
UNIVERSITÀ DEGLI STUDI DI PARMA
DOTTORATO DI RICERCA IN TECNOLOGIE DELL’INFORMAZIONE

CICLO XXXI

Multiple View Odometry for Autonomous Driving

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutore:

Chiar.mo Prof. Pietro Cerri

Dottorando: Alessandro Cionini

Anni 2015/2018





Man muss noch Chaos in sich haben,
um einen tanzenden Stern gebären zu können.





Abstract

This thesis presents a real-time visual odometry system which makes use of multiple views.
The motion estimation system has been designed for a concrete implementation on a computer
vision processor specifically intended for autonomous driving. An autonomous vehicle has
to work in different environments characterized by peculiar issues and, of course, it has
to provide the same level of safety in any condition, therefore accuracy and reliability are
essential requirements for such a system. Moreover, the hardware-related constraints led to
conceive a lightweight method with small memory requirements that does not make use of
maps.
The proposed approach uses feature correspondences from consecutive frames. The keypoints
are extracted from the image using the Harris corner detector and then a BRIEF-like descriptor
is used for the comparison operation. A fundamental characteristic of the proposed method is
the robustness against outliers, which is provided by a motion estimator specifically designed
to reject them through the use of a weight function.
A multiple view approach has been implemented, in order to increase the accuracy and the
reliability of the system. The multiple view paradigm is exploited both in time and space,
indeed the motion estimation is computed using one or more cameras and then it is further
optimized considering a set of the last acquired frames through Sparse Bundle Adjustment.
The system is therefore quite modular and it can be tailored to the particular setup of the
autonomous vehicle.
An open dataset widely used in literature has been used to evaluate the performance of the
proposed method in terms of accuracy and to compare it with the top-ranked state of the art
methods, showing comparable results. The system has been tested in different configurations
on a dataset specifically acquired for its validation, in order to highlight the contributions
of the multiple view approach proposed. The results underlined how the use of multiple
cameras significantly reduces the overall translation error and how the use of multiple frames
considerably decreases the rotation error.





Contents

Introduction 1

1 A Brief History of Visual Odometry 5
1.1 The Visual Odometry Problem . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Drift: Public Enemy Number One . . . . . . . . . . . . . . 7
1.2 Feature-based Visual Odometry . . . . . . . . . . . . . . . . . . . 8
1.3 Stereo Visual Odometry . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Monocular Visual Odometry . . . . . . . . . . . . . . . . . . . . . 12
1.5 Motion Estimation Methods . . . . . . . . . . . . . . . . . . . . . 13
1.6 Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 3D Reconstruction Geometry 17
2.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Stereo Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Generic Triangulation . . . . . . . . . . . . . . . . . . . . 21

3 Robust Multiple View Odometry 25
3.1 Feature Extraction and Matching . . . . . . . . . . . . . . . . . . . 26

3.1.1 HARRIS Corner Detector . . . . . . . . . . . . . . . . . . 26
3.1.2 BRIEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Multiple Camera Motion Estimation . . . . . . . . . . . . . . . . . 33



ii Contents

3.2.1 Iteratively Reweighted Estimation . . . . . . . . . . . . . . 36
3.3 Multiple Frame Optimization . . . . . . . . . . . . . . . . . . . . . 39

4 Results 43
4.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Open Dataset Results . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Validation Vehicle Results . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusions 61

A Notation 65

Bibliography 67



List of Figures

1 Full 360° 3D reconstruction based on the perception of a complete
set of stereo cameras. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Examples of fully autonomous vehicles: (a) Waymo by Google; (b)
AdvancedTechnologiesCenter (ATC) byUber; (c) EmbeddedVehicle
Autonomy (EVA) by Ambarella. . . . . . . . . . . . . . . . . . . . 3

1.1 The VO problem consists in estimating the relative transformations
between the frames and the poses with respect to the first frame. . . 7

1.2 Example of feature extraction and matching. . . . . . . . . . . . . . 9

1.3 Full pipeline of a feature-based VO algorithm. . . . . . . . . . . . . 11

1.4 The uncertainty in triangulation. The real diamond shaped distribution
is represented in green, while the 3D Gaussian approximation in red. 15

2.1 The pinhole projection model. . . . . . . . . . . . . . . . . . . . . 18

3.1 Full pipeline of the algorithm. Dotted lines represent optional com-
ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Basic flowchart of the Harris Corner Detector. . . . . . . . . . . . . 28

3.3 The designed 256 bit BRIEF descriptor which uses 64 elements from
a 31 × 31 image patch. . . . . . . . . . . . . . . . . . . . . . . . . 30



iv List of Figures

3.4 Bucket feature matching procedure: in red the bucket containing the
current feature; in blue the ranges defined; in yellow the buckets (from
the other image) considered for the comparison. A feature in the red
bucket is compared with all the features belonging to the yellow
buckets and contained inside the blue rectangle. . . . . . . . . . . . 32

3.5 The stereo and flow feature matching: the stereo match is computed
first, then the resulting subset of stereo features is used for flowmatch-
ing considering the subset of stereo features obtained at the previous
frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 A possible autonomous vehicle setup: multiple cameras looking at
different scenes. Calibrating camera position and orientation with
respect to the vehicle’s body allows to reconstruct the perceived world
in the same reference system. . . . . . . . . . . . . . . . . . . . . . 35

3.7 The sliding window based SBA considers a window of 45 frames,
where only one frame every five is optimized (in red). The camera
poses and 3D points are defined with respect to the first frame within
the window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Within the SBAwindow, all the frames are used to compute the initial
guess both for new camera poses and new 3D points, while only one
every five frames, in red, are actually optimized in the SBA. . . . . . 41

4.1 The result for sequence 00 of the KITTI dataset. The ground truth
trajectory is represented in red, the IRE configuration trajectory in
blue, the IRE+WSBA configuration trajectory in green. . . . . . . . 47

4.2 The result for sequences 01, 02, 03, 04, 05 and 06 of the KITTI dataset. 48

4.3 The result for sequences 07, 08, 09 and 10 of the KITTI dataset. . . 49

4.4 The average rotation error. IRE configuration trajectory is represented
in blue, IRE+WSBA configuration trajectory in green. . . . . . . . . 50

4.5 The average translation error. IRE configuration trajectory is repre-
sented in blue, IRE+WSBA configuration trajectory in green. . . . . 50



List of Figures v

4.6 Examples of feature extraction and matching: the stereo match result
in (a) and (c); the flow match result in (b) and (d). . . . . . . . . . . 55

4.7 The result for sequences v_00, v_01 and v_04 of the dataset. . . . . 56
4.8 The result for sequences v_02, v_03 and v_05 of the dataset. . . . . 57
4.9 The result for sequences v_06, v_07 and v_08 of the dataset. . . . . 58
4.10 The computation time required for a configuration with two stereo

cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59





List of Tables

4.1 Average translation error [%] and rotation error [deg/100m] consid-
ering the whole dataset. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Comparisonwith top ranked state of the artVOandSLAMalgorithms.
For each sequence, the average rotation error [deg/100m] and the
average translation error [ %] is reported. . . . . . . . . . . . . . . 51

4.3 Average translation error [%] and rotation error [deg/100m] obtained
for every sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . 53





Introduction

Computer vision gained tremendous relevance in the last years, becoming one of
the most lively field of research in Information Technology. The recent spread of
connected intelligent devices, a phenomenon known as the Internet of Things (IoT)
made possible by the ongoing electronic miniaturization, as well as the massive
production of valuable data in the form of images, as part of the Big Data revolution
which is taking place since last decade, boosted the research in a way that was barely
imaginable very few years ago.

Deep learning and, more specifically, the Neural Network recent comeback in
Artificial Intelligence played an undeniable and prevailing role in the astounding
development of modern computer vision. However, while deep learning techniques
represent nowadays the most effective solutions for image classification, the study of
geometric techniques and mathematical models cannot be disregarded when dealing
with tasks that address accurate scene reconstruction through visual perception (see
Figure 1).

Computer vision naturally spreads to numerous application: from automatic in-
spection and process control in manufacturing to navigation for autonomous agent
and image classification of the huge amount of data generated on the Internet. The
availability of high-resolution camera systems, capable of considerable computational
power, combined with the overwhelming improvement in computer vision techniques
made autonomous driving one of the hottest technology in both public and private
research (see Figure 2), starting a gold rush for automobile manufacturers all over the
world.



2 Introduction

Figure 1: Full 360° 3D reconstruction based on the perception of a complete set of
stereo cameras.

A self-driving car is a vast and complex system, involving many modules that
tackle different challenging task, working all together in synergy in order to perceive
the world and navigate. Self localization is a fundamental function for an intelligent
vehicle, since it allows to establish position and orientation in a given reference sys-
tem, thus allowing navigation and improving sensor fusion. A solid and accurate self
localization system cannot rely on the Global Positioning System (GPS) alone, which
is affected by intrinsic problems and low accuracy; for that reason it usually exploits
also odometry, the process which uses data from sensors to estimate change in posi-
tion and orientation over time. Traditional odometry techniques are performed using
devices such as rotary encoders to measure wheel rotations, an approach inapplica-
ble in case of non-standard locomotion methods such as drones. Visual Odometry
(VO) represents a valid alternative for a system with a camera, determining equiva-
lent odometry information through use of sequential images, regardless of the actual
locomotion method.



Introduction 3

(a) (b)

(c)

Figure 2: Examples of fully autonomous vehicles: (a)WaymobyGoogle; (b)Advanced
Technologies Center (ATC) by Uber; (c) Embedded Vehicle Autonomy (EVA) by
Ambarella.

VO can be categorized as monocular VO when using a single camera, or stereo
VO when using a stereo camera. A stereo camera has the advantage of providing
information about depth and scale, thanks to the two points of view and the relative
calibration, while producing the same information through a monocular camera is non
trivial. VO is typically computed by feature-based methods, extracting and tracking
image feature points in two consecutive images that are then used to determine the
rigid transformation, therefore the model, which explains their movement in the scene.



4 Introduction

A way to improve egomotion estimation with accurate information about scale is to
extend the processing to multiple frames, in order to reduce noise and to better
constrain the model.

A real time multiple view method for stereo VO is described in this dissertation,
which introduces a Iteratively Reweighted Estimator robust to outliers that can be
used with multiple cameras and a multiple frame optimization based on a local
Sparse Bundle Adjustment. The following pages are structured as follows: chapter 1
introduces the VO problem, common approaches and major achievements in the
last decades; chapter 2 introduces the geometrical concepts adopted in this work,
basically a preparatory chapter for chapter 3 which describes the proposed method
in all its aspects; chapter 4 shows the results obtained both with open datasets and
sequences specifically acquired using a vehicle designed for algorithm validation;
finally, chapter 5 discusses the contribution of this work.



Chapter 1

A Brief History of Visual
Odometry

Visual Odometry is the process of estimating the egomotion of an agent using only the
input of one or more cameras attached to it. The term VO was coined by Nister in [1],
inspired bywheel odometry, although the problem of estimating a vehicle’s egomotion
from visual input alone is way older. Indeed, this problem was first introduced in the
early 1980s and was described by Moravec in [2], a stereo-like approach for feature-
basedmotion estimationwhich definitely represents amilestone. Traditional odometry
incrementally estimates the motion of a vehicle by integrating the number of turns
of its wheels over time, thus suffering of typical estimation errors due to wheel slip.
A problem that does not affect VO, which uses the same approach by incrementally
estimating the pose through the analysis of changes induced by motion on the images
acquired by the onboard camera. VO is thus a robust and reliable supplement to the
localization system, especially in GPS-denied environments.

