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“Now I’m hoping some one will care
Living on the breath of a hope to be shared.”

David Bowie
We Are the Dead, Diamond Dogs (1974)
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Chapter 1

Introduction

In this work, we address a class of specially structured problems of form

max
x

f (x)

subject to a ≤ x ≤ g(x),
(1.1)

where x ∈ Rn, a ∈ Rn, f ∶ Rn → R is a continuous function, strictly monotone in-
creasing with respect to each component and g = (g1,g2, . . . ,gn)T ∶Rn →Rn, is a
continuous function such that, for i ∈ {1, . . . ,n}, gi is monotone not decreasing with
respect to all variables and constant with respect to xi. As we will see, this specific
class of optimization problems has relevant applications in control engineering.

The structure of this work is the following: in Section 1.2 we introduce the
linear subclass (1.3) of class (1.1), in Sections 1.3 and 1.4 we introduce respec-
tively, the graphs and the multigraphs associated to problems in subclass (1.3). In
Section 1.5 we provide the notation used in the rest of this work. In Chapter 2
we introduce the basic concepts and mathematical tools needed in the rest of the
work. In Chapter 3 we justify the interest in Problem class (1.1) and, in particular,
its subclass (1.3), by presenting some problems in control, such as speed planning
for autonomous vehicles and robotic manipulators, but also in telecommunica-
tions, which can be reformulated as optimization problems within subclass (1.3).
In Chapter 4 we focus on another problem of interest, the switching Hamilton-
Jacobi-Bellman equation, which can be formulated in such a way that is falls into
subclass (1.3) and present an application of it to path planning along with some
numerical experiments. In Chapter 5 we derive some theoretical results about
Problem (1.1) and a class of iterative algorithms for its solution. In Section 5.2
we do the same for the subclass (1.3). In Section 5.3 we discuss some theoretical
and practical issues about convergence speed of the algorithms and we present
some numerical experiments. In Chapter 6 we introduce a parallel algorithm for
the solution of Problem (1.3). Finally, in Chapter 7 we address a speed planning
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problem, for which there exists a discretized version falling into subclass (1.3), in
the continuous time domain.

1.1 Statement of contribution
The main contributions of this work are the following ones:

• We develop a new iterative procedure (Algorithm 2) for the solution of
Problem (1.1) and a more specific one (Algorithm 3) for its linear sub-
class (1.3). We prove the correctness of these solution methods.

• With numerical experiments, we show that the proposed algorithms outper-
form generic commercial solvers in the solution of linear problem (1.3).

• We design a new parallel procedure (Algorithm 4) for the solution of Prob-
lem (1.3), we show that the procedure is convergent and provide a linear
upper bound for the numerical error.

• With numerical experiments, we highlight the benefits of using the new
algorithm when solving a linear problem (1.3).

• We introduce a preconditioning technique that allows to increase the con-
vergence speed of the newly introduced algorithms.

• We extend the results of a speed planning problem falling in class (1.3) to
the continuous time domain providing a necessary and sufficient condition
for its feasibility and an operator for computing its solution.

1.2 Class of problems considered in this work
Let us also assume that there exists a real constant vector U such that

(∀x ∈Rn) a ≤ x ≤ g(x)⇒ g(x) ≤U. (1.2)

A Problem related to (1.1) that is relevant in applications is the following one

max
x

f (x)

subject to 0 ≤ x ≤ ⋀
`∈L

{A`x+b`} , x ≤U,
(1.3)

where, for each ` ∈L = {1, . . . ,L}, with L ∈N, A` is a nonnegative matrix and b` is
a nonnegative vector.
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Note that the expression ⋀
`∈L

, on the right hand side of (1.3), denotes the great-

est lower bound of L vectors. It corresponds to the component-wise minimum of
vectors A`x+b`, where a different value of ` ∈ L can be chosen for each compo-
nent. We will show that Problem (1.3) is actually a subclass of (1.1) after a suitable
definition of function g in (1.1).

We will also show that the solution of Problems (1.1) and (1.3) is independent
on the specific choice of f . Hence, Problem (1.3) is equivalent to the following
linear one

max
x

n
∑
i=1
[x]i

subject to 0 ≤ x, Cx+d ≤ 0, x ≤U,

(1.4)

where C is a matrix such that every row contains one and only one positive entry
and d is a nonpositive vector.

1.3 Graph associated to Problem (1.1)

It is natural to associate to Problem (1.1) a directed graph G = (V,E), where the
nodes correspond to the n components of x and of constraint g, namely V = V ∪C,
with V = {v1, . . . ,vn}, C = ⋃n

i=1{ci j} j∈Ji , with Ji set of indices dependent on i, for
i ∈ {1, . . . ,n}, where vi is the variable node associated to [x]i and {ci j} j∈Ji are the
constraint nodes associated to gi. In case a set of indices Ji is such that ∣Ji∣ = 1,
then we will denote {ci j} j∈Ji simply with ci. The edge set E ⊆ V ×V is defined
according to the rules:

• for i ∈ {1, . . . ,n} and j ∈ Ji, there is a directed edge from ci j to vi,

• for i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n}, there is a directed edge from vi to at least
one node in {c jk}k∈J j if g j depends on xi,

• no other edges are present in E.

For instance, for x ∈R3 consider problem

max
x

f (x)

subject to 0 ≤ x1 ≤ g1(x2,x3)
0 ≤ x2 ≤ g2(x1,x3) = g21(x1)∧g22(x1,x3)
0 ≤ x3 ≤ g3(x1,x2).

(1.5)

The associated graph, with V = {v1,v2,v3}, C = {c1,c21,c22,c3}, is given in Fig-
ure 1.1, where constraint nodes are represented by diamonds and variable nodes
by circles.
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v1

c1

v2

c21

v3

c22 c3

Figure 1.1: Representation of the graph associated to Problem (1.5)

We define the set of neighbors of node i ∈ V as

N (i) ∶= { j ∈ V ∣ (∃c ∈ C) (i,c),(c, j) ∈ E} ,

namely, a node j ∈ V is a neighbor of i if there exists a directed path of length
two that connects i to j. For instance, in the previous example, v1 ∈ N (v3) and
v2 ∉N (v3). In other words, v j ∈N (vi) if constraint g j depends on xi.

1.4 Multigraph associated to Problem (1.1)

Another convenient representation of Problem (1.1) is given by directed multi-
graphs.

A directed multigraph G is a tuple (V,E ,L,ϕ,ψ), where V is a finite set whose
elements are called nodes (or vertices), E is a finite multiset [7] of ordered pairs
of nodes of V called edges, L is a finite set of labels, ϕ ∶ E → V2 is a mapping
assigning to every edge its ends and ψ ∶ E → L is a mapping assigning to every
edge its label. Note that in directed multigraphs it may be that e1,e2 ∈ E are such
that e1 ≠ e2 and ϕ(e1) = ϕ(e2), in this case, we say that e1 and e2 are part of
the same multiedge and the set of all nodes satisfying this condition constitutes a
multiedge. It may also exist e ∈ E such that (∃i ∈ V) ϕ(e) = (i, i), that is, self-loops
(edges whose ends coincide with a single vertex) are allowed.

Edges are associated with elements from a set of labels L (which, for visual
aid, may be thought as a set of colors or, as we will see in Chapter 4, as a set of
controls) and if a pair of nodes has multiple edges connecting each other in the
same direction, then these edges cannot have the same label. Formally, this means
that

(∀e1,e2 ∈ E) (e1 ≠ e2 and ϕ(e1) = ϕ(e2)) ⇒ ψ(e1) ≠ψ(e2).
A multigraph can be represented by a set of adjacency matrices; the number of
matrices is given by the cardinality of the set of labels, each matrix represents the
edges sharing the same label.
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Given a directed multigraph G = (V,E ,L,ϕ,ψ), we define the set of neighbors
of node i ∈ V as

N (i) = { j ∈ V ∣ (∃e ∈ E) ϕ(e) = (i, j)} . (1.6)

If we, again, consider Problem (1.5), the associated multigraph G= (V,E ,L,ϕ,
ψ), with V = {v1,v2,v3}, E = {e1,e2,e3,e4,e5,e6,e7}, L = {black, red}, ϕ(e1) =
(v1,v2),ϕ(e2)= (v1,v2),ϕ(e3)= (v1,v3),ϕ(e4)= (v2,v1),ϕ(e5)= (v2,v3),ϕ(e6)=
(v3,v1),ϕ(e7) = (v3,v2), (∀e ∈ E) e ≠ e2⇒ψ(e) = black and ψ(e2) = red, is given
in Figure 1.2.

v1 v2 v3

e1

e2

e3

e4

e5

e6

e7

Figure 1.2: Representation of the multigraph associated to Problem (1.5)

Note that set {e1,e2} constitutes a multiedge, in fact ϕ(e1) = ϕ(e2) = (v1,v2)
and ψ(e1) = black, ψ(e2) = red.

1.5 Notation
The set of nonnegative real numbers is denoted by R+ ∶= [0,+∞) and 0 denotes
the zero vector of Rn.

Given n,m ∈ N, let x ∈ Rn and A ∈ Rn×m, for i ∈ {1, . . . ,n}, we denote the i-
th component of x with [x]i and the i-th row of A with [A]i∗; further, for j ∈
{1, . . . ,m} we denote the j-th column of A with [A]∗ j and the i j-th element of A
with [A]i j. Given matrices A ∈Rm×n and B ∈Rp×q, the Kronecker product of A and
B is denoted by A⊗B and is given by the following block matrix in Rmp×nq:

A⊗B ∶=
⎡⎢⎢⎢⎢⎢⎣

[A]11B ⋯ [A]1nB
⋮ ⋱ ⋮

[A]m1B ⋯ [A]mnB

⎤⎥⎥⎥⎥⎥⎦
. (1.7)

Function ∥⋅∥∞ ∶Rn →R+ is the infinity norm, namely the maximum norm, of
Rn (i.e., (∀x ∈Rn) ∥x∥∞ = max

i∈{1,...,n}
∣[x]i∣); ∥⋅∥∞ is also used to denote the induced

matrix norm.
Given a finite set S, the cardinality of S is denoted by ∣S∣, the powerset of S

is denoted by ℘(S), the complement of S is denoted by Sc, symbol × denotes the
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cartesian product, symbol ∖ denotes the set difference and symbol ∅ denotes the
empty set.

We will use symbol  at the end of a proof to state that a contradiction has
been reached.

Given α = (α1, . . . ,αn) ∈Nn and x ∈Rn, we denote the monomial [x]α1
1 ⋯[x]

αn
n

with xα and if Di ∶= ∂

∂xi
, for i ∈ {1, . . . ,n}, then the differential operation Dα1

1 ⋯Dαn
n

with order ∣α ∣ ∶=
n
∑
i=1

αi is denoted by Dα .

Finally, given a nonempty set V let us define a priority queue Q as a finite sub-
set ofQ ∶=V×R such that, if (v,q) ∈Q, then, no other element (v̄, q̄) ∈Q can satisfy
that v̄ = v. Let us also define two operations on priority queues: Enqueue ∶ ℘(Q)×
Q→Q, which, given Q ∈ ℘(Q) and (v,q) ∈Q, if Q does not contain elements of
the form (v, p), with p ≥ q, then Enqueue adds (v,q) to the priority queue Q and
removes any other element of the form (v, p), with p < q, if previously present.
The second operation we need on priority queues is Dequeue ∶ ℘(Q)→ ℘(Q)×V
which extracts from a priority queue Q the pair (v,q) with highest priority (i.e., it
extracts (v,q) ∈Q such that ∀(v̄, q̄) ∈Q,q ≥ q̄) and returns element v.



Chapter 2

Background

In this chapter we introduce the basic concepts used in the following chapters. In
particular, the basic definitions and properties of posets and lattices presented in
Section 2.1 will be key for the understanding of Chapters 5 and 7. Section 2.2
introduces finite state automata used in Chapter 4, whilst Sections 2.3 and 2.4 are
devoted to introducing Sobolev spaces and differential equations with discontinu-
ous right-hand side involved in Chapter 7.

2.1 Posets and lattices
This section provides a brief summary of the essential concepts and properties of
ordered sets and lattice theory needed in Chapter 5 and Chapter 7. The notions
stated in the following are taken from [17, 45], to which we refer the reader for a
more in-depth and comprehensive discussion.

Definition 2.1. Given sets A and B, a subset R ∈℘(A×B) of A×B is called a binary
relation.

Definition 2.2. A binary relation ⊑ on a set A (that is, on A×A) that satisfies
the reflexive property: (∀a ∈ A) (a,a) ∈⊑, and the transitive property: (∀a,b,c ∈
A) ((a,b)∈⊑ and (b,c)∈⊑)⇒ (a,c)∈⊑, is called a pre-order.

Definition 2.3. A pre-order ⊑ on a set P that satisfies the antisymmetric property:
(∀p,q ∈ P) (p ⊑ q∧q ⊑ p)⇒ p = q, is called a partial order and P(⊑) is said to be
a partially ordered set (or poset).

Consider the binary relation ≤ defined on Rn, with n ∈N, as follows

(∀x,y ∈Rn) x ≤ y ⇐⇒ y−x ∈Rn
+. (2.1)

It is easy to verify that ≤ is a partial order of Rn.
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Definition 2.4. The converse Rof a binary relation R is itself a binary relation
such that (b,a) ∈ R⇔ (a,b) ∈ R.

Theorem 2.5 (Duality Principle). The converse of any partial order is itself a
partial order.

Definition 2.6. Let P(⊑) be a poset. u is an upper bound of X ⊆ P if and only if
(∀x ∈ X) x ⊑ u. The least upper bound ũ of X ⊆ P is such that (∀x ∈ X) x ⊑ ũ and
(∀u ∈ P) (∀x ∈ X) x ⊑ u⇒ ũ ⊑ u, and it is denoted by ⊔X .

Observation 1. If such an element exists, it is unique. For if ũ and ṽ are two least
upper bound, it holds that ṽ ⊑ ũ and ũ ⊑ ṽ, so, by antisymmetry ũ = ṽ.

Definition 2.7. The lower bound and greatest lower bound of X ⊆ P are dual to
the concepts of upper bound and least upper bound respectively. This means that
their definition can be obtained by the one of upper bound and least upper bound
substituting ⊑ with its converse ⊒.
The greatest lower bound is denoted by

d
X .

Definition 2.8. Given a poset P(⊑), if it holds that

(∀p,q ∈ P) p ⊑ q or p ⊒ q,

then ⊑ is said to be linear and P(⊑) is said to be a totally ordered set or a chain.

Definition 2.9. A poset L(⊑) such that any two elements a,b ∈ L have a greatest
lower bound (called meet and denoted by a⊓b) and a least upper bound (called
join and denoted by a⊔b) is called a lattice and it is denoted by L(⊑,⊓,⊔).
A lattice L(⊑,⊓,⊔) is complete if (∀X ⊆L) ∃⊔X ∈L and ∃

d
X ∈L and it is denoted

by L(⊑,⊺,�,⊓,⊔). Such a lattice has two distinctive elements: the infimum � ∶=
⊔∅ =

d
L, which is the smallest element of L, and the supremum ⊺ ∶=

d
∅ =⊔L,

which is the biggest one.

Note that Rn(≤) with ≤ defined as in (2.1) is a lattice in which the meet is
denoted by ∧ and the joint by ∨. Moreover, given any compact subset P ⊆Rn, it is
easy to see that P(≤,∧,∨) is a complete lattice in which, for any S ⊆P, the greatest
lower bound of S is denoted by ⋀S and the least upper bound of S by ⋁S.

Theorem 2.10. Given a non-empty poset P(⊑), the following statements are equiv-
alent:

i. P is a complete lattice,

ii. for every subset S of P,
d

S exists in P,
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iii. P has a top element ⊺ and for every subset S of P,
d

S exists in P.

Observation 2. Given a lattice L(⊑,⊓,⊔), it follows immediately from the Duality
Principle 2.5 and the lattice’s Definition 2.9, that its dual L(⊑,⊓,⊔)′ ∶= L(⊒,⊔,⊓)
is a lattice itself and, moreover, if L is complete, L′ is also complete.

Definition 2.11. Given a lattice L(⊑,⊓,⊔) and a,b ∈ L, the interval [a,b] with
endpoints a and b is defined as follows: [a,b] ∶= {x ∈ L ∣ a ⊑ x ⊑ b}.

Observation 3. [a,b](⊑) is obviously a lattice and if L(⊑,⊓,⊔) is complete,
[a,b](⊑,⊓,⊔) is also complete.

Definition 2.12. Given posets P(⊑) and Q(⪯), a function ϕ ∈ P → Q is meet-
preserving if

(∀p, p′ ∈ P) ϕ(p⊓ p′) = ϕ(p)⋏ϕ(p′).

Definition 2.13. Given posets P(⊑) and Q(⪯), a function ϕ ∈ P → Q is order-
preserving if

(∀p, p′ ∈ P) p ⊑ p′⇒ ϕ(p) ⪯ ϕ(p′).

Proposition 2.14. Given lattices P(⊑,⊓,⊔) and Q(⪯,⋏,⋎) and a function ϕ ∶ P→
Q, the following statements are equivalent:

i. ϕ is order-preserving,

ii. (∀p, p′ ∈ P) ϕ(p⊔ p′) ⪰ ϕ(p)⋎ϕ(p′),

iii. (∀p, p′ ∈ P) ϕ(p⊓ p′) ⪯ ϕ(p)⋏ϕ(p′).

Definition 2.15. Given a poset P(⊑) and a function ϕ ∈ P→ P, a point x ∈ P is a
fixed point of ϕ if ϕ(x) = x.

We can now state the Knaster-Tarski Fixpoint Theorem.

Theorem 2.16 (Knaster-Tarski Fixpoint Theorem). Given a complete lattice
L(⊑,⊺,�,⊓,⊔) and an order-preserving function ϕ ∶ L→ L , then

{x ∈ L ∣ ϕ(x) = x} ≠∅.

Moreover, the element
⊓ϕ ∶=

l
{x ∈ L ∣ ϕ(x) ⊑ x},

is the greatest fixed point of ϕ . Dually, it also holds that

⊔ϕ ∶=⊔{x ∈ L ∣ ϕ(x) ⊒ x},

is the least fixed point of ϕ .
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2.2 Finite state automata
This section introduces finite state automata and regular languages and is based
on [42, 27].

Definition 2.17. A finite state automaton is a tuple A = (I,Σ,ρ, i0,IF) with

• I ≠∅ is a finite non-empty set whose elements are called states,

• Σ≠∅ is a finite non-empty set called alphabet and whose elements are called
symbols,

• ρ ∶ I ×Σ→ I is the transition function,

• i0 ∈ I is the initial state,

• IF ⊆ I is a subset of states called the final states.

Given an alphabet Σ, let us define the Kleene closure Σ∗ of Σ, that is, the set
of all strings over alphabet Σ, including the empty string denoted by ε , as follows

Σ
0 ∶= {ε},

Σ
1 ∶= Σ,

(∀i ∈N) Σ
i+1 ∶= {στ ∣ σ ∈ Σ

i and τ ∈ Σ
i},

Σ
∗ ∶=⋃

i∈N
Σ

i.

(2.2)

A language over Σ is a subset of Σ∗.
Given a finite state automaton A = (I,Σ,ρ, i0,IF), let us extend the domain of

ρ as follows: ρ ∶ I ×Σ∗→ I

(∀i ∈ I) ρ(i,ε) = i,
(∀i ∈ I) (∀τ ∈ Σ

∗) (∀σ ∈ Σ) ρ(i,sσ) = ρ(ρ(i,s),σ),

where sσ is the concatenation of s and σ . We define the language accepted by A
as follows

L(A) ∶= {s ∈ Σ
∗ ∣ (∀i ∈ I) ρ(i,s) ∈ IF}.

