
Dottorato di Ricerca in Tecnologie dell’Informazione

XXXI Ciclo

Terrestrial Laser Scanning as a Support to Design and

Deployment of Automated Warehouses

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutor:

Chiar.mo Prof. Jacopo Aleotti

Dottorando: Mikhail Giorgini

Anni 2015/2018

Feel free,
even in two lines.

Abstract

The design of modern automated warehouses is a complex task that requires detailed and
accurate models of industrial buildings. However, the traditional design workflow is primarily
based on 2D floor plans that may contain outdated or even missing parts. The common
approach to update existing 2D floor plans is to perform surveys based on sparse measures,
taken by hand-held instruments, such as Laser Distance Meters, or Total Stations. Indeed,
these instruments provide very accurate point-to-point measures, but the amount of data that
can be acquired may not be sufficient. As a result, multiple surveys need to be performed as
new requirements emerge during system development. Moreover, many unpredictable issues
are usually discovered at the time of deployment, thus resulting in high costs and delays.
Therefore, companies that operate in the warehouse automation business are starting to apply
3D Terrestrial Laser Scanning technology to overcome the limitations of traditional surveys.
This brings new research challenges, never addressed in industrial environments before.

A first contribution of this dissertation is the proposal of a novel workflow for the design of
automated warehouses that improves the traditional development process by performing a 3D
survey that combines a Terrestrial Laser Scanner and a Total Station. Automated warehouses
include Autonomous Guided Vehicles (AGVs) that move along predefined paths, as well
as fixed robot workcells. The workflow covers every phases from data collection to data
processing, and exploitation. The proposed workflow can handle billions of points, acquired
from thousands of scan stations, and it consists of several automatic and semi-automatic
steps. The first step of the workflow is to perform a 3D survey by following a procedure that
achieves a good trade-off between survey time, accuracy, and level of detail of the acquired
point cloud. Then, high level information about the environment are extracted, exploiting
innovative algorithms for large scale point cloud processing.

In particular, novel approaches for ground segmentation, floor plan generation and real-
time AGV collision detection are presented. The proposed approach for ground segmentation
does not assume the presence of a dominant plane and it scales linearly with the number
of scans. The algorithm for floor plan generation is based on the segmented ground, so that
no assumptions are made about the maximum expected slope. Moreover, walls are neither
required to be planar nor having orthogonal intersections, like in previous works. AGV
paths can, therefore, be defined based on the generated floor plan and a real-time collision
detection algorithm is proposed to verify their feasibility. Virtual Reality is also supported to
provide immersive visualization. Finally, a novel approach for scan position optimization is
investigated that exploits a realistic sensor model that simulates a number of fixed parameters

6

having a strong influence on the laser measurements, like laser height from the ground,
resolution, sensor range and angle of incidence of beams on both walls and ground.

While some parts of the proposed workflow have been developed to solve specific prob-
lems of the warehouse automation industry, most of the developed algorithms, such as au-
tomatic ground segmentation, floor plan generation and scan position optimization can be
applied in any indoor environment. All the solutions developed in this thesis have been fully
integrated with existing softwares to speed up the deployment phase. Experiments have shown
that the proposed workflow drastically speeds up development and deployment of system in-
stallations.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Adopted sensing technologies . 5
1.3 Thesis contribution and outline . 9

2 Proposed Workflow for the Design of Automated Warehouses 11
2.1 Overview . 11
2.2 Survey . 15
2.3 Registration . 17
2.4 Data Processing . 20
2.5 Deliverables . 21

2.5.1 Ground analysis . 21
2.5.2 Floor plan and cleaned point cloud 25
2.5.3 AGV operation points . 25

2.6 Virtual plant deployment . 30

3 Ground Segmentation 35
3.1 Introduction . 35
3.2 Related works . 36
3.3 Ground segmentation . 37

3.3.1 Extraction and filtering of virtual points on the ground . . . 37
3.3.2 Coarse segmentation of ground points 42

ii Contents

3.3.3 Normal filtering . 42
3.3.4 Association of virtual points to measured points and region

grow . 46
3.3.5 Gap filling . 48

3.4 Experimental results . 51
3.5 Discussion . 57

4 Floor Plan Generation 59
4.1 Introduction . 59
4.2 Methodology . 61

4.2.1 Voxel grid computation and ground segmentation 61
4.2.2 Detection of structural elements 63
4.2.3 Low resolution floor plan image generation 67
4.2.4 Contours extraction and refinement 70

4.3 Experimental evaluation . 71
4.4 Discussion . 78

5 3D Warehouse Visualization and Collision Checking 79
5.1 Introduction . 79
5.2 Input data . 81

5.2.1 Vehicle model and safety zones 81
5.2.2 Environment model . 83
5.2.3 Ground model . 84
5.2.4 Vehicle paths . 85

5.3 Visualization . 86
5.3.1 Vehicle path following . 87
5.3.2 Dynamic loading of point cloud clusters 87

5.4 Collision detection with environment model 89
5.5 Experiments . 92
5.6 Discussion . 94

Contents iii

6 Sensor-Based Optimization of TLS Setup on GPU 95
6.1 Introduction . 95
6.2 Problem formulation . 96

6.2.1 Laser model and ground coverage function 98
6.2.2 Visibility . 100

6.3 Parallel implementation on GPU 103
6.4 Experimental evaluation . 104
6.5 Discussion . 112

7 Conclusion 113

Bibliography 115

Chapter 1

Introduction

This chapter introduces the key research contributions of this work, along with the
adopted technology. First, the chapter starts with a presentation of the industrial issues
that motivated this work (Section 1.1). Then, Section 1.2 introduces the measuring
instruments, pointing out their strengths and presenting the strategies that have been
adopted to overcome their weaknesses. Finally, an overview of the following chapters,
highlighting the scientific contribution and the novelty of the proposed solutions, is
presented in Section 1.3.

1.1 Motivation

This thesis focuses on the design of automated warehouses. Automated warehouses
include Autonomous Guided Vehicles (AGVs) that move along predefined paths, as
well as fixed robot workcells. Modern design of automated warehouses is primarily
based on 2D layouts of the customer buildings. Such layouts are very inaccurate due
to missing or outdated parts. For example, clearances (i.e. machines, racks), but also
structural elements (such as columns and walls), can be misplaced by metres in many
cases. When it comes to warehouse retrofitting the ability to integrate proprietary
solutions on existing and operating plants is crucial. In these scenarios accuracy
requirements are higher than the accuracy of most available layouts. As an example,

2 Chapter 1. Introduction

Figure 1.1: Example of point cloud acquired with a Terrestrial Laser Scanner.

for robot workcell placement an accuracy of about 10 cm may be required, while
for AGV navigation and operations the maximum acceptable error is 2 cm. Hence,
Terrestrial Laser Scanning technology may help to acquire an as-is model of the plant.
Unfortunately, this technology provides huge amount of 3D raw data, in the form of
point clouds (Fig. 1.1). The development of appropriate procedures and algorithms
that can extract high level information becomes, therefore, crucial. Furthermore,
having a reliable as-is model of the customer plant allows different development steps
to be anticipated.

The as-is model of the plant can be exploited for accurate robot workcell place-
ment. In fact, checking the feasibility of the installation at an early stage allows
modification of the machine design in advance.

In addition, AGVs move along specified paths and perform operations (such as
pallet loading and unloading) on predefined operation points. Planar laser scanners at
the bottom of a vehicle are used for safety reasons, using predefined safety zones, so
that if a laser sensor detects an obstacle within a safety zone it immediately triggers
the vehicle to stop. Maximum speed is also statically determined by environment

1.1. Motivation 3

conditions and vehicle kinematics and it is strictly entangled with the size of safety
zones. These settings are traditionally specified months before the system installation,
but they are refined only when AGVs are deployed in the real environment. The
refinement of these settings is a very time consuming task and it is currently performed
during the deployment of the installation, that is the most delicate phase of a project.
Delays in this phase have, in fact, a huge impact on the customer production activities,
forcing the customer to stop large areas of the plant. Thus, having a reliable and
detailed as-is model of the plant allows the determination of operation points, paths,
maximum speed and safety zones long before the system installation, with negligible
impact on customer production and distribution.

This thesis has been funded by Elettric80 SpA. Elettric80 was established in the
1980s in Viano, in the province of Reggio Emilia (Italy). The company is specialized
in the implementation of integrated and automated solutions, flexible and modular,
designed for high-volume consumer products manufacturers, mainly in the food, bev-
erage and tissue industries, as well as in diversified sectors, like ceramics and plastics.
Elettric80 provides solutions which allow planning and control of production, storage,
and shipping activities, with a significant increase in factory efficiency, and ensuring
the total traceability of handled products. The main systems, designed and customized
according to the client’s application needs, are: palletizing robots (Fig. 1.2), a wide
range of Autonomous Guided Vehicles (Fig. 1.3), high-speed stretch wrappers (Silk-
worm), depalletizing and pallet control systems, robotic labelers, AS/RS warehouses
(Stacker Crane Solutions) and Smart Store (Multilevel Solution), picking and repack-
ing systems. The whole process is managed by a single software platform developed
by Elettric80, named SM.I.LE80 (Smart Integrated Logistics), which ensures a direct
link between systems and production processes, and the optimal and effective man-
agement of all internal and external plant operations: from incoming raw materials to
complete warehousing and shipping management. Currently, Elettric80 has installed
more than 1,700 robotic systems and 4,300 Autonomous Guided Vehicles worldwide.
Beyond its headquarters in Viano, Elettric80 has set up branches in Australia, Brazil,
Chile, the United Arab Emirates, France, Great Britain, Mexico, Poland, Russia,
Sweden, and the USA.

4 Chapter 1. Introduction

Figure 1.2: The DRAGON Tissue palletizing cell features Fanuc robots to form
individual packages into layers and a larger Fanuc robot fitted with a patented "forks
gripper" to place the layers on a pallet.

Figure 1.3: Autonomous Guided Vehicles provide a fast and flexible solution for pallet
storage, as they reduce time, cost, error and risk, compared to human operators.

1.2. Adopted sensing technologies 5

Figure 1.4: Leica ScanStation P30.

1.2 Adopted sensing technologies

Terrestrial Laser Scanners (TLSs) are becoming a standard choice to acquire accurate
and highly dense data of indoor environments. Many companies that actively use BIM
(Building Information Modeling) in their workflow are in fact investing in TLSs as
they provide an accurate and affordable solution.

A Terrestrial Laser Scanner is a ground-based instrument that is able to acquire
accurate 3D point clouds of environments by a range-based laser technology. 3Dmea-
sures are reconstructed from two angles (azimuth and elevation), coming respectively
from horizontal and vertical encoders, and a distance measure, provided by an EDM
(Electronic Distance Measurement).

Following the classification proposed in [27], this work will focus on medium-
range static TLSs. Medium-range instruments provide the best trade-off between
maximum range and accuracy when it comes to indoor measurement of large spaces,
such as airports, public monuments, industrial warehouse and so on. In this thesis, the
TLS adopted for data acquisition is a Leica Scanstation P30 (Fig. 1.4) mounted on a
tripod. This high-end sensor features an angular accuracy of 8”, a beam divergence
below 0.23 mrad and a position accuracy of 3 mm at 50 metres. It provides a scan

6 Chapter 1. Introduction

Figure 1.5: Terrestrial Laser Scanning survey in awarehouse using a Leica ScanStation
P30 mounted on a tripod.

rate of 1 million points per second, and a maximum range of 120 m, with a field of
view of 360◦ × 290◦. The TLS needs to be approximately leveled in each scan station
to reach the working range of the built-in dual-axis compensator (based on a liquid
sensor) used for real-time measurement correction. Adopting a TLS-based approach,
instead of other techniques like range sensors mounted on mobile platforms, provides
higher accuracy. Other works, such as [5] and [11], adopted stop-and-go techniques
to avoid mobile platforms problems, such as poor odometry information, parallax and
vibrations. In this work, TLS surveys are performed from multiple scan stations (Fig.
1.5), that are later registered together.

Point cloud registration is the process of transforming point clouds, acquired from
different scanner positions, to the same reference frame, named Uniform Coordinate
System (UCS). This may be achieved with two main techniques, based on artificial
targets (Fig. 1.6) or point cloud comparisons. In this thesis, a mix of the two techniques
has been explored, to obtain a good trade-off between survey-time, accuracy, and level
of detail of the reconstructed environment. Despite the fact that the P30 can work in

1.2. Adopted sensing technologies 7

Figure 1.6: Artificial B/W Target for Leica ScanStation P30.

topographic mode (i.e. it can work with targets), the use of this instrument alone
for large spaces is not recommended. In fact, the limited maximum range (120 m),
combined with a low angular accuracy (8") cannot keep the global error under the
requirements (2 cm for AGV navigation and operations). Furthermore, the procedure
for target acquisition on TLSs is very slow. Hence, it has been decided to adopt a
technique that combines the TLS with a Total Station for target measurements.

The Total Station is an electronic instrument that combines a theodolite, for
angular measurements (both horizontal and vertical), with an Electronic Distance
Measurement (EDM), for slope distance. Total Stations provide the capability for
3D point computation and new pose estimation, based on triangulation algorithms,
thanks to on-board software. Currently, Total Stations are the fastest andmost accurate
instruments for single-measure collection.

The Total Station adopted for this work is a Leica Nova TS60i 0.5" (Fig. 1.7).
This high-end instrument features an angular accuracy of 0.5", a maximum range of
3500 m and an accuracy of 0.6 mm + 1 ppm on prisms (Fig. 1.8). This instrument can
work both in manual and auto-aim mode. Auto-aim mode requires the use of prisms,
whose center can be automatically detected after a rough manual alignment, or in a
fully automatic way with the use of the Power Search feature, that performs a fast
360◦ search.

8 Chapter 1. Introduction

Figure 1.7: Leica Nova TS60i Total Station 0.5".

Figure 1.8: Circular prism with holder. It provides a centering accuracy of 1mm and
a maximum range of 3500 m.

1.3. Thesis contribution and outline 9

1.3 Thesis contribution and outline

In this section the scientific contribution of this thesis and its outline are described.
First, in Chapter 2, a novel workflow is presented that overcomes traditional 2D

survey limitations. The benefits with respect to the traditional workflow are also
discussed. Moreover, an overview of the proposed workflow steps is provided. The
main scientific contributions of the thesis are then discussed separately in the following
chapters.

A novel approach for ground segmentation in a registered large-scale point cloud
acquired from a Terrestrial Laser Scanning survey is presented in Chapter 3. The
proposed method is robust to clutter and it is capable of extracting the ground even
in presence of dense planar regions that do not belong to the ground. The segmented
ground is important as it provides a reference for subsequent algorithms and an
accurate analysis of the ground status, that is crucial for safe AGV navigation.

Then, a novel approach for floor plan generation, particularly suited for complex
buildings like industrial premises, is presented in Chapter 4. The main novelty of this
approach is that no assumptions are made about the presence of a flat ground nor a
flat ceiling. Moreover, no assumptions are made about the maximum expected slope
of the ground, as it exploits the ground segmentation. Furthermore, no hypotheses are
also made about the planarity and orthogonality of walls. Cluttered areas are included
in the generated floor plan, so that the floor plan can be exploited as a map for AGV
path design.

A novel approach for AGV path validation that supports Virtual Reality (VR)
visualization and real-time collision checkingwith large scale point clouds is presented
in Chapter 5. The proposed approach has been integrated with the Elettric80 software,
so that technicians can verify the feasibility of vehicle paths directly in the CAD
application in which paths are developed.

Finally, a novel formulation of the optimal sensor placement problem that includes
realistic constraints is presented inChapter 6.ATerrestrial Laser Scanning survey is, in
fact, usually performed without any guarantee of optimality, based on the experience
of technicians who determine the scan station positions. The problem is solved as

10 Chapter 1. Introduction

a modified version of the Set Cover Problem, as it requires an ordered solution to
fulfil the overlap constraint that ensures the success of cloud-to-cloud registration
algorithms (Section 2.3).

Conclusions, limitations and future work are finally presented in Chapter 7.

Chapter 2

Proposed Workflow for the Design
of Automated Warehouses

This chapter presents the workflow adopted by Elettric80 that exploits the approaches
and algorithms investigated in this thesis.

A comparison between the proposed and the traditional workflow is also presented
and benefits of the former are discussed. The first section will provide a high level
overview, while other sections will deepen each single step. The following chapters
describe the developed algorithms and methods.

2.1 Overview

The traditional workflow in the automation business is primarily based on 2D layouts
and single measures roughly taken by hand-held instruments, such as Laser Distance
Meters. Only in few and rare cases layouts are integrated with measures taken using
Total Stations. These instruments provide very accurate point-to-point measures, but
the amount of acquired data may not be sufficient. As a result, multiple small surveys
are performed as project requirements appear during the machine design. Stopping
the machine development and taking multiple small surveys is very time consuming
and prone to errors. Moreover, many unplanned issues are discovered at the time of

12 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.1: Example of point cloud of a complex building.

deployment, thus resulting in very high costs and delays. In addition, environments
are typically complex in the automation business and the required level of integra-
tion between autonomous systems and the original building is high. As a solution, the
whole 3D acquisition of the environment is performed as a preliminary step (Fig. 2.1).
Workcell positions and AGV paths are then designed and verified on the 3D repre-
sentation coming from the survey, introducing a virtual deployment phase. Fixes and
corrections at this stage have in fact a low cost, compared to adjustments made during
the deployment phase. Figure 2.2 shows the traditional workflow compared to the
proposed one. It is evident that in the proposed workflow design loops are limited to
the low cost / low risk tasks performed in the technical office. Furthermore, the adop-
tion of the proposed workflow simplifies the transition from human-operated forklifts
to Autonomous Guided Vehicles, as it avoids stopping the warehouse activities and
emptying racks as in the past.