VO has been gaining increasing popularity over the last decade, as evidenced
by the large number of publications on the topic [3] as well as the release of open
datasets made available for objective performance comparison [4, 5, 6]. In literature,
work estimatingmotion from image sequences can be divided in twomajor categories:
optical flow algorithms, which can be considered as dense methods, and feature-based



6 Chapter 1. A Brief History of Visual Odometry

algorithms, which can be considered as sparse methods [7]. Dense methods are less
accurate and computationallymore expensive than sparse techniques, that only require
the ability of robustly track features across multiple frames. Feature-based techniques
are indeed extensively more used, although there is some recent work recovering
motion from optical flow [8]. In this chapter, a more detailed formulation of the
VO problem is presented, as well as an overview of the state of the art regarding
VO techniques, mostly for what concerns feature-based methods both for Stereo and
Monocular approaches.

1.1 The Visual Odometry Problem

The VO problem can be outlined considering a simple setting: a camera, either
monocular or stereo, is moving through an environment acquiring images at every
time instant k. In a monocular system, the set of acquired images is denoted by
I0..n = {I0, ..., In}, while in a stereo system, the two sets of acquired images are
denoted by IL,0..n = {IL,0, ..., IL,n} and IR,0..n = {IR,0, ..., IR,n}.

Two adjacent camera positions at time instants k − 1 and k are related by a rigid
body transformation kTk−1 ∈ R4×4 (see Appendix A) of the following form:

kTk−1 =


kRk−1 ktk→k−1

0 1


(1.1)

where kRk−1 ∈ SO(3) is the rotation matrix and ktk→k−1 ∈ R
3×1 the translation

vector. Therefore, the setT1:n = 1T0, ...,n Tn−1 contains all the relative transformations
corresponding to subsequent motions and the set of camera poses P0:n = P0, ..., Pn

contains the transformations of the camera with respect to the initial coordinate frame
k = 0. The k th camera pose Pk =0 Tk can be computed by inverting all the previous
transformations and concatenating all of them as follows:

Pk =

k∏
i=1

i−1T i (1.2)

or iteratively by:
Pk = Pk−1 k−1Tk (1.3)



1.1. The Visual Odometry Problem 7

Figure 1.1: The VO problem consists in estimating the relative transformations be-
tween the frames and the poses with respect to the first frame.

with P0 being the camera pose at the instant k = 0, which can be set for simplicity to
the identity matrix I4.

The task of VO is to compute at each camera position k the relative transformation
kTk−1 between the images Ik−1 and Ik and eventually composing it with the previous
pose Pk−1 in order to recover the full trajectory of the camera (Figure 1.1). The
position and orientation of the camera is therefore computed incrementally.

1.1.1 Drift: Public Enemy Number One

Themajor intrinsic issue in VO is the incremental pose estimation, whichmakes errors
introduced by each relative transformation accumulate over time. The accumulated
error engenders a drift of the estimated trajectory from the real path. While some
applications, such as vehicle control, only necessitate accurate relative pose estima-
tion, for others, such as self localization in GPS denied environments, is of utmost
importance to keep drift as small as possible.

Typical techniques for reducing the drift require the use of a map, either precom-
puted or incrementally produced and updated as in Simultaneous Localization And
Mapping (SLAM) approaches [9, 10, 11, 12, 13], which allows to occasionally reset
the drift by localizing the agent onto it. The goal of SLAM in general is to obtain



8 Chapter 1. A Brief History of Visual Odometry

a global and consistent estimate of the agent path. This implies keeping a map of
the environment in order to realize when the vehicle returns to a previously visited
area, a condition called loop closure, allowing drift reduction in the estimated path
and improving the map itself as well. While SLAM techniques have been usually
limited to indoor workspaces, where the approach takes advantage of the map that is
repeatedly covered without the drawback of unrestrained map expansion, some work
have been designed for large scale areas [14, 15, 16, 17] a crucial designing target for
autonomous driving applications.

In general, VO can be used as a building block for a complete SLAM algorithm,
which also need a way to detect loop closing and a global optimization technique
to obtain a consistent map. Although a complete SLAM algorithm can be used
to provide VO with potentially high precision, it is evidently more complex and
computationally expensive, requiring also a considerable amount of memory in case
large scale application. Therefore VO still represents a preferable solution for real-time
applications and low requirements systems.

Another way of tackling the drift problem is local optimization over the last m
camera poses, an approach called windowed bundle adjustment that has been used in
some works, as in [18, 19, 20, 21].

Combining VO with other sensors, such as GPS, laser or IMU, is clearly a simple
approach for avoiding drift in pose estimation [19, 22, 23].

1.2 Feature-based Visual Odometry

VO techniques relying on inter-frame point correspondences typically use feature
detectors and descriptors. Features are characteristic points in the image, usually
each one associated with a descriptor which can be used to match the feature to a
keypoint extracted in a different image. Given two images, to find feature matches
across them means finding the couple of image projections produced by the same
distinctive world point (Figure 1.2). Extracting a considerable number of features
from two images and finding matches between elements of the two lists, allows to
gather valuable information for relative pose estimation. Computer vision literature



1.2. Feature-based Visual Odometry 9

Figure 1.2: Example of feature extraction and matching.

abound in methods for extracting meaningful points from the image, since image
keypoints can be used in a considerable variety of computer vision applications.
While some VO algorithms use custom designed feature detectors, such as [24], a
non-comprehensive list of widespread feature detectors and descriptors is presented
below.

HARRIS Harris corner detector, introduced by Harris and Stephens in 1988 [25],
represents the most popular corner detection operator in computer vision and it
is invariant to rotation, scale and illumination. Harris improved uponMoravec’s
corner detector [2] by considering differential of the corner score with respect
to direction directly, computing the locally averaged moment matrix from the
image gradients and then combining the Eigenvalues of the moment matrix to
compute measure, from which maximum values indicate corners position. The
applications of Harris corner detector are uncountable, [26, 1, 27] represent
some relevant examples for this dissertation.

FAST Features from Accelerated Segment Test (FAST), proposed by Rosten and
Drummond [28], is a corner detection method. FAST uses a circle of 16 pixels
to classify whether a candidate point is actually a corner, looking for contiguous
pixels belonging to the circle that are brighter or darker than the candidate by
a defined threshold. The advantage of FAST is its computational efficiency in



10 Chapter 1. A Brief History of Visual Odometry

term of time and resources, which made it suitable for real-time applications
such as [29].

BRIEF Binary Robust Independent Elementary Features (BRIEF), introduced by
Calonder [30], is a feature descriptor which can be used to describe previously
extracted keypoints. Given a feature, BRIEF takes a smoothened image patch
around it, selects a set of location pairs and computes a bit value for each pair by
comparing the pixel intensities to those positions. The advantages are the small
memory requirements and the ease of matching through Hamming distance.

SIFT Scale-Invariant Feature Transform (SIFT), proposed by Lowe [31, 32], is an
algorithm to detect and describe features, invariant to variation in scale, rotation,
illumination and viewpoint. The SIFT algorithm has 4 basic steps: first is to
estimate the scale space extrema using the Difference of Gaussian (DoG);
secondly, a key point localization where the key point candidates are localized
and refined by eliminating the low contrast points; thirdly, a key point orientation
assignment based on local image gradient; lastly, a descriptor generator to
compute the local image descriptor for each key point based on image gradient
magnitude and orientation. Examples of SIFT application to 3D reconstruction
are [33, 34, 27].

SURF The Speeded Up Robust Features (SURF), proposed by Bay [35], is partly
inspired by SIFT. SURF approximates the DoG with box filters and detect
interest points using an integer approximation of the determinant of Hessian
blob detector. The feature descriptor is based on the sum of the Haar wavelet
response around the point of interest. SURF is several times faster that SIFT
and still robust against different image transformations. An application to VO
can be found in [36].

Choosing how features are extracted and matched between consecutive frames is
critical because, as already seen, every method implies a different computational cost
and consequently performances in terms of robustness, quality and speed. Anyway,
whichever technique is adopted, the outcome is a list of matched keypoints that are



1.3. Stereo Visual Odometry 11

Figure 1.3: Full pipeline of a feature-based VO algorithm.

then used to estimate the relative transformation which explains how those keypoints
moved through the two subsequent images. Figure 1.3 shows the full pipeline of a
feature-based VO algorithm.

1.3 Stereo Visual Odometry

The use of a stereo pair of cameras, as opposed to a single monocular camera, greatly
simplifies the motion estimation problem because the known transformation between
the cameras allows the metric structure of the scene to be estimated using a single
stereo image pair. In other words, a stereo camera allows to directly measure, by
means of triangulation, the relative 3D position of the tracked features at every agent
location and use them to derive the relative motion.

As Moravec put his milestone in feature-based motion estimation [2], many suc-
cessive works tried to move forward by improving the estimation accuracy. For many
years all the proposed methods shared the same minimization approach by solving



12 Chapter 1. A Brief History of Visual Odometry

the relative motion as a 3D-to-3D point registration problem, hence triangulating the
3D points at every stereo pair [37, 38, 39]. Nister et al. in [1] besides coining the term
VO, proposed a completely different approach based on 2D visual features detected
using Harris corner detector [25], which computes the relative motion as a 3D-to-2D
camera pose estimation problem and performs outlier rejection using Random Sample
Consensus (RANSAC) [40]. Comport et al. [41] introduced another technique which
relies on the quadrifocal tensor, hence solving a 2D-to-2D motion estimation problem
without having to triangulate 3D points in the stereo images.

Methods based on 3D-to-3D pose estimation generally suffer of less accurate
motion computation caused by the triangulation procedure, which strictly depends on
the camera calibration accuracy and intrinsically tends to introduce a triangulation
error. A more detailed analysis of the camera projection model and a comparison of
motion estimation methods is presented in section 1.5.

Among recent works, Cvišić et al. proposed a solid approach in [42] and further
improved in [13], based on accurate features selection using a stereo camera. Buczko
proposed a stereo method that is based on a flow-decoupled normalized reprojection
error, which estimates rotation and translation independently, separating and compen-
sating the components of feature flow due to rotation [43]. Badino et al. proposed a
method for reducing error in stereo motion estimation by incorporating the history of
a feature in its image coordinates [44]. Finally, Zhu proposed an interesting approach
based on a dual Jacobian optimization that is fused into a multi-scale pyramid scheme,
also introducing a gradient-based feature representation robust to illumination changes
[45].

1.4 Monocular Visual Odometry

Solving the egomotion estimation by means of a single camera is intriguing, although
very hard to settle completely. The interest in monocular methods lies in the fact that
stereoVO can degenerate to themonocular case when the distance to the scene ismuch
larger than the stereo baseline. The disadvantage is that motion can only be recovered
up to a scale factor [46, 47, 48, 16], thus metric odometry which uses a monocular



1.5. Motion Estimation Methods 13

camera is only feasible through the use of some other measurement of scale, such as
an inertial measurement unit [49, 23] or wheel odometry. Since the absolute scale is
unknown, monocular methods determine the relative scale with respect to an arbitrary
initial scale, usually set equal to the distance between the first two frames.

Considering feature-based methods, the first real-time large scale monocular VO
method has been presented in [1], which used RANSAC for outlier rejection and a
novel five-point minimal solver [48] to compute the motion hypotheses in RANSAC.
The five points RANSAC is also used in several other works, such as [50] and [51],
where the estimation of translation and rotation was decoupled. Mouragnon et al. [52]
used a fast and local bundle adjustment to recover both the motion and the 3D map,
evaluating speed and robustness on real data.

1.5 Motion Estimation Methods

Motion estimation methods can be categorized depending on whether the feature
correspondences are specified in two or three dimensions. Considering two frames
k − 1 and k and the corresponding feature lists fk−1 and fk :

2D-to-2D In this case, both features lists fk−1 and fk are specified in 2D image
coordinates.

3D-to-2D In this case, features in fk−1 are specified in 3D by triangulation while
features in fk are specified in 2D image coordinates.

3D-to-3D In this case, both features lists fk−1 and fk are specified in the corre-
sponding 3D camera reference system. If using a stereo camera, every feature
is triangulated using (2.9).