2.3 Measures and Sobolev spaces
This section provides the fundamental notions needed for the definition of Sobolev
spaces over a certain domain. Functions belonging to such spaces will be used in
Chapter 7. This section is based on [1] to which we refer the reader for further
details and insights.
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Definition 2.18. Given a vector space X , a function ∥ ⋅ ∥ ∶ X → R+, x↦ ∥x∥, that
satisfies the following conditions

• (∀x ∈ X) ∥x∥ ≥ 0 and ∥x∥ = 0⇔ x = 0,

• (∀x ∈ X) (∀c ∈R) ∥cx∥ = ∣c∣∥x∥,

• (∀x,y ∈ X) ∥x+y∥ ≤ ∥x∥+∥y∥,

is called a norm on X . A vector space X equipped with a norm is called a normed
space.

Given a vector space X of finite dimension n ∈ N, function ∥ ⋅ ∥∞ ∶ X → R+
defined as follows

(∀x ∈ X) ∥x∥∞ ∶= max
i∈{1,...,n}

∣[x] j∣ ,

is called the infinity norm on X .

Definition 2.19. Given a normed space X , a subset S ⊆ X such that for every se-
quence {si}i∈I ⊆ S, with I ⊆N set of indices, {si}i∈I admits a subsequence {sik}k∈K ,
with K ⊆ I, converging in X to an element of S, is said to be sequentially compact
(or compact).

Definition 2.20. Given a collection Σ ∶= {S ∣ S ⊆Rn} of subsets of Rn, if Σ satisfies
the following conditions

• Rn ∈ Σ,

• S ∈ Σ⇒ Sc ∈ Σ,

• given I a countable set of indices, {Si}i∈I ⊆ Σ⇒⋃i∈I Si ∈ Σ,

is called a σ -algebra.

Definition 2.21. Given a σ -algebra Σ, a function µ ∶ Σ → R+ ∪ {+∞} which is
countably additive, that is, which satisfies

µ (⋃
i∈I

Si) =∑
i∈I

µ(Si),

for any {Si}i∈I ⊆ Σ, with I countable set of indices, in which Si∩S j = ∅ if i ≠ j, is
called a measure on Σ.

Theorem 2.22. There exists a σ -algebra Σ and a measure µ on Σ satisfying the
following properties
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• every open subset of Rn belongs to Σ,

• for any A ⊆ Rn for which there exists B ∈ Σ such that A ⊆ B and µ(B) = 0,
then A ∈ Σ and µ(A) = 0,

• if A ∶= {x ∈Rn ∣ ai ≤ [x]i ≤ bi, with ai,bi ∈R, ai ≤ bi, for i ∈ {1, . . . ,n}}, then
A ∈ Σ and µ(A) =∏i∈{1,...,n}(bi−ai)

• µ is translation invariant, that is, for any x ∈ Rn and A ∈ Σ, set x+A ∶=
{x+y ∣ y ∈ A} ∈ Σ and µ(x+A) = µ(A).

The elements of such a σ -algebra are called (Lebesgue) measurable subsets
of Rn and µ is called the (Lebesgue) measure in Rn.

Definition 2.23. Given A,B ⊆Rn, if B ⊆ A and µ(B) = 0, then any condition that
holds on A∖B is said to hold almost everywhere (a.e.) in A. Note that any count-
able subset of Rn has measure zero.

Definition 2.24. Given a measurable set A, a function f ∶ A→R∪{+∞,−∞} that
satisfies the following condition

(∀a ∈R) {x ∈ A ∣ f (x) > a} is measurable,

is said to be measurable.

Given a domain Ω ⊆ Rn, we refer the reader to [1] for the formal definitions
of the space of test functions D(Ω), the space of Schwartz distributions D′(Ω)
(which is the dual space of D(Ω)) and the space of locally integrable functions
L1

loc(Ω) on Ω and remind that every u ∈ L1
loc(Ω) corresponds to a distribution

Tu ∈D′(Ω).

Definition 2.25. Given a domain Ω⊆Rn and a distribution T ∈D′(Ω), let us define
its derivative DαT as follows

(∀φ ∈D(Ω)) (DαT)(φ) ∶= (−1)∣α ∣T(Dα(φ)).

Definition 2.26. Given a domain Ω ⊆Rn and a function u ∈ L1
loc(Ω), if there exists

a function vα ∈ L1
loc(Ω) such that

Tvα
=DαTu,

in D′(Ω), is called the weak partial derivative of u and is denoted by Dαu.

Note that the previous definition is well posed since if such a function Dαu exists,
then it can be proved that this function is unique up to sets of measure zero.
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Definition 2.27. Given a domain Ω ⊆Rn, a measurable function u on Ω is said to
be essentially bounded on Ω if there exists a constant C such that ∣u(x)∣ ≤C for
almost every x ∈ Ω. The greatest lower bound of such set of constants is called
the essential supremum of ∣u∣ on Ω and is denoted by esssupx∈Ω ∣u(x)∣. The vector
space of all functions u which are essentially bounded on Ω, with functions being
identified if they are equal a.e. on Ω, is denoted by L∞(Ω).

Function ∥ ⋅∥∞ ∶Ω→R+∪{+∞}, defined as follows

∥u∥∞ ∶= esssup
x∈Ω
∣u(x)∣,

is a norm on L∞(Ω) called the infinity norm on L∞(Ω).

Definition 2.28. Given a domain Ω ⊆ Rn and m ∈ N, consider function ∥ ⋅ ∥m,∞ ∶
L∞(Ω)→R+∪{+∞}, defined as follows

∥u∥m,∞ ∶= max
0≤∣α ∣≤m

∥Dαu∥∞.

Let us consider the following vector space on which ∥ ⋅∥m,∞ is a norm,

W m,∞ ∶= {u ∈ L∞(Ω) ∣ Dαu ∈ L∞(Ω) for 0 ≤ ∣α ∣ ≤m}.

W m,∞(Ω) is called a Sobolev space over Ω.

2.4 Differential equations with discontinuous right-
hand side

In this section we give a glimpse of a possible definition of solution of a differen-
tial equation with discontinuous right-hand side along with a sufficient condition
for the uniqueness of such a solution first introduced in [18]. The contents of this
section are taken from [19] to which we refer the reader for further details.

Given an a.e. continuous function f ∶Ω→ Rn, with Ω ⊆ (R×Rn) and the set
M ⊆Ω of measure zero of points of discontinuity of f , consider the equation

dx
dt
= f (t,x). (2.3)

Definition 2.29. For each point (t,x) ∈ Ω, let us define F ∶ Ω→ ℘(Rn) at point
(t,x) as the smallest convex closed set containing all the limit values of function
f (t,x∗), with f (t,x∗) /∈M, x∗→ x and t constant.
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Observe that, given any point (t,x) ∈Ω at which function f is continuous, set
F(t,x) corresponding to this point reduces to a singleton given by { f (t,x)} and
the solution x(t) satisfies equation (2.3) in the classical sense. Whereas over points
(t,x) ∈M, set F(t,x) constitutes a polytope.

Definition 2.30. A solution of equation (2.3) is a solution of the differential in-
clusion

dx
dt
∈ F(t,x),

that is, a function x ∶ I→Rn, with I ⊆R interval, such that dx
dt ∈ F(t,x(t)) a.e. on I.

Definition 2.31. Given (t0,x0) ∈Ω, if there exists t1 > t0 such that each two solu-
tions of equation (2.3) satisfying the condition x(t0) = x0, coincide on the interval
[t0,t1] or on the part of this interval where they are both defined, we say that it
holds right uniqueness at point (t0,x0) ∈Ω for equation (2.3). If right uniqueness
holds for every (t,x) ∈Ω, then we say that right uniqueness holds in domain Ω for
equation (2.3).

Theorem 2.32. Given a function f ∶ Ω→ Rn over a domain Ω ⊆ (R×Rn), dis-
continuous only on a set M of measure zero, and a function l ∈ L1(R) such that
(∀(t,x) ∈Ω) f (t,x) ≤ l(t) a.e., and such that (∀(t,x),(t,y) ∈Ω) (∃ε > 0)

∣x−y∣ < ε⇒ (x−y) ⋅( f (t,x)− f (t,y)) ≤ l(t)∣x−y∣2 a.e.,

then under Definitions 2.29 and 2.30, equation (2.3) has right uniqueness in do-
main Ω.



Chapter 3

Applications

As mentioned earlier, there are problems of interest in control engineering which
fall into class (1.3). In this chapter, we will present in details some significant
applications, and show how their formulation can be reduced to form (1.3).

It would be interesting to find some real world applications that can be repre-
sented as non linear problems of class (1.1). However, all the applications that we
encountered so far, mentioned in what follows, fall into the linear subcase (1.3).

3.1 Speed planning for autonomous vehicles
The first problem we introduce is a motion planning one. Namely, we compute
the minimum-time trajectory of a car-like vehicle from an initial configuration to
a target one. The planning of the trajectory must take into account the presence of
obstacles, so that collision avoidance is ensured, and satisfy kinematic, dynamic
and mechanical constraints, such as velocity, acceleration and maximal steering
angle constraints.

There are two main approaches for addressing this problem:

1. It can be treated as a minimum-time trajectory planning in which both the
path and the vehicle’s velocity, that is, the timing law along this path, are
designed all at once;

2. it can be split into two distinct problems: one which consists in finding a
purely geometric path connecting the initial and the target configurations;
and a second one which is a minimum-time velocity planning on the previ-
ously computed path (see for instance [28]).

In this section, we follow the second approach. Therefore, we assume that we are
given a path joining the initial and target configurations which is consistent with
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Start configuration

Final configuration

Figure 3.1: A path to be followed by an autonomous car-like vehicle.

the maximum curvature constraint for the car-like vehicle; and our goal is to find
the time-optimal speed law that satisfies the kinematic and dynamic constraints of
the problem. In Chapter 4 we will also address the first problem of computing a
geometric path required in this approach.

In literature there are works addressing the problem in time domain. As an
example, [46] obtains a semi-analytical solution by exploring necessary optimal-
ity conditions. In [21] the authors assume that the vehicle is given an assigned
clothoid to move along and suggest a semi-analytical solution for the optimal
profile of the longitudinal acceleration. Some other works like [36, 44, 48, 11]in-
troduce special speed profiles for ensuring that kinematic and dynamic constraints
are satisfied. In other approaches (presented, for instance, in [8, 47, 43, 33, 37])
the speed law is represented as a function v of the arc-length position s and not as
a function of time.

What follows is based on [16] and we refer the reader to this reference for fur-
ther detail. We consider a speed planning problem for a mobile vehicle (see Fig-
ure 3.1). We assume that the path that joins the initial and the final configuration
is assigned and we aim at finding the time-optimal speed law that satisfies some
kinematic and dynamic constraints. Namely, we consider the following problem

min
v∈C1([0,s f ],R)

∫
s f

0
v−1(s)ds (3.1a)

subject to v(0) = 0, v(s f ) = 0 (3.1b)
0 < v(s) ≤ v̄, s ∈ (0,s f ), (3.1c)
∣2v′(s)v(s)∣ ≤ AT , s ∈ [0,s f ], (3.1d)

∣k(s)∣v(s)2 ≤ AN , s ∈ [0,s f ], (3.1e)

where v̄, AT , AN are upper bounds for the velocity, the tangential acceleration
and the normal acceleration, respectively. Here, s f is the length of the path (that
is assumed to be parameterized according to its arc length) and k is its scalar
curvature (i.e., a function whose absolute value is the inverse of the radius of the
circle that locally approximates the trajectory).



3.1 Speed planning for autonomous vehicles 20

The objective function (3.1a) is the total maneuver time, constraints (3.1b) are
the initial and final interpolation conditions and constraints (3.1c), (3.1d), (3.1e)
limit velocity and tangential and normal components of acceleration.

After the change of variable w = v2, the problem can be rewritten as

min
w∈C1([0,s f ],R)

∫
s f

0
w(s)−1/2ds (3.2a)

subject to w(0) = 0, w(s f ) = 0,

0 <w(s) ≤ v̄2, s ∈ (0,s f ),
∣w′(s)∣ ≤ AT , s ∈ [0,s f ],
∣k(s)∣w(s) ≤ AN , s ∈ [0,s f ].

For i ∈ {1 . . . ,n}, set wi =w((i−1)h), with h = s f
n−1 , then Problem (3.2) can be

approximated with

min
w∈Rn

φ(w)

subject to w1 = 0, wn = 0,

0 <wi ≤ v̄2, i ∈ {2, . . . ,n−1},
∣wi+1−wi∣ ≤ hAT , i ∈ {1, . . . ,n−1}, (3.3a)
∣k(h(i−1))∣wi ≤ AN , i ∈ {2, . . . ,n−1},

where the total time to travel the complete path is approximated by

φ(w) =
n−1
∑
i=1

ti = 2h
n−1
∑
i=1

1
√

wi+
√

wi+1
. (3.4)

Note that conditions (3.3a) is obtained by Euler approximation of w′(hi). Sim-
ilarly, the objective function (3.4) is a discrete approximation of the integral ap-
pearing in (3.2a). By setting f (w) = φ(w), a = 0, g1(w) = 0, gn(w) = 0 and, for
i ∈ {2, . . . ,n−1},

gi(w) =⋀{v̄2,
AN

∣k(h(i−1))∣
, hAT +wi−1, hAT +wi+1} ,

Problem (3.3) takes on the form of Problem (1.1) and, since g is linear with respect
to w, it also belongs to the more specific class (1.3). We remark that, with respect
to the problem class (1.3), we minimize a decreasing function which is equivalent
to maximizing an increasing function.
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References [15, 16] present an algorithm, with linear-time computational com-
plexity with respect to the number of variables n, that provides an optimal solution
of Problem (3.3). This algorithm is a specialization of the algorithms proposed in
Chapter 5 which exploits some specific features of Problem (3.3). In particular,
the key property of Problem (3.3), which strongly simplifies its solution, is that
functions gi fulfill the so-called superiority condition

gi(wi−1,wi+1) ≥wi−1 and gi(wi−1,wi+1) ≥wi+1,

(i.e., the value of function gi is not lower than each one of its arguments).

w1

c2,1

c1,2

w2

c3,1

c2,2

cn−1,1

cn−2,2

wn−1

cn,1

cn−1,2

wn

Figure 3.2: Graph associated to Problem (3.3)

The special structure of Problem (3.3) is made even more explicit by the graph
associated to it. Recalling Section 1.3, the graph nodes sets are the following:
V = {w1, . . . ,wn}, C = {c1,2, cn,1, ci, j ∣ i ∈ {2, . . . ,n−1}, j ∈ {1,2}} and the graph is
given by Figure 3.2. A constraint node labeled with ci,1, with i ∈ {2, . . . ,n} repre-
sents the dependence of gi on wi−1, whilst a constraint node labeled with ci,2, with
i ∈ {1, . . . ,n−1} represents the dependence of gi on wi+1. For ease of representa-
tion, here instead of considering exactly one constraint nodes for each constraint,
we decided to split them into more constraint nodes, one for every dependence of
a given constraint on a certain variable. As it can be seen in Figure 3.2, we can line
up all the variable and notice how the variable nodes form a chain in which for
each pair of successive variable nodes there are exactly two constraint nodes con-
necting the two variable nodes forward and backward. The algorithm presented
in [15, 16] corresponds to a specific traversal of the graph shown in Figure 3.2:
starting from node w1, the algorithm visits all the successive variable nodes going
“forward” through the constraint nodes ci,1, with i ∈ {2, . . . ,n}, and then, once it
reaches the variable node wn, it goes backwards until it reaches the variable node
w1 through the constraint nodes ci,2, with i ∈ {1, . . . ,n−1}.

The multigraph associated to Problem (3.3), which, in this case, is actually a
graph, is the one give in Figure 3.3.
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w1 w2 wn−1 wn

Figure 3.3: Multigraph associated to Problem (3.3)

In Chapter 7 we will address this problem in the continuous time domain and
show how this algorithm generalizes. The main idea is that the forward and back-
ward traversal the graph associated to the discretized problem turns into solving
forward and backward a pair of differential equations.

3.2 Speed planning for robotic manipulators
Another important field of application of motion planning in robotics deals with
robotics manipulators. In order to improve performances and productivity one
wishes to compute the minimum-time motion of a robotic manipulator from a
starting configuration to a desired final one while satisfying some constraints like
those mentioned in Section 3.1 and saturation of the actuators. The two possi-
ble approaches seen in Section 3.1 also apply in this case and, again, the second
approach, in which we assume the path planning phase has been completed, is fol-
lowed, and the aim is finding the optimal speed-law that allows the manipulator to
track the given path in minimum-time satisfying the aforementioned constraints.
The technical details of this second applications are more involved and we refer
the reader to [14] for the complete discussion.

Let Rp be the configuration space of a robotic manipulator with p-degrees
of freedom. The coordinate vector q of a trajectory in U satisfies the dynamic
equation

D(q)q̈+C(q, q̇)q̇+`(q) = τ, (3.5)

where q ∈ Rp is the generalized position vector, τ ∈ Rp is the generalized force
vector, D(q) is the mass matrix, C(q, q̇) is the matrix accounting for centrifugal
and Coriolis effects (assumed to be linear in q̇) and `(q) is the vector account-
ing for joints position dependent forces, including gravity. Note that we do not
consider Coulomb friction forces.

Let γ ∈C2([0,s f ],Rp) be a function such that (∀λ ∈ [0,s f ]) ∥γ ′(λ)∥ = 1. The
image set γ([0,s f ]) represents the coordinates of the elements of a reference path.
In particular, γ(0) and γ(s f ) are the coordinates of the initial and final configu-
rations. Define t f as the time when the robot reaches the end of the path. Let
λ ∶ [0,t f ] → [0,s f ] be a differentiable monotone increasing function that repre-
sents the position of the robot as a function of time and let v ∶ [0,s f ]→ [0,+∞] be
such that (∀t ∈ [0,t f ]) λ̇(t) = v(λ(t)). Namely, v(s) is the velocity of the robot
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at position s. We impose (∀s ∈ [0,s f ]) v(s) ≥ 0. For any t ∈ [0,t f ], using the chain
rule, we obtain

q(t) = γ(λ(t)),

q̇(t) = γ
′(λ(t))v(λ(t)),

q̈(t) = γ
′(λ(t))v′(λ(t))v(λ(t))+γ

′′(λ(t))v(λ(t))2.

(3.6)

Substituting (3.6) into the dynamic equations (3.5) and setting s = λ(t), we
rewrite the dynamic equation (3.5) as follows:

d(s)v′(s)v(s)+c(s)v(s)2+g(s) = τ(s), (3.7)

where the parameters in (3.7) are defined as

d(s) =D(γ(s))γ ′(s),

c(s) =D(γ(s))γ ′′(s)+C(γ(s),γ ′(s))γ ′(s),

g(s) = `(γ(s)).

The objective function is given by the overall travel time t f defined as

t f = ∫
t f

0
1dt = ∫

s f

0
v(s)−1 ds.

Let µ,ψ,α ∶ [0,s f ]→Rp
+ be assigned bounded functions and consider the fol-

lowing minimum time problem:

min
v∈C1,τ∈C0∫

s f

0
v(s)−1 ds,

subject to (∀s ∈ [0,s f ])
d(s)v′(s)v(s)+c(s)v(s)2+g(s) = τ(s), (3.8a)
γ
′(s)v(s) = q̇(s), (3.8b)

γ
′(s)v′(s)v(s)+γ

′′(s)v(s)2 = q̈(s), (3.8c)
∣τ(s)∣ ≤ µ(s), (3.8d)
∣q̇(s)∣ ≤ψ(s), (3.8e)
∣q̈(s)∣ ≤ α(s), (3.8f)
v(s) ≥ 0,
v(0) = 0, v(s f ) = 0, (3.8g)

where (3.8a) represents the robot dynamics, (3.8b)–(3.8c) represent the relation
between the path γ and the generalized position q shown in (3.6), (3.8d) represents
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the bounds on generalized forces, (3.8e) and (3.8f) represent the bounds on joints
velocity and acceleration, respectively. Constraints (3.8g) specify the interpolation
conditions at the beginning and at the end of the path.

