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CHAPTER 1 – THE THREE-DIMENSIONAL PROBLEM

Reinforced concrete (RC) structures exhibit  a complex behavior even for low load levels. 

Non-linear compressive stress-strain relations, tensile cracking, post cracking softening and 

interaction effects between concrete and reinforcing bars are the main sources of a highly non-

linear and complicated response. In order to capture the real structural behavior, sophisticated 

numerical  tools  are  necessary to  take  into  account  all  the  remarkable  phenomena and  to 

perform the time-consuming non-linear calculations.

In this doctorate dissertation,  the three-dimensional (3D) constitutive model for non-linear 

analysis of RC structures 3D-PARC – Three-Dimensional Physical Approach for Reinforced 

Concrete, is presented. The 3D study started some years ago with the author's graduate thesis 

which laid  the  foundations  of  the  model  [34].  That  work  was an extension  of  PARC,  a 

numerical model for membrane elements subjected to plane stress (Figure 1.1) developed at 

the  Department  of  Civil  Engineering  of  the  University  of  Parma [8,  9].  The  PARC 

formulation is based on some previous works [25, 14].

In the author's graduate thesis, the model was implemented in TRE, a computer code which 

can analyze the behavior of a single material point and therefore, also of simple structures 
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Chapter 1 – The three-dimensional problem

subjected to uniform stress. The good results achieved were an encouragement to keep on 

working on this topic.

The research carried out during the doctorate, deepens the investigation of the model theory 

and the  development  of  numerical  tools  to  provide efficacy and power to  its  application. 

Starting  from  the  work  already  done,  a  new  approach  is  developed  and  implemented. 

However, the basic philosophy does not change: the model remains as close as possible to the 

physical reality, without using numerical devices which are often “unphysical”. The starting 

point for the model formulation is the study of physical phenomena (concrete subjected to 

multiaxial stresses, aggregate bridging and interlock, tension stiffening, dowel action) through 

single basic studies which are assembled to build the model.

Figure 1.1 – The basic plane element investigated by PARC.

The developed theory is implemented in a FORTRAN code which can be used within the 

commercial Finite Element (FE) code ABAQUS [1]. In this way, the model can be used to 

analyze structures subjected to complex stress states. In fact, the FE formulation gives the 

possibility to model a wide range of structures independently on the geometry.

Subsequently, the theory formulation as well as the numerical implementation are validated by 

some significant comparisons with experimental tests taken from the literature.

During a six-month collaboration with the Institute  of Structural  Engineering (IKI) of the 

University of Natural Resources and Applied Life Sciences – BOKU in Vienna, the software 

package SARA, which includes the RC-oriented FE code ATENA and the statistical module 

FREET,  was  also  used.  This  research  program produced  the  FE  analysis  of  RC  corbels 

reported in Chapter 5.
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CHAPTER 2 – STATE OF THE ART

2.1 – INTRODUCTION

In the following chapter, an overview on the state of the art of the three-dimensional (3D) 

modeling of reinforced concrete (RC) is presented. First of all, the main differences between 

the  basic  formulations  for  reinforcements  and  cracks  are  discussed  [41].  Secondly,  some 

important numerical models for RC are illustrated. All of these models were created to work 

in  Finite  Element  (FE)  programs  and  some  of  them  are  implemented  within  worldwide 

famous commercial  codes  such as ABAQUS,  ADINA, ANSYS and ATENA. The theory 

implemented within ATENA is presented in chapter 5.

2.1.1 – Reinforcement modeling

Generally, it is possible to describe the reinforcement behavior in two different ways, by using 

discrete or smeared reinforcements (Figure 2.1).

Figure 2.1 – Different reinforcement models.

In the discrete approach, concrete and reinforcement bars are modeled with different elements. 

Therefore, two different meshes are created and superposed, each one having its own elements 
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Chapter 2 – State of the art

and  integration  points  (Figure  2.2).  Usually,  the  concrete  mesh  is  not  affected  by 

reinforcements because the bar elements are not forced to share their nodes with concrete 

elements:  The  reinforcement  node  displacements  are  constrained  to  the  concrete  node 

displacements.

One of the main drawbacks for this approach is the difficulty in modeling the steel-concrete 

interface phenomena. To solve this problem, it is possible to use special interface elements to 

create the connection between steel and concrete or to insert suitable numerical corrections in 

concrete behavior in order to simulate these effects. Nevertheless, the discrete approach is 

easier  to  use  in  the  model  creation  phase,  especially  for  structural  elements  in  which 

reinforcing bars have a complex spatial distribution.

Figure 2.2 – An example of mesh superposition.

On the contrary, considering smeared reinforcements means to model the RC like a single 

continuum equivalent material whose properties are given by the sum of different contributes 

(such as concrete, reinforcing bars and interface effects). In this formulation, the effects of the 

bars  are  smeared  along  their  interaxes.  Usually,  this  approach  has  a  good  response  in 

structures where reinforcing bars are spatially not too concentrated.

Generally, the different methods of modeling the reinforcements have a little influence on 

results.

2.1.2 – Crack modeling

There are two main ways of modeling the concrete behavior after cracking and the choice 

between them depends on the investigated problem (Figure 2.3).

If the problem is dominated by a few number of cracks, it is usually better to adopt a discrete 
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crack approach. When the crack arises, there is a separation of the mesh in the cracked zone 

and  in  this  discontinuity,  new  interface  elements  with  variable  stiffness  are  inserted  to 

simulate  the  crack  opening.  Two  major  drawbacks  can  be  mentioned:  the  FE  mesh 

connectivity changes during the analysis and the crack lips are constrained to follow the FE 

sides. In order to avoid these problems, remeshing operations can be implemented and, with 

special procedures, the crack can be allowed to propagate also inside the FE. These properties, 

however, make this approach suitable only in particular cases, such as the study of fracture 

propagation in pre-notched specimens since the notch provides good information about the 

fracture position and propagation.

Figure 2.3 – Different crack models in the FE framework.

On the contrary, in presence of a high number of cracks, a smeared crack approach is more 

convenient.  The  material  is  described  like  an  equivalent  continuum with  the  constitutive 

relation modified by considering cracking, interface phenomena and reinforcing bars. When 

cracking occurs, a new local coordinate system in which is easier to describe the material and 

the  interface  behavior  is  defined  according  to  cracking  direction.  A  cracked  material 

constitutive matrix is written in this system and then it is transferred to the global coordinate 

system to create the global stiffness matrix.

This approach allows to maintain the same mesh for the whole analysis and allows the cracks 

to open in any direction. As drawback, it has been noted that the mesh size influences the load 

which causes the crack propagation. Moreover, the shear strength of some structural elements 

can be overestimated.

– 15 –



Chapter 2 – State of the art

Smeared crack models can adopt fixed or rotating crack formulation. In the former case, the 

crack direction remains the same for the whole analysis even if the principal directions change 

whereas, in the latter case, the crack orientation changes according to the principal directions.

The  main  difference  between  these  approaches  lies  in  the  necessity,  for  fixed  crack,  to 

calculate  the  contributes  due  to  the  shear  transferred  across  the  crack  by  the  aggregate 

interlock. This contribution is usually calculated by a Shear Retention Factor, a numerical 

coefficient computed in various ways, taking into account the shear stresses as a fraction of 

the stresses in the uncracked case. Therefore, the rotating approach is generally easier to use 

and to insert in computer codes but it can be considered partially “unphysical” since, in the 

empirical  reality,  the  crack  is  not  free  to  change  its  orientation.  It  has  to  be  mentioned 

however, that the rotating approach describes better particular situations with various crack 

patterns. For example, in a bended beam that will have shear failure, if every integration point 

can crack only once, the fixed approach cannot give reliable results. In fact, the first cracks are 

caused by the bending moment (vertical crack). Then, as the load increases, shear diagonal 

cracks open on the previous ones, dominating the structural behavior. In this case, the crack 

rotation allows to capture the most important crack pattern while the fixed cracks maintain 

their initial vertical orientation giving a bad description of the subsequent shear cracks.

One improvement of the fixed approach is the multi-directional cracking approach in which 

the material is allowed to crack more than once. Each crack is free to open in any direction 

and remains fixed after the formation. This approach involves the strain decomposition of 

total strain into concrete and crack strain. The strain of the subsequent cracks is added to the 

previous ones.

– 16 –



Chapter 2 – State of the art

2.2 – ABAQUS MODEL

This  FE  code  describes  the  RC  through  the  fixed  smeared  crack  and  the  discrete 

reinforcements approaches [1]. It is intended that the modeling is accomplished by combining 

standard elements, using plain concrete model, with bar elements, using an uniaxial  strain 

theory with standard metal plasticity constitutive models. The reinforcements can be singly 

defined or embedded in oriented surfaces as shown in Figure 2.4.

Figure 2.4 – Reinforcing bar layer in solid elements.

This modeling approach allows the concrete behavior to be independent on the reinforcing 

bars. Effects associated with the steel-concrete interface can be considered by modifying some 

aspects  of  the  plain  concrete  behavior  to  mimic  them,  such  as  the  “tension  stiffening” 

formulation simulating the load transfer across cracks through the bars.

Figure 2.5 – Concrete failure surface in p-q plane.
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The model consists of a compressive yield/flow surface to model the concrete response in 

predominantly compressive stress states, together with damaged elasticity to represent cracks 

occurring at calculation points.

Cracking is  assumed to be the most important and dominating aspect;  it  occurs when the 

stress reaches the crack detection surface (Figure 2.5) which is a linear relationship between 

the equivalent pressure stress p and the Mises equivalent deviatoric stress q. When a crack is 

detected, its orientation is stored for subsequent calculations made for convenience in a local 

coordinate system (Figure 2.6).

Subsequent cracks at the same point are restricted to be orthogonal to this direction since 

stress components associated with an open crack are not included in the definition of the 

failure surface used for detecting the additional cracks.  In a 3D case,  no more than three 

cracks can occur at the same point, two in a plane stress case and one in an uniaxial stress 

case. Furthermore, cracks are irrecoverable: they remain for the rest of the calculation but no 

permanent strain is associated with cracking. That means that the cracks can close completely 

when the stress across them becomes compressive.

Figure 2.6 – Global and local coordinate systems.

When  the  principal  stress  components  are  dominantly  compressive,  the  response  of  the 

concrete is modeled by an elastic-plastic theory, using a simple form of yield surface written 

in terms of the first two stress invariants (Figure 2.5). Associated flow and isotropic hardening 

are used. 

This model significantly simplifies the real behavior: for example, the simple yield surface, 

without the third stress invariant, does not match all data very accurately and when concrete is 

subjected to very high pressure stress, it exhibits inelastic response which is not included in 

the model. Therefore, it has a good response for relatively monotonic loadings under fairly 
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low confining pressures (less than four to five times the uniaxial compressive strength). In 

spite of these limitations,  the model provides useful predictions for a variety of problems 

involving  inelastic  loading  of  concrete.  The  limitations  are  introduced  for  the  sake  of 

computational efficiency.

Figure 2.7 – Uniaxial constitutive law for concrete.

Figure 2.7 shows the uniaxial concrete behavior. If the load is removed in the compressive 

range after inelastic straining has occurred, an idealized elastic response is used. In multiaxial 

stress states, these observations can be generalized through the concept of failure surfaces and 

of ultimate strength in stress space.

Figure 2.8 – Shear retention modeling.

This model makes no attempt to predict cyclic response or reduction in the elastic stiffness 

caused  by  inelastic  straining  since  the  model  is  intended  for  application  to  relatively 
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monotonic loading cases. Nevertheless, the model should predict the response in such cases 

with a reasonable accuracy.

As the concrete cracks, its shear modulus is reduced by a multiplying factor defined as a 

function of the opening strain across the crack (Figure 2.8). It is also possible to specify a 

reduced shear modulus for closed cracks.

Figure 2.9 – Post failure stress-strain relation.

The post-failure  behavior  for  direct  straining  across  the  cracks  is  modeled  with  “tension 

stiffening”, which allows to define the strain-softening behavior for cracked concrete. This 

formulation  also  allows  concrete-reinforcement  interaction  to  be  simulated  in  a  simple 

manner. It is possible to specify tension stiffening by means of a post-failure stress-strain 

relation (Figure 2.9) or by applying a fracture energy cracking criterion based on crack width.

In  cases  with  little  or  no  reinforcement,  the  stress-strain  relation  often  introduces  mesh 

sensitivity in the analysis results when a few discrete cracks form in the structure; on the 

contrary, if cracks are evenly distributed, mesh sensitivity is less of a concern. Generally, a 

higher tension stiffening makes the numerical solution easier.

The fracture energy cracking criterion is  based on the assumption that the fracture energy 

required to form a unit area of crack surface is a material property. Following this approach, 

the concrete brittle behavior is characterized by a stress-displacement response rather than a 

stress-strain response. The implementation of this stress-displacement concept in a FE model 

requires  the definition  of  a  characteristic  length associated with an integration point.  The 

characteristic  crack  length  is  based  on  the  element  geometry:  for  beams  and  trusses  the 

integration point length is used; for shell and planar elements the square root of the integration 
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point area is used; for solid elements the cube root of the integration point volume is used.

To validate the model, the collapse of a RC slab (Mc Neice slab) is simulated. The problem 

geometry is shown in Figure 2.10. A square slab is supported in the transversal direction at its 

four corners and loaded by a point load at its center. The slab is reinforced in two directions at 

75% of its depth. The reinforcement ratio (volume of steel to volume of concrete) is 8.5×10-3 

in each direction. Symmetry conditions allow to model one quarter of the slab. A 3×3 mesh of 

8-node  shell  elements  is  used.  No  mesh  convergence  studies  were  performed,  but  the 

reasonable agreement between the analysis results and the experimental data suggests that the 

mesh is adequate to predict the overall structural response with usable accuracy. The two-way 

reinforcement is modeled using a rebar layer.

Figure 2.10 – Mc Neice slab geometry.

In this example, the tension stiffening is modeled with three different values to illustrate its 

effect on the global response. Since the problem is dominated by bending, the response is 

highly influenced by the material behavior normal to the crack planes. Therefore, the shear 

behavior in the plane of the cracks is not important. Consequently, the choice of the shear 
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retention  has  no  significant  influence  on  the  results.  Since  considerable  non-linearity  is 

expected in the response, including the possibility of unstable regimes as the concrete cracks, 

the modified Riks method is used with automatic incrementation.

Figure 2.11 – Load-deflection response.

The numerical and experimental  results  are compared in  Figure 2.11 on the basis  of load 

versus  deflection  at  the  center  of  the  slab.  The  strong  effect  of  the  tension  stiffening 

assumption is very clear in the plot. The numerical analysis provides also other interesting 

outcomes such as the crack pattern of the lower slab surface depicted in Figure 2.12.

Figure 2.12 – Crack pattern on lower slab surface.
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2.3 – ADINA MODEL

In the following section, the model for RC presented by Bathe, Walczac, Welch and Mistry 

[6] and implemented in the FE code ADINA is presented [3].

The paper describes the main properties of a good code: the model should be as simple as 

possible and it should be well built on theory and reliable from the numerical point of view. 

To fully describe the material behavior three features are requested:

• a stress-strain relation to include the high concrete non-linearity;

• a failure surface to define tensile and compressive failure;

• a suitable technique to implement the post-cracking and crushing behavior.

The  concrete  model  can  be  employed  both  with  2D and  3D  solid  elements,  with  small 

displacement as well  as large displacement formulation but,  in all  cases,  small  strains are 

assumed. Moreover, the model can be also used for other brittle materials like a wide variety 

of rocks.

Figure 2.13 – Compressive stress-strain behaviors.

Figure 2.13 shows the compressive stress-strain relation for uniaxial  and multiaxial  stress 

conditions. The latter is derived from the former taking into account the multiaxial stress state. 

Furthermore,  different  curve parameters are used depending on whether the material  is  in 

loading or unloading conditions.

In order to evaluate the loading and unloading conditions, for each integration point a stress-

based loading scalar is defined: if the scalar is increasing, the condition is “loading” whereas 

if  the  scalar  is  smaller  than the maximum value already reached during the  analysis,  the 
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condition is “unloading”. For unloading and reloading conditions (up to the stress state from 

which unloading occurred), the initial elastic modulus is used. For strain states beyond the 

ultimate compressive strain, it is assumed that stresses are linearly released to zero.

Figure 2.14 – Tensile failure envelope.

The  material  is  considered  orthotropic  with  respect  to  the  principal  stress  directions.  If 

cracking occurs in any direction, that direction is fixed from that point onward in calculating.

The  Poisson  ratio  is  assumed  to  be  constant  under  tensile  stresses  and  variable  in  the 

compressive region in order to capture the dilatancy.

Figure 2.15 – Triaxial compressive failure envelope.

The failure envelopes, based on principal stresses, are shown in  Figure 2.14 (tensile fields) 

and Figure 2.15 (compressive field). The compressive failure surface is created by using 24 
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different values for the principal stresses. By changing these values, it is possible to adopt the 

same model for many different materials.

Starting from the current stress state, it is possible to establish the stress-strain laws taking 

into account the multiaxial stress conditions and to check whether tensile or crushing failure 

occurs. Tensile failure occurs if a tensile principal stress exceeds the tensile strength which 

depends  on  compressive  stresses  in  other  principal  directions.  The  other  tensile  principal 

stresses do not effect the cracking.

After  cracking,  it  is  assumed  that  a  failure  plane  develops  perpendicularly  to  the 

corresponding principal stress direction. Therefore, the normal and shear stiffnesses across the 

failure plane are reduced and plane stress conditions are assumed. The 2D failure envelope is 

derived from the 3D one. These stiffness reductions are considered by using two constants ηn 

and ηs following the Shear Retention Factor concept. Typically,  ηn=0.0001 and ηs=0.5. The 

factor  ηn is not exactly equal to zero in order to avoid the possibility of a singular stiffness 

matrix. The factor ηs depends on a number of physical factors and it must be chosen carefully. 

For the concrete model in ADINA, ηn and ηs are both input parameters.

Figure 2.16 – Uniaxial tensile behavior.

Figure 2.16 shows the material behavior in the direction normal to the tensile failure plane. ξ 

is an user-defined variable which determines the amount of tension stiffening. To obtain a 

mesh independent solution, the fracture energy Gf can be directly provided and therefore, ξ is 

evaluated at each integration point based on the FE size (Figure 2.17).

The shear moduli in the tensile failure plane also depend on the strain normal to that plane: 

the moduli are written with the parameter ηf which follows the law in Figure 2.18.

In each solution step, the crack is checked in order to verify whether the failure is still active. 

The failure is considered inactive if the normal strain across the plane becomes negative or 

less than the strain at which the last failure occurred; otherwise it is active.
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Figure 2.17 – Parameter ξ calculation.

After the first crack onset, the coordinate system is redefined and the stresses in the crack 

directions are used to evaluate the stress-strain matrix, instead of using the principal stresses 

and corresponding directions. A subsequent failure plane is assumed to form perpendicularly 

to the direction of the first failure plane whenever a normal stress along the original failure 

plane reaches the tensile strength. Therefore, at any integration point, the direction of the third 

tensile failure plane is fixed after the second cracking.

If the material crushes in compression, it is assumed that the material becomes isotropic and 

strain-softens in all directions with very small elastic modulus values.

In ADINA, many material properties can be defined as temperature-dependent including the 

strains due to the temperature effects.

Figure 2.18 – Parameter ηf calculation.

The model is applied at first to simple structures with different load combinations in order to 

verify  the  basic  formulation.  Afterwards,  more  complex  structures  are  investigated.  The 

significant study of the RC containment Sandia pressure vessel is presented.

This  investigation  is  part  of  the  US  Nuclear  Regulatory  Commission  program  on 

containments. The structure is analyzed prior to experimental tests by ten different groups, 
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four from the USA and six from Europe. One of the analysis is carried out with ADINA by 

using an axisymmetric model.

Figure 2.19 – Sandia pressure vessel FE mesh.

The  concrete  properties  are  derived  from  published  results,  but  the  agreement  with  the 

ADINA default  values  is  satisfactory with  the  exception  of  the  high triaxial  compressive 

region. The axisymmetric approach presents some modeling problems: the main vertical and 

hoop reinforcements can be modeled easily, but at  the bottom of the wall  some diagonal 

seismic  reinforcements  are  designed.  Therefore,  this  reinforcement  set  is  inserted  as 

equivalent  extra vertical  and hoop reinforcements.  The soil  is  modeled as a set  of spring 

elements. Since the bottom plate is relatively thick, the spring stiffness is supposed not to 

have a great influence on the structural behavior. The FE mesh is shown in Figure 2.19.

Figure 2.20 – Comparison with experimental results for Sandia pressure vessel.

– 27 –



Chapter 2 – State of the art

The one-sixth scale specimen was built at Sandia National Laboratories and tested in July 

1987.  The  test  was  performed  with  a  first  cycle  up  to  1.15  times  the  design  pressure. 

Afterwards, after returning to zero, the pressure was increased again up to failure. The initial 

cycle is not simulated within ADINA.

In  Figure  2.20 the  comparison  between experimental  and  numerical  results  regarding  the 

radial displacement, the most significant movement, is shown. The correlation is very high 

even  if  the  experimental  ultimate  load  is  lower  due  to  excessive  leakage.  Moreover,  the 

numerical  analysis  allows to follow all  the crack patterns and the deformed shapes up to 

failure as reported in Figure 2.21.

Figure 2.21 – Sandia pressure vessel deformed shape for several analysis steps.
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2.4 – ANSYS MODEL

The  FE  code  ANSYS  models  RC  with  smeared  cracking  and  smeared  reinforcement 

approaches [4].

In concrete modeling, the 3D element SOLID65 is used (Figure 2.22). This element allows the 

presence of four different materials, one matrix material and a maximum of three independent 

reinforcing  materials.  Since  SOLID65  is  capable  of  cracking  in  tension  and  crushing  in 

compression, it can be used to model RC or other materials such as reinforced composites 

(e.g. fiberglass), and geological materials (e.g. rock). The element is defined by eight nodes 

having three translational degrees of freedom at each node.

Figure 2.22 – SOLID65 geometric properties.

Concrete  is  capable  of  directional  integration  point  cracking  and  crushing  besides 

incorporating plastic and creep behavior. The reinforcement, which also incorporates creep 

and plasticity, has uniaxial  stiffness only and it  is  assumed to  be smeared throughout  the 

element. Directional orientation is accomplished through user specified angles.

In  concrete,  which  is  assumed  to  be  initially  isotropic,  cracking  is  permitted  in  three 

orthogonal directions at each integration point and it is modeled through an adjustment of 

material properties which effectively treats the cracking as a smeared crack band, rather than 

discrete cracks.

Then, a unique matrix is written for both materials as follows: 

[ ] [ ] [ ]
1 1

1
r rN N

i c i ri
i i

D V D V D
= =

æ ö÷ç ÷= - +ç ÷ç ÷çè ø
å å , (2.1)

where Nr is the number of reinforcing materials, Vi is the ratio of the volume of ith reinforcing 
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material to the total volume of element, [Dc] is the constitutive matrix for concrete and [Dri] is 

the constitutive matrix for the ith reinforcement.

The concrete description is based on the Rate Independent Plasticity which is characterized by 

the irreversible straining occurring in the material when a certain level of stress is reached. 

The plastic strains are assumed to develop instantaneously, independently on time.

The failure criterion is described by the Willam and Warnke formulation [47]. This material 

model predicts either elastic, cracking or crushing behavior. If elastic behavior is predicted, 

the concrete is treated as a linear elastic isotropic material. If cracking or crushing behavior is 

predicted, the elastic stress-strain matrix is adjusted in a different way for each failure mode.

The 3D failure surface can be written as

0
c

F S
f
- ³ , (2.2)

where  F is a function of the principal stress state,  S is a failure surface,  fc is the uniaxial 

compressive strength (Figure 2.23).

Figure 2.23 – The 3D failure surface.

Five input parameters, which can be temperature dependent, are requested to define the failure 

surface. For small values of the hydrostatic stress, instead, the failure surface can be specified 

by using some constant relations between parameters with a minimum of two constants: the 

uniaxial  tensile  and  compressive  strength.  For  high  values  of  the  hydrostatic  stress,  five 

parameters are required.

Four  different  domains  are  investigated  based  on  the  principal  stress  signs  (triaxial 

compression, triaxial tension and two mixed cases) and in each domain different formulations 

for F and S are written. The failure surface is closed and can predict failure also under high 
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hydrostatic pressure.

If the material at an integration point fails in uniaxial, biaxial,  or triaxial compression, the 

material is assumed to crush. Crushing is defined as the complete deterioration of the material 

structural integrity. Therefore, the stiffness at that integration point can be ignored.

Figure 2.24 – Tensile post cracking behavior.

The presence of a crack at an integration point is represented through modification of the 

stress-strain relations by introducing a plane of weakness in the direction normal to the crack 

face. The constitutive matrix for a material cracked in one direction is

1 0 0 0 0 0

1 0 0 0
1 1

1 0 0 0
1
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. (2.3)

The stress-strain relation refers now to a coordinate system parallel  to the principal stress 

directions with the first axis perpendicular to the crack face. Then, in order to build the global 

stiffness matrix, a coordinate transformation is needed. In the same way, it is possible to write 

the stress-strain matrix for cracking in two and three directions.

Figure 2.24 shows the post cracking behavior in the direction perpendicular to the crack and 

defines the Rt factor. The crack is allowed to close: in this case, all the compressive stresses 
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normal to the crack plane are transferred,  whereas a different  shear transfer coefficient  is 

specified.

A shear transfer coefficient βt is introduced representing a shear strength reduction factor for 

subsequent loads inducing sliding across the crack face.

Figure 2.25 – Reinforcement orientation.

Reinforcing bars are assumed to work in axial direction only. Their orientation is specified as 

shown in Figure 2.25. A creep and plasticity non-linear behavior can be defined.

Figure 2.26 – Verification beam geometry.

In ANSYS documentation, a verification example taken from Timoshenko [44], is presented. 

A concrete beam reinforced with steel rods is subjected to pure bending load (Figure 2.26). 

The analysis evaluates the crack depth from the bottom surface, the maximum steel tensile 

stress  and  the  maximum  concrete  compressive  stress,  assuming  that  the  concrete  tensile 

strength is zero.