The 2D-to-2Dmethods usually aim to estimate the Essential Matrix that describes
the geometric relations between two views [46] of a calibrated camera. The Essential
Matrix contains the camera motion parameters up to an unknown scale factor for the
translation, that has to be recovered at a later stage. The rotation matrix kRk−1 and the



14 Chapter 1. A Brief History of Visual Odometry

translation vector ktk→k−1 are extracted from the Essential Matrix by decomposition,
an efficient approach is proposed in [48].

In 3D-to-3D methods, the transformation kTk−1 can be computed by determining
the aligning transformation of the two 3D feature lists. The estimation consists in
finding the kTk−1 that minimizes the L2 distance between the two 3D feature lists:

arg min
kT k−1

∑
i

���
���P̄

i
k − kTk−1P̄i

k−1
���
���2 (1.4)

where P̄ are the homogeneous coordinates of the 3D points and i denotes the i-th fea-
ture. To weight the 3D points in the estimation using their measurement uncertainties,
if known, is an improvement proposed in [53]. The computed transformation is char-
acterized by an absolute scale, hence it is ready to be used for computing incremental
poses by concatenation.

3D-to-3D methods have been adopted in many works in the past, including the
first pioneering approaches of VO. However, according to Nister et al. [50] the error
in 3D-to-3D motion estimation is way greater compared to other methods, because it
minimizes the 3D position error contrary to those methods, which instead minimize
the image reprojection error. As Matthies et al. stated in [37], the uncertainty in
triangulation is not a scalar value growing with distance, which can be represented by
a spherical covariance, but rather it has a diamond shape caused by the quantization
error of features’s image coordinates, since the uncertainty of the 3D point is also
skewed and oriented in the space depending on the distance and on the point of view.
The 3D points can be weighted using a 3D Gaussian, which makes it possible to
represent an ellipsoidal covariance, but the distant points present longer tails in the
true error distribution making the 3D position error minimization a weak approach
(Figure 1.4).

In 3D-to-2D methods, the transformation kTk−1 is computed from the 3D-to-2D
correspondences Pk−1 and pk , where the last ones are the fk in image coordinates.
The estimation consists in finding the kTk−1 that minimizes the image reprojection
error, a problem known as perspective from n points (PnP):

arg min
kT k−1

∑
i

���p
i
k − p̃ik−1

���
2

(1.5)



1.5. Motion Estimation Methods 15

Figure 1.4: The uncertainty in triangulation. The real diamond shaped distribution is
represented in green, while the 3D Gaussian approximation in red.

where p̃i
k−1 is the projection over the k-th frame of the i-th feature point Pi

k−1:

p̃ik−1 = Π(kTk−1, Pi
k−1) (1.6)

The PnP problem has different solutions in literature [54, 46], with the minimum
solution requiring only three correspondences [40, 55, 56]. In the case of a stereo
camera, the 3D point Pk−1 is obtained by triangulation from the previous image pair,
while in the case of amonocular camera, the 3D point Pk−1 is obtained by triangulation
using at least the two previous frames.



16 Chapter 1. A Brief History of Visual Odometry

1.6 Bundle Adjustment

Bundle Adjustment is the problem of refining a visual reconstruction to produce a
jointly optimal 3D structure and viewing parameter estimation, intended as camera
pose and calibration. In BA the parameters are estimated by minimizing some cost
function that quantifies the model fitting error, trying to achieve an optimal solution
with respect to both structure and camera variations [57]. BA can be considered as
a large sparse geometric parameter estimation problem, the parameters being the 3D
feature coordinates, the camera poses and the camera calibration. The minimization
is usually achieved using non-linear least-squares algorithms, such as Levenberg-
Marquardt.

The mathematical definition is straightforward since BA just minimizes a repro-
jection error formulated as:

min
c j, fi

n∑
i=1

m∑
j=1

bi j
���Π(cj, f i), pi j

���
2

(1.7)

where cj denotes the camera pose and calibration at frame j, f i denotes the i-th
3D feature point, Π(cj, f i) denotes the image projection of f i at frame j using the
corresponding camera parameters cj , pi j denotes the image observation of feature f i
at frame j and bi j is a binary variable which assumes value 1 if the feature point f i
is visible at frame j. The formula highlights the main drawback of BA, that is, the
growth of computation time with the number of frames [58].

Sparse Bundle Adjustment (SBA) introduced in [59] is an optimized version
which takes advantage of the lack of interaction among parameters for different 3D
points and camera parameters in multiple view reconstruction, which results in the
underlying normal equations exhibiting a sparse block structure; SBA has been used
in various works, such as [18, 19, 21].

BA-based VO improvements usually adopt a constrained BA, which results in
better performances [20], or a windowed BA, which just optimizes the last observed
frames [52], in order to bound the required computation time to a maximum de-
termined by the window size, regardless of the trajectory length and the number of
frames.



Chapter 2

3D Reconstruction Geometry

The geometry involved in 3D reconstruction is a tremendously vast topic. Even con-
sidering only the models and concepts used for this work, providing a comprehensive
description is infeasible, therefore in this chapter just a brief overview is provided.
Firstly, an outline of the adopted camera model is presented. Secondly, the extension
of that model to the stereo camera is delineated, showing some fundamental con-
cepts of stereo vision. Lastly, the generic triangulation method for monocular camera
exploited in this work is described.

2.1 Pinhole Camera Model

The projection model used for computing camera to world projection is the pinhole
projection model [46]. In the pinhole projection system, the image is formed by the
intersection of the light rays from the world through the center of the lens, called
pinhole, with the focal plane (Figure 2.1). Given a 3D world point P = [x, y, z]T in the
camera reference system and p̂ = [û, v̂]T being its projection on the camera sensor,
the operation that allows to map the world point to the corresponding sensor point is
given by the following equation:



û
v̂


=

f
z



x
y


(2.1)



18 Chapter 2. 3D Reconstruction Geometry

Figure 2.1: The pinhole projection model.

where f is the focal length, which is the distance between the pinhole and the sensor.
The sensor point p̂ is not the image point p = [u, v]T , which is indeed obtained by
applying another transformation:



u
v


=



Du û
Dv v̂


+



u0

v0


(2.2)

where the coordinates (u0, v0), which represent the projection of the perspective center
over the image, called principal point, compensate the offset with the origin of the
image coordinate space, while Du and Dv are factors that convert from meters to
pixels, usually identical for modern digital sensors. The parameters f , Du and Dv

are typically incorporated in the factors ku = f Du and kv = f Dv that are indeed the
focal lengths expressed in pixel. Eventually, adopting homogeneous coordinates, the
mapping from the 3D camera point to the 2D image point can be performed by the
perspective projection equation:

λ



u
v

1



= K P =



ku 0 u0

0 kv v0

0 0 1





x
y

z



(2.3)



2.2. Triangulation 19

where λ = z representing the depth factor is implied and K is called intrinsic matrix,
since it contains all the intrinsic parameters that describe the geometric property of
the camera. The inverse of the intrinsic matrix:

K−1 =



1
ku

0 −
u0
ku

0 1
kv
−

v0
kv

0 0 1



(2.4)

allows to compute the inverse projection up to a scale factor, from2D image point to 3D
camera point. The intrinsic parameters are estimated performing camera calibration
through a planar checkerboard-like pattern [60], a process that allows to correct radial
lens distortion.

2.2 Triangulation

Triangulation is the operation of reconstructing the 3D world coordinates of a point
observed from multiple viewpoints. Triangulating points, seen in 2 or more views,
enables the reconstruction of the observed scene, but some information regarding the
relative position and orientation of the views is required. Stereo vision is a specific case
of multiple view geometry, which allows to significantly simplify the triangulation
operation.

2.2.1 Stereo Vision

Given a stereo camera characterized by a solid structure, the easiest way to perform
stereo vision is to calibrate the two sensors in order to obtain the relative pose
between them and apply a warp operation to the image pair called rectification [46].
Rectification makes homologous points from the two images to lay on the same line,
that is, to have the same v coordinate, and also makes the two cameras ideally perfectly
aligned on the same reference system. Given a 3D point P = [x, y, z]T and the position
of the left camera TL = [xL, yL, zL], both in the right camera reference system, which
is considered as master without loss of generality, the left pL = [uL, vL]T and right



20 Chapter 2. 3D Reconstruction Geometry

pR = [uR, vR]T projections can be computed as:



uR

vR


=



ku x
z + u0

kv
y
z + v0


(2.5)



uL

vL


=



ku
x−xL
z + u0

kv
y−yL
z−zL

+ v0


(2.6)

but camera alignment constraints forces xL = −b, yL = 0 and zL = 0 with b, called
baseline, being the offset between the cameras over the axis along which they lay.
Therefore, the problem of 3D reconstruction is definitely simplified, since it is possible
to introduce a newmathematical concept called disparity. Considering the projections
of P over the rectified images, vL and vR are identical by construction and the disparity
is defined as the difference between the horizontal coordinates:

d = uL − uR (2.7)

Introducing those concepts in equation (2.5) and (2.6), the relation between disparity
and P emerges:

d = uL − uR =

(
ku

x + b
z
+ u0

)
−

(
ku

x
z
+ u0

)
= ku

b
z

(2.8)

and applying some inversions and substitutions in (2.5) and (2.8):

x = (uR − u0) bd
y = (vR − v0) kukv

b
d

z = ku b
d

(2.9)

The intrinsic matrix K and its inverse defined in equation (2.3) and (2.4) can be
extended to the stereo case introducing the reprojection matrix Q [61] and its inverse:



x
y

z
1



=



ku 0 u0 0
0 kv v0 0
0 0 0 kub
0 0 1 0





u
v

d
1



= Q



u
v

d
1



(2.10)



2.2. Triangulation 21



u
v

d
1



=



1
ku

0 0 −
u0
ku

0 1
kv

0 −
v0
kv

0 0 0 1
0 0 1

kub
0





x
y

z
1



= Q−1



x
y

z
1



(2.11)

2.2.2 Generic Triangulation

In case of a monocular camera, the triangulation requires few more steps. In this case,
the position and orientation between two frames is not fixed and known, hence the
triangulation requires first to estimate them. The geometric relationship between the
two images Ik and Ik−1 of a calibrated monocular camera is described by the essential
matrix E, which contains the camera motion parameters up to an unknown scale factor
for the translation:

Ek '
[
ktk→k−1

]
x kRk−1 (2.12)

where the symbol ' denotes that the equivalence is valid up to a scale factor and[
ktk→k−1

]
x
is the skew symmetric matrix of ktk→k−1 :

[
ktk→k−1

]
x
=



0 −tz ty
tz 0 −tx
−ty tx 0



(2.13)

The essential matrix defines a fundamental linear relationship between homolo-
gous points from the two viewpoints:

pTk Ek pk−1 = 0 (2.14)

where pk = [xk, yk, 1]T and pk−1 = [xk−1, yk−1, 1]T are the homologous points defined
in the camera reference system in homogeneous coordinates. Given a set of corre-
sponding image points, it is possible to estimate the essential matrix by enforcing E to
satisfy the epipolar constraints defined in (2.14), an estimation problem which usually
represents the main step of a monocular VO algorithm. Essential matrix estimation
methods are not analyzed in this dissertation, while the following important result is
used in this work.