After some manipulation and using a carefully chosen finite dimensional ap-
proximation (again, see [14] for the details), Problem (3.8) can be reduced to form
(see Proposition 8 of [14]).

min
w

φ(w)

subject to wi ≤ f j,iwi+1+c j,i i ∈ {1, . . . ,n−1}, j ∈ {1, . . . , p},

wi+1 ≤ bk,iwi+dk,i i ∈ {1, . . . ,n−1}, k ∈ {1, . . . , p},

0 ≤wi ≤ ui i ∈ {1, . . . ,n},

(3.9)

where, φ is defined as in (3.4) and w = (w1, . . . ,wn)T . For i ∈ {1, . . . ,n}, wi =
v((i−1)h)2, h = s f

n−1 , is the squared manipulator speed at configuration γ((i−1)h).
Moreover ui, f j,i, c j,i, bk,i, dk,i are nonnegative constant terms depending on prob-
lem data. By setting for k ∈ {1, . . . , p},

gk
1(w) =⋀{ū1, fk,1w2+ck,1} ,

gk
n(w) =⋀{ūn, bk,n−1wn−1+dk,n−1} ,

and, for i ∈ {2, . . . ,n−1},

gk
i (w) =⋀{ūi, fk,iwi+1+ck,i,bk,i−1wi−1+dk,i−1} ,

Problem (3.9) belongs to classes (1.1) and (1.3). Also in this case, the performance
of the algorithms proposed in Chapters 5 and 6 can be enhanced by exploiting
some further specific features of Problem (3.9). In particular, in [14], the authors
were able to develop a version of the algorithm with optimal time-complexity
O(np).

Again, the graph associated to Problem (3.9) clarifies the specific structure
of the problem. Recalling Section 1.3, the graph nodes sets are the following:
V = {w1, . . . ,wn}, C = {ck

1,2, ck
n,1, ck

i, j ∣ i ∈ {2, . . . ,n−1}, j ∈ {1,2}, k ∈ {1, . . . , p}}
and the graph can be seen in Figure 3.4. For k ∈ {1, . . . , p}, a constraint node la-
beled with ck

i,1, with i ∈ {2, . . . ,n} represents the dependence of gk
i on wi−1, whilst a

constraint node labeled with ck
i,2, with i ∈ {1, . . . ,n−1} represents the dependence

of gk
i on wi+1. As we can see in Figure 3.4, the structure of the graph is a gen-

eralization of the one seen in Figure 3.2; here, for every pair of variable nodes
(wi,wi+1), with i ∈ {1, . . . ,n−1}, there are exactly p constraint nodes connecting
wi to wi+1 and other p connecting wi+1 to wi. So Problem 3.3 can be seen as a
special case of Problem 3.9 with p = 1.
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Figure 3.4: Graph associated to Problem (3.9)

The algorithm presented in [14] operates similarly to the one proposed in [15,
16] but, since in this case the superiority condition is not ensured, the forward
step is more involved. Here, the forward step operates as follows: starting from
pair (w1,w2), the algorithm isolates the subgraph involving pair (wi,wi+1), and
those constraint nodes which involve all and only variable nodes wi and wi+1;
it solves the subproblem associated to this subgraph and, then, moves on to the
successive pair (wi+1,wi+2) until it reaches pair (wn−1,wn). The backward step is
more similar to the one seen in Section 3.1: starting from variable node wn down
to variable node w1, the algorithm moves backward through the constraint nodes
ck

i,2, with k ∈ {1, . . . , p} and i ∈ {1, . . . ,n−1}.
The multigraph associated to Problem (3.9) is the one give in Figure 3.5 in

which, for any pair of successive nodes, we have a multiedge formed by p edges
connecting them forward and another one connecting them backwards.
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w1 w2 wn−1 wn

Figure 3.5: Multigraph associated to Problem (3.9)

3.3 Wireless communication systems
We can find problems that take form (1.3) also in the field of communication sys-
tems. In particular, in wireless communication systems there exists the so called
uplink power control problem (see [51]), in which each user of a given communi-
cation system has to be provided enough power for establishing acceptable con-
nections with other users of the system, while avoiding or reducing as much as
possible interferences with other users not involved in the communication. The
users’ signal to interference ratio requirement can be represented with a set of
constraints of the form

p ≥ I(p), (3.10)

with p = [p1, . . . , pn]′ and I(p) = [I(p1), . . . ,I(pn)]′, where pi denotes the power
of the transmitter of user i and I(pi) denotes the effective interference due to other
users that user i has to surmount, for i ∈ {1, . . . ,n}. A power vector p ∈Rn

+ is said to
be feasible if it satisfies constraints (3.10), and an interference function I ∶Rn

+→Rn
+

is said to be feasible if constraints (3.10) admit a feasible power vector. Moreover,
if the interference function I satisfies the following conditions:

• positivity: (∀p ∈Rn
+) I(p) > 0,

• monotonicity: (∀p,p′ ∈Rn
+) p ≥ p′⇒ I(p) ≥ I(p′),

• scalability: (p ∈Rn
+) (α > 1) αI(p) > I(αp),

then I is said to be standard.
Assuming that function I is standard and feasible, it is possible to define the

following iterative power control algorithm

p(t +1) = I(p(t)), (3.11)

and show that starting from 0 ∈Rn
+, iteration (3.11) generates a monotone increas-

ing sequence converging to a fixed point of I.
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Now, given n users, m base station and a common radio channel, denote with
h ji the gain of user i to base j. At base j, quantity h ji pi corresponds to the received
signal power of user i, whilst the interference seen by user i at base j is

n
∑
k=1,
k≠i

h jk pk+σ j,

where σ j is the receiver noise power at base station j. Thus, given power vector p
the signal interference ratio of user i at base station j is piµ ji(p), with

µ ji(p) ∶=
h ji

n
∑
k=1,
k≠i

h jk pk+σ j

Let us now consider the interference function associated to the minimum power
assignment. In this case, at each step of iteration (3.11), user i is assigned to the
base station which minimizes its signal interference ratio. Some works analyzed
the convergence of the iteration associated to the minimum power assumption both
for continuous power adjustments (see for instance [50]) and for discrete power
adjustments (see [24]). The constraint associated to the signal interference ratio γi
of user i is max

j∈{1,...,m}
piµ ji(p) ≥ γi, and it can be expressed as follows

(∀i ∈ {1, . . . ,n}) pi ≥ Ii(p) ∶= min
j∈{1,...,m}

{ γi

µ ji(p)
} .

Under the minimum power assignment, in iteration (3.11), user i is associated
to base station j where minimum power is needed to achieve the desired signal
interference ratio γi, assuming that the other users keep their power constant. That
is: (∀i ∈ {1, . . . ,n})

pi ≥ min
j∈{1,...,m}

{ γi

µ ji(p)
}⇔pi ≥ min

j∈{1,...,m}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γi

h ji

⎛
⎜⎜
⎝

n
∑
k=1,
k≠i

h jk pk+σ j

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⇔pi ≥ min
j∈{1,...,m}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γi

h ji

n
∑
k=1,
k≠i

h jk pk+
γi

h ji
σ j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

If we write the previous constraints in matrix form we obtain

p ≥ ⋀
j∈{1,...,m}

{H jp+Σ j} ,
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with (∀ j ∈ {1, . . . ,m}) (∀i,k ∈ {1, . . . ,n}) [H j]ik ∶=
γi

h ji
h jk and [Σ j]i ∶=

γi

h ji
σ j. So,

the optimization problem we want to solve is the following one

min
p

n
∑
i=1
[p]i

subject to p ≥ ⋀
j∈{1,...,m}

{H jp+Σ j} , p ≥ 0,

which can be rewritten in the following form

max
p
−

n
∑
i=1
[p]i

subject to 0 ≤ p ≤ ⋀
j∈{1,...,m}

{H jp+Σ j} ,

which falls in class (1.3).



Chapter 4

Dynamic programming

In this chapter we present another problem in control engineering which falls into
class (1.3); given its importance we dedicate a whole chapter to it. Here, we in-
troduce a continuous-time version of the dynamic programming principle, which
takes the name of Hamilton-Jacobi-Bellman (HJB) equation, for the synthesis of
optimal control for a switching system (see [10, 52]). After having introduced the
problem, we will show how it is possible to discretize it in such a way that it falls
into class (1.3). In the second part, we apply this framework to path planning of
parking maneuvers for autonomous vehicles, presenting different possible models
and conclude the chapter with some numerical experiments. Part of the problem
derivation in Section 4.1 follows the one presented in [52].

4.1 Switching Hamilon-Jacobi-Bellman equation
Given a finite state automaton A = (I,Σ,ρ, i0,IF), let us consider a switching con-
trol system of continuous time subsystems defined by the following differential
equations in Rn: (∀i ∈ I)

ẋ(t) = f (x(t), i,u(t)), (4.1)

where f ∶Rn×I×U →Rn is the function representing the dynamic, x = x(t) ∈Rn is
the continuous state, index i ∈ I represents the automaton state, u = u(t) ∈U is the
continuous control input and U ⊂Rm is a compact set of admissible controls. Note
that, each state of automaton A is associated to a subsystem (4.1). We represent
the switchings of the system by the following sequence

σt = {(τ1, i1),(τ2, i2), . . .},

with t ≤ τ1 ≤ τ2 ≤ . . . representing the switching times sequence and i1, i2, . . . ∈ I
the switching subsystems sequence such that system (4.1) switches at time τp+1
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from subsystem ip to subsystem ip+1, with p ∈N, provided that there exists a string
σ1σ2⋯ ∈L(A) such that ρ(i j,σ j)= i j+1, for j ∈N, and such that the last state of the
sequence belongs to IF. In other words, we are asking the subsystems sequence
to correspond to an admissible sequence of states of finite state automaton A as-
sociated to a string of the language L(A) it accepts; moreover, the last state of
the sequence needs to correspond to a final state of A. The control signal for the
switching system (4.1) is given by

vt = (ut ,σt),

with ut ∶ (t,+∞)→U ∈ Ut ∶= { f ∶ (t,+∞)→U ∣ f is measurable} measurable con-
tinuous control input. Let us denote with σ i

t a sequence such that i1 ≠ i and with
Vi

t = {vi
t ∣ vi

t = (ut ,σ i
t )} the switching control signals sequence. Now, let us con-

sider an infinite horizon cost functional with discount factor defined as follows

J(x, i,v) =
∞

∫
0

l(x(t), i(t),u(t))e−λ tdt +
∣σ

i
0∣

∑
k=1

κ(ik−1, ik)e−λτk ,

where v ∈ Vi
0 is the switching control signal, l ∶ Rn × I ×U → R+ is a continu-

ous function representing the running cost, uniformly bounded and Lipschitz-
continuous on Rn, λ > 0 represents the discount factor and partial function κ ∶
I ×I → R+ represents the switching cost satisfying the following properties: for
all i, j,k ∈ I for which κ is defined, it holds that

κ(i, j) > 0, κ(i, i) = 0 and κ(i, j) ≤ κ(i,k)+κ(k, j).

In other words, transitioning from a state to another always has a positive cost,
maintaining the same state incurs in no transitioning cost and transitioning to a
certain state through an intermediate one is always more expensive then transi-
tioning directly to that state. Let us define the value function V ∶ Rn ×I → R+ as
follows

V(x, i) ∶= inf
v∈Vi

0

J(x, i,v).

As shown in [10], the value function V is the unique viscosity solution of the
switching HJB equation:

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V(x, i)−min
σ∈Σ
{κ(i,ρ(i,σ))+V(x,ρ(i,σ))} ,

λV(x, i)+ sup
u∈U
{−∇xV(x, i) ⋅ f (x, i,u)− l(x, i,u)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 0, (4.2)

where ∇xV represents the gradient of V with respect to x.



4.1 Switching Hamilon-Jacobi-Bellman equation 31

Since (4.2) involves a non-linear partial differential equation, in general there
is no closed form solution for such equation. Some works such as [2, 5, 35, 49]
develop various numerical procedures for computing approximate solutions.

In particular, [5] presents an approximation scheme based on a finite approxi-
mation of state and control spaces and a discretization in time. Roughly speaking,
in (4.2) one can approximate∇v(x) f (x,u)≃h−1(v(x+h f (x,u))−v(x)), where h is
a small positive real number that represents an integration time. In this way, (4.2)
becomes

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V(x, i)−min
σ∈Σ
{κ(i,ρ(i,σ))+V(x,ρ(i,σ))} ,

λV(x, i)+ sup
u∈U
{−1

h [V(x+h f (x, i,u), i)−V(x, i)]− l(x, i,u)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 0,

and, by approximating (1+λh)−1 ≃ (1−λh), (1+λh)−1h ≃ h, one obtains the
following switching HJB equation in discrete time

Vh(x, i) =min
⎧⎪⎪⎨⎪⎪⎩

min
σ∈Σ
{κ(i,ρ(i,σ))+Vh(x,ρ(i,σ))} ,

min
u∈U
{(1−λh)Vh(x+h f (x, i,u), i)+hl(x, i,u)}

⎫⎪⎪⎬⎪⎪⎭
. (4.3)

For a more rigorous derivation of (4.3), again, see [5].
Let us now discretize the state space considering a grid computed on a finite

set of vertices S = {xs}s∈V ⊂Rn, with V ⊆N and ∣V ∣ = N. As an example consider
the triangulation shown in Figure 4.1.

xi

x+hf( x,u )
i ki

Figure 4.1: Approximation of the HJB equation on a triangulation with four con-
trols.
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Evaluating (4.3) on S, we get (∀s ∈ V)

Vh(xs, i) =min
⎧⎪⎪⎨⎪⎪⎩

min
σ∈Σ
{κ(i,ρ(i,σ))+Vh(xs,ρ(i,σ))} ,

min
u∈U
{(1−λh)Vh(x+h f (xs, i,u), i)+hl(xs, i,u)}

⎫⎪⎪⎬⎪⎪⎭
. (4.4)

To further simplify (4.4), for each state i ∈ I of automaton A it is possible to
discretize the control space, substituting U with a finite set of controls {u`}` ∈L(i),
so that we can rewrite (4.4) as follows

Vh(xs, i) =min

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
σ∈Σ
{κ(i,ρ(i,σ))+Vh(xs,ρ(i,σ))} ,

min
`∈L(i)

{(1−λh)Vh(x+h f (xs, i,u`), i)+hl(xs, i,u`)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (4.5)

For each state i ∈I , set vector z(i) ∶= [z1(i), . . . ,zN(i)]T = [Vh(x1, i), . . . ,Vh(xN , i)]T ,
in this way w ∈RN represents the value of the value cost function V(⋅, i) on the grid
vertices. Note that, for each s ∈V , ` ∈L(i), the right-hand side of (4.5) is affine with
respect to z(i), so that Problem (4.5) can be rewritten as

z(i) =⋀
⎧⎪⎪⎨⎪⎪⎩
⋀
σ∈Σ

{Iz(ρ(i,σ))+κ(i,ρ(i,σ)} , ⋀
`∈L(i)

{A`z(i)+b`}
⎫⎪⎪⎬⎪⎪⎭
, (4.6)

where I ∈ RN×N denotes the identity matrix and for each ` ∈ L(i), A` ∈ RN×N
+ are

suitable non-negative matrices and b` ∈RN
+ are suitable non-negative vectors.

Let us now define vector z ∶= [z(1)T , . . . ,z(∣I ∣)T ]T and represent problems (4.6)
for i ∈ I , all at once as follows

z = ⋀
`∈L

{A`z+b`} , (4.7)

where L ∶= ⋃
i∈I
{L(i)}∪Σ. Further, if ` ∈L(i) for some i ∈ I , recalling that ⊗ repre-

sents the Kronecker product (1.7), then A` ∶= 1ii⊗A`, with 1ii ∈R∣I ∣×∣I ∣ represent-
ing the all zero matrix with the ii-th element equal to 1, and

[b`]k ∶=
⎧⎪⎪⎨⎪⎪⎩

[b`(i)]p , if k = iN + p, with p ∈ {1, . . . ,N}
1
λ
, otherwise.

(4.8)

Otherwise, if ` ∈ Σ, then, for each i ∈ I , j ∶= ρ(i,σ) ∈ I , A` ∶= 1i j ⊗ I, with 1i j ∈
R∣I ∣×∣I ∣ representing the all zero matrix with the i j-th element equal to 1, and

[b`]k ∶=
⎧⎪⎪⎨⎪⎪⎩

κ(i,`), if k ∈ {iN, . . . , i(N +1)−1}
1
λ
, otherwise.

(4.9)
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In this way, the problem of solving the discretized version (4.5) of (4.2) is
equivalent to the following optimization problem

max
z

∣I ∣N

∑
j=1
[z] j

subject to 0 ≤ z ≤ ⋀
`∈L

{A`z+b`} , z ≤ 1
λ
,

(4.10)

which takes the form of Problem (1.3).

4.2 Path planning for autonomous vehicles
Consider the following kinematic car-like model with rear-wheel drive and steer-
ing front wheels (see Figure 4.2):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẇ = vcosθ

ẏ = vsinθ

θ̇ =ω

(4.11)

with (w,y) representing the position of the center of the real wheel axle, θ the
orientation angle and pair (v,ω) constituting the control input in which v and ω

are, respectively, the linear and angular velocity. The relation between the angular
velocity ω and the front wheel steering angle δ in given by relation ω = 1

l v tanδ ,
where l is the distance between the front and rear axle of the car-like model. The
input control variables are constrained as follows

vmin < v < vmax δmin < δ < δmax,

with vmin < 0 and vmax > 0; Figure 4.3 shows the resulting set of admissible controls
for v and ω assuming vmin = −vmax and δmin = −δmax.

Among the many works devoted to solving the path-planning problem (see, for
instance, [34, 41, 39, 23]); here, for computing a time-optimal parking maneuver
for system (4.11), we follow the approach given by the HJB equation. However, if
we take under consideration the fact that each change of direction from forward to
reverse or viceversa is a time consuming operation for a road vehicle, it is desir-
able to maintain such changes limited. In order to generate a time-optimal path that
takes into account these constraints, one can exploit the switching HJB equation
presented in (4.2). In this scenario, the state space is given by a bounded and con-
nected domain Ω ⊆R2× [0,2π) possibly partitioned into two spaces: Ωfree, repre-
senting the free space, and Ωobstacle, representing the space occupied by obstacles.
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Figure 4.2: Car-like model.
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vmax
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-ωmax
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Figure 4.3: Set of admissible controls (v,ω).

These two spaces are such that Ωfree∪Ωobstacle =Ω, and Ωfree∩Ωobstacle =∅.
Now, in order to use (4.2) we first need to define a finite state automaton and the
switching control system associated to it. Here, we will present three possible fi-
nite state automata for addressing the path planning problem with limitations over
direction changes.
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4.2.1 Model 1
The first finite state automaton, depicted in Figure 4.4, is A1 = (I1,Σ1,ρ1,F,I1) in
which I1 = {F,R}, with F and R representing, respectively, the control subsystem
in which the car-like vehicle has a forward gear engaged and the one in which
the backward gear is engaged; Σ1 = {c}, with symbol c representing a gear switch,
without loss of generality, initial state equal to F, and the set of final states coincid-
ing with I1. The language accepted by A1 is given by L(A1)=Σ∗1 with ρ1(F,c)=R
and ρ1(R,c) = F. Note that in this model, even though there is no given limit on
the number of gear changes, we recall the presence of the switching cost function
κ defined as κ(F,R) = κ(R,F) = κ0, where κ0 > 0 represents the time needed to
the road vehicle for performing a direction change, which is always greater than
zero. In this way, a longer trajectory with a lower number of direction changes can
have a lower cost than a shorter one with a larger number of directions changes.

