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Preface 
 

Inverse Heat Transfer Problems (IHTP) use measurements for the estimation of unknown 

quantities appearing in the analysis of physical problems in thermal engineering. For 

example, inverse problems related to the heat conduction usually have to deal with the 

estimation of an unknown boundary heat flux, by using temperature measurements taken on 

a different boundary. Therefore, while in the classical direct heat conduction problem the 

cause (boundary heat flux) is given and the effect (temperature field in the body) is 

determined, the inverse problem involves the estimation of the cause from the knowledge of 

the effect.  

The aim of this thesis is to present and test new methodologies able to solve the inverse heat 

transfer problem, in order to characterize some type of heat transfer devices. In particular, 

three original estimation procedures are developed, tested on virtual experiments and applied 

to different experimental data: 

-  a new method based on the Iterative Reweighted Least Square approach, is proposed 

for the estimation of the average thermal performances of a tube in tube heat 

exchanger. After its verification, the method was experimentally employed for the 

characterization of bio-inspired wall corrugate tubes developed in collaboration with 

the Denmark Technical University (DTU); 

- an original improvement of Singular Valued Decomposition approach concerned the 

2D local estimation of the convective heat transfer coefficient, is developed. After 

its verification, the method was experimentally employed for the local estimation of 



the convective heat transfer coefficient in coiled tube, technology already developed 

and investigated at the University of Parma; 

- an novel method, based on the Reciprocity Functional gap, concerned the 2D local 

estimation of the convective heat transfer coefficient at the internal boundary of a 2D 

annuls domain, is developed. After its verification, the method was experimentally 

employed for the local estimation of the convective heat transfer coefficient in coiled 

tube. 

Finally, due to the complex fluid-wall interaction, a 3D zero order Tikhonov regularization 

scheme is implemented. After its numerical verification, the algorithm was employed for the 

local estimation of the convective heat transfer coefficient in an original test rig. The 

experimental setup consists of a straight tube fitted with a butterfly-shaped insert device. 

The same procedure, was applied for the local estimation of the convective heat transfer 

coefficient in an original test rig. The experimental setup consists of a straight cross-helix 

wall corrugated tube. 

In order to give an overview on the content of the present work, a brief description of each 

chapter is given: 

 

Chapter 1 

The aim of this chapter is to give a general introduction to the common heat exchangers 

configuration. Their classifications, together with some typical applications are also 

provided. The governing equation related to the forced convection are briefly introduced and 

discussed, together with their dimensionless analysis. Finally, the common heat transfer 

enhancement techniques are presented.  

 

Chapter 2 

The scope of the present chapter is mainly related to the definition of the Direct and Inverse 

Problem in Heat Transfer. A simple example is introduced in order to show the ill-

conditioning of the inverse problem and how it could affect the estimated solution. Finally, 

classifications and application to different fields are presented. 

 

Chapter 3 

The aim of the present chapter is to introduce the common solution techniques, both for the 

parameter and for the function estimation problems. In particular, two different problems are 



stated and their common solution strategies are introduced. Finally, a brief discussion on the 

stopping criteria is provided. 

 

Chapter 4 

In this chapter, new solution strategies related to the problems stated in the previous chapter 

are developed. In particular, a new methodology based on the Iterative Re-weighted Least 

Square approach is used also as a solution strategy for the inverse estimation of the average 

thermal performances of heat exchangers. For what concern the function estimation, two 

different approaches are adopted to locally inverse estimate the thermal performances of the 

heat exchangers: an upgrade of the Truncated Singular Value Decomposition, here called 

Gaussian Filtered Singular Valued Decomposition, and an upgrade of the here called 

Numerical Reciprocity Functional, defined as Filtered Reciprocity Functional are presented.  

 

Chapter 5 

This chapter is devoted to the validation and comparison of three new solution strategies 

presented in Chapter 4 with some of the common estimation algorithm presented in              

Chapter 3. The comparison is performed using virtual experiments in order to compare the 

reconstructed signal with the exact one. Moreover, in order to make a robust comparison, 

the reconstruction capabilities were tested using synthetic temperature measurements 

spoiled with different noise level. 

 

Chapter 6 

The aim of this chapter is related to the application of the estimation procedures used in 

Chapter 5 to four different experiments. In particular, the estimation concerned the 

identification of the average performances of a double corrugated pipe and the identification 

of the local convective heat transfer coefficients in coiled tube as well as in straight tube 

fitted with a butterfly-shaped turbulator and a straight cross-corrugate wall tube. 

 

The present thesis produced the following scientific publications: 

Bozzoli2016, Bozzoli2016a, Bozzoli2017a, Bozzoli2017b, Bozzoli2018, Bozzoli2018a, 

Bozzoli2018b, Mocerino2018 

 

Parma (Italy), 

31/08/2018 
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Chapter 1 

 

Heat exchangers 
 

1.1 Introduction 

 

A heat exchanger is a device used to transfer thermal energy between two or more fluids in 

thermal contact, having different temperature. In heat exchanger, usually, there is no 

interaction with the exterior of the system (e.g. exchange of thermal energy, mechanical 

energy, chemical reactions, etc.). A heat exchanger consists of heat transfer elements such 

as a core or matrix containing the heat transfer surface, and fluid distribution elements such 

as headers, manifolds, tanks, etc. Usually, there are no moving parts in a heat exchanger; 

however, there are exceptions, such as a rotary regenerative or a scraped surface heat 

exchanger. The heat transfer surface in direct contact with fluids and through which heat is 

transferred by conduction. That portion of the surface that is in direct contact with both the 

hot and cold fluids and transfers heat between them, it is usually referred as primary or direct 

surface. To increase the heat transfer area, appendages could be added to the primary surface 

constituting a secondary, or indirect surface. These extended surface elements are usually 

referred as fins. Thus, heat is conducted through the fin to the surrounding fluid by 

convection or radiation. As a result, the addition of fins to the primary surface reduces the 
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thermal resistance on that side and thereby increases the total heat transfer that could be 

exchanged by the fluids under the same temperature difference. Fins, that could be added 

also for structural purposes, may form flow passages increasing the heat transfer capabilities 

by increasing the fluid mixing. 

Typical application involve heating or cooling fluid stream, recover or reject heat, sterilize, 

pasteurize, fractionate, distil, concentrate, crystallize, control a process, etc. In the majority 

of the construction configurations, fluids are separated by a wall and they are referred as 

indirect heat exchanger or simply regenerators. On the other hand, if the fluids are mixed 

together directly exchanging heat, they are referred as direct transfer heat exchanger or 

simply recuperators. Common examples of heat exchangers are shell-and-tube exchangers, 

automobile radiators, condensers, evaporators, air preheater, cooling tower, etc. If no phase 

change occurs in any of the fluids, the heat exchanger is referred as sensible heat exchanger. 

There could be either internal thermal energy source (e.g. electric heater, nuclear fuel 

elements, etc.) or chemical reactions (e.g. boiler, fired heaters, fluidized-bed exchanger). 

The interaction with the exterior of the system, could be done also by exchanging work such 

as in the scraped surface heat exchanger, agitated vessels, stirred tank reactors, etc. In the 

indirect heat exchanger, the heat is exchanged by conduction through the solid domain, 

however in the heat pipe exchanger, the fluid remove the heat from the hot side by a 

combination of evaporation, condensation and conduction of the working fluid inside the 

heat pipe. A detail classification of the heat exchanger was done by Shah in (Shah1981). 

 

1.2 Classifications and applications 

 

The exchangers can be classified in different ways. As suggested by Shah (Shah2003) it is 

possible to categorize the heat exchanger devices according to the: 

- heat transfer processes 

- number of fluids 

- heat transfer surface area/volume ratio 

- construction type 

- flow arrangements 

- heat transfer mechanisms. 

A brief discussion related to the each class is here listed: 
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CLASSIFICATION ACCORDING TO TRANSFER PROCESS 

 

 
Figure 1.1: Heat exchanger: classification according to the transfer process 

 

Indirect contact heat exchanger 

This type of heat exchanger, the working fluids are divided by a wall and the heat is 

exchanged mainly by conduction. In general there is no moving parts, they are designed as 

a recuperator and are usually named surface heat exchanger. They can be classified as: 

- direct-transfer type; 

- storage type; 

- fluidized-bed exchanger. 

More in detail: 

Direct-transfer type 

In this category the heat is directly transferred from the hot fluid to the cold one. There 

could be more than two fluids and common examples are: tubular, plate and extended 

surface heat exchanger. Those devices are designed as a recuperator despite that term is 

not commonly used in the process industry for the shell-and-tube heat exchanger and 

plate heat exchanger. This category of device could be subdivided into prime surface 

heat exchanger and extended surface heat exchanger. The difference is that in the prime 

surface heat exchanger, no appendages to the surface could be used such as fins, while 

they could be used in the second category.  

Storage type exchanger 

In a storage type exchanger, both fluids flow alternatively pass through the same flow 

passages, and hence heat transfer is intermittent. The heat transfer surface (or flow 

passages) is generally cellular in structure and is referred to as a matrix or it is a porous 
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solid material, referred to as a packed bed. When hot gas flows over the heat transfer 

surface (through flow passages), the thermal energy from the hot gas is stored in the 

matrix wall, and thus the hot gas is being cooled during the matrix heating period. As 

cold gas flows through the same passages later (i.e., during the matrix cooling period), 

the matrix wall gives up thermal energy, which is absorbed by the cold fluid. Thus, heat 

is not transferred continuously through the wall as in a direct-transfer type exchanger 

(recuperator), but the corresponding thermal energy is alternately stored and released by 

the matrix wall. This storage type heat exchanger is also referred to as a regenerative 

heat exchanger, or simply as a regenerator. 

Fluidized-bed heat exchanger 

In a fluidized-bed heat exchanger, one side of a two-fluid exchanger is immersed in a 

bed of finely divided solid material, such as a tube bundle immersed in a bed of sand or 

coal particles. If the upward fluid velocity on the bed side is low, the solid particles will 

remain fixed in position in the bed and the fluid will flow through the interstices of the 

bed. If the upward fluid velocity is high, the solid particles will be moved away with the 

fluid. At a ‘‘proper’’ value of the fluid velocity, the upward drag force is slightly higher 

than the weight of the bed particles. This result in a solid particles floating with an 

increase in bed volume, which behaves as a liquid. This characteristic of the bed is 

referred to as a fluidized condition, characterized by a constant fluid pressure drop 

through the bed, which is independent to the flow rate, that strongly mixing of the solid 

particles. This results in a uniform temperature for the total bed (gas and particles) with 

an apparent thermal conductivity of the solid particles as infinity. Chemical reaction is 

common on the fluidized side in many process applications, such as the coal combustion 

fluidized beds. The common applications of the fluidized-bed heat exchanger are drying, 

mixing, adsorption, reactor engineering, coal combustion, and waste heat recovery. 

