

 UNIVERSITA’ DEGLI STUDI DI PARMA

DOTTORATO DI RICERCA IN
"Tecnologie dell’Informazione"

CICLO XXXII

Security in the Internet of Things

Coordinatore:
Chiar.mo Prof. Marco Locatelli

Tutore:
Chiar.mo Prof. Luca Veltri

 Dottorando: Yanina Protskaya

Anni 2016/2019

Contents

Introduction 1

1 Security in the Internet of Things 3
1.1 IoT protocols . 4

1.1.1 Constrained Application Protocol 4

1.1.2 Message Queuing Telemetry Transport 7

1.2 Security in the IoT . 15

1.3 End-to-end authentication and authorization 17

1.4 Data confidentiality . 22

1.4.1 Shared key establishment 22

1.4.2 Private/public values computation 23

1.5 Anonymity . 25

2 Authentication and authorization 31
2.1 Dynamic broker bridging . 32

2.2 Secure dynamic broker bridging 37

2.2.1 Client-to-all-brokers authorization: one token for all brokers 39

2.2.2 Client-to-all-brokers authorization: a token for each broker . 40

2.2.3 Hop-by-hop authorization 42

2.3 Implementation . 44

2.4 Example of use case: MQTT-based Industrial IoT 54

2.4.1 MQTT-based IIoT production systems 55

ii Contents

2.4.2 MQTT-based multi-stage IIoT production systems 58
2.5 Conclusions . 60

3 Network Level Anonymity 63
3.1 Datagram-based OR anonymity 64

3.1.1 System overview . 66
3.1.2 Packet structure . 68
3.1.3 Two-way anonymity path establishment 69
3.1.4 Data exchange . 72
3.1.5 One-way anonymity path mode 74

3.2 Extensions . 75
3.2.1 Dynamic anonymity path association 75
3.2.2 One-to-many communication 76

3.3 Implementation . 76
3.4 Conclusions . 77

4 Application Level Anonymity 79
4.1 Publish/Subscribe-based Anonymity 80

4.1.1 Subscription . 81
4.1.2 Publication . 86
4.1.3 Unsubscription . 91

4.2 Implementation . 95
4.3 Security Aspects . 102
4.4 Conclusions . 103

Conclusions 105

Bibliography 109

List of Figures

1.1 Distribution of IoT systems. 4

1.2 CoAP message format. 6

1.3 An example of MQTT communication. 8

1.4 An example of topic name registration in MQTT-SN. 9

1.5 SUBSCRIBE message format. 10

1.6 SUBACK message format. 10

1.7 REGISTER message format. 11

1.8 REGACK message format. 11

1.9 An example of MQTT broker bridging. 13

1.10 The number of IoT devices (in billions). 15

1.11 MQTT-TLS profile of ACE general scheme. 20

1.12 Shared symmetric key exchange. 23

1.13 Public key lengths. 24

1.14 Required public key length: ECC vs RSA. 24

2.1 An example of dynamic MQTT broker bridging subscription. 34

2.2 An example of dynamic MQTT broker bridging publication. 35

2.3 Multi-broker dynamic bridging. 35

2.4 A client obtains a single token for all brokers. 39

2.5 A client obtains tokens for each broker. 41

2.6 Each entity obtains a token for next hop. 43

2.7 Subscription processing. 45

iv List of Figures

2.8 Unsubscription processing. 47
2.9 Test setup algorithm. 49
2.10 Test client algorithm. 51
2.11 Noise removal and average value calculation. 52
2.12 Implementation tests: Execution time. 54
2.13 A general organization of production resources. 56
2.14 An MQTT-based organization of production resources. 57
2.15 A multi-stage MQTT-based organization of production resources. . 59

3.1 (a) Two-way and (b) one-way anonymity paths. 67
3.2 Packet header structure. 68
3.3 An anonymity path setup. 71
3.4 An example of anonymous UDP data exchange. 74
3.5 An example of one-to-many anonymity path. 76

4.1 An example of subscription process. 83
4.2 An example of anonymous publication. 88
4.3 An example of subscription process. 93
4.4 Anonymous subscription. 96
4.5 Client’s key establishment. 97
4.6 Topic name generation. 98
4.7 Topic name processing. 100
4.8 Publication request processing. 101

Introduction

The Internet of Things (IoT) interconnects billions of heterogeneous devices in an
Internet-like structure extending the current Internet and enabling new forms of in-
teractions between objects. When it comes to integration of IoT systems in such es-
sential fields of life as medicine and healthcare, transportation and manufacturing
control, computer-controlled devices in vehicles, security becomes a crucial aspect
and it is essential to protect communication between IoT devices and the data they
exchange. The constraints of some IoT devices, such as low processing powers, lack
of memory and storage space and limited energy sources, make it difficult to apply
the already existing solutions used in the standard Internet and to implement strong
cryptographic algorithms. In such a scenario, new algorithms and security mecha-
nisms should be designed and the existing well-known methods must be optimized
taking into account the particularities of the IoT environment.

This thesis focuses on the study of security mechanisms for the IoT environ-
ments. In particular, we propose a new authentication and authorization architecture
for MQTT-based IoT systems and novel anonymity solutions working at network and
application levels. The thesis is organized as follows.

In Chapter 1, an overview of the Internet of Things and its most popular pro-
tocols (CoAP and MQTT) is provided. The most required security aspects, such as
end-to-end authentication and authorization, data confidentiality and integrity, and
anonymity, are described, together with the existing solutions aiming at providing
security features taking into consideration the constrained and heterogeneous nature
of the Internet of Things.

2 Introduction

In Chapter 2, end-to-end authentication and authorization in the IoT is studied.
We introduce dynamic broker bridging – a novel mechanism which extends stan-
dard publish/subscribe systems to multi-hop architectures. Three possible approaches
of securing the proposed mechanism through end-to-end authentication and autho-
rization capabilities are considered and analyzed. A use case of application of the
proposed dynamic broker bridging mechanism to an Industrial IoT scenario is dis-
cussed. The proof-of-concept implementation of the proposed dynamic broker bridg-
ing mechanism is described in detail.

Chapter 3 focuses on providing anonymity to IoT systems. In this chapter, we
present a novel anonymization protocol for datagram-based communication. An over-
view of the protocol’s design is provided, and the mechanisms used for anonymity
path establishment and data exchange processes are explained. The protocol has been
specially designed to satisfy constrained scenarios typical for the Internet of Things.
The design of the protocol also implies confidentiality, thus eliminating the necessity
to use any secure communication protocol. The proposed anonymization protocol has
been implemented and tested in order to demonstrate its feasibility.

Chapter 4 describes the results of studying anonymity provision at application
level. In particular, we propose a novel solution for anonymizing publish/subscribe-
based networks. The design of the solution is based on the dynamic broker bridging
mechanism proposed in Chapter 2. According to this anonymization mechanism, a
client creates an anonymity path lying through several brokers and uses this path for
anonymizing messages sent to a remote broker, thus preventing any participant of
the communication process from knowing which topic it, client, is interested in. The
proof-of-concept implementation of the proposed mechanism is described in detail.

Chapter 1

Security in the Internet of Things

If you think technology can solve your security problems,
then you don’t understand the problems and

you don’t understand the technology.

– Bruce Schneier

The Internet of Things (IoT) interconnects billions of heterogeneous devices, de-
noted as "smart objects", in an Internet-like structure, which extends the current In-
ternet, enabling new forms of interactions between objects – Machine-to-Machine
(M2M). The IoT smart objects are embedded with electronics and software. They
may also have one or more sensors and/or actuators. The devices collect various data,
interconnect with each other and exchange the data. Smart objects are often con-
straint, mainly in terms of memory capacity, processing powers and limited energy
sources.

Nowadays, IoT systems are integrated in almost every field of life. The IoT is re-
lated to various applications [1] addressing diverse needs of the society such as smart
city and smart buildings, smart health and smart living, smart transport and smart
energy, etc. Figure 1.1 represents the distribution of the IoT technologies according
to GrowthEnabler analysis1.

1https://growthenabler.com/flipbook/pdf/IOT Report.pdf

4 Chapter 1. Security in the Internet of Things

Figure 1.1: Distribution of IoT systems.

1.1 IoT protocols

IoT communication protocols are the way the devices communicate and exchange
data, which sometimes may include also some security services. IoT protocols can
be classified into two separate categories:

• network and transport protocols which are used for connecting devices over
the network (e.g., HTTP [2], LoRaWAN [3]);

• application protocols which are used for communication at application level
between low power IoT devices (e.g., CoAP [4], MQTT [5], Websocket [6]).

The most preferred application protocols in the IoT applications are Constrained
Application Protocol (CoAP) and Message Queuing Telemetry Transport (MQTT).

1.1.1 Constrained Application Protocol

The Constrained Application Protocol (CoAP) [4] is a specialized web transfer proto-
col for use with constrained nodes and constrained networks in the Internet of Things.

1.1. IoT protocols 5

The protocol is designed for M2M applications such as smart energy and building au-
tomation.

For simplified integration with the web, CoAP has been designed to be easily
translated to/from HTTP, while also meeting some specific requirements of the IoT:
multicast support, very low overhead and overall simplicity. The following features
of CoAP have been proposed by the Constrained RESTful Environments (CoRE)
IETF2 group that has designed the protocol with these main requirements:

• RESTful [7] protocol design which minimizes the complexity of mapping to
HTTP,

• URI and content-type support,

• low header overhead,

• low parsing complexity,

• discovery of resources provided by known CoAP services,

• simple subscription for a resource and resulting push notifications,

• simple caching capability.

Similarly to HTTP protocol, CoAP is based on the REST (Representational State
Transfer) model [7], according to which servers make resources available under a
URL, and clients access the resources using appropriate methods such as GET, PUT,
POST, and DELETE.

CoAP has been designed to use minimal resources in terms of both the devices
and the network. Instead of a complex transport stack, it runs over UDP on IP. A 4-
byte fixed header and a compact encoding of options enables small messages which
lead to no or little fragmentation on the link layer.

The interaction model of CoAP is similar to the HTTP client/server model. How-
ever, machine-to-machine interactions usually result in a CoAP implementation act-
ing both as a client and a server. A CoAP request is similar to that of HTTP and is

2Internet Engineering Task Force. https://www.ietf.org/

6 Chapter 1. Security in the Internet of Things

sent by a client to a server in order to request an action (using a Method Code to
specify the action) on a resourceidentified by a URI. The server then replies with a
response containing a Response Code; this response may also include the resource
representation. However, unlike HTTP protocol, CoAP deals with those interchanges
over a datagram-oriented transport such as UDP in asynchronous way.

In Figure 1.2 the format of CoAP messages is represented. Both for requests
and responses CoAP utilizes a short fixed-length (4 bytes) binary header which may
be followed by a variable-length (0..8 bytes) Token value, followed by a sequence of
zero or more CoAP Options in Type-Length-Value (TLV) format, optionally followed
by a payload that possesses the rest of the datagram.

Figure 1.2: CoAP message format.

The header fields are the following:

• Ver (Version): Indicates the CoAP version number (2-bit unsigned integer).

• T (Type): Indicates whether the message is Confirmable (0), Non-confirmable
(1), Acknowledgement (2), or Reset (3).

• TKL (Token Length): Indicates the length of the variable-length Token field
(0..8 bytes are allowed).

• Code: the first 3 bits represent the message class, the rest 5 bits detail the class.

• Message ID: Is used to match Acknowledgement or Reset messages to Con-
firmable and Non-confirmable messages and to detect message duplication.

1.1. IoT protocols 7

The header is followed by the Token value the length of which varies from 0 to
8 bytes according to the Token Length field. The Token value is used to correlate
requests and responses.

Header and Token value are followed by zero or more Options. Each Option can
be followed (i) by another Option, (ii) by the Payload Marker and the payload or (iii)
by the end of the message.

Following the header, token and options comes the optional payload. If it is
present and of non-zero length, it is prefixed by a one-byte Payload Marker (0xFF).
The payload data extends from after the payload marker to the end of the UDP data-
gram, i.e., the Payload Length varies based on the size of the datagram and the token
and options if any.

A CoAP message, appropriately encapsulated, should fit within an IP packet (in
order to avoid IP fragmentation) and (by fitting into a single UDP payload) needs to
fit within a single IP datagram.

1.1.2 Message Queuing Telemetry Transport

MQTT (Message Queuing Telemetry Transport) [5] is a messaging protocol based
on publish/subscribe pattern that works in IPv4 and IPv6 networks on top of TCP.

A simplified scheme of MQTT communication is depicted in Figure 1.3. A stan-
dard MQTT system consists of clients communicating with a server, usually called
a "broker". A client may be either a publisher of information or a subscriber, and
in some cases both of them. Subscribers are clients that want to receive data on a
specific topic. In order to do this, they send a subscription request (SUBSCRIBE) to
the broker indicating the desired topic name/names. Publishers are clients that pub-
lish information on particular topics. When a publisher has some data to distribute, it
sends a message (PUBLISH request) including those data and the topic name to the
broker. The broker then forwards the information to all clients that have subscribed
to the topic.

In MQTT data are sent in plain text format, even such sensitive information as
username and password. For this reason, the standard proposes to use the Transport

8 Chapter 1. Security in the Internet of Things

Figure 1.3: An example of MQTT communication.

Layer Security (TLS) protocol [8] as a mean of protecting message exchanges pro-
viding authenticity and confidentiality of data exchanged within the system.

MQTT-SN

MQTT For Sensor Networks (MQTT-SN) [9] is a version of MQTT developed for
use in wireless sensor networks (WSN). It has been specially designed for communi-
cation between constrained devices with their low processing powers, small storage
and, sometimes, energy sources limits. The restrictions of wireless communication
environments, such as high link failures, low bandwidth, or shorter message length
have been also taken into account.

One of the important differences from the original MQTT protocol is that in
MQTT-SN specific support for sleeping clients has been added, which allows the
devices to send a message and then go in sleep mode without waiting for an ac-
knowledgement, thus saving energy.

While in MQTT data confidentiality and integrity protection can be provided by
means of TLS, as it is specified in the official documentation, security aspect has not
been deeply described in the specification of the MQTT-SN protocol, so it is a re-
sponsibility of a developer to provide it if needed. Communication in wireless sensor
networks over MQTT-SN, which, in its turn, uses UDP transport, needs other tech-

1.1. IoT protocols 9

niques for making it secure. One possible solution can be use of Datagram Transport
Layer Security (DTLS) protocol [10] that provides security for datagram-based ap-
plications and prevents eavesdropping, tampering, and message forgery, similarly to
TLS. However, using DTLS may cause unwanted outcomes, such as increase of data,
packets and handshake overhead. Another way can be taking care of security at the
application level. This could be done by protecting MQTT topic names and payloads
using proper techniques, possibly based on light-weight cryptography.

Since MQTT-SN is designed for use on very constrained devices, their limita-
tions must be taken into account while designing new or applying standard security
solutions for this protocol.

MQTT-SN topic name registration

An important novelty in the MQTT-SN protocol is the topic name registration pro-
cedure. Due to the limited message size and bandwidth of wireless sensor networks,
in the systems working over MQTT-SN protocol, when a SUBSCRIBE or PUBLISH
request is sent, it does not contain the original topic name value. A special topic
name registration procedure has been introduced to substitute long topic name strings
(those longer than 2 bytes) with a shorter topic id.

An example of a successful topic name registration scenario is depicted in Fi-
gure 1.4.

Figure 1.4: An example of topic name registration in MQTT-SN.

In the provided example, a client C1 subscribes to the topic TopicX on an MQTT-
SN broker and a client C2 publishes a message in that topic. The following actions

10 Chapter 1. Security in the Internet of Things

take place between the clients and the broker:

1. The client C1 sends a SUBSCRIBE message to the broker.

Figure 1.5: SUBSCRIBE message format.

The structure of the message is depicted in Figure 1.5, where:

• Length field contains the size of the message in bytes,

• MsgType is set to value 0x12, which corresponds to the SUBSCRIBE
message type,

• the value of the TopicIdType f lag is equal to 0x0b00, which means the
use of a normal topic name,

• MsgId is the unique identifier of the message,

• TopicName is the topic name to which the client wants to subscribe
(TopicX in the provided example).

2. The broker assigns to the received topic name string a unique (for the com-
munication between the broker and the client C1) identifier topicId1, stores the
mapping record internally, and responds to C1 with a SUBACK message of the
structure depicted in Figure 1.6.

Figure 1.6: SUBACK message format.

where:

• Length field is the length of the message,

• MsgType is set to 0x13, which means subscription acknowledgement,

1.1. IoT protocols 11

• TopicId contains topicId1 value,

• MsgId has the same value that C1’s request,

• ReturnCode is equal to 0x00 ("Accepted").

3. Before publishing a message in the topic TopicX , client C2 sends to the broker
a REGIST ER request with the structure shown in Figure 1.7.

Figure 1.7: REGISTER message format.

where:

• Length field contains the size of the message in bytes,

• MsgType is set to 0x0A, which corresponds to the REGIST ER message
type,

• TopicId value is set to 0x0000,

• MsgId is the unique identifier of the message,

• TopicName is the topic name that is to be registered (TopicX).

4. If the registration of the provided topic name can be performed, the broker
assigns an identifier (topicId2) to the topic, stores the association internally,
and sends to the client C2 a REGACK message of the following structure:

Figure 1.8: REGACK message format.

where:

• Length is the size of the message in bytes,

12 Chapter 1. Security in the Internet of Things

• MsgType is set to 0x0B, which implies a REGACK message,

• TopicId contains topicId2 value, assigned to the requested topic name,

• MsgId equals to the MsgId value sent by the client C2 in its REGIST ER
request,

• ReturnCode is set to 0x00 ("Accepted").

Note that although both the clients are interested in TopicX , the broker can
assign different ids to the same topic name for different clients.

5. The client C2 sends a PUBLISH message to the broker, using the obtained
topicId2 value instead of the original topic name string.

6. Based on the received from the client C2 topic id value topicId2, the broker
obtains the original topic name TopicX . It then retrieves the client C1 from the
subscribers database, maps the TopicX string to the topicId1 value used during
the C1’s subscription, and forwards the PUBLISH message using topicId1 as
the topic id.