F

start

R

c

c

Figure 4.4: Finite state automaton A1.

4.2.2 Model 2
A second model considers finite state automaton A2 = (I2,Σ2,ρ2,P,{0,1}), in
which I2 = {1, . . . ,P}∪{I}, with P ∈N representing the maximum number of gear
switchings allowed, i ∈ {1, . . . ,P} representing the residue number of gear switch-
ings allowed and I representing an invalid state. Assuming the initial state is P, that
is, the state in which the number of residue gear switchings is the largest possible,
Σ2 = {c}, with symbol c representing a gear switch, and the set of final states given
by {0,1}. The language accepted by A2 is given by L(A2) = ΣP

2 ∪ΣP−1
2 , see (2.2),

with ρ2(i,c) = i−1, for i ∈ {1, . . . ,P} and ρ2(0,c) = I. Figure 4.5 represents finite
state automaton A2. As in the previous model, here we have only two control sub-
systems representing the car-like vehicle with a forward or reverse gear engaged;
assuming without loss of generality that f (x(t),P,u(t)), see (4.1), is the dynamic
associated to the forward gear engaged, f (x(t), i,u(t)), with i ∈ {0, . . . ,P}, will be
the dynamic associated to the forward gear engaded if i mod 2 = P mod 2, other-
wise it will be the one associated to the reverse gear engaged.
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Figure 4.5: Finite state automaton A2.

4.2.3 Model 3
The third finite state automaton we present is the following one: A3 = (I3,Σ3,ρ3,
B,I3), in which I3 = {Fl,Fc,Fr,Rl,Rc,Rr}, with F and R representing, respec-
tively, the vehicle with the forward and backward gear engaged, whilst l, c and r
represent the front steering wheels of the vehicle, respectively, completely turned
left, straight and right (i.e., with δ = δmin, δ = 0 and δ = δmax). Any state of the au-
tomaton is a final one. The alphabet is given by Σ3 = {↖,↑,↗,↙,↓,↘}. Assuming
the initial state is Rc, that is, the state in which the vehicle has the reverse gear
engaged and δ = 0, Figure 4.6 represents the possible state transitions from state
Rc; state transitions from other states are analogous to this one. The language ac-
cepted by A3 is given by L(A3) = Σ∗3 , (see (2.2)), and the transition function ρ3 is
defined as follows: (∀s ∈ I3)

ρ3(s,↖) = Fl, ρ3(s, ↑ ) = Fc, ρ3(s,↗) = Fr,
ρ3(s,↙) =Rl, ρ3(s, ↓ ) =Rc, ρ3(s,↘) =Rr.

In this model, we have as many control subsystems as the number of states of A3
representing the vehicle with a forward or reverse gear engaged and with front
wheels completely turned left, straight or right. Also, notice that, as in the first
model, even though there is no given limit over the number of gear or direction
changes, again, the switching cost function κ provides an implicit bound over the
number of state switchings.

4.2.4 Model 4
If one wishes to use the model represented by the finite state automaton A3 but
with the additional constraint over the maximum number of allowed gear switch-
ings of finite state automaton A2, one could combine them replacing each state of
A2 with a copy of A3. More precisely, it is possible to define a finite state automa-

ton A4 = (I4,Σ4,ρ4, RcP,{A1,A0}), in which I4 =
P
⋃
i=0
Ai∪{I}, with P ∈N playing

the same role as in finite state automaton A2, sets Ai = {Fli,Fci,Fri,Rli,Rci,Rri},
for i ∈ {0, . . . ,P}, and I representing an invalid state. Alphabet Σ4 is equal to Σ3
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Figure 4.6: State transitions from state R for finite state automaton A3.

and transition function ρ4 operates as follows: (∀i ∈ {1, . . . ,P}) (∀s ∈Ai)

ρ4(s,↖) = Fli−1, ρ4(s, ↑ ) = Fci−1, ρ4(s,↗) = Fri−1,

ρ4(s,↙) =Rli−1, ρ4(s, ↓ ) =Rci−1, ρ4(s,↘) =Rri−1,

and (∀s ∈A0) (∀σ ∈ Σ4) ρ4(s,σ) = I. We set as initial state RcP, but it could be
any state s ∈AP. The set of final states is given by {A1,A0}, that is, any state in
which at most one more gear switching is allowed.

4.3 Numerical experiments
As an example, let us considered three typical urban parking scenarios (two with
a parallel parking and one with a perpendicular parking), and finite state automata
A2 with P = 10. The numerical solution of the switching HJB equation was com-
puted and several paths were generated starting from different initial states of the
vehicle. In Figures 4.7, 4.8 and 4.9 we show some of the computed paths.
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Figure 4.7: Paths for a parallel parking.
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Figure 4.8: Paths for a perpendicular parking.
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Figure 4.9: Paths for a parallel parking.



Chapter 5

An iterative algorithm for
Problem (1.3)

In this chapter we analyze in further details Problems (5.4) and (5.4) and present
iterative procedures for computing their solutions. Then, we examine the conver-
gence speed of methods for solving Problem (5.4), in particular, we discuss how
orderings for the newly introduced procedures can massively influence the speed
of convergence. In conclusion, we test the introduced algorithms over different
kind of randomly-generated networks.
The contents of this chapter are based on [12, 31] and improve the results of [32].

5.1 Characterization of Problem (1.1)

In this chapter we consider Problem (1.1) with the additional assumption g(a) ≥ a
which guarantees that the feasible set of Problem (1.1)

Σ = {x ∈Rn ∣ a ≤ x ≤ g(x)}

is such that Σ ≠∅ (i.e., non-empty).
For any Γ ⊆ Σ define ⋁Σ Γ as the smallest x ∈ Σ, if it exists, such that (∀y ∈

Γ) x ≥ y. According to Definition 2.6, we call ⋁Σ Γ the least upper bound of Γ (in
Σ). Note that ⋁Σ∅ = a. The following proposition shows that ⋁Σ Γ exists.

Proposition 5.1. For any Γ ⊆ Σ, ⋁Σ Γ exists.

Proof. We first prove that, if x,y ∈ Σ, then x ∨ y ∈ Σ (recall that ∨ denotes the
component-wise maximum). It is obvious that x∨ y ≥ a. Thus, we only need to
prove that, for each j ∈ {1, . . . ,n}, [y∨x] j ≤ g j(x∨y). To see this, let us assume, w.
l. o. g. , that [x] j ≤ [y] j. Since y ∈ Σ, then [y] j ≤ g j(y). Moreover, g j(y) ≤ g j(y∨x)
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since g j is monotone non decreasing, so that [y∨ x] j ≤ g j(y∨ x) as we wanted to
prove.

Let us consider a generic Γ ⊆ Σ and call ⋁U Γ the least upper bound of Γ in
U = {x ∈Rn ∣ a ≤ x ≤U}. Since U is the cartesian product of complete lattices, it is
a complete lattice itself, hence, the existence of x⋆ =⋁U Γ is ensured since Γ ⊆ U .
We now want to show that x⋆ ∈ Σ. By definition of U , x⋆ ≥ a, so we only need to
prove that x⋆ ≤ g(x⋆). By contradiction, assume that x⋆ /≤ g(x⋆), then, this means
that there exists a component i of x⋆ such that [x⋆]i > [g(x⋆)]i, but, since x⋆ is the
least upper bound of Γ in U , there must be an element x ∈Γ such that [x]i > [g(x)]i,
which goes against the fact that Γ⊆Σ. Hence, x⋆ ∈Σ. Now, by Lemma 2.28 of [17],
if ⋁U Γ ∈ Σ, then ⋁Σ Γ exists and equals ⋁U Γ.

From now on we will omit Σ as subscript of ⋁Σ and assume that for any Γ ⊆Σ,
⋁Γ denotes the least upper bound of Γ in Σ. Similarly, define ⋀Γ as the largest x,
if it exists, such that (∀y ∈ Γ) x ≤ y, we call ⋀Γ the greatest lower bound of Γ. For
x,y ∈ Σ, note that x∨y =⋁{x,y}, x∧y =⋀{x,y}.

The following proposition characterizes set Σ with respect to operations ∨, ∧.
In particular, it shows that the component-wise minimum and maximum of each
subset of Σ belongs to Σ.

Proposition 5.2. Σ(≤,∧,∨) is a complete lattice.

Proof. It is a consequence of the Duality Principle (Theorem 2.5) and of Theo-
rem 2.10. Indeed Σ has a bottom element (a) and ⋁Γ exists for any non-empty
Γ ⊂ Σ by Proposition 5.1.

A consequence of the previous definition is that also ⋀Γ exists.
The following proposition shows that the least upper bound x+ of Σ is a fixed

point of g and corresponds to an optimal solution of Problem (1.1).

Proposition 5.3. Set
x+ =⋁Σ ,

then i)
x+ = g(x+) (5.1)

ii) x+ is an optimal solution of problem (1.1).

Proof. i) It is a consequence of Knaster-Tarski Theorem (see Theorem 2.16), since
Σ(≤,∧,∨) is a complete lattice and g is an order-preserving map.

ii) By contradiction, assume that x+ is not optimal, this implies that there exists
x ∈Σ such that f (x) > f (x+). Being f monotonic increasing, this implies that there
exists i ∈ {1, . . . ,n} such that [x]i > [x+]i, which implies that x+ ≠⋁Σ.



5.1 Characterization of Problem (1.1) 41

Remark 5.4. The previous proposition shows that the actual form of function f
is immaterial to the solution of Problem (1.1), since the optimal solution is x+ for
any strictly monotonic increasing objective function f .

The following defines a relaxed solution of Problem (1.1), obtained by allow-
ing an error on fixed-point condition (5.1).

Definition 5.5. Let ε be a positive real constant, x is an ε-solution of (1.1) if

x ≥ a, and ∥x−g(x)∥∞ < ε .

The following proposition presents a sufficient condition that guarantees that
a sequence of ε-solutions approaches x+ as ε converges to 0.

Proposition 5.6. If there exists δ > 0 such that

(∀x,y ≥ a) ∥g(x)−g(y)∥∞
∥x−y∥∞

∉ [1−δ ,1+δ ] (5.2)

then, there exists a constant M such that, for any ε > 0, if x ∈Rn is an ε-solution
of (1.1), then

∥x−x+∥∞ ≤Mε .

Proof. Let x be an ε-solution. By Proposition 5.3 we have that

x−x+ = g(x)−g(x+)+ξ ,

where ∥ξ∥∞ ≤ ε .
By assumption (5.2), either ∥g(x)−g(y)∥∞ > (1+δ)∥x−y∥∞ or ∥g(x)−g(y)∥∞ <

(1−δ)∥x−y∥∞. In the first case,

∥x−x+∥∞ ≥ −∥ξ∥∞+(1+δ)∥x−x+∥∞ ,

in the second case,

∥x−x+∥∞ ≤ ∥ξ∥∞+(1−δ)∥x−x+∥∞ .

In both cases it follows that

∥x−x+∥∞ ≤ δ
−1∥ξ∥∞ ≤ δ

−1
ε .
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Figure 5.1: Representation of an instance of Problem (1.1) in which condi-
tions (5.2) does not hold.

Remark 5.7. If condition (5.2) is not satisfied, an ε-solution of (1.1) can be very
distant from the optimal solution x+. Figure 5.1 refers to a simple instance of
Problem (1.1) with x ∈ R, so that g is a scalar function. The optimal value x+

corresponds to the maximum value of x such that x ≤ g(x). The figure also shows
x̃, which is an ε-solution, for the value of ε depicted in the figure. In this case there
is a large separation between x+ and x̃. Note that in this case function g does not
satisfy (5.2).

Remark 5.8. If g is a contraction, namely, if there exists γ ∈ [0,1), such that
(∀x,y ∈Rn) ∥g(x)−g(y)∥∞ ≤ γ∥x−y∥∞ (a subcase of (5.2)), then x+ can be found
with a standard fixed point iteration

⎧⎪⎪⎨⎪⎪⎩

x(k+1) = g(x)
x(0) = x0,

(5.3)

and, given ε > 0, an ε-solution x of (1.1) can be computed with Algorithm 1. This
algorithm, given an input tolerance ε , function g and an initial solution x0 ∈Rn,
repeats the fixed point iteration x=g(x) until x satisfies the definition of ε-solution,
that is, until the infinity norm of error vector ξ = x− g(x) is smaller than the
assigned tolerance ε .

The special structure of Problem (1.1) leads to a solution algorithm that is
much more efficient than Algorithm 1 in terms of overall number of elementary
operations. As a first step, we associate a graph to constraint g of Problem (1.1).
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Algorithm 1 Fixed Point Iteration.
1: INPUT: initial vector x0, tolerance ε , function g.
2: OUTPUT: vector x.
3:
4: x ∶= x0
5:
6: repeat
7: xold ∶= x
8: x ∶= g(x)
9: ξ ∶= xold−x

10: until ∥ξ∥∞ ≤ ε

11:
12: return x

5.1.1 Selective update algorithm for Problem (1.1)

In Algorithm 1, each time line 8 is evaluated, the value of all components of x is
updated according to the fixed point iteration x = g(x), even though many of them
may remain unchanged. We now present a more efficient procedure for computing
an ε-solution of (1.1), in which we update only the value of those components of x
that are known to undergo a variation. The algorithm is composed of two phases,
an initialization and a main loop. In the initialization, x is set to an initial value x0
that is known to satisfy x0 ≥ x+. Then the fixed point error ξ = x−g(x) is computed
and all indexes i ∈ {1, . . . ,n} for which [ξ ]i > ε are inserted into a priority queue,
ordered with respect to a policy that will be discussed later. In this way, at the
end of the initialization, the priority queue contains all indexes i for which the
corresponding fixed point error [ξ ]i exceeds ε .

Then, the main loop is repeated until the priority queue is empty. First, we
extract from the priority queue the index i with the highest priority. Then, we
update its value by setting [x]i = gi(x) and update the fixed point error ξ by setting
[ξ ] j = [x] j −g j(x) for all variables j ∈N (i). This step is actually the key-point
of the algorithm: we recompute the fixed point error only of those variables that
correspond to components of g that we know to have been affected by the change
in variable [x]i. Finally, as in the initialization, all variables j ∈N (i) such that the
updated fixed-point error satisfies [ξ ] j > ε are placed into the priority queue.

The order in which nodes are actually processed depends on the ordering of
the priority queue. The choice of this ordering turns out to be critical in terms of
computational cost for the algorithm, as can be seen in the numerical experiments
in Section 5.3.3. Various orderings for the priority queue will be introduced in
Section 5.3.3 and the ordering choice will be discussed in more detail. The pro-
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cedure stops once the priority queue becomes empty, that is, once none of the
updated nodes undergoes a significant variation. As we will show, the correctness
of the algorithm is independent on the choice of the ordering of the priority queue.

We may think of graph G as a communication network in which each node
transmits its updated value to its neighbours, whilst all other nodes maintain their
value unchanged.

These considerations lead to Algorithm 2. This algorithm takes as input an ini-
tial vector x0 ∈Rn, a tolerance ε , function g and the lower bound a. From lines 4
to 6 it initializes the solution vector x, the priority queue Q and the error vec-
tor ξ . From line 8 to 12 it adds into the priority queue those component nodes
whose corresponding component of the error vector ξ is greater than tolerance ε .
The priority with which a node is added to the queue will be discussed in Sec-
tion 5.3.3, here symbol * denotes a generic choice of priority. Lines from 14 to 24
constitute the main loop. While the queue is not empty, the component node i with
highest priority is extracted from the queue and its value is updated. Then, each
component node j which is a neighbor of i is examined; the variation of node j
is updated and, if it is greater than tolerance ε , neighbor j is added to the pri-
ority queue. After this, the component corresponding to node i in ξ is set to 0.
Finally, once the queue becomes empty, the feasibility of solution x is checked
and returned along with vector x. We remark that Algorithm 2 can be seen as a
generalization of Algorithm 1 in [9], where a specific priority queue (namely, one
based on the values of the nodes) was employed. Also note that Algorithm 2 can
be seen as a bound-tightening technique (see, e. g., [6]) which, however, for this
specific class of problem is able to return the optimal solution.

The following proposition characterizes Algorithm 2 and proves its correct-
ness.

Proposition 5.9. Assume that x0 ≥ x+ and g(x0) ≤ x0, then Algorithm 2 satisfies
the following properties:

i) At all times, x ≥ x+ and x ≥ g(x).
ii) After evaluation of line 6 and after every evaluation of line 23, x = g(x)+ξ

and ξ ≥ 0.
iii) The algorithm terminates in a finite number of steps for any ε > 0.
iv) If Problem (1.1) is feasible, output “feasible” is true.
v) If output “feasible” is true, then x is an ε-feasible solution of Problem (1.1).

Proof. i) We prove both properties by induction. Note that x is updated only at
line 16 and that line 16 is equivalent to [x]i = gi(x). For m ∈ N, let x(m) be the
value of x after the m-th evaluation of line 16. Note that x(0) = x0 ≥ x+ and that x
is changed only at step 16. Then [x(m)]i = gi(x(m−1)) ≥ gi(x+) = [x+]i, where we
have used the inductive hypothesis x(m−1) ≥ x+ and the fact that g(x+) = x+ (by
Proposition 5.3).
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Algorithm 2 Solution algorithm for Problem (1.1)
1: INPUT: initial vector x0, tolerance ε , function g, vector a.
2: OUTPUT: vector x, bool f easible.
3:
4: x ∶= x0
5: Q ∶=∅
6: ξ ∶= x−g(x)
7:
8: for i ∈ {1, . . . ,n} do
9: if [ξ ]i > ε then

10: Q ∶= Enqueue(Q,(i,∗))
11: end if
12: end for
13:
14: while Q ≠∅ do
15: (Q, i) ∶=Dequeue(Q)
16: [x]i ∶= [x]i− [ξ ]i
17: for all j ∈N (i) do
18: [ξ ] j ∶= [x] j −g j(x)
19: if [ξ ] j > ε then
20: Q ∶= Enqueue(Q,( j,∗))
21: end if
22: end for
23: [ξ ]i ∶= 0
24: end while
25:
26: f easible ∶= x ≥ a
27:
28: return x, f easible

Further, note that g(x(0)) = g(x0) ≤ x0 by assumption. Moreover, [x(m)]i =
gi(x(m− 1)) = gi(x(m)), since gi does not depend on [x]i by assumption and
variables x(m), x(m−1) differ only on the i-th component. By the induction hy-
pothesis, [x(m)]i = gi(x(m−1)) ≤ [x(m−1)]i which implies that x(m) ≤ x(m−1).
Thus, in view of the monotonicity of g and of the inductive assumption, for k ≠ i,
[g(x(m))]k = gk(x(m)) ≤ gk(x(m−1)) ≤ [x(m−1)]k = [x(m)]k.

ii) Condition x = g(x)+ξ is satisfied after evaluating 6. Moreover, after eval-
uating line 23, [x]i = [g(x)]i + [ξ ]i and all indices j for which potentially [x] j ≠
[g(x)] j + [ξ ] j belong to set N (i). For these indices, line 18 re-enforces [x] j =
[g(x)] j + [ξ ] j. The fact that ξ ≥ 0 is a consequence of point i).



5.2 Characterization of Problem (1.3) 46

iii) At each evaluation of line 16 the value of a component of x is decreased
by at least ε . If the algorithm did not terminate, at some iteration we would have
that x ≱ x+ which is not possible by i).

iv) If Problem (1.1) is feasible, then x+ ≥ a is its optimal solution. By point 1),
x ≥ x+ ≥ a and output “feasible” is true.

v) When the algorithm terminates, Q is empty, which implies than ∥x−g(x)∥∞ ≤
ε , if “feasible” is true, it is also x ≥ a and x is an ε-solution.

