/K; p=, for the commercial blade,

behaviour is typical of what we have defined as compared to the elliptic wedge. The horizontal dashed

blunt propagation. line corresponds to the ratio K./K; p-, pertaining to
But can we compute a value of the sharp- the polystyrene

ness parameter ©? Since © was derived for an

elliptical wedge, we can obtain an equivalent tip radius for the commercial blade used in the ex-

periments from Eq.(2.34)
2

4 (K, p=
Peq = ;( LEE:) u) ’ (2.41)

where the SIF K p—, has been computed through FE analyses with the profile of the commercial
blade, when D = a. The results are illustrated by the red dashed line in Fig.2.9, compared to the
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2.3. Experimental cutting of soft materials

Table 2.1 Mechanical parameters of the polymeric materials used in the cutting experiments

Variable Polystyrene  Silicone
Young’s modulus E (Pa) 1.30-10° 1.36-10°
Poisson’s ratio v 0.35 0.42
Fracture toughness K.(Pam'?)  2.44 -10° -
Fracture toughness I' (Pa m) - 1.02-10%

elliptic wedge solution. Using the fracture toughness K. of polystyrene and pgy = 5 - 10~ mm
for the commercial blade, from Eq.(2.36) we find © =~ 1.22. Indeed, the ratio K /K] p=, =~ 0.91
corresponds to D/a less than unity on the plot. This is in good agreement with the experimen-
tal plot shown in Fig.2.8c, where an average value of D/a in the steady-state is in the range 0.8—0.9.

2.3. Experimental cutting of soft materials

Until now we have considered a linear elastic solid, providing an ideal framework to develop our
model of cutting. In particular, within the hypothesis of small scale yielding adopted in linear
elastic fracture mechanics, the region of large strains surrounding the crack tip is replaced with a
K-dominated region, in which the material elastic properties become irrelevant. However, most
biological tissues considered in the thesis are soft and behave quite differently from this picture.
For this reason, we have organised a large experimental campaign on cutting of soft materials. The
results also provide a good comparison to check the implications and limits of the linear elastic
model.

Given the limitations in the supply of biological tissues for the experimental tests, we have
employed silicone rubbers, characterised by a stress-strain curve similar to that of skin’*. We have
chosen a commercial silicone (Elite Double 32 by Zhermack Dental) and prepared in-house several
specimens. Matrix and curing agents were thoroughly mixed according to the ratios suggested by
the producer. The mixture was spread onto a custom-made aluminium mould where it rested for
at least 24 hours. Then the specimens were extracted from the mould and cut in rectangular plates
with razor blades.

Figure 2.10 Pictures taken during the cutting tests on silicone, showing the direction of load
application and the reference system (left, side view; right, top view)
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2. The mechanics of cutting in elastic materials

Before beginning the cutting tests, the material was characterised through mechanical tests to
determine the Young modulus and the fracture toughness. The instantaneous stress-strain curve
obtained from tensile tests is typical of a rubber-like material with reduced strain hardening, and
at low-to-moderate stretches it is fitted equivalently well by a neo-Hookean or Ogden’s hypere-
lastic incompressible law (see Chapter 3), from which the Young’s modulus can be derived. The
fracture toughness of soft materials cannot be measured with the traditional linear elastic frac-
ture mechanics approach followed on polystyrene. Instead, it is possible to derive the toughness
of rubber-like materials from the tearing energy, following one of the available methods among
those described in §3.1. In this specific case, we have used the so-called single-edge notch test and
obtained the fracture energy I of the silicone rubber. The mechanical parameters of the material
are summarised in Table 2.1.

The cutting tests have adopted the same experimental set-up described for polystyrene and
illustrated in Fig.2.7 and Fig.2.10. Since the effect of rate is significant for rubber-like materials,
displacements were imposed to the blade at various rates, ranging from 8 to 100 pm/s, with the
lower values corresponding to quasi-static testing conditions. Records of the cutting force F against
the imposed displacement D were acquired for each test.

Figure 2.11a illustrates the experimental curves obtained from a group of tests performed at
different blade insertion velocities v. The relevant dimensions are included in the plots. The force
per unit thickness F/t is plotted as a function of the insertion displacement D, at two different
rates of blade insertion v. For v = 0.03mm/s we show the average and standard deviation from
different tests, where the dispersion observed is ascribed to small temperature fluctuations between
the tests. We have also computed the slope of the force-displacement curve (dashed line in the
figure) as a moving average of the tangent at each point. This usually provides a clearer view of
the different stages of cutting: in particular, the beginning of the steady-state is identified by the
stiffness curve dropping to zero'®. The force-displacement plots are qualitatively similar to those
obtained from analogous tests on polystyrene (Fig.2.8a), although the forces are noticeably lower
due to the reduced stiffness of silicone. The three different stages of indentation-cutting of soft
materials are illustrated in the sketches below the plot. The curves initially rise in a non-linear
manner, up to the critical depth of fracture initiation D,, characterised by a significant drop in the
stiffness. This point is not clearly visible in the curve for v = 0.1mm/s. In the following stage, the
blade advances in the material under increasing force, with the stiffness showing some fluctuations
around a mean value. Finally, for a displacement D ~ D, + b the blade has fully penetrated the
specimen, and the force stabilises at a constant, slightly decreasing value.

We have also performed some tests on specimens containing pre-cracks of length a3, made
with a razor blade (Fig.2.11b ). The first evident difference in the force-displacement curve is the
lack of the initial indentation. According to Eq.(2.3), when the blade is advanced into an open cut
the work of fracture dU is null. Moreover, in soft materials the cumulated strain energy is also
small and the only contribution left is due to frictional dissipation. The force rises almost linearly
until the tip of the pre-crack is reached, which occurs when D =~ 4, where we notice a sudden rise
in the cutting force. Since the tool touches the crack tip, an additional amount of energy has to
be provided in order to further propagate the crack. Although we cannot use Eq.(2.37) for linear
elastic materials to compute the force jump, we can assume that the energy for crack propagation
is related to the fracture energy I' of the material. The final stage of the curves corresponds to
the steady state, where the penetration force is approximately constant. Changing the length a,
of the pre-crack does not modify the main stages observed but inverts the order in which they
occur. When ag < b (yellow line in the plot), the blade hits the tip of the pre-crack before being
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2.3. Experimental cutting of soft materials
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Figure 2.11 Experimental curves from cutting tests on silicone rubber. Average values with standard
deviation are shown for multiple tests with the same parameters. a Force-displacement curves at two
different displacement rates v. The dashed line is the stiffness at the lowest rate. b Results for
specimens with pre-crack of different lengths a, at a displacement rate of 0.03 mm/s

completely penetrated into the material. After the sudden jump, the force resumes the increasing
trend with the same initial slope until it is pushed completely into the material. On the opposite,
if ag > b (green line in the plot), the force increases constantly until D ~ b and then seems to
stabilise because the contact area has become constant. Later comes the force jump, when D ~ a,.

DIC strain and displacement maps

As anticipated, the more relevant feature of cutting soft materials is the large deformation sur-
rounding the blade tip. Before considering the stress fields in hyperelastic materials more in detail
(Chapter 3), we offer a preliminary insight through the strain and displacement maps obtained
by means of a Digital Image Correlation (DIC) technique. Images were acquired with a high-
resolution digital camera (maximum resolution of 5184 x 3456 pixels) mounted on a tripod, and
lights were used to ensure a uniform illumination of the specimens, which have been covered with
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2. The mechanics of cutting in elastic materials
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different insertion lengths D of the blade. a Displacements u, and b u,. ¢ Green-Lagrange strains E,,
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2.3. Experimental cutting of soft materials

speckle patterns before beginning the tests. The raw data were then analysed by means of the
freeware software Ncorr®” to extract the displacement and strain fields within the samples.

The results shown in this section are related to a specimen with an initial crack of length
a4y = 12mm < b and an insertion velocity v = 8um/s. The full-field maps of the displacements
uy and uy, and the Green-Lagrange strains E,; and E,, are shown in Fig.2.12. For each plot
we have considered three different stages of the blade insertion: in particular we are showing the
results for D = 7.5mm < ag, a9 < D = 15mm < b and D = 25mm > b. The latter is the
only one within the region of steady-state cutting. The values are also plotted as a function of the
normalised distance x/w in four different charts displayed in Fig.2.13. The reference system is
shown in Fig.2.12.
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Figure 2.13 Plots of a the displacements 1, and b 1, and of ¢ the Green-Lagrange strains E,,, and d
E.., as a function of the normalised distance x/w. The curves correspond to three different insertion
lengths D, and the dashed lines mark the position of the blade tip x = D in each case

When the blade is pushed into the material, points are displaced normally to its travelling
direction. The displacement 1, illustrated in Figs.2.12-2.13a shows a maximum corresponding to
the thicker part of the blade section, which should approximately be equal to half of the thickness
s = 0.5mm. Consistently, the strain EW (Figs.2.12-2.13¢) is negative in the same region, whereas
it is positive ahead of the blade tip. The phenomenon of crack-tip touching is observable in the
plots related to D = 15mm and D = 25mm. Figure 2.13b shows a remarkable increase in the
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2. The mechanics of cutting in elastic materials

displacement 1, caused by the blade pushing against the tip of the pre-crack, with respect to the
green curve for D = 15mm, when the crack tip has not been touched yet. At the same time, a
localised region of negative strains appears in the strain maps of E., (Fig.2.12-2.13d).

The results of DIC, combined with the force-displacement curves, offer a compelling picture
of cutting in soft elastic materials, whose peculiarities might be appreciated if compared to the
same process in hard materials (§2.2.3). When a compliant solid is indented and cut by means
of a rigid blade, a region of large strain surrounds the tool tip. However, this area is small if
compared to the size of the sample, which remains largely undeformed. Provided that the cutting
tool is sufficiently sharp, crack propagation does not happen as an autonomous process under
symmetric mode-I, as in hard and brittle materials. An external amount of energy is required,
which is directly input at the crack tip, so that the cutting tool is pushed against the material. The
result is the development of a compressed region which moves as the blade cuts through the solid. It
is also evident that a definition of sharpness cannot be made a-priori without considering both the
features of the cutting tool and the material properties. In particular, the same commercial blade
that was considered ‘blunt’ in the polystyrene samples, behaves like a ‘sharp’ blade when cutting
silicone. This arises an important question: what exactly is the material parameter controlling the
influence of sharpness on crack propagation? The fracture mechanics at large deformation and
the crack-tip region in soft materials need to be investigated before we can attempt to answer to
that question.

2.4. On the effect of friction

When a material is separated under the action of a cutting tool, the surfaces of the newly formed
crack slide against the blade dissipating energy through friction. Frictional dissipation is often the
main contribution to the energy balance of cutting in soft elastic materials, making up a large part
of the cutting force. In this section, we show how frictional effects can be minimised through the
addition of a fictitious slicing action during the insertion, obtained by inclining the cutting tool.
The technique is commonly known as oblique cutting.

Cutting with slicing is notoriously easier than simply pushing into the material. In oblique
cutting, a slice-push effect is induced because of a component of the tool velocity parallel to the
edge, which reduces the frictional force. One can find an optimum blade angle corresponding
to the minimum cutting force, considering the reduction of the frictional force and the increase
of the work due to the out-of-plane deflection which occurs at larger angles. Adopting the basic
model of oblique cutting proposed by Atkins et al.”?, we have performed experimental tests on
silicone thin samples cut by a rigid blade with different inclination angles®'. The samples are
rectangular plates containing a pre-crack of length gy, identical to those used in the other cutting
experiments (see §2.3). A sketch of the experimental set-up, showing the variables employed in
the analytical formulation, is presented in Fig 2.14. The material properties have been described
previously (Table 2.1) but here we need to spend a few more words on which frictional model is
the most suitable for soft solids.

Coulomb’s frictional law is the most common model, owing to its simplicity. It is a pressure-
dependent frictional model, in the sense that the frictional force is proportional to the normal
force acting on the contact surface. In practice, Coulomb’s law states that slips are initiated when
the tangential contact stress exceeds the normal stress 0,, multiplied by the coefficient of friction f.
When soft solids come into contact with hard surfaces, such as the steel blade of the experiments,
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2.4. On the effect of friction

relevant frictional dissipation is observed despite little contact stress against the blade. Pressure-
dependent laws seems therefore inappropriate in this case. Instead, we can represent friction by
a constant adhesive stress T f acting over the whole contact length between blade and material.
Therefore we simply have

Oy = Tf, (2.42)

irrespective of the contact pressure.

Let us focus on the steady-state, when the blade is inserted into the material for a length
D > b, which we also assume longer than the pre-crack ag. The reason why we have employed pre-
cracked samples is because we want to isolate the effect of oblique cutting during crack propagation
from that connected to the indentation. The energy dissipation due to friction, per increment of
insertion length, is

de = Fde, (2.43)

where F F= 2btt Fis the frictional force and the factor 2 is added to account for both sides of the
blade-material contact. Inserted in the energy balance of cutting, Eq.(2.4), we obtain

Fda = dU;, + Fgda + Gtda, (2.44)

with da = dD from the steady-state condition.

2.4.1. A model of oblique cutting

3 7 x%lﬁH

"b\>

Figure 2.14 a Sketch of oblique cutting of silicone samples. The blade is inclined at an angle g with
respect to the normal direction to the sample. b Enlarged view of the blade cross-section, with the
local reference axes and the adhesive shear stress 7¢

If we consider an inclined blade whose normal forms an angle f with the motion direction,
the cutting force F might be split in two components, one normal and one parallel to the edge of
the blade. Such components are (Fig.2.14)

V =Fcosf and H =Fsinf, (2.45)
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2. The mechanics of cutting in elastic materials

where ¢ is the slice-push ratio defined by

E—H— 2.46
—V—tanﬁ. ( )

Similarly, the components of the frictional force F are

Vf = th and Hf = th (247)

1 <
flf —F— Flf—F——
RV V2
where ¢4 = t/cosp indicates the effective thickness of the specimen in the inclined direction.
Rewriting the energy balance of cutting, Eq.(2.44), in terms of the force components, and
neglecting the strain energy contribution, we find

(V = Vy)do+ (H - Hy)dh = Gt gdo, (2.48)

where dv and dh denote, respectively, the normal and parallel displacement components to the
cutting edge. The resultant cutting force F, acting along the direction dx = (dv? + dh?)2, can
be written as

V-V +(H-H,)
F —\/( 2 ? M (2.49)

Ttg Tt Vit

where we have assumed G =T, the fracture resistance of the material. The variable M, given by

2bt
f

= — 2.
T (2.50)

represents the ratio between the frictional force per unit thickness and the fracture resistance.
The components of the normalised cutting force are

v M 1

Tty ise 1+ (2.51a)
Feff:é(\/1+£2+1+§2)' (2.51b)

A slight modification of Eq.(2.49) has been proposed to account for the wedge opening angle
a”", which does not affect much the results of the commercial blade considered in our examples.
The cutting force may is written as

Fo1
Tty 1+ &2

When M = 0 we are in the case of frictionless cutting, where the blade angle has no effect on
the cutting force. Indeed, from Eq.(2.49), we find

(1 + Mysec?a + 52) . (2.52)

F= Fteff/ 1+ 52 =TIt. (253)

The ratio M increases in contacts with higher friction: the result is an increase of the cutting
force, that is, it appears that the cutting resistance of the material is enhanced by friction.
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2.4. On the effect of friction

Experimental results
We have considered four different values of the blade inclination angle, specifically g = 0,10, 20, 30°,
with the orthogonal configuration f = 0° taken as the reference case. Notice that the sign of the
inclination angle has no effect on the magnitude of the forces. In order to compute the ratio M,
we had to measure the adhesive shear stress 7. To this purpose, we have performed a specific
cutting test with a double run of the orthogonal blade in an originally sound specimen, where the
second run is made following the open crack. According to Eq.(2.3), and neglecting the strain
energy contribution dUj, we find
F
R

where F is the average value of the steady-state force, which is assumed to be due to friction only.

(2.54)

From the average of repeated tests, we have found an adhesive shear stress falling within the range
70-80 kPa. Using this value, and the fracture resistance of the silicone rubber I' = 1.02kPam,
from Eq.(2.50) we have obtained M = 3.
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Figure 2.15 a Cutting force F/t as a function of the displacement D, for different values of the blade
angle . b Analytical steady-state cutting forces versus the applied slice-push ratio, Eq.(2.49) and
Eq.(2.51), with M = 3. In the enlarged view, the experimental steady-state force F/T't.& is compared
to the analytical curve

The results are illustrated in Fig.2.15a, where the resultant cutting force F/t is plotted against
the applied displacement D. The general trends are similar to those already observed for the
orthogonal cutting of a sample containing a pre-crack 4y > b. The effect of the blade inclination
is more evident in the steady-state, when D > ay. Focusing on the resultant cutting force F, we can
work out the average values at the steady-state corresponding to the four different inclinations and
compare them with the prediction of the analytical model. This is shown in Fig.2.15b as a function
of the slice-push ratio &. The black curve plots the analytic cutting force F, Eq.(2.49), which seems
to decrease with an increasing slice-push ratio. The other curves refer to the normal/pushing force

V (dotted blue line) and the parallel/slicing force H (dashed red line), Eq.(2.51): while the former

33



2. The mechanics of cutting in elastic materials

decreases constantly, the latter seems to peak at a critical ratio, and then decreases 79 Notice that
the range of slice-push ratios that are achievable with oblique cutting is limited, generally between
&=0 (corresponding to f = 0°) and &=1 (for p = 45°). Larger ratios are attainable by adding
a slicing motion of the cutting tool. In the enlarged plot of Fig.2.15b, the normalised resultant
force F/Tt g, predicted by the analytical model, is compared to the results of the experiments.
Specifically, the force is taken as the average of the steady-state cutting (when D > ay), for the
four inclination angles corresponding to & =0, £ = 0.18, £ = 0.36 and & = 0.58.

It seems that inclining the blade from the orthogonal position has the effect of reducing the
cutting force for inclinations below f = 10 — 20°. However, at larger angles the force seems to
increase again, probably due to the out-of-plane deformation occurring in the sample. In fact,
large inclination angles induce a non-negligible deflection of the thin sample, so that a relevant
part of external work is consumed by the bending energy. The experimental results might be
corrected taking into account such contributions, although an exact quantification is not trivial,
depending not only on the elastic properties of the material but also on the geometry and the
boundary conditions of the sample. Notwithstanding the limitations, model and experimental
results combined together effectively captured the importance of friction in oblique cutting, at least
in the steady-state stage when the material is being separated. While the interest in frictional effects
is oriented towards the minimisation of the cutting force, we should not overlook the contribution
to cutting resistance coming from friction. In particular, it seems that the frictional force results
in a fictitious enhancement of the fracture toughness of the material. The advantages of slicing
in cutting are not limited to the stage of crack propagation: in our daily lives we experience the
benefits of cutting food with an angled blade, or adding a small slicing action, even before the
beginning of separation. In other terms, there is an effect during the indentation stage leading
to failure which might not depend on friction, if we assume, as we did, that frictional effects are
negligible before separation. In particular, indentation of an elastic solid involves strong global
deformation and leads to material damage, eventually resulting in fracture initiation. Adding a
small slicing action, or cutting with an angled blade, creates a critical local tension at the surface
which anticipates fracture with a reduced global compression of the material "*.
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The crack-tip zone in soft elastic
tissues

The little reed, bending ro the force of the wind,
soon stood upright again when the storm had passed over.

Aesop
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3. The crack-tip zone in soft elastic tissues

n the Introduction we have provided a concise discussion of how the differences in molecular
I structure with respect to hard solids might explain the peculiar rupture process of soft materials.
Contrary to common hard materials, such as rocks, glass or metals, a stretched soft matter specimen
can deform multiple times its original length before failing. Moreover, even in the presence of small
flaws these materials preserve their integrity and resist catastrophic failure. In order to understand
the origin of such unique features, this chapter adopts a macroscopic approach to fracture of soft
materials, borrowing concepts from the field of non-linear elasticity and fracture mechanics at
large deformations. The theoretical background of this chapter, concerning finite strain elasticity
and hyperelasticity, is provided in the Appendix A.1.

Linear elastic fracture mechanics (LEFM) is established on the hypothesis that all dissipative
mechanisms of rupture are confined to an infinitesimal crack-tip process zone, with the additional
assumption that the large strain zone is sufficiently small so that a linear elastic behaviour is retained
both in the crack-tip region and in the bulk (see §1.2). While the former hypothesis remains valid
for any elastic material, the latter breaks down for very deformable bodies, in which the region
dominated by large strains is extensive, making linear elasticity inappropriate to describe the strain
48,5(

and stress fields near the crack tip**”". The energy-based description of fracture, pioneered by

Griffith’s famous criterion ”

, is a statement of a plain conversion of bulk elastic energy to surface
energy to feed the crack growth. Without considering the stress state in the material, it is reasonable
to assume that such a description, and specifically the concept of the energy release rate G, holds
its validity for any material where dissipation is negligible. Early studies by Rivlin and co-workers
introduced the concept of a critical energy for tearing, which was formulated in the line of Griffith’s

82,92

theory Their experiments on pre-cut rubber specimens showed that the rupture process

could be considered completely elastic up to the point of catastrophic rupture, save for the strain
crystallisation in a highly deformed region near to the cut tip and some negligible hysteresis in
the material ®*. Their energetic approach paved the way to the standardisation of several testing
procedures for soft materials*’, which replace the common fracture tests on notched specimens

83,93 94-97

in hard solids. Moreover, techniques involving cutting and wire

98,99

, including puncture
cutting tests” ", are often employed to measure the fracture toughness of soft materials. A survey
of these methods, with a few applicative examples on the silicone rubber used in the experiments,
is provided in §3.1.

The fact that an energetic approach to fracture worked well not only for traditional engi-
neering materials but also for elastomers, and to some extent for biological tissues, has allowed
scholars to overlook an equivalent field description in terms of stresses for many years. Within
the LEFM framework, Irwin reconciled long time ago the two approaches ", showing that Grif-
fith’s energetic criterion is perfectly equivalent to a stress-based one, derived from the asymptotic
singular fields in the neighbourhood of the crack tip. The stress intensity factor (SIF) is the only
parameter which controls the magnitude of the local fields in a linear elastic material, as a func-
tion of geometry and external loading. To reconcile stress and energy-based criteria in non-linear
elastic materials, the amplitudes of the singular terms can be related to a path-independent inte-
gral surrounding the crack-tip, known as the /-integral"’!. For purely elastic solids, and under
the assumption of self-similar crack propagation, that is, the crack grows along its direction, the
J-integral is equal to the energy release rate”’. However, the /-integral was initially defined with-
out considering the large deformations. A complete solution of the strain and stress fields within
the framework of finite strain elasticity arrived years later and remained for years confined to the
experts of elasticity. The first systematic analysis of near-tip fields dates back to Knowles and
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3.1. Fracture toughness of soft matter

Sternberg, who derived an analytic solution of stress and displacements for a mode-I plane strain
crack in a hyperelastic compressible material '"'"?. A few years later came the solution for an
incompressible generalised neo-Hookean solid '*, then extended to mode-II cracks " and plane
stress conditions ' "', The purpose of §3.2 is to illustrate the peculiarities of the crack-tip fields
in soft biological tissues. After a review of the analytical solutions, we present a detailed numer-
ical investigation on the crack-tip stress singularities and the deformed crack profiles. To model
the behaviour of biological tissues, we have chosen some incompressible hyperelastic models with
strain hardening. We also attempt to reconcile stress- and energy-based approaches by exploring

the meaning of a SIF-like parameter to identify the condition of crack propagation.

A distinctive feature of the crack-tip region in a soft material is the transition from a sharp
crack to a blunted rounded notch before propagation. An illuminating study by Hui et al. "
identified the elastic blunting before propagation as a consequence of large deformations, which
become relevant when the cohesive stress of the material exceeds its elastic modulus. Blunting
plays the role of a limiting factor in the stress concentration caused by cracks, thereby preventing
further increases in the maximum stress in front of the crack tip. As a consequence, rubbers
and biological tissues such as skin, blood vessels and cartilage, are able to resist to cracks up to
a few millimetres long (in contrast to the typical nanometre scale for hard brittle solids). This

remarkable flaw tolerance’”*'”*!'" is one of the reason that brought the scientific community to

) .
HLIT2 “The stress concentration of a blunted notch has been

113,114

emulate the structure of soft tissues
known since the studies of Inglis and Creager and Paris
the stress concentration factor in an elliptic notch embedded in a linear elastic material. In §3.3

, who derived a simple expression of

we present a simplified model to describe elastic blunting based on the measure of a local crack-
tip radius. The model has been applied to analyse thin elastomeric specimens containing various
cracks and subjected to uniaxial tension, and provided meaningful insights into the correlation

between blunting and flaw tolerance ' .

One last point to complete this chapter on the effect of large strains is related to the role of
crack blunting during cutting. Based on the definition of an intrinsic length scale in fracture of
elastic materials, that is, the natural tip radius of an elastically blunted crack*’, we speculate that
propagating a crack during cutting adds an additional length connected to the finite geometry of
the tool. A hint came from the study by Hui et al.'’”, who observed that during “cutting with a
sharp knife, the elastic blunting effect may be limited by the fact that the crack opening displace-
ment is determined by the knife geometry ”. In §3.4, we address this point by considering refined
numerical analyses of wire cutting, a well-known technique in which a rigid wire is inserted in a
sample material. By considering wires of various diameters, we are able to detect a critical interac-
tion between the intrinsic fracture length and the wire diameter. More in general, we can define a
critical length in the cutting process establishing a transition from autonomous crack propagation
to a constrained mechanism. This is believed to generalise the concept of tool sharpness presented
in §2.2 to non-linear elastic materials.

3.1. Fracture toughness of soft matter

An essential step in the characterisation of the fracture behaviour of materials is the experimental
measure of their toughness, defined as the ability to resist crack growth. Ultimately, the goal is
to derive a material-based parameter which can be compared with a quantity connected to the
crack driving force. In linear elastic materials, such a quantity is the stress intensity factor K which
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3. The crack-tip zone in soft elastic tissues

controls the amplitude of the singular fields surrounding the crack tip, and the fracture criterion
is given by
K=K, (3.1)

where K, (dimensions FL™ 2) is defined as the fracture toughness in terms of the critical value of
the stress intensity factor. The measurement of K. through standardised methods is performed in
hard materials, such as rocks, concrete, glassy polymers and metals .

Testing methods for highly deformable materials are derived following the energetic approach
to fracture. As long as the zone of inelasticity remains small, the elastic energy release rate G is
correctly defined in linear and non-linear materials as well, and the fracture criterion is given by

G=T, (3.2)

where I' (dimensions FLfl) is the fracture toughness defined as the critical energy per unit area of
crack growth.

In this section, we illustrate the most common procedures used to measure the fracture resis-
tance of soft materials experimentally, two of which are described more in detail and applied to
measure the fracture toughness of a commercial silicone rubber. All the methods proposed were
developed for testing rubber and other common elastomers above the glass transition temperature,
where the energy required to propagate a crack is correctly estimated as the strain energy needed
to break the covalent bonds of polymer chains at the crack tip®’. When part of the energy is
dissipated, for instance because of viscous flow, only a fraction of the strain energy is effectively
converted in surface energy for crack propagation and test results are incorrect''°. Furthermore,
some authors raised concerns over the applicability of the testing procedures to soft elastic bioma-
terials, which typically show a steep J-shaped stress-strain curve with relevant strain hardening”’.