If topic name registration procedure failed, the broker returns a rejection code.
Depending on the value of that code, a client may try to request it again later, e.g. in
case of "rejected: ingestion" error, the client mush wait for a certain interval of time
before repeating the topic name registration attempt.

The MQTT-SN protocol also allows using predefined topic ids, which are known
to client’s and broker’s applications in advance.

MQTT broker bridging

Some implementations of MQTT protocol allow configuring a broker as a "bridge",
when it can also act like a client: it connects to other brokers and subscribes and/or
publishes to some, or all, topics on those brokers. An example of an MQTT system
with a bridged broker is depicted in Figure 1.9.

In the provided example broker B1 is configured as a bridge to the broker B2 for
topics TX and TY . Once set up has been done, the initial subscription is performed:

1.1. IoT protocols 13

Figure 1.9: An example of MQTT broker bridging.

1. B1 subscribes as a client to topics TX and TY on B2.

2. B2 processes this request in a standard way, storing the subscription in its
database (B2

′s Database).

3. B1 adds a subscription of the broker B2 to topics TX and TY in its own database
(B1
′s Database).

As a result of these operations, whenever B1 or B2 receive a publication request
(PUBLISH packet) from their clients, they will forward this request to each other. In
the provided example, clients C1 and C2 are the subscribers on B1, while clients C3

and C4 are publishers connected to brokers B1 and B2 respectively. In particular:

4. Client C1 subscribes to topic TX on broker B1. B1 adds the subscription in its
database.

5. Client C2 subscribes to topic TY on B1. B1 stores this information in its database
as well.

14 Chapter 1. Security in the Internet of Things

When client C3 wants to publish some data (message MsgX) to topic TX on the
broker B1, the following steps occur:

6. C3 sends a PUBLISH request containing topic name TX and application mes-
sage MsgX to B1.

7. B1 receives the packet and relays it accordingly to TX subscription informa-
tion from its database: to C1 and to B2. Then B2 relays the message to the
subscribers (except the source B1): none in this case.

When client C4 has some data (message MsgY) to publish to topic TY on the
broker B2, the following steps occur:

8. C4 sends a PUBLISH request to B2.

9. B2 forwards the request to B1, accordingly to TY subscription information from
its database.

10. B1, in turn, forwards the PUBLISH request further to its subscribers: C2 in this
case.

This bridging mechanism allows for sharing a topic among different brokers.
This, in turn, enables:

• creation of clusters of brokers, thus letting clients connected to those brokers
share the same topic;

• creation of MQTT proxying mechanism, in which clients subscribe to a topic
by means of a broker different from the one to which publishers send messages.

• connection to an external network. It this case a broker that belongs to a given
network plays the role of a gateway processing and filtering outgoing and in-
coming messages.

1.2. Security in the IoT 15

1.2 Security in the IoT

The Internet of Things has now become an integral part of our life. The speed with
which the number of IoT devices grows increases from year to year. In Figure 1.10
the graph of the yearly growth in the Internet of Things devices3 is shown.

Figure 1.10: The number of IoT devices (in billions).

Nowadays, IoT devices and technologies are used in nearly every sphere of life.
As increases the amount of IoT devices, so does the variety of domains where they
are applied. When it comes to integration of IoT systems in such essential fields
as medicine and healthcare, transportation and manufacturing control, computer-
controlled devices in vehicles, security becomes a crucial aspect and it is essential
to protect communication between IoT devices and the data they exchange.

IoT systems are highly vulnerable for several reasons:

• many IoT nodes are constrained in terms of energy resources and computing
capabilities, which makes them unable to support complex security schemes;

3According to NCTA – The Internet & Television Association

16 Chapter 1. Security in the Internet of Things

• most of the communications in IoT systems are wireless, and this makes them
vulnerable for eavesdropping;

• the majority of IoT devices are usually left unattended, which makes it easy to
attack them physically.

Security is a serious requirement for all systems that exchange possibly important
data, and standard mechanisms have been defined and are currently used in classical
IP networks and the Internet. However, providing security services in the Internet
of Things is a challenging task. The most important security services that may be
required are:

• end-to-end authentication and authorization,

• data confidentiality,

• data integrity,

• anonymity.

The main constraints of the IoT smart objects, such as low processing powers,
lack of memory and storage space and limited energy sources make it difficult to ap-
ply the solutions that already exist and are widely used in the standard Internet and
to implement strong cryptographic algorithms for protecting data confidentiality. The
majority of exiting solutions providing security for the IoT do not satisfy security
needs completely and/or have large computation overhead. Moreover, new network
architectures and communication protocols appear, which leads to the need of design-
ing novel approaches for providing security in the IoT systems. In such a scenario,
new algorithms and security mechanisms should be designed and the existing well-
known methods must be optimized taking into account the particularities of the IoT
environment.

1.3. End-to-end authentication and authorization 17

1.3 End-to-end authentication and authorization

Authentication is the process of verifying the identity, which is usually required in
order to allow access to confidential data or systems. Authorization is the function of
specifying access rights/privileges to resources.

End-to-end authentication and authorization within IoT systems are one of the
biggest security concerns. It is difficult to use the well-known mechanisms which
usually require certain authentication infrastructures and/or servers exchanging mes-
sages with the nodes in order to authenticate/authorize them. In the IoT environment
those approaches may be not feasible since some constrained nodes are not capable
of exchanging too many messages and/or to store necessary authentication data (e.g.,
certificates).

In literature there are various proposals trying to secure IoT network scenarios.

An architecture for secure communication between constrained IoT devices has
been described in [11]. The proposed solution uses Datagram Transport Layer Se-
curity (DTLS) based on certificates with mutual authentication. A new device called
IoT security support provider (IoTSSP) has been introduces. IoTSSP is responsible
for managing and analyzing the certificates of the devices and for authentication and
session establishment between the devices. The study has also introduced two new
mechanisms: (i) optional handshaking delegation – for communication with a con-
strained device a client performs the handshaking process with the IoTSSP in order
to be authenticated; and (ii) transfer of session – an extension of DTLS that transfers
a secure communication session to the constrained device.

The authors of [12] have proposed an architecture of an IoT-OAuth-based au-
thorization service – IoT-OAS – that targets HTTP/CoAP services to provide an au-
thorization framework, which can be integrated by invoking an external OAS. Due
to the authorization functionality delegation, IoT-OAS achieves benefits consisting in
(i) lower processing load comparing with the solutions in which access control mech-
anisms are implemented on the smart object; (ii) fine-grained remote customization
of access policies; and (iii) higher scalability, since there is no need to perform oper-
ations directly on the device.

18 Chapter 1. Security in the Internet of Things

In [13], an IoT heterogeneous identity-based authentication scheme has been pro-
posed. The authors apply the concept of software-defined networking (SDN) on IoT
devices. Every set of devices communicates with a gateway which supports authen-
tication of the things. The gateways are connected to a central controller that has
access to the central data storage. In order to give access to the things, the authentica-
tion process goes through the gateway and after through the central controller: (i) the
gateway obtains an authentication certificate from the controller, (ii) things register
on the gateway, and (iii) the devices send authentication request to the gateway.

The authors of [14] propose an authorization and authentication framework for
the Internet of Things that exploits the security model of OAuth 1.0a using the
lightweight building blocks of ACE. Due to the self-securing tokens the framework
security does not depend on the security of the network stack. This is achieved by us-
ing signatures on the new tokens obtained from the authorization server and HMACs
on the tokens that have been updated. The authors have used basic PKI functional-
ities for bootstrapping a chain-of-trust between the devices, thus simplifying future
exchanges of a token. In this work, an alternate key establishment scheme has been
proposed for those use cases in which devices are not able to directly communi-
cate. The proposed framework has been implemented and tested, and tests results
have shown that although the initial verification of the fresh tokens is expensive, the
framework offers a strong level of security for IoT devices.

In [15] a light-weight user authentication technique for IoT systems, called Li-
GAT (Lightweight Gait Authentication Technique), has been proposed. This tech-
nique exploits various information that has been collected from IoT devices (such as
subconscious level of user activities) in order to effectively authenticate users while
reducing the resource consumption. According to the proposed scheme, users authen-
tication is performed by extracting and identifying their walking patterns (gait). The
solution has been implemented by the authors on an Android platform to collection
and analysis of accelerometer data of different users. The authentication is done us-
ing various machine learning classifiers. The experiment results have shown that the
proposed technique successfully authenticates users with the accuracy of 96.69%.

A lightweight and privacy-preserving two-factor authentication scheme for IoT

1.3. End-to-end authentication and authorization 19

devices has been presented in [16]. In addition to a password or a shared secret key
as the first authentication factor, as the second authorization factor, the authors have
considered physically uncloneable functions (PUFs). PUFs are the result of the man-
ufacturing process of Integrated Circuits (ICs) which leads to various random phys-
ical variations of the micro-structure of an IC, making it unique. Those variations
are difficult to predict and almost impossible to clone. According to this, PUFs use
their internal structure for provide a one-way function which cannot be duplicated.
Security and performance analysis has been provided and shows that the proposed
scheme is robust against several attacks. The proposed solution is efficient in terms
of computational requirements.

The authors of [17] propose a design and analysis for an authentication hardware
module which allows the use of two-factor authentication based on smart cards in the
IoT. The proposed solution takes into consideration the limited processing power and
energy resources of many IoT nodes. The authors have proposed to exploit ECDH
as the authentication and key exchange scheme. The scheme has been analyzed in
terms of security issues and evaluated under different types of attacks. The proposed
authentication scheme has been implemented and simulated.

The IETF Authentication and Authorization for Constrained Environments (ACE)
working group aims to produce a standardized solution for authentication and au-
thorization required for the access to resources hosted on a resource server in con-
strained environments. They mainly assume that access to resources takes place using
CoAP [18] and is protected by DTLS [19]. An MQTT-TLS profile of ACE [20] has
been specified to enable authorization in MQTT-based publish/subscribe messaging
systems. The proposed schemes use a trusted third party – authentication server –
which is in charge of releasing access tokens to the clients. The clients then use those
tokens for communicating with other entities.

A general scheme of the basic protocol flow of the security mechanism, proposed
by ACE working group, is depicted in Figure 1.11. For the sake of clarity of the
mechanism, the scheme considers a case of successful authorization and message
exchange.

When a client wants to subscribe/publish to a topic on a broker, the following

20 Chapter 1. Security in the Internet of Things

Figure 1.11: MQTT-TLS profile of ACE general scheme.

events occur:

1. The client authorization server (CAS) requests an access token from the autho-
rization server (AS) providing necessary credentials (e.g., client ID and pass-
word). If the client node has enough resources, these steps can be performed
by a client directly.

2. If the AS successfully verifies the access token request and authorizes the client
for performing requested actions on a specified broker, the AS issues an access
token, which may be a reference, a JSON Web token (JWT) [21] or a CBOR
token [22].

3. When the client obtains the token, after the TLS handshake, it transports the
token to the broker via a CONNECT request with the Username field set to the
access token and the Password field set to the keyed message digest (MAC) or
signature associated with the token.

4. When the broker receives the connection request, it verifies the validity of the
token. This may be done locally or by communicating with the AS for intro-
spection.

1.3. End-to-end authentication and authorization 21

5. Based on the validation result, the broker sends a connection acknowledgement
(CONNACK) message to the client. If the broker accepts the connection, it
stores the client’s access token.

6. On receiving a SUBSCRIBE or PUBLISH message from a client, the broker
uses the request type and the topic name to compare against the cached token.
If the client is allowed to subscribe/publish to the topic, the broker stores the
subscription/publishes the client’s message to all valid subscribers of the topic.

A secure communication scheme named MQTT-Auth has been proposed in [23].
The solution is based on the AugPAKE algorithm for setting up a session key and on
authentication and authorization tokens which are used to publish on a certain topic
and to grant access to a specific topic respectively.

In [24] the authors design and implement secure versions of MQTT and MQTT-
SN protocols (SMQTT and SMQTT-SN respectively) in which security is based on
Key/Ciphertext Policy-Attribute Based Encryption (KP/CP-ABE) and lightweight
Elliptic Curve Cryptography is used. ABE supports broadcast encryption that allows
to deliver a message to multiple intended users performing only one encryption.

In [25] an access control system to manage publisher (device node and gateway)
authentication using authentication server for communication over MQTT protocol
has been described. The assumed network architecture is based on fog computing.
Publishers obtain tokens from the authentication server via HTTPS. Moreover, X.509
certificates are used to secure the communication between publishers and brokers.

This thesis contributes to the research of end-to-end authentication and autho-
rization solutions for the IoT, introducing the design of a novel secure broker bridg-
ing mechanism for the systems based on publish/subscribe paradigm. Chapter 2 de-
scribes the proposed dynamic broker bridging mechanism and its implementation in
detail and provides the analysis of possible end-to-end authentication/authorization
approaches. As an example of use case, the proposed mechanism has been applied to
an Industrial IoT scenario.

22 Chapter 1. Security in the Internet of Things

1.4 Data confidentiality

Data confidentiality – is the property that information is not available or disclosed to
unauthorized individuals, entities, or processes [26]. In other words, data confiden-
tiality service must ensure that only authorized users have access to the data.

Confidentiality of the data is usually ensured by encryption of those data. How-
ever, conventional cryptography is not always applicable to IoT systems due to the
devices’ limitations not allowing them to satisfy the storage and/or computing re-
quirements of strong cryptographic algorithms. Since the processing abilities of con-
strained devices are poor, symmetric key algorithms are usually preferred in the IoT
environment. The most important issue related to the use of symmetric cryptography
is the way the secret keys are shared by the (possibly constrained) devices involved
in the communication.

1.4.1 Shared key establishment

The most known approach of exchanging a shared symmetric key over an insecure
channel is Diffie-Hellman key exchange (DH) [27]. A general scheme of this ap-
proach is depicted in Figure 1.12.

When two communicating entities want to share a symmetric key, they perform
the following actions:

1. The entities agree on the key exchange scheme and its parameters.

2. Each entity generates a secret value (also referred as private key).

3. Based on the secret value, each entity computes a public value (public key).

4. The entities communicate to each other their public values.

5. The entities compute a shared secret (symmetric key) based on their own pri-
vate value and the obtained public value. This secret is then used in order to
encrypt and decrypt the messages exchanged between them.

1.4. Data confidentiality 23

Figure 1.12: Shared symmetric key exchange.

This approach allows the communicating entities to exchange all data necessary
for protection of their messages even through a communication channel which is not
protected and can be eavesdropped.

1.4.2 Private/public values computation

Up to recent time, the mostly used public-key cryptographic scheme was RSA. How-
ever, the discovery of particular characteristics of elliptic curves introduced Elliptic-
curve cryptography (ECC), which is based on the algebraic structure of elliptic curves
over finite fields.

The most significant advantage of ECC comparing to RSA is that it requires
smaller keys in order to provide equivalent level of security. In Figure 1.13 are present
the sizes of public values needed for computing a symmetric key using RSA scheme
and ECC scheme.

Based on the data of the table, a graph of Figure 1.14 is built and shows the great

24 Chapter 1. Security in the Internet of Things

Figure 1.13: Public key lengths.

difference between the ECC and the RSA public key sizes. In the provided figure,
symmetric key length of 112 bits is defined by National Institute of Standards and
Technology (NIST) as the smallest allowed for key agreement in order to provide
sufficient data protection until 2030.

Figure 1.14: Required public key length: ECC vs RSA.

To use elliptic-curve cryptography, the communicating parties must agree on all

1.5. Anonymity 25

the elements that define the elliptic curve – the domain parameters of the scheme.
Since this involves computing the number of points on a curve, which is a time con-
suming process and is troublesome to implement, the domain parameters generation
is not usually done by the participants of the communication process. Several stan-
dard bodies have computed and published elliptic curves domain parameters for sev-
eral common field sizes. Those parameters are known as "standard curves" and are
defined in the standard documents: Recommended Elliptic Curves for Government
Use4, SEC 2: Recommended Elliptic Curve Domain Parameters5 and ECC Brain-
pool Standard Curves and Curve Generation6.

In order to exchange public ECC values and compute a secret symmetric key,
Elliptic-curve Diffie-Hellman (ECDH) key agreement scheme can be used in place
of the traditional DH. ECDH allows the entities establish a shared secret communi-
cating over an insecure channel [28]. The obtained key is then used for encrypting
the communication using a symmetric-key cipher.

In this work, we have applied ECDH key agreement scheme for encrypting mes-
sages in the implementation of the anonymization mechanism for communication
over MQTT protocol proposed in Cahpter 4.

1.5 Anonymity

Anonymity is a security service allowing entities to communicate with each other in
such a way that no third party knows that they are the participants of a certain message
exchange. Hiding the fact that communication is taking place between certain source
and destination entities is the biggest challenge of preserving privacy. In a general
scenario, even if the data payload are protected (encrypted), the packet header is usu-
ally transmitted in clear in order to correctly route the packet to the destination entity.
The information included in the header (the source and the destination addresses and
port numbers) discloses which entities are communicating.

4https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
5http://www.secg.org/sec2-v2.pdf
6http://www.ecc-brainpool.org/download/Domain-parameters.pdf

26 Chapter 1. Security in the Internet of Things

Although anonymity is not the essential security service and is not always re-
quired, it is an important topic for research nowadays. Anonymization of commu-
nications may be needed in high-risk environments, e.g., in the military context it
could obscure the real roles of communicating units, their location or their position
in the command chain. Another application of anonymity is individuals’ privacy pro-
tection. Many research efforts have been conducted in order to provide the Internet
communication with anonymity, but little has been done in the context of IoT. Here-
inafter, some solutions for providing anonymity for communications in the Internet
of Things, which differs from the standard Internet in terms of both communicating
nodes capabilities and communication system architecture characteristics, that have
been already proposed are considered.