Direct contact heat exchanger 

In this category of heat exchangers, the working fluids are in contact an usually there is 

mass transfer in addition to the heat transfer. Usually, in this type of devices, at least 

one of the working fluid change phase, therefore the latent heat released represent a 

significant portion of the total transferred energy. Compared to the indirect contact heat 

exchanger, this type of devices does not have problems of fouling (since there is no 

separation walls), the construction is cheaper and the achievable heat transfer rate is 

very high. This family of heat exchanger can also be classified as: immiscible fluid, gas-

liquid and liquid-vapour exchanger. 
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Immiscible fluid heat exchanger 

In this type of heat exchanger, two immiscible fluid streams are brought into direct 

contact. These fluids may be single-phase fluids, or they may involve vaporization or 

condensation (e.g. condensation of organic vapors and oil vapors with water or air). 

Gas-liquid heat exchanger 

In this type of exchanger, one fluid is a gas, while the other is a low-pressure liquid. The 

fluid still be able to be separable after the heat is exchanged. In this devices the majority 

of the heat transferred is due to the phase change of the liquid fluid that is removed with 

the gas fluid after the heat transfer is ended. Typical applications are cooling tower with 

forced or natural convection. Other applications are the air-conditioning spray chamber, 

spray drier, spray tower, and spray pond. 

Liquid-liquid heat exchanger 

In this type is usually applied to steam flows. In particular, steam is partially or fully 

condensed using cooling water (or water is heated with waste steam) through direct 

contact in the exchanger. Non-condensables, residual steam and hot water are the outlet 

heat exchanger. Common examples are desuperheaters and open feedwater heaters (also 

known as deaeraters) in power plants. 

 

CLASSIFICATION ACCORDING TO NUMBER OF FLUIDS  

 

 
Figure 1.2: Heat exchanger: classification according to the number of fluids 

 

Most processes of heating, cooling, heat recovery, and heat rejection involve the heat transfer 

between two (or many) fluid. Two fluid heat exchangers are the most common configuration, 

but there are also three fluid heat exchangers such as in the cryogenics, solar and chemical 

processes (e.g., air separation systems, a helium–air separation unit, purification and 

liquefaction of hydrogen, ammonia gas synthesis). Heat exchangers with as many as 12 fluid 
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streams have been used in particular chemical process applications but its design theory is 

algebraically very complex.  

 

 
Figure 1.3: Three fluids heat exchanger for solar application 

 

CLASSIFICATION ACCORDING TO SURFACE COMPACTNESS 

 

 
Figure 1.4: Heat exchanger: classification to the surface compactness 

 

Compared to shell-and-tube exchangers, compact heat exchangers are characterized by a 

large heat transfer surface area per unit volume of the exchanger, resulting in reduced space, 

weight, support structure, footprint, energy requirements and cost. The motivation for using 

compact surface heat exchangers is to optimized a specific heat exchanger performance, 

𝑞/Δ𝑇 , within acceptably low mass and box volume constraints. The heat exchanger 

performance may be expressed as: 
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𝑞

Δ𝑇
= 𝑈 𝐴 = 𝑈 𝛽  𝑉 (1.1) 

 

where 𝑞 is the heat transfer rate, Δ𝑇  is the true mean temperature difference, 𝑈 is the overall 

heat transfer coefficient and 𝛽  is the ratio between the exchanging area and the volume of 

the heat exchanger. The 𝛽  coefficient can be arbitrarily defined on the cold or on the hot 

side. Anyway, it is clear that high 𝛽  values minimize the exchanger volume 𝑉 for a specified 

𝑞/Δ𝑇 . 

Shah (Shah1981) proposed an empirical way to determine the type of heat exchanger that 

has to be used, as a function of the desired heat transfer surface area density or the hydraulic 

diameter of the heat exchanger, as shown in Figure (1.5). 

 

 
Figure 1.5: Heat transfer surface area density (Shah1981) 
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CLASSIFICATION ACCORDING TO CONSTRUCTION FEATURES 

 

 
Figure 1.6: Heat exchanger: classification according to the construction features 

 

Heat exchangers are frequently characterized by construction features. As it is possible to 

see in Figure (1.6), the four main construction types are: 

- Tubular; 

- Plate; 

- Extended surface; 

- Regenerative exchangers. 

Heat exchangers with other constructions conformations are also available, such as scraped 

surface exchanger, tank heater, cooler cartridge exchanger, and many others (Walker1990). 

Tubular heat exchanger 

Tubular exchangers, which are schematically represented in Figure (1.7), are mechanically 

robust, therefore they can be designed for high relative pressures to the environment and 

high pressure differences between the fluids. Tubular exchangers are used primarily for 

liquid-to-liquid and liquid-to-phase change (condensing or evaporating) heat transfer 

applications. Nevertheless, these devices can also be used for gas-to-liquid and gas-to-gas 

heat transfer applications (e.g. high operating temperature and/or pressure, high fouling 

problem on at least one fluid side, etc.). These exchangers may be classified as shell-and-

tube, tube-in-tube, and coiled tube exchangers. They are all prime surface exchangers except 

for exchangers having fins outside or inside the tubes. 
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(b) 

 
(a) (c) 

Figure 1.7: Tubular heat exchanger: (a) Shell-and-tube heat exchanger: (b) tube-in-tube 
heat exchanger and (c) coiled-in-shell heat exchangers (Shah2003) 

 

Plate heat exchanger 

Plate-type heat exchangers, shown in Figure (1.8), are usually prime surface built of thin 

plates. The plates are either smooth or have some form of corrugation, and they are either 

flat or wound in an exchanger. Generally, these exchangers cannot accommodate very high 

pressures or temperatures differences. Plate heat exchangers (PHEs) can be classified as 

gasketed (that can be welded or brazed on one or both fluid passages), spiral plate, lamella, 

and platecoil exchangers.  

Usually plates heat exchanger are characterized by a heat transfer surface area bigger than 

in the tubular heat exchanger, thus increasing the heat transfer performances. This benefit is 

maximized keeping the chamber as thin as possible in order to maximize the volume of 

liquid in contact to the plate. Moreover, if small corrugation is added to the plate, it is 

possible to promote the transition to the turbulent flow. As compared to shell and tube heat 

exchangers, the temperature difference between the hot and cold side can be lower than in 

the shell and tube heat exchangers 
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(a) (b) 

 
 

(c) (d) 
Figure 1.8: Plate heat exchanger: (a) gasketed: (b) spiral plate, (c) lamella and (d) plate 

coli heat exchangers (Shah2003) 
 

Extended surface heat exchanger 

Those devices differ from the previously described, since they are not prime surface heat 

exchanger. One of the most common methods to increase the surface area (and then 

exchanger compactness) is to add the extended surface , such as fins, to the heat transfer 

surface. The fins must be as dense as possible on one or both fluid sides, depending on the 

design requirement. Some of the most common types of extended surfaces are the plate-fin 

and tube-fin geometries (Figure (1.9)). 

  

(a) (b) 
Figure 1.9: Extended surface heat exchanger: (a) plate-fin and (b) tube-fin heat 

exchanger (Shah2003) 
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Tube-fin heat exchanger can also be internally fined as well as internally-and-externally 

finned. One particular application of internally finned heat exchanger are the heat pipes 

(Figure (1.10)). Those devices are commonly used in the electronic equipment. They are 

based on the liquid-to-gas phase change thus they are able to remove a high quantity of heat 

from the hot device. There are a number of different ways to classify heat pipes, but perhaps 

the two most important categories are the variable-conductance heat pipes (those in which 

the magnitude and/or direction of the heat transfer can be controlled) and micro-heat pipes 

(those that are so small that the mechanisms controlling their operation are significantly 

different from those in more conventional heat pipes). 

 

  
(a) (b) 

Figure 1.10: Extended surface heat exchanger: (a) Internally finned tubes and (b) heat 
pipe heat exchanger (Shah2003) 

 

Regenerator 

Regenerators are a storage type heat exchanger and its exchanging surfaces are usually 

referred as a matrix of the regenerator. To have continuous operation, the matrix must be 

moved periodically into and out of the fixed streams of gases, as in a rotary regenerator. 

 

  
(a) (b) 

Figure 1.11: Continuous matrix regenerator (Shah2003) 
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Another construction scheme state that the gas flows must be regulated by valves to and 

from the fixed matrices. This configuration is referred as a fixed matrix regenerator (Figure 

(1.11)). 

 

 
Figure 1.12: Intermittent three-stove fixed matrix regenerator: (a) plant configuration 

and (b) operating schedule (Shah2003) 
 

CLASSIFICATION ACCORDING TO FLOW ARRANGEMENTS 

 

 
Figure 1.13: Heat exchanger: classification according to the flow arrangements 

 

As it is possible to see in Figure (1.13), different choices of particular flow arrangement are 

available depending on the required exchanger effectiveness, available pressure drops, 

minimum and maximum velocities permitted, fluid flow paths, packaging envelopes, 

allowable thermal stresses, temperature levels, piping and plumbing considerations, 
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(a) (b) 

 
(c) 

Figure 1.14: Examples of multi passes shell and tube heat exchanger: (a) Single shell 
with single tube, (b) single shell with double tube and (c) double shell with double tube 

passes 
 

or other design criteria. Fluid made one pass if it flows through the heat exchanger just one 

time. After the first pass, if the flow direction is reversed and fluid flows again through the 

heat exchanger, it is considered to have made a second pass that could be of equal or different 

size (Figure (1.14)). A single pass unit is defined as a heat exchanger in which both the fluids 

make one pass. Heat exchanger can be also subdivided according to the relative flow 

directions as: parallel, counter and cross flow if the flows are going in the same, opposite or 

orthogonal directions (Figure (1.15)). 

 

(a) (b) (c) 
Figure 1.15: Different flows configurations: (a) parallel, (b) counter and (c) cross flows  
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CLASSIFICATION ACCORDING TO HEAT TRANSFER MECHANISM 

 

 
Figure 1.16: Heat exchanger: classification according to the heat transfer mechanism 

 

The basic heat transfer mechanisms employed for transfer of thermal energy in indirect 

contact heat exchanger are: single-phase convection (that can be forced or natural), two-

phase convection (e.g. condensation or evaporation), and combined convection and radiation 

heat transfer (Figure (1.16)). Any of these mechanisms individually or in combination can 

be active on each fluid side of the exchanger. Among all the possible application, usually 

single-phase convection on both sides occurs in: automotive radiators and passenger space 

heaters, regenerators, intercoolers, economizers, and so on. For what concern the single-

phase convection on one side and two-phase convection on the other side occur in steam 

power plant condensers, automotive and process/power plant air-cooled condensers, gas or 

liquid heated evaporators, steam generators, humidifiers, dehumidifiers, and so on. The two-

phase convection on both sides such as condensation on one side and evaporation on the 

other side, is common in air-conditioning evaporator. Radiant heat transfer combined with 

convective heat transfer plays a role in liquid metal heat exchangers and high-temperature 

waste heat recovery exchangers, while radiation heat transfer is a primary mode of transfer 

heat in fossil-fuel power plant boilers, steam generators, coal gasification plant exchangers, 

incinerators, and other fired heat exchangers. 
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1.3 Dimensional analysis 

 

The governing heat transfer mechanism in the heat exchanger devices is the convection. 

Convection can be natural or forced, but it is in this second case that the convective heat 

transfer coefficient is higher. For this reason, it is of primary importance to study the set of 

differential equations that model the convection phenomena.  