22 Chapter 2. 3D Reconstruction Geometry

Assuming to know the relative transformation between two images Ik and Ik−1,
therefore knowing the essential matrix Ek and the corresponding rotation matrix
kRk−1 and translation vector ktk→k−1, it is possible to triangulate homologous points.
As Kanazawa and Kanatani stated in [62], given two optimal homologous camera
points ṗk and ṗk−1 from two images Ik and Ik−1 and knowing the relative pose
between them, the depth D of the corresponding 3D point with respect to the camera
reference system at image Ik can be computed as follows:

z = ṗk × kRk−1 ṗk−1

D = zT Ek ṗk−1
zT z

(2.15)

and therefore the 3D point Pk is obtained as:

Pk = D ṗk (2.16)

Unfortunately, camera points are always affected by noise, which results in the
camera points not satisfying the epipolar constraints (2.14). Methods for correcting
the camera points pk and pk−1 in order to get the optimal camera points ṗk and ṗk−1

have been introduced by Kanatani et al. in [62] and [63], however Lindstrom proposed
in [64] a simple and efficient method for the two-view camera points optimization
and triangulation problem, which can converge to the optimal solution in exactly two
iterations.

The results from [64] enable the optimal camera points to be retrieved in few
steps. First, the following matrix is defined:

S =


1 0 0
0 1 0


(2.17)

which allows to define the upper left 2 × 2 submatrix of Ek :

Ẽk = S Ek ST (2.18)

then the algorithm is outlined in Algorithm 1.



2.2. Triangulation 23

Algorithm 1 Two-view camera points optimization
nk ← S Ek pk−1

nk−1 ← S ET
k

pk
a ← nT

k
Ẽk nk−1

b← 1
2

(
nT
k

nk + nT
k−1 nk−1

)
c ← pT

k
Ek pk−1

d ←
√

b2 − ac
λ ← c

b+d

∆k ← λ nk
∆k−1 ← λ nk−1

ṗk ← pk − ST ∆k

ṗk−1 ← pk−1 − ST ∆k−1





Chapter 3

Robust Multiple View Odometry

The method proposed in this dissertation is a real-time stereo feature-based Vi-
sual Odometry algorithm for embedded platforms, optimized using a Sparse Bundle
Adjustment over a sliding window. The approach is designed to be automatically
integrated with other cameras, whether stereo or monocular, improving robustness
and accuracy. A main requirement for this research was the low impact in terms of
memory usage, an essential feature for an embedded implementation, which is to be
executed concurrently with many other modules in a fully autonomous vehicle. For
that reason, every VO methods relying either on any kind of map or a long history
for observed features has been rejected by default. In the same way, considering the
risky impact of delays in autonomous driving applications, a real-time response is
deemed to be essential; thus, the requirement was set to 30 frames per second using
1920 × 1080 images on a relatively low-power embedded system. The requirements
have guided the design of the algorithm outlined in the following sections, which
has been implemented in a real autonomous vehicle equipped with multiple cameras
and it has been tested using sequences acquired by a vehicle specifically designed for
algorithm validation, whose results are discussed in chapter 4.

In this chapter, the feature extraction and matching module is outlined first; then,
the motion estimation algorithm is described considering different available config-
urations of perception systems; finally, the multiple frame optimization procedure is



26 Chapter 3. Robust Multiple View Odometry

Figure 3.1: Full pipeline of the algorithm. Dotted lines represent optional components.

introduced. The full pipeline of the VO system is shown in Figure 3.1, where the three
cyan squares represent the main blocks described in the following sections.

3.1 Feature Extraction and Matching

3.1.1 HARRIS Corner Detector

The feature extractor adopted in this work is Harris Corder Detector (HCD) [25].
Among the many feature extractor techniques in literature, some of them discussed
in section 1.2, HCD represents a simple yet robust feature extractor, invariant to
rotation, scale and illumination. The feature extractor has to be robust in any possible
environment, providing a considerable amount of keypoints at each acquired frame.



3.1. Feature Extraction and Matching 27

HCD requires the extraction of the horizontal Ix and vertical Iy gradient images
from the input image. This operation can be carried out exploiting different levels of
parallelism: for instance, a naive SIMD algorithm implementing a 3 × 3 Sobel filter
requires 16 additions/subtractions per pixel and multiple pixels can be processed in
parallel.

Ix (0, 0) = −1 · I (−1,−1) − 2 · I (−1, 0) − 1 · I (−1,+1)
+1 · I (+1,−1) + 2 · I (+1, 0) + 1 · I (+1,+1)

Iy (0, 0) = −1 · I (−1,−1) − 2 · I (0,−1) − 1 · I (+1,−1)
+1 · I (−1,+1) + 2 · I (0,+1) + 1 · I (+1,+1)

(3.1)

The most generic HCD algorithm then requires to compute the C matrix for each
single point of the image:

C(x, y) =


∑
δ∈Ω I2

x (δ)ω(δ)
∑
δ∈Ω Ix (δ)Iy (δ)ω(δ)∑

δ∈Ω Ix (δ)Iy (δ)ω(δ)
∑
δ∈Ω I2

y (δ)ω(δ)


(3.2)

with Ix and Iy being the above mentioned image gradients, considering an area Ω
around (x, y) using a weight function w(·). The Harris cost at each point is then
computed as:

H (x, y) = det(C) − κ Tr(C)2 = C1,1C2,2 − C2,1C1,2 − κ(C1,1 + C2,2) (3.3)

with κ being an empirical factor. Finally, a non-maxima suppression step is done in
order to keep alive only local maxima, which are reported as keypoints. The full HCD
algorithm is shown in Figure 3.2.

Although the HCD response across the image is filtered using a non-maxima
suppression, in the developed version the number of corners is further reduced in order
to obtain a prefixed maximum number of keypoints, an essential factor for a low level
hardware implementation in order to have fixed memory requirements; the maximum
number of features adopted for the final implementation is 2048. Of course, corners
decimation has to take into account that the resulting keypoints should be uniformly
distributed across the image and also that the features with the lowest score should be
discarded first. The keypoints are indeed filtered considering a grid structure of size
8 × 8, each bucket containing at most 32 features, providing a fair distribution of the



28 Chapter 3. Robust Multiple View Odometry

Figure 3.2: Basic flowchart of the Harris Corner Detector.

extracted corners across the image. During the decimation procedure, if more than 32
keypoints belong to a given bucket, the bucket list is sorted considering the score, and
the lowest score features are removed.

3.1.2 BRIEF

HCD is a keypoint extractor, hence it does not provide a description of the feature. The
kind of feature descriptor adopted in this work is BRIEF [30], which characterizes
a given point as a binary representation of intensity differences, computed between
predetermined pairs of points inside the patch. The main advantage of BRIEF is that
the comparison operation, which is the Hamming distance, can be easily implemented
at low-level using an embedded platform, thus achieving great performance in terms
of speed and furthermore requiring a small amount of memory. BRIEF is not scale
invariant, but that should not be a problem considering the 30 frames per second
execution that should make the scale variation between consecutive frames negligible.



3.1. Feature Extraction and Matching 29

A BRIEF descriptor is defined by a list of segments inside the ideal considered
patch. For every extracted keypoint, the image patch around it is considered and the
binary string is generated comparing the value of the two pixels at the end of each
segment in the image patch, which has usually been preprocessed by a low-pass filter.
Therefore, the descriptor is characterized by the following elements:

• The size of patch.

• The number of comparisons, which define the descriptor size.

• The descriptor shape, defined by the comparison segments

• The kind of low-pass filter.

Experiments have been done at the very first phase of this work, highlighting that
there are no major improvements by using a patch larger than 31 × 31 pixels. Small
improvements have been observed using a descriptor larger than 256 bit, while dif-
ferent low-pass filters (e.g. 5 × 5 average, Gaussian σ = 1, Gaussian σ = 2) provide
comparable results.

The shape of the BRIEF-like descriptor has been trained on several sequences
using a genetic approach, evaluating the quality of the resulting optical flow. Consid-
ering the previous statement, the final implementation is a 256 bit BRIEF descriptor
extracted from a 31×31 image patch filtered using a 5×5 average filter. Although the
number of comparison is 256, the actual number of pixels involved is 64. The shape
of the BRIEF-like descriptor is shown in Figure 3.3.

3.1.3 Matching

The VO approach proposed is stereo based, hence the features are used to compute
the corresponding 3D points used in the estimation step. The triangulation method for
stereo camera used, introduced in subsection 2.2.1, requires the disparity value for a
given keypoint.While global methods for computing disparity exist [65], the approach
here implemented consists in performing the same feature extraction procedure over
the slave camera - let’s say the left one without loss of generality - andmatch keypoints



30 Chapter 3. Robust Multiple View Odometry

Figure 3.3: The designed 256 bit BRIEF descriptor which uses 64 elements from a
31 × 31 image patch.

in the stereo view. Featurematching is therefore computed between keypoints extracted
at the same time in the stereo camera for feature triangulation and also between
subsequent frames for motion estimation.

Considering the bucket subdivision of the extracted features and defining the
search range (dL, dR, dU, dD) which establishes the distance between keypoints for
the 4 directions, the matching operation can be optimized by comparing features
belonging to buckets, from the other images, at a consistent distance. Of course,
within the valid buckets the matching operation is done only for features that lay
inside the defined ranges (Figure 3.4). For the stereo match, usually dL = 0 and
dR are set to the maximum disparity expected, while dU and dD are configured to
allow a small vertical tolerance, considering that, for rectified images, corresponding
keypoints should lay over the same image row. For the flowmatch, dL, dR, dU, dD can
all be set to the same value, supporting a squared search range. The bucket feature
matching procedure is outlined in Algorithm 2.

The matching of feature binary descriptors is done by computing the Hamming
distance, whose performance is determined by the presence of the POPCOUNT



3.1. Feature Extraction and Matching 31

Algorithm 2 Bucket feature matching
Let l be the feature array
Let f be the current feature ∈ l
xstart = f .x − dL

xend = f .x + dR

ystart = f .y − dU
yend = f .y + dD

for bh = bh_start to bh_end do
for bv = bv_start to bv_end do

for count = 1 to 32 do
if l[bh][bv][count].x ≥ xstart and l[bh][bv][count].x ≤ xend and
l[bh][bv][count].y ≥ ystart and l[bh][bv][count].y ≤ yend then

Compare( f .descriptor, l[bh][bv][count].descriptor)
end if

end for
end for

end for



32 Chapter 3. Robust Multiple View Odometry

Figure 3.4: Bucket feature matching procedure: in red the bucket containing the
current feature; in blue the ranges defined; in yellow the buckets (from the other
image) considered for the comparison. A feature in the red bucket is compared with
all the features belonging to the yellow buckets and contained inside the blue rectangle.

instruction on the hardware processor used. A correspondence is valid only if the cost
of the best match is below a threshold th and better than the cost of the second best
match, considering a uniqueness factor u ∈ (0, 1) (see Algorithm 3).

Algorithm 3 Match validation
Let u be the uniqueness value
Let th be the match threshold
Let f be the current feature
if f .min_cost < th and f .min_cost < f .second_min_cost · u then

f .match valid
else

f .match invalid
end if

The matching operation for the stereo images is intrinsically robust, since the
correspondent keypoint is searched over a narrow range, thanks to the rectification
constraints, while the flow match is generally more prone to error because of noise.



3.2. Multiple Camera Motion Estimation 33

For that reason, the feature list produced from the right image is firstly matched
against the feature list produced from the left one, generating an ideal stereo feature
list which contains only the right keypoints properly matched and for each of them the
corresponding disparity value computed using the left keypoint, each stereo feature
defined indeed by 3 coordinates (u, v, d). The right features with no correspondence
are thus invalidated and the new stereo feature list is matched against the previous
frame stereo feature list. Performing the flow match by only considering features
survived to the stereo match, increase significantly the stability of tracked keypoints,
since stereo feature are stronger, and results in better accuracy and robustness of the
overall algorithm. The full matching procedure is shown in Figure 3.5.

3.2 Multiple Camera Motion Estimation

The motion estimation is handled as a 3D-to-2D minimization problem, with the
features extracted at the previous frame triangulated and projected to the current
frame, where the reprojection error with respect to the observed current feature is
minimized. While at a very first stage the implemented method was a 2D-to-2D, a
3D-to-2D turns out to be more general allowing to easily integrate multiple cameras
in the estimation.

