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Introduction

The great interest in environmental issues has drawn the community to an attention to the quality
of groundwater. Scientific efforts in groundwater flow studies have primarily focused on the flow
and transport behavior and on the identification of the corresponding parameters.
After the nineties, increasing attention has been focused on the problem of recovery the release

history of a pollutant. The knowledge of the pollution injection function provides information
about the future pollution spread and allows better planning of remediation actions [Liu and
Ball, 1999; Snodgrass and Kitanidis, 1997; Skaggs and Kabala, 1994; Butera and Tanda, 2003].
Moreover, from a legal and regulatory point of view, it is also important to determine the release
time and duration and the highest values of concentration of the injected solution: an available
release history can be a useful tool for sharing the costs of remediation of a polluted area among
the responsible parties.
The Mathematical modeling is the basis of the studies of the evolution of the pollution. Setting

up a model is a complex and a difficult task, because the main problem is the evaluation of
the aquifer parameters. Usually the scientists have few field data, and with that they have to
model wide areas; this implies the introduction of errors (due to the large approximations) into the
modeling. These parameters, usually, are estimated from scarce data because they are difficult and
costly to obtain. The accuracy of the estimate depends on the number of the measurements, their
locations in the studied area, the observation error and the sensitivity of the observed quantity to
the real field.
Both of the problems - release history and parameters identification - are represented by ill-

posed problems especially inverse problems. The literature regarding the inverse problem is wide
and regards several branches of sciences and mathematics. During the last 40 years several methods
were developed to solve inverse problems, for instance the Tikhonov regularization, the minimum
relative entropy theory, the adjoint state method and the geostatistical method.
The methodology applied in this work is the quasi-linear geostatistical approach proposed by

Kitanidis [1995]. This approach was chosen because it is a statistical method so that it is possible
to evaluate the unknown function and the related uncertainty to it at the same time. It has
been widely applied during the last 10 years by several authors with good results [Snodgrass and
Kitanidis, 1997; Michalak and Kitanidis, 2002, 2003; Butera and Tanda, 2003; Boano et al., 2005].
This work presents applications and improvements of the quasi-linear geostatistical approach:
The first application concerns the recovery of the release history of the pollutants; it

consists in the evaluation of the release function of a pollutant starting from concentration mea-
surements. A brief literature review on this topic is presented and the geostatistical approach
proposed by Snodgrass and Kitanidis [1997] and subsequent developments are summarized. A new
improvement (evaluation of the transfer function) about the possibility to apply the methodology
to non uniform flow cases (pumping well, heterogeneous hydraulic conductivity fields, etc.) is

xv
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described. This new improvement enables the evaluation of the transfer function using a numer-
ical model; this allows extension of the geostatistical approach to any case without using rough
simplifications as the use of a 1-D or 2-D homogeneous model.
The second application of the geostatistical approach presented in this work is the estimation

of the hydraulic parameters. Starting from field measurements, for instance of the transmis-
sivity, it is possible using an interpolator to evaluate the whole transmissivity field of the study
area. However, these kind of measurements are expensive and with few monitoring points the
resulting transmissivity field is not reliable. Therefore, head measurements are frequently used,
because they are easier and cheapless expensive to evaluate. So in the last 30 years several methods
[for instance Kitanidis and Vomovoris, 1983; Rubin and Dagan, 1987a; Giudici et al., 1988; etc]
regarding parameter identification were developed. In this work the quasi-linear methodology is
applied to parameter estimation following the work presented by Kitanidis [1995]. This method is
a very efficient procedure, but for strongly nonlinear cases it requires some add ons. It is based on
heads measured in specific points of the study area, then a forward problem is performed with an
initial value of transmissivity. The following step is to correct the initial transmissivity field as far
as the forward problem represents correctly the heads measured. The first proposed improvement
is the updating of unknowns from an iteration to the next one. This procedure allows to choose
the correct parameter in the Gauss-Newton iterations and to speed up the process. Then the the-
ory regarding the conditional realizations, proposed in Kitanidis [1995], is tested to reproduce the
highly nonlinear transmissivity field. Moreover considering the possibility to apply the estimation
of hydraulic parameters to a very well defined grid it has been decided to summarize and test the
methodology proposed by Nowak et al. [2003] that allows to speed up the matrix multiplication
in order to decrease the computation time.
The work is structured in two part; the first presents a general introduction on inverse problems

and describes the quasi-linear geostatistical approach. The second one proposes few improvements
to the methodology and analyzes several cases.



Chapter 1

Fundamentals of Hydraulics of
Groundwater

The basic governing equations1 (for fully saturated soil) of flow and transport in groundwater are
summarized in this section to better clarify the following chapters.

1.1 Flow

Darcy’s experimental results concluded that the rate of flow Q [L3T−1] is proportional to a cross-
sectional area A [L2] and to the difference of head (h1 − h2) [L] and inversely proportional to the
length L [L]:

Q =
K ·A(h1 − h2)

L
(1.1)

where K [LT−1] is the hydraulic conductivity that represents the ability of the aquifer material
to transport water under hydraulic gradients. Considering infinitesimal length the relationship
(h1 − h2)

L
tends to i = −dh

dx
that represents the hydraulic gradient (the minus sign means that

the flow goes from high head to low head). So equation (1.1) can be written as Q = K · i ·A and
U = Q/A = K · i represents the velocity of the fluid. This expression is valid for one dimensional
motion; considering three dimensional flux, the velocity is represented by U = −K · ∇h, so the
Darcy’s law becomes:

Q = −K ·∇h ·A

where K is the symmetric tensor of the hydraulic conductivity

K =

⎡⎣ kxx kxy kxz
kyy kyz

kzz

⎤⎦
1This section is based on Bear [1972], Bear and Bachmat [1990] and Domenico and Schwartz [1998]
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The velocity along the three main Cartesian directions results:

Ux = −kxx
∂h

∂x
− kxy

∂h

∂y
− kxz

∂h

∂z

Uy = −kyx
∂h

∂x
− kyy

∂h

∂y
− kyz

∂h

∂z

Uz = −kzx
∂h

∂x
− kzy

∂h

∂y
− kzz

∂h

∂z

i.e.
U = −K∇h (1.2)

The continuity equation (conservation of mass) for a porous medium saturated with water is the
following:

div (ρU)+
∂nρ

∂t
± ρq = 0 (1.3)

where U [LT−1] represents the Darcy’s velocity, ρ [ML−3] is the density of the fluid, n [-] is the
porosity and q [T−1] is a term of source/sink per unit of volume. Substituting the Darcy velocity
in the equation (1.3) it results:

div [ρ (−K∇h)] + ∂nρ

∂t
± ρq = 0

that is the diffusion equation. Considering that the density ρ is constant in the space but variable
in time with few approximation

1

ρ

∂nρ

∂t
' Ss

∂h

∂t

where Ss [L−1] represents the specific storativity. Equation (1.3) can be rewritten as:

div (K∇h) = Ss
∂h

∂t
± q

In steady state condition
∂h

∂t
= 0 and without source or sinks the equation (1.3) collapses to

div (K∇h) = 0. Expanding this equation it results:

∂

∂x

µ
Kxx

∂h

∂x

¶
+

∂

∂y

µ
Kyy

∂h

∂y

¶
+

∂

∂z

µ
Kzz

∂h

∂z

¶
= 0

in a homogeneous domain it is reduced to

Kxx
∂2h

∂x2
+Kyy

∂2h

∂y2
+Kzz

∂2h

∂z2
= 0 (1.4)

In isotropic medium Kxx = Kyy = Kzz so the equation (1.4) becomes

∂2h

∂x2
+

∂2h

∂y2
+

∂2h

∂z2
= 0

that is the Laplace’s equation: ∇2h = 0. If the flow can be considered horizontal the transmissivity
(T [L2T−1]) indicates the ability of the aquifer to transmit water through its entire thickness, and
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it is equal to the integral (over a vertical line) of the product of the hydraulic conductivity and the
aquifer’s thickness dz:

T =

Z b

0

kxxdz (1.5)

The aquifer’s storativity S [-] is defined as the volume of water released from (or added to) the
aquifer per unit horizontal area of aquifer and per unit decline (or rise) of the average (over the
vertical) piezometric head in the aquifer.

S =

Z b

0

Ssdz (1.6)

1.2 Transport of Contaminants

The partial differential equation describing the fate and transport of contaminants of species r in
three dimensional, transient groundwater systems can be written as follows:

∂ (nCr)

∂t
=

∂

∂xi

µ
nDij

∂Cr

∂xj

¶
− ∂

∂xi
(nviC

r) + qsC
r
s +

X
Rn (1.7)

where Cr [ML−3] represents the dissolved concentration of species r; t [T] is time; xi [L] is the
distance along the respective Cartesian coordinate axis; Dij [L2T−1] is the hydrodynamic dispersion
coefficient tensor; vi [LT−1] is the effective velocity (it is related to the Darcy velocity through the
relationship vi = Ui/n); qs [T−1] is the volumetric flow rate per unit volume of aquifer representing
fluid sources and sinks; Cr

s [ML
−3] is the concentration of the source or sink flux for species r,

and
X

Rn [ML−3] represents the reaction term.
∂

∂xi
(nviC

r) represents the advection term and

describes the transport of miscible contaminants at the same velocity as the groundwater.
For many field-scale contaminant transport problems, the advection term dominates over other

terms. To measure the degree of advection dominance, a dimensionless Peclet number is usually
used; it is defined as

Pe =
|v|L
D

(1.8)

where |v| [LT−1] is the magnitude of the effective velocity vector, L [L] is the characteristic length
andD [L2T−1] is dispersion coefficient. For pure advection problems, the Peclet number approaches
infinity.
Dispersion in porous media refers to the spreading of contaminants over a region greater than

the one predicted from the advection process. Dispersion is caused by mechanical dispersion, a
result of deviations of actual velocity on a microscale from the average groundwater velocity and by
molecular diffusion driven by concentration gradients. Molecular diffusion is generally secondary
and negligible, compared with the effects of mechanical dispersion, and only becomes important
when groundwater velocity is very low. The sum of mechanical dispersion and molecular diffusion is
termed hydrodynamic dispersion. The hydrodynamic dispersion tensor (Dij) for a porous medium,
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is defined [Scheidegger, 1961] in the following component form:

Dxx = αL
v2x
|v| + αT

v2y
|v| + αT

v2z
|v| +D∗

Dxy = (αL − αT )
vxvy
|v| +D∗ = Dyx

Dxz = (αL − αT )
vxvz
|v| +D∗ = Dzx (1.9)

Dyy = αL
v2y
|v| + αT

v2x
|v| + αT

v2z
|v| +D∗

Dyz = (αL − αT )
vyvz
|v| +D∗ = Dzy

Dzz = αL
v2z
|v| + αT

v2x
|v| + αT

v2y
|v| +D∗

where Dxx, Dyy, Dzz, [L2T−1] are the principal component of the dispersion tensor; αL [L] is the
longitudinal dispersivity; αT [L] is the transverse dispersivity; D∗ [L2T−1] represents the effective
molecular diffusion coefficient; vx, vy, vz [LT−1] are the components of the effective velocity vector

v, |v| =
q
v2x + v2y + v2z .

The fluid sink/source term of the governing equation, qsCs, represents solute mass entering
the model domain through sources or leaving the model domain through sinks. Sinks or sources
may be classified as areally distributed sinks or sources or as point sinks or sources. The areally
distributed sinks or sources include recharge and evapotranspiration. The point sinks or sources
include wells, drains, and rivers.
The reactive terms, can be described, in general, as:

X
Rn = −ρb

∂
_
C
k

∂t
− λ1nC

k − λ2ρb
_
C
k

where ρb [ML
−1] is the bulk density of the subsurface medium;

_
C
k
[MM−1] is the concentration of

species k sorbed on the subsurfaces solid; λ1 [T−1] is the first order reaction rate for the dissolved
phase; and λ2 [T−1] is the first order reaction rate for the sorbed (solid) phase. In the applications of
the present thesis only non reactive pollutants have been considered such that the term

X
Rn = 0.
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Chapter 2

Introduction

The literature on inverse and ill-posed problem has grown substantially over the last 50 years
in many branches of science and mathematics. Typically ill-posed problems include numerical
differentiation on noisy data, the inverse heat conduction problem, interpretation of geophysical
data and the inverse problems of groundwater hydrology, i.e. the recovery of the release history of
pollutants and the evaluations of the hydraulic parameters of aquifers.
A well-posed mathematical-physical problem, according to Hadamard [1902], must satisfy three

requirements:

• Existence: there exists a function which satisfies governing equations and subsidiary condi-
tions.

• Uniqueness: there is only one solution of the problem.

• Stability: the variation of solution can be arbitrarily small, provided the variations of input
data are sufficiently small.

If anyone of these requirements is not satisfied, the problem is ill-posed.
Analyzing Figure 2.1 it is possible to better clarify the concept of ill-posed problem. A well-

posed problem is defined by a cause C and a modelM (see Figure 2.1). The modelM is assumed
continuous and well-defined, so for each cause C only one effect E is obtained, and for small
perturbation of C there are small perturbations in the effect E. So the problem is well-posed,
as meeting the conditions mentioned above, honours the conditions of existence, uniqueness and
stability. Otherwise the problems that do not respect these condition are ill-posed.
A particular ill-posed problem is the inverse one problem. For instance, the determination of

the cause C as a function of the effect E and the modelM, or the determination of the modelM
as a function of C and E. Intuitively, existence of an inverse solution appears to be no problem

M EC
Cause Model Effect

Figure 2.1: Sketch of problem

7



8 Andrea Zanini - Geostatistical approach: applications and improvements

at all, since the physical reality must be the solution. In practice the observation error of the
variables cannot be avoided. As a result, an accurate solution of an inverse problem may not
exist. Different combination of hydrogeologic conditions may lead to similar observations of water
level and solute concentration. It is thus impossible to uniquely determine the particularities of
an aquifer by only observing the variables, i.e. the non-uniqueness of inverse solutions is often
encountered. A solution, although it is existent and unique, can not be accepted, if it does not
continuously depend upon the input data. It is known that forward solutions in groundwater
modeling are always stable, (for example when hydraulic parameters and/or boundary conditions
change slightly, the water level should be slightly affected). Unfortunately, inverse solutions in
groundwater modeling are often unstable.
During the last 50 years several methods were developed to solve inverse problems. Sun [1994]

summarized the methods to solve the inverse problems that deals with the groundwater in four
categories: indirect methods; direct methods; adjoint state methods and stochastic methods.
As example of the indirect method it is relevant to list the Gauss-Newton optimizations algo-

rithm, the optimization method which it is specially designed for minimizing the objective function
which has the form of the sum square functions with regularization. In many cases there are dif-
ficulties associated with instability and nonuniqueness so several methods were developed to find
the "best possible" solution of the problem. The strategy of these methods is to avoid solving the
ill-posed problem directly and to solve a related well-posed problem whose solution is closed to
the solution of the real problem. Solutions found by these methods have been termed regularized
solutions or quasi solutions; an example of this is Tikhonov regularization.
The direct methods are not widely used, they are based on a general form of equation error

criteria. The inverse solution is obtained by solving a system of superdeterministic equations. The
ill-posedness of inverse problems in this case it is manifested by the ill-conditioning of coefficient
matrix. Data processing, adding constraints and parameterization are always necessary (using the
direct methods) for improving the stability of inverse solutions.
The adjoint state method is based on the variational theory; its applications include not only

parameter identification, but also sensitivity analysis, reliability estimates and observation design.
With the adjoint state method, the forward problem, for instance, the concentration as the depen-
dent variable, is replaced by the adjoint equation, with the adjoint state as the dependent variable.
The adjoint state is a function that describes the marginal change in the performance measure
due to, for instance, a unit injection of mass. The application of the adjoint state method to
groundwater modeling has been extensive in recent years [Sun and Yeh, 1990a, 1990b; Sun, 1994;
Neuaper and Wilson, 1999; Michalak and Kitanidis, 2004].
The stochastic method is another important field of solutions of inverse problems. To solve

inverse problems it is necessary to know prior information, field measurements and a conceptual
model relating the observation to the unknown parameters. There are three main advantage
of using the stochastic methods: first the prior information is easy to be incorporated into the
statement of the inverse problem; second the unknown parameters and their uncertainty can be
estimated at the same time; third the over-parameterization problem may be avoided, because
unknown parameters are regarded as a stochastic fields and described by only a few statistical
parameters.

2.1 Example

A problem is well-posed if it is solvable in a unique way and its solution depends with continuity
from the data. For instance the integral of a continuous function is a well-posed problem because
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it has a unique solution, while the derivative of a function is a ill-posed problem. Derivatives are
often encountered in inverse problems (the derivative is the inverse of the integral).
Considering the linear problem:

A · x = y (2.1)

if A is a square matrix and detA 6= 0, equation (2.1) is a well-posed problem and its solution is
x = A−1 · y. Otherwise if y /∈ Im(A), equation (2.1) is not solvable so an approximate solution
x0, that allows: kAx0 − yk = min {kAx− yk}, can be chosen as a regularized solution.
Different methods to solve the problem described by the equation (2.1) are present in literature,

in the following two methods are shown. The first is the Tikhonov regularization [Tikhonov and
Arsenin, 1977] briefly described and the second is the statistical method (that is described in the
following chapter and it is applied to several cases).

2.2 Tikhonov Regularization

The objective is to solve the equation (2.1); if kerA 6= 0 there are infinite solutions, and the
method looks for the one with minimum norm. Tikhonov regularization [Tikhonov and Arsenin,
1977] replaces the ill-posed problem with a well-posed minimization problem. The solution of the
equation (2.1) is reachable using the Lagrange multipliers, minimizing the following:

kAx− yk2 + α kxk2 (2.2)

where α is the Lagrange multiplier and represents the Tikhonov’s regularization parameter. The
solution x is considered an approximation of the true solution, because the problem in equation
(2.1) has only one solution. The solution of the equation (2.1) is an x0 vector that satisfies
y = A · x0 + η, where η is the error. Using Tikhonov’s regularization method the solution is

xα =
¡
ATA+ αI

¢−1
ATy (2.3)

The main problem of the method is the choice of the regularization parameter α that has to be
not too small or too large; several methodologies were developed with the aim of determine an
approximate α.
Applying the Tikhonov regularization to recover the release history of pollutants in ground-

water Skaggs and Kabala [1994] proposed the following methodology. The transport process in
groundwater can be represented by an integral [see Jury and Roth, 1990]. So given the linear
Fredholm equation of the first kind

y(ω) =

Z b

a

K(λ, ω)s(λ)dλ (2.4)

where K(λ, ω) and y(ω) are known and s(λ) is the unknown function. Solving the (2.4) for s is an
ill-posed problem, and an infinite set of functions s∗ that satisfy the following (2.5) exists:°°°°°y(ω)−

Z b

a

K(λ, ω)s∗(λ)dλ

°°°°° ≤ ε (2.5)

where ε represents the noise level data. The Tikhonov regularization [Tikhonov and Arsenin,
1977] replaces the ill-posed problem with a well-posed minimization problem. The function to be



10 Andrea Zanini - Geostatistical approach: applications and improvements

minimized is:

V (α) =

°°°°°y(ω)−
Z b

a

K(λ, ω)s(λ)dλ

°°°°°
2

+ α2 kLsk2 (2.6)

where L is the regularization operator and α is the regularization parameter which determines the
relative weight of L. The most common structure of regularization operator is

kLsk2 =
Z b

a

µ
dns

dλn

¶2
dλ (2.7)

where
dns

dλn
is the nth derivative of s with the zeroth derivative being equal to s. The accuracy

of the solution depends on finding a good value for α as mentioned above several method were
proposed to find an optimal value of α. Skaggs and Kabala [1994] used the method proposed by
Provencher [1982] and Obenchain [1977].
Let’s define:

F =
(V (α)− V (0)) (Ny −N0)

V (0)N0
(2.8)

where V (0) is the residual computed from the equation (2.6), with α close to zero, N0 is the number
of degrees of freedom associated with V (0), Ny is the number of observations of y and V (α) is the
residual obtained from the equation (2.6) for a particular value of α. The ratio in the equation
(2.8) can be evaluated using the Fisher distribution (F ), P (F, v1, v2), where v1 and v2 are the
number of degrees of freedom associated with the numerator and denominator, respectively, of F .
A good choice of α is a value that results in equation (2.8) being close to F0,5, where F0,5 is the

value of F such that half of the area under the Fisher distribution lies to the left of F0,5 and half to
the right. Provencher [1982] found that a solution obtained with this criterion can be interpreted
as being a parsimonious solution: the simplest solution that fits the data. This solution may not
contain all the details of the true solution but all the components that are required by the data
and exclude numerical artifacts.

2.3 The Statistical Method
Starting from the problem described by the equation (2.1) and considering a measurement y
affected by a noise η the problem becomes:

A · x = y = y0+η (2.9)

assuming that the noise is characterized by a Gaussian distribution with zero mean and covariance
known, x is also a random variable; the two variables η and x are independent so that Cov(x,η) =
0. Three variables are involved: x, y, and η. Let’s assume to solve the problem by means of a
linear estimation of x:

x = Ly = L(y0 + η)

and the best choice of L is the one that minimizes the following equation:

J(L) = tr {Cov(Ly − x)} = tr
©
E
£
(Ly− x)T (Ly− x)

¤ª
(2.10)

x and its realizations are unknown, and also y is unknown but the minimization problem with
respect to L is solvable. Ly0 = LAx− Lη, so the minimization problem becomes:
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(Ly − x)T (Ly− x)
= (LAx− Lη − x)T (LAx− Lη − x) =
= tr

n
(LAx− Lη − x) (LAx− Lη − x)T

o
=

= tr
n
L
h
AxxTAT + ηηT

i
LT − L (Ax− η)xT − x

³
xTAT − ηT )LT+xxT

´o
(2.11)

Integrating the (2.11) with respect to x and η and considering that x and η are independent the
(2.10) becomes:

J(L) = tr
n
L(ARAT +V)LT − LAR−RATLT +R

o
where R = xxT and V = ηηT , (V > 0). In order to minimize J it is sufficient to obtain the
minimization of

tr
n
LPLT − LAR−RATLT

o
(2.12)

where P = ARAT +V > 0 solving

tr

½h
LP1/2 −RATP−1/2

i h
LP1/2 −RATP−1/2

iT
−RAATRT

¾
so it is enough to minimize

tr

½h
LP1/2 −RATP−1/2

i h
LP1/2 −RATP−1/2

iT¾
=
°°°LP1/2 −RATP−1/2

°°°2
the minimum is reached for L0 = RA

TP−1 so the best estimate of x is

∧
x = L0y = RA

TP−1y = RAT
³
ARAT +V

´−1
y (2.13)

In many cases the elements ηi of the noise η are independent so that its covariance is

cov(η) =diag [v1, v2, ..., vn] , with vi > 0

Frequently the statistics of the errors are constant, so vi = αi with i = 1, ...,m, in this case the η
is called white noise and the estimate becomes:

∧
x = RAT

³
ARAT + αI

´−1
y =

¡
ATAR+ αI

¢−1
RATy (2.14)

and if R = I the equation (2.14) becomes:
∧
x =

¡
ATA+ αI

¢−1
ATy that is the same form of the

Tikhonov’s regularization. That means that the method proposed by Tikhonov is a particular
case of the statistical one in practice the Tikhonov regularization gives the same weight to all the
information.
The statistical method proposes another way to evaluate the parameter α. It is possible to

apply this method when the error of the estimate satisfies the following equations:

E(η) = 0 (2.15)

E(ηηT ) = Cov(η) =σ2I
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where I is a n×n matrix. The second line of (2.15) implies that tr
£
E
¡
ηηT

¢¤
= nσ2 that represents

the variance of the error. Considering δ =
√
nσ and E

³
kxα,δ − xαk2

´
with

xα =
¡
ATA+ αI

¢−1
ATy,xα,δ =

¡
ATA+ αI

¢−1
AT (y+ η)

So E
³
kxα,δ − xαk2

´
= nσ2tr

h
A
¡
ATA+ αI

¢−1 ¡
ATA+ αI

¢−1
A
i
. α is chosen in order to min-

imize the residual above the difference between xα,δ and xα:

k(y + η)−Axα,δk2°°°tr hA (ATA+ αI)
−1
(ATA+ αI)

−1
A
i°°°



Chapter 3

Geostatistical Method

3.1 Introduction

The history of the geostatistical approach to the inverse problem starts with the basic works of
Matheron [1963, 1971, 1973] and then the methodology was developed by several authors as for
instance: Kitanidis and Vomvoris [1983], Dagan [1985], Hoeksema and Kitanidis [1984, 1985,
1989], Rubin and Dagan [1987a, 1987b] and Wagner and Gorelick [1989].
This work is along the line of the work proposed by Kitanidis and Vomovoris [1983] and Ki-

tanidis [1995]; a list of the main papers relating to this methodology, is presented in the following.
Kitanidis and Vomvoris [1983] proposed the geostatistical inverse methodology to estimate hydro-
geological parameters and applied it to a one dimensional case. Hoeksema and Kitanidis [1984]
extended the methodology to a 2-D aquifer. Then in 1989 the same authors applied the method-
ology to the prediction of the transmissivities, heads and velocity [Hoeksema and Kitanidis, 1989].
Kitanidis [1995] improved the quasi-linear geostatistical theory; in the paper the author explained
and applied the method to a nonlinear case. In the last ten years several enhancements were
proposed. Snodgrass and Kitanidis [1997] applied the methodology to the recovery of pollutants
history in 1-D case, and Michalak and Kitanidis [2002, 2003, 2004a] made several improvements to
this procedure. In 2002 they applied the methodology to a real case [Michalak and Kitanidis, 2002]
(this is the first application of the geostatistical approach to contaminant source identification in a
multi dimensional domain, in a non-point source, and with both spatially and temporally distrib-
uted data). In the meanwhile Butera and Tanda [2001] applied the method to a 2-D aquifer, then
in 2002 and 2003 Butera and Tanda [2002, 2003] studied the case of an aquifer with multiple point
sources and with areal sources. In the work of Michalak and Kitanidis [2003] the authors proposed
a new method to enforce parameter non negativity (to avoid negative concentration data); in 2004
[Michalak and Kitanidis] used the adjoint state method applied to the geostatistical procedure
to identify the source release, this work allows to use the methodology with a multidimensional
heterogeneous media. In the work of Butera and Tanda [2004] the authors considered the case
of temporally distributed data and the possibility to apply the methodology to a heterogeneous
aquifer, considering the theory of the stochastic transport of pollutants. Further contributions to
the methodology come from Kitanidis and Lane [1985] who applied the Gauss-Newton method for
maximum likelihood. Kitanidis [1996] made a comparison between the geostatistical approach and
the maximum a posteriori probability method. Kitanidis and Shen [1996] proposed a methodol-
ogy for the estimate of solute concentration contour maps and volume averages and presented a

13
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method for the optimization of a parameter (see the following chapter) that constrains concentra-
tions to positive values. Kitanidis [1997] presented a method to obtain a stable and a reasonable
estimate with the minimum possible suppositions about the unknown function or its structure. In
the work of Kitanidis [1999] the author examined which generalized covariance function produces
the flattest possible estimate of an unknown function that is consistent with the data. Nowak
et al. [2003] proposed a spectral method regarding the matrix multiplications to speed up the
procedure. Nowak and Cirpka [2004] developed a modified Levenberg-Marquardt algorithm for
the geostatistical approach in order to increase the stability in cases with strong nonlinearity.