Pure shear, simple extension and trousers test

The first and probably most used procedure is the so-called Pure Shear (PS) test, which employs
a long thin specimen of height 2/ and width w >> 2h, containing an edge crack a > 2h. The
top and bottom edges are clamped and pulled apart by a uniform displacement A in the direction
parallel to the short edges (see Fig.3.6 below). In a state of pure shear, the specimen is stretched
parallelly to the direction of loading while it is undeformed along the other in-plane principal
direction (see §A.1). A pure shear deformation possesses other amenable features for experimental
testing: for instance, the stress state does not change with respect to a reference system centred on
the crack tip as the tip is shifted during deformation. Moreover, regions far away from the crack
tip are either fully relaxed or uniformly stretched in the direction parallel to the displacement
imposed. Crack propagation can be regarded as the transition of a uniformly deformed region,
of width da, into a fully relaxed region with the same width’”. The change in the stored elastic
strain energy is then written as

dU; = -2W(A)ht da, (3.3)
where W(A) is the strain energy density of the material at the current stretch, defined by A =
1+ A/h. Therefore the energy release rate is given by’

du,
tda

2W(A)h. (3.4)

Typical rupture of rubber-like materials under constant displacement begins as a progressive
tearing in the early stages and then turns into catastrophic rupture once that the applied stretch
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3.1. Fracture toughness of soft matter

reaches a critical value A.. In a pure shear configuration, the energy release rate at rupture is
independent of the crack length, and the strain energy density W(A.) can be computed from
the stress-strain curve of an uncracked PS sample stretched at A = A.. The PS configuration is
also employed advantageously in tests where the rate effect should be considered, because a crack
propagates at constant velocity as a result of G being independent of the crack length*”.

The simple extension test employs a specimen of height 2/ and thickness f, with an edge
crack a > h, which is peeled apart from the two ends at the cracked edge. In this configuration,
neglecting stretching in the clamped ends, the energy release rate is given as®”

G =2F/t, (3.5)

where F is the force applied at the clamped ends.

The trousers test''/, also known as tearing test, consists of a specimen similar to the one used
in the simple extension test, containing an edge crack a parallel to its longitudinal dimension. The
crack is deformed out-of-plane by imposing opposite forces at the two clamped legs, bent at 90°
with respect to the longitudinal plane. Neglecting three-dimensional effects, the energy release
rate is given by the same expression of Eq.(3.5), provided that the strain in the legs is small.

3.1.1. The single edge notch test
The Single Edge Notch (SEN) test consists of a long thin strip of height 2/ and width w < h,

with an edge-crack of length 4 < w, subjected to uniaxial tension (Fig.3.1a). Because the crack is
short, the specimen is under uniaxial strain except for a zone close to the crack tip, and the stress-
strain curve is almost uninfluenced by the notch. Rivlin’s analysis for pure shear configuration *
needs to be modified accordingly, yielding the following expression of the energy release rate '

G = 2aW(A)k(A), (3.6)

where k(A), derived by experimental work, is approximately equal to k(1) = 3/ VA Differently
from the PS test, the energy release rate in a SEN test increases linearly with the crack length
before the catastrophic rupture. Although widely employed because of its easy implementation,
this method has been validated for vulcanised rubbers and its applicability to conditions other
than plane stress state is questionable'”.

Fracture toughness of silicone rubber

We have employed the SEN test to measure the fracture resistance of the commercial silicone
rubber used in the experiments presented in Chapter 2. Silicone was moulded in thin stripes of
height 2l ~ 75mm, width w ~ 25mm and thickness << w. Specimens containing edge notches
of various lengths 4, cut with a sharp razor blade, were tested under displacement control up to
complete rupture, measuring the reaction force through a load cell. A sound specimen was also
tested to obtain the load-displacement curve, whose area is also equal to the strain energy density
W. According to Eq.(3.0), the fracture energy is obtained from the strain energy density of the
uncracked sample, at a stretch equal to the stretch at rupture A,

_ 6aW(A,)
= —\/A_C .

In general, A, decreases with the length of the initial notch, following a trend which is approx-
imately linear. In Fig.3.1b we show the variation of the nominal stress against the applied stretch

T (3.7)

39




3. The crack-tip zone in soft elastic tissues

0.5 ; 0.5
[
12" y N
w — o=1. g
< B 044 T 4 04 9
> o a=4 / S
= =5
2 03— " . —03 £
o S
i n 7 >
e 2h T 02— X 02
> £ / c
! 5§ . ] ) e
Zz 0.1 / ‘e ® [ 0.1 '®
E L7 126128136142 ]
O T - | T | T | T | T O
| —— 1 11 12 13 14 15
Stretch A
U A

Figure 3.1 a Schematic representation of the SEN test. b Experimental curves of nominal
stress-stretch, and strain energy density W (dashed line) versus stretch in the sound specimen.
Circles mark the point of rupture of specimens with different initial cut lengths a (in mm), at the
critical stretch A, reported in the plot

A, with circles marking the points of catastrophic rupture. The values obtained from each test are
consistent and yielded fracture energies in the order of 1kPam.

3.1.2. Toughness measures from indentation and cutting

Alternative methods to measure the fracture toughness have been sought, mainly because of the
limitations connected to traditional fracture tests when dealing with extremely deformable materi-
als or biological tissues. Cutting and indentation tests have been proposed and applied extensively
to test the toughness of biological materials and foodstuffs. Beside overcoming intrinsic limitations
of traditional procedures, such as the difficulties in realising a correct clamping of the specimen,
during cutting the work of loading is transferred into crack growth directly, so that material de-
formation is more localised in the vicinity of the blades and high strains are avoided. However,
frictional dissipation between blades and material should be accounted for to obtain the net work
done by the force in extending the cut.

One of the proposed procedures is the so-called scissors test '*, which is particularly suitable
to test strain hardening tissues, such as the mammalian skin. A thin sound specimen, mounted
between the open blades of a pair of scissors, is cut by applying a constant displacement to the
blades in the normal plane. The fracture energy is obtained from the net work done by the cutting
force, after a compensation for frictional effects through a second pass in the open cut. Similar
approaches use a surgical cutting blade ™ or a needle”’” inserted and advanced under steady-state
conditions in a thin strip of material. From the energetic balance of steady-state cutting, Eq.(2.6),
the fracture toughness is given by

20

- Fda - dU, - dU;
B dA ¢

where F is the force acting on the blade, dD is the increment of displacement, dUj is the strain

(3.8)
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3.1. Fracture toughness of soft matter

energy variation in the solid and dUy is the energy dissipated due to friction. Under steady-state
conditions we assume that the increment in crack area is given by dA = tdD.

The blade is firstly inserted in the sound specimen, and the cutting force F is measured and
plotted against the blade displacement D. A second pass in the open cut is carried out, where the
measured force F is due to friction alone, if we neglect the contribution of the strain energy after
crack initiation. Rewriting Eq.(3.8) as

F—-F¢)dD
r- E2EdD

A 3.9

the terms in brackets can be determined by integrating numerically the load—displacement curve
obtained from the difference of the cutting force between the two passes of the blade. The fracture
toughness I' is obtained from the slope of the best-fit line to the curve (F — F¢)dD vs dA, in the
region of steady-state cutting’*. An application of the method is illustrated in Fig.3.2, from an
experimental test on the commercial silicone rubber used in other experiments. The value obtained
is I' ~ 0.53kPam, which is approximately half the fracture toughness determined from the SEN
test. The discrepancy, save for unpredictable differences in the specimens and small temperature
fluctuations between the tests, can be ascribed to the omission of the strain energy contribution.
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Figure 3.2 a Load-displacement curves for the cutting pass, the free pass and the difference (F - Fy).
b The term (F - Ff)dD as a function of the area dA, with I" obtained from the slope of the linear fit in
the steady-state stage

Wire cutting test

Wiire cutting is a recurring technique in the food processing industry and it has been also proposed

to measure the mechanical parameters of soft materials. Here we describe the original model for

cutting of cheese ’® and the main variables that are used throughout this thesis (see §3.4 and §5.2).
Let us consider a rigid wire of diameter d;, inserted in a sample of thickness ¢ (Fig.3.3a).

Focusing on the steady-state of cut propagation, we assume that there is a flow zone around the

bottom half of the wire which also produces a circumferential frictional stress (whereas friction
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3. The crack-tip zone in soft elastic tissues

around the wire is neglected). From the energetic balance of steady-state cutting, Eq.(2.6), we
may write

FdD = TtdD + dUp (3.10)

where F is the steady-state force, dD is the increment of displacement and of cut length and dUp
is the energy dissipated in the flow zone by yielding and friction. From the equilibrium in the
direction of wire penetration we find that”®

71/2
dUp = td,, f (G 059 + f Ty sin §) d dDD (3.11)
0

where 0, is a characteristic stress of the material and f is the coefficient of friction. Then the
force per unit thickness is

F

T=T+ (1+f)od, (3.12)

Equation (3.12) shows that the cutting force increases linearly with the wire diameter d,,

and can be used to derive the fracture toughness I' from experimental results. The typical force-
displacement curve of a wire cutting test is shown in Fig.3.3b. In order to compute I', several
tests with different wire diameters are performed, so that the steady-state force can be plotted as a
function of the wire diameter. A linear extrapolation at zero diameter gives the value of T

puncture

steady-state

Cutting force F

Displacement D

Figure 3.3 a Schematic of the wire-cutting tests with an enlarged view of the rupture process. b
Typical force-displacement curve in wire cutting of soft materials

3.2. Crack-tip singularities in strain-hardening soft materials

As mentioned in the Introduction, many biological tissues are known to undergo strain hardening
when stretched, often much earlier than rubber-like solids. Since this section is centred on the
crack-tip zone in strain hardening materials, we need to begin with a short summary of the most
common strain hardening models before moving on to the analysis of the crack-tip fields. Other
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3.2. Crack-tip singularities in strain-hardening soft materials

basic hyperelastic models are presented in the Appendix A.1. In this section, we have adopted
a slightly different notation with respect to the rectangular coordinates: specifically, we use the
index i =1, 2,3 in place of x, i, z adopted in the rest of the thesis.

3.2.1. Strain hardening models for soft tissues

Suitable Strain Energy Density (SED) functions to describe the strain hardening behaviour might
be those presenting an exponential dependence on the strain invariants**. Widely used in biome-

chanics for skin and similar materials is the exponential Fung-Demiray (FD) model '*"'**

W) = £ [0 -1], (3.13)

where I is the first strain invariant and the non-dimensional constant b is the strain hardening pa-
rameter (in the limit of b — 0 the neo-Hookean model is recovered). A subsequent development,
including the dependence on the second invariant I, is the three-parameter Vito model 123

Wy, I) = % [etlati-dr+-0)-51 1], (3.14)

where b and « are the strain-hardening parameters. The parameter & < 1 accounts for the influ-
ence of the second invariant: smaller values of @ correspond to a greater dependence on I, (in the
limit of & = 1, one recovers the FD model).

Further models have been proposed to deal with the anisotropic nature of biological tissues. It
is out of the scope of this work to directly consider anisotropy in the formulation of the constitutive
model; however, an accurate isotropic formulation which fits excellently to experimental data on
human skin has been proposed by Gambarotta et al.'*?, based on the anisotropic Tong-Fung
model '*>. The SED function presents both a linear and an exponential dependence on the Green-
Lagrange strain invariants [1 (E), I, (E)

W(I1(E), L(B)) = g1(r1, i, [y, Ip) + ceserziahi), (3.15)

where V1, li1, Y2, U, € are five material constants to be determined experimentally and the func-
tions g; are given by

g = %(nE)Z + (B2, i=1,2. (3.16)

Rewriting Eq.(3.16) in terms of the invariants of the left Cauchy-Green strain tensor b, the
expression is

8ilh(0), ) = Lt - 37 + E@E -2 + 1) +3) (617)

The difference between hyperelastic models for rubbers and strain hardening materials can
be appreciated in Fig.3.4, where the Cauchy stress is plotted as a function of stretch in uniaxial
extension. In Fig.3.4a, the dots are related to the silicone rubber considered in §3.1.1 and in the
experiments of Chapter 2. Different hyperelastic SED functions, namely the neo-Hookean (NH),
the Mooney-Rivlin (MR) and the Ogden functions are considered (refer to the Appendix A.1.2 for
the formulation of such models). Within the limited stretch range considered, different models
provide a similar approximation, suggesting that for stretches below approximately 1.3 simple
strain energy functions that require fewer calibration parameters can be used. Included is also the
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3. The crack-tip zone in soft elastic tissues

Ogden curve for a vulcanised rubber with similar initial shear modulus (the fitting parameters are
taken from the literature '“®), which is an example of the so-called S-shaped stress-strain response.
On the contrary, silicone has a different behaviour, resembling the J-shaped stress-strain curves of
biological elastic tissues, although with reduced strain hardening. The difference in the shape of
the stress-strain curve is fundamental: as explained by Gordon in his brilliant book”’, biological
tissues, such as blood vessels, would fail catastrophically if they had the S-shape of natural rubber.

In Fig.3.4b we illustrate some of the strain-hardening models for soft tissues. The calibration
parameters are average values for human skin taken from the literature ™, with the initial shear
modulus approximately equal to pt = 0.11MPa. With respect to the classical models for rubber-
like materials (Fig.3.4a), the striking difference is the much larger strain hardening displayed at
relatively low stretches. In the two-parameter model by Fung-Demiray, b controls the degree of
strain-hardening, with typical values comprised in the range b = 1 — 5 reflecting the variability
among individuals and age'””. The effect of the second invariant in the formulation of Vito’s
model becomes larger in problems involving multiaxial states of deformation '**. We have also in-
cluded the Generalised Neo-Hookean model (GNH), which offers a reasonable approximation of
the exponential models by taking a specific combination of the parameters (in particular, choosing
a high value of the strain hardening exponent n).
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Figure 3.4 Comparison of uniaxial stress-strain response in different hyperelastic materials. a
Experimental data from a silicone rubber. Fitting models parameters: NH: i = 450kPa; MR:

u =490kPa, « = 0.7; Ogden: uj = up = 334kPa, uz = 3Pa, a0y = ap = 1.48, a3 = 0.09. Dashed line is
related to a vulcanised rubber (Ogden: py = 161Pa, up = —1.83kPa, y3 = 781kPa, 1 = 7.3, ap = -2.7,
a3 = 1.1). b Exponential strain-hardening functions for soft biological tissues. Model parameters:
GNH: 4 = 110kPa, b = 5,1 = 20; FD: u = 110kPa, b = 5 and b = 1.5 (dashed line); Vito: y = 110kPa,
b=5a=05

3.2.2. Analytical solution of the crack-tip fields

In this section we briefly review the analytic method to derive the asymptotic stress and displace-
ment at the tip of a crack in an incompressible hyperelastic material. The classical solution of
linear elastic fracture mechanics is introduced as a comparison.

The K-fields in linear elastic materials

The crack tip fields in linear elastic materials are derived with the assumption of infinitesimal strain,
so that the reference and deformed configurations are interchangeable '*”'*". In the vicinity of
the crack tip, the leading order terms of the stress components have the following separable form,
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3.2. Crack-tip singularities in strain-hardening soft materials

with respect to the radial distance from the tip ¥ and the angle 9 (refer to Fig.3.5 for the symbols)
K
0;= —=r"2f;(9), (3.18)
/ V27 f]

where K[ is the stress intensity factor in mode-I loading conditions, which is a function of geometry
and remote loads, and f; (9) are the angular functions. The complete expressions can be written

® 1 — sin(9/2) sin(39/2)
{ 1+ sin(9/2) sin(39/2) },
sin(9/2) cos(39/2)

011
oy | = ﬁr_l/z cos (6/2) (3.19)
V2n

012 Tt

which are valid both in plane strain and plane stress. Similar equations are also obtainable for
mode-II and mode-III loading.

It can be noticed that each component shows the same -1/2 singularity with respect to the
distance from the tip 7, implying that a point close to the tip is in a state of hydrostatic tension.
The near-tip displacements present the following separable form

K
0 L_112g,(9), (3.20)

- 2;1\/2_7'(

where g;(9) are the angular functions, which are different in plane stress or plane strain. On the
crack surfaces, i.e. for 9 = +7, the angular functions are g1 (+7) = 0, go(+7) = +1, so that the
profile of the crack is parabolic.

Plane stress solution in GNH materials

The analytic solution of stress and displacements at the tip of a crack in a hyperelastic incompress-
ible material is based on an asymptotic method, similar to William’s expansion in linear materials.
Here we focus on a plane stress crack in mode-I symmetric conditions, following the solution de-
rived by Geubelle and Knauss '’ and recently revised by Long and co-workers'?'='*?. This geom-
etry correctly approximates the configuration that we have adopted in the experimental campaign
on silicone rubbers.

The asymptotic method presented here is fully consistent with the non-linear theory sum-
marised in the Appendix A.1. We start by considering a two-dimensional configuration with a
crack embedded in a large sheet of hyperelastic material and a reference system X, X, centred at
the tip, so that the crack faces are coincident with the line X1 < 0, X, = 0 in the initial config-
uration (Fig.3.5a). Upon the application of load, the crack opens and the points in the deformed
configuration can be identified with respect to the current coordinates of the translated crack tip
(Fig.3.5b), defined as

yi(X) = x,(X) - x;(X =0), i=1,2, (3.21)

where x;(X) are the coordinates in the current configuration. Furthermore, we assume that the
material is described by an elastic potential that is a smooth function of the first strain invariant

W(I;) = A(I; - 3)" + B(I; - 3)"*1), (3.22)

where A, B and 7 are material constants. Here we focus on the Generalised Neo-Hookean (GNH)
strain energy density function, which is a particular case of Eq.(3.22). The strain energy density
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3. The crack-tip zone in soft elastic tissues

function of a GNH material is given by

W(L) = % {[1 + Z(I1 - 3)] - 1}, (3.23)

where p is the initial shear modulus, and b and # are strain hardening parameters.

In hyperelastic materials, the nominal first Piola-Kirchoff stress tensor P is obtainable by
derivation, according to

JdW(F)
P= ,
JF

where Fjj = dx;/dX; is the deformation gradient tensor. In the deformed configuration, the
Cauchy true stress tensor o is obtained as

(3.24)

o =] 'PFT, (3.25)

where | = detF =1 is the volume ratio in incompressible materials.
The hypothesis of a symmetric opening crack (mode-I) is expressed by

y1(Xy, Xp) = y1(Xq, —X3), (X1, X3) = —y2(Xy, =X3). (3.26)

Figure 3.5 Sketch of the crack geometry. a Undeformed and b deformed configuration with local axes
centred at the crack tip

The analytical solution assumes that the near-tip displacement field is given by
yi = Cirtifi(9), (3.27)

where C; are unknown constants, depending on the geometry and loading conditions, p; is the
order of the singularity and f;(0) are angular functions. Conditions of symmetry require that
f1(8 =0) =1and f,(9 = 0) = 0. Note that (7, 9) designate a polar coordinate system in the
initial configuration, with r = /X;X;; the corresponding system in the deformed configuration is
defined by (p, ). The linear elastic solution is also a particular case of Eq.(3.27), with p; = pp =

0.5 and f1(9) = sin®(8/2)cos(9/2), f»(8) = sin’(8/2)sin(5/2).

46



3.2. Crack-tip singularities in strain-hardening soft materials

From the solution of the crack boundary value problem, the leading order behaviour in the
near-tip zone is determined. In the GNH case, we have '’

C1r°f1 (9, n) ifn <1.46
= ; 28
! {C17(1+1/4")f1 (8,n) ifn >1.46 (3.282)
yo = CorlV20 ) (8,m), (3.28b)

where the exponent ¢ < 1 + 1/41 was derived analytically by Geubelle and Knauss'’". The solu-
tion depends on the strain-hardening exponent 11, whose implications on the displacement field
can be appreciated from the analysis of the results obtained from numerical simulations. The ex-
pression of 1 has a bifurcation point for n = n*= 1.46, which in the original solution was the
limit to allow the separable form of Eq.(3.27) '"". Moreover, n must always satisfy the require-
ment 7 > 0.5, which ensures the ellipticity of the equilibrium equations of the elastic problem.
Situations with 7 < 0.5, while not common under ordinary deformations, might arise in partic-
ular situations leading to an unstable behaviour (for instance, the nominal stress during uniaxial
extension decreases with the stretch ratio increasing) and the so-called equilibrium shocks '**.

The solution for a Neo-Hookean (NH) material is derived as a special case of the previous,
taking 7 = 1. The near-tip displacement field is parabolic and is given by

y1 = Cyrcos 9, Yo = Cor'2sin (9/2) . (3.29)

Now we turn our attention to the stress fields in the vicinity of the crack tip, which are singular
as expected. In particular, the Cauchy stress components in a GNH material are

~ r(2€—3+1/n)

011

ifn<146{0y, ~r! ; (3.30)
o1~ r(c—2+1/2n)
oy~ 1320

ifn>1.4640y, ~1! . (3.31)
Oy~ PN

In a NH material we can write the closed form expression for the true stresses as follows

2
o1 = pCq5,

oy = %szr‘l, (3.32)
S
O1p = —gcl(:zl’_l/z sin (5) ,

where C; is somehow analogous to the stress intensity factor of LEFM (see §3.2.4).

Comparing these singularities with those of the linear elastic solution, one can appreciate a
first, fundamental difference: the stress components have different singularities, whereas in LEFM
they all have the same inverse square root dependence with the crack-tip distance. For a GNH
material, the singularity depends on the strain hardening exponent 7, although the most severe
is the -1 singularity displayed by the normal stress. Since the near-tip stress field is dominated
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3. The crack-tip zone in soft elastic tissues

by the strongest singular component, a material element in a hyperelastic materials experiences a
condition of uniaxial tension. Some authors have suggested that this should be considered when
studying the damage mechanisms in the crack-tip zone, for instance the phenomenon of cavita-
tion 177,

In a NH material, we are able to write the stress components in the deformed coordinates
(p, 9), by expressing the undeformed coordinates (r, 9) in terms of iy, and y,. The same method
cannot be followed in a GNH material, because the angular functions f; (9, #) have no closed
expression |77,
Forn =1, from Eq.(3.29) we find !

n Cays
— 2+ cosd = —=——— (3.33)
CZ ! C1 2C1y2 + Czyl
and y; = pcos @, Yy, = psin@. For 0 < || < 71/2 the stress have the following form
o151 = Hclz,
_H 2 1
Oy = chcz P~ fa(p, @), (3.34)

o1p = #C13/2C2P_1/2f 12(0, 9),

which shows that ahead of the crack tip, for 9 = ¢ = 0, the stress has the same singularity with
respect to the undeformed or deformed crack tip, see Eq.(3.32). For ¢ = 71/2 we have instead

®; CiC3

02 = H—P O12 = —%P_l- (3.35)

The noticeable feature is that the singularity along the deformed crack face is different and

larger than that ahead of the crack tip; in particular, the -2 exponent in the normal opening

stress implies that along the deformed crack there are severe stress gradients, which might result in
secondary crack initiation from the blunted surface '*”.

3.2.3. Results of numerical analyses

Now we turn our attention to more complex strain hardening formulations, such as those pre-
sented in §3.2.1 for soft biological tissues. Unfortunately, asymptotic solutions beyond the GNH
model are not easily obtainable, due to the difficulties arising in the determination of the leading
order behaviour of y; and y,. For this reason, we have employed detailed finite element (FE)
analyses to compute the true stress fields in the crack tip region and determine the singularity of
the various stress components. We have considered a pure shear specimen consisting of a thin long
strip of height 2/ and width w = 10k, with an edge crack a = 2.5h (Fig.3.6a). The specimen
thickness f is assumed to be much smaller than other dimensions, so that a condition of plane
stress is enforced. A uniform displacement is imposed in the direction parallel to the short edges.

Crack-tip stress singularities

The model is implemented in the commercial finite element software SIMULIA Abaqus 2017
(Dassault Systemes'?), using eight-node plane stress elements with collapsed tip elements. The
tip nodes were left free to move independently so that the typical blunting under load could
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3.2. Crack-tip singularities in strain-hardening soft materials

X, A

i
deformed crack tip @

Figure 3.6 Schematic view of the specimen with an edge crack of length a > 2h. Due to the applied
displacements A on the top and bottom edges, a point A far ahead from the crack tip is in a state of
pure shear, with principal stretches A; = 1,4, = A and A3 = A~1. a Undeformed symmetric
configuration. The enlarged view shows a detailed view of the finite element mesh in the crack tip
region (not in scale). b Deformed configuration and detail of the finite element mesh

be modelled, and the mid-side nodes were not shifted to quarter-points. This choice was taken
because the nature of the singularity is not of the regular types for linear elastic and elastic-plastic
materials. For more details on the correct meshing in fracture mechanics, refer to the Appendix
A4. Due to symmetry, only half specimen was modelled and pertinent constraints were added
to the lower edge of the specimen. A refined radial zone centred at the crack tip and with radius
Teef = 0.1h, was added, where the smallest element size is iy = 107°h and the angular span is
A9 = 5° (Fig.3.6a). The stresses are extracted from the integration points of elements ahead
of the crack tip enclosed in the refined region, extrapolated to the nodes and plotted on a double
logarithmic plot as a function of the distance p from the current position of the crack tip (Fig.3.6b).

In Fig.3.7 we show the normalised Cauchy true stress 011 and 0, ahead of the crack tip, i.e. for
@ = 0, as a function of the deformed distance p from the tip, divided by the specimen half-height
h. Four different values of the strain hardening exponent 7 are considered, specifically two cases
where 1 < 1" and two with n > n*, being 1"~ 1.46 the value for which the asymptotic solution
has a discontinuity. In order to put in evidence the power of the singularity, results obtained
from FE analyses are plotted on a log-log plot, with the slope of the linear trends included in the
figure. Comparing these results with the theoretical values, we also have a mean to evaluate the
accuracy of the numerical model. Note that the theoretical slopes shown in Fig.3.7 are referred to
the undeformed coordinate 7, except for the neo-Hookean case where deformed and undeformed
configurations are the same. The dominant singular term is always the opening stress 0;,, whose
singularity does not depend on the hardening parameter. In addition, our results confirm that for
increasing strain hardening the singularity of 0, stress component becomes larger and the crack tip
fields tend to resume a biaxial stress state as in the linear elastic solution. If the hardening exponent
is further increased beyond the values considered in Fig.3.7, the stress-strain curve is a reasonable
approximation of exponential hardening models, and the stress 017 tends to the same singularity
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Figure 3.7 Cauchy stress o,; and 0,, ahead of the crack tip in a GNH material, at an applied stretch
A = 2 (logarithmic plot). Power of the singularities with respect to the deformed radial coordinate p
is compared with the values predicted by the analytical solution (dashed lines). an =0.6,bn =1
(neo-Hookean),cn=2anddn =4

of the normal stress (for instance, when 11 = 20 the singular exponent predicted by Eq.(3.30) is
~ —0.9). We also observe that for # = 2 and n = 4 (Fig.3.7c-d) the region dominated by the
singular term seems to be reduced with respect to the neo-Hookean case (Fig.3.7a), a fact that
confirms the shrinking of the large strain zone with increasing strain hardening. The opposite
situation occurs for 7 = 0.6, which is close to the lower bound 7 = 0.5 below which the solution
is unstable.

The results summarised in Fig.3.8 are related to the same pure shear geometry considered
before, where Vito’s hyperelastic model, Eq.(3.14), is chosen as representative of the exponential
strain-hardening SED functions. By assuming different values of the calibration parameter «, we
have explored the influence of the second strain invariant on the near-tip stress fields, with the
notable case of @ = 1 corresponding to the Fung-Demiray model, Eq.(3.13). The curves seem to
suggest that the effect of this parameter on the power of the singularities is somehow limited. More
importantly, the trend already anticipated in GNH materials with large strain hardening is here
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Figure 3.8 Cauchy stress g,; and 0,, ahead of the crack tip in a hyperelastic soft tissue described by
Vito's model, at an applied stretch A = 2 (logarithmic plot). Power of the singularity with respect to
the deformed radial coordinate p is indicated on the plots. aa =0,ba =1 (Fung) and c @« = 0.5

confirmed. The singularity exponent of the normal stress ahead of the crack tip is ~ —0.8, which is
close to the value of the neo-Hookean material, but here also 011 has a similar singular behaviour.
In addition, we notice that the power law trend (linear in the logarithmic plots) only fits a small
distance from the tip, approximately for p/h < 1073, confirming that in strain hardening materials
the crack tip region consists of a localized zone of high stress gradients.