In the single camera case, a 3D point can be simply defined in the reference system
of the stereo camera and the motion estimated is indeed the rotation and translation
of the stereo camera itself. The features are therefore triangulated using (2.9) and the
estimation consists in minimizing the image reprojection error, which is computed
also on the third value of the stereo feature, that is, the disparity value and (1.6)
becomes:

p̃k−1 = Q−1
kTk−1 P̄k−1 (3.4)

where the projection is computed using the inverse reprojection matrix Q−1 from
(2.10).

In the multiple camera case a 3D point can be defined in the reference system of
the vehicle, assuming to have the relative position and orientation of every camera
with respect to the body of the vehicle, and then projected back to the original camera



34 Chapter 3. Robust Multiple View Odometry

Figure 3.5: The stereo and flow feature matching: the stereo match is computed first,
then the resulting subset of stereo features is used for flow matching considering the
subset of stereo features obtained at the previous frame.

when computing the reprojection error, directly estimating the motion of the vehicle.
The features are triangulated using (2.10) in the vehicle reference frame as follows:



x
y

z
1



=


BRC j BtB→C j

0 1


Q j



u
v

d
1



(3.5)



3.2. Multiple Camera Motion Estimation 35

Figure 3.6:A possible autonomous vehicle setup:multiple cameras looking at different
scenes. Calibrating camera position and orientation with respect to the vehicle’s body
allows to reconstruct the perceived world in the same reference system.

where BRC j and BtB→C j are the rotation matrix and translation vector that allow
to transform the triangulated point from the j-th camera reference system Cj to the
vehicle’s body reference system B, and Q j is the reprojection matrix for the j-th
camera. As shown in Figure 3.6, the autonomous vehicle may have multiple cameras
with different reference systems, but the triangulated points get defined in the vehicle’s
body reference system.

The triangulated features are all defined in the same reference system, so (1.5)
and (1.6) have to change accordingly. The image reprojection error to be minimized
in order to estimate the motion kTk−1 is the following:

arg min
kT k−1

∑
j

N j∑
i

���jp
i
k −j p̃ik−1

���
2

(3.6)

where k identifies the current frame, j identifies the camera, Nj defines the number
of features for the j-th camera, j p̃ik−1 is the projection over the k-th frame of the
i-th feature point jPi

k−1 observed in the j-th camera. In the stereo camera case, the



36 Chapter 3. Robust Multiple View Odometry

projection is again computed using Q−1 from (2.10) as follows:

j p̃k−1 = Q−1
C jT

B
kTk−1

j P̄k−1 (3.7)

where C jT
B is the transformation matrix that allows to transform a 3D point from

the vehicle’s body reference system B to the j-th camera reference system Cj . In the
moncular camera case, the projection is computed using the K matrix from (2.3) as
follows:

j p̃k−1 =



K j 0
0 1


C jT

B
kTk−1

j P̄k−1 (3.8)

As (3.7) and (3.8) highlights, the motion kTk−1 to be used in the reprojection
formula is the same for every feature, regardless the camera. The advantage is that
multiple cameras can be used in order to obtain a better accuracy and robustness,
without having any drawback. Multiple cameras look at difference scenes, making the
full systemmore resistant to camera occlusion and to potential lack of information due
to a single point of view, for instance when a truck is in front of the vehicle. Moreover,
in a multiple camera configuration, the additional camera can be monocular, without
incurring in the scale estimation problem typical of monocular VO algorithm, since
the features are triangulated from the 2 previous frames using the last estimatedmotion
which contains the scale information (see subsection 2.2.2).

3.2.1 Iteratively Reweighted Estimation

The set of feature correspondences often contains outliers as a consequence of false
matches or moving objects, which present a motion not consistent with that of the
vehicle. In order to cope with the presence of outliers, an optimization approach that
iteratively rejects them has been applied.

The optimization is indeed performed by an iterative estimation, where, in order
to reduce the impact of outliers, the minimization problem defined in (3.6) has been
modified incorporating a weight factor that changes at every iteration:

arg min
kT k−1

∑
j

N j∑
i

w j,i
���jp

i
k −j p̃ik−1

���
2

(3.9)



3.2. Multiple Camera Motion Estimation 37

and therefore the optimization consists in solving, at each iteration, a problem with
the following form:

kTk−1(t + 1) = arg min
kT k−1

∑
j

N j∑
i

w j,i (t)
���jp

i
k −j p̃ik−1

���
2

(3.10)

where the weight factor w j,i (t) for the i-th feature observed in the j-th camera is
computed and updated using the previous solution as:

w j,i (t) =
a

max(ri, j,k (t), λ)
(3.11)

where a is the age of the tracked feature, defined as the number of frame couples for
which it has been matched, and defining the residual

ri, j,k (t) = ���jp
i
k −j p̃ik−1

���
2

(3.12)

with λ being a constant which prevents the division by zero and implicitly defines the
maximum value of the weight function. The minimization problem defined in (3.10)
has the form of a non-linear least squares problem, hence it can be optimized using
Gauss-Newton algorithm. The robustness of the outliers rejection scheme is further
improved by removing the outliers from the correspondence list before starting a new
iteration, classifying as outliers the stereo features having a residual value ri, j,k (t)
greater than a predefined threshold thres. Assuming that the outliers are bounded,
after the first iteration they will have a larger residual cost than the inliers and this
provides a simple method for outliers rejection, reducing their contribution in the new
cost function.

The proposed method finds justification in the Iteratively Reweighted Least
Squares (IRLS), which is an optimization method that can be used to solve prob-
lems characterized by a p-norm based objective function:

arg min
β

n∑
i=1
|yi − f i (β) |p (3.13)

by iteratively solving a weighted least squares problem of the form:

βt+1 = arg min
β

n∑
i=1

ωi

(
β(t)

)
|yi − f i (β) |2 (3.14)



38 Chapter 3. Robust Multiple View Odometry

where the weight function ωi

(
β(t)

)
, which weights every observations according to

the previous minimization solution, is defined as:

ωi

(
β(t)

)
= |yi − f i (β) |p−2 (3.15)

The weight function defined in (3.11) depends on the inverse of the residual,
therefore, considering (3.13), (3.14) and (3.15), it looks like the optimization problem
introduced in (3.10) is equivalent to a problem with a 0 − norm objective function of
the following form:

arg min
kT k−1

∑
j

N j∑
i

���jp
i
k −j p̃ik−1

���
0

(3.16)

where the 0−norm is defined as the number of non-zero elements in a vector, therefore
it returns 0 when a residual value is 0 and 1 otherwise. Optimizing such a problem
is equivalent to finding the solution which satisfies the larger number of "perfect"
inliers, which is of course unfeasible in the real world and an estimator of that kind
would be unstable. The λ factor prevents that instability and makes the estimator
robust to outliers, therefore what (3.10) and (3.11) do, can be seen as minimizing a
problem where keypoints having a residual value greater than rmin, i.e. the outliers,
are evaluated through the 0 − norm in the original problem (3.16) and keypoints
having a smaller residual, i.e. the inliers, get a constant weight forcing them to be
evaluated as in an usual least squares problem.

A general non-linear least squares problem, which is a special case of p-norm
objective function based problem with p = 2, is defined as follows:

arg min
β

n∑
i=1
|yi − f i (β) |2 (3.17)

can be solved by solving the normal equations:(
JTJ

)
∆β = JT∆y (3.18)

with respect to ∆β, which is the shift vector that updates the previous solution β.
Equation (3.18) represents the basis for the Gauss-Newton algorithm for a non-linear



3.3. Multiple Frame Optimization 39

least squares problem, which is iteratively solved as:

β(s+1) = βs −
(
JTf Jf

)−1
JTf r

(
βs

)
(3.19)

where r (·) is the residual function r (βs) = yi − f i (βs). However, the concept of
weight function introduced in (3.10) requires to modify (3.18), which becomes:(

JT W J
)
∆β = JT W ∆y (3.20)

(3.19) consequently becomes:

β(s+1) = βs −
(
JTf W Jf

)−1
JTf W r

(
βs

)
(3.21)

Therefore, Equation (3.10) defines the problem and (3.21) shows how to iteratively
solve it using the Gauss-Newton algorithm. Finally, the last refinement is represented
by an outliers rejection procedure which is done after each iteration, that simply con-
sists in removing remarkable outliers from the minimization pool and then continuing
the optimization process until convergence. Although the developed estimator is fairly
robust to outliers, removing the most clear of them after each iteration makes the min-
imization more efficient, since Jacobian and residual computation remain onerous
operations which is reasonable to avoid if possible.

3.3 Multiple Frame Optimization

The motion estimation provided by the Iteratively Reweighted Estimator is further
improved through a SBA performed over a sliding window. The goal of SBA is to
produce a jointly optimal 3D points and camera poses estimation, in this case within a
fixed-size window which bounds the computational cost and time. In this application,
the 3D points optimization is not the final target of SBA, but it helps to improve the
overall quality of camera poses estimation.

The developed SBA works over a sliding window of 45 frames, but it does
not actually perform the optimization over the full window, since it only considers
one every five frames therefore optimizing an actual problem of 9 frames. Within



40 Chapter 3. Robust Multiple View Odometry

Figure 3.7: The sliding window based SBA considers a window of 45 frames, where
only one frame every five is optimized (in red). The camera poses and 3D points are
defined with respect to the first frame within the window.

the window, all the camera poses are defined with respect to the first frame of the
considered window and, consequently, all the 3D points are defined in the reference
system of the same first frame (Figure 3.7).

However, although just 9 frames out of 45 are considered for SBA optimization,
the information provided by the other frames is taken into account in order to supply
a better initial guess of the optimization: even though a new feature may have been
observed only three times in the 9 frames considered for SBA, it has certainly been
observed in many more frames considering the full window and those observations
are used to provide the initial 3D point estimation when the SBA problem is defined;
likewise, the SBA expects an initial guess for the camera poses of the 9 frames and
such an estimate is simply provided by concatenating the relative transformations
of the frames within the windows obtained by the Iteratively Reweighted Estimator
(Figure 3.8).

The advantage of this approach is the quality of the initial guess for every parameter
to be optimized, resulting in way less operation in the SBA step, which requires just
few iteration to converge. However, regarding 3D point estimation, the described
technique is applied only to features that have not yet been optimized in the windowed
SBA and, regarding motion estimation, it is applied only to the last camera pose, the



3.3. Multiple Frame Optimization 41

Figure 3.8: Within the SBA window, all the frames are used to compute the initial
guess both for new camera poses and new 3D points, while only one every five frames,
in red, are actually optimized in the SBA.

only one that was not in the previous SBA window. In other words, the initial guess
procedure is applied to bootstrap and to new features and to the new camera pose as
well, while in other cases the starting values for estimated parameters come from the
previous windowed SBA for the sake of efficiency, requiring just few operations to
adapt the previous solutions to the new problem.

Considering Equation (1.7), every 3D point 0Pi associated to the i-th feature f i is
defined in the reference system of frame 0. At the next windowed SBA computation,
the window is shifted of 5 frames and every previously optimized 3D point still alive in
the new window is updated by simply using the previously optimized 5T0 as follows:

5P̄i = 5T0 0P̄i (3.22)

where frame 5 is going to represent the new frame 0 inside the window. In the same
way, all the previous camera poses iT0 have to be updated consistently using the
previously optimized 5T0 as follows:

iT5 = iT0
(

5T0
)T

(3.23)

The number of 3D points optimized is bounded to a maximum in order to limit the
computation time, adding first to the problem the 3D points that have been observed
more in the frames considered for SBA optimization since those are the one providing
more information to the problem solution.



42 Chapter 3. Robust Multiple View Odometry

The windowed SBA provides an optimized camera pose every 5 frames, there-
fore generating a VO estimation with a lower fixed frequency than the Iteratively
Reweighted Estimator, somehow bounding the VO drift to the interval between SBA
optimized camera poses.