Secure and Trust Anonymous Communication protocol for IoT (STAC) is pre-
sented in [29]. The protocol is based on lightweight key agreement protocol, the
Identity Based Encryption (IBE) and Pseudonym Based Encryption (PBC). It has
been applied in clustered network to achieve anonymity and trusted communication
for sender, receiver and link between them, thus guaranteeing the privacy of nodes
identities and the secrecy of data. The protocol works in several steps. First, a Pri-
vate Key Generator (PKG) – a trusted central authority – chooses the parameters for
private keys generation. Then, the Base Station (BS) broadcasts those necessary pa-
rameters to all nodes in the network. When a node obtains the parameters, it chooses
a random number x and computes private and public key. Then, the node sends to the
PKG its real identity (in secure way), its virtual identity (Pseudonym Based Cryptog-
raphy (PBC) [30] is used) and the public key. After that, neighbour nodes establish
shared session keys between each other and with the BS. Then, after the network
setup and association table generation on each node, the entities can start commu-
nicating according to the specific algorithm which includes diverse steps of encryp-
tion/decryption of data while forwarding them towards the receiver. The proposed
solution has been analyzed in terms of its robustness and is claimed to be secure
against passive, public and replay attacks. However, it requires a complicated (re-
garding low-cost IoT devices) process of key establishment and many cryptographic
operations, which makes it hard to apply to the systems consisting of constraint de-

1.5. Anonymity 27

vices. Moreover, the PKG possesses the information of which pseudonym belongs to
which entity, so once it is compromised, the adversary will be able to disclose all the
communications within the system.

An architecture based on per-packet One Time Address (OTA) – an address used
by the host for sending or receiving exactly one packet – has been described in [31].
The architecture eliminates from packet headers the flow information (e.g., flow iden-
tifier, source and destination address). OTA is based on Autonomous Systems (ASs)
connected to the Internet. Each AS contains a Border Router (BR), a Core Router and
an Access Router (AR). The OTA address is the result of encryption of the combi-
nation of the Host IDentifier (HID) and the Flow IDentifier (FID) performed by the
AR. s. Before communication between a source and a destination nodes (belonging
to different ASs) can start, authentication of hosts and negotiation of encryption keys
between ASs and between the components of each AS must happen. After that, OTA
Address-pool generation process, which involves the source host, the destination host
and the ARs of both the ASs, takes place. In order to send a packet, the source host
picks an address from the pools and sends the packet to the AR of its AS. When
AR receives the packet, it generates an OTA and sends the packet to the BR which
decrypts OTA destination to obtain the AS destination and sends the packet to the
BR of receivers’ AS. The receiver BR decrypts the message in order to obtain the
corresponding AR and forwards OTA destination to the next hop CR, which in turn
continue forwarding the packet to other CRs until it reaches the AR, which extracts
destination host by decrypting the destination OTA and sends the packet to destina-
tion host. The authors of [32] exploit the One Time Address approach in order to
disguise the communication between a source and a destination entities in IPv6 Low
Power Wireless Personal Area Network (6LoWPAN). Their solution is similar to
the OTA approach proposed for the traditional Internet, but it takes care of adopting
that approach to 6LoWPAN in terms of complexity, memory footprint, and energy
consumption. The proposed mechanism prevents a possible adversary from detecting
between which source and destination entities communication takes place by mask-
ing the identifying fields of 6LoWPAN packet headers. While this solution makes it
impossible to obtain the flow information from the header, it requires introduction of

28 Chapter 1. Security in the Internet of Things

various third parties can be applied only to the systems with the proper architecture.
The data exchange between the entities and the necessity to encrypt/decrypt those
data on each step significantly increase the time needed for message delivery.

A TOR-based anonymous communication approach for smart home has been
proposed in [33]. The focus of the work is on the anonymization of communica-
tion between smart home devices that are connected to a gateway which is located
between the smart home network and the Internet. The system uses advantages of
TOR and The Amnesic Incognito Live System (Tails) – a live Debian-based operat-
ing system. The authors set up Tails as a central control gateway which takes care of
anonymization of data packets before they go out to the public Internet environment:
the gateway acts like a TOR client which chooses a random path through the TOR
nodes towards the destination. Although this solution is based on a well-known and
widely used one, it also shares the same drawbacks that the original TOR has. For
instance, TOR has been shown to have vulnerabilities against some flow-correlation
timing analysis based attacks ([34], [35]).

A lightweight anonymous authentication protocol for constraint sensor nodes is
presented in [36]. The architecture which the authors have proposed includes four
necessary components: an authenticated cloud server (ACS), a Cluster Head (CH),
home IoT server (HIoTS) and edge devices like sensor nodes (SNs). Before starting
message exchange, HIoTS sends security credential to SNs through a secure channel.
Then HIoTS generates a random number and computes a key Ksh and generates
a random track sequence number (Trseq) which it stores internally and sends to the
SN. Then the authentication process takes place: (i) the source SN generates a random
one-time-alias identity (AID) which it sends to the receiver SN, which generates its
AID and shares it with the CH. (ii) The CH, in its turn, forwards the data to the
HIoTS. (iii) The HIoTS performs the verification of the data and responds to the CH,
which then responds to the receiver SN, which responds to the sender SN. Although
the proposed solution claims to be anonymous, it relies of the pseudonyms (AIDs
in this case), while the real identifiers are known to the third parties and, moreover,
even if the receiving SN does not know the real ID of the sender, it knows where the
message comes from.

1.5. Anonymity 29

The contribution of this thesis is providing the solution for anonymizing com-
munications in the Internet of Things environment. Among the requirements set for
the design of the solutions the most important are: (i) they must be light-weight for
being applicable to constraint IoT nodes and (ii) the anonymization approach should
be decentralized. As the result, we propose two anonymization mechanisms working
on different levels (network level and application level):

• In Chapter 3 we have designed an anonymization protocol specifically targeted
for IoT applications. In the proposed solution, nodes are organized in an Onion
Routing [37] anonymity network which is completely based on datagram trans-
port. The protocol solves the issues related to the use of an onion routing-based
anonymity system in a constrained UDP-based network scenario. Additionally,
the anonymity level is increased by letting the anonymity path be chosen on a
per-packet basis.

• In Chapter 4 we present an anonymization mechanism for providing MQTT
and MQTT-SN networks with anonymous communication. The design of the
proposed anonymization solution is based on the novel dynamic broker bridg-
ing mechanism (described in Section 2.1) and allows clients to subscribe and
to publish data to a topic remaining incognito.

Chapter 2

Authentication and authorization

How many IoT devices exist?
How many others have access to the data?

No one really knows. We just don’t know.

– Rebecca Herold

Authentication and authorization are two interrelated concepts used to make com-
munication between entities secure, exchanging data only with the right/authorized
entities. While during authentication process the identity of a user is verified based on
the credentials it provides, authorization grants authenticated users access to the data
based on the rules (policies) of the authorization service. End-to-end authentication
and authorization is usually referred as application level security.

Although a lot of work has been done on providing security mechanism for the
Internet of Things in general, one of the newest paradigms – publish/subscribe –
still requires optimal solutions. This chapter is focused on providing end-to-end au-
thentication and authorization in networks working using the MQTT protocol, which
has become standard only in December, 2015. MQTT protocol provides support for
basic authentication based on user name and password fields of the payload of CON-
NECT messages in MQTT v3.1.1 [38] and on AUTH packets in MQTT v5.0 [5].
These methods permit only authenticated and authorized clients to subscribe/publish

32 Chapter 2. Authentication and authorization

to given topics.

The client-to-broker authentication and authorization scheme is currently being
extended by the IETF ACE working group1. The ACE group is working on a standard
solution to enable authorized access to resources in constrained environments based
on third party authentication/authorization entities. Although the work is mainly fo-
cused on CoAP-based REST applications, an MQTT-TLS profile of ACE [20] has
been also proposed in order to extend the authentication and authorization scheme to
MQTT-based systems (as described in Section 1.3). The scheme exploits a separate
trusted entity – authentication server – which releases access tokens to the clients.
Confidentiality and integrity in the proposed architecture are provided by TLS. Con-
sidering the constraints of IoT nodes, exploiting a trusted third party allows signifi-
cant decrease of the load of nodes.

This chapter is organized as follows. Before discussing end-to-end authentication
and authorization mechanisms, we introduce a novel mechanism – dynamic broker
bridging – extending a standard MQTT system to a multi-hop architecture in Sec-
tion 2.1. Various approaches of how the proposed mechanism can be secured through
authentication and authorization capabilities are considered in Section 2.2. In Sec-
tion 2.3 proof-of-concept implementation of the dynamic broker bridging mechanism
is described, together with the test proving feasibility of the proposed system. Sec-
tion 2.4 describes how the dynamic broker bridging approach can be applied to an
Industrial IoT (IIoT) scenario. A description of the organization of IIoT production
systems is provided, together with a modified, MQTT-based, architecture. Finally, in
Section 2.5 conclusions on the work are drawn.

2.1 Dynamic broker bridging

Some MQTT-based communications scenarios may benefit from a multistage broker
relay system implemented through broker bridging mechanism (described in Sec-
tion 1.1.2).

Broker bridging mechanism can be used for:

1https://datatracker.ietf.org/wg/ace/

2.1. Dynamic broker bridging 33

• security reasons, e.g., when only selected brokers are allowed to forward mes-
sages in and out of a network domain,

• inter-domain routing, in order to create a hierarchy of brokers capable to inter-
connect two or more different network domains,

• scalability, with the aim of creating a larger and scalable publish/subscribe dis-
tribution architecture.

A significant limitation of the standard MQTT bridging mechanism is that it is
based on static configuration of the brokers and requires platform-specific manual
setup. Moreover, some of the implementations of MQTT protocol does not provide
this feature at all. Hereafter we propose a way for transforming the static bridging
into dynamic and flexible multi-broker routing. The idea behind the solution is to let
a client subscribe and/or publish messages to the topics which are handled by brokers
different from the actual broker to which the client is connected.

A dynamic broker bridging mechanism can be useful to dynamically let the
clients route messages through one or more intermediate brokers without requiring
any static pre-configuration of those brokers. In order to let the client specify a re-
mote broker which is in charge of handling the topic in which the client is interested,
different approaches can be used:

a) definition of a new MQTT header field that carries this information;

b) use of current MQTT protocol at application level, possibly overloading some
header fields.

Although the former approach seems simpler, the latter has the advantage of not
requiring any modification of the MQTT protocol specification and implementations.
For this reason we have considered application of the second approach. In particu-
lar, we used the Topic Name string to encode both the desired topic name and the
identifier of a remote broker. As a result, a new Topic Name string is transformed
into a URL-like topic-at-broker field. The "@" character has been used as a separa-
tor between the topic name and the ID of the broker that is charge of this topic. The
resulting MQTT Topic Name is the following:

34 Chapter 2. Authentication and authorization

Topicnew = Topicactual @ Broker,

where Topicactual is the name of the topic in which the client is interested and
Broker is the ID (e.g., IP address and port number) of the broker which is in charge
for this topic.

The corresponding architecture is depicted in Figure 2.1, where forwarding of a
SUBSCRIBE request from a client is considered.

Figure 2.1: An example of dynamic MQTT broker bridging subscription.

When a broker receives a SUBSCRIBE or UNSUBSCRIBE request in which
Topic Name value (or one of topic names in case a list of topics has been received)
corresponds to a pattern TopicX @ BrokerY , the broker’s actions must be the follow-
ing:

i) Subscribe/unsubscribe the sender of the request to/from the topic TopicX .

ii) Send a subscription/subscription cancellation request with Topic Name value
TopicX to the broker BrokerY . In case the broker has already subscribed to
(unsubscribed from) the TopicX on the BrokerY this action is not needed.

When a broker receives a publication request in which Topic Name value corre-
sponds to a pattern TopicX @ BrokerY , it forwards the received message to BrokerY

setting Topic Name value to TopicX . The described mechanism is depicted in Fi-
gure 2.2.

2.1. Dynamic broker bridging 35

Figure 2.2: An example of dynamic MQTT broker bridging publication.

This proposed mechanism can be further extended by allowing multi-broker top-
ics, like TopicX @ Brokern @ Brokern−1 @ ... @ Broker1, which will allow clients to
forward the request by means of n−1 intermediate brokers to the destination broker
Brokern.

An example of such multi-broker request forwarding is depicted in Figure 2.3.

Figure 2.3: Multi-broker dynamic bridging.

36 Chapter 2. Authentication and authorization

In the provided example, client C1 subscribes to the topic TX on the broker B3.
However, rather than sending the request directly to this broker, it uses the sequence
of intermediate brokers (B1 and B2). Then the client C2 publishes a message MX in the
topic TX on the broker B3 using B4 as an intermediate broker towards the broker B3.
Hereafter the steps of these subscription and publication procedures are described.

1. Client C1 starts by sending to broker B1 a SUBSCRIBE request with the Topic
Name value equal to TX @ B3 @ B2.

2. When broker B1 receives the request, it does the following steps:

i) it saves the subscription of C1 to the topic TX @ B3 @ B2 in its database,

ii) it forwards the request to B2 changing the Topic Name value to TX @ B3.

3. When broker B2 receives this request, it:

i) stores in its database a record that B1 has subscribed to topic TX @ B3,

ii) sends a request to the broker B3 to subscribe to the topic TX .

4. Broker B3 receives the new request and processes it as a standard MQTT sub-
scription request.

5. When client C2 wants to publish a message MX to topic TX on broker B3, it
sends a PUBLISH request to broker B4, setting Topic Name value to TX @ B3.

6. Broker B4 receives the request and forwards it to broker B3, changing the Topic
Name value to TX .

7. B3 receives the request and processes it as a standard MQTT publication re-
quest:

i) it retrieves the list of subscribers to topic TX ; in this example the list
includes (only) B2,

ii) it sends message MX to the subscribers (B2).

2.2. Secure dynamic broker bridging 37

8. When B2 receives the PUBLISH message, it (i) retrieves the list of entities
subscribed to the obtained topic (TX) together with the original Topic Name
values, and (ii) sends the new request to those subscribers using the proper
Topic Name. In the provided example, B2 sends the PUBLISH message to B1

with topic name equal to TX @ B3.

9. Similarly, when broker B1 receives the request, it (i) retrieves the list of sub-
scribers and Topic Name values, and (ii) forwards the message accordingly.
In the example it sends message MX to client C1 with Topic Name equal to
TX @ B3 @ B2.

Not only the proposed system allows to communicate with remote brokers, but
it also enhances the MQTT protocol, allowing a client forward the requests destined
to several brokers in a single message, while the standard approach supports only
requests for different topic names but managed by the same broker.

2.2 Secure dynamic broker bridging

Security is important for any IoT system. While security has various objectives, au-
thorized access is the most important aspect when it comes to MQTT communication.
An entity that does not have a permission to publish or to receive information on a
particular topic must be not able to publish or to subscribe to that topic.

In this section, we have extended the authentication and authorization scheme
of [20] by considering the scenario of multiple brokers described in the previous
section, and a new third party-based authentication and authorization mechanism is
defined. In the proposed mechanism, the presence of a single trusted Authentication
and Authorization server (AS) is considered. In all described cases, the AS is in
charge of the client authentication and generation of authorization tokens (access
tokens), used by the clients in order to prove the rights to subscribe to a topic or
to publish a message in a topic on a given broker (or a set of brokers). Depending
on the type of the scheme used for authorization, the access token can be a simple
opaque token (explicitly verified by the broker by interacting with the AS) or a fully

38 Chapter 2. Authentication and authorization

self-contained cryptographic token that allows the broker to directly verify the access
grants.

Taking into consideration the constraints that IoT nodes may have, exploiting a
trusted third party helps to decrease the load of other nodes. Such an approach also
eliminates the devices’ need to be "acquainted" with all the other participants of the
network.

When dealing with authentication/authorization in presence of multiple MQTT
brokers, different cases could be considered:

• Client-to-all-brokers authorization, one token for all brokers – Authorization
server, after successful authentication of the client, releases to the client an
access token which is then used for accessing each broker on the way.

• Client-to-all-brokers authorization, a token for each broker – The AS releases
to the client different access tokens, one token for each broker through which
the client wants to route the request. The client includes all these tokens in
the request that is sent to the first broker. The tokens are then used, verified
and removed from the request hop-by-hop by all brokers the client request is
routed through.

• Hop-by-hop authorization – The AS releases to the client an access token valid
only for the first broker the client will communicate with. All other brokers
relaying the request have to explicitly communicate with the AS in order to
obtain a new token to send the message to the next broker.

According to the first and second approaches, the access is directly granted from
the AS to the client and other brokers, and it has the advantages of minimizing the
interactions with the AS and the number of exchanged messages.

Conversely, in the second approach, the grant is provided only for single inter-
action (client-to-broker and broker-to-broker). In this case, the intermediate brokers
request from the AS an access token for forwarding the message to the next broker,
thus implementing a sort of an authorization delegation chain. Although according to
this approach the number of interactions with the AS significantly increases, it has

2.2. Secure dynamic broker bridging 39

the advantage of reducing the amount of authorization data that has to be processed
by each hop and included in each request, resulting in a smaller packet size.

Hereafter, the proposed approaches are described in detail.

2.2.1 Client-to-all-brokers authorization: one token for all brokers

The first approach states that a client, after authenticating with the AS, obtains a
single access token which it then uses in order to prove the right of the access to a
given sequence of brokers.

In Figure 2.4 an example of this scenario is depicted. In the proposed scenario,
the client C1 wants to subscribe to a topic TX on broker Bn or to publish a message to
topic TX on broker Bn. In the provided example, client C1 wants to forward its request
through the sequence of intermediate brokers B1, B2, . . . , Bn-1 towards the destination
broker Bn.

Figure 2.4: A client obtains a single token for all brokers.

The authentication and authorization process will include the following steps.

1. Before sending the request to the first broker, C1 authenticates with the AS and
obtains a valid access token (AT) for the destination broker, granting to the
client the access (subscribing and/or publishing) to the topic TX on that broker.
The authentication request includes the credentials of C1 (e.g., username and

40 Chapter 2. Authentication and authorization

password), or implements a different authentication scheme. After successful
authentication:

i) C1 sends an authorization request containing the identifier of the destina-
tion broker (Bn in the provided example), topic name or a list of topics
(in the described example topic TX), and the action that the client wants
to perform (subscription and/or publication);

ii) the AS matches the C1’s request with the authorization policy stored in
the policy database;

iii) if C1 is authorized to perform the actions claimed in the request, the AS
returns an access token (AT) intended for the requested broker Bn.

2. C1 sends the request to B1 with TX @ Bn @ Bn-1 @ . . . @ B2 as the Topic Name
value (as described in Section 2.1). The request contains also the access token
AT obtained from the Authorization server.