In order to match the reference assumptions, the simulation adopts a zero Poisson coefficient 

and an infinite crushing strength for concrete. Moreover, constraint equations are used along 

the beam depth to conveniently apply the load and match the plane cross-section hypothesis. 
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The FE discretization is shown in Figure 2.27.

Figure 2.27 – FE model.

Result comparison is reported in Table 2.1. The agreement is very high.

Target ANSYS Ratio
crack depth 3.49 3.32 – 4.18 -

stress in steel 387.28 387.25 1.000
stress in concrete -18.54 -18.49 0.997

Table 2.1 – Result comparison.
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2.5 – BALAN, SPACONE AND KWON MODEL

This model was developed at the University of Colorado at Boulder by Balan, Spacone and 

Kwon [5] and validated through the study of simple concrete-only specimens under different 

confinements.  Later,  the model  was modified by Kwon and Spacone [28]  and applied to 

concrete confined by steel and fiber reinforced polymer jackets and to RC columns.

The model is based on hypoplastic formulation and can be applied to concrete structures under 

monotonic or cyclic, proportional or non-proportional loading.

Figure 2.28 – Stress-equivalent uniaxial strain relation.

The stress-strain curves are based on equivalent uniaxial strain concept and are divided in two 

different fields. In the ascending branch, the Popovics formulation is used [38] whereas after 

the peak, the Saenz curve [42] is preferred (Figure 2.28). This choice is determined by the fact 

that the results from the ascending branch of the Saenz curves are satisfactory only if the 

initial modulus is greater than two times the secant modulus at peak. In the calculation the 

total secant modulus is used.

The stress-strain curves depend on the current stress state through the stress and strain relative 

to the peak. In order to find them, a failure surface is required. The failure surface of this study 

is derived by the Willam and Warnke one [47] and it is a combination of the Rankine and the 

Mohr-Coulomb criteria according to the Menetrey and Willam formulation [33]. Moreover, a 

cap surface is added to capture the failure near the hydrostatic axis (Figure 2.29).

The  strain  parameters  for  the  stress-strain  curves  are  obtained  by using  a  similar  failure 

surface in the strain space where the strain parameters replace the stress ones.

Since the model is capable of describing also the unloading, a suitable load function written 

with strain variables is defined.
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Figure 2.29 – Failure surface in Rendulic plane.

The model is implemented in the FE program FEAP as a stand alone routine. In the first stage, 

the model is applied, for its validation, to simple uniaxial, biaxial and triaxial concrete-only 

tests, all carried out at the University of Colorado at Boulder.

The first validation is performed on uniaxial tests of concrete specimens under constant lateral 

confinement. The final aim of these tests is to show the transition from brittle-softening to 

ductile-hardening behavior as the lateral confinement increases. With an accurate estimation 

of the cap and post peak parameters, a good agreement between experimental and numerical 

results is achieved and the transition is clearly visible (Figure 2.30).

Figure 2.30 – Constant confinement compression tests.

The second application of the model is the study of concrete specimens under cyclic axial load 

and lateral  confinement.  The  comparison  between experimental  and  numerical  results  for 

three different cases is shown in Figure 2.31. The model is able to capture the changes in peak 
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stress and strain, the post peak response and the loading-unloading behavior. A numerical 

mixed control is used to trace the stress path with an imposed axial displacement and constant 

lateral confining stress.

Figure 2.31 – Cyclic confined compression test results.

The model is also applied to the cases of biaxial proportional and triaxial non-proportional 

loading. The results for the latter case are reported in  Figure 2.32. This is an important test 

since the most demanding stress histories in concrete analysis are those with non-proportional 

loading. The specimen is at first loaded along the hydrostatic axis up to 26 ksi and then, the 

stresses  were  modified  by  cyclic  loading  on  the  corresponding  deviatoric  plane.  The 

agreement between experimental and numerical results is good.

In the second stage,  the  model  is  modified by Kwon and Spacone with some theoretical 

enhancements and inserting the effect of steel reinforcing bars.

In the previous version of the model, the eccentricity of the failure surface (defining the out of 

roundness  of  the  deviatoric  section)  was  defined  as  e=0.52  whereas  in  this  version  the 

eccentricity is written as a function of the brittleness.

Moreover, in order to describe simple shear (only shear strain applied) and pure shear (only 

shear stresses applied), an additional term containing the octahedral stress is added to the 

volumetric  stress  definition.  This  modification,  coupling  normal  and  shear  response, 

represents the volumetric stress induced by the deviatoric stress.
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Finally, the effects of reinforcing bars are introduced using truss elements (superposed on 

solid element concrete mesh) with a simple uniaxial,  bilinear, strain-hardening constitutive 

law. Perfect bond is assumed.

Figure 2.32 – Triaxial non-proportional loading test results.

The smeared crack approach is used in this model since it can better describe the crack pattern 

of structures with heavily distributed reinforcements. In this case, the shear stiffness of the 

structural element can be overestimated due to the stress locking in commonly used elements 

but the problem can be avoided using fine meshes. The crack directions are allowed to rotate 

with  the  principal  strain  directions  during  the  analysis.  The  principal  stress  axes  are  not 

coaxial with the principal strain ones and the cracks are supposed to open normally to the 

principal strain directions.

The model is applied, at first, to axially loaded cylindric concrete specimens confined by steel 

and fiber reinforced polymer (FRP) jackets in order to highlight the different confinement 

mechanism. The steel confinement increases with the vertical load up to yielding and then, the 

confining stress remains constant. On the contrary, the FRP jacket is elastic up to the failure 

point and then,  the confining stress  increases  with the vertical  load.  The good agreement 

between experimental  and  numerical  results  shows that  the  model  is  able  to  capture this 

difference (Figure 2.33).
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Figure 2.33 – Experimental (left) and numerical (right) results.

Finally, three RC columns from an experimental program of the University of California at 

San Diego are investigated. The specimens, a one-third replica of real bridge piers build in the 

mid '60s, are clamped at both ends and subjected to a constant axial load and to a cyclic lateral 

displacement (Figure 2.34).

Figure 2.34 – Test configuration and FE mesh.

In order to reduce the computational time and since the final objective of the study is to 

capture the failure mode of the columns, only the monotonic loading envelope is followed in 

the simulations. The numerical outcomes are in very good agreement with the experimental 

tests as shown in Figure 2.35.

The first column R1 is designed in order to avoid the shear failure: it has higher hoop strength 

with respect to the longitudinal reinforcement strength. The failure mode and the ultimate load 
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are captured by the model as well as the longitudinal steel bars yielding together with the 

presence of the compressive strut in concrete.

The column R3 is designed with a concrete with lower properties which leads to a shear 

failure when the flexural strength is still not achieved. The failure sequence presents at first 

the crushing of the main concrete strut (point A) and then, the sudden shear failure (point B).

In both cases, the model is able to capture the structural behavior.

Figure 2.35 – Column R1 (left) and R3 (right) result comparisons.
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3.1 – BASIC HYPOTHESES

The  proposed  model  3D-PARC  –  Three-Dimensional  Physical  Approach  for  Reinforced 

Concrete, describes the mechanical behavior of a three-dimensional (3D) reinforced concrete 

(RC) element subjected to general stresses. It is based on fixed, multi-directional cracking and 

smeared reinforcement approaches and it is formulated in terms of global material stiffness 

matrix.

In  relation  to  the  RC  physical  conditions,  the  proposed  model  is  able  to  simulate  three 

different phases:

• uncracked material;

• singly cracked material;

• doubly or multi-cracked material.

In  the  uncracked phase,  perfect  bond  is  assumed  between  concrete  and  reinforcements. 

Therefore, the two materials behave in parallel and their stiffness contributes are added.

In the singly cracked phase, the materials in the crack and between the cracks are considered 

as working in series. The modeling procedure involves a strain decomposition: the total strain 

is divided into the strain of the material between the cracks and in the crack. While the RC 

between the cracks is modeled as uncracked but damaged by the presence of the crack, the 

material in the crack includes all the phenomena generated by the cracking such as aggregate 

bridging and interlock, tension stiffening and dowel action. Finally, the flexibilities of the two 

materials are added together.

In the  doubly or  multi-cracked phase,  each  crack  is  assumed to  work  in  series  with  the 

material between the cracks.

– 41 –



Chapter 3 – The proposed model 3D-PARC

Cracking is assumed to arise when the principal tensile strain exceeds the strain tensile limit 

and the crack pattern is considered as immediately fully developed with a crack spacing  am 

constant during the loading process.

The proposed model is structured in a modular framework. All the mechanical phenomena are 

analyzed separately on the basis  of their  properties and physical  state.  Afterwards,  all  the 

contributes  are  assembled  to  create  the  equivalent,  non-linear,  continuum material  which 

exhibits, in the mean sense, the behavior of the sum of the contributes. In this way, each part 

of the model can be freely modified and updated.

For each phase, the stress-strain relation adopted, in the global coordinate system x-y-z, is:

{ } { }xyz xyz xyzDσ εé ù= ê úë û , (3.1)

where

{ } { } { } { } and 
T T

x y z xy xz yz x y z xy xz yzσ σ σ σ τ τ τ ε ε ε ε γ γ γ= = , (3.2)

being [Dxyz] the material stiffness matrix which takes into account all the stiffness contributes. 

This matrix is formulated in terms of secant values and assumes different forms in each phase 

as the strain field evolves. The secant formulation usually improves the numerical reliability 

in non-linear problem solution.

Figure 3.1 – Solid unitary RC element.
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The 3D-PARC theory formulation refers to a unitary solid RC element reinforced by ordinary 

steel bars arranged in layers (Figure 3.1).

For each layer, a local coordinate system x’-y’-z’ is defined and all the steel bars are parallel 

and  oriented  along the  x'-axis.  Each  bar  is  characterized  by a  cross-sectional  area  Asi,  a 

diameter  Фi,  a  spacing  p1i and  p2i along the  y' and  z'-axis  respectively and an orientation 

defined by the angles θ1i and θ2i (Figure 3.2).

Figure 3.2 – Local steel coordinate system.

The effect of each bar is smeared on the concrete area p1i by p2i . Therefore, the steel geometric 

ratio for the ith steel layer is defined as

1 2

si
i

i i

A
p p

ρ = . (3.3)

In the same way, it is possible to define any number of steel layers, each of them having its 

own local system, steel ratio and diameter.
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3.2 – UNCRACKED MATERIAL

In the uncracked phase, concrete and steel are supposed to behave as two materials in parallel. 

Since perfect bond is assumed, both concrete and steel strains are equal to the total strain:

{ } { } { }xyz xyz xyz
c sε ε ε= = . (3.4)

Afterwards,  the equilibrium is  imposed.  The total  stress  is  the sum of  the stresses in  the 

concrete and in the steel:

{ } { } { } { } { } { }xyz xyz xyz xyz xyz xyz xyz xyz xyz
c s c c s sD D Dσ σ σ ε ε εé ù é ù é ù= + = + =ê ú ê ú ê úë û ë û ë û , (3.5)

where

1

rN
xyz xyz
s si

i

D D
=

é ù é ù=ê ú ê úë û ë ûå , (3.6)

being xyz
cDé ùê úë û  the stiffness matrix of the concrete, xyz

siDé ùê úë û  the stiffness matrix of the ith steel layer 

and Nr the total number of reinforcing layers.

Therefore, the global material stiffness matrix is

xyz xyz xyz
c sD D Dé ù é ù é ù= +ê ú ê ú ê úë û ë û ë û . (3.7)

In the following pages, the procedures adopted to model the two contributes are described in 

detail.

3.2.1 – Concrete contribute

Concrete  is  modeled  as  an incrementally  linear  material,  orthotropic  with  respect  to  the 

principal strain directions 1-2-3. The orientation of the crack system 1-2-3 with respect to the 

global system x-y-z is defined by the ψi angles (Figure 3.3).

The following material stiffness matrix is adopted [21]:

[ ]

[ ]

123
 123

123
 

0

0

c direct

c

c shear

D
D

D

é ùé ùê úê úë ûé ù = ê úê úë û é ùê úê úë ûë û
, (3.8)
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where
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0

.
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G
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symm G
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Figure 3.3 – Global and principal strain coordinate systems.

The coefficients are

2 2 2
12 13 23 12 13 23

2
12 1 2
2
13 1 3

2
23 2 3

1 2μ μ μ μ μ μ

μ ν ν

μ ν ν

μ ν ν
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=

=

=

(3.11)

and
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(3.12)

being Eci and νi the secant elastic modulus and the Poisson coefficient relative to ith direction 

respectively. Since Eci and νi are non-linear functions of the strain field, the material stiffness 

matrix varies during the loading process.

In general, the principal stress and strain directions are not coaxial. The concrete behavior is 

evaluated  by  means  of  the  principal  strains  and  therefore,  the  principal  stresses  are 

approximately computed, as a function of the strains, along the principal strain directions.

3.2.2 – Elastic moduli and Poisson coefficients

The concept of equivalent uniaxial strain is used [21] to evaluate the  Eci and  νi in the three 

directions as a function of the strain field. If the material was loaded in one direction only, its 

strain would be the equivalent uniaxial strain. In other words, the strain in each direction is 

purified from the strains caused by the stresses in the perpendicular directions. In this way, it 

is possible to make each direction independent and to write a stress-equivalent uniaxial strain 

law for each direction. 

The ith equivalent uniaxial strain can be defined as

i
iu

ciE
σ

ε = . (3.13)

The principal stresses are related to the principal strains through the matrix (3.9). Therefore, 

the equivalent uniaxial strains {εu} can be computed from the current strain state.

In matrix form:

{ } [ ]{ }u Eε ε= . (3.14)

where the matrix [E] is obtained by dividing each row of the matrix (3.9) by the modulus Eci:
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where Φ and μij are defined in (3.11).

In the numerical implementation,  the elastic  moduli  of the matrix  [E]  are taken from the 

previous iteration because the moduli of the current iteration have not been calculated yet.

From the equivalent uniaxial strains, through suitable constitutive laws, the secant moduli Eci 

can be derived.

 

Ec0 
1 

σi 
 

σic 

 εic εiu 
Figure 3.4 – Concrete tensile law.

In  the  tensile  field,  a  linear  elastic  behavior  is  assumed  (Figure  3.4),  whereas,  in  the 

compressive field, the Saenz curve [42] is adopted (Figure 3.5):
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being Ec0 the initial elastic modulus, σic and εic the peak stress and the related strain in the ith 

direction, σif and εif the coordinates of a point on the descending branch. The following values 

are chosen: σif=σic /4 and εif=4 εic.

Figure 3.5 – Concrete compressive law.

The Poisson coefficient  νi is computed, in each direction, as a function of the ratio between 

the principal stress and the peak stress [3]:
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(3.18)

where

,  0.7 and 0.42i
lim f

ic

R Rσ
ν

σ
= = = . (3.19)

Using  a  variable  Poisson  coefficient,  it  is  possible  to  capture  the  dilatancy phenomenon 

which, as observed in experimental tests, becomes important for high values of compressive 

stresses (about  80% of the ultimate strength).  Where the dilatancy has a low influence,  a 

constant Poisson coefficient can be used.

3.2.3 – Stress failure surface

The failure  surface  in  the  stress  space  defines  the  stress  states  which  cause  the  concrete 

failure. The surface used in 3D-PARC, proposed by Balan, Spacone and Kwon [5], is based 

on the previous works of Menetrey and Willam [33] and Willam and Warnke [47]. Moreover, 
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a new cap surface is  proposed in order to close the surface in the high hydrostatic stress 

region.

The Balan-Spacone-Kwon surface  (Figure  3.6)  presents  some major  advantages  from the 

numerical point of view since it can be written as a parabola and therefore, it provides the 

required values in closed form. On the contrary, for the previous Willam-Warnke surface, an 

iterative Newton-Raphson solving procedure was required to find the concrete strength values.

Figure 3.6 – The 3D failure surface.

In the principal stress space, the concrete strength, identified with the vector  {σc}, can be 

evaluated as it follows. Starting from the current principal stress values, the corresponding 

point in the principal stress space is found. Then, a straight line by the origin and by this point 

is drawn until it intersects the failure surface: the coordinates of the intersection are (σ1c, σ2c,  

σ3c).

The surface is written as a function of three invariants: the octahedral stresses σo and τo and 

the Lode angle θ:

( ) ( ) ( )

1 2 3

0.52 2 2
1 2 2 3 3 1

1 2 3
0.5
2

3
1
3

2cos
2 3

o

o

J

σ σ σ
σ

τ σ σ σ σ σ σ

σ σ σ
θ

+ +
=

é ù= - + - + -ê úë û
- -

=

(3.20)

where
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( ) ( ) ( )
0.52 2 2

2 1 2 2 3 3 1
1
6

J σ σ σ σ σ σé ù= - + - + -ê úë û . (3.21)

J2 is the second invariant of the deviatoric stress tensor.

The Rendulic plane is defined as a plane passing by the isotropic line σ1=σ2=σ3 and localized 

by a value of θ (Figure 3.7). The deviatoric plane is defined as a plane perpendicular to the 

isotropic line and localized by a value of σo (Figure 3.8).

The surface is a parabola in the Rendulic plane. After calculating the current value of θ, the 

procedure is carried out in the Rendulic plane and therefore, the problem variables are σo and 

τo only. The parabola is described by the equation

( )2 , 0
2
o

o oA r e Bτ
τ θ σ

æ ö÷ç+ + + =÷ç ÷÷çè ø
, (3.22)

where

( )
2 2

222  and 
9 9

c t
c

t

f fA B f
f

α
-

= + =- , (3.23)

being e the eccentricity and α the fragility defined as the ratio between the uniaxial tensile and 

compressive strength:

t

c

f
f

α = . (3.24)

The eccentricity indicates how much the intersection of the surface with a deviatoric plane 

differs from the circular shape.

The polar radius r(e, θ) is written as

( )
( )

2 2

2 2
,

1

a br e
a b a b

η
θ

η η

+
=

+ - +
, (3.25)

where

21 ,  2 1 and 2cosa e b e η θ= - = - = . (3.26)

This parabola has an intersection with the σo-axis in the equi-triaxial tension point for
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( )( )2

2
1 2

t
o

fBf
A α α

=- =
- +

(3.27)

and provides a biaxial compressive strength equal to

( ) ( )22 21 1 16
4

c
cc

ff α α
é ù
ê ú= - + - +
ê úë û

. (3.28)

In order to capture the material failure for the stress states near the hydrostatic axis, a cap 

surface is formulated. Balan, Spacone and Kwon [5] propose a cap surface written in the 

stress space as a function of the invariants. In 3D-PARC, a different solution is proposed: the 

cap surface is defined directly in the Rendulic plane by a parabola. This curve has the main 

axis parallel to the τo-axis, it is tangent to the surface in the point with σo=-fh and it passes by 

the  equi-triaxial  compression  point  with  σo=-fccc (Figure  3.7).  In  this  way,  with  an  easy 

numerical formulation, the continuity and the smoothness of the 3D domain is assured.
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Figure 3.7 – The two parabolas defining the failure surface in the Rendulic plane.

The cap is defined as

2
o o oD E Fτ σ σ= + + , (3.29)

where
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( )
( )

2
2

*
,  2  and ccc h
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ccc h

k f f
D E k Df F Ef Df

f f
τ- -

= = + = -
-

, (3.30)

being τ* the surface value for σo=-fh and k the surface first derivative in the same point.

The parameters  fccc and  fh are tuned in order to obtain a good agreement with the Willam-

Warnke surface. fccc and fh can be written as functions of the material fragility, of the uniaxial 

compressive strength and of the Lode angle:

( )( )

2

2 2

102.86 11.498 6.8738

0.0974 0.1432 0.9 0.1662 0.487 0.813

ccc

c

h
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f
f
f
f

α α

θ θ θ θ

= + +

= - - + - +
(3.31)

The coordinates of the intersection between the current stress state line and the surface can be 

written as:

( )
( )

1

2

3

cos
22 cos 3
2cos 3

c
int int

c o o

c

θσ
πσ σ τ θ

σ πθ
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, (3.32)

where ( ),int int
o oσ τ  are the coordinates of the intersection point in the Rendulic plane.

Figure 3.8 – Deviatoric sections for different values of e.

The failure surface is fully defined by three parameters, the  uniaxial tensile strength  ft, the 
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uniaxial compressive strength fc and the eccentricity e. The influence of the eccentricity on the 

deviatoric section can be seen in Figure 3.8.

In general,  the  uniaxial  parameters  ft and  fc are  well  known or  easy to  estimate.  On the 

contrary, the effect of the eccentricity is less investigated even if it strongly influences the 

surface. This effect can be clearly detected by plotting the intersection of the failure surface 

with the σ3=0 plane, obtaining a biaxial failure domain.

Figure 3.9 – Biaxial failure domain as a function of e.

In order to preserve the convexity and smoothness of the elliptic deviatoric section of the 

surface, the eccentricity must be kept in the range 0.5<e≤1. Drawing the biaxial domain for 

fc=10.35 ft and varying e in this range, the biaxial compression field is strongly influenced: the 

biaxial compressive strength fcc varies between fc for e=0.5 and 5.31 fc for e=1 (Figure 3.9).

Figure 3.10 – Relationship between e and fcc.
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Therefore, it is clear that the eccentricity should be chosen carefully. The diagram in Figure

3.10 allows to  chose the eccentricity value starting from the required biaxial  compressive 

strength and the fc/ft ratio. For example, if fcc/fc=1.14 and fc/ft=10, a suitable value for e is 0.52. 

This value generally provides very good agreement with experimental results.

Another possibility is introduced by Kwon and Spacone [28]: the eccentricity is computed as a 

function of the fragility α. This allows the failure surface to be written as a function of two 

parameters only. The proposed equation for the eccentricity is

2
4

e α
α

+
=

-
. (3.33)

With a fragility α=0.1, an eccentricity e= 0.54 is obtained.

3.2.4 – Peak strain calculation

To define the peak strains  {εc}, related to the  {σc} in the equivalent uniaxial  curves, two 

different procedures can be applied.

The more general technique requires a surface in the principal strain space [5]. This surface 

has the same form as the one built in the stress space with the stress variables replaced by the 

corresponding strain variables:
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(3.34)

where

( ) ( ) ( )
0.52 2 2

2 1 2 2 3 3 1
1
6 u u u u u uJ ε ε ε ε ε εé ù= - + - + -ê úë û . (3.35)

J2 is the second invariant of the deviatoric strain tensor. Then, the procedure to find the {εc} is 

analogous to the one used in the stress case.

A simpler procedure uses equations fitting the experimental data. The  εic is provided as a 

function of the σic and of two parameters of the uniaxial stress-strain curve: the compressive 
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strength  fc and the related peak strain  εcp. Darwin and Pecknold [20] propose, after biaxial 

studies:
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(3.36)

where the coefficient  R is derived from experimental investigations. The suggested value is 

R=3. The equation (3.36) is plotted in Figure 3.11.

In 3D-PARC, both procedures are implemented.
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Figure 3.11 – Darwin-Pecknold curve for peak strains.

3.2.5 – Concrete failure fields

One of the main problems of the presented formulation is the simultaneous failure. In fact, the 

peak stress  σic is modified, for each curve, according to the current stress state, namely, the 

curve peak in one direction is influenced by the stresses in other directions. But for stress 

ratios close to uniaxial  loading,  the curve peaks,  and consequently the elastic moduli,  are 

reduced in all directions. Therefore, it is not possible to evaluate in which direction the failure 

occurs. This situation is clearly unphysical.

In order to solve this problem, the failure surface is divided by a cone into two failure fields in 

which the failure mode is assigned. The cone has its vertex in the origin of the 3D stress space 

and the intersection with a biaxial plane (one principal stress equal to zero) is a line identified 

by the stress ratio
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1
lim

2

t

c

f
f

σ
α α

σ
= =- =- (3.37)

depending on the fragility α (3.24). Then, the cone trace is transferred in the Rendulic plane 

identified by the current Lode angle and the position of the current stress state is checked.

Figure  3.12 shows  the  Menetrey-Willam  surface,  the  proposed  cap  surface  and  the  cone 

defining the failure fields.

 

Figure 3.12 – The failure surface and the cone defining the failure fields.

If the point of the current stress state is inside the cone, the failure is considered compressive, 

whereas, if the point is external, the failure is considered tensile (Figure 3.13).

Furthermore,  this  approach allows to  assign the stress-strain  curves  in  order  to  avoid the 

elastic  modulus  decrement  and  the  consequent  simultaneous  failure  in  all  directions.  In 

general, the curve of the most loaded direction is assigned also to other directions. In this way, 

when the failure is occurring in the most loaded direction, in the other directions the failure is 

still faraway.

If the failure is tensile, the curves in compressive directions are computed by recalculating the 

{σc} with a modified version of the current stress state. In particular, the compressive stresses 

are modified in the following way:
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lim

i i
i mod

σ σ
σ

α α
=- = . (3.38)

By this method, the output for the compressive directions guarantees that the failure is not 

achieved in those directions.
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Figure 3.13 – Compressive and tensile failure fields.

The failure  is  always checked along the directions  1 (tensile  failure)  and  3 (compressive 

failure).  Both failures are checked on the strains:  the tensile failure occurs when the first 

principal uniaxial strain ε1u exceeds the tensile strain ε1c:

1
1 1

0

c
u c

cE
σ

ε ε> = . (3.39)

The  compressive  failure  occurs  when  the  third  principal  uniaxial  strain  ε3u exceeds  the 
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concrete ultimate strain εult:

3u ultε ε> . (3.40)

The ultimate strain value can be chosen by the user. In the Eurocode 2 [13], for uniaxial load 

cases, the peak strain is 0.002 and the ultimate strain is 0.0035, with a ratio

0.0035 1.75
0.002

r = = . (3.41)

In the proposed model, the Eurocode approach is extended to the multiaxial stress states and 

therefore, the ultimate strain is computed as 1.75 times the peak strain. The ultimate strain is 

computed along the direction 3 since that is the most compressed one:

31.75ult cε ε= . (3.42)

If the ultimate strain is reached, the material softens in all directions.

The stress combinations provide several different cases:

A) σ1≥0, σ2≥0, σ3≥0

The failure is tensile. For all directions the linear curve limited to σ1c is adopted.

B) σ1≥0, σ2≥0, σ3<0

B1) The current stress state point is external, the failure is tensile. For both directions 1 and 2, 

the linear curve limited to  σ1c is adopted. For direction  3, the  σ3c is computed by using the 

modification (3.38).