Deformed crack profile

We have already anticipated how the size of the large deformation zone, and hence the elastic
blunting of the crack tip, is influenced by the degree of strain hardening of the material. Now
we take a closer look at the deformed crack profiles for the previously considered cases and offer a
local measure of elastic blunting by means of a radius of curvature at the crack tip. The geometry
is exactly as above, with the only difference in the mesh of the crack-tip region: since the displace-
ment field we are interested in is not singular, the tip is modelled as a blunted notch to obtain
better deformed profiles. The initial radius of the blunted notch was set to 1074/ and has been
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Figure 3.9 Deformed crack profiles at an applied stretch A = 2, in GNH materials at various strain
hardening (a), and in Vito's materials at different « (b). ¢-d Tip radius variation with the remote
stretch in the same materials. Also shown is the increase at A = 1.5 with respect to the tip radius at
small deformations A = 1.1



3.2. Crack-tip singularities in strain-hardening soft materials

tested to be irrelevant on the resulting curvature upon deformation.

Figure 3.9 illustrates the deformed profiles of the near-tip region for the cases considered be-
fore. From Fig.3.9a we can appreciate the remarkable influence of the strain hardening parameter
in GNH materials: in particular, for 1 — 0.5 the phenomenon of crack blunting is greatly en-
hanced'"” and progressively mitigates at higher values. Vito’s exponential hardening model is
shown in Fig.3.9b. The normalised displacement y,/h is notably different from that in GNH
materials, approximately one order of magnitude lower, confirming that strain hardening has the
effect of reducing the deformation in the crack-tip region. As in the stress curves, the variation of
« seems to be of marginal importance.

Elastic blunting of the crack tip under loading can be quantified in terms of a local curvature.
From the deformed coordinates 17,y of the crack profile (Fig.3.6b), we define the radius of
curvature p as the radius of the best fitting circle, estimated using the hyper-circle algorithm '*°.
This method assumes that the curvature of the crack flank is constant, at least within a certain
distance from the tip, which we have taken approximately equal to 103/, The results summarised
in Fig.3.9¢-d confirm the role of strain hardening in diminishing the local deformation, with
blunting markedly reduced in GNH materials with 7 > 1 and in Vito’s model (please note the
different scale in Fig.3.9d). The magnitude of crack blunting is put in evidence by considering
the ratio between the tip radius p; 5 under remote large stretch, defined as the radius for A = 1.5,
and the radius p;; for small deformation (illustrated in the insets of Fig.3.9c-d). This ratio,
approximately equal to 5 in strain hardening materials, rises up to ~ 20 in a NH material and
peaks at ~ 70 when n1 = 0.6. Also plotted in Fig.3.9¢ is the solution for LEFM, which is obtained
by employing the generalised linear elastic model (also known as Saint Venant-Kirchhoff model)
and displays blunting similar to the NH case.

A further proof comes from the contours of the nominal opening strain ¢5; in the crack-tip
region, illustrated in Fig.3.10. For n < 1 the zone of high strains, defined as the region where
the local strain exceeds the remote nominal strain € by a factor of three, is large, whereas in Vito’s
material it seems to be very concentrated around the crack tip. Specifically, for #» = 0.6 the crack
appears severely blunted and the region with high strains covers a large area (in the red zone shown
the local strains are up to 40 ¢).
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Figure 3.10 Contours of the opening strain ¢y, in the crack-tip region, as a function of the remote
nominal strain e. GNH materials at various strain hardening and Vito’s material are compared

3.2.4. Characterisation of the crack-tip fields

Based on the results of the numerical analyses, we have shown that strain hardening affects both
the singular stress and the crack conformation conspicuously. But what are the implications? The
ultimate goal of characterising the crack-tip fields in hyperelastic materials is to understand if a
stress-based parameter, similar to the stress intensity factor K of LEFM, exists and can be used
to investigate the critical condition for propagation. In other terms, with the energetic approach
being a valid criterion for fracture in any elastic material when dissipative processes are not relevant,
we look for a corresponding SIF-like stress parameter.

In hyperelastic materials the energy release rate G depends on the strain energy density W(A).
In particular, for a pure shear configuration, Eq.(3.4), G is independent of the crack length and
hence shows an increasing trend with the stretch A in the same measure of W (Fig.3.11a). We
notice that Vito’s strain energy is similar to the GNH model for the calibration parameters here
adopted, and is independent of the parameter . This feature is peculiar of the pure shear config-
uration, because the first and second strain invariants turn out to be equal.

Let us begin by considering the NH material (i.e., taking 7 = 1 in the GNH strain energy
density). The crack-tip stress field in the current configuration, Eq.(3.34), is dominated by the
normal component 0. On the crack-line the angular function f5;(p, @) is equal to unity, so that

we can write

Oy = %C1C22p_1/ (3.36)

54



3.2. Crack-tip singularities in strain-hardening soft materials

1Y)
W
|

N

-- LEFM

—n=1 @ A=162
n=4 & A=1.53
n=10 ¢ A=1.51

—Vito @ A=150

[N

Energy release rate G/Eh

1 12 14 16 18 2

Stretch A
b c
— & _
o 8 S 2 <o
g = T
g6 £ 15 —
: g ]
8 4 5 1
= a |
5 2 o 0.5 —
[N} +— .
wv - |
- CHEM=(E/2m)1/2
0 T T ] 0 T
1 12 14 16 18 2 1 12 14 16 18 2
Stretch A Stretch A

Figure 3.11 a Normalised energy release rate G/Eh as a function of the applied stretch A for different
strain hardening materials. b The elastic parameter C. ¢ The SIF-like stress parameter CG. The
dashed lines refer to the corresponding quantities in LEFM. Diamonds on the plots are obtained at
constant strain energy

where Cq and C, are two independent parameters governing the amplitude of the singular field.
Recalling that the energy release rate is equal to G = 7t/4uC5 ', we rewrite Eq.(3.36) to obtain

Opp = CGp_l, (337)

with C = Cy/mt. We now generalise to other hyperelastic models and arrive at the following from
of the singular normal stress

Oy = CGpp_p, (338)

where p is the power of the singularity. CG” is a SIF-like stress parameter which characterises the
magnitude of the singular stress field in any hyperelastic material. Note that now C has dimensions
FA=P)/L2=2)_ A better understanding of the previous expression comes from considering the case
of LEFM. Here the singular normal stress ahead of the crack tip, Eq.(3.19), is given by

K;

ool

LEFM _

02 12, (3.39)

55




3. The crack-tip zone in soft elastic tissues

where the SIF is related to the energy release rate of LEFM through G:KIZ/E. Moreover, in the
pure shear configuration we can derive G from the strain energy in a linear elastic material and
obtain

GUEFM = BE(A —1)2. (3.40)

Adopting the same formalism introduced above, p = 1/2 and
CUEFM = (E2m)12, (3.41)

which shows that, in linear elastic materials, C is constant and proportional to the Young’s modu-
lus. On the contrary, in hyperelastic materials the parameter C changes with the applied stretch, as
shown in Fig.3.11b. The parameter C was obtained from FE analyses, through a linear regression
at zero intercept on the logarithmic plots of the stress 05, versus the true distance from the tip.
It appears that, regardless of the strain hardening behaviour, the curves follow a power-law de-
creasing trend with the applied stretch, tending towards a horizontal asymptote for large stretches.
In Fig.3.11c we show the plots of the SIF-like stress parameter CG”, increasing with stretch with
different trends depending on the strain-hardening parameter 7. The reference case of a linear
elastic material is illustrated by the dashed linear trend of the stress intensity factor K;/27, where
K| is a linear function of the stretch according to

K; = EVh(A -1). (3.42)

In order to explore the implications on
fracture, we consider an analysis at constant G.

This could be the fracture toughness of a given 2 *-plh 0.6
material measured experimentally, but to re- 1* =
. o . I -1 =
tain general validity we prefer to denote it as a < 18 —, 04 =
constant value of the energy release rate. Be- S - 3
. <] ©
sides, we observe that constant values of G are 516 02 o
related to equal areas in the stress-stretch plots, - : -——0-—-—- =
being G proportional to the strain energy den- 14— I— - ‘I_ - - 0

sity W(A) in the pure shear configuration. We

. . . . 0 5 10 15 20
can compare materials with different strain-

3 - . Strain-hardening parametern
hardening behaviour by extracting the corre-

sponding stretch A from the curves of G. The  Figure 3.12 Effect of strain-hardening in GNH

results are illustrated by coloured diamonds on ~ materials, on the stretch A and the crack-tip radius p/h
the plots in Fig.3.11. The key to read thisanal- 3t constant strain energy release rate

ysis is the following: while in LEFM any value

of G has a univocal correspondence with Ky, which is also independent of the material properties,
in hyperelastic materials we have a different scenario. Observing Fig.3.11c, we notice that the same
strain energy release rate results in different values of the SIF-like parameter CGP. Based on this
observation and on the previous numerical analyses on the stress singularities, we are now able to
sketch a unifying picture of crack-tip fields and fracture in hyperelastic strain-hardening materials.
While the energetic approach is a valid criterion for fracture in any elastic material, the equiva-
lent field approach, which employs a stress-based parameter, is limited to small scale yielding and
hence to LEFM. In hyperelastic materials, the stress parameter CGP defines the amplitude of the
normal stress but does not provide an equivalent parameter to define a critical condition for crack
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propagation. Moreover, the normal stress dominates the crack-tip solution only at reduced strain
hardening, because for increasing values of 11 the parallel stress 017 also increases its singularity.

One last aspect which we have shown to be essential in characterising the crack-tip zone in
strain hardening materials is elastic blunting. In different strain-hardening materials, equivalent
values of G might occur at similar stretches but with drastically different blunting. This is illus-
trated in Fig.3.12, where we have plotted the variation of the stretch A and the crack-tip radius
p/h as a function of the strain-hardening parameter 11 of GNH materials, computed at constant
strain energy. For 11 > 5 both the curves tend to a constant value, but below this limit we observe
that moderate changes in the stretch (in the range A =1.5-1.7) correspond to a ten-fold increase
in the tip radius, from p/h =~ 0.05 to p/h ~ 0.5. This is of no less importance, because crack prop-
agation mechanisms can be influenced by the degree of blunting. Although these mechanisms are
unique to a specific material and a detailed analyses was beyond the scope of the present thesis, we
can try to suggest possible behaviours. The typical failure mechanism of elastomers is by growth
of cavities inside the blunted region, which occur when the hydrostatic tension is of the order of
the elastic modulus'*®. As observed during the analysis of the singular stress fields, a point close
to the crack-tip is subjected to uniaxial tension in a neo-Hookean material but tends to recover
the hydrostatic state with increasing strain hardening. Another possible mechanism consists in
the formation of micro-cracks from the blunted crack-tip, where the local elastic modulus can be
several order of magnitudes larger than the initial modulus'’”. Future experimental observations
on elastomers and biological tissues would allow us to better understand how the failure process
is affected by strain hardening.

3.3. The strength of soft solids: crack blunting and flaw tol-
erance

Crack blunting is among the most peculiar features of fracture in soft materials and adds a fun-
damental contribution to their remarkable toughness. Motivated by an extensive experimental

campai hin sili ; 137-139
paign on thin silicone specimens

, we have investigated the impact of crack blunting
on the macroscopic mechanical response in relation to flaws of various severity and shape. In
this section we collect some of the experimental results and propose an analytical model of crack

blunting, based on a refinement of the formulation presented by Spagnoli et al. .

3.3.1. Experimental tests on thin flawed specimens

Here we focus on experimental tests carried out on thin plates containing cracks of different
lengths, which were stretched under displacement control up to complete failure (Fig.3.13). The
plates were subjected to tensile loading along the y-axis applied at a constant strain rate & =
1.9 = 5.8-1073s7!. The samples material consists of commercial silicone rubbers similar to those
used in Chapter 2, with Young’s modulus E = 0.84—1.50MPa and Poisson’s ratio v = 0.37—0.42.
A summary of the tests is presented in Table 3.1, reporting an identification code, the relevant ge-
ometry of the specimen and the ultimate stretch A..

The response of the specimens during the experimental tests is monitored by measuring dis-
placements and applied forces with a load cell, and using a Digital Image Correlation (DIC) tech-
nique to get full-field displacement and strain maps under load. Displacement and strain fields

within the specimens were acquired through the freeware software Ncorr®”.
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Figure 3.13 a Sketch of the sample containing a centred internal crack of length a. b Elliptic
deformed configuration in curvilinear coordinates. ¢ Sketch of the edge-cracked plates

Upon applying the tensile load, the initial crack-like defects tend to blunt progressively ex-
hibiting a remarkable defect remodelling. In Fig.3.14a-b two specimens containing a centred
crack are shown at increasing loads. In an intermediate stretch range, the DIC maps clearly show
a strain concentration typical of an elliptical notch, where the maximum strain values occur in the
locations corresponding to the original crack tips. At incipient failure (A = A,), the strain maps
exhibit a more complex distribution due to the failure mechanisms developing in the vicinity of
the notch roots. At the same time, a compressed region can be noticed close to the crack flanks,
due to the contraction effect arising in the direction normal to the applied displacement. Figures
3.14c-e are related to experiments on edge-cracked specimens, which failed noticeably earlier than
centre-cracked samples and with limited crack tip blunting. The behaviour might depend on the
different configuration, which causes an enhanced stress intensification that leads to a premature
failure of the polymer network chains close to the crack tip.

An insightful representation of the experimental results is provided in Fig.3.15, which can be
interpreted as a flaw-sensitivity map: each test is identified by a value of the ultimate stretch A,
as a function of the characteristic length a of the initial crack-like defect. According to LEFM,
the stretch at failure shows a decreasing power-law dependence on the crack length, given by the

following equation
r
A ~ | —a1?, (3.43)
nE

where I is the fracture toughness. This equation is obtained if we assume the condition of fail-
ure when G = T and recalling that the remote stress 0 ~ GE/ma. While the experimental
results of edge-cracked specimens seem to agree well with the LEFM prediction (dashed lines in
Fig.3.15), centre-cracked samples behave differently. We speculate that the reason lies in the more
pronounced blunting of the crack tip, which is not predicted by the linear elastic solution.
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Figure 3.14 DIC maps of the Green-Lagrange strain E,, in the pre-cracked specimens, at different
loading (the applied stretch A is shown below each plot). a-b Centre-cracked specimens CC1 and
CC4. c-e Edge-cracked specimens EC2, EC3 and EC4
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Table 3.1 Geometric characteristics of cracked specimens

Specimen ID  w(mm) a(mm) ¢(mm) a/w Ac

CC1 56 10 275 0179 175
cC2 56 15 3 0.268 1.61
CC3 56 20 275 0357 155
CC4 56 25 285 0446 1.32
EC1 26.3 1 3.5 0.038 1.26
EC2 26 2 3.2 0.077 1.18
EC3 26 5 2.9 0.192 1.11
EC4 26 8 2.9 0.308 1.07
EC5 25 1.8 4.2 0.072  1.42
ECo6 25.5 3 4.2 0.118 1.36
EC7 26 4 4.3 0.154 1.28
EC8 25 5 4.6 0.202  1.26
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Figure 3.15 Ultimate remote stretches at failure A, as a function of the initial crack length a. The
dashed lines correspond to best-fit curves with a the power law dependence of LEFM (Eq.3.43)



3.3. The strength of soft solids: crack blunting and flaw tolerance

3.3.2. An analytical model for crack blunting

The DIC images of the silicone samples confirmed that crack-like defects become distorted under
loading and assume an elliptic conformation. In terms of the crack-tip fields, this process causes
a progressive mitigation of the stress concentration, which justifies the higher ultimate stretches
observed in the samples with increased blunting. In particular, centre-cracked specimens failed at
larger strains than those predicted by LEFM. We propose a simplified model of crack blunting in
a linear elastic material to quantify the magnitude of blunting, and show its impact on the failure
mechanism.

In a generic notched component subjected to uniform stress we can define the stress concen-
tration factor K; as

Kt = O_max/o_/ (3 44)

where 0, is the maximum stress at the notch root and ¢ is the applied stress, measured with
respect to a uniformly stressed section of the sample.

We assume that the deformed crack evolves into an elliptic shape, whose major and minor
semi-axes are denoted by @ and b, and obtain the local stress and displacements from the general
solution of an elliptical hole in an infinite elastic plate (Fig.3.13b) '*’. In the curvilinear elliptical

coordinates (&,n) the semi-axes are given by

a = c cosh&, b = csinhé, (3.45)

where ¢ = Va? — b? is the focal distance and & = &; = arccosh(a/c) is the equation of the
ellipse boundary. These expressions hold for an ellipse with a > b, otherwise a and b need to be
exchanged. The complete solution is available in the literature '*'.

The stress concentration factor K; for an elliptical notch in an infinite plate is '

K, = (1 + 2\/2) (3.46)
P

with p = b?/a being the minimum radius of curvature of the ellipse.

Let us consider the sketch of the elliptic crack shown in Fig.3.13b. In order to describe the
change of K; with increasing deformation, we need to consider the variation of the radius of
curvature p under load. Adopting a step-by-step solution, external loading is applied in increments
do’ and stress and displacements are computed in the points of intersection with the reference axes
(x,y), denoted as P, = P(x=4a,y=0) = P(&,0) and P;, = P(x=0,y=0b) = P(&, 7/2).
The deformed configuration of the ellipse is obtained by updating the semi-axes according to the
displacement increments

A =at+dul,, b =b"1+dul (3.47)

min’/

where dul, . and du! ;, are, respectively, the increment of displacements obtained from the solu-

tion of the elliptical hole in the points P, ,, and P_;,. The solution is then updated with ¢ and
&p> using Eq.(3.45). The tip radius and the stress concentration factor are obtained from

(B ,_ o |
pzz_(l.) and K;:Umi =1+2 a—l (3.48)
a 0 p
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3. The crack-tip zone in soft elastic tissues

The results are shown in Fig.3.16a. Here we compare our simplified analytic solution with
numerical results obtained from a large strain FE analyses of the specimen CC1, where the tip
radius is extracted as the radius of the best fitting circle to the deformed crack. Excellent agree-
ment is obtained with the analytic model proposed, which is based on a linear elastic material but
considers the geometric non-linearity through the configuration update of the ellipse. Also added
1.'9%. Tt is based on a Dugdale
cohesive zone near to the ellipse tip, characterised by a cohesive stress 0, and fracture toughness
I'. The maximum notch root stress 0, as a function of the applied stress o is given by

to the plot is the model for elastic blunting proposed by Hui et a

2g
O-ma.x
5= fB, (3.49)

mlQ

where B = I'/(0,,.4). The tip radius p was then obtained replacing 0, in Eq.(3.44) and invert-
ing Eq.(3.40).
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Figure 3.16 a Variation of the tip radius with the applied stretch: comparison between numerical
results and analytical models. b Normalised notch root true stress at incipient failure. The effect of
crack blunting is enhanced in specimens CC1-CC4, with the failure stress being approximately
constant (dashed line)

Application to experimental data

We have applied the model proposed to the geometries tested during the experiments, to evalu-
ate the magnitude of stress concentration corresponding to failure. If crack blunting anticipates
rupture and mitigates the local crack tip stress, it is possible that failure could be predicted by a
local stress rather than by a fracture mechanics related parameter. With this speculation we have
obtained the quantity K; (A, —1), which represents the normalised true stress at the notch root
at incipient failure, and can therefore be considered a material property. In particular, A, is the
ultimate stretch derived from the experiments (Table 3.1) and K; is the stress concentration fac-
tor, corresponding A, computed from the analytical model, Eq.(3.48). The results are shown in
Fig.3.16b as a function of the initial length a of the crack-like defects. It appears that failure in the
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3.4. Crack blunting and sharpness in cutting

centre-cracked specimens CC1-CC4, where blunting is enhanced, occurs at a constant nominal
stress independent on the length 4, differently from the other cases.

We wish to point out that the aim of our analyses was not to provide a chart of flaw sensitivity
in the canonical form; rather, we have focussed on the effect of blunting. Our results suggest that
elastic crack blunting mitigates the stress intensification and promotes a flaw-tolerant failure in
soft materials.

In the analyses we have not considered the effect of rate. It is known that viscoelastic dissipation
may affect the deformed crack profile and impact on the elastic blunting of polymeric materials.
Specifically, at lower strain rates, the material can be assumed in a relaxed state with the elastic
modulus that is the modulus at zero rate. Increasing the rate, the deformation is governed by
the instantaneous modulus which is much larger, hence elastic blunting could be reduced '’*. To
generalise the observed behaviour to biological tissues, we would need to explore the role of strain
hardening, which is expected to reduce the elastic blunting. Further analyses are required to shed
light on these points.

3.4. Crack blunting and sharpness in cutting

When propagating a crack with an external tool, for instance during cutting with a blade or a wire,
the interaction between the finite size of the tool and the crack tip must be accounted for. Hui
et al. "% suggested that a sharp knife exerts some sort of constraint on the elastic blunting of the
crack, which might be limited by the fact that the crack opening displacement is determined by
the knife geometry. Adopting a cohesive crack model, they speculated that such limiting effect
occurs whenever the tip radius of the tool is smaller than the critical opening displacement of
the crack. Following their idea, we have investigated the interaction between a rigid wire and a
blunted crack, but instead of using the critical displacement of the cohesive law, we have computed
a critical radius at the tip of the blunted crack. This is defined as the local radius of curvature when
a pre-existing mode-I crack is in the condition of incipient propagation

pe = p(G=T), (3.50)

where I is the fracture toughness of the material.

We have analysed, by means of large strain FE analyses, various configurations of a specimen
containing an open edge-crack of length a (Fig.3.17a). The material is an elastic, soft and brittle
compound, described by Ogden’s incompressible hyperelastic model, Eq.(A.52), where the elastic
modulus E is in the order of 18 KPa. Due to symmetry, only half specimen is modelled, with
8-node plane strain elements suitably refined around the crack tip, which is artificially blunted by
taking an initial small radius of curvature. The geometry does not correspond to the pure-shear
type considered in previous analyses. Therefore, in order to compute the strain energy release rate
G, we cannot employ Eq.(3.4). In a contour surrounding the crack tip, we have computed the
J-integral, with respect to the undeformed configuration, defined as "’

81/11'
] = L (WNl - (9_X1PUN]) ds, (3.51)

where W is the elastic strain energy density function, Ny is the unit vector in the direction of crack
propagation and P; is the first Piola-Kirchoft stress. In elastic materials, the /-integral is path-
independent and equal to the energy release rate G, so that the condition of crack propagation is
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Figure 3.17 a Sketch of the edge-crack and wire-cutting. Contours of the in-plane maximum principal
strain &, in the crack-tip region, as a function of the remote nominal strain ¢, at incipient
propagation: b edge-crack configuration with remote mode-I loading; c-e wire cutting at different
diameters d,,

attained when | = G = I'. The parameter I is the fracture toughness of the material obtained
from experimental measures, in this specific case approximately equal to 1.1 Pam.

Firstly, the case of an edge-crack subjected to far-field mode-I loading, by means of applied
displacement in the direction perpendicular to the crack, is considered. Subsequently, we have
analysed the same configuration with a rigid circular wire that is inserted and pushed forward, in
the direction parallel to the crack, until the full length of the crack is covered. The critical condition
is the same as before, having hypothesized that the resistance to cutting is equally defined by I'.
The relationship between the finite size of the tool and the crack tip is expressed in terms of the
wire diameter d;, versus the critical radius p at the tip of the blunted crack. From the deformed
coordinates (11, i) of the crack profile, p is determined as the radius of the circle fitting the profile
within a distance equal to 10734 from the crack tip.

Results of the analyses are presented in Figs.3.17-3.18. In Fig.3.17 each frame shows the
contours of the maximum principal strain &, at the condition of incipient propagation, that
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3.4. Crack blunting and sharpness in cutting

is when | = I'. The effect of strain localisation around the crack tip is illustrated by scaling the
contours with respect to €, defined as the remote nominal strain in the edge-crack configuration,
&. = A. = 1. The edge-crack configuration is shown in Fig.3.17b, with tip radius of the blunted
crack p.. By considering various wires with decreasing diameters, we are able to locate a transition
to constrained blunting, where the critical condition is met when the wire touches the crack tip
(Fig.3.17d). Further evidences of such a transition come from the plots of the deformed crack
profile, in a region within a distance equal to 0.1a from the crack tip (Fig.3.18a). The curves
obtained from the insertion of wires with different diameters are almost equivalent and similar
to the profile of an edge-crack subjected to remote loading, with the exception of the diameter
d, = 0.125mm.

Our analyses contribute to shed light on the mechanism driving crack propagation during
cutting, which is here treated as a two-dimensional steady state process. In general terms, cutting
with a wire or a thin blade is considered analogous to propagate a crack in symmetric loading
conditions, where the crack driving energy comes primarily from the external work performed
by the wire. Differently from propagation of a crack under remote loading, the finite size of
cutting tools adds an additional length scale to the fracture process. In the case of wire cutting
here considered, it is the wire diameter d;, the relevant dimension that needs to be compared with
a characteristic length of the fracture process. In an elastic material, such length is defined as the
natural tip radius of the blunted crack p. ~ I'/E. By comparing analyses with wires of various
diameters, we notice that the tip radius p is approximately equal to p, when d;, > 2p, (Fig.3.18b).
Below this limit, we hypothesise that the tip radius scales with the wire diameter (hence the slope
1/2 shown in the plots). The analyses here presented are consistent with the simplified model of
cutting proposed in Chapter 2, where a sharpness parameter was introduced as point of transition
between two different mechanisms of propagation for blunt and sharp tools. Here we illustrate a
case where that simplified framework is discussed in relation to very soft elastic materials. Contrary
to hard solids, the natural critical tip radius p is in the order of millimetres, hence the transition
limit becomes attainable with commercial tools. The ratio between the wire diameter d;, and
natural critical tip radius p. is nothing else that a different form of the tip sharpness given in
Eq.(2.36), and we can make analogous considerations by observing Figs.3.17b-d and Fig.3.18:

e ford,, > 2p,, propagation of the cut happens as an autonomous process under symmetric
mode-I conditions, with a certain distance between the wire and the crack tip. The crack
tip radius is determined by its natural value I'/E. This situation corresponds to what we
have previously defined as cutting with ‘blunt’ tools.

* ford,, < 2p,, the shape of the blunted crack is constrained by the wire, which touches the
crack-tip. In this situation, the mechanism of propagation is different and requires a further
input of external energy, since the condition | = I cannot be attained (Fig.3.17d). This is
the case of cutting with ‘sharp’ tools.

What we have not considered in the analyses is the effect of friction, which is known to add
a relevant contribution to the applied force in cutting soft solids. However, there are two reasons
which motivated our choice: firstly, the fact that cutting with wire minimises frictional dissipation
because of the reduced contact area during the insertion; secondly, the assumption that friction
does not influence the mechanism of propagation below the transition limit. With the latter
statement we mean that when a wire or a straight blade is advanced steadily and rectilinearly in
the material, frictional tangential stresses arise symmetrically along the edge, resisting motion but
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Figure 3.18 a Deformed crack profiles at incipient propagation, for an edge-crack (dashed line) and
various wire diameters d,,. b Crack tip radius at incipient propagation p versus the wire diameter. The
horizontal line is the natural crack tip radius p. ~ I'/E

not giving rise to any mode-II contribution to the crack driving energy. Below the limit d;, = 2p,
the picture is likely to change, with the cutting force directly pushing the crack tip and generating
additional frictional force, which might alter in an unknown fashion the crack driving energy. An
example of a mixed-mode propagation during the insertion of bevel-tipped needles is considered
in §5.3 of the present thesis.
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Fracture in rate-dependent porous
biomaterials

We should not overlook the importance of simplicity combined with depth of understanding, not only
Jor its cultural value, but as a technological tool. Deeper physical insight combined with theoretical
simplicity provides the short cuts leading immediately to the core of extremely complex problems and to
straightforward solutions. Of course, formal knowledge is essential but, as for everything in life, the
truth involves a matter of balance.