3. B1 receives and processes the request according to the procedure described in
Section 2.1.

4. The same operations are performed by all other intermediate brokers (B2, B3,
. . . , Bn-1.

5. When the request reaches the destination broker Bn, the broker checks whether
the request contains an access token AT . If the token is present and is valid, the
broker Bn processes the request in the standard MQTT way.

Although this option leads to the minimal load of all the participants of the com-
munication process, it should be applied only in constrained environments where the
following two approaches are not feasible.

2.2.2 Client-to-all-brokers authorization: a token for each broker

According to the second approach, a client, after authenticating with the AS, obtains
a set of access tokens granting it the access to a given sequence of brokers.

2.2. Secure dynamic broker bridging 41

In Figure 2.5 an example of this scenario is depicted, where the client C1 wants to
subscribe or to publish a message to topic TX on broker Bn. In the provided example,
client C1 wants to forward its request through the sequence of intermediate brokers
B1, B2, . . . , Bn-1 towards the destination broker Bn.

Figure 2.5: A client obtains tokens for each broker.

The complete authentication and authorization procedure consists of the follow-
ing steps.

1. Before sending the request to the first broker, C1 authenticates with the AS and
obtains a set of valid access tokens {AT1, AT2, . . . , ATn} for the correspond-
ing sequence of brokers, granting the access (subscribing and/or publishing)
to the topic TX . The authentication request includes the credentials of C1 or
implements a different authentication scheme. After successful authentication:

i) C1 sends an authorization request containing the list of brokers, topic
name or a list of topics (in the described example topic TX), and the action
that the client wants to perform (subscription and/or publication);

ii) the AS matches the C1’s request with the authorization policy stored in
the policy database;

iii) if C1 is authorized to perform the actions it claimed in its request, the
AS returns a list of access tokens {AT1, At2, . . . , ATn} for the requested

42 Chapter 2. Authentication and authorization

brokers B1, B2, . . . , Bn

2. C1 sends the request to B1 putting TX @ Bn @ Bn-1 @ . . . @ B2 to the Topic
Name field (as described in Section 2.1). The request contains also the list of
access tokens obtained from the AS.

3. B1 receives and processes the request. It checks whether the request contains
a token AT1 for this broker. If the token is present and is valid, the broker
removes it from the list. The request message is then processed according to
the procedure described in Section 2.1.

4. The same operations are performed by all other intermediate brokers (B2, B3,
. . . , Bn-1.

5. When the request reaches the destination broker Bn, the broker verifies the last
access token ATn and finally processes the request in the standard MQTT way.

The described approach is suitable for scenarios where clients do not run on very
constrained nodes and are able to transmit bigger amount of data.

2.2.3 Hop-by-hop authorization

In the third approach, access tokens are provided by the AS only for communication
with next hop of the forwarding path. In Figure 2.6 an example of this scenario is de-
picted. Like in the previous case, client C1 wants to subscribe or to publish a message
to topic TX on the broker Bn. In order to reach the destination broker Bn, the client C1

routes the request through a sequence of intermediate brokers B1, B2, . . . , Bn-1.
Differently from the previously described cases, the client obtains an access to-

ken valid only for the first broker (B1). Broker B1 is then in charge of requesting a
new access token for relaying the request message to the next broker (B2). The same
rule applies to B2 and next brokers until the penultimate broker Bn-1, as hereafter
described.

1. In order to send the request to the first broker, client C1 authenticates with the
AS. After being successfully authenticated, C1 sends an authorization request

2.2. Secure dynamic broker bridging 43

Figure 2.6: Each entity obtains a token for next hop.

containing the identifier of broker B1, a topic name or a list of topics (only topic
TX in this example), and the action that it wants to perform (subscription and/or
publication). If the C1’s authorization request matches the policies stored in the
policy database of the AS, the requested token AT1 is returned to C1.

2. Setting Topic Name value to TX @ Bn @ Bn-1 @ . . . @ B2 (as described in
Section 2.1), C1 sends the request to B1. The request also contains the access
token AT1 obtained from the AS.

3. B1 receives and processes the request. It checks whether the request contains
a token AT1 for this broker. If the token is present and is valid, B1 removes it
from the C1’s request and then authenticates with the AS and requests an access
token AT2 for relaying the client’s request to B2. After receiving the token AT2,
B1 includes this token in the C1’s request message and forwards this message
to B2 according to the procedure described in Section 2.1.

4. The same operations are performed by all other brokers up to and including
Bn-1.

5. When the request arrives at the destination broker Bn, the broker verifies the

44 Chapter 2. Authentication and authorization

access token ATn and processes the message as a standard MQTT request.

Although this approach increases the number of connections to the AS, it signif-
icantly unloads the client both in terms of data storage and processing.

2.3 Implementation

The proposed dynamic broker bridging mechanism has been implemented in Python
programming language. Python has been chosen due to the code compactness and
flexibility. An extension pack of bridge functions (decomposition and validation of
topic name structure, various data processing, requests forwarding, etc.) has been im-
plemented in order to provide brokers and clients with ability to use dynamic bridging
mechanism. The HBMQTT2 package has been used as basis for the broker implemen-
tation, while dynamic bridges and clients instances are based on Paho Python Client3

class.

The original database and database-related functions of HBMQTT broker imple-
mentation have been modified in order to store new data, such as the topic aliases.
Additionally, a new storage containing the data about the bridges established for com-
municating with other brokers has been designed for controlling active connections
and existing subscriptions on those brokers.

In Figure 2.7 a flowchart of subscription request processing, modified according
to the dynamic broker bridging mechanism, is presented. The initial topic_name field
contains the Topic name value received from the sender (which can be either a client
node or another broker) identified by its client_id field.

The variables fwd_topic_name and fwd_broker_id contain the parts of the Topic
name value before and after symbol "@" respectively. In the provided implementa-
tion, fwd_broker_id is expected to contain the next-hop (to which the request has to
be forwarded) broker’s IP address and port number according to "IP address:port
number" pattern.

2https://hbmqtt.readthedocs.io/
3https://www.eclipse.org/paho/clients/python/

2.3. Implementation 45

Figure 2.7: Subscription processing.

Method cfg.getBridge(fwd_broker_id) returns the pointer to the bridge which has
been already setup for communication with the next-hop broker if such a bridge ex-
ists. Otherwise, a new bridge must be created according to the following algorithm:

1. A string value bridge_id, which will be further used as client ID when the

46 Chapter 2. Authentication and authorization

bridge sends requests to the other broker, is equal to "client_"+<current bro-
ker’s identifier>+"_"+<next-hop broker’s identifier>. Generation of such a
string instead of generating a random value significantly reduces the proba-
bility that other client has the same identifier. Moreover, this value simplifies
search among existing bridges on a broker.

2. A new instance of Paho Python Client class is created. This instance is the
bridge that will connect to the other broker.

3. A predefined set of callback methods, modified in order to provide necessary
functionality (e.g., incoming messages processing, subscription management),
is added to the bridge.

4. The bridge instance is added to the broker’s database of bridges.

5. The bridge sends a CONNECT packet to the next-hop broker and waits for the
CONNACK (connection acknowledgement) response.

Once the connection between the bridge and the next broker is established, the
following events occur:

1. A new subscription record, containing the sender’s identifier client_id and
fwd_topic_name values, is added to the bridge’s database of subscriptions.

2. The bridge sends a SUBSCRIBE request to the next-hop broker, setting Topic
name to fwd_topic_name.

3. When the subscription has been accepted by that broker, the current broker
replies to the sender with an acknowledgement SUBACK message.

Handling of the publication requests that must be forwarded to another broker is
similar to the subscription process described above, with the only difference that if a
new bridge has been created specially in order to forward the PUBLISH request, then,
after receiving an acknowledgement from the next-hop broker, this bridge should be
disconnected and deleted.

2.3. Implementation 47

When a broker receives an UNSUBSCRIBE request, it has to perform the actions
depicted in the flowchart in Figure 2.8.

Figure 2.8: Unsubscription processing.

48 Chapter 2. Authentication and authorization

In the provided scheme, the topic_name value is the one obtain with the UNSUB-
SCRIBE request and client_id is the request sender’s identifier.

First, the broker has to check whether the SUBSCRIBE request needs to be for-
warded to another broker. In the provided implementation it is done by checking for
the presence of the symbol "@" in the Topic name string. If the request does not have
to be forwarded, then the broker processes it in a standard way. Otherwise, the vari-
ables fwd_topic_name and fwd_broker_id are set with the parts of the Topic name
value before and after symbol "@" respectively.

If a bridge to the broker with fwd_broker_id has not been established yet, then a
new bridge in a similar way to the subscription processing. Once a bridge is created, it
connects to the next-hop broker and sends an UNSUBSCRIBE request with the Topic
name value set to fwd_topic_name. As soon as the unsubscription acknowledgment
arrives from that broker, the bridge closes the connection and is deleted.

Otherwise, if there is already a bridge established to communicate with the next-
hop broker, the following events occur:

1. The bridge performs a look-up for all subscriptions to the topic fwd_topic_name
in its database of subscriptions. The list of those subscriptions is returned to the
subscriptions variable.

2. The subscriptions of the client client_id to the topic fwd_topic_name are deleted
from the database.

3. If after the previous step no other subscription to the topic fwd_topic_name on
the broker fwd_broker_id is left in the bridge’s database, then:

i) the bridge sends an UNSUBSCRIBE request to that broker;

ii) if no subscription to any other topic on the broker fwd_broker_id is left,
then the bridge disconnects from the broker and is deleted.

Finally, the current broker sends an acknowledgement (UNSUBACK) to the re-
quest sender informing it about successful cancellation of the subscription to the topic
topic_name.

2.3. Implementation 49

The implementation has been performed in Python 3.7 and tests have been made
in Windows 10 and Linux environments: diverse combinations of brokers and clients
instances were manually run and exchanged messages. The tests have demonstrated
feasibility of the proposed solution.

With the aim to perform a big amount of tests automatically, an emulator has been
specially designed and implemented. The emulator runs a given amount of client
and broker instances, which then intercommunicate with accordance to the above
described dynamic bridging mechanism.

The testing process can be divided into the following steps:

1. The main batch file is used to execute a set of commands in order to run all
necessary broker and client instances. The flowchart of the algorithm of this
file is present in Figure 2.9.

Figure 2.9: Test setup algorithm.

In the provided scheme, number_of_brokers and number_of_rounds are input
parameters set by the user. The variable number_of_brokers is the number of
brokers participating in the test, and number_of_rounds is the number of re-
quests that will be performed by the client to a broker: the higher this value is,

50 Chapter 2. Authentication and authorization

the more accurate test results will be.

As the first step, the batch file runs all modified broker instances using different
port numbers. After that, the appropriate client testing script is run. Since it
takes time for a broker to start, the batch file waits for t seconds before running
the clients in order to avoid the error when a client tries to connect to a broker
that is not active yet. Value t has been calculated based on the time the brokers
needed to start working.

2. The test client script performs requests to the brokers and registers the execu-
tion time of each request. The flowchart of the algorithm of this file is present
in Figure 2.10.

For an amount of brokers (represented by the variable path_length) which
varies from 1 to the number of brokers set by the user (number_of_brokers)
the client performs number_of_rounds rounds of the following actions:

i) current system time is stored in the array time_diffs;

ii) the client generates a topic name and stores it in the topic_name variable;

iii) the client encapsulates this topic name for each broker on the way;

iv) when the final topic name value is ready, the client sends the request to
the first broker of the path and waits for the acknowledgement;

v) current system time is stored in the array time_diffs in order to calculate
the time spent for the round later.

After performing all the requests to each amount of brokers, the time spent for
each round is computed and the data needs to be processed: (i) the noise (e.g.,
some very high values of execution time caused by unexpected CPU load)
should be removed, (ii) the average execution time has to be calculated and
stored in the text file.

In order to remove the noise, a special algorithm has been designed and imple-
mented. The flowchart of this algorithm is depicted in Figure 2.11.

2.3. Implementation 51

Figure 2.10: Test client algorithm.

52 Chapter 2. Authentication and authorization

Figure 2.11: Noise removal and average value calculation.

The algorithm searches for the maximum value of the data (max_time), cal-
culates the average value of all data (avg_time) except for the maximum one,

2.3. Implementation 53

and, if the maximum value is at least twice greater than the average value, then
the algorithm substitutes the value of the maximum element (with the index
i_max_time) with the average value. Once the noise is removed, the algorithm
returns the average value of the data.

3. Based on the results, obtained on the previous step, plots are built. A separate
Python script has been implemented to process the results. It obtains the data
from the text file/files, filled by the client test script, and builds one ore more
plots. The scipy.interpolate4 tools have been used to perform interpolation of
the data in order to make the resulting plots look smoother, and the MATLAB-
like plotting framework matplotlib.pyplot5 has been used for building the plots.

In Figure 2.12 the results of testing the implemented dynamic broker bridging
system in Linux environment are represented. An UP board (Intel® Atom™ x5-
Z8350 CPU, 4GB DDR3L-1600 RAM, 64 GB eMMC storage) with Ubuntu 18.04
operating system has been used for testing the implementation performance.

In the provided tests, a client sends a SUBSCRIBE request to a broker, exploiting
a sequence of intermediate brokers to forward the request. The number of brokers in
the path varies from 1 (the request is sent directly to the destination broker) to 20 (the
request is forwarded by 19 intermediate brokers).

The green plots demonstrate the execution time for the case in which a path to the
destination broker is already created, i.e. MQTT/TCP connections between adjacent
brokers are already established. During these tests, first, the client sends a request to
the broker B20, thus creating an anonymity path through all the brokers (B1, ...,B20),
making them interconnect dynamically by establishing bridges. Then, when the client
sends a request to the broker B19 (and any of the other brokers B18, ...,B1), the path
between them already exists.

The blue plots represent the execution time for the system, in which the path
is built hop-by-hop for each request, i.e. the client sends a request to the broker B1

directly, then to the broker B2 using B1 as intermediate broker, after that it sends a

4https://pypi.org/project/scipy/
5https://pypi.org/project/matplotlib

54 Chapter 2. Authentication and authorization

Figure 2.12: Implementation tests: Execution time.

request to the broker B3 with {B1, B2} as forwarding path, etc.

The performed tests have shown feasibility of the architecture of the proposed
dynamic broker bridging mechanism. According to the tests results, once the multi-
broker path is established, the dependence of execution time from the number of
intermediate nodes is linear.

2.4 Example of use case: MQTT-based Industrial IoT

Nowadays, IoT devices and technologies are used in nearly every sphere of life. In-
dustrial Internet of Things (IIoT) is a subset of IoT that regards the application of
traditional IoT principles to the manufacturing industry. An IIoT system comprises
networked smart objects, cyber-physical assets, and optional cloud or edge comput-
ing platforms, to enable real-time and autonomous access, collection, analysis and
exchange of process, product and service information, within the industrial environ-

2.4. Example of use case: MQTT-based Industrial IoT 55

ment [39].
The IIoT focuses on the integration of operational technology with information

technology, on machine-to-machine (M2M) communications between plants, on a
very high number of interconnected devices, and with critical requirements, thus re-
sulting into a peculiar distributed system [40]. The IIoT concept has emerged recently
and has a series of challenges and issues to address to guarantee secure and reliable
communications.

In an IIoT scenario M2M communication involves sensors, actuators, and con-
trollers can exchange information autonomously. However, many current implemen-
ted communication architectures do not provide dynamic interoperability and secu-
rity. Moreover, the constrained nature of some IoT devices makes it difficult to ap-
ply well-known standard security solutions to IIoT and to implement strong crypto-
graphic algorithms for protecting data.

In this section, a dynamic broker bridging mechanism, described in Section 2.1,
is applied to an IIoT scenario in order to make the architecture more flexible and scal-
able, transforming it into a new multi-stage system, where several stages of brokers
are used to allow the clients to access different groups of devices.

2.4.1 MQTT-based IIoT production systems

A common organization of production resources in a manufacturing company is de-
picted in Figure 2.13. A company usually has a headquarter and one or more produc-
tion sites. Each site can include one or more production lines which are formed by
different machines.

PLCs, SCADAs and various distributed sensing systems, formed of IoT devices
and organized as Wireless Sensor Networks, are used for monitoring and controlling
manufacturing machines. Such systems are connected to per-line and per-site remote
controllers. The resulting system can be also connected to the headquarter site and/or
to an external Cloud system, in order to enable cross-site monitoring and control.

All mentioned devices and nodes form a complex IIoT network. That network,
in turn, in some cases needs to be connected to other external entities (e.g., machine
manufacturers, third-party maintenance companies) for different purposes, e.g. for

56 Chapter 2. Authentication and authorization

Figure 2.13: A general organization of production resources.

external monitoring.

According to the communication technology, standard protocols and proprietary
ad-hoc solutions are currently used. The use of standard protocols is a better option
in terms of interoperability, scalability and long-term maintenance. In the provided
scheme, the most suitable communication paradigm is publish/subscribe, according
to which the data are published by producers (sources) to a server and then are relayed
to various consumers (receivers). In an industrial scenario, this mechanism can be
used both for sending commands from controllers to target devices and for collecting
data from different data sources (e.g., sensors and PLCs).

The publish/subscribe mechanism is usually implemented by means of a central
node that receives and publishes data and relays them to the proper subscribers. Ac-
cording to the MQTT notation, this node is denoted as broker.

2.4. Example of use case: MQTT-based Industrial IoT 57

Every production line may be formed of various machines from different man-
ufacturers. In general, it is supposed that machines produced by the same manufac-
turer can share the same communication system, which is based on a single broker.
Accordingly, there must be at least one broker per line and different brokers for dif-
ferent lines within a single site. The resulting architecture is shown in Figure 2.14.

Figure 2.14: An MQTT-based organization of production resources.

In the left part of the figure are production lines with their machines and corre-

58 Chapter 2. Authentication and authorization

sponding brokers (MB). In the right part are entities that can interact with the produc-
tion lines by means of those brokers. In general, at least one per-line control system
must be present. The architecture can be further extended to a per-site control sys-
tem and an overall control system. Data may be also collected on an external Cloud
system or by external third parties.

2.4.2 MQTT-based multi-stage IIoT production systems

To provide the appropriate level of security, a proper authentication and authorization
system must be designed and implemented. The task gets more complicated due to the
high number of possible M2M interactions, which have to be considered separately.
Moreover, on the lower lever these interactions have to be explicitly configured on the
intermediate network nodes, such as NATs and firewalls. The resulting architecture of
the network may be very complex, with a lack of scalability and difficult to configure
and administrate.