5.2 Characterization of Problem (1.3)

In this section, we consider Problem (1.3) and we propose a solution method that
exploits its linear structure and is more efficient than Algorithm 2. First of all, we
show that Problem (1.3) belongs to class (1.1). To this end, set

P̀ ∶= I−D`, (5.4)

where I ∈Rn×n is the identity matrix and, for ` ∈L, D` ∈Rn×n is a diagonal matrix
that contains the elements of A` on the diagonal. Note that here and in what follows
we assume that all the diagonal entries of A` are lower than 1. Indeed, for values
larger than or equal to 1 the corresponding constraints are redundant and can be
eliminated. The proof of the following proposition is in the appendix.

Proposition 5.10. Problem (1.3) can be reformulated as a problem of class (1.1).
Namely, this is achieved by setting

Â` ∶= P̀ −1(A`−D`), b̂` ∶= P̀ −1b` (5.5)

and ĝ(x) = ⋀
`∈L
{Â`x+ b̂`}∧U.

Proof. Given A ∈ Rn×n let us define, for i ∈ {1, . . . ,n} the sum of the elements of
row i

si(A) ∶=
n
∑
j=1
[A]i j. (5.6)

Note that, for any ` ∈ L, matrix P̀ defined in (5.4) is positive diagonal since, by
assumption, all elements of D` are less than 1. One can rewrite the inequality of
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Problem (1.3) as

0 ≤ ⋀
`∈L

{A`x−(D`−D`+ I)x+b`}

⇔ 0 ≤ ⋀
`∈L

{(A`−D`)x−(I−D`)x+b`}

⇔ 0 ≤ ⋀
`∈L

{(I−D`)−1(A`−D`)x−x+(I−D`)−1b`}

⇔ x ≤ ⋀
`∈L

{(I−D`)−1(A`−D`)x+(I−D`)−1b`}

⇔ x ≤ ⋀
`∈L

{P̀ −1(A`−D`)x+ P̀ −1b`}

Then, set Â` ∶= P̀ −1(A`−D`) and b̂` ∶= P̀ −1b` and ĝ(x)= ⋀
`∈L
{ĝ`(x)}∧U , where,

for ` ∈L,
ĝ`(x) ∶= Â`x+ b̂`. (5.7)

Note that ĝ is monotonic (since all entries of Â` are nonnegative) and for i ∈
{1, . . . ,n}, [ĝ]i is independent on xi (since the diagonal entries of Â` are null).
Note also that b̂` is nonnegative. Hence, Problem (1.3) takes on the form of Prob-
lem (1.1).

Then we apply the results for Problem (1.1) to Problem (1.3). The following
proposition is a corollary of Proposition 5.3.

Proposition 5.11. Problem (1.3) is feasible and its optimal solution x+ satisfies
the two equations

x+ = ⋀
`∈L

{Â`x++ b̂`}∧U . (5.8)

x+ = ⋀
`∈L

{A`x++b`}∧U . (5.9)

Proof. Setting g(x) = ⋀
`∈L
{Â`x+ b̂`}∧U , note that g(0) = ⋀

`∈L
{b̂`}∧U ≥ 0, which

implies that Σ ≠∅ and that Problem (1.1) is feasible. Then, by Proposition 5.3, its
solution x+ satisfies x+ = g(x+), which implies (5.8) and (5.9).

The following result, needed below, can be found, e. g., in [25].

Lemma 5.12. Let L ∈ R+ and {gi ∣ i ∈ I}, with I set of indices, be a family of
functions gi ∶Rn→Rn such that

(∀x,y ∈Rn) ∥gi(x)−gi(y)∥∞ ≤ L∥x−y∥∞.

Then, function g(x) ∶=⋀
i∈I
{gi(x)} also satisfies

(∀x,y ∈Rn) ∥g(x)−g(y)∥∞ ≤ L∥x−y∥∞.
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The following proposition illustrates that if the infinity norm of all matrices
A` is lower than 1, equation (5.9) is actually a contraction.

Proposition 5.13. Assume that there exists a real constant γ ∈ [0,1) such that

(∀` ∈L) ∥A`∥∞ < γ, (5.10)

then function
ḡ(x) = ⋀

`∈L

{A`x+b`}∧U . (5.11)

is a contraction in infinity norm, in particular,

(∀x,y ∈Rn) ∥ḡ(x)− ḡ(y)∥∞ ≤ γ∥x−y∥∞ .

Proof. Note that, for any ` ∈ L, function h(x) = A`x+b` is a contraction, in fact,
for any x,y ∈Rn

∥h(x)−h(y)∥∞ = ∥A`(x−y)∥∞ ≤ γ∥x−y∥∞ .

Then, the thesis is a consequence of Lemma 5.12.

The following result proves that, under the same assumptions, also (5.8) is a
contraction. The proof is in the appendix.

Proposition 5.14. Assume that (5.10) holds and set

Â` = P̀ −1(A`−D`) and b̂` = P̀ −1b`,

with P̀ and D` defined as in (5.4). Let

ĝ(x) = ⋀
`∈L

{Â`x+ b̂`}∧U, (5.12)

then ĝ is a contraction in infinity norm, in particular,

(∀x,y ∈Rn) ∥ĝ(x)− ĝ(y)∥∞ ≤ γ̂∥x−y∥∞ ,

where

γ̂ ∶=max
`∈L
i∈V

{
γ − [D`]ii
1− [D`]ii

} . (5.13)

Moreover, it holds that γ̂ ≤ γ .
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Proof. Given P̀ as in (5.4) for i ∈ {1, . . . ,n} and ` ∈L we have that

si(Â`) ≤
γ − [D`]ii
[P̀ ]ii

,

where si is defined in (5.6) and Â` is defined as in (5.5). Let us note that

max
`∈L
i∈V

{si(Â`)} ≤max
`∈L
i∈V

{
γ − [D`]ii
[P̀ ]ii

} =max
`∈L
i∈V

{
γ − [D`]ii
1− [D`]ii

} = γ̂,

where γ̂ is defined as in (5.13). Note that the term on the left-hand side is the max-
imum of si(A) for all possible i ∈ {1, . . . ,n} and for all possible matrices A ∈Rn×n

which can be obtained by all possible combinations of the rows of matrices A`,
with ` ∈L. We prove that γ̂ ≤ γ , under the given assuptions. Indeed, it is immediate
to see that function

S(d) ∶= γ −d
1−d

is monotone decreasing for any d ∈ [0,γ]. We remark that, for any ` ∈ L, ∥Â`∥∞ ≤
γ̂ . Now, for any x ∈ Rn, let us define ĝU(x) ∶=U , while for any ` ∈ L, ĝ`(x) is
defined as in (5.7). It is immediate to see that (∀x,y ∈ Rn) ∥ĝi(x)− ĝi(y)∥∞ ≤
γ̂∥x− y∥∞, for any i ∈ {1, . . . ,n}∪ {U}. Then, by Lemma 5.12 we have that, for
ĝ(x) = ⋀

k∈L∪{U}
ĝk(x), it holds that (∀x,y ∈Rn) ∥ĝ(x)− ĝ(y)∥∞ ≤ γ̂∥x−y∥∞, that is,

ĝ is a contraction.

Hence, in case (5.10) is satisfied, Problem (1.3) can be solved by Algorithm 1
using either g = ḡ in (5.11) or g = ĝ in (5.12). As we will show in Section 5.3, the
convergence is faster in the second case.

Algorithm 2 can be applied to Problem (1.3), being a subclass of (1.1). Any-
way, the linear structure of Problem (1.3) allows for a more efficient implemen-
tation, detailed in Algorithm 3. This algorithm takes as input an initial vector
x0 ∈Rn, a tolerance ε , matrices A` and vectors b`, for ` ∈ L, representing function
g and the lower bound a. It operates like Algorithm 2 but it optimizes the opera-
tion performed in line 18 of Algorithm 2. Lines from 7 to 10 initialize the error
vector ξ and they correspond to line 6 of Algorithm 2. Whilst, lines 22 from to 25
are the equivalent of line 18 of Algorithm 2 in which the special structure of Prob-
lem (1.3) is exploited in such a way that the updating of the j-th component of
vector ξ only involves the evaluation of L scalar products and L scalar sums, with
L = ∣L∣, as opposed to (up to) nL scalar products and nL scalar sums of Algorithm 2
applied to Problem (1.3).
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Algorithm 3 Solution algorithm for Problem (1.3).
1: INPUT: initial vector x0, tolerance ε , matrices A`, vectors b` for ` ∈ L, vector

a.
2: OUTPUT: vector x.
3:
4: x ∶= x0
5: Q ∶=∅
6:
7: for all ` ∈L do
8: η` ∶= A`x+b`
9: end for

10: ξ ∶= x− ⋀
`∈L

η`

11:
12: for all i ∈ {1, . . . ,n} do
13: if ([ξ ]i > ε) then
14: Q ∶= Enqueue(Q,(i,∗))
15: end if
16: end for
17:
18: while Q ≠∅ do
19: (Q, i) ∶=Dequeue(Q)
20: [x]i = [x]i− [ξ ]i
21: for all j ∈ {1, . . . ,n} such that i ∈N ( j) do
22: for all ` ∈L do
23: [η`] j ∶= [η`] j − [A`] ji ⋅ [ξ ]i
24: end for
25: [ξ ] j ∶= [x] j −min

`∈L
[η`] j

26: if [ξ ] j > ε then
27: Q ∶= Enqueue(Q,( j,∗))
28: end if
29: end for
30: [ξ ]i = 0
31: end while
32:
33: f easible ∶= x ≥ a
34:
35: return x, f easible
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5.3 Convergence speed discussion
In this section, we will compare the convergence speed of various methods for
solving Problem (1.3). First of all, note that Problem (1.3) can be reformulated
as the linear problem (1.4). Hence, it can be solved with any general method for
linear problems. As we will show, the performance of such methods is poor since
they do not exploit the special stucture of Problem (1.4).

5.3.1 Fixed point iterations
In case hypothesis (5.10) is satisfied, as discussed in Section 5.2, Problem (1.3)
can be solved by Algorithm 1 using either g = ḡ in (5.11) or g = ĝ in (5.12). In
other words, x+ can be computed with one of the following iterations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(k+1) = ḡ(x(k)) = ⋀
`∈L

{A`x(k)+b`}∧U

x(0) = x0,
(5.14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(k+1) = ĝ(x(k)) = ⋀
`∈L

{Â`x(k)+ b̂`}∧U

x(0) = x0,
(5.15)

where x0 ∈Rn is an arbitrary initial condition and Â` and b̂` are defined as in (5.5).
We can compare the convergence rate of iterations (5.14) and (5.15). The

speed of convergence of iteration (5.14) can be measured by the convergence rate:

χ̄ ∶=max
x∈RN

x≠x+

{
∥ḡ(x)− ḡ(x+)∥∞
∥x−x+∥∞

} .

Similarly, we call χ̂ the convergence rate of iteration (5.15). Note that, by Propo-
sition 5.13, χ̄ ≤ γ and, by Proposition 5.14, χ̂ ≤max`∈L

i∈V
{ γ−[D`]ii

1−[D`]ii
} ≤ γ . Hence, in

general, we have a better upper bound of the convergence rate of iteration (5.15)
than (5.14).

Now, let us assume that matrices {A`}`∈L are dominant diagonal, that is, there
exists ∆ ∈ [0, 1

2) such that, (∀i ∈ {1, . . . ,n}) (∀` ∈L)

[A`]ii ≥ (1−∆)γ and
n
∑
j=1
j≠i

[A`]i j ≤ ∆γ. (5.16)

Recall that in the dynamic programming framework discussed in Chapter 4 this is
attained when h is small enough. In the following theorem, whose proof is proved
in the Appendix, we state that, if ∆ is small enough, iteration (5.15) has a faster
convergence than iteration (5.3).
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Proposition 5.15. Assume that (5.10) holds and let ∆ ∈ [0, 1
2) be such that matrices

{A`}`∈L satisfy (5.16). Then, if the starting point x0 is selected in such a way that
x0 ≥ x+, then the solutions of both (5.14) and (5.15) satisfy (∀k ∈ N) x(k) ≥ x+.
Moreover, if

∆ ∈ [0,
√

1−γ −(1−γ)
γ

) ,

then for any x ≥ x+

∥ĝ(x)−x+∥∞ < ∥ḡ(x)−x+∥∞.

Proof. We first remark that x0 ≥ x+ implies xk ≥ x+ and ḡ(xk) ≥ x+ for any k, where
ḡ is defined as in (5.11). Then, we provide a lower bound for ∥ḡ(xk)− ḡ(x+)∥∞.
Let Ā ∈ Rn×n

+ and b̄ ∈ Rn
+ be such that Āxk + b̄ = ḡ(xk). Note that Ā is obtained by

a combination of the rows of matrices A`, with ` ∈ L. In other words, for each
i ∈ {1, . . . ,n}, [Ā]i∗ = [A`i]i∗ for some `i ∈L. Then, in view of xk ≥ x+, x+ ≤ Āx++ b̄
and Ā ≥ 0,

∥ḡ(xk)− ḡ(x+)∥∞ =∥Āxk+ b̄−x+∥
∞
≥ ∥Āxk+ b̄−(Āx++ b̄)∥

∞
= ∥Ā(xk−x+)∥

∞
≥

≥∥diag(Ā)(xk−x+)∥
∞
≥ (1−∆)γ ∥xk−x+∥∞ ,

where the last inequality follows from (5.16). Then, the result follows by observ-
ing that

∆γ

1−(1−∆)γ
< (1−∆)γ ⇔ ∆γ < (1−∆)γ −(1−∆)2γ

2 ⇔

⇔ γ
2
∆

2+2(1−γ)γ∆−(1−γ)γ < 0⇔ ∆ ∈ [0,
√

1−γ −(1−γ)
γ

) .

5.3.2 Speed of Algorithm 3 and priority queue policy
As we will see in the numerical experiments section, Algorithm 3 solves Prob-
lem (1.3) more efficiently than iterations (5.14) and (5.15).

As we already mentioned in the previous section, the order in which we update
the values of the nodes in the priority queue does not affect the convergence of the
algorithm but impacts heavily on its convergence speed. We implemented four
different queue policies, detailed in the following.

Node variation

The priority associated to an index i is given by the absolute value of the variation
of [x]i in its last update. In this case, in lines 10, 20 of Algorithm 2 and lines 14, 27
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of Algorithm 3, symbol ∗ is replaced by the corresponding component of ξ of the
node added to the queue (see Table 5.1). This can be considered a “greedy” policy,
in fact we update first the components of the solution [x]i associated to a larger
variation [ξ ]i, in order to have a faster convergence of the current solution x to x+.

Node values

The priority associated to an index i in the priority queue is given by −[x]i. In
this case, in lines 10, 20 of Algorithm 2 and lines 14, 27 of Algorithm 3, symbol
∗ is replaced by the opposite of the value of the node added to the queue (see
Table 5.1). The rationale of this policy is the observation that, in Problem (1.4),
components of x with lower values are more likely to appear in active constraints.
This policy mimics Dijkstra’s algorithm, in fact the indexes associated to the so-
lution components with lower values are processed first.

FIFO e LIFO policies

The two remaining policies implement respectively the First In First Out (FIFO)
policy, (i.e., a stack) and the Last In First Out (LIFO) policy (i.e., a queue).
Namely, in case of FIFO, the nodes are updated in the order in which they are
inserted in the queue. In case of LIFO, they are updated in reverse order.

In order to formally implement these two policies in a priority queue, we need
to introduce a counter k initialized to 0 and incremented every time a node is
added to the priority queue. In lines 10, 20 of Algorithm 2 and lines 14, 27 of
Algorithm 3, symbol ∗ is replaced by k in case we want to implement a LIFO
policy and by −k for implementing a FIFO policy (see Table 5.1). These steps are
required to formally represent these two policies in Algorithm 3. As said, these
two policies can be more simply implemened with an unordered queue (for FIFO
policy) or a stack (for LIFO policy). The rationale of this two policies is to avoid
the overhead of managing a priority queue. In fact, inserting an entry into a priority
queue of n elements has a time-cost of O(logn), while the same operation on an
unordered queue or a stack has a cost of O(1). Note that, with these policies, we
increase the efficiency in the management of the set of the indexes that have to be
updated at the expense of a possible less efficient update policy.

5.3.3 Numerical experiments
In this section, we test Algorithm 3 on randomly generated problems of class (1.3).
We carried out two sets of tests. In the first one, we compared the solution time
of Algorithm 3 with different priority queue policies with a commercial solver for
linear problems (Gurobi). In the second class of tests, we compared the number
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Policy Alg.2 line 10, Alg.3 line 14 Alg.2 line 20, Alg.3 line 27
Variation Q ∶= Enqueue(Q,(i,[ξ ]i)) Q ∶= Enqueue(Q,( j,[ξ ] j))

Value Q ∶= Enqueue(Q,(i,−[x]i)) Q ∶= Enqueue(Q,( j,−[x] j))
FIFO Q ∶= Enqueue(Q,(i,k)) Q ∶= Enqueue(Q,( j,k))

k ∶= k+1 k ∶= k+1
LIFO Q ∶= Enqueue(Q,(i,−k)); Q ∶= Enqueue(Q,( j,−k))

k ∶= k+1 k ∶= k+1

Table 5.1: Possible priority queue policies.

of scalar multiplications executed by Algorithm 3 (with different priority queue
policies) with the ones required by the fixed point iteration (5.14).

Random problems generation

The following procedure allows generating a random problem of class (1.3) with
n variables. The procedure takes the following input parameters:

• U ∈R+: an upper bound for the problem solution,

• MA ∈R+: maximum value for entries of A1, . . . ,AL,

• Mb ∈R+: maximum value for entries of b1, . . . ,bL,

• G1, . . . ,GL: graphs with n nodes.

A problem of class (1.3) is then obtained with the following operations, for
i ∈ {1, . . . ,L}:

• Set Di as the adiacency matrix of graph Gi,

• define Ai as the matrix obtained from Di by replacing each nonzero entry of
Di with a random number generated from a uniform distribution in interval
[0,MA],

• define bi ∈Rn so that each entry is a random number generated from a uni-
form distribution in interval [0,Mb].

Graphs G1, . . . ,GL are obtained from standard classes of random graphs, namely:

• the Barabási-Albert model [4], characterized by a scale-free degree distri-
bution,
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• the Newman-Watts-Strogatz model [38], that originates graphs with small-
world properties,

• the Holm and Kim algorithm [26], that produces scale-free graphs with high
clustering.

In our tests, we used the software NetworkX [22] to generate the random graphs.

Figure 5.2: A graph with 30 nodes obtained with the Barabási-Albert model.

Test 1: solution time

We considered random instances of Problem (1.3) obtained with the following
parameters: U = 105, MA = 0.5, Mb = 1, L = 4, using random graphs with a varying
number of nodes obtained with the following models.

• The Barabási-Albert model (see [4] for more details), in which each new
node is connected to 5 existing nodes.

• The Watts-Strogatz model (see [38]), in which each node is connected to
its 2 nearest neighbors and with shortcuts created with a probability of 3
divided by the number of nodes in the graph.

• The Holm and Kim algorithm (see [26]), in which 4 random edges are added
for each new node and with a probability of 0.25 of adding an extra random
edge generating a triangle.
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Figure 5.3: A graph with 30 nodes obtained with the Watts-Strogatz model.