As already published literature (Bejan1993, Incopera2002), the system of differential 

equation that describe the heat transfer phenomenon in a general Cartesian coordinate system 

(𝑥, 𝑦, 𝑧) for a Newtonian fluid in motion is composed by: 

Continuity Equation: 

𝐷𝜌

𝐷𝑡
+ 𝜌 𝑑𝑖𝑣 𝒖 = 0 (1.2) 

Navier-stokes equations (or momentum conservation equations): 

𝜌
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Energy balance: 

𝜌
𝐷𝑒

𝐷𝑡
+ 𝑝 𝑑𝑖𝑣 𝒖 =  −𝑑𝑖𝑣(𝜆∇𝑇) + 𝑞 + 𝜇 𝜙 (1.4) 

where: 

- 𝜌 is the density of the fluid [𝑘𝑔/𝑚 ] ; 

- 𝒖 is the velocity vector of the fluid of components 𝒖 = [𝑢, 𝑣, 𝑤] along the 𝑥, 𝑦, 𝑧 axes 

[𝑚/𝑠]; 

- 𝑝 is the fluid pressure [𝑃𝑎]; 

- 𝜇 is the local fluid dynamic viscosity [𝑃𝑎 𝑠]; 

- 𝜆 is the fluid thermal conductivity [𝑊/(𝑚 𝐾) ]; 

- 𝑞  is the internal heat generation rate per unit volume [𝑊/𝑚 ]; 

- 𝐹 , 𝐹 , 𝐹  are the components of the body force 𝑭 along the 𝑥, 𝑦, 𝑧 axes [𝑁] 

- 𝜙 is the dissipation function [𝑘𝑔/(𝑚 𝑠 ) ] 
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- 𝑒  is the specific internal energy  

-  is the total derivative defined as: = + 𝑢 + 𝑣 + 𝑤  

The dissipation function 𝜙 represent the rate at which the kinetic energy is irreversibly 

converted into thermal energy due to the viscous effects in the fluid. It is possible to show 

(Bejan1993) that, the dissipation function is expressed as: 

 

𝜙 = 2
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤
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−

2

3
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𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦

+
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
 

(1.5) 

 

Assuming the material to be homogeneous and isotropic, together with the Boussinesq’s 

approximation, which states that the density variation in the fluid is not significant except 

for the buoyancy forces, it is possible to rewrite the continuity equation (Equation (1.2)) as 

follows: 

 

 𝑑𝑖𝑣 𝒖 = 0 (1.6) 

 

Since it was already assumed the material to be homogeneous and isotropic, it is possible to 

re-write the Navier-Stokes equation (Equation (1.2)) in the vectorial form: 

 

𝜌
𝐷𝒖

𝐷𝑡
= 𝑭 − ∇𝑝 + 𝜇 ∇  𝒖  

 

Under the assumption that the only force field applied to the fluid is the gravitational field, 

together with the Boussinesq’s approximation considering the following temperature 

dependence for the density function: 

 

𝜌 = 𝜌 [1 − 𝛽 (𝑇 − 𝑇 )]   

 

where 𝜌  and 𝑇  represent respectively the density and the temperature reference, while β 

is the thermal expansion coefficient defined as follows: 
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𝛽 =
1

𝜌

𝜕𝜌

𝜕𝑇
  

It is possible to write the vectorial Navier-Stokes equation as follows: 

𝜌
𝐷𝒖

𝐷𝑡
= 𝜌 𝛽 (𝑇 − 𝑇 )𝒈 − ∇𝑝 + 𝜇 ∇  𝒖 (1.7) 

It has to be pointed out that in many the cases the natural convection term, has the same or 

even higher magnitude compared to the forced convection term (e.g. natural convection heat 

exchangers or compound heat exchangers). 

From the definition of enthalpy 𝑒 = ℎ − , assuming the fluid to be ideal together with 

Equation (1.6) and the already assumed hypothesis of homogeneous and isotropic material, 

it is possible to re-write the energy equation (Equation (1.4)) as follows: 

 

𝜌 𝑐
𝐷𝑇

𝐷𝑡
=  𝜆∇ 𝑇 + 𝑞  (1.8) 

 

Since the heat exchangers coming from the same family are similar one to each other, it is 

possible the write the Equations (1.6-1.8) in a more general form using the dimensionless 

quantities appearing in the equation after the definition of some reference variables 

(Cocchi1990). A fundament of the dimensional analysis is the Buckingham theorem which 

states that any physical law can be expressed in terms of dimensionless parameters and that 

the number of these needed parameters is given by the difference between the independent 

variables and the fundamental physical quantities (Mass [M], Length [L], Time [T], 

Temperature [Θ], Amount of substance [N], Electric current [I], Luminous intensity [J]). A 

necessary condition for the use of this method is to consider physical situation geometrically 

similar in order to employ the same dimensional characteristic. In the case of flow in ducts 

the characteristic dimension is represented by the hydraulic diameter 𝐷 . The principal 

dimensionless groups are: 

Reynolds Number 

This dimensionless group represents the ratio between the inertial and viscous forces. It is 

expressed as follows: 

𝑅𝑒 =
𝑊𝐷

𝜈
=

𝜌𝑊𝐷

𝜇
 (1.9) 

 



18 

where 𝑊 is the fluid average velocity on the duct’s cross section expressed as 𝑊 =

∫ (𝒖 ∙ 𝒏)𝑑𝐴  while 𝐷  is the hydraulic diameter, 𝐷 = 4 , assuming Γ to be the length 

of the perimeter of the cross section. The Reynolds number is used to define the motion 

regime of the fluid and, in the case of internal flow, the following classification is available: 

- 𝑅𝑒 ≤ 2300  the flow remains laminar since the viscous forces are sufficiently high 

to prevent the amplification of those small noise and distortion present in each 

stream; 

- 2300 < 𝑅𝑒 < 10000 it is a zone of transition in which viscous effects become less 

important compared to the inertial forces and the flow distortions are amplified; 

- 𝑅𝑒 > 10000  the motion becomes chaotic and the flow regime is turbulent. 

Prandtl Number 

The Prandtl number expresses the ratio between the terms that represent the contribution due 

to the momentum transport and the one due to the energy transport respectively: 

 

𝑃𝑟 =
𝜈

𝛼
=

𝜇𝑐

𝜆 
 (1.10) 

 

where 𝛼 is the fluid thermal diffusivity. The Prandtl number is a characteristic of the fluid 

and doesn’t depend, as it happens for other dimensionless groups, from the regime of motion. 

Nusselt Number 

The Nusselt number is a dimensionless group widely used in the study of convection 

problems as it is the only one that contains the convection coefficient, necessary for the 

determination of heat exchanged by convection. The Nusselt number is defined as follows: 

 

𝑁𝑢 =
ℎ𝐷

𝜆
 (1.11) 

 

where the convective heat transfer coefficient ℎ, in case of flow in confined space, it is given 

by : 

 

ℎ =
𝑞

(𝑇 − 𝑇 )
 (1.12) 

 

where 𝑇  is the surface temperature of the heat exchanger while 𝑇  is the bulk temperature 

of the fluid defined as: 
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𝑇 =
∫ 𝜌𝑐 𝑇𝒖 ∙ 𝒏 𝑑𝐴

∫ 𝜌𝑐 𝒖 ∙ 𝒏 𝑑𝐴
 

(1.13) 

 

It has to be highlighted that, if the thermal properties of the fluid can be assumed constant, 

the definition of the bulk temperature becomes: 

 

𝑇 =
∫ 𝑇𝒖 ∙ 𝒏 𝑑𝐴

𝑊 𝐴
 (1.14) 

 

Grashof Number 

The Grashof Number represents the ratio between the buoyancy forces and the viscous forces 

and it is used in cases of natural or mixed convection: 

 

𝐺𝑟 =
𝑔𝛽Δ𝑇𝐷

𝜈
 (1.15) 

 

In case of uniform heat flux a modified version of Grashof number can be defined as 

 

𝐺𝑟 = 𝐺𝑟 𝑁𝑢 =
𝑔𝛽𝑞𝐷

𝜈 𝜆
 (1.16) 

 

Before starting to see how the main dimensionless groups appear into the differential 

equations of convection it’s necessary to define some dimensionless variables : 

 

𝒖∗ =
𝒖

𝑊
;    𝑝∗ =

𝑝

𝑝
;    𝑇∗ =

𝑇 − 𝑇

𝑇 − 𝑇
;    𝑧∗ =

𝑧

𝐷
;    𝑡∗ = 𝑡

𝑊

𝐷
 (1.17) 

 

where 𝑝  is a reference values of pressure. 

In the same fashion, it is possible to write the following dimensionless operators: 

 

∇∗= ∇ 𝐷 ;    𝑑𝑖𝑣∗ = 𝑑𝑖𝑣 𝐷 ;    ∇∗ = ∇  𝐷  (1.18) 

 

Appling these dimensionless definitions to the continuity equation (Equation (1.6)), it is 

possible to write it in the dimensionless form: 

𝑑𝑖𝑣∗𝒖∗ = 0 (1.19) 
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In the same fashion, it is possible to write the Navier-Stokes equation (Equation (1.7)), 

generalized with the natural convection term in the dimensionless form: 

 

𝐷𝒖∗

𝐷𝑡∗
= −∇∗𝑝∗ −

𝐺𝑟

𝑅𝑒
𝑇∗𝑔𝑟𝑎𝑑∗ 𝑧∗ +

1

𝑅𝑒
 ∇∗ 𝒖∗ (1.20) 

 

Similarly to what already done, it is possible to write the energy equation defined by 

Equation (1.8) in a dimensionless form: 

 

𝐷𝑇∗

𝐷𝑡∗
=

1

𝑅𝑒 𝑃𝑟
∇∗  𝑇∗ (1.21) 

 

1.4 Convective heat transfer enhancement 

Among the heat transfer field, one of the most important research argument is related to the 

heat transfer enhancement techniques. This aspect becomes of particular interest in the 

industrial applications in which the thermal processing of high viscous fluids is required, 

such as the food, chemical, pharmaceutical and cosmetics industry. In fact, in these 

conditions, the fluid flow regime is necessary laminar, therefore the heat transfer efficiency 

of the heat exchanger is inevitably penalized. For this reason, engineers have been striving 

to increase the heat transfer coefficient, reducing at the same time the pumping power 

requirements. J.P. Joule in his studies dating back to 1861 (Bergles1998) was one of the first 

researcher that tried to increase the heat transfer coefficient in a condensing steam flow. In 

particular, he studied different experimental setups in order to understand the effect the many 

parameters on the heat transfer rate. Among all of these experiments, Joule investigated the 

influence of bended wire inserts introduced into the water flow of a refrigerator, acting as a 

water agitator. Today this research argument is attracting a renewed interest in the process 

industry due to the increase of the energy and raw materials cost. This new interest is 

witnessed by a huge amount of scientific papers and by the growing numbers of registered 

patents related to heat transfer enhancement technology or devices. These techniques 

essentially reduce the thermal resistance by increasing the heat transfer coefficients with or 

without the increase of the heat transfer surface. The benefits that can derive are, for instance, 

the reduction of the size of the heat exchanger, that means costs reduction, the decrease of 

the temperature difference at which they work, that means a reduction of the thermal stress 

for the product, or the increase of the thermal power exchanged. This appears clear from the 

general heat transfer rate equation for a two fluid heat exchanger: 
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𝑄 = 𝑈 𝑆 Δ𝑇 (1.22) 

 

where 𝑈 [𝑊/𝑚 𝐾]  is the overall heat transfer coefficient, Δ𝑇 [𝐾] is an appropriate 

temperature difference and 𝑆 [𝑚 ] is the heat transfer area. 