Chapter 4

Results

The full VO system proposed has been tested at a first stage using open datasets
and then using sequences acquired by a vehicle specifically designed for algorithm
validation. Since VO provides a motion estimation, the sensor that better fits for
ground truth generation is of course GPS. Unfortunately, commercial GPS modules
have poor accuracy and low frequency which provide a localization error in the order
of meters and thus make them unsuitable for ground truth generation. Therefore, a
vehicle designed for VO validation has to be equipped with a high accuracy GPS
module integrated with IMU, in order to generate a valuable ground truth able to
highlight the algorithm performances. Once such ground truth data is provided, a
metric to evaluate the algorithm has to be defined.

4.1 Metric

Geiger et Al. in [4] extended [66] and introduced a metric for evaluating VO algo-
rithms commonly adopted in the research community, using GPS+IMU based ground
truth camera poses. Basically, the main problem in ground truth generation is that
GPS provides an absolute position, while a VO algorithm provides a relative motion
between subsequent frames, making the comparison non trivial in order to avoid ef-
fects caused by data belonging to different domains. The solution is to evaluate the VO



44 Chapter 4. Results

result by generating prefixed-length paths through concatenation of relative transfor-
mations and compare them with the correspondent paths generated using GPS+IMU
data.

Considering a sequence composed by n frames, a list of n camera poses has to
be computed from the GPS+IMU data available as ground truth and from the VO
raw data as well. The generated k-th camera pose has as source reference system the
one of the k-th frame and as destination reference system a common one which can
coincide with the reference system at frame 0 for the sake of simplicity. Therefore,
once the k-th ground truth pose is defined as Pgt

k
=

[
0Rk |0tk→0

]gt
, the list of n poses

Pgt
0:n =

{
Pgt

0 , ..., P
gt
n

}
has to be generated from ground truth data, where the first

camera pose could be defined as [I |0] since source and destination coincide in this
case.

For each frame, the rotation and translation errors for a list of subsequences of
different lengths have to be evaluated. Considering the following list of lengths for
the evaluation:

L = {100m, 200m, 300m, 400m, 500m, 600m, 700m, 800m} (4.1)

a given frame k can be associated with 8 paths, each one starting from the frame pose
and ending after the corresponding distance in L has been covered. In order to do
that, for each frame k the corresponding distance from frame 0 is computed using the
following recursive formula:

distk = distk−1 +
���
���
0tgt

k−1→0 −
0tgt

k→0
���
���2 (4.2)

Then, for each frame k and for each i-th length Li, it is possible to identify the path
pi
k→j

where j is the first next frame for which that length is covered, thus the first j
that satisfies:

dist j > distk + Li (4.3)

Consequently, for every frame k 8 pose error matrices can be computed, each one
representing the delta pose between the ground truth pose and the estimated VO pose
after covering a particular distance Li , applying the following:

Perr
k,Li
=

[
Rerr
k,Li
|terrk,Li

]
=

[
jRk | jtk→j

]vo [
kR j |kt j→k

]gt
(4.4)



4.2. Open Dataset Results 45

Defined the pose error matrix Perr
k,Li

, a translation error function terr (k, Li) is intro-
duced as

terr (k, Li) =
���
���t
err
k,Li

���
���2 (4.5)

and a rotation error function rerr (k, Li) as

rerr (k, Li) = arccos *.
,
max *.

,
min *.

,

Tr
(
Rerr
k,Li

)
− 1

2
, 1+/

-
,−1+/

-

+/
-

(4.6)

The terr (k, Li) and rerr (k, Li) error functions produce 16 scalar values for every
frame of a sequence, that can be used to generate a graphical representation of
the errors considering different covered distances. After those error values have been
computed, a reasonable summary can be produced by the introduction of the following
performance parameters:

tavg_err (Li) =
∑n

k=0 terr (k, Li)
n Li

100 (4.7)

which is the average translation error percentage considering length Li,

terr =
∑7

i=0 tavg_err (Li)
7

(4.8)

which is the global average translation error percentage,

ravg_err (Li) =
∑n

k=0 rerr (k, Li)
n Li

100 (4.9)

which is the average rotation error over the length Li in deg/100m,

rerr =
∑7

i=0 ravg_err (Li)
7

(4.10)

which is the global average rotation error in deg/100m.

4.2 Open Dataset Results

The open dataset used for evaluating the algorithm performance is the KITTI Vision
Benchmark Suite [4], which has 11 sequences acquired by a vehicle equipped with



46 Chapter 4. Results

a 1.4 Megapixels grayscale stereo camera Point Grey Flea 2 (FL2-14S3M-C), all
provided with ground truth trajectories generated using a inertial navigation system
OXTS RT 3003.

The VO algorithm has been tested in two configurations: the first one, called IRE,
which only uses the Iteratively Reweighted Estimator without the further improvement
of the windowed SBA and the second one, called IRE+WSBA, which uses the whole
pipeline, in order to also evaluate the improvement of the multiple frame optimization
phase. Unfortunately, the KITTI vehicle only has a frontal stereo camera, therefore it
is not possible to benefit of the multiple camera feature of the algorithm for this test.

A qualitative evaluation of the algorithm and a comparison between the two con-
figurations is provided in Figure 4.1, 4.2 and 4.3, where the IRE+WSBA configuration
clearly outperforms the IRE configuration, with the windowed SBA improving the
estimated path alignment with the ground truth trajectory which may corresponds to
a smaller rotation error.

A quantitative evaluation, based on the metric provided, is presented in Fig-
ure 4.4, which represents the average rotation error as defined in Equation (4.9), and
in Figure 4.5, which provides the average translation error percentage as defined in
Equation (4.7); the data are displayed in Table 4.1. Table 4.2 shows a comparison
between the results obtained from the full system and the public results of some
of the top ranked VO and SLAM algorithms [45, 42, 13, 12] present in literature,
where the translation and rotation errors are reported for every sequence. Although
the comparison with SLAM-based algorithms is unfair, it is interesting to evaluate
the current top performances using vision-only algorithms. The overall performance
of the proposed method is good, considering the design choices that are derived from
the embedded implementation requirements, in particular for rotation error which is
definitely comparable to the state of the art; the translation error is usually slightly
worse than the competitors’ translation error, probably because of the inferior feature
extraction and description method adopted, which is somehow dated with respect to
the more complex techniques used by the other works in the list. This probably causes
a lack of accuracy for image feature coordinates and therefore a worse estimation of
the translation component.



4.2. Open Dataset Results 47

 0

 100

 200

 300

 400

 500

-300 -200 -100  0  100  200  300

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

Figure 4.1: The result for sequence 00 of the KITTI dataset. The ground truth trajec-
tory is represented in red, the IRE configuration trajectory in blue, the IRE+WSBA
configuration trajectory in green.

IRE IRE + WSBA
terr 1.16 0.92
rerr 0.32 0.25

Table 4.1: Average translation error [%] and rotation error [deg/100m] considering
the whole dataset.



48 Chapter 4. Results

-1500

-1000

-500

 0

 0  500  1000  1500

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

 0

 200

 400

 600

 800

 1000

-200  0  200  400  600  800

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

-100

 0

 100

 200

 300

 0  100  200  300  400

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50  0  50  100  150  200

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

-100

 0

 100

 200

 300

 400

-200 -100  0  100  200

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

-100

 0

 100

 200

 300

-200 -100  0  100  200

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

Figure 4.2: The result for sequences 01, 02, 03, 04, 05 and 06 of the KITTI dataset.



4.2. Open Dataset Results 49

-50

 0

 50

 100

-200 -150 -100 -50  0

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100  0  100  200  300  400

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

 0

 100

 200

 300

 400

 500

 600

-200 -100  0  100  200  300  400

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

-300

-200

-100

 0

 100

 200

 300

 400

 0  100  200  300  400  500  600  700

z
 [
m

]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

Figure 4.3: The result for sequences 07, 08, 09 and 10 of the KITTI dataset.



50 Chapter 4. Results

 0

 1x10
-5

 2x10
-5

 3x10
-5

 4x10
-5

 5x10
-5

 6x10
-5

 7x10
-5

 8x10
-5

 9x10
-5

 0.0001

 100  200  300  400  500  600  700  800

R
o

ta
ti
o

n
 E

rr
o

r 
[r

a
d

/m
]

Path Length [m]

Rot. Err. IRE
Rot. Err. IRE+WSBA

Figure 4.4: The average rotation error. IRE configuration trajectory is represented in
blue, IRE+WSBA configuration trajectory in green.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100  200  300  400  500  600  700  800

T
ra

n
s
la

ti
o

n
 E

rr
o

r 
[%

]

Path Length [m]

Tr. Err. IRE
Tr. Err. IRE+WSBA

Figure 4.5: The average translation error. IRE configuration trajectory is represented
in blue, IRE+WSBA configuration trajectory in green.



4.2. Open Dataset Results 51

IRE+WSBA GDVO SOFT-VO SOFT-SLAM ORB-SLAM2
terr rerr terr rerr terr rerr terr rerr terr rerr

00 0.74 0.26 0.71 0.53 0.63 0.24 0.66 0.22 0.70 0.25
01 1.81 0.16 1.00 0.65 0.96 0.18 0.96 0.18 1.39 0.21
02 0.97 0.28 0.70 0.41 0.74 0.20 1.36 0.23 0.76 0.23
03 0.98 0.27 0.75 0.37 0.70 0.23 0.70 0.23 0.71 0.18
04 0.95 0.14 0.42 0.64 0.50 0.18 0.50 0.18 0.48 0.13
05 0.80 0.25 0.47 0.38 0.47 0.20 0.43 0.17 0.40 0.16
06 0.92 0.21 0.41 0.40 0.38 0.18 0.41 0.14 0.51 0.15
07 0.84 0.42 0.40 0.50 0.36 0.23 0.36 0.24 0.50 0.28
08 0.92 0.24 0.88 0.39 0.78 0.21 0.78 0.21 1.05 0.32
09 1.13 0.24 0.77 0.35 0.74 0.17 0.59 0.18 0.87 0.27
10 0.54 0.25 0.63 0.41 0.68 0.26 0.68 0.26 0.60 0.27

Table 4.2: Comparison with top ranked state of the art VO and SLAM algorithms.
For each sequence, the average rotation error [deg/100m] and the average translation
error [ %] is reported.



52 Chapter 4. Results

4.3 Validation Vehicle Results

The vehicle used for validation is equipped with two 4K stereo cameras both having
a baseline of 0.3m, one pointed to the front direction of the vehicle and the other to
the back, and a Applanix inertial navigation system for providing ground truth data.
The objective of the acquired sequences was driven by the need of evaluating the
robustness of the algorithm in particular situations, such as in high-speed turns or
when driving through roundabouts and speed bumps. Those kind of situations are
not faced in the KITTI dataset, but they resulted to be critical cases for odometry
estimation. All the results presented in this section have been obtained running the
VO algorithm over 1920 × 1080 images, downscaled from the acquired 4K images.

First of all, some examples of the feature extraction and matching modules are
shown in Figure 4.6, where the good stability of the feature extracted is clear, since
false matches represent a very small amount of the matched features.

Table 4.3 reports the results for the IRE and IRE+WSBA configurations both
in single camera mode and in multi-camera mode; the multi-camera versions of the
IRE and IRE+WSBA configurations have been called (M)IRE and (M)IRE+WSBA.
The multi-camera mode improves significantly the translation error, thanks to the
contribution of the additional viewpoint. On the other hand, the rotation error increases
in the multi-camera IRE configuration - without WSBA - probably because the use of
multiple cameras makes the algorithm more sensible to the relative calibration of the
cameras with respect to the body of the vehicle. The (M)IRE+WSBA configuration
does not suffer from this rotation error, because the relative calibration of both cameras
is optimized together with the motion, hence the miscalibration is implicitly corrected
by the SBA paradigm.