Figure 2.3 shows the data workflow, from the survey to the final plant validation,
highlighting all the fundamental steps required to transform raw data into high level
information.

2.1. Overview 13

Sell

Machine

Design

Layout

Design

Deployment

Everything

working?

Hardware

problem?

Delivery

3D Survey

Virtual

Deployment

Everything

working?

Yes

Hardware

Problem?

No

No

Yes

Yes

No

No

Yes

O�ce Tasks

Low Cost

Low Risk

On-site Tasks

High Cost

High Risk

Obsolete steps

Common steps

Proposed steps

Tradi�onal

Survey

Figure 2.2: Traditional worflow (dashed lines) compared to proposed workflow (solid
lines). Confining loops in the design process performed by the technical office, by
introducing a virtual deployment step based on the 3D survey, significantly reduces
risks and costs. In fact, problems discovered during on-site tasks have an higher impact
in terms of cost and delays.

14 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Deliverables

Virtual Plant

Deployment

Data Processing

3D Survey

Point Cloud

Registra�on

AGV Layout

De�ni�on

Robot Workcell

Placement

Figure 2.3: Data acquisition and elaboration workflow.

2.2. Survey 15

2.2 Survey

Survey is performed by combining the Terrestrial Laser Scanner with the Total Station
to take advantage of both. In fact, low angular accuracy, low range as well as slow
target acquisition of the TLS led to the decision of using a Total Station to reduce
the global error and to speed-up the survey. In particular, the procedure adopted to
perform a survey works as follows.

A limited number of 3D scans are performed in “topographic mode”, meaning that
they are registered with artificial targets (acquired by the Total Station in advance),
while the largest part of the survey is performed using “free stations”, meaning that
they need to be registered with cloud-to-cloud techniques in post-processing. The
first step of a survey is about deciding the locations of topographic scans. These
locations have to maximize to visible area to facilitate registration of free stations
with the corresponding topographic station. At the same time, the total number of
topographic scans needs to be a small percentage of the total scans, to minimize
the impact on the survey time. As an example, performing a free-station scan takes
approximately 3 minutes, while topographic scans take more than 15 minutes. Once
the locations of topographic scans have been decided, artificial targets are mounted
to achieve adequate triangulation. Depending on the environment, different types of
target supports are used (Fig. 2.4). Target supports are divided in two main categories:
mobile and fixed. Mobile supports are removed after the survey is completed, while
fixed supports are left for future use and are intended to be used as a permanent
reference. Mobile supports can be magnetic or adhesive. Magnetic supports have a
high cost and are typically removed at the end of a survey session, while adhesive
supports are left overnight. Furthermore, some target supports are compatible with
prisms (Fig. 1.8), which allows auto-aiming with the Total Station, thus speeding-up
the survey and providing important benefits in terms of accuracy and confidence in the
acquired measures. In fact, measures taken with manual aiming may be invalid due to
human errors. Table 2.1 lists all the types of target supports. It is evident that no target
has all the required characteristics, so a mixed use is required. At the time of writing,
wall spigots are being evaluated. Wall spigots have the same characteristics of rack

16 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.4: Supports for Leica 4.5" Tilt&Turn targets. Rack spigots (left) are essential
in warehouses with racks, while magnetic mounts for flat (center) or cylindrical (right)
surfaces have a wider applicability. The advantage of rack spigots lies both in their
low cost (self-made by Elettric80) and their robustness to accidental collisions by
operators. They are left on-site for multi-day surveys, but they do not represent a
long term reference, because racks (on which they are mounted) suffer from structural
deformation over time. See Table 2.1 for details.

spigots, but they are screwed directly on walls, thus providing long term reference.
Then, after the target supports have been mounted, they are mapped with the Total

Station, using standard techniques for traditional surveys (polygonal chain, resection,
backsight). Supports that are compatible with prism, such as rack spigot, flat and
V-Block mounts are mapped exploiting the auto-aiming feature of the Leica Total
Station TS60. Other targets are mapped by visually pointing their center with the
camera or the monocular.

Once the targets are mapped, the 3D survey with the Terrestrial Laser Scanner
starts. The surveyor proceeds in an ordered path along the plant to facilitate the
subsequent registration phase, by alternating many fast free stations to some slow
topographic stations when he reaches the strategic spots previously defined (in which
targets have been placed). The adopted resolution is 1.25 mrad, that is a medium-low
resolution for this category of instruments. In fact, the complexity of the environments
in terms of clutter and occlusions impose a high number of scan stations in order to

2.3. Registration 17

Table 2.1: Target supports.
Name Mount TLS Auto-Aim Tilt&Turn >1day >1year
Rack spigot screw X X X X

Reflective tape adhesive X X X

Flat mount magnetic X X X

V-Block mount magnetic X X X

Forex 6¨ adhesive X X X

Plastic sheet 6¨ adhesive X X

have a detailed representation of the buildings. As a consequence, having a high
number of scans at close distance makes the use of higher resolutions unnecessary.

Following chapters will refer to “TLS Survey” as the proposed procedure that
combines the use of Total Station and Terrestrial Laser Scanner.

2.3 Registration

Registration is the act of aligning point clouds acquired from different scans positions,
so that they are referred to the same coordinate system. Thanks to registration, the
whole 3D representation can be created by combining all the scans. In the proposed
workflow, registration is performed using “Leica Cyclone”, a proprietary software
distributed by the TLS vendor. This is the only post-processing phase performed
using a 3rd party software. The most used technique exploits 2D views of the scans
(side-view and top-view). Scans are visually aligned from the top-view (Figs. 2.5 and
2.6), then the height is refined from the side-view (Figs. 2.7 and 2.8). The visual
alignment provides a coarse guess, acting as a seed for an ICP algorithm, that is
able to find the best cloud-to-cloud alignment. Information on convergence are then
provided, leaving the user the final choice about the correctness of the alignment.
The user iterates the alignment procedure on pairs of scans, trying to follow the same
temporal order of the survey. The iteration of the procedure on pairs of adjacent scans
highlights the importance of an ordered survey on-site.

18 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.5: Registration software. Top view before alignment.

Figure 2.6: Registration software. Top view after alignment.

2.3. Registration 19

Figure 2.7: Registration software. Side view before alignment.

Figure 2.8: Registration software. Side view after alignment.

20 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.9: Manual cleaning software. In this example a manual forklift has been
manually selected for removal. The user interface features a 2D representation of the
point cloud (left side) in which a polygonal or rectangular area can be selected. On the
right side the height limits of the point cloud selection can be refined thanks to two
spin boxes representing lower and upper bounds. Once the volume has been selected,
point removal takes few milliseconds on a standard personal computer.

2.4 Data Processing

Data processing is performed thanks to the developed softwares and algorithms and
consists of automatic and manual phases. The first automatic step performs ground
segmentation [25]. Chapter 3 describes the proposed and adopted algorithm in detail.
The output are the segmented ground points and a filled height map that can be used
as a reference. Then, noisy points due to moving objects are automatically removed
exploiting ray tracing techniques, similarly to [58] and [72]. Finally, data are manually
processed to remove static clutter, using a software for assisted point cloud cleaning
that combines the intuitiveness of a 2D representation with the completeness of a 3D
representation for accurate point removal. Figure 2.9 shows the user interface of the
software. A video of the software exploited to remove static clutter is also available.1

1www.ce.unipr.it/~aleotti/ManualCleaning.mp4

www.ce.unipr.it/~aleotti/ManualCleaning.mp4

2.5. Deliverables 21

2.5 Deliverables

Once data have been automatically cleaned frommoving objects andmanually cleaned
from static clutter, they are ready for high level information extraction. In this thesis
deliverables are defined as the materials that are produced within the proposed work-
flow. In particular, deliverables include ready-to-use documents, reports and results
that aggregates raw data into high level information. Deliverables are meant to be
used by the technical office in the design phase, and to be shared with the customers
to highlight critical issues or to increase the commercial appeal of the offer.

The most important deliverables are:

• Ground analysis

• Floor plan

• Cleaned point cloud

• AGV operation points

The ground analysis is meant to be shared with the customer, along with instructions
on fixes needed to comply with the installation requirements. The floor plan is mainly
for the technical office use, with the purpose of robot workcells placement and AGV
layout definition. The cleaned point cloud is also meant for internal use for point-
to-point measures and consultation. Under specific circumstances and after explicit
request the cleaned point cloud can be shared with the customer. The set of the AGV
operation points is the last deliverable coming from data processing and it is meant
only for internal use and exploited for the design of AGV layouts.

Next subsections will present deliverables in detail with some real-case examples
and highlighting the specific importance of each one.

2.5.1 Ground analysis

To obtain precise and repeatable operations, most of the Autonomous Guided Vehicles
do not feature a suspension system. For this reason, small ground imperfections have
a significant impact on AGV navigation and operations. In fact, during navigation,

22 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.10: Height map example. Each pixel of the image corresponds to the local
height of a square centimetre. This image is used in conjunction with the Height-
Deviation map to inspect and identify ground problems that require fixes before the
system installation.

Figure 2.11: Example of the 3D point cloud of the segmented ground. The same cool-
to-warm color scale of the height map is used to highlight elevation differences. The
point cloud is exported using the E57 file format, that can be imported in Autodesk
ReCap for inspection.

2.5. Deliverables 23

Figure 2.12: Height-Deviation map example. Each pixel of the image corresponds
to the difference between the local height and the mean height of the surrounding
square metre. The size of the considered surrounding is customizable depending on
the application.

Figure 2.13: Example of the 3D point cloud of the segmented ground. The same
cool-to-warm color scale of the Height-Deviation map is used to highlight areas that
may be critical for AGV navigation.

24 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.14: Ground analysis provided to the customer, based on theHeight-Deviation
map. Red rectangles highlight areas that require intervention, while white pixels
represent areas that do not require any fixes.

fractures, holes and bumps may irreversibly damage different parts of the vehicle.
Moreover, due to the fact that AGVs always travel on the same paths, they tend to
aggravate ground problems. Furthermore, when performing operations in positions
higher than 10 metres, ground height differences of few millimetres cause errors
of centimetres in the final pallet configuration. In these conditions performing an
operation results in wrong pallet forking and it may cause damages to structures, goods
and to the vehicle itself. For this reasons, it is important to analyse the condition of
the ground surface in advance to ask the customer to fix the imperfections before the
system installation. Therefore, a novel algorithm is proposed to segment the ground in
a registered large-scale point cloud. Chapter 3 presents the segmentation algorithm.

Ground analysis is delivered as color maps, in the form of images (.png) and point
clouds. Point clouds are exported in the E57 format that is compatible with Autodesk
ReCap, a commercial software for point cloud visualization that allows complex
measures (point-to-point, point-to-surface, surface-to-surface) and annotations.

Three types of deliverable for ground analysis are provided:

• Height map (Figs. 2.10 and 2.11)

• Height-Deviation map (Figs. 2.12 and 2.13)

• Ground analysis (Fig. 2.14)

2.5. Deliverables 25

The pixel size and the point cloud resolution are customizable depending on the
application (typically 1 cm). A legend on the right depicts the association between
colors of the image and the corresponding pixel values.

2.5.2 Floor plan and cleaned point cloud

The floor plan is generated exploiting the ground segmentation, after automatic re-
moval of noisy points belonging tomoving objects andmanual cleaning. An algorithm
for automatic floor plan generation is proposed that does not assume the presence of
a flat ground nor a flat ceiling. The algorithm makes no assumptions about the max-
imum allowed slope of the ground and walls are neither assumed to be planar nor
having orthogonal intersections, in contrast to previous works. Moreover, the layout
machines and objects below the height limit is included in the floor plan, thus pro-
viding reliable navigation maps for AGV path definition or interference sections for
robot workcells placing. Chapter 4 presents the proposed algorithm. Generated floor
plans support Autodesk AutoCAD through the DXF format. Figures 2.15, 2.16, 2.17
and 2.18 show examples of generated floor plans. A video of the software exploited
to generate floor plans is also available.2

The full cleaned point cloud is also exported using the E57 format to support
Autodesk ReCap. Figures 2.19, 2.20, 2.21 and 2.22 show examples of exported point
clouds. A video of the software exploited to export cleaned point clouds is also
available.3

2.5.3 AGV operation points

Operation points are the (x,y) coordinates that define the spots in which Autonomous
GuidedVehicles perform operations, such as pallet pick up and drop, truck loading and
unloading, battery recharge, and so on. Traditionally, operation points were identified
at the time of the system installation by manually bringing the AGV in the operation
position. Moving an AGV into all the operation points was a very time consuming

2www.ce.unipr.it/~aleotti/FloorplanGeneration.mp4
3www.ce.unipr.it/~aleotti/PointCloudExport.mp4

www.ce.unipr.it/~aleotti/FloorplanGeneration.mp4
www.ce.unipr.it/~aleotti/PointCloudExport.mp4

26 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.15: Example of generated floor plan at multiple heights.

Figure 2.16: Example of generated floor plan at multiple heights.

2.5. Deliverables 27

Figure 2.17: Example of generated floor plan at multiple heights.

Figure 2.18: Example of generated floor plan at multiple heights.

28 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.19: Example of exported point cloud.

Figure 2.20: Example of exported point cloud.

2.5. Deliverables 29

Figure 2.21: Example of exported point cloud.

Figure 2.22: Example of exported point cloud.

30 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

task and it required to stop large warehouse and production areas, thus resulting in
increased cost for the customer. Therefore, the extraction of AGV operation points
becomes crucial, because it allows the design of AGV paths before the installation
phase. Thanks to the proposed workflow, the extraction of operation points in a
middle-sized warehouse takes less than one day as it only requires the user to manually
determine the pallet positions based on rack sections. Figure 2.15 shows an example
of a rack layout ready for manual extraction of operation points. Figures 2.23 and
2.24 show an example of manual extraction of operation points. However, manual
extraction has the drawback of being error prone. Automatic techniques are being
evaluated and will be part of future work.

2.6 Virtual plant deployment

By combining segmented ground, floor plan, cleaned point cloud and operation points,
robot workcells position and AGV paths are accurately defined and validated by the
technical office. In particular, AGV paths definition and robot workcells placing are
performed in 2Dexploiting floor plans at different heights, to support the traditional 2D
CAD workflow of the company. Conversely, validation of robot workcells positions
and AGV paths is performed in the 3D environment, exploiting the information
provided by the 3D survey. Figure 2.25 shows the placing of two conveyors.

Chapter 5 presents a novel VR system that enables visualization of large-scale in-
dustrial datasets with real-time collision checking (at 60 fps) between the AGVmodel
and the static point cloudmodel of the environment [24]. The proposed approach takes
into account the local slope of the ground and supports the visualization of AGV safety
zones. The VR system is then integrated with the company CAD software that is in
charge of the design of AGV paths (Fig. 2.26). For a wider use, the collision checking
system can also be used in desktop mode, without support to Virtual Reality (Figs.
2.27 and 2.28). A video of the integration with the existing CAD software is also
available.4

4www.ce.unipr.it/~aleotti/VirtualDeployment.mp4

www.ce.unipr.it/~aleotti/VirtualDeployment.mp4

2.6. Virtual plant deployment 31

Figure 2.23: Example of manual extraction of operation points. Green segments show
the generated floor plan, while purple segments are manually marked by the user as
they identify operation points.

Figure 2.24: Example of procedure for manual extraction of operation points. Green
objects show the position of rack columns, extracted exploiting the floor plan gener-
ation algorithm. The user determines operation points by drawing the bisector of the
segment connecting two consecutive rack columns.

32 Chapter 2. Proposed Workflow for the Design of Automated Warehouses

Figure 2.25: Example of conveyor placing. Geometric interferences between the con-
veyor model and the point cloud are visually inspected.

Figure 2.26: CAD software for AGV path definition. Generated floor plan (Section
2.5.2) is exploited as background for accurate path definition.

2.6. Virtual plant deployment 33

Figure 2.27: CAD software for AGV path definition with support to vehicle collisions.
In case of collision, paths can be redrawn before the deployment.

Figure 2.28: CAD software for AGV path definition with support to safety zone
collisions. In case of collision, safety zones can be resized before the deployment.

Chapter 3

Ground Segmentation

3.1 Introduction

Extracting an accurate groundmodel from a 3D point cloud of a warehouse is essential
to define and plan trajectories of AutonomousGuidedVehicles like driverless forklifts.

Complex industrial environments may contain terrains with non-planar regions
and, therefore, techniques for planar surface extraction like RANSAC [5] are not
appropriate as well as anymethod that assumes the presence of a dominant plane. This
chapter presents an approach for ground segmentation in a registered large-scale point
cloud with clutter acquired from a TLS survey (Section 2.2). The proposed method is
capable of extracting the ground even if the input point cloud contains large and dense
planar regions that do not belong to the ground. The algorithm first computes a robust
estimate of a point belonging to the ground below each scan station. These points are
then encoded into a fully connected graph and node conflicts, due to excessive slope,
are detected and filtered out. Afterwards, a volume of interest that contains the ground
is generated. Moreover, a fine-grained outlier removal process is applied by checking
inconsistent normal vectors. Finally, a region growing phase, followed by gap filling,
is performed to extract the ground. The chapter is organized as follows. Section 3.2
reviews the state of the art in ground segmentation and outlines the contribution of this
work. Section 3.3 describes the proposedmethod for ground segmentation. Section 3.4

36 Chapter 3. Ground Segmentation

presents the experimental results in real large-scale industrial environments. Section
3.5 concludes the chapter.