3.2 Quasi-Linear Geostatistical Approach
This section gives a brief description of the quasi-linear geostatistical approach applied to the
recovery of the conductivity field, a detailed one can be find in the work of Kitanidis [1995]. The
approach consists of two steps:
the first step (structural analysis) in geostatistics is to characterize the random field by

functions of a few parameters that describe the statistic field. β and θ are the structural parameters
of the process, s, that is a spatially variable parameter (such as the log conductivity). s is the n×1
vector of discretized values with expected value E [s] = Xβ where X is a known n×p matrix, β are

p unknown coefficients and covariance matrix: E
h
(s−Xβ) (s−Xβ)T

i
= Q(θ). The covariance

matrix Q is considered a known function of the parameters θ.
The observations z (m×1) are related to the unknown spatial process and the other parameters

through z = h(s, r) + v, where r are other unknown parameters (such as boundary conditions,
sources and sinks, ...) and v is the observation error with normal distribution, zero mean, and
covariance matrix R =E

£
vvT

¤
, that is fixed or a known function (assuming that the errors are

taken to be independent and identically distributed with variance σ2R, the covariance matrix be-
comes R = σ2R · I, where I is the identity matrix). The standard deviations of the measurements
errors (which are the square root of the diagonal elements of R) define how closely the observations
should be reproduced. The vector z is a random vector being function of s and v, that are random
vectors. The probability density function (pdf) of z depends on the distribution of s and v and
also on the function h and it is generally complex to evaluate.
From the Bayes theorem the posterior pdf of a state vector s given an observation vector z is

proportional to the likelihood of the data given the state, times the prior pdf of the state:

p00(s) =
p(z|s)p0(s)

p(z)
(3.1)

where p(z) =
Z

s

p(z|s)p0(s)ds =
Z

s

p(z, s)ds, the prior, p0(s) = probability of the events (that

represents the assumed structure of the unknown function) is Gaussian and can be defined by the
following equations:

p0(s|β,θ, r) ∝ exp
µ
−1
2
(s−Xβ)T Q−1 (s−Xβ)

¶
(3.2)

The likelihood function is also a Gaussian function represented by:

p(z|s,β,θ, r) ∝ exp
µ
−1
2
(z− h(s, r))T R−1 (z− h(s, r))

¶
(3.3)
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so the posterior is

p00(s|β,θ, r) ∝ exp
µ
−1
2
(s−Xβ)T Q−1 (s−Xβ)− 1

2
(z− h(s, r))T R−1 (z− h(s, r))

¶
(3.4)

which is Gaussian.

p(z, s|β,θ, r) ∝ exp
µ
−1
2
(s−Xβ)T Q−1 (s−Xβ)− 1

2
(z− h(s, r))T R−1 (z− h(s, r))

¶
p(z|β,θ, r) ∝

Z
s

exp

µ
−1
2
(s−Xβ)T Q−1 (s−Xβ)− 1

2
(z− h(s, r))T R−1 (z− h(s, r))

¶
ds

(3.5)
The elimination of β can be achieved by working with the restricted likelihood, obtained through
averaging over all values of the drift coefficient β, so 3.5 becomes:

p(z|θ, r) =

Z
s

p(z|β,θ, r)dβ

p(z|θ, r) ∝ |R|−1/2 |Q|−1/2
¯̄
XTQ−1X

¯̄−1/2 · (3.6)Z
s

exp

µ
1

2
(z− h(s, r))T R−1 (z− h(s, r)) + 1

2
sTGs

¶
ds

where
G = Q−1 −Q−1X(XTQ−1X)−1XTQ−1

The following step is the application of the restricted maximum likelihood estimation, that consists
of finding the values of the parameter θ and r that maximize the expression p(z|θ, r), in equation
(3.6). Minimizing the log of the posterior pdf (3.6) is equal to maximizing the posterior probability
but easier to handle, so that the negative log of the posterior pdf is

L = − ln p00 (s|β,θ, r) (3.7)

Assuming that Q and R are already been assigned, the observation equation is z = h(s) +v. The
negative log-likelihood function (3.7) that is represented by the following

1

2
(z− h(s, r))T R−1 (z− h(s, r)) + 1

2
(s−Xβ)T Q−1 (s−Xβ) (3.8)

must be minimized with respect to s and β so (3.8) becomes:

1

2
(z− h(s, r))T R−1 (z− h(s, r)) + 1

2
sTGs =min (3.9)

The appropriate iterative procedure is the Gauss-Newton method, obtained by linearizing h about
the most recent estimate and solving the optimization problem starting with an estimate

∼
s0 =

∧
sk.

The procedure starts finding the derivative of h about s at
∼
s:
∼
H =

∂h

∂s

¯̄̄̄
s=
∼
s

, this sensitivity matrix

is found using the adjoint state method. Assuming that the actual
∧
s is close to

∼
s, approximate

h
³∧
s
´
= h

³∼
s
´
+
∼
H
³∧
s − ∼s

´
and defining:

∼
Σ =

∼
HQ

∼
H

T

+R (3.10)
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In the parameter estimation step, z0 = z− h
³∼
s
´
+
∼
H
∼
s and H are treated as constant. Carrying

out the integration and simplifying, the p(z|θ, r) can be written:

p(z|θ, r) ∝ |Σ|−1/2
¯̄
XTHTΣ−1HX

¯̄−1/2
(3.11)

exp

∙
−1
2
zT0

³
Σ−1 −Σ−1HX

¡
XTHTΣ−1HX

¢−1
XTHTΣ−1

´
z0

¸
The problem of maximum likelihood estimation is equivalent to minimize the negative logarithm
of the pdf

L =
1

2
ln |Σ|+1

2
ln
¯̄
XTHTΣ−1HX

¯̄
+ (3.12)

+
1

2
zT0

³
Σ−1 −Σ−1HX

¡
XTHTΣ−1HX

¢−1
XTHTΣ−1

´
z0

minimizing with respect to θi and considering

Ξ = Σ−1 −Σ−1HX
¡
XTHTΣ−1HX

¢−1
XTHTΣ−1

gi =
∂L

∂θi
=
1

2
Tr

∙
Ξ
∂Σ

∂θi

¸
− 1
2
zT0

µ
Ξ
∂Σ

∂θi
Ξ

¶
z0

Considering the Fisher information matrix F,

Fij = E

∙
∂2L

∂θi∂θj

¸
=
1

2
Tr

∙
Ξ
∂Σ

∂θi
Ξ
∂Σ

∂θj

¸
(3.13)

it is possible to apply the Gauss-Newton method to solve the problem [see for more details Kitanidis
and Lane, 1985].

θl+1 = θl −F−1g (3.14)

For a complex case it may be helpful to add the Marquardt modification replacing F−1 with
(F+λI)−1, where λ is a positive parameter.

Once the iterations have converged it is possible to form and solve the following cokriging
system (second step: estimate of the spatial function):⎡⎢⎣

∼
Σ

∼
HXµ

∼
HX

¶T
0

⎤⎥⎦∙ ΛTM
¸
=

" ∼
HQ
XT

#
(3.15)

where ΛT is an m × n matrix of coefficients and M is a p × n matrix of multipliers. Then the
cokriging estimate (Λ form) is

∧
s = Λz0 (3.16)

If s is practically equal to
∼
s , the algorithm has converged and the covariance matrix of estimation

is:

V = −XM+Q−Q
∼
H

T

ΛT (3.17)
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otherwise
∼
s is set equal to

∧
s and the procedure is repeated.

This procedure is analogous to the one used in kriging processes. Another approach (ξ form)
is analogous to the procedure for function estimation. The solution is:

∧
s = X

∧
β+Q

∼
H

T

ξ (3.18)

where the
∧
β and ξ coefficients are found by solving a single linear system of m+ p equations:⎡⎢⎣

∼
Σ

∼
HXµ

∼
HX

¶T
0

⎤⎥⎦" ξ
∧
β

#
=

"
z− h

³∼
s
´
+
∼
H
∼
s

0

#
(3.19)

When the iterative procedure has converged, the posterior covariance matrix can be computed,
through the linearization approximation, as follows:

∙
Pyy Pyb

PT
yb Pbb

¸
=

⎡⎢⎣ Σ
∼
HXµ

∼
HX

¶T
0

⎤⎥⎦
−1

(3.20)

where Pyy is (m×m), Pyb is (m×p), and Pbb is (p×p). Then the covariance matrix of estimation
is

V = Q−QHTPyyHQ−XPbbX
T −XPT

ybHQ−QHTPybX
T

The methodology is summarized in the flow chart represented in Figure 3.1.
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linvflag

Parameter estimation loop

FALSE

TRUE

FALSE

TRUE

Forward problem

H matrix (adjoint state)

Solve the problem with θο

Correction of parameters θ

if |L-Lold| <
value #2

Final results

Selection of the Covariance
model

Initial Conditions

If |L-Lold| <
value #1

Perform inversing

Covariance matrix Q=Q(θo)

Optimization and estimation of s

Figure 3.1: Flow chart of the methodology.
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Chapter 4

Application to the Recovery of
Pollutants Release History

4.1 Literature Review

In the last 50 years one of the main problems in environmental issues is the groundwater contami-
nation caused by industrialization, chemical fertilizer, waste disposal etc. Increasing environmental
consciousness has developed several tools for the reclamation of groundwater but who has to pay?
So, it was stated the principle: "The polluter pays", but who is the polluter? Several techniques
were developed to find the cause of the pollution and in the last 30 years several methods were de-
veloped to study the release time history of the pollutants. One of the first methods was proposed
by Gorelick et al. [1983]. This approach combines numerical simulation methods and linear pro-
gramming with estimation techniques and multiple regression aimed at identifying the groundwater
source locations and magnitudes; it is applicable to well defined groundwater systems. Wagner
[1992] developed a deterministic approach to the simultaneous estimation of model parameters
and the solute source characteristics. Skaggs and Kabala [1994] applied Tikhonov regularization
to find the release history of the pollution source. Through this method the inverse problem is
reduced to a minimization problem with a unique solution; this method, however, is affected by
the plume measurement errors and by the accuracy of the transport parameter estimates. More-
over it presents an internal parameter whose estimation is quite difficult and arbitrary. Skaggs
and Kabala [1995] proposed a quasi reversibility method that it is easier to implement, but it is
less accurate than Tikhonov regularization. Woodbury et al. [1996, 1998] proposed the Minimum
Relative Entropy approach to recover the release and the evolution histories of a plume. Aral
and Guan [1996] used genetic algorithms and response matrix technique to identify sources of
groundwater pollution. Mahar and Datta [1997] applied nonlinear optimization models for the
identification of the unknown groundwater pollution sources by means of embedding technique
and for the estimation of the aquifer parameters [Mahar and Datta, 2000, 2001]; they specifically
addressed the problem of designing an optimal monitoring network for efficient source identification
[Mahar and Datta, 1997]. Snodgrass and Kitanidis [1997] and Michalak and Kitanidis [2002, 2003,
2004b, 2004c] developed and applied the geostatistical methodology to recover the release history.
Butera and Tanda [2001, 2002] improved the geostatistical methodology proposed by Snodgrass
and Kitanidis [1997] for a 2-D case, with multiple sources and in a heterogeneous field [Butera
and Tanda, 2003]. Liu and Ball [1999] applied the Tikhonov regularization, proposed by Skaggs
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Figure 4.1: Summary of the methodologies, from Michalak and Kitanidis [2004b].

and Kabala [1994] to a real site. Neuaper and Wilson [1999] showed that the backward model
probabilities (probability of where the particle was located at some prior time) are adjoint states
of resident concentration and provided a methodology for obtaining the governing equations of
these probabilities. Birchwood [1999] used a Fourier based inverse technique to recover the source
location and the release history of the groundwater contaminant plume from breakthrough curve
data obtained at a single monitoring well. Alapati and Kabala [2000] used a nonlinear least squares
method without regularization to recover the release history of a groundwater contaminant plume
given its measured spatial distribution. Atmadja and Bagtzoglou [2000, 2001] improved the Back-
ward Beam Equation (Marching-Jury Backward Beam Equation-MJBBE) to solve the Advection
Dispersion Equation within a contaminant source identification context. Bagtzoglou and Atmadja
[2003] made a comparison between the Quasi Reversibility method and the MJBBE to recover
conservative contaminant plume spatial distribution. Michalak and Kitanidis [2004b] applied the
adjoint state method to the geostatistical procedure with the aim at recovering of the precedent
distribution of contaminant at a given point back in time. The described methodology is able
to manage heterogeneous fields as it can use numerical codes for solving the flow and transport
problems. Neuaper and Wilson [2005] improved the backward probability model [Neuaper and
Wilson, 1999] adding the possibility to sample at multiple locations and times and applied the
methodology to a real case to identify the source location.

More specific literature review and several comparisons were carried out by Neuaper et al.
[2000], Atmadja and Bagtzoglou [2001] and Michalak and Kitanidis [2004b], see Figure 4.1.



CHAPTER 4. APPLICATION TO THE RECOVERY OF POLLUTANTS RELEASE HISTORY 23

4.2 Methodology
The methodology proposed byKitanidis [1995] and Snodgrass and Kitanidis [1997] has been studied
and applied because it resulted the most promising after the literature review. The methodology is
briefly explained in the following; for more details see Kitanidis [1995] and Snodgrass and Kitanidis
[1997]. The value of the concentration may be estimated by the following expression:

z = h(s, r) + v (4.1)

where z is an m× 1 vector of observations, s is the unknown release function discretized in n time
intervals, r is a vector that contains other parameters needed by the model function h(s, r) (for
instance the aquifer parameters). In this work the parameters r are assumed known so the equation
(4.1) is reduced to z = h(s)+v. h(s) is an m×1 vector that represents the transport process. v is
an m× 1 vector of measurements errors assumed with zero mean and known covariance matrix R.
The unknown function s(t) is analyzed as a stochastic random process characterized by the mean

E[s] = Xβ and covariance matrix Q(θ) = E
h
(s−Xβ) (s−Xβ)T

i
, where X is a known n × p

matrix and β are p×1 unknown drift coefficients; θ are the unknown parameters of the covariance
matrixQ. Taking for instance the Gaussian distribution, the parameters ofQ are the variance (σ2)
and the characteristic time length (l). For conservative solute transport the relationship between
the observed concentration and the solute input is linear so the equation (4.1) can be simplified to

z =H · s+ v (4.2)

where H is a known matrix m × n and represents the matrix of the transfer functions. The
estimation procedure proposed by Kitanidis [1995], see section 3.2, is divided into two parts; first
the structural parameters θ of the chosen distribution are found then the unknown release
function is estimated. The parameters θ are estimated maximizing the probability that the
process represents the observation z, through the following equation:

p(z|θ) ∝ |Σ|−1/2
¯̄
XTHTΣ−1HX

¯̄−1/2
exp

∙
−1
2
zTΞ−1z

¸
(4.3)

where
Σ =HQHT +R (4.4)

(Σ is a m×m matrix) and

Ξ = Σ−1 −Σ−1HX(XTHTΣ−1HX)−1XTHTΣ−1 (4.5)

(Ξ is a m×m matrix). Maximizing the (4.3) is equivalent to minimizing the negative logarithm
of p(z|θ):

L(θ) =
1

2
ln |Σ|+ 1

2
ln
¯̄
XTHTΣ−1HX

¯̄
+
1

2
zTΞ−1z (4.6)

The β parameters are eliminated by the integration described in equation (3.6) (see the section
3.2) this process removes the bias caused by the unknown coefficients β. The minimization of
equation (4.6) can be achieved by taking derivatives of L(θ) respect to θ and setting them to zero.
This process can be defined by:

gi =
∂L

∂θi
=
1

2
Tr

∙
Ξ
∂Σ

∂θi

¸
− 1
2
zT
µ
Ξ
∂Σ

∂θi
Ξ

¶
z
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and this equation can be solves numerically using the Gauss-Newton iterative method:

θi+1 = θi −F−1g

where F is the Fisher information matrix:

Fij =
1

2
Tr

∙
Ξ
∂Σ

∂θi
Ξ
∂Σ

∂θj

¸
Sometimes it is necessary to apply the Marquardt modification by replacing F−1 with (F+ λI)−1,
where I is the identity matrix and λ is a positive parameter.
Once that the iterations have converged and the θ are evaluated it is possible to obtain the

best estimate of the release function s(t) by solving the universal Kriging:

ŝ = Λ · z

The Kriging method evaluates the Λ coefficients (n × m) with the constrains of unbiased mean
and minimum variance of the error, solving the following system:∙

Σ HX
(HX)T 0

¸ ∙
ΛT

M

¸
=

∙
HQ
XT

¸
(4.7)

where M is a matrix of multiplier (p × n). The covariance matrix (n × n) of the error of the
estimate is

V = −XM+Q−QHTΛT (4.8)

The transfer matrix H, discretized in n regular time intervals ∆t, results the following:

H = ∆t ·

⎡⎢⎢⎣
f (x1, T − t1) ... f (x1, T − tn)
f (x2, T − t1) ... f (x2, T − tn)

... ... ...
f (xm, T − t1) ... f (xm, T − tn)

⎤⎥⎥⎦ (4.9)

The function f (xi, T − tj) represents the transfer functions (TFs) located in the point i at time
T − tj . In simple cases such as 1-D or 2-D uniform flow, an analytical solution for the TF is
available (for instance equation (5.11)). This methodology (unconstrained case) is functional
and fast but does not enforce the non-negativity of the concentration (see Figures 5.7 and 5.17);
then, with the aim at avoiding this kind of problem, a transformation of the unknown variable s
has been proposed [Kitanidis and Shen, 1996; Snodgrass and Kitanidis, 1997]. The new unknown
becomes:

∼
s = α

³
s1/α − 1

´
(4.10)

where α is a positive number and chosen as small as possible while ensuring that
∼
s > −α; (in this

work α = 2). The values of s are then constrained to be positive (constrained case) and they
are physically compatible.
The equation (4.1) in the transformed spaces becomes:

z =
∼
h
³∼
s
´
+ v = h

"Ã∼
s + α

α

!α#
+ v (4.11)
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In this case the transfer function
∼
h
³∼
s
´
is not linear with respect to the unknown

∼
s and the solution

is reached iteratively [see Kitanidis, 1995]. The procedure starts with making an initial estimate

of the unknown
∼
s l then the derivative of

∼
h with respect to

∼
s at

∼
s l is found:

∼
Hl =

∂
∼
h

∂
∼
s

¯̄̄̄
¯̄
∼
s=
∼
s l

(4.12)

Then it is possible to find the new estimate: ŝl_1 = Λ · z0l, where z0l = z −
∼
h
³∼
s l

´
+
∼
H
∼
lsl, and

∼
h
³∼
s0

´
=

tZ
0

Ã∼
s0 + α

α

!α

f (x, t− τ) dτ , where
∼
s0 is the initial guess. The Λ (n × m) matrix of

coefficients is evaluated from the solution of the following system:⎡⎢⎣ Σ
∼
HlXµ

∼
HlX

¶T
0

⎤⎥⎦∙ ΛTM
¸
=

" ∼
HlQ
XT

#

where Σ =
∼
HlQ

∼
H

T

l +R andM is a matrix of multiplier (p× n). The transfer function matrix
∼
Hl

for the transformed variable
∼
s l becomes:

∼
Hl = ∆t ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã∼
s0(t1) + α

α

!α−1

f (x1, T − t1) ...

Ã∼
s0(tn) + α

α

!α−1

f (x1, T − tn)Ã∼
s0(t1) + α

α

!α−1

f (x2, T − t1) ...

Ã∼
s0(tn) + α

α

!α−1

f (x2, T − tn)

... ... ...Ã∼
s0(t1) + α

α

!α−1

f (xm, T − t1) ...

Ã∼
s0(tn) + α

α

!α−1

f (xm, T − tn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The structural parameters θ are evaluated at each iteration minimizing the equation:

L (θ)=
1

2
ln |Σ|+ 1

2
ln

¯̄̄̄
XT

∼
H

T

l Σ
−1∼HlX

¯̄̄̄
+
1

2
zT0lΞ

−1z0l

where Ξ = Σ−1 −Σ−1
∼
HlX

µ
XT

∼
H

T

l Σ
−1
∼
HlX

¶−1
XT

∼
H

T

l Σ
−1.

In the parameter estimation step z0l and
∼
Hl are treated as constants and the minimization is

obtained using the Gauss-Newton method (see equation (3.14)). Once θ is found it is used to find
and update the value of

∼
s l. This iterative process is continued until

∼
s l and θ converge. The final

value of
∼
s l is the best estimate of the transformed function and its covariance function is given by

the equation V = −XM+Q−Q
∼
H

T

ΛT .
At the end of the process it is necessary to apply the inverse transformation of equation (4.10)

to calculate the release function s(t); the best estimate results:

∧
s =

Ã∼
s l + α

α

!α

(4.13)
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In the last ten years several improvements of the methodology were proposed. Butera and Tanda
[2001] applied the methodology proposed by Snodgrass and Kitanidis [1997] to a 2-D domain (see
the following sections) and they made an analysis on the impact of measurements concentration
errors, on the impact of errors in aquifer parameters estimate and erroneous identification of the
hydraulic gradient direction. Michalak and Kitanidis [2002] applied the methodology to a real
case and enhanced the methodology with the spatially and temporally distributed data. So the
sensitivity matrix becomes:

H =

⎡⎢⎢⎣
f(x1, T1 − t1) ... f(x1, T1 − tm)
f(x2, T2 − t1) ... f(x2, T2 − tm)

... ... ...
f(xn, Tn − t1) ... f(xn, Tn − tm)

⎤⎥⎥⎦ (4.14)

Butera and Tanda [2002, 2003] applied the methodology both to sources of finite dimensions
and point sources and to single and multiple sources. For instance, for two sources mutually
independent, the H matrix becomes:

H =
£
H1 H2

¤
(4.15)

and s =
∙
s1
s2

¸
where 1 means the first source and 2 the second one. The covariance matrix

becomes:

Q =

∙
Q1 0
0 Q2

¸
(4.16)

Michalak and Kitanidis [2003] developed a new method to enforce parameter non negativity, that
uses the Markov Chain Monte Carlo theory. This new improvement was also tested to a real case
[Michalak and Kitanidis, 2004a] previously analyzed by Liu and Ball [1999]. Butera and Tanda
[2003] applied the methodology with temporally distributed data to a heterogeneous stochastic
field. The objective of the paper of Michalak and Kitanidis [2004b] doesn’t deal with the recovery
of the release function but with the determination of the antecedent distribution of contaminant
at a given point back in time. That is a new point of view on the inverse problem of transport that
needs only a few hypotheses on the boundary condition (i.e. no location of extension of the source
is required) and seems to give more information in space. But since the unknown functions are
several, it needs a large amount of computational efforts for the backward recovering or eventually
for the forward forecasting of the pollutant transport. With the recovering of the pollutant release
history, described in the present paper, both the backward and forward procedures are easy and
very computing time saving.
In the following chapters new developments of the methodology proposed by Snodgrass and

Kitanidis [1997] are shown.



Chapter 5

New Developments in the
Recovering the Pollutants Release
History: Transfer Function

Some approaches developed in the literature in order to solve the second type of inverse problem (for
instance geostatistical approach and Tikhonov regularization method [Skaggs and Kabala, 1994])
require the computation of the function that describes the effect in time, in a certain location of
the aquifer, of an impulsive release of pollutant in the source. This function, named transfer or
Kernel function (TF) can be analytically determined if the problem has a simple geometry and
boundary conditions. In many cases the characteristics of the groundwater flow field do not allow
an analytical transfer function formulation; this is the case, for instance, of non uniform in the mean
flow field due to complex boundary conditions, or to the existence of pumping wells, or to high
heterogeneity of conductivity fields [Sudicky, 1986]. With the available procedures the technician
has to reduce the real problem to a very simplified scheme to which the analytical transfer function
can be applied. As a consequence a rough approximation of results can be expected.
In this work a new methodology for the evaluation of the transfer function is presented; it allows

the application of the approach to real cases without using heavy simplification. This methodology
is based on the analogy between the TF and the Instantaneous Unit Hydrograph (IUH) in surface
hydrology. It is possible to evaluate the TF using a numerical model that represents the study
area, so that for each monitoring point it is possible to get a transfer function. The numerical
model has to be set up previously, starting from real field data. Then using a step input function
for each source it is possible to evaluate the breakthrough curve. The transfer function is evaluated
making the time derivative of the breakthrough curve. Two analytical examples are compared to
test the methodology, then several synthetic cases are shown to highlight the great potential of the
methodology.

5.1 Mathematical Formulation

As shown in the literature review proposed by Michalak and Kitanidis [2004b] (see Figure 4.1)
only a few methodologies proposed in the last years are flexible for application to multiple sources,
heterogeneity, multi dimensional case and non uniform flow, and none of them has all those char-
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acteristics (see section 4.1). In this paper a new methodology (preliminary results are reported in
Butera et al. [2004], Tanda et al. [2005] and Zanini et al. [2005]) developed by the writer, with
the aim at overcoming the limitations caused by the non uniformity of flow field, is described in
the following.
The equation (5.1) represents the transport process considering a non reactive solute and a

medium with constant porosity.

∂ (nC)

∂t
= −∇ (nC · v) +∇ (D · n∇C) + Cin (t) δ (x− x0) (5.1)

v is the effective velocity, n the porosity, D the dispersion coefficients and C (x, t) the concentration
at the location x at time t. Equation (5.1) is a linear differential equation; considering as boundary
and initial conditions: C (x, 0) = 0; C (∞, t) = 0, C (x0, t) = Cin (t), where Cin (t) represents the
source release, the solution of equation (5.1) is given by the following integral [Jury and Roth,
1990]:

C (x, t) =

tZ
o

Cin (τ) · f (x, t− τ) dτ (5.2)

where f (x, t− τ) is the Kernel or transfer function (TF). Considering the variable transformation
y = t− τ , so dy = −dτ and for τ = 0 y = t, for τ = t y = 0, the equation (5.2) becomes:

C (x, t) =

tZ
o

Cin (t− y) · f (x, y) dy (5.3)

turning y in τ the (5.3) results:

C (x, t) =

tZ
o

Cin (t− τ) · f (x, τ) dτ (5.4)

The Heaviside function (called also unit step function) is considered as the input function (Cin (t) ≡
H (t)); H (t) is represented by the following, see also Figure 5.1:

H (t) =

½
0 : t < 0
1 : t > 0

(5.5)

The integral (5.4) due to the Heaviside function for t > 0 becomes

CH (x, t) =

tZ
o

1 · f(x, τ)dτ (5.6)

The time derivative1 of (5.6) is

∂CH (x, t)

∂t
=

Z t

0

∂f (x, t)

∂t
dτ + f (x, t) · 1− f (x, 0) · 0 (5.7)

1Differentiation under the integral sign [Amerio, 1974]:

∂

∂y

Z β(y)

α(y)
f(x, y)dx =

Z β(y)

α(y)

∂f(x, y)

∂y
dx+ f(β(y), y)

∂β(y)

∂y
− f(α(y), y)

∂α(y)

∂y
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Figure 5.1: Heaviside function, equation (5.5), used as input function.

where the first (
Z t

0

∂f (x, t)

∂t
dτ) and the third terms (f (x, 0) · 0) are null; then the equation (5.7)

results
∂CH (x, t)

∂t
= f (x, t) (5.8)

Equation (5.8), obtained for a stepwise input function, allows to outline a methodology for the
identification of the TF also in complex cases (for instance in heterogeneous media, or in the pres-
ence of wells, recharge, etc.) where the TF is not always analytically known. The new methodology
proposed in this work takes advantage of equation (5.8) so that it is possible to apply the available
procedures, as e.g. the Tikhonov regularization [Skaggs and Kabala, 1994] and the geostatistical
procedure [Snodgrass and Kitanidis, 1997] for a generic flow field.
It is possible to recognize an analogy with a well known hydrological problem: the computation

of the runoff from a basin after a rain event. In fact equation (5.2) can be compared to the
convolution integral that joins the net rainfall to the outflow in a given cross section of a river.
As known, the impulse response function of the basin is called Instantaneous Unit Hydrograph
(IUH) [Chow, 1964; Wilson, 1990]. In general it is possible to recover the IUH of a basin if the
net rainfall and the outflow in the closing section of a basin are known. The determination of the
IUH is very easy if the net rainfall hyetograph is very long and constant in time (indefinite step
condition): the runoff hydrograph becomes as S curve and its derivative coincides with the IUH
function. These concepts can be extended to the present problem: the equation (5.2), at a given
location with coordinates x, is comparable to the surface hydrology convolution integral, where
the IUH plays the role of the TF and the net rainfall the role of the release function.
Unfortunately it is not possible to register the response of an aquifer due to an indefinite step

injection, because such test can requires too long a time; however, a numerical model of flow
and transport of the studied aquifer is often available for the prediction of the pollutant fate or
for planning remediation actions; this model can also be used to simulate the response of the
aquifer to an appropriate injection function. A step injection (Heaviside function, see equation
(5.5) and Figure 5.1) can be applied using a numerical model of flow and transport of the studied
area; the model has to be already calibrated and the source location also known [Snodgrass and
Kitanidis, 1997]. In each node of the computation mesh it is possible to register a response function
(breakthrough curve) in terms of concentration versus time with, generally, the shape of a S curve
(see Figure 5.2a). The time derivative of this function (see Figure 5.2b) is the TF that describes
the response due to an impulsive injection of pollution into the aquifer.
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Figure 5.2: a) Breakthrough curve b) Derivative of breakthrough curve.