Usually, the techniques that are able to increase the heat transfer can be divided into active 

techniques that require an external power input (e.g. mechanical aid, electrostatic fields) and 

passive techniques that do not require an external power except the increment of the pumping 

power requirement (Bergles1998). In order to evaluate the performance of heat transfer and 

enhanced heat transfer surfaces, several numbers of performance criteria have been 

developed (Ylmaz2001, Zimparov2001). However, it is not so easy to establish the 

performance of heat exchangers since it is influenced by many different factors that can be 

also conflicting. Among these factors there are the costs (investment and operating), the 

safety, the pumping power, the area reduction, the heat duty increase, the pressure losses, 

the compact fabrication, etc. Taking into account these items, many performance evaluation 

criteria have been suggested in literature for evaluating the heat transfer enhancement 

techniques. Yilmaz proposed a classification based on (Yilmaz2011) the: 

- comparison of the surface or volume of a heat exchanger under constant heat power, 

flow rates and hydraulic losses; 

- comparison of the heat power with constant surface or volume, flow rates and 

hydraulic losses; 

- comparison of the hydraulic losses under constant surface or volume, heat power and 

flow rates; 

- evaluation of the economical accounting; 

- evaluation of the energetic efficiency; 

- evaluation based of the second law criteria. 
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ACTIVE TECHNIQUES  

Within this category the most common applications are related to mechanical aids, 

vibrations, electrostatic fields and injections (Bergles1998; Webb1994). 

 

Mechanical aids 

Among the mechanical actions used as a technique for increasing the convection heat 

transfer, one common application is the scraped surfaces heat exchanger. In particular, those 

devices are widely used for the treatment of viscous fluids in the process industry. Reviews 

of the most widely used correlations are reported by Härröd (Härröd1986), Abichandani 

(Abichandani1987) and Skelland (Skelland1958). An interesting application related to the 

determination of heat transfer performance of SSHE (Scraped Surface Heat Exchangers) was 

presented by Rainieri (Rainieri2004). In particular the authors analyzed both synthetic and 

experimental data acquired on a coaxial SSHE pilot plant, especially designed for treating 

highly viscous fluid food enabling the estimation of an heat transfer correlation, expressing 

the Nusselt number as a function of the relevant dimensionless parameters. 

 

 
Figure 1.17: Scrapped surface heat exchanger scheme 

 

A simple sketch of the apparatus used in their investigations is reported in Figure (1.17). 

Another kind of techniques that mechanically increase the heat transfer performance are the 

rotating surfaces. Those devices are commonly present in rotating electrical machines, in 

the rotor blades of gas turbines and in many other devices normally used in the industrial 

field. However, they can be also used with the purpose of increasing the heat transfer rate 

(Bergles1998). McElhincy (McElhincy1977) performed an experimental analysis of heat 

transfer from a condensing steam on the outside of a horizontal rotating tube. For rotations 

up to 40rev/min the cooling-side coefficient was slightly improved whereas at lower 

rotational speeds a significant deterioration of the cooling side coefficient was observed. 
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Mori (Mori1967) investigated the forced convective heat transfer in a straight rotating pipe 

around a parallel axis with a large angular velocity, while Miyazaki (Miyazaki1971) 

performed the analysis of the combined free and forced convective heat transfer of fluid flow 

in a rotating curved circular tube for the fully developed flow under a constant wall heat flux 

boundary condition.  

 

Vibrations 

The processes of heat transport can be strongly influenced by vibrations. In analysing the 

relationship between the heat transfer mechanism and the presence of vibratory phenomena, 

it is necessary to distinguish between wall vibrations and vibrations propagated into the fluid 

flow. 

Surface Vibration 

A fundamental element in the enhancement of the heat transfer is the control of fluid 

motion in the proximity of the wall. An efficient solution to increase heat transfer is 

to promote a renewal of the fluid that is near the wall. The main effects expected by 

a periodic movement of the surfaces in contact with the fluid are fluid mixing and 

boundary layer disruption. A possible way to realize it, consists in using movable 

walls at the location where heat transfer takes place. On the other hand wall 

deformation brings with itself some disadvantages, such as for example structural 

problems and noise. The easiest method to study the interaction between the heat 

transfer and the surface vibrations is to make the surface vibrate mechanically 

normally using an electrodynamics actuator. Usually, the frequencies used are below 

1000 Hz since its has to be achieved an adequate oscillation amplitude. Normally, 

sufficiently intense vibrations lead to an increase of the heat transfer, but in certain 

situations, reductions of both the local and average Nusselt number have also been 

determined. The geometry commonly used for this type of heat transfer enhancement 

technique is the horizontal heated cylinder vibrating both horizontally and vertically 

(Bergles1998). Another possible solution is the oscillation of a flexible blade 

constituting a piezoelectric fan that produces the motion of the surrounding fluid 

(Acikalin2004). A positive element of this technique is that the piezoelectric fan can 

have very small dimensions permitting to reach the objective of compactness. 

Normally they are employed to promote the local motion of a fluid nearby a  stagnant 

fluid area, increasing heat transfer in a hot spot, and so reducing local temperature. 
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Fluid vibrations 

Sometimes it can happen that due to the large mass of the structure of the heat 

exchanger it is not possible or it is difficult to vibrate the surface. Thus, it is necessary 

to consider alternative techniques in which the vibration is transmitted directly to the 

fluid. The generators used for this kind of applications are of different types ranging 

from mechanical flow interrupter to the piezoelectric transducer. Using this 

methodology of transmitting vibration to the fluids it is possible to work in a 

frequencies range between 1 and 106 Hz. This solution is, however, certainly much 

more complex than that in which the vibrations involve the surfaces since it is much 

more difficult to define the vibrational variables and to describe the link between the 

heat transfer enhancement and vibration. Some studies related to the effects of sound 

fields on heat transfer from an horizontal cylinders to air, have been carried out by 

Fand (Fand1961). In particular, the authors performed an experimental study 

showing that the heat transfer from an heated cylinder is increased by a 

thermoacoustic streaming. Moreover, they proposed an empirical equation in order 

to find the convective heat transfer coefficient in case of an heated horizontal cylinder 

in the presence of horizontal transverse sound fields. 

 

Electrostatic and magnetic fields 

The electrostatic fields are applied in different ways in dielectric fluids (Figure (1.18)). In 

general, the electrostatic fields can be addressed to generate a greater mixing of the fluid and 

are particularly effective in increasing the heat transfer coefficients in the case of natural 

convection. One possible configuration is the one of a hot wire within a concentric tube 

maintained at a high voltage relative to the wire. The heat transfer coefficient can be 

significantly increased if a sufficient electric power is supplied. Interesting results were 

obtained also for laminar flows in forced convection: an increase of 100% was observed by 

applying voltages of the order of magnitude of 10kV with oil as working fluid (Newton1977). 

  
(a) (b) 

Figure 1.18: Active heat transfer enhancement technique: (a) electrostatic and (b) 
magnetostatic techniques 
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Jet impingement 

Injection is used in many industrial applications, as for example cooling of electronic 

devices, and it is based on the projection of a fluid at high speed towards a surface, increasing 

the convective heat transfer coefficient. The increment of the removed heat transfer rate is 

due to the breaking of the boundary layer together with the simultaneous mixing of the fluid 

in the proximity of the surface. The final effect is a significant increment of the convective 

heat transfer coefficient close to the stagnation region where the jets impinge on the plate. 

On the other hand, using this enhancement techniques the heat transfer augmentation 

decrease rapidly moving away from the impact zone. The elements that influence the 

convective heat transfer coefficient are in particular the nozzle geometry, nozzle-to-plate 

distance, jet Reynolds number, heat flux, velocity profiles and turbulence intensity 

(Leal2013). Normally this technique employs multiple jets to heat or cool extensively and 

uniformly the surface (Oyakawa2009). In absence of interaction between the jets, the 

increasing of heat transfer is comparable to the one obtained with the singular jet. The results 

are slightly different if there is interactions between the jets (interaction that it could happen 

before or after the impingement on the surface). If the interaction happens before the 

impingement on the plate, it can make the jet less powerful consequently reducing the heat 

transfer performance compared to the one without interactions. On the contrary, if the 

interaction between the jets happens after the impingement on the surface, it could rise a 

fountain flow that on one side enters the core of the closer jets reducing the heat transfer, but 

on the other side promotes a turbulence that increases the convective heat transfer coefficient 

producing global benefit effect (Weigand2011). 

 

 
Figure 1.19: Jet impingement scheme (Incoprera2002) 
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Injection and aspiration 

The increase in heat transfer performance can be also achieved by injecting gas through the 

porous surfaces of a heat exchanger. The injection of gas produces a shaking similar to that 

obtained in nucleated boiling, increasing the heat transfer rate up to 500% (Gose1957). An 

experimental study verified the hydrodynamic similarity between boiling and air bubbling 

inside a porous media (Kudirka1965); in particular, the author analysed the air injection 

within porous tubes in which ethylene glycol flowed; the results showed a parallelism within 

the two phenomena for gas-injection at low moderate bubbling rates. It was found out also 

an increase of convective heat transfer coefficient up to 130% compared to the one obtained 

in the absence of gas injection. Practical applications, however, are not very common due to 

the difficulty of inserting and removing the gas from the fluid. Even the suction is a technique 

difficult to use, especially for the insertion of the aspiration apparatus inside the ducts.  

 

 
Figure 1.20: Example of flow injection: external and x-ray view of a gas turbine blade 

(Incoprera2002) 
 

PASSIVE TECHNIQUES 

The passive techniques for the enhancement of convective heat transfer are based on changes 

induced on the fluid flow through a proper conformation of the surface, such as curvature of 

the walls or surfaces roughness or corrugation or through the insertion of devices in the main 

flow direction or by means of additives (Webb1994, Bergles1998). The passive techniques 

are of great interest for industrial applications, since they do not require any external power 

except the increase of the pumping power. Those techniques are very common in industrial 

applications since they can be mounted after the commissioning, in already working plants, 

without any substantial modification to the plant and (especially) to its auxiliary systems. 

Finally, the manufacturing processes used to realize the passive heat transfer enhancement 

techniques are nowadays a consolidated technology. 
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Treated or coated surfaces 

Those devices consist in surfaces that have a slight superficial alteration or a thin coating. 

These coatings can be either metallic or non-metallic and also continuous or discontinuous. 