3.2 Related works

Following the proposed categorization in [78] ground segmentation methods can be
classified in four main categories that are briefly reviewed in this section.

Elevation maps approaches [73, 44, 52, 57] provide an efficient solution based on
the computation of height histograms. However, they suffer from under-segmentation
and require appropriate thresholds for sloped grounds that cannot always be easily
determined.

Ground modeling methods [29, 14, 16, 15, 19, 31] refer to approaches that use a
single sensor aboard vehicles and that provide a local ground estimation.

Methods based on relationship between adjacent points [76, 6, 47, 8, 45, 77]
exploit sensor specific features like neighborhood relations between points and data
ordering. Euclidean clustering and region growing algorithms are usually adopted for
segmentation. Themain drawback of thesemethods is that results highly depend on the
choice of the point cloud seeds of the segments. In [77] a Progressive Morphological
Filter was proposed to separate ground and nonground LIDAR measurements by
gradually increasing the window size and by using elevation difference thresholds.

Markov Random Field (MRF) methods [78, 68] use a probabilistic terrain model.
In particular, the work by Zhang et al. [78] shows a significant improvement over
previously cited approaches by applying a multi-label MRF in polar coordinates and
a loopy belief propagation method using a single LIDAR sensor.

Other previous works [1, 50, 54] have considered the extended problem of indoor
reconstruction, which includes ground estimation as well as floor plan extraction.
However, in these works ground estimation is usually performed in a simplified way
by assuming the presence of horizontal planes. The approach proposed in this work
can be classified as belonging to the class of methods based on relationship between
adjacent points with the difference that it provides a robust estimation of the point
cloud seeds. Indeed, the algorithm works on 3D data that are acquired by a TLS from

3.3. Ground segmentation 37

multiple scan stations and it exploits this property to generate a robust estimation of
ground points under each scan station.Moreover, the proposed approach scales linearly
with the number of scans and it was evaluated in considerably larger environments
than in previous works.

3.3 Ground segmentation

The algorithm consists of five sequential phases, that will be presented in the next
subsections, and it requires a set of n registered scans acquired from a TLS as input.
The reference frame is located under the first scan station with z-axis opposite to the
gravity vector. A TLS survey may contain different scans acquired from the same scan
station. Taking multiple scans from the same scan station is quite common in highly
dynamic environments where objects, like vehicles, are moving during the scan.

3.3.1 Extraction and filtering of virtual points on the ground

In the first phase one point belonging to the ground is computed from each scan by
exploiting the peculiar characteristics of TLSs. Indeed, it is reasonable to assume
that any region of space below a scan station is almost planar and that it contains
the ground, since the sensor is fixed on a tripod that is placed in an empty area.
However, as the terrestrial laser scanner has a limited vertical field of view Φ there is
a blind spot below the sensor (Fig. 3.1). Hence, no point can be selected in the blind
spot. Therefore, a point on the ground is computed in each scan by applying a local
floor estimation procedure using the measured points in the neighborhood of the scan
station. Points computed by this procedure are called “virtual points”, since they do
not belong to the measured point cloud.

In particular, a fast histogram-based method is adopted to determine the height
of the floor below the sensor by considering all the measured points from the laser
beams in the interval ∆φ = [φ1, φ2] (Fig. 3.1). Each bin of the height histogram (Fig.
3.2) counts the number of points in the same height range, where ∆h = 5 mm is the
quantization step. For example, if a TLS with a vertical field of view of 290◦ is placed
on a tripod at 1.7 m height with ∆φ = 10◦, about 750k points will be considered, at

38 Chapter 3. Ground Segmentation

blind spot

Φ

φ

φ

1

2

Figure 3.1: Local plane estimation is performed using the point cloud in the neigh-
borhood of the scan station within the angular interval ∆φ = [φ1, φ2] as the TLS has
a blind spot.

a standard resolution of 1.2 mrad, which is ample to achieve an accurate local floor
estimation. Most of these points are likely to belong to the floor.

The height histogram is processed to find the maximum peak. The peak is a subset
of adjacent bins defined as follows. Let {b0 j , . . . , bm j } be the value of the bins of the
histogram of scan j, and {h0 j , . . . , hm j } the associated heights. The algorithm finds the
bin pj with the maximum value and performs a recursive k-nearest neighbor search
to find all the bins ij with bi j > βbp j , where β ∈ [0,1]. The bandwidth of the peak
of scan j is defined by the set of contiguous bins within the leftmost index u j and
rightmost index vj found in the recursive search. Let the peak of the histogram being

3.3. Ground segmentation 39

Height [m]

N
u
m

b
e
r

o
f

p
o
in

ts
 [

1
0

3
]

100

200

300

400

500

600

✂ {

bvj

pj

ej
Secondary

Peak

Secondary

Peak

Main

Peak

buj

b0j b2j
b35jb33j

k = 3

 = 0.4

h = 0.005

h

0.00 0.025 0.05 0.075 0.1-0.025-0.05-0.075

Figure 3.2: Example of height histogram. The peak of the histogram is composed by
red bins. Secondary peak on the left is included in the main peak, while secondary
peak on the right is not part of the main peak due to the recursive k-nearest neighbor
search.

composed by bins with values {bu j , . . . , bvj }, associated to heights {hu j , . . . , hvj },
where wj = vj − u j + 1 is the peak width. The height of the virtual point in scan j
(coordinate z) is computed as a weighted average, defined as

ej =

∑vj
i=u j

bihi∑vj
i=u j

bi
(3.1)

The virtual point gj in scan j is then defined as having the same planar coordinates
of the TLS center [xj, yj, zj]T , i.e.

gj = [gjx ,gjy ,gjz]
T , [xj, yj, ej]T (3.2)

The computation of all virtual points {g0, . . . ,gn−1} of the scans is performed in
parallel. An accuracy score αj ∈ [0,1] for each virtual point is also computed.

40 Chapter 3. Ground Segmentation

tan-1(Imax)

i

Figure 3.3: Volume Vi (white region). Vertical section view.

Let w∗ = min
j∈0...n−1

(
wj

)
be the minimum peak width across all the n scans.

Let b∗ = max
j∈0...n−1

(
bp j

)
also be the maximum peak height across all the n scans.

Accuracy αj of the virtual point gj is then defined as

αj =
1
2

bp j

b∗
+

1
2
w∗

wj
(3.3)

Outlier detection and filtering of the extracted virtual points {g0, . . . ,gn−1} on the
ground are then performed to improve robustness and to reduce as much as possible
the number of false positives, even at the expense of removing some inlier virtual
points. Indeed, losing some inlier points is less critical than keeping wrong seeds.
First, if more than one virtual point has been generated for the same scan station, due
to multiple scans taken from it, the algorithm selects only the virtual point with the
highest accuracy (scans are not removed). Then, each remaining virtual point gi is
treated as a node of a complete (fully connected) graph G = (V,E), with vertex-set
V , edge-set E and |G | ≤ n. Each edge (i, j) connecting nodes gi = [xi, yi, ei]T and
gj = [xj, yj, ej]T is marked as “inconsistent” if the slope of the segment connecting
the two nodes is greater than a threshold Imax , i.e. Ii, j > Imax . The slope of a segment

3.3. Ground segmentation 41

Figure 3.4: Volume V (white region). Vertical section view. Points of the point cloud
in V provide a coarse point cloud segmentation of the ground. Points of the point
cloud inside the yellow volume are considered outliers. Red dots indicate the virtual
points on the ground.

is computed as

Ii, j =
|ei − ej |√

(xi − xj)2 + (yi − yj)2
(3.4)

A “degree of inconsistency” |Γ(gi)| is assigned to each node, computed as the number
of inconsistent edges connected to that node. The algorithm finds the node ḡ with the
highest degree of inconsistency among those with |Γ(gi)| > 1, i.e

ḡ = arg max
gis.t. |Γ(gi) |>1

|Γ(gi)| (3.5)

and removes ḡ from the graph, decreasing also the degree of inconsistency of all
its neighboring nodes. Node removal, which is aimed at removing nodes that have a
higher probability of being outliers, is repeated until no more nodes with |Γ(gi)| > 1
are found. Finally, the graph is further reduced to remove residual inconsistencies by
deleting all remaining nodes gi with |Γ(gi)| = 1 in a single iteration. The output of this
phase is a reduced graph, whose nodes represent the estimated inlier virtual points,
named {ĝ0, . . . , ĝl}.

42 Chapter 3. Ground Segmentation

3.3.2 Coarse segmentation of ground points

Starting from the robust estimation of the set of virtual points located below each scan
station, a coarse ground segmentation is performed by keeping points of the point
cloud contained in a volume V defined as the intersection of a set of sub-volumes, i.e.
V = ∩

i
Vi. Each sub-volume Vi, illustrated in Fig. 3.3, is generated from a virtual point

ĝi and it contains all points [x, y, z]T of the point cloud lying within a double cone,
i.e. satisfying the following condition

ĝiz − fi(x, y) ≤ z ≤ ĝiz + fi(x, y) (3.6)

with f defined as the nappe

fi(x, y) =
ηi
2
+ Imax

√
x2 + y2 (3.7)

where Imax accounts for the uncertainty of the ground slope, and ηi = wi∆h is an
offset that accounts for the uncertainty associated to a virtual point ĝi where, as defined
in section 3.3.1, wi is the width of the peak, while ∆h is the quantization step of the
histogram. Volume V is shown in Fig. 3.4. Examples of coarse ground segmentation
are shown in Figs. 3.5 and 3.6. At this phase of the algorithm points are still organized
into separate scans. To speed up nearest neighbor search in the following phases, all
points in the scans are hereafter organized into a single regular grid of cells on the xy
plane. The grid-based representation, not only enables a fast proximity search, but it
also enables parallel processing of the whole point cloud. Also, in this phase the point
cloud is down-sampled to reduce the computational time of the following phases,
depending on the precision requirements. In this work a 5 mm spatial resolution has
been used.

3.3.3 Normal filtering

Amore fine-grained outlier removal procedure is then applied by checking inconsistent
normal vectors. Normal vectors are estimated for each point of the coarse ground
segmentation. Point cloud normals are computed from local plane fitting with 5 cm
radius. Points whose normal vector forms an angle with the z-axis that exceeds a

3.3. Ground segmentation 43

Figure 3.5: Example of coarse ground segmentation. Parameter Imax has been in-
creased to 0.1 (10% slope) to better appreciate the effect on volume V .

Figure 3.6: Example of coarse ground segmentation.

44 Chapter 3. Ground Segmentation

Figure 3.7: Example of normal filtering (sec. 3.3.3). All points belonging to non-planar
surfaces have been removed.

Figure 3.8: Example of normal filtering (sec. 3.3.3). Planar surfaces not belonging to
the ground are still present, however they got separated from the ground.

3.3. Ground segmentation 45

Figure 3.9: Example of region grow (sec. 3.3.4). All planar surfaces not belonging to
the floor have been removed, as well as non-connected regions.

Figure 3.10: Example of region grow (sec. 3.3.4). The planar surface displayed in red
in Fig. 3.8 has been removed.

46 Chapter 3. Ground Segmentation

threshold θmax are discarded. Threshold θmax is set higher than tan−1(Imax) due to
measurement noise, by multiplying Imax by a factor ν > 1, i.e.

θmax = tan−1(νImax) (3.8)

Appropriate threshold values for the TLS sensor adopted in this work have been
determined empirically as Imax = 0.02 and ν = 5. Examples of the normal filtering
phase are illustrated in Figs. 3.7 and 3.8. It can be noticed that all points belonging to
non-planar surfaces have been filtered out, and that planar regions not belonging to
the ground have been separated. Hence, such planar regions will not pass the region
growing phase described in section 3.3.4.

3.3.4 Association of virtual points to measured points and region grow

In this phase each virtual point {ĝ0, . . . , ĝl} is first associated to one of the neighbor
measured points in V . Although virtual points belong to the TLS blind spots, there
are plenty of measured points close to them in the entire point cloud, since the blind
spots are observed from other scans. In particular, given the set of measured points
{p0, . . . , pN } with pi ∈ V and pi = [pix , piy , piz]

T , each virtual point ĝi is mapped to
the nearest measured point g∗i on the z-axis (if any) within a horizontal distance ∆xy ,
which represents the radius of the cone with vertex at the TLS center, with half-angle
π − φ1 and height |ĝiz − zi |, where zi is the vertical coordinate of the TLS center, i.e.

g∗i = arg min
pi s.t. dxy<∆xy

|piz − ĝiz |

dxy =
√
(ĝix − pix)2 + (ĝiy − piy)2

∆xy = |ĝiz − zi | tan(π − φ1)

(3.9)

The decision function in Eq. 3.9 performs better than a standard Euclidean distance
in R3 because the uncertainty level in the estimation of the planar coordinates of the
virtual points, which stems from the point cloud registration phase, is larger than the
uncertainty level of the vertical coordinate ei of the virtual points, which stems from

3.3. Ground segmentation 47

Figure 3.11: Dataset04 (top view). Rasterization after region grow.

Figure 3.12: Dataset05 (top view). The largest dataset where the proposed approach
has been evaluated, with more than 70.000 m2 of surface and an initial amount of
over 15 billions of points.

48 Chapter 3. Ground Segmentation

Table 3.1: Datasets used in the experimental evaluation
Dataset Company Location Scans Resolution [mrad] Points Size [m2] Proc. time [s]
Dataset00 Elettric 80 S.p.A. Viano (Italy) 8 1.2 87 494 103 735 17
RND Elettric 80 S.p.A. Viano (Italy) 11 1.2 106 417 059 735 22
Dataset01 Food North Dakota 47 1.2 446 273 160 4 200 114
University Parma (Italy) 48 0.6 1 441 032 861 17 675 169
Dataset02 Tissue Nevada 54 1.2 497 805 241 23 160 131
Dataset03 Food Italy 58 1.2 544 864 429 17 850 144
Dataset04 Acqua Sant’Anna Italy 117 1.2 1 031 886 921 53 610 285
Dataset05.1 Empresas Carozzi Chile 372 1.2 3 327 399 675 14 105 737
Dataset05.2 Empresas Carozzi Chile 1263 1.2 11 928 266 084 49 600 2783
Dataset05 Empresas Carozzi Chile 1641 1.2 15 404 201 936 77 035 3583

the procedure explained in section 3.3.1. The set of mapped points {g∗0, . . . ,g
∗
q}, with

q ≤ l, are likely to belong to the ground and are used as seeds for a conditional region
growing procedure, constrained by point distance and segment slope. Indeed, a point
pi is recursively added to region R, that is the final ground model, if ∃pk ∈ R which
satisfies the two conditions

| |pk − pi | |2 < τ ∧
|pkz−piz |√

(pkx−pix)
2+(pky−piy)

2
< Imax

(3.10)

where τ = 5 cm. Results of the region growing phase are shown in Figs. 3.9 and 3.10.
The region growing phase has been optimized to handle the large scale point cloud
by exploiting a parallel implementation with different seeds per thread and a caching
policy. In particular, a binary vector ξ of length N , shared among threads, is stored in
RAM and updated so that

ξi =


1 if pi ∈ R

0 otherwise
(3.11)

whereas the full point cloud is stored in the hard disk and chunks of points are loaded
and unloaded as requested.

3.3.5 Gap filling

After region growing, the set of points R representing the ground is converted to a
height grid data structure with resolution ∆r . If multiple points fall inside the same

3.3. Ground segmentation 49

Figure 3.13: Dataset04 (top view). Results after SAGA filling [18].

Figure 3.14: Dataset05 (top view). Results after SAGA filling [18].

50 Chapter 3. Ground Segmentation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400 1600

C
om

pu
ta

tio
n

tim
e

[s
]

Number of scans

Extraction of virtual points
Coarse segmentation

Normal filtering
Region grow

Gap filling

Figure 3.15: Computation time of each phase of the algorithm with respect to the
number of scans. “Gap filling” phase does not have a linear complexity.

cell of the grid the height of the cell is set as the height of the lowest point, thus
reducing the influence of points in V due to moving objects on the ground during the
scan, which may have slightly higher altitude. Examples of height grids are shown
in Figs. 3.11 and 3.12. Gaps in the grid are then filled by using SAGA-GIS software
library [18]. Examples of the resulting dense grid are shown in Figs. 3.13 and 3.14.
The final result is the segmented ground, which can be used in industrial applications
requiring an accurate model.

3.4. Experimental results 51

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10000 20000 30000 40000 50000 60000 70000
 0

 10

 20

 30

 40

G
ap

 fi
lli

ng
 ti

m
e

[s
]

G
ap

 fi
lli

ng
 ti

m
e

[s
]

Size [m2]

Resolution: 1cm
Resolution: 5cm

Figure 3.16: Computation time of the gap filling phase with respect to the size of the
environment with ∆r = 1 cm (left y axis) and ∆r = 5 cm (right y axis).