Maurice A. Biot
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any biological materials combine their soft elastic nature with a microstructure that resembles
M a soft sponge, where small pores can be permeated by fluids. The behaviour shown by
such materials is complicated by the fact that, in addition to a non-linear elastic response, they
usually show rate-dependent properties. Human brain is one relevant example. Results from
laboratory tests reveal a non-linear stress-strain relationship and a complex rate-dependent nature,
ascribable both to viscoelasticity and to the flow of cerebrospinal fluid during deformation””. Less
is known experimentally about the fracture behaviour, partly because of the technical difficulties
in realising proper fracture tests. In this chapter we address the topic of brain fracture indirectly,
combining some available experimental results with numerical models of the fracture process in
porous materials. Due to the complications in having reliable fracture data, we have also considered
phantom tissues which are employed to mimic the behaviour of the human brain, in particular
a biopolymeric gelatine and a viscoelastic soft hydrogel ““~*/. Moreover, we can take advantage
of the known microstructure and predictable failure mechanisms of phantoms to investigate the
rate-dependent behaviour of human brain more in detail. The content presented in this chapter is
partly obtained through simplifying assumptions that might require to be verified experimentally
in the future, and in this sense it offers a global view on the topic of fracture in rate-dependent
materials, rather than a direct means of comparison with the experimental data.

The rate-dependent behaviour observed in fracture tests is due to the effect of energy dissipa-
tion. In porous materials, we need to consider two sources of dissipation, one connected to the
viscoelastic relaxation of the solid network and the other one arising from the flow of fluid in the

142

pores . For the sake of completeness, we shall mention that rate-independent mechanisms, such

as the well-known Mullins effect in rubber-like materials'*’

144 and hydrogels ' *>~'*/
phenomena that are predominant in porous biomaterials. In order to correctly describe the rate-
dependent fracture, we need to link the sources of dissipation to the available energy for crack
propagation. This topic is discussed in §4.1, where we introduce the relevant time and length

, have also been observed in biolog-

. . ) . .
ical tissues” . However, here we restrict our analysis to rate-dependent

scales of energy dissipation in soft porous materials and present the model employed in the nu-
merical analyses of fracture.

When a porous network is swollen by fluid, mechanical and hydraulic responses are coupled,
resulting in a complex non-linear behaviour. During fracture, fluid flows inside the crack surface
with mechanical deformations, and at the same time fluid is exchanged between the fracture zone
and the bulk material. Experimental evidences on physical hydrogels showed that the fracture
energy is increased by the drainage of fluid in the crack-tip zone*'*®. In addition, polymeric
hydrogels swollen with fluid and subjected to subcritical loading, i.e. such that the elastic strain
energy is not enough to cause instant failure, fail with a delay because fluid drainage increases the
available energy for fracture'*’. A similar delayed mechanism has also been observed at slow load-
ing rates in micro-indentation of cartilage**. Poroelastic theories, derived from the consolidation
of soils by Biot 71"
terials*’ and were shown to offer an equal description '’*. More complex approaches are required
in case of large deformations, where the non-linear response of the solid matrix as well as the ef-

, and mixture biphasic theories have been employed to study biological ma-

152

fect of swelling need to be considered. A few models have been proposed to study the effect of
solvent diffusion in fracture of hydrogels>*!**. With respect to the human brain, confined and
unconfined compression have been investigated adopting the basic theory of consolidation**. A
coupled poro-hyperelastic model has been proposed to model compression tests in biopolymeric
gelatines** and recently applied on human brain to simulate the complex phenomenon of brain
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shift®'. In Section §4.2 we present the poro-hyperelastic model and show the main results of
numerical simulations on the effect of fluid.

Often, the flow-dependent dissipation is coupled with viscoelastic relaxation. Fracture in
viscoelastic materials is reasonably well understood with respect to rubber-like materials '>>~1>¢,
where experimental evidences showed a remarkable increase of fracture energy with rate due to
the molecular friction '>”~'°". The same mechanisms also applies to the failure of tough hydrogels
162163 although other studies on dual cross-linked hydrogels with phys-
116 A different mechanism of viscous fracture has been
99,404,164 " \Yith respect to
the human brain, experimental evidences from compression and tensile tests showed clear signs of
frequency-dependent stiffness, with the brain deforming differently at fast and slow rates. Brain
tissue has been studied according both to linear and non-linear viscoelastic theory “*"»1°°, but the
resulting picture is far from being exhaustively investigated, and there are often controversial re-

sults coming from experiments. For rogels fracture, recent theories have been proposed, whic
Ie g ts. For hydrogels fract tth have b d, which
142,166 I

.In

with chemical cross-links
ical bonds showed a reversed behaviour
observed in physical hydrogels used for bioengineering applications

account for the coupled effects of viscoelasticity, fluid diffusion and large deformations
Section §4.4 we attempt to consider the effect of viscoelasticity during fracture of brain tissue and
mimicking hydrogels. A visco-hyperelastic model, proposed to model the unconfined compres-
sion of human brain*, is used. Based on physical reasoning, we are also able to sketch a qualitative
view of the possible interaction of viscoelasticity and fluid draining on crack propagation.

4.1. Toughness and energy dissipation

As anticipated, dissipative mechanisms occurring in the material during crack propagation might
affect the available energy for fracture. We need to identify not only the different sources of
dissipation but also if and in which measure they actually impact on crack propagation under
cutting. After considering the possible sources of dissipation in soft porous materials, we present
the approach adopted in the analyses of rate-dependent fracture included in this chapter.

4.1.1. Sources of rate-dependent fracture

In general we can assume that any material containing a crack experiences energy dissipation when
loaded. Notice that this is relevant not only to cyclic loading but also to monotonic loads, because
the stress state near the crack tip is inhomogeneous. Specifically, points ahead of the crack are first
loaded and then unloaded as the crack extends, leaving behind two layers of the material going
through hysteresis . Although a certain amount of dissipation is inevitable, it is important to
quantify the size of the regions affected and compare them with the finite dimensions of real bodies.
Similarly to the schematic presented in Chapter 1, Fig.4.1 illustrates the region surrounding a
propagating crack in a soft porous material. With respect to energy dissipation, we can identify

the following three sources ‘'

¢ rate-dependent damage phenomena within the process zone (A);

¢ flow-independent dissipation due to the viscous relaxation in the material surrounding the
crack tip (B);

¢ flow-dependent dissipation due to the drainage of fluid in the crack-tip region (B).
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Figure 4.1 Illustrative sketch of a crack in a porous viscoelastic material. Shown in figure are the
process zone (A) with radius [,, and the crack-tip dissipative zone (B) with radius R. The enlarged
view shows the chain scission mechanism typical of rubber-like polymers and chemical hydrogels

The process zone comprises rupture processes occurring at the molecular scale, which are pe-
culiar of each material and account for an intrinsic toughness I'g. Dissipative processes occur-
ring within this highly localised region, of radius lp, might result in a toughening effect on I'y.
In rate-dependent materials, such increase is proportional to the velocity of crack propagation.
For instance, Baumberger et al.”” observed a linear increase with crack velocity in gelatine pure-
shear specimens, and linked such effect to a local process of viscoplastic disentanglement. Simi-
larly, Forte et al. ™ noticed a rate-dependent toughening during wire cutting tests of biopolymeric
gelatines. They proposed a mechanism of fluid draining in the pores within the process zone to
explain the phenomenon. Their model is considered more in detail in Section §4.3.

The other dissipative terms are originated from the relaxation in the bulk material but might
become relevant to crack propagation only if they affect the crack-tip region, of radius R. Viscoelas-
ticity results from conformational changes of the molecular network and dominates the short-time
range behaviour, while poroelasticity results from long-range motion of the fluid molecules, hence
it requires longer times. Usually, they might affect fracture by preventing the external force from
being fully delivered to the crack '*’. The effectiveness of each mechanism depends not only on the
material properties but also on the loading conditions. Moreover, in soft materials these mech-
anisms are coupled with large deformations. In such conditions, boarders between the regions
fade out and the very definition of typical fracture parameters such as G is questionable. While
the resulting picture might appear daunting, we can formulate a few assumptions which make the
foundation of our approach to fracture in soft porous materials, as explained in the next paragraph.

4.1.2. Analytical approach to rate-dependent fracture

We assume to split the fracture energy of a dissipative material in two terms: the intrinsic term
I’y originating from the process zone, and an additional term I'p due to energy dissipation in the
crack-tip region affected by propagation”’, so that we have

T=F0+FD (4.1)
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4.1. Toughness and energy dissipation

The purpose of this distinction is to identify that part of fracture energy that can unambigu-
ously be related to crack propagation, and separate it from the source of bulk dissipation resulting
from the deformation field surrounding the crack tip '**.

Unlike the intrinsic toughness I'g, I'p cannot be treated as a property of the material because
it is affected by rate. For instance, in elastomers the dissipative term is related to the crack velocity
v according to 1’

I'p =Tyf(arv), (4.2)

where f is a monotonically increasing function, which takes zero value when v — 0, and ar is a
temperature dependent empirical parameter.

Similar relationships have also been proposed for hydrogels, derived from experimental fracture
tests. However, to develop an approach which we can use in computational analyses is not trivial,
as it requires to relate crack propagation velocity and energy dissipation, and compute the part of
energy available for fracture. With respect to the latter, we recall that the energy release rate G is
not obtainable from the strain energy density, as this includes dissipative terms. The /-integral
definition has been modified in order to include the contribution from viscoelastic dissipation |,
but we cannot assume that it provides the energy release rate G. Moreover, the /-integral is path-
dependent because the local strain rates are amplified in the crack-tip zone non-uniformly, so that
different points within this zone do not follow a single stress-strain relationship*’.

The approach we follow, similar to that proposed by Wang and Hong'* for the analysis
of delayed fracture in hydrogels, is based on the separation of the fracture energies according to
Eq.(4.1). We then consider a cohesive process zone for the intrinsic toughness I'g, whose size is
assumed much smaller than that interested by dissipation coming from the bulk, that is we assume
lp < R (Fig.4.1). Furthermore, we assume that the large strain zone and the crack-tip dissipative
zone have the same length scales, and define such length as

R = py =Ty/E, (4.3)

where E is the instantaneous elastic modulus of the material. We are aware of the fact that an
alternative definition, based on the ratio between the toughness I and the strain energy W, would
allow to account for dissipative contributions on the length R. However, lacking experimental
values of the toughness I' we believe that the length in Eq.(4.3) is still a pertinent definition for
the crack-tip zone.

Potential dissipative mechanisms which might affect crack propagation, such as viscoelastic
relaxation or fluid draining, are condensed in the crack driving energy. Differently from an elastic
material, G also depends on the strain rate . Then, crack propagation occurs when

G(&) =Ty, (4.4)

where the fracture toughness I'y is provided by the cohesive energy, i.e. the area below the cohesive
stress-displacement law. Notice that this corresponds to the energy that we could obtain from a
path integral surrounding the cohesive zone, so that dissipation is excluded ' '°.

The practice to adopt a cohesive model for rate-dependent fracture processes is popular, in
particular with polymeric materials. As a matter of fact, the rupture of polymers is accompanied
by void growth ahead of a propagating crack, leading to strain softening and eventually material
disintegration 156 In the analyses presented in this chapter, the intrinsic toughness is considered
rate-independent. Implicit in this formulation is the assumption that the rate dependence of
the fracture process is derived primarily from the bulk'*®. However, the effect of rate within
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4. Fracture in rate-dependent porous biomaterials

the process zone could be added to the model by considering a modification of the cohesive law
according to the rate of loading. Relevant examples can be found in the literature for viscoelastic
materials '°*~'"% and poroelastic gels .

Intrinsic toughness in hydrogels

The intrinsic toughness I'y derives from molecular rupture mechanisms which take place right
ahead of a propagating crack. In rubbery networks, Lake and Thomas*’ calculated the intrinsic
fracture energy assuming that, at a load approaching the threshold, the extension of a crack only
breaks polymer chains ahead of the crack tip (see the inset in Fig.4.1). Consequently, the energy
is proportional to the areal density of the chains crossing the interface and the bond energy U}, of
a single covalent bond. We obtain the following expression*’

Ty = Nind?U, (4.5)

where N is the number of cross-linked chains per unit volume, [ is the length of each monomer
and 1y is the average number of monomers per chain. Curiously, the approach is analogous to
the famous fracture mechanism in metals proposed by Griffith, where the energy is that required

167 Since the force to break covalent bonds does not vary

to break a single layer of atomic bonds
much with rate, in many cases the intrinsic toughness is assumed constant while dissipation is
related to what happens in the bulk’.

The same mechanism has also been considered for hydrogels with covalent cross-links, where
the areal density of the chains is proportional to the volume fraction of the polymer'’?. This
explains why elastic hydrogels with the same number of monomers per chain are more brittle than
elastomers. Moreover, it can be shown that the Young’s modulus is inversely related to the fracture
toughness "', To overcome the complexity in deriving a correct value of toughness from molecular
models, some authors suggested to employ direct experimental measures in which dissipation is
prevented . Typically, this means performing a fracture test at very low loading rates, so that
quasi-static conditions are assumed. Results from wire cutting tests at low loading rates are avail-
able for the biopolymeric gelatine ™, from which we have derived the toughness following the
model presented in §3.1.2.

4.2. Fluid diffusion in brain tissue and mimicking hydrogels

4.2.1. Time and length scales in poroelastic fracture

When loads are applied to a saturated porous solid, fluid is trapped in the pores and the material
is in an undrained state, where an excess pressure is generated in the pores. As time goes by, fluid
is expelled from the solid (assuming that there is at least one free surface in contact with air) and
pressure decreases until eventually it equilibrates the atmospheric. This situation is referred to as
a drained state. The mathematical expressions of such conditions are

C=0 (undrained),

pr =0 (drained), (4.6)

where pp is the fluid pressure and C the variation of fluid content.
The process of fluid draining is at the origin of the time-dependence observed in relaxation
tests of porous material: from the initial undrained state the material equivalent stiffness decreases
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4.2. Fluid diffusion in brain tissue and mimicking hydrogels

with time as draining progresses. We can define a characteristic time of poroelastic relaxation as
R2

tg = —,
Dr

where R is a characteristic length scale, function of the geometry of the specific problem, and Dg

is a material parameter known as the diffusion coefficient, with dimensions L?/T. Rather than a
material property, the poroelastic time represents the actual time needed to complete the draining

4.7)

process. Comparing the poroelastic time with a typical observation time ¢, we can assume that the
material is in undrained conditions if t << t; and in a drained state if f > t;. When arranging
experiments to evaluate the mechanical parameters of fluid diffusion, it is preferable to reduce the
characteristic length making use of micron-size indenters and atomic force microscopy, in order
to shorten the time required '/*'".

A subtle difference arises in problems with moving boundaries, as for instance in crack prop-
agation. Assuming that there is always a region close to the crack-tip which is drained, we can
relate the size R of this region to the crack propagation velocity v

R; = — (4.8)

and compare it with a typical observation length R. Then we can consider the region of size R to
be in undrained conditions if R; << R and in a drained state if R; > R.

4.2.2. Numerical analysis of poroelastic fracture

Numerical analyses were performed in order to understand the source of rate-dependence ob-
served during fracture of human brain and mimicking materials. In particular, results from wire
cutting experiments at different insertion velocities showed that the steady-state force is affected
by rate ", In Fig.4.2 we report some results from wire cutting on gelatine (Fig.4.2a) and brain
tissue (Fig.4.2b). Both materials show an increasing force with rate, although the evolution to
steady-state cutting (yellow regions in the figures) is different. The transition to a constant force is
not well marked in the brain tissue, probably due to the extreme softness and the inhomogeneous
structure of the sample.

The presence of fluid in the region surrounding the crack tip might be one of the reasons
behind the behaviour observed. Since the rate-dependent effect is predominant in the steady-state,
when the external work is converted into fracture energy for crack propagation, we have decided to
focus on the crack-tip zone only, leaving aside the whole process of contact and indentation. In this
way, we can explore the influence of rate on fracture of porous materials without the complexity
of contact interactions. However, we should recall that crack propagation in steady-state cutting
can be treated as an equivalent fracture problem only in the case of autonomous propagation,
which exists if the wire diameter is above a limit value. This aspect was explained and shown
quantitatively in the quasi-static condition (elastic material) in §3.4, and here we consider that
the same arguments apply with energy dissipation as well. The geometry is illustrated in Fig.4.3:
it consists of a large rectangular plate of height 2 = 50mm and width w = 20mm, containing
an edge-crack of length 4 = Imm. The normal displacement applied to the plate boundaries was
defined such that the strain rate ¢ is constant

A= (eéf - 1) h, (4.9)

where ¢ = In[(h + A)/h] is the true strain in the direction normal to the crack line.
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a 10 ==100 == 500 mm/min b 0.5 ==5 == 50mm/min
20 — 20 —
a8 7 steady-state § 7 steady-state
2 15— <€ 15
= - [ i
w .~ o | === = - -
S 10 S 10— L -
o Y
[Ty - o —
=y B Ll et — —
£ s/ f- E 5
] &)
o nl /A —
O 71 T 1 T 1 0 | | |
0 5 10 15 0 10 20 30
Displacement D (mm) Displacement D (mm)

Figure 4.2 Experimental wire cutting force-displacement profiles, at different rates. a Results for a
10% w/w gelatine with a 0.05mm wire diameter (adapted from Forte et al. [Ref.45]) and b for human
brain tissue with a 0.16mm wire diameter

The poro-hyperelastic model

Both the brain tissue and the biopolymeric gelatine are considered as soft porous solids with fluid,
whose constitutive behaviour is described by an hyperelastic model for the solid skeleton and
fluid interaction is included by means of a law of fluid flow. The main ingredients of the poro-
hyperelastic model are introduced below, limited to the aspects of interest for the numerical im-
plementation. For a more detailed formulation of the poroelastic theory, the reader is referred to
the Appendix A.2.

Following Biot’s theory of poroelasticity at finite strains !, the stress state in a porous solid in
the reference configuration can be characterised by the second Piola-Kirchoff stress tensor S and
the fluid pressure pr. These are work conjugate with the Green-Lagrange strain tensor E and the
variation of fluid content C. In this framework, it is common practice to introduce the notion of
an effective stress tensor S’ related to the elastic solid skeleton, defined by '”°

S =S+ ]JprC, (4.10)

where a positive sign is included because the pressure p is treated as a compressive stress, i.e.
pr < 0.

A hyperelastic strain energy density function W’ can be defined for the solid part, such that
the effective stress §’ is obtained by derivation. It should be noticed that any hyperelastic material
formulation can be included, either given in terms of strain invariants or principal stretches, pro-
vided that it allows compressibility. Indeed, even if we consider both fluid and solid to be incom-
pressible, volumetric deformation will derive from the process of fluid draining during structural
deformation. One of the most used formulation to fit experimental data is the fractional Ogden
model " proposed for hyperelastic compressible materials. We recall here the expression of the
strain energy density function

N

’ 2Wi (zap  yap 5o B i
W =§;a—i2(ﬂ’f+A§+A§ _3)+§%51(]_1)21’ (4.11)
i= i=
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Figure 4.3 Sketch of the model employed to investigate the rate-dependent fracture process
observed in wire cutting of a porous material. The equivalent geometry has an initial edge crack of
length a and is subjected to an opening remote displacement A

where A; are the deviatoric principal stretches, ;, a; and D; are material parameters.

The fluid flow within the interstitial pores is governed by Darcy’s law, which describes the
motion of fluid relative to the solid. In an isotropic porous material, and conditions of fluid
saturation, it is formulated as follows

wW =

_k (Vpr+7eVz), (4.12)
VF

where w is the specific discharge vector, defined as the volume of fluid crossing a unit area of porous

medium, per unit time. k is the hydraulic conductivity (dimensions LT!), v is the fluid specific

weight, pr is the fluid pressure and z is the elevation head. Notice that the hydraulic conductivity

k is related to the fluid permeability Kr (dimension L?) through

k=KpLE, (4.13)

MF
where 7 is the fluid viscosity (dimensions FL727T).
The material parameters employed in the analyses are summarised in Table 4.1. In particular,
those for the gelatine are related to a biopolymer concentration of 10% on the total weight.

Finite element model

The numerical analyses were performed using the commercial finite element (FE) software SIMU-
LIA Abaqus 2017 (Dassault Systemes '?”). Abaqus adopts an effective stress principle to describe
the behaviour of a porous medium, in which the pore pressure pr is treated as an additional nodal
variable. A one-term hyperelastic Ogden model, Eq.(4.11), is used for the elastic response of the
bulk material. In such a case, u defines the shear modulus and the bulk modulus K is related to
the parameter D by

2 2ul+v)

=5 M (4.14)

where v is the Poisson ratio.
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Table 4.1 Mechanical parameters of the poro-hyperelastic model

Variable Gelatine (10% w/w) *4 Brain’’
Shear modulus (Pa) 6.21-103 0.52-10°
Ogden parameter o 2.64 -4.4
Poisson ratio 0.40 0.35
Ogden parameter D (1/Pa) 69 1.3-103
Hydraulic conductivity k (m/s) 1.25-107° 1.57-107°
Fluid specific weight ¢ (kN/m?) 9741 9741
Initial void ratio e (%) 9 2

The fluid flow is characterised by the hydraulic conductivity k, fluid specific weight yr and
porosity ng. The porosity 1 can be specified as an initial condition in the analyses through the
void ratio e, which is related to the porosity by

Hp = —— (4.15)

We have assumed initial conditions of saturation and isotropic permeability. A transient fluid-
stress diffusion analysis is required to simulate fluid flow through the porous material, where the
accuracy of the solution is governed by the maximum pore pressure change allowed in an in-
crement. Different values have been considered for the best compromise between accuracy and
efficiency. 4-node quadrilateral plane strain hybrid elements, which include pore pressure, were
employed for the bulk material. Boundary conditions were specified in terms of displacements
(top and bottom forces are prevented from lateral motion), and in addition on the pore pressure
degree of freedom. A condition of draining, enforced by setting the pore pressure equal to zero,
is specified for the vertical free edges and the edge-crack surfaces in contact with atmospheric
pressure. The FE model is illustrated in Fig.4.4a.

Fluid draining in the crack-tip region

The main purpose of the analyses is to understand if fluid draining affects the crack-tip region,
when the critical condition corresponding to the onset of crack propagation is reached. With
respect to the assumptions on energy dissipation and toughness introduced above (§4.1.2), we
assume that the rate-dependence is due to fluid particles migrating from the bulk material towards
the crack-tip. In other words, we are considering the effect of dissipation and of the loading rate on
the crack driving energy G(¢), whereas the fracture toughness is assumed equal to I'y. The critical
condition of incipient propagation is then expressed by Eq.(4.4). A preliminary analysis on the
elastic material is employed to investigate the critical condition for crack propagation. In such a
case, the energy release rate can be evaluated through the /-integral in a contour surrounding the
crack tip, and the critical condition is attained when | = T'y. At this point, we can also extract the
critical stretch Ag.

The results are illustrated in Fig.4.4b-c, where we show the contours of the fluid pressure pp
in the gelatine and in the brain tissue, for three different strain rates &, extracted at the stretch Ag.
The region considered is the crack-tip dissipative zone, whose radius, from Eq.(4.3), is in the order
of 10™°m in both materials. To this purpose, we must clarify that the gelatine intrinsic toughness
I’y was obtained from the wire cutting tests at quasi-static rate (see §3.1.2), which yielded a value
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4.2. Fluid diffusion in brain tissue and mimicking hydrogels

of 'y = 1.1Pam. Unfortunately, we did not have enough experimental data to obtain a reliable
value of the same parameter in the brain tissue. In the analyses, I'j of human brain was fixed
arbitrarily such that the crack-tip dissipative regions in both materials had approximately the same

extension.
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Figure 4.4 a Model of an edge-crack in a poroelastic solid. The blue edges are those with drained
boundary conditions. Contours of the pore pressure pr at constant stretch A = A, for different strain
rates, in the gelatine (b) and the brain tissue (c)

The red regions correspond to the drained or relaxed condition (pr = 0) whereas the blue
regions are affected by fluid flowing in the pores. When loading is applied, in both cases the solid
is saturated and there is only an infinitesimal zone close to the tip of the existing crack where the
fluid pressure is zero. As time goes by, this region increases in extent until the critical condition
is attained. It can be seen that, independently from the rate, the greater permeability of gelatines
allows for a rapid draining of the whole crack-tip region. On the contrary, it appears that fluid
takes a longer time to drain the same area in the brain tissue, where permeability is much lower.

To discuss the implications of dissipation due to fluid draining, we can assume that fracture
is affected only if such process occurs within the crack-tip region in times comparable to those
required for crack propagation. Let f denote the time measured from the instant of load application
to the onset of crack propagation. By comparing it with the time of poroelastic relaxation #;
Eq.(4.7), we are able to distinguish the following cases:

* t < t;: this situation occurs at very fast strain rates or reduced permeability, when fluid
diffusion is too slow to be effective. We have undrained conditions in the crack-tip region,
so that the material behaves as an incompressible solid. It applies to the brain tissue at high
strain rates;
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4. Fracture in rate-dependent porous biomaterials

e t =~ t;: this case corresponds to intermediate situations when fluid drains the crack-tip
region in a time range comparable to that leading to crack propagation. It applies to the
brain tissue at moderate strain rates;

* t > t;: finally we have the limit case of slow strain rates or very permeable materials. As
draining is fast, the drained region is large compared to the crack-tip zone so that relaxation
is ineffective with respect to fracture. We can assume that the material behaves as an elastic
solid. This is the condition that we find in the gelatine.

In Eq.(4.7) the material permeability enters indirectly through the diffusion coefficient Dp,
which in hydrogels is usually very small'°. In the absence of experimental measures, we can use
the following definition derived from the linear theory of poroelasticity ' "

_ 2u(1-v)Kg

D - 7
P2 e

(4.16)

where Dp represents a generalised consolidation coefficient in the spirit of Terzaghi’s formulation,
that is, in the case of uniaxial strain with the assumption of both fluid and solid incompressibility.
Approximate values are Dr ~ 107°m?/s in the gelatine and Dr ~ 1071%m?/s in the brain tissue.

Since fluid draining is a dissipative process, it is reasonable to assume that crack propagation
is affected by the phenomenon, at least in the brain tssue. The known effect of dissipation is an
enhancement of the material toughness, which is reflected for instance in an increased value of the
stretch corresponding to fracture”. With respect to the poroelastic model considered, in regions
with fluid the effective stress is smaller than the same areas in drained conditions, Eq.(4.10). At
the onset of crack propagation, this results in a lower value of the crack-driving energy, which is
therefore also affected by rate. There is a further step, though, that is far from trivial: even if we
can compute the strain energy per unit area within the crack-tip region (for instance, through the
J-integral), this does not represent the real fracture energy because of the dissipation*’. One way
to overcome this problem would be to include crack propagation analysis within the FE model
through cohesive elements deployed ahead of the existing crack, so that the critical condition given
by Eq.(4.4) is automatically verified by the cohesive law. Unfortunately, when we have tried to
employ cohesive elements with coupled fluid-stress analyses, we could not obtain any acceptable
result, probably due to the lack of a pore pressure variable in the formulation of the cohesive
elements adopted. Interface elements with a dedicated pressure degree of freedom '’ might be
considered in future analyses of poroelastic fracture.