Figures 5.5, 5.6 and 5.7 compare the solution times obtained with Algoritm 3
(using different queue policies) to those obtained with Gurobi. The figures refer to
random graphs generated with Barabási-Albert model, Watts-Strogatz model and
Holm and Kim algorithm, respectively. For each figure, the horizontal axis rep-
resents the number of variables (that are logarithmically spaced) and the vertical-
axis represents the solution times (also logarithmically spaced), obtained as the
average of 5 tests. For each graph type, the policies based on FIFO and node vari-
ation appear to be the best performing ones. In particular, for problems obtained
from the Barabasi-Albert model (Figure 5.5) and Holm and Kim algorithm (Fig-
ure 5.7), the solution time obtained with these two policies are more than three
orders of magnitude lower than Gurobi. Moreover, the solution time with FIFO
policy is more than one order of magniture lower than Gurobi for problems ob-
tained from Watts-Strogatz model (Figure 5.6). Note that, in every figure, Gurobi
solution times are almost constant for small numbers of variables. A possible ex-
planation could be that Gurobi performs some dimension-independent operations
which, at small dimensions, are the most time-consuming ones. Note also that,
in Figures 5.5 and 5.7, the solution times for node value and LIFO policies are
missing starting from a certain number of variables. This is due to excessively
high computational times, however, the first collected data points are enough for
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Figure 5.4: A graph with 30 nodes obtained with the Holm and Kim algorithm.

drawing conclusions on the performances of these policies which, as the number
of variables grows, perform far worse than Gurobi.
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Figure 5.5: Solution times for graphs with growing number of nodes generated
with Barabási-Albert model.
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Figure 5.6: Solution times for graphs with growing number of nodes generated
with Newman-Watts-Strogatz model.
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Figure 5.7: Solution times for graphs with growing number of nodes generated
with Holm and Kim algorithm.
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Figure 5.8: Scalar multiplications for different values of tolerance ε on a graph
generated with Barabási-Albert model.
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Figure 5.9: Scalar multiplications for different values of tolerance ε on a graph
generated with Newman-Watts-Strogatz model.
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Figure 5.10: Scalar multiplications for different values of tolerance ε on a graph
generated with Holm and Kim algorithm.

Test 2: number of operations

We considered three instances of Problem (1.3), obtained from the three classes of
random graphs considered in the previous tests, with the same parameters and with
500 nodes. For each instance, we considered 10 logarithmically spaced values of
tolerance ε between 10−1 and 10−10. We solved each problem with the following
methods:

• the preconditioned fixed point iteration (5.15),

• Algorithm 3 with FIFO, LIFO, node value and node variation policies.

The results are reported in Figures 5.8, 5.9 and 5.10. These figures show that the
number of product operations required with node variation policy is much lower
(of one order of magnitude) than those required by the fixed point iteration (5.14).
The iteration based on FIFO, even though slightly less performing than the the
node variation policy, also gives comparable results to it. Observe that, even
though the iteration based on node variation requires (slightly) less scalar mul-
tiplications than the one based on FIFO, its solution times are worse than those
obtained with the FIFO policy, since the management of the priority queue based
on node variation is computationally more demanding than a First-In-First-Out
data structure. The iteration based on nodes value provides poor performances
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even with high tolerances. Also, the iteration based on LIFO gives poor compu-
tational results, underperforming the fixed point iteration (5.14) for tolerances
smaller than 10−7, in Figures 5.8 and 5.10, and smaller than 10−6, in Figure 5.9.
Note that, in Figures 5.8, 5.9 and 5.10, below a certain value of the tolerance, the
numbers of scalar multiplications for the priority queue based on node value are
missing due to excessively high computational times. However, the first collected
data points are enough for drawing conclusions on the performances of this policy.

As a concluding remark, we observe that all the experiments confirm our
previous claim about the relevance of the ordering in the priority queue. While
convergence is guaranteed for all the orderings we tested, speed of convergence
and number of scalar multiplications turn out to be rather different between them.
In what follows we give a tentative explanation of such different performances.
The good performance of the node variation policy can be explained with the fact
that such policy guarantees a quick reduction of the variables values. The LIFO
and value orderings seem to update a small subset of variables before proceeding
to update also the other variables. This is particularly evident in the case of
the value policy, where only variables with small values are initially updated.
The FIFO ordering guarantees a more uniform propagation of the updates, thus
avoiding stagnation into small portions of the feasible region.
As a future development we could investigate the performances of probabilistic
orderings, of those presented earlier with random perturbations or a combination
of these in which the ordering policy changes from one to another cyclically.



Chapter 6

A parallel algorithm for
Problem (1.3)

In this chapter, our aim is to provide a parallel procedure that allows to reduce
the computational cost of iteration (5.3) in terms of scalar multiplications. When
applying iteration (5.3), the value of all nodes is updated even though many nodes
values may undergo a negligible variation, hence performing unnecessary mul-
tiplications. The main idea is to update only a specific subset of nodes: we will
consider the nodes which have undergone a sufficiently large variation in their
values in the previous iteration and update in the current one only the neighbors
of these nodes.
In this chapter, which is based on [30], first, we introduce the updating procedure
and then we present a convergence result. As a closing section, we provide some
numerical experiments.

6.1 The consensus iteration
Given the multigraph G = (V,E ,L,ϕ,ψ) associated to Problem 1.3 (recall that, as
we saw in Chapter 4, we can think about set of labels L as a set of controls), and
given a tolerance ε > 0, let us define Cε ∶Rn

+×Rn
+→Rn

+ as follows:
(∀x,y ∈Rn

+) (∀i ∈ V)

[Cε(x,y)]i ∶=
⎧⎪⎪⎨⎪⎪⎩

[g(y)]i, if (∃ j ∈ V) i ∈N ( j) and ∣[y] j − [x] j∣ > ε

[y]i, otherwise,
(6.1)
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where g is defined as in (5.11) and N (i) is defined as in (1.6), for each i ∈ V . And
consider the following sequence

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̃ε(k+2) =Cε(x̃ε(k), x̃ε(k+1))
x̃ε(1) = g(x0)
x̃ε(0) = x0,

(6.2)

where

(∀i ∈ V) [x0]i =
max
`∈L
∥bp∥∞

1−γ
, (6.3)

and γ < 1 is the Lipschitz constant of g. Note that this choice of x0 is such that
(∀i ∈ V) [x0]i ≥ [x⋆]i, in fact,

∥x⋆∥∞ =∥⋀
`∈L

{A`x⋆+b`}∥
∞

≤ ∥⋁
`∈L

A`x⋆∥
∞

+∥⋁
`∈L

b`∥
∞

≤ γ ∥x⋆∥∞+max
`∈L
∥b`∥∞ ,

from which follows that

∥x⋆∥∞ ≤
max
`∈L
∥b`∥∞

1−γ
.

Sequence (6.2) represents the procedure described earlier in which a node value
is updated only if at least one of its direct predecessors value has changed more
than the threshold ε . In other words, the procedure can be described as follows:

1. Set x̃ε(0) ∶= x0, x̃ε(1) ∶= g(x0) and k = 2.

2. Set I ∶= {i ∈ V ∣ ∣[x̃ε(k)]i− [x̃ε(k−1)]i∣ > ε}.

3. If ∣I∣ > 0, then for all i ∈ I updateN (i), increment k and go to (2). Otherwise,
stop.

In the following, we will show that sequence (6.2) converges to the same limit
as (5.3) but requiring a lower number of row-column product operations.
In this section we present the algorithms through which one can compute the ap-
proximated fixed point given a certain tolerance ε > 0. Algorithm 1 describes the
classical fixed point iteration whilst Algorithm 4 illustrates the consensus itera-
tion (6.1)–(6.2) for reducing the number of row-column product operations. Both
algorithms are written in pseudocode.
Now, if we think about G as a communication network, through iteration (6.2),
at each step, we choose a set of nodes which broadcast their value to their direct
successors, whilst all other nodes maintain their value unchanged. We will show
that the network converges to an equilibrium state that is the solution of (5.3).
This method resembles the broadcast-based consensus algorithms presented in
works such as [3] and [20]. This is why, in the following, we call (6.2) consensus
iteration.
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Algorithm 4 Consensus Iteration.
1: INPUT: initial vector x0, tolerance ε , matrices A`, vectors b` for ` ∈L.
2: OUTPUT: vector x.
3:
4: x = x0
5:
6: xold ∶= x
7: x ∶= ⋀

`∈L
{A`x+b`}

8: ξ ∶= xold−x
9:

10: repeat
11: I ∶= {i ∈ V ∣ [ξ ]i > ε}
12: N (I) ∶= { j ∈ V ∣ (∃i ∈ I) j ∈N (i)}
13: for all j ∈N (I) do
14: [xold] j ∶= [x] j
15: [x] j ∶= ⋀

`∈L
{[A`] j∗ x+ [b`] j}

16: [ξ ] j ∶= [xold] j − [x] j
17: end for
18: until ∥ξ∥∞ ≤ ε

19:
20: return x

6.2 Convergence discussion
In the following, we will show that for any ε > 0, iteration (6.2) is convergent to
a certain x̃⋆ε ∈Rn. Moreover the choice of a smaller ε leads to a value of x̃⋆ε that is
closer to the fixed point x⋆ of (5.11). More formally, the main result of this chapter
is the following one.

Theorem 6.1. If (∀` ∈L) ∥A`∥∞ ≤ γ , with γ < 1, then the sequence of (6.1)–(6.2)
is such that for any ε > 0, the limit

lim
k→∞

x̃ε(k),

exists finite and, setting x̃⋆ε ∶= lim
k→∞

x̃ε(k), it holds that

lim
ε→0

x̃⋆ε = x⋆. (6.4)

Moreover, for all ε > 0, the following inequality holds

∥x̃⋆ε −x⋆∥∞ ≤
2ε

1−γ
.
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In other words, as ε → 0, x̃⋆ε tends to x⋆ and the error norm is bounded from above
by 2ε

1−γ
.

Consider iteration (6.1)–(6.2) with ε = 0, namely, (∀x,y ∈Rn) (∀i ∈ V)

[C(x,y)]i =
⎧⎪⎪⎨⎪⎪⎩

[T(y)]i, if (∃ j ∈ V) i ∈N ( j) and ∣[y] j − [x] j∣ > 0
[y]i, otherwise.

(6.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̃(k+2) =C(x̃(k), x̃(k+1))
x̃(1) = g(x0)
x̃(0) = x0.

(6.6)

Lemma 6.2. Sequence {x̃(k)}k∈N, defined in (6.6), is bounded from below by
{x(k)}k∈N, defined in (5.3), that is, (∀k ∈N) x̃(k) ≥ x(k).

Proof. By the monotonicity of {x(k)}k∈N and the definition of itera-
tion (6.5)–(6.6), it follow immediately that (∀k ∈N) (∀i ∈V) [x̃(k)]i ≥ [x(k)]i.

Since (∀k ∈N) x(k) ≥ x⋆, by Lemma 6.2 we have that (∀k ∈N) x̃(k) ≥ x⋆.

Remark 6.3. (∀x ∈Rn) x =C(x,x).

Since {x̃(k)}k∈N is non-increasing and bounded from below by x⋆, it has to be con-
vergent. Let x̃⋆ ∶= lim

k→∞
x̃(k), what we would like to ensure is that x̃⋆ = x⋆. Actually,

we are about to state a stronger fact.

Proposition 6.4. Sequences {x̃(k)}k∈N and {x(k)}k∈N coincide, that is, (∀k ∈
N) x̃(k) = x(k).

Proof. Let us prove the result by induction.

• Base case: x̃(0) = x(0) and x̃(1) = x(1) by definition.

• Inductive step: let p ∈N be such that

(∀k ∈N) k ≤ p⇒ x̃(k) = x(k),

let us prove that x̃(p+1) = x(p+1).
By contradiction, let assume that

x̃(p+1) ≠ x(p+1), (6.7)

then, by Lemma 6.2,

(∃i ∈ V) [x̃(p+1)]i > [x(p+1)]i.
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This means that [x̃(p+1)]i = [x̃(p)]i = [x(p)]i, that is,

(∀ j ∈ V) i ∈N ( j)⇒ [x̃(p)] j = [x̃(p−1)] j.

But this implies, by inductive hypothesis, that

(∀ j ∈ V) i ∈N ( j)⇒ [x(p)] j = [x(p−1)] j.

So

[x(p+1)]i = [g(x(p))]i = [⋀
`∈L

{A`x(p)+b`}]
i
=

=min
`∈L

⎧⎪⎪⎨⎪⎪⎩
∑

j∈N−1(i)
[A`]i j[x(p)] j + [b`]i

⎫⎪⎪⎬⎪⎪⎭
=

=min
`∈L

⎧⎪⎪⎨⎪⎪⎩
∑

j∈N−1(i)
[A`]i j[x(p−1)] j + [b`]i

⎫⎪⎪⎬⎪⎪⎭
=

= [g(x(p−1))]i = [x(p)]i.

This reasoning can be applied to every i ∈ V such that [x̃(p+1)]i >
[x(p+1)]i, and what we obtain is that x̃(p + 1) = x(p + 1), which goes
against hypothesis (6.7)  . Since assumption (6.7) led to a contradiction,
it must be x̃(p+1) = x(p+1).

Given the arbitrariness of p the thesis holds true for all p ∈N.

The result stated in Proposition 6.4 means that, for the initial condition x0 as
in (6.3), iteration (6.6) converges to the solution of problem (5.11). Let us now
consider the family

{Cε ∶Rn×Rn→Rn}
ε>0

of functions defined as in (6.1) depending on parameter ε > 0.

Lemma 6.5. Given sequence {x̃ε(k)}k∈N as defined in (6.2), it holds that (∀ε >
0) (∀k ∈N) x̃ε(k) ≥ xε(k), where {xε(k)}k∈N is defined as follows:

⎧⎪⎪⎨⎪⎪⎩

xε(k) = x(k), for k = 1,2, or if (k > 2 and ∥x(k−1)−x(k−2)∥ > ε)
xε(k) = xε(k−1), otherwise.

Proof. The thesis of Lemma 6.5 follows by the same reasoning made for proving
Lemma 6.2 applied to sequences {x̃ε(k)}k∈N and {xε(k)}k∈N.

Since (∃k ∈N) (∃x⋆ε ∈Rn
+) xε(k) = x⋆ε , sequence {x̃ε(k)}k∈N is non-increasing and

bounded from below by x⋆ε , so it has to be convergent.
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Proof of Theorem 6.1. In order to show (6.4) we need to provide an upper bound
over the distance between sequences {x̃ε(k)}k∈N and {xε(k)}k∈N. By definition,
for k ∈ {0,1}, we know that x̃ε(k) = xε(k). Now let n̄ ∈N be such that

x̃ε(n̄) ≠ xε(n̄) and (∀m ∈N) m < n̄⇒ x̃ε(m) = xε(m).

By Lemma 6.5,
C ∶= {i ∈ V ∣ [x̃ε(n̄)]i > [xε(n̄)]i} ≠∅.

This means that

(∀i ∈ C) (∀ j ∈ V) i ∈N ( j)⇒ ∣[x̃ε(n̄−1)] j − [x̃ε(n̄−2)] j∣ < ε.

Now, since

(∀` ∈L) (∀i ∈ V)
n
∑
j=1
[A`]i j ≤ γ,

it holds that ∥x̃ε(n̄)− xε(n̄)∥ = ∥Cε(xε(n̄− 2),xε(n̄− 1))− g(xε(n̄− 1))∥ ≤ γε =∶
E(0). This reasoning applies to any x̃ε(m), with m ∈ N such that m ≥ n̄, when
estimating

∥Cε(x̃ε(m−1), x̃ε(m))−g(x̃ε(m))∥.

Let us define

(∀m ∈N) E(m+1) ∶= E(0)+γE(m) =
m+1
∑
p=0

γ
pE(0) =

m+2
∑
p=1

γ
p
ε.

If we now consider step n̄+1, we have:

∥x̃ε(n̄+1)−xε(n̄+1)∥ =∥x̃ε(n̄+1)−g(x̃ε(n̄))+g(x̃ε(n̄))−xε(n̄+1)∥ ≤
≤∥x̃ε(n̄+1)−g(x̃ε(n̄))∥+∥g(x̃ε(n̄))−xε(n̄+1)∥ =
=∥Cε(x̃ε(n̄−1), x̃ε(n̄))−g(x̃ε(n̄))∥+
+∥g(x̃ε(n̄))−g(xε(n̄))∥ ≤
≤ E(0)+γE(0) = E(1).

And, for any m ∈N, it holds that

∥x̃ε(n̄+m+1)−xε(n̄+m+1)∥ ≤∥Cε(x̃ε(n̄+m−1), x̃ε(n̄+m))−g(x̃ε(n̄+m))∥+
+∥g(x̃ε(n̄+m))−g(xε(n̄+m))∥ ≤
≤ E(0)+γE(m) = E(m+1).

However, we know that {x̃ε(k)}k∈N is stationary, in fact, if it were not like that,
there would exists a node i ∈V which updates its value an infinite number of times.



6.3 Numerical experiments 68

Now, letting d ∶= ∣[x̃ε(n̄−1)]i− [x⋆ε ]i∣, after at most ⌊d/ε⌋+1 updatings of i, that
component would be smaller that the i-th component of x⋆ε , which contradicts
Lemma 6.5. So, since

(∀ε > 0) (∃ñ = ñ(ε) ∈N) (∀m ∈N) m ≥ ñ ⇒ (x̃ε(m) = x̃⋆ε and xε(m) = x⋆ε ),

if we let m̃ ∶= ñ− n̄, it follows that

∥x̃ε(ñ)−xε(ñ)∥ ≤ E(m̃) =
m̃+1
∑
p=1

γ
p
ε ≤

∞

∑
p=0

γ
p
ε = ε

1−γ
.

This means that
(∀ε > 0) ∥x̃⋆ε −x⋆ε ∥ ≤ cε,

with c ∶= 1
1−γ

. Moreover, lim
ε→0

x⋆ε = x⋆ and for any ε > 0 it holds that ∥x⋆ε −x⋆∥ ≤ cε ,

so we can conclude that
lim
ε→0

x̃⋆ε = x⋆

and
∥x̃⋆ε −x⋆∥ ≤ ∥x̃⋆ε −x⋆ε ∥+∥x⋆ε −x⋆∥ ≤ 2cε. (6.8)

6.3 Numerical experiments
We considered three instances of Problem (4.10) for the car-like model intro-
duced in 4.2, using the finite state automaton presented in Section 4.2.2, obtained
from three parking scenarios represented in Figure 6.1, in which a maximum
of 10 maneuvers is allowed. The state space of the car-like vehicle is given by
Ω = [−0.5,19.5]× [0,7]× [0,2π) and the average number of variables used for
discretizing Ω associated to these problems is of the order of 7 ⋅104.
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Figure 6.1: Parking scenarios.

For each instance, 10 logarithmically spaced values of tolerance ε between 10−1

and 10−10 were considered. Each instance has been solved with the following
methods:

• the preconditioned fixed point iteration (5.15),

• Algorithm 4 (the consensus iteration (6.2)) after preconditioning.

The results are given in Figures 6.2, 6.3 and 6.4. Figure 6.2 shows that the mean
number of product operations required by the consensus iteration (6.2) with pre-
conditioning is on average 30,8% smaller than the one required by the precondi-
tioned fixed point iteration (5.15). Figure 6.3 shows the mean infinity norm of the
error given by the iterations used for solving the problem, as expected, the infinity
norm associated to the consensus iteration is on average one order of magnitude
greater that the one associated to the preconditioned fixed point iteration. Note that
the error is computed considering the solution obtained from the fixed point itera-
tion with a precision of 10−16 as the exact one. Figure 6.4 compares the theoretical
upper bound obtained in (6.8) with the infinity norm of the consensus iteration er-
ror for different values of tolerance ε confirming the theoretical result. Note that,
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out of the three instances of Problem (4.10) considered, the results shown in Fig-
ure 6.4 refer to only one of these, in particular the first one, since (6.8) involves
the Lipschitz constant of g which is obviously problem dependent.
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Figure 6.2: Scalar multiplications for different values of tolerance ε .
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Figure 6.3: Errors in infinity norm for different values of tolerance ε .
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compared to the the theoretical upper bound.