3.4 Experimental results

Data processing has been performed on a desktop Intel i7-5960x (3.00GHz) CPU
with 64GB RAM, a Solid State Drive and a Nvidia Titan X 12GB graphics card. Ex-
periments have been performed in several environments mainly from food, beverage
and tissue industrial warehouses (which contain racks for pallet storage or production
lines) with different sizes across Europe, South America and NAFTA. In particular,
Empresas Carozzi S.A. and Acqua Sant’Anna are leading companies in industrial
warehousing for food and beverage respectively. Table 3.1 summarizes information
about the datasets and some experimental results. Environments size ranged from a
single industrial building of 103 m2 (RND) to a large food warehouse of over 70 000

52 Chapter 3. Ground Segmentation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A B1 B2 C D

P
o

in
t

cl
o

u
d

 s
iz

e
 (

%
)

Algorithm phases

RND
Dataset03
Dataset04
Dataset05

Dataset05.1
Dataset05.2

Figure 3.17: Point cloud size after each phase. The coarse segmentation phase (B) has
the highest impact and it has been split into sub-phase B1 (actual coarse segmentation)
and sub-phase B2 (down-sampling).

m2 (Dataset05). The number of scans ranged from 11 to 1641, containing a total
number of points from about 108 to over 1010. Most of the TLS surveys have been per-
formed at 1.2 mrad resolution. The largest scenario (Dataset05) has been processed
both in its entirety and in two separate parts (Dataset05.1 and Dataset05.2) to assess
the performance of the ground segmentation algorithm on various input sizes. More-
over, one of the datasets (University) acquired at the Department of Engineering and
Architecture at the University of Parma, contains both indoor and outdoor scans, thus
showing the applicability of the proposed approach to heterogeneous environments.
This dataset has been obtained with scan stations located at higher distances and with
higher resolution (0.6 mrad). It is important to notice that the proposed algorithm
was evaluated in considerably larger environments than previous approaches. Indeed,
applicability of previous methods in large scale environments has still to be proved.

3.4. Experimental results 53

Table 3.2: Comparison of the proposed approach with the progressive morphological
filter (PMF) [77] distributed within the Point Cloud Library (PCL).

Algorithm Accuracy Precision Recall F1 Score Processed Points Proc. time
Proposed 0.9997 0.9999 0.9989 0.9994 87 494 103 17s
PMF @10mm - - - - - - - - - - - - 23 879 127 ≥ 1 day
PMF @25mm 0.9887 0.9960 0.9624 0.9789 4 576 871 2h 54m 52s
PMF @50mm 0.9965 0.9910 0.9961 0.9936 1 274 238 12m 18s
PMF @100mm 0.9947 0.9815 0.9995 0.9904 340 936 58s
PMF @200mm 0.9882 0.9590 0.9995 0.9788 89 280 5s

Quantitative evaluation has been performed in terms of computation time and
percentage of points processed in each phase. The algorithm was able to process the
largest dataset in less than one hour. Fig. 3.15 shows that the total computation time
grows linearly with the number of scans in all phases, except for gap filling. The
computation time of the gap filling phase is linear with respect to the plant size, as
shown in Fig. 3.16. It can be observed that the slowest phase is normal filtering. Fig.
3.17 shows the point cloud size after each phase. The coarse segmentation phase,
before down-sampling, has the highest impact on reducing the number of points,
indeed, after coarse segmentation the total number of points decreases, on average, to
about 30%. Down-sampling at 5 mm spatial resolution, as described in section 3.3.2,
further reduces the total number of points to about 15%.

Figs. 3.18, 3.19, 3.20, 3.21, 3.22 show the segmented ground, before the gap filling
phase. The segmented ground points are displayed in color scale, ranging from blue
(lowest height) to red (highest height). Dataset University and Dataset04 in Fig. 3.20
are two examples of environments with almost constant slope. Dataset RND in Fig.
3.22 and Dataset01 in Fig. 3.18 exhibit a more irregular ground (i.e. with bumps).
Having an accurate segmentation of a ground with irregular shape is very important
for example in industrial applications involving Autonomous Guided Vehicles. Con-
versely, Dataset03 in Fig. 3.19 shows a nearly planar environment, except for a highly
sloped corridor, while Dataset02 has been successfully extracted from a warehouse
despite many moving objects on the ground (scraps and rolls of paper). Finally, the
proposed approach was compared with the progressive morphological filter (PMF)

54 Chapter 3. Ground Segmentation

Figure 3.18: Dataset01 result (3D view).

Figure 3.19: Dataset03 result (3D view).

3.4. Experimental results 55

Figure 3.20: Dataset04 result (3D view).

Figure 3.21: Dataset05 result (3D view).

56 Chapter 3. Ground Segmentation

Figure 3.22: Dataset RND result (3D view).

[77] available within the Point Cloud Library (PCL). Evaluation of both methods
was performed against the ground truth of Dataset00, which was manually annotated.
Results, provided in Table 3.2, indicate that the proposed approach is more accurate
and more efficient. Indeed, the proposed algorithm performs ground extraction on the
whole dataset in 17 s at full resolution. Conversely, since PMF is not able to process
the whole dataset in a reasonable amount of time, input data have been down-sampled
and split into smaller parts of about 100 m2. Results were then aggregated. PMF
achieves a comparable processing time only when the input data are down-sampled
at about 10 − 20 cm, so it can be concluded that PMF is not applicable in large scale
environments. Despite a high accuracy and precision, PMF has a considerably higher
number of false positives, at each resolution, which is not acceptable in industrial
applications that require a low false positive rate. Moreover, even if precision of
PMF increases at lower resolution levels, this comes at the cost of an increased false
negative rate.

3.5. Discussion 57

3.5 Discussion

In this chapter a novel approach for ground segmentation has been proposed that can
be applied in environments with non-planar regions. The method supports large scale
point clouds acquired using a terrestrial laser scanner from multiple scan stations and
it has been evaluated with a slope up to 2% (a high value for industrial environments).
The key features are the robust estimation of ground points below each scan station,
which act as seeds for region growing, and an efficient implementation based on par-
allel processing and caching techniques. The algorithm does not require fine tuning
of any threshold. Threshold values (determined experimentally) have been kept con-
stant across all the experiments and can be reused when working with similar sensors.
Evaluation, in contrast to previous works, has been carried out in large-scale industrial
scenarios containing billions of points. The proposed approach achieves better perfor-
mance than a ground segmentation algorithm based on a progressive morphological
filter. A video that shows the phases of the proposed approach is available.1

1www.ce.unipr.it/~aleotti/GroundSegmentation.mp4

www.ce.unipr.it/~aleotti/GroundSegmentation.mp4

Chapter 4

Floor Plan Generation

4.1 Introduction

This chapter proposes a novel approach for automatic floor plan generation of indoor
environments. The method is particularly suited for large and complex buildings,
like industrial, commercial, and public premises. Input data consists of a large-scale
registered point cloud that is acquired from a TLS survey. The approach extracts a
set of 2D polylines representing the floor plan. The main technical novelties over
previous work are that the method neither assumes the presence of a flat ground nor a
flat ceiling. No assumptions are made about the maximal allowed slope of the ground.
Moreover, walls are neither assumed to be planar nor having orthogonal intersections.
Also, the collected datasets include many cluttered areas, whose layout is included in
the generated floor plan. A further contribution is that experiments were carried out
in considerably larger environments than in related work. The algorithm achieves a
floor plan reconstruction with the same resolution of the adopted sensor, and it was
evaluated using an experimental setup that allows a resolution of 5 mm. The proposed
approach detects structural elements, i.e. parts having a constant section over the entire
height of the building, like walls and columns, including their internal volume. It is
assumed that noisy points, due to moving objects during the TLS, are removed from
the input point cloud [72]. All but one dataset were obtained in automated warehouses

60 Chapter 4. Floor Plan Generation

Figure 4.1: Example of ground slope in industrial scenarios. Height difference of two
points (at 30.015 m distance) is 0.276 m.

from food and beverage companies. The design of such industrial environments is
largely manual, and it requires the definition of all the feasible AGV paths. This is
a complex and time consuming task, which is prone to errors due to outdated or
even missing layout maps. Therefore, there is a growing need of automatic tools for
floor plan reconstruction. Most related works on floor plan assume the presence of
planar or near planar surfaces [8, 33, 3, 56, 4, 51, 68, 52, 1, 54, 50, 46, 55, 71].
In particular, the ground or the ceiling (or both) are often considered as flat. This
is a strong assumption that does not hold for industrial environments (Fig. 4.1). A
common strategy is to detect the ground and the ceiling by analyzing the peaks of
the point cloud histogram over the z-axis [33], or to find the highest (or lowest) z
coordinate [3]. Other solutions apply RANSAC [56, 4], or horizontal slicing followed
by line extraction and clustering [51]. A more advanced technique is to adopt energy
minimization under the Markov Random Field model [68]. The approaches in [52,
1] were the first to explicitly consider heavy cluttered environments. The work in
[54] incorporates architectural priors like orthogonal intersections between walls. A
method for building a semantic grid map for buildings with multiple planar floors,
evaluated using simulated data, was introduced in [55]. Another approach based on
floor separation and triangulation of wall samples was presented in [71]. In [39]
the FloorNet framework was described that performs floor plan reconstruction from
RGBD video streams, using a deep neural network trained with pre-defined features.

4.2. Methodology 61

4.2 Methodology

The proposed method consists of four sequential phases. In the first phase, a low
resolution voxel grid is computed to obtain a 3D representation of occupied, empty
and unknown space. A segmentation algorithm [25] is also executed, with the purpose
of extracting the ground from a robust estimation of the points on the floor below
each laser scan station. The ground is not assumed to be flat. Indeed, most industrial
environments have non-planar regions and must comply with strict regulations con-
cerning minimum ground slope for water drainage (Fig. 4.1). In the second phase,
structural elements are detected thanks to their constant section over the entire height
of the building. In the third phase, a floor plan model is computed as a low resolu-
tion raster image using 2D voxel histograms. Information about structural elements is
used to compensate the lack of information due to unknown voxels. The fourth phase
computes the contours of occupied areas from the raster image, converting them into
a set of polylines. The 2D contour map is then refined to achieve a higher resolution
by upsampling the polylines, and by mapping the point samples on the 2D (x, y)
projection of the measured points of the scans.

4.2.1 Voxel grid computation and ground segmentation

In the first phase a ternary-state 3D voxel grid is computed by applying for each laser
scan a ray tracing algorithm. Possible voxel states are full (F), empty (E) and unknown
(U). A sub-centimetre voxel size can not be managed due to the high computational
and memory consumption cost of performing ray tracing in large scale environments.
As an example, in a rectangular 600×300 metres building with 15 m height (2.7 · 106

m3 volume) and a voxel size of 5 mm, the 3D voxel grid would contain 21.6 · 1012

voxels, and the total memory usage would be about 5 Terabytes. Hence, a large voxel
size rv is adopted in the early stages of the proposed pipeline. Loss of information
caused by the low-resolution voxel grid is recovered in the last phase, as described
in Section 4.2.4, through interpolation of the resulting 2D contour map by exploiting
the original measured points of the laser scans. Furthermore, the choice of working
on a low-resolution 3D voxel grid has the advantage of filtering measurement noise

62 Chapter 4. Floor Plan Generation

Figure 4.2: Example of ray tracing algorithm. All voxels are initially set to Unknown
(grey cells). Voxels traversed by laser beams are then set to Empty (white cells).
Finally, voxels containing measured points are set to Full (black cells).

in the second phase, when it comes to detecting vertically aligned occupied voxels.
The minimum (xmin,ymin,zmin) and maximum (xmax ,ymax ,zmax) coordinates of the
workspace are computed from the input point cloud. Initially all voxels are set to
unknown. All the scans are then processed in parallel and unknown voxels traversed
by rays are set to empty.

Each raw scan is also cleaned of points due to dynamic objects [72], i.e. object
that moved during a scan, and voxels containing measured points are set to full. While
performing ray tracing, the following priority order for the voxel states is established:
F � E � U, meaning that the attribute of a voxel can not be changed to a lower
priority value. Following such priority order on the voxel state enables the ray tracing
algorithm to work in parallel for each ray. The proposed algorithm is also able to scale
for different environment sizes and hardware resources by splitting the voxel grid into
sub-grids. Each sub-grid is managed separately. Indeed, the ray tracing algorithm is
able to work transparently through the sub-grids while traversing the voxel grid. The
result is a tri-state voxel gridV with values F, E or U for each vi jk ∈ V with 0 ≤ i < W ,
0 ≤ j < L, 0 ≤ k < H where (W, L,H) are the integer boundaries computed as:

[W, L,H] =
⌈

1
rv
([xmax, ymax, zmax] − [xmin, ymin, zmin])

⌉

4.2. Methodology 63

Figure 4.3: Ground segmentation (Chapter 3) of Dataset06 before (left) and after
filling missing parts (right). Color scale represents height values ranging linearly
from blue (−0.256 m) to red (0.415 m).

The voxel (vi, vj, vk) to which a point (px, py, pz) belongs is given by:[
vi, vj, vk

]
=

⌊
1
rv

([
px, py, pz

]
− [xmin, ymin, zmin]

) ⌋
In the first phase, the ground segmentation algorithm presented in Chapter 3

[25] is also executed, which is exploited in the subsequent phases. The output of the
ground segmentation algorithm is a filled height image (Fig. 4.3), containing the local
ground height in each 2D cell with size 5 mm. Ground height is represented as a
3D function fg(x, y). A point (px, py, pz) is considered as belonging to the ground
if |pz − fg(px, py)| < rv, where the voxel size rv here accounts for ground surface
uncertainty.

4.2.2 Detection of structural elements

In the second phase, structural elements with a constant section over the entire height
of the building, like walls and columns, are automatically detected. A 2D histogram
Ĥ ∈ NW×L is computed by counting the number of unknown and full voxels in each
column of the voxel grid, i.e. bin ĥi j of the histogram Ĥ is given by:

ĥi j = |{k : vi jk = F ∨ vi jk = U}|

64 Chapter 4. Floor Plan Generation

Figure 4.4: Gray scale image obtained from the 2D histogram Ĥ of Dataset06. Values
range from white cells, which contain only empty voxels, to black cells, that do not
contain any empty voxel. The red ellipse highlights a highly cluttered unknown region
(i.e. a pallet rack).

4.2. Methodology 65

Figure 4.5: Structural elements of Dataset06 (displayed as black pixels with value 1,
on a white background with value 0) after binarization, closing and region filling.

Full voxels are included in the count to handle borders of the structural elements. The
histogram is then converted to a grey scale image with pixel size rv (Fig. 4.4) and
binarized with a threshold bth slightly smaller than the height boundary H to handle
overestimatedmeasurements due to laser beam reflection. Indeed, overestimation gen-
erates missing points on scanned surfaces. Then, a morphological closing operation
is performed so that gaps smaller than κ are closed. Finally, all empty regions smaller
than a threshold rth are removed by applying a region filling algorithm [17]. For
example, threshold rth can be used to fill small isolated rooms that are of no interest.
If all contours must be reconstructed, parameter rth can be set to a small value or zero.

66 Chapter 4. Floor Plan Generation

Figure 4.6: Floor plan image of Dataset06 before morphological closing and region
filling.

The result is a binary grid S ∈ NW×L , where element si j ∈ S has the following format

si j =


1 if cell (i, j) contains a structural element

0 otherwise

Fig. 4.5 shows the binary image of the obtained structural elements. Regions within
small and isolated rooms are also considered as structural elements.

4.2. Methodology 67

Figure 4.7: Floor plan image of Dataset06 after morphological closing.

4.2.3 Low resolution floor plan image generation

In the third phase a low resolution image of the floor plan is generated by exploiting
both the voxel grid and the structural elements. The algorithm can work up to a fixed
height limit ∆h with respect the ground level of each 2D cell. Only the elements of
the environment below this limit are inserted in the final floor plan. In particular,
the algorithm only considers voxels centered at vxyz = (vx, vy, vz), that satisfy the
following condition:

fg(vx, vy) + rv ≤ vz ≤ fg(vx, vy) + ∆h (4.1)

68 Chapter 4. Floor Plan Generation

Figure 4.8: Floor plan imageof Dataset06 after region filling.

where fg(x, y) is the ground height. The inequality on the left ensures that only the
voxels above the ground are considered for each cell, while the inequality on the
right defines the height limit with respect to the ground level of each cell. The height
limit is optional and can be customized on the basis of the application. A histogram
H̃ ∈ NW×L is created by counting empty voxels for each column below the height
limit. Each bin h̃i j of H̃ is therefore computed as:

h̃i j = |{k : vi jk = E}|

4.2. Methodology 69

Table 4.1: Datasets used in the experimental evaluation.
Dataset Scans Res. [mrad] Points Size [m2]
Dataset01 11 1.2 106 417 059 788
Dataset02 48 0.6 1 441 032 861 17 675
Dataset03 54 1.2 497 805 241 43 000
Dataset04 58 1.2 544 864 429 18 396
Dataset05 63 1.2 537 812 076 63 317
Dataset06 117 1.2 1 031 886 921 51 450

A grid M ∈ NW×L is also generated that marks the cells that contain at least one full
voxel in their voxel column, i.e. elements mi j of M are defined as:

mi j =


1 if ∃k : vi jk = F

0 otherwise

A 2D image P is then generated by exploiting the grid M , the histogram of empty
voxels H̃ as well as information about structural elements S. Elements pi j of the binary
image P are computed as:

pi j =


1 if mi j = 1

0 if mi j = 0 ∧ h̃i j ≥ eth
⌊
∆h−rv
rv

⌋
si j otherwise

(4.2)

A single full voxel below the height limit is sufficient to consider a cell as full.
Such conservative policy is important to avoid missing any object or obstacle on the
floor plan. Threshold eth, with 0 ≤ eth ≤ 1, is used to determine when a voxel column,
that was not labeled as full, contains enough empty voxels so that the corresponding
cell can be considered as empty. If a cell is neither marked as full nor tagged as empty
from the first two conditions in (4.2), it means that its voxel column does not contain
any full voxel and that it contains a large number of unknown voxels like, for example,
in strongly occluded regions (Fig. 4.9). In this case, structural elements computed in
the second phase are exploited to compensate for missing information due to unknown

70 Chapter 4. Floor Plan Generation

Figure 4.9: Example of a column (highlighted by the red circle) of Dataset06 whose
lower part is highly occluded due to clutter. As the volume occupied by the column
is detected as a structural element, the proposed algorithm is able to reconstruct the
layout of the column.

regions of space, by setting the cell value to si j . An example of image P is shown
in Fig. 4.6. The same morphological closing procedure described in Section 4.2.2 is
then applied to connect regions that are closer than κ (Fig. 4.7) and, after filling all
the gaps smaller than rth, the output of the algorithm is the low-resolution image P
that depicts the floor plan (Fig. 4.8).