With these limitations, what we present below are the results obtained from the FE analyses
where the strain energy per unit of crack surface is computed from the /-integral in a contour
surrounding the crack-tip region, and hence includes dissipation. In Fig.4.5a, the normalised
J-integral in the crack-tip region is obtained at the constant stretch A for different strain rates.
In Fig.4.5b we have considered the situation when | = TI'g, and plotted the critical stretch A
normalised with respect to the quasi-static value Aj. As expected, no difference with respect to
the elastic quasi-static situation is observed in the gelatine, which therefore behaves as an elastic
relaxed material. The situation looks different in the brain tissue, where both the strain energy
and the critical stretch are affected by rate. Since | does not provide the correct value of the
energy release rate G(¢), we cannot consider these stretches as the real ultimate stretches of the
material. However, our results point out the effect of fluid draining in the crack-tip region of
porous materials with reduced permeability.
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Figure 4.5 Fracture in a poro-hyperelastic material. a Strain energy per unit area in the crack-tip
region, normalised by the fracture toughness I'y, and b applied stretch, normalised by the critical
stretch in quasi-static conditions A,. Both are plotted as a function of the strain rate ¢ (logarithmic
plot)

A direct confrontation with the experimental wire cutting is not viable. Firstly, brain tis-
sue showed evident signs of viscoelastic behaviour during compression and indentation-relaxation
tests 1%, so that a contribution on the crack-related dissipative region coming from bulk viscoelas-
ticity might also exist. This point is addressed in §4.4. Moreover, our analyses have considered
the effect of the strain rate on the onset of crack propagation and not the relationship between the
measured fracture toughness and the crack velocity during propagation, which is what it is nor-
mally measured in experiments”’. It is reasonable to assume that the bulk behaviour is the same
at the onset and during crack propagation (typically, once a crack is initiated it takes fractions of
a second for tearing to complete '), particularly in pure shear specimens where the results are
independent on the crack length. Still, we have no means of establishing an analytical relationship
between the strain rate and the crack propagation velocity. As the mechanism of propagation is
governed locally by the number of cross-links that fail in front of the crack tip, the obvious effect
is that higher strain rates result in a faster propagation. However, this holds true below a certain
limit, above which the crack velocity stays constant irrespectively of the strain rate ''°. It should
also be noticed that the crack propagation velocity is not constant in a specimen of the type used
in our analysis, whereas during steady-state cutting the crack velocity is controlled by the rate of
insertion, and can be treated as constant.

4.3. Process zone model for biopolymeric gelatines

Although the numerical analyses employing the poro-hyperelastic model could not directly link
fracture toughening to the crack propagation velocity, they seem to suggest that fracture of gelatines
is not affected by rate. The reader might object that this is not consistent with the experimental
wire cutting (Fig.4.2a), where the steady-state force (hence, the fracture toughness) seemed to
increase with the insertion rate. Among the sources of energy dissipation in porous materials
(§4.1.1), bulk viscoelasticity cannot be considered for gelatines, which show almost no sign of
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viscoelastic relaxation in compression and indentation tests, and loss angles measured from the
rheometric curves are below 0.1%4. The only possibility is that rate-dependence is inside the local
process zone. Here we recall a model of fluid draining of the process zone, which was presented in
Forte et al. **. While the existence of a similar mechanism in the brain tissue, and possibly in other
mimicking hydrogels, cannot be ruled out, this model is related to the specific rate-dependence
observed in gelatines. An illustrative sketch is provided in Fig.4.6.

crack tip ———=

cohesive zone

Figure 4.6 Sketch of the process zone model showing the rate-dependent cohesive zone l,,. During
crack propagation, fluid flows through the circular pores of diameter & with a pressure gradient which
is equal to 0,,,,/1,. The enlarged microstructure of a 10% w/w gelatine is adapted from Djabourov 36

The model is based on the following assumptions:

* the process zone is drained by fluid flow in the pores of the solid matrix, which are considered
as circular pipes of diameter &;

* the draining region is represented by a single pipe and assumed equal to a cohesive zone of
length lp;

¢ the flow of fluid is driven towards the crack-tip by the pressure gradient —dpg/dx;

* steady-state conditions are assumed, so that the crack velocity v and the fluid average velocity
itp are equal;

¢ the cohesive stress 0,,,, and the fracture energy I' change with rate but the crack-tip opening
displacement 0, is constant.

Under the assumption of plane strain conditions, the motion of fluid within the process zone
is approximated with a one-dimensional laminar flow through a circular pipe of diameter &. The

mean fluid velocity is
- 52 dPF
=——1|—]. 4.1
" T 3o, ( dx *17)

The fracture process is governed by a linear cohesive law within the process zone, relating the
fracture energy I'(0) to the cohesive stress 0,,,,,(0)

I'(v) = %omﬂ(v)éu (4.18)
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Table 4.2 Parameters of the cohesive zone model in quasi-static conditions

Variable Gelatine (10% w/w)*4
Cobhesive stress 0y, (Pa) 74-10°
Fracture toughness I'y (Pa m) 1.1

Cohesive critical displacement 6, (mm) 0.30

Fluid viscosity g (Pas) 1-1073
Average pore size & (nm) 80

while the length of the cohesive process zone is given by '*
1 T(w)E

lp(v) = —

. (4.19)
670 G,y (0)°

In steady-state crack propagation we assume that the total stress within the process zone is
constant, 0y, + Pr = const, so that the pressure gradient driving the fluid flow and the cohesive
stress gradient are equal and opposite

d
Um_ax — _ﬁ' (4.20)
dx

Combining Eqgs.(4.17)-(4.20) and assuming that the crack propagation velocity v is the same
as the fluid mean velocity iif, we obtain the expression of the rate-dependent fracture energy

(Es 05
_ *[ EOc NF 05
I'v) = 5( o ] oo, (4.21)

The previous equation describes a toughening power-law with the crack velocity, the value of
the power being 0.5 which agrees with the experimental findings**. Figure 4.7 shows the fracture
energy I'(v) in the gelatine 10% w/w, together with the size of the cohesive process zone lp(v).
The relevant parameters are reported in Table 4.2, while the results are shown in Fig.4.7

It is evident that this model is incorrect below certain velocities (in the limit of v — 0, one
needs to recover the quasi-static toughness I'g). According to the poroelastic theory, at low crack
velocities the size of the drained region R, Eq.(4.8), gets larger and completely surrounds the
process zone, so that the fluid flow does not affect fracture (region A in Fig.4.7). We propose to
correct the curves by considering the crack velocity at which I'(v) = I'y, which for this material
corresponds approximately to vg = 3.5mm/min. Below this value, the material is assumed to
be in a drained state and the cohesive properties are those of the elastic material in quasi-static
conditions. According to Eq.(4.19), increasing the velocity of crack propagation reduces the size
of the cohesive process zone with respect to the quasi-static value /9 (dashed line in Fig.4.7). In
this range of propagation velocities, the flow of fluid in the pores explains the enhanced fracture
toughness (region B in Fig.4.7). The phenomenon becomes inefficient when the size of the process
zone is smaller than the characteristic size & of the polymeric material '*® (chain spacing), which
sets an upper limit to the crack velocity.
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Figure 4.7 Rate-dependent fracture toughness I'(v) (thick line) and cohesive process zone length ,(v)
(dashed line). The continuous black line is obtained from Eq.(4.21) when v < vy. The shaded region
in the plot shows the quasi-static condition (a) whereas the remaining part (b) is for velocities v > v,
when the fluid draining mechanism is effective

4.4. On the effect of viscoelasticity

In the previous sections we have provided a theoretical and numerical explanation to the effect
of fluid draining as a dissipative phenomenon in fracture of soft porous materials. We still need
to discuss the role played by bulk viscoelasticity. In particular, human brain displays evidences of
viscoelastic relaxation during compression tests and hysteresis when loaded and unloaded**. The
contribution of viscoelastic relaxation during fracture might therefore be relevant.

4.4.1. Numerical analysis of viscoelastic fracture

We have performed FE analyses on the brain tissue using the same model shown in Fig.4.3 and de-
scribed in Section §4.2.2. Although viscoelastic relaxation might be coupled with fluid diffusion,
we have considered them separately in the numerical analyses. This choice was partly motivated
by the will to separate the effect of different dissipative mechanisms on the fracture energy.

The visco-hyperelastic model

The model her employed is derived from the theory of viscoelasticity at finite strains (see the
Appendix A.3). The instantaneous elastic response is assumed to follow the Ogden hyperelastic
compressible model, Eq.(4.11). Stress relaxation is described by a generalised Maxwell model,
given in terms of a normalised Prony series

N
gt) = g + E gie M, (4.22)
=1

where g; are the Prony constants, with g, representing the long-term normalised shear modulus,
and ¢; are the relaxation times.
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Table 4.3 Parameters of viscoelastic relaxation of human brain

Human brain tissue >’

1 & & h(s) k() t3(s)
0.6 0.1 0.16 0.5 20 200

Furthermore, we assume that only the deviatoric part of the stress is affected by relaxation.
With respect to the reference configuration, the second Piola-Kirchoff stress tensor S is split ac-
cording to

S =JpC!+5, (4.23)

where p is the hydrostatic pressure and S is the deviatoric stress, defined in Eq.(A.57).
The deviatoric stress changes in time according to

N
S(H) = g0 S + D, 8iSi(), (4.24)
i=1

where §;(f) is the deviatoric viscous stress in each term of the Prony series, according to Eq.(A.88).

Numerical results
The numerical analyses were performed using the commercial finite element software SIMULIA
Abaqus 2017 (Dassault Systemes 7).

A transient quasi-static analysis is re-
quired to simulate time-dependent material
behaviour neglecting inertia effects. 4-node

=
\S)
|

— quadrilateral plane strain hybrid elements were
employed for the bulk material. Boundary
conditions were specified in terms of displace-
ments (top and bottom forces are prevented
from lateral motion). The viscoelastic proper-

o
o

ties of the material are taken from the experi-

o
N

mental measures on human brain reported in
Forte et al. "’. The relaxation constants ¢; and
t;, obtained by a third-order Prony series func-
tion fitting the rheological data, are shown in
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o
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o
[\)
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001 01 1 10* 10* 10° Table 4.3. The resulting variation of the shear
Time (s) (log) modulus y(#) is illustrated by the black line in
Fig.4.8.
Figure 4.8 Relaxation of the shear modulus u(t) with Following the same logic of the previous

respect to the instantaneous modulus . The

coloured squares are related to the brain tissue, with
different strain rates ¢ (in min~!). The characteristic - S e
times correspond to crack propagation in the FE tour surrounding the crack-tip dissipative re-
analyses gion. The results are shown in Fig.4.9a and in

Fig.4.9b, in terms of the ratios J/T'y and A/A.

At lower strain rates, it seems that the strain energy within the crack-tip region is modified with

analyses with the poro-hyperelastic material,
we have computed the /-integral in a con-
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4. Fracture in rate-dependent porous biomaterials

respect to the elastic reference case, but surprisingly this does not result in a substantial effect in
terms of the critical stretch when | = I'y. We might need to explore the role played by stress
relaxation, and to this purpose we have computed the times required to achieve the condition
J =T in the FE analyses. By plotting them on the relaxation curve of Fig.4.8, we can appreciate
that the coloured squares corresponding to low strain rates (¢ < 10min~!) fall in the region with
U/t < 0.5. In other terms, the material has a considerably lower shear modulus with respect to
the elastic response. On the contrary, at higher strain rates the material complies to its instanta-
neous elastic behaviour, and it is reasonable to assume that the onset of crack propagation is not
altered with respect to the elastic case.
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Figure 4.9 Fracture in a visco-hyperelastic material. a Strain energy per unit area in the crack-tip
region, normalised by the fracture toughness Ty, and b applied stretch, normalised by the critical
stretch in quasi-static conditions Ay. Both are plotted as a function of the strain rate ¢ (logarithmic
plot)

4.4.2. Interaction of viscoelastic and poroelastic relaxation

We have not performed FE analyses using a coupled poro- and visco-hyperelastic material model.
Instead, we prefer to bring forward a physically based reasoning to explore the interaction of vis-
coelastic relaxation and fluid draining in the fracture process, each contribution being identified by
a characteristic time. Viscoelastic relaxation results from conformational changes of the material
network and is characterised by a time #,, which, contrary to the characteristic time of poroelastic
relaxation £, is a material parameter. For instance, in a simple Maxwell model the time of vis-
coelastic relaxation is given as the ratio between the viscosity coefficient and the elastic modulus.
Comparing the viscoelastic time with a typical observation time t we can distinguish two limit
conditions: when t < t,, the material is unrelaxed, whereas for t > ¢, relaxation is completed.
In both cases, the material is elastic, although in the latter case the long-term modulus might be
much smaller than the instantaneous modulus.

Let us introduce an observation time f and a characteristic length R. We still define # as the time
measured from the instant of load application to the onset of crack propagation. The characteristic
length R is the radius of the crack-tip dissipative region, Eq.(4.3) (Fig.4.1). If we compare the
observation time with the viscoelastic relaxation time f; and the poroelastic relaxation time ¢,
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4.4. On the effect of viscoelasticity

Eq.(4.7), we can derive a qualitative chart of the interaction in crack propagation. The results are
shown in Fig.4.10. A similar chart was developed by Hu and Suo '®! for general processes not
related to crack propagation. The observation time ¢ is compared with the viscoelastic relaxation
time on the horizontal axis and with the poroelastic relaxation time on the vertical axis. According
to our definition, #, is the time needed to drain the crack-tip zone. The coloured bands are those
where dissipation might affect the process of crack propagation, whereas in the corners we have
the limiting conditions. In particular we can distinguish:

°t> f,and t > ty (V2-P2 in the chart): both the viscoelastic and poroelastic relaxation
are completed when crack propagation begins. The material behaviour is elastic with the
long-term modulus and drained conditions;

ct > t,and t < ty (V2-P1 in the chart): the viscoelastic relaxation is completed but
poroelastic relaxation has not yet started when crack propagation begins. The material
behaviour is elastic with the long-term modulus and undrained conditions;

°txtyand t < t (V1-P1 in the chart): both the viscoelastic relaxation and poroelastic
relaxation have not yet started when crack propagation begins. The material behaviour is
elastic with the instantaneous modulus and undrained conditions;

ct<xt,and t > ty (V1-P2 in the chart): the viscoelastic relaxation has not yet started but
poroelastic relaxation is completed when crack propagation begins. The material behaviour
is elastic with the instantaneous modulus and drained conditions;

Some of the limiting conditions might be purely theoretical. To check the implications on
real situations, we have explored the scenario in the brain tissue and in the biopolymeric gela-
tine. To this purpose, we have obtained the observation time t from the finite element analyses
reported in the previous sections. The characteristic time of poroelastic relaxation ¢, is obtained
through Eq.(4.7), where R is computed in the elastic material through Eq.(4.3) and Dy is given
by Eq.(4.16). In the brain tissue, the characteristic time of viscoelastic relaxation ¢, is taken from
the relaxation curve, as that corresponding to a reduction of 50 % of the initial modulus. From
the Prony series (Fig.4.8), we find f, ~ 1s. We have not characterised the viscoelastic behaviour of
the gelatine, but it is reasonable to assume its relaxation time ¢, three orders of magnitude larger
than that of the brain, so that the response is always elastic.

Six points are shown in Fig.4.10, obtained at different loading rates. Firstly, we observe that
only one is related to the gelatine. Gelatines display an elastic behaviour with negligible viscoelas-
tic effects. The rate-dependent failure observed in the experiments is due to the local process
zone, whereas with respect to the bulk dissipation here considered they showed no effect. More
specifically, they reasonably behave as elastic materials in drained conditions. With respect to the
brain tissue we find five points at various strain rates falling within the plot. At low strain rates
(green dot in the upper-right corner) the behaviour is elastic, with both viscoelastic and poroelastic
relaxations completed at the onset of crack propagation. Increasing the rate of loading, crack prop-
agation begins when both the relaxation processes are happening, and it is reasonable to assume
that both result in energy dissipation affecting the crack-tip region.

The above discussion is grounded on the assumption that rate-dependence originates from
bulk dissipation, and that a single relaxation time might describe the viscoelastic response. A
more refined quantitative evaluation of the interaction of viscoelasticity and fluid draining is not
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Figure 4.10 Graphic representation of limiting conditions and interaction in crack propagation of
viscoelastic porous biomaterials, where both the time ¢, for poroelastic relaxation of the
crack-related zone and the time t, of viscous relaxation are shown. The coloured dots are related to

numerical results in the gelatine and the brain tissue. The strain rate ¢ (min_l) is displayed below
each dot

trivial. With respect to the role of fluid on the fracture process, we are confident that the poro-
hyperelastic model implemented in the finite element analyses (Section §4.2.2) provides a reliable
explanation of the fluid-induced toughening. The fact that poroelastic relaxation requires longer
times with respect to viscoelastic relaxation has sometimes led to the conclusion that fluid draining
can be neglected, at least for medium-high loading rates. While this holds true when consider-
ing the response of a material in compression, the characteristic length of the poroelastic process
during fracture is much smaller. As a consequence, fluid draining might occur in times which are
comparable to those typical of viscoelastic relaxation. With respect to the role played by viscoelas-
ticity, it is not clear if neglecting the rate-sensitivity of the process zone is the more appropriate
description of the viscoelastic behaviour during fracture. In other terms, while the relaxation ob-
served in compression tests on human brain and similar mimicking hydrogels*” is the result of
bulk dissipation, crack propagation might require to consider ad-hoc models for the disintegrating
material ahead of the crack tip *®. This might help to explain while the numerical analyses did
not provide any meaningful result with respect to the viscoelastic dissipation.

86



Detailed numerical analyses of
cutting

1 have been led to some elementary conclusions about research itself. Firstly, the fact that a theory
appears to work does not mean that it is true. Secondly, even simple, carefully-selected, systems are

often difficult to understand.
Alan N. Gent
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C utting simulations in complex materials, such as the biological tissues and mimicking com-
pounds analysed in this thesis, requires refined numerical models capable of describing the

20 A o
1827184 " Among several alternatives,

material behaviour and the interactions with great accuracy
high resolution finite element analyses can provide a reliable means to understand, analyse, and
predict the processes occurring during indentation and cutting. In this chapter we consider two
different problems, both of interest in the field of bioengineering, materials science and robotics:
wire cutting and needle insertion in soft biological tissues. The results presented in this chap-
ter are limited to the non-linear elastic behaviour without rate-dependence, due to the inherent
complexities of numerical implementation.

A promising approach for accurate simulations of damaging and failure of materials, includ-
ing biological tissues, is the cohesive zone model, used in combination with the finite element
method 185,186

finite element model: a smeared approach and a discrete element-based one. The latter, which

. There are two major techniques of implementing a cohesive zone in a numerical

is adopted in this thesis, consists of inserting cohesive interface elements between the standard
continuum elements. Since cohesive and regular bulk elements share common nodes, the dam-
age process described by the cohesive model is coupled to deformation occurring in the bulk
material '*’. Cohesive elements have been used extensively in delamination and crack propaga-
tion analyses, with specific techniques to allow for random propagation paths'**~'"", and less
frequently applied to cutting '’ =194 The purpose of §5.1 is to delineate the main features of
the cohesive zone model, with emphasis on its application to cutting. We should also mention
that many other computational techniques, dealing with damage and rupture of soft tissues, are
available '””: among them, the extended finite element method (XFEM) '’*'", meshless meth-
ods'”®, CutFEM ' and crack phase-field approaches (CPFA) “*". Limitations exist when contact
constraints, in the form of prescribed displacements, are enforced on the crack surface, as actually
happens in cutting simulations.

In §5.2 we consider the problem of wire cutting in a soft elastic material. Cutting with a wire
is part of the methods devised to reduce cutting forces and global deformation in the material,
and is well-established in the food processing industry and to measure material parameters in

soft materials'”"

and biological tissues. Due to the reduced contact area offered by the wire,
a significant drop of the cutting forces is obtainable with respect to the traditional techniques.
The mechanics of wire cutting is simpler with respect to other techniques, therefore it is the best
candidate to analyse and model the various stages occurring in the indentation and penetration of a
soft material. Working within a two-dimensional framework, the initial deformation is followed by
crack propagation driven by a symmetric opening mode, with limited effects of friction. Motivated
by some experimental results of wire cutting on brain tissue and mimicking hydrogels “***, we have
performed detailed FE analyses of the whole process. Firstly, we consider the indentation stage
adopting a contact mechanics approach derived from the solution of a half-space with normal
line loading”"". The effects of large strain are observed in this and other indentation problems of
highly compliant solids /%:?*0%2"-

The subsequent stage of crack propagation is treated with the cohesive zone model approach.

> and are discussed with respect to their role on crack initiation.

In §5.3 we consider the problem of deep needle penetration in a soft elastic material. Nee-
dle insertion is a common process in several fields of biology and medicine. Minimally invasive
procedures are gaining widespread use in surgical applications, such as endoscopy, laparoscopy,
percutaneous surgery and robot-assisted surgery. The small size of the incisions is possible thanks
to the use of needles and catheters which are inserted in soft tissues. This has significant benefits,
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in terms of a reduction in the healing times, reduced risk of infection and a global containment
of the overall cost of treatment and care. However, needle insertions in delicate organs need to be
precise and accurate, and reaching a specific location may involve complex trajectories instead of
straight paths. The solution comes from needle steering, which can be achieved through differ-
ent techniques, including magnetic control, heating using optical fibres, external manipulation,
pre-curved and nested cannulas, flexible devices with asymmetric tips”’*. A recent alternative
consists in the so-called Programmable Bevel-tip Needles (PBNs), flexible probes possessing four
interlocked segments and a bevel tip. Thanks to the asymmetric tip and a programmable offset
between the segments, PBNs are capable of 3D steering in brain and similar mimicking materi-
als?>~?"". Our purpose was to develop a refined algorithm to model the two-dimensional inser-
tion of needles in soft materials, with an accurate description of the contact interaction and the
damaging process. The main novelty is related to an iterative procedure to simulate crack propa-
gation along unknown paths, which has allowed us to consider in detail the steering capability of
PBNs. In addition, the technique provides an alternative to low resolution models of tool-tissue

. . 208-212
1nteract10n”% 212

213-215

, with cohesive elements used to model damaging and propagation in the soft
tissue

5.1. Modelling crack propagation with the cohesive zone model ﬂ

The condition for crack propagation in cutting of elastic materials is formulated following the
energetic approach presented in Chapter §2. As long as other sources of dissipation are neglected,
cutting and crack propagation in fracture mechanics are energetically equivalent. The energy
required for crack propagation in elastic materials is defined by the strain energy release rate G,
that in the steady-state cutting is provided by Eq.(2.6).

Differently from standard fracture mechanics problems, cutting requires material failure to be
captured in a way that enables tool-material interactions, taking into account not only the prop-
erties of the substrate but also the tool geometry. With respect to the mechanism of propagation,
we have assumed that a fundamental role is played by the tip sharpness, related to a characteris-
tic size of the tool. Focusing on the autonomous crack propagation, which happens in what we
have defined blunt conditions (§2.2), a crack is propagated in front of the tool under a symmetric
opening mode. Among the available numerical methods to simulate crack propagation, we focus
on the Cohesive Zone Model (CZM), which is suitable for linear and non-linear materials and can
be used in combination with the contact constraints imposed during cutting. A two-dimensional
illustration of the CZM in a cutting problem is presented in Fig.5.1, where (11, f) characterise a
local reference system centred at the crack tip.

According to cohesive models, the process zone is lumped into a line ahead of the crack tip and
includes the damaging mechanisms through a stress-displacement relationship (Fig.5.1b). The size
of the cohesive process zone I, in quasi-brittle materials is given by '

ET
leoh = 55—, (5.1)

max

where E, 0, and I are, respectively, the Young’s modulus, the maximum cohesive stress and
the fracture toughness of the material. An additional length [, 44 is embedded in the numerical
formulation of CZMs, because a finite stiffness K prior to the onset of cracking is required for
mathematical convergence. While of no physical meaning, an initial finite stiffness gives rise to
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elastic deformations which modify the system compliance '*°.
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Figure 5.1 a The cohesive zone model applied to cutting. A single point on the crack line is shown in
three consecutive stages of insertion. b Sketch of the CZM concept. The cohesive stress ¢ decreases
from o,,,, to zero along the process zone length I, with the crack opening displacement §,, rising
from 0., to 6., at which the crack opens. The initial length I,44 corresponds to an additional
compliance introduced in numerical implementations of the cohesive model. ¢ Bilinear cohesive
stress-displacement relationship for quasi-brittle materials, which is assumed equal in both normal
and tangential directions

The stress-displacement law relates the traction ¢, to the relative opening displacement 6,
between the upper and the lower crack surface (Fig. 5.1b). A similar relationship could also
be employed for the tangential direction, in case that the material failure occurs with a shearing
mechanism. The choice of a proper stress-displacement law depends on the type of damaging
mechanism occurring in the material. In quasi-brittle materials, one of the most common is the
bilinear model, where the onset of damage is followed by a linear softening down to complete
failure (Fig. 5.1c). The stress-displacement relationship of the bilinear model, in both normal and
tangential directions, is written as 216

K;6; 8 < S
_ 65 o
o; = m“m 6max < 6] < 6c 1,]= t,n. (5.2)
0 6] > 0,

The bilinear cohesive law has three independent parameters. Both the fracture energy I' and
the cohesive stress 0, should be obtained from proper fracture experiments. The third parameter
is the initial elastic stiffness K, which in principle should be kept as high as possible in order to
minimise the effects of the additional compliance. The fracture resistance I represents the cohesive
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energy of the material and in the bilinear model it is given by

1
I = Eo_maxét.“ (53)

With respect to a point ahead of the cutting tool illustrated in Fig. 5.1, initially the crack is
closed and the relative displacement is null or limited to the fictitious elastic part (point A). Once
that the stress reaches the tensile strength 0,,,,, the crack is initiated and the softening part of
the cohesive law describes the progressive damaging of the material (point B). Finally, when the
critical displacement 0, is reached the damage process is completed and the crack is fully open
(point C). Notice that when we refer to the crack tip, we mean the point where 6; — 0, not the
point corresponding to 0.

5.1.1. Cohesive elements in finite element simulations of cutting

With respect to other available methods to simulate crack propagation, cohesive elements are ver-
satile and easy to implement, since it is sufficient to define the stress-displacement law without any
additional fracture criterion. There are, however, some specific aspects to consider when imple-
menting the cohesive zone model to simulate a cutting process. Differently from a conventional
crack propagation problem, cutting imposes additional constraints on the cohesive parameters.
Specifically, the critical displacement 6, is limited by a maximum dimension of the tool, for in-
stance the diameter in wire cutting or needle penetration. Lacking this condition, one would sim-
ulate the unrealistic situation of penetrating into the material without achieving a complete cut.
Moreover, there is one important limitation connected to the mechanics of indentation. When a
tool is brought into contact and deforms the substrate material, a state of compression generally
exists in the region immediately below. Standard normal cohesive laws describe a relationship be-
tween tensile stresses 0,, and opening displacements Oy, therefore it is essential to ensure that the
stress state is not compressive in front of the crack tip. For this reason, cohesive models cannot be
used to simulate fracture initiation after the stage of indentation, unless an artificial tensile state is
created in the material. In the analyses presented in this chapter, this is achieved through a small
notch inserted at the point of contact of the tool with the material.

For a realistic simulation of crack propagation, cohesive elements need to be deployed along
the expected path. When such path is predictable, as for instance in simple geometries or in delam-
ination problems, cohesive elements can be pre-inserted between the bulk mesh elements. This
solution is adopted in wire cutting simulations (§5.2). When the crack path is unknown a priori,
a different strategy is required. Cohesive elements can be placed everywhere in the model so that
the crack might follow the proper path of propagation. Downturns of this method are increased
computational times, poor quality of the resulting crack constrained by the mesh boundaries and
a remarkable reduction of the system stiffness”'”. Alternatively, cohesive elements are inserted
adaptively based on a proper criterion '”: this is the approach adopted in the simulation of needle
insertion presented in §5.3.