They permit to significantly augment the heat transfer coefficient and are mainly used in 

applications that involve boiling and condensation (e.g. the use of Teflon as non-wetting 

coating in order to promote dropwise condensation (Webb 1994)). An estimation technique 

of the local heat transfer coefficient, based on the solution of the two-dimensional inverse 

heat conduction problem, has been adopted by Rainieri et al. (Rainieri2009). The authors 

investigated the effect of the surface wettability on the two-phase convective heat transfer in 

a dehumidifying process restoring the convective heat transfer coefficient distribution on 

aluminium plates coated with a hydrophobic oleic film. 

 

Rough or corrugated surfaces 

This typology of geometrical conformation of the heat exchanger is one of the first 

techniques used with the specific aim of producing an increase of the heat transfer by forced 

convection. They can be produced in different configurations and they can be integrated in 

the wall or obtained by placing a roughness adjacent to the surface. There are many industrial 

processes that could build the corrugation such as: moulding, casting and welding. The 

increase of the heat transfer rate promoted by this technique is also related to the appearing 

of a fin effect and the slightly increase of the heat transfer surface. Nevertheless, the 

advantages in terms of heat transfer are mainly due to the creation of turbulent motions and 

remixing of the fluid. In fact, in corrugated wall tubes, the most important effects are related 

to the macroscopic mixing of the fluid, activated by the destabilization of the flow which 

leads to the early transition from the laminar to the turbulent regime. Moreover, the 

interruption of the boundary layer locally increases the temperature gradient in the proximity 

of the wall with consequent beneficial effects on the convective heat transfer coefficient 

(Rainieri1996, Rainieri2002). This technique is primarily used for single-phase processes 

and are schematically showed in Figure (1.21). It is obvious that these typologies of heat 

transfer enhancement techniques increase also the pressure drop through the heat exchanger 

(Ali 2001). The increase of the heat transfer in the case of laminar regime obtained in this 

way is particularly important for applications that involve chemical and food industries, 

where the convective heat transfer coefficient is often confined within the intrinsic limit of 

the laminar flow regime. Furthermore, compared to the insert devices the advantage of the 

corrugated surfaces is to have no obstructions in the flow  
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(a) 

  

 
 

(b) 
Figure 1.21: Corrugated surfaces (a) Transverse ribs (b) Helical ribs 

 

path, and therefore they can also be used for fluids with solid suspensions or fibres avoiding 

the stream blockage risk (Bergles1998). 

 

Extended surfaces 

They are more commonly known as finned surfaces and they are characterized by a 

significant increase of the heat transfer surface. Flat fins are very common in heat exchangers 

since they are easy to be produced. Nevertheless, recent studies have led to change their 

shape with the purpose of increasing the heat transfer coefficients not only by expanding the 

surface area, but by also modifying the flow distribution. In particular, when there is the 

necessity to obtain heat exchangers with high surface area-to-volume ratio, the fins represent 

a very useful solution enabling the realization of more compact models. Many different 

possible geometrical configurations can be produced, as it is possible to see in Figure (1.22). 
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Figure 1.22: Extended surface typologies (Shah2003) 

 

Inserts devices 

They are elements that are positioned in the flow passage with the aim of increasing the heat 

transfer rate. The main reasons related to the heat transfer augmentation are the effect of 

fluid blockage, partitioning the onset of secondary flows that simultaneously promotes the 

mixing, reducing the boundary layer thickness. In literature, there are many typologies as 

well as configurations of insert devices but the most used devices are the displacement 

devices, wired coils and twisted tape. The effect related to the insertion of those devices is 

the reduction of the hydraulic diameter and the consequent enhancement of pressure drop 

and of viscous effect. It also produces an increase of flow velocity and sometimes promotes 

the onset of secondary swirl flows that increase the fluid mixing, yielding to an augmentation 

of heat transfer coefficient (Dewan2004). 
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Displaced enhancement devices 

Using those devices the heated surface is left substantially unaltered, since the fluid 

flow path changes due to the presence of the insert in the flow stream thus increasing 

the energy transport phenomena. In the majority of cases the results obtained are 

interesting only for laminar flow regimes since the pressure drop becomes too high 

in the turbulent flow regime. The most used devices are metal grids, disks, cones, 

static mixers, crowns and balls. Promvonge (Promvonge2008) verified with an 

experimental study the effectiveness of the use of conical rings as displaced 

enhancement devices. In particular, different elements were inserted in the tube under 

test, as it is possible to see in Figure (1.23). The performances of the inserts were 

evaluated in terms of heat transfer enhancement and friction factor using different 

types of conical rings together with different aspect ratios and in different 

configurations (converging, diverging and converging-diverging conical rings). 

 

 

 

Figure 1.23: Conical rings insert device 
 

The results show that both the ring to tube diameter ratio and the disposition of the 

conical rings influence the heat transfer. Moreover, the author found out that the best 

configuration, from the heat transfer point of view, is the diverging one. That 

configuration permitted to obtain an increment of heat transfer in terms of Nusselt 

number of about 330%. The converging and the converging-diverging configuration 

were also tested, and the author found that also those configurations are very 

effective since they reach an increasing of the Nusselt number of about 200% and 

240%, respectively. It has to be pointed out that the usage of conical rings as a passive 

heat transfer enhancement techniques also increase the friction factor, as observed 

by Jadoaa (Jadoaa2011) that proposed to perforate the surface of the cone in order 

to reduce its pressure drop. His results showed that there were improvements both in 

terms of average Nusselt number and of friction factor compared to the case of non-

perforated cones.  
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Figure 1.24: Diamond-shaped insert device 
 

Eiamsa-ard (Eiamsa-ard2010) analysed another type of displacement devices based 

on a diamond-shaped turbolators in tandem arrangements inside a tube in a fully 

developed air flow filed. 

The authors also proposed correlations for the Nusselt number and friction factor in 

order to evaluate the effects of using this type of devices on the heat transfer and 

pressure losses. Other interesting geometries were studied by Sununu (Sununu1970) 

Genetti (Genetti1973) using the Keniks® static mixer. This type of mixer is formed 

by several segments of metallic ribbon wrapped 360°, each of which is rotated 90° 

with respect to the previous one. In the experimental tests high-viscosity oil was used 

and an increment of about 150% was observed in terms of heat transfer rate together 

with a friction factor increment of 900%. Another type of mixer frequently 

encountered in literature is the Sulzer mixer. This device, usually used in turbulent 

flow applications, was experimentally studied by Van der Meer (VanDerMeer1978) 

using silicone oils as a working fluid. The authors observed an increment of 400% in 

terms of heat transfer. Unfortunately, for these devices, do not exist equations and 

relationships that can predict the average Nusselt number since there are so many 

geometries, which can be even not similar one to each other.  

 

  
(a) (b) 

Figure 1.25: Displacement devices: (a) disc and (b) wire coil 
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- Swirl flow devices 

Swirl flow devices are all those devices that are able to increase the heat transfer 

coefficient by generating a swirl flow (or a secondary flow motion) into the flow 

stream. There are a lot of different typology of devices within this family such as: 

twisted-tape inserts, inlet vortex generators, wire coils and axial core inserts with a 

screw-type winding (Webb1994). Date (Date1972) numerically investigated the heat 

transfer enhancement in laminar regime using viscous fluid under a uniform wall 

heat flux boundary condition. The authors simplified the flow conditions by 

considering negligible tape thickness, but considering the twist and fin effects related 

to this particular device. The same test case was experimentally investigated by Hong 

(Hong1976), who considered a laminar flow of water and Ethylene Glycol in an 

electrically heated metal tube with two twisted tapes inserted into the tube. 

The results showed an increment of the heat transfer in terms of Nusselt number up 

to nine times the ones obtained with the empty tube. Manglik (Manglik1993) 

proposed empirical correlations for the Nusselt number and friction factor, 

identifying a dimensionless swirl parameter.  

Wire coil inserts produces an heat transfer enhancement caused by the promotion to 

the turbulence regime.  

 

 
(a) 

 
(b) 

Figure 1.26: Twisted tape insert device 
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They also acts as roughness elements mixing the flow and producing secondary flow 

due to the generation of an helicoidal flow at the periphery (superimposed on the 

main axial flow). 

Garcia (Garcia2007) performed a study of the flow mechanisms in tubes with wire 

coils using hydrogen bubble visualization and PIV techniques. The authors observed 

that at low Reynolds number (Re < 400) the flow in those type of tubes is similar to 

the flow in smooth pipes. In the Reynolds number range 400 < Re < 700 a 

recirculating flow appeared in short pitch wire coil, accelerating the transition to 

turbulence regime depending on wire coil pitch in the Reynolds range between 700 

< Re < 1000. 

 

Curved surfeces 

Among the entire possible curved surface configuration, one common configuration in 

industrial plans are the coiled tubes. Those devices are a widely used passive heat transfer 

enhancement technique; they are usually employed in heat recovery processes, in air 

conditioning and refrigeration systems, in chemical reactors and food industry in general. 

The effectiveness of wall curvature is because it gives origin to centrifugal forces that induce 

a local maxima in the velocity distribution that locally increases the temperature gradients 

at the wall thus maximizing the heat transfer rate (Naphon2006). This solution, which often 

produces a swirl or helical type flow, appears very interesting also in the conditions in which 

the flow persists in the laminar regime (Rainieri2011).  

 

Figure 1.27: Coiled tube heat exchanger 
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Additives for liquids 

Different types of additive (Webb1994) could be inserted into the fluid flow in order to 

increase the heat transfer rate such as: solid particles, gas bubbles (for single-phase flow) 

and liquid traces (for boiling systems). 

Solid particles for single-phase flows 

Studies on the subject have been carried out by Watkins (Watkins1976) analysing the 

case of suspensions of polystyrene particles in a forced laminar flow of oil 

determining a maximum increase of the heat transfer of 40%. 

Gas bubbles for single-phase flows 

Tamari (Tamari1976) in their studies found out increases up to 400% of the average 

heat transfer coefficient value in case of air injected into water or Ethylene Glycol 

flows. 

 

Additives for gas 

The additives that could be used in a gas flow in order to increase the heat transfer 

coefficients could be solid or liquid. Dilute gas-solid suspensions are used as working fluids 

for gas turbines and nuclear reactors systems. The solid particles with a range of dimensions 

going from microns to millimeters are dispersed in the gas flow increasing the heat capacity 

of the mixture and facilitating the transport of enthalpy close to the heat transfer surface. 

 

COMPOUND TECHNIQUES 

Within this category there are all the possible combination or interaction of two or more 

different passive or active techniques. Compound techniques, are a promising tool for further 

enhancing the performances of thermal apparatuses, since the heat transfer coefficients are 

expected to be higher than any of the several techniques acting alone (Kuppan2000). 

Zimparov (Zimparov2002) presented an interesting article on compound technique based on 

corrugation wall and twisted tape inserts; in particular, the author experimentally 

investigated the heat transfer and the pressure drop in spirally corrugated tubes combined 

with five twisted-tape inserts in the Reynolds number range 4∙103-6∙104. The authors 

observed higher heat transfer coefficients and friction factor than those of the smooth tube 

under the same operating condition. Promvonge (Promvonge2008a) experimentally studied 

the thermal augmentation in circular tube fitted with twisted tape and wire coil turbolators. 