4.2.4 Contours extraction and refinement

In the last phase 2D contours are extracted from the low resolution image P. The set of
contours is then refined at a higher resolution (5 mm), by exploiting the 2D projection
of the measured points of the laser scans. Let A be the whole point cloud, and Ã ⊂ A
a sub-set that contains the measured points belonging to voxels that satisfy (4.1), i.e.

Ã = {p ∈ A : fg(px, py) + rv ≤ pz ≤ fg(px, py) + ∆h}.

4.3. Experimental evaluation 71

Table 4.2: Computation time of each phase of the proposed approach.
Dataset Phase 1 (4.2.1) Phase 2 (4.2.2) Phase 3 (4.2.3) Phase 4 (4.2.4)
Dataset01 194 3 2 4
Dataset02 1987 24 43 117
Dataset03 1065 203 122 36
Dataset04 1211 49 63 38
Dataset05 2836 149 279 98
Dataset06 2549 167 318 181

Let also define A⊥ as the set of points in R2 obtained by projecting points in Ã on the
z = 0 plane. The binary image P is first processed to extract the borders of objects
and other elements of the environment. Contour extraction is performed by using the
OpenCV library. The result is a set of polylines. Polylines are converted to world
coordinates and up-sampled by splitting them into shorter segments of 5 mm length.
Each vertex b = (bx, by) of the segments is then mapped to a vertex b′ as follows

b′ =


arg min
p∈A⊥

| |p − b| |2 if ∃p ∈ A⊥ : | |p − b| |2 ≤ 3
√

2
2 rv

b otherwise
(4.3)

where the constant threshold 3
√

2
2 rv is the maximum admissible distance from the

central point in a 3 × 3 neighborhood, i.e. one and a half the diagonal of the image
pixel. That is, if the distance between vertex b and the closest point in A⊥ is lower than
3
√

2
2 rv, then b is mapped to the closest point. Otherwise, vertex b is not changed. An

example of the refinement operation is shown in Fig. 4.10, while the final floor plan is
shown in Fig. 4.11. A video that clarifies the refinement procedure is also available.1

4.3 Experimental evaluation

Processing was performed on a desktop Intel i7-4790 (3.60 GHz), with 32 GB RAM.
Table 4.1 reports information about the datasets and the computation time of each

1www.ce.unipr.it/~aleotti/LayoutRefinement.mp4

www.ce.unipr.it/~aleotti/LayoutRefinement.mp4

72 Chapter 4. Floor Plan Generation

Figure 4.10: Example of polylines refinement. Black dots are points in A⊥ (Section
4.2.4), green polylines are the contours obtained from the low resolution image, red
polylines are the contours after refinement. It can be noticed that red lines better fit
the object contours.

phase. The plant size ranged from 103 m2 (Dataset01) to almost 106 m2 (Dataset05).
The number of scans ranged from 11 to 117, containing a total number of points from
about 108 to over 109. Most of the TLS surveys have been performed at 1.2 mrad
resolution. Dataset02 was obtained using a scan resolution of 0.6 mrad. All industrial
datasets contain production lines and a large number of racks for pallet storage.
Dataset02 is a University building, thus showing the capability of the algorithm to
work in different indoor environments. Parameters used in the experiments were set
as follows: bth = 0.9H, κ = 20 cm, rth = 100 m2, eth = 0.5 (meaning that a

4.3. Experimental evaluation 73

Figure 4.11: Floor plan of Dataset06 with rv = 5 cm. Black dots are points in A⊥

(Section 4.2.4). Some artifacts are visible in non-critical regions where few scans
were performed or outside the perimeter walls..

voxel column should at least have 50% of empty voxels to be considered as empty).
Threshold rth has been lowered to 16 m2 in Dataset02 to preserve reconstruction of
small rooms. Height limit ∆h was set equal to the height of the vehicles operating
in the warehouse in the industrial datasets, while ∆h was set lower than the height
of the doors in Dataset02. Profiling shows that most time is spent in the first phase
due to ray tracing. Figures 4.11, 4.12, 4.13 and 4.14 show the floor plans (rv = 5
cm) of Dataset06, Dataset01, Dataset02, and Dataset04 respectively. The generated

74 Chapter 4. Floor Plan Generation

Figure 4.12: Floor plan of Dataset01 with rv = 5 cm.

Figure 4.13: Floor plan of Dataset02 with rv = 5 cm.

4.3. Experimental evaluation 75

Figure 4.14: Floor plan of Dataset04 with rv = 5 cm.

polylines (red lines) follow the contours of walls and other cluttered regions as well as
the borders of the structural elements, like columns. The height histogramofDataset02
shows that both the ground and the ceiling can not be clearly identified, therefore,
methods that assume the presence of planar surfaces would not be applicable. Thus,
two simpler variants of the proposed algorithm were considered for comparison. The
first algorithm used for comparison does not require computation of the voxel grid
and it does not perform detection of structural elements. In particular, the algorithm
is a less conservative approach that considers all unknown space as empty by defining

76 Chapter 4. Floor Plan Generation

Figure 4.15: Example of the reconstructed layout of a column from Dataset04. Un-
known space is colored in grey, while occupied space is displayed in black. Only
the proposed algorithm (center) achieves a correct reconstruction. The two simplified
algorithms that consider all unknown space as empty (left) and all unknown space as
occupied (right) fail to extract the shape of the column.

pi j , in equation (4.2), as pi j = mi j The main advantage of this approach is that the
total computational time is greatly reduced by about 80% − 90%. Conversely, the
second algorithm used for comparison is a more conservative approach that considers
unknown space as occupied. This solution requires computation of the voxel grid and
it does not perform structural element detection. In this algorithm the value of pi j is
defined as:

pi j =


1 if mi j = 1 ∨ h̃i j < eth
⌊
∆h−rv
rv

⌋
0 otherwise

Figure 4.15 shows an example layout of a highly occluded column fromDataset04
by using the proposed approach, as well as by using the two simplified methods. Only
the proposed method achieves a correct reconstruction of the layout of the column,
thanks to the detection of structural elements. Indeed, while the lower part of the
column close to the ground was highly occluded, the upper part was properly scanned,
and that was sufficient to detect the column as a structural element. The two simpler
methods fail to recover the shape of the column as they are both highly dependent
on laser occlusions. Figure 4.16 shows that the total computation time is inversely
proportional to the voxel size rv. A quantitative evaluation of the floor plan quality

4.3. Experimental evaluation 77

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

T
o
ta

l
c
o

m
p

u
ta

ti
o

n
 t

im
e

 [
s
]

Voxel size rv [cm]

Figure 4.16: Total computation time with respect to rv in Dataset01.

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25

E
rr

o
r

[m
m

]

Voxel size rv [cm]

Average Error
Maximum Error

Figure 4.17: Floor plan reconstruction error with respect to rv in Dataset01.

78 Chapter 4. Floor Plan Generation

has also been carried out against a ground truth dataset obtained by using the Leica
Nova TS60i 0.5′′ R1000 total station. A total of 27 key points from Dataset01 were
acquired, located on wall corners and rack edges. Figure 4.17 also shows the average
and maximum error between the ground truth key points and the corresponding
vertices of the generated polylines, with respect to the voxel size rv. At low values of
rv the error is close to the maximal resolution of the TLS. The reconstruction error
is about 1 cm even when starting from a higher voxel size, e.g. rv = 5 cm, which is
required in environments considerably larger than Dataset01, such as Dataset05 and
Dataset06, thus confirming the effectiveness of the refinement phase.

4.4 Discussion

A novel method to extract the floor plan of an indoor environment was presented with
an accuracy comparable to the resolution of the TLS. In contrast to previous work the
algorithm does not assume the existence of planar surfaces. Therefore, the algorithm
can be applied in complex industrial plants. Experiments were performed in large scale
point clouds containing over 109 points, acquired by a TLS. The method is based on
the computation of a 2D histogram of voxels, and on finding structural elements that
have a constant section over the entire height of the building. A limitation is that
the approach can fail to reconstruct the contour of partially occluded structures with
non-constant section like arches.

Chapter 5

3D Warehouse Visualization and
Collision Checking

5.1 Introduction

The use ofVR technologies has strong potential to shorten the design and development
time of complex industrial environments [43, 70].

In this chapter, an immersive and interactive desktop VR system is presented
for visualization of AGVs moving along specified paths in warehouses. The main
novelty of the approach is that the VR system enables visualization of large-scale
industrial datasets with real-time collision checking. In particular, the VR system
supports visualization of large scale point clouds acquired from a Terrestrial Laser
Scanning survey. TLS allows generation of massive colored point clouds with high
accuracy, that can be displayed by using point based rendering techniques to achieve
photorealistic visualization [67, 7, 38].

AGV animation is obtained by taking into account the local slope of the ground,
which is computed from the point cloud model of the environment. Visualization
of AGV safety zones is also supported. Moreover, the VR system enables real-time
collision detection (at 60 fps) between the AGV model and the static point cloud
model of the environment. Collision checking is important to evaluate the feasibility

80 Chapter 5. 3D Warehouse Visualization and Collision Checking

of AGV paths, that usually are manually configured by the warehouse designer.

The closest work is by Eilers et al. [20], where a VR system was developed to
visualize data in real-time from a real world facility and to measure performance.
However, the system did not support collision detection. Non-VR 3D computer sim-
ulations were also proposed for AGV systems performing logistics tasks in [48, 74,
28] without collision detection.

VR applications of point cloud visualization and interaction in non-industrial
environments were presented in [12, 40, 69]. Bruder et al. [12] introduced a human-
robot telepresence setup with point cloud rendering. In [40] an immersive bi-manual
user interface was proposed for interaction, selection and annotation of point cloud
data. In [69] a method was proposed for accurate rendering of LiDAR data.

Accessibility analysis in industrial environments has been studied by Shellshear
et al. [62], where an algorithm was proposed to determine the maximum size of an
object that can move along a fixed trajectory of an assembly line without collisions.
The approach was based on an octree volumetric representation of the environment.

The problem of collision detection with point cloud data has been addressed in
several previous works. However, previous approaches did non focus on collision
detection of AGV in warehouses and did not support real-time visualization in VR
[53, 22, 60, 49, 61]. The work in [53] addressed the problem of collision detection
and distance computation on point cloud data obtained from the robot sensors. In [22]
a method was presented for massive point cloud collision detection that simplifies
the input data according to a maximal allowed error for shortest distance queries.
Schauer et al. [60] investigated algorithms for large scale point cloud to point cloud
collision detection on CPU and GPU. In [49] an efficient collision detection approach
was developed, based on an angle-space depth map, that supports large-scale point
clouds acquired using a TLS. In [61] an algorithm similar to [62] was investigated for
computation ofmaximum collision-free volumes in large scale point clouds. In [59] an
approach for collision detection between point clouds was proposed that implements
a highly optimized k-d tree and two methods for penetration depth calculation. The
chapter is organized as follows. Section 5.2 presents the input data for the VR system,
including the vehicle 3D model, its safety zones, the point cloud data structure used

5.2. Input data 81

to represent the environment, the ground model and the description of vehicle paths.
Section 5.3 describes the VR environment including the adopted techniques for point
cloud visualization and vehicle animation. Section 5.4 discusses the algorithm for
efficient collision detection between the vehicle model and the large scale point cloud.
Section 5.5 reports the experiments that were carried out to assess the performance
of the VR system. Section 5.6 concludes the chapter and indicates future research.

5.2 Input data

5.2.1 Vehicle model and safety zones

The AGVs that we consider in this work are equipped with planar laser scanners,
mounted at the top and at the base of the vehicles. The planar laser scanner located at
the top of a vehicle is used to detect reflective, pre-mapped, landmarks placed in the
environment for navigation and self-localization. Planar laser scanners at the bottom
of a vehicle are used for safety issues. Indeed, a number of safety zones are defined
around the vehicle. If a laser sensor detects an obstacle within a safety zone the vehicle
immediately stops. Figure 5.1 shows a real vehicle. The complete 3D model of the
AGV, which is used for rendering, is shown in Figure 5.2, while Figure 5.3 shows a
detail of the safety planar laser scanner at the bottom of the vehicle.

To achieve efficient collision detection a different 3D model is used based on a
bounding box hierarchy, computed as follows. The initial model is simplified, due
to the high number of vertices, and decomposed into convex parts by applying the
Volumetric-Hierarchical Approximate Convex Decomposition (V-HACD 2.0) library,
which extends [41] (the resulting convex decomposition is shown in Fig. 5.4). An
oriented bounding box tree (OBB tree) is then created by applying a bottom-up
agglomerative construction method. To build the OBB tree, the OBB of each part
of the AGV convex decomposition is first computed. These volumes form the leaf
nodes of the OBB tree. Then, starting from the leaves, two nodes of the OBB tree are
iteratively selected andmerged into a parent node. Each parent node contains the OBB
enclosing the two OBBs of the children, as well as the two pointers to the children

82 Chapter 5. 3D Warehouse Visualization and Collision Checking

Figure 5.1: A real AGV vehicle.

nodes. The merging criterion selects the two closest nodes (b∗i , b
∗
j), so that

(b∗i , b
∗
j) = arg min

bi ∈B,b j ∈B

| |O(bi) −O(bj)| |2 (5.1)

where O(bi) is the center of the OBB of node bi, whereas O(bj) is the center of the
OBB of node bj . Since there are no guarantees that the obtained OBB tree will be
well balanced the result must be checked for adequacy.

AGV safety zones are defined as thin volumes (about 5 cm thick) with a star
shaped cross section. Figure 5.5 shows a safety zone (displayed in green color) around
the vehicle model. Safety zones can change for each segment of the path as described
in Section 5.2.4. Finally, the proposed system supports simultaneous simulation of
multiple vehicles moving along different paths. Each vehicle can have its own shape.

5.2. Input data 83

Figure 5.2: 3D vehicle model (v 2 million vertices).

5.2.2 Environment model

The static environment is described as a set of registered point clouds, obtained from
a Terrestrial Laser Scanning survey. Accurate point cloud registration is performed
using artificial targets, automatically detected by the scanner, that are also mapped in
advance with a total station. The total amount of points is about 1010 in the reported
experiments.

The registered point cloud P is clustered in a regular grid of size s=10 m, to
enable real-time collision detection in the VR simulation. Each point vk ∈ P, with
vk=[vkx, v

k
y , v

k
z], is assigned to a cluster di j ∈ DN×M with

di j =
vk ∈ P :

i < vkx−xm
s < i + 1

j <
vky−ym

s < j + 1

 (5.2)

84 Chapter 5. 3D Warehouse Visualization and Collision Checking

Figure 5.3: Safety planar laser scanner at the bottom of the vehicle (highlighted by a
red circle).

where xm and ym are the minimum coordinates of P, so that ∀vk ∈ P xm < vkx and
∀vk ∈ P ym < vky . The clustering operation has a complexity of O(n) with n = |P |
and it is run in parallel.

5.2.3 Ground model

The ground model is described by a function z = fg(x, y) that returns the local height
z of the ground at location (x, y). Function fg(x, y) is obtained by applying the method
proposed in Chapter 3, that has been successfully tested in large scale point clouds
of industrial environments. The approach is based on the detection of laser scanned
points located on the ground below each scan station. A fully connected graph that
connects these points is then generated. Inconsistent nodes due to excessive slope are
removed and, afterwards, a volume of interest that contains the ground is created. A
further filtering step is performed that checks for inconsistent normal vectors. Finally,
remaining nodes of the graph are used as seeds for a region growing procedure,
followed by gap filling.

5.2. Input data 85

Figure 5.4: 3D vehicle model after mesh simplification and convex decomposition
into 64 parts (v 1000 vertices). Each part is displayed with a different color.

5.2.4 Vehicle paths

Vehicle paths are predefined in advance as a sequence of 2D segments using a
CAD program. Vehicle paths are shared with all vehicles. Each segment can be
either linear or curvilinear. Linear segments are defined by a starting and an ending
point, while curvilinear segments are described as a set of sampled points. Point
samples [x, y] ∈ R2 are converted to 3D vertices [x, y, fg(x, y)] ∈ R3 by adding the
z-component from the ground model. Each segment is associated to a safety zone
whose shape is defined by the designer according to the surrounding environment.
Segments can be traveled both in forward and in backward direction.