One last point is related to the interaction between the cohesive elements and the cutting tool
in simulations with very deformable materials. In particular, when the critical cohesive opening
displacement O, is comparable to the characteristic size of the tool tip, the presence of the tool can
18 While this aspect has not been
directly addressed here, we ensure that the minimum size of the tool tip is sufficiently large to keep
the interaction minimal.

interfere with the cohesive element and lead to imprecisions
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Table 5.1 Parameters of the hyperelastic model in the gelatine and the brain tissue/CH

Variable Gelatine (10% w/w)**  Brain”’
Shear modulus (Pa) 6.21-10° 0.52-103
Ogden parameter « 2.64 -4.4
Poisson ratio 0.40 0.35
Ogden parameter D (1/Pa) 69 1.3-10°

5.2. Wire cutting in soft elastic materials

5.2.1. Numerical model of wire cutting

The analysis of wire cutting, involving deformation, friction and fracture, can be split in an ini-
tial stage of indentation followed by crack initiation and separation. A typical force-displacement
profile begins with the force rising with increasing deformation until the point of failure, which
corresponds to a peak followed by a sudden drop. Typical experimental curves were reported in
Fig.4.2 on samples made of brain tissue and gelatine. Following the point of failure we observe
that the force tends to stabilise at a constant value. The latter stage, denoted as steady-state cut-
ting, involves crack propagation and is employed to derive the experimental measures of fracture
toughness. In addition to numerical models of steady-state crack propagation, we have also con-
sidered the initial indentation in the sound material. We have built two different FE models to
simulate the initial indentation (§5.2.2) and the subsequent stage of crack propagation (§5.2.3).
Only a rate-independent analysis of elastic wire cutting is considered.

An illustrative sketch of the model geometry is shown in Fig.5.2a. The sample is a rectangular
block of height # = 20mm, width w = 30mm and thickness f = 20mm. Rigid wires of various
diameters d, are inserted at low velocities, so that quasi-static conditions can be assumed. The
depth of insertion is at least equal to D = 10d,, and in any case enough for the achievement of
the steady-state. Two different materials have been considered: an elastic gelatine and a sample
of human brain tissue, both modelled as hyperelastic compressible solids. The model adopted is
a one-term Ogden strain energy density, whose parameters were tuned on the results from com-
pression tests on gelatine and human brain (see Table 5.1). The strain energy density function is
given by !’

w:i—‘z‘(A§*+Ag+Ag—3)+%(}—1)Z, (5.4)
where A; are the deviatoric principal stretches, u is the initial shear modulus, @ and D are material
parameters.

Finite element implementation

All the simulations are performed with the commercial FE software SIMULIA Abaqus 2017 (Das-
sault Systemes ' 7). We have considered a symmetric opening mode of crack propagation and plane
strain conditions, which are justified if we take the wire length much larger than its diameter and
the material transversal dimension. Four-node plane strain elements with reduced integration are
employed for the bulk material, whereas the wire is modelled as a rigid surface. The indentation
model is essentially a plane contact analysis at large strains, where we simulate the elastic defor-
mation and stress concentration leading up to failure. Contact interaction is modelled with the
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implicit finite-sliding surface-to-surface formulation, based on contact pairs definition. Frictional
interaction between the wire and the material is defined with a standard Coulomb law and imple-
mented with a stiffness penalty method. The crack propagation model employs four-node cohesive
elements, which are pre-inserted along the propagation path for the whole depth of wire insertion.
As pointed out in §5.1.1, the cohesive model requires tensile opening stresses and for this reason
we had to create an artificial notch on the top surface, without which the stress state below the
wire is compressive (Fig.5.2b-c). We have tested different shapes and notch angles and found out
that they only marginally affect the steady-state force. On the contrary, the force-displacement
profile before crack initiation is inevitably altered.

Convergence of the combined contact-crack propagation problem was the most critical issue
during the analyses. The initial large strain contact requires a regular and well refined mesh on the
top surface where the wire is expected to indent the material. The minimum size of the elements
with respect to the wire diameter, in the range h/d,, = 0.05 — 0.2, was chosen as a compromise
between accuracy and efficiency. In particular, this size is kept constant along the whole cohesive
interface for smoother propagation, so that further increasing the mesh refinement led to pro-
hibitive computational costs. Cohesive elements add additional complexity to the convergence
due to the softening part of the stress-displacement curve. In order to speed-up convergence, time
incrementation was tuned manually and larger-than-default tolerances on the force and displace-
ment norms were required. We have tried small modifications of these parameters to check the
reliability of the results.
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Figure 5.2 a Sketch of the plane model of wire cutting employed in the FE analyses. b Deformed
configuration in the indentation model and (c) in the model for crack propagation. The normal
opening stress contours are also shown (a blue region corresponds to compressive opening stresses

Gxx)

5.2.2. Wire indentation

Let us consider the initial part of wire cutting, when the rigid wire indents the material. If we
assume that frictional forces develop only during the stage of separation, this initial stage of in-
dentation can be seen as a process of strain energy cumulation which eventually leads to failure.

93




5. Detailed numerical analyses of cutting

In particular, from the energetic balance of cutting, Eq.(2.3), we have
FdD = dU;, (5.5)

where the term on the left is the work of the cutting force for an increment dD of wire insertion
depth and dU is the strain energy variation in the elastic solid.

There are two key aspects to consider: firstly, what is the local stress state in the material during
indentation, if we assume an elastic behaviour until the occurrence of failure. Secondly, we need
to discuss the mechanism that generates fracture and how it is influenced by the tool geometry.
Both these points are discussed here with respect to the specific geometry of wire cutting, but the
results could be generalised to other plane problems.

Plane contact problem
We start by considering the problem of a thin wire which is pressed against a large elastic block
under the action of a normal force, applied slowly enough so that quasi-static conditions are re-
tained. Let the wire diameter d,, be the relevant size in this problem, which is much smaller than
the wire length and the sample size. Then we can treat the block as an elastic half-space and assume
plane small strain conditions, so that the solution is provided by the classical Flamant’s problem *"!
(Fig.5.3).

The stress at the point of load application is singular so that a proper stress function for this
problem is given in polar coordinates (r, 9) as

P .
o (r,9) = —;TS sin O, (5.6)

where P = F/t is the load per unit wire length.
Using partial derivatives in polar coordinates we obtain the stress state of a generic point in
the half space. In particular, the only non-zero stress component is

_18(1) 182(]5_ 2P cos 9

= TRIR T T G-7)

Orr

Into rectangular coordinates (X, ), the stress state at a point located at a depth ¢ from the free
surface is

. 2 2P | 2 2
Oyy = Opsin”d = ——sin“ Scos Y, (5.82)
TtCc
2P
Oy = 0pcos?d = —%cos‘l@, (5.8b)
Oyy = Opsind cos ¥ = ——sin Scos®9, (5.8¢)
Tic
and the non-zero principal stress is
2p
01 = ——cos“V. (5.9)
Tic

We can see that the principal stress is compressive everywhere and moreover the stress state is
concentrated below the axis of loading and becomes vanishingly small moving away from the point
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5.2. Wire cutting in soft elastic materials

Figure 5.3 Schematic of the plane indentation of a rigid wire into an elastic material, which is treated
as the line loading on an half-space, where P = F/t

of load application. This suggests that failure occurs with a compression mechanism that is highly
localised, while the bulk material remains elastic and relatively little deformed. However, the effect
of large deformation is not considered, and the contact mechanics solution requires the radii of
the contacting bodies to be relatively well separated. These conditions fail when the penetration
depth approximately exceeds the wire diameter d,. In such a case, the principal stress becomes
positive starting from the wire edges and shifting towards the middle with increasing loads . This
is confirmed from the results large strain numerical analyses, as shown in Fig.5.4.

a Distance x/dw b o D=0.5 dw
0 1 2 3
I | I | I |
= 3
= — =
54 g
A _ a
(0] [J]
B, 7
z g
% _ g A D=10 dw
£ yas £
£ 0—,--=
.
i
_2 —
Flamant D=0.5 dw D=5dw D=10 dw o

Figure 5.4 Indentation of a wire (d,, = Imm) into a compliant elastic solid. a Maximum principal
stress right below the wire at different indentation depths. The dashed line is the analytical Flamant
solution, Eq.(5.9), for ¢ = 0.01d,,. b Contours from the large strain FE model (shown on the
undeformed configuration)

What we notice from the numerical results is that the wire is required to indent deeply to
reach a large tensile stress that can initiate a crack. This is considered to be a typical feature of the

95



5. Detailed numerical analyses of cutting

indentation of materials with low elastic modulus. Some authors have also modelled an additional
action of slicing, which allows to reach the same critical stress at reduced indentation depths v,

Initial indentation and the role of wire diameter

During the indentation stage, the deformation below the wire continues to increase until eventu-
ally a critical barrier is reached. At this point, a crack is initiated and the wire starts to cut through
the material. In the experiments this moment corresponds to a peak in the cutting force, which is
referred to as the critical force for puncturing P... In cutting of elastic materials, failure is a process
where the only relevant dimension is a characteristic size of the tip. In the case of wire cutting here
considered, such a dimension is the wire diameter d,,. We discuss here the results of large strain
FE analyses, where we have changed the wire diameter over a wide range and observed how the
force profile and the local region below the wire were affected.

In Fig.5.5 we show the cutting force F/t with wires of various diameters as a function of the
relative indentation depth D/d,,. The results derive from the model of indentation at large strains,
without any failure mechanism considered. With respect to the indentation depth, it seems that
the force increases linearly in smaller wires but tends to follow a steeper gradient for larger di-
ameters. This might be connected to the influence of the diameter on the elastic strain energy
cumulated during the deformation. In the plots we have also included the value of the force when
the wire indents the material for a depth D = 10d,,, which varies almost linearly with the wire
diameter. The trend is confirmed in both materials, although the cutting force is almost one or-
der of magnitude lower in the brain with respect to the gelatine. This agrees with the difference
between the Young’s moduli of the materials.
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Figure 5.5 Indentation of a wire into a compliant elastic solid: cutting force F/t as a function of the
indentation depth, in the gelatine (a) and the brain tissue (b). Also shown is the force when D = 10d,,
with different wire diameters

In order to understand the real influence of the wire diameter, we need to investigate fail-
ure. Crack initiation relies on the stress-concentrating capability of the indenter, that is, the local
stress distribution in the material right below the wire. We have seen that it is quite complicated
to predict the stress state in a very compliant material, therefore we do not investigate the stress
distribution in detail. Instead, we focus on the cumulation of strain energy leading to crack initia-
tion, which also depends on the wire diameter . We can adopt an approach similar to those used

96



5.2. Wire cutting in soft elastic materials

for crack propagation, assuming that the volume of material whose strain energy participates in
crack initiation is contained in a fracture process zone below the wire of length I, Eq.(5.1). In
the critical condition, the fracture initiation energy I';, is given by the strain energy per unit area
l.ont, whereas the force per unit area provides the critical stress 0;,,. A recurring issue in fracture
mechanics is how to define the fracture initiation energy and if it is related to the energy for crack
propagation, what it is usually considered as the fracture toughness of a material. In our analyses
we have assumed that I’y is equal to the fracture toughness I'g. Then we have computed the
fracture energy from FE models in a contour surrounding the fracture process zone. However, in
a purely elastic material the choice of the contour is not important. This approach is analogous to
the J-integral computation, although in the absence of a crack it describes the simple cumulation
of strain energy rather than a real fracture energy.
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Figure 5.6 Crack initiation in the gelatine material. a Critical depth D, and b critical force per unit
thickness P, as a function of the wire diameter

We show the results in Fig.5.6, in terms of critical depth D, as a function of the wire diameter,
in the gelatine material. The critical depth is obtained from the numerical analyses when the strain
energy per unit area equals I';;. From the numerical analyses we could obtain the curves of the
strain energy with respect to the insertion depth, with wires of various diameters. In order to find
the exact value of D, we first interpolated each curve with a second-order polynomial and then
extracted the exact value at I';;,. The results of Fig.5.6a are illuminating in showing an evident
transition in the critical depth for a specific wire diameter d,,. Following Fakhouri et al.”®, we
assume that the wire diameter affects the size of the fracture process zone, and in particular we
distinguish the following two situations:

* when d,, < d,, the critical depth increases with a power-law dependence with the wire
diameter. This is the so-called energy limited failure. At small diameters the stress is highly
concentrated around the wire but failure cannot occur until there is enough strain energy
in the fracture process zone, that is, until the strain energy per unit area reaches I';;

* when dy, > d,, fracture initiation occurs at an almost constant depth. This is the so-called
stress limited failure. With larger wires, the process zone is larger too and so is the strain
energy per unit area; however, failure requires that the local stress rises up to the initiation
value ;.
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Figure 5.6b confirms the transition with respect to the critical force, which increases almost
linearly with the wire diameter in the energy limited region. To further validate our assumptions
we would need experimental values of the critical force at crack initiation, in particular to check
the fracture initiation energy that we have considered equal to I'y. Fakhouri et al.” obtained a
higher value of T';, with respect to Iy taken from a conventional fracture test. They motivated
this difference as an increased energy needed to initiate a crack with respect to that needed in the
stage of crack propagation.

5.2.3. Crack propagation in the steady-state

Following the point of failure, we assume that a crack is propagated below the wire in steady-state
conditions under symmetric opening displacements. The fracture energy per unit of area is given
by Eq.(2.6) of steady-state cutting, and assuming that the strain energy is negligible due to the
small size of the wire we obtain
F dUy
=—-— (5.10)
t  tda

Crack propagation is described by a cohesive zone model with a bilinear curve for the normal
stress-opening displacement relationship. Reliable experimental values of the rate-independent
fracture toughness I'y and the cohesive stress 0, derive from wire cutting experiments at low
insertion rates and small diameters, as explained in §3.1. These were available for the gelatine **
but not for the brain, which therefore is not considered in the simulations of crack propagation.
The cohesive parameters are reported in Table 5.2.

Notice that the validity of the model is limited to the elastic behaviour of the material. In such
framework, the critical condition for crack propagation is correctly defined by G = I'y. Moreover,
crack propagation occurs under a symmetric opening mode only when the wire diameter is larger
than a threshold value. An approximate value is obtained from the natural radius of an elastically
blunted crack p. = I'¢/E, from which the threshold wire diameter is d;, > 2p, = 0.12mm in
the gelatine. As pointed out in the analysis of the crack-tip zone (§3.4), wire diameters smaller
than the threshold exert a constraint on the elastic crack blunting. The cohesive zone model is
feasible only when a crack propagates under tensile tractions, so the simulations are limited to wire
diameters larger than the threshold.

Results obtained from the FE model are presented in Fig.5.7. The stress contours in the
material near to the wire are shown at three different insertion depths (Fig.5.7a), for a wire of
diameter d;, = 0.5mm. The normal opening stress 0, is tensile in front of the wire from the
very beginning, as consequence of the artificial notch. After the indentation (B and C in the
plots), the tensile stress ahead of the wire increases while the sides are compressed in the same
measure, approximately two times the shear modulus of the gelatine. Due to this high compressive
stress, it is reasonable to expect a relevant contribution of friction on the cutting force after the

Table 5.2 Parameters of the cohesive zone model in the gelatine

Variable Gelatine (10% w/w) **
Fracture toughness I'g (Pa m) 1.1
Cobhesive stress 0,,,, (Pa) 7.4-10°
Cohesive critical displacement 0. (mm) 0.30
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5.2. Wire cutting in soft elastic materials

initial indentation. Moreover, once that the steady-state is reached the stress distribution remains
approximately unchanged for increasing depths. The force-displacement curves in Fig.5.7b have
the typical shape of experimental wire cutting, with the initial increase followed by relaxation and
the horizontal section of the steady-state. The values of the steady-state force are in the range
observed during experiments on the gelatine at low rates of insertion®*. However, the depth
of indentation and the force drop following cut initiation are much smaller due to the artificial
notch. With respect to the wire diameter, we notice that both the indentation force and the steady-
state force increase at larger values. The latter seems to follow a linear trend with the diameter,
although for smaller wire it deviates from linearity, contrary to what was noticed in the experiments
(Fig.5.7¢). At the moment of writing, the reasons of such a discrepancy remain unknown.
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Figure 5.7 FE results of wire cutting in the elastic gelatine. a Normal opening stress contours at
various depths, for a wire of diameter d,, = 0.5mm. b Force-displacement curves at various diameters.
The dashed lines are the average steady-state cutting force. Letters and description are related to

d,, = 0,5mm (red line). ¢ Steady-state cutting force as a function of wire diameter
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5.3. Deep insertion of needles

In this section we present the detailed modelling of needle insertion in soft mimicking tissues,
achieved through a finite element algorithm where the penetration path is obtained through
consecutive insertions of cohesive elements”!?. It can be applied to needles of various geome-
tries and materials, but here we have specifically considered the programmable bevel-tip needles
(PBNs) 29727 The model is limited to a two-dimensional configuration. A sketch is shown in

Fig.5.8a.
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Figure 5.8 a Two-dimensional sketch of the needle insertion in a soft elastic tissue. b Enlarged view
of the tip region, with the programmable offset c, the radius of curvature R and the tip angle 9;. ¢
Detail of the bevel tip with the asymmetric force distribution causing steering (the dashed
configuration is forc =0)

5.3.1. Mechanics of needle insertion

Deep penetration of needles in an elastic material is considered analogous to a cutting process
and described adopting the energetic approach derived in Eqs.(2.1)-(2.6). Accordingly, we can
distinguish three-main stages, which are listed below and shown in the schematic of Fig.5.9.

* Initial indentation: W, = U
The external work is converted into elastic energy due to the deformation of the material un-
der the action of the indenter (region 1). The stage ends when the strain energy is sufficient
to initiate a crack, at a critical depth D,.

o Cut propagation until full penetration: W, = Us + U + Ug
Once a crack is initiated, the external work is also consumed by frictional dissipation and
work of fracture. A drop in the force is observed, due to a relaxation in the elastic strain
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energy (region 2a) and the stage of stable crack propagation under increasing force begins
(region 2b).

o Sliding after full penetration: W, = Uy
When the needle has penetrated the material for the whole depth and breaks through the
other end, another stage of relaxation is observed, with frictional work being the only con-
tribution left (region 3).

Let us focus our attention on the stage
of stable propagation, which according to the

generic cutting model presented in §2.1 is de-
scribed by Eq.(2.4). The relevant longitudinal full penetration
extent of the needle implies that a great part of '
propagation occurs with increasing force. In-
deed, when the needle is longer than the sam-

stable propagation

. . crack initiation
ple height 1 the steady-state cutting cannot be

Cutting force F

|

I

I

|

I

. o D=D :

attained. When the needle is itself deformable, , 1

we might take into account its contribution | b |
to the energetic balance of cutting, through : P33

an elastic strain energy Uy (due to axial and 1 \ |

I I

2a!
I

bending deformation). To a first approxima- .
tion, we can correlate it to the difference be- Displacement D

tween the imposed displacement D and the
P p Figure 5.9 The main stages of through-and-through

effec.twe Vertl?al dlsplacem.ent at t.he. up Deff‘ needle penetration into a soft elastic solid, where the
Typically, during the experiments it is the ver-  needle is longer than the sample

tical displacement D that is monitored, and
only in the case of rigid symmetrical needles we can assume D ~ D g and Ugy =~ 0.

Needle insertion is often treated as an axisymmetric problem with respect to the needle inser-
tion axis, with fracture causing the formation of a ring crack ™. However, the complex geometry
of the PBN and the curved propagation trajectories might require a full three-dimensional model.
We make a simplifying hypothesis to restrict the insertion process to the plane, so that we can
adopt a two-dimensional plane strain formulation. The relevant sizes affecting the in-plane crack
propagation and steering are illustrated in Fig.5.8b-c: these are the needle diameter d, the pro-
grammable offset ¢, the bevel angle v and the tip radius p;. In general, needles advance into the
target material propagating a crack under a combination of mode I and mode II fracture, with a
tangential contribution coming from the sliding forces due to friction. Only if the tip is symmetric
the opening mode I is predominant and the needle follows an approximately straight path. The
first reason why needles with bevel tips follow curved paths is because of the asymmetric force
distribution at the tip, as illustrated in Fig. 5.8c. In PBNs, the resulting tip deflection A and
the radius of curvature R of the needle tip trajectory also depend on the offset ¢ between the two
segment pairs. In practice, this amount of unsupported length behaves as a cantilever beam.

5.3.2. Description of the finite element adaptive model

The simulation of deep needle penetration has been carried out with a finite element (FE) model.
The propagation path followed by PBNs is not predictable a-priori: on the contrary, the path
itself and its curvature constitute one of the major outputs of the analyses. For this reason, we
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have designed a specific iterative procedure to subdivide the insertion simulation in a number of
steps, and insert cohesive elements to simulate an extension of the crack at each step. A detailed
description of the algorithm is presented in this section and illustrated in Fig.5.10.

In summary, the iterative procedure consists of two main parts: the FE analysis and a stage of
post-processing. Each iteration describes the penetration of the needle from the initial configura-
tion (D = 0) to a certain displacement D%, At this point, the FE analysis is interrupted because
a further extension of the crack requires the definition of a new direction of propagation. During
the post-processing, the local fields are employed to implement a proper fracture criterion pro-
posed for mixed-mode propagationn’)’. Subsequently, the mesh is updated in order to allow for
the extension of the crack and to include new cohesive elements. We wish to point out that each
iteration must start from the initial configuration (D = 0), because the insertion of new cohesive
elements alters the global stiffness of the system. These steps are repeated until the planned depth
of insertion is achieved.

Finite element analysis: initial mesh and solution

A finite element model of the initial configuration of the system is built, as shown in Fig.5.11a.
Both the needle and the substrate are modelled with plane strain linear triangular elements, with
refined areas in the contact regions. The minimum element size, in relation to the tip radius of
the needle, was set to hy/p; = 0.5. The element size and mesh configuration have been tested for
convergence in comparison with considerably more refined meshes, in terms of the reaction force
measured at the needle tip. A notch is introduced on the top surface, in order to give rise to a tensile
stress state at the contact point and trigger the opening of the first cohesive elements (Fig.5.11b-c).
The shape of this notch has been carefully designed with respect to the profile of the needle tip, and
its effect was found to be negligible on the force-displacement profiles of the crack propagation
stage and the resulting path of penetration. A radial mesh is designed around the initial crack tip,
where the elements are employed to extract the internal fields needed to implement the fracture
criterion in the post-processing stage. Triangular elements were adopted because of the excellent
flexibility in meshing complex boundaries, although less accurate than higher order elements when
used in regions with complex stress gradients. During the development of the algorithm, we have
employed the freeware mesh generator DistMesh”*’, which provides fast and accurate meshing
tools within a Matlab environment.

Cohesive elements with zero thickness and a bilinear stress-displacement curve, Eq.(5.2), are
employed to simulate crack propagation. In the case of the needle with the symmetric tip (c =
0), a line of ten cohesive elements with reduced strength is initially inserted along the needle
longitudinal axis. With asymmetric bevel tips, only one cohesive element, aligned with the bisector
of the bevel angle @, is inserted to facilitate the penetration. Boundary conditions are applied to
replicate a typical experimental set-up as closely as possible. Specifically, the lateral surfaces of the
substrate are constrained with respect to horizontal motion and the bottom nodes are restrained
along the vertical direction. The needle is prevented from buckling by moving between two rigid
vertical surfaces, which are fixed and frictionless. Vertical displacements are imposed on the top
surface of the needle. A finite strain contact algorithm with Lagrange multipliers is employed to
model the frictional interaction between the needle and the substrate. The full solution of the
system is obtained using the large strain implicit solver of the commercial FE software SIMULIA
Abaqus 2017 (Dassault Systemes '?°). In each iteration, the FE analysis is interrupted when the
penetration displacement D of the needle is such that a critical condition is attained, and further
displacement requires the computation of a new direction of crack propagation.
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Figure 5.10 Flow-chart showing the key steps of the needle insertion algorithm. Each iteration is
divided in the stages of FE analysis and post-processing
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Figure 5.11 a General view of the initial configuration of the mesh (for clarity, the mesh of the needle
is not shown). b Detail ot the near-tip region in the case of a needle with a symmetric tip (c = 0) and
in the bevel-tip needle (c)

Post-processing: fracture criterion and re-meshing
When the needle is inserted into the material, existing cohesive elements are first damaged and then
removed completely, allowing for an extension of the crack. However, to be displaced further the
needle path needs to be determined and hence a proper fracture criterion is required. In particular,
we should define both a critical condition for propagation and the crack kinking angle.

The fracture criterion is based on the crack-tip opening displacement (CTOD). This has been

defined as the relative opening between the crack faces at a fixed distance I behind the current
crack tip. Such distance is related to the material properties and the needle geometry (Fig. 5.12)
through
=P (5.11)
tan &
where a is the bevel angle and p; is the tip radius. As a reasonable assumption, we link the CTOD
to the role played by the tip radius p; in crack propagation by considering 2p; = 0,.,. Equation
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(5.11) is modified in

o _ O max (5 12)
2tana 2Ktana' ’

max

I=

The critical condition is formulated as
o, (I) = cTOD = CTOD,, (5.13)

where CTOD, is the critical crack-tip open-
ing displacement. In this way we are indi-
rectly relating the tip radius p; to the cohesive
law of the material. The importance of this
step is peculiar of the simultaneous presence
of cohesive elements and a cutting tool with

unknown propagation path. With respect to needle tip
other adaptive methods proposed for crack 1

- 190 : crack tip
propagation ", the use of a displacement-

based parameter in place of an effective stress
allows us to consider the relevant influence of
the tip radius and sharpness on the condition t

of propagation (see §3.4).
Figure 5.12 Schematic of the needle tip geometry to

The crack propagation direction can be - -
determine the length I and the CTOD

determined using different crack growth cri-
teria.  Specifically, various energy-based or
stress-based approaches suitable for non-linear materials can be implemented in the algorithm **!.
Here we describe the minimum Strain Energy Density (SED) criterion”*”, which employing the
energy fields is less sensible to the error in the stress evaluation connected to the use of low-order
elements. The kinking angle 9, is found from the direction that minimises the strain energy

density W

oW
(F5)s=s, =0

, (5.14)
W
(F52)s=s, 20

where the second condition states that the point must be a point of minimum of the function
W(9).