The choice of using an input step function and then deriving numerically the breakthrough
curve rather than computing directly the aquifer response due to an impulsive injection, can be
explained by the need of reducing numerical errors caused by the discrete time representation
of the process, that are unavoidable in the numerical computations. The numerical description
of an impulse necessarily have to develop in a small but finite time (not infinitesimal) so the
aquifer response is not correct because it is due to a finite injection and not to an impulsive one.
Besides, the responses of areas far from the source and less exposed to the contamination, can be
underestimated. The study of the transport of a step input of infinite time length is more accurate
and not affected by such kind of errors.

For a given measurement point, the breakthrough curve is an output of the numerical model and
it consists in a series of concentration values recorded in time. The shorter is the temporal interval
between two computations, the more accurate is the computation of the numerical derivative of
the TF curve; by definition, the derivative can be calculated as the rate ∆C/∆t, with ∆t→ 0.

Once the TFs are obtained, it could be possible to forecast the evolution of the pollution in the
aquifer by means of equation (5.2), if the release history of the source is known, but this application
is useless since the numerical model of the aquifer is available. Instead, the TFs, obtained by the
numerical derivative, are very useful to solve the inverse problem of the second kind object of
this work. Toward this end the methodology proposed by Snodgrass and Kitanidis [1997] can be
adopted.
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5.2 Mathematical Statement of the Problem

In the following, 1-D and 2-D flow cases are considered for the application of the geostatistical
approach making use of the considerations reported in section 5.1. In all the examples the procedure
is applied in the constrained case.

5.2.1 Mathematical Statement of the 1-D Problem

Concerning the transport process of a conservative solute in a 1-D steady flow the advection
dispersion equation (5.1) collapses in the following:

∂C

∂t
=

∂

∂x

µ
D(x)

∂C

∂x

¶
+

∂

∂x
(vC) (5.9)

v is the effective velocity, D the longitudinal dispersion and C (x, t) the concentration at the
distance x from the source at time t. Equation (5.9) is a linear differential equation, with boundary
and initial condition: C (x, 0) = 0; C (∞, t) = 0, C (0, t) = Cin(t), where Cin(t) represents the
source release; the solution of equation (5.9) is given by the following integral:

C (x, t) =

tZ
o

Cin (τ) · f (x, t− τ) dτ (5.10)

where f (x, t− τ) represents the kernel function called also transfer function (TF). f (x, t− τ)
describes the effect due to an impulsive release of the source at time t − τ on the measured
concentration at time t at point x. The solution of the ADE formulated in equation (5.10), that
joins the input function (contaminant release) to the output function (distribution of solute in
groundwater), holds also for complex cases, also for those not analytically solvable, provided that
the process preserve the linearity [Jury and Roth, 1990]. Previous studies [Jury et al., 1982; Rinaldo
et al., 1989] considered the transport processes in a statistical framework and the TF becomes the
probability density function (pdf) that means the probability of the solute released in x0 at time
t− τ of being in x at time t.
The TF, in the 1-D case with uniform flow and constant dispersion coefficient, can be analyti-

cally represented by the following [Jury and Roth, 1990]:

f (x, t) =
x

2
√
πDt3

exp

Ã
−(x− vt)2

4Dt

!
(5.11)

5.2.2 Homogeneous 1-D Flow and Transport: Analytical Versus Numer-
ical TF

The methodology outlined has been tested through a numerical example proposed in the literature
[Snodgrass and Kitanidis, 1997]; it deals with the 1-D transport by advection and dispersion of a
conservative solute through a homogeneous porous media. The release function adopted Cin (t),
shown in Figure 5.3, is the one proposed by Skaggs and Kabala [1994]:

s (t) = exp

µ
−(t− 130)2

50

¶
+ 0.3 exp

µ
−(t− 150)2

200

¶
+ 0.5 exp

µ
−(t− 190)2

98

¶
(5.12)
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Notice that, in agreement with the symbols adopted in the previous section Cin (t) is replaced by
s (t) (i.e. Cin (t) ≡ s (t)).
Then the 1-D problem stated in equation (5.9), plus the boundary conditions given in the above

section 5.2.1, is solved through the integral (5.10) using the TF of equation (5.11); all variables are
made dimensionless. At time T = 300, some concentration data are sampled at given locations of
the flow field (Figure 5.4); the data collected are stored in the z measurement vector.
The release function is recovered by the geostatistical methodology (see section 4.2) adopting

the expression (5.11) as TF. A Gaussian covariance function is assumed for s (t) and the elements

of the matrix Q are computed (Q (ti, tj |θ) = σ2 exp

Ã
−(ti − tj)

2

l2

!
, where (ti − tj) represents the

separation distance in time units and the θ are the variance (σ2) and the characteristic time scale
(l)); the error covariance matrix is R = σ2R · I, with σ2R = 1 · 10−12.
Next, the numerical case is analyzed also through a 1-D numerical model, using the computer

codes MODFLOW and MT3D that work with a finite difference scheme [Harbaugh, 2000; Zheng
and Wang, 1999]. A column of porous material is numerically modeled; the length of the column
is equal to 300 space units and the cross section size is unitary. The head boundary conditions are
fixed in order to induce a unit effective velocity and unit dispersion coefficient. In the upstream cell
a constant rate of solute is injected during the whole simulation, performed until the breakthrough
curve is non zero at the downstream end of the column. At each cell of the domain the concentration
value increases in time, following the S shape line shown in Figure 5.2a. At each location, marked
in Figure 5.4, the breakthrough curve is processed in order to obtain the time derivative function
that, as explained before, represents the numerically obtained TF. Figure 5.9 shows the comparison
between the analytical and numerical TF at x = 140; the numerical TF is obtained through 3
different schemes (in order to find the optimal one) adopted to compute the first derivative:

dCi

dt
=

Ci+1 − Ci

∆t
Forward,

dCi

dt
=

Ci − Ci−1
∆t

Backward, (5.13)

dCi

dt
=

Ci+1 − Ci−1
2∆t

Central.

In Figure 5.5, the excellent agreement among the lines can be noticed; the time step used is ∆t = 1.
To better clarify the TF behavior, in Figure 5.6 the TFs, obtained with the backward scheme, in
different locations are depicted.
The geostatistical methodology, in the constrained case, is then applied to recover the release

history, given the concentration measurements, i.e. the z vector, and the TF numerically computed
(by a backward scheme). In Figure 5.8 the results of the computation are compared: the true
release function and those computed through the analytical and numerical TFs, respectively, are
shown versus time. The results of Figure 5.8 are quite satisfactory: just a few differences are
present among the lines. By inspection of the estimate error variance (Figure 5.9), a greater width
of the interquantile strip can be noticed for the case of numerical TF. This fact is due both to
the unavoidable errors coming from the numerical modeling of the dispersion process and to the
numerical computation of the time derivative of the breakthrough curve. It is opinion of the author,
however, that the chance for an extension of the geostatistical methodology to cases where the TF
is not analytically known, overshadows the imperfections outlined in Figure 5.8 and 5.9.
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Figure 5.3: Released concentration proposed by Skaggs and Kabala [1994] based on the equation
5.12.
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Figure 5.4: Concentration at time T = 300 and measurements locations (marks) in the 1-D
homogeneous case.
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Figure 5.5: Analytical and Numerical (computed with three different derivative schemes) TFs in
x = 140, 1-D.
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Figure 5.6: Numerical TF evaluated in three different locations using the backward scheme, 1-D.
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Figure 5.7: Unconstrained 1-D homogeneous case with Gaussian covariance: the true solution
(solid line), best estimate (dashed line), and approximate 95% confidence interval (dotted line); a)
Analytical, b) Numerical.
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Figure 5.8: Analytical-Numerical assessment of the source release; 1-D constrained case.

5.2.3 Heterogeneous 1-D Flow and Transport - Numerical TF Only

The new example deals with a heterogeneous column made by two materials with the same thickness
and different hydraulic properties, see Figure 5.10, but with a constant hydraulic conductivity.
Two different sources of heterogeneity are considered: different porosity (that implies non uniform
effective velocity) and different dispersion coefficients.
Three examples are considered using these sources of heterogeneity. The first case (a) deals

with different porosities for the two materials. A 25% of variation of effective velocity is reached
between the two zones. The test conditions are similar to the previously mentioned ones (section
5.2.1); a numerical flow and transport model is set up, subjected to a stepwise input function in
the upstream cell. The time behavior of the concentration at the observation points (see Figure
5.4 for the locations) is used to calculate the numerical TFs. Next, a pollutant is injected in the
upstream section of the model with the temporal distribution described by the function (5.12);
at time T = 300 concentration data are sampled like in the previous example. These measured
values are stored in the z vector and used in the geostatistical procedure. The check of the
proposed methodology, for this case, is performed by comparison of the release function (5.12)
to the recovered one; in fact, for this heterogeneous case no analytical TFs for comparison are
available. Figure 5.11 shows the results using the constrained method; the recovered function is
very close to the release one and the confidence interval seems reasonably narrow.
Figure 5.12 shows the results obtained in the second example (b). In this case the column is

divided in two zones of material with different dispersion coefficients. The dispersion coefficient
of the upper zone of the column is set to 1, in the remaining part it is equal to 0.5. Also in this
case the recovered release function is satisfactory but the confidence interval is wider than in the
previous heterogeneous analyzed case (a). This means a greater uncertainty of the results due to
the bigger total dispersion obtained by the different dispersion coefficients.
The (c) example considers both the types of heterogeneity: different effective porosity and

dispersion coefficient values. The values adopted are those of the two previous cases. Figure 5.13
shows the comparison between the true release history and the recovered one. The results obtained,
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Figure 5.9: Constrained 1-D homogeneous case with Gaussian covariance: the true solution (solid
line), best estimate (dashed line), and approximate 95% confidence interval (dotted line); a) Ana-
lytical, b) Numerical.
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Figure 5.10: Grid of the 1-D numerical model, heterogeneous case: light blue: material 1; dark
blue: material 2.
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Figure 5.11: Constrained 1-D heterogeneous velocity case, with Gaussian covariance: the true
solution (solid line), best estimate (dashed line), and approximate 95% confidence interval (dotted
line).

as in the previous two cases, are very satisfactory.

5.2.4 Mathematical Statement of the 2-D Problem

Concerning the transport process of a conservative solute in a 2-D steady flow in the plane XY ,
the equation (5.1) can be specified in the following advection dispersion equation (ADE) describing
the transport process, for a non reactive solute, due to a mass injection located in the position
x0, y0 [Bear, 1972]:

∂ (nC)

∂t
= −∇0 (nC · v) +∇0

¡
D · n∇0C

¢
+ Cin (t) δ (x− x0) δ (y − y0) (5.14)

In equation (5.14) v is the effective velocity, D is the dispersion tensor, Cin(t) the rate of pollutant
mass injected in time, C (x, y, t) the concentration in the point with coordinates x, y at time t, n
the porosity and the ∇0 means the Nabla operator limited to x and y coordinates.
Equation (5.14) is a linear differential equation; for the boundary and initial condition: C (x, y, 0) =

0; C (x, y, t) = 0 x → ±∞, C (x, y, t) = 0 y → ±∞, it has the solution given by the following
integral:

C (x, y, t) =

tZ
o

Cin (τ) · f (x, y, t− τ) dτ (5.15)

where f (x, y, t− τ) represents the TF. f (x, y, t− τ) describes the effect in the point x, y due to an
impulsive release of the pollutant at time t− τ . The solution of the ADE formulated in equation
(5.14), that joins the input function (contaminant release) to the output function (distribution of
solute in groundwater), holds also for complex cases, as well for those not analytically solvable,
provided that the process preserve the linearity [Jury and Roth, 1990].



40 Andrea Zanini - Geostatistical approach: applications and improvements

0 50 100 150 200 250 300
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
on

ce
nt

ra
tio

n

Figure 5.12: Constrained 1-D heterogeneous dispersion case, with Gaussian covariance: the true
solution (solid line), best estimate (dashed line), and approximate 95% confidence interval (dotted
line).
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Figure 5.13: Constrained 1-D heterogeneous velocity + dispersion case, with Gaussian covariance:
the true solution (solid line), best estimate (dashed line), and approximate 95% confidence interval
(dotted line).
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The TF, in the 2-D case with uniform flow (vy = 0) and constant dispersion coefficient, can be
analytically represented by the following [Bear, 1972]:

f(x, y, t) =
1

4π
p
DXDY (t)

· exp
∙
−(x− v(t))2

4DX(t)
− y2

4DY (t)

¸
(5.16)

being x and y the distance from the injection point along the longitudinal and transversal direction.
In 2-D problems Cin(t) is given by the immission of a discharge q(t) times the pollutant concen-

tration s(t) of the injected water: Cin(t) = s(t)·q(t). In general s(t), q(t) and Cin(t) are functions
of time. In the following 2-D examples q(t) is taken as constant, known (unitary) and negligible
compared with the groundwater flow [Butera and Tanda, 2003] in order to manage the unknown
function to be the concentration time series s(t).

5.2.5 Homogeneous 2-D Flow and Transport: Analytical Versus Numer-
ical TF

The methodology outlined in section 5.2 has been tested also for the 2-D flow case through a
numerical example proposed in the literature [Butera and Tanda, 2001]. It deals with the 2-D
transport by advection and dispersion of a conservative solute through a homogeneous porous
media. The release function adopted s(t), shown in Figure 5.3, is the one proposed by Skaggs and
Kabala [1994]. The source is located in the x0, y0 location. The 2-D problem described by the
equation (5.14) plus the boundary conditions given in the previous section (Cin(t) = s(t) ·q(t) with
q(t) = 1) is solved through the integral (5.2) using the equation (5.16) as TF. All the variables are
dimensionless and the hydrodispersive parameter values are vx = 1, vy = 0, Dx = 1, Dy = 0.1. At
time T = 300 some concentration values are sampled at given locations of the flow field (Figure
5.16) and the collected data are stored in the z vector of measurements. Then, the release function
is recovered by the geostatistical methodology adopting the expression (5.16) for the TF. As for
the 1-D case the elements of the matrix Q, the covariance matrix of s, are computed by a Gaussian
covariance function and the error covariance matrix is R; assuming that the errors are taken
to be independent and identically distributed with variance σ2R, the covariance matrix becomes
R = σ2R · I, where I is the identity matrix. The measurement error is known and it is negligible:
σ2R = 1 · 10−12.
The example in hand is then analyzed through the methodology outlined in section 4.2, ignoring

the analytical expression of the TFs. A numerical model of the groundwater field is built by means
of the MODFLOW and MT3D computer codes [Harbaugh, 2000; Zheng and Wang, 1999]. It has
rectangular shape, 300 long and 20 units wide with unit thickness. The head boundary conditions
are fixed and such to induce a unit seepage velocity in the positive x direction. The other hydro-
dispersive parameters are the same as considered in the analytical process. In the upstream cell a
constant rate of solute is injected during the whole simulation, performed until the breakthrough
curve reaches the downstream end of the model. At each cell of the domain involved in the pollution
transport the concentration value increases in time, following a S shape line similar to that of Figure
5.2a. In some points located downstream the source (on the line y = y0) and marked in Figure 5.16
(in agreement with the example proposed by Butera and Tanda [2001], the breakthrough curve
is stored and processed in order to obtain the time derivative function that, as explained before,
represents the numerically computed TF.
As for 1-D case, for comparison purposes the numerical TF is obtained through 3 different

schemes of the first derivative:
dCi

dt
=

Ci+1 − Ci

∆t
Forward,

dCi

dt
=

Ci − Ci−1
∆t

Backward and
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Figure 5.14: Analytical and Numerical (computed with three different derivative schemes) TFs in
x = 155, y = y0, 2-D.

dCi

dt
=

Ci+1 − Ci−1
2∆t

Central, in order to find the optimal scheme.

In Figure 5.14, the TF values, in x = 155 and y = y0 node, computed through those different
numerical schemes are shown and compared with those obtained from the analytical formulation
equation (5.16); it can be seen that the agreement among the lines is fair good; the time step used is
∆t = 1. Then, the geostatistical methodology (constrained case) is applied to recover the release
history given the concentration measurements, i.e. the z vector, and the numerically obtained TF
(backward scheme derivative). The results of such comparison are shown in the Figures 5.18,
5.19 and 5.20. In Figures 5.18 and 5.19 the true release function and those computed through
the analytical and numerical TFs, respectively, are shown versus time. The results of Figure 5.19
are quite satisfactory: just a few differences are present among the lines. By inspection of the
estimate error variance (Figures 5.18 and 5.19), a greater width of the interquantile strip can be
observed for the case of numerical TF. This fact is due both to the unavoidable errors coming from
the numerical modeling of the dispersion process and to the numerical computation of the time
derivative of the breakthrough curve.

5.2.6 Heterogeneous 2-D Flow and Transport - Numerical TF only

Three tests are examined to check the performance of the outlined methodology in strongly het-
erogeneous fields. In cases 1 and 2 the source of the non-uniformity of the flow is the conductivity
heterogeneity of the porous media; in case 3 a pumping well is active in the heterogeneous con-
ductivity field. Due to the non uniformity of the flow the TFs do not have analytical expressions
and, for the recovering of the release history, it is necessary to follow the new numerical procedure
described in the previous sections.
A numerical model with rectangular shape (250 m long and 50 m wide, thickness equal to 10

m) has been built (Figure 5.21). The domain is discretized using a grid of cells of 2 m × 2 m
dimensions, (125× 25 cells) in the XY plane and one layer in the vertical direction.
About the boundary conditions, along two sides the head is fixed: upstream (East side) h = 10

m and downstream (West side) h = 7.5 m so that the flow is driven in the negative x direction;
the other sides are impervious boundaries, see Figure 5.22. The hydraulic conductivity field is
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Figure 5.15: Numerical TF evaluated in three different locations using the backward methodology,
2-D.
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Figure 5.16: Concentration at time T = 300 and measurements locations (marks), along y = y0,
in the 2-D homogeneous case.
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Figure 5.17: Unconstrained 2-D homogeneous case with Gaussian covariance: the true solution
(solid line), best estimate (dashed line), and approximate 95% confidence interval (dotted line); a)
Analytical, b) Numerical.
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Figure 5.18: Constrained 2-D homogeneous case with Gaussian covariance: the true solution
(solid line), best estimate (dashed line), and approximate 95% confidence interval (dotted line);
Analytical TF.
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Figure 5.19: Constrained 2-D homogeneous case with Gaussian covariance: the true solution (solid
line), best estimate (dashed line), and approximate 95% confidence interval (dotted line); Numerical
TF.
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Figure 5.20: Analytical-Numerical assessment of the source release history; 2-D constrained case.

Figure 5.21: Grid of the numerical model with heterogeneous conductivity [m/s] (σ2Y = 0.22).
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Figure 5.22: Scheme of the problem and monitoring grid; the well regards the case 3.

generated by a stochastic process with mean equal to 0.001m/s. The obtained mean Darcy velocity
is 1·10−5 m/s. The longitudinal and transversal dispersivity are assumed constant (αL = 1 m and
αT = 0.1 m). The release source is located in x = 229 m and y = 25 m The simulation of the
transport process is carried out for 300 time intervals (∆T ) of 18000 s each. All the results are
made dimensionless in the ratio with the characteristic time ∆T , length ∆l = ∆x = ∆y = 1 m
and concentration C0 = 1 mg/L.

Case 1

In the first case of this section the conductivity field is weakly heterogeneous: the variance of the
log-conductivity (Y = lnK) is equal to σ2Y = 0.22. Following the outlined procedure a preliminary
run was performed in order to calculate the breakthrough curves to be used for the computation
of the numerical TFs. Then a new simulation with the injection, in the source location, of a
pollutant release with time behavior given by equation (5.12) was carried out. The concentration
data are monitored at the dimensionless time T = 300 in the nodes of a regular grid of 5 rows
along the x direction and 12 columns along the y direction (Figure 5.22); the monitoring grid sides
are ∆Lx = 20 and ∆Ly = 5. On the basis of the experience gained in previous studies, only some
(24) data are used in the recovery procedure: 12 on y = 25 m (downstream the release source)
and 12 on y = 30 m. Points where it is likely to detect higher concentration value are chosen as
measurement points. The results of the recovery procedure are shown in Figure 5.23; the release
is satisfactory reproduced and also the inter-quantile range is acceptable.

Case 2

In the Case 2 the procedure is applied to a conductivity heterogeneous field with σ2Y = 1.00, a
greater degree of heterogeneity; the monitoring network is the same of the Case 1. As required by
the numerical procedure outlined in previous sections, a preliminary run was performed in order to
calculate the breakthrough curves useful for the computation of the numerical TFs. Then a new
simulation with the injection, in the source location, of a pollutant release with the trend described
by the equation (5.12) has been carried out. The results of the procedure are shown in Figure 5.25;
again the new procedure outlined by the writer seems to give a fair good recovered history, even if
the higher degree of heterogeneity affects remarkably the non uniformity of the flow. The trends
shown in Figures 5.23 and 5.25, respectively for σ2Y = 0.22 and σ2Y = 1.00, look similar. This fact
can be explained considering that Case 1 and Case 2 present the same degree of difficulty with
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Figure 5.23: Constrained 2-D heterogeneous Case 1 (σ2Y = 0.22): the true solution (solid line),
best estimate (dashed line), and approximate 95% confidence interval (dotted line).

Figure 5.24: Grid of the numerical model with heterogeneous conductivity [m/s], (σ2Y = 1.00).

respect of the inverse problem in hand, once that the TFs are obtained, since the role of pore scale
dispersion is the same. Conductivity heterogeneity, in fact, distorts the solute trajectories from
the paths of the homogeneous case but does not increase dispersion phenomena.

Case 3

The Case 3 is a strongly non uniform flow: the heterogeneous conductivity field of Case 2 (σ2Y = 1)
is considered but a pumping well is located downstream in x = 79 m, y = 25 m. The pumping
discharge of the well is 1/5 of the total groundwater discharge of Case 2. Again the preliminary
computations useful for the setting up of the numerical TFs have been carried out. Then the
concentration values in 24 nodes have been considered at the time of T = 300 after the injection of
the release (5.12) in the pollutant source. The points with highest maximum value of the computed
TF have been selected. As expected, the most significant points are those located between the
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Figure 5.25: Constrained 2-D heterogeneous Case 2 (σ2Y = 1.00): the true solution (solid line),
best estimate (dashed line), and approximate 95% confidence interval (dotted line).

source and the pumping well at y = 20 m, 25 m, 30 m. The results of the recovery process for the
Case 3 are shown in Figure 5.27.
Some spurious numerical oscillations are present but, in the whole, considering also the trend

of the interquantile lines, the release is quite well recovered even if not as well as the Case 1 and 2
(5.23 and 5.25 respectively). The deterioration (in comparison with Cases 1 and 2) of the recovery
results can be ascribed, rather than to the greater non uniformity of the flow, to the action of
the well that increases the mean velocity increasing the dispersion coefficients as well. The Figure
5.26 shows the plume after 300 time units due to input step function, the heterogeneities and the
pumping well; it is possible to see clearly the attracting effect of the well.

5.3 Conclusions
A new methodology for the numerical computation of the transfer functions (TFs) for problems
where it is impossible to develop analytical solutions is here proposed and tested with good results
in different conditions.
In the first tests the procedure has been applied to simple cases (from literature) with analytical

solution in order to compare the differences using the analytical or numerical transfer function
(TF). The scatters seem to be very moderate even if, in the opinion of the writer, the adopted
numerical technique could be improved in order to reduce the highlighted discrepancies. In the
other tests, concerning heterogeneous groundwater field with strongly non uniform flow and no
analytical solution for TFs, the results were analyzed comparing the true release history with the
restored one. Also in these cases the results can be considered widely satisfactory encouraging the
extension of the new procedure to future application of practical importance.



50 Andrea Zanini - Geostatistical approach: applications and improvements

Figure 5.26: Evolution of the plume, case 3.
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Figure 5.27: Constrained 2-D heterogeneous Case 3 (σ2Y = 1.00, with pumping well): the true
solution (solid line), best estimate (dashed line), and approximate 95% confidence interval (dotted
line).