A qualitative evaluation of the algorithm and a comparison is provided by Fig-
ure 4.7, 4.8 and 4.9. As expected, the (M)IRE+WSBA configuration is the most
performing one, since it significantly reduces the translation error with respect to the
single camera IRE+WSBA, while the rotation error is comparable.

In general, the results for the single camera configurations are worse than the
results obtained for the KITTI dataset. A reason for this has to be found in the presence



4.4. Computation Time 53

of roundabouts, which usually tend to increase the rotation error, while another reason
could be that the cameras used for acquiring the sequences are equipped with Rolling
Shutter (RS) sensors and not with to the better Global Shutter (GS) sensors used for the
KITTI dataset. ARS sensor acquires the image sequentially, thus every line is acquired
at a different time, producing a warped image and consequently an estimation error;
methods for compensating RS effects exist [67], but in this work those techniques
have not been implemented.

IRE IRE+WSBA (M)IRE (M)IRE+WSBA
terr rerr terr rerr terr rerr terr rerr

v_00 1.94 0.43 1.92 0.13 N/A N/A N/A N/A
v_01 1.13 0.40 1.05 0.21 0.93 0.59 0.93 0.25
v_02 1.23 0.36 1.18 0.20 1.10 0.59 0.73 0.16
v_03 1.27 0.54 1.23 0.40 0.60 0.53 0.62 0.25
v_04 1.61 0.78 1.61 0.77 1.47 1.08 1.02 0.78
v_05 1.81 0.93 1.58 0.62 1.04 0.84 1.08 0.62
v_06 1.32 0.45 1.20 0.26 1.06 0.68 0.74 0.19
v_07 1.29 1.51 1.28 1.26 1.41 1.49 1.10 0.93
v_08 1.07 0.33 1.16 0.11 1.07 1.28 0.41 0.46
AVG 1.41 0.64 1.36 0.44 1.09 0.89 0.83 0.46

Table 4.3: Average translation error [%] and rotation error [deg/100m] obtained for
every sequence.

4.4 Computation Time

The computation time of the different modules has been measured running on the
embedded platform, which presents dedicated units for handling feature extraction
and matching, and an ARM® CORTEX™ A53 for general purpose tasks. The
results for the different components of the system have been collected through testing
of the full system on the validation vehicle; the average computation time and the



54 Chapter 4. Results

corresponding average standard deviation for each module are the followings:

• The feature extraction and description module requires 7.0ms for a single cam-
era, considering 2048 features extracted from each view, hence this time it is
almost halved in the monocular case. Thanks to the dedicated hardware module
it is very stable and its average standard deviation is 0.2ms.

• The feature matching module requires a total of 3.0ms to match features from
the left and right view and then to match the obtained stereo features with
the previous stereo features, hence this time is almost halved in the monocular
case. Thanks to the dedicated hardware module it is very stable and its average
standard deviation is 0.1ms.

• The IRE estimation module always requires 2.1ms since the computation time
is directly proportional to the number of features and, in case of multiple
cameras, themaximumnumber of features is the same and the amount is equally
divided between the available views. In this case the execution is performed
by the ARM® processor, which determines a more variable computation time
characterized by an average standard deviation of 0.3 ms.

• The WSBA optimization module requires 30.2ms every 5 frames, hence an
equivalent amount of 6.0ms for each frame. The time required does not depend
on the number of frames, since the maximum number of features is fixed
and equally divided between the available views. The total average standard
deviation is 4ms.

The total computation time required for a single camera stereo configuration is
18.1ms through simple addition of the times mentioned above. For the two stereo
camera case, with a hardware module for feature extraction and a different hardware
module for feature matching - which is indeed the case of the hardware platform used
for the embedded implementation - the resulting pipeline structure limits the overall
computation time to 25 ms (see Figure 4.10).



4.4. Computation Time 55

(a)

(b)

(c)

(d)

Figure 4.6: Examples of feature extraction and matching: the stereo match result in
(a) and (c); the flow match result in (b) and (d).



56 Chapter 4. Results

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

-60

-40

-20

 0

 20

 40

 60

-50  0  50  100  150  200

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

(M)IRE
(M)IRE+WSBA

-150

-100

-50

 0

 50

-50  0  50  100  150  200

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

(M)IRE
(M)IRE+WSBA

Figure 4.7: The result for sequences v_00, v_01 and v_04 of the dataset.



4.4. Computation Time 57

-60

-40

-20

 0

 20

 40

 60

-50  0  50  100  150  200

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

(M)IRE
(M)IRE+WSBA

-20

 0

 20

 40

 60

 80

 0  50  100  150  200

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

(M)IRE
(M)IRE+WSBA

 0

 50

 100

 150

-50  0  50  100  150  200

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

(M)IRE
(M)IRE+WSBA

Figure 4.8: The result for sequences v_02, v_03 and v_05 of the dataset.



58 Chapter 4. Results

 0

 50

 100

 150

-50  0  50  100  150  200

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

(M)IRE
(M)IRE+WSBA

 0

 20

 40

 60

 80

 0  50  100  150  200

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

(M)IRE
(M)IRE+WSBA

-20

-10

 0

 10

 20

 30

 40

 50

 0  50  100  150  200

z
 [

m
]

x [m]

Ground Truth
IRE

IRE+WSBA
Sequence Start

(M)IRE
(M)IRE+WSBA

Figure 4.9: The result for sequences v_06, v_07 and v_08 of the dataset.



4.4. Computation Time 59

Figure 4.10: The computation time required for a configuration with two stereo cam-
eras.





Chapter 5

Conclusions

The aim of this thesis was to outline a modular system for real-time visual odome-
try estimation. The developed method has been designed to be implemented on an
embedded system, composed by one or multiple cameras equipped with an on-board
computer vision processor. The proposed system is therefore adaptable to different
configurations, since it works using a single stereo camera or a stereo camera plus
other cameras, either monocular or stereo. The main requirements were the real-time
execution at 30 frames per second using 1920 × 1080 images and a limited cost in
terms of memory. The motion estimator is robust to outliers and converges in few
iterations, thanks to an iterative reweighting scheme. A further multiple frame opti-
mization technique has been developed in order to improve the overall quality of the
estimated motion, exploiting a Sparse Bundle Adjustment over a sliding window.

The proposed system has been evaluated using a well-known open dataset and
acquiring new sequences through the use of a vehicle specifically designed for image
acquisition and ground truth generation. The metric adopted for evaluation, which
is very common in literature, provides a rotation error and a translation error that
represent a simple and fast way to compare different methods. For both the open and
the acquired datasets, the proposed method has been tested also having the multiple
frame optimization disabled, in order to evaluate the contribution of the multiple
frame optimization.



62 Chapter 5. Conclusions

The results obtained on the open dataset have been compared to some of the most
performingVO and SLAMalgorithms in literature, although the dataset only allows to
test the proposed method in the single-camera configuration. The comparison shows
that the full system provides a motion estimation characterized by a rotation error
comparable to that achieved by top ranked works, 0.25 deg/100m on average, while
the translation error is slightly worse although it is close to 0.9% on average, which is
definitely a good result. The most probable reason for this lies in the weaker feature
extraction and description method adopted, with respect to the advanced techniques
used by other works in the comparison list, since it probably provides weaker image
features and causes a lack of accuracy in the estimation of the translation component.
For what concerns the multiple frame optimization, the results show that it definitely
improves the motion estimation, reducing the rotation and translation errors of about
20%.

The dataset acquired using the validation vehicle has been structured to put to test
the algorithmwith some difficult scenarios that open datasetsmiss, such as performing
high-speed turns or going through roundabouts and speed bumps, situations that are
usually encountered when driving in many European roads. Most of the acquired
sequences have been recorded using two stereo cameras, one looking to the front
and the other to the back of the vehicle, which have made it possible to evaluate the
full system in the multiple camera configuration. Therefore, the acquired dataset has
been used to propose a comparison between the single-camera and the multi-camera
configurations, in order to highlight the contribution of the multi-camera option. The
results revealed that the multi-camera approach is able to significantly improve the
translation estimation, reducing on average the translation error of about 39% with
respect to the single-camera configuration. Considering the whole acquired dataset,
the proposed method provided an average translation error of 0.83% and an average
rotation error of 0.46 deg/100m.

The proposed algorithm fulfills the initial requirements, since it does not exploit
any kind of map, thus it requires a limited amount of memory, and it takes 18 ms to
run in the single-camera configuration on the low-power embedded platform adopted,
and 25 ms in the configuration that uses two stereo cameras.



5.0. Conclusions 63

This thesis has enlightened the importance of exploiting multiple views in order to
achieve accurate motion estimation and 3D reconstruction. The use of multiple views
in the time domain, which is what a Bundle Adjustment technique does, significantly
improves the accuracy in the estimation of the rotation component of motion. In the
same way, the use of multiple views in the space domain, enable by a multi-camera
configuration, considerably enhances the accuracy in the estimation of the translation
component of motion. The combination of these concepts provides a reliable and
accurate motion estimation method, moreover the system results robust to temporary
occlusions thanks to the use of multiple viewpoints.

An obvious improvement that has to be done is enabling the VO estimation when
using a single monocular camera. Of course, the information about scale cannot be
easily retrieved using just a monocular camera, but integrating the scale information
from a different kind of sensor is a straightforward solution, that does not present
drawbacks. For what concerns feature extraction, a more performing method should
be implemented in order to improve feature accuracy.

Besides the improvements obtained here exploiting multiple views, redundancy
and sensors integration is the only way to achieve autonomous driving. The real
world is something that cannot be completely predicted. While research is making
tremendous improvements in computer vision, car accidents - which sadly occurred
in some recent experiments of unsupervised autonomous driving - pointed out how
such systems cannot rely on a single or few sensors. A method can be trained and
tested over millions of different situations - and to be honest this is not the case yet,
even for already commercialized systems - but the unpredictable, the black swan, will
always come out and, at that point, it won’t be just a drop in the results of a paper.

In order to honor what inspired the first milestones in computer vision applied to
autonomous driving, that is the development of a safer and sustainable transportation,
the keyword must be reliability. An autonomous car has to rely on multiple sensors
that must be able to cooperate in order to work better, whichever the task is, but that
can also be able to provide a fair result in case of temporary fault of some of them,
allowing the vehicle to safely and properly put itself in a safe condition in case of
need. In autonomous driving the winning solution has to be the fusion and integration



64 Chapter 5. Conclusions

of different sensors, because if a failure - which may result in the loss of a life - can
be avoided by integrating a different sensor in the system, that is the way to go. It may
not be the minimal solution and neither the cheapest, but it definitely is the only one
acceptable. The recent run of car makers in autonomous driving wonderfully boosted
the research all over the world, but everyone should keep in mind that if people feel
autonomous driving unsafe, this crazy rush will rapidly end as it started.



Appendix A

Notation

The notation adopted for defining rigid transformations and vectors can be outlined
with the following points:

• A transformation matrix is denoted by a capitol letter, for instance a relative
transformation is usually denoted by T .

• A transformation matrix is composed by a rotation matrix R and a translation
vector t.

• A transformation matrix that transforms from the source reference system s to
the destination reference system d is denoted by dT s.

• The rotation matrix which defines the transformation matrix dT s is denoted by
dRs, where s is the source reference system and d is the destination reference
system.

• The translation vector which defines the transformation matrix dT s is denoted
by dtd→s, where the left superscript denotes that the vector is defined in the
destination reference system and right subscript denotes the sense of the vector.

• A transformation matrix dT s can be applied by applying the rotation matrix
dRs first and then by adding the translation vector dtd→s.



66 Appendix A. Notation

Given those points, a transformation matrix dT s has the following form:

dT s =


dRs dtd→s

0 1





Bibliography

[1] DavidNistér,OlegNaroditsky, and JamesBergen. Visual odometry. InComputer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 1, pages I–I. Ieee, 2004.