86 Chapter 5. 3D Warehouse Visualization and Collision Checking

Figure 5.5: Example of the 3D virtual environment. The system supports multivehicle
simulation. Paths are displayed in blue, safety zones around the vehicles are displayed
in green (meaning that the safety zones are not colliding with the environment).

5.3 Visualization

The VR system consists of a desktop application. Visualization is based on the Oculus
Rift CV1 head-mounted display. The software was developed using the Oculus Rift
SDK andOpenGL. Amultithreading architecture on the CPU is exploited for dynamic
loading of point clusters using parallel and asynchronous tasks.

The user can interact with the VR system through the keyboard, which is used for
moving in the VR environment. The position of the virtual camera is maintained at a
fixed height hc from the ground, i.e. given the current 2D position of the user in the
VR environment [ux,uy], the camera position U ∈ R3 is set as

U = [ux,uy, fg(ux,uy) + hc] (5.3)

A free-fly camera can also be enabled, if required. The user can also stop and resume
vehicle animation and change the size of the rendered points of the static environment.

5.3. Visualization 87

5.3.1 Vehicle path following

Vehicle animation is performed at constant speed and it is based on a purely geometric
approach that does not include a dynamic model. Each vehicle is considered as a rigid
bodywith 6 degrees of freedom. To achieve 3D animation at constant speed the vehicle
at each iteration is moved along consecutive segments for a distance proportional to
the time elapsed since the last frame. Segments are traveled by evaluating the sampled
vertices on the path. Vehicle orientation is computed so that the vehicle heading
direction is along the line connecting the current position to the next sampled vertex
of the path. Vehicle’s up vector is aligned with the local normal of the ground. Figure
5.6 shows a scheme that describes the animation procedure.

Vehicle paths are rendered on the ground model as OpenGL quad strips, defined
as follows. For each sampled point pi of a segment, the local direction τi is determined
as:

τi =
pi+1 − pi
| |pi+1 − pi | |

(5.4)

Then, two points p′i and p′′i are defined as:

pi ±
wp

2
(τi × ni) (5.5)

where wp is the width of the visualized path and ni is the local normal of the ground
model at point pi. The set made by the pairs (p′i, p′′i) of all segment points defines the
vertices of the corresponding quad strip as shown in Fig. 5.7.

5.3.2 Dynamic loading of point cloud clusters

A dynamic strategy is adopted for caching point cloud clusters in the VRAM of
the graphic card to speed up rendering. Let C be the total number of non-empty
point cloud clusters (saved on disk) of DN×M , describing the static environment. An
asynchronous and multithreaded algorithm keeps in the VRAM only the L closest
clusters to the current position of the user in the VR environment, while the number
of rendered clusters at each frame is fixed to V , with

V ≤ L ≤ C (5.6)

88 Chapter 5. 3D Warehouse Visualization and Collision Checking

d

'

p
i

p
i+1

p
i+2

p
i+3

p
i-1

p
i+4

p
i+5

p
i+6

Figure 5.6: Path following example. White circles are the sampled points along the
segments of the path. The sum of the blue lines connecting current position µ with
the future position µ′ is the distance traveled by the vehicle during the current frame.

The algorithm is divided in three phases. In the first phase, the L clusters closest to
the user are computed. Clusters already in memory that belong to the set of L-closest
clusters are marked, while missing clusters are scheduled for loading. In the second
phase, clusters in memory that do not belong to the set of L-closest clusters are marked
as replaceable and associated to one scheduled cluster to be loaded in memory. In the
third phase, a thread is created for each scheduled cluster to be loaded in memory. A
thread-safe state vector is used to track the state of each cluster. As stated before, at
each rendering loop only the V closest cluster to the user are actually rendered.

5.4. Collision detection with environment model 89

pi

pi+1
i

wp

p'i

p"i

Figure 5.7: Path creation. White circles are the sampled points on the path, while blue
crosses are the vertices of the associated quad strip used for rendering.

5.4 Collision detection with environment model

A number of efficient techniques are applied to achieve real-time collision detection of
the vehicle 3D model with the large scale point cloud that represents the environment.
The complete point cloud is filtered so that only points in the neighborhood of
each vehicle path are considered for collision detection. In particular, only points
vk=[vkx, v

k
y , v

k
z] ∈ P that satisfy all the following conditions

pmin
x − δ ≤ vkx ≤ pmax

x + δ

pmin
y − δ ≤ vky ≤ pmax

y + δ

fg(x, y) < vkz ≤ fg(x, y) + δ

(5.7)

are considered in the collision test.Where [pmin
x , pmin

y], [pmax
x , pmax

y] are theminimum
and maximum coordinates of all sampled points of the path, and δ is the diagonal of

90 Chapter 5. 3D Warehouse Visualization and Collision Checking

Figure 5.8: Collision with safety shapes. The collision point is highlighted with a red
cube. Some regions of the image have been blurred to prevent copyright-protected
content diffusion. Vehicle (dark orange). Safety zone (light orange).

the OBB of the volume obtained as the union between the vehicle OBB and the largest
safety zone of the path. During animation points are further filtered by applying the
same procedure described above to each segment of the path. Hence, each segment
is associated to its own point cloud, that includes possible collision points, which are
tested at runtime. The filtering procedure takes few seconds, and it is performed at
the beginning of each animation path in a separate thread.

The collision detection algorithm works as follows. First, each point is tested to
check if it collides with the safety shape of the vehicle in the current segment. If the
test succeeds, the algorithm terminates reporting a collision with the safety shape.
Otherwise, if the test fails, the OBB tree of the vehicle, described in section 5.2.1, is
traversed starting from the root node. Each point is tested for collision with the OBB
of the current node of the tree (test1). If collision occurs the procedure continues
recursively in the subtrees of the current node. If a leaf node is reached and test1
reports a collision, a second collision test (test2) is performed between the point and
the convex polyhedron that describes the geometry of the leaf node.

5.4. Collision detection with environment model 91

Figure 5.9: Collision with the OBB of a vehicle part. The collision point is highlighted
with a white cube. Company plate and ceiling have been blurred to prevent copyright-
protected content diffusion.

In summary, in the proposed scheme, three types of collision are reported: colli-
sions with safety shapes (Fig. 5.8), collisions with the OBB of a vehicle part (Fig. 5.9),
and collisions with a part of the convex decomposition of the vehicle (Fig. 5.10). Each
type of collision is highlighted in a different way. Collisions with safety shapes are
signaled by changing the color of the safety shape from green to light orange, and a red
cube surrounding the collision point is displayed in red. Collisions with the OBB of
a vehicle part are signaled by displaying a white cube surrounding the collision point
(while the safety shapes are maintained in green color). Collisions with the convex
decomposition of the vehicle are signaled by displaying a red cube surrounding the
collision point (while the safety shapes are maintained in green color). Each collision
event triggers the vehicle to stop until a resume command is issued by the user.

92 Chapter 5. 3D Warehouse Visualization and Collision Checking

Figure 5.10: Collision with vehicle convex decomposition. The collision point is
highlighted with a red cube. Ground goods have been blurred to prevent copyright-
protected content diffusion.

5.5 Experiments

Data processing and visualization have been performed on a desktop Intel i7-5960x
(3.00GHz) CPU with 64GB RAM, a Solid State Drive and a Nvidia Titan X 12GB
graphics card. A first dataset consists of about 500 millions of points acquired from
63 scans. A second dataset consists of about 15 billions of points acquired from 1641
scans. The two datasets have been acquired from real warehouses where AGVs are
connected to a centralized controller.

Thanks to the dynamic point cloud loading algorithm the performance of the
VR system does not depend on the size of the input point cloud. Experiments were
performed to compare the multithreaded system with a sequential algorithm. The
sequential algorithm in each frame manages all clusters scheduled to be loaded in
memory iteratively, without loading them asynchronously. The sequential algorithm
causes a lower and unstable framerate and a less smooth user experience. Fig. 5.11
shows the framerates of both approaches running a scripted task, where the user

5.5. Experiments 93

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90

F
ra

m
er

at
e

[f
p

s]

Time [s]

Single thread
Multithread

Figure 5.11: Comparison between the single and the multithread algorithm. The
multithread algorithm achieves 60 fps during the scripted path, while the performance
of the single thread algorithm is lower than 30 fps.

follows a predefined path, with five vehicles moving simultaneously. The average
framerate of the parallel algorithm is over 60 fps, while the average framerate of
the sequential algorithm is lower than 30 fps. Vehicles stops caused by a collision
detection has been ignored during all the scripted tasks.

Vehicles used in the reported experiments are based on the tricycle kinematic
model, with a front drive wheel and two passive back wheels. The chassis size is
about 2 m x 1.5 m x 2 m, while the fork system is about 1.5 m, so that the total
length of the vehicle is 3.5 m. The reference point of the vehicle for path following
is located on the ground projection of the center of the passive wheels axis. The 3D
model consists of 1 940 607 vertices, while the simplified model has 910 vertices.
Figure 5.12 shows the experimental setup for the tests.

94 Chapter 5. 3D Warehouse Visualization and Collision Checking

Figure 5.12: Experimental setup.

5.6 Discussion

A desktop VR system was presented for visualization of AGV and collision detection
with large scale point clouds. Point clouds of industrial environments have been ob-
tained from terrestrial laser scanning surveys. The system performs vehicle simulation
by taking into account ground slope. AGV safety zones are also rendered for each
segment of the path. A multithreaded approach is adopted to speed up rendering that
exploits a caching technique of point cloud clusters. The VR environment supports
real-time collision detection between the vehicle model and the point cloud, which is
used for accessibility checking.

Chapter 6

Sensor-Based Optimization of TLS
Setup on GPU

6.1 Introduction

A terrestrial laser scanning (TLS) survey is usually performed by technicians who
determine the scan station positions from their experience without any guarantee
of optimality. To improve the quality of the survey the scan station positions can
be computed automatically by solving a constrained optimization problem. In this
chapter a novel formulation of the optimal sensor placement problem is presented for
TLS. Optimal sensor placement has been extensively investigated for visual sensors
including directional and omnidirectional cameras [13, 21, 32, 9, 26, 79, 75, 80].
However, fewworks have investigated optimal sensor placement for TLS.With respect
to past works the proposed approach includes a more elaborate sensor model. Indeed,
the adopted sensor model simulates a number of fixed parameters having a strong
influence on the laser measurement, as pointed out in [10, 37, 42, 64, 35, 65, 66], like
the laser height from the ground, angular resolution, field of view, and sensor range.
Moreover, the proposed approach includes a wider set of constraints with respect to
past works. The two closest works are [2, 63]. Themain difference is that in [2] and [63]
constraints were imposed only on the edges of themap, while in this work optimization

96 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

is performed on all cells of the ground. Furthermore, [2] only considers a constraint
on the horizontal angle of incidence, and [63] does not consider the overlap constraint.
In [36] a genetic algorithm was investigated in small scale environments, but coverage
and overlap constraints were not included. Finally, the proposed approach exploits
GPU acceleration, which enables experiments in large scale environments, with both
external walls and internal structures. Other relevant works are [30, 34]. However, in
[30] a method was presented that requires an initial scan of the environment, while in
[34] a solution was presented for the specific problem of TLS next-best view planning
for piping systems.

The mapping of the laser beams on the ground can be modeled by a gnomonic
projection, where the radial scale increases more rapidly with the distance from the
scanner than the transverse scale, i.e. there is a non uniform distribution of horizontal
and vertical scan lines on the ground. Therefore, in the proposed approach a coverage
constraint is imposed to guarantee a minimum density of horizontal scan lines (radial
scale) on the ground. Indeed, a coverage estimation based on counting the number of
points would be too much affected by the high density of points along the horizontal
scan lines. An overlap constraint among the scans is also imposed to enable automatic
point cloud alignment and registration, which is a standard post-processing step of a
TLS survey when artificial targets are not used. Indeed, even though artificial targets
ensure a very high registration quality, they have a huge impact on survey time.
Moreover, not all scanners on the market support artificial targets. For this reasons,
the overlap constraint imposes an order in the scan sequence, so that each scan can
be registered with the union of all previous scans by applying standard algorithms for
point cloud registration. Constraints also take into account occlusions and a maximum
allowed incidence angles of the laser beams on the segments.

6.2 Problem formulation

This work aims to find the shortest sequence of scan stations that meets a coverage
constraint and an overlap constraint given an input floor plan model, a desired min-
imum number R of horizontal scan lines per square meter on the ground, and an

6.2. Problem formulation 97

overlap threshold τ. The floor plan is modeled as a set of line segments, representing
walls and other elements higher than the scanner height, and it is encoded as a two
dimensional n × m grid with cells of size δ. The optimal solution is found by solving
an optimization problem formulated as a modified version of the Set Cover Problem,
which is NP-Complete [23]. Let pi, j be a binary value that indicates whether a scan
has to be performed at position (i, j), that is

pi, j =

{
1 if a scan station must be placed in cell (i, j)
0 otherwise

Let also S be the set of all possible ordered finite scan sequences, having a length
between 1 to n × m, i.e.

S �

{
s � {(i1, j1) � (i2, j2) � . . . � (iN , jN)} :

N ∈ {1, . . . ,n×m} ∧ pit , jt=1 ∀t=1, . . . ,N

}
where (i, j)�(i′, j ′) indicates that scan at (i, j)must be performed before scan at (i′, j ′).
The optimal scan setup is computed as the shortest sequence of scan stations, i.e.

minimize
s∈S

|s |, (6.1)

s.t.
n,m∑
i, j=1

c[(k ,l) |(i, j)] ≥ Rδ2, ∀k, l : 1≤ k ≤n,1≤ l ≤m (6.2)

n,m∑
k ,l=1

min
(
t−1∑
v=1

c[(k ,l) |(iv , jv)], c[(k ,l) |(it , jt)]

)
n,m∑
k ,l=1

c[(k ,l) |(it , jt)]
≥τ, ∀t :1< t ≤N (6.3)

Problem (6.1) finds the ordered scan sequence (i1, j1) � . . . � (iN , jN) with the
minimum cardinality that satisfies a ground coverage constraint (6.2) and an overlap
constraint (6.3). The coverage constraint (6.2) imposes a minimum number of hori-
zontal scan lines per cell. Value ĉ[(k ,l) |(i, j)] is defined as the number of horizontal scan
lines in cell (k, l) due to a scan station in cell (i, j), and c[(k ,l) |(i, j)] as the minimum

98 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

between ĉ[(k ,l) |(i, j)] and the upper bound Rδ2, i.e.

ĉ[(k ,l) |(i, j)]=(1−Γi, j)pi, jFδ(δ(k − i), δ(l − j))v[(k ,l) |(i, j)]

c[(k ,l) |(i, j)]=min(ĉ[(k ,l) |(i, j)],Rδ2)
(6.4)

where Fδ(x, y) is the coverage function defined in Section 6.2.1, and v[(k ,l) |(i, j)] is a
binary value that manages visibility, taking into account occlusion, sensor range, as
well as horizontal and vertical angles of incidence (Section 6.2.2), i.e.

v[(k ,l) |(i, j)] =

{
1 if (k, l) is visible from (i, j)
0 otherwise

(6.5)

Matrix Γi, j ∈ Rn×m contains the rasterization of each input segment γ, with Γi, j = 1
if a segment exists in cell (i, j) (Γi, j = 0 otherwise). Factor (1−Γi, j) in (6.4) is used to
ensure that a scan station is not placed in a cell occupied by a segment. The overlap
constraint (6.3) is expressed as a function of the cell coverage c[(k ,l) |(i, j)] as well. In
particular, the overlap constraint is satisfied if, for each scan t, the relative value of
ground coverage in common between scan t and all previous scans is higher than the
threshold value τ. Indeed, the numerator of (6.3) contains the sum across all the cells
of the minimum between the scan coverage in a cell, due to scan t, and the sum of the
coverage values in the same cell, due to all previous scans.

6.2.1 Laser model and ground coverage function

In order to properly simulate the scanner, the following parameters are considered:
laser height from the ground h (Fig. 6.4, right), horizontal and vertical angular res-
olution r, maximum allowed beam incidence angle on surfaces θmax , minimum and
maximum ranges (d−,d+) and field of view. The ground coverage function Fδ(x, y) of
a scan station in cell (0,0) estimates the number of horizontal scan lines in a cell of
size δ, centered in (x, y), as the ratio between the difference of the vertical angles of
the outer beams that hit the cell, and the vertical angular resolution, i.e.

Fδ(x, y) =
tan−1(

2
√

x2+y2+δ
2h) − tan−1(

2
√

x2+y2−δ
2h)

r
(6.6)

6.2. Problem formulation 99

0

10

200

8

400

6
10

600

4
8

800

2 6

1000

40
2

1200

-2
0

1400

-4 -2

-4-6

-6
-8

-8
-10 -10

metr
es

metres

#
b
e
a
m
s

#
s
c
a
n

 l
in

e
s

#
H

o
ri

z
o

n
ta

l
s
c
a
n

 l
in

e
s

Figure 6.1: Ground Coverage Fδ(x, y) with r = 1.25 mrad and h = 2 m.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Distance from laser scanner [metres]

0

200

400

600

800

1000

1200

1400

1600

1800

2000

P
o
in

ts
 p

e
r
m

e
te

r

Height = 0.25

Height = 0.5

Height = 1.0

Height = 1.5

Height = 1.75

Height = 2.0

H
o
ri
z
o
n
ta

l
s
c
a
n
 l
in

e
s
 p

e
r

s
q
u
a
re

 m
e
te

rs
#

H
o
ri
z
o
n
ta

l
s
c
a
n
 l
in

e
s

Figure 6.2: Ground Coverage with respect to the horizontal distance from the laser
origin, for multiple values of height with r = 1 mrad.