Chapter 6

Applications and new
Developments in Aquifer
Parameter Estimation

6.1 Introduction

One of the main problems in modeling groundwater flow processes is the estimation of hydraulic
parameters such as the transmissivity. These parameters are normally estimated from scarce data
because data is often difficult and costly to obtain. The accuracy of the estimate depends on the
number of measurements, their locations in the study area, the observation error and the sensitivity
of the observed quantity to, for instance, the characteristics of the transmissivity field.
This work applies the geostatistical approach (see section 4.2 for a summary of the methodology)

to recovering the transmissivity field from hydraulic head measurements in the case of strong
heterogeneity. The geostatistical technique to inverse modeling is a stochastic Bayesian approach,
and over the last few decades, it has been applied in many studies in subsurface hydrology. Some
examples are, the estimation of hydraulic conductivity. The geostatistical approach with the aim
at recover the log-transmissivity field has been studied by several authors [Kitanidis and Vomvoris,
1983; Hoeksema and Kitanidis, 1984, 1989; Dagan, 1985; Gutjahr and Wilson, 1989; Gutjahr et
al, 1994; Harvey and Gorelick, 1995; Kitanidis, 1996; Rubin and Dagan, 1987a, 1987b, 1988, 1989;
Yeh et al., 1995; Yeh et al. 1996; Yeh and Zhang 1996; Yeh et al. 2002; Li and Yeh, 1999; Zhang
and Yeh, 1997; Zimmerman et al., 1998; Nowak et al., 2003; Nowak and Cirpka, 2004].
Stochastic approaches are often used in hydrology, and some literature regarding MCMC meth-

ods (which are used here), can be found in the works here briefly described. Harter and Yeh [1996a,
1996b] applied the Monte Carlo simulation to predict the solute transport; Gòmez Hernández et
al. [1997] used the sequential simulations to generate conditional transmissivity fields; Hanna and
Yeh [1998] developed a new co-conditional Monte Carlo simulation technique to derive mean and
variance of transmissivity, head and Darcy’s velocity, based on measurement of transmissivity and
head in heterogeneous confined aquifer in steady state conditions; Tamminen and Kyrölä [2001]
used Markov Chain Monte Carlo (MCMC) method for computing posterior distributions for non-
linear inverse problems; Feyen et al. [2003] used Monte Carlo sampling to generate transmissivity
fields to delineate well capture zones; Bates and Campbell [2001] applied MCMC using the MH

53
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algorithm to evaluate the parameters in conceptual rainfall-runoff models; Marshall et al [2004]
compared four MCMC sampling algorithm in the context of rainfall-runoff modeling; Vrugt et al.
[2003] proposed an MCMC sampler which was suited to infer the posterior distribution of hydro-
logic model parameters; Chen et al. [2004] used MCMC methods to estimate concentrations using
ground-penetrating radar tomographic data.
This work follows the one about the quasi-linear (QL) methodology of Kitanidis [1995]; the aim

is to test the QL methodology in a strongly nonlinear problem (e.g. that of a transmissivity field of
high heterogeneity) and to propose a new approach to solve such problems. The QL methodology
underestimates the variance of the recovered log-transmissivity field, and also may not be efficient in
the case of strongly nonlinear problems. Therefore, in this work the QL approach is amended with
a procedure that generates equally likely conditional realizations. Then an acceptance-rejection
scheme known as the Metropolis-Hastings algorithm was implemented. This methodology was
applied by Michalak and Kitanidis [2003, 2004a] to recover the release history of a pollutant
source with excellent results.
The following section explains how the proposed methodology works and how it is implemented.

Note that the distribution of transmissivity is usually found to be lognormal, and here this hy-
pothesis has been assumed.

6.2 Optimization Routine
The first and most important improvement applied to the quasi-linear approach is the optimization
routine; it consists of optimizing the step from an iteration to the next one. In fact, for strongly
nonlinear field, the new estimate

∧
s could be too different from the previous one and instead of

converging to a value, the estimate could oscillate. A line search, see equation (6.1), along the line
defined by the two values (the starting one and the new one that is obtained through the Gauss-
Newton iteration) can be adopted to ensure monotonic improvement of the objective function. The
parameter δ defines a point along this line:

∧
s = sold · δ + snew · (1− δ) (6.1)

where sold is the estimate at the previous iteration and snew is evaluated by the equation (3.16) or
(3.18).
A few tests regarding the values of the parameter δ were carried out. At first, δ was allowed

to vary from −3 to +3; it was noticed that the optimization routine never uses negative values of
δ, so the range has been reduced to −0.1 ≤ δ ≤ 1.1. The reduction of the range allows to save
computational resources and to converge to a value quickly. The value of δ is chosen by minimizing
iteratively the following objective function:

objf =
³
z− h

³∧
s
´´T

R−1
³
z− h

³∧
s
´´
+
∧
s
T

G
∧
s (6.2)

This procedure ensures that the value of the objective function (6.2) decreases monotonically from
an iteration to the next one. This minimization algorithm is based on the fminbnd function of
Matlab. This routine minimizes a function (for example the one in equation (6.2)) of one variable,
δ, on a fixed interval, −0.1 ≤ δ ≤ 1.1. The Matlab routine has been chosen because it is highly
efficient; it returns a value δ that is a local minimizer of the function that is described in (6.2)
in the fixed interval (−0.1 ≤ δ ≤ 1.1). The algorithm of the routine is based on Golden Section
search and parabolic interpolation. On the downside, the Matlab routine tends to converge to local
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minima, it often exhibits slow convergence when the solution is on a boundary of the interval, it
only handles real variables, and the function to be minimized must be continuous. None of these
disadvantages are important in this application.

6.3 Conditional Realization Applied to QL Approach

The procedure to generate conditional realizations is discussed in the works of Gutjahr et al. [1994],
Kitanidis [1995, 2004], Michalak [2003] and Michalak and Kitanidis [2003, 2004a]. In this section
the procedure to create and to accept the conditional realizations is summarized.
The first step is to generate an unconditional realization su,i with zero mean and covariance

matrix Q and a realization of the measurement error vi with zero mean and covariance matrix R.
The Choleski decomposition could be used to generate su,i; this is not the most efficient method
but it is the most straightforward. The first step is to generate C from Q = CCT and then
compute

su,i = Xλ+Cui (6.3)

where ui is a vector of independent, identically distributed normal variables, λ could be set to 0
because the conditional realization finally produced is unaffected by the values of λ. The realiza-
tions of su,i and vi are generated independently. Then starting from this unconditional realization
the conditional one can be found minimizing

(y+ vi − h(s))T R−1 (y+ vi − h(s)) + (sc,i − su,i)T G (sc,i − su,i) (6.4)

with respect to sc,i. Where

G = Q−1 −Q−1X
¡
XTQ−1X

¢−1
XTQ−1

The optimum sc,i gives the conditional realization. This results in an iterative method similar to
iterative cokriging:

sc,i = su,i +X
∧
β +QHT ξ (6.5)

ξ and β may be obtained from the solution of the system of m + p linear equations with m + p
unknowns: " ∼

Σ HX

(HX)
T

0

#"
ξ
∧
β

#
=

"
y + vi − h

³∼
sc,i

´
+H

³∼
sc,i − su,i

´
0

#
(6.6)

that procedure has to be repeated until convergence.
After the creation of the conditional realization an acceptance/rejection method has been ap-

plied. Instead of weighting the samples, it could be useful a procedure to screen them; some of the
samples are rejected, but the ones accepted are equiprobable samples from the distribution p (pdf
of a random variable s). The steps of the used procedure (0 ≤ h(sc,i) ≤ 1) are the following:
1. Generate su,i ∼ P (P is a distribution close to the target distribution) and then sc,i,
2. Generate ui ∼ Uniform[0, 1],
3. if ui < h (sc,i) accept sc,i; else, throw it out,
4. Go back to step 1.
where
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h (sc) =
p (sc)

MP (sc)
(6.7)

M is a positive constant that satisfies:

M ≥ sup
s

p (sc)

P (sc)

in order to make sure that h (sc,i) does not exceed one. Each candidate sample is generated using
the quasi-linearization technique with an unconditional realization that depends on the uncondi-
tional realization of the last accepted sample. Consider that an unconditional realization su,i has
been accepted. The (i+1)-th unconditional realization su,i+1 is correlated to su,i by the following
equation:

su,i+1 = ρsu,i + αui+1 (6.8)

where ρ is a positive coefficient (for stability ρ < 1); α a real coefficient and ui+1 is an unconditional
realization generated independently from previous realizations.

α =
p
1− ρ2

For strongly nonlinear problems only a very low percentage of candidate will be accepted.
The Metropolis Hastings algorithm (MH) as acceptance/rejection method (see Chib and Green-

berg [1995] and Kitanidis [2004] for a detailed description) is chosen in this work. The idea in MH
algorithms is to generate a candidate sample that is dependent to the last accepted one and to
accept or reject it based on a criterion that is the combination of two factors: (1) The ratio of the
posterior pdf of the candidate to the last. (2) The ratio of the chance of a move from the candidate
to the last. Methods that use MH algorithm involve the use of candidate pdf to obtain candidate
realizations of the unknown function. The objective function is then used to accept or reject these
realizations. The accepted realization can be shown to be equally likely samples from the pdf of
interest. The algorithm follows this steps:
1. Initialization accepting some reasonable su,o (equation 6.3),
2. Generate candidate sample su,i+1 based on a procedure that uses the last accepted one, su,i

(see equation (6.8)),
3. Generate the conditional realization sc,i+1 using the equation (6.5),
4. Generate ui+1 ∼ Uniform[0, 1],
5. If ui+1 < ς (sc,i+1|sc,i) accept sc,i+1; else accept the previous value sc,i,
6. Go back to step 2.
p00 is the target posterior distribution within a normalizing constant. The transition probability

of sc,i+1 given sc,i, q (sc,i|sc,i+1), is determined by the scheme used to move from the last to the
candidate. The probability of acceptance is defined as :

ς (sc,i+1|sc,i) =
½
p00 (sc,i+1) q (sc,i|sc,i+1)
p00 (sc,i) q (sc,i+1|sc,i)

, 1

¾
The flow chart in Figure 6.1 summarizes the adopted procedure.
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6.3.1 Metropolis Hastings Applied to the Recovery of the Release His-
tory

Michalak [2003] and Michalak and Kitanidis [2004a] applied the MH algorithm to unconstrained
conditional realizations generated using linear geostatistical inverse modeling constrained to be
non negative. The methodology is summarized in the following.
A list of the used symbols is given below: scc,c candidate conditional constrained realization,

scc,l l-th accepted conditional constrained realization, q(scc,.|scc,.) the transition probability from
one constrained conditional realization to another, U(0, 1) a uniform distribution in the range [0, 1]
and ς(scc,c|scc,l) as the acceptance probability of scc,c given the previous accepted realization scc,l.
In this context a constrained realization is one that is everywhere nonnegative and a conditional
realization is one that has been conditioned on the available data. Initializing the chain with an
arbitrary constrained realization scc,0 the MH algorithm proceeds as follows:
1. for l = 1, N ,
2. Generate scc,c from q(scc,c|scc,l) and u from U(0, 1),
3. if u ≤ ς(scc,c|scc,l), scc,l+1 = scc,c,
4. Otherwise scc,l+1 = scc,l,
5. Return the values {scc,1, scc,2, ..., scc,N}.
The probability of acceptance is defined as :

ς(scc,c|scc,l) = min
½
p00(scc,c)q(scc,l|scc,c)
p00(scc,l)q(scc,c|scc,l)

, 1

¾
where p00(scc,c) is the posterior probability distribution. A new candidate conditional constrained
realization is obtained by the first obtaining an unconditional realization uc with zero mean and
covariance Q in the standard geostatistical manner. The unconditional realizations used to obtain
the candidate conditional realizations are sequentially correlated:

suu,c = ρsuu,l + αuc

where suu,l is the unconditional realization used in the generation of the last accepted realization
and α =

p
1− ρ2, (0 < ρ < 1). A conditional unconstrained realization scu,c is generated from

suu,c using the geostatistical procedure; the candidate conditional constrained realization scc,c is
obtained by applying the method of Lagrange multipliers to scu,c. The candidates, generated in
this way, are accepted or rejected based on their posterior probability relative to that of the last
accepted realization scc,l, according to ς(scc,c|scc,l). The posterior probability distribution is

p00(scc,.) ∝ exp
∙
−1
2
(y−Hscc,.)T R−1 (y−Hscc,.)−

1

2
(scc,. −Xβ)T Q−1 (scc,.−Xβ)

¸
The transition probability q(scc,.|scc,.) is approximated by q(suu,.|suu,.).

q(suu,c|suu,l) ∝ exp
∙
−1
2
(suu,c − ρsuu,l)

T Q
−1

α2
(suu,c − ρsuu,l)

¸
The chain is run until the probability space has been appropriately entirely sampled.
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Figure 6.1: Flow chart of the methodology that applies the conditional realizations and the
Metropolis-Hastings algorithm.
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6.4 Applications of the Quasi-Linear Methodology
The applications proposed involve the finding of the transmissivity from hydraulic head data in a
2-D aquifer with steady flow. The governing equation (from Darcy’s law and continuity) is

∂

∂x

µ
T
∂h

∂x

¶
+

∂

∂y

µ
T
∂h

∂y

¶
= −N

where T [L2T−1] is the transmissivity, h [L] is the head and N [LT−1] is the specific recharge rate.
The domain is rectangular (L1×L2, L1 = 1000 m, L2 = 750 m) and described by a grid of 24× 32
cells; the head values at the western and eastern boundaries are constant (h (0, y) = h0 = 120 m,
and h (L1, y) = h1 = 110m), respectively, and the northern and southern boundaries are considered

impermeable (
∂h

∂y
= 0 at y = 0 and y = L2). See Figure 6.2. A recharge rate (N = 0.001 md−1)

is added to the whole surface of the model.
In all problems that will be discussed, all quantities are made dimensionless in order to use an

existing forward model (mkls.m, see Kitanidis [2004]). The dimensions of the model are divided
by L1 so they become L∗1 = 1 and L∗2 = 0.75. The dimensionless heads are evaluated using

the following expression: h∗ =
h− h1
h0 − h1

, so the new western and eastern boundaries become:

h∗ (0, y) = h∗0 = 1, and h∗ (L1, y) = h∗1 = 0. The recharge contribution is transformed using

the following relationship: N∗ =
N · t0
h0 − h1

= 0.0001, where t0 = 1 day. The transmissivity is

made dimensionless as: T ∗ =
T

L21
t0. The results are shown in dimensional form in order to make

comparison to real cases.
The objective of the test is to estimate the transmissivity field starting from few head measure-

ments. At this aim a synthetic case was implemented: at first a transmissivity field was created
then the forward problem was solved and few head measurements were sampled. Finally the in-
verse problem, starting from the head measurements, was analyzed to recover the transmissivity
field.
The original ("true") log-transmissivity field, s, (see Figures 6.3, 6.4 and 6.5) was created

as an unconditional realization with zero mean and covariance matrix Q, using the Cholesky
decomposition (equation (6.3)) and forcing the mean to the value of 2.5: s = 2.5 + Xλ + Cu;
where λ =0, Q = CCT and u is a vector of independent, identically distributed normal variables.
The cubic generalized covariance matrix: Qij=θh

3
ij (θ = 4.386) was assumed. Additional log-

transmissivity fields, with an increasing contrast, were created from the original one (s): 2s (2s =
2.5+2 ·Cu), 4s (4s = 2.5+4 ·Cu), 6s, 8s and 10s (see table 6.1 and Figures 6.6, 6.7, 6.8 and 6.9);
all the studied log-transmissivity fields present a mean value of 2.5. The variance increases from
0.1020 (s) to 10.200 (10s), see table 6.1. The last analyzed case can be considered as a strongly
nonlinear case (the variance of the transmissivity field is 1.08 ·109). 10s was considered an extreme
log-transmissivity field because it represents, considering the transmissivity field, a variance of 8
order of magnitude that is a wide range. Finding in nature this variability in the transmissivity
field can be possible studying a very wide area. Moreover this large variability is highly difficult to
model using commercial codes as MODFLOW because they requires very refined grid; this implies
also a lot of computation time.
The boundary conditions and the recharge flow rate were considered the same for all the studied

cases. Considering the first log-transmissivity field (s) it is possible to notice Figures 6.3, 6.5 and
table 6.1 that the mean of the transmissivity is 12.843 m2d−1; assuming 10 m as thickness of the
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Figure 6.2: Domain of the problem and measurement locations.

Table 6.1: Statistics of the true fields

Log-Transmissivity Transmissivity
mean [s] var [s] mean [T = exp(s)] [m2d−1] var [T = exp(s)]

s 2.5 0.1020 12.843 20.266
2s 2.5 0.4080 15.201 162.498
4s 2.5 1.6319 32.288 6.79 · 103
6s 2.5 3.6718 119.86 3.35 · 105
8s 2.5 6.5277 642.59 1.85 · 107
10s 2.5 10.200 4113.2 1.08 · 109
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Figure 6.3: True transmissivity [m2d−1], s field.

aquifer, the resulting hydraulic conductivity can fit to a sand (1.284 m·d−1). The head field that
results from the forward problem, using as boundary and initial condition the ones described above,
is shown in Figure 6.4. Considering the 10s, the mean of the transmissivity field is 4113.2 m2d−1;
if represents a high hydraulic conductivity value (411.3 m·d−1) suitable for gravel. Analyzing
the minimum and the maximum values it is possible to notice that the transmissivity goes from
2.8 · 10−3 m2d−1 to 4.7 · 105 m2d−1, due to the high variance (1.08 · 109 m4d−2). This variability
generates unrealistic heads, see Figure 6.9, because the recharge rate results a huge number respect
to very low values of transmissivity. Analogous unrealistic heads were obtained also in the 6s and
8s fields. These unrealistic cases were analyzed in order to test the methodology in strongly non
linear transmissivity fields.
The forward problem was solved for each transmissivity field and 24 hydraulic heads were

measured in specific positions of the aquifer (vector of measurements z, see Figure 6.2) and noised
by a measurement error. The measurement errors, dimensionless, were taken to be independent
and identically distributed with four different variances of the error σ2R = 10−2, 10−4, 10−6 and
10−8; considering the dimensional problem, the measurement errors are 1, 0.1, and 0.01 and 0.001
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Figure 6.4: Head [m] related to the s transmissivity field.
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Figure 6.5: True log-transmissivity, s field.
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m. Four different values of σ2R were considered to highlight the influences of the measurement
errors to the process and to make a comparison of the results. Assuming that the errors are taken
to be independent and identically distributed with variance σ2R, the covariance matrix becomes
R = σ2R·I, where I (n×n) is the identity matrix. The strongly nonlinear problems (8s and 10s) were
analyzed considering only a measurement error of σ2R = 10

−2 and 10−4, because a measurement
error of 0.01 and 0.001m added to head measurements related to these transmissivity fields resulted
not significant. Analyzing the objective function (6.2) and comparing the results obtained using
σ2R = 10

−2 and 10−8, it is possible to notice that the part of the objective function that represents

the misform (
³
z− h

³∧
s
´´T

R−1
³
z− h

³∧
s
´´
) is greater using σ2R = 10

−2 than σ2R = 10
−8, so the

recovered field using the great error results flatter than using the small one.
The matrix X (E[s] = Xβ) is a n× p matrix and β are are p× 1 unknown coefficient. Using a

linear generalized covariance function

Qij = −θhij and p = 1

where hij means the distance between the point i and j. The matrix X is a known n× 1 matrix
and has coefficients equal to 1. Using the cubic generalized covariance function

Qij = θh3ij and p = 3

X has n×3 known coefficients; the first column consists of coefficients equal to 1, while the second
and third column contains the spatial coordinates (x, y) of the grid nodes. In this work, only the
results for the cubic covariance model are presented.
Assuming that the boundary condition of the problems in hand and the measurement errors

are known it is possible to solve the inverse problems and to recover the log-transmissivity fields
from the head measurements.
The log-transmissivity field was recovered using the QL method and also by sampling from the

posterior to produce conditional realizations (CR) in order to make a comparison between the two
methodologies and to find out the one that represents the true field in the better way.
A new improvement [Nowak et al., 2003] was applied to the geostatistical process to speed

up the multiplications between the covariance matrix Q and the other matrices/vectors. This
methodology (described in chapter 7) uses the spectral method and the properties of the covariance
matrix to reduce the computation time and to allow a very well defined computation grid (up to
221 nodes, as reported in chapter 7).
A flat solution was assumed as starting values of the log-transmissivity fields for all the con-

sidered cases.
The first step of the work was the application of the quasi-linear procedure for each proposed

cases (s, 2s, ..., 10s) to look for the limits of this procedure. The results of this process showed
that the basic quasi-linear procedure was not so efficient; in fact it worked quite well for the s and
2s cases (with weakly heterogeneous transmissivity field) but for the other cases (highly nonlinear
field) it didn’t converge to a solution. The process oscillated around the true solution and never
converged to a value; this effect is due to great modifications from an iteration to the next one.
Then a parameter δ was introduced in the Gauss-Newton algorithm (see equation (3.14)) with

the aim at avoiding oscillations in the convergence procedure. The new estimate is computed as
follow:

∧
si = δ

∧
si−1 + (1− δ)

∧
s (6.9)

where
∧
s is evaluated using the geostatistical procedure (equation (3.18)) and

∧
si−1 is the estimate

at the previous iteration. Several simulations were carried out with a fixed value of δ (several
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Figure 6.6: True log-transmissivity, 2s field.

values in the interval 0.5 ≤ δ ≤ 0.95 were analyzed). The δ parameter modifies the velocity of the
process: a small value gives big correction and fast results but not always the process converges;
while a great value gives a slow solution (in this case the new estimate results very close to the
previous one) but a more probable convergence. The use of a fixed value of δ resulted not optimal
for strongly nonlinear problems; in fact, in this cases the use of a small value (δ = 0.5) does not
guarantee the convergence because of the great modification from an iteration to the next one. In
the meanwhile the use of a great value (δ = 0.95) means that the new estimate is very close to
the new one, so the procedure requires a high number of iterations to reach the convergence. This
fact is not optimal because it means a lot of computational time. Therefore, in order to avoid
these problems related to the choice of δ, an optimization routine (see section 6.2) has been added
to evaluate δ. This optimization procedure minimizes the objective function (6.4) modifying the
value of δ (looking for the best one) at each iteration. The convergence of the algorithm results
faster than the one with a fixed value. Moreover the objective function is monotonically decreasing
from an iteration to the next one.
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Figure 6.7: Head [m] related to the 2s tranmissivity field.
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The convergence criterion of the procedure is based on the differences between the actual value
of the objective function and the old one (L−Lold); a specific value has been chosen in order to allow
a comparison between all the studied cases. Initially a small convergence criterion was considered
(L − Lold ≤ 0.01). Performing several tests it was noticed that the weakly nonlinear cases were
able to converge with small errors, but these values, for strongly nonlinear fields, implied a great
number of iterations so it was decided to use, as convergence criterion L−Lold ≤ 1 in order to avoid
too many iterations and too long computation time. It is important to notice that this convergence
criterion doesn’t affect heavily the final results. The use of the optimization routine resulted very
important in the convergence procedure; in fact it allowed to converge strongly nonlinear fields.
At first the QL approach was performed without the estimation of the parameter θ of the

cubic generalized covariance function (Qij = θh3ij). Several fixed values of θ were considered but
this configuration (QL without parameter estimation) was not satisfactory especially in the most
nonlinear case. The choice of the right parameter means also the choice of the right model and that
is crucial to reach the right solution. Then the procedure that allows to estimate the parameters
of the covariance function Q, described in Kitanidis [1995] and in section 6.2, was added with

good results. Considering the statistics Q1 =
1

n− 1

nX
i=2

εi and Q2 =
1

n− p

nX
i=2

ε2i , where εi are the

orthonormal residuals (see appendix D) it is possible to see if the chosen model is correct. The
values reported in table 6.2 and in appendix A show that the parameter estimation routine works
very well. The parameter estimation routine consists in the minimization of the function (3.12)
with respect to θ (maximum likelihood). In the Gauss-Newton process the value of θ is updated
at each iterations (θl+1 = θl − F−1g) till the convergence to a value is reached. The convergence
criterion, in the parameter estimation routine, is also based on the differences between the actual
and the old objective function. A convergence criterion of L−Lold ≤ 1 was considered also in this
case. The parameter estimation gives the best fitting of the covariance model to the data at each
iteration.
For nonlinear cases it is necessary to use the Marquardt modification (see Kitanidis [1995] and

section 3.2 for more details) in the Gauss-Newton iterative process (equation (3.14)) to allow an
easy convergence of the procedure. The Marquardt modification consists in replacing F−1 with
(F+ λI)−1, where I represents the identity matrix and λ is a positive parameter. The Marquardt
parameter (λ) was fixed in each cases (see the appendix A for the used values). This modification
helps [see Kitanidis, 1995] the quasi-linear approach to converge in strongly heterogeneous cases.
Increasing the nonlinearity of the transmissivity field the parameters of the algorithm have to

be adjusted; see appendix A for the used values.
Then the inverse problems on the log-transmissivity fields were performed using all these im-

provements; this procedure will be briefly referred in the following as QL2.
The table 6.2 and the appendix A show all the statistics evaluated after the application of the

QL2 to the log-transmissivity fields (s, 2s, 4s, 6s, 8s and 10s). In the table 6.2 the following
symbols are used:

• σ2R is the variance of the measurement error added for noising purposes;

• θest is the parameter of the covariance matrix Q, that allows the best fitting to the data,
evaluated by the parameter estimation routine;

• Q2 is the statistics that represents if the chosen model is good [see Kitanidis, 2004]. It should
be close to 1 and in particular between Q2crit1 < Q2 < Q2crit2 (see appendix A); in the cases
analyzed Q2crit1 = 0.389 and Q2crit2 = 1.611;
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Figure 6.8: True log-transmissivity, 10s field.
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Figure 6.9: Head [m] related to the 10s transmissivity field.
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• mean and variance of the recovered log-transmissivity field, mean
h∧
s
i
, var

h∧
s
i
;

• mean of the differences between the true field and the recovered one, mean
h
strue −

∧
s
i
, and

of the square differences, mean

∙³
strue −

∧
s
´2¸

;

• D2 = mean

⎡⎢⎣
³
strue −

∧
s
´2

diag(V)

⎤⎥⎦ is the mean of the square differences between the true field and
the recovered one over the variance for each node; D2 should be close to 1.

Analyzing the table 6.2 and comparing the obtained results it is possible to notice that using a
measurement error of σ2R = 10

−4 can be enough to get good results; in fact in all cases it is possible
to see that the recovered field is very close to the true one. The possibility to use σ2R = 10

−4 allows
to speed up the computation and to reach the solution quickly.
The good agreement between the true log-transmissivity field and the recovered one is shown

comparing the Figures 6.5 - 6.10 (s case, σ2R = 10
−6), 6.6 - 6.11 (2s case, σ2R = 10−6) and 6.8 -

6.12 (10s case, σ2R = 10
−4).

Considering the s log-transmissivity field, the efficiency of the parameter estimation routine is
shown by the Q2 parameter, see table 6.2. In fact considering the statistic Q2 (0.8741÷1.0007) it is
possible to see that the chosen model is correct. The mean of the recovered field is well reproduced
(see tables 6.1 and 6.2); in the meanwhile the variance is underestimated for the cases with a small
measurement error (this is due to the QL2 approach). Considering the mean of the difference

between the true field and the recovered one, mean
h
strue −

∧
s
i
, it is easy to notice that is close

to 0. Initially a parameter D1 =
1

m

³
strue −

∧
s
´T
V−1

³
strue −

∧
s
´
was considered (see appendix

A) but that resulted too dependent on the measurement error (σ2R) and on nonlinearity, so was
decided to use D2 instead of D1, that seemed more reliable. The parameter D2, that means how
the estimated error approximates the real one, is about 1 for all the analyzed cases even for the
high nonlinear field (10s).
Considering the 2s log-transmissivity field, see Figures 6.6 and 6.11, Q2 is close to 1 for all the

measurements errors analyzed that means that the chosen model is correct, also for this case this
is due to the parameter estimation routine. The mean of the recovered field is close to 2.5 but the
variance is underestimated. Analyzing the differences it is possible to notice that the true field is

well recovered in fact the mean
h
strue −

∧
s
i
and the mean

∙³
strue −

∧
s
´2¸

are small. The parameter

D2 results close to 1 in the case with a σ2R = 10
−6.