B2) The current stress state point is internal, the failure is compressive. For both directions 1 

and 2, the linear curve limited to σ1c is adopted. For direction 3, the σ3c is computed without 

modification.

C) σ1≥0, σ2<0, σ3<0

C1) The current stress state point is external, the failure is tensile. For direction 1, the linear 

curve limited to σ1c is adopted. For both directions 2 and 3, the σic is computed by using the 

modification (3.38). The stress-strain law for direction 3 is used also for direction 2.

C2) The current stress state point is internal, the failure is compressive. For directions 1, the 

linear curve limited to σ1c is adopted. For both directions 2 and 3, the σic is computed without 

modification. The stress-strain law for direction 3 is used also for direction 2.

D) σ1<0, σ2<0, σ3<0
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The failure is compressive. For all the directions, the  σic is computed without modification. 

The stress-strain law for direction 3 is used for all directions.

A summary is reported in Table 3.1.

Case σ1 σ2 σ3 Failure Direction 1 Direction 2 Direction 3

A ≥0 ≥0 ≥0 tensile linear (σ1c) linear (σ1c) linear (σ1c)
B1 ≥0 ≥0 <0 tensile linear (σ1c) linear (σ1c) Saenz (σ3c mod)
B2 ≥0 ≥0 <0 compressive linear (σ1c) linear (σ1c) Saenz (σ3c)
C1 ≥0 <0 <0 tensile linear (σ1c) Saenz (σ3c mod) Saenz (σ3c mod)
C2 ≥0 <0 <0 compressive linear (σ1c) Saenz (σ3c) Saenz (σ3c)
D <0 <0 <0 compressive Saenz (σ3c) Saenz (σ3c) Saenz (σ3c)

Table 3.1 – Curve assignment summary.

3.2.6 – Reinforcement contribute

The constitutive model for the steel is the simple bilinear elastic-plastic curve equal in tension 

and compression shown in Figure 3.14.
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Figure 3.14 – Uniaxial law for ordinary steel reinforcements.
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(3.43)
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where Es0 is the initial elastic modulus, Esp is the plastic modulus, εs is the current bar strain 

and εsy is the yielding strain.

The current bar strain in the local system x'-y'-z' is computed from the total strain in the global 

system x-y-z through the transformation [19]

{ } [ ]{ } [ ]{ }' ' 'x y z xyz xyz
s sT Tε εε ε ε= = , (3.44)

where [Tε] is the strain transformation matrix.

Since the steel bars exhibit stiffness along their axes only, their constitutive matrix for the ith 

steel layer can be written, in the local system, as

' ' '

0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

. 0 0
0

si

x y z
si i

E

D

symm

ρ

é ù
ê ú
ê ú
ê ú
ê ú
ê úé ù =ê ú ê úë û
ê ú
ê ú
ê ú
ê ú
ê úë û

. (3.45)

Subsequently,  the steel  matrix  is  written  for  each layer in  the  global  system through the 

transformation

[ ] [ ]' ' 'Txyz x y z
si siD T D Tε ε

é ù é ù=ê ú ê úë û ë û . (3.46)

– 60 –



Chapter 3 – The proposed model 3D-PARC

3.3 – SINGLY CRACKED MATERIAL

In 3D-PARC,  the fixed,  multi-directional  cracking approach is  adopted.  When the  tensile 

failure occurs,  the crack opens perpendicularly to the  1-axis  which is the direction of the 

maximum tensile strain. This direction will be kept fixed from now on in the calculation. In 

the theoretical formulation, up to now, the system 1-2-3 has been the principal strain system 

while from now on it will identify the first crack system.

When the strain tensile limit  is achieved, the crack pattern develops with a constant crack 

spacing am (Figure 3.15).

Figure 3.15 – Solid cracked RC element.

After cracking, the strain is decomposed into two contributes, the first related to the concrete 

between the cracks and the second related to the crack:

{ } { } { }xyz xyz xyz
c crε ε ε= + . (3.47)

The stiffness matrix is calculated separately for each material by using different constitutive 

models and techniques, and eventually, the material contributes are superimposed.

This technique allows a more general approach to the problem since every constitutive model 

can be developed totally independently on others. If a better method to model the cracking or 

the uncracked RC is proposed, it can be easily inserted in 3D-PARC by substituting only the 
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related part of the code. Moreover, it is possible to consider the effect of subsequent cracking 

phenomena by simply adding the effect of the new cracks. Furthermore, the subsequent cracks 

are not forced to develop in a fixed direction but they are free to arise in the real maximum 

tensile strain direction after the first failure.

Figure 3.16 – Principal strain system (a) and crack displacement (b) definition.

Three different coordinate systems are used: the global system  x-y-z, the local steel system 

x’-y’-z’ and the local crack system 1-2-3 (Figure 3.16-a). The reinforcing bar position is fully 

defined by two angles, θ1i and θ2i in the system x-y-z, and α1i and α2i in the system 1-2-3. In the 

crack system, u is the crack opening along the 1-axis, v is the crack slip along the 2-axis and w 

is the crack slip along the 3-axis (Figure 3.16-b).

The equilibrium in the crack can be written as

{ } { } { } { } ( ){ } { }xyz xyz xyz xyz xyz xyz xyz xyz xyz
cr ccr scr ccr scr cr cr crD D Dσ σ σ σ ε εé ù é ù é ù= = + = + =ê ú ê ú ê úë û ë û ë û , (3.48)

where xyz
crDé ùê úë û  is the stiffness matrix of the crack contributes, xyz

ccrDé ùê úë û  is the stiffness matrix of 

the concrete contributes in the crack and xyz
scrDé ùê úë û  is the stiffness matrix of the steel contributes 

in the crack.

The equilibrium of the RC between the cracks can be written as
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{ } { } { } { } { }xyz xyz xyz xyz xyz xyz xyz
c s c c s sD Dσ σ σ ε εé ù é ù= + = +ê ú ê úë û ë û . (3.49)

From equation (3.48), the crack strain is obtained:

{ } { }1xyz xyz xyz
cr crDε σ

-é ù= ê úë û (3.50)

and from equation (3.49), the concrete strain is derived:

{ } { } { }( )1xyz xyz xyz xyz xyz
c c s sD Dε σ ε

-é ù é ù= -ê ú ê úë û ë û . (3.51)

Imposing the strain in the steel between the cracks to be equal to the total strain, which is 

equal  to  the  mean steel  strain,  it  is  possible  to  insert  equations  (3.50)  and  (3.51)  in  the 

compatibility equation (3.47). Afterwards, the total strain is obtained:

{ } [ ]( ) ( ){ }
11 1 1xyz xyz xyz xyz xyz xyz

c s c crI D D D Dε σ
-- - -é ù é ù é ù é ù= + +ê ú ê ú ê ú ê úë û ë û ë û ë û . (3.52)

Therefore, the global material stiffness matrix is

[ ]( ) ( )
111 1 1xyz xyz xyz xyz xyz

c s c crD I D D D D
--- - -æ ö÷çé ù é ù é ù é ù é ù= + + ÷çê ú ê ú ê ú ê ú ê ú ÷ë û ë û ë û ë û ë û ÷çè ø

, (3.53)

where [I] is the identity matrix.

In the following pages, the contributes of each matrix are discussed in detail.

3.3.1 – Material between the cracks

The material between the cracks is considered uncracked. Therefore, the modeling techniques 

are assumed to be the same as already presented for the uncracked phase.

In order to consider the damage effect due to the crack, a penalty coefficient ξ is introduced as 

a function of the crack opening u. The coefficient is applied on the stress-strain curve peaks 

reducing the value of σic and, consequently, of Eci. No modification is inserted in the εic.

The penalty coefficient is [7]

1

0.9 0.9
1 400 1 400

m

u
a

ξ
ε

= =
+

+
. (3.54)
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The effect of the coefficient on the compressive stress-strain curve is shown in Figure 3.17.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1 1.5 2 2.5 3
ε iu  / ε c0

σ i
 / 

f c
 

ξ = 1

ξ = 0.8

Figure 3.17 – Penalization effect on the compressive stress-strain curve.

3.3.2 – Material in the crack

The material in the crack is described in the local crack system 1-2-3. Since after cracking this 

system is kept fixed, in general, it no longer coincides with the principal strain system. The 

crack contribute comes from the sum of concrete and steel effects.

Since the crack is not capable of transferring all the stress and strain components, the stress 

and strain fields in the crack system are defined as

{ } { }

{ } { }

123
1 12 13

123
1 12 13

T
cr

T
T

cr
m m m

u v w
a a a

σ σ τ τ

ε ε γ γ

=

ì üï ïï ï= =í ýï ïï ïî þ

(3.55)

In (3.55), the strain variables are written as a function of the crack displacements u, v and w. 

am is the crack spacing measured along the 1-axis.

The stress-strain relation can be written assuming that the two materials behave in parallel:

{ } { } ( ){ }123 123 123 123 123 123
cr cr cr ccr scr crD D Dσ ε εé ù é ù é ù= = +ê ú ê ú ê úë û ë û ë û , (3.56)

where

123 123

1

rN

scr scri
i

D D
=

é ù é ù=ê ú ê úë û ë ûå , (3.57)
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being 123
scriDé ùê úë û  the stiffness matrix of the ith steel layer in the crack and Nr the total number of 

reinforcing layers.

The concrete matrix contains the contributes related to the aggregate bridging and interlock 

whereas the steel matrix contains the axial force, the tension stiffening and the dowel action 

contributes for each reinforcing layer.

3.3.3 – Crack spacing

The distance between the cracks is calculated according to Eurocode 2 [13]:

[ ]1 250 0 25 mmm
ma .  k  k    

ρ
Φ

= + (3.58)

where Φm is the mean bar diameter and ρ is the ratio of the reinforcement area to the effective 

concrete area.

The coefficient k1 depends on the bar type:

1

0.8 for high-bond bars
1 for normal bars

k
ìïï=íïïî

(3.59)

and k2 depends on the shape of the strain diagram:

( )
2

1 2 1

0.5 for bending
1 for tension
0.5 for tension with eccentricity

k
ε ε ε

ìïïïï=íïï +ïïî

(3.60)

The effective concrete area is the zone in which the effect of steel bars is not negligible and it 

can be estimated as a circle with diameter equal to 14 Φ centered in the bar.

In the proposed model the following values are used: k1=0.8, k2 =1 and ρ=1.

3.3.4 – Aggregate bridging and interlock contributes

The aggregate bridging, namely the normal stresses transferred between the crack lips (Figure

3.18), is modeled in the CEB Model Code 90 [12] by a bilateral law as a function of the crack 

opening (Figure 3.19).
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Figure 3.18 – Aggregate bridging modeling in the plane 1-2.
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Figure 3.19 – CEB Model Code 90 σ-u law.

The analytical form of the law is
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(3.61)

where

0.7

1 0 0 2

Nmm,  2 0.15 ,  8,   and 0.025
10 mm

cF F
c F c F F F F

t t

fG Gu u u G G G
f f

α α
æ ö÷ç= = - = = =÷ç ÷çè ø

,

(3.62)
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being  GF the concrete fracture energy,  u1 the crack opening for  σct=0.15  ft and  uc the crack 

opening for σct=0.

Since in the numerical implementation a smooth curve is preferable, the following law [31] is 

adopted in 3D-PARC (Figure 3.20):

0

1

t
ct p

f

u
u

σ =
æ ö÷ç ÷+ç ÷ç ÷çè ø

, (3.63)

where  u0 is the crack opening corresponding to  σct=0.5  ft and  p is a coefficient defining the 

curve shape. In this work, p=1 is used.
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Figure 3.20 – Adopted σ-u law.

The value of  u0 is chosen according to the Model Code 90 law by imposing the same area 

under the curve, namely the fracture energy, in the range from u=0 to u=uc.

Therefore, u0 can be expressed as a function of u1:

0 10.3771u u= , (3.64)

The stress due to the bridging effect is defined as

1 1ct tcσ σ ε= = (3.65)

and therefore, the bridging coefficient is
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1

ct m
t ct

ac
u

σ
σ

ε
= = . (3.66)

Figure 3.21 – Aggregate interlock modeling in the plane 1-2.

In 3D-PARC, the aggregate interlock, namely the shear tangential stresses transferred between 

the crack lips (Figure 3.21), is modeled according to Gambarova [23].  This approach was 

developed through theoretical studies and experimental comparisons for elements subjected to 

plane stresses. Nevertheless, in the proposed model, these results are also used in the 3D case 

due to the lack of appropriate investigations.

The stresses due to the aggregate interlock can be written as

1 12 13

12 12

13 13

aggr uv m uw m

aggr v m

aggr w m

c a c a
c a
c a

σ γ γ

τ γ

τ γ

=- -

=

=

(3.67)

The four coefficients are defined as functions of the crack opening and the crack slips:

3 3

3 4 3 4

4 4
max max

4 4

2 2
1 2 1 2
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wc w
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÷÷

(3.68)

where
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1 2 3 4
2.45 40.62,  ,  2.44 1 ,  * 0.27  and 0.25

* * ca a a a f qτ
τ τ

æ ö÷ç= = = - = =÷ç ÷çè ø
, (3.69)

being Dmax the maximum aggregate size.

Finally, the concrete matrix in the crack system is obtained:

123 0 0
0 0

t uv uw

ccr v

w

c c c
D c

c

é ù- -
ê ú

é ù ê ú=ê úë û ê ú
ê úë û

. (3.70)

3.3.5 – Reinforcement and dowel action contributes

The steel matrix is computed in the local coordinate system x'-y’-z’. The bar length between 

two cracks can be calculated through the angles α1i and α2i as shown in Figure 3.22:

1 2cos cos
m

si
i i

al
α α

= . (3.71)

Figure 3.22 – Bar length between two cracks.

The stress and strain fields in the steel system are defined as

{ } { }

{ } { }

' ' '
' ' ' ' '

' ' ' 1 2
' ' ' ' '

Tx y z
cr x x y x z

T
Tx y z

cr x x y x z
s s sl l l

σ σ τ τ

η ηδ
ε ε γ γ

=

ì üï ïï ï= =í ýï ïï ïî þ

(3.72)
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In equation (3.72), the strain variables are written as functions of the crack displacements in 

the steel system  x'-y'-z'. In particular,  δ is the displacement along the  x'-axis,  η1 along the 

y'-axis and η2 along the z'-axis.

The steel forces due to the axial stiffness of the bar and to the dowel action are modeled in the 

steel system (Figure 3.23-a) and then smeared obtaining the corresponding stresses (Figure

3.23-b).

The axial contribute of the ith steel layer is computed as

' '
1 2 1 2

scri si
x scri scri scri i scri i i scri i x

i i i i s

N A E E g E g
p p p p l

δ
σ σ ε ρ ρ ε= = = = = , (3.73)

where Nscri is the steel axial force in the crack.

The tension stiffening coefficient gi is defined as the ratio:

scri
i

si

g

l

ε
δ

= , (3.74)

where εscri is the steel strain in the crack.

The tension stiffening formulation is discussed in detail in the next section.

Figure 3.23 – Steel contributes modeling in the crack, in the plane x'-y'.

The dowel action contribute is modeled according to  Walraven and Reinhardt  [46]. In the 

following equations, the index i indicates the ith steel layer while the index j=1,2 indicates the 
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direction of the tangential stresses.

For the ith steel layer, the dowel force orthogonal to the bars is smeared along the interaxes and 

the related stresses are obtained:

1 2
' ' 1 ' ' 2

1 2 1 2

 and i i
x y i x z i

i i i i

S S
p p p p

τ τ τ τ= = = = . (3.75)

The force Sij is calculated as a function of the crack displacements δi, ηi1 and ηi2:

( )
0.38 1.75 0.36110.73

0.2ij c i ij
i

S f η
δ

Φ=
+

. (3.76)

Substituting (3.76) into (3.75), after some mathematical passages, the tangential stresses are 

obtained:

( )
0.38 0.25

0.6413.66
0.2

ijsi
ij c i i i ij ij

i ij si

lf d
l
η

τ ρ ρ γ
δ η

Φ -= =
+

, (3.77)

where

( )
0.38 0.25

0.6413.66
0.2

si
ij c i

i ij

ld f
δ η

Φ -=
+

. (3.78)

Finally, the stiffness matrix for the ith layer in the steel system is

' ' '
1

2

0 0
0

.

i scri
x y z
scri i i

i

g E
D d

symm d
ρ

é ù
ê ú

é ù ê ú=ê úë û ê ú
ê úë û

. (3.79)

Afterwards, all the matrices ' ' 'x y z
scriDé ùê úë û  are transferred to the crack system and summed to obtain 

the  matrix  123
scrDé ùê úë û  according  to  (3.57).  Subsequently,  the  steel  contribute  is  added  to  the 

concrete one to obtain the crack matrix according to (3.56).

3.3.6 – Tension stiffening

The tension stiffening is implemented in 3D-PARC by following a numerical approach. The 

stiffening contribute provided by the concrete between two cracks is taken into account by 
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increasing the value of the mean steel strain.

Figure 3.24 – Equilibrium conditions of a RC portion (a), of a steel bar (b) and of concrete (c).

The equilibrium equations governing the problem are:

• section equilibrium (Figure 3.24-a):

0c sd d
dx dx
σ σ

ρ+ = ; (3.80)

• steel bar equilibrium (Figure 3.24-b):

( )( )4sd s x
dx
σ

τ
Φ

= ; (3.81)

• concrete equilibrium (Figure 3.24-c):

( )( )4cd s x
dx
σ

ρ τ
Φ

=- . (3.82)

The compatibility equation is

s cs u u= - , (3.83)

where s is the slip and us and uc are the steel and concrete displacement respectively. After the 

differentiation, the (3.83) becomes

s c
ds
dx

ε ε= - . (3.84)
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Combining the previous equations, the solving equation is obtained:

( )
( )( )

2

2

4 1 s

s c

d s x E s x
dx E E

ρ τ
Φ

æ ö÷ç ÷= +ç ÷ç ÷çè ø
. (3.85)

Figure 3.25 – CEB Model Code 90 bond-slip law.

The bond-slip law is taken from the CEB Model Code 90 [12] and is shown in Figure 3.25:
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(3.86)

The parameters depend on bond conditions and confinement as reported in Table 3.2.

Parameter
Unconfined concrete(1) Confined concrete(2)

Good bond 

conditions

All other bond 

conditions

Good bond 

conditions

All other bond 

conditions
s1 [mm] 0.6 0.6 1.0 1.0
s2 [mm] 0.6 0.6 3.0 3.0
s3 [mm] 1.0 2.5 Clear rib spacing Clear rib spacing

α 0.4 0.4 0.4 0.4
τmax [MPa] 2.0 √fc 1.0 √fc 2.5 √fc 1.25 √fc

τf [MPa] 0.15 τmax 0.15 τmax 0.40 τmax 0.40 τmax

Table 3.2 – Bond-slip law parameters.
(1) Failure by splitting of the concrete. (2) Failure by shearing of the concrete between the ribs.
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In 3D-PARC, the problem is solved in a numerical way by using the Finite Difference Method 

(FDM). Following this approach, the solution is calculated in a finite number of points and the 

accuracy can be improved by increasing the number of points (Figure 3.26).

First of all, a set of points, usually equi-spaced, is chosen. The  x-axis is intended to be the 

steel bar axis having its origin in the middle point between the cracks and the point  x=ls/2 

coinciding with the middle of the crack. The derivatives of the solving function in the ith point 

are written by using the values of the function in the same point and in some other points next 

to it. In particular, the second derivative of s(x) in the ith point can be written as

( )2
1 1

2 2

2i i id s x s s s
dx xΔ

- +- +
= . (3.87)

The equation (3.85) written in the ith point is

2
1 12i i i is s s k x τΔ- +- + = , (3.88)

where

4 1 s

s c

Ek
E E

ρ
Φ

æ ö÷ç ÷= +ç ÷ç ÷çè ø
. (3.89)

Figure 3.26 – FDM discretization.

By using the boundary conditions  s(0)=0 and  s(ls/2)=δ/2,  the following solving system is 

obtained:
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. (3.90)

Since  the  tangential  stress  in  a  point  is  a  function  of  the  slip  in  that  point,  an  iterative 

procedure is required. The convergence rate is quite fast.

After  computing the  s(x),  all  the other  unknown functions  can be calculated in  a  similar 

manner. By applying the FDM approximation, the (3.82) can be written as

, , 1
4

c i c i ixσ σ ρ τΔ
Φ+- = . (3.91)

By using the approximated boundary conditions  σ(ls/2)=σct, the following solving system is 

obtained:
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. (3.92)

Subsequently, the concrete strain is computed by the tensile field of the concrete constitutive 

law. Since the proposed model adopts a linear elastic curve, the concrete strain is expressed as

,
, 

0

c i
c i

cE
σ

ε = . (3.93)

Finally, the equation (3.84) provides the steel strain in the bar. The FDM gives

( ), , 1 1
1

2s i c i i is s
x

ε ε
Δ + -= + - . (3.94)

By imposing the symmetry in x=0 and x=ls/2, the solving system is
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The steel strain distribution along the bar is now defined. Afterwards, the mean steel strain 

from  the  tension  stiffening  formulation  is  compared  with  the  global  mean  steel  strain 

computed  as  the  global  strain  in  the  bar  direction.  The  tension  stiffening  distribution  is 

corrected to assure the mean strain equality:

, ,
global ts
s mean s mean sε ε εΔ= + . (3.96)

The mean value of the tension stiffening strain distribution is computed by

1
,1 ,

, ,
2

1
1 2 2

n
s s nts

s mean s i
in

ε ε
ε ε

-

=

æ ö÷ç= + + ÷ç ÷ç ÷- è øå . (3.97)

After these procedures, the steel strain along the bar is obtained (Figure 3.27). εs,n=εscri is the 

steel strain of the ith reinforcing layer in the crack. Therefore, the tension stiffening coefficient 

gi is computed according to (3.74).

Figure 3.27 – Steel strain distribution.
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3.4 – DOUBLY CRACKED MATERIAL

After the first crack formation, the material between the cracks still works as an uncracked 

material.  The  principal  strain  directions  are  recomputed  independently  on  the  first  crack 

orientation.  Due to the modular framework of the model,  when a new crack arises in the 

principal strain system, its effect can be easily inserted.

After the second cracking, the strain is decomposed into three contributes, the first related to 

the concrete between the cracks and the others related to the cracks:

{ } { } { } { }1 2
xyz xyz xyz xyz

c cr crε ε ε ε= + + . (3.98)

As previously explained for the singly cracked material, the starting point is the equilibrium. 

The equilibrium in the first crack can be written as

{ } { } { } { } ( ){ } { }1 1 1 1 1 1 1 1
xyz xyz xyz xyz xyz xyz xyz xyz xyz

cr ccr scr ccr scr cr cr crD D Dσ σ σ σ ε εé ù é ù é ù= = + = + =ê ú ê ú ê úë û ë û ë û , (3.99)

where 1
xyz
crDé ùê úë û  is the stiffness matrix of the first crack contributes, 1

xyz
ccrDé ùê úë û  is the stiffness matrix 

of the concrete  contributes  in the first crack and  1
xyz
scrDé ùê úë û  is the stiffness matrix of the steel 

contributes in the first crack.

In the same way, the equilibrium in the second crack can be written as

{ } { } { } { } ( ){ } { }2 2 2 2 2 2 2 2
xyz xyz xyz xyz xyz xyz xyz xyz xyz

cr ccr scr ccr scr cr cr crD D Dσ σ σ σ ε εé ù é ù é ù= = + = + =ê ú ê ú ê úë û ë û ë û . (3.100)

The equilibrium between the cracks can be written as

{ } { } { } { } { }xyz xyz xyz xyz xyz xyz xyz
c s c c s sD Dσ σ σ ε εé ù é ù= + = +ê ú ê úë û ë û . (3.101)

From equations (3.99) and (3.100), the crack strains are obtained:

{ } { } { } { }1 1

1 1 2 2 and xyz xyz xyz xyz xyz xyz
cr cr cr crD Dε σ ε σ

- -é ù é ù= =ê ú ê úë û ë û (3.102)

and from equation (3.101), the concrete strain is derived:
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{ } { } { }( )1xyz xyz xyz xyz xyz
c c s sD Dε σ ε

-é ù é ù= -ê ú ê úë û ë û . (3.103)

Imposing the strain in the steel between the cracks to be equal to the total strain, which is 

equal to the mean steel strain, it  is possible to insert equations (3.102) and (3.103) in the 

compatibility equation (3.98). Afterwards, the total strain is obtained:

{ } [ ]( ) ( ){ }
11 1 1 1

1 2
xyz xyz xyz xyz xyz xyz xyz

c s c cr crI D D D D Dε σ
-- - - -é ù é ù é ù é ù é ù= + + +ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û . (3.104)

Therefore, the global material stiffness matrix is

[ ]( ) ( )
111 1 1 1

1 2
xyz xyz xyz xyz xyz xyz

c s c cr crD I D D D D D
--- - - -æ ö÷çé ù é ù é ù é ù é ù é ù= + + + ÷çê ú ê ú ê ú ê ú ê ú ê ú ÷ë û ë û ë û ë û ë û ë û ÷çè ø

, (3.105)

where [I] is the identity matrix.

The multi-cracking procedure is realized by simply adding the flexibility of the subsequent 

crack. With analogous procedures, it is possible to insert any number of subsequent cracks 

even if the first ones remain the most important since they characterize the structural behavior.
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4.1 – INTRODUCTION

Since the beginning, the proposed model 3D-PARC – Three-Dimensional Physical Approach 

for Reinforced Concrete, was formulated in order to be implemented from the computational 

point of view. The first version of the model, developed in the author's graduate thesis, was 

implemented in the code TRE [34],  a FORTRAN code able to evaluate the behavior of a 

material portion. Therefore, only very simple structures subjected to uniform stress states can 

be analyzed with TRE.

Subsequently, in order to provide the model with more flexibility, the work was focused on 

the Finite Element (FE) implementation. The commercial FE code ABAQUS [1]  allows the 

user  to  design his  own material  constitutive  model  by using an UMAT (User  MATerial) 

FORTRAN  subroutine.  In  this  way,  the  model  3D-PARC  is  implemented  in  the  FE 

framework allowing the analysis of more complex structures.