During the post-processing stage, strain energy densities are extracted from the Gauss points
of the ring elements and interpolated on an admissible angular range for propagation, based on
the limit in pure-shear loading”*’ (Fig.5.13a). Adopting an angular resolution of 1°, the angle
corresponding to the local minimum of the SED is determined without any constraint on the
existing mesh. Considering the SED contours illustrated in Fig.5.13b, we can appreciate the
effect of the asymmetric tip with respect to a symmetric configuration. When the segment offset
¢ is null, the force distribution on the needle is symmetric with respect to the insertion axis. The
strain energy density distribution is also symmetric and the critical direction corresponds to a
pure mode-I propagation. On the contrary, in bevel tip needles the SED contours are strongly
asymmetric, reflecting the asymmetric distribution of the tip forces.
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Figure 5.13 Illustration of the post-processing stage. a Implementation of the crack growth criterion,
based on the local fields extracted at the Gauss points of the ring elements. The kinking angle 9 is
measured with respect to the needle insertion axis. b Schematic contours of the strain energy
density in the ring elements, in the case of a needle with a symmetric tip ¢ = 0 and for the bevel tip
needle. ¢ View of the crack-tip mesh at the onset of crack propagation and during the re-meshing
stage, when new cohesive elements are added (for clarity, we show the deformed configuration)

Once that the kinking angle is determined, the surrounding mesh needs to be updated to
include the new cohesive elements along the critical direction and adapt to the new position of the
crack tip (Fig.5.13c). The ring of radial elements is shifted with the new crack tip and reoriented
according to the kinking angle, so that two element edges are always aligned with the current
direction of propagation. The path of propagation, i.e. the coordinates of the nodes along the
crack path, are stored at each iteration for the next one, so that in the last iteration the needle travels
along a defined path down to the prescribed depth. In summary, it is only the last iteration that
we consider for the analysis output, with the propagation path determined by the increments in
the crack length that occurred in all the previous iterations. The change of the system compliance
due to the cohesive elements is minimised, although it is not completely avoided. What we have
observed is a small difference in the slope of the force-displacement curves obtained from early
iterations with respect to the last.
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Table 5.3 Parameters of the model geometry and materials

Geometry

Needle diameter d (mm) 8
Needle offset ¢ (mm) 0-50
Bevel angle a (deg) 10
Tip radius p; (mm) 0.5
Sample height /1 (mm) 245
Sample width 2w (mm) 235
Materials

Needle Young modulus Ey (Pa) 01-1-10°
Gelatine Young modulus E (Pa)  14.8- 108
Poisson coefficient vg = vy (-) 0.475

5.3.3. Results: force and steering prediction

The finite element model is based on the experimental setup adopted by Burrows et al. >/, where
two adjacent segments of the programmable bevel-tip needle were advanced equally to create a
fixed offset that was maintained throughout the experiment. The needle is inserted in a large rect-
angular block of soft gelatine with a concentration of 10% by weight, the same material employed
for wire cutting simulations in §5.2 and in Chapter 4. To speed-up the analyses, gelatine was mod-
elled here as a generalised linear elastic and nearly incompressible material, although the algorithm
is equally valid for any non-linear elastic model. The needle is itself elastic and almost incompress-
ible. The relevant parameters related to the geometry and the materials are summarised in Table
5.3. Contact interactions between the needle and the surrounding gelatine are represented by a
coefficient of Coulomb’s friction equal to f = 0.3, taken from similar cutting experiments”'”.
Cohesive elements were assigned a bilinear stress-displacement relationship, Eq.(5.2), both for the
normal and the tangential direction Kj = K fori = j, with i,j = t,n), without any coupling
(Kl~j~ = 0 for i # j). The inital stiffness K was set three order of magnitude larger than the elastic
modulus of the gelatine to minimise the elastic opening. The critical value of the CTOD was
set equal to the displacement 0,,,, corresponding to the cohesive strength of the material. The
cohesive parameters are summarised in Table 5.4.

Several analyses were performed, in order to predict the cutting force and the steering capability
of the needle, and examine deformations and stresses caused in the substrate during the insertion.
Each simulation was run sufficiently long to fully develop the condition of propagation and obtain
a stable curvature of the penetration path (notice that the depth reached falls within the region
2b of Fig. 5.9). In the light of an optimisation of the needle design and insertion procedure,
two parameters were changed between the simulations: the programmable offset ¢ and the needle
material, in terms of its Young’s modulus Ey. A third parameter, the bevel angle o, is also known to
affect the cutting force '’ but is not addressed, since the focus was the peculiar steering mechanism
of PBNs. The main results are presented and discussed below.
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5.3. Deep insertion of needles

Table 5.4 Parameters of the cohesive model

Variable Value
Fracture toughness I'y (Pa m) 1.1
Cobhesive stress 0y, (Pa) 1.5-103
Cobhesive displacement 0,,,, (mm) 1.0
Cobhesive critical displacement 6, (mm) 1.5
Initial stiffness K (Pa/m) 1.5-10°

Symmetrical needle configuration

A symmetrical needle configuration, obtained by setting the offset ¢ to zero, is initially considered.
As already observed, a symmetric needle under the action of a vertical force propagates a crack in
pure mode-1, therefore the penetration path consists of a straight line along the insertion axis. This
configuration is employed to test whether a straight path could also be achieved with the iterative
algorithm.

The cutting force, derived from the reaction force extracted from the top nodes of the needle,
is plotted against the applied displacement D in Fig.5.14a. The needle was inserted for a total dis-
placement D = 65mm but we notice that after approximately D = 20mm the stable propagation
is achieved. In this configuration, the initial deformation is relevant and the peak force is followed
by a sudden drop corresponding to the crack initiation. In Fig.5.14b we might appreciate that

the path is a straight line as expected, although at a closer look there is a minor bend to the right,
probably due to small inaccuracies in the numerical approximation. The contours of the normal
opening stress Oy, (normalised by the shear modulus p1) reflect the symmetry of the cutting process
(Fig.5.14c). During the stage of propagation there is a localised region of compressive stresses, of
magnitude comparable to the elastic modulus of the material, at the transition between the tip and
the needle shaft. Ahead of the needle, a symmetric tensile region ensures that the path propagation
follows the needle insertion axis.

In Fig.5.15 we show the contour plots of the nominal strain in the region surrounding the
needle tip, when D = D, = 65mm. The asymmetric behaviour is again dependent on minor
imprecisions affecting the algorithm at deep insertion lengths. Figure 5.15a is related to the open-
ing strain &, which as expected is tensile ahead of the crack tip while it is compressive near the
edges. In Fig.5.15b we show the effective stress, a measure often associated to damage in biological

Eeff = \/ 2/3 (erznax + Erznin)/ (515)

where €, and &, are, respectively, the maximum and minimum principal strains. The largest

tissues *°, which is defined as

value, not exceeding 20%, provides good arguments for our assumption of a generalised linear
material, as it is reasonable to consider the difference with other more refined hyperelastic formu-
lations to be negligible.

Force-displacement curves

The offset drastically modifies the insertion process, and this is reflected in both the force-displacement
curve and the stress state surrounding the needle. Figure 5.16 illustrates the results for a PBN, with
offset ¢ = 32mm and stiffness ratio Ex/Eg = 16, where Eyy and Eg are, respectively, the needle
and gelatine Young’s moduli. Each simulation with the PBN was carried on until D = 2c, a length
which we have considered sufficient to develop stable propagation and attain a stable curvature of
the propagation path.
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5. Detailed numerical analyses of cutting
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Figure 5.14 Needle in the symmetric configuration (c = 0, ExN/Eg = 32). a Cutting force as a function
of the imposed displacement D. b Schematic showing the penetration path. ¢ Contours of the normal
opening stress o,,/u at the maximum depth of insertion D = 65mm

Compared to the overall characteristic shape of the symmetric needle insertion, the force-
displacement curve in Fig.5.16a shows additional detailed features. The shape of the initial notch
in the gelatine mesh (Fig. 5.11¢) is in this case responsible for the lack of an evident indentation
stage. After an initial linear increase of the cutting force, the small relaxation corresponds to the
completion of the bevel penetration. The curve now enters a first stage of stable propagation, in
which a crack is propagated ahead of the needle tip. The length of this stage is determined by
the offset ¢ and ends when the offset has penetrated for its whole length, i.e. when D = c. The
subsequent part is peculiar of the PBN insertion. When the thicker part of the needle begins to
enter into the material, the cutting force rises with a steep gradient to a maximum, corresponding
to the complete tip-shaft transition. Afterwards, a strong relaxation is followed by a second stage
of stable propagation, which is believed to continue with increasing force until full penetration.

The transition from the needle tip to the thicker shaft is the most critical aspect to consider, in
terms of deformations and stresses induced in the material. In Fig.5.16b we take a closer look to
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Figure 5.15 Needle in the symmetric configuration (c = 0, Ex/Eg = 32). a Contour plot of the nominal
opening strain &, and b and of the effective strain ¢4

the normal stress 0, in the material surrounding the needle, during three consecutive stages of the
insertion (which are also indicated with numbers on the force-displacement curve). The tensile
stress state ahead of the needle tip is similar in the three frames, and the largest value is of the same
order to that observed in the symmetric configuration (Fig.5.14b). However, the distribution is
strongly asymmetric, reflecting the uneven forces acting on the needle tip. A closer look to the
compressed regions provides an insight into the effect of needle insertion, which could not have
been possible with other less refined simulations. For the part of propagation in which only the tip
with the offset is inserted, a compressed region with stresses in the order 0.5 — 0.7y exist near the
tip-bevel transition. Comparing frames 1 and 2 in Fig.5.16b, it appears that the stresses tend to
relax with ongoing penetration. In the third frame we focus on the critical point corresponding to
the peak cutting force. Here the region of compressive stresses is located on the side of the thicker
section of the needle. Such a high compression, together with the resulting frictional stresses, is
feature which needs to be considered carefully with respect to possible damages in the tissue.

Other results are shown in Fig.5.17, where the force-displacement curves are obtained from
the insertion of needles with different offset lengths ¢ and various ratios of the relative stiffness
EN/Eg. The bold numbers in the figures are related to the three stages considered in Fig.5.16.
Notice that the displacement D is normalised with respect to the offset, a choice adopted to obtain
a clearer view of the results. With respect to the needle-gelatine stiffness ratio, (Fig.5.17a) the effect
is rather limited: the curves are simply shifted upwards with stiffer needles. The effect in early
stages (points 1-2) is totally negligible but becomes more evident with ongoing insertion; however,
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Figure 5.16 Programmable bevel tip needle (c = 32mm, Ey/Eg = 16). a Cutting force as a function of
the imposed displacement D. Insets on the plot are taken from the FE model. b Contours of the
normal opening stress o,,/u at three different insertion depths D
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5.3. Deep insertion of needles

at the moment of shaft penetration (point 3) an eightfold growth of the needle Young’s modulus
results in a mere 40 % increase in the cutting force. This point corresponds to approximately
D/c ~1.3. In Fig.5.17b we show the effect of the offset, at a constant stiffness ratio Ex/Eg = 16.
Contrary to the previous case, now the curves are also translated horizontally. The cutting force
is almost unaffected by changing the needle offset, with only minor differences in the slope with
respect to the relative displacement. It appears that the cutting force may not be the most pertinent
variable to monitor when optimising the design of PBNs. Instead, we should consider the effect
of the same parameters on the propagation path.
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Figure 5.17 Force-displacement curves of the programmable bevel tip needle. a Effect of the
stiffness ratio Ey/Eg, at constant offset ¢ = 32mm. b Influence of the offset ¢, at constant stiffness
EN/Eg = 16. Dashed lines and numbers are related to three relevant stages of the penetration

Needle path and curvature
The main feature of PBNs is the curved propagation path followed by the needle during the
insertion, which can be controlled by the programmable offset c. During the simulations, we
have recorded the trajectory taken by the needle tip node. The examples shown in Fig. 5.18 are
obtained from the last iteration of each simulation, when the imposed displacement reached the
maximum depth D, = 2c. It seems that the needle follows an initial linear path before the
occurrence of a deflection point, after which the trajectory assumes a slightly higher curvature.
This fact is further confirmed in Fig.5.19, where the effective tip displacement D g is plot-
ted against the tip deflection A, both normalised with respect to the offset c. Specifically, these
plots explore the influence of the offset ¢ and the relative stiffness En/Eg, and reflect the force-
displacement curves presented in Fig.5.17. Figure 5.19a shows the needle paths for c = 32mm and
different values of relative stiffness. The deflection (point D) is observed in all the cases considered
at the same relative depth D g/c ~ 1.25. On the contrary, when different offsets are considered
(Fig.5.19b), the same point is noticed at various depths. This point corresponds to the completed
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Figure 5.18 Paths of PBNs with different offsets c. The red lines are the paths taken by the needle tip
node at completed penetration D = D,

transition from the needle tip to the thicker shaft (point 3 in Fig.5.17), with an increase in the
bending stiffness of the needle.

A better insight is gained if we consider the curvature 1/R of the needle path, calculated from
the trajectory followed by the needle tip node. The presence of a deflection point, which is not
easily detectable during the experiments, suggests that there is a transient stage during the insertion.
In other terms, the evolution to a stable and constant curvature might require a certain depth to
complete. We have obtained the radius of curvature R from the best fitting circle to the needle
trajectory, estimated using a hyper-circle algorithm '7°. The results are illustrated in Fig.5.20 for
three simulations with different offset ¢ and same stiffness ratio. To smooth out the resulting
trends, we have applied the hyper-circle fitting to a depth span of 5 mm. It is found that initially
the curvature decreases sharply, until the needle has penetrated for a length approximately equal
to the offset c. More importantly, the curvature appears to reach a minimum value at D ~ 2¢
before attaining a stable trend. It appears that the curvature starts to increase again at deeper
penetration but this aspect has not been explored during the simulations because of prohibitive
computational costs. Moreover, it might be that the the behaviour depends on the effect of free
boundaries and a reduced system compliance when the cohesive elements increase in number. In
all the simulations, the points are approximately fitted by a power-law decreasing curve (dashed
lines in Fig.5.20). Here, we retain that the curvature 1/R when D = 2c is the stable value to
consider.

The stable curvature is plotted against the stiffness ratio Ex/E in Fig.5.21a and as a function
of the offset ¢ in Fig.5.21b. Additionally, we also provide the value of the tip angle 9; formed by
the local tangent direction and the needle insertion axis, computed from the first derivative of the
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Figure 5.19 Paths of the programmable bevel tip needle. a Effect of the stiffness ratio Ey/Eg, at
constant offset c = 32mm. b Influence of the offset c, at constant stiffness Ey/Eg = 16. Dashed lines
mark the deflection point D in the trajectories

hyper-circle. The trends seem to suggest a linear dependence of both the curvature and the tip
angle with the stiffness ratio and the needle offset. Specifically, increasing the needle stiffness leads
to smaller values of curvature and tip angle (with a reduction of 83% for both at the extremes
considered). The results obtained in terms of offset dependence confirm the fundamental role
played by such a parameter: for instance, changing the offset from ¢ = 22mm to ¢ = 42mm leads
to a double value of curvature and a five-fold increase in the tip angle.

Opverall, the needle steering capacity seems to be altered by both the relative stiffness and
the offset, confirming similar experimental ﬁndingsZI‘)’Zz’/‘. In particular, the linear increase of
the curvature with the offset ¢ is in good agreement with trends extrapolated from experimental
insertions”** and confirms the validity of the computational model. However, there are still some
limitations that can be observed and should be considered with care during the design. The
penetration of flexible needles is more complex than other cutting processes considered in the
thesis, because of the coupling between the cutting force, the penetration path and the influence
this path has on the overall profile of the needle as it passes through. The limits of the model
are clearly visible when extrapolating the linear relationship between stiffness and curvature (Fig.
5.21a) to the extreme values of Ex/Eg. In practical terms, the presence of a bevel tip results in
a curved trajectory even in the case of a rigid needle (Eyy — ©0). On the other hand, when the
relative stiffness becomes very low, buckling prevents an efficient insertion of the needle in the
material. Similarly, the offset-curvature relationship in Fig. 5.21b breaks down for a zero offset
(which results in a straight path with R — o). At small offsets it is reasonable to assume that a
more complex relationship between curvature and offset is established.
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Conclusions

The work presented in this thesis is related to the topic of cutting in soft materials, with rele-
vant examples in materials science, bioengineering, healthcare and the food processing industry.
Alongside its industrial applications, cutting-based methods are being increasingly used to test the
mechanical response of materials with a soft nature.

In order to develop efficient and reliable computational tools to simulate the process of cutting
in various situations, we have examined the mechanics of cutting in general terms. In particular,
it has been observed that a remarkable importance might be ascribed to the fracture process con-
nected to the separation of elastic materials. This is the foremost reason which motivated us to
centre our dissertation on fracture mechanics, combining theory, experiments and numerical sim-
ulations. Although the behaviour of the materials considered generalises a response typical of a
large group of natural and synthetic soft solids, the applications are oriented towards cutting and
fracture in the brain tissue and similar porous materials.

Human brain shows a complex mechanical behaviour. The response during fracture entails
a relevant influence of large deformations and rate-dependent effects, due both to its biphasic
nature and viscoelastic relaxation. Each aspect has been considered individually in the thesis and
its influence on the fracture process has been discussed in the relevant sections. In this concluding
chapter we summarise the main findings using bullet points for an improved readability, trying to
establishing useful connections among the various part of the thesis.

¢ The mechanics of cutting in materials with an elastic nature is governed in large part by the
energy required to initiate and propagate a crack. In this sense, the basic assumptions do
not differ from classical fracture mechanics and ordinary variables can be used to derive the
analytical models of cutting;

* an example of the previous statement is provided by the steady-state of cutting in a linear
elastic material. Within the small scale yielding hypothesis of linear elastic fracture mechan-
ics, the region where cutting separation occurs is autonomous from any material property or
geometry, save for the stress intensity factor. In such a case, the cutting force may be related
to the stress concentration caused by the tool and the fracture toughness of the material;
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the influence of the tool on the mechanism of crack propagation is arguably a relevant
point in elastic cutting. More specifically, we have shown how a tool sharpness parameter
can be employed to discriminate two different propagation mechanisms. The first, that we
have defined as ‘blunt’ propagation, is an autonomous process, in which the crack extends
ahead of the cutting tool under symmetric mode-I conditions. The second, denoted as
‘sharp’ propagation, is a constrained process which requires the cutting tool to compress the
material in order to provide enough energy to advance the crack;

a corollary of the previous statement is that the definition of sharpness depends both on
a characteristic size of the cutting tool and the material properties. To this purpose, we
have presented experimental results of cutting in two different types of polymeric materials,
showing that the same commercial blade can produce a cut accordingly to the two distinct
mechanisms discussed above. In defining sharpness for linear elastic materials, the relevant
mechanical parameter is the fracture toughness. The characteristic size depends on the tool
geometry, and it might be reasonably correlated to a local radius of curvature at the tool tip;

friction is another feature of cutting worth to be considered, which has a direct effect on the
forces required in practical applications. In this thesis we have focused on the technique of
oblique cutting, in which typically a blade is inclined during the insertion into the material
in order to induce a slicing action which reduces the cutting force;

when cutting is applied to soft materials, large deformations affect the whole process, start-
ing from the stage of indentation. Focusing on the technique of wire cutting, we have
shown how large strains modify the initial contact solution that can be derived in small
strains. The consequence is that the mechanism of fracture initiation is affected by a char-
acteristic size of the tool, e.g. the radius in wire cutting, similarly to the subsequent stage of
crack propagation;

in order to investigate the role of large strains, we have considered the fracture mechanics of
hyperelastic materials. The crack-tip stress fields show different singularities from those in
linear elastic solids and the deformed configuration of cracks is affected by the strain hard-
ening of the stress-strain law, particularly relevant for soft biological tissues. We have also
proposed to extend the concept of tool sharpness, previously introduced for linear elasticity,
to the framework of finite strains. An approximation of the relevant mechanical parameter
distinguishing blunt and sharp propagation in cutting is provided by the natural tip ra-
dius of a blunted crack, defined as the ratio between the fracture resistance and the elastic
modulus of the material;

crack-tip blunting has been identified as a peculiarity of crack propagation in highly de-
formable materials. Combining experimental observations with a numerical model of a
blunted crack, we have clarified the contribution of blunting leading to the enhanced flaw
tolerance displayed by soft materials;

a rate-dependent behaviour observed during wire cutting of human brain and synthetic
mimicking materials suggested that fracture is coupled with energy dissipation. We have
identified two possible sources of rate-dependence in materials with a soft porous nature.
One is related to a volumetric relaxation due to the flow of interstitial fluid within the porous
skeleton. The second mechanism is linked to conformational changes in the elastic network,
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6. Conclusions

resulting in a volume preserving viscoelastic relaxation. We have developed a computational
framework based on the separation of two length scales related to energy dissipation in the
presence of a crack. Namely, these are a process zone at the crack tip and a larger region,
where dissipation originated in the bulk material affects crack propagation. The process
zone has been described adopting a cohesive model, in which the energy derived from a
cohesive stress-displacement relationship along the crack provides the intrinsic toughness of
the material;

* in order to evaluate the role of fluid draining, we have firstly considered a rate-independent
process zone and a poro-hyperelastic model to simulate the behaviour of human brain and
of a biopolymeric gelatine. The results obtained seem to correlate fluid draining within
the crack-related region to energy dissipation, although its effect in terms of the fracture
energy depends on material properties, such as the permeability. In the gelatine material,
analyses and experiments have suggested that the fracture process is highly localised at the
crack-tip. Therefore, we have suggested that the observed rate effects is the consequence of
rate-dependence in the process zone only;

* with respect to the viscoelastic relaxation, an approach similar to that described at the pre-
vious point has been adopted, with the bulk material modelled as a visco-hyperelastic solid.
The impact of viscoelasticity seems to be minimal, at least in the range of loading rates
which can be found in typical cutting or fracture tests. A quantitative assessment of the
interaction between both forms of dissipation has not been carried out. We have proposed
a qualitative view of the combined rate-dependence based on physical arguments, showing
that fluid draining and viscoelastic relaxation might interfere for particular combinations of
material properties and loading rates;

* the use of cohesive models within a non-linear elastic bulk material has been proposed to
model two different problems: the penetration of a rigid wire and the deep insertion of a
flexible needle with an asymmetric, bio-inspired configuration. In the latter example, the
model has proved capable of describing with great detail the complex interaction between
needle and sample material. In particular, a curved propagation path observed in experi-
ments has been reproduced thanks to an adaptive finite element algorithm.

We believe that this dissertation provides an overall picture on the topic of cutting applied to
soft biomaterials, leading towards the development of refined computational tools. Although we
have introduced a simplification by considering separately different effects, we have proposed a
unifying treatment of the cutting process by applying the cohesive zone model, which has proved
capable of describing the complexity of the mechanical response found in biomaterials.

There are, however, specific points that need to be further investigated in the future. With
respect to the rate-dependent behaviour observed in the brain tissue, a better understanding of the
fracture mechanism in terms of its microstructure is desirable. Together with new experimental
tests, this could lead to a precise assessment of the role played by fluid and viscosity during fracture
and, potentially, should allow a reliable evaluation of the fracture toughness of human brain.

With respect to the computational aspects, limitations in the actual model are related to the
mechanism of propagation. Specifically, the numerical simulations are limited to the case that
we have defined as ‘blunt’ propagation, because a damage criterion in the presence of compressive
stress states in the crack-tip region has not been developed yet. In addition, the algorithm proposed
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for needle insertion simulations could be improved by allowing for a rate-dependent behaviour of
the fracture process. The implementation of a full three-dimensional model could be the last step
to achieve an even more accurate computational tool for cutting simulations.

121



Appendices

A.1. Formulation of finite strain elasticity

We here present a concise review of the standard formulation of finite strain mechanics and non-
linear elasticity, limited to the aspects of interest for the present thesis. This section is mainly taken
from standard books on elasticity, such as the monograph by Holzapfel** and others which the
author believes to stand out for easiness of comprehension 2220227

A.1.1. Fundamentals of non-linear mechanics

Let us consider a continuum body, which at a time instant f = 0 occupies the region )y and
at a generic time instant # assumes the configuration Q. With respect to a fixed origin O, a
point P in the continuum body is identified by the vector X in the region (g, which is called
the initial or reference configuration of the body. The same point, at the generic time instant 7 is
identified by the vector x in the current or deformed configuration Q (Fig.A.1a). On the grounds
of this definition, it is common practice to distinguish the material or Lagrangian description,
which observes the motion of a point with respect to the reference coordinates, from the spatial
or Eulerian description, which follows the motion of a point during its evolution in terms of the
current coordinates.

We introduce the vector field @(X, t) which transforms points X on the reference configuration
to places x in the deformed configuration, so that we can write

x=O(X, 1) =X+ UX 1), (A.1)

where U(X, t) is the displacement field in the reference configuration, while we denote u(x, f) the
displacement field in the current configuration, with u(x,t) = U(X, ). For future use we also
define the velocity fields V(X, t) = U and v(x,t) = x = @, where the dot is used for the material
time derivative.

Under the compatibility assumption that the transformation occurs without lacerations or
penetrations, @(X, t) is a one-to-one continuously differentiable function representing the motion
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A.1. Formulation of finite strain elasticity

of the continuum body. Considering an infinitesimal length dX in the reference configuration,
the transformation due to motion is given by

dx = F(X, t)dX, (A.2)

where F(X, t) is a second-order tensor denoted as deformation gradient, having nine components
in three-dimensional problems, which represent the material derivatives of the motion ®

F. = 8@1 _ &Xi (A 3)
7T oX o 0X; '

In general, F includes both deformations and rigid body rotations. The determinant of the
deformation gradient is known as the volume ratio or Jacobian determinant /, and due to the
impenetrability of matter is a positive quantity defined as

detF=] > 0. (A4)

The relevant case of | = 1 corresponds to isochoric deformations, i.e. where volume is pre-
served.

t(x,t,n)

Figure A.1 a Reference undeformed and current deformed configuration of a continuum body. b,
Stress vectors acting on an infinitesimal surface element within the body

Stress and strain measures

Here we present the derivation of strain which is commonly followed in non-linear mechanics.
In the neighbourhood of P, let us consider a line vector dX in the reference configuration, whose
orientation is determined by the unit vector N

dX =dLN, (A.5)
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where dL is the initial length of the unit vector. As a consequence of motion, the vector dX is
transformed into dx, having length d! in the deformed configuration. The squared lengths are

dI2=dXTdX and dP=dxTdx (A.Ga)
The ratio
SN e
~dL -V dxTdx ’

is known as the stretch ratio and measures how much the line element is extended or compressed
along the direction of N, whereby the deformed length of the element is simply derived as dI =
AdL. Notice that A > 1 corresponds to an elongation, while rigid body motions are identified by
A=1.

A recurring measure of strain within the material framework follows from the change in square
lengths. From Eq.(A.6) we have

di? —dI? = dxTdx — dXTdX = dXT (F’F - I)dX, (A.8)
where I is the second-order identity tensor. The quantity in brackets in Eq.(A.8) defines the
second-order tensor E, which is known as Green-Lagrange strain tensor

_ e o leo
E=(F'F-1)=(C-1). (A.9)

The normalisation factor 1/2 is introduced for compatibility with the infinitesimal strain the-
ory and the term C is known as the righr Cauchy-Green tensor. Notice that E is a symmetric
tensor, whose components are expressed in terms of the displacement field as follows (Einstein’s
summation rule on repeated indices is adopted)

Eo- 1{du; . Ju; . duy Ay A10)
72\0X;  9X;  9X;9X;)’ ‘
where we recognise the conventional engineering definition of the infinitesimal strain
L(2w, 2 (A11)
== |=—+—]. .
72 (9Xj 2X;

Combining Egs.(A.7)-(A.9), we obtain

A = V1 +2NTEN. (A.12)

To complete the presentation of the strain measures, we also introduce a spatial measure of
strain, the /eff Cauchy-Green tensor b = FF’, which is often used in the formulation of the
stress-strain relationships.

Now we move on to introduce some measures of stress. For an infinitesimal spatial surface
element on the deformed configuration ds with normal vector n, and the corresponding quantities
dS and N with respect to the reference configuration, we introduce the stress vectors (Fig.A.1b)

t(x, t,n) = o(x,)n, (A.13a)
T(X, t,N) = P(X, t)N, (A.13b)
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A.1. Formulation of finite strain elasticity

where 0 is the Cauchy or #rue stress tensor, related to the deformed configuration, whereas P is
known as the first Piola-Kirchoff or nominal stress tensor, which refers to the force per unit surface
area in the reference configuration. The two are related by

P=JoFT . (A.14)

Contrary to the Cauchy stress tensor, P is not symmetric and for convenience of use we intro-
duce the symmetric second Piola-Kirchoff stress tensor S, which is related to the previous by

S =JFl6F T =FP. (A.15)

Within the linear theory of small strain elasticity, the different definitions of strain and stress
are equivalent, i.e. ex Eando = P = S.