The wire coil was inside the tube and the twisted tapes were inserted into the wire coil to 

create a swirl flow along the tube wall. The authors observed that the combined use of wire 
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coils and twisted tapes permitted to obtain double increase respect to their use alone (within 

the Reynolds number range investigated). Promvonge (Promvonge2007) experimentally 

investigated the heat transfer enhancement in a circular tube fitted with conical nozzles 

together with a snail swirl generator at the inlet of the tube to provide swirling flow. The 

fluid was subjected to a uniform wall heat flux boundary condition and the authors observed 

an increment of 316% over the plain, bigger than those obtainable with their use alone (278% 

for conical nozzle and 206% for the snail).  

 

  
(a) (b) 

Figure 1.28: Example of compound convective heat transfer enhancement: (a) 
experimental apparatus and (b) computational domain 
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Chapter 2 

 

Inverse Heat Transfer Problems 
 

2.1 Introduction 

 

Inverse Heat Transfer Problems (IHTP) deal with estimation of unknown quantities 

appearing in the analysis of physical problems in thermal engineering by using temperature 

or flow measurements. 

The standard heat transfer problems, usually known as direct problems, concerns the 

determination of the effect starting from the causes (e.g. the computation of a temperature 

field in a body starting from the boundary heat flux conditions). On the other hand, the 

inverse problems involve the estimation of the causes (e.g. boundary heat flux) from the 

measurement of their effect (Ozisik 2000). The impossibility to determine the exact solution 

is emphasized by the usage of the word “estimation”. This impossibility is related to the 

presence of errors in the measurements that affect the accuracy of the reconstruction 

(Beck1985). 

In recent years, the interest in the theory and application of the Inverse Heat Conduction 

Problems has significantly grown, covering almost every branch of science and engineering: 
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mechanical, aerospace, chemical, nuclear, medicine, ect. with different targets and 

applications.  

In a more general way, the inverse approach has to be used when the established classical 

method for the direct estimation and measure of the unknown parameter is not possible. This 

necessity could be derived from the absence of the instrumentation able to measure the 

unknown parameter, the impossibility to directly measure it or the direct measurement of the 

parameter would not provide the desired degree of accuracy. 

Among all the applications previously introduced, the one that played the main role in the 

development of solution techniques for the IHTP was the space program in late 50’s and 

early 60’s. For example, the aerodynamic heating of the space capsule during the re-entry in 

atmosphere is so high that the surface temperature of the thermal shield could not be directly 

measured with temperature sensors. For this reason, the temperature sensors were installed 

behind the thermal shield while the external wall temperature of the shield was recovered by 

inverse analysis. By using the same reconstruction strategies it was possible to estimate the 

thermophysical properties of the shield during the operating condition as well as the heat 

flux at the wall subjected to high heating due to the air friction during the re-entry procedure. 

It has to be pointed out the mathematical difficulties in the solution of the IHTP. From the 

mathematical point of view, inverse problems belong to a class of problem called ill-posed 

problems (Alifanov1977, Hadamard1923, Tikhonov1977, Beck1997, Alifanov1994, 

Beck1985, Tikhonov1963), while direct heat transfer problems belong to a class called well-

posed problem. The concept of well-posed problem, that was originally stated by Hadamard 

(Hadamard1923), require that the solution has to satisfy three conditions: 

- The solutions must exist; 

- The solution must be unique; 

- The solution must be stable under small changes to the input data (e.g. stability 

condition). 

The concept of ill-posed problem (Hadamard1923) is breafly exposed in Figure (2.1). 

Looking at the upper part of the figure, it is possible to see that in a direct problem, which is 

well-posed, high perturbation of the input parameters does not affect much the image: this 

is the case of the parameters A and their image A’ or the parameters B and their images B’.  
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(a) 

 
(b) 

Figure 2.1: Graphical interpretation of the Hadamard ill-posed problem concept (a) 
Direct problem and (b) Inverse problem 

 

For what concerned in the lower part of the Figure (2.1), it is possible to see that in the 

inverse formulation, the non-uniqueness and the instability of the parameters that has to be 

estimated could dramatically affect their reconstruction. In order to avoid this issue, some 

hypothesis on the physical solution have to be done in order to restrict the possible set of 

solution selecting one particular solution that is “more correct” than the other. 

For a long time it was thought that the Hadamard criteria were strictly necessary in order to 

inverse problems, otherwise the results would be meaningless or would not have practical 

importance.  

This barrier was removed by Tikhonov (Tikhonov1977, Tikhonov1963, Tikhonov1975), who 

developed a direct regularization procedure, Alifanov (Alifanov1977, Alifanov1994, 

Alifanov1974, Alifanov1981, Alifanov1985a, Alifanov1978a, Alifanov1983, Alifanov1985b, 

Alifanov1978b, Alifanov1979, Alifanov1980, Alifanov1985c, Alifanov1995) who developed 

an iterative regularization procedure, and Beck (Beck1985, Beck1962), who developed the 

function estimation approach. 

The exact solution of an inverse heat transfer problems is impossible to be achieved, for this 

reason its estimated solution, generally involve the reformulation of the inverse problem as 

an approximate well-posed problem. In some of those methods, the solution of the inverse 

heat transfer problem is obtained using the Least Squares Approach.  
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Unfortunately, using this approach, the noise contained in the measurements, would corrupt 

the reconstruction, yielding to a meaningless solution. Tikhonov (Tikhonov1963), saw the 

possibility to upgrade the simple Least Square Approach, adding a penalty function, which 

plays the role of a damping factor, mitigating the disruptive effect of the noise present in the 

measurements. 

In the Iterative Regularization Approach, the estimated solution is sequentially improved 

until it becomes stable with respect to the errors in the input data. 

Giedt (Giedt195), who investigated the heat transfer at the inner surface of a gun barrel, 

presented one of the earliest discussion on the inverse thermal problems while Stolz 

(Stolz1960) presented one of the earliest numerical solution of the Inverse Heat Conduction 

Problem (IHCP). 

Due to the extraordinary diffusion of high performance computers, the solution of the inverse 

heat transfer problem is now becoming attractive, also from the industrial point of view. This 

concerns especially industries characterized by a high-energy consumption that may be 

reduced by a better understanding of the physical phenomena that govern the installed heat 

exchanger. Many practical applications are reported by Beck (Beck1977, Bozzoli2018), 

especially related to the estimation of thermophysical properties of materials. Nevertheless, 

interesting researches were conducted in the control of the solid-liquid interface during the 

solidification (Zabras1995), boundary heat flux estimation inside pipe (Huang1992, 

Bozzoli2017b), estimation of the interface conductance between periodically contacting 

surfaces (Orlande1993), estimation of heat release during friction of two solids 

(Alifanov1994), estimation of local heat transfer coefficient (Bozzoli2013, Bozzoli2014a, 

Bozzoli2014b, Bozzoli2016, Bozzoli2017a, Mocerino2018), estimation of boundary shapes 

of solid domains (Dulikravich1996) and many others. 
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2.2 Mathematical concept 

 

In order to better understand the physical significance of the inverse problem, consider a 

very simple example: 1D transient heat conduction problem in a semi-infinite solid heated 

by a sinusoidal surface heat flux of frequency 𝜔. The problem is mathematically described 

by the following system of partial differential equation and schematically represented in 

Figure (2.2): 

 

𝜕

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
= 𝜌𝑐

𝜕𝑇

𝜕𝑡
 in 𝑥 > 0 for 𝑡 > 0 (2.1.1) 

−𝑘
𝜕𝑇

𝜕𝑥
= 𝑞(𝑡) = 𝑞 cos(𝜔𝑡) at 𝑥 = 0 for 𝑡 > 0 (2.1.2) 

𝑇 = 𝑇  for 𝑡 = 0 in 𝑥 > 0 (2.1.3) 

 

If in the system of Equations (2.1) the only unknown term is the temperature distribution 

T(x,t) in the interior region of the solid as a function of time and position, this problem is 

well-posed and is called direct problem, since the unknowns are the effects (the temperature 

distribution) related to the known causes (the imposed time-dependent heat flux at x=0). 

It is possible to look at the mathematical system described by the Equations (2.1.1-2.1.3) as 

a linear system represented by an application matrix, that given the causes (e.g. heat flux 

distribution), is able to determine the effects (e.g. the temperature filed).  

 

 

  
(a) (b) 

Figure 2.2: 1D transient heat conduction in a semi-infinity solid: (a) Direct problem and 
(b) Inverse problem 
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After a sufficient long time, the temperature solution also becomes periodic, yielding to: 

 

𝑇( , ) = 𝑇 +
𝑞

𝜆

𝛼

𝜔

/

 exp −𝑥
𝜔

2𝛼
cos 𝜔𝑡 − 𝑥

𝜔

2𝛼
−

𝜋

4
  (2.2) 

 

where 𝛼 and 𝜆 are, respectively, the thermal diffusivity and thermal conductivity of the 

material. 

As it is possible to see from the Equation (2.2), the temperature response of the solid domain 

is lagged with respect to the imposed heat flux history. This lagging become more and more 

pronounced as far as the measurement point are located deeper inside the solid domain. 

As it possible to see, due to the smoothness of the solution kernel (e.g. exp −𝑥 ), 

small perturbations in the input parameter are not magnified in the calculation of the exact 

temperature distribution 𝑇( , ). As it is possible to see in Table (2.1), a perturbation of 10% 

on the imposed heat flux, generate a perturbation on the local temperature of 4.2%. 

Now, let us consider the same problem, but in this case, assume the imposed heat flux as 

unknown while all the other parameters are still known as an input data. In order to 

compensate the lack of information related to the unknown boundary condition, some extra-

measurements were taken 𝑇( , ) = 𝑌   at the interior point 𝑥  for different times                 

𝑡 = 1: 𝑡  where 𝑡  is the final time. Since the value of the boundary conditions is unknown, 

this new problem might be called an inverse problem (Equations (2.3.1)-(2.3.4)). 

 

𝜕

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
= 𝜌𝑐

𝜕𝑇

𝜕𝑡
 in 𝑥 > 0 for 𝑡 > 0 (2.3.1) 

−𝑘
𝜕𝑇

𝜕𝑥
= 𝑞(𝑡) = ? = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 at 𝑥 = 0 for 𝑡 > 0 (2.3.2) 

𝑇 = 𝑇  for 𝑡 = 0 in 𝑥 > 0 (2.3.3) 

𝑇( , ) = 𝑌  at 𝑥 = 𝑥  for 𝑡 > 0 (2.3.4) 

 

 

Table 2.1: Problem stability 

𝑞  𝜆 [𝑊/𝑚 𝐾] 𝛼 [𝑚 /𝑠] 𝜔 [𝑟𝑎𝑑/𝑠] 𝑇  [𝐾] 𝑇( . ,   . ) [𝐾] 

1000 15 10-5 1 293.15 293.273 

1100 15 10-5 1 293.15 293.286 
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As previously observed, it is possible to look at the mathematical system described by the 

Equations (2.2.1-2.2.5) as a linear system represented by an application matrix, that given 

the effects (e.g. the temperature field), is able to estimate the causes (e.g. heat flux 

distribution). Due to the analytical solution of the direct problem, it is possible to simply 

invert the Equation (2.2) in order the get the estimation of the solution of the inverse 

problem: 

 

𝑞 = 𝑇( , ) − 𝑇

𝜆 exp 𝑥
𝜔
2𝛼

𝛼
𝜔

cos 𝜔𝑡 − 𝑥
𝜔
2𝛼

−
𝜋
4

 (2.4) 

 

and, using the same numerical example, it is possible to see that a perturbation of 4.2% on 

the relative temperature reading, yield to an error in the estimation of the unknown heat flux 

value 𝑞  of 10%. As suggested by Aster (Aster2005), this instability of the estimated solution 

of the inverse problem, is not only related to the noise presence in the measurements, but 

also to the smoothing that occurs in most of the forward problems and the corresponding 

roughening that occurs in estimating their inverse solution.  