The leading philosophy does not change since the single material  point analyzed by TRE 

becomes the integration point analyzed by 3D-PARC. To verify the model and its numerical 

implementation, comparisons with literature experimental results are carried out.

The following chapter describes, at first, the main solving procedures used in FE codes for 

non-linear problems, the ABAQUS solving techniques and the role of 3D-PARC within it. 

Secondly, the applications of 3D-PARC to some significant, well documented, experimental 

cases are presented.
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4.2 – NON-LINEAR PROBLEM SOLVING PROCEDURES

Reinforced Concrete (RC) structures exhibit a complex behavior due to the highly non-linear 

response  of  both  uncracked and  cracked  material.  The  structural  equation  system can  be 

written as

[ ]{ } { }K u F= , (4.1)

where [K] is the stiffness matrix, {u} is the displacement vector and {F} is the external force 

vector. The numerical problem is faced by using iterative and incremental solving techniques. 

This means that the external actions are not fully applied but are divided in a suitable number 

of increments.  For each increment,  the problem is  linearized and solved with an iterative 

process until a convergence criterion is satisfied. For each iteration, a linear problem is solved 

and a new structural configuration is found.

Figure 4.1 – Uniaxial example problem.

Figure 4.2 – Hardening and softening behavior.

In the following section, some solving techniques are presented in the simple one-degree of 

freedom case shown in Figure 4.1. The same concepts can be applied to any multi-degree of 

freedom case [19]. A non-linear, softening spring is defined. The spring stiffness is a function 
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of the displacement u and an external load P is applied (Figure 4.2). In this study, the option 

of softening behavior is chosen as it is the most common for RC structures.

4.2.1 – Secant method

Starting from the origin,  the load  PA is  applied and the corresponding configuration  uA is 

searched (Figure 4.3). With the initial stiffness k0, the point a, related to the load PA and to the 

configuration u1, is found. Starting from the new configuration u1, the load P1 is computed by 

using the constitutive model of the structure. Being the load  P1 rather far from  PA,  a new 

stiffness k0 + kN1 is computed with u1, and the procedure is repeated from the beginning. The 

new stiffness provides the point b and the new configuration u2 as a new starting point. The 

convergence is achieved when the difference PA-Pi differs from zero by a tolerance set by the 

user.

Figure 4.3 – Secant technique.

4.2.2 – Newton-Raphson method

Starting from the load PA related to the configuration uA, the load is incremented up to PB and 

the  configuration  uB is  searched  (Figure  4.4).  The  tangent  stiffness  is  calculated  in  uA 

(graphically it is the line tangent to the curve in the point A) and the configuration u1, related 

to  the  load  PB,  is  found.  With  u1,  the  load  P1 is  computed:  P1 is  the  part  of  the  load 

equilibrated by the structure in the configuration u1, whereas the load PB-P1 is the part of the 

load which is not equilibrated. Starting from u1, the new tangent stiffness is computed in the 

point 1 and then the procedure is repeated. The convergence is achieved when the unbalanced 

load PB-Pi differs from zero by a tolerance set by the user. The convergence rate is quadratic 

but the tangent stiffness needs to be calculated for each iteration.
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Figure 4.4 – Newton-Raphson technique.

4.2.3 – Modified Newton-Raphson method

This method differs from the previous one because the tangent stiffness is not updated for 

each iteration but remains constant during the whole increment or, alternatively, it is updated 

only from time to time during the increment (Figure 4.5). In this way, the computational cost 

is strongly reduced. In fact, the calculation of the tangent stiffness for each iteration can be a 

big numerical effort. The convergence rate depends on the updating frequency, but obviously 

it decreases with respect to the Newton-Raphson method.

Figure 4.5 – Modified Newton-Raphson technique.

4.2.4 – Quasi-Newton method

This method implements the first two iterations with the Newton-Raphson approach using the 

initial  tangent  (Figure  4.6).  In  this  way,  the  points  1  and  2  on  the  curve  are  found. 

Subsequently, starting from these two points, the secant stiffness (line passing by 1 and 2) is 
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evaluated. From that point onward, the same secant stiffness is used. The convergence rate is 

superlinear.

Figure 4.6 – Quasi-Newton technique.

4.2.5 – Initial stiffness method

Using the above mentioned methods, numerical problems can arise in particular situations. In 

the Newton-Raphson method, despite a very fast convergence rate, problems can occur near 

the material curve peaks when the tangent is close to zero. The secant formulation, on the 

contrary, has a slower convergence rate but in general, it is more stable from the numerical 

point of view. Nevertheless, problems can be found in the post-cracking phase when some 

elements of the stiffness matrix can be zero.

Figure 4.7 – Initial stiffness technique.

In order to avoid these numerical problems, a different approach can be implemented. In the 

FE formulation, for each integration point, the stress vector for the internal force calculation, 

and  the  Jacobian  matrix  for  the  stiffness  computation  are  required.  In  other  words,  the 

Jacobian matrix determines only the slope which is used to approach the solution. Therefore, 
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the Jacobian matrix can be considered only a numerical tool which can be defined by the user. 

For  softening structures,  however,  it  should  be  always stiffer  than  the  one related  to  the 

current structural configuration, otherwise the equilibrium point could be unattainable.

In the initial stiffness method, the Jacobian matrix, computed at the beginning of the analysis, 

is maintained during the whole calculation (Figure 4.7). In this case, the Jacobian matrix is the 

linear elastic matrix.

Obviously, due to the fact that the matrix is stiffer than the secant, the computational time is 

highly  increased  since  much  more  iterations  are  necessary  to  achieve  the  convergence. 

Therefore, this numerical tool should be used carefully and only when the other methods are 

unsuitable.
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4.3 – NUMERICAL PROCEDURES IN ABAQUS

4.3.1 – Non-linear problems in ABAQUS

The final  aim of  non-linear  analyses is  to  evaluate  a  realistic  response,  up  to  failure,  of 

structures  under  generic  loads,  taking  into  account  the  physical  reality  of  the  material 

constitutive laws and of the geometric characteristics (Figure 4.8).

Figure 4.8 – Non-linear response example.

Since  the  problem  is  non-linear,  an  incremental  and  iterative  procedure  is  required  [1]. 

“Incremental” means that the external load is divided into small parts gradually added one by 

one and the equilibrium configuration is searched for each increment. “Iterative” means that 

several iterations are usually required to find the solution. The non-linear problem is solved as 

a repeated linear problem.

Figure 4.9 – External and internal forces.

The  simulation  time  history  consists  of  steps.  In  each  step,  different  loads,  boundary 

conditions and solving procedures can be defined. Each step is divided into increments in 

order to follow the non-linear response. The size of the increment can be fixed as well as 

automatically  determined.  At  the  end  of  each  increment  the  structure  is  in  approximate 

equilibrium. An iteration is an attempt at finding an equilibrium solution within an increment. 
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If the convergence criteria are not satisfied, another increment is required.

Figure 4.9 shows the external and internal forces acting on a body. The internal forces at a 

node are caused by the stresses in the elements connected to the node. The equilibrium is 

satisfied when external forces P and internal forces I balance each other at every node:

0P I- = . (4.2)

Starting from the configuration  u0, a load increment  ΔP is applied. In the first iteration, the 

structure stiffness matrix K0, related to the configuration u0, and the increment ΔP are used to 

compute a displacement correction ca. The structure configuration is updated to ua by using ca 

(Figure 4.10).

Figure 4.10 – First iteration.

Then, ABAQUS computes the internal forces Ia in this new configuration and subsequently, 

the force residue for the iteration, which is the difference between the external and the internal 

forces:

a aR P I= - . (4.3)

If Ra is zero for every degree of freedom and for every node in the model, the point  a is  an 

equilibrium point laying on the curve. Since the problem is non-linear, the residue is never 

zero  but  it  is  compared with  a  tolerance  value.  Therefore,  if  the residue  is  lower  than  a 

specified  value,  the  equilibrium  is  considered  achieved  and  the  point  is  accepted  as  an 

equilibrium point.

However, ABAQUS performs a convergence check also on the displacement correction  ca 

which should be small compared to the total displacement increment
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0a au u uΔ = - . (4.4)

Both the convergence criteria must be satisfied to consider the equilibrium achieved. The 

tolerance values can be specified by the user.

Figure 4.11 – Second iteration.

On the contrary, if the convergence is not attained, another iteration is carried out in order to 

reduce  the  residue  (Figure  4.11).  Starting  from the  current  structure  configuration  ua,  the 

stiffness  Ka is assembled. Afterwards, by using  Ka and the residue  Ra, a new displacement 

correction  cb is  computed determining the new point  b which is closer to the equilibrium 

point. A new residue is calculated by using the internal force Ib related to the configuration ub:

b bR P I= - . (4.5)

Then,  a  new convergence check is  performed on the residue  Rb and on the  displacement 

correction

0b bu u uΔ = - . (4.6)

If necessary, a further iteration is performed with the same procedure.

It can be concluded that for every increment a global system of equations is assembled and 

solved. Therefore, the computational cost of each iteration is close to the cost of a complete 

linear  analysis.  For  this  reason,  the  computational  expense  of  a  non-linear  analysis  is 

potentially many times greater than the cost of a linear analysis.

– 87 –



Chapter 4 – Applications

4.3.2 – The code 3D-PARC in the Finite Element framework

The  FE  code  ABAQUS  allows  the  user  to  define  a  constitutive  model  by  inserting  a 

FORTRAN  subroutine  called  UMAT  (User  MATerial)  describing  the  integration  point 

behavior.

The variables passed in are the material  properties and the variables corresponding to the 

current  state  of  the  structure.  The  output  variables  are  the  stresses,  used  to  compute  the 

internal forces, and the Jacobian matrix, used to calculate the element stiffness matrix.

3D-PARC requires the following input material properties for concrete: the uniaxial tensile 

strength ft, the uniaxial compressive strength fc, the strain εcp corresponding to fc in the uniaxial 

stress-strain curve, the initial elastic modulus  Ec0 and the initial Poisson coefficient  ν0. For 

each steel  layer, the following properties are required: the elastic modulus  Es0,  the plastic 

modulus  Esp, the yielding strength  fsy, the ultimate strength  fsu, the bar diameter  Φ and the 

angles defining the bar orientation θ1i and θ2i.

For each iteration and for each integration point,  the procedure starts with the total  strain 

{ε}+{Δε} which is the input variable defining the current state (Figure 4.12). {ε} is the total 

strain at the beginning of the increment while  {Δε} is the trial strain  increment. ABAQUS 

searches for the {Δε} correction required to satisfy the convergence within each increment.

The output variables from the subroutine are the total stress {σ} and the Jacobian matrix [D]. 

Since the model is formulated in terms of secant values, the total stress at the end of each 

iteration is computed as

{ } [ ] { } { }( )Dσ ε εΔ= + . (4.7)

The stress is used to compute the internal forces by integration over the element and then, the 

internal forces over the structure by an assemblage procedure. The internal forces are the part 

of the external  load equilibrated through the current  structural  deformation.  The Jacobian 

matrix is used to compute the element stiffness matrix by integration over the element and 

then, the structure stiffness matrix by an assemblage procedure.

Now, the solving system can be written by using the global stiffness matrix and the residual 

forces computed as the difference between the external and the internal forces. The residue is 

the part of the load which is not equilibrated by the internal stress.

After the solving procedures, the displacement increment  {Δq} is found. The displacement 

increment for each element and then the strain increment for each integration point can now 
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be computed. The whole procedure can be repeated up to the convergence.

Several different FE can be used with 3D-PARC. In this work, the 20-node quadratic reduced 

integration solid element C3D20R is preferred.

{ } { }ε εΔ+

3D-PARC

{ }σ [ ]D
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Figure 4.12 – The code 3D-PARC in the FE framework.

4.3.3 – Numerical procedure for strain decomposition

After the crack formation, an iterative procedure is required, within the code 3D-PARC, in 

order to achieve an exact strain decomposition fulfilling both compatibility and equilibrium 

(Figure 4.13).

The starting point is the total strain vector  {ε} which needs to be divided in concrete strain 

{εc} and in crack strain {εcr}. After {εcr} is defined, {εc} is computed by a subtraction. In this 
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way, the compatibility is imposed. From these strains, three constitutive matrices for steel, 

concrete  and  crack  are  computed.  Then,  the  three  matrices  are  used  to  build  the  total 

constitutive matrix [D] and to compute the stresses between the cracks (steel and concrete) 

and in the crack. Moreover, through the [D] matrix, the total stress {σ} is obtained.

Afterwards, the equilibrium of the stress in the crack and between the cracks is checked. If the 

equilibrium is satisfied, the [D] matrix and the total stress {σ} are taken as output. If not, a 

new crack strain {εcr} is defined by using the crack stiffness matrix and the total stress. In fact, 

the stress in the crack as well as the stress between the cracks must be equal to the total stress.

{ }ε  as input

{ } { } { }c crε ε ε= - { }crε

[ ]sD [ ]cD [ ]crD [ ]D

{ }sσ { }cσ { }crσ { } [ ]{ }Dσ ε=

{ } { } { }
?

c s crσ σ σ+ = { } [ ] { }1
cr crDε σ

-=

[ ]D  and { }σ  as output

Figure 4.13 – Strain decomposition procedure.
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4.4 – PLAIN CONCRETE BIAXIAL TESTS

4.4.1 – Experimental program

As first  validation,  the proposed model  3D-PARC is  applied to  plain concrete  specimens 

subjected to biaxial stresses. The final aim of this evaluation is a deep investigation of the 

concrete constitutive model by using well known and reliable experimental data [27].

Since the development  of  an universal  failure  domain is  a  highly interesting topic,  many 

different experimental studies were performed on concrete subjected to biaxial stresses.

Figure 4.14 – Summary of previous experimental results.

In  general,  the  obtained  results  present  a  great  discrepancy since  many difficulties  were 

encountered in obtaining a suitable test setup. In this kind of tests,  the experimental setup 

should be chosen carefully due to the fact that it is very important to obtain a well defined and 

uniform biaxial stress state inside the specimen. One of the major problems is the effect of the 

friction between the bearing plates and the specimen which could produce a confinement 

modifying the stress state along the concrete edges and increasing the ultimate strength. Many 

different solutions were tried to avoid this problem, like lubricants, surface treatments or soft 

packing between the surfaces, but, in general, the results were not reliable: for equal biaxial 

compressive  stresses,  the  ultimate  strength  varies  from 80% up to  350% of  the  uniaxial 

compressive strength (Figure 4.14). On the contrary, in the mixed tensile-compressive fields 

the agreement was good. Finally, the concrete specimen size and shape had a strong influence 
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on the results.

Figure 4.15 – Experimental setup.

In this experimental study, square plates loaded in their plane were used since it seems to be a 

suitable  specimen  shape  and  brush  bearing  platens  were  adopted  in  order  to  reduce  the 

confinement effect. These platens consisted of a series of closely spaced, small,  steel bars 

which, due to their flexibility, can follow the concrete deformation without giving appreciable 

restraining effects. In order to avoid buckling instability, shorter steel bars were used with 

higher concrete strength while, in case of tensile stress, the bars were glued to the concrete 

edges.

Figure 4.16 – Untreated and brush bearing platens results.

20x20x5-cm  plain  concrete  specimens  were  subjected  to  stress  combinations  in  biaxial 

tensile, tensile-compressive and biaxial compressive fields in order to draw a complete failure 
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domain. For each field, four different stress ratios were chosen and six specimen were tested. 

Three different types of concrete having different uniaxial compressive strengths were used. 

The maximum aggregate size was 15 mm. The experimental setup is shown in Figure 4.15.

In order to test the experimental setup, several preliminary tests varying the specimen size and 

shape were performed with and without the brush platens. The difference between restrained 

and unrestrained specimen is highlighted in  Figure 4.16. Moreover, when the brush bearing 

platens were used, the shape of the specimen did not influence the results. 

In  the  figures,  the  strength  values  are  defined  as  a  fraction  of  the  uniaxial  compressive 

strength in order to compare the results obtained from the three different types of concrete.

4.4.2 – Results and comparisons

The  experimental  crack  patterns  are  reported  in  Figure  4.17.  For  biaxial  compressive 

combinations, numerous microcracks parallel to the free surface of the specimen arose during 

the loading procedure and eventually, a major crack developed with an angle in the range 18-

27 deg to the free surface.

Figure 4.17 – Experimental failure modes.

For mixed tensile-compressive combinations, the specimens behaved in the same way as long 

as the ratio  σ1/σ2 was less than 1/15. For larger tensile stresses, a single, well defined crack 

perpendicular to the maximum stress brought the specimen to the failure. For biaxial tensile 

combinations,  no  preferred  crack  directions  were  observed,  but  the  crack  was  always 
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perpendicular to the free surface.

In general,  the  strength  data  were  slightly affected  by the  different  uniaxial  compressive 

strength  but,  for  example,  in  the  mixed  tensile-compressive  field,  the  concrete  strength 

decreased as the uniaxial strength increased.

The  concrete  strength  under  biaxial  compression  was  16%  larger  than  under  uniaxial 

compression. This increment is very low if compared to the outcomes of other experimental 

programs. In the mixed tensile-compressive field the results were in good agreement with 

previous  investigations.  Finally,  in  the  biaxial  tension  field,  the  strength  was  almost 

independent of the stress ratio σ1/σ2 and equal to the uniaxial tensile strength.
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Figure 4.18 – Experimental and numerical biaxial failure domain.

In  Figure  4.18,  3D-PARC  is  applied  to  obtain  the  biaxial  failure  domain.  As  already 

mentioned, the triaxial failure surface is highly influenced by the eccentricity e, whose value, 

for  these  biaxial  tests,  is  chosen  to  be  e=0.52.  The  numerical  simulation  reproduces  the 

experimental data with high accuracy.

Furthermore, the stress-strain behavior for several biaxial stress combinations is simulated. 

Figure 4.19 and  Figure 4.20 represent two significant cases for biaxial compression. In the 

first  one the specimen is subjected to equal biaxial  stresses.  In the second one, the stress 

combination provides the highest concrete strength.

It can be noted that the ultimate strength as well as the peak strain can be captured very well in 
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the most  loaded direction.  On the contrary, the strains in the perpendicular directions are 

detected with less accuracy.
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Figure 4.19 – Stress-strain curves for σ1/σ2=-1/-1.
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Figure 4.20 – Stress-strain curves for σ1/σ2=-1/-0.52.

Finally, one case extracted from the mixed tensile-compressive region is reported in  Figure

4.21. As it can be clearly seen from the curve shapes, the tensile stress has a high influence on 

the specimen response, with a strong reduction of the concrete strength. In this case, all the 
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strain can be captured in a very accurate way.
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Figure 4.21 – Stress-strain curves for σ1/σ2=-1/0.204.
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4.5 – PLAIN CONCRETE TRIAXIAL TESTS

4.5.1 – Experimental program

In 1968 and 1969, an experimental study on plain concrete behavior under triaxial stresses 

was carried out at the Centre d’Etudes Scientifiques et Techniques (CEST, Grenoble) for the 

Compagnie Industrielle de Travaux (CITRA, Paris) [30].

The final objective of the research was the investigation of deformability under service loads 

and of failure strength of the thick concrete walls used in nuclear reactor containment vessels. 

For the deformability investigation, the experimental tests were performed on 140-mm side 

cubes, at three different temperatures, up to 50 MPa in all the three directions, whereas, for 

the study of the ultimate strength, 70-mm side cubes up to 200 MPa were used.

The specimens were cast by choosing the same material used for an already built vessel: a 

CPAC-325 cement with silico-calcareous gravel characterized by a maximum aggregate size 

of 15 mm. The nominal uniaxial compressive strength values varied between 30 and 45 MPa.

Figure 4.22 shows the experimental facilities.

Figure 4.22 – Testing machine (left) and experimental setup (right).

In order to  avoid any friction effect,  two different  systems were used:  the  specimen was 

lubricated with talc or an aluminum pad was inserted between the concrete and the loading 

plate surfaces. Each pad consisted of four aluminum sheets with interposed talc lubrication.
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4.5.2 – Results and comparisons

Figures from 4.23 to 4.28 show the experimental results related to the 3D failure surface by 

varying the  σ1 stress component. The intersections between the failure surface and several 

planes σ1/fc are reported in the plane σ2/fc-σ3/fc . All the diagrams are symmetrical with respect 

to  the  bisecting  line.  Two  different  series  are  plotted  for  the  experimental  results:  the 

“experimental 1” refers to the specimen lubricated with talc and the “experimental 2” to those 

lubricated with aluminum pads.
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Figure 4.23 – Experimental and numerical (e=0.58) failure domain for σ1=0.

In order to obtain a good result fitting, in the numerical simulation, the eccentricity value is 

not constant but it needs to be increased with the confining stress value. The starting value is 

0.58 for σ1=0 and then the value is increased up to 0.7 for the subsequent cases.

Figure  4.23 can  be  compared  with  Figure  4.18 in  order  to  understand  the  different 

confinement effect.  They both refer to the case with  σ1=0, but they provide very different 

results.  In particular,  the Launay-Gachon failure  domain is  greatly overestimated possibly 

because of the confinement effect of the supports. As already mentioned about the biaxial 

experimental program, if the experimental setup is not carefully arranged, the bearing platens 

can have a remarkable restraining effect.

Moreover, the increment of eccentricity, required by the transversal stress increment, could be 

another consequence of this phenomenon. Therefore, it can be concluded that probably the 
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talc and the aluminum pads are not sufficient to prevent the confinement effect and the related 

strength increment.
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Figure 4.24 – Experimental and numerical (e=0.65) failure domain for σ1=0.2 fc.
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Figure 4.25 – Experimental and numerical (e=0.7) failure domain for σ1=0.4 fc.
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Figure 4.26 – Experimental and numerical (e=0.7) failure domain for σ1=0.6 fc.
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Figure 4.27 – Experimental and numerical (e=0.7) failure domain for σ1=0.8 fc.

In Figure 4.29, the failure surface is shown in the Rendulic plane passing by the axis σ3/fc and 

the  isotropic  line  σ1/fc=σ2/fc=σ3/fc.  Two  different  intersection  curves  are  obtained,  being 

defined by σ1=σ2≤σ3 and σ1≤σ2=σ3. These two curves are typical of the concrete behavior and 

can be utilized as parametric functions to define any type of concrete. A constant value of 

e=0.7 is used.
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Figure 4.28 – Experimental and numerical (e=0.7) failure domain for σ1=fc.

The proposed model is in good agreement with the experimental results. In general, it is able 

to capture with satisfactory accuracy the failure domain in the 3D stress space including the 

confinement  effects  due  to  transversal  stresses.  Moreover,  by  directly  changing  the 

eccentricity, it is possible to add flexibility and reliability to its application to a wide range of 

experimental tests.
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Figure 4.29 – Experimental and numerical (e=0.7) failure surface in the Rendulic plane.
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4.6 – VECCHIO-COLLINS SHEAR PANELS

4.6.1 – Experimental program

In the following section, the proposed model 3D-PARC is applied to RC membrane elements 

subjected to plane stress states.

The experimental program was carried out in the '80s at the University of Toronto and it is a 

very important reference for the study of plane elements [45]. The importance of this kind of 

experiments lies in the fact that, as shown in Figure 4.30, a wide range of civil structures can 

be idealized as an assemblage of membrane elements, as underlined by the authors.

Figure 4.30 – The importance of membrane elements.

The  paper  presents  also  the  modified  compression-field  theory  for  the  prediction  of  the 

membrane  element  behavior.  This  model  is  based  on  the  compression-field  theory  and 

implements the continuum equivalent approach.

This experimental program, involving 30 panels, is worldwide famous since, after testing the 

first 15 panels, an international competition was called in order to predict the response of 

some of the remaining panels.

The  competition,  a  partial  blind  test,  being  the  response  of  the  first  15  panels  known, 

underlined the difficulties in predicting the right response and the lack of a well established 

common  and  reliable  theoretical  background.  43  different  leading  researcher  from  13 

countries  attempted  to  predict  the  behavior  of  four  panels  and  very  different  numerical 
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techniques  were  used  ranging  from simple  manual  calculations  to  high  sophisticated  FE 

analysis. None of the competitors was able to predict the ultimate load remaining within an 

error range of 15% for any of the four panels. For one of the elements, the ratio of the lowest 

to the highest prediction was one to six. It has to be noted, however, that the panels chosen for 

the competition were the most difficult to predict since their behavior was strongly dependent 

on the stress-strain concrete characteristics.

This experimental program is chosen to test the proposed model since it gives the possibility 

to deeply investigate the basic assumptions of the theory and its numerical implementation.

The panels were 890-mm square and 70-mm thick, reinforced with two steel layers running 

parallel to the edges. The two layers were welded together. The reinforcing bars were 50-mm 

equally spaced with a clear cover of 6 mm. The maximum aggregate size was 6 mm.

Figure 4.31 – Testing machine (left) and experimental setup (right).

The specimens were tested in the special membrane element tester reported in  Figure 4.31. 

Most of the panels were subjected to pure shear loading conditions but some of them were 

tested with various combination of shear, tension and compression. In addition to the loading 

conditions,  some  other  variables  were  changed  such  as  the  concrete  strength  and  the 

percentage of longitudinal and transversal reinforcement.

In order to transmit the loads to the specimen, five shear keys were cast on the panel along 

each side. Each shear key was connected to hydraulic jacks by a network of links. Three links 

were rigid in order to support the specimen. This system allowed to apply every combination 

of external loads. The out-of-plane displacements were constrained. The experimental setup 

was inserted in a steel frame which held the specimen.
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4.6.2 – Results and comparisons

Ten panels with different failure modes are investigated by 3D-PARC. The properties of the 

investigated panels are reported in  Table 4.1. All the specimens are subjected to pure shear 

load with the exception of the PV23 which is also compressed along both x and y directions 

with the ratios σx, σy, τxy=-0.39, -0.39, 1.

In  the  selected  specimens,  the  steel  ratio,  the  steel  yielding  strength  and  the  concrete 

compressive strength are varied in order to obtain different failure modes. The longitudinal 

steel ratio ρx is kept constant in all the specimens with the exception of PV16. The transversal 

steel ratio ρy varies from 0.045 to 0.0179.  Only three panels are fully symmetrical: PV16, 

PV23 and PV27. 