For this reason, the new mechanism described in Section 2.1 and 2.2 can be used.
The resulting system is fully based on publish/subscribe paradigm, properly extended
with the novel dynamic multi-broker solution and authentication/authorization mech-
anism.

The idea behind the proposed solution is to transform the architecture depicted in
Figure 2.14: several client-to-broker interactions are grouped and mapped to a new
multi-stage architecture, in which different stages of brokers are used to allow the
clients to access different groups of devices separately.

The new architecture is presented in Figure 2.15. In the left part are the production
machines grouped by line. Assuming that machines of different machine manufac-
turers are connected to different manufacturer brokers (regardless the use of the same
pub/sub protocol), the machines are grouped by manufacture as well.

In the right part of the figure are data consumers and controllers. Instead of con-
necting them directly to the brokers that manage the topics/devices in which they are
interested, one more level of brokers has been introduced. These second-level brokers
group machines with accordance to diverse access classes. For instance, the division
can be the following:

2.4. Example of use case: MQTT-based Industrial IoT 59

Figure 2.15: A multi-stage MQTT-based organization of production resources.

• brokers associated to different production lines, with one broker for each line
(brokers LBi j in Figure 2.15);

• brokers associated to different machine manufacturers, with one broker for
each manufacturer (brokers MMBi in Figure 2.15).

Other types of division into classes with corresponding brokers can be intro-
duced. After collecting data and before re-publishing it, the brokers may perform

60 Chapter 2. Authentication and authorization

data aggregation operations according to consumer profiles. For instance, per-line
data can be aggregated in order to provide overall measurements.

In a similar way, another another stage of brokers can be introduced with the aim
of further grouping of different types of M2M interactions and of providing enhanced
aggregation functions. For example, in case of a multiple-site manufactory, per-site
brokers can be introduced (brokers SBi in Figure 2.15).

The proposed architecture has the following advantages:

• due to grouping M2M interactions, it significantly simplifies client-to-broker
relations, which leads to simplification of designing and performing authenti-
cation and authorization;

• the number of network level relations is reduced, which has to be considered
in case of NAT and firewall configurations, since it simplifies the network ad-
ministration, and drastically reduces the possibility of vulnerabilities caused by
firewall miss-configuration or wrong-configuration;

• the new architecture is more scalable, since it reduces the total number of flows
that each broker has to manage;

• it simplifies the design and implementation of new data processing functions
fully integrated in the multistage publish/subscribe architecture.

2.5 Conclusions

In this chapter, a novel dynamic broker bridging mechanism has been presented. The
design of the dynamic broker bridging is based on the standard broker bridging con-
cept, however, it does not require a manual set-up of each broker – the feature that
makes it able to dynamically adapt to different scalability requirements. Three au-
thorization and authentication schemes have been designed for the proposed mecha-
nisms: all requests to brokers contain authorization tokens released by an authoriza-
tion server, so only authorized entities can subscribe or publish to a particular topic.
The proposed scheme has been applied to the Industrial IoT scenario with the aim

2.5. Conclusions 61

of relaying M2M communications, based on publish/subscribe paradigm. The proof-
of-concept implementation of the dynamic broker bridging mechanism has been de-
scribed in detail. A simulator has been specially designed in order to allow for testing
the proposed system automatically. The algorithm of the testing module has been
described together with the tests results which prove the feasibility of the proposed
architecture.

Chapter 3

Network Level Anonymity

Man is least himself when he talks in his own person.
Give him a mask, and he will tell you the truth.

– Oscar Wilde

Designing IoT systems with security features is a challenging task. Proper mech-
anisms should be added taking into considerations devices constraints, which means
that they should not introduce excessive processing load or protocol overhead. While
such security aspects as authentication, confidentiality and data integrity have been
widely studied, end-to-end anonymity still remain an open issue for IoT.

This chapter focuses on providing anonymity to IoT systems. In particular, we in-
troduce an anonymization protocol for datagram-based communication. The scheme
has been specially designed for constrained scenarios that are typical for the Inter-
net of Things. According to the proposed protocol, IoT entities form onion routing
(OR) [37] anonymity networks and then create anonymity paths through intermediate
nodes. The design also implies confidentiality, thus eliminating the necessity to use
any secure communication protocol.

This chapter is organized as follows. In Section 3.1 the motivation of the work
is explained, an overview of the anonymization protocol design is provided, and the
explanations of the mechanisms used for anonymity path establishment and data ex-

64 Chapter 3. Network Level Anonymity

change processes are given. Section 3.2 describes novel features of the proposed sys-
tem, which allow to increase the level of anonymity. In Section 3.3 a proof-of-concept
implementation and testbed are described. Finally, in Section 3.4 conclusions are
drawn.

3.1 Datagram-based OR anonymity

Up to now, the problem of communication anonymization has been mostly studied for
Human-to-Human or Human-to-Machine interactions in the traditional Internet, and
the main mechanism that is currently used is Tor [41]. Tor is a low-latency anonymity
system based on onion routing that allows the set-up of anonymous communications
between a user node (called onion proxy) and a remote anonymity-unaware node
(called corresponding node). Anonymization in Tor systems is provided by means
of an anonymity circuit, which is setup between the source onion proxy and an exit
node (EN). The onion proxy builds the anonymity circuit hop-by-hop in a telescopic
manner.

However, Tor is designed for connection-oriented Internet applications and it can-
not be directly applied for securing typical for IoT Machine-to-Machine (M2M) in-
teractions through connectionless protocols run on non-persistent constrained nodes.
The main problems of adopting Tor in the IoT context are the following:

• Tor has been designed for anonymizing TCP-based applications; IoT applica-
tions, on the contrary, are mainly based on UDP;

• Tor provides connection-oriented transport service, which may add undesirable
delay in data exchange process;

• due to the TCP complexity in terms of both computations and exchanged data
size, some ultra-constrained nodes may not support the protocol;

• in order to protect some control fields, Tor creates an additional hop-by-hop
security layer of TLS connection between adjacent nodes; however, this extra
encryption is useless for the end-to-end data and can be avoided.

3.1. Datagram-based OR anonymity 65

In general, when designing anonymization mechanisms, a particular attention
should be paid to the issues and challenges of the transport protocol used for end-
to-end communication.

One key aspect related to transport protocols is the possible presence of a conges-
tion control mechanism, an error control, and/or re-ordering mechanism. Since TCP
possesses all these services, it is widely used in applications. However, a packet loss
in TCP causes additional delay of packet delivery, due to both congestion control
and packet retransmission. Congestion control is triggered by TCP segments loss,
and this means that a failure in segment delivery is considered an indication of net-
work congestion. Due to error and congestion control, loss of a single packet affects
also the delivery of successive packets. The problem becomes worse in case multiple
TCP connections share the same overlay link: in such a scenario the loss of a packet
may affect other TCP connections. Therefore, mapping multiple circuits on one TCP
connection should be avoided or carefully thought through.

An anonymization protocol described in this chapter targets IoT applications and
is entirely based on datagram transport. It implements onion routing anonymity tech-
nique [42], trying to maintain the advantages of already existing onion routing-based
anonymity systems and significantly reducing or eliminating the problems that appear
when those systems are used in scenarios of constrained datagram-based networks.

Moreover, the design of the protocol implies confidential communication, so no
additional security protocol, such as DTLS or IPSec, is needed.

The choice of datagram as transport mechanism has been made due to the fol-
lowing main reasons:

• Many applications for IoT use UDP as transport protocol. Besides, some very
constrained devices may not support TCP at all.

• Datagram-based architecture allows to reduce the consumption of resources
(processing power, memory, etc.) of the nodes, which is a fundamental goal in
constrained environments.

The design of the proposed anonymization protocol is absolutely independent

66 Chapter 3. Network Level Anonymity

from the implementation layer, which makes it easy to integrate the protocol in IoT
nodes both as a security layer on top of existing UDP or as an extension of IP stack.

3.1.1 System overview

The design of the proposed anonymity system is based on a network of IoT nodes,
hereinafter referred as IoT onion routers (IORs) that create anonymity paths which
are then used for end-to-end application communication anonymization.

An anonymity path creation is initiated by a source IOR node (SN). The path is
composed of several adjacent IORs selected from a larger set of all available IORs
that form the anonymity overlay and ends at a target node, that can be either the actual
corresponding node (CN) with which SN wants to communicate or an exit node (EN)
which is used by SN as an exit point for forwarding datagrams to/from the actual CN.
In the proposed protocol term "source IOR" refers to the first (source) node of the
anonymity path and does not correlate with the direction of packets.

Two anonymity modes have been defined for the anonymization protocol:

• Two-way anonymity path mode, in which a bi-directional path is setup from
SN to a target node (EN or CN). This path is further used for both sending and
receiving datagrams.

• One-way anonymity path mode, in which a mono-directional path is setup from
SN directly to CN. When CN wants to send a datagram to the SN, it has to
establish a new anonymity path.

An example of both modes is depicted in Figure 3.1.
Figure 3.1 (a) represents the two-way anonymity path mode, when, in order to

anonymously communicate with the corresponding node Y , a source node X sets up
a path lying through IORs Z1 and Z2 toward the target node Z3. Each packet that X
sends to Y is encapsulated and encrypted 3 times with the keys K3, K2 and K1 (shared
by X and Z3, Z2 and Z1 respectively) in sequence. When an IOR receives the packet,
it decrypts it using the shared key, thus removing a layer of encryption, and forwards
the packet to the next-hop node. After complete decryption, Z3 forwards the data to

3.1. Datagram-based OR anonymity 67

Figure 3.1: (a) Two-way and (b) one-way anonymity paths.

Y . When Y wants to reply to X , it sends the data to Z3 which forwards them to X
through the same path but reversed (Z3, Z2, Z1). Each IOR adds an encryption layer
using the key shared with X . One X receives the reply packet, it uses the keys (K1,
K2, K3) in a row in order to obtain the original data that Y sent.

Figure 3.1 (b) depicts the one-way anonymity path mode, in which nodes X and
Y exchange packets using two different anonymity paths: source node X sets up a
path X , Z1, Z2, Y , and Y sets up a path Y , Z3, Z4, X . Before forwarding packets, X and
Y encrypt them using secret keys shared with the IORs of their own paths in reverse
order (the key shared with the last IOR of the path is used first). Each intermediate
IOR decrypts the packets using the proper key and forwards them to the next IOR
until the destination node is reached. When the destination node receives a packet, it
removes the last encryption layer and gets the original data.

One of the main differences from other anonymity systems is that the proposed
anonymization protocol allows to choose anonymity paths on per-packet basis, thus

68 Chapter 3. Network Level Anonymity

significantly increasing the level of anonymity.

3.1.2 Packet structure

When using the proposed anonymization protocol, all packets are sent independently
as anonymity packets. Each anonymity packet consists of a short header and a pay-
load.

Figure 3.2: Packet header structure.

The header structure is presented in Figure 3.2. The header of each packet con-
tains packet type, path identi f ier (PID) and rand fields:

• The packet type field may have the following values: CREAT E, CREAT ED,
RELAY , and PADDING.

• The path identi f ier (PID) is used to associate a given packet with a corre-
sponding anonymity path. Path identifiers are changed at each IOR of the path.
Every IOR maintains per-hop state information, such as source address, path
identifier, next hop address, next hop path identifier, secret key.

• The rand value is used as initialization vector (IV) for hop-by-hop header en-
cryption/decryption and for the various encryption layers of RELAY packets.

Both packet type and path identi f ier fields are hop-by-hop protected with a
link key (LK) shared between the two adjacent IORs.

The payload of the packet depends on the packet type:

• In case of CREAT E packets, it contains the initiator’s (SN’s) part of the key
exchange (KEi) encrypted with the public key (K+) of the target IOR.

• CREAT ED packets contain the respondent’s part of the key exchange (KEr)
and a hash of a created shared key (H(K)).

3.1. Datagram-based OR anonymity 69

• RELAY packets are used for sending commands across the anonymity path.
The payload of these packets contains command code and a command-dependent
payload. The types of RELAY packets are the following:

– EXT END: In case of an EXT END command code, the payload includes
the address of the target IOR and KEi which is protected with the public
key of that IOR.

– EXT ENDED: The payload of EXT ENDED command comprises a KEr

and a hash of a created shared key (H(K))

– DATA: The command contains the CN’s address and the data which SN
wants to send.

– T RUNCAT E: This command is used when a part of the circuit has to be
torn down and contains the address of the OR which should remain the
last one in the path.

– T RUNCAT ED: This type of RELAY packets is used in order to send an
acknowledgement when a T RUNCAT E command has been successfully
executed.

The payload of every RELAY packet is consequentially encrypted by the SN
with secret keys established between this node and each IOR of the chosen
anonymity path.

• PADDING packets are used for link padding (in order to frustrate potential
passive observers counting packets).

3.1.3 Two-way anonymity path establishment

In the proposed protocol, the creation of anonymity paths relies on asymmetric cryp-
tography, i.e. each IOR possesses a pair of keys (public and private), and the public
key of each IOR is known to the other nodes.

In case of two-way anonymity mode, when a source node wants to send a data-
gram to a remote corresponding node, it has to setup a new anonymity path or to

70 Chapter 3. Network Level Anonymity

chose an already established one. The anonymity path may end either directly at the
CN or at some other IOR node, which in this case acts as an ending node. If a new
anonymity path is to be established, it is performed in a telescopic way.

Figure 3.3 shows the process of an anonymity path creation. In the provided ex-
ample, a SN X creates a path leading to an EN Z3 and lying through IORs Z1 and Z2.
The following notation has been used:

• H: Data stands for packet header, where Data is the contents of the header;

• P: Data stands for the payload of a packet, where Data represents payload
contents;

• K{Data} means encryption of Data using secret key K.

The procedure of setting up a new path comprises the following steps:

1. SN node X establishes with the first IOR (X1) a shared secret link key LK1

which will be used between X and Z1 to protect packet headers.

2. X sends to Z1 a CREAT E packet which contains a new path identifier PID1

chosen for this hop in its header, and X’s part of the KE (KEi1) encrypted with
the public key of Z1 (K+

Z1
) in its payload.

3. The Z1’s part of the KE (KEr1) is returned by Z1 together with the hash of the
new key K1 within a CREAT ED packet.

4. In order to add an IOR node Z2 to the anonymity path, X sends to Z1 a RE-
LAY/EXTEND command which contains the address of Z2 and X’s part of the
KE (KEi2) protected with Z2’s public key K+

Z2
.

5. After receiving the RELAY packet, Z1 decrypts it and extracts the EXT END
command.

6. After establishment (if not already done) of a link key LK2 with Z2, Z1 sends
to it a CREAT E packet with a new PID2 in its header and X’s part of the KE
still encrypted with K+

Z2
.

3.1. Datagram-based OR anonymity 71

Figure 3.3: An anonymity path setup.

7. When Z2 gets that CREAT E packet, it has to complete key exchange and then
to send to Z1 its KEr 2 and a hash of K2 within a CREAT ED packet.

8. Z1 forms an EXT ENDED command containing the obtained KEr 2 and H(K2)

values and encrypted with K1, and sends it to X within a RELAY packet.

9. In order to add Z3 to the anonymity path, X creates an EXT END command

72 Chapter 3. Network Level Anonymity

encrypted with the keys K2 and K1 for Z2, encapsulates it into a RELAY packet
and sends it to Z1.

10. Each IOR along the path that receives a RELAY packet, removes one layer of
payload encryption using the secret key associated to the packet’s PID, forms a
new RELAY packet with a next-hop PID, and forwards it to the next-hop IOR.

11. When making the reverse path, every IOR adds a layer of encryption to the
payload using the proper secret key and forwards the RELAY packet to the
previous IOR.

Using this procedure, new hops can be added to the path and/or several anonymity
paths can be set-up in parallel.

3.1.4 Data exchange

When a source node X needs to send a datagram/packet to a remote corresponding
node Y , X passes the packet to the underlying anonymity layer and the following
steps are performed:

1. The anonymity layer creates a new anonymity path Z1,Z2, ...,Zn or selects one
of the already established.

2. Each packet is processed in the following way:

2.1. A new RELAY packet containing the PID of the selected anonymity path
is created.

2.2. The payload of the RELAY packet contains DATA command code, which
comprises the address of Y and the data payload.

2.3. The payload of the packet is consistently encrypted with the keys estab-
lished between X and each IOR of the selected path (Kn, Kn-1, ..., K1).

2.4. The header of the RELAY packet is encrypted with the link key LK1, and
the packet is sent to the first IOR node Z1.

3.1. Datagram-based OR anonymity 73

3. Each IOR along the path performs the steps below:

3.1. Decrypt the header of the packet using the link key established with the
previous IOR.

3.2. Update the path identifier.

3.3. Decrypt the packet payload using the shared key established when creat-
ing the path, thus removing one "layer" of encryption.

3.4. Encrypt the header using the link key shared with the next-hop IOR, and
forward the packet to that IOR.

4. The last IOR Zn extracts the Y ’s IP address and port number and the data pay-
load, forms a new UDP packet, and sends it to Y .

If the corresponding node Y wants to reply to the source node X , the following
actions are performed:

1. Y sends the data to the end node (Zn).

2. EN creates a RELAY packet with the path identifier PIDn. In the payload it
puts DATA command code, in which Y ’s address and received data payload is
encapsulated. The payload of the RELAY packet is encrypted with the corre-
sponding shared key Kn, while the header is encrypted with the LK shared with
the previous IOR of the anonymity path.

3. EN forwards the RELAY packet to the previous IOR node Zn-1.

4. When receiving that RELAY packet, each IOR node Zi (i = n-1,n-2, ...,1) per-
forms the following:

4.1. Decrypt the header of the packet using the link key LKi+1.

4.2. Substitute the path identifier PIDi+1 with PIDi.

4.3. Encrypt the payload of the packet with the key Ki.

4.4. Encrypt the header of the packet with the link key LKi shared with the
previous node of the anonymity path.

74 Chapter 3. Network Level Anonymity

4.5. Forward the packet to the previous node Zi-1 or to the SN in case of being
Z1.

5. The source node X decrypts all the encryption layers using corresponding keys
(K1, K2, ..., Kn) consequentially and extract the sender’s (Y ’s) address and the
data payload.