The 10s log-transmissivity field, see Figures 6.8 and 6.12, was considered only with the mea-
surements error of σ2R = 10

−2 and σ2R = 10
−4 with the aim at avoiding numerical problem related

to small values of σ2R, for instance too much ill-conditioned matrix and problems related to the con-
vergence process. The Q2 statistic is not so close to 1 but it is between the range of the two critical
values, Q2crit1 < Q2 < Q2crit2. That means that the optimal parameter of the covariance function
is not reached but it is acceptable. A greater number of iterations, in the parameter estimation
routine, could help to find the optimal structural parameter. The mean of the recovered field is

close to 2.5 and the var
h∧
s
i
= 7.2431 (σ2R = 10

−4 case) is underestimated (true var [s] =10.200).
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Figure 6.10: Recovery of the s log-transmissivity field obtained with the quasi linear approach with
the addition of the optimization, parameter estimation and the Marquardt modification.
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Figure 6.11: Recovery of the 2s log-transmissivity field obtained with the quasi linear approach
with the addition of the optimization, parameter estimation and the Marquardt modification.
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Table 6.2: Summary of the statistics of the heterogeneous fields recovered with the quasi linear
geostatistical approach with the addition of the optimization routine, the parameter estimation
and the Marquardt modification

σ2R θest Q2 mean
h∧
s
i
var

h∧
s
i

mean
h
strue −

∧
s
i
mean

∙³
strue −

∧
s
´2¸

D2

10−2 6.1886 0.8741 2.6013 0.1145 −0.1013 0.1054 0.7294
s 10−4 3.7084 1.0995 2.5003 0.1080 −0.0003 0.0246 1.4293

10−6 6.6892 1.0448 2.4905 0.0815 0.0095 0.0114 0.7447
10−8 6.1065 1.0007 2.4907 0.0775 0.0093 0.0129 0.9496
10−2 17.878 1.0171 2.3894 0.3318 0.1106 0.4020 2.0966
10−4 17.393 1.1595 2.5294 0.2956 −0.0294 0.1307 4.0596

2s 10−6 23.376 1.0417 2.4889 0.3200 0.0111 0.0443 1.3863
10−8 23.215 1.0412 2.4913 0.3168 0.0087 0.0498 1.7213
10−2 70.101 1.2960 2.3215 1.3740 0.1785 1.3422 2.1644
10−4 74.426 1.1183 2.5629 1.3857 −0.0629 0.2438 1.0958

4s 10−6 66.844 1.1498 2.3433 1.4385 0.1567 0.2190 1.7085
10−8 67.233 1.1544 2.3367 1.4444 0.1633 0.2243 1.7394
10−2 199.98 0.6875 2.4166 2.5144 0.0834 1.0436 0.9674

6s 10−4 222.43 0.7815 2.3484 2.8770 0.1516 0.4213 0.7559
10−6 228.57 0.6311 1.9581 2.3641 0.5419 1.2930 1.5293
10−8 231.48 0.6255 1.9613 2.3700 0.5387 1.2737 1.4929
10−2 75.769 1.7221 2.3020 3.9898 0.1980 3.0753 5.1077

8s 10−4 441.15 0.7497 2.0722 5.1689 0.4278 2.7678 0.9438
10−2 600.01 0.8978 1.6616 6.6663 0.8384 5.4171 1.5247

10s 10−4 1137.6 0.5056 1.8665 7.2431 0.6335 4.2144 0.7245

Moreover the differences between the true and the estimated log-transmissivity field are close to 0.
The parameter D2 is close to 1; this means that the measurement error is quite well represented.
These brief analyses on the results can be generalized to all the studied cases; in fact, also the

most heterogeneous transmissivity field (10s) is well recovered.
In conclusion the quasi-linear approach resulted not satisfactory in the application to strongly

nonlinear fields while, with the addition of few improvements, it results efficient and versatile. In
any case the QL methodology underestimates the variance.

6.5 Applications with Conditional Realizations

The previous cases (reported in 6.4) were also analyzed with the addition of the conditional real-
ization using the procedure described in the section 6.3. In the following only three cases (s with
σ2R = 10

−6, 2s with σ2R = 10
−6 and 10s with σ2R = 10

−4) are reported. For the whole results see
the appendix B. The application of MCMC to the quasi-linear approach is in order to avoid the
underestimation of the variance of the recovered field.
Since the optimization routine and Marquardt modification (see section 6.2) resulted very

efficient in the QL2 approach, they were applied also to the process that uses the conditional
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Figure 6.12: Recovery of the 10s log-transmissivity field obtained with the quasi linear approach
with the addition of the optimization, parameter estimation and the Marquardt modification.
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realizations; the parameter estimation routine was not added to this methodology (it requires too
much computation time) and as parameter of the covariance function (cubic) the one estimated
by the QL2 method (see table 6.2) has been chosen. Moreover the same convergence criterion and
Marquardt parameter, used in the QL2, were considered (see appendix A).
The first step of the methodology is to create an unconditional realization; at this aim a

methodology, that is based on the eigenvalues decomposition (of the covariance matrixQ and of the
drift matrix X) and works with (conditionally) semidefinite covariance matrix, has been adopted.
Then the MCMC chain (equation (6.8)) was set up; a value of ρ equal to 0.99 was assumed,
so the new unconditional realization is very close to the last accepted one. 1000 conditional
realizations (see equation (6.5)) for each transmissivity field were performed to test the method.
The computation time varies from 2.5 hours of the s field to 10 hours of the 10s field (simulations
performed on an Intel Centrino M 760, 512 Mb RAM).
The results of the 1000 conditional realizations are summarized in the tables 6.3, 6.4, 6.5 and in

appendix B. The MCMC chain needs a training period so the first simulations of the chain has to
be discarded. For this reason in the tables 6.3, 6.4, 6.5 and in appendix B the results of the whole
simulations, from 100 to 1000, 200 to 1000, 300 to 1000 and 500 to 1000 are shown; moreover in
these tables the percentage of the accepted conditional realizations is shown.
As described in section 6.3 an acceptance/rejection algorithm was added to the process, in

particular the Metropolis-Hastings. This algorithm allows to investigate a result of the geostatis-
tical process with the conditional realizations and to accept it or to reject it in according to the
method described in section 6.3. It is possible to see (tables 6.3, 6.4, 6.5 and appendix B) that the
percentage of the accepted solution is low (excluding a couple of cases is less than 15%) for all the
studied cases.
Considering the first field (s) with σ2R = 10

−6 (see table 6.3), it is possible to notice that the
statistics of the recovered field with 1000 CR are close to the one obtained with the QL2 approach.
The variance of 1000 CR is 0.1098 instead of 0.1020 (true value), and avoiding the first 300 realiza-
tions the variance results 0.1028, that is very close to the true value. The mean of the differences

between the recovered field and the true one mean
h
strue −

∧
s
i
is close to zero and the variance of

the differences var
h∧
s
i
is small. The square difference over the variance (D2) is close to one for all

the ranges considered. See Figures 6.5 (true field), 6.10 (QL2) and 6.13 (conditional realizations)
to compare the results obtained with the two methodologies. Both methodologies represent very
well the shape of the true field but the solution obtained using the QL2 approach is smoother
than the other one. Analyzing the differences between the true field and the estimated one, the
mean differences using QL2 is 0.0095 (considering σ2R = 10−6), while using the CR the mean of

the differences results −0.0026. Consideringmean

∙³
strue −

∧
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´2¸

instead of mean
h
strue −

∧
s
i
, it is

possible to notice that the value obtained using the QL2 approach is 0.0114 while for the CR case

is 0.0090 (considering 1000 realizations). Both values mean
h
strue −

∧
s
i
and mean

∙³
strue −
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´2¸

result smaller using the CR approach. The value of D2 for the QL2 approach is 0.7447, while
using the CR approach the best value is 0.9315 and it is reached avoiding 500 realizations. This
analysis means that for weakly nonlinear fields both the quasi-linear and the conditional realization
approach are very efficient. The CR approach reproduces better the true log-transmissivity field,
but the QL approach requires a few computation time (few minutes instead of 3 hours).
Considering the 2s field (see table 6.4 and Figure 6.14) the mean of the recovered log-transmissivity

results close to 2.5 and the variance is well estimated, considering the whole 1000 CR.mean
h
strue −

∧
s
i
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Figure 6.13: Recovery of the s log-transmissivity field obtained with the quasi linear approach with
the addition of the 1000 conditional realizations.
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Table 6.3: Summary of 1000 conditional realizations applied to the s transmissivity field.

σ2R = 10
−6

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 10.700 9.8779 10.112 9.8431 12.575

mean
h∧
s
i

2.4974 2.4947 2.4929 2.4907 2.4899

var
h∧
s
i

0.1098 0.1079 0.1068 0.1028 0.1009

mean
h
strue −

∧
s
i

0.0026 0.0053 0.0071 0.0093 0.0101

mean

∙³
strue −

∧
s
´2¸

0.0090 0.0093 0.0093 0.0095 0.0097

D2 0.8031 0.8529 0.8662 0.9070 0.9315

Table 6.4: Summary of 1000 conditional realizations applied to the 4s transmissivity field.

σ2R = 10
−6

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 11.600 10.877 11.610 11.840 12.176

mean
h∧
s
i

2.4961 2.4915 2.4891 2.4861 2.4834

var
h∧
s
i

0.4487 0.4386 0.4353 0.4262 0.4101

mean
h
strue −

∧
s
i

0.0039 0.0085 0.0109 0.0139 0.0166

mean

∙³
strue −

∧
s
´2¸

0.0326 0.0325 0.0328 0.0333 0.0351

D2 0.8544 0.8943 0.9164 0.9550 1.0351

results smaller than the one evaluated using the QL2 (0.0039 instead of −0.0111). Moreover the
mean of the square difference is smaller using the CR approach 0.0326 instead of 0.0443. This
means that the CR approach represents quite well the true log-transmissivity field. The D2 pa-
rameter is close to 1 and similar to the one estimated with the QL2 approach. The best D2 is
reached avoiding 500 CR. The shape of the recovered field is well represented, see Figures 6.8 (true)
and 6.14 (CR), and comparing the graphical results to the one obtained with the QL2 approach,
see Figure 6.12, it is possible to notice, as the s log-transmissivity field, that the QL2 approach
is smoother than the other one. Also in this case the solution is reached after several hours of
computation time instead of few minutes needed by the QL2 approach.
Considering the 10s field (see table 6.5 and Figure 6.15) the mean and the variance of the

recovered log-transmissivity field are underestimated compared to the true one (mean
h∧
s
i
= 2.1582

instead of 2.5, var
h∧
s
i
= 8.2021 instead of 10.200). Both the value of mean

h
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mean
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using the CR approach are smaller than using the QL2 methodology. The D2

parameter is closer to 1 using the QL2 approach than the CR; that indicates that the QL2 represents
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Figure 6.14: Recovery of the 2s log-transmissivity field obtained with the quasi linear approach
with the addition of the 1000 conditional realizations.
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Table 6.5: Summary of 1000 conditional realizations applied to the 10s transmissivity field.

σ2R = 10
−4

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 11.000 10.655 11.610 12.553 9.5808

mean
h∧
s
i

2.1582 2.1197 2.1132 2.0994 2.0456

var
h∧
s
i

8.2021 8.0912 8.0706 8.0510 8.1264

mean
h
strue −

∧
s
i

0.3418 0.3803 0.3868 0.4006 0.4544

var
h
strue −

∧
s
i

1.3525 1.4987 1.5210 1.5699 1.7975

mean

∙³
strue −

∧
s
´2¸

1.4676 1.6413 1.6687 1.7283 2.0016

D2 1.5797 1.7853 1.8074 1.8490 2.1425

better the measurement error than the CR. The number of the accepted conditional realizations in
the 10s case is less than 13%, this is due to the strongly heterogeneous log-transmissivity field. The
computation time is about 10 hours instead of few minutes for the QL2 approach. The CR needs
so much time because for strongly nonlinear fields it requires a very great number of iterations to
reach the convergence.
Increasing the nonlinearity the percentage of the accepted solution decreases, moreover using

a too big measurement error the number of the accepted solution is very low. In fact considering
the tables in appendix B it is possible to see that for the cases 4s, 6s, 8s and 10s with σ2R = 10

−2

the percentage of the accepted solution is less than 3%. This is due to the great error considered
associated to the high nonlinearity of the log-transmissivity field.

6.6 Conclusions
The first and most important result is that the quasi-linear procedure, with the additions of
three simple routine, is efficient; it is applicable to strongly nonlinear field and it allows to reach
the convergence quickly. The only disadvantage of the QL2 approach is that it underestimate the
variance. The conditional realizations is a very expensive procedure, it requires a lot of computation
efforts but, in all the studied cases, it recovered the log-transmissivity field better than the QL2
approach. The application of the conditional realizations is a very complex process; in particular
the choice of the parameters. In this work the chosen parameters were the one evaluated by the
parameter estimation of the QL2 approach. In fact, few analysis were performed to choose the
value of the Marquardt parameter, and the starting value of the parameter estimation routine.
Probably the best method to solve these kind of problems is to join the two methodologies; the
first step regards the QL2 that is used to obtain a first estimate and allows to evaluate the correct
parameters (it is important to remark that the QL2 allows to reach the solution in few minutes),
then the second step applies the CR, with the evaluated parameter, in order to find the best
solution. Moreover it is important to find a criterion that allows to specify the training period of
the MCMC chain and the number of the realizations that are required to solve the process.
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Figure 6.15: Recovery of the 10s log-transmissivity field obtained with the quasi linear approach
with the addition of the 1000 conditional realizations.
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In this work several measurement errors (from 0.001 m to 1 m) were considered in order to
compare the results; using a too small measurement error, the process is unrealistic as using a
too wide error. Using a great error the solution results flatter than using a small error; this is

due to the R matrix in the objective function: the misform part (
³
z− h

³∧
s
´´T

R−1
³
z− h

³∧
s
´´
)

becomes more important than the misfit (
∧
s
T

G
∧
s). A value of σ2R = 10−4 (0.1 m) or σ2R = 10−6

(0.01 m) are the most realistic cases for the measurement errors.
Both the QL2 and CR underestimated the variance; considering the CR approach this problem

can be solved increasing the number of the iterations, but this means also the increasing of the
computation time. Probably in the next years, thanks to the development of the personal computer,
it will be possible to solve this kind of problems in a short time using a great number of realizations.
Few developments could be added to the CR approach; for instance a routine that allows to

evaluate the Marquardt parameter could be helpful to the convergence routine. In fact it was
noticed that the results are highly affected by the Marquardt parameter chosen. Moreover another
improvement could be the use of the Fourier transforms to create unconditional realizations, that
allows to extend the methodology to very refined grid.
Concluding, the CR approach, in all the studied cases, performs better than the QL2; but the

QL2 methodology requires only few minutes to reach the solution instead of few hours. For weakly
nonlinear case, as the tested case s, the solution reached by the CR and QL2 are very similar, so
the QL2 is a very good substitute of the CR. Using the CR approach, a relevant difference between
the QL2 and the CR for the s case can be found after 1000 conditional realizations. While for all
the other nonlinear studied cases, the CR approach is always better and not comparable to the
QL2.





Chapter 7

New Developments: Matrix
Multiplication

7.1 Introduction

The computation grid is one of the main aspects in the mathematical modeling, denser it is
better the results are. But the main problems of dense grid are the costs in computation time
and in storage memory. For this reason during the last years several Researchers studied new
methodologies to speed up the matrix operations. One of the best methods is the application of the
Fast Fourier Transform [Nowak et al., 2003] to the matrix multiplication. The computational costs
are reduced from O(n2) to O(nlog2n) and the storage is reduced from O(n2) to O(n). Geostatistics
utilizes the cross-covariance matrix between the unknowns and the observations and the auto-
covariance matrix among the observations to infer information from the observations onto the
unknowns. This kind of condition requires a lot of matrix-matrix multiplication.
In geostatistics spatially distributed unknown are described as realizations of random processes

and characterized by their mean values and covariance functions. A list of all the matrices and
vectors used in common geostatistical processes (see section 3.2 or see Kitanidis [1995]) follows:
s (n× 1) vector of n unknowns
t (m× 1) vector of m observations
Qss (n× n) covariance matrix of s
Qst (n×m) cross-covariance matrix between observations and unknowns
Qtt (m×m) auto covariance matrix of observation
R (m×m) auto covariance matrix of the measurement error
Qst = QssH

T

Qtt =HQssH
T +R = HQst +R

Given the relationship t = f(s) between observations and unknowns, H(m×n) is the linearized
sensitivity matrix (H = ∂t/∂s) computed using the adjoint-state method.
The construction of Qss is a computation O(n2), Qst is O(mn2), and Qtt via Qtt = QtsH

T

or Qtt = HQssH
T is O(nm2) or O(nm2 +mn2). These circumstances have limited the diffusion

of methods like cokriging that requires explicit formulation of Qst and Qtt. In most cases the
unknown is a stationary random variable discretized on a regular and equispaced grid; this imposes
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symmetric Toeplitz matrix (ST)1 or symmetric block Toeplitz matrix with Toeplitz block (STT)
structure onto Qss and reduces the storage requirements for Qss to O(n). Toeplitz matrices can
be embedded in larger circulant matrices2 .
1-D problems lead to symmetric circulant matrices (SC); 2-D problems lead to symmetric block

circulant matrices with circulant blocks (SCC).
The overall approach is shown in the following and an example regarding the inverse problem

is performed. The aim of the example is to determine the transmissivity of a flow field given
measured heads in specific positions of the flow field.

7.2 Methodology [Nowak et al., 2003]

Consider a finite regular grid n0y × n0x with constant spacing dx and dy, sized L0x × L0y and x
0 and

y0 the n0yn
0
x×1 vectors with the x and y coordinates of its nodes. s0 denotes a stationary Gaussian

random space variable on the regular grid, with zero mean and covariance function R(h). The
covariance matrix Q0

ss has STT Structure with n0x × n0x blocks sized n0y × n0y.
The embedding of the matrix could be summarized as follows: to embed ST in SC matrices,

extend the series t0, ..., t0nx−1 by appending the elements t1, ..., t
0
nx−2 in reverse order to obtain a

series co...cnx ...c1, nx = n0x − 1, corresponding to mirroring the covariance function to render it
periodic, so the dimensions of the symmetric circulant matrix are 2nx × 2nx. To embed STT in
SCC matrices, embed the ST blocks Ti in SC blocks Ci, and then extend the series of the blocks to
obtain a periodic series of blocks; the result is a 4nynx×4nynx matrix, (nx = n0x−1, ny = n0y−1).
The Jacobian H has to undergo the same embedding by zero-padding all entries corresponding

to the new entries in the SCC covariance matrix Qss. Reshape the m rows sized 1 × n0yn
0
x in to

n0y × n0x matrices, pad them with zeros to obtain ny × nx matrices, and reshape them back to
1× nynx rows to obtain the embedded version of H sized m× nynx.

7.2.1 Computation of the Eigenvalues

The diagonalization theorem gives eigenvalues of the nynx×nynx (nx = 2(n0x−1), ny = 2(n0y−1))
SCC matrix Qss = F

HΛF

Λ: diagonal matrix of eigenvalues
F: 2-D Fourier matrix

1The Toeplitz Matrix (ST) is structured as follow:

T =

⎡⎢⎢⎢⎣
t0 t1 ... t

npx−1
t1 t0 . t

npx−2
. . . .

t
npx−1

t
npx−2

... t0

⎤⎥⎥⎥⎦
STT matrices have the same structure of ST, but replacing ti with Ti.
2The circulant matrix (SC) is structured as follow

C =

⎡⎢⎢⎢⎢⎢⎣
c0 c1 ... cnx ... c1
c1 c0 . cnx−1 . c2
. . . . . .

cnx cnx−1 ... c0 ... cnx−1
. . . . . .
c1 c2 ... cnx−1 ... c0

⎤⎥⎥⎥⎥⎥⎦
In SCC matrices ci are replaced by Ci, (which are SC submatrices).
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FH = F−1: its Hermitian transpose3, FHF = I
FQss = ΛF, considering only the first column of Qss that contains all the informations

FQss,1 = ΛF1. All entries of F1 equal (nxny)
−1/2:

λ =
√
nxnyFQss,1 (7.1)

where λ (nynx × 1) is the vector of eigenvalues and F contains the eigenvectors. FQss,1 is
computed using 2-D FFT.
The eigenvalues are computed once and then stored for all the subsequent step.
2-D Fourier matrix: The Discrete Fourier Transform (DFT) can be formulated in matrix

notation. Consider F an nynx × nynx matrix with the entries:

Fkl =
1

√
nxny

exp

µ
−2πi
ny

∙
l − (lmodnx)

nx

¸
·
∙
k − (kmodnx)

nx

¸¶
(7.2)

exp

µ
−2πi
nx

(lmodnx) (kmodnx)

¶
l,m = 0, 1..., nxny − 1.

Then the 2-D Fourier transform V of any ny × nx matrix U is: v = Fu, in which u and v are
nyny × 1 obtained from rearranging the matrices U and V column-wise.
The inverse Fourier transformation corresponds to the inverse of Fourier matrix. As F is unitary,

F−1 = FH and FHF = I, where H denotes the Hermitian Transpose.
Fu is evaluated by reshaping u into an ny ×nx matrix U, computing the 2-D FFT V = F (U),

and reshaping V back to an nynx × 1 vector v = Fu, which is O(nlog2n) instead of O(n2),
n = nynx.

7.2.2 Matrix-Vector Multiplication

The product betweenQss and a vector u (nynx×1) could be simplified using the previous equations:
Qssu = (F

HΛF)u = FHΛ(Fu), in which Fu = v is computed via 2-D FFT.
As Λ is diagonal, Qssu = F

H(Λv) = FH[λ1v1,λ1v1, . . . . . . ,λnxnyvnxny ]
T

For uTQss, compute (Qssu)
T as Qss = Q

T
ss.

This procedure is called spectral convolution.

7.2.3 Vector-Matrix-Vector Multiplication

To evaluate uT1Qssu2 with u1 and u2 sized nynx × 1 the procedure is:

uT1Qssu2 = u
T
1 (F

H
ΛF)u2 = v

H
1 Λv2 =

nxnyX
k=1

(v∗1)kλk(v2)k (7.3)

v1 = Fu1 and v2 = Fu2 are computed by 2-D FFT and v∗i is the complex conjugate of v1.
For u1 = u2:

uTQssu =

nxnyX
k=1

λk |vk|2 (7.4)

3Hermitian matrix [Weisstein]: A square matrix is called Hermitian if it is self-adjoint. Therefore, a Hermitian
matrix A = (aij) is defined as one for which A = AH , where AH denotes the conjugate transpose. This is equivalent
to the condition aij =

_
aji, where

_
a denotes the complexe conjugate. As a result of this definition, the diagonal

elements aii of a Hermitian matrix are real numbers (since aii =
_
aii), while other elements may be complex.
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Figure 7.1: Log-Log plot for the comparison of memory consumption in MByte for the storage of
Qss as a function of the number of unknowns n = nynx, using the different methods.

7.2.4 Matrix-Matrix Multiplications

Considering H (m× nynx), the computation of Qst = QssH
T can be split up into single vector-

matrix multiplications:
Qst = Qssuk, k = 1...m, where uk is the transpose of the kth row of H.
Qtt =HQssH

T can be split up into m2 subproblems: Qtt,kl = u
T
kQssul

As HQssH
T is symmetric, only the upper triangle (see equation (7.3)) and the diagonal (see

equation (7.4)) has to be computed.
The spectral results of Qst = QssH

T (m × nynx) correspond to the embedded version of H.
To extract the original size Qst, the process has to be reversed. Qtt requires no extraction as it is
sized (m×m).
The graph in Figure 7.1 shows the memory required for the storage of Qss using the standard

method and the spectral method. The standard method runs out of memory at 212 and the FFT
method at 221 (the test is performed on an Intel pentium III 1GHz with 384 Mb RAM).

As mentioned above the covariance matrix Qss has a STT structure, so this property can be
used to embed the matrix in a fast way. The graphs 7.2 show the time (Clock and CPU) between
the standard embedding method and the one that uses the STT properties. The method that uses
the STT properties is always faster then the standard one.

7.3 Examples

The graphs in Figure 7.3 show the comparison of the computation time using standard and
FFT methods including the generation of the matrix Qss for the matrix-matrix multiplication
Qst = QssH

T . The covariance matrix Qss is assumed to have the exponential form: Qss =

σ2 · exp
µ
−hij

l

¶
. The covariance matrix has to be non negative. The graphs show that the FFT

method it is faster than the standard one for grid with n = n0yn
0
x > 28 = 256. The graphs in Fig-

ure 7.4 show the computation time for the multiplication of the matrices used in inverse problems
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Figure 7.2: Time differences in embedding the covariance matrix. Continuos line is the embedding
time using STT properties, Dashed line is the embedding time using standard method.



88 Andrea Zanini - Geostatistical approach: applications and improvements

(Qtt = HQssH
T and Qst = QssH

T ) including the embedding of the matrix Qss. In this case the
FFT methods run faster for n > 210 = 1024.
The great advantage of the spectral method in the inverse problem is the possibility to use very

dense grid.
Two examples regarding the inverse problems were performed to test the spectral method. The

aim of the first example (Application 4, CEE 267, Interpolation and Inverse Problems [Kitanidis,
2004]) is to determine the transmissivity of an aquifer starting from head measurements.
In this kind of inverse problems several iterations are performed to find the correct solution, but

the covariance matrix Qss is built only once. So the spectral convolution speeds up problems with
very dense grid and solved with a small number of iterations. For instance, to solve a problem in
9 iteration with a grid of 25× 25 the standard method spends 130 s while the spectral convolution
results slower (150 s). This is due to the fact that the covariance matrix is built only once affecting
the total computation time in a moderate amount.
The second example deals with the inverse problem in recover the release history of a pollu-

tant [Snodgrass and Kitanidis, 1997]. The example studied considers the 1-D unconstrained case
[Snodgrass and Kitanidis, 1997] and compares the standard multiplication to the spectral method.
In this example the covariance matrix Qss is assumed to have Gaussian form. The covariance
matrix for this kind of problem is a ST matrix, so using the spectral methods, it is embedded
in a larger SC matrix. The problem in hand has 300 computation nodes; the solution takes 10 s
using the standard method of assembling and multiplying the matrices; with the use of the spectral
method the computation time grows to 19 s because the dimension of the grid is out of the good
working zone of the new method. The best performance has been obtained (3 s) assembling the
covariance matrix Qss by means of the ST properties and computing the matrix multiplication
with the standard method.

7.4 Conclusions

In the application of the first example the covariance matrix is built only once, so the multiplication
time of the matrices has been considered without the embedding of the covariance matrix (see
Figure 7.5). The standard multiplication method for grid up to 26 × 26 is always faster than the
spectral one. So the only advantage of the procedure proposed by Nowak et al. [2003], for grid up
to 26 × 26, is in the embedding of the covariance matrix Qss (see Figure 7.2).
The results obtained applying these methods to the inverse problems are that the spectral

method, for grid up to 26 × 26, is faster than the other one only for few iterations and for a large
number of iterations the standard method results faster than the spectral one.
The best choice, for grid up to 26 × 26, is to use the STT properties to build the covariance

matrix and to use the standard method for the matrix-matrix multiplication.
The main improvement of the spectral method is the possibility to use a computation grid up

to 221 nodes; note that the limit of the standard multiplication method is 212.
The first inverse problem analyzed needs to build the sensitivity matrix in each iteration, so

this computation requires a lot of time, especially for large grid (the dimensions of the matrix H
are m×n where n = nc×nr and m is the number of observations). A new improvement could be
to find a faster method to embed the sensitivity matrix.
Regarding the second example, the set up of the covariance matrix using the properties of the

Toeplitz matrix is the main advantage of the methodology proposed by Nowak et al. [2003]. Finally
the solution of these inverse problems, using the ST properties with the standard multiplication
method for grid up to 212 nodes, is faster than the spectral method.
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Figure 7.3: Log-Log plot of the computation time (CPU and clock) for the matrix multiplication:
Qst= QssH

T, including the embedding of the STT matrix Qss. Spectral method (continuos line)
and standard method (dashed line).
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Figure 7.4: Log-Log plot of the computation time (CPU and clock) for the matrix multiplica-
tion: HQssH

T and QssH
T, including the embedding of the STT matrix Qss. Spectral method

(continuos line) and standard method (dashed line).
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Figure 7.5: Log-Log plot of the computation time (CPU and clock) for the matrix multiplication:
HQssH

T and QssH
T. Spectral method (continuos line) and standard method (dashed line).