Figures from 4.32 to 4.41 show the comparisons with the experimental outcomes in terms of 

shear stress-shear strain.

Panel
fc

[MPa]
εcp ρx

fsyx

[MPa]
ρy

fsyy

[MPa]
PV10 14.5 0.0027 0.0179 276 0.0100 276
PV11 15.6 0.0026 0.0179 235 0.0131 235
PV12 16.0 0.0025 0.0179 469 0.0045 269
PV16 21.7 0.002 0.0074 255 0.0074 255
PV19 19.0 0.0022 0.0179 458 0.0071 299
PV20 16.9 0.0018 0.0179 460 0.0089 297
PV21 19.5 0.0018 0.0179 458 0.0130 302
PV22 19.6 0.002 0.0179 458 0.0152 420
PV23 20.5 0.002 0.0179 518 0.0179 518
PV27 20.5 0.0019 0.0179 442 0.0179 442

Table 4.1 – Investigated panel properties.

The panels PV10, PV11 and PV12 are under-reinforced and present a ductile response. The 

failure  is  reached  by  the  steel  yielding  of  both  layers.  In  fact,  the  steel  layers  are  not 

symmetrical and, as it is clear from the figures, they yield for different load levels.

The panel PV16 is under-reinforced in both directions. The failure is caused by simultaneous 

steel yielding in both directions.

The panels PV19, PV20 and PV21 fail because of the steel yielding. The steel layers are not 

symmetrical in terms of steel ratio and yielding strength and therefore, the failures are not 

simultaneous. The stress-strain curves show a highly ductile response.
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Figure 4.32 – Result comparison for panel PV10.
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Figure 4.33 – Result comparison for panel PV11.
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Figure 4.34 – Result comparison for panel PV12.
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Figure 4.35 – Result comparison for panel PV16.
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Figure 4.36 – Result comparison for panel PV19.

0

1

2

3

4

5

0 2 4 6 8 10 12 14

γ xy  x 10-3

τ x
y
 [M

Pa
]

experimental

3D-PARC

Figure 4.37 – Result comparison for panel PV20.
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Figure 4.38 – Result comparison for panel PV21.
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Figure 4.39 – Result comparison for panel PV22.
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Figure 4.40 – Result comparison for panel PV23.
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Figure 4.41 – Result comparison for panel PV27.

The panels PV22, PV23 and PV27 exhibit a similar response even if they are different in steel 

ratio, yielding strength and loading conditions. The PV23 and PV27 are fully symmetrical, 

while the PV22 is not symmetrical neither in steel ratio nor in yielding strength. All the three 

panels are over-reinforced and the failure is reached by crushing of the concrete between the 

cracks. This behavior can be clearly seen in the smooth response of the curves.

The PV23 and PV27 differ only in the steel yielding strength, but, due to the brittle failure 

mode,  they can  be  considered  identical.  Therefore,  the  effect  of  the  combined shear  and 

compressive stresses causes, in the PV23, an increment in the ultimate load as well as in the 

deformation. The response of PV23 is not easy to capture, probably due to the confining effect 

of the compression. However, the proposed model is able to capture the ultimate load value as 

well as the failure mode, but the computed behavior remains stiffer than the real one.

In  conclusions,  it  can  be  stated  that  3D-PARC  provides  very  good  results  in  the  panel 

investigation. The numerical simulations are generally able to capture with high accuracy the 

ultimate load, the deformability and the failure mode of the specimens.
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4.7 – PANG-HSU SHEAR PANELS

4.7.1 – Experimental program

In the '90s, the University of Houston carried out a wide experimental program on membrane 

elements subjected to tension-compression [7] as well as shear loads [37].

A careful  examination  of  the  previous  tests  in  literature  led the  authors  to  the following 

conclusions:  the small size of the specimens previously used had a strong influence on the 

results.  Furthermore,  a large amount  of  data is  necessary to  investigate  the 2D softening. 

Finally,  since the outcomes used to  present  a high scattering,  a  reliable  testing technique 

should be found and implemented. In order to fulfill these requirements, a high capacity test 

facility, the “universal panel tester” was built (Figure 4.42).

Figure 4.42 – Testing facility.

The main objectives of the experimental program were:

• the exploration of the strain measuring techniques for cracked concrete;

• the study of the variables influencing the constitutive model of cracked concrete;

• the  understanding  of  the  involved  physical  phenomena  and  the  improvement  of  the 

mathematical description of the constitutive laws.

In the shear program, 13 panels (1400x1400x178 mm) were investigated. The reinforcements 

were arranged at 45 deg with respect to the loading directions x and y. The concrete properties 

were maintained approximately constant with a uniaxial compressive strength of 42 MPa. The 
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steel nominal yielding strength was 420 MPa. During the experimental tests, three variables 

were varied:

• the percentage of reinforcements; 

• the ratio of transversal to longitudinal steel;

• the load path.

Figure 4.43 – Specimen geometry and load equivalence.

The specimens were divided into three series: the A series consisted of four fully symmetrical 

panels,  while  the  B  panels  presented  a  different  amount  of  reinforcements  in  the  two 

directions. The series A and B were subjected to pure shear: the specimens were loaded along 

the directions x and y by equal stresses which provided a pure shear stress state (Figure 4.43). 

The panels C were identical to the A panels but a different load path was applied.

Panel
fc

[MPa]
εcp ρx

fsyx

[MPa]
ρy

fsyy

[MPa]
A2 41.2 0.0021 0.01193 463 0.01193 463
A3 41.6 0.0019 0.01789 445 0.01789 445
A4 42.4 0.0022 0.02982 470 0.02982 470
B1 45.2 0.0021 0.01193 463 0.00596 445
B2 44.1 0.0024 0.01789 445 0.01193 463
B3 44.9 0.0022 0.01789 445 0.00596 445
B4 44.7 0.0021 0.02982 470 0.00596 445
B5 42.8 0.0022 0.02982 470 0.01193 463
B6 43.0 0.0022 0.02982 470 0.01789 445

Table 4.2 – Investigated panel properties.
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In order to transmit the load to the specimen, the reinforcing bars were welded to 20 anchor 

inserts cast at the edges of the panels. Each anchor insert was connected to a hydraulic jack.

4.7.2 – Results and comparisons

Nine panels with different properties and failure modes are simulated through 3D-PARC. The 

panels properties are reported in Table 4.2. 

The numerical results are compared to the experimental outcomes in terms of shear stress-

shear strain curves from Figure 4.44 to Figure 4.52.

The panels A2 and A3 exhibit simultaneous steel failures. This can be clearly seen from the 

stress-strain curve. After a first uncracked linear stage, common for all the specimens, the 

cracking produces an immediate strain increment. The subsequent stage is characterized by a 

linear  response,  since  the  concrete  is  far  from the  failure  and  remains  within  the  linear 

behavior. Finally, the steel  yielding strength is reached at the same load level in both the 

reinforcing layers leading to a sudden strain increment.

On the contrary, the panel A4, presents the failure of the concrete between the cracks. The 

stress-strain curve after cracking exhibits a smooth behavior and the ultimate load is reached 

with a softening response.

All the B panels are asymmetrically reinforced and present an under-reinforced behavior. The 

failure  is  caused  by the  yielding of  the  transversal  layer  followed by the  yielding of  the 

longitudinal layer (B1, B2 and B3) or by the yielding of the transversal layer followed by the 

concrete crushing (B4, B5 and B6).
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Figure 4.44 – Result comparison for panel A2.
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Figure 4.45 – Result comparison for panel A3.
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Figure 4.46 – Result comparison for panel A4.
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Figure 4.47 – Result comparison for panel B1.
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Figure 4.48 – Result comparison for panel B2.
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Figure 4.49 – Result comparison for panel B3.
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Figure 4.50 – Result comparison for panel B4.
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Figure 4.51 – Result comparison for panel B5.
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Figure 4.52 – Result comparison for panel B6.

These failure modes are evident from the stress-strain response: after cracking and after the 

linear part, the curves present a steep change with the loss of stiffness due to the first layer 

yielding but the load keeps on increasing up to the failure.

The panel behavior is summarized in terms of failure mode in the diagram of Figure 4.53. The 

diagram is based on panel A4 properties and it can be considered representative of all the 

panels. The boundaries are computed in two ways: the solid curves according to a simplified 

model neglecting the tension stiffening and the aggregate bridging. The dashed curves are 

produced by an improved and more sophisticated formulation.

The diagram, whose formulation will not be discussed, can be useful to immediately locate 

the panel behavior.
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Figure 4.53 – Failure mode diagram.
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4.8 – REINFORCED CONCRETE TIE

The investigation of a tensioned RC element is particularly interesting since it leads to a deep 

understanding  of  some  basic  problems  such  as  crack  opening,  bond-slip  laws,  aggregate 

bridging and tension stiffening, which are usually part of the serviceable limit states of the 

structures. These phenomena are easier to capture in a simple tension experimental test than in 

more  complicated  configurations.  What  is  more,  from the  numerical  point  of  view,  this 

comparison is a fundamental step to verify the model and its implementation.

The  experimental  test  was  already investigated  by a  numerical  simulation  which  is  here 

reported as a parameter for comparison [10].

4.8.1 – Experimental test and numerical modeling

The 200-mm long specimen is reinforced by a 8-mm steel bar in the center of the 40x40-mm 

square  section  (Figure  4.54).  The  uniaxial  tensile  and  compressive  concrete  strength  are 

ft=3.66 MPa and fc=56 MPa respectively, the concrete elastic modulus is Ec0=36300 MPa and 

the steel elastic modulus is Es=200000 MPa.

Figure 4.54 – Problem geometry.

The first specimen end is glued to the experimental setup in order to create a stage I situation: 

the stresses are transmitted by both steel and concrete. The test procedure is performed in a 

displacement  control  mode.  The  displacement  is  applied  to  the  steel  bar  at  the  second 

specimen end. During the casting procedures, four 2-mm diameter steel bars are glued to the 

central bar and, emerging from the concrete, they allow to read the steel bar displacements in 

the related points. The concrete displacements are measured directly on the concrete external 

surface.

The experimental test is carried out with the speckle photography technique. This method, 

proposed  in  the  '70s,  provides  a  resolution  near  to  10-3 mm  and  therefore,  it  allows  to 

investigate the very early cracking stages. Moreover, this technique allows to measure the 

displacement of some selected points without locally influencing the structural behavior. The 
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measuring  setup  is  reported  in  Figure  4.55.  The  displacements  are  measured  by  using 

photographic and interferometric techniques. By comparing the Young fringes in the pictures 

taken before and after  the load increment,  it  is  possible  to  evaluate  the direction and the 

amplitude of the displacement of the selected point.

Figure 4.55 – Sketch of equipments for “speckle photography”.

The specimen is modeled in ABAQUS with a 528-element mesh (Figure 4.56). Due to the 

double symmetry, only a quarter of the specimen is modeled. The 20-node quadratic reduced 

integration solid element C3D20R is used with two different constitutive models in order to 

simulate the plain concrete and the reinforced regions. Therefore, two different materials are 

used:  the  first  one  is  plain  concrete,  the  second one  is  the  combination  of  concrete  and 

smeared reinforcements. The external action is applied on the reinforced elements in order to 

simulate  the  real  experimental  procedure.  The  boundary  conditions  at  the  first  end  are 

simulated by constraining every node on the face not to move along the specimen axis.

Figure 4.56 – FE discretization (a quarter of the specimen).
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In order to investigate the model reliability, several analyses with different meshes are carried 

out and it appears that the outcomes are coincident. This demonstrates that the model has a 

good mesh independence.

In the previous numerical analysis [10], the tie is modeled as blocks in series separated by 

cracks. By using the planar section hypothesis, the problem is reduced to a uniaxial one and, 

afterwards, the equilibrium and the compatibility are imposed. After taking into account the 

constitutive  models,  the  bond-slip  relation  and  the  boundary  condition,  the  differential 

problem is written and solved by the multiple shooting method.

The proposed FE analysis presents some major differences compared to the previous one. The 

planar  section  hypothesis  is  not  valid  anymore and,  in  general,  the  problem is  no longer 

uniaxial but fully 3D. In fact, the stresses are transferred from the reinforced elements to the 

plain concrete elements by the tangential stresses with a non-planar deformation and, due to 

the small specimen size, the problem cannot be modeled as axisymmetric.
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Figure 4.57 – Force-displacement result comparison.

4.8.2 – Results and comparisons

Figure  4.57 compares  the  FE analysis  outcomes,  the  experimental  data  and  the  previous 

analysis results in terms of force-displacement curves. The global response computed by 3D-

PARC is in good agreement with the experimental data and with the previous analysis results. 

The  numerical  investigation  allows  to  evaluate  the  stiffness  evolution  and  to  trace  it 

accurately. Moreover, the validity of tension stiffening and aggregate interlock formulations is 
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demonstrated. Therefore, it can be concluded that the proposed model is able to capture the 

general structural behavior.
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Figure 4.58 – Slip comparison.

Figure  4.58 shows the  slip  distribution  along the  specimen.  The  experimental  values  are 

limited to the measuring points 2, 3 and 4 indicated in Figure 4.54. The previous analysis is 

able to capture the effect of the two main cracks whereas the proposed model simulates the 

cracking phenomenon by a smeared crack distribution. However, the first two experimental 

points are perfectly fitted by the proposed model.
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Figure 4.59 – Concrete displacement comparison.
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Figure 4.60 – Steel displacement comparison.

In figures 4.59 and 4.60 the concrete and steel displacements are separately plotted.

The main difference between the proposed model and the previous one lies in the function of 

the bond-slip law. In 3D-PARC, in fact, the bond-slip law is used only to compute the tension 

stiffening coefficient g. The crack spacing am, on the contrary, is an input parameter and does 

not depend on the bond-slip law.

Figure 4.61 – Crack width distribution.

This means that the position of the two main cracks, defined in the previous analysis by the 

bond-slip law, is defined in the proposed model only by the stress diffusion. This leads to a 

distributed  cracking  along  the  specimen.  However,  it  must  be  noted  that  the  aggregate 

interlock can simulate a bond effect based on the shear transfer at the boundary between the 
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reinforced and the unreinforced elements. In fact, as it can be clearly seen in the crack width 

distribution (Figure 4.61), two main cracks are located at L=73 and 163 mm from the second 

specimen end. This finding is in very good agreement with the experimental values of 76 and 

144 mm. This effect can be deduced also from the stress distributions reported in figures 4.62 

and 4.63.
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Figure 4.62 – Steel stress distribution.
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Figure 4.63 – Concrete stress distribution.

Finally, it can be concluded that the proposed model provides a good interpretation of the 

global  physical  phenomena,  but  it  is  less  accurate  than  an  application  dedicated  to  the 

particular problem. On the other hand, 3D-PARC is characterized by a better flexibility, since, 

as a general purpose model, it can be applied to any type of structure through the FE method. 

Therefore, the achieved outcomes can be considered very satisfactory.
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4.9 – TORSION OF PLAIN CONCRETE BEAMS

4.9.1 – Experimental tests and numerical modeling

This study analyzes two plain concrete members subjected to pure torsion in order to verify 

the theoretical model and the numerical implementation in the FE framework. These full 3D 

cases give the chance to check the concrete formulation in detail,  since there are no steel, 

dowel action and tension stiffening effects.

Two 1500-mm long beams are selected from the experimental program [24]. The specimen 

A2 presents a rectangular, 254x381-mm section while the specimen A3 presents a square, 

254x254-mm section.

The uniaxial compressive strength is fc=28.6 MPa and the maximum aggregate size is 20 mm. 

The rest of the material properties such as the tensile strength, the elastic modulus and the 

fracture energy, are computed through the Model Code 90 suggestions [12].

Figure 4.64 – Experimental setup and failure plane.

The experimental  setup is shown in  Figure 4.64.  In the experimental  tests,  a load control 

procedure  was  chosen and therefore,  no  experimental  data  are  available  in  the  post  peak 

region.  On  the  contrary,  in  the  numerical  simulation,  a  displacement  control  method  is 

adopted in order to capture the post peak behavior.

The displacements are imposed at both ends through two steel plates. The axial deformation is 

not restrained.

Both beams and plates are modeled in ABAQUS by using the 20-node quadratic reduced 

integration solid element C3D20R. In particular, the FE mesh contains 528/352 elements and 

2909/2045 nodes for the beam A2 and A3 respectively. For the plates, a linear elastic material 

is used.
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4.9.2 – Results and comparisons

Figure 4.65 represents the deformed mesh for the beam A3.

Figure 4.65 – Beam A3 deformed shape.

The torsional  moment-torsional  angle relationship is  shown in figures  4.66 and  4.67.  The 

agreement is very high for the beam A3, while the simulation is less accurate for the beam A2. 

However, 3D-PARC is able to capture the overall physical phenomenon as well as the post 

peak descending branch of the curve.
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Figure 4.66 – Result comparison for the beam A2.
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Figure 4.67 – Result comparison for the beam A3.

The investigated beams were studied from a numerical point of view by Maekawa, Pimanmas 

and Okamura [32]. The principal strain distribution at failure in the beam A3 obtained by that 

simulation is reported in Figure 4.68. This outcomes can be compared with the crack opening 

distribution obtained by using 3D-PARC shown in Figure 4.69.

Figure 4.68 – Principal strain distribution [%] at failure in the beam A3.

Figure 4.69 – Crack opening distribution [mm] at failure in the beam A3.
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4.10 – TORSION OF REINFORCED CONCRETE BEAMS

4.10.1 – Experimental test and numerical modeling

Lampert  and Thürlimann carried  out  a wide  experimental  program on a  great  number  of 

beams subjected to torsion, bending and shear loading and their combinations. The program 

meant  to  develop  a  reliable  analytical  formulation  for  the  beam  computation  based  on 

empirical data. The experimental procedures are known to be performed very accurately and 

the outcomes, published in four volumes, are very detailed.

Up to  now,  the  experimental  programs  were  usually focused  on  small  specimens  with  a 

rectangular solid section. Therefore, the authors decided to base the tests on a square hollow 

section,  reinforced  with  ordinary  steel,  with  a  proper  amount  of  transversal  steel  and  a 

significant size which allows the results to be used for practical applications.

From November 1965 to February 1967, 15 square-section beams were tested at ETH institute 

in Zurich. Four beams were subjected to pure torsion [29]. The first three had a hollow section 

while the fourth was a solid section beam.

Figure 4.70 – Experimental setup.

The same amount of longitudinal and transversal reinforcements were used for all the beams 

while the reinforcement distribution was changed in the specimens. Since all the rest of the 

material properties were kept constant, the effect of the reinforcement location on structural 

behavior could be easily highlighted. In particular, the effect of the steel arrangement was 
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investigated in relation to the crack pattern evolution, to the ultimate load and to the internal 

stress distribution. Moreover, the influence of the central concrete core on the beam behavior 

could be determined.

The experimental  facility, built  for this  program, is shown in  Figure 4.70.  A load control 

procedure was used by imposing increments of torsional moment. One beam end was fixed 

through an anchorage while, at the second end, the load was applied through a hydraulic press. 

The axial displacements were not restrained.

Since this program wanted to investigate not only the ultimate load but, overall, the involved 

physical  phenomena,  many different  variables  were  recorded:  torsional  moment,  torsional 

angle, stress in the longitudinal steel, stress in the transversal steel, crack opening, concrete 

strain.

Each load increment was carried out in three phases in order to correctly record the data. In 

fact, if the torsional moment had been kept constant during the measuring procedures, the data 

would have been affected by the viscosity. Therefore, after the load increment, in the first 

phase, (about 1 minute) the moment was kept constant and the moment itself and the torsional 

angle were recorded. Afterwards, the torsional angle was kept constant (from 7 to 80 minutes) 

and all the other measurements were performed. The third phase was analogous to the first 

one but the torsional moment recorded in this phase was smaller than the first one.

For each beam, several concrete and steel specimens were tested in order to obtain the values 

of the material properties. The concrete uniaxial compressive strength was about fc=26 MPa, 

the steel yielding strength was fsy=365 MPa and the steel elastic modulus was Es=206000 MPa 

for all the beams.

Figure 4.71 – Investigated beam sections.

Only the beams T1, T2 and T3 are considered in this study. All the beams are 3600-mm long 

and have a 500x500-mm hollow square section with 80-mm thick walls.  The longitudinal 

reinforcements were 16 12-mm diameter bars and the stirrups were 12-mm diameter bars with 
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a constant spacing equal to 110 mm. The steel amount is the same for all the beams while the 

reinforcement arrangement is different as it can be seen in figures 4.71 and 4.72. In the beam 

T1, the longitudinal steel is equally distributed along the walls, in the T2, it is concentrated at 

the angles and, in the T3, it  is concentrated at the bottom side. The T3 adopts the typical 

reinforcement arrangement used in bended beams.

Figure 4.72 – Reinforcement arrangements.

The experimental program wanted to validate the 3D truss model for the calculation of beams 

subjected to pure torsion. The struts are the compressed diagonals which form in the concrete 

while the ties are the steel bars (Figure 4.73). By this formulation, it is possible to evaluate the 

internal stress distribution depending on the ratio between longitudinal and transversal steel. 

According to the Eurocode approach [13], the ultimate torsional moment can be computed 

through the following procedure.

Figure 4.73 – The 3D truss model.

The torsional moment carried by the longitudinal steel is
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12
cotl k sy lT A f a

θ
= (4.8)

and the one carried by the transversal steel is

2 cots k sy sT A f a θ= , (4.9)

where

 and l s
l s

k

A Aa a
u s

= = , (4.10)

being Ak the area internal to the mean line of the section walls, θ the angle between the beam 

axis and the concrete struts, Al the total longitudinal steel area, uk the perimeter of the area Ak, 

As the area of a single stirrup and s the stirrup spacing.

The angle θ can be computed as

cot l

s

a
a

θ = . (4.11)

In order to evaluate the longitudinal or the transversal steel failure, some empirical limits are 

chosen. If  0.4 cot 2.5θ£ £ , the longitudinal and transversal steel are considered to be well 

balanced and to fail simultaneously. If  cot 0.4θ < , the failure is caused by the longitudinal 

steel yielding and the constant value 0.4 is adopted. Finally, if cot 2.5θ> , the constant value 

2.5 is used, since the transversal steel fails before the longitudinal steel.

Beam

Experimental Analytical 3D-PARC
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Texp2
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an

exp

T
T 2

an

exp

T
T

Tu

[kN m] 1

u

exp

T
T 2

u

exp

T
T

T1 147 132 136 0.93 1.03 135 0.92 1.02
T2 146 134 136 0.93 1.01 135 0.92 1.01
T3 120 108 96 0.80 0.89 108 0.90 1.00

Table 4.3 – Ultimate load comparison.

This model makes an attempt to consider the internal stress redistribution. The simultaneous 

steel failure is caused by the concrete strut orientation: θ is not fixed at 45 deg but varies in 
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the range 22-63 deg. The concrete struts are considered not able to orientate outside this range 

and, in that case, a constant value is used.

The ultimate load values computed by this analytical method are reported in Table 4.3. The 

“exp1” and “exp2” indicate the torsional moment measured at the beginning and at the end of 

the loading step respectively.

Figure 4.74 – Beam T1 FE discretization.

The beams T1, T2 and T3 are investigated through 3D-PARC. Figure 4.74 represents the FE 

discretization for the beam T1. For the other two beams a similar mesh is adopted. The 20-

node quadratic reduced integration solid element C3D20R is used. The meshes consist of 216, 

240, 240 elements and 1572, 1740, 1740 nodes for the beam T1, T2 and T3 respectively. 

Several different materials are used depending on the steel ratio and on the bar orientation. A 

load control method is applied.

4.10.2 – Results and comparisons

Several different variables are extracted from the numerical simulation and compared with the 

experimental data. In the following pages, the torsional moment-torsional angle curve, the 

stress in the longitudinal steel as well as in the stirrups, the concrete compressive strain and 

the mean crack opening are reported and discussed in detail.

The ultimate load values are reported in Table 4.3 and the torsional moment-torsional angle 

curves are shown in figures 4.75, 4.76 and 4.77 for the beams T1, T2 and T3 respectively.

The experimental outcomes are a very good validation of the 3D truss model for the beams T1 

and  T2.  For  these  beams,  the  ultimate  load  can  be  captured  with  high  accuracy by the 

analytical model, while, for the beam T3, the response cannot be computed with the same 
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precision.  It  must  be  considered  that,  for  the  beam T3,  the  analytical  value  is  computed 

considering the longitudinal steel as made of only eight bars, neglecting the over-reinforcing 

steel of the bottom side. In other words, since only three bars are located in the weaker side, 

only three bars are considered active for each side.  Probably, in the experimental test, some 

other mechanical phenomena are activated and the steel of the over reinforced side, through 

an internal stress redistribution, contributes to the ultimate load.
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Figure 4.75 – Torsional moment-torsional angle result comparison for the beam T1.
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Figure 4.76 – Torsional moment-torsional angle result comparison for the beam T2.

The  beams  T1  and  T2  are  characterized  by  the  almost  simultaneous  yielding  of  the 

longitudinal and transversal steel and they behave in a very similar way. Therefore, it can be 

concluded that the different reinforcement arrangements (distributed or concentrated at the 

angles) have a little influence on the response providing, in both cases, an effective support to 
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the diagonal concrete struts. In the beam T2, the concrete struts are supported directly by the 

longitudinal steel in the angles, since there are no bars in the middle of the face.

After a first linear part, when the cracking is reached, the load is equally transferred to the 

longitudinal and to the transversal  steel  which were not previously loaded. This creates a 

sudden  increment  of  torsional  rotation.  The  equal  contribute  of  the  longitudinal  and 

transversal steel is highlighted also by the concrete strut orientation θ=45 deg visible on the 

specimen. Moreover, the beam T2 exhibits  a ductile response after the peak which is not 

reported in the figures since it  is not possible to capture it  in a load-controlled numerical 

simulation. 

The 3D-PARC results are in very good agreement with the experimental data.
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Figure 4.77 – Torsional moment-torsional angle result comparison for the beam T3.

The beam T3 is particularly interesting due to the strong asymmetry in reinforcement location. 

Due to the concrete strut orientation, the transversal steel equilibrates the lack of longitudinal 

steel in three of the four sides. Subsequently, the steel of the over-reinforced side gives a 

contribute increasing the ultimate load. Finally, the failure is caused by the yielding of three of 

the four beam sides. The strut orientation is also visible from the specimen crack pattern. 