As a final observation, we note that the experiments we carried out highlight the
benefit of iteration (5.4) at reducing the computational cost of iteration (6.2) by
avoiding unnecessary updates.



Chapter 7

Speed planning for autonomous
vehicles in continuous-time domain

In this chapter we address a speed planning problem similar to the one introduced
in Section 3.1, but we will solve it in the continuous time domain. In particular,
after having introduced the problem in Section 7.1 and discussed the contribution
presented in this chapter, a feasibility condition and an operator for computing
the optimal solution (Theorem 7.2) are presented in Section 7.3, along with some
numerical examples given in Section 7.4. In conclusion, Section 7.5 provides the
proof of the main result.
The results presented in this chapter are based on [13] and they are a development
of those given in [15, 16].

7.1 Minimum-time velocity planning
Let us consider the following problem

min
v∈W 1,∞([0,s f ])

s f

∫
0

v−1(s)ds (7.1a)

v−(s) ≤ v(s) ≤ v+(s), s ∈ [0,s f ], (7.1b)
α
−(s) ≤ 2v′(s)v(s) ≤ α

+(s), s ∈ [0,s f ], (7.1c)

∣k(s)∣v(s)2 ≤ β(s), s ∈ [0,s f ], (7.1d)

where W 1,∞ ([0,s f ]) is the Sobolev space on [0,s f ] of functions with first weak
derivative in L∞ ([0,s f ]) (see Definition2.28). Here, v−, v+, α−, α+ are assigned
functions, with v−, v+ non-negative. The objective function (7.1a) is the total ma-
neuver time and constraints (7.1b), (7.1c), (7.1d) limit velocity and the tangential
and normal components of acceleration.
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Problem (7.1) belongs to a class of problems that includes optimal velocity plan-
ning for manipulators and has the form

min
v∈W 1,∞([0,s f ])

s f

∫
0

v−1(s)ds

ai(s)v̇(s)v(s)+bi(s)v(s)2+ci(s) ≤ 0, i ∈ {1, . . . ,m} ,

(7.2)

where m is the number of constraints and ai,bi,ci are assigned functions. It is clear
that Problem (7.1) is a special case of Problem (7.2), obtained for a specific choice
of ai, bi, ci.
References [15, 16] present an algorithm, with linear-time computational com-
plexity with respect to the number of variables, that provides an optimal solution
of (7.1) after spatial discretization. Namely, the path is divided into n intervals of
equal length and Problem (7.1) is approximated with a finite dimensional one in
which the derivative of v is substituted with a finite difference approximation.
In this chapter, we compute directly the exact continuous-time solution of Prob-
lem (7.1) without performing a finite-dimensional reduction. The main result of
the chapter is presented in Theorem 7.2. It gives a sufficient and necessary condi-
tion for the feasibility of Problem (7.1) and presents its optimal solution, which is
computed as the pointwise minimum of the solutions of two ODEs.
The proposed method presents some resemblances with the method of “numer-
ical integration”, introduced for problems of class (7.2). For instance, [43] pro-
poses a method, based on the identification of “characteristic switching points” in
which the maximum velocity is attained. This simplifies the calculation of the op-
timal velocity profile. A related algorithm is presented in [29]. Recent paper [40]
presents various properties of numerical integration methods. Anyway, the method
we propose is simpler and more efficient since it leverages the special structure of
Problem (7.1) with respect to the more general problem (7.2).
With respect to existing literature, the new contributions provided in what follows
are the undermentioned ones:

• A necessary and sufficient condition for the feasibility of Problem (7.1) is
presented (see part i. of Theorem 7.2).

• A simple operator, based on the solution of two ordinary differential equa-
tions, that computes the optimal solution is proposed (see part ii. of Theo-
rem 7.2).

Note that these results correspond to the generalization to the continuous-time
case of the results presented in [16] for the spatially-discretized version of Prob-
lem (7.1). In fact, the work presented in this chapter shares some of its fundamen-
tal ideas with [16]. Namely:
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• The feasible set of Problem (7.1) has the algebraic structure of a lattice, if
equipped with the operations of pointwise minimum and maximum.

• The optimal solution of Problem (7.1) corresponds to the supremal element
of this lattice.

• The optimal solution of Problem (7.1) is obtained with a projection opera-
tion and its optimality is proven by the Knaster-Tarski Fixpoint Theorem.

However, solving the problem in a function space requires various nontrivial tech-
nical extensions to the proofs presented in [16].

7.2 Problem formulation
Let γ ∶ [0,s f ] → R2 be a C2 function such that (∀λ ∈ [0,s f ]) ∥γ ′(λ)∥ = 1. The
image set γ ([0,s f ]) represents the path followed by a vehicle, γ(0) the initial
configuration and γ(s f ) the final one. We want to compute the speed-law that
minimizes the overall transfer time while satisfying some kinematic and dynamic
requirements. To this end, let λ ∶ [0,t f ] → [0,s f ] be a differentiable monotone
increasing function that represents the vehicle position as a function of time and
let v ∶ [0,s f ]→ [0,+∞] be such that, (∀t ∈ [0,t f ]) λ̇(t) = v(λ(t)). In this way, v(s)
is the vehicle velocity at position s. The position of the vehicle as a function of
time is given by x ∶ [0,t f ]→R2, x(t) = γ(λ(t)), the velocity and acceleration are
given by

ẋ(t) = γ
′(λ(t))v(λ(t)),

ẍ(t) = aL(t)γ ′(λ(t))+aN(t)γ ′⊥(λ(t)),

where aL(t) = v′(λ(t))v(λ(t)) and aN(t)(t) = k(λ(t))v(λ(t))2 are, respectively,
the longitudinal and normal components of acceleration. Here k ∶ [0,s f ]→R is the
scalar curvature, defined as k(s) = ⟨γ ′′(s),γ ′(s)⊥⟩ .
We require to travel the distance s f in minimum-time while satisfying constraints
on the vehicle velocity and on its longitudinal and normal acceleration. The
minimum-time problem can be approached by searching a velocity profile v which
is the solution of Problem (7.1).
Let f ,g ∶ I →R, define f ∧g, f ∨g, as, respectively, the pointwise minimum and
maximum operations; moreover let us define the partial order ≤ as follows

f ≤ g ⇐⇒ (∀x ∈ I) f (x) ≤ g(x).
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Start configuration

Final configuration

Figure 7.1: A path to follow for an autonomous car-like vehicle.

It is convenient to make the change of variables w = v2 (see also [47]), so that
Problem (7.1) takes on the form

min
w∈W 1,∞([0,s f ])

s f

∫
0

w(s)−
1
2 ds (7.3a)

µ
−(s) <w(s) ≤ µ

+(s), s ∈ [0,s f ],
α
−(s) ≤w′(s) ≤ α

+(s), s ∈ [0,s f ],
where

µ
+(s) = v+(s)2∧ β(s)

k(s)
, µ

−(s) = v−(s)2 (7.4)

represent the upper bound of w, (depending on the velocity bound v+ and the
curvature k) and the lower bound of w, respectively.
In what follows, we actually address the following problem, which is slightly more
general than (7.3),

min
w∈W 1,∞([0,s f ])

Ψ(w)

µ
−(s) <w(s) ≤ µ

+(s), s ∈ [0,s f ], (7.5a)
α
−(s) ≤w′(s) ≤ α

+(s), s ∈ [0,s f ], (7.5b)

where Ψ ∶W 1,∞ ([0,s f ])→R is order reversing (i.e., (∀v,w ∈W 1,∞ ([0,s f ])) v ≥
w⇒Ψ(v) ≤Ψ(w)) and µ−, µ+, α−, α+ ∈ L∞ ([0,s f ]) are assigned functions with
µ−,α+ ≥ 0, α− ≤ 0. Note that the objective function (7.3a) is order reversing, so
that Problem (7.3) has the form (7.5). Consider the following:

Definition 7.1. Let Q be the subset of W 1,∞([0,s f ,]) such that µ ∈ Q if
sgn(µ ′−α+) and sgn(µ ′−α−) are Riemann integrable (i.e., in view of the bound-
edness of the sgn function, a. e. continuous), where sgn ∶R→ {−1,0,1} is defined
as

sgn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if x > 0
0, if x = 0
−1, if x < 0.
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7.3 A feasibility condition and the optimal solution
Define the forward operator F ∶Q→W 1,∞ ([0,s f ]) such that F(µ) = φ , where φ

is the solution of the following differential equation

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ ′(x) = f (x,φ) =
⎧⎪⎪⎨⎪⎪⎩

α+(x)∧µ ′(x), if φ(x) ≥ µ(x)
α+(x), if φ(x) < µ(x)

φ(0) = µ(0) .
(7.6)

Note that the solution of (7.6) exists and is unique by Theorem 2.32, since function
f is bounded on [0,s f ], the subset of [0,s f ]×R in which f is discontinuous has
measure zero and,

(∀x ∈ [0,s f ]) (∀u,y ∈R) (u−y)( f (x,u)− f (x,y)) ≤ 0.

Conversely, define the backward operator B ∶Q→W 1,∞ ([0,s f ]), such that B(µ)=
φ , where φ is the solution of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ ′(x) =
⎧⎪⎪⎨⎪⎪⎩

α−(x)∨µ ′(x), if φ(x) ≥ µ(x)
α−(x), if φ(x) < µ(x)

φ(s f ) = µ(s f ) ,
(7.7)

whose existence and uniqueness hold for the same reasons as (7.6).
Finally, define the meet operator M ∶Q→W 1,∞ ([0,s f ]) as

M(µ) = F(µ)∧B(µ). (7.8)

We claim that the meet operator M allows checking the feasibility of Prob-
lem (7.5) and that, in case Problem (7.5) is feasible, function v∗ =M(µ+) rep-
resents its optimal solution.
These statements are formalized in the following theorem which constitutes the
main result of this chapter.

Theorem 7.2. Let µ+ ∈Q, then the following statements hold:

i. Problem (7.5) is feasible if and only if function w∗ =M(µ+) satisfies

w∗ ≥ µ
− .

ii. If Problem (7.5) is feasible, then function w∗ =M(µ+) is its optimal solu-
tion.

Proofs of the results. Part i. follows from Proposition 7.11, part ii. follows from
Proposition 7.12 (see Section 7.5).
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7.4 Numerical examples

7.4.1 Example 1
As a first example consider the path shown in Figure 7.3, whose curvature is de-
fined as

k(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if s ∈ [0, l1)
kτ(s), if s ∈ [l1, l2]
1/R, if s ∈ (l2, l3)
kτ(s), if s ∈ [l3, l4]
0, if s ∈ (l4,s f ]

(7.9)

where kτ(s) is the 6-th degree Hermite polynomial used to guarantee the following
interpolation conditions:

k(l1) = k(l4) = 0,
k(l2) = k(l3) = 1/R,
k′(li) = k′′(li) = 0, i ∈ {1, . . . ,4}.
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Figure 7.2: The curvature function k in (7.9) of the curve discussed in the first
example.
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Figure 7.3: The black line represents the path, the red circle and the black cross
represent the starting point and, respectively, the end point.

In this example, the total length is s f = 200 and the minimum-time velocity
planning problem is addressed with [l1, l2, l3, l4] = [30, 40, 124.2478, 134.2478],
R = 60. The velocity bounds v+ and v− are set as follows: v+(0) = v−(0) = 0,
v+(s f ) = v−(s f ) = 22, while, for each s ∈ (0,s f ), v−(s) = 0 and v+(s) = 36.1. The
longitudinal acceleration limits are α− = −10.5 and α+ = 4, and the maximal nor-
mal acceleration is β = 7.
The following results are obtained by numerically solving equations (7.6), (7.7)
with a standart Runge-Kutta 45 integration scheme. Figure 7.4 shows the upper-
bound function µ+ obtained by (7.4) and the corresponding functions F(u) and
B(u) computed as the solution of equations (7.6) and (7.7), respectively. Fig-
ure 7.5 shows the optimal solution w∗ obtained with (7.8). In this example, the
vehicle starts with zero velocity and accelerates to the upper bound. Then, it fol-
lows the velocity bound in order to respect the maximum velocity constraint due
to the lateral acceleration on the curve. After that, at the end of the constant bound,
the vehicle accelerates and reaches a second local maximum velocity after which
it decelerates quickly in order to reach the final velocity v+(s f ).
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Figure 7.4: Example 1: The red line represents function µ+ defined in (7.4), the
blue line represents F(u) and the green line represents B(u).
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7.4.2 Example 2
As a second example, consider the same path and constraints as in the
first example, with different initial and final conditions: v−(0) = v+(0) = 0 ,
v−(s f ) = v+(s f ) = 35. Figure 7.6 shows function w∗ obtained by (7.8). In this
case, Problem (7.5) is unfeasible by Theorem 7.2, being w∗(s f ) < v−(s f )2. In
fact, the allowed maximum longitudinal acceleration is not sufficient to reach the
final condition on velocity.
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Figure 7.6: Example 2. The green line represents the velocity function B(u)(s)
while the black one depicts function w∗ =M(u). The final velocity condition is
not satisfied: w∗(s f ) ≠ v2

f .

As a third example, consider a curve obtained by a quintic polynomial curve
which interpolates coordinates x = [0, 2, 2.60, 1.75, 3], y = [0, −0.5, 0, 2, 3]
(see Figure 7.7). The velocity planning is addressed with v+(0) = v−(0) = 0,
v+(s f ) = v−(s f ) = 0 and with v−(s) = 0 and v+(s) = 1.3 for each s ∈ (0,s f ). The
longitudinal acceleration limits are α− = −0.1, α+ = 0.1, and the maximal nor-
mal acceleration β = 0.05. The resulting optimal velocity profile is plotted in Fig-
ure 7.8.
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Figure 7.7: A path obtained by quintic-splines interpolation. The black line repre-
sents the path while the circle and the cross represent the start and the end point,
respectively.
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7.5 Proofs
Given the interval I = [0,s f ], let P={u ∈ L∞(I) ∣ 0 ≤ u(s) ≤ ∥µ+∥∞ for almost every
s ∈ I}. Note that P(≤,∧,∨), with ≤ defined as in (2.1) on L∞(I), is a complete
lattice. Hence, for each subset S ⊆P, there exists a unique least upper bound u ∈P,
such that,

(∀v ∈ P) (∀w ∈ S) w ≤ v ⇐⇒ u ≤ v.

Given function χ ∶R→ {0,1} defined as follows

χ(s) =
⎧⎪⎪⎨⎪⎪⎩

1, if s ≥ 0
0, otherwise,

let us define for all x,y ∈ I, function A ∶ I× I→R as

A(x,y) =
y

∫
x

{α+(ξ)χ(y−x)+α
−(ξ)χ(x−y)}dξ . (7.10)

Define, also, operators F̄ , B̄,M̄ ∶ P→ P, such that, for µ ∈ P, F̄(µ) and B̄(µ) are
given as follows

⎧⎪⎪⎪⎨⎪⎪⎪⎩

F̄(µ)(x) = ⋀
y≤x
{µ(y)+A(y,x)}

F̄(µ)(0) = µ(0),
⎧⎪⎪⎪⎨⎪⎪⎪⎩

B̄(µ)(x) = ⋀
y≥x
{µ(y)+A(y,x)}

B̄(µ)(s f ) = µ(s f ).

and M̄(µ) = F̄(µ)∧ B̄(µ). Observe that (∀x ∈ I)

M̄(µ)(x) =⋀
y≤x
{µ(y)+A(y,x)}∧⋀

y≥x
{µ(y)+A(y,x)} =⋀

y∈I
{µ(y)+A(y,x)}. (7.11)

As we will show in Proposition 7.9, the operators we just introduced are exten-
sions of those defined, respectively, in (7.6), (7.7) and (7.8).
Recalling Definitions 2.12 and 2.13; even though we will only use the fact that op-
erators F̄ , B̄ and M̄ are order-preserving, for completeness we state the following
Proposition.

Proposition 7.3. Operators F̄, B̄ and M̄ are meet preserving and order-
preserving.
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Proof. Let u,v ∈ P, w = u∧v. We want to show that F̄(w) = F̄(u)∧ F̄(v). By defi-
nition of F̄ we have that F̄(w)(0) = F̄(u)(0)∧ F̄(v)(0) and (∀x ∈ I)

F̄(w)(x) =⋀
y≤x
{w(y)+A(y,x)} =⋀

y≤x
{(u∧v)(y)+A(y,x)} =

=⋀
y≤x
{u(y)∧v(y)+A(y,x)} =⋀

y≤x
{u(y)+A(y,x)}∧⋀

y≤x
{v(y)+A(y,x)} =

= F̄(u)(x)∧ F̄(v)(x).

The proof that B̄(u∧v) = B̄(u)∧ B̄(v) is analogous. Finally, M̄(u∧v) = F̄(u∧v)∧
B̄(u∧v) = F̄(u)∧ F̄(v)∧ B̄(u)∧ B̄(v) = F̄(u)∧ B̄(u)∧ F̄(v)∧ B̄(v) = M̄(u)∧M̄(v).
Since maps F̄ , B̄,M̄ are meet preserving, they are also order-preserving (see
Proposition 2.14).

Proposition 7.4. Function A ∶ I× I →R defined as in (7.10) is a hemi-metric, that
is, it satisfies the following properties:

i. (∀x,y ∈ I) A(x,y) ≥ 0,

ii. (∀x ∈ I) A(x,x) = 0,

iii. (∀x,y,z ∈ I) A(x,z) ≤ A(x,y)+A(y,z) (i.e., the triangular inequality holds).
Moreover, equality holds if x ≥ y ≥ z or x ≤ y ≤ z.

Proof. i. It holds, since α+ is non-negative and α− is non-positive over I.

ii. It holds trivially by definition of A.

iii. For y ≥ z ≥ x:

A(x,z) =
z

∫
x

{α+(ξ)χ(z−x)+α
−(ξ)χ(x− z)}dξ =

z

∫
x

α
+(ξ)dξ ≤

≤
y

∫
x

α
+(ξ)dξ ≤

y

∫
x

α
+(ξ)dξ −

y

∫
z

α
−(η)dη =

=
y

∫
x

α
+(ξ)dξ +

z

∫
y

α
−(η)dη =

=
y

∫
x

{α+(ξ)χ(y−x)+α
−(ξ)χ(x−y)}dξ+

+
z

∫
y

{α+(η)χ(z−y)+α
−(η)χ(y− z)}dη =

=A(x,y)+A(y,z).
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The same reasoning applies also to the case when z ≥ x ≥ y, x ≥ z ≥ y or
y ≥ x ≥ z. Next, let us show that equality holds for any x ≤ y ≤ z:

A(x,z) =
z

∫
x

{α+(ξ)χ(z−x)+α
−(ξ)χ(x− z)}dξ =

z

∫
x

α
+(ξ)dξ =

=
y

∫
x

α
+(ξ)dξ +

z

∫
y

α
+(η)dη =

=
y

∫
x

{α+(ξ)χ(y−x)+α
−(ξ)χ(x−y)}dξ +

+
z

∫
y

{α+(η)χ(z−y)+α
−(η)χ(y− z)}dη =

= A(x,y)+A(y,z).

The proof that the equality holds also for any x ≥ y ≥ z is analogous.

Proposition 7.5. Function M̄ satisfies the following properties, ∀µ ∈ P,

i. M̄(µ) ≤ µ ,

ii. M̄2(µ) = M̄(µ), where M̄2(µ) stands for M̄(M̄(µ)).

Proof. i. It is a consequence of the definition of M̄.

ii. Let us now show that F̄(M̄(µ)) = M̄(µ): the fact that F̄(M̄(µ)) ≤ M̄(µ)
follows by the definition of F̄ whilst, to prove the opposite inequality, note
that, by Proposition 7.4 and (7.11),

F̄(M̄(µ))(x) =⋀
y≤x
{M̄(µ)(y)+A(y,x)} =⋀

y≤x
{⋀

z∈I
{µ(z)+A(z,y)}+A(y,x)} ≥

≥⋀
z∈I
{µ(z)+A(z,x)} = M̄(µ)(x).