In conclusion the improvement of the procedure can be investigated in the following topics:

• As mentioned above, one improvement could be a new method to evaluate the sensitivity
matrix H. In the first example the covariance matrix is built only once and the sensitivity
matrix is built in each iteration. For instance the building of the H matrix for a grid of
212 nodes takes about 280 s. Considering that the H matrix has to be evaluated at each
iteration, the speed up of this process can shorten the solution of the inverse problem.

• Another improvement could be the use of different (than the Gauss-Newton) iterative meth-
ods. Promising attempts are made by Nowak and Cirpka [2004] with the use of a modified
Levenberg-Marquardt.
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7.5 Note: Matlab FFT
In the following there is a brief summary of the Matlab function regarding the FFT.
The 2-D FFT in Matlab are not described by the equation (7.2). The regularization coefficient

in Matlab is nxny and not
√
nxny, so during the application of the spectral convolution the factor√

nxny has to be considered. In Matlab the new equation for the eigenvalues results:

λ = FQss,1 (7.5)



Conclusions

This thesis regards the application and new improvements of the quasi-linear geostatistical ap-
proach to two main inverse problems in groundwater: the recovery of the pollutant release history
from scarce concentration measurements and the recovery of transmissivity fields from a few head
measurements. The knowledge of the pollution release function allows to study the future pol-
lution spread and to plan the remediation actions. Moreover, from a legal and regulatory point
of view, it is also important to determine the release time and duration and the highest values
of concentration of the injected solution. The second problem allows to save money; in fact, nor-
mally, the transmissivity measurements are more expensive than to obtain the head measurements.
Starting from the boundary condition of the studied area and from a few head measurements it is
possible to know the whole transmissivity field on a grid. Both of the problems are related to the
mathematical modeling.
Regarding the recovery of the pollutant release history, the main improvement proposed in this

work is the extension of the methodology proposed by Snodgrass and Kitanidis [1997] from a 1-D
homogeneous problem to a multidimensional heterogeneous one. The transport of a non reactive
pollutant through the groundwater is described by a convolution integral, where the transfer func-
tion represents the transport phenomena. For easy cases, such as 1-D flow and transport, it is
possible to obtain an analytical transfer function, but for more complex cases, such as the presence
of heterogeneity, wells, recharge, etc., it is necessary to use highly accurate numerical models to
evaluate the transfer function. Knowing the source locations it is possible, using the numerical
model, to release a constant concentration of a pollutant in the aquifer and at the same time to
measure the response (breakthrough curve) in several measurement points. The transfer function
is obtained making the time derivative of the breakthrough curve. Thanks to this improvement
it is possible to apply the methodology proposed by Snodgrass and Kitanidis [1997] to any cases
without limitations. In this work few synthetic cases were analyzed, with very good results, to test
the methodology.
The setting up of a numerical model is a complex and costly procedure, but it is possible to

save money and time evaluating the transmissivity of the aquifer using the procedure proposed by
Kitanidis [1995]. Starting from few head measurements, knowing the boundary conditions of the
problem in study, it is possible, using the quasi-linear approach, to evaluate the whole transmissivity
fields. This work analyzes strongly heterogeneous transmissivity fields (6 cases with an increasing
contrast were studied) and proposes few improvements to the methodology; the first regards the
optimization of the Gauss-Newton convergence procedure and the second considers the conditional
realizations. The results of 1000 conditional realizations and the quasi-linear approach, on each
transmissivity field, were compared in order to find the best methodology. The quasi-linear with
the addition of the optimization procedure results very efficient, but the methodology that uses
the conditional realizations represents better the real transmissivity fields. Two questions raise
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from this study; the first regards the number of the realizations that are required to obtain good
results and the second is related to the number of iterations that represents the training period of
the chain. The answers to these questions represent the future analyses of this methodology.
Considering the pollutant release history, the possibility to extend the proposed approach to

evaluate the transfer functions are several. Initially the application of the methodology to reactive
solutes will be consider, then to unsaturated cases. The ultimate objective of the author is to apply
the methodology to a real case.
During the study of the quasi-linear geostatistical approach the improvements of Nowak et al.

[2003] are reported and tested. They concern a method based on the fast Fourier transform, that
allows to speed up the matrix multiplications. This issue results very important because, in the
opinion of the author, the next step of the geostatistical approach is to develop tools that speed
up the process, in order to save computation time.
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Appendix A

Results of the Quasi-Linear
Geostatistical Approach Applied
to the Estimation of the Aquifer
Parameters

The following tables regard the chapter 6.3 and show all the statistics evaluated after the application
of the quasi-linear geostatistical approach (see section 3.2) with the addition of the optimization,
the parameter estimation routines and the Marquardt modification (see section 6.2) to all the
log-transmissivity fields studied.
In the following tables this symbols are shown:

• σ2R is the variance of the error added to the measurements;

• θest is the parameter of the covariance matrix Q (cubic Qij = θh3ij), that allows the best
fitting to the data, evaluated by the routine of the parameter estimation;

• Q1 =
1

n− 1

nX
i=2

εi and Q2 =
1

n− p

nX
i=2

ε2i , where εi are the orthonormal residuals and n − p

represents the degrees of freedom [seeKitanidis, 2004]. This two statistics regard the goodness

of the chosen model. The model is rejected if |Q1| >
2√
n− p

= Q1crit; for the studied cases

Q1crit = 0.44. Regarding the Q2 statistic, the model is rejected if |Q2 − 1| >
2.8√
n− p

,

simplifying Q2crit1 < Q2 < Q2crit2; in the studied problems Q2crit1 = 0.389 and Q2crit2 =
1.611;

• mean and variance of the recovered log-transmissivity field (mean
h∧
s
i
, var

h∧
s
i
) and of the

differences between the true field and the recovered one (mean
h
strue −

∧
s
i
, var

h
strue −

∧
s
i
);

• mean and variance of the square differences, mean

∙³
strue −

∧
s
´2¸

, var
∙³
strue −

∧
s
´2¸

;
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• D1 =
1

m

³
strue −

∧
s
´T
V−1

³
strue −

∧
s
´
, this value should be close to 1; this value at last

resulted not reliable because it is too dependent to the measurement error σ2R;

• D2 = E

⎡⎢⎣
³
strue −

∧
s
´2

diag(V)

⎤⎥⎦ is the mean of the square differences between the true field and the
recovered one over the variance for each node; D2 should be close to 1;

• mean and variance of the recovered transmissivity field (mean

∙
∧
T

¸
, var

∙
∧
T

¸
) and of the dif-

ferences between the true field and the recovered one (mean

∙
Ttrue −

∧
T

¸
, var

∙
Ttrue −

∧
T

¸
);

• θ0 is the initial value of the covariance parameter;

• Parameter used in the Marquardt modification.

Table A.1: Summary of the statistics of the heterogeneous field s.

σ2R 10−2 10−4 10−6 10−8

θest 6.1886 3.7084 6.6892 6.1065
Q1 −0.1733 −0.0749 −0.1659 0.1058
Q2 0.8741 1.0995 1.0448 1.0007

mean
h∧
s
i

2.6013 2.5003 2.4905 2.4907

var
h∧
s
i

0.1145 0.1080 0.0815 0.0775

mean
h
strue −

∧
s
i
−0.1013 −0.0003 0.0095 0.0093

var
h
strue −

∧
s
i
−0.1013 −0.0003 0.0095 0.0093

mean

∙³
strue −

∧
s
´2¸

0.1054 0.0246 0.0114 0.0129

var

∙³
strue −

∧
s
´2¸

0.8099 2.6111 0.8502 1.2663

D1 0.6895 1.1489 0.7793 15.585
D2 0.7294 1.4293 0.7447 0.9496

mean

∙
∧
T

¸
14.218 12.861 12.581 12.554

var

∙
∧
T

¸
19.267 18.623 14.845 13.784

mean

∙
Ttrue −

∧
T

¸
−1.3754 −0.0180 0.2621 0.2887

var

∙
Ttrue −

∧
T

¸
21.5257 4.5794 2.4041 2.8185

θ0 1 1 1 1
Marquardt 1 1 1 1
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Table A.2: Summary of the statistics of the heterogeneous field 2s.

σ2R 10−2 10−4 10−6 10−8

θest 17.878 17.393 23.376 23.215
Q1 0.0372 0.1635 0.1845 −0.2050
Q2 1.0171 1.1595 1.0417 1.0412

mean
h∧
s
i

2.3894 2.5294 2.4889 2.4913

var
h∧
s
i

0.3318 0.2956 0.3200 0.3168

mean
h
strue −

∧
s
i

0.1106 −0.0294 0.0111 0.0087

var
h
strue −

∧
s
i

0.3903 0.1300 0.0443 0.0498

mean

∙³
strue −

∧
s
´2¸

0.4020 0.1307 0.0443 0.0498

var

∙³
strue −

∧
s
´2¸

0.4848 0.0664 0.0077 0.0110

D1 0.9540 1.1275 3.7836 1061.7
D2 2.0966 4.0596 1.3863 1.7213

mean

∙
∧
T

¸
12.711 14.489 14.311 14.318

var

∙
∧
T

¸
45.413 70.814 109.23 108.23

mean

∙
Ttrue −

∧
T

¸
2.4898 0.7115 0.8894 0.8826

var

∙
Ttrue −

∧
T

¸
155.29 60.735 22.563 24.705

θ0 1 1 1 1
Marquardt 1 1 1 1
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Table A.3: Summary of the statistics of the heterogeneous field 4s.

σ2R 10−2 10−4 10−6 10−8

θest 70.101 74.426 66.844 67.233
Q1 0.4656 −0.5078 −0.0935 −0.0843
Q2 1.2960 1.1183 1.1498 1.1544

mean
h∧
s
i

2.3215 2.5629 2.3433 2.3367

var
h∧
s
i

1.3740 1.3857 1.4385 1.4444

mean
h
strue −

∧
s
i

0.1785 −0.0629 0.1567 0.1633

var
h
strue −

∧
s
i

1.3121 0.2401 0.1947 0.1979

mean

∙³
strue −

∧
s
´2¸

1.3422 0.2438 0.2190 0.2243

var

∙³
strue −

∧
s
´2¸

5.5996 0.1630 0.1210 0.1309

D1 1.4285 2.5596 3.7698 237.18
D2 2.1644 1.0958 1.7085 1.7394

mean

∙
∧
T

¸
17.398 27.353 20.181 20.128

var

∙
∧
T

¸
294.59 2813.3 851.99 857.28

mean

∙
Ttrue −

∧
T

¸
14.889 4.9343 12.106 12.159

var

∙
Ttrue −

∧
T

¸
6608.6 2048.3 3370.9 3394.6

θ0 60 60 60 60
Marquardt 1 1 1 1



APPENDIX A. RESULTS OF THE QUASI-LINEAR GEOSTATISTICAL APPROACH APPLIED TO
THE ESTIMATION OF THE AQUIFER PARAMETERS 101

Table A.4: Summary of the statistics of the heterogeneous field 6s.

σ2R 10−2 10−4 10−6 10−8

θest 199.98 222.43 228.57 231.48
Q1 0.1016 −0.1261 −0.1059 −0.1398
Q2 0.6875 0.7815 0.6311 0.6255

mean
h∧
s
i

2.4166 2.3484 1.9581 1.9613

var
h∧
s
i

2.5144 2.8770 2.3641 2.3700

mean
h
strue −

∧
s
i

0.0834 0.1516 0.5419 0.5387

var
h
strue −

∧
s
i

1.0380 0.3988 1.0007 0.9848

mean

∙³
strue −

∧
s
´2¸

1.0436 0.4213 1.2930 1.2737

var

∙³
strue −

∧
s
´2¸

3.3809 0.7286 9.0656 8.7325

D1 0.8428 25.222 1921.2 67101.0
D2 0.9674 0.7559 1.5293 1.4929

mean

∙
∧
T

¸
33.762 46.738 18.731 18.759

var

∙
∧
T

¸
3365.4 22557.1 1316.9 1273.1

mean

∙
Ttrue −

∧
T

¸
86.103 73.127 101.13 101.11

var

∙
Ttrue −

∧
T

¸
309126.8 205355.1 326630.3 326265.7

θ0 20 20 20 20
Marquardt 4 4 4 4
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Table A.5: Summary of the statistics of the heterogeneous fields 8s and 10s.
8s 10s

σ2R 10−2 10−4 10−2 10−4

θest 75.769 441.15 600.01 1137.6
Q1 −0.1845 −0.1747 0.4919 0.2282
Q2 1.7221 0.7497 0.8978 0.5056

mean[
∧
s] 2.3020 2.0722 1.6616 1.8665

var[
∧
s] 3.9898 5.1689 6.6663 7.2431

mean
h
strue −

∧
s
i

0.1980 0.4278 0.8384 0.6335

var
h
strue −

∧
s
i

3.0401 2.5881 4.7204 3.8181

mean

∙³
strue −

∧
s
´2¸

3.0753 2.7678 5.4171 4.2144

var

∙³
strue −

∧
s
´2¸

42.551 72.665 167.277 149.43

D1 4.0028 146.69 16.122 1071.1
D2 5.1077 0.9438 1.5247 0.7245

mean[
∧
T] 47.895 74.546 67.467 179.21

var[
∧
T] 9059.4 84754.1 42178.2 1080478.7

mean[Ttrue −
∧
T] 594.6958 568.05 4045.7 3933.9

var[Ttrue −
∧
T] 1.8491 · 107 1.7034 · 107 1.0802 · 109 1.0608 · 109
θ0 600 600 600 600

Marquardt 15 15 15 15



Appendix B

Results of the Quasi-Linear
Geostatistical Approach with
Conditional Realizations Applied
to the Estimation of the Aquifer
Parameters

This appendix contains the results obtained using the quasi-linear approach with the addition of
the MCMC method and the Metropolis Hastings, as acceptance rejection method (see chapter 6.3
for the theory and appendix E for the numerical codes) of all the transmissivity field studied.
Three different measurement error were considered: σ2R = 10

−2, σ2R = 10
−4 and σ2R = 10

−6.
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Summary of 1000 CR applied to the s field transmissivity field, σ2R = 10
−2

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 23.200 21.976 21.473 19.258 16.966

mean
h∧
s
i

2.6146 2.6131 2.6097 2.6087 2.5961

var
h∧
s
i

0.1813 0.1927 0.2047 0.2139 0.2068

mean
h
strue −

∧
s
i

−0.1146 −0.1131 −0.1097 −0.1087 −0.0961
var

h
strue −

∧
s
i

0.0834 0.0834 0.0840 0.0825 0.0745

mean

∙³
strue −

∧
s
´2¸

0.0964 0.0960 0.0959 0.0942 0.0836

var

∙³
strue −

∧
s
´2¸

0.0157 0.0150 0.0144 0.0130 0.0115

D2 0.6709 0.6745 0.6826 0.6745 0.6035

Summary of 1000 CR applied to the s field transmissivity field, σ2R = 10
−4

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 14.700 13.541 13.733 12.981 13.373

mean
h∧
s
i

2.5008 2.5004 2.5007 2.4999 2.4962

var
h∧
s
i

0.1434 0.1467 0.1478 0.1525 0.1522

mean
h
strue −

∧
s
i

−0.0008 −0.0004 −0.0007 0.0001 0.0038

var
h
strue −

∧
s
i

0.0432 0.0457 0.0466 0.0483 0.0484

mean

∙³
strue −

∧
s
´2¸

0.0431 0.0457 0.0465 0.0483 0.0483

var

∙³
strue −

∧
s
´2¸

0.0038 0.0040 0.0041 0.0045 0.0044

D2 5.2670 5.9173 6.2049 6.9348 7.2684

Summary of 1000 CR applied to the s field transmissivity field, σ2R = 10
−6

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 10.700 9.8779 10.112 9.8431 12.575

mean
h∧
s
i

2.4974 2.4947 2.4929 2.4907 2.4899

var
h∧
s
i

0.1098 0.1079 0.1068 0.1028 0.1009

mean
h
strue −

∧
s
i

0.0026 0.0053 0.0071 0.0093 0.0101

var
h
strue −

∧
s
i

0.1098 0.1079 0.1068 0.1028 0.1009

mean

∙³
strue −

∧
s
´2¸

0.0090 0.0093 0.0093 0.0095 0.0097

var

∙³
strue −

∧
s
´2¸

0.5908 0.5549 0.5243 0.5042 0.6221

D2 0.8031 0.8529 0.8662 0.9070 0.9315
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Summary of 1000 CR applied to the 2s field transmissivity field, σ2R = 10
−2

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 27.100 26.193 24.844 25.678 25.349

mean
h∧
s
i

2.3654 2.3688 2.3781 2.3843 2.3767

var
h∧
s
i

0.4103 0.4109 0.4197 0.4279 0.4379

mean
h
strue −

∧
s
i

0.1346 0.1312 0.1219 0.1157 0.1233

var
h
strue −

∧
s
i

0.4622 0.4369 0.4113 0.3996 0.4137

mean

∙³
strue −

∧
s
´2¸

0.4797 0.4535 0.4256 0.4124 0.4284

var

∙³
strue −

∧
s
´2¸

0.5908 0.5549 0.5243 0.5042 0.6221

D2 1.7190 1.6177 1.4980 1.4405 1.4082

Summary of 1000 CR applied to the 2s field transmissivity field, σ2R = 10
−4

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 8.4000 7.7691 6.4919 6.2767 6.7864

mean
h∧
s
i

2.5383 2.5386 2.5368 2.5350 2.5295

var
h∧
s
i

0.3397 0.3398 0.3385 0.3351 0.3286

mean
h
strue −

∧
s
i

−0.0383 −0.0386 −0.0368 −0.0350 −0.0295
var

h
strue −

∧
s
i

0.1966 0.2098 0.2331 0.2425 0.2574

mean

∙³
strue −

∧
s
´2¸

0.1978 0.2110 0.2341 0.2434 0.2579

var

∙³
strue −

∧
s
´2¸

0.1782 0.2032 0.2394 0.2476 0.2728

D2 2.1953 2.3043 2.5561 2.6893 2.8578

Summary of 1000 CR applied to the 2s field transmissivity field, σ2R = 10
−6

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 11.600 10.877 11.610 11.840 12.176

mean
h∧
s
i

2.4961 2.4915 2.4891 2.4861 2.4834

var
h∧
s
i

0.4487 0.4386 0.4353 0.4262 0.4101

mean
h
strue −

∧
s
i

0.0039 0.0085 0.0109 0.0139 0.0166

var
h
strue −

∧
s
i

0.0326 0.0325 0.0328 0.0333 0.0351

mean

∙³
strue −

∧
s
´2¸

0.0326 0.0325 0.0328 0.0333 0.0351

var

∙³
strue −

∧
s
´2¸

0.0033 0.0032 0.0033 0.0035 0.0044

D2 0.8544 0.8943 0.9164 0.9550 1.0351
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Summary of 1000 CR applied to the 4s field transmissivity field, σ2R = 10
−2

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 1.0000 0.3330 0.1248 0.1427 0.1996

mean
h∧
s
i

2.5805 2.5979 2.4163 2.4163 2.4163

var
h∧
s
i

1.9970 2.4831 2.6333 2.6333 2.6333

mean
h
strue −

∧
s
i

-0.0805 -0.0979 0.0837 0.0837 0.0837

var
h
strue −

∧
s
i

0.5622 0.7369 1.1662 1.1662 1.1662

mean

∙³
strue −

∧
s
´2¸

0.5680 0.7456 1.1717 1.1717 1.1717

var

∙³
strue −

∧
s
´2¸

0.6402 0.6511 1.9476 1.9476 1.9476

D2 0.8913 1.1931 2.7043 2.7043 2.7043

Summary of 1000 CR applied to the 4s field transmissivity field, σ2R = 10
−4

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 12.700 12.098 12.484 12.411 10.579

mean
h∧
s
i

2.5114 2.5111 2.5087 2.5045 2.4803

var
h∧
s
i

1.7543 1.7615 1.7587 1.7429 1.7278

mean
h
strue −

∧
s
i

−0.0114 −0.0111 −0.0087 −0.0045 0.0197

var
h
strue −

∧
s
i

0.2205 0.2298 0.2351 0.2394 0.2552

mean

∙³
strue −

∧
s
´2¸

0.2204 0.2296 0.2349 0.2391 0.2553

var

∙³
strue −

∧
s
´2¸

0.0964 0.1003 0.1046 0.1073 0.1228

D2 1.3036 1.3458 1.3628 1.3823 1.4884

Summary of 1000 CR applied to the 4s field transmissivity field, σ2R = 10
−6

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 8.7174 8.8988 8.3855 8.8698 11.200

mean
h∧
s
i

2.3771 2.3691 2.3564 2.3529 2.3410

var
h∧
s
i

1.4509 1.4474 1.4615 1.4894 1.5227

mean
h
strue −

∧
s
i

0.1229 0.1309 0.1436 0.1471 0.1590

var
h
strue −

∧
s
i

0.2126 0.2175 0.2183 0.2234 0.2402

mean

∙³
strue −

∧
s
´2¸

0.2275 0.2344 0.2387 0.2448 0.2651

var

∙³
strue −

∧
s
´2¸

0.1309 0.1307 0.1021 0.1063 0.1338

D2 1.7719 1.8357 2.0040 2.1188 2.3016
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Summary of 1000 CR applied to the 6s field transmissivity field, σ2R = 10
−2

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 1.2000 0.4440 0.3745 0.4280 0.3992

mean
h∧
s
i

2.7488 3.0319 3.0483 3.0483 3.0176

var
h∧
s
i

4.6245 5.8568 6.0155 6.0155 6.0928

mean
h
strue −

∧
s
i

−0.2488 −0.5319 −0.5483 −0.5483 −0.5176
var

h
strue −

∧
s
i

1.7014 2.1644 2.1770 2.1770 2.2343

mean

∙³
strue −

∧
s
´2¸

1.7611 2.4446 2.4748 2.4748 2.4993

var

∙³
strue −

∧
s
´2¸

8.7193 17.607 17.899 17.899 16.128

D2 1.4179 1.4199 1.4257 1.4257 1.5982

Summary of 1000 CR applied to the 6s field transmissivity field, σ2R = 10
−4

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 5.5000 4.8835 3.8702 3.8516 4.7904

mean
h∧
s
i

2.0286 2.0054 2.0231 2.0336 2.0309

var
h∧
s
i

3.9993 4.0939 3.8171 3.6978 3.6738

mean
h
strue −

∧
s
i

0.4714 0.4946 0.4769 0.4664 0.4691

var
h
strue −

∧
s
i

3.1499 3.3223 2.9676 2.7905 2.7368

mean

∙³
strue −

∧
s
´2¸

3.3680 3.5626 3.1912 3.0044 2.9532

var

∙³
strue −

∧
s
´2¸

109.84 121.14 88.199 73.840 68.933

D2 2.1858 2.2904 2.2851 2.2917 2.3094

Summary of 1000 CR applied to the 6s field transmissivity field, σ2R = 10
−6

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 10.721 9.5662 9.1364 10.300 11.623

mean
h∧
s
i

2.2850 2.3503 2.3979 2.4022 2.4608

var
h∧
s
i

5.2675 4.9383 4.8570 4.8541 4.8224

mean
h
strue −

∧
s
i

0.2150 0.1497 0.1021 0.0978 0.0392

var
h
strue −

∧
s
i

3.1548 2.5804 2.2625 2.2364 1.9016

mean

∙³
strue −

∧
s
´2¸

3.1969 2.5995 2.2700 2.2431 1.9007

var

∙³
strue −

∧
s
´2¸

133.00 81.992 61.300 59.743 40.767

D2 2.7767 2.6761 2.6273 2.6212 2.5555
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Summary of 1000 CR applied to the 8s field transmissivity field, σ2R = 10
−2

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 2.4000 0.8879 0.2497 0.2853 0

mean
h∧
s
i

2.1721 2.5652 2.5458 2.5458

var
h∧
s
i

4.7947 5.9960 5.9627 5.9627

mean
h
strue −

∧
s
i

0.3279 −0.0652 −0.0458 −0.0458
var

h
strue −

∧
s
i

2.6049 1.5989 1.6946 1.6946

mean

∙³
strue −

∧
s
´2¸

2.7090 1.6010 1.6945 1.6945

var

∙³
strue −

∧
s
´2¸

41.951 8.5707 9.7299 9.7299

D2 1.0045 0.8738 0.9868 0.9868

Summary of 1000 CR applied to the 8s field transmissivity field, σ2R = 10
−4

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 12.500 11.765 11.860 10.842 8.5828

mean
h∧
s
i

2.0439 1.9924 1.9708 1.9117 2.0104

var
h∧
s
i

6.5280 6.8529 7.1166 7.4469 7.2114

mean
h
strue −

∧
s
i

0.4561 0.5076 0.5292 0.5883 0.4896

var
h
strue −

∧
s
i

2.9071 3.3578 3.5900 4.0173 2.9229

mean

∙³
strue −

∧
s
´2¸

3.1113 3.6111 3.8654 4.3582 3.1589

var

∙³
strue −

∧
s
´2¸

127.87 181.07 213.56 260.71 124.78

D2 1.3564 1.4490 1.4884 1.5861 1.4249

Summary of 1000 CR applied to the 10s field transmissivity field, σ2R = 10
−2

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 1.2000 0.2220 0.1248 0.1427 0.1996

mean
h∧
s
i

2.2084 2.0900 1.9407 1.9407 1.9407

var
h∧
s
i

9.6817 8.9491 8.4978 8.4978 8.4978

mean
h
strue −

∧
s
i

0.2916 0.4100 0.5593 0.5593 0.5593

var
h
strue −

∧
s
i

7.9642 7.3006 6.9196 6.9196 6.9196

mean

∙³
strue −

∧
s
´2¸

8.0389 7.4593 7.2235 7.2235 7.2235

var

∙³
strue −

∧
s
´2¸

165.12 136.37 105.19 105.19 105.19

D2 6.5316 6.4771 6.8691 6.8691 6.8691
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Summary of 1000 CR applied to the 10s field transmissivity field, σ2R = 10
−4

From CR 1 100 200 300 500
To CR 1000 1000 1000 1000 1000
% Accepted CR 11.000 10.655 11.610 12.553 9.5808

mean
h∧
s
i

2.1582 2.1197 2.1132 2.0994 2.0456

var
h∧
s
i

8.2021 8.0912 8.0706 8.0510 8.1264

mean
h
strue −

∧
s
i

0.3418 0.3803 0.3868 0.4006 0.4544

var
h
strue −

∧
s
i

1.3525 1.4987 1.5210 1.5699 1.7975

mean

∙³
strue −

∧
s
´2¸

1.4676 1.6413 1.6687 1.7283 2.0016

var

∙³
strue −

∧
s
´2¸

9.1360 11.341 11.580 12.254 14.633

D2 1.5797 1.7853 1.8074 1.8490 2.1425





Appendix C

Recovery of the Pollutants Release
History

This appendix includes the source codes (in Matlab, .m files) used for the recovery of the pollutant
release history, see Snodgrass and Kitanidis [1997] and sections 4.2, 5.1 for the details of the
procedure. The unconstrained case and the constrained case are shown. Both main programs use
few functions, in the following are reported only the most important.