Moreover, it can be noted that, in the beam T3, the experimental cracking moment is higher 

than the simulated one. Since the material properties were kept constant during the specimen 

preparation, it could be probably concluded that this behavior is related to an experimental 

scattering.

3D-PARC provides very good results for this beam: it is able to capture the concrete strut 

orientation and the consequent higher contribute given by the transversal steel. Moreover, the 

– 131 –



Chapter 4 – Applications

strengthening effect, which cannot be captured by the analytical calculation, provided by the 

over-reinforced side, is detected through an higher ultimate load.

Figure 4.78 shows the deformed mesh of the beam T2. The other beams present a similar 

shape.

Figure 4.78 – Beam T2 deformed shape.

The  longitudinal  steel  stresses  are  shown  in  figures  4.79,  4.80 and  4.81.  Similarly,  the 

transversal steel stresses are shown in figures 4.82, 4.83 and 4.84.

For the beams T1 and T2, since the stress difference at the top and at the bottom faces is 

negligible, a single line is plotted while, for the beam T3, three different curves related to the 

top, the bottom and the sides are specified. The agreement is generally good even if it can be 

noted that, as a general trend, the steel stresses are slightly under-estimated.
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Figure 4.79 – Stress in longitudinal steel comparison for the beam T1.
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Figure 4.80 – Stress in longitudinal steel comparison for the beam T2.
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Figure 4.81 – Stress in longitudinal steel comparison for the beam T3.
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Figure 4.82 – Stress in transversal steel comparison for the beam T1.
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Figure 4.83 – Stress in transversal steel comparison for the beam T2.
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Figure 4.84 – Stress in transversal steel comparison for the beam T3.
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Figure 4.85 – Crack opening comparison for the beam T1.
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Figure 4.86 – Crack opening comparison for the beam T2.
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Figure 4.87 – Crack opening comparison for the beam T3.

Figures 4.85, 4.86 and 4.87 show the crack opening comparisons. In the beam T2, the crack 

opening in the middle of the faces is higher than in the other beams since no reinforcements 

are located in that region. For the beam T3, a strong difference can be noted between the top 

and the bottom face due to the different reinforcement arrangement.

Figures 4.88, 4.89 and 4.90 report the concrete compressive strain. In the experimental data, 

there are two main changes in the curve slope: at the cracking load level and at the steel 

yielding level when the concrete has to carry a bigger load to maintain the equilibrium. For all 

the beams, the strain increment due to the steel yielding is clearly detected by the proposed 

model, while the strain increment due to the cracking is less evident.

In general, for the crack opening as well as for the concrete strain, the simulated response is 

stiffer than the experimental one.
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Figure 4.88 – Concrete compressive strain comparison for the beam T1.
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Figure 4.89 – Concrete compressive strain comparison for the beam T2.
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Figure 4.90 – Concrete compressive strain comparison for the beam T3.
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The results achieved by the numerical simulations are very satisfactory. 3D-PARC is able to 

capture the beam structural behavior. The internal stress distribution due to the concrete strut 

orientation is  clearly detected. Moreover,  for the beam T3, the strengthening effect of the 

over-reinforced side is well highlighted.

Secondly, the proposed model formulation, inserted in the FE framework, allows to reveal 

also the local behaviors for any element in the structure. For these beams, the steel stresses, 

the crack opening and the concrete compressive strain are extracted from the FE model in 

some significant  positions  and  compared  to  the  experimental  data  obtaining  a  reasonable 

accuracy.

All  these  comparisons  allows  to  conclude  that  3D-PARC  is  able  to  capture  the  global 

structural behavior as well as the local phenomena.
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5.1 – INTRODUCTION

Corbels are widely used in precast concrete structures due to the main advantages of better 

concrete quality as well as improved speed and lower costs of construction. In the last century, 

many different  theories  have  been  proposed  to  describe  the  corbel  behavior  and  several 

experimental programs have been carried out to investigate these structures from a practical 

point of view.

This chapter describes a numerical study of reinforced concrete (RC) corbels. The original 

work was carried out  at  the Institute  of Structural  Engineering (IKI) of  the University of 

Natural  Resourced and Applied Life Sciences – BOKU in Vienna,  from October 2004 to 

March 2005 [35, 36]. The working plan is divided into three different phases.

• Two-dimensional (2D) deterministic analyses. Corbels from wide experimental programs 

are investigated by using the RC-oriented Finite Element (FE) code ATENA 2D. Several 

different specimens, including Steel Fiber Reinforced Concrete (SFRC) type, are simulated 

in order to find out whether the code is able to capture the structural behavior.

• 2D probabilistic analyses. A statistical study is carried out by using the software package 

SARA – Structural Analysis and Reliability Assessment. The uncertainties related to the 

materials  are simulated by a randomization process.  A 50-sample analysis based on an 

advanced Monte Carlo technique is used to find out the ultimate load distribution. Finally, 

the safety level is determined and compared with the one suggested by the Eurocode.

• Three-dimensional (3D) deterministic analyses. In the last step of the study, some of the 

corbels are investigated taking into account the full 3D behavior and inserting a different 

constitutive model for concrete.
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The  numerical  simulations  presented  in  this  contribution  are  performed  by  the  FE  code 

ATENA which is an effective and reliable tool for non-linear analysis of RC structures. It is 

developed by Cervenka Consulting and it has been validated by many different applications 

and examples [18].

Advanced  material  models  based  on  hypoelasticity  or  fracture-plasticity  approaches  are 

implemented within ATENA. Cracking phenomena are modeled by smeared crack approach. 

Fixed or rotating cracks can be assumed. Reinforcements can be modeled with smeared or 

discrete approach. In the latter case, the effect of reinforcement bond can be included by using 

several  bond-slip  laws.  In  addition,  the  constitutive  models  are  fully  customizable  by 

modifying the material parameters or by introducing user-defined laws.

The FE model can be created in the CAD-like ambient which is capable of automatic meshing 

operations. Monitoring point can be specified in order to extract the required outcomes in 

some particular  locations.  Several  advanced solving techniques  such  as  Newton-Raphson, 

modified Newton-Raphson, arc length and line search, are implemented.

The structural behavior is strictly related to material  and geometric properties.  One of the 

main problems in numerical simulations is the uncertainty related to the structural properties. 

Therefore, in order to establish practical design techniques fulfilling the required safety level, 

a probabilistic approach is necessary.

In this contribution, the statistical procedures are performed by the multipurpose probability-

based  software  FREET.  The  process  is  divided  into  three  stages:  stochastic  modeling, 

sampling and assessment.

In the first stage, the uncertainties related to the materials are modeled by suitable Probability 

Density Functions (PDF). Moreover, a correlation matrix for the basic variables is defined. In 

the second stage, since non-linear FE calculation is  usually a time-consuming process, an 

advanced  Monte  Carlo  Latin  Hypercube  Sampling  (LHS)  technique  is  included  in  the 

sampling stage in order to decrease the number of simulations necessary to achieve accurate 

statistical results. Finally, in the third stage, the results from the FE simulations are evaluated 

in order to assess the reliability and the safety level of the structure.

The interaction between ATENA and FREET is managed by the software package SARA, 

which has been validated by many applications [11, 39, 40, 43]. 

In detail information about these softwares can be found in the related documentation [15, 16, 

17].
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5.2 – EXPERIMENTAL PROGRAMS

The corbels investigated in this study are taken from two wide experimental programs.

The first one is a very important reference for the study of corbels [26]. The work was carried 

out in 1964 at Research and Development Laboratories of the Portland Cement Association. A 

large number of specimen was tested – 124 corbels subjected to  vertical load only and 71 

corbels  subjected  to  combined  vertical  and  horizontal  loads  –  divided  in  three  series: 

exploratory test, vertical load, vertical and horizontal loads. The final objective of this study 

was to develop design criteria for these structures.

The exploratory tests were made to define testing procedures and reinforcing detailing; the 

other two series were a systematic investigation of the effect of several variables on corbel 

behavior.

hd

V

a

main reinforcement

 
Figure 5.1 – Corbel sketch.

In particular, during the experimental program, the following properties were changed:

• reinforcement ratio;

• concrete strength;

• ratio of shear span to effective depth (a/d);

• amount and distribution of stirrup reinforcement;

• size and shape of corbel;

• ratio of the vertical to the horizontal load.

A corbel sketch with the main geometric properties is reported in Figure 5.1.

After  the  exploratory tests,  it  was  possible  to  conclude  that  the  corbel  strength  was  not 
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significantly  affected  by  the  additional  load  carried  by  the  column.  Moreover,  these 

preliminary  tests  provided  useful  observations  about  the  reinforcement  detailing:  the 

compressive reinforcement in the corbel and the longitudinal bars in the column had little 

influence on the ultimate load. Furthermore, cross-bars welded to the main reinforcement ends 

could avoid bond failure and main reinforcements bent near the corbel outer edge could create 

a very weak zone. Therefore, in the subsequent tests, the reinforcements were set in order to 

obtain significant results.

All  the  specimens  were  built  on  a  203x305-mm  column  with  two  corbels  arranged 

symmetrically to  make the testing procedures easier.  Three cylinders  were taken for each 

specimen to determine the concrete compressive strength. For convenience, all the corbels 

were tested in an upside-down position (Figure 5.2).

 
Figure 5.2 – Kriz-Raths test configuration.

SFRC is a material with improved properties regarding the post cracking behavior and the 

ductility. The second experimental program was focused on SFRC corbels in order to increase 

the amount  of  data  regarding the  application of  this  material  to  corbels  and therefore,  to 

achieve more general design criteria for these structures [22].

The tests were performed on 32 RC corbels subjected to vertical load. SFRC was used in 26 

specimens as shear reinforcement in order to improve the strength and the ductility.

During the experimental program, the following properties were changed:

• the volume ratio of the fibers;

• the main reinforcement;
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• the ratio of shear span to effective depth (a/d).

Figure 5.3 – Fattuhi test configuration.

The steel fibers used to reinforce the concrete were hooked, diameter 0.5 mm, length 30 mm, 

with an average tensile strength of 1100 MPa. Six different volume ratios from 1.0% to 2.5% 

were used. Seven different main reinforcements were used ranging from 101 mm2 to 509 mm2 

in different diameter combinations, with an average yielding strength of 451, 454, 452 and 

427 MPa for 8, 10, 12, 18 mm bars respectively. The shear span-to-depth ratio varied within a 

range from 0.40 to 0.92. All the columns were designed with a 150x150-mm cross section and 

were reinforced with four 12-mm longitudinal bars and four 6-mm lateral ties. Plastic spacers 

were used to ensure a 20-mm concrete cover for the main bars.

The casting procedures were set to produce the corbels and three 100-mm cubes, three 150-

mm cubes and three 100-mm diameter by 200-mm long cylinders. Cubes and cylinders were 

tested to find out the concrete properties.

The  experimental  tests  were  carried  out  with  an  upside-down configuration  as  shown in 

Figure 5.3. All the corbels were vertically symmetrical to avoid bending effects.

The first test was performed with a load control mode, but the specimen failed suddenly with 

no  possibilities  to  record  its  behavior  near  the  peak  load.  Therefore,  for  all  the  other 

specimens, a displacement control was used. In this way, the post peak behavior could be 

properly investigated.
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5.3 – TWO-DIMENSIONAL ANALYSIS

5.3.1 – Theoretical basics

In the 2D version of ATENA, the material is considered in a plane stress state, neglecting the 

full  3D behavior.  Smeared cracking and discrete  reinforcement  approaches are used.  This 

means  that  the  modeling  is  realized  by superimposing  plain  concrete  elements  and  steel 

reinforcing  bar  elements.  Each  material  is  modeled  separately.  However,  ATENA  2D 

provides also a smeared reinforcement approach.

Figure 5.4 – Uniaxial constitutive model for concrete.

Figure 5.5 – Concrete behavior in tension.

Concrete is modeled by the SBETA material with standard parameters. The stress-equivalent 

strain curve is shown in  Figure 5.4. A different number provided as output denotes every 

region  and  can  be  used  to  evaluate  the  concrete  failure.  In  the  ascending  branch  of  the 
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compressive  field,  the  Model  Code  90  [12]  formulation  is  adopted,  while  the  post  peak 

behavior is assumed to be linearly descending.

In the tensile field, pre-cracking behavior is assumed to be linear elastic; after cracking, a 

fictitious crack band model based on a crack opening law and on fracture energy is used. 

Different laws can be specified; an exponential case is shown in Figure 5.5.

By this formulation, a real discrete crack is simulated by a band of localized strains. Since the 

crack strain is related to the FE size, a softening law in terms of strain is written for each 

element while the crack opening law is preserved.

Figure 5.6 – SFRC law.

A different law is adopted to model the SFRC, as shown in Figure 5.6. In this case, the user is 

requested to introduce the values of f1, f2 and of fracture energy Gf.

In this work, f1 is taken equal to the concrete tensile strength ft while f2 is calculated according 

to ACI committee 544 [2] by the equation

2 0.772 f
Lf F V
D

= , (5.1)

where F is a bond factor (ranging from 1 to 1.2), L is the fiber length, D is the fiber diameter 

and Vf is the fiber volume ratio. Finally, the fracture energy Gf is computed as the area under 

the curve.

Both fixed and rotating crack approaches are implemented.

The failure criterion,  built  according to experimental  results,  is  shown in  Figure 5.7.  It is 

divided in tensile failure and compressive failure zones: if the domain is reached in a tensile 

zone, a crack occurs. Using the current stress state, the corresponding value on the domain can 

be found and used to build the uniaxial curve of Figure 5.4.
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Figure 5.7 – Biaxial failure domain.

Concrete  is  discretized  by the  SBETA FE,  a  reduced integration quadrilateral  element  in 

which the material law is evaluated only at element centroid. The secant constitutive matrix is 

used.

Figure 5.8 – Reinforcing bar uniaxial law.

As already mentioned, in ATENA, reinforcing bars can be inserted in two different ways, 

following the smeared or the discrete approach. In this work, the discrete approach is used 

with a bilinear elastic perfectly plastic uniaxial constitutive model (Figure 5.8). Uniaxial truss 

elements are used to model the reinforcing bars.

Furthermore,  it  is  possible  to  include  the  effect  of  reinforcement  bond  by using  several 

different bond-slip models such as CEB-FIB Model Code 90 law, Bigaj law and user-defined 

law (Figure 5.9). The law can be written as a function of the concrete compressive strength, 

reinforcement  diameter  and  reinforcement  type.  Other  important  parameters  like  concrete 

confinement and quality can be included in this formulation.
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Figure 5.9 – Different ways to model reinforcement bond.

In this work, perfect connection with concrete mesh is assumed, therefore, no slip between 

steel and concrete is considered.

Figure 5.10 – Crack pattern of different design solutions.

The Cervenka's paper [18] shows at first some simple examples used to verify the model and 

then some applications to real cases difficult to solve by ordinary design tools.

The first problem is to design the reinforcements close to the openings for technical facilities 

in a large girder of a shopping center in Prague. The crack pattern of different design solutions 

is shown in Figure 5.10.

The study demonstrates that the beam with a good reinforcement arrangement can withstand 

the same load as the beam without openings (Figure 5.11).
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Figure 5.11 – Load-displacement curve for different design solutions.

Secondly, the axisymmetric problem of a column-slab joint is investigated in order to check 

whether the reinforcements are adequate to prevent a brittle punching failure (Figure 5.12). 

Several failure modes are taken into account and can be investigated by artificially modifying 

the material properties. For example, the column compressive ultimate load is computed by 

assigning the slab a linear elastic behavior.

Figure 5.12 – Problem geometry and deformed shape.

In the full unconstrained analysis, where all the failure modes are allowed, the punching mode 

gives the lowest resisting load. Therefore, the study demonstrates that the reinforcements are 

inadequate to prevent the brittle punching failure but, by changing the location of the same 

amount of reinforcements, the load capacity can be highly increased.
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5.3.2 – Structural modeling

Seven corbels from the Kriz-Raths program and five from the Fattuhi program, with different 

failure modes, are investigated in this work, performing both deterministic and probabilistic 

analysis.  In  the  Kriz-Raths  experimental  program,  the  specimens  were  subjected  to  both 

vertical and horizontal loads; in the FE simulations, only the specimens with vertical load are 

tested. The corbel properties are reported in tables  5.1 and 5.2. The “fr“ in the corbel name 

indicates a SFRC specimen. The fiber ratios used for the selected corbels are V=2.00% for 

corbel F23 and F37 and V=1.50% for corbel F35.

Corbel
Geometry Concrete Steel

a

[mm]

h

[mm]

b

[mm]

d

[mm]
a/h

fcm

[MPa]

fym

[MPa]

As

[mm2]
KR13 152 559 203 513 0.27 31.6 352 260
KR14 152 660 203 615 0.23 31.3 352 260
KR21 152 660 203 615 0.23 27.0 298 400
KR55 254 559 203 513 0.45 27.7 312 396
KR80 152 559 203 513 0.27 16.8 300 510
KR91 121 457 203 406 0.26 28.0 322 1014
KR100 121 457 203 406 0.26 44.3 328 1014

Table 5.1 – Kriz-Raths corbel properties.

Corbel
Geometry Concrete Steel

a

[mm]

h

[mm]

b

[mm]

d

[mm]
a/h

fcm

[MPa]

fym

[MPa]

As

[mm2]
F23fr 110 149 153 123 0.74 28.3 452 226
F25 110 149 154 123 0.74 30.7 452 226
F34 135 148 154 122 0.91 32.0 452 339

F35fr 135 149 155 123 0.91 30.4 452 339
F37fr 135 149 154 122 0.91 32.2 452 339

Table 5.2 – Fattuhi corbel properties.

An example of the FE discretization used in the numerical modeling is shown in Figure 5.13. 

The model contains about 1400 and 650 concrete elements for Kriz-Raths and Fattuhi corbels 

respectively and about 30 steel elements for both models. Due to the symmetry, only half of 

the specimen can be modeled within ATENA in order to save computational time.
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Figure 5.13 – Example mesh for Kriz-Raths (left) and Fattuhi (right) corbels.

In the numerical investigations,  a displacement  control  method is  applied.  In particular,  a 

displacement is imposed at the column base while the bearing plate is constrained not to move 

in the vertical direction.

For the selected specimens, a photograph after failure is available in the papers allowing to 

check the crack pattern numerically obtained. Moreover, since crack pattern and failure mode 

are strictly related, comparing these pictures is a good way of checking whether the numerical 

simulation is able to capture the experimental failure mode.

5.3.3 – Statistical modeling

The software package SARA integrates the FE code ATENA 2D and the statistical module 

FREET. Since non-linear FE analyses are usually time-consuming, an advanced Monte Carlo 

LHS technique is included in the software to decrease the number of simulations necessary to 

achieve accurate statistical results. The solution procedure within SARA is:

• modeling the deterministic problem within ATENA;

• randomization  of  material  uncertainties  according  to  well  known  distributions  within 

FREET;

• starting from the chosen distributions, by using the LHS, several sets of input parameters 

are created for repeated ATENA analyses. In this work, 50 samples are used;

• running the repeated analyses of the randomized problem within ATENA;
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• the results from the previous step are statistically evaluated in FREET. In particular, the 

outcomes are the histogram of the structural response, the sensitivity to the variables, the 

best numerical distribution to fit the structural response and the safety index assessment.

Material Variable Distribution COV

concrete

Ec Lognormal 2-par. 0.08
ft Lognormal 2-par. 0.12
fc Normal 0.1
Gf Weibull min. 2-par. 0.17/0.25*

steel
Es Normal 0.03
fy Normal 0.05

Table 5.3 – Distributions for randomized basic variables (* SFRC).

The randomized variables chosen to investigate the corbels are the elastic modulus  Ec, the 

tensile  strength  ft,  the  cylindrical  compressive  strength  fc and  the  fracture  energy  Gf for 

concrete, the elastic modulus Es and the yielding strength fy for steel.

For  these  basic  variables,  the  stochastic  models  reported  in  Table  5.3 are  used  in  the 

randomization process. The coefficient of variation COV is calculated as

stdCOV
m

= , (5.2)

where std is the standard deviation and m is the mean.

Ec ft fc Gf Es fy

Ec 1 0.7 0.9 0.5 0 0
ft 1 0.8 0.9 0 0
fc 1 0.6 0 0
Gf 1 0 0
Es 1 0
fy 1

Table 5.4 – Correlation matrix.

In order to capture the relation between the basic variables, a correlation matrix based on 

experimental results is used (Table 5.4).

For each corbel, the structural response provided by the numerical calculation is fitted by an 
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analytical distribution in terms of PDF. What is more, a sensitivity study regarding the first 

four variables is performed and the outcomes of the first two variables are shown in figures. 

Finally, a comparison of the ultimate load safety index regarding the safety level proposed by 

the Eurocode is documented.

5.3.4 – Results and comparisons

The most important objective of the simulation is to test the code capabilities in capturing the 

real structural behavior.

Corbel
Exp. 

failure

Vexp

[kN]

ATENA (deterministic) SARA (probabilistic)
V

[kN]
Difference

Vm±std

[kN]
Difference

KR13* T 266 279 4.9% 287 ± 14 7.9%
KR14 DS 374 367 -1.9% 359 ± 13 -4.0%
KR21 DS 423 405 -4.3% 411 ± 14 -2.8%
KR55 CE 269 255 -5.2% 255 ± 10 -5.2%
KR80 C 370 371 0.3% 372 ± 13 0.5%
KR91 S 546 585 7.1% 593 ± 29 8.6%
KR100 S 761 758 -0.4% 756 ± 31 -0.7%

Table 5.5 – Kriz-Raths corbel result comparison.

* Corbel KR13 has a much higher experimental failure load and 266 kN is the steel yielding load. As this 

failure load seems to be related to the particular specimen and the corbel exhibits a steel failure, the steel 

yielding load is considered as ultimate load.

Corbel
Exp. 

failure

Vexp

[kN]

ATENA (deterministic) SARA (probabilistic)
V

[kN]
Difference

Vm±std

[kN]
Difference

F23fr T 127 131 3.1% 131 ± 3 3.1%
F25 DS 109 103 -5.5% 103 ± 4 -5.5%
F34 DS 114 106 -7.0% 106 ± 5 -7.0%

F35fr S 125 122 -2.4% 121 ± 3 -3.2%
F37fr T 140 144 2.9% 144 ± 6 2.9%

Table 5.6 – Fattuhi corbel result comparison.

Tables  5.5 and 5.6 show the results of this task regarding the ultimate load. In these tables, 

Vexp is the experimental ultimate load, Vm is the mean of the probabilistic distribution and std 
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is the standard deviation. Moreover, the failure modes are indicated as: T for reinforcement tie 

tensile  failure,  DS for  diagonal  splitting,  CE for  corbel  end  failure,  C for  concrete  strut 

compressive failure and S for shear failure.

The experimental results are compared with ATENA and SARA calculations. The former is a 

single deterministic analysis whereas the latter is a probabilistic evaluation based on the basic 

variables shown in Table 5.3.

The  50-sample  ultimate  load  distribution  is  fitted,  for  every  corbel,  by  an  analytical 

distribution (tables 5.7 and 5.8). From these distributions, the 5% fractile  V5 is computed in 

the same table.

Corbel Fitting distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
KR13 Lognormal 3-par. 287 14 0.05 -0.22 264
KR14 Normal 359 13 0.04 / 337
KR21 Weibull max. 3-par. 411 14 0.03 -0.004 388
KR55 Weibull min. 2-par. 255 10 0.04 -0.96 236
KR80 Lognormal 3-par. 372 13 0.03 -0.41 350
KR91 Weibull min. 2-par. 593 29 0.05 -0.92 538
KR100 Weibull max. 3-par. 756 31 0.04 0.12 706

Table 5.7 – Kriz-Raths corbel distribution properties.

Corbel Fitting distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
F23fr Weibull max. 3-par. 131 3 0.02 0.22 126
F25 Weibull max. 3-par. 103 4 0.04 0.18 96
F34 Lognormal 3-par. 106 5 0.05 -0.02 98

F35fr Weibull max. 3-par. 122 3 0.02 -0.68 116
F37fr Weibull max. 3-par. 144 6 0.04 -0.41 134

Table 5.8 – Fattuhi corbel distribution properties.

For Kriz-Raths corbels, the mean difference of the ultimate load regarding the experimental 

values  is  3.4%  for  the  deterministic  and  4.2%  for  the  probabilistic  calculation.  The 

corresponding  values  for  Fattuhi  corbels  are  4.2% and  4.3%  respectively.  Therefore,  the 

agreement is generally very high both for normal and SFRC corbels also considering that, as 

only one specimen was tested for each corbel, the experimental results could be scattered. 
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Moreover, the deterministic and the mean probabilistic values are mainly in good agreement.

It can also be observed that the material stochastic models of Table 5.3 lead to a ultimate load 

scattering of COV=0.02-0.05. Furthermore, the Weibull functions (minimum 2-parameter and 

maximum 3-parameter) are the best way to fit the resistance distribution of the investigated 

corbels.

ATENA allows extracting the model variable values for each step in order to investigate the 

mechanical behavior of the structure.

In Figure 5.14 the steel force vs. the vertical load is reported and compared with experimental 

data  for  Kriz-Raths  corbels  with  a/d=0.30.  The  numerical  simulations  provide  very good 

results and are capable to follow all the phases of the experimental tests.
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Figure 5.14 – Relation between applied load and steel force for corbels with a/d=0.30.

Furthermore, the crack pattern of the investigated structure can be extracted and compared 

with the experimental pattern for each corbel. Since the crack pattern is strictly related to the 

failure mode, comparing these pictures is a good way of checking the numerical outcomes.

Figures  5.15 and  5.16 show the  crack pattern  for  corbels  KR14 and F25.  The numerical 

analysis  can  simulate  the  experimental  response  very  accurately.  Both  corbels  are 

characterized by diagonal splitting failure as can be clearly seen in the figures. At first, the 

flexural crack pattern is fully developed. Later, as the load increases, the compressed concrete 

fails by shear-compression and the diagonal splitting is revealed by a crack line extending 

from the bearing plate towards the end of the inclined bottom face of the corbel.

Therefore,  it  can  be  concluded  that  the  numerical  simulation  is  able  to  capture  the 
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experimental failure mode. The crack patterns of all the corbels can be like wise interpreted.