[2] Hans PMoravec. Obstacle avoidance and navigation in the real world by a seeing
robot rover. Technical report, STANFORD UNIV CA DEPT OF COMPUTER
SCIENCE, 1980.

[3] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE
robotics & automation magazine, 18(4):80–92, 2011.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 3354–3361. IEEE, 2012.

[5] Martin Peris, Sara Martull, Atsuto Maki, Yasuhiro Ohkawa, and Kazuhiro
Fukui. Towards a simulation driven stereo vision system. In Pattern Recog-
nition (ICPR), 2012 21st International Conference on, pages 1038–1042. IEEE,
2012.

[6] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Re-
hder, Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc
micro aerial vehicle datasets. The International Journal of Robotics Research,
35(10):1157–1163, 2016.



68 Bibliography

[7] JK Aggarwal and N Nandhakumar. On the computation of motion from se-
quences of images-a review. Proceedings of the IEEE, 76(8):917–935, 1988.

[8] Peter Corke,Dennis Strelow, and Sanjiv Singh. Omnidirectional visual odometry
for a planetary rover. In Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, volume 4, pages
4007–4012. IEEE, 2004.

[9] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[10] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping
(slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006.

[11] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a
versatile and accurate monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, 2015.

[12] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262, 2017.

[13] I Cvisic, J Cesic, IMarkovic, and I Petrovic. Soft-slam:Computationally efficient
stereo visual slam for autonomous uavs. Journal of Field Robotics, 2017.

[14] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In European Conference on Computer Vision, pages 834–849.
Springer, 2014.

[15] Christopher Mei, Gabe Sibley, Mark Cummins, Paul Newman, and Ian Reid.
Rslam: A system for large-scale mapping in constant-time using stereo. Inter-
national journal of computer vision, 94(2):198–214, 2011.

[16] Hauke Strasdat, J Montiel, and Andrew J Davison. Scale drift-aware large scale
monocular slam. Robotics: Science and Systems VI, 2, 2010.



Bibliography 69

[17] Carlos Estrada, José Neira, and Juan D Tardós. Hierarchical slam: Real-time
accurate mapping of large environments. IEEE Transactions on Robotics,
21(4):588–596, 2005.

[18] Niko Sünderhauf, Kurt Konolige, Simon Lacroix, and Peter Protzel. Visual
odometry using sparse bundle adjustment on an autonomous outdoor vehicle.
In Autonome Mobile Systeme 2005, pages 157–163. Springer, 2006.

[19] Kurt Konolige, Motilal Agrawal, and Joan Sola. Large-scale visual odometry
for rough terrain. In Robotics research, pages 201–212. Springer, 2010.

[20] Friedrich Fraundorfer, Davide Scaramuzza, and Marc Pollefeys. A constricted
bundle adjustment parameterization for relative scale estimation in visual odom-
etry. In Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 1899–1904. IEEE, 2010.

[21] Jean-Philippe Tardif, Michael George, Michel Laverne, Alonzo Kelly, and An-
thony Stentz. A new approach to vision-aided inertial navigation. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
4161–4168. IEEE, 2010.

[22] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In Robotics and automation,
2007 IEEE international conference on, pages 3565–3572. IEEE, 2007.

[23] Eagle S Jones and Stefano Soatto. Visual-inertial navigation, mapping and
localization: A scalable real-time causal approach. The International Journal of
Robotics Research, 30(4):407–430, 2011.

[24] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense 3d
reconstruction in real-time. In Intelligent Vehicles Symposium (IV), 2011 IEEE,
pages 963–968. IEEE, 2011.

[25] Chris Harris andMike Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, pages 10–5244. Citeseer, 1988.



70 Bibliography

[26] Michael Kaess, Kai Ni, and Frank Dellaert. Flow separation for fast and robust
stereo odometry. In Robotics and Automation, 2009. ICRA’09. IEEE Interna-
tional Conference on, pages 3539–3544. IEEE, 2009.

[27] Keju Peng, Xin Chen, Dongxiang Zhou, and Yunhui Liu. 3d reconstruction
based on sift and harris feature points. In Robotics and Biomimetics (ROBIO),
2009 IEEE International Conference on, pages 960–964. IEEE, 2009.

[28] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. InEuropean conference on computer vision, pages 430–443. Springer,
2006.

[29] Andrew Howard. Real-time stereo visual odometry for autonomous ground
vehicles. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Inter-
national Conference on, pages 3946–3952. IEEE, 2008.

[30] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In European conference on
computer vision, pages 778–792. Springer, 2010.

[31] David G Lowe. Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE international
conference on, volume 2, pages 1150–1157. Ieee, 1999.

[32] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):91–110, 2004.

[33] Matthew Brown and David G Lowe. Unsupervised 3d object recognition and
reconstruction in unordered datasets. In 3-D Digital Imaging and Modeling,
2005. 3DIM 2005. Fifth International Conference on, pages 56–63. IEEE, 2005.

[34] Chris Beall, Brian J Lawrence, Viorela Ila, and Frank Dellaert. 3d reconstruc-
tion of underwater structures. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 4418–4423. IEEE, 2010.



Bibliography 71

[35] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In European conference on computer vision, pages 404–417. Springer,
2006.

[36] Bernd Kitt, Andreas Geiger, and Henning Lategahn. Visual odometry based on
stereo image sequences with ransac-based outlier rejection scheme. In Intelligent
Vehicles Symposium (IV), 2010 IEEE, pages 486–492. IEEE, 2010.

[37] Larry Matthies and STEVENA Shafer. Error modeling in stereo navigation.
IEEE Journal on Robotics and Automation, 3(3):239–248, 1987.

[38] Clark F Olson, Larry H Matthies, Marcel Schoppers, and Mark W Maimone.
Rover navigation using stereo ego-motion. Robotics and Autonomous Systems,
43(4):215–229, 2003.

[39] Yang Cheng, Mark W Maimone, and Larry Matthies. Visual odometry on the
mars exploration rovers. IEEE Robotics and Automation magazine, 13(2):54,
2006.

[40] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[41] Andrew I Comport, EzioMalis, and Patrick Rives. Accurate quadrifocal tracking
for robust 3d visual odometry. Citeseer.

[42] Igor Cvišić and Ivan Petrović. Stereo odometry based on careful feature selection
and tracking. In Mobile Robots (ECMR), 2015 European Conference on, pages
1–6. IEEE, 2015.

[43] Martin Buczko and Volker Willert. Flow-decoupled normalized reprojection
error for visual odometry. In Intelligent Transportation Systems (ITSC), 2016
IEEE 19th International Conference on, pages 1161–1167. IEEE, 2016.



72 Bibliography

[44] Hernán Badino, Akihiro Yamamoto, and Takeo Kanade. Visual odometry by
multi-frame feature integration. In Proceedings of the IEEE International Con-
ference on Computer Vision Workshops, pages 222–229, 2013.

[45] Jianke Zhu. Image gradient-based joint direct visual odometry for stereo camera.
In Twenty-Sixth International Joint Conference on Artificial Intelligence, pages
4558–4564, 2017.

[46] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[47] Andrew J Davison and David W Murray. Simultaneous localization and map-
building using active vision. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (7):865–880, 2002.

[48] David Nistér. An efficient solution to the five-point relative pose problem. IEEE
transactions on pattern analysis andmachine intelligence, 26(6):756–770, 2004.

[49] Dennis Strelow and Sanjiv Singh. Motion estimation from image and inertial
measurements. The International Journal of Robotics Research, 23(12):1157–
1195, 2004.

[50] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry for ground
vehicle applications. Journal of Field Robotics, 23(1):3–20, 2006.

[51] Jean-Philippe Tardif, Yanis Pavlidis, and Kostas Daniilidis. Monocular visual
odometry in urban environments using an omnidirectional camera. In Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
pages 2531–2538. IEEE, 2008.

[52] Etienne Mouragnon, Maxime Lhuillier, Michel Dhome, Fabien Dekeyser, and
Patrick Sayd. Real time localization and 3d reconstruction. In Computer Vision
andPatternRecognition, 2006 IEEEComputer SocietyConference on, volume 1,
pages 363–370. IEEE, 2006.



Bibliography 73

[53] MarkMaimone, Yang Cheng, and LarryMatthies. Two years of visual odometry
on the mars exploration rovers. Journal of Field Robotics, 24(3):169–186, 2007.

[54] Francesc Moreno-Noguer, Vincent Lepetit, and Pascal Fua. Accurate non-
iterative o (n) solution to the pnp problem. In Computer vision, 2007. ICCV
2007. IEEE 11th international conference on, pages 1–8. IEEE, 2007.

[55] Laurent Kneip, Davide Scaramuzza, and Roland Siegwart. A novel parametriza-
tion of the perspective-three-point problem for a direct computation of absolute
camera position and orientation. 2011.

[56] David Nistér and Henrik Stewénius. A minimal solution to the generalised 3-
point pose problem. Journal of Mathematical Imaging and Vision, 27(1):67–79,
2007.

[57] Bill Triggs, Philip FMcLauchlan, Richard I Hartley, and AndrewW Fitzgibbon.
Bundle adjustment—a modern synthesis. In International workshop on vision
algorithms, pages 298–372. Springer, 1999.

[58] Jan-Michael Frahm, Pierre Fite-Georgel, David Gallup, Tim Johnson, Rahul
Raguram, Changchang Wu, Yi-Hung Jen, Enrique Dunn, Brian Clipp, Svetlana
Lazebnik, et al. Building rome on a cloudless day. In European Conference on
Computer Vision, pages 368–381. Springer, 2010.

[59] Manolis Lourakis and Antonis Argyros. The design and implementation of
a generic sparse bundle adjustment software package based on the levenberg-
marquardt algorithm. Technical report.

[60] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE
Transactions on pattern analysis and machine intelligence, 22, 2000.

[61] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer,
2016.



74 Bibliography

[62] Yasushi Kanazawa and Kenichi Kanatani. Reliability of 3-d reconstruc-
tion by stereo vision. IEICE TRANSACTIONS on Information and Systems,
78(10):1301–1306, 1995.

[63] Kenichi Kanatani, Yasuyuki Sugaya, and Hirotaka Niitsuma. Triangulation from
two views revisited: Hartley-sturm vs. optimal correction. In practice, 4:5, 2008.

[64] Peter Lindstrom. Triangulation made easy. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 1554–1561. IEEE, 2010.

[65] Heiko Hirschmuller. Accurate and efficient stereo processing by semi-global
matching and mutual information. In Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages
807–814. IEEE, 2005.

[66] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke, Gior-
gioGrisetti, Cyrill Stachniss, andAlexander Kleiner. Onmeasuring the accuracy
of slam algorithms. Autonomous Robots, 27(4):387, 2009.

[67] Alberto Broggi, Alessandro Cionini, Francesca Ghidini, and Paolo Zani. Han-
dling rolling shutter effects on semi-global matching in automotive scenarios.
In Intelligent Vehicles Symposium (IV), 2017 IEEE, pages 1134–1139. IEEE,
2017.



So Long, and Thanks for All the Fish


	Introduction
	A Brief History of Visual Odometry
	The Visual Odometry Problem
	Drift: Public Enemy Number One

	Feature-based Visual Odometry
	Stereo Visual Odometry
	Monocular Visual Odometry
	Motion Estimation Methods
	Bundle Adjustment

	3D Reconstruction Geometry
	Pinhole Camera Model
	Triangulation
	Stereo Vision
	Generic Triangulation


	Robust Multiple View Odometry
	Feature Extraction and Matching
	HARRIS Corner Detector
	BRIEF
	Matching

	Multiple Camera Motion Estimation
	Iteratively Reweighted Estimation

	Multiple Frame Optimization

	Results
	Metric
	Open Dataset Results
	Validation Vehicle Results
	Computation Time

	Conclusions
	Notation
	Bibliography