Related to the stability of the estimated inverse solution respect to the noise presence in the 

measurements, it is possible to calculate the maximum temperature oscillation at any 

location as setting the cos(∙) appearing in the Equation (2.2) equals to 1: 

 

|Δ𝑇|( ) =
𝑞

𝜆

𝛼

𝜔

/

 exp −𝑥
𝜔

2𝛼
 (2.5) 

 

It is easy to conclude that the maximum measured temperature difference must be greater 

than the measurements error; otherwise, it is impossible to distinguish if the measured 

temperature oscillation is due to the changing in the boundary heat flux or in the noise 

content in the temperature measurement. 
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As it is possible to see from Equation (2.5), as the frequency 𝜔 increases, the temperature 

difference decreases. Moreover, it has to be pointed out that the maximum temperature rise 

occur at 𝑥 = 0: 

 

|Δ𝑇|( ) =
𝑞

𝜆

𝛼

𝜔

/

  (2.6) 

 

For any point inside the domain, it is possible to define the dimensionless temperature 

difference as: 

 

|Δ𝑇|( )

|Δ𝑇|( )
=  exp −𝑥

𝜔

2𝛼
 (2.7) 

 

that highlights the sharply decrease of the temperature difference as far as the measurements 

are taken deeper in the solid domain. The last equation, also shows the high influence of the 

frequency; for example, assuming the smallest dimensionless measured temperature 

difference of 0.01, the sensors must be located until: 

 

𝑥 < 4.6
𝜔

2𝛼

/

 (2.8) 

 

that, assuming the same material properties of Table 2.1, yields to: 𝑥 < 8.2 [𝑚𝑚]. 

As it is possible to understand, it is fundamental the study of the sensitivity of the system 

with respect to the unknown variable, in order to build the most suitable experiment for its 

estimation. Usually this aspect goes under the Design Of Experiments(DOE) category 

(Beck1977) and it is strictly correlated to the estimation of the solution of the inverse 

problem; this occurs because in the design of experiments, it has to be find out the best 

experimental configuration that maximizes the sensitivity of the system to the parameter that 

has to be estimated. 

Concluding, the main goal of the direct problem is the determination of the effects (e.g. 

temperature distribution) related to a specific causes (e.g. the heat flux distribution), while 

the main purpose of the inverse problem is to estimate the causes observing the effects at 

some specific locations. The concept was clearly explained by Ozisik (Ozisik2000): “In the 

direct problem the causes are given, the effect is determined; whereas in the inverse problem 

the effects are given, the causes are estimated”. 
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The simple example presented in the previous paragraph is concerned to the Inverse Heat 

Conduction Problem (IHCP), but there are many others Inverse Heat Transfer Problems 

(IHTP) that could be related to: convection, radiation a mixed mode of heat transfer and 

many others. Moreover, it has to be observed that the considered example was related to the 

Boundary Inverse Heat Transfer Problem (BIHTP), but there are many other types of IHTP 

that could be related to the estimation of: Initial condition, energy generation, 

thermophysical properties and so on. A brief classification scheme is described in the next 

paragraph. 

 

2.3 Classifications 

 

The IHTP could be classified in many different way: 

- Type of problem; 

- Heat Transfer Mechanism; 

- Dimensionality of the problem; 

- Time dependency; 

- Linear and non-linear inverse problem; 

- Direct or iterative solution strategies; 

- Parameter or function estimation; 

- Direct problem solution strategy; 

- Inverse problem solution strategy; 

 

TYPE OF PROBLEM 

The additional information that has to be extracted from a model, could be used to classify 

the inverse problems in three main groups: 

- Control problem 

This type of inverse problem consists in finding the control law that satisfies an 

optimality criterion, usually called cost function. Commonly in these types of 

problems, the unknown control variable is the stimulus (e.g. the imposed heat flux 

distribution) while the feedback variable is the output of the model (e.g. the 

temperature distribution). 
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- System identification problem 

These particular types of inverse problems have to deal with the identification of the 

mathematical model of the system under test. It can be mainly related to two 

categories: 

 Model reduction 

The aim of this type of inverse problem is to identify a subset of equations that 

still are able to represent the physical model even if the detailed model was 

simplified. The use of a model that is too much simplified (e.g. the lamped 

parameter) can produce a systematic error that will affect the reconstruction 

quality diverging the prediction from the experimental observation and 

simulations. On the other hand, the choice of a too detailed model, with a high 

number of parameters, will significantly increase the computation cost to invert 

the model and will lead to an unstable solution because of the noise amplification. 

Due to the ill-posed nature of the inverse problem, usually is better a 

parsimonious model in terms of numbers of unknown parameters, but it is 

obvious that a balance between the measurement fidelity and the model 

simplification has to be found. 

 Experimental model identification 

Within the experimental model identification framework, the mathematical 

representation of the physical domain is assumed to be known, while the 

parameters inside the model are unknown. It has to be pointed out that the 

knowledge of the mathematical models as well as the physical meaning of the 

parameters inside the model, yields to a white box problem, while the 

experimental investigation of the model, that yields to a non-physical meaning of 

the parameter that are inside it, produce a black box model (there is no knowledge 

related to the physical meaning of the model and of its parameters). 

- Inverse measurements problem 

In this type of inverse problem, the lack of information related to the unknown 

parameter, is overcome by adding some extra-measurements. Among this class of 

inverse problems, it is possible to find different applications: 

 Parameter estimation 

The parameter estimation is very common in the heat transfer field; in particular, 

the most common estimated parameters are the thermophysical properties of the 

material, such as thermal conductivity and specific heat capacity. It has to be 
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pointed out that it is possible to estimate the properties of both black, grey and 

withe box models; it is straightforward that the parameters in those three models 

have different meaning.  

 Boundary values estimation 

Belong to this category all the problems that are dealing with the estimation of 

the location and the value of the stimulus. In the more general abstraction, the 

stimulus could be related to the entire volume, surface, line or point. It differs 

from the previous point since, in this case, the estimation concerns the imposed 

boundary condition (that could be different from one experiment to all the other) 

and not a property of the material (that is characteristic of that specific material). 

 Initial state estimation 

This problem is closed to the boundary values problem, but in this case, the 

estimation is related to finding the initial value of the unknown variables and 

their evolution in time. It has to be highlighted that this type of estimation 

procedure could also require the estimation of the local unknown variables 

distribution, not only their evolution in the time domain. 

 Shape reconstruction 

Usually the boundaries of the domain are fixed and known but in certain case, 

the shape of the domain or the location of an interface between two domains has 

to be found without its direct measurement (e.g. non accessible portion of the 

heat exchanger). This particular type of inverse problem requires the 

parametrization of the geometrical boundary of the problem in order to 

reconstruct it through inversion.  

 Optimal design 

This approach can provide a methodology for a pertinent choice of inputs, 

location of measurements points, time observation window, etc. The choice of 

these design quantities can be made in order to maximize a criterion based on the 

sensitivity of the output observation to the unknown parameter. 
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HEAT TRANSFER MECHANISM 

The classification of the inverse problems can be based on the governing heat transfer 

mechanism. In particular, it is possible to have: 

- Inverse heat conduction problem: 

These types of problems are the most investigated. Due to the linearity of the problem 

with respect to many of the variables that could appear into the heat equation, which 

significantly reduce the computational time, most of the early studies on the inverse 

heat transfer problems concerned heat conduction. The application of the inverse 

analysis to problems involving convection and radiation is more recent, especially 

because they are not linear with respect to the imposed heat flux. 

- Inverse heat convection problem: 

These problems are still under investigation. The estimation of their solution has a 

lot of practical applications but, unfortunately, they are nonlinear with respect to the 

convective heat transfer coefficient. Nowadays, the problem in bypassed by re-

writing the inverse heat convection problem as a inverse heat conduction, for the 

estimation of the unknown heat flux, and then by the solution of one direct problem, 

the convective heat transfer coefficient could be estimated. 

- Inverse heat surface radiation problem: 

Like the previews inverse problem types, the inverse heat surface radiation problem 

is could be nonlinear with respect the unknown variable. This issue was overcome 

by Alifanov (Alifanov1994) who showed how to linearize this problem respect to the 

unknown variables. 

- Inverse hate transfer problem of mixed phenomena: 

This is the most general and varied group of the inverse heat transfer problems. Due 

to the high number of methodological difficulties, solution of this problems are not 

yet well developed (Alifanov1994). 

- Inverse heat transfer problem of phase change materials: 

They are mainly related to the cast processing (Zabras1988), but there are many 

applications also related to the enhancement of the thermal performances of the 

thermal energy storage (e.g. melting wax). 

 

 

 

 



48 

DIMENSIONALITY OF THE PROBLEM 

Inverse problems, like all the physical problems, can be also classified with respect to the 

dimensionality of the problem; therefore, it is possible to have 0D, 1D, 2D and 3D problems 

according to the physical dimension of the investigated problem. Obviously, from the 

historical point of view, the first inverse problem concerned the lamped parameter estimation 

(e.g. 0D) since the computation cost of this kind of problem is lower than all the others. It 

has to be pointed out that the model reduction based on both geometrical and physical 

consideration can reduce the computational cost significantly. This type of model reduction 

is based on physical observation of the geometrical domain under test and it is called physical 

model reduction.  

 

TIME DEPENDENCY 

Inverse problems can be classified with respect to the time-dependency of the problem. 

Therefore it is possible to have stationary or non-stationary inverse heat transfer problems. 

The stationary inverse heat transfer problems are characterized by properties that have the 

mean, variance and autocorrelation structure constant over time. Stationarity can be defined 

in precise mathematical terms, but from the practical point of view, the stationary regime is 

reached when the all the properties of the system (that could be the boundary condition, the 

physical equation or physical properties) do not change over time. On the other hand, the 

non-stationary inverse problem are characterized by the variation over time of at least one 

of the quantities (or its properties) appearing in the mathematical modelling of the 

phenomena. 

 

LINEAR AND NON-LINEAR INVERSE PROBLEM 

The possibility of the inverse problem to be linear with respect to the unknown variable is 

one of the most important aspects of the problem. This feature is strictly connected to the 

solution strategy chosen for the estimation of the solution. In particular, linear inverse 

problems are easier to be solved than the non-linear ones; for this reason, researchers started 

to study linear inverse problem. Moreover, if a problem is not linear, researchers try to 

linearize it in a small range of application. Besides the pedagogical importance of the linear 

problems, there are a lot of physical problem that are linear with respect to the parameters 

of interest. Nonlinear mathematical models arise when the parameters of interest have an 

inherently non-linear relationship to the observables ones. This situation commonly occurs, 
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for example, in electromagnetic field problems where we wish to relate geometric model 

parameters such as layer thicknesses to observed field properties.  