In the same way it can be proved that B̄(M̄(µ)) = M̄(µ), from which it
follows that M̄(M̄(µ)) = M̄(µ).

Proposition 7.6.

M̄(µ+) =⋁{u ∈ P ∣ u ≤ M̄(u),u ≤ µ
+}
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Proof. Set U = {u ∈ P ∣ u ≤ µ+}. Note that U(≤,∧,∨) is a sublattice of P(≤,∧,∨),
moreover, by i. of Proposition 7.5, if u ∈U , then M̄(u) ∈U . Since M̄ is order-
preserving by Proposition 7.3, by the Knaster-Tarski Fixpoint Theorem (see The-
orem 2.16)

u∗ =⋁{u ∈ P ∣ u ≤ M̄(u),u ≤ µ
+}

is such that u∗ is the greatest fixed point of M̄ such that u∗ ∈U . Let u = M̄(µ+),
by part ii. of Proposition 7.5, we know that u is also a fixed point of M̄, thus,
by definition of u∗, u∗ ≥ u. To prove that u∗ = u, that is, to prove that u is also
the greatest fixed point, it remains to show that u∗ ≤ u. To this end, assume, by
contradiction, that u∗ ≰ u. Since u∗ = M̄(u∗), u = M̄(µ+) and the fact that M̄ is
order-preserving, it follows that u∗ ≰ µ+, which contradicts the definition of u∗

 .

Remark 7.7. Given u,v ∈ P, if u ≰ v, this does not imply that u ≥ v and u ≠ v, as u
and v may not be comparable with respect to partial order ≤.

Proposition 7.8. The following two statements are equivalent:

i. Set {u ∈ P ∣ u = M̄(u), µ− ≤ u ≤ µ+} is not empty.

ii. M̄(µ+) ≥ µ−.

Proof.

ii.⇒ i.) It follows from the fact that u∗ = M̄(µ+) is such that M̄(u∗) = u∗ by part ii.
of Proposition 7.5.

i.⇒ ii.) By contradiction, assume that M̄(µ+) ≱ µ−. Choose any w ∈ P such that w =
M̄(w) and w ≤ µ+. By Proposition 7.6, M̄(w) ≤ M̄(µ+), hence w ≤ M̄(µ+),
but M̄(µ+) ≱ µ−, so w ≱ µ−. Thus, being w any fixed point of M̄ such that
w ≤ µ+, set {u ∈ P ∣ u = M̄(u), µ− ≤ u ≤ µ+} is empty  .

Proposition 7.9. If µ ∈Q, then F̄(µ), B̄(µ) ∈W 1,∞(I) satisfy a. e.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F̄(µ)′(x) =
⎧⎪⎪⎨⎪⎪⎩

α+(x)∧µ ′(x), if F̄(µ)(x) ≥ µ(x)
α+(x), if F̄(µ)(x) < µ(x)

F̄(µ)(0) = µ(0),
(7.12)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B̄(µ)′(x) =
⎧⎪⎪⎨⎪⎪⎩

α−(x)∨µ ′(x), if B̄(µ)(x) ≥ µ(x)
α−(x), if B̄(µ)(x) < µ(x)

B̄(µ)(s f ) = µ(s f ).
(7.13)
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Proof. Let J = {x ∈ I ∣ sgn(µ ′−α+) is continuous at x}. Note that, since µ ∈Q, J
contains almost all elements of I. Let x ∈ J, then

lim
h→0+

F̄(µ)(x+h)− F̄(µ)(x)
h

= lim
h→0+

h−1
⎡⎢⎢⎢⎢⎣
⋀

y≤x+h
{µ(y)+A(y,x+h)}− F̄(µ)(x)

⎤⎥⎥⎥⎥⎦
=

= lim
h→0+

h−1[(⋀
y≤x
{µ(y)+A(y,x+h)}− F̄(µ)(x)) ∧

∧
⎛
⎝ ⋀x<y≤x+h

{µ(y)+A(y,x+h)}− F̄(µ)(x)
⎞
⎠

⎤⎥⎥⎥⎥⎦

(7.14)

Since A(y,x + h) = A(y,x)+A(x,x + h) by Proposition 7.4, the first parenthesis
of (7.14) reduces to

⋀
y≤x
{µ(y)+A(y,x+h)}− F̄(µ)(x) = F̄(µ)(x)+A(x,x+h)− F̄(µ)(x) = A(x,x+h).

Being sgn(µ ′ − α+) continuous at x, it is possible to choose h > 0 suffi-
ciently small such that sgn(µ ′ −α+) is constant on interval [x,x+ h]. Set J+ =
{x ∈ J ∶ µ ′(x)−α+(x) > 0} and J− = J∖J+. Then, the second parenthesis of (7.14)
can be rewritten as

⋀
x<y≤x+h

{µ(y)+A(y,x+h)}−F̄(µ)(x)=
⎧⎪⎪⎨⎪⎪⎩

µ(x+h)− F̄(µ)(x), if x ∈ J−

µ(x)+A(x,x+h)− F̄(µ)(x), if x ∈ J+,

since in the former case the minimum of µ(y)+A(y,x+h) over [x,x+h] is attained
at x+h, whilst in the latter is attained at x.
Hence, we have that

lim
h→0+

F̄(µ)(x+h)− F̄(µ)(x)
h

=

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
h→0+

h−1 [A(x,x+h)∧(µ(x+h)− F̄(µ)(x))] , if x ∈ J−

lim
h→0+

h−1 [A(x,x+h)∧(µ(x)+A(x,x+h)− F̄(µ)(x))] , if x ∈ J+

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α+(x)∧ lim
h→0+

h−1 (µ(x+h)− F̄(µ)(x)) , if x ∈ J−

α+(x)∧ lim
h→0+

h−1 (µ(x)+A(x,x+h)− F̄(µ)(x)) , if x ∈ J+
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α+(x)∧µ ′(x), if x ∈ J− and F̄(µ)(x) ≥ µ(x)
α+(x)∧+∞ = α+(x), if x ∈ J− and F̄(µ)(x) < µ(x)
α+(x) = α+(x)∧µ ′(x), if x ∈ J+ and F̄(µ)(x) ≥ µ(x)
α+(x)∧+∞ = α+(x), if x ∈ J+ and F̄(µ)(x) < µ(x)

=
⎧⎪⎪⎨⎪⎪⎩

α+(x)∧µ ′(x), if F̄(µ)(x) ≥ µ(x)
α+(x), if F̄(µ)(x) < µ(x).

Note that, by definition of F̄ , F̄(µ)(x)≤ µ(x)must hold. In conclusion, we proved
that F̄(u) ∈W 1,∞(I) and satisfies (7.12).
Applying the same reasoning it can be proved that B̄(u) ∈W 1,∞(I) and satis-
fies (7.13).

Proposition 7.10. Assume that µ+ ∈Q and let w ∈ P, then w is feasible for Prob-
lem (7.5) (i.e., it satisfies constraints (7.5a) and (7.5b)), if and only if µ− ≤w ≤ µ+

and M̄(w) =w.

Proof. ⇒) Assume that w is feasible for Problem (7.5), then w satisfies a. e.
w′ ≤ α+. Thus, φ = w is the solution of (7.6) for µ = w, which implies that
F̄(w) = w. Analogously B̄(w) = w, so that M̄(w) = w. Moreover, since w
satisfies the bounds of Problem (7.5), it follows that µ− ≤w ≤ µ+.

⇐) Condition (7.5a) holds by hypothesis. Since M̄(w) = w, then it must be
F̄(w) = w. In fact, if by contradiction F̄(w) < w, M̄(w) ≤ F̄(w) < w, which
contradicts the assumption  . Then F̄(w) =w, implies that, a. e., F̄(w)′ =w′

which by definition of F̄(w)′ in (7.6), implies that, a. e., w′ ≤ α+. Analo-
gously, it must be B̄(w) = w which implies that, a. e. w′ ≥ α− and condi-
tion (7.5b) holds.

Proposition 7.11. Assume that µ+ ∈Q. Then, Problem (7.5) is feasible if and only
if M̄(µ+) ≥ µ−.

Proof. ⇒) Let w be a feasible solution of Problem (7.5). Then, by Propo-
sition 7.10, M̄(w) = w ≤ µ+. Hence, being M̄ order-preserving, M̄(µ+) ≥
M̄(w) ≥ µ−.

⇐) w = M̄(µ+) satisfies M̄(w) =w (by part ii. of Proposition 7.5) and µ+ ≤w ≤
µ− (by hypothesis). Hence, by Proposition 7.10, w is a feasible solution of
Problem (7.5).

Proposition 7.12. If µ+ ∈Q and Problem (7.5) is feasible, then w∗ = M̄(µ+) is its
optimal solution.
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Proof. By contradiction, assume that there exists a feasible w̃ such that Ψ(w̃) <
Ψ(w∗). Since w̃ is feasible, Proposition 7.10 implies that M̄(w̃) = w̃. Moreover,
since Ψ is order reversing, w̃ ≰ w∗. This is not possible since w∗ =⋁{w ∈ P ∣ w ≤
M̄(w),w ≤ µ+} ≥ w̃, by Proposition 7.6  .



Bibliography

[1] R. Adams and J. Fournier. Sobolev Spaces, volume 140 of Pure and Applied
Mathematics. Elsevier, 2nd edition, June 2003.

[2] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf. Discrete-time nonlinear
hjb solution using approximate dynamic programming: Convergence proof.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
38(4):943–949, Aug 2008.

[3] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione. Broadcast
gossip algorithms for consensus. IEEE Transactions on Signal Processing,
57(7):2748–2761, July 2009.

[4] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[5] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of
Hamilton-Jacobi-Bellman equations. Springer Science & Business Media,
2008.

[6] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and
bounds tightening techniques for non-convex minlp. Optimization Methods
and Software, 24(4-5):597–634, 2009.

[7] W. D. Blizard. Multiset theory. Notre Dame Journal of Formal Logic,
30(1):36–66, 1989.

[8] J. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal control of robotic
manipulators along specified paths. The International Journal of Robotics
Research, 4(3):3–17, 1985.

[9] F. Cabassi, L. Consolini, and M. Locatelli. Time-optimal velocity planning
by a bound-tightening technique. Computational Optimization and Applica-
tions, 70(1):61–90, May 2018.



BIBLIOGRAPHY 90

[10] I. Capuzzo Dolcetta and L. C. Evans. Optimal switching for ordi-
nary differential equations. SIAM Journal on Control and Optimization,
22(1):143–161, Jan 1984.

[11] C. Chen, Y. He, C. Bu, J. Han, and X. Zhang. Quartic Bézier curve based
trajectory generation for autonomous vehicles with curvature and velocity
constraints. In 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 6108–6113, May 2014.

[12] L. Consolini, M. Laurini, and M. Locatelli. Graph-based algorithms for the
efficient solution of a class of optimization problems. arXiv:1809.01970
[math.OC], 2018.

[13] L. Consolini, M. Laurini, M. Locatelli, and A. Minari. A solution of
the minimum-time velocity planning problem based on lattice theory.
arXiv:1809.01959 [math.OC], 2018.

[14] L. Consolini, M. Locatelli, A. Minari, A. Nagy, and I. Vajk. Optimal time-
complexity speed planning for robot manipulators. CoRR, abs/1802.03294,
2018.

[15] L. Consolini, M. Locatelli, A. Minari, and A. Piazzi. A linear-time algo-
rithm for minimum-time velocity planning of autonomous vehicles. In Pro-
ceedings of the 24th Mediterranean Conference on Control and Automation
(MED), IEEE, 2016.

[16] L. Consolini, M. Locatelli, A. Minari, and A. Piazzi. An optimal complexity
algorithm for minimum-time velocity planning. Systems and Control Letters,
103:50–57, 2017.

[17] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

[18] A. Filippov. Differential equations with discontinuous right-hand sides.
Matematicheskii Sbornik, 51:99–128 (In Russian), 1960.

[19] A. Filippov. Differential Equations with Discontinuous Righthand Sides:
Control Systems, volume 18 of Mathematics and its Applications. Springer
Netherlands, 1988.

[20] M. Franceschelli, A. Giua, and C. Seatzu. A gossip-based algorithm for
discrete consensus over heterogeneous networks. IEEE Transactions on Au-
tomatic Control, 55(5):1244–1249, May 2010.



BIBLIOGRAPHY 91

[21] M. Frego, E. Bertolazzi, F. Biral, D. Fontanelli, and L. Palopoli. Semi-
analytical minimum time solutions for a vehicle following clothoid-based
trajectory subject to velocity constraints. In 2016 European Control Confer-
ence (ECC), pages 2221–2227, June 2016.

[22] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure,
dynamics, and function using networkx. In G. Varoquaux, T. Vaught, and
J. Millman, editors, Proceedings of the 7th Python in Science Conference
(SciPy2008), pages 11–15, Aug 2008.

[23] L. Han, Q. H. Do, and S. Mita. Unified path planner for parking an au-
tonomous vehicle based on rrt. In 2011 IEEE International Conference on
Robotics and Automation (ICRA), pages 5622–5627, 2011.

[24] S. V. Hanly. An algorithm for combined cell-site selection and power control
to maimize cellular spread spectrum capacity. IEEE Journal on Selected
Areas in Communications, 13(7):1332–1340, September 1995.

[25] J. Heinonen. Lectures on Lipschitz Analysis. Bericht (Jyväskylän yliopisto.
Matematiikan ja tilastotieteen laitos). University of Jyväskylä, 2005.

[26] P. Holme and B. J. Kim. Growing scale-free networks with tunable cluster-
ing. Physical Review E, 65(026107):1–4, Jan 2002.

[27] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Pearson Education, 2nd edition, 2001.

[28] K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-
velocity decomposition. The International Journal of Robotics Research,
5(3):72–89, 1986.

[29] T. Kunz and M. Stilman. Time-optimal trajectory generation for path follow-
ing with bounded acceleration and velocity. Robotics: Science and Systems
VIII, 2012.

[30] M. Laurini, L. Consolini, and M. Locatelli. A consensus approach to dy-
namic programming. In D. Dochain, D. Henrion, and D. Peaucelle, ed-
itors, Proceedings of the 20th IFAC World Congress, volume 50, pages
8435–8440, July 2017.

[31] M. Laurini, L. Consolini, and M. Locatelli. A multigraph-based selective
update method for the efficient solution of dynamic programming. In 2018
IEEE 57th Conference on Decision and Control (CDC), Dec 2018. to appear.



BIBLIOGRAPHY 92

[32] M. Laurini, P. Micelli, L. Consolini, and M. Locatelli. A jacobi-like acceler-
ation for dynamic programming. In 2016 IEEE 55th Conference on Decision
and Control (CDC), pages 7371–7376, Dec 2016.

[33] X. Li, Z. Sun, A. Kurt, and Q. Zhu. A sampling-based local trajectory plan-
ner for autonomous driving along a reference path. In Intelligent Vehicles
Symposium Proceedings, 2014 IEEE, pages 376–381, June 2014.

[34] M. Likhachev and D. Ferguson. Planning long dynamically-feasible ma-
neuvers for autonomous vehicles. The International Journal of Robotics
Research, 28(8):933–945, 2009.

[35] D. Liu and Q. Wei. Finite-approximation-error-based optimal control ap-
proach for discrete-time nonlinear systems. IEEE Transactions on Cyber-
netics, 43(2):779–789, April 2013.

[36] V. Muñoz, A. Ollero, M. Prado, and A. Simón. Mobile robot trajectory
planning with dynamic and kinematic constraints. In Proc. of the 1994 IEEE
Int. Conf. on Robotics and Automation, volume 4, pages 2802–2807, San
Diego, CA, May 1994.

[37] Á. Nagy and I. Vajk. Lp-based velocity profile generation for robotic ma-
nipulators. International Journal of Control, pages 1–11, 2017.

[38] M. E. J. Newman and D. J. Watts. Renormalization group analysis of the
small-world network model. Physics Letters A, 263(4-6):341–346, 1999.

[39] J. Reeds and L. Shepp. Optimal paths for a car that goes both forwards and
backwards. Pacific journal of mathematics, 145(2):367–393, 1990.

[40] P. Shen, X. Zhang, and Y. Fang. Essential properties of numerical integration
for time-optimal path-constrained trajectory planning. IEEE Robotics and
Automation Letters, 2(2):888–895, April 2017.

[41] Z. Shiller and Y.-R. Gwo. Dynamic motion planning of autonomous vehi-
cles. IEEE Transactions on Robotics and Automation, 7(2):241–249, April
1991.

[42] M. Sipser. Introduction to the Theory of Computation. CENGAGE Learning,
3rd edition, 2012.

[43] J. J. E. Slotine and H. S. Yang. Improving the efficiency of time-optimal
path-following algorithms. IEEE Transactions on Robotics and Automation,
5(1):118–124, Feb 1989.



BIBLIOGRAPHY 93

[44] R. Solea and U. Nunes. Trajectory planning with velocity planner for fully-
automated passenger vehicles. In IEEE Intelligent Transportation Systems
Conference, ITSC ’06, pages 474 –480, September 2006.

[45] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

[46] E. Velenis and P. Tsiotras. Minimum-time travel for a vehicle with accelera-
tion limits: Theoretical analysis and receding-horizon implementation. Jour-
nal of Optimization Theory and Applications, 138(2):275–296, 2008.

[47] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter, and M. Diehl.
Time-optimal path tracking for robots: A convex optimization approach.
IEEE Transactions on Automatic Control, 54(10), Oct 2009.

[48] J. Villagra, V. Milanés, J. Pérez, and J. Godoy. Smooth path and speed plan-
ning for an automated public transport vehicle. Robotics and Autonomous
Systems, 60:252–265, 2012.

[49] S. Wang, F. Gao, and K. L. Teo. An upwind finite-difference method for the
approximation of viscosity solutions to hamilton-jacobi-bellman equations.
IMA Journal of Mathematical Control and Information, 17(2):167–178,
2000.

[50] R. Yates and C. Y. Huang. Integrated power control and base staion assign-
ment. IEEE Transactions on Vehicular Technology, 44(3), August 1995.

[51] R. D. Yates. A framework for uplink power control in cellular radio systems.
IEEE Journal on Selected Areas in Communications, 13(7):1341–1348,
September 1995.

[52] H. Zhang and M. R. James. On computation of optimal switching hjb equa-
tion. In Proceedings of the 45th IEEE Conference on Decision & Control,
pages 2704–2709, 2006.


	Introduction
	Statement of contribution
	Class of problems considered in this work
	Graph associated to Problem (1.1)
	Multigraph associated to Problem (1.1)
	Notation

	Background
	Posets and lattices
	Finite state automata
	Measures and Sobolev spaces
	Differential equations with discontinuous right-hand side

	Applications
	Speed planning for autonomous vehicles
	Speed planning for robotic manipulators
	Wireless communication systems

	Dynamic programming
	Switching Hamilon-Jacobi-Bellman equation
	Path planning for autonomous vehicles
	Model 1
	Model 2
	Model 3
	Model 4

	Numerical experiments

	An iterative algorithm for Problem (1.3)
	Characterization of Problem (1.1)
	Selective update algorithm for Problem (1.1)

	Characterization of Problem (1.3)
	Convergence speed discussion
	Fixed point iterations
	Speed of Algorithm 3 and priority queue policy
	Numerical experiments


	A parallel algorithm for Problem (1.3)
	The consensus iteration
	Convergence discussion
	Numerical experiments

	Speed planning for autonomous vehicles in continuous-time domain
	Minimum-time velocity planning
	Problem formulation
	A feasibility condition and the optimal solution
	Numerical examples
	Example 1
	Example 2

	Proofs

	Bibliography