100 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

Figure 6.3: Example of mapping of the laser beams on the ground with resulting
horizontal and vertical scan lines.

Fig. 6.1 shows the coverage function and the high dependency on the horizontal
distance from the laser origin.

It can be shown that h does not affect the total amount of horizontal scan lines
on the ground, as the integral of Fδ(x, y) over the whole plane R2

x,y does not depend
on h, i.e. the area under all curves in Fig. 6.2 is constant. However, h has a strong
influence on the shape of the ground coverage function, as a small change in height
causes a significant change in the distribution of the laser beams on the ground, thus
emphasizing the importance of an accurate laser model.

6.2.2 Visibility

Visibility takes into account occlusions by segments, sensor range, as well as angles of
incidence of the laser beams on ground and segments. The occlusion by each floor plan
segment γ = (Ph,Ph+1), where Ph and Ph+1 are the two 2D vertices of the segment,
is formulated as follows. Let PO be the vertical projection of the scanner origin on
the ground. Let also PhPh+1 be the line through Ph and Ph+1. Similarly, let POPh

and POPh+1 be the two lines passing through the other pairs of points defined above.
The occluded region of the ground due to segment γ is computed as the intersection

6.2. Problem formulation 101

αΟ

βh

Figure 6.4: Left: occluded area on the ground (dark green) due to segment γ (α is the
horizontal angle of incidence) obtained as the intersection of three half planes (light
green). Right: Vertical angle of incidence β and laser height h.

between three half planes, as shown in Fig. 6.4 (left), aligned points are handled as a
special case. The first half plane is the one that does not contain PO with respect to
PhPh+1, the second is the one that contains Ph+1 with respect to POPh, the third is
the one that contains Ph with respect to POPh+1. Let Wγ

[(k ,l) |(i, j)]
be a function which

yields 0 if cell (k, l) is occluded by segment γ from a scan station located in (i, j), and
1 otherwise.

Then, a binary output function W[(k ,l) |(i, j)] can be defined, which yields 0 if cell
(k, l) is occluded by at least one segment from a scan station located in (i, j), i.e.

W[(k ,l) |(i, j)]=
∏
{γ}

Wγ

[(k ,l) |(i, j)]
(6.7)

Visibility also includes a condition on the angle of incidence of the laser beam on
the segments and on the ground. Let α[(k ,l) |(i, j)] be the horizontal angle of incidence
(Fig. 6.4, left), i.e. the angle between the normal to the segment in cell (k, l) and
the horizontal component of the laser beam from a scan station in cell (i, j). Then, a
binary output function AH

[(k ,l) |(i, j)]
can be defined, that yields 0 if the horizontal angle

102 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

-20 -15 -10 -5 0 5 10 15

meters

-20

-15

-10

-5

0

5

10

15

m
e
te
r
s

Figure 6.5: Example scan coverage Fδ(x, y) with visibility (top view). Segments are
in red, r = 1.25 mrad, h = 2 m, θmax = 84.5◦, θmin = 20◦.

of incidence on a segment is greater than threshold θmax , i.e.

AH
[(k ,l) |(i, j)]=


0 if Γk ,l=1 ∧ α[(k ,l) |(i, j)] > θmax

1 otherwise
(6.8)

Similarly, the vertical angle of incidence β[(k ,l) |(i, j)] (Fig. 6.4, right) is defined as the
angle between the normal to the ground in cell (k, l) and the laser beam from a scan
station in (i, j). Then, a binary output function AV

[(k ,l) |(i, j)]
can be defined to model the

field of view, that yields 1 if β[(k ,l) |(i, j)] is lower than θmax and greater than a threshold
θmin, i.e.

AV
[(k ,l) |(i, j)]=


1 if θmin<β[(k ,l) |(i, j)]<θmax

0 otherwise
(6.9)

Visibility considers the sensor range as well, by introducing a binary output function

6.3. Parallel implementation on GPU 103

D[(k ,l) |(i, j)], which yields 1 if the measured point is within the sensor range, i.e.

D[(k ,l) |(i, j)]=


1 if d− <
√
δ2(i − k)2 + δ2(j − l)2 + h2 < d+

0 otherwise
(6.10)

Finally, (6.7),(6.8),(6.9) and (6.10) are combined together to define visibility (6.5),
i.e.

v[(k ,l) |(i, j)] � W[(k ,l) |(i, j)]AH
[(k ,l) |(i, j)]A

V
[(k ,l) |(i, j)]D[(k ,l) |(i, j)] (6.11)

meaning that a cell (k, l) on the ground is visible from a scan station in cell (i, j) if it
is not occluded by any segment, if the horizontal and vertical angles of incidence are
within their limits, and if the cell is within the laser range. An example is shown in
Fig. 6.5.

6.3 Parallel implementation on GPU

Like in previous works, the optimization problem (6.1) was solved using a standard
greedy iterative algorithm. The algorithm operates on a 2D cumulative coverage grid,
where each value gt ,(k ,l) contains the total cumulative number of horizontal scan lines
in cell (k, l) up to iteration t. Cells are initialized with zeroes at t=1. The maximum
value for a cell is limited to the objective coverageRδ2. A set of 2Dfloor plan segments
is given as input to the algorithm. Visibility map values v[(k ,l) |(i, j)] are pre-computed
in parallel on GPU. At each iteration, the algorithm selects the scan station position
which maximizes the total coverage gain. The procedure is repeated until all cells
have a value equal to the objective coverage, or no further gain can be achieved. In
particular, at iteration t, for each cell (k, l) scanned from cell (i, j), a cell coverage gain
It ,[(k ,l) |(i, j)] and a cell overlap contribution Ot ,[(k ,l) |(i, j)] are computed as:

It ,[(k ,l) |(i, j)] = min
(
c[(k ,l) |(i, j)],Rδ2 − gt ,(k ,l)

)
Ot ,[(k ,l) |(i, j)] = min

(
c[(k ,l) |(i, j)],gt ,(k ,l)

) (6.12)

104 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

Hence, the total coverage gain It ,(i, j) and the total overlap Ot ,(i, j), at iteration t, for
scan position (i, j) are computed as:

It ,(i, j) =
∑
k ,l

It ,[(k ,l) |(i, j)]

Ot ,(i, j) =

∑
k ,l Ot ,[(k ,l) |(i, j)]∑
k ,l c[(k ,l) |(i, j)]

(6.13)

Equation (6.12) is computed on GPU in parallel for each cell (k, l). Parallel reductions
are then used to compute (6.13). The scan position at iteration t is then selected in
(it, jt), so that

(it, jt) = argmax
{(i, j) | Ot ,(i , j)>τ }

It ,(i, j) (6.14)

with pit , jt = 1. Finally, the coverage grid is updated for next iteration t+1 as

gt+1,(k ,l) = gt ,(k ,l) + It ,[(k ,l) |(it , jt)] (6.15)

The solution of (6.14) may not be unique as GPU scheduling is non-deterministic.
Therefore, the execution on the same input data may lead to different optimal scan
stations sequences, still with similar cardinality. The algorithm was implemented in
CUDA/C++ and run on an Intel Core i7-5960X CPU@3.00 GHz, with 64 GB RAM,
and an NVIDIA GeForce GTX TITAN X GPU, with 12 GB RAM.

6.4 Experimental evaluation

Experiments were carried out in three scenarios (two large scale environments, and
one smaller scene), obtained from real floor plans of industrial warehouses. Ground
size was about67500m2 in scenario 1,25120m2 in scenario 2, and600m2 in scenario
3. Scanner parameters were as follows: h=2m, r=1.25mrad, d−=0.4m, d+=120m,
θmax=87.5◦, θmin=0◦. The overlap constraint was set to τ=33% in each experiment.

Figures 6.6 and 6.11 show the scan station positions computed by the proposed
approach in scenario 1 and scenario 2. The proposed method achieved the required
coverage with a practicable number of scan positions. Some scan stations are close
to each other or near walls, as in the final iterations the greedy algorithm selects scan

6.4. Experimental evaluation 105

Table 6.1: Number of scan positions and computation time (R=100)
Scenario δ (m) Scan no. GPU Time (min) CPU Time (min)

1

0.50 369 99.8 > 1 day
0.75 355 19.4 931.6
1.00 359 7.0 290.3
1.50 353 1.9 59.2

2

0.50 162 12.8 > 1 day
0.75 168 2.8 100.2
1.00 160 0.9 30.2
1.50 155 0.3 6.9

Table 6.2: Number of scan positions and computation time (δ=0.5 m)
Scenario R Scan no. GPU Time (min)

1

10 138 42.1
25 241 71.5
50 367 101.0
75 481 125.1

100 582 149.0

2

10 65 5.3
25 108 8.5
50 163 12.5
75 214 16.7

100 255 20.1

106 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

 0m

 30m

 60m

 90m

120m

 0m 100m 200m 300m 400m 500m

Figure 6.6: Optimized scan station positions in scenario 1, with δ = 0.5 m and
R = 50.0. A total of 367 scan positions were computed (marked by crosses).

stations to observe small regions that are still uncovered. It can be observed that the
distance to walls is always at least one cell size (0.5 m), which allows enough space
for scanner placing. Table 6.1 reports results at different values of cell size δ, with
fixed R. A lower cell size allows scan stations to be placed with less uncertainty.
However, computation time increases as cell size diminishes, as displayed in Fig. 6.7.
Moreover, the number of scan positions is almost unaffected by cell size, as expected.
Also, a comparison of the performance of the parallel algorithm (GPU) was carried
out against a sequential algorithm on CPU. It can be deduced, from Table 6.1, that
the parallel algorithm achieves a speed-up of at least 20. Table 6.2 shows results at
different R values, with fixed cell size δ=0.5 m. Both computation time and number
of scan stations increase with the objective coverage R. The increase in the number of
scan stations is linear, with coefficients of determination around 0.99 in both cases,
as shown in Fig. 6.8. A linear increase is expected, because (without occlusions) each
scan station increases the coverage by the same amount. To highlight the effectiveness
of this method over a manual approach, two experienced technicians has been asked
to perform a manual placement of the scan stations on a map of the floor plan of
scenario 2. Technicians were asked to achieve a coverage of at least one point every 2
cm, which corresponds to an objective coverage of about R=50. The first technician
(Fig. 6.9) placed only 83 scan station positions. He obtained the required coverage

6.4. Experimental evaluation 107

0.1

1

10

100

0.50.7511.251.5

C
o

m
p

u
ta

ti
o

n
 t

im
e

(m
in

u
te

s)

Cell size (m)

Scenario 1
Scenario 2

Figure 6.7: Computation time with respect to cell size δ, with R = 100 (logarithmic
scale).

100

200

300

400

500

600

0 10 25 50 75 100

S
ca

n
 c

o
u

n
t

Objective coverage R

Scenario 1
Scenario 2

Figure 6.8: Number of scan stations with respect to R and linear regressions, with
δ = 0.5.

108 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

 0m

 30m

 60m

 90m

120m

 0m 30m 60m 90m 120m 150m 180m
 0

 10

 20

 30

 40

 50

C
u
m

u
lativ

e co
v
erag

e

Figure 6.9: gt ,(k ,l) for manual scan placement (technician 1, 83 total positions). Color
scale goes from white (fully covered cells) to red (uncovered cells).

 0m

 30m

 60m

 90m

120m

 0m 30m 60m 90m 120m 150m 180m
 0

 10

 20

 30

 40

 50

C
u
m

u
lativ

e co
v
erag

e

Figure 6.10: gt ,(k ,l) for manual scan placement (technician 2, 318 total positions).

6.4. Experimental evaluation 109

 0m

 30m

 60m

 90m

120m

 0m 30m 60m 90m 120m 150m 180m

Figure 6.11: Optimized scan station positions in scenario 2, with δ = 0.5 m and
R = 50.0. A total of 163 scan positions were computed (marked by crosses).

 0m

 30m

 60m

 90m

120m

 0m 30m 60m 90m 120m 150m 180m
 0

 10

 20

 30

 40

 50

C
u
m

u
lativ

e co
v
erag

e

Figure 6.12: Optimized scan station positions in scenario 2 (δ = 0.5 m, R = 50.0),
with coverage and overlap constraints limited to floor plan segments [2, 63]. A total
of 130 scan positions were computed (marked by crosses).

110 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

0m

10m

20m

0m 10m 20m 30m

Figure 6.13: Optimized scan stations in scenario 3 (9 total positions).

0m

10m

20m

0m 10m 20m 30m
0

10

20

30

40

50

C
u
m

u
lativ

e co
v
erag

e

Figure 6.14: Cumulative coverage gt ,(k ,l) from manual scan placement (technician 1,
4 total positions).

6.4. Experimental evaluation 111

Figure 6.15: Point cloud from survey performed with Leica Scanstation P30 using the
optimized scan stations (θmin=35◦).

Figure 6.16: Detail of ground coverage from survey performed with Leica Scanstation
P30 using the optimized scan stations (θmin=35◦).

112 Chapter 6. Sensor-Based Optimization of TLS Setup on GPU

in most open areas, but he failed to reach it near walls and corners. The second
technician (Fig. 6.10) was more conservative. He obtained the required coverage
almost everywhere by placing the scan stations on a thick regular grid. However,
he placed 318 scan stations, almost twice the number of the proposed method. A
comparison with previous approaches was also carried out. As shown in Fig. 6.12, if
optimization is performed only on the floor plan segments [2, 63], some parts of the
ground are not properly covered. Another experiment was executed, in scenario 3, to
show the results of a real TLS survey performed with a Leica Scanstation P30 using
the optimized scan station positions. The required coverage is achieved everywhere
(Fig. 6.13), whereas a manual placement of the scan stations leads to a sub-optimal
coverage (Fig. 6.14). Figure 6.15 shows an image of the registered point cloud obtained
from the survey, while Figure 6.16 shows a detail of the ground coverage.

6.5 Discussion

A novel formulation of the set cover problem was presented to find the optimal
placement of scan stations in a TLS survey. As practical application, technicians can
perform the survey following the ordered sequence of scan stations. The approach
exploits GPU acceleration. The constraints of the optimization algorithm guarantee a
minimum coverage of the ground and a minimum overlap among scans. A comparison
against a manual placement performed by technicians was carried out to highlight the
effectiveness of the method.

Chapter 7

Conclusion

This dissertation presented a novel workflow for the design of automated warehouses
that combines traditional automation deploymentwithmodern 3D technologies. Novel
algorithms for ground segmentation, floorplan generation and real-timeAGVcollision
detection in large scale point clouds have been presented as fundamental steps of
the proposed workflow. Furthermore, a novel approach for the optimization of TLS
measurement setup has been proposed, that includes realistic sensor-based constraints
like coverage and overlap.

Experiments have been performed on datasets acquired in real-case scenarios.
Results have been actively used to speed-up plant design, showing disruptive benefits.

As an example, it has been estimated that the adoption of the proposed workflow in
the largest dataset (1641 scans, ∼15 billions of points) saved about six months of work
of two technicians, thus having huge impact on the installation cost. Furthermore, the
impact of the installation on the customer production activities has been negligible. In
fact, the Autonomous Guided Vehicles paths with all the operation points (∼70.000
pallet positions) and safety areas have been designed and validated before the in-
stallation. Transition from human-operated forklifts to Autonomous Guided Vehicles
has been drastically simplified, as it required neither to stop warehouse activities,
nor to empty racks as in the past. Moreover, similar results have been obtained in
several other warehouses, thus confirming the validity of the proposed approach.

114 Chapter 7. Conclusion

Hence, the proposed workflow has become a standard in Elettric80 for the design and
development of automated warehouses. Future work will investigate approaches for
the automatic extraction of AGV operation points to further improve the proposed
workflow. The 3D visualization tool described in Chapter 5 will also be integrated in
the traffic management software, to show a real-time 3D representation of automated
warehouses. Novel techniques for efficient visualization of large scale point clouds
(billions of points) will be investigated. Level of Detail techniques will be exploited
for simultaneous visualization of complex vehicle models.

New state of the art sensors that exploit visual odometry to speed-up point cloud
alignment, like the Leica RTC 360, will also be considered to perform the survey, as
they significantly reduce the amount of time spent for the point cloud registration.

Bibliography

[1] A. Adan and D. Huber. «3DReconstruction of InteriorWall Surfaces under Oc-
clusion and Clutter». In: International Conference on 3D Imaging, Modeling,
Processing, Visualization and Transmission. 2011, pp. 275–281.

[2] J. Ahn and K. Wohn. «Interactive scan planning for heritage recording». In:
Multimedia Tools and Applications 75.7 (Apr. 2016), pp. 3655–3675.

[3] R. Ambrus, S. Claici, and A. Wendt. «Automatic Room Segmentation From
Unstructured 3-D Data of Indoor Environments». In: IEEE Robotics and Au-
tomation Letters 2.2 (2017), pp. 749–756.

[4] K. Babacan et al. «Towards object driven floor plan extraction from laser point
cloud». In: ISPRS - Intl Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences XLI-B3 (2016).

[5] P. Beinschob et al. «Semi-automated map creation for fast deployment of AGV
fleets in modern logistics». In: Robotics and Autonomous Systems 87 (2017),
pp. 281 –295.

[6] Y. Belkhouche, P. Duraisamy, and B. Buckles. «Ground Extraction from Ter-
restrial LiDAR Scans Using 2D-3D Neighborhood Graphs». In: Advances in
Visual Computing: 11th International Symposium, ISVC, Las Vegas, NV, USA,
Part II. 2015, pp. 655–663.

[7] J. Berglund et al. «Using 3D laser scanning to support discrete event simu-
lation of production systems: lessons learned». In: Proceedings of the Winter
Simulation Conference. 2014, pp. 2990–2999.

116 Bibliography

[8] J. M. Biosca and J. L. Lerma. «Unsupervised robust planar segmentation of
terrestrial laser scanner point clouds based on fuzzy clustering methods». In:
ISPRS Journal of Photogrammetry and Remote Sensing 63.1 (2008), pp. 84–
98.

[9] T. Bodor et al. «Optimal camera placement for automated surveillance tasks».
In: Journal of Intelligent and Robotic System. Vol. 50. Nov. 2007, pp. 257–295.

[10] W. Boehler, V. Bordas, and A.Marbs. «Investigating Laser Scanner Accuracy».
In: XIXth CIPA Symposium. Sept. 2003.

[11] Dorit Borrmann et al. «Amobile robot based system for fully automated thermal
3D mapping». In: Advanced Engineering Informatics 28 (July 2014).

[12] G. Bruder, F. Steinicke, and A. Nüchter. «Poster: Immersive point cloud virtual
environments». In: IEEE Symposium on 3D User Interfaces (3DUI). 2014,
pp. 161–162.

[13] K. Chakrabarty et al. «Grid coverage of surveillance and target location in
distributed sensor networks». In: IEEE Transaction on Computers. Vol. 51.
Dec. 2002, pp. 1448–1453.

[14] T. Chen et al. «3D LIDAR-based ground segmentation». In: The First Asian
Conference on Pattern Recognition. 2011, pp. 446–450.

[15] T. Chen et al. «Gaussian-Process-Based Real-Time Ground Segmentation for
Autonomous Land Vehicles». In: Journal of Intelligent & Robotic Systems 76.3
(2014), pp. 563–582.

[16] T. Chen et al. «Sparse Gaussian process regression based ground segmentation
for autonomous land vehicles». In: The 27th Chinese Control and Decision
Conference (CCDC). 2015, pp. 3993–3998.

[17] M. C. Codrea and O. S. Nevalainen. «Note: An algorithm for contour-based
region filling». In: Computers & Graphics 29.3 (2005), pp. 441 –450.

[18] O. Conrad et al. «System for Automated Geoscientific Analyses (SAGA) v.
2.1.4». In: Geosci. Model Dev. 8 (2015), pp. 1991–2007.

Bibliography 117

[19] B. Douillard et al. «On the segmentation of 3D LIDAR point clouds». In:
IEEE International Conference on Robotics and Automation (ICRA). 2011,
pp. 2798–2805.

[20] K. Eilers and J. Rossmann. «Modeling an AGV based facility logistics system
to measure and visualize performance availability in a VR environment». In:
Proceedings of the Winter Simulation Conference. 2014, pp. 367–375.

[21] U. Erdem and S. Sclaroff. «Automated camera layout to satisfy task-specific
and floor plan-specific coverage requirements». In:Computer Vision and Image
Understanding. Vol. 103. Sept. 2006, pp. 156–169.

[22] D.Eriksson andE. Shellshear. «Approximate distance queries for path-planning
in massive point clouds». In: 11th International Conference on Informatics in
Control, Automation and Robotics (ICINCO). Vol. 2. 2014, pp. 20–28.

[23] R. Gandhi, S. Khuller, and A. Srinivasa. «Approximation algorithms for partial
covering problems». In: J. Algorithms. Vol. 53. 2004, pp. 55–84.

[24] M. Giorgini and J. Aleotti. «Visualization of AGV in Virtual Reality and Col-
lision Detection with Large Scale Point Clouds». In: IEEE 16th International
Conference on Industrial Informatics. July 2018, pp. 905–910.

[25] M. Giorgini, F. Barbieri, and J. Aleotti. «Ground Segmentation From Large-
Scale Terrestrial Laser Scanner Data of Industrial Environments». In: IEEE
Robotics and Automation Letters 2.4 (2017), pp. 1948–1955.

[26] J.J. Gonzalez-Barbosa et al. «Optimal camera placement for total coverage».
In: IEEE Intl Conference on Robotics and Automation. Kobe, Japan,May 2009,
pp. 844–848.

[27] P. Gordon and T. Charles. «Terrestrial Laser Scanners». In: (Jan. 2009).

[28] M. Gregor, J. Herčko, and P. Grznár. «The factory of the future production
system research». In: 21st International Conference on Automation and Com-
puting (ICAC). 2015, pp. 1–6.

118 Bibliography

[29] A. Harakeh, D. Asmar, and E. Shammas. «Ground segmentation and occu-
pancy grid generation using probability fields». In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2015, pp. 695–702.

[30] M. Heidari Mozaffar and M. Varshosaz. In: The Photogrammetric Record
31.156 (Dec. 2016), pp. 374 –393.

[31] M. Himmelsbach, F. V. Hundelshausen, and H. J. Wuensche. «Fast segmen-
tation of 3D point clouds for ground vehicles». In: IEEE Intelligent Vehicles
Symposium. 2010, pp. 560–565.

[32] E. Horster and R. Lienhart. «On the optimal placement of multiple visual
sensors». In: 4th ACM intl workshop on video surveillance and sensor networks
(VSSN). New York, NY, USA, 2006, pp. 111–120.

[33] J. Jung, C. Stachniss, and C. Kim. «Automatic Room Segmentation of 3D Laser
Data Using Morphological Processing». In: ISPRS International Journal of
Geo-Information 6.7 (2017).

[34] K. Kawashima et al. «Finding the next-best scanner position for as-built mod-
eling of piping systems». In: ISPRS - International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, Volume XL-5. 2014,
pp. 313–320.

[35] T.P. Kersten et al. «Methods for Geometric Accuracy Investigations of Terres-
trial Laser Scanning Systems». In: Photogrammetrie Fernerkundung Geoinfor-
mation. Vol. 4. 2009, pp. 301–314.

[36] M. K. Kim et al. «Optimal locations of terrestrial laser scanner for indoor
mapping using genetic algorithm». In: International Conference on Control,
Automation and Information Sciences (ICCAIS). Dec. 2014, pp. 140–143.

[37] D.D. Lichti and S. Jamtsho. «Angular resolution of terrestrial laser scanners».
In: The photogrammetric record. Vol. 21, pp. 141–160.

[38] E. Lindskog et al. «Combining point cloud technologies with discrete event
simulation». In:Proceedings of the 2012 Winter Simulation Conference (WSC).
2012, pp. 1–10.

Bibliography 119

[39] C. Liu, J.Wu, andY. Furukawa. «FloorNet: AUnified Framework for Floorplan
Reconstruction from 3D Scans». In: European Conference on Computer Vision
(ECCV). 2018.

[40] P. Lubos et al. «Touching the Cloud: Bimanual annotation of immersive point
clouds». In: IEEE Symposium on 3D User Interfaces (3DUI). 2014, pp. 191–
192.

[41] K. Mamou and F. Ghorbel. «A simple and efficient approach for 3D mesh
approximate convex decomposition». In: 16th IEEE International Conference
on Image Processing (ICIP). 2009, pp. 3501–3504.

[42] K.Mechelke, T.P.Kersten, andM.Lindstaedt. «Comparative Investigations into
the Accuracy Behaviour of the New Generation of Terrestrial Laser Scanning
Systems». In: Optical 3-D Measurement Techniques VIII. Vol. 1. July 2007,
pp. 319–327.

[43] Nicole Menck, Christian Weidig, and Jan C. Aurich. «Virtual Reality as a
Collaboration Tool for Factory Planning based on Scenario Technique». In:
Procedia CIRP 7 (2013), pp. 133 –138.

[44] M. Montemerlo, J. Becker, et al. «Junior: The Stanford entry in the Urban
Challenge». In: Journal of Field Robotics 25.9 (2008), pp. 569–597.

[45] F. Moosmann, O. Pink, and C. Stiller. «Segmentation of 3D lidar data in non-
flat urban environments using a local convexity criterion». In: IEEE Intelligent
Vehicles Symposium. 2009, pp. 215–220.

[46] C. Mura et al. «Automatic room detection and reconstruction in cluttered
indoor environments with complex room layouts». In: Computers & Graphics
44 (2014), pp. 20 –32.

[47] K. Na et al. «The ground segmentation of 3D LIDAR point cloud with the op-
timized region merging». In: International Conference on Connected Vehicles
and Expo (ICCVE). 2013, pp. 445–450.

120 Bibliography

[48] Hana Neradilova and Gabriel Fedorko. «Simulation of the Supply of Work-
places by the AGV in the Digital Factory». In: Procedia Engineering 192
(2017), pp. 638 –643.

[49] Takeru Niwa and Hiroshi Masuda. «Interactive collision detection for engi-
neering plants based on large-scale point-clouds». In: Computer-Aided Design
and Applications 13.4 (2016), pp. 511–518.

[50] S. Ochmann et al. «Automatic reconstruction of parametric building models
from indoor point clouds». In: Computers & Graphics 54 (2016), pp. 94–103.

[51] S. Oesau, F. Lafarge, and P. Alliez. «Indoor scene reconstruction using feature
sensitive primitive extraction and graph-cut». In: ISPRS Journal of Photogram-
metry and Remote Sensing 90 (2014), pp. 68–82.

[52] B. Okorn et al. «Toward automatedmodeling of floor plans». In:Proceedings of
the symposium on 3D data processing, visualization and transmission. Vol. 2.
2010.

[53] J. Pan et al. «Real-time collision detection and distance computation on point
cloud sensor data». In: IEEE International Conference on Robotics and Au-
tomation (ICRA). 2013, pp. 3593–3599.

[54] M. Previtali et al. «Towards automatic indoor reconstruction of cluttered build-
ing rooms from point clouds». In: ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences (2014), pp. 281–288.

[55] V. Sakenas et al. «Extraction of Semantic Floor Plans from 3D Point Cloud
Maps». In: 2007 IEEE Intl Workshop on Safety, Security and Rescue Robotics
(SSRR). 2007.

[56] V. Sanchez and A. Zakhor. «Planar 3D modeling of building interiors from
point cloud data». In: 2012 19th IEEE International Conference on Image
Processing (ICIP). 2012, pp. 1777–1780.

[57] G. A. Marcon dos Santos et al. «An adaptive algorithm for embedded real-time
point cloud ground segmentation». In: 7th International Conference of Soft
Computing and Pattern Recognition (SoCPaR). 2015, pp. 76–83.

Bibliography 121

[58] J. Schauer and A. Nüchter. «Removing non-static objects from 3D laser scan
data». In: ISPRS Journal of Photogrammetry and Remote Sensing 143 (2018),
pp. 15–38.

[59] Johannes Schauer and Andreas Nüchter. «Collision Detection Between Point
Clouds Using an Efficient K-d Tree Implementation». In: Adv. Eng. Inform.
29.3 (Aug. 2015), pp. 440–458.

[60] Johannes Schauer et al. «Performance comparison between state-of-the-art
point-cloud based collision detection approaches on the CPU and GPU». In:
IFAC-PapersOnLine 49.30 (2016), pp. 54 –59.

[61] E. Shellshear, R. Berlin, and J. S. Carlson. «Maximizing Smart Factory Systems
by Incrementally Updating Point Clouds». In: IEEE Computer Graphics and
Applications 35.2 (2015), pp. 62–69.

[62] E. Shellshear, S. Tafuri, and J. Carlson. «A multi-threaded algorithm for com-
puting the largest non-collidingmoving geometry». In:Computer-Aided Design
49 (2014), pp. 1 –7.

[63] S. Soudarissanane and R. Lindenbergh. «Optimizing Terrestial Laser Scanning
Measurement Set-up». In: ISPRS workshop laser scanning. Vol. XXXVIII.
Calgary, Canada, 2011.

[64] S. Soudarissanane, R. Lindenbergh, and B. Gorte. «Reducing the error in
terrestrial laser scanning by automatic optimization of the measurement set-
up». In: XXI ISPRS Congress, Beijing, China. 2008.

[65] S. Soudarissanane et al. «Incidence angle influence on the quality of terrestial
laser scanning points». In: In Proceedings of Laserscanning. Vol. XXXVIII.
2009, pp. 183–188.

[66] S. Soudarissanane et al. «Scanning geometry: Influencing factor on the quality
of terrestrial laser scanning points». In: ISPRS Journal of Photogrammetry and
Remote Sensing. Vol. 66. Jan. 2011, pp. 389–399.

122 Bibliography

[67] A. Stephan et al. «Interactivemodelling of 3D-environments». In:Proceedings.
11th IEEE International Workshop on Robot and Human Interactive Commu-
nication. 2002, pp. 530–535.

[68] W. Sui et al. «Layer-Wise Floorplan Extraction for Automatic Urban Build-
ing Reconstruction». In: IEEE Transactions on Visualization and Computer
Graphics 22.3 (2016), pp. 1261–1277.

[69] R. Tredinnick, M. Broecker, and K. Ponto. «Experiencing interior environ-
ments: New approaches for the immersive display of large-scale point cloud
data». In: IEEE Virtual Reality (VR). 2015, pp. 297–298.

[70] C. J. Turner et al. «Discrete Event Simulation and Virtual Reality Use in
Industry: New Opportunities and Future Trends». In: IEEE Transactions on
Human-Machine Systems 46.6 (2016), pp. 882–894.

[71] E. Turner and A. Zakhor. «Floor plan generation and room labeling of indoor
environments from: Laser range data». In: Proceedings of the 9th International
Conference on Computer Graphics Theory and Applications (GRAPP). 2014,
pp. 22–33.

[72] J. P. Underwood et al. «Explicit 3D change detection using ray-tracing in
spherical coordinates». In: IEEE International Conference on Robotics and
Automation (ICRA). 2013, pp. 4735–4741.

[73] C. Urmson, J. Anhalt, et al. «Autonomous driving in urban environments: Boss
and the Urban Challenge». In: Journal of Field Robotics 25.8 (2008), pp. 425–
466.

[74] V. Vavrík, M. Gregor, and P. Grznár. «Computer Simulation as a Tool for the
Optimization of Logistics Using Automated Guided Vehicles». In: Procedia
Engineering 192 (2017), pp. 923 –928.

[75] Y. Yao et al. «Can You SeeMeNow? Sensor Positioning for automated and Per-
sistent Surveillance». In: IEE Transactions on Systems, Man, and Cybernetics
- Part B: Cybernetics. Vol. 40. Feb. 2010, pp. 85–103.

Bibliography 123

[76] H. Yin, X. Yang, and C. He. «Spherical Coordinates BasedMethods of Ground
Extraction and Objects Segmentation Using 3-D LiDAR Sensor». In: IEEE
Intelligent Transportation Systems Magazine 8.1 (2016), pp. 61–68.

[77] Keqi Zhang et al. «A progressive morphological filter for removing nonground
measurements from airborne LIDAR data». In: IEEE Transactions on Geo-
science and Remote Sensing 41.4 (2003), pp. 872–882.

[78] M. Zhang, D. D. Morris, and R. Fu. «Ground Segmentation Based on Loopy
Belief Propagation for Sparse 3D Point Clouds». In: International Conference
on 3D Vision. 2015, pp. 615–622.

[79] J. Zhao, S.C. Cheung, and T. Nguyen. «Optimal visual sensor network config-
uration». In: Multi-Camera networks. Vol. 6. May 2009, pp. 139–141.

[80] J. Zhao et al. «Approximate techniques in solving optimal camera placement
problems». In: IEEE Intl Conference on Computer Vision Workshops (ICCV
Workshops). Nov. 2011.

	Introduction
	Motivation
	Adopted sensing technologies
	Thesis contribution and outline

	Proposed Workflow for the Design of Automated Warehouses
	Overview
	Survey
	Registration
	Data Processing
	Deliverables
	Ground analysis
	Floor plan and cleaned point cloud
	AGV operation points

	Virtual plant deployment

	Ground Segmentation
	Introduction
	Related works
	Ground segmentation
	Extraction and filtering of virtual points on the ground
	Coarse segmentation of ground points
	Normal filtering
	Association of virtual points to measured points and region grow
	Gap filling

	Experimental results
	Discussion

	Floor Plan Generation
	Introduction
	Methodology
	Voxel grid computation and ground segmentation
	Detection of structural elements
	Low resolution floor plan image generation
	Contours extraction and refinement

	Experimental evaluation
	Discussion

	3D Warehouse Visualization and Collision Checking
	Introduction
	Input data
	Vehicle model and safety zones
	Environment model
	Ground model
	Vehicle paths

	Visualization
	Vehicle path following
	Dynamic loading of point cloud clusters

	Collision detection with environment model
	Experiments
	Discussion

	Sensor-Based Optimization of TLS Setup on GPU
	Introduction
	Problem formulation
	Laser model and ground coverage function
	Visibility

	Parallel implementation on GPU
	Experimental evaluation
	Discussion

	Conclusion
	Bibliography