An example of UDP data exchange between a source node X and a corresponding
node Y is shown in Figure 3.4. In the provided example IOR node Z3 is used as EN.

Figure 3.4: An example of anonymous UDP data exchange.

3.1.5 One-way anonymity path mode

The proposed anonymization protocol can also work in one-way anonymity mode,
whose main difference from two-way mode is that when two endpoints want to com-
municate, they independently create anonymity paths towards each other for sending
RELAY packets. Exchanging datagrams using different anonymity paths helps to in-
crease the overall level of anonymity.

The process of anonymity path setting-up is similar to that of two-way anonymity
path mode with two differences: (i) IORs along the chosen anonymity path do not

3.2. Extensions 75

need to maintain information about backward path, and (ii) RELAY packets with
DATA command code contain both the source and destination addresses.

3.2 Extensions

The proposed protocol provides communicating parties with anonymity. However, it
can be further extended in order to increase the overall level of anonymization.

3.2.1 Dynamic anonymity path association

One of the features of the described anonymization protocol is its ability to use dif-
ferent anonymity paths for datagrams that belong to the same communication.

When working in one-way anonymity mode, this can be performed by creating
a new anonymity path or by selecting an already established one every time a new
datagram has to be transmitted to a remote IOR.

For two-way anonymity mode, similarly to one-way mode, for every packet that
has to be sent from source node to the corresponding node an anonymity path is se-
lected separately. However, the packets sent in the backward direction are forwarded
by the CN to the previous IOR. In such a scenario, in order to maximize compatibil-
ity with anonymity-unaware corresponding nodes, the responsible for the backward
per-packet anonymity path association should be the EN. However, according to the
proposed anonymization mechanism, non of the IORs knows the source of the data,
which means that EN does not know to which SN a circuit belongs.

This issue can be solved by modification of the anonymization protocol by intro-
ducing a new field (e.g., flow_id) in the payload of the packet destined to the EN, in
order to let the EN merge different (k) circuits, i.e. associate diverse anonymity paths
with one communication flow. In this case, when a CN sends a response to the SN,
the EN will randomly choose one of those k circuits for the backward direction for
each packet.

76 Chapter 3. Network Level Anonymity

3.2.2 One-to-many communication

The protocol can be extended in order to create a one-to-many anonymity path mode
in which an anonymity tree can be built. In such a scenario, at each intermediate IOR,
one incoming PID can be associated to a set of outgoing PIDs defining the next-hop
node. This feature can be used in different scenarios: (i) in unicast applications, the
anonymity path can be dynamically chosen by intermediate nodes, thus increasing
the randomness of the routing and the overall level of anonymity; (ii) in case of
multicast applications, the anonymity tree can be used to deliver the same UDP packet
to multiple destinations. An example of one-to-many anonymity path is depicted in
Figure 3.5.

Figure 3.5: An example of one-to-many anonymity path.

3.3 Implementation

The proposed anonymity protocol has been implemented as anonymity user datagram
layer that extends the standard UDP layer. The implementation has been done in Java
and can be used by simply replacing the standard Java DatagramSocket UDP-layer.
This allows a simple and easy integration in any UDP-based applications by simply
replacing the standard UDP layer with the new anonymity datagram layer.

In order to demonstrate feasibility of the proposed solution, the implementation

3.4. Conclusions 77

has been tested within a testbed [43]. In particular, 100 virtual IoT nodes have been
run on 2 Raspberry Pi devices (50 nodes per device). Each node runs both a CoAP
client application, bounded to an underlying IOR layer, and a CoAP server applica-
tion. Periodically CoAP clients send a CoAP GET request to a CoAP server request-
ing a resource status. All CoAP exchanges are anonymized by using an anonymity
path randomly selected by the anonymity layer of the client among a set of already
established 10 different paths, each composed by 6 IORs randomly chosen among
the complete set of IORs.

3.4 Conclusions

In this chapter, a novel anonymization protocol specifically designed for use in the
IoT M2M communication has been described. The proposed mechanism is based on
the onion routing concept, but, differently from other known OR-based schemes, it
is completely datagram-oriented. Two modes for anonymity path setup have been
designed: (i) two-way anonymity path mode in which communicating nodes use the
same sequence of IORs in order to send datagrams; and (ii) one-way mode in which
a new anonymity path is built when the responding node needs to send data, thus
making it harder to identify the communicating parties. Another novel and impor-
tant feature of the protocol is the possibility to choose a new anonymity path for
each packet, which significantly increases the overall level of anonymity. The solu-
tion described in this chapter can be considered lightweight, due to relatively small
cryptographic and protocol overhead. The proposed anonymization protocol has been
implemented and tested in order to demonstrate its feasibility.

Chapter 4

Application Level Anonymity

No one cared who I was until I put on the mask.

– Christopher Nolan, The Dark Knight Rises

The anonymization mechanism described in Chapter 3 has the advantage that it
works at network or transport layer and can be used for different application proto-
cols. However, the main disadvantage is that it requires modification of the network
or transport layer. In some cases it is necessary to provide a security scheme which
does not depend on the underlying layers. In such circumstances, the solution has to
be designed at the application layer.

In this chapter, we present a mechanism providing anonymous communication
for systems based on MQTT and MQTT-SN protocols. The design of the proposed
solution is based on the novel dynamic broker bridging, described in Section 2.1.
In the scenario proposed below, brokers act similarly to onion routers [37], and a
client can create an anonymity path lying through these brokers, which it can then
use for anonymizing messages sent to or received from a remote broker, thus making
it impossible for any participant of the communication process to know which topic
it is interested in.

The structure of this chapter is following. In Section 4.1 a scheme for anonymous
communication is introduced and provided with in-depth examples of subscription

80 Chapter 4. Application Level Anonymity

and publication processes. Section 4.2 describes the proof-of-concept implementa-
tion of the proposed mechanism. In Section 4.3 security aspects arisen while de-
signing and/or implementing the scheme are considered. Finally, in Section 4.4 the
conclusions on the performed work are drawn.

4.1 Publish/Subscribe-based Anonymity

Anonymity is a security service which allows clients to keep their identity unknown
to any participant of a communication system. In publish/subscribe networks it should
allow clients to subscribe and/or publish data to topics remaining incognito. Although
anonymity is an important security service, it is rarely considered. For example, re-
garding the MQTT (and MQTT-SN) protocol, while some research has been done on
various security aspects, anonymity remains an open issue.

Some solutions exist for so-called pseudo-anonymity. They allow clients to sub-
scribe and/or publish to a topic without indicating their username or any other cre-
dentials. However, the messages sent by those clients can be traced back to where
they come from, thus revealing communicating entities.

At the time of writing, in the public domain there was no work on providing
complete anonymity for communication over MQTT protocol.

In a standard MQTT scenario the protocol itself provides some sort of "light"
anonymity: it is only the broker who has information on which client is interested in
which topic and who publishes the updates. However, this can work only if (i) the
topic names and payload of the exchanged messages are not visible from outside (i.e.
they are encrypted) and (ii) as long as and the broker is trusted and not compromised.

While the confidentiality of communication between clients and brokers can be
protected by means of TLS in MQTT-based systems and by using DTLS and light-
weight cryptography in MQTT-SN networks, reliability of a single broker is a matter
of trust and a potential adversary’s skills. A possible solution for increasing the level
of confidentiality can be implementing a sort of onion routing through a sequence of
brokers, i.e. by applying dynamic broker bridging technology to a set of brokers and
making them relay encapsulated encrypted messages from a client until the destina-

4.1. Publish/Subscribe-based Anonymity 81

tion broker.

In this section a description of such anonymity system is provided. In the fol-
lowing examples it is assumed that Elliptic Curve Integrated Encryption Scheme
(ECIES) is used for message encryption, and Elliptic-curve Diffie-Hellman (ECDH)
key agreement protocol based on static public keys is used for obtaining shared
symmetric keys, since these mechanisms use relatively short symmetric keys and
faster/lighter computations (more detailed description is given in Section 1.4). Just
for the sake of the description of the anonymization scheme and corresponding ex-
amples, it is supposed that all data exchanged between the entities are valid and cor-
rect, therefore possible failures and mechanisms to detect and process them are not
considered.

4.1.1 Subscription

When a client wants to anonymously subscribe to one or more topics on a particular
broker, it chooses a set of n–1 brokers (B1,B2, ...,Bn–1) in order to lay through them an
anonymity path to the destination broker (Bn). The client then forms a subscription
message that iteratively contains its ECDH ephemeral public value (KSi) and the
topic name (the list of topic names in case of subscription to several topics) encrypted
with the DH symmetric key (KS

i) computed using the broker’ public ECDH value.
After encapsulation of obtained values according to the dynamic broker bridging
scheme, described in Section 2.1, the resulting Topic Name will be:

KS1 ||
{
... KSn-1 ||

{
KSn || {Tx}KS

n
@ Bn

}
KS

n-1
... @ B2

}
KS

1

,

where:

• {x}K means encryption of x using the key K;

• Tx is a topic or a list of topics on the destination broker Bn to which the client
wants to subscribe;

82 Chapter 4. Application Level Anonymity

• KS
i , i=1...n are symmetric keys that are computed using the broker’s public

value and the client’s private ephemeral value and are used for encrypting topic
names and, in case of publication, messages between the client and broker Bi;

• KSi, i=1...n are the client’s public values used for the ECDH symmetric key
KS

i computation.

When a broker receives a subscription request with the topic name corresponding
to the pattern KSi || {Ti}KS

i
, it performs the following actions:

1. Using KSi as key entry, it performs a lookup in its internal database for the
corresponding symmetric key.

2. If no symmetric key has been found, the broker computes the key according
to ECDH scheme, using the received client’s public value KSi and its own
private value. After the symmetric key KS

i is obtained, it is stored together with
the corresponding public value KSi. Otherwise the previously stored key is
retrieved from the database.

3. The broker decrypts the {Ti}KS
i

value using the key KS
i . After this step, the value

Ti is obtained, which is the real topic name destined for the current broker.

4. If Ti value corresponds to the KS j || Tj @ B j pattern, i.e. has to be forwarded,
then the broker does the following:

4.1. Checks whether B j is a valid reference to another broker (e.g., contains a
valid IP address and port number);

4.2. Adds to its own database a subscription of the sender to topic Tj on broker
B j;

4.3. If the broker has not subscribed to the topic Tj at the broker B j yet, then
it must send to the broker B j a request to subscribe it to the topic Tj. The
value KS j is forwarded as well.

4.1. Publish/Subscribe-based Anonymity 83

5. If the obtained value does not contain symbol "@" and Ti is a valid topic name,
then the broker adds to its subscribers database a subscription of the sender to
the obtained topic.

In Figure 4.1 an example of an anonymous multi-broker subscription process is
depicted. In the provided example a client (C1) wants to subscribe to the topic Tx on
the broker B3 and to the topic Ty on the broker B4.

Figure 4.1: An example of subscription process.

The process of subscription will be the following:

1. The client C1 chooses an anonymity path towards each destination broker,
through which it will send the subscription request. In the example in Fi-
gure 4.1 the anonymity path goes through brokers B1 and B2 to a destination
broker B3 and through broker B1 to another destination broker B4. Using sym-
metric keys calculated based on the brokers’ public values, the client encapsu-

84 Chapter 4. Application Level Anonymity

lates its own public values, encrypted topic names and brokers’ identifiers in
such a way that all brokers along the anonymity paths will be aware only about
previous (and next, if any) nodes of the path, and only the destination brokers
B3 and B4 will know the real topic names, to which C1 is subscribing, however,
having no idea who the real subscriber is. Then the client sends to the broker
B1 a SUBSCRIBE request with a list of topic names T11 and T12:

T11 = KS1||
{

KS2||
{

KS3||{Tx}KS
3
@ B3

}
KS

2
@ B2

}
KS

1

= KS1||Topic11,

T12 = KS1||
{

KS4||{Ty}KS
4
@ B4

}
KS

1
= KS1||Topic12,

which for a potential adversary will look like opaque topic names.

C1 saves the association between chosen anonymity paths (B1−B2−B3 and
B1−B4) and corresponding topic names it used (T11 and T12 in the provided
example).

2. Broker B1 receives the subscription request from the client C1, computes sym-
metric key KS

1 based on the received public value KS1, and stores both values
in the repository of keys. Then it decrypts the received topic name values using
the symmetric key KS1. The obtained values will respectively be:

KS2||
{

KS3||{Tx}KS
3
@B3

}
KS

2
@B2 = KS2||Topic2@B2,

KS4||
{

Ty
}

KS
4
@B4 = KS4||Topic4@B4.

Broker B1 adds to its subscribers database records that the sender (C1) has sub-
scribed to topics Topic2@B2 and Topic4@B4 mapped to Topic11 and Topic12

respectively, and symmetric key KS
1 which it will use in case of sending a

PUBLISH packet to the client.

3. Broker B1 sends SUBSCRIBE packets to the brokers (i) B2 and (ii) B4 with
topic name values T2 and T4 respectively:

4.1. Publish/Subscribe-based Anonymity 85

T2 = KS2||
{

KS3||{Tx}KS
3
@ B3

}
KS

2
= KS2||Topic2,

T4 = KS4||{Ty}KS
4
= KS4||Topic4.

4. When broker B2 receives the subscription request from B1, it computes the
value of the symmetric key KS

2 based on the received public value KS2 and
stores this pair of values in the database of keys. Then the broker decrypts the
topic name string using the symmetric key KS2. The obtained value will be

KS3 || {Tx}KS
3
@ B3 = KS3 || Topic3 @ B3.

Broker B2 adds to its database of subscribers a record that broker B1 has sub-
scribed to the topic Topic3@B3 mapped to a topic name Topic2 and the sym-
metric key KS

2 .

5. Broker B2 then sends to the broker B3 (which is the destination one in this path)
a SUBSCRIBE packet with the following topic name T3:

T3 = KS3 || {Tx}KS
3
,

which for a potential adversary looks like a subscription request to an opaque
topic name Topic3.

6. Broker B3 receives the SUBSCRIBE packet, uses the obtained public key KS3

for computing a shared symmetric key KS
3 , stores the values of both keys, and

decrypts the received topic name string using the symmetric key KS
3 . The ob-

tained value will contain the real topic name Tx.

7. B3 then adds to its subscribers database a record that broker B2 has subscribed
to the topic Tx mapped to Topic3. The key KS

3 is also stored for this subscription
to be used in case of incoming publications in this topic in the future.

86 Chapter 4. Application Level Anonymity

8. Similarly, when broker B4 receives the subscription request forwarded by the
broker B1, it computes a symmetric key KS

4 using the received public value KS4,
stores the keys, and decrypts the topic name using the computed symmetric key
KS

4 . The result will contain the real topic name Ty.

9. Broker B4 adds to its database of subscribers a record that broker B1 has sub-
scribed to the topic Ty mapped to Topic4, and saves the symmetric key within
this record.

4.1.2 Publication

According to the subscription procedure described in Section 4.1.1, a client that
anonymously subscribed to topic Tx will receive messages published in this topic re-
maining unknown. In addition, also the publisher can perform publishing procedure
anonymously.

When a client wants to publish a message in a topic on a particular broker in
an anonymous way, it can choose a set of m brokers (B1,B2, ...,Bm-1) forming an
anonymity path through them to the desired broker (Bm). The client then creates a
PUBLISH request with the following topic name (similarly to the subscription pro-
cedure):

KP1 ||
{
... KPm-1 ||

{
KPm || {Tx}KP

m
@ Bm

}
KP

m-1
... @ B2

}
KP

1

and the following message as payload:{
...
{
{Msgx}KP

m

}
KP

m−1
...
}

KP
1

,

where:

• {x}K means encryption of x using the key K;

• Tx is a topic on the destination broker Bm in which the client wants to publish a
message;

• Msgx is the message that the client wants to publish to the topic Tx;

4.1. Publish/Subscribe-based Anonymity 87

• KP
i , i=1...m are symmetric keys shared between the client and broker Bi and

used for encrypting topic names and messages;

• KPi, i=1...m are the client’s public values used for corresponding symmetric
key KP

i computation.

When a broker Bi receives a publication request from a client or another broker
that has topic name value corresponding to the pattern KPi || {Ti}KP

i
and application

message value {Msgi}KP
i
, it has to perform the following steps:

1. Using KPi as key entry, it performs a lookup for the corresponding symmetric
key in the internal database of keys.

2. If no symmetric key has been found, the key is computed according to the
ECDH scheme. The obtained key KP

i is then stored together with the corre-
sponding public value KPi in the keys database.

3. The broker decrypts received topic name and application message values using
the obtained symmetric key KP

i , thus obtaining topic name Ti and application
message Msgi values.

4. If Ti value corresponds to the KPj || Tj @ B j pattern, then the broker does the
following:

4.1. Checks whether B j is a valid reference to another broker.

4.2. Sends a PUBLISH packet to the broker B j with topic name value set to
Tj and application message set to Msgi, including the key KPj value.

5. If the value Ti does not contain "@" symbol, i.e. does not have to be forwarded
to another broker, and is a valid topic name string, then the PUBLISH request
is actually intended for the current broker. In this case, the broker selects from
its subscribers database those entities subscribed to the topic Ti and sends them
a PUBLISH packet applying the mapped topic name, if the latter was used for
subscription, and encrypting the message with the symmetric key correspond-
ing to the subscription.

88 Chapter 4. Application Level Anonymity

In Figure 4.2 an example of publication process is depicted. In the provided ex-
ample a client (C2) wants to anonymously publish a message (Msgx) in a topic Tx on
a broker B3, using brokers B4 and B5 as intermediate nodes of the anonymity path.
The example assumes that another client (C1) has already subscribed to the topic Tx

on the broker B3 following the steps from the example in Section 4.1.1.

Figure 4.2: An example of anonymous publication.

The following events occur in the depicted example:

1. The publisher C2 creates an anonymity path through brokers B4 and B5 to the
destination broker B3. Using symmetric keys of the three brokers calculated
based on their public values, C2 encapsulates its own public values (KP3, KP2,
KP1), encrypted topic name, application message values and next node identi-
fiers in such a way that brokers B3, B4 and B5 will be aware only about previous

4.1. Publish/Subscribe-based Anonymity 89

(and next, if any) nodes of the anonymity path, and only the destination broker
B3 will know the real topic name and application message, however, without
having information about the real publisher.