As suggested by Beck (Beck1977), the practical way that could be followed in order to 

understand the linearity of a problem, respect to the parameters under test, is to calculate the 

sensitivity of the problem with respect to those parameters. If the problem is linear with 

respect to the parameters, then the sensitivity coefficients are bot function of the perturbated 

parameter, otherwise the problem is non-linear (Beck1985). 

 

DIRECT AND ITERATIVE SOLUTION STRATEGIES 

The solution strategy adopted in order to estimate the solution of the inverse problem could 

be another way to classify them; therefore it is possible to have direct or iterative solutions 

of inverse problems. The direct solution do not require any type of iterations, since they are 

able to obtain the solution in just one step. On the other hand, the iterative solution, require 

some iteration in order to get the best estimation of the unknown parameters. Usually, the 

iterative approach is used in non-linear inverse problem, since there is no direct connection 

between the effect and the causes; nevertheless the iterative techniques can also be applied 

to the linear inverse heat transfer problems solutions. 

 

PARAMETER OR FUNCTION ESTIMATION 

Inverse problems could also be divided into two classes: the parameter estimation and the 

function estimation. The distinction between the two techniques is different if it is stated by 

engineers or by mathematicians. Professor Lamm (Lamm1999) said: “Mathematicians 

generally think of function estimation as the determination of an infinity-dimensional 

function (not just a finite-dimensional discretization of a function, even though the dimension 

may be quite large). But, this is a theoretical concept, and when one goes to implement the 

theory, one typically resort to finite-dimensional approximation. This finite-dimensional 

approximation should converge to the infinite-dimensional function that is though”. 

Due to the non-easy distinction between parameter estimation and function estimation, same 

aspects that are emphasized more in parameter estimation, than in function estimation are 

(Woodbury2003): 

- A limited number of parameter are going to be estimated; 

- Usually, problems are not so ill-posed, but they are usually non-linear with respect 

to the unknown parameters, even if the describing differential equations are linear; 
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- The parameters are usually referred to a physical properties of the material and not 

to external causes (e.g. the imposed heat flux); 

- Parameter estimation analysis need to be coupled with the confidence intervals, 

otherwise the information is not complete; 

- Parameter estimation requires a “good” modelling of the phenomena, in order to have 

a robust estimation of it properties; 

- Parameter estimation requires a careful examination of the residual in order to check 

the adequacy of the mathematical model. Residual does not have trends that persist 

experiments after experiments (e.g. bias); 

- The residual function (e.g. sum of squares or weighted sum of squares) has to be 

chosen according to the measurements error; 

- Optimal experiment design is very important in order to have the best accuracy of 

the estimates. 

On the other hand, some characteristic related to the function estimation, are: 

- High number of parameter that has to be estimated; 

- The problems are usually ill-posed; moreover, they can be also non-linear; 

- Computational efficiency is crucial, especially in the calculation of the sensitivity 

parameters. 

A classic example related to the parameter estimation, is the estimation of constant 

thermophysical properties, such as the thermal conductivity k. It has to be observed that, a 

function estimation problem could be reduced to parameter estimation problem if some 

informations related to the function that has to be estimated are available. For example, if 

the shape of the function that has to be estimated is known, then it is possible to reconstruct 

the information only estimating the coefficients appearing in its definition. Let’s assume that 

the unknown heat flux distribution can be represented by the following polynomial equation: 

 

𝑓( ) = 𝑃 + 𝑃 𝑡 + 𝑃 𝑡 + ⋯ + 𝑃 𝑡  (2.9) 

 

or in a more general way: 

 

𝑓( ) = 𝑃 𝐶 (𝑡)   (2.10) 
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where 𝑃  are the unknown coefficients while 𝐶 (𝑡) are known trial function (e.g. sine and 

cosine, if the unknown function was approximated using the Fourier’s series decomposition, 

or polynomial in complex form). It follows that, the function estimation approach, required 

to estimate the unknown polynomial heat flux distribution, could be reduced to a parameter 

estimation problem, in which the total number of unknown parameters has to be chosen in 

advance. 

 

DIRECT PROBLEM SOLUTION STRATEGY 

Many different solution strategies can be used in order to obtain the solution of the direct 

problem. In particular, the solution can be achieved by using exact or approximated 

methodologies. Among the exact solution strategies, it has to be pointed out the separation 

of variables, Laplace transform and the Duhamel’s theorem. Usually, the analytical solution 

of the direct problem can be achieved only for simple cases, while the numerical formulation 

can be applied in more general applications. Like the analytical solution, the numerical one 

can be obtained in different ways, but the two most used approaches require the integral or 

the differential formulation of the mathematical model. Among the numerical solution 

schemes, it has to be pointed out the finite difference, finite element method, finite volume 

method, boundary element methods and finite control volume techniques. It has also to be 

highlighted that, in the literature, there are many other numerical solutions schemes that 

could also represent the numerical approximation of an analytical formulation (e.g. 

numerical formulation of the Duhamel’s theorem). 

 

INVERSE PROBLEM SOLUTION STRATEGY 

In the more general case, the inverse problem can be a time dependent multi-dimensional 

problem and different solution strategies can be adopted in order to estimate the solution of 

the inverse problem. In particular, different strategies can be identified: 

- Whole domain or sequential specification; 

- Regularization methods; 

- Trial function method; 

- Filter method. 

Let’s go more into the detail. 
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Whole domain or sequential specification 

In an inverse time dependent problem, the estimation of the unknown function can be 

achieved once the entire phenomena is concluded and the entire time and spatial 

measurement were acquired. This solution strategy is known as whole domain 

estimation and it is intrinsically a non-real time estimation, since all the information has 

to be acquired before all the unknown parameter could be estimated. On the other hand, 

if a moving window is applied to the incoming signal, which is assumed to be 

represented by a polynomial defined inside the window, it is possible to estimate the 

solution in a quasi-real time scheme. This solution strategy is known as sequential 

function specification, since window by window the unknown function distribution (the 

polynomial) has to be estimated.  

 

Regularization methods 

This approach is a modification of the least square approach in which a penalty function 

is added in order to dump the instability present in the estimated solution of the unknown 

function. The instability that usually characterize the estimated solution are non physical 

and related to the ill-posed nature of the inverse problems (unless special treatment of 

the instabilities is introduced). There are many different types of penalty functions and 

they are manly formulated as a whole domain estimator except for the case investigate 

by Beck (Beck1984) in which a sequential function specification approach was used in 

the regularization of the inverse heat conduction problem. Among the possible solution 

strategy for the linear inverse problem it has to be pointed out the: Ridge regression, 

damped least square, Tikhonov regularization, Alifanov regularization, maximum 

entropy regularization and many others. For what concerned the non-linear inverse 

problem, the algorithm proposed by Levenberg (Levenberg1944) and Marquardt 

(Marquardt1963) is frequently used. 

 

Trial function method 

This is a particular combination of the function specification with the regularization 

approach. Its formulation, given by Twomey (Twomey1963), require the minimization 

of a cost function that consists in a sum of squared criterion plus an addition a term that 

is a generalization of the regularization term, which consist of the difference between 

the unknown distribution and a predetermined “trial” function. The trial function can 

incorporate the prior information related to the shape of the expected heat flux or it could 
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be a simple function, such as a constant. Since the choice of the prior information is 

frequently subjective, different numerical experiments must be done in order to find a 

satisfactory distribution of the trial function.  This approach could be used in the whole 

domain formulation as well as in the sequential function specification. 

 

Filter method 

It is possible to demonstrate that linear inverse heat conduction problem can be 

formulated as digital filter. This approach could be formulated as  whole domain or as 

a function specification. It has to be pointed out that the approximation of the heat 

conduction problem, characteristic of this solution strategy, does not affect the validity 

of the approach. The digital filter approach is an important solution methodology 

(Bozzoli2013) since it is usually computationally more efficient than all the other 

techniques and it can run in a quasi-real time scheme. The digital filtering approach, 

also permits the simultaneously usage of different types of sensors reading in order to 

increase the reconstruction quality. Due to the utility of filtering techniques, there are 

numerous resources on their use in the physical sciences, engineering, and pure 

mathematics. For example, Gubbins (Gubbins2004) applied the Fourier filtering 

technique in order to understand the inverse theory in a geophysical context, while Kak 

(Kak2001) gave an extensive treatment of Fourier-based methods for tomographic 

imaging. This topic is also common in image processing: for example, Vogel 

(Vogel2002) discussed Fourier methods for image deblurring. 

 

2.4 Applications 

 

Modern complex materials have thermophysical properties strongly varying with 

temperature and position; for this reason, conventional methods based on the direct 

estimation of the thermophysical properties has become unsatisfactory. The same 

considerations are also valid for the industrial modern applications; usually, these 

applications require an accurate in situ estimation of thermophysical properties under actual 

operating conditions as well as estimation of the applied boundary condition. 

Inverse problem techniques are also successfully used in the medical field, for the detection 

of skin and breast cancer as well as for the estimation of the thermal damage after laser 

ablation. 
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Related to the food industry, inverse heat transfer problems are successfully applied for the 

study of better thermal treatment of the foods as well as for the performance estimation of 

heat exchanger. 

Inverse heat transfer problem approaches can provide satisfactory answers for the estimation 

of unknown quantities that are difficult (or impossible) to be measured. They can also 

provide information that could not be accessible due to physical restrictions; for this reason, 

the inverse problems formulation could be used to conduct experiments as close to the real 

conditions as possible. 

There are a lot of possible applications of inverse problems, for this reason, the list here 

presented is not exhaustive but it contains the most common application in which the inverse 

heat transfer problems were successfully applied: 

- Estimation of thermophysical properties; 

- Estimation of radiation properties; 

- Estimation of boundary conditions; 

- Estimation of reaction function; 

- Control and optimization; 

- Estimation of boundary shapes of bodies; 

- Non-direct sensor reading. 

More in detail: 

- Estimation of thermophysical properties 

The estimation of the thermophysical properties of materials is nowadays an 

extremely important topic, especially because engineered materials are becoming 

interesting and used in many industrial application.  

The estimation of temperature-dependent thermophysical properties has been 

generally treated as a parameter estimation problem. Dantas et al. (Dantas1996) 

applied the function estimation approach to the inverse problem of determining the 

temperature dependence of either, the volumetric heat capacity or the thermal 

conductivity. No information regarding the functional form of the unknown property 

were needed and the minimization of the cost function was performed in an infinite 

dimensional space of functions. The minimization algorithm used was the Conjugate 

Gradient Method with Adjoint Equation and the effects of sensor location on the 

inverse problem solution were also addressed through a sensitivity analysis 

framework. The accuracy of the presented solution strategy was examined by using 

transient simulated temperature measurements containing random errors. Such 
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simulated measured data were obtained from