Balance equations

We recall here the well-known principles of mass conservation and balance of linear momentum
for the continuum body. Firstly, we introduce the mass densities with respect to the reference
po (X) and current configuration p (x, ). The total mass of the system is defined as

m:fpo (X)dV = fp(x,t)clv, (A.16)
Qo Q

where dv is an infinitesimal volume element in the current configuration, related to the reference
state through dv = J(X, t)dV. The conservation of mass requires that the total mass is constant,
so that we may write

d
o f p(x, f)do = 0, (A.17)
Q

from which we also have

po(X) = J p(x, t). (A.18)

Now we consider a control volume ), and suppose that mass and energy can be exchanged
through the system boundary. At a certain time £, the total mass in the region is

m(t) = fp(x,t) do. (A.19)
Qc

The conservation of mass for an open system is written as

d
= f p(x, )do = - f p (6 B)v(x, 1) - nds, (A.20)
Q. Pre

where the right-hand term represents the flux of mass entering the control volume through the
boundary dQ).

Let us now consider a system of forces acting on the continuum body, and denote with f =
f(x, t) the body forces acting per unit volume dv in the configuration Q. Moreover, the boundary
dQ) is subjected to surface tractions t(x, t, n) per unit area ds. The corresponding variables in the
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reference configuration are denoted by F(X, t) = Jf(x,t) and T(X,t,N). The balance of linear

momentum is written as

% f pvdo = f flo + f ds, (A21a)
Q Q Q)

d

= f poVdV = f FdV + f TdS. (A.21b)
Qo Qo Pron

By using the divergence theorem and Cauchy’s stress theorem (Eq.A.13), and neglecting iner-

tia, we obtain the well-known equilibrium equations
Vy-o+£f=0, (A.22a)
Vx-P+F=0, (A.22b)

where the symbol V denotes the gradient vector and the operation V - (@) computes the divergence
of (), in the current or reference configuration.

A.1.2. Isotropic hyperelastic behaviour

To represent the material behaviour of soft matter, non-linear constitutive theories are formulated
within the framework of finite strains. Among the most popular theories, hyperelasticity is based
on the existence of a strain energy density function, representing a Helmholtz free-energy per unit
volume W = W(F). The first Piola-Kirchoff stress tensor is obtained by derivation as

p IWE

A2
5F (A.23)
and the Cauchy true stress can be derived from the inverse of Eq.(A.14)
JW(F)
=] 1—FT. A.24
o=]" g (A.24)

A more convenient formulation might be derived in isotropic materials, for which the strain
energy density can be written in terms of the strain invariants. Let us consider the right Cauchy-
Green strain tensor C, whose invariants are expressed by

L(C) = tC, (A.252)
12(C) = 1(aCP - (C)], (A.25b)
I5(C) = detC = J2. (A.25¢)

Because the left Cauchy-Green strain tensor b has the same eigenvalues of C, i.e. the squares
of the principal stretches A,, @ = 1,2, 3, the invariants for b and C are equivalent, and in terms
of the principal stretches are

I(C) = I;(b) = A2 + A3 + A3, (A.26a)
L(C) = I(b) = A2A3 + A2A2 + A313, (A.26b)
I3(C) = I3(b) = A2A313. (A.260)
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A.1. Formulation of finite strain elasticity

The strain energy density for an isotropic hyperelastic material is a function of the strain in-
variants W = W(Iy, I, I3), from which the second Piola-Kirchhoff stress is computed as

S 2 IW Iy . IW I, . W L]
9l 9C 9L, dC 9, dC|
2[(&W aW) IW oW ]

on hon |1m 5L S oS (A27)

and its spatial counterpart Cauchy stress tensor follows from the transformation in Eq.(A.15)

N [ AL AL PR L SR (A.28)
o=\ thon )P LYt '

Note that the strain energy density functions must satisfy the normalisation condition, i.e.
W(F = 1) = 0, so that zero initial stress is assumed and the strain invariants are [; = I, = 3 and
I3 = 1. Moreover, strain energy densities increase with deformation, so that W(F) > 0.

An additional formulation of the hyperelastic strain energy density function is given in terms
of the Green-Lagrange strain tensor E, which is work conjugate to the second Piola-Kirchoff stress
tensor. In this case we may directly obtain

IW(E)

S=—7%

(A.29)

The Saint Venant—Kirchhoff model is an example of this formulation. Basically, it is a simple
extension of the Hooke linear model to the non-linear regime. Although not suitable to describe
the large strain behaviour of materials, we report here its expression for consistency with the linear
theory, and because it is used in computational mechanics when a linear elastic material is modelled
in the framework of finite strains. The strain energy density function for a Saint Venant—Kirchhoff
material is given by

W = W(E) = %(trE)z + uu(E), (A.30)

where A and i are the Lamé’s constants.

Basic homogeneous deformations
It might be useful to derive explicitly the expression of principal stretches, strain invariants and
Cauchy stress components for basic deformations that are recurrent in experiments, namely uniax-
ial extension, equibiaxial extension and pure shear. These three categories are sketched in Fig.A.2,
with respect to an element whose edges are aligned with the unit normals Ny = [1,0, 0]" and
N, =[0,1,0]”. For simplicity, an incompressible behaviour is assumed, i.e. ] = 114515 = 1.
Uniaxial extension (or compression) is characterised by a stretch ratio A in the direction of Nj.
The principal stretches are

AM=A, Ay=A3=A1"172 (A.31)

whereas the strain invariants, from Eq.(A.206), are
=A2+2A71, L =A7?+21, I;=1. (A.32)
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The Green-Lagrange strain, from Eq.(A.12), is

A?-1 1
En = T =& + 58%1, (A33)

where €17 = A —1 is the nominal strain. The only non-zero component of the Cauchy stress
tensor is derived from Eq.(A.28)

W dW
=202 - A ) [=— +A1—]. A.34
o11 = 2( )(811 a5 ) (A.34)
2 2
) : r ".
I I
<A = < \=>
N . | |
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uniaxial extension ﬁ pure shear
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Figure A.2 Sketches of basic deformations of a hyperelastic solid

In an equibiaxial extension, the same stretch ratio A is applied in the direction of Ny and Nj.
The principal stretches are

AM=A=A A3=A72 (A.35)
whereas the strain invariants are
L =2A24+217%, L =A*+2172%, IL;=1. (A.36)
The non-zero components of the Cauchy stress tensor are

011 =0y = Z(Az - /174) (a—w + Azg—w) .

oL E7A (A.37)

A long strip of material which is constrained along the edges parallel to N7 and stretched along
the same direction results in a plane deformation known as pure shear. Therefore the principal
stretches are

Al = /\, Az = 1, /13 = /\71, (A38)
whereas the strain invariants are

Il = 12 =A24+2172 4+ 1, 13 =1. (A.39)
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The non-zero components of the Cauchy stress tensor are

OW JIW
_ 2
011 = 2(A° - )(311 FIA ) (A.40)
IW oW
-2 2
Opp =2(1 - A~ )(0_)11 A 0_)12) (A.41)

Isotropic incompressible hyperelasticity

A large number of polymeric materials, and to some extent biological soft tissues, can sustain large
strains without relevant volume change. For this reason, hyperelastic models that are based on the
assumption of an isochoric deformation have found large use in continuum and computational
mechanics. In order to derive the hyperelastic models for incompressible materials, the strain
energy density is written as

W =W(F) -p( -1), (A.42)

where p is the scalar hydrostatic pressure and the volume ratio is subjected to the incompressibility
constraint | = 1. Similarly, we can obtain the expression for isotropic hyperelasticity in terms of
the strain invariants

W =W, b) - 55 -1), (A43)

where the strain energy density function depends on two invariants, the third one enforcing the in-
compressibility constraint as I3 = detC = detb = 1. Equations (A.27)-(A.28) for incompressible
materials take the form

IW IW IW _ p
S= 2[( oL +1 312) ETA —C- 2C :| (A.44)
W IW\ IW ,

For strain energy densities formulated in terms of principal stretches, we report below the
expression of the principal second Piola-Kirchoff stress

S; = ! + L IW (A.406)
b /\izp Ai dA; '
whereas the Cauchy stress is given by
=—p+A=— A4

Among the most common hyperelastic incompressible models are those derived for the be-
haviour of rubbers, which under isothermal conditions (above the glass temperature) show very
small volume changes under a large hydrostatic pressure. The neo-Hookean (NH) is one of the
simplest available models***, whose strain energy density is given by

W) = £ -3), (A48)
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where the initial shear modulus y is the only parameter and is directly connected to the Young
modulus E by the relation y = E/3 (with the implicit condition v = 0.5 from the incompressibility
assumption).

A slight more general formulation is obtained with the introduction of the second strain in-
variant, whose influence has been clarified in the theory of elasticity '****’. In brief, deformations
that involve a single stress or strain component, as uniaxial extension or simple shear, can be rea-
sonably well approximated by a strain energy density function of the form W(I;), whereas biaxial
deformations might require the introduction of the second invariant. The simplest two-invariant
formulation is the Mooney-Rivlin (MR) model”****", for which the strain energy density is as-
sumed to be a linear function of the first and second invariant

W, L) = & [ath = 3) + (1 - @)(1; - 3) (A.49)

, where & is a non-dimensional parameter lower than 1.

It has been observed that the stress-strain behaviour described by the simpler formulations
becomes inaccurate at large stretches (usually, above A = 1.2 — 1.3 in rubber-like materials).
Specifically, the increasing slope of the stress curve due to the strain hardening phenomenon,
which occurs at large stretches in rubbers but considerably earlier in some biological materials,
cannot be described properly. Phenomenological models for strain hardening materials are those
which reflect the limited chain extensibility of the molecular chains within their formulation. A
famous example is given by Gent model >’

W(I,) = _Hm n(l _h 3), (A.50)
2 Jm

where [, is a dimensionless parameter that reflects the maximum allowable strain connected to
the limited extensibility, and takes different values depending on the specific material. Although
initially devised to model the strain crystallisation of rubbers, it has also been applied to biological
materials such as the arterial tissue, which typically have low values of the limiting parameter J,,,
(0-1 as opposed to 10-100 for rubber) ***.

Another well-known strain-hardening model is the Generalised neo-Hookean (GNH) model,
proposed by Knowles '"*. The strain energy density function of the GNH model is

b n
W(l) = zﬁb {[1 + = - 3)] - 1}, (A.51)

where 1, b and 7 are three calibration parameters. In particular, 7 > 0 controls the influence of
strain hardening.

Finally, we introduce a model which is often employed for its accurate description of the elastic
behaviour of strain hardening polymers and biological tissues: the Ogden model. Instead of using
strain invariants, where only integer powers of the principal stretches appear, Ogden’s strain energy
density is directly formulated in terms of stretches with fractional powers*”’

N
W(Ay, Ap, A3) = ), j

i=1 1t

(AF + 257+ A5 - 3), (A.52)

where N is a positive integer, fi; are the shear moduli and @; are dimensionless constants that can
be fractional.
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Isotropic compressible hyperelasticity
Some materials, although characterised by a bulk modulus much larger than their shear modulus,
cannot be treated as perfectly incompressible. We show here the main equations for compressible
hyperelasticity, which is based on the split between deviatoric (volume-preserving) and volumetric
deformation. The deviatoric component of the deformation gradient and the corresponding right
Cauchy-Green strain tensor are defined as

F = J18F, (A.53)

Similarly, the modified principal stretches and strain invariants can be derived

I(C) = uC =25, (A.54a)
(€)= 51O - (@] = ]+, (A54b)
I;(C) = detC = J2. (A.54c¢)

The strain energy density function in isotropic materials is decomposed as
W(11112/]) = UU)+W(T1/T2)/ (ASS)

where U describes the volumetric elastic response and W the isochoric deformation. Stress tensors
are obtained by derivation; in particular, the second Piola-Kirchoff stress is given by

$= U () N ‘9W(T1/T2)

, A.56
aC dC (A.56)

where the first term represents the volumetric stress and the second term is the deviatoric part S.
The latter is written explicitly as

(A.57)

S =] %Dev (ZM) ,

dC

where we have introduced the deviatoric operator (in the reference configuration), defined by
1 -1
Dev(e) = (o) - 3 [(e): C]C". (A.58)
Finally we obtain
S =JpC!+S5, (A.59)
where p = dU/dJ is the hydrostatic pressure. Equation (A.59) is also employed in constitutive

models of polymeric materials and soft tissues with time-dependent behaviour, characterised by
different relaxation functions for the deviatoric and volumetric parts of the deformation.
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A.2. Formulation of poroelasticity

The foundations of poroelasticity derive from the pioneering studies in the mechanics of soils and
the consolidation theory developed by Terzaghi and Biot'’"**. We start this section from the
general finite strain framework, introduced by Biot himself'*!, and then show the simpler case of
linear poroelasticity as a specific case of this formulation. The main concepts are taken from the
monograph on poroelasticity by Cheng 152,176
model.

and the work by Simon on the poro-hyperelastic

Let us consider a granular material, characterised by a solid matrix and interstitial pores, and
isolate an elementary representative volume V/, distinguishing the solid part Vg from that occupied
by the pores Vp. If fluid is entrapped in the pores and occupies a volume V7, the condition of
saturation is identified by Vp = V. We also define the porosity nf as the volumetric fraction of
the fluid component on the total volume, so that we have

_ Ve

np = (A.60)

In the current configuration ) (Fig.A. 1), we denote with up(x, ) and up(x, t) the displacement
and velocity fields of the fluid, where the dot denotes time derivation. A relative fluid velocity,
also known as specific discharge vector, is defined by

W(Xr t) = ﬂp(ﬁp - ll), (A61)

and represents the rate of fluid volume passing through a unit area of porous medium, per unit
time, in the direction normal to that area.

Now we need to derive the balance equations of the porous material. Neglecting internal
sources of fluid in the representative volume, the conservation of mass requires that the rate of
variation of fluid content is balanced by the fluid exchange between the volume and the outside.
We can express this statement as

% f Cdv = - f w(xf) - nds, (A.62)
o) 20,

where the left-hand integral is the rate of change in fluid content C (defined as the variation of
fluid volume per unit volume of porous medium), whereas the right-hand term accounts for the
volume of fluid passing through the boundary dQ), in the normal direction.

The equilibrium equation of the porous material is analogous to that given in Eq.(A.22a),
whereas to derive the fluid equilibrium we need to consider a law governing the fluid flow within
the pores. Biot’s theory is based on Darcy’s law, which was derived empirically and describes a ther-
modynamic irreversible process controlled by a pressure gradient driven viscous flow. Neglecting
inertia, we can write

Kr
w=—-——V,pr, (A.63)
Mr
where pp is the fluid pressure, Kf is the permeability tensor and 7 is the fluid viscosity.

Although fluid mechanics makes large use of the Eulerian framework, it is more convenient

for porous materials to shift to the Lagrangian approach, in which the material properties can be
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measured more easily. Variables and balance equations are referred to the reference configuration
Q) by means of a correspondence principle . In particular, we define the relative fluid velocity
W(X, t) such that the fluid mass flow rate #i is the same as in the current configuration. In
mathematical terms we can express this condition according to the following equivalence

mp:fppw‘nd5= prFW'NdS’ (A.64)
IQ IQ

where W(X, t) = JF~! w(x, t) with the assumption of fluid incompressibility (o = pgr)-
The equilibrium equation of the porous material is analogous to that given in Eq.(A.22b),
whereas Darcy’s law in Eq.(A.63) needs to be replaced by

JFlw = —&vxpp (A.65)
Ui

with Kor representing the permeability tensor in the reference configuration. This can be related
to the spatial definition of permeability by !

Kor = JF'KF T, (A.66)

A constitutive relationship needs to be specified for both the solid and the fluid. For materials
characterised by a hyperelastic behaviour, suitable strain energy densities W can be written in terms
of the Green-Lagrange strain tensor E and the variation of fluid content C. Specifically, we may

c 152
write

1
W(E,O) = W/(B) + sMC+] -1)", (A.67)
where C = VxW and M is Biot’s modulus. W’(E) is the hyperelastic strain energy density for the

elastic material in a drained state, i.e. when pp = 0. The stress-strain relationship is given by the
following equations

S = IWE) (A.682)
T JE '’ D08,
pr=M(C+]-1), (A.68b)

where 8’ is known as the ¢ffective stress tensor, whereby the total stress S is obtained by adding the
stress in the fluid

_ JW'(E)
- OE

S=8+8; —JpeCL. (A.69)

Linear poroelasticity
The original Biot’s theory
As in the theory of linear elasticity, we can write the strain energy density of a linear poroelastic

15 was derived under the assumption of infinitesimal deformations.

material as

1 2 1
W(El‘]', C) = E (Ku - ?#) E%k + Hfijgji + EM (CZ - ZCVC«Skk) ’ (A70)
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where K, is the undrained bulk modulus. Similarly to Eq.(A.68), the stress-strain relationships
are obtained by derivation as

2 . ,
al’-j =2ue;+ (K - ?[J) Oijexk, with  0j; = 0y + adypr, (A.71a)

pr=M(C-aey), (A.71b)

where K is the elastic bulk modulus, with K = K,,—a?M, and a is Biot’s effective stress coefficient.
When the solid deformation is null, Biot’s modulus is the constant of proportionality between the
fluid pressure and the variation of fluid content C

pr = MC, (A.72)

with the inverse 1/M measuring the change in fluid content due to a variation of fluid pressure.
Biot’s effective stress coefficient « is included in the definition of the effective stress tensor ¢’ to
account for the solid skeleton compressibility (in the limit of @ = 1 we assume an incompressible
solid skeleton).
Darcy’s law, Eq.(A.63), combined with Eq.(A.71b), allows us to derive the following diffusion
equation
1 dpr Keg, Jexk

Moot e T o A7)

where we recognise a structure similar to the equation of thermoelasticity, with the pore pres-
sure field coupled to the hydrostatic deformation of the gel. Notice that in Eq.(A.73) we have
considered an isotropic material, so that Kp = K¢l

A.3. Formulation of viscoelasticity

Viscoelastic materials exposed to a fixed stain are characterised by an instantaneous elastic response
and a time-dependent behaviour defined by a stress relaxation function, or a creep function if sub-
jected to a fixed stress. The mathematical formulation of viscoelasticity summarised here and
adopted in the thesis can be found in standard textbooks (for instance, see Simo”’° and Chris-
tensen”’’). We first introduce the fundamental equations in the limits of linear viscoelasticity, as
they are easier to manage, and then move to the finite strain formulation which is suitable for large
strain analyses and non-linear viscoelastic materials.
The time-dependent stress-strain relationship is written as

t
o(t) = f G(t - 1)é(r)dr, (A.74)
0

where G(t) is a tensor-valued stress relaxation function and ¢ is the strain tensor, where the dot
superscript denotes time derivation. The stress tensor ¢ and the strain tensor € are decomposed
in a deviatoric and a volumetric part as follows

1
c=s+pl, with p= gtr o; (A.75a)

1
e=et gl with ¢=we (A.75b)
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Introducing the assumption of isotropy, the stress can be written in terms of two independent
relaxation functions as shown below

t

t
o) = f G (t — 1) é(t) d + %1 f Go(t - 1) d(7) dt, (A76)
0

0

where e and ¢ are, respectively, the deviatoric strain tensor and the volumetric strain. It is common
practice to express Gy (f) and G, (f) in terms of the bulk and the shear moduli of the material, where

u(t) = Gy()/2 and  K(t) = G,(t)/3. (A77)

A common formulation writes the isotropic relaxation functions in terms of a series of expo-
nentials known as the Prony series

N

K(t) = Koo + Y, Kie i, (A.78a)
i=1
N

u(t) = oo + Y, e, (A.78b)
i=1

where K, and [, are the long-term bulk and shear moduli. Notice that this description repre-
sents a generalisation of the standard Maxwell model with N elements arranged in parallel. For
convenience, we can derive a normalised form; with respect to the shear modulus relaxation, for
instance, we may write

t N
gt = % =90+ E gie M, (A.79)
i=1

where g; are the normalised relaxation parameters and 1 is the instantaneous shear modulus given

by

N
Ho = Hoo + E - (A.80)

i=1

Focusing on the deviatoric component, the stress response is derived from Eqs.(A.76)-(A.78b)
combined with the definitions in Egs.(A.79)-(A.80)

N
s(f) = 2u0 [gme(t) + Egiei(t)]/ (A.81)
P

where e;(t) is the deviatoric viscous strain in each term of the Prony series defined by

t
qm:fNW%umm (A.82)
0
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To derive the formulation of viscoelasticity in finite strains, we start from an alternative ex-
pression of the stress in Eq.(A.81), given by

N
s(H) = so(t) = Y hi(t), (A.83)

i=1

where h; are internal stress variables and sy denotes the instantaneous elastic response. The internal
variables are obtained from the solution of rate equations for a single Maxwell element, written in
the following form

lim by =0 (A.84)

{ h; + t_ihi = giSo

With respect to the reference configuration, the second Piola-Kirchoff stress is split according
to Eq.(A.59), and following Eq.(A.83) the deviatoric stress response is written as

N
S =5y - ), Hi(h), (A.85)
i=1

where H; are internal stress variables governed by rate equations analogous to Eq.(A.84)

t—o0

. 1 =
{ H; + -H; = 8iSo

Omitting the complete mathematical derivation, the deviatoric stress is written similarly to
Eq.(A.81) as

N
3(t) = 8 8(1) + Y 8:8i(1), (A.87)
i=1
where S;(t) is the deviatoric viscous stress in each term of the Prony series, defined by

t _
_ 0
Si(t) = f T/t %dl’. (A.88)

0

Similar equations can be derived in the case of time-dependent bulk behaviour.

A.4. Finite elements applied to fracture mechanics

Finite element (FE) analysis is nowadays a standard computational method in fracture mechanics.
Here we collect some guidelines for a correct use of the FE method, that have been followed in the
numerical examples presented in this thesis in order to ensure a good accuracy of the results***.
The design of a high-quality finite element mesh is the first essential ingredient. In problems
involving the presence of a crack, a fundamental difficulty is posed by the singularities in the strain
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and stress fields, which can be poorly approximated by conventional finite elements. With respect
to the type of element, in two-dimensional problems we have several possibilities. Constant strain
triangles are those less suitable to reproduce the large gradients in proximity of the crack tip, there-
fore they should not be used when the aim of the analyses is to compute stress singularities or the
stress intensity factors. Isoparametric elements (linear or quadratic) provide superior performances
in approximating complex and irregular boundaries, however they also have limitations due to the
crack singularity, which cannot be overcome with a refinement of the mesh. This led to the de-
velopment of special crack-tip elements, to be used to discretise the surroundings of the crack tip
while regular elements can be used elsewhere in the model.

One of the simplest type is derived from a modification of the isoparametric elements through
nodal distorted shape functions that can approximate the crack-tip fields. In quarter-point ele-
ments, the isoparametric quadratic shape functions are modified by shifting the mid-side nodes to
the quarter-point position along the edges of elements pointing to the crack tip. The emergence
of a -1/2 power dependence with the distance from the tip reproduces the singularity displayed
by the strain and stress components in linear elastic materials. In this case, the crack-tip mesh can
consist of refined layers of quadratic eight-node elements and quarter-point elements connected
to the crack tip (Fig.A.3a). However, this configuration reproduces the angular dependence of
the near-field solution poorly, so that the recommended choice is to adopt six-node quadratic el-
ements or distorted eight-node elements arranged in a fan shape around the tip. One side of the
element is collapsed to a point so that the nodes have identical coordinates (Fig.A.3b).

N o ey
1 @‘ ‘

Figure A.3 Finite element mesh at the crack tip. a Isoparametric eight-node elements and
quarter-point elements (QPE) at the crack tip. b Isoparametric eight-node elements with collapsed
tip elements. ¢ Isoparametric eight-node elements with blunted tip for large strain analyses

Various combinations, using collapsed eight-node elements and mid-side node shifting, are
employed to model different material behaviours:

o linear elastic materials. The strain singularity is -1/2. Recommended choice: eight-node
elements with collapsed coincident nodes and mid-side nodes shifted to quarter-point po-
sitions;

o perfectly plastic materials. The strain singularity is -1. Recommended choice: eight-node
elements with collapsed nodes, left free to move independently;

* strain-hardening materials. The strain singularity is proportional to —n/(n + 1) (n is the
strain-hardening parameter). Recommended choice: eight-node elements with collapsed
nodes, free to move independently and mid-side nodes shifted to quarter-point positions.
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A. Appendices

In large strain analyses where singular crack-tip fields are not required, it is advisable to model
the crack tip as a blunted notch with a small radius of curvature, the presence of which should not
influence the results (Fig.A.3¢).

The solution accuracy depends on the mesh refinement through the characteristic size of the
tip elements f and the angular span A9. As general indications we can assume to be satisfactory
elements with /i, comprised between 1/100 and 1/20 of the crack length and an angular span
A9 not larger than 30°. The element size might need to be decreased further if the purpose is
to describe the near-tip singularities under small applied loads, where the zone dominated by the
asymptotic solution is extremely concentrated around the tip.

Stress intensity factors

The stress intensity factor (SIF) in linear elastic fracture mechanics may be obtained from finite
elements analyses employing the expressions of the near field solution, either in terms of stresses
or displacements. With respect to the coordinates (r, 9) we have the following expressions (in

mode-I)
_ o [2mu(r,9)
Ki(r, 9) = 2p4/ = () (A.89a)

_ 0,-]'(1’, \9)
K (r, 9) = Vorr 7oK

where i,j = 1,2 are, respectively, the tangential and normal directions to the crack, and g;(9),
fij(9) are the angular functions.

(A.89b)

The best precision is achieved using the expression in terms of displacements, which are nodal
variables instead of stresses, which are given at the integration points. In particular, using the
opening displacements of nodes located along the crack face we may write

. K |27
K = }gr(l) uy(r, 9 = H)ZNIT, (A.90)

where « is the Kolosov’s constant. Because the results too close to the crack tip might be inaccurate,
it is usual practice to obtain Kj through a linear extrapolation from the mid-range nodes towards
r — 0, provided that these are still within the K-dominated region (Fig.A.4a). Notice that if
we use quarter-point elements, an alternative expression can be derived directly from the nodal
displacements of the quarter-point element**%.

J-integral computation

The J-integral is a line integral that can be applied both to linear and non-linear problems to
evaluate the strain energy per unit of crack surface area. In elastic materials, i.e. when energy
dissipation is negligible, the /-integral is path independent and provides a measure of the crack
driving energy, in the form of the strain energy release rate G. The numerical computation of the
J-integral is based on the energy domain integral methodologyz’”, which is implemented in most
commercial FE software.

A standard definition of the /-integral in quasi-static conditions can be written as**’

81/{1‘
[ = fc (Wn1 - a—xlai]-nj) ds, (A.91)
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A.4. Finite elements applied to fracture mechanics

where W is the strain energy density and #; is the unit vector normal to the contour C.

If the contour C becomes vanishingly small, the numerical solution is problematic, and a
modified definition of | might be introduced. In practice, we consider an area A enclosed by an
inner contour Cy and an outer contour Cy (Fig.A.4b). Equation (A.91) is transformed into

du; aq
J= fA (&—Mo,j»—wali) Sdd (A.92)

where g is a smooth function that is equal to unity on Cy and vanishes on Cj.

In FE analyses, the inner contour Cy is shrunk onto the crack tip and the unit normal vector
is defined to specify the virtual crack extension direction. The boundary of the outer contour C;
should coincide with the mesh edges, and the function g is specified at the nodes of the element
boundaries and interpolated using the element shape functions.

K-dominated /
region

crack X

Stress intensity factor K1

0 0.2 0.4 0.6 0.8 1
Crack-tip distance r/a

Figure A.4 a FE computation of the stress intensity factor K;, showing the optimal range of the
crack-tip distance r/a where to extrapolate the results from. b Sketch of the closed region in which
the J-integral is evaluated, according to the domain integral method
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