Then client C2 sends to the broker B4 a PUBLISH packet with topic name T
′

4

and application message Msg4:

T
′

4=KP4 ||
{

KP5 ||
{

KP3 || {Tx}KP
3
@ B3

}
KP

5
@ B5

}
KP

4

= KP4 || Topic
′
4,

Msg4=
{
{{Msgx}KP

3
}KP

5

}
KP

4
.

For a potential adversary the request will look like a request to publish a mes-
sage Msg4 in a topic Topic

′
4.

2. Broker B4 receives the PUBLISH request, computes symmetric key KP
4 based

on the received public value KP4, and stores both the values. Then it decrypts
the topic name and application message values with the obtained symmetric
key KP

4 . The values of topic name and message after decryption will respec-
tively be:

KP5||
{

KP3||{Tx}KP
3
@B3

}
KP

5
@B5 = KP5||Topic

′
5 @B5,

{{Msgx}KP
3
}KP

5
.

Broker B4 then forwards the PUBLISH request to the broker B5 with topic
name and application message values respectively:

KP5 || Topic
′
5 = KP5 ||

{
KP3 || {Tx}KP

3
@ B3

}
KP

5
,

Msg5 = {{Msgx}KP
3
}KP

5
.

90 Chapter 4. Application Level Anonymity

3. When broker B5 receives the request, it computes the value of the symmetric
key KP

5 based on the received public value KP5 and stores this pair of values in
its database of keys. Then it decrypts the topic name and application message
values of the received request using the symmetric key KP

5 . The obtained values
will respectively be:

KP3 || {Tx}KP
3
@ B3,

{Msgx}KP
3
.

Broker B5 sends to the broker B3 (which is the destination broker in this sce-
nario) a PUBLISH packet with a topic name T

′
3 and an application message

Msg3:

T
′

3 = KP3 || {Tx}KP
3
,

Msg3 = {Msgx}KP
3
.

4. When B3 receives the request, it uses the obtained public value KP3 for com-
puting a symmetric key KP

3 , stores both keys values, and, using the key KP
3 ,

decrypts the received topic name and application message values. After these
operations, B3 obtains the real topic name Tx and message Msgx. B3 then checks
for the entities subscribed to the topic Tx and finds a record that broker B2 has
subscribed to the topic Tx mapped to Topic3, and that symmetric key KS

3 must
be used for message encryption.

5. B3 encrypts the original message with the symmetric key KS
3 and sends to the

broker B2 a PUBLISH packet with topic name value set to Topic3 and applica-
tion message Msg2 = {Msgx}KS

3
.

6. After receiving the publication request, B2 checks its subscribers database for
the entities that subscribed to the topic Topic3 and finds a record that broker
B1 has subscribed to the topic Topic3 mapped to Topic2.

4.1. Publish/Subscribe-based Anonymity 91

7. B2 encrypts the received message Msg2 with the symmetric key KS
1 stored for

this subscription record, and sends a PUBLISH packet with topic name set to
Topic2 and application message set to Msg1 = {Msg2}KS

2
to the broker B1.

8. When broker B1 receives the request, it checks for the subscribers of the topic
Topic2 in its database of subscriptions and finds a record that client C1 has sub-
scribed to the topic Topic2 mapped to the topic name Topic11. It also retrieves
the symmetric key KS

1 corresponding to this subscription.

9. Broker B1 encrypts the received message Msg1 with the symmetric key KS
1 and

sends to the client C1 a PUBLISH packet with topic name value set to Topic11

and an application message Msg0 = {Msg1}KS
1
.

When C1 receives the publication request, it associates topic name Topic11

with the anonymity path B1 − B2− B3 created for subscription and the real
topic name Tx that it has subscribed to. The subscriber consistently applies
the symmetric keys shared with the brokers of the anonymity path in order to
obtain the original message Msgx from the received application message Msg0:

Msg0 =
{{
{Msgx}KS

3

}
KS

2

}
KS

1

.

4.1.3 Unsubscription

When a client wants to unsubscribe from a topic to which it has previously subscribed
in an anonymous way, it has to perform the operations similar to those needed for
subscription using the same anonymity path (B1,B2, ...,Bn–1) it used to subscribe to
the topic that became unwanted, thus the Topic Name value for unsubscription has
to be the same:

KS1 ||
{
... KSn-1 ||

{
KSn || {Tx}KS

n
@ Bn

}
KS

n-1
... @ B2

}
KS

1

,

where:

• {x}K means encryption of x using the key K;

92 Chapter 4. Application Level Anonymity

• Tx is a topic or a list of topics on the destination broker Bn from which the client
wants to unsubscribe;

• KS
i , i=1...n are symmetric keys that are computed using the broker’s public

value and the client’s private ephemeral value and are used for encrypting topic
names;

• KSi, i=1...n are the client’s public values used for the ECDH symmetric key
KS

i computation.

When a broker receives an UNSUBSCRIBE request with a topic name corre-
sponding to the pattern KSi || {Ti}KS

i
, it performs the following actions:

1. Using KSi as key entry, it performs a lookup in its internal database for the
corresponding symmetric key.

2. If no symmetric key has been found, the broker computes the key according
to ECDH scheme, using the received client’s public value KSi and its own
private value. After the symmetric key KS

i is obtained, it is stored together with
the corresponding public value KSi. Otherwise the previously stored key is
retrieved from the database.

3. The broker decrypts the {Ti}KS
i

value using the key KS
i . After this step, the value

Ti is obtained, which is the real topic name destined for the current broker.

4. The broker deletes the record of sender’s subscription to the topic Ti from its
subscribers database.

5. If Ti value corresponds to the KS j || Tj @ B j pattern, i.e. the UNSUBSCRIBE
request has to be forwarded, then the broker does the following:

5.1. Checks whether B j is a valid reference to another broker (e.g., contains a
valid IP address and port number);

5.2. Checks whether there are subscribers to the topic Tj on the broker B j in
the database of subscriptions;

4.1. Publish/Subscribe-based Anonymity 93

5.3. If no record is found, then the current broker must send to the broker B j

a request to unsubscribe it from the topic Tj. The value KS j is forwarded
as well. Otherwise, no further action is needed.

An example of the subscription cancellation process is depicted in Figure 4.3.
The proposed example assumes that some subscriptions took place before: the cor-
responding records are displayed in the tables next to the brokers’s databases. In
this example, a client C1 unsubscribes from the topic TX managed by the broker B3,
on which it has previously subscribed according to the procedure described in Sec-
tion 4.1.1.

Figure 4.3: An example of subscription process.

The following steps occur during the unsubscription process:

1. The client C1 selects from its internal storage the anonymity path it used in
order to perform subscription to the topic TX on the broker B3: {B1, B2, B3}.
The client retrieves previously stored topic name :

T11 = KS1||
{

KS2||
{

KS3||{Tx}KS
3
@ B3

}
KS

2
@ B2

}
KS

1

= KS1||Topic11.

94 Chapter 4. Application Level Anonymity

Client C1 sends an UNSUBSCRIBE request containing topic name T11 to the
broker B1.

2. Broker B1 receives the request, it uses the symmetric key KS
1 corresponding to

the received public value KS1 in order to decrypt the topic name, which will
result in

KS2||
{

KS3||{Tx}KS
3
@B3

}
KS

2
@B2 = KS2||Topic2@B2.

Then B1’s actions are the following:

i) it removes C1’s subscription from the database of subscribes;

ii) since the original subscription has been forwarded to another broker (B2

in this case), B1 checks for other subscribers of the topic Topic2 on the
broker B2.

3. Since no subscribers to the topic Topic2 on the broker B2 are left in the B1’
database, broker B1 sends an UNSUBSCRIBE request to the broker B2 with
the topic name value T2:

T2 = KS2||
{

KS3||{Tx}KS
3
@B3

}
KS

2
= KS2||Topic2.

4. When broker B2 receives the UNSUBSCRIBE request from B1, it retrieves the
symmetric key KS

2 corresponding to the received public value KS2 and decrypts
the received topic name. The obtained value will be

KS3 || {Tx}KS
3
@ B3 = KS3 || Topic3 @ B3.

Then B2 performs the following steps:

i) it removes B1’s subscription to the topic Topic3 @ B3 from the database
of subscribes;

ii) it checks for other subscribers of the topic Topic3 on the broker B3.

4.2. Implementation 95

Since in the database there is another subscription the topic Topic3 on B3 (by
some client C4), the current broker B2 does not have to forward the unsubscrip-
tion request and can send an acknowledgement that the subscription has been
removed (UNSUBACK) to the broker B1.

4.2 Implementation

The proposed anonymization mechanism has been implemented as an extension of
the dynamic broker bridging implementation described is Section 2.3. A library of
necessary functions (e.g., cryptographic data processing) has been implemented in or-
der to provide the communication via dynamic bridging mechanism with anonymiza-
tion features. The original database and functions to work with it have been modified
in order to store new data, such as key associations and new subscriptions data (e.g.,
corresponding shared symmetric keys). The support of data encryption is based on
Elliptic Curve cryptography: coincurve1 library is utilized to perform operations on
curve secp256k1, and AES implementation of PyCryptodome2 is used for symmetric
encryption of the data.

In current implementation, in order to avoid memory overload of a client, brokers’
public values are obtained before forming a request, by subscribing to a predefined
topic (get_public_key). The broker’s behaviour has been modified in the following
way. Before a broker starts, a pair of private and public ECDH values is generated.
The public value is then added as a retain message to (get_public_key) topic. When
a broker receives a SUBSCRIBE request for the topic get_public_key, it replies with
a PUBLISH packet containing its public value. The attempts of clients to publish in
this topic are discarded.

In Figure 4.4 a flowchart of client’s actions performed in order to anonymously
subscribe to a topic is demonstrated. In the provided scheme, the topic name is ob-
tained from the method getTopicName() which may read the string value from the
command line, or the topic name value may be hard-coded in the application, or

1https://pypi.org/project/coincurve/
2https://pypi.org/project/pycryptodome/

96 Chapter 4. Application Level Anonymity

another approach can be applied.

Figure 4.4: Anonymous subscription.

As the first step, the client has to obtain the public keys of each broker of the

4.2. Implementation 97

anonymity path and to generate corresponding symmetric keys which will then be
shared. The flowchart of the key establishment procedure is depicted in Figure 4.5.

Figure 4.5: Client’s key establishment.

According to the provided flowchart, the client generates a new id in order to
communicate with each broker. The public key of a broker is obtained by subscrib-

98 Chapter 4. Application Level Anonymity

ing to a predefined topic "get_public_key", in which a broker stores a retain message
containing its public key. Once the broker’s public value is received, the client gen-
erates a pair of private and public ECDH values (keys). Then, using its own private
key and the broker’s public key, the client computes a symmetric key, which will be
then used for encryption and decryption of the data shared between the client and the
broker. All the keys are then saved in the keys storage.

After successfully obtaining all the necessary keys, the client has to encapsulate
its public keys, the topic name value and the brokers’ identifiers, consequently (start-
ing from the destination broker and going backwards to the first broker of the anony-
mity path) encrypting all the data with corresponding shared keys. The flowchart of
the topic generation procedure is provided in Figure 4.6.

Figure 4.6: Topic name generation.

Before encrypting the topic name, the value has to be padded in order to apply
AES encryption. In the provided implementation, PKCS#7 [44] padding method is

4.2. Implementation 99

used, according to which the value of each byte of the padding is equal to the number
of added bytes, i.e. to the padding length. After performing padding operations, the
topic name is encrypted using AES symmetric encryption in Cipher Block Chaining
(CBC) mode. After the encryption, the client concatenates the public key generated
for the broker with the encrypted topic name and, if the broker is not the one, to which
client will send the SUBSCRIBE request, i.e. not the first one on the way, then the
client also concatenates the obtained value with the broker’s identifier.

When the topic name is generated, the client connects to the first broker of the
anonymity path and sends to it a SUBSCRIBE message with the encrypted topic
name.

The client’s actions necessary for performing an UNSUBSCRIBE request are
similar to those for subscription, with the exception that it does not need to obtain the
brokers’ public keys and generate a new topic name. Instead, the same Topic name
value used for the subscription must be used in order to unsubscribe from the topic.

When a client wants to publish a message in a topic in an anonymous way, it
performs the same operations needed for subscription, in order to establish keys and
generate a topic name. The Application message has to be encrypted as well. How-
ever, no additional value has to be concatenated to the encrypted message during the
encapsulation process.

When an anonymity-aware broker receives a SUBSCRIBE, UNSUBSCRIBE or
PUBLISH request, it processes the received Topic name value according to the
flowchart presented in Figure 4.7, where topic_name is the topic name value received
from the sender.

After performing the decryption operations, the topic is processed with accor-
dance to the mechanism described in Section 2.3, with the exception that the en-
crypted_topic_name and shared_key values are stored in the subscriptions database
as well. In case of an incoming PUBLISH request, the broker has also to decrypt
the Application message value using the same shared_key it used for the topic name
decryption.

If a PUBLISH message arrives to a bridge running on the current broker, i.e. the
broker connected to the bridge has data to publish in the topic to which the bridge has

100 Chapter 4. Application Level Anonymity

Figure 4.7: Topic name processing.

subscribed, the bridge performs the actions depicted in the flowchart of Figure 4.8. In
the provided flowchart, the topic_name value is the received Topic name, the message
contains the Application message received withing the request, and broker_id is the
identifier of the broker that has sent the PUBLISH request to the bridge.

As the first step, the bridge performs a look-up in its subscribers database for
the subscriptions to the topic topic_name. If one or more records are found, the list
is saved in the variable subscriptions. Then the bridge generates a new topic name
topic_name which will be further used in order to distribute the message to the sub-
scribers. After that, for each record in subscriptions list the bridge performs the fol-
lowing actions:

1. It checks for the presence of a shared_key in the subscription data.

4.2. Implementation 101

Figure 4.8: Publication request processing.

2. If the shared key is not present, i.e. the subscription request was not anony-
mous, the bridge sends a PUBLISH message to the client, using the topic_name
value as Topic name and the received message as Application message payload.

3. Otherwise, if the shared key exists, the bridge’s steps are the following:

i) retrieve the encrypted topic name value which the subscriber used when
sending a SUBSCRIBE request;

ii) encrypt the message value using the shared_key;

102 Chapter 4. Application Level Anonymity

iii) send a PUBLISH message to the subscriber, using the encrypted topic
name and the encrypted message as Topic name and Application message
values respectively.

The implementation has been tested in Windows 10 and Raspbian Stretch en-
vironments: diverse combinations of brokers and clients instances were run and ex-
changed messages. The main goal of the tests was to validate the correctness of the
proposed architecture and to discover which possible issues can arise. The tests have
demonstrated feasibility of the proposed solution and revealed the aspects, listed in
Section 4.3, which should be taken into consideration for the future improvement.

4.3 Security Aspects

In order to cover up communication between the entities and to prevent a potential
adversary from analyzing the traffic within the system, flushing anonymity technique
[45] may be used while sending packets. One way of flushing can be defining a pa-
rameter N and sending packets only after N messages are collected in a broker’s
buffer [46]. Another option is to set a timer and periodically send dummy packets
to each or several random connected nodes [47]. Other standard flushing techniques
already defined for mix anonymity networks can also be used.

Another measure of preventing possible attacks based on traffic analysis is to
ensure that all outgoing messages have the same size. This can be achieved by using
padding after encryption of topic names and messages. Brokers in the path can pad
the messages to a fixed length before forwarding them. In this case, the receiving
party has to be aware of how to remove the padding in an unambiguous manner
before decrypting the received data, so the communicating parties must use the same
padding algorithm.

Since in MQTT-SN the topic name value is limited with length, it is assumed that
the topic name registration procedure has been already performed prior to sending
a SUBSCRIBE, UNSUBSCRIBE or PUBLISH packet, with accordance to the stan-
dard documentation. Although this procedure is not standard for the MQTT protocol,

4.4. Conclusions 103

it can be applied in MQTT-based system as well, in order to decrease the size of ex-
changed data. The descriptions of the standard topic name registration procedure is
provided in Section 1.1.2.

It is essential that the clients correctly obtain public values of the brokers. One
possibility is by using entity identifiers that contain the entity’s public value. Another
approach, which has been used in the proof-of-concept implementation described in
Section 4.2, is to store brokers’ public values as retain messages in a specified topic.
Once a client needs to obtain the value, it has to send a SUBSCRIBE request indicat-
ing that topic name, and the broker will respond with a PUBLISH message containing
its public value. Clearly, any attempt to publish in that topic must be rejected.

In the proposed anonymization scheme it is the client who sets up the anonymity
path. It might be possible to reduce the load of the client by making the brokers select
next hop of the path (e.g., introducing a counter of desirable length of the path, which
would decrease hop-by-hop). However, in such scenario, if some brokers collude,
they can create the path through themselves, thus revealing in the end the real values
of the "Client – Broker" pair.

4.4 Conclusions

In this chapter a novel scheme for secure anonymous communication within net-
works based on MQTT protocol has been presented. The solution uses dynamic bro-
ker bridging mechanism described in Section 2.1. The proposed mechanism provides
anonymity for MQTT clients by creating an anonymity path through a set of brokers
and encapsulating and encrypting requests in such a way that none of the partici-
pants of communication knows which client is really subscribed/publishes to which
topic and on which broker. The presented solution is simple and light in terms of in-
teractions and state information. The proposed anonymization mechanism has been
implemented as an extension of the dynamic broker bridging scheme presented in
Section 2.3 and tested in order to prove its feasibility, analyze possible issues and
find out the impact of anonymization features on the performance of the intercom-
municating entities.

Conclusions

Nowadays, Internet of Things is applied to almost every sphere of life. The IoT de-
vices are interconnected in order to collect, process and transfer various data. Due
to the sensitivity of those data, providing IoT communications with security services
is an essential task. However, it is usually difficult to design and implement reliable
and strong security solutions for the IoT due to its heterogeneous nature and the con-
straints of IoT devices.