C.1 Evaluation of the Numerical Transfer Function: TF.m

% This program evaluate the transfer function and extract the concentration data
% at a specified time from the output file of GMS.
% AZ last version: June 2005

clear,clc

flag = 0;
while flag == 0

choice = input(’Do you want to evaluate the TF, (a), or to measure the ...
...concentration at a specified time, (b),?\n’,’s’);

if isempty(choice)
flag = 0;

else
if (choice == ’a’ )|( choice == ’b’)

flag = 1;
else

flag = 0;
end

end
end

flag = 0;
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while flag == 0
file_in = input(’Insert the name of the input file: ’,’s’);
if isempty(file_in)

flag = 0;
else

flag = 1;
end

end

flag = 0;
while flag == 0

m = input(’Insert the number of the measurements: ’);
if isempty(m)

flag = 0;
else

flag = 1;
end

end

% source location
source_X = 229;
source_Y = 25;

% input file containing the distance from the source
% 1# column point name P1, P2, ..., Pm
% 2# column X
% 3# column Y
point_m = load (’punti.txt’);
dist = zeros(m,1);
for i = 1:m

dist(i,1) = sqrt((point_m(i,2)-source_X)^2+(point_m(i,3)-source_Y)^2);
end

% input file exported from GMS
% 1# column point name
% 2# column measurement number
% 3# column Time
% 4# column Concentration
[Punto,T,C] = textread(file_in,’%f %*f %f %f’);

p = size (T,1);
n = p/m; % n: time intervals

deltat = T(3,1)-T(2,1);
disp([’delta T = ’,num2str(deltat)]);

% evaluation of the transfer function
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if choice == ’a’

% output MATRIX
% 1# column time
% 2# column fdt P1
% 3# column fdt P2
% 4# column fdt P3
% ................
% m+1# column fdt Pm

out = zeros(n,m+1);
out(:,1) = T (1:n,1);

% building of the TF, backward formulation
for i = 1:m

iuh = zeros(n,1);
iuh(1,1) = (C(1+n*(i-1),1)-0)/deltat;
for j = 2:n

iuh(j,1) = (C(j+n*(i-1),1)-C(j+n*(i-1)-1,1))/deltat;
end
col = Punto (1+n*(i-1),1) + 1;
out(:,col) = iuh(:,1);
figure (i)
plot (out(:,1),out(:,col))

end

% measured concentration at time T
else

flag = 0;
while flag == 0

TIME = input(’Insert the time of the measurements as a multiple of ...
...delta T ’);

if isempty(TIME)
flag = 0;

else
tt = TIME/deltat;
if tt > n

disp ’(Time exceed the measurement’)
flag = 0;

else
flag = 1;

end
end

end

% output file
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% concentration P1 at Time TIME
% concentration P2 at Time TIME
% concentration P3 at Time TIME
% .............................
% concentration Pm at Time TIME
out = zeros (m,1);
for i = 1:m

col = Punto (tt+n*(i-1));
out(col,1) = C(tt+n*(i-1),1);

end
plot (dist,out,’or’);

end

% results printed in an output file
flag = 0;
while flag == 0

fileout = input(’Insert the name of the output file: ’,’s’);
if isempty(fileout)

flag = 0;
else

flag = 1;
end

end
save (fileout,’out’,’-ascii’)

C.2 Input File: in.m

% input file
% This file contains the parameter that are necessary for the application
% of the GA
% AZ last version: June 2005

function [TF_filename,point_filename,out_filename,startsol,thetamax,theta0,n,...
...m,lambda,sigma2r,TT,ST,maxerror,alfa] = in(a)

% name of the file that contains the transfer function
% transfer functions
% #1 column: Time
% #2 column: TF P1
% #3 column: TF P2
% #4 column: TF P3
% ................
% #m column: TF Pm
TF_filename = ’TF_1.txt’;

% name of the file that contains the measurements
% #1 row: concentration P1
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% #2 row: concentration P2
% #3 row: concentration P3
% ........................
% #m row: concentration Pm
point_filename = ’misure_1.txt’;

% name of the file that contains the results
% #1 column: Time
% #2 column: confidence interval
% #3 column: estimate
% #4 column: confidence interval
out_filename = ’resultV_1.txt’;

% convergence criterion on sigma2
thetamax(1,1) = 0.00001;
% convergence criterion on l
thetamax(2,1) = 0.000001;

% initial parameters
theta0(1,1) = 0.04;
theta0(2,1) = 13.0;

% number of time intervals
n = 300;

% number of measurements
m = 24;

% Marquardt modification
lambda = 0.5;

% error
sigma2r = 1E-12;

% Total time
TT = 300*10000;
% Sampling time
ST = 300*10000;

% CONSTRAINED CASE
% starting solution
startsol = ’result_NV.txt’;

alfa = 2;
maxerror = 0.8;
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C.3 Unconstrained Case: unconstrained.m

% program that applies the Quasi Linear Geostatistical approach,
% UNCONSTRAINED CASE, (Snodgrass & Kitanidis, 1997).
% AZ last version: June 2005

clear, clc
tic
% input function and data
[TF_filename,point_filename,out_filename,startsol,thetamax,theta,n,m,lambda,...

...sigma2r,TT,ST,maxerror] = in (1);

TF = load (TF_filename); % TF (n,m+1)
TF = TF’;
Z = load (point_filename); % Z (m,1)
Zt = Z’;
Time = TF (1,1:n);

hd = zeros(1,n);
for i = 1:n

hd(1,i) = Time(1,i)-Time(1,1);
end

DT = TT/n;
R = sigma2r*eye(m); % R (m,m)
X = ones(n,1); % X (n,1)
Xt = X’;

H = DT*TF(2:m+1,1:n); % H (m,n)
Ht = H’;

HX = H*X;
XtHt = HX’;

% evaluation of parameters sigma2 and l
Q = zeros (n,n);

L = 1E100;
iteration = 1;
flag = 0;
while flag == 0 %parameter estimation loop

% covariance matrix
gen = exp(-(hd.^2)/theta(2,1)^2);
gen2 = gen.*hd.^2;
Qdevsig = toepls(gen);
Q = theta(1,1)*Qdevsig;
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Qdevl = theta(1,1)*toepls(gen2)*2/(theta(2,1)^3);

% sigma matrix (m,m)
HQ = H*Q;
sigma = HQ*Ht+R;
sigmainv = inv(sigma);

% sigma derivate sigma2, theta(1,1) (m,m)
sigmadevsig = H*Qdevsig*Ht;

% sigma derivate l, theta(2,1) (m,m)
sigmadevl = H*Qdevl*Ht;

% ksi matrix (m,m)
core = XtHt*sigmainv*HX;
coreinv = inv(core);
ksi = sigmainv-sigmainv*HX*coreinv*XtHt*sigmainv;

a = ksi*sigmadevsig;
b = ksi*sigmadevl;

% vector g
g(1,1) = 0.5*trace(a)-0.5*Zt*(a*ksi)*Z;
g(2,1) = 0.5*trace(b)-0.5*Zt*(b*ksi)*Z;

% Fisher information matrix
Fisher(1,1) = 0.5*trace(a*a);
Fisher(1,2) = 0.5*trace(a*b);
Fisher(2,1) = 0.5*trace(b*a);
Fisher(2,2) = 0.5*trace(b*b);

% Marquardt modification
Marquardt = Fisher+lambda*eye(2);
Marquinv = inv(Marquardt);

correction = Marquinv*g;
thetaold = theta;
theta = thetaold-correction;

disp ([’iteration #’,num2str(iteration),’ sigma2 ’,num2str(theta(1,1)),...
...’ l ’,num2str(theta(2,1))])

if (abs(correction(1,1))<=thetamax(1,1))&(abs(correction(2,1))<=thetamax(2,1))
flag =1;

else
iteration = iteration+1;
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end

end % flag loop

% Quasi linear inversion method

% The system (11) of the paper Snodgrass & Kitanidis, 1997, is simplyfied
% as: A*B=C, the matrix B contains the unknowns.

A = zeros (m+1,m+1);
B = zeros (m+1,n);
C = zeros (m+1,n);

A(1:m,1:m) = sigma;
A(m+1,1:m) = XtHt;
A(1:m,m+1) = HX;

C(1:m,1:n) = HQ;
C(m+1,1:n) = Xt;

B = A\C;
Lamt = zeros(m,n);
MUL = zeros(1,n);
Lamt = B(1:m,1:n);
Lam = Lamt’;
% matrix of multipliers
MUL = B(m+1,1:n);

% best estimate
s = Lam*Z;

% Covariance
V = -X*MUL+Q-Q*Ht*Lamt;

% evaluation of the confidence interval

CIsup = s+sqrt(2*diag(V));
CIinf = s-sqrt(2*diag(V));

plot (Time,s,’r’,Time,CIsup,’y’,Time,CIinf,’y’)

OUT = zeros (n,4);
OUT(1:n,1) = Time;
OUT(1:n,2) = CIinf;
OUT(1:n,3) = s;
OUT(1:n,4) = CIsup;
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save (out_filename,’OUT’,’-ascii’)
clear OUT
toc

C.4 Constrained Case: constrained.m

% program that applies the Quasi Linear Geostatistical approach,
% CONSTRAINED CASE, (Snodgrass & Kitanidis, 1997).
% AZ last version: June 2005

clear, clc
tic
% input function and data
[TF_filename,point_filename,out_filename,startsol,thetamax,theta,n,m,lambda,...

...sigma2r,TT,ST,maxerror,alfa] = in (1);

TF = load (TF_filename); % TF (n,m+1)
TF = TF’;
Z_in = load (point_filename); % Z (m,1)

Time = TF (1,1:n);

hd = zeros(1,n);
for i = 1:n

hd(1,i) = Time(1,i)-Time(1,1);
end

DT = TT/n;
R = sigma2r*eye(m); % R (m,m)
X = ones(n,1); % X (n,1)
Xt = X’;

% evaluation of parameters sigma2 and l
Q = zeros (n,n);

s0 = zeros(n,1);
% starting solution
stsol = load (startsol);
s0 = stsol(:,3);
clear stsol;
for i = 1:n;

if s0(i,1) <= 0
s0(i,1) = 0;
end

end

outer_iteration = 1;
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outer_flag = 0;
%___________________________________________________________________________
while outer_flag == 0;

% building of hso
hso = zeros(m,1);
for i = 1:m

sum = 0;
for j = 1:n

sum = sum+(((s0(j,1)+alfa)/alfa)^alfa)*TF(i+1,j);
end
hso(i,1) = sum;

end

% building of the H matrix
H = zeros(m,n);
in = 0;
for j = 1:n

in = ((s0(j,1)+alfa)/alfa)^(alfa-1);
for i = 1:m

H(i,j) = in*TF(i+1,j)*DT;
end

end

% H (m,n)
Ht = H’;

HX = H*X;
XtHt = HX’;

% building of Zol
Zol = zeros(m,1);
Zol = Z_in-hso+H*s0;

Z = Zol;
Zt = Z’;

inner_iteration = 1;
inner_flag = 0;
%___________________________________________________________________________
while inner_flag == 0 %parameter estimation loop

% covariance matrix
gen = exp(-(hd.^2)/theta(2,1)^2);
gen2 = gen.*hd.^2;
Qdevsig = toepls(gen);
Q = theta(1,1)*Qdevsig;
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Qdevl = theta(1,1)*toepls(gen2)*2/(theta(2,1)^3);

% sigma matrix (m,m)
HQ = H*Q;
sigma = HQ*Ht+R;
sigmainv = inv(sigma);

% sigma derivate sigma2, theta(1,1) (m,m)
sigmadevsig = H*Qdevsig*Ht;

% sigma derivate l, theta(2,1) (m,m)
sigmadevl = H*Qdevl*Ht;

% ksi matrix (m,m)
core = XtHt*sigmainv*HX;
coreinv = inv(core);
ksi = sigmainv-sigmainv*HX*coreinv*XtHt*sigmainv;

a = ksi*sigmadevsig;
b = ksi*sigmadevl;

% vector g
g(1,1) = 0.5*trace(a)-0.5*Zt*(a*ksi)*Z;
g(2,1) = 0.5*trace(b)-0.5*Zt*(b*ksi)*Z;

% Fisher information matrix
Fisher(1,1) = 0.5*trace(a*a);
Fisher(1,2) = 0.5*trace(a*b);
Fisher(2,1) = 0.5*trace(b*a);
Fisher(2,2) = 0.5*trace(b*b);

% Marquardt modification
Marquardt = Fisher+lambda*eye(2);
Marquinv = inv(Marquardt);

correction = Marquinv*g;
thetaold = theta;
theta = thetaold-correction;

disp ([’iteration #’,num2str(inner_iteration),’ sigma2 ’ ,num2str(theta(1,1)),...
...’ l ’,num2str(theta(2,1))])

if (abs(correction(1,1))<=thetamax(1,1))&(abs(correction(2,1))<=thetamax(2,1))
inner_flag =1;

else
inner_iteration = inner_iteration+1;

end
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end % inner flag loop
%___________________________________________________________________________

% Quasi linear inversion method

% The system (11) of the paper Snodgrass & Kitanidis, 1997, is simplyfied
% as: A*B=C, the matrix B contains the unknowns.

A = zeros (m+1,m+1);
B = zeros (m+1,n);
C = zeros (m+1,n);

A(1:m,1:m) = sigma;
A(m+1,1:m) = XtHt;
A(1:m,m+1) = HX;

C(1:m,1:n) = HQ;
C(m+1,1:n) = Xt;

B = A\C;
Lamt = zeros(m,n);
MUL = zeros(1,n);
Lamt = B(1:m,1:n);
Lam = Lamt’;
% matrix of multipliers
MUL = B(m+1,1:n);

% best estimate
s = Lam*Z;

% convergence criterion
diff = abs(s-s0);
maxdiff = max(diff);
disp([’max difference: ’,num2str(maxdiff)])

if maxdiff<=maxerror
outer_flag = 1;

else
outer_iteration = outer_iteration+1;
s0 = s;

end

end % external_flag
%___________________________________________________________________________
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% Covariance
V = -X*MUL+Q-Q*Ht*Lamt;

% evaluation of the confidence interval

CIsup = s+sqrt(2*diag(V));
CIinf = s-sqrt(2*diag(V));

CIsup_fin = ((CIsup+alfa)./alfa).^alfa;
CIinf_fin = ((CIinf+alfa)./alfa).^alfa;

s_fin = ((s+alfa)./alfa).^alfa;

figure(2)
plot (Time,s_fin,’r’,Time,CIsup_fin,’y’,Time,CIinf_fin,’y’)

OUT = zeros (n,4);
OUT(1:n,1) = Time;
OUT(1:n,2) = CIinf_fin;
OUT(1:n,3) = s_fin;
OUT(1:n,4) = CIsup_fin;

save (out_filename,’OUT’,’-ascii’)
clear OUT
toc





Appendix D

Aquifer Parameter Estimation:
Quasi-Linear

This appendix includes the source codes (in Matlab, .m files) used for the transmissivity estimation
from head measurements using the quasi-linear geostatistical approach, see Kitanidis [1995] and
section 3.2 for the details of the procedure. In the following are reported only the most important
functions.

D.1 Main Program: QL.m

% program that applies the Quasi Linear Geostatistical Approach,
% (Kitanidis, 1995).
% Original code: illust4.m from P. K. Kitanidis
% AZ last version: December 2005
clear,clc
%---------------------------------------------------------
% Load Geometry
a=1;
[L2,Re,s_loc,nr,nc,xgrid,ygrid] = geometry(a);
% Load input data
[y_data,k_sample,initial,sig2,theta,thetamax,convergence,cov,lambda,Tm_true,...
...itermax,ro,N] = in(a);
n = size(y_data,1);
m=nr*nc;

tic

% evaluation of the distance between the grid point
hd = zeros(1,n);
for ii=1:m

hd(1,ii) = sqrt((s_loc(1,1)-s_loc(ii,1))^2+(s_loc(1,2)-s_loc(ii,2))^2);
end

125
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%INVERSE PROBLEM
%------------------------------------------------------------
%PARAMETERS - assumed known
%measurement error matrix
sig = sqrt(sig2); R = eye(n)*sig2; invR=inv(R);
%structure of unknown function:

% Covariance function built using the Toeplitz properties
if cov == 1 %linear

p = 1;
X = ones(m,p);
gen = -hd;
gen = reshape(gen,nc,nr);
gen = gen’;
Qdev1 = toeplsbtstb(gen);
Q = theta(1,1)*Qdev1;

elseif cov == 2 %cubic
p = 3;
X = ones(m,p);
X(:,2:3) = s_loc(:,1:2);
gen2 = hd.^3;
gen2 = reshape(gen2,nc,nr);
gen2 = gen2’;
Qdev2 = toeplsbtstb(gen2);
Q = theta(1,1)*Qdev2;

end

%-------------------------------------------------------------
%Begin inverse problem
%Initial s estimate
sm = initial*ones(nr,nc); Tm = exp(sm); s = stackt(sm);

linvflag = 0; %linvflag = 0 indicates quasi-linear inversing has not converged
iter = 0; SSR = 1E100; Lm = 1E100; %initialize
%--------------------------------------------------------------

while linvflag == 0 %linvflag loop->
iter = iter+1
%solve forward problem for estimate
figure(3)
mesh(xgrid, ygrid, sm), xlabel(’x’); ylabel(’y’); zlabel(’est. logtrans.’);
title(’Estimated Logtransmissivity’)
pause(1)

SSR_old = SSR; sm_old = sm; L_old = Lm;
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[A, b, CR, CC] = mkls(Tm,Re,L2);
h = full(A\b); head = reshapet(h,nr,nc);

figure(4)
mesh(xgrid, ygrid, head), xlabel(’x’); ylabel(’y’); zlabel(’est. head’);

%sample from predicted head, find SS of residuals
y_pred = h(k_sample); %y_pred is predicted observation
res = (y_data-y_pred); SSR = res’*res
if iter>1

Lm = 0.5*(ksi’*HQHT*ksi+SSR/sig2);
disp([’L is ’, num2str(Lm)]);
if Lm>L_old

disp(’L increased!’)
end

end
dh = adjstatm2(k_sample,Tm,L2,A,h,CR,CC);

for i = 1:n
dh(:,:,i) = dh(:,:,i).*exp(sm);

end

H = zeros(n,m);
for i = 1:n

H(i,:) = stackt(dh(:,:,i))’;
end
y = y_data - y_pred + H*stackt(sm);

%parameter estimation
if iter>1

[Q,thetanew] = PE(theta,H,X,R,ksi,SSR,sig2,thetamax,hd,n,y,cov,...
...lambda,nc,nr);

theta = thetanew
end

PHI = H*X; QHT = Q*H’; HQHT = H*QHT;
PSI = HQHT+R;

invQ = inv(Q);
G = invQ-invQ*X*inv(X’*invQ*X)*X’*invQ;

sol = [PSI,PHI;PHI’,zeros(p,p)]\[y;zeros(p,1)];
ksi = sol(1:n,1); beta = sol(n+1:n+p,1);

sold = s;
snew = X*beta + QHT*ksi;
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%optimization along the line
objft = @(delta)opti2(delta,invR,G,sold,snew,y_data,Re,L2,k_sample,nr,nc);
[delta,val,fl,ou] = fminbnd(objft,-0.1,1.1);
delta
s = sold*delta+snew*(1-delta);

sm = reshapet(s,nr,nc); Tm = exp(sm);
if iter>1 & abs(Lm-L_old)<convergence

linvflag = 1;
INVMAT = inv([PSI,PHI;PHI’,zeros(p,p)]);
Pyy = INVMAT(1:n,1:n);
Pyb = INVMAT(1:n,n+1:n+p);
Pbb = INVMAT(n+1:n+p,n+1:n+p);
V = Q - QHT*Pyy*QHT’ - X*Pbb*X’ - X*Pyb’*QHT’-QHT*Pyb*X’;

end
end %linvflag loop<-

Res = zeros(m,3);
Res(:,2:3) = s_loc;
Res(:,1) = s;

diag_V=diag(V);
save(’QL_s_err4.txt’,’A’,’-ascii’)
save(’V_s_err4.txt’,’diag_V’,’-ascii’)
save(’head_s_err4.txt’,’head’,’-ascii’)

time_el = toc

% evaluation of the results
oo = evaluation(s,V,xgrid,ygrid,m,nr,nc,PSI,Pyy,y,n,p,Tm_true,theta,time_el);

D.2 Input File: geometry.m

% Input function, this function provides information regarding the
% geometry of the problem studied.
% AZ last version: March 2005

function [L2,Re,s_loc,nr,nc,xgrid,ygrid]=geometry(a);

%-------------------------------------------------------
%Dimensional data
L1D = 1000; %length in x direction, meters
L2d = 750; %length in y direction, meters

nr = 24; nc = 32; %discretization of domain
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m = nr*nc; %m is the number of cells
Dxd = L1d/nc; Dyd=L2d/nr;

Red = 0.001*ones(nr,nc)*Dxd*Dyd; %recharge, m^3/day

h0d = 120; h1d = 110; % head in meters, west and east

t0 = 1; %unit time, day
%--------------------------------------------------------

% Make nondimensional;
L1 = 1; L2 = L2d/L1d; h0 = 1; h1 = 0;
Re = Red*t0/(h0d-h1d); Dx = Dxd/L1d; Dy = Dyd/L1d;

%---------------------------------------------------------

% Grid characteristics
xgrid = -Dx/2+Dx*(1:nc); ygrid = -Dy/2+Dy*(1:nr);
xgrid = xgrid’; ygrid = ygrid’; ygrid = flipud(ygrid);
[XG,YG] = meshgrid(xgrid,ygrid);

s_loc = [stackt(XG),stackt(YG)];

%---------------------------------------------------------

D.3 Input File: in.m

% input function, this function provides information regarding the
% input file, covariance model, convergence criterion and so on.
% AZ last version: March 2005

function [y_data,k_sample,initial,sig2,theta,thetamax,convergence,cov,lambda,...
...Tm_true,itermax,ro,N]=in(a)

y_data = load (’y_dataT_err4.txt’);
load k_sample.txt
Tm_true = load (’Tm.txt’);

sig2 = 1E-4; %R matrix
initial = 2.5; %initial estimate
% Starting parameters of the covariance model
theta(1,1) = 1;
%theta(2,1) = 0.1;
lambda = 1; %Marquardt
% convergence criterion of the parameter
thetamax(1,1) = 1;
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% thetamax(2,1) = 0.1;
% Convergence criterion
convergence = 1;
% covariance model 1 linear 2 cubic 3 linear+cubic
cov = 2;
%--------------------------------------------------------------------
%CR
itermax = 60; % CR max number of iteration allowed
ro = 0.99; % MCMC
N = 1000; % number of conditional realizations

D.4 Parameter Estimation Routine: PE.m

%parameter estimation function
% AZ last version: March 2005

function [Q,thetanew] = PE(theta,H,X,R,ksi,SSR,sig2,convergence,hd,n,y,param,...
...lambda,nc,nr)

Lm = 1e100;

iteration = 0; linvflag2 = 0;
while linvflag2 == 0
iteration = iteration+1;

if param == 1 %linear covariance
gen = -hd; %linear
gen = reshape(gen,nc,nr);
gen = gen’;
Qdev1 = toeplsbtstb(gen);
Q = theta(1,1)*Qdev1;

elseif param == 2 %cubic covariance
gen = hd.^3; %cubic
gen = reshape(gen,nc,nr);
gen = gen’;
Qdev1 = toeplsbtstb(gen);
Q = theta(1,1)*Qdev1;

elseif param == 3
disp(’Under construction...’)
return

else
disp(’something is wrong.... please introduce the correct ...
...value for the covariance model’)

return
end
%R=theta(2,1)*eye(n);
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%perform now one iteration of linear inversing (xi form)
PHI = H*X; QHT = Q*H’; HQHT = H*QHT;
PSI = HQHT+R;

PSIdev1 = H*Qdev1*H’;
%PSIdev2=eye(n);

invPSI = inv(PSI);
PP = invPSI-invPSI*H*X*inv(X’*H’*invPSI*H*X)*X’*H’*invPSI;
g(1,1) = 0.5*trace(PP*PSIdev1)-0.5*y’*(PP*PSIdev1*PP)*y;
%g(2,1)=0.5*trace(PP*PSIdev2)-0.5*y’*(PP*PSIdev2*PP)*y;

F(1,1) = 0.5*trace(PP*PSIdev1*PP*PSIdev1);
%F(1,2)=0.5*trace(PP*PSIdev1*PP*PSIdev2);
%F(2,1)=0.5*trace(PP*PSIdev2*PP*PSIdev1);
%F(2,2)=0.5*trace(PP*PSIdev2*PP*PSIdev2);

Marq = F+lambda;%*eye(2);

thetaold = theta;
corr = -inv(Marq)*g;
theta = thetaold+corr;

Lm_old = Lm;
Lm = 0.5*(ksi’*HQHT*ksi+SSR/sig2); % ksi form

if abs(Lm-Lm_old)<convergence
linvflag2 = 1;

end

%if (abs(corr)<convergence)
% linvflag2=1;
%end

if iteration>50
disp(’do not converge’)
linvflag2 = 1;

end

end %linvflag2

if param == 1 %linear covariance
Q = theta(1,1)*Qdev1; %linear
elseif param == 2 %cubic covariance
Q = theta(1,1)*Qdev1; %cubic
end
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thetanew = theta;
%R=theta(2,1)*eye(n);

D.5 Optimization Routine: opti2.m

% This function optimizies the delta value to minimize the objective function
% Quasi Linear case
% AZ last version: March 2005

function objft=opti2(delta,invR,G,sold,snew,y_data,Re,L2,k_sample,nr,nc)

% new estimate
s=sold*delta+snew*(1-delta);
sm = reshapet(s,nr,nc); Tm = exp(sm);

% Forward problem
[A, b, CR, CC] = mkls(Tm,Re,L2);
h = full(A\b);
%sample from predicted head
y_pred = h(k_sample); %y_pred is predicted observation

y = y_data - y_pred;

% a=y’*inv(R)*y
% b=s’*G*s
%objft=a+b;

objft = y’*invR*y+s’*G*s;

D.6 Evaluation of the Results: evaluation.m

% Evaluation of the results
% AZ last version: December 2005

function [oo]=evaluation(s,V,xgrid,ygrid,m,nr,nc,PSI,Pyy,y,n,p,Tm_true,theta,...
...time_el)
% Evaluation of the results
% s estimate
% V variance
%-------------------------------------------------------------------
% residual testing

iPSI = inv(PSI);
T = (orth(Pyy))’; %should produce an (n-p) by n matrix (verify that: T*PHI=0)
delta_r = T*y; %delta residuals
varia = diag(T*PSI*T’);
se = sqrt(varia); %variance and standard error of delta
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epsilon_r = delta_r./se; %epsilon residuals

Q1 = mean(epsilon_r)
Q22 = mean(epsilon_r.^2)
%T*PHI

Q1crit=2/sqrt(n-p)
Q2crit1=1+2.8/sqrt(n-p)
Q2crit2=1-2.8/sqrt(n-p)

%-------------------------------------------------------------------

sm=reshapet(s,nr,nc); %estimate
Tm=exp(sm);TT=exp(s);

conint = sqrt(diag(V))*2;
conintm = reshapet(conint,nr,nc);

T_true=stackt(Tm_true);
sm_true=log(Tm_true);
s_true=stackt(sm_true);

invV=inv(V);
DDD=(1/m)*(s_true-s)’*invV*(s_true-s)
%DDD2=(1/m)*(s_true-s)’*pinv(V)*(s_true-s)

mean_s=mean(s)
var_s=var(s)

diff_s=s_true-s;
diff_sm=reshapet(diff_s,nr,nc);

mean_diff_s=mean(diff_s)
var_diff_s=var(diff_s)

diff_s2=(diff_s).^2;

mean_diff_s2=mean(diff_s2)
var_diff_s2=var(diff_s2)

D2=((diff_s).^2)./diag(V);

meanD2=mean(D2)
varD2=var(D2)

mean_T=mean(Tm(:))
var_T=var(Tm(:))
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diff_T=T_true-TT;
meandiffT=mean(diff_T)
vardiffT=var(diff_T)

output(1,1) = theta;
output(2,1) = mean_s;
output(3,1) = var_s;
output(4,1) = mean_diff_s;
output(5,1) = var_diff_s;
output(6,1) = mean_diff_s2;
output(7,1) = var_diff_s2;
output(8,1) = meanD2;
output(9,1) = varD2;
output(10,1) = mean_T;
output(11,1) = var_T;
output(12,1) = meandiffT;
output(13,1) = vardiffT;
output(14,1) = Q1;
output(15,1) = Q22;
output(16,1) = DDD;
output(17,1) = time_el;

xlswrite(’out_QL_s_err4’ ,output)

figure(35)
mesh(xgrid, ygrid, sm), xlabel(’x’); ylabel(’y’); zlabel(’Log T’);
figure(36)
title(’Log Transmissivity’)
mesh(xgrid, ygrid, diff_sm), xlabel(’x’); ylabel(’y’); zlabel(’diff Log T’);
title(’Difference Log Transmissivity’)
figure(6)
mesh(xgrid, ygrid, log(Tm_true)), xlabel(’x’); ylabel(’y’);
zlabel(’ log True_Transmissivity’);
title(’Log True Transmissivity’)
%figure(8)
%mesh(xgrid, ygrid, exp(sm+conintm)), xlabel(’x’); ylabel(’y’);
zlabel(’Transmissivity’);
%title(’Upper 95% Confidence Interval’)
%figure(9)
%mesh(xgrid, ygrid, exp(sm-conintm)), xlabel(’x’); ylabel(’y’);
zlabel(’Transmissivity’);
%title(’Lower 95% Confidence Interval’)

oo=1;



Appendix E

Aquifer Parameter Estimation:
Conditional Realizations

This appendix includes the source codes (in Matlab, .m files) used for the transmissivity estimation
from head measurements using the quasi-linear geostatistical approach with the addition of the
Conditional Realizations, see Kitanidis [1995], Michalak and Kitanidis [2003] and sections 3.2, 6.3
for the details of the procedure. In the following are reported only the most important functions.