Figure 5.15 – Experimental and numerical crack pattern for corbel KR14.

Figure 5.16 – Experimental and numerical crack pattern for corbel F25.

Finally, Figure 5.17 (Kriz-Raths corbels) and Figure 5.18 (Fattuhi corbels) give an insight of 

the  corbel  mechanical  behavior  for  two  different  shapes.  The  minimum  principal  strain 

distribution clearly shows the main compressed zones highlighting the concrete strut and the 

singularity points. This demonstrates the power of the code in analyzing the concrete under 

complex stress states.
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Figure 5.17 – Compressive principal strain for Kriz-Raths corbels.

Figure 5.18 – Compressive principal strain for Fattuhi corbels.

In summary, it could be said that the global as well as the local response of the investigated 

structures can be captured very well by the FE code ATENA.

In the  following pages,  the  load-displacement  curve,  the  crack  pattern,  the  ultimate  load 

distribution, the sensitivity study and the safety index assessment are reported and discussed 

for each corbel. In the load-displacement curve, the displacement is measured at the column 

bottom whereas the load is measured at the bearing plate for all the specimens. Moreover, in 

the  sensitivity  analysis,  since  fc has  negative  values,  if  the  sensitivity  is  negative,  its 

correlation is positive with the absolute value.
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5.3.5 – Corbel Kriz-Raths 13

Figure 5.19 shows the load-displacement curve. The maximum load is 279 kN and it is in 

good agreement with the experimental load 266 kN. The post-peak branch of the curve shows 

a highly ductile behavior.
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Figure 5.19 – Load-displacement curve for corbel KR13.

Figure 5.20 shows that the calculated crack pattern is very similar to the experimental one.

 

   

X 

Y 

Figure 5.20 – Experimental and numerical crack pattern for corbel KR13.

A  fitting  procedure  is  performed  on  the  numerical  results.  A  Lognormal  3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.21). The fitting distribution properties are reported in Table 5.9.

– 157 –



Chapter 5 – Analysis of reinforced concrete corbels

Figure 5.21 – Results and fitting distribution (PDF) for corbel KR13.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Lognormal 3-par. 287 14 0.05 -0.22 264

Table 5.9 – Fitting distribution properties for corbel KR13.

The sensitivity study leads to the ranking of Table 5.10. The numerical analysis shows that the 

variables  Ec,  fc and  ft are nearly equally participating in the results.  Figure 5.22 shows the 

sensitivity correlation between the load and the first two basic variables. As it can be seen by 

this plot, the variables have a moderate positive correlation to the load.

Variable Ultimate load sensitivity
Ec 0.35
fc 0.33
ft 0.31
Gf 0.25

Table 5.10 – Sensitivity of ultimate load to variables for corbel KR13.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.23 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.22 – Sensitivity plot for the first two variables for corbel KR13.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 140 kN can be accepted 

by fulfilling the target limit of β=4.7. On the other hand, if it is possible to assure that the load 

scattering is smaller than COV=0.05, a load of about 205 kN is allowed.
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Figure 5.23 – Safety index assessment for corbel KR13.
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5.3.6 – Corbel Kriz-Raths 14

Figure 5.24 shows the load-displacement curve. The maximum load is 367 kN and it is in very 

good agreement with the experimental load 374 kN. The post-peak branch of the curve shows 

a good ductile behavior.
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Figure 5.24 – Load-displacement curve for corbel KR14.

Figure 5.25 shows that the calculated crack pattern is very similar to the experimental one.
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Figure 5.25 – Experimental and numerical crack pattern for corbel KR14.

A fitting procedure is performed on the numerical results. A Normal distribution proves to be 

a suitable function to describe the corbel ultimate load response (Figure 5.26). The fitting 

distribution properties are reported in Table 5.11.
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Figure 5.26 – Results and fitting distribution (PDF) for corbel KR14.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Normal 359 13 0.04 / 337

Table 5.11 – Fitting distribution properties for corbel KR14.

The sensitivity study leads to the ranking of Table 5.12. The numerical analysis shows that fy 

is the most important variable. Then, Gf and ft are nearly equally participating on the results. 

Figure  5.27 shows  the  sensitivity  correlation  between  the  load  and  the  first  two  basic 

variables.  As it  can be seen by this  plot,  the first  variable has a high positive correlation 

whereas the second has only a moderate positive correlation to the load.

Variable Ultimate load sensitivity
fy 0.88
Gf 0.32
ft 0.27
Ec 0.15

Table 5.12 – Sensitivity of ultimate load to variables for corbel KR14.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.28 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.27 – Sensitivity plot for the first two variables for corbel KR14.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 180 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 265 kN is allowed.
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Figure 5.28 – Safety index assessment for corbel KR14.
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5.3.7 – Corbel Kriz-Raths 21

Figure 5.29 shows the load-displacement curve. The maximum load is 405 kN and it is in 

good agreement with the experimental load 423 kN. The post-peak branch of the curve shows 

a good ductile behavior.
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Figure 5.29 – Load-displacement curve for corbel KR21.

Figure 5.30 shows that the calculated crack pattern is quite similar to the experimental one.
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Figure 5.30 – Experimental and numerical crack pattern for corbel KR21.

A fitting procedure is performed on the numerical results. A Weibull maximum 3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.31). The fitting distribution properties are reported in Table 5.13.
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Figure 5.31 – Results and fitting distribution (PDF) for corbel KR21.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Weibull max. 3-par. 411 14 0.03 -0.004 388

Table 5.13 – Fitting distribution properties for corbel KR21.

The sensitivity study leads to the ranking of Table 5.14. The numerical analysis shows that all 

the first four variables are nearly equally participating on the results.  Figure 5.32 shows the 

sensitivity correlation between the load and the first two basic variables. As it can be seen by 

this plot, the variables have a very low negative correlation to the load.

Variable Ultimate load sensitivity
Ec -0.39
fc -0.32
ft -0.29
fy -0.28

Table 5.14 – Sensitivity of ultimate load to variables for corbel KR21.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.33 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.32 – Sensitivity plot for the first two variables for corbel KR21.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 200 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 310 kN is allowed.
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Figure 5.33 – Safety index assessment for corbel KR21.
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5.3.8 – Corbel Kriz-Raths 55

Figure 5.34 shows the load-displacement curve. The maximum load is 255 kN and it is in 

good agreement with the experimental load 269 kN. The post-peak branch of the curve shows 

a highly ductile behavior.
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Figure 5.34 – Load-displacement curve for corbel KR55.

Figure 5.35 shows that the calculated crack pattern is very similar to the experimental one.
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Figure 5.35 – Experimental and numerical crack pattern for corbel KR55.

A fitting procedure is performed on the numerical results. A Weibull minimum 2-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.36). The fitting distribution properties are reported in Table 5.15.
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Figure 5.36 – Results and fitting distribution (PDF) for corbel KR55.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Weibull min. 2-par. 255 10 0.04 -0.96 236

Table 5.15 – Fitting distribution properties for corbel KR55.

The sensitivity study leads to the ranking of Table 5.16. The numerical analysis shows that fy 

dominates the structural behavior. The other variables Gf, ft and fc have a very low influence. 

Figure  5.37 shows  the  sensitivity  correlation  between  the  load  and  the  first  two  basic 

variables. As it can be seen by this plot, the first variable have a very high positive correlation 

to the load whereas the second variable correlation is negligible.

Variable Ultimate load sensitivity
fy 0.96
Gf 0.09
ft 0.06
fc -0.03

Table 5.16 – Sensitivity of ultimate load to variables for corbel KR55.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.38 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.37 – Sensitivity plot for the first two variables for corbel KR55.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 120 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 190 kN is allowed.
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Figure 5.38 – Safety index assessment for corbel KR55.
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5.3.9 – Corbel Kriz-Raths 80

Figure 5.39 shows the load-displacement curve. The maximum load is 371 kN and it is in very 

good agreement with the experimental load 370 kN. The post-peak branch of the curve shows 

a moderate ductile behavior.
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Figure 5.39 – Load-displacement curve for corbel KR80.

Figure 5.40 shows that the calculated crack pattern is very similar to the experimental one.
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Figure 5.40 – Experimental and numerical crack pattern for corbel KR80.

A  fitting  procedure  is  performed  on  the  numerical  results.  A  Lognormal  3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.41). The fitting distribution properties are reported in Table 5.17.
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Figure 5.41 – Results and fitting distribution (PDF) for corbel KR80.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Lognormal 3-par. 372 13 0.03 -0.41 350

Table 5.17 – Fitting distribution properties for corbel KR80.

The sensitivity study leads to the ranking of Table 5.18. The numerical analysis shows that fy 

is the most important variable. Then, fc, ft and Ec are nearly equally participating on the results. 

Figure  5.42 shows  the  sensitivity  correlation  between  the  load  and  the  first  two  basic 

variables. As it can be seen by this plot, the first variable have a very high positive correlation 

to the load whereas the second variable correlation is lower and negative.

Variable Ultimate load sensitivity
fy 0.76
fc -0.49
ft -0.40
Ec -0.37

Table 5.18 – Sensitivity of ultimate load to variables for corbel KR80.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.43 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.42 – Sensitivity plot for the first two variables for corbel KR80.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 180 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 280 kN is allowed.
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Figure 5.43 – Safety index assessment for corbel KR80.
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5.3.10 – Corbel Kriz-Raths 91

Figure 5.44 shows the load-displacement curve. The maximum load is 585 kN and it is in 

good agreement with the experimental load 546 kN. The post-peak branch of the curve shows 

a highly brittle behavior.
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Figure 5.44 – Load-displacement curve for corbel KR91.

Figure 5.45 shows that the calculated crack pattern is very similar to the experimental one.
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Figure 5.45 – Experimental and numerical crack pattern for corbel KR91.

A fitting procedure is performed on the numerical results. A Weibull minimum 2-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.46). The fitting distribution properties are reported in Table 5.19.
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Figure 5.46 – Results and fitting distribution (PDF) for corbel KR91.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Weibull min. 2-par. 593 29 0.05 -0.92 538

Table 5.19 – Fitting distribution properties for corbel KR91.

The sensitivity study leads to the ranking of Table 5.20. The numerical analysis shows that fc 

and  Ec,  are  the  most  important  variables,  followed  by  ft and  Gf.  Figure  5.47 shows  the 

sensitivity correlation between the load and the first two basic variables. As it can be seen by 

this plot, the variables have a moderate negative correlation to the load.

Variable Ultimate load sensitivity
fc -0.57
Ec -0.56
ft -0.30
Gf -0.24

Table 5.20 – Sensitivity of ultimate load to variables for corbel KR91.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.48 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.47 – Sensitivity plot for the first two variables for corbel KR91.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 280 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 420 kN is allowed.
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Figure 5.48 – Safety index assessment for corbel KR91.
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5.3.11 – Corbel Kriz-Raths 100

Figure 5.49 shows the load-displacement curve. The maximum load is 758 kN and it is in very 

good agreement with the experimental load 761 kN. The post-peak branch of the curve shows 

a moderate brittle behavior.
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Figure 5.49 – Load-displacement curve for corbel KR100.

Figure 5.50 shows that the calculated crack pattern is very similar to the experimental one.
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Figure 5.50 – Experimental and numerical crack pattern for corbel KR100.

A fitting procedure is performed on the numerical results. A Weibull maximum 3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.51). The fitting distribution properties are reported in Table 5.21.
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Figure 5.51 – Results and fitting distribution (PDF) for corbel KR100.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Weibull max. 3-par. 756 31 0.04 0.12 706

Table 5.21 – Fitting distribution properties for corbel KR100.

The sensitivity study leads to the ranking of Table 5.22. The numerical analysis shows that Ec 

is the most important variable, followed by  fc and then by  fy and  ft that are nearly equally 

participating on the results. Figure 5.52 shows the sensitivity correlation between the load and 

the first two basic variables. As it can be seen by this plot,  the variables have a moderate 

negative correlation to the load.

Variable Ultimate load sensitivity
Ec -0.37
fc -0.28
fy 0.17
ft -0.16

Table 5.22 – Sensitivity of ultimate load to variables for corbel KR100.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.53 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.52 – Sensitivity plot for the first two variables for corbel KR100.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 370 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 550 kN is allowed.
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Figure 5.53 – Safety index assessment for corbel KR100.
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5.3.12 – Corbel Fattuhi 23

Figure 5.54 shows the load-displacement curve. The maximum load is 131 kN and it is in 

good agreement with the experimental load 127 kN. The post-peak branch of the curve shows 

a brittle behavior.
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Figure 5.54 – Load-displacement curve for corbel F23.

Figure 5.55 shows that the calculated crack pattern is quite similar to the experimental one.
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Figure 5.55 – Experimental and numerical crack pattern for corbel F23.

A fitting procedure is performed on the numerical results. A Weibull maximum 3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.56). The fitting distribution properties are reported in Table 5.23.
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Figure 5.56 – Results and fitting distribution (PDF) for corbel F23.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Weibull max. 3-par. 131 3 0.02 0.22 126

Table 5.23 – Fitting distribution properties for corbel F23.

The sensitivity study leads to the ranking of Table 5.24. The numerical analysis shows that Ec 

and fc are the most important variables whereas the other variables have a negligible influence. 

Figure  5.57 shows  the  sensitivity  correlation  between  the  load  and  the  first  two  basic 

variables. Both the variables have a moderate negative correlation to the load.

Variable Ultimate load sensitivity
Ec -0.65
fc -0.56
ft -0.14
Gf 0.06

Table 5.24 – Sensitivity of ultimate load to variables for corbel F23.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.58 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.57 – Sensitivity plot for the first two variables for corbel F23.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 65 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 100 kN is allowed.
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Figure 5.58 – Safety index assessment for corbel F23.
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5.3.13 – Corbel Fattuhi 25

Figure 5.59 shows the load-displacement curve. The maximum load is 103 kN and it is in 

good agreement with the experimental load 109 kN. The post-peak branch of the curve shows 

a moderate ductile behavior.

[m]

[MN]

0
.0

0
0E

+
0

0

7
.0

0
0E

-0
5

1
.4

00
E

-0
4

2.
1

00
E

-0
4

2.
80

0
E-

04

3.
50

0
E-

04

4.
20

0E
-0

4

4
.9

0
0E

-0
4

5
.6

00
E

-0
4

6.
3

00
E

-0
4

7.
00

0
E-

04

7.
70

0
E-

04

8.
40

0E
-0

4

9
.1

0
0E

-0
4

9
.8

0
0E

-0
4

1.
0

50
E

-0
3

1.
1

20
E

-0
3

1.
19

0
E-

03

1.
26

0
E-

0
3

1.
33

0E
-0

3

1
.4

0
0E

-0
3

1
.4

70
E

-0
3

1.
50

0E
-0

3

0.000E+00

1.500E-02

3.000E-02

4.500E-02

6.000E-02

7.500E-02

9.000E-02

1.029E-01

M1: displacement

M
2

: 
lo

ad

 
Figure 5.59 – Load-displacement curve for corbel F25.

Figure 5.60 shows that the calculated crack pattern is very similar to the experimental one.
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Figure 5.60 – Experimental and numerical crack pattern for corbel F25.

A fitting procedure is performed on the numerical results. A Weibull maximum 3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.61). The fitting distribution properties are reported in Table 5.25.
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Figure 5.61 – Results and fitting distribution (PDF) for corbel F25.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Weibull max. 3-par. 103 4 0.04 0.18 96

Table 5.25 – Fitting distribution properties for corbel F25.

The sensitivity study leads to the ranking of Table 5.26. The numerical analysis shows that fy 

has a very high influence on the results whereas fc, Ec, and ft are nearly equally participating on 

the results with a lower influence.  Figure 5.62 shows the sensitivity correlation between the 

load and the first two basic variables. The first variable has a very high positive correlation to 

the load whereas the second variable has a lower negative correlation.

Variable Ultimate load sensitivity
fy 0.88
fc -0.36
Ec -0.34
ft -0.24

Table 5.26 – Sensitivity of ultimate load to variables for corbel F25.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.63 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.62 – Sensitivity plot for the first two variables for corbel F25.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 50 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 75 kN is allowed.

0

2

4

6

8

10

12

40 50 60 70 80 90 100

V m  [kN]

β

COV=0.05
COV=0.1
COV=0.15
COV=0.2

Figure 5.63 – Safety index assessment for corbel F25.
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5.3.14 – Corbel Fattuhi 34

Figure 5.64 shows the load-displacement curve. The maximum load is 106 kN and it is in 

good agreement with the experimental load 114 kN. The post-peak branch of the curve shows 

a brittle behavior.
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Figure 5.64 – Load-displacement curve for corbel F34.

Figure 5.65 shows that the calculated crack pattern is very similar to the experimental one.
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Figure 5.65 – Experimental and numerical crack pattern for corbel F34.

A  fitting  procedure  is  performed  on  the  numerical  results.  A  Lognormal  3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.66). The fitting distribution properties are reported in Table 5.27.
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Figure 5.66 – Results and fitting distribution (PDF) for corbel F34.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Lognormal 3-par. 106 5 0.05 -0.02 98

Table 5.27 – Fitting distribution properties for corbel F34.

The sensitivity study leads to the ranking of Table 5.28. The numerical analysis shows that fc 

and Ec are the most important variables with a high influence, followed by ft and Gf.  Figure

5.67 shows the sensitivity correlation between the load and the first two basic variables. As it 

can be seen by this plot, the variables have a strong negative correlation to the load.

Variable Ultimate load sensitivity
fc -0.95
Ec -0.86
ft -0.67
Gf -0.41

Table 5.28 – Sensitivity of ultimate load to variables for corbel F34.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.68 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.67 – Sensitivity plot for the first two variables for corbel F34.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 50 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 75 kN is allowed.
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Figure 5.68 – Safety index assessment for corbel F34.
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5.3.15 – Corbel Fattuhi 35

Figure 5.69 shows the load-displacement curve. The maximum load is 122 kN and it is in very 

good agreement with the experimental load 125 kN. The post-peak branch of the curve shows 

a moderate brittle behavior.
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Figure 5.69 – Load-displacement curve for corbel F35.

Figure 5.70 shows that the calculated crack pattern is quite similar to the experimental one.

 

   

X 

Y 

Figure 5.70 – Experimental and numerical crack pattern for corbel F35.

A fitting procedure is performed on the numerical results. A Weibull maximum 3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.71). The fitting distribution properties are reported in Table 5.29.
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Figure 5.71 – Results and fitting distribution (PDF) for corbel F35.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Weibull max. 3-par. 122 3 0.02 -0.68 116

Table 5.29 – Fitting distribution properties for corbel F35.

The sensitivity study leads to the ranking of Table 5.30. The numerical analysis shows that Gf 

is the most important variable followed by ft and Es. Finally, the influence of fc is negligible. 

Figure  5.72 shows  the  sensitivity  correlation  between  the  load  and  the  first  two  basic 

variables. As it can be seen by this plot, the variables have a moderate positive correlation to 

the load.

Variable Ultimate load sensitivity
Gf 0.48
ft 0.33
Es 0.28
fc -0.14

Table 5.30 – Sensitivity of ultimate load to variables for corbel F35.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.73 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.72 – Sensitivity plot for the first two variables for corbel F35.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 60 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 95 kN is allowed.
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Figure 5.73 – Safety index assessment for corbel F35.
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5.3.16 – Corbel Fattuhi 37

Figure 5.74 shows the load-displacement curve. The maximum load is 144 kN and it is in very 

good agreement with the experimental load 140 kN. The post-peak branch of the curve shows 

a brittle behavior.
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Figure 5.74 – Load-displacement curve for corbel F37.

Figure 5.75 shows that the calculated crack pattern is quite similar to the experimental one.
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Figure 5.75 – Experimental and numerical crack pattern for corbel F37.

A fitting procedure is performed on the numerical results. A Weibull maximum 3-parameter 

distribution proves to be a suitable function to describe the corbel ultimate load response 

(Figure 5.76). The fitting distribution properties are reported in Table 5.31.
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Figure 5.76 – Results and fitting distribution (PDF) for corbel F37.

Variable Distribution
Mean

[kN]

std

[kN]
COV Skewness

V5

[kN]
load Weibull max. 3-par. 144 6 0.04 -0.41 134

Table 5.31 – Fitting distribution properties for corbel F37.

The sensitivity study leads to the ranking of Table 5.32. The numerical analysis shows that fc 

and Ec are nearly equally participating on the results with a very high influence. Then ft and Gf 

have a lower influence. Figure 5.77 shows the sensitivity correlation between the load and the 

first two basic variables. As it can be seen by this plot, the variables have a strong negative 

correlation to the load.

Variable Ultimate load sensitivity
fc -0.92
Ec -0.80
ft -0.50
Gf -0.27

Table 5.32 – Sensitivity of ultimate load to variables for corbel F37.

A further  step in  the corbel  investigation is  the evaluation of  the allowable external  load 

fulfilling a safety index of 4.7 (equal to a failure probability pf=10-6). This study is performed 

with a variable mean value of the load and four different COV.

Figure 5.78 shows the behavior of the safety index β related to the calculated ultimate load of 

the corbel and to a variable action, both expressed as PDF.
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Figure 5.77 – Sensitivity plot for the first two variables for corbel F37.

The investigation refers to different degrees of load scattering described by the COV. As it can 

be seen from the illustration, for a high COV=0.2 only a load of about 70 kN can be accepted 

by fulfilling the target limit of  β=4.7. On the other hand, if it is possible to assure that the 

scattering of the load is smaller than COV=0.05, a load of about 105 kN is allowed.
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Figure 5.78 – Safety index assessment for corbel F37.
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5.4 – COMPARISON WITH EUROCODE

The following calculations are performed according to Eurocode 2 (EC2) [13]. The design 

load  is  computed  by using the  Strut-and-Tie  model  shown in  Figure  5.79.  An additional 

horizontal force H=0.2 V is applied according to the code.

2
1

dz

c

h

a
a

a

θ
∆d

V
H

 
Figure 5.79 – Strut-and-Tie model.

The EC2 imposes the following limit for the span to height ratio:

0.4 1.0a
h

£ £ . (5.3)

Some of the investigated corbels  exceed this  limit,  but they are calculated with the same 

procedure as first  approximation.  Since the reinforcing fibers have a low influence on the 

ultimate load, the SFRC corbels are calculated as normal corbels. The geometric properties of 

the investigated corbels are reported in tables 5.1 and 5.2.

To  calculate  the  design  values  for  the  materials,  the  following  procedure  is  used.  The 

characteristic values for steel and concrete strength fyk and fck can be written as

1.645yk ym steelf f std= -  and 1.645ck cm concretef f std= - , (5.4)
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where fym and fcm are the mean values for steel and concrete strength respectively and std is the 

standard deviation.

To calculate std, typical values of the coefficient of variation COV are used:

0.035steel
steel

ym

stdCOV
f

= =  and 0.1concrete
concrete

cm

stdCOV
f

= = . (5.5)

Writing the COV according to (5.5) and substituting it into (5.4), the following equations are 

obtained:

0.94yk ymf f=  and 0.84ck cmf f= . (5.6)

The characteristic and the design values are related by

1.15
yk

sd

f
f =  and 

1.5
ck

cd
ff = , (5.7)

where fsd and fcd are the design values for steel and concrete strength respectively.

Therefore, the design values can be computed starting from the mean values with

0.82sd ymf f=  and 0.56cd cmf f= . (5.8)

The calculated values are reported in tables 5.33 and 5.34.

Corbel
Concrete Steel

fcm

[MPa]

fck

[MPa]

fcd

[MPa]

fym

[MPa]

fyk

[MPa]

fsd

[MPa]
KR13 31.6 26.5 17.7 352 331 288
KR14 31.3 26.3 17.5 352 331 288
KR21 27.0 22.7 15.1 298 280 244
KR55 27.7 23.2 15.5 312 293 255
KR80 16.8 14.1 9.4 300 282 245
KR91 28.0 23.5 15.7 322 303 263
KR100 44.3 37.2 24.8 328 308 268

Table 5.33 – Material properties of Kriz-Raths corbels.

The angle θ between the strut and the tie is calculated by
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2

1

0.5tan
0.5

d az
c a a

θ
-

= =
+

, (5.9)

where

1 0.6 cd

Va
f bα

=  and 2
2 12a d d a c= - - , (5.10)

being b the corbel depth and α=0.85.

Corbel
Concrete Steel

fcm

[MPa]

fck

[MPa]

fcd

[MPa]

fym

[MPa]

fyk

[MPa]

fsd

[MPa]
F23fr 28.3 23.8 15.9 452 425 369
F25 30.7 25.8 17.2 452 425 369
F34 32.0 26.8 17.9 452 425 369

F35fr 30.3 25.5 17.0 452 425 369
F37fr 32.2 27.1 18.0 452 425 369

Table 5.34 – Material properties of Fattuhi corbels.

After solving the Strut-and-Tie structure, the force in the steel Fs must be less than or equal to 

the design ultimate load:

( )( )1
s Rd sd sF H z d Vc F f A

z
Δ= + + £ = . (5.11)

Then, the verification for concrete is carried out according to shear design rules:

2 0.6 sin cosRd cdV V f bzα θ θ£ = . (5.12)

The calculated design loads, for steel and concrete failure, are reported in tables 5.35 and 5.36. 

The tables report the  5% fractile  V5 from the probabilistic analyses and compute the safety 

factor as

5

2EC

V
V

γ = . (5.13)

The safety factor values are compared with those proposed by the Eurocode, namely 1.15 for 
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steel failure and 1.50 (variable loads) for concrete failure.

Corbel
VEC2 steel

[kN]

VEC2 concrete

[kN]
Failure

VEC2

[kN]
V5

[kN]
γ

KR13 125 352 steel 125 264 2.11
KR14 139 389 steel 139 337 2.42
KR21 170 336 steel 170 388 2.28
KR55 122 335 steel 122 236 1.93
KR80 169 187 steel 169 350 2.07
KR91 308 248 concrete 248 538 2.17
KR100 359 392 steel 359 706 1.97

Table 5.35 – Design load and safety factor for Kriz-Raths corbels.

Corbel
VEC2 steel

[kN]

VEC2 concrete

[kN]
Failure

VEC2

[kN]
V5

[kN]
γ

F23fr 50 53 steel 50 126 2.54
F25 51 58 steel 51 96 1.87
F34 58 54 concrete 54 97 1.80

F35fr 57 52 concrete 52 115 2.21
F37fr 59 55 concrete 55 134 2.44

Table 5.36 – Design load and safety factor for Fattuhi corbels.