This thesis has focused on the study of security mechanisms for the Internet of
Things environment. The IoT and its most popular protocols have been described. An
overview of the most required security services, such as end-to-end authentication
and authorization, data confidentiality, and anonymity, together with the solutions
that have been proposed with the aim of providing those services, has been done.

Design of a novel dynamic broker bridging mechanism has been presented. It is
based on the standard broker bridging concept, but without requiring a manual set-
up of each broker. This feature makes it able to be dynamically adapted to various
scalability requirements. Three authorization and authentication schemes have been
designed for the proposed mechanisms. In all of them, the requests directed to brokers
contain authorization tokens released by a trusted third-party authorization server, so
only authorized entities can subscribe or publish to a particular topic. The proposed
dynamic broker bridging mechanism has been implemented and tested in order to
prove the feasibility of the proposed architecture. The proposed scheme has been
applied to the Industrial IoT scenario with the aim of relaying M2M communications,
based on publish/subscribe paradigm.

106 Conclusions

The work has also focused on providing IoT communications with anonymity.
A novel anonymization protocol specifically designed for the IoT M2M communica-
tions has been described. The proposed protocol is based on the onion routing con-
cept, however, unlike the other known OR-based schemes, it is completely datagram-
oriented. Two modes for anonymity path (a sequence of IORs used to anonymously
forward a datagram) setup have been designed: (i) two-way anonymity path mode in
which communicating nodes use the same sequence of IORs in order to send data-
grams; and (ii) one-way mode in which a new anonymity path is built when the re-
sponding node needs to send data. An important feature of the provided mechanism is
the possibility to choose a different anonymity path for each packet, thus significantly
increasing the overall level of anonymity. The proposed anonymization protocol has
been implemented and tested in order to demonstrate its feasibility. The solution can
be considered lightweight, due to relatively small cryptographic and protocol over-
head.

A novel scheme for secure anonymous communication within networks based on
publish/subscribe paradigm (e.g., MQTT protocol) has been described. The solution
exploits the dynamic broker bridging mechanism. The anonymization mechanism
provides anonymity for MQTT clients by creating an anonymity path through a set
of brokers and encapsulating and encrypting requests in such a way that none of the
participants of communication knows which client is really subscribed/publishes to
which topic and on which broker. The proposed mechanism has been implemented
as an extension of the dynamic broker bridging scheme implementation and tested
in order to prove its feasibility. The anonymization mechanism has been analyzed in
terms of possible issues and the impact of anonymization features on the performance
of the intercommunicating entities. The proposed solution is simple and light in terms
of interactions and state information.

The contribution of this work in the research is introducing novel approaches
for providing security services for the Internet of Things systems. A novel dynamic
broker bridging architecture has been proposed, which can be applied to various sce-
narios in the future. At the time of writing, there was no technique for providing
publish/subscribe systems with the ability to communicate anonymously, and this

Conclusions 107

thesis proposes a reliable anonymization mechanism. An anonymization solution for
datagram-oriented communications has been proposed in order to provide a decen-
tralized system and to reduce the overhead of well-known anonymity solutions.

Bibliography

[1] Ovidiu Vermesan and Peter Friess, editors. Internet of Things: Con-
verging Technologies for Smart Environments and Integrated Ecosys-
tems. River Publishers Series in Communication. River, 2013. URL:
http://www.internet-of-things-research.eu/pdf/

Converging_Technologies_for_Smart_Environments_and_

Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf.

[2] Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. RFC 7231, June 2014. URL: https://rfc-editor.
org/rfc/rfc7231.txt, doi:10.17487/RFC7231.

[3] LoRa Alliance Technical Committee. July, 2018. Protocol Specification. Ver-
sion 1.0.3. LoRaWAN 1.0.3 Specification.

[4] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application
Protocol (CoAP). RFC 7252, June 2014. URL: https://rfc-editor.
org/rfc/rfc7252.txt, doi:10.17487/RFC7252.

[5] A. Banks et al. MQTT Version 5.0. Standard, OASIS, 2019.

[6] Ian Fette and Alexey Melnikov. The WebSocket Protocol. RFC 6455, December
2011. URL: https://rfc-editor.org/rfc/rfc6455.txt, doi:
10.17487/RFC6455.

[7] Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of California,

http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
https://rfc-editor.org/rfc/rfc7231.txt
https://rfc-editor.org/rfc/rfc7231.txt
http://dx.doi.org/10.17487/RFC7231
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7252.txt
http://dx.doi.org/10.17487/RFC7252
https://rfc-editor.org/rfc/rfc6455.txt
http://dx.doi.org/10.17487/RFC6455
http://dx.doi.org/10.17487/RFC6455

110 Bibliography

Irvine, 2000. URL: http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm.

[8] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018. URL: https://rfc-editor.org/rfc/rfc8446.
txt, doi:10.17487/RFC8446.

[9] Andy Stanford-Clark and Hong Linh Truong. November 14, 2013. Protocol
Specification. Version 1.2. MQTT For Sensor Networks (MQTT-SN).

[10] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security
Version 1.2. RFC 6347, January 2012. URL: https://rfc-editor.org/
rfc/rfc6347.txt, doi:10.17487/RFC6347.

[11] Giederson Santos, Vinicius Guimaraes, Guilherme Rodrigues, Lisandro
Granville, and Liane Tarouco. A DTLS-based security architecture for the In-
ternet of Things. pages 809–815, 07 2015. doi:10.1109/ISCC.2015.

7405613.

[12] Simone Cirani, Marco Picone, Pietro Gonizzi, Luca Veltri, and Gianluigi Fer-
rari. IoT-OAS: An OAuth-Based Authorization Service Architecture for Secure
Services in IoT Scenarios. Sensors Journal, IEEE, 15:1224–1234, 02 2015.
doi:10.1109/JSEN.2014.2361406.

[13] Ola Salman, Sarah Abdallah, Imad Elhajj, Ali Chehab, and Ayman Kayssi.
Identity-based authentication scheme for the Internet of Things. pages 1109–
1111, 06 2016. doi:10.1109/ISCC.2016.7543884.

[14] T. Claeys, F. Rousseau, and B. Tourancheau. Securing complex iot platforms
with token based access control and authenticated key establishment. In 2017
International Workshop on Secure Internet of Things (SIoT), pages 1–9, Sep.
2017. doi:10.1109/SIoT.2017.00006.

[15] P. Musale, D. Baek, and B. J. Choi. Lightweight gait based authentication
technique for iot using subconscious level activities. In 2018 IEEE 4th World

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
http://dx.doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc6347.txt
https://rfc-editor.org/rfc/rfc6347.txt
http://dx.doi.org/10.17487/RFC6347
http://dx.doi.org/10.1109/ISCC.2015.7405613
http://dx.doi.org/10.1109/ISCC.2015.7405613
http://dx.doi.org/10.1109/JSEN.2014.2361406
http://dx.doi.org/10.1109/ISCC.2016.7543884
http://dx.doi.org/10.1109/SIoT.2017.00006

Bibliography 111

Forum on Internet of Things (WF-IoT), pages 564–567, Feb 2018. doi:

10.1109/WF-IoT.2018.8355210.

[16] P. Gope and B. Sikdar. Lightweight and privacy-preserving two-factor authen-
tication scheme for iot devices. IEEE Internet of Things Journal, 6(1):580–589,
Feb 2019. doi:10.1109/JIOT.2018.2846299.

[17] M. A. Gurabi, O. Alfandi, A. Bochem, and D. Hogrefe. Hardware based
two-factor user authentication for the internet of things. In 2018 14th Inter-
national Wireless Communications Mobile Computing Conference (IWCMC),
pages 1081–1086, June 2018. doi:10.1109/IWCMC.2018.8450397.

[18] Ludwig Seitz, Goran Selander, Erik Wahlstroem, Samuel Erdtman, and Hannes
Tschofenig. Authentication and Authorization for Constrained Environments
(ACE) using the OAuth 2.0 Framework (ACE-OAuth). Internet-Draft draft-
ietf-ace-oauth-authz-24, Internet Engineering Task Force, March 2019. Work
in Progress. URL: https://datatracker.ietf.org/doc/html/
draft-ietf-ace-oauth-authz-24.

[19] Stefanie Gerdes, Olaf Bergmann, Carsten Bormann, Goran Selander, and Lud-
wig Seitz. Datagram Transport Layer Security (DTLS) Profile for Authen-
tication and Authorization for Constrained Environments (ACE). Internet-
Draft draft-ietf-ace-dtls-authorize-08, Internet Engineering Task Force, April
2019. Work in Progress. URL: https://datatracker.ietf.org/
doc/html/draft-ietf-ace-dtls-authorize-08.

[20] Cigdem Sengul, Anthony Kirby, and Paul Fremantle. MQTT-TLS profile
of ACE. Internet-Draft draft-ietf-ace-mqtt-tls-profile-00, Internet Engineering
Task Force, May 2019. Work in Progress.

[21] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Token
(JWT). RFC 7519, May 2015. URL: https://rfc-editor.org/rfc/
rfc7519.txt, doi:10.17487/RFC7519.

http://dx.doi.org/10.1109/WF-IoT.2018.8355210
http://dx.doi.org/10.1109/WF-IoT.2018.8355210
http://dx.doi.org/10.1109/JIOT.2018.2846299
http://dx.doi.org/10.1109/IWCMC.2018.8450397
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-24
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-24
https://datatracker.ietf.org/doc/html/draft-ietf-ace-dtls-authorize-08
https://datatracker.ietf.org/doc/html/draft-ietf-ace-dtls-authorize-08
https://rfc-editor.org/rfc/rfc7519.txt
https://rfc-editor.org/rfc/rfc7519.txt
http://dx.doi.org/10.17487/RFC7519

112 Bibliography

[22] Michael B. Jones, Erik Wahlstroem, Samuel Erdtman, and Hannes Tschofenig.
CBOR Web Token (CWT). RFC 8392, May 2018. URL: https://
rfc-editor.org/rfc/rfc8392.txt, doi:10.17487/RFC8392.

[23] Marco Calabretta, Riccardo Pecori, Massimo Vecchio, and Luca Veltri. MQTT-
Auth: a Token-based Solution to Endow MQTT with Authentication and Au-
thorization Capabilities. Journal of Communications Software and Systems, 14,
01 2018. doi:10.24138/jcomss.v14i4.604.

[24] M. Singh, M. A. Rajan, V. L. Shivraj, and P. Balamuralidhar. Secure MQTT
for Internet of Things (IoT). In 2015 Fifth International Conference on Com-
munication Systems and Network Technologies, pages 746–751, April 2015.
doi:10.1109/CSNT.2015.16.

[25] A. A. Wardana and R. S. Perdana. Access Control on Internet of Things based
on Publish/Subscribe using Authentication Server and Secure Protocol. In 2018
10th International Conference on Information Technology and Electrical Engi-
neering (ICITEE), pages 118–123, July 2018. doi:10.1109/ICITEED.

2018.8534855.

[26] Kristian Beckers. Pattern and Security Requirements: Engineering-Based Es-
tablishment of Security Standards. Springer Publishing Company, Incorporated,
2015.

[27] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. Inf.
Theor., 22(6):644–654, September 2006. URL: http://dx.doi.org/10.
1109/TIT.1976.1055638, doi:10.1109/TIT.1976.1055638.

[28] Certicom Research. Standards for efficient cryptography, SEC 1: Elliptic Curve
Cryptography, September 2000. Version 1.0.

[29] S. Jebri, M. Abid, and A. Bouallegue. STAC-protocol: Secure and Trust Anony-
mous Communication protocol for IoT. In 2017 13th International Wireless
Communications and Mobile Computing Conference (IWCMC), pages 365–
370, June 2017. doi:10.1109/IWCMC.2017.7986314.

https://rfc-editor.org/rfc/rfc8392.txt
https://rfc-editor.org/rfc/rfc8392.txt
http://dx.doi.org/10.17487/RFC8392
http://dx.doi.org/10.24138/jcomss.v14i4.604
http://dx.doi.org/10.1109/CSNT.2015.16
http://dx.doi.org/10.1109/ICITEED.2018.8534855
http://dx.doi.org/10.1109/ICITEED.2018.8534855
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/IWCMC.2017.7986314

Bibliography 113

[30] Dijiang Huang. Pseudonym-based cryptography for anonymous communica-
tions in mobile ad hoc networks. International Journal of Security and Net-
works, 2(3-4):272–283, 2007.

[31] Taeho Lee, Christos Pappas, Pawel Szalachowski, and Adrian Perrig. Com-
munication based on per-packet one-time addresses. In Proceedings of the
IEEE Conference on Network Protocols (ICNP), November 2016. URL:
/publications/papers/icnp16_ota.pdf.

[32] A. I. Kouachi, S. Sahraoui, and A. Bachir. Per Packet Flow Anonymization
in 6LoWPAN IoT Networks. In 2018 6th International Conference on Wire-
less Networks and Mobile Communications (WINCOM), pages 1–7, Oct 2018.
doi:10.1109/WINCOM.2018.8629719.

[33] N. P. Hoang and D. Pishva. A TOR-based anonymous communication ap-
proach to secure smart home appliances. In 2015 17th International Conference
on Advanced Communication Technology (ICACT), pages 517–525, July 2015.
doi:10.1109/ICACT.2015.7224918.

[34] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. On flow
correlation attacks and countermeasures in mix networks. In David Martin and
Andrei Serjantov, editors, Privacy Enhancing Technologies, pages 207–225,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[35] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency mix
networks: Attacks and defenses. In Dieter Gollmann, Jan Meier, and Andrei
Sabelfeld, editors, Computer Security – ESORICS 2006, pages 18–33, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[36] S. Janbabaei, H. Gharaee, and N. Mohammadzadeh. Lightweight, anony-
mous and mutual authentication in IoT infrastructure. In 2016 8th Interna-
tional Symposium on Telecommunications (IST), pages 162–166, Sep. 2016.
doi:10.1109/ISTEL.2016.7881802.

/publications/papers/icnp16_ota.pdf
http://dx.doi.org/10.1109/WINCOM.2018.8629719
http://dx.doi.org/10.1109/ICACT.2015.7224918
http://dx.doi.org/10.1109/ISTEL.2016.7881802

114 Bibliography

[37] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and
onion routing. IEEE Journal on Selected Areas in Communications, 16(4):482–
494, May 1998. doi:10.1109/49.668972.

[38] Andrew Banks and Rahul Gupta. MQTT Version 3.1.1. Standard, OASIS, 2014.

[39] H. Boyes et al. The industrial internet of things (IIoT): An analysis framework.
Computers in Industry, 101:1 – 12, 2018.

[40] K. Iwanicki. A Distributed Systems Perspective on Industrial IoT. In 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS),
pages 1164–1170, July 2018.

[41] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA,
2004. USENIX Association. URL: http://dl.acm.org/citation.
cfm?id=1251375.1251396.

[42] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Com-
mun. ACM, 42(2):39–41, February 1999. URL: http://doi.acm.org/
10.1145/293411.293443, doi:10.1145/293411.293443.

[43] L. Belli, S. Cirani, L. Davoli, A. Gorrieri, M. Mancin, M. Picone, and G. Ferrari.
Design and Deployment of an IoT Application-Oriented Testbed. Computer,
48(9):32–40, Sep. 2015. doi:10.1109/MC.2015.253.

[44] R. Housley. Cryptographic Message Syntax (CMS). RFC 5652 (Draft Stan-
dard), September 2009. URL: http://www.ietf.org/rfc/rfc5652.
txt.

[45] Matthew Edman and Bülent Yener. On anonymity in an electronic society:
A survey of anonymous communication systems. ACM Computing Surveys,
42(1):1–35, 2009. doi:http://doi.acm.org/10.1145/1592451.

1592456.

http://dx.doi.org/10.1109/49.668972
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://doi.acm.org/10.1145/293411.293443
http://doi.acm.org/10.1145/293411.293443
http://dx.doi.org/10.1145/293411.293443
http://dx.doi.org/10.1109/MC.2015.253
http://www.ietf.org/rfc/rfc5652.txt
http://www.ietf.org/rfc/rfc5652.txt
http://dx.doi.org/http://doi.acm.org/10.1145/1592451.1592456
http://dx.doi.org/http://doi.acm.org/10.1145/1592451.1592456

Bibliography 115

[46] David L. Chaum. Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Communications of the ACM, 24(2):84–90, February
1981. URL: http://dx.doi.org/10.1145/358549.358563, doi:
10.1145/358549.358563.

[47] Andrei Serjantov, Roger Dingledine, and Paul F. Syverson. From a trickle to
a flood: Active attacks on several mix types. In Fabien A. P. Petitcolas, editor,
Information Hiding, volume 2578 of Lecture Notes in Computer Science, pages
36–52. Springer, 2002. URL: http://dblp.uni-trier.de/db/conf/
ih/ih2002.html#SerjantovDS02.

http://dx.doi.org/10.1145/358549.358563
http://dx.doi.org/10.1145/358549.358563
http://dx.doi.org/10.1145/358549.358563
http://dblp.uni-trier.de/db/conf/ih/ih2002.html#SerjantovDS02
http://dblp.uni-trier.de/db/conf/ih/ih2002.html#SerjantovDS02

	UNIVERSITA
	PhD_Thesis_Yanina___test
	Introduction
	Security in the Internet of Things
	IoT protocols
	Constrained Application Protocol
	Message Queuing Telemetry Transport

	Security in the IoT
	End-to-end authentication and authorization
	Data confidentiality
	Shared key establishment
	Private/public values computation

	Anonymity

	Authentication and authorization
	Dynamic broker bridging
	Secure dynamic broker bridging
	Client-to-all-brokers authorization: one token for all brokers
	Client-to-all-brokers authorization: a token for each broker
	Hop-by-hop authorization

	Implementation
	Example of use case: MQTT-based Industrial IoT
	MQTT-based IIoT production systems
	MQTT-based multi-stage IIoT production systems

	Conclusions

	Network Level Anonymity
	Datagram-based OR anonymity
	System overview
	Packet structure
	Two-way anonymity path establishment
	Data exchange
	One-way anonymity path mode

	Extensions
	Dynamic anonymity path association
	One-to-many communication

	Implementation
	Conclusions

	Application Level Anonymity
	Publish/Subscribe-based Anonymity
	Subscription
	Publication
	Unsubscription

	Implementation
	Security Aspects
	Conclusions

	Conclusions
	Bibliography