E.1 Main Program: CR.m

% program that applies the Quasi Linear Geostatistical approach with the adding of
% the Conditional realizations (that it is explained in Kitanidis, 1995).
% AZ last version: December 2005

% Main program Conditional realizations
clear, clc
tic
% Load Geometry
a = 1;
[L2,Re,s_loc,nr,nc,xgrid,ygrid] = geometry(a);

% Load input data
[y_data,k_sample,initial,sig2,theta,thetamax,convergence,cov,lambda,Tm_true,...
...itermax,ro,N] = in(a);
n = size(y_data,1);
m = nr*nc;

%INVERSE PROBLEM
%------------------------------------------------------------
%PARAMETERS - assumed known
%measurement error matrix
sig = sqrt(sig2); R = eye(n)*sig2; invR=inv(R);
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%Covariance matrix & structure of unknown function:
hd = zeros(1,n);
for ii=1:m

hd(1,ii) = sqrt((s_loc(1,1)-s_loc(ii,1))^2+(s_loc(1,2)-s_loc(ii,2))^2);
end

if cov == 1
p = 1;
X = ones(m,p);

gen = -theta(1,1)*hd; %linear covariance
elseif cov == 2

p = 3;
X = ones(m,p);
X(:,2:3) = s_loc(:,1:2);

gen = theta(1,1)*(hd.^3); %cubic covariance
end
clear s_loc;

gen = reshape(gen,nc,nr);
gen = gen’;
Q = toeplsbtstb(gen);

invQ = inv(Q);
G = invQ-invQ*X*inv(X’*invQ*X)*X’*invQ;
%-------------------------------------------------------------
%Begin inverse problem

%Initial s estimate
sm=initial*ones(nr,nc);

linvflag = 0;
%linvflag = 0 indicates quasi-linear inversing has not converged
iter = 0; SSR = 1E100; Lm = 1E100; %initialize

%------------------------------------------------------------------
% Conditional realizations
s_c = zeros(m,N); s_cm = zeros(nr,nc,N); L = 1.E100*ones(1,N);

alfa = sqrt(1-ro^2);

% Unconditional realizations
s_u2 = simvm2(N,Q,X);

%initialization
AR = zeros(N,1);
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flag = ones(N,1);
s_u = zeros(m,N);
s_c = zeros(m,N);
s_uA = zeros(m,N);
s_cA = zeros(m,N);
Va = zeros(m,m);
Va_diag = zeros(m,N);
pl = -1000;

for isim = 1:N

disp([’ISIM = ’,num2str(isim)])

%unconditional realization

if isim==1
s_u(:,1) = s_u2(:,1);
s_uA(:,1) = s_u2(:,1);
v = randn(n,1)*sig;

else

s_u(:,isim) = ro*s_uA(:,isim-1)+alfa*s_u2(:,isim); %MCMC
v = randn(n,1)*sig;

%mesu = mean(s_u);
%s_u(:,isim) = s_u-mesu;
end

%Initial cond simulation estimate
s_cm(:,:,isim) = sm;
Tc = exp(s_cm(:,:,isim)); s_c(:,isim) = stackt(s_cm(:,:,isim));

linvflag = 0; %linvflag = 0 means not converged
iter = 0; SSR = 1E100; %initialize
%--------------------------------------------------------------
while linvflag == 0 %linvflag loop->

iter = iter+1;
disp ([’ITERATION = ’,num2str(iter)])
%solve forward problem for estimate
SSR_old = SSR; L_old = L(isim); %s_cm_old = s_cm;
[A, b, CR, CC] = mkls(Tc,Re,L2);
h = full(A\b); head = reshapet(h,nr,nc);

y_pred = h(k_sample); %y_pred is predicted observation
res = (y_data+v-y_pred); SSR = res’*res;
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disp ([’SSR = ’,num2str(SSR)])
if iter>1

L(isim) = 0.5*(ksi’*HQHT*ksi+SSR/sig2);
disp([’L is ’, num2str(L(isim))]);
if L(isim)>L_old

disp(’L increased!’)
end

end
dh = adjstatm2(k_sample,Tc,L2,A,h,CR,CC);
for i = 1:n

dh(:,:,i) = dh(:,:,i).*Tc;
end
H = zeros(n,m);
for i = 1:n

H(i,:) = stackt(dh(:,:,i))’;
end
y = y_data - y_pred + H*s_c(:,isim);
%perform now one iteration of linear inversing (xi form)
PHI = H*X; QHT = Q*H’; HQHT = H*QHT;
PSI = HQHT+R;
sol = [PSI,PHI;PHI’,zeros(p,p)]\[y+v-H*s_u(:,isim);zeros(p,1)];
ksi = sol(1:n,1); beta = sol(n+1:n+p,1);

sold = s_c(:,isim);
snew = s_u(:,isim)+ X*beta + QHT*ksi;

%optimization along the line
objft = @(delta)opti3(delta,invR,Re,L2,G,sold,snew,y_data,k_sample...

...,v,s_u(:,isim),nr,nc);
[delta,val,fl,ou] = fminbnd(objft,-0.5,1.5);
delta

s_c(:,isim) = delta*sold+(1-delta)*snew;
s_cm(:,:,isim) = reshapet(s_c(:,isim),nr,nc);
Tc = exp(s_cm(:,:,isim));
if iter>1 & abs(L(isim)-L_old)<convergence

linvflag = 1;
figure(8)
mesh(xgrid, ygrid, s_cm(:,:,isim)), xlabel(’x’); ylabel(’y’);
title(’Estimated Log Transmissivity’ ),zlabel([’cond real ltrans,...
... isim = ’, num2str(isim)]);
pause(0.5)

end

if iter == itermax
flag(isim,1) = 0; % do not converge
disp(’does not converge’)
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linvflag = 1;
flag(isim,1) = 0;

end

if s_c(:,isim)>100|s_c(:,isim)<0
flag(isim,1) = 0; % do not converge
disp(’Tc ->00 or Tc->0’)
linvflag=1;

end

end %linvflag loop<-

if isim == 1 %do not perform the acceptance rejection on the first realization
s_cA(:,isim) = s_c(:,isim);
s_uA(:,isim) = s_u(:,isim);
AR(isim,1) = 1;

% Evaluation of the posterior probability p = exp (pl)
pl = -0.5*(s_c(:,isim)-X*beta)’*invQ*(s_c(:,isim)-X*beta)-...
...0.5*(y_data-H*s_c(:,isim))’*invR*(y_data-H*s_c(:,isim));

else
if flag(isim,1) == 0 %did not converge
s_cA(:,isim) = s_cA(:,isim-1); %last conditional realization accepted
s_uA(:,isim) = s_uA(:,isim-1); %last unconditional realization accepted
AR(isim,1) = 0;
else %MH acceptance/rejection algorithm

[AR(isim,1),s_cA(:,isim),s_uA(:,isim),pl_new] = MH2(s_u(:,isim),s_uA(:,isim-1),...
...s_c(:,isim),s_cA(:,isim-1),invQ,ro,X,beta,y,H,invR,pl);

pl = pl_new; % pl log of the posterior probability of the
% last accepted realization

end
end

if AR(isim,1) == 1
INVMAT = inv([PSI,PHI;PHI’,zeros(p,p)]);
Pyy = INVMAT(1:n,1:n);
Pyb = INVMAT(1:n,n+1:n+p);
Pbb = INVMAT(n+1:n+p,n+1:n+p);
Va = Q - QHT*Pyy*QHT’ - X*Pbb*X’ - X*Pyb’*QHT’-QHT*Pyb*X’;
Va_diag(:,isim) = diag(Va);
else
Va_diag(:,isim) = Va_diag(:,isim-1);

end

end % loop N Realizations
toc
time_cpu=toc
oo = evaluation_CR1(s_cA,flag,Va_diag,AR,xgrid,ygrid,m,nr,nc,n,Tm_true,...
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...N,time_cpu);

save(’AR_CR_s_err4.txt’,’AR’,’-ascii’)
save(’flag_CR_s_err4.txt’,’flag’,’-ascii’)
save(’Va_diag_CR_s_err4.txt’,’Va_diag’,’-ASCII’)
save(’s_c_CR_s_err4.txt’,’s_c’,’-ascii’)
save(’s_cA_CR_s_err4.txt’,’s_cA’,’-ascii’)
save(’s_u_CR_s_err4.txt’,’s_u’,’-ascii’)
save(’s_uA_CR_s_err4.txt’,’s_uA’,’-ascii’)

%hot start
save(’v_last_CR_s_err4.txt’,’v’,’-ascii’)

E.2 Optimization Routine: opti3.m

% This function optimizies the delta value to minimize the objective function
% Quasi Linear + Conditional realizations case
% AZ last version: March 2005

function objft=opti3(delta,invR,Re,L2,G,sold,snew,y_data,k_sample,v,su,nr,nc)

n = size(y_data,1);
m = nr*nc;

% new estimate
s = sold*delta+snew*(1-delta);
sm = reshapet(s,nr,nc); Tm = exp(sm);

% Forward problem
[A, b, CR, CC] = mkls(Tm,Re,L2);
h = full(A\b); head = reshapet(h,nr,nc);

%sample from predicted head
y_pred = h(k_sample); %y_pred is predicted observation

y=y_data+v-y_pred;

objft=y’*invR*y+(s-su)’*G*(s-su);

E.3 Acceptance/Rejection Algorithm: MH2.m

% This function perform the Metropolis-Hastings acceptance/rejection algorithm
% AZ last version: March 2005

function [AR,s_cAccepted,s_uAccepted,pl_new] = ...
...MH2(s_u,s_uA,s_c,s_cA,invQ,ro,X,beta,y_data,H,invR,pl)
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% s_u unconditional to test
% s_c conditional to test
% s_uA last uncoditional accepted
% s_cA last conditional accepted
% AR flag that indicates if a realizations is accepted (AR=1) or rejected (AR=0)
% pl log of the posterior probability of the last accepted

alfa = sqrt(1-ro^2);

% computation of the acceptance probability
% transition probability
% c candidate, l last accepted
qcl = -0.5*(s_u-ro*s_uA)’*invQ*(s_u-ro*s_uA)/(alfa^2);
qlc = -0.5*(s_uA-ro*s_u)’*invQ*(s_uA-ro*s_u)/(alfa^2);

% posterior probability function
pc = -0.5*(s_c-X*beta)’*invQ*(s_c-X*beta)-0.5*(y_data-H*s_c)’*invR*(y_data-H*s_c);

praccept = exp(pc+qlc-pl-qcl);
praccept = min(praccept,1);

Unif=rand;
if Unif<praccept % realization is accepted
s_cAccepted = s_c; % conditional realization accepted
s_uAccepted = s_u; % unconditional realization accepted
AR = 1;

pl_new = pc;
else % realization is rejected
s_cAccepted = s_cA; % last conditional realization accepted
s_uAccepted = s_uA; % last unconditional realization accepted
AR = 0;

pl_new = pl;
end

E.4 Evaluation of the Results: evaluation_CR.m

% Evaluation of the results
% AZ last version: December 2005

function [oo]=evaluation_CR(s_cA,flag,Va_diag,AR,xgrid,ygrid,m,nr,nc,n,Tm_true,...
...N,time_cpu)
% Evaluation of the results
% Va_diag=diag(V)

output=zeros(18,6);
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simul(1)=1;
simul(2)=100;
simul(3)=200;
simul(4)=300;
simul(5)=500;
simul(6)=700;

T_true=stackt(Tm_true);
sm_true=log(Tm_true);
s_true=log(T_true);

for cont=1:6

AREAL=0;NNN=0;
Va_mean=zeros(m,1); %diag V
s_mean=zeros(m,1);

ST = simul(cont)

EN= N;
for i=ST:EN

s_mean=s_mean+s_cA(:,i)*AR(i,1); %*flag(i,1);
Va_mean=Va_mean+Va_diag(:,i)*AR(i,1); %*flag(i,1);
AREAL=AREAL+AR(i,1);

end
NNN=(ST-EN)-((ST-EN)-sum(flag(ST:EN,1))); %number of converged realizations
AREAL; %number of accepted realizations

percentAR = AREAL / NNN*100;

s_mean=s_mean/AREAL; % NNN;
sm_mean=reshapet(s_mean,nr,nc);
Va_mean=Va_mean/AREAL; % NNN;

conint_mean = sqrt(Va_mean)*2;
conintm_mean=reshapet(conint_mean,nr,nc);

mean_s=mean(s_mean);
var_s=var(s_mean);

diff_s=s_true-s_mean;
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diff_sm=reshapet(diff_s,nr,nc);

diff_s2=diff_s.^2;

mean_diff_s=mean(diff_s);
var_diff_s=var(diff_s);

mean_diff_s2=mean(diff_s2);
var_diff_s2=var(diff_s2);

D2=(diff_s.^2)./Va_mean;

meanD2=mean(D2);
varD2=var(D2);

T_mean=exp(s_mean);
Tm_mean=reshapet(T_mean,nr,nc);
mean_T=mean(T_mean);
var_T=var(T_mean);

diff_T=T_true-T_mean;
meandiffT=mean(diff_T);
vardiffT=var(diff_T);

output(1,cont) = ST;
output(2,cont) = EN;
output(3,cont) = NNN;
output(4,cont) = AREAL;
output(5,cont) = percentAR;
output(6,cont) = mean_s;
output(7,cont) = var_s;
output(8,cont) = mean_diff_s;
output(9,cont) = var_diff_s;
output(10,cont) = mean_diff_s2;
output(11,cont) = var_diff_s2;
output(12,cont) = meanD2;
output(13,cont) = varD2;
output(14,cont) = mean_T;
output(15,cont) = var_T;
output(16,cont) = meandiffT;
output(17,cont) = vardiffT;
output(18,cont) = time_cpu;
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end

xlswrite(’out_CR_s_err4’,output)

figure(35)
mesh(xgrid, ygrid, sm_mean), xlabel(’x’); ylabel(’y’); zlabel(’mean cond real’);
figure(36)
mesh(xgrid, ygrid, diff_sm), xlabel(’x’); ylabel(’y’); zlabel(’diff Log’);
figure(6)
mesh(xgrid, ygrid, Tm_mean), xlabel(’x’); ylabel(’y’); zlabel(’Transmissivity’);

figure(25)
mesh(xgrid, ygrid, exp(sm_mean+conintm_mean)), xlabel(’x’); ylabel(’y’);
zlabel(’Transmissivity’);
title(’Upper 95% Confidence Interval’)
figure(27)
mesh(xgrid, ygrid, exp(sm_mean-conintm_mean)), xlabel(’x’); ylabel(’y’);
zlabel(’Transmissivity’);
title(’Lower 95% Confidence Interval’)

oo=1;



Appendix F

Matrix Multiplication

This appendix includes the source codes (in Matlab, .m files) used for the spectral matrix multi-
plications, see Nowak et al. [2003] and section 7 for the details of the procedure. In the following
are reported only the most important functions.

F.1 Main Function, Evaluation of Qtt = HQHT and Qst =
QHT : multiplication.m

function [Qtt,Qst]=multiplication(gen,H);
% This function performs the matrix multiplication using spectral
% convolution
% gen: (nr,nc) generator matrix of the Qss STT and of the SCC matrix
% H: (m,n) sensitivity matrix
% m number of observation
% n=nr*nc number of unknown
% nc= number of columns of the grid
% nr= number of rows of the grid
% Qtt=HQssHt matrix
% Qst=QssHt matrix
% AZ last version: December 2004

[nr,nc]=size(gen);
m=size(H,1);
n=nr*nc;
n1=size(H,2);

if n1~=n, disp(’ERROR, arguments must have same number of columns’), return, end

QssSCC=circulantsb_a(gen); % this function stores only the first column of the ...
...SCC matrix O(n)

% dimension of the QssSCC (nynx,1)

145
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nx=2*nr-2; %numbers of SC blocks
ny=2*nc-2; %dimensions of the SC blocks
coefficient=1/(sqrt(nx*ny));

% computation of eigenvalues eigQ=sqrt(nxny)FQss,1
% Qss,1 (nynx,1)
u=reshape(QssSCC,ny,nx);
v=fft2(u);
eigQ=reshape(v,ny*nx,1); % v=F*QssSCC,1
%LAM=diag(eigQ); %eigenvalues matrix
clear u; clear v; clear QssSCC;

% computation of Qtt=HQssHt
%Qtt is symmetric, only the upper triangle and diagonal have to be computed
Qtt=zeros(m,m);

% computation of Qst=Qss*Ht
Qst=zeros(nr*nc,m);

% upper / lower triangle
for k=1:m %row1 index

H1=reshape(H(k,:),nr,nc); %(nr,nc)
% FFT of the embedded matrix of H
v1=coefficient*fft2(H1,nx,ny);
v1=reshape(v1,ny*nx,1); clear H1;
v1star=real(v1)-i*imag(v1); %complex conjugate of v1

% computation of Qst=Qss*Ht
w=eigQ.*v1; %(nynx,1)
w_re=reshape(w,nx,ny);
Qst1=sqrt(nx*ny)*ifft2(w_re); %(nx,ny)
%estraction from the embedded matrix
Qst2=Qst1(1:nr,1:nc);
Qst(:,k)=real(reshape(Qst2,nr*nc,1));
clear Qst1; clear Qst2; clear w; clear w_re;

% computation of Qtt
for l=k:m %row2 index

if k==l %diagonal
p=eigQ.*(abs(v1).^2); %(nynx,1)
Qtt(k,k)=sum(p);
clear p;

else
H2=reshape(H(l,:),nr,nc);
% FFT of the embedded matrix of H
v2=coefficient*fft2(H2,nx,ny);
v2=reshape(v2,ny*nx,1);
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p=v1star.*eigQ.*v2; %(nynx,1)
Qtt(k,l)=real(sum(p));
Qtt(l,k)=Qtt(k,l);
clear H2; clear v2; clear p;

end
end
clear v1; clear v1star;

end

F.2 Main Function, Evaluation of Qst = QH
T : mulQst.m

function Qst=mulQst(gen,H);

% gen: (nr,nc) generator matrix of the Qss STT and of the SCC matrix
% H: (m,n) sensitivity matrix
% m number of observation
% n=nr*nc number of unknown
% nc= number of columns of the grid
% nr= number of rows of the grid
% AZ last version: December 2004

[nr,nc]=size(gen);
m=size(H,1);
n=nr*nc;
n1=size(H,2);

if n1~=n, disp(’ERROR, arguments must have same number of columns’), return, end

QssSCC=circulantsb_a(gen); % this function stores only the first column of ...
...the SCC matrix O(n)

% dimension of the QssSCC (nynx,1)

nx=2*nr-2; %numbers of SC blocks
ny=2*nc-2; %dimensions of the SC blocks

% computation of eigenvalues eigQ=sqrt(nxny)FQss,1
% Qss,1 (nynx,1)
u=reshape(QssSCC,ny,nx);
v=fft2(u);
eigQ=reshape(v,ny*nx,1); % v=F*QssSCC,1
%LAM=diag(eigQ); %eigenvalues matrix
clear u; clear v; clear QssSCC;

% computation of Qst=Qss*Ht
Qst=zeros(nr*nc,m);

% upper / lower triangle
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for k=1:m %row1 index
H1=reshape(H(k,:),nr,nc); %(nr,nc)
% FFT of the embedded matrix of H
v1=1/(sqrt(nx*ny))*fft2(H1,nx,ny);
v1=reshape(v1,ny*nx,1); clear H1;

% computation of Qst=Qss*Ht
w=eigQ.*v1; %(nynx,1)
w_re=reshape(w,nx,ny);
Qst1=sqrt(nx*ny)*ifft2(w_re); %(nx,ny)
%estraction from the embedded matrix
Qst2=Qst1(1:nr,1:nc);
Qst(:,k)=reshape(Qst2,nr*nc,1);
clear Qst1; clear Qst2; clear w; clear w_re;
clear v1;

end

F.3 Symmetric Circulant Matrix: circulant_a.m
function SC = circulant_a(G1);
% Symmetric Circulant Matrix
% G1 input row vector 1xn
% C output matrix 2n-2x2n-2
% Warning !!! In Nowak’s paper the dimensions of the circulant matrix is
% defined as 2nx2n because the generator vector G1= [C0 C1 .... Cn]
% starts from 0 and not from 1, the input vector should be 1xm, where m=n+1.
% nx=nx1-1
% AZ last version: December 2004

n =size (G1,2);
G2a= fliplr(G1(2:n-1));
G2b=[G1 G2a]; %dimension of G2b 1x2n-2, (n+n-2)
G2c=fliplr(G2b(2:end)); %dimension of G2c 1x2n-3, (2n-2-1)
G2=[G2c G2b]; %dimension of G2 1x4n-5, (2n-3 + 2n-2)

SC=zeros(2*n-2,2*n-2);

%embedding of the circulant matrix
for i=1:2*n-2
SC(i,:) = G2(2*n-1-i:4*n-4-i);%G2(2*n-3+2-i:2*n-3+2*n-2+1-i)

end

F.4 Symmetric Circulant Matrix with Circulant Blocks:
circulantsb_a.m

function SCC = circulantsb_a(Gb11);
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% Symmetric Circulant Matrix with circulant blocks
% This program evaluate only the first row of the SCC matrix
% Gb11 input matrix p,m
% SCC output vector SCC(1,(2m-2)*(2p-2))

% Gb11 : generator of circulant blocks for first generator
% m : size of square blocks
% p : number of blocks

% SCC : output first row of SCC matrix

% AZ last version: December 2004

m = size(Gb11,2);
p = size(Gb11,1);
n = m*p;

%SCC((2*m-2)*(2*p-2),(2*m-2)*(2*p-2))

% In the FFT multiplication only the first row/column is useful, so only
% this row/column it is stored. In this way the memory required is O(n)

% generator of the first row

G1=zeros(1,(2*m-2)*(2*p-2));
for i=1:p

C=circulant_a(Gb11(i,:));
G1(1,(i-1)*(2*m-2)+1:i*(2*m-2))=C(1,:);

end

for i=p+1:2*p-2
C=circulant_a(Gb11(2*p-2-i+2,:));
G1(1,(i-1)*(2*m-2)+1:i*(2*m-2))=C(1,:);

end

SCC=G1’;% storage of the only first column

F.5 Symmetric Block CirculantMatrix with Circulant Blocks:
circulantsbt_a.m

function SCC = circulantsbt_a(Gb11);
% Symmetric Circulant Matrix with circulant blocks
% This program embed the STT matrix in a larger SCC matrix using the
% generator of the STT matrix
% Gb11 input matrix p,m
% SCC output vector SCC(1,(2m-2)*(2p-2))
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% Gb11 : generator of circulant blocks for first generator
% m : size of square blocks
% p : number of blocks

% AZ last version: December 2004

m = size(Gb11,2);
p = size(Gb11,1);

SCC=zeros((2*m-2)*(2*p-2),(2*m-2)*(2*p-2));

%building the SC blocks
G1=zeros((2*m-2),(2*m-2)*p);
G2=zeros((2*m-2),(2*m-2)*p);
for i=1:p

C=circulant_a(Gb11(i,:));
G1(:,(i-1)*(2*m-2)+1:i*(2*m-2))=C(:,:); %(2m-2),(2m-2)p
G2(:,p*(2*m-2)-(2*m-2)*i+1:p*(2*m-2)-(2*m-2)*(i-1))=C(:,:); %(2m-2),(2m-2)p

end

G2b=[G1 G2(:,(2*m-2)+1:p*(2*m-2)-(2*m-2))]; %(2m-2),(2p-2)(2m-2)
G3=[G2(:,1:p*(2*m-2)-(2*m-2)) G2b]; %(2m-2),(2m-2)(3p-3)
G4=[G1(:,2*m-2+1:(p-1)*(2*m-2)) G3]; %(2m-2,4p-5)

%embedding of the circulant matrix
for i=1:2*p-2

SCC((i-1)*(2*m-2)+1:i*(2*m-2),:)=G4(:,(2*m-2)*(2*p-3)+1+(1-i)*...
...(2*m-2):(2*m-2)*(4*p-5)+(1-i)*(2*m-2));

end
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