The calculated safety factor is always greater than the one proposed by the Eurocode. In fact, 

if the 5% fractile of the ultimate load distribution computed by SARA is compared with the 

design value of the Eurocode, the demanded safety index is fulfilled by far. Considering the 

smallest safety margins of this study, it is possible to calculate the minimum Δγ for steel and 

concrete failure. For steel failure  Δγmin=1.87-1.15=0.72 and for concrete failure  Δγmin=1.80-

1.50=0.30 is obtained.

Finally, it can be stated that the non-linear numerical investigation allows a more accurate 

description of the material behavior and the activation of not used safety margins.

– 196 –



Chapter 5 – Analysis of reinforced concrete corbels

5.5 – THREE-DIMENSIONAL ANALYSIS

5.5.1 – Theoretical basics

Several different material models are implemented within the code ATENA 3D and the most 

of them are based on fracture-plasticity approach.  In particular,  in  the simulations  of this 

work, the CC3DNonLinCementitious2 material is used. The fracture-plastic model combines 

constitutive models for tensile (fracturing) and compressive (plastic) behavior.

Figure 5.80 – Tensile softening and characteristic length.

The fracture model is based on the classical orthotropic smeared crack formulation and crack 

band model. It employs Rankine failure criterion, exponential softening (Figure 5.80) and it 

can  be  used  as  rotated  or  fixed  crack  model.  It  is  assumed  that  strains  and  stresses  are 

converted into the material directions. In case of rotated crack model, they correspond to the 

principal  directions  while,  in  case  of  fixed  crack  model,  they are  given  by the  principal 

directions at the cracking onset. The crack opening is the sum of the total fracturing strain and 

the  current  increment  of  fracturing  strain  multiplied  by the  characteristic  length.  Various 

methods  were  proposed  for  the  characteristic  length  calculation  in  the  FE framework.  In 

ATENA, it is calculated as the FE size projected into the crack direction. This approach is 

satisfactory for low order linear elements, which are used throughout this study.

The hardening/softening plasticity model is based on Menetrey-Willam [33]  failure surface 

(Figure 5.81), but Drucker-Prager formulation can be also used.

Both models use return mapping algorithm for the integration of constitutive equations. New 

stress state in the plastic model is computed using a predictor-corrector formulation where the 

plastic corrector is computed directly from the yield function by return mapping algorithm. 

Thus,  the  crucial  aspect  is  the  definition  of  the  return  direction.  The  position  of  failure 

surfaces is not fixed but it  can move depending on the value of strain hardening/softening 
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parameter.  The  strain  hardening  is  based  on  the  equivalent  plastic  strain.  For  Menetrey-

Willam surface, the hardening/softening is controlled by a parameter, which evolves during 

the yielding/crushing process.

Figure 5.81 – 3D failure surface.

The hardening/softening law, which is based on the uniaxial compressive test, is shown in 

Figure 5.82, where the softening curve is linear and the ascending part is elliptical.

Figure 5.82 – Compressive hardening/softening and compressive characteristic length.

The law on the ascending branch is based on strains, while the descending branch is based on 

displacements to introduce mesh objectivity into the numerical solution. On the descending 

curve, the equivalent plastic strain is transformed into displacement through the length scale 

parameter. This parameter corresponds to the projection of FE size into the direction of the 

minimum principal stress. Return direction is given according to a plastic potential which 

contains  β determining the return direction. If  β<0, the material is being compacted during 

crushing, if  β=0, the material volume is preserved, and if  β>0, the material is dilating. In 

general, the plastic model is non-associated, since the plastic flow is not perpendicular to the 
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failure surface.

Figure 5.83 – Plastic predictor-corrector algorithm.

The  return-mapping  algorithm (Figure  5.83)  for  the  plastic  model  is  based  on  predictor-

corrector approach. During the corrector phase of the algorithm, the failure surface moves 

along the hydrostatic axis to simulate hardening and softening. A secant algorithm is used to 

determine  the  stress  on  the  surface,  which  satisfies  both  the  yield  condition  and  the 

hardening/softening law.

Figure 5.84 – Combination of plasticity and fracture model.

Special attention is given to the combination of fracture and plasticity models (Figure 5.84). 

The combined algorithm is based on a recursive substitution, and it allows for the two models 

to be formulated separately. However, both models are developed within the framework of 

return  mapping  algorithm  which  guarantees  the  solution  for  all  magnitudes  of  strain 

increment. From an algorithmic point of view, the problem is then transformed into finding an 

optimal  return  point  on  the  failure  surface.  The  algorithm can  handle cases  when failure 

surfaces of both models are active, but also when physical changes, such as crack closure due 
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to crushing in other material directions, occur. The combining algorithm must determine the 

separation of strains into plastic and fracturing components, while it must preserve the stress 

equivalence in both models. The problem can be generally stated as a simultaneous solution of 

two  different  inequalities.  Each  inequality  depends  on  the  output  from  the  other  one: 

therefore, an iterative scheme is developed.

An important condition for the procedure convergence is that the failure surfaces of the two 

models  are  intersecting  in  all  possible  positions  even  during  the  hardening  or  softening. 

Actually,  concrete  crushing in  one  direction  affects  the cracking in  other  directions.  It  is 

assumed, as a constraint, that after the plasticity yield criterion is violated, the tensile strength 

in all material directions is zero.

On the structural level, the secant matrix is used in order to achieve a robust convergence.

Figure 5.85 – User-defined shear retention factor.

ATENA allows the user to define the behavior of some selected parameters. In particular, it is 

possible to set the evolution laws for elastic modulus, tensile and compressive strength, shear 

retention factor for fixed crack approach (Figure 5.85) and reduction of tensile strength due to 

lateral compressive stress (Figure 5.86).

Figure 5.86 – Tensile strength degradation due to lateral compressive stress.

In  heavily  reinforced  structures,  or  structures  modeled  with  large  elements,  when  many 
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reinforcement  bars are crossing each element,  the crack band approach could provide too 

conservative results, and the calculated crack widths and consequently, the deflections may be 

overestimated. In fact, the crack band approach assumes that the crack spacing is larger than a 

FE size but, especially with shell/plate elements, it may occur that the crack spacing is smaller 

than the element size. In these cases, ATENA allows the user to manually define the crack 

spacing.

In  RC  structures,  the  cracks  cannot  fully  develop  and  concrete  contributes  to  the  steel 

stiffness. This effect is called tension stiffening and it can be simulated by specifying a tension 

stiffening factor cts. This factor represents the relative limiting value of tensile strength in the 

tension-softening  diagram.  The  tensile  stress  cannot  drop  below  the  value  given  by  the 

product cts ft (Figure 5.87).

Figure 5.87 – Tension stiffening model.

The reinforcement modeling is realized by the same formulation already described in the 2D 

case.

Figure 5.88 – ATENA solid element library.

ATENA 3D solid FE library includes tetrahedral, brick and wedge elements, all using linear 

isoparametric formulation (Figure 5.88).

In Cervenka's paper some 3D applications are shown [18].  The Nusle Bridge was built in 
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Prague in 1972. It is the largest bridge of the city with a six-lane highway on the top and a 

two-way subway inside the box (Figure 5.89).

The  bridge  is  investigated  in  order  to  evaluate  the  safety  of  the  structure,  in  particular 

regarding  the  effectiveness  of  the  vertical  prestressing  cables  which  are  expected  to  be 

damaged by corrosion.

Figure 5.89 – Bridge cross-sectional geometry.

The computer model  is  rather complicated since the real  geometry and the reinforcement 

location are represented with high accuracy (Figure 5.90). On the contrary, the construction 

process is not included in the model. Since the mechanical properties are difficult to estimate, 

a parametric study is required.

Figure 5.90 – FE discretization.

The main objective of the study is the evaluation of the structural behavior under the service 

and the ultimate load.

The analysis  proves that  the structural  performance is  satisfactory under the service load. 

What is more, the vertical prestressing cables have a high influence on the box wall behavior 

but not on the overall structural safety even if the prestressing is reduced near to zero.

Subsequently, the analysis is performed up to failure of the structure and a safety factor (ratio 
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of the ultimate to the service load) of 1.99, coinciding with the safety level usually required, is 

found (Figure 5.91).

Figure 5.91 – Crack width and deformed shape at ultimate load.

5.5.2 – Structural modeling

The corbel properties for 3D analyses were already specified for the 2D case in tables 5.1 and 

5.2.

Figure 5.92 – 3D FE discretization for the investigated corbels.
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The FE meshes for 3D analyses are shown in Figure 5.92. Linear tetrahedral elements are used 

with different size depending on the corbel. A fine mesh is more suitable for Fattuhi corbels 

whereas Kriz-Raths corbels  require  a less refined mesh.  Due to  double symmetry, only a 

quarter of the specimen is modeled.

With respect to the 2D case, concrete is modeled by using a different constitutive formulation 

based on fracture-plastic approach, as already discussed. On the contrary, for steel, the same 

formulation  is  adopted.  Therefore,  a  bilinear  elastic  perfectly plastic  uniaxial  law is  used 

together with a discrete reinforcement formulation. Perfect bond is assumed between concrete 

and steel

One of the main objectives of the simulations is the comparison of 2D and 3D outcomes, in 

order  to  understand  if  an  approximate  2D analysis  is  sufficient  or  a  more  complete  3D 

analysis is necessary to capture the structural behavior.

5.5.3 – Results and comparisons

Numerical  results  for  3D analyses are  reported  in  Table  5.37.  The  numerical  simulations 

provide very good results for Kriz-Raths corbels, whereas the agreement is less accurate for 

Fattuhi specimens. In general, it can be stated that the ultimate load values are overestimated 

by the  3D analysis  whereas  they are  underestimated,  but  with  a  lower  error,  by the  2D 

analysis.

Corbel Failure
Vexp

[kN]

ATENA deterministic ATENA deterministic
VATENA2D

[kN]
Difference

VATENA3D

[kN]
Difference

KR14 DS 374 367 -1.9% 384 2.7%
KR21 DS 423 405 -4.3% 448 5.9%
KR55 CE 269 255 -5.2% 272 1.1%

F23fr F 127 131 3.1% 142 11.8%
F25 DS 109 103 -5.5% 115 5.5%
F34 DS 114 106 -7.0% 129 13.2%

Table 5.37 – 3D analysis result comparison.

In figures 5.93 and 5.94, the load-displacement curves for two of the investigated corbels are 

reported. The two specimens exhibit a ductile behavior with a long plastic plateau after the 

steel yielding.
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In figures 5.95 and 5.96, some other outcomes from ATENA 3D are shown. In particular, on 

the base of the minimum principal strain, the compressive strut can be located in the corbel. 

Then,  through the  crack width,  the crack  pattern  and therefore,  the failure  mode,  can  be 

evaluated. Finally, the corbel deformed mesh is visualized through the vertical displacement 

distribution.

Figure 5.93 – Load-displacement curve for corbel KR55.

Figure 5.94 – Load-displacement curve for corbel F25.

The structural analysis can be performed in different ways according to the chosen accuracy 

level and to the required results.

The presented analysis  demonstrates that the simple Strut-and-Tie model  proposed by the 

Eurocode is sufficient to obtain safe results for design. The next level, the 2D analysis, can 

provide, besides the ultimate load, more information about the structural behavior such as the 

failure mode, the crack pattern, the stress in steel and the stress-strain distribution in concrete. 

Generally,  the  3D  analysis  provides  a  high-level  accuracy,  capturing  the  real  spatial 
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unconstrained behavior. Obviously, the 3D model, namely the material formulation and the 

FE implementation, is more complicated and it can provide, in some cases, worse results than 

the simpler 2D analysis.

Figure 5.95 – Min. principal strain, crack width and vertical displacements for corbel KR55.

Figure 5.96 – Min. principal strain, crack width and vertical displacements for corbel F25.

In the study of the investigated corbels, in four out of six cases, the 3D analysis provides 

worse results than the 2D one. Moreover, the 2D calculation adopts a simplified model which 

is easier to manage and involves reduced computational time and modeling effort. Thus, it can 

be concluded that, even if the out of plane behavior is neglected, the 2D approximation is a 

very good way to investigate this type of structures.
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5.6 – CONCLUSIONS

In this chapter, the deterministic and probabilistic FE analysis of RC corbels is presented. 

Deterministic  analyses  are  performed  using  both  2D  and  3D  models  with  two  different 

versions  of  the  RC-oriented  FE code  ATENA.  Probabilistic  analyses  are  performed with 

SARA,  a  software  package  which  integrates  the  code  ATENA 2D and  the  probabilistic 

module FREET.

The deterministic  analyses provide results  in  good agreement  with the experimental  data. 

Beside the ultimate load, ATENA allows to extract a great number of information from the 

model such as stresses, strains, reinforcement force and crack pattern. All these variables are 

compared with experimental outcomes and discussed in detail.

Concerning the probabilistic investigations, it can be concluded that the calculated ultimate 

load distributions can be very well described by the Lognormal and Weibull  distributions. 

These fitting PDF allow to effectually describe the experimental results from the analytical 

point of view and therefore, they are suitable to perform the comparison with the Eurocode 

design values. The outcomes of this studies shows that in general, the non-linear probabilistic 

calculation  can  be  used  for  activating  additional  safety  margins  not  considered  by  the 

Eurocode.

Especially for corbel design, the probabilistic analysis provides a great advantage, since the 

sensitivity  study gives  the  possibility  to  evaluate  the  most  important  material  properties 

influencing  the  structural  behavior.  Therefore,  the  probability-based  study  offers  the 

possibility of a professional and optimized design.

The comparison between 2D and 3D outcomes demonstrated that the 2D analysis provides 

better  results with a simpler model which means reduced computational time and smaller 

modeling effort.
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This doctorate dissertation presents the three-dimensional (3D) constitutive model for non-

linear  analysis  of  reinforced  concrete  (RC)  structures  3D-PARC  –  Three-Dimensional 

Physical  Approach  for  Reinforced  Concrete.  The  3D  formulation,  based  on  the  author's 

graduate thesis  [34], is the extension of the numerical model for membrane elements PARC 

developed at the Department of Civil Engineering of the University of Parma [8, 9]. The basic 

concepts of PARC were developed and applied in some previous works [25, 14].

Figure 6.1 – Solid unitary RC element.

The study process  which  led  to  the  development  of  the  model,  started  from some basic 

investigations describing the physical phenomena. Following this philosophy,  the theory of 
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the model was created by combining single material contributes  separately investigated: the 

constitutive  models  for  concrete,  steel  and  local  effects  (tension  stiffening,  dowel  action, 

aggregate bridging and interlock) were studied through different publications and inserted in 

the model.

3D-PARC adopts fixed, multi-directional cracking and smeared reinforcement approaches. An 

unitary solid RC element is investigated (Figure 6.1). Three different phases are considered: 

the uncracked material, the singly cracked material and the doubly or multi-cracked material. 

In each phase, a different constitutive matrix is adopted depending on the strain field and on 

the physical properties of the materials.

 

Figure 6.2 – The failure surface and the cone defining the failure fields.

In the uncracked phase, concrete and steel are supposed to be subjected to the same global 

strain field:

{ } { } { }xyz xyz xyz
c sε ε ε= = . (6.1)

Therefore, the two material work in parallel  and the following material stiffness matrix is 

obtained:

xyz xyz xyz
c sD D Dé ù é ù é ù= +ê ú ê ú ê úë û ë û ë û . (6.2)
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In order to model the concrete behavior, the Balan-Spacone-Kwon failure surface [5], based 

on the previous Menetrey-Willam surface [33] is adopted. Furthermore, a new cap surface is 

proposed in order to close the surface in the region of high hydrostatic stresses. The tensile or 

compressive nature of the failure can be evaluated by dividing the surface into failure fields by 

a  cone  as  shown in  Figure  6.2.  The  Saenz  stress-strain  relation  [42]  and  the  equivalent 

uniaxial strain formulation [21] are used to compute the elastic moduli.

The  steel  behavior  is  modeled  by  a  bilinear  elastic-plastic  curve  equal  in  tension  and 

compression. Any number of steel layers can be defined.

Figure 6.3 – Solid cracked RC element.

The cracks  are  assumed  to  form when the  elastic  tensile  strain  limit  is  exceeded.  In the 

cracked phase (Figure 6.3), the total strain is decomposed into the strain between the cracks 

and in the crack:

{ } { } { }xyz xyz xyz
c crε ε ε= + . (6.3)

This leads to the following material stiffness matrix:

[ ]( ) ( )
111 1 1xyz xyz xyz xyz xyz

c s c crD I D D D D
--- - -æ ö÷çé ù é ù é ù é ù é ù= + + ÷çê ú ê ú ê ú ê ú ê ú ÷ë û ë û ë û ë û ë û ÷çè ø

, (6.4)

where the concrete and the crack flexibility matrices are added.
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The material between the cracks is assumed to be uncracked and it is modeled like in the 

uncracked  phase.  Nevertheless,  the  presence  of  the  crack  has  a  penalizing  effect  on  the 

material properties which is modeled by a softening coefficient [7].

The crack matrix contains the contributes of the interface phenomena related to concrete and 

steel in the crack. In particular, in the concrete contribute, the aggregate bridging [12, 31] and 

interlock [23] are considered, while, in the steel contribute, the axial force in the reinforcing 

bar,  the tension stiffening and the dowel  action [46]  are taken into account.  A numerical 

procedure for the tension stiffening formulation is proposed.

In the doubly cracked phase, a similar approach is adopted: the total strain is the sum of the 

strain between the cracks, in the first crack and in the second crack:

{ } { } { } { }1 2
xyz xyz xyz xyz

c cr crε ε ε ε= + + . (6.5)

This leads to the following material stiffness matrix:

[ ]( ) ( )
111 1 1 1

1 2
xyz xyz xyz xyz xyz xyz

c s c cr crD I D D D D D
--- - - -æ ö÷çé ù é ù é ù é ù é ù é ù= + + + ÷çê ú ê ú ê ú ê ú ê ú ê ú ÷ë û ë û ë û ë û ë û ë û ÷çè ø

. (6.6)

Similarly,  it  is  possible  to  include any number  of  subsequent  cracks  just  by adding their 

flexibility matrices.

3D-PARC is characterized by a physical approach to the problem: the model is focused on the 

basic causes which are locally studied and implemented. Sometimes, in fact, the modeling of 

physical  phenomena,  such  as  tension  stiffening,  aggregate  interlock  and  dowel  action,  is 

carried  out  by  numerical  devices  which  are  tuned  in  order  to  fit  the  general  structural 

behavior. For example, the aggregate interlock is often modeled by the Shear Retention Factor 

and the tension stiffening is often implemented by modifying the tensile concrete behavior. 

On the contrary, the 3D-PARC formulation remains as close as possible to the physical reality 

avoiding these “unphysical” numerical devices.

The proposed model is based on a modular framework: the implementation of each contribute 

can be easily substituted and updated when an improved version is developed. For example, in 

this version of the model, the strain decomposition is introduced for the first time and the 

tension stiffening formulation is improved.

The model is implemented in a FORTRAN subroutine which can be run within the Finite 

Element (FE) program ABAQUS [1]. The theoretical formulation as well as the numerical 
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implementation are applied to the investigation of a wide range of structures: plain concrete 

specimens subjected  to  biaxial  and  triaxial  stress  states,  membrane  elements  subjected to 

shear, one RC tie, plain concrete and RC beams subjected to torsion.

The model demonstrates to be very flexible since it can analyze real cases presenting very 

different stress fields. In fact, the model is formulated as a general purpose tool and it can be 

used with a wide range of elements in the FE implementation. This allows to apply it to the 

study of every kind of structure.

The results obtained from the numerical simulations are good in all cases. Therefore, it can be 

concluded that the model is able to capture the general structural response. Moreover, it is 

possible to extract from the FE model many variables such as steel stresses, concrete strains 

and crack displacements and to validate them through the comparison with experimental data, 

allowing a complete evaluation of the local behaviors.

The following pages report a brief review of the most significant results.

The simulations  of  plain concrete  tests  highlight  the  model  capabilities  to  investigate  the 

biaxial and triaxial stress regions where 3D-PARC is able to effectively reproduce the failure 

domain [27, 30].
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Figure 6.4 – Vecchio-Collins selected panels.

Many different shear panels, from different experimental programs, are investigated by 3D-

PARC.  The  specimens  present  a  wide  range  of  size,  concrete  properties,  steel  yielding 

strength,  reinforcement  ratios  and  failure  modes.  In  these  biaxial  tests,  all  the  material 

contributes are activated by the testing procedures and therefore, it is possible to deeply verify 

the model theory as well  as its numerical implementation.  The model provides very good 
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results in capturing the post-cracking behavior, the ultimate load, the deformability and the 

failure mode. Figure 6.4 shows the outcomes related to two panels selected from the Vecchio-

Collins experimental  program [45].  The PV27 presents a concrete failure,  whereas,  in the 

PV20, since the steel layers are asymmetrical, the failure is reached by non-simultaneous steel 

yielding.

Figure 6.5 compares two panels selected from the Pang-Hsu experimental program [37]. The 

A4 is symmetrically over-reinforced and the failure is caused by the crushing of the concrete 

between  the  cracks.  On  the  contrary,  the  B4  is  asymmetrically  under-reinforced  in  both 

directions: the curve clearly shows the subsequent yielding of the two steel layers.
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Figure 6.5 – Pang-Hsu selected panels.

Afterwards, some full-size structures subjected to complex 3D stress fields are investigated. 

The numerical analysis of a RC tie [10] gives the possibility to deeply test the model response 

in investigating the serviceability limit states. What is more, this simulation provides useful 

information about the tension stiffening formulation.

In the numerical simulation of two plain concrete beams subjected to pure torsion tested by 

Hsu [24],  the model  demonstrates to  be able  to  capture the structural  behavior  in  a  case 

dominated by a complex, fully 3D stress state.

Finally, three RC beams subjected to pure torsion studied by  Lampert and Thürlimann are 

investigated [29]. Since all the beam properties, except the longitudinal bar arrangement, were 

kept  constant,  these  tests  provide  fundamental  information  about  the  effect  of  the  steel 

reinforcement location.  Figure 6.6 shows the results for the beams T1 and T3. Through this 

comparison, the effect of the longitudinal steel distribution can be highlighted.
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The proposed model  is  able  to  capture the concrete strut  reorientation  during the loading 

process. The numerical outcomes are also compared to the analytical solution proposed by the 

Eurocode [13].  It has to be mentioned that 3D-PARC is  able to capture the strengthening 

effect of the over-reinforced side of the beam T3 which cannot be capture by the Eurocode 

analytical formulation.

0

20

40

60

80

100

120

140

160

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

θ   [rad/m]

T
 [k

N
m

]

experimental T1
experimental T3
3D-PARC

T1

T3

Figure 6.6 – Result comparison for the beams T1 and T3.

Furthermore, the FE implementation of 3D-PARC provides some local information about the 

longitudinal  and transversal  steel  stresses,  the crack opening and the concrete  strain.  The 

longitudinal steel stress for the beam T3 is reported in Figure 6.7.
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Figure 6.7 – Longitudinal steel stress for the beam T3.

This doctorate dissertation also contains the FE analysis of RC corbels developed during a 
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six-month collaboration with the Institute of Structural Engineering (IKI) of the University of 

Natural  Resources  and Applied Life Sciences  – BOKU in Vienna.  The  deterministic  and 

probabilistic analyses were performed with the software package SARA which includes the 

RC-oriented FE code ATENA and the statistical module FREET. Since, in RC structures, 

materials  and geometry are  characterized  by a  high level  of  uncertainty,  this  contribution 

highlights the importance of a probabilistic approach. What is more, this practical experience, 

combining a high-level FE modeling with a sophisticated probabilistic formulation, represents 

an  important  development  of  the  basic  concepts  of  numerical  analysis  applied  to  RC 

structures.
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Figure 6.8 – Relation between applied load and steel force for corbels with a/d=0.30.

From the deterministic analyses, the ultimate load, the steel force and the crack pattern are 

extracted and compared with the experimental data. In Figure 6.8, the steel force in the main 

reinforcements of the corbels is reported as a function of the external load. Moreover, as it can 

be seen in  Figure 6.9, the numerical crack pattern provides an important indication of the 

failure mode.

In the probabilistic procedure, some selected variables are randomized according to analytical 

distributions  and  repeated  FE  simulations  are  performed.  The  outcomes  are  statistically 

evaluated: first of all, the numerical results are fitted by an analytical distribution in terms of 

Probability  Density  Function  (PDF).  Subsequently,  the  sensitivity  analysis  as  well  as  the 

safety  level  assessment  are  performed.  The  first  one  allows  the  evaluation  of  the  most 

important variables affecting the structural behavior. The second one provides the safety index 
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evaluation as a function of the mean value and of the coefficient of variation  COV of the 

external load (Figure 6.10).

Finally, the safety level suggested by the Eurocode [13] is compared with the one obtained 

from the probabilistic calculations.

Figure 6.9 – Experimental and numerical crack pattern for corbel KR14.
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Figure 6.10 – Safety index assessment for corbel KR14.

By evaluating the two different but related activities carried out during the doctorate course, it 

can be concluded that an effective approach for the study of RC structures should be based on 

two main concepts.

First of all, reliable theoretical models and robust numerical implementations are required. 

The RC response is very complicated and, in order to capture the real structural behavior, all 
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the  physical  phenomena  should  be  taken  into  account.  Furthermore,  the  non-linear 

calculations are usually time-consuming and efficient numerical techniques are fundamental.

Secondly, if the problem depends on input parameters which are known with a low confidence 

level, the solution loses its significance even if sophisticated models are implemented. Above 

all, this is important for the existing structures, where the deterioration processes make it very 

difficult  to estimate the basic parameters.  Therefore, a probabilistic formulation should be 

adopted. The statistical approach, in fact, provides the sensitivity study as well as the safety 

level  assessment  which  can  be  very  useful  in  applications  like  the  analysis  of  existing 

structures and the optimized design procedures for mass production.

The combination of these two approaches provides high-level effective tools satisfying the 

requirements of reliability and accuracy nowadays demanded in the numerical analysis of RC 

structures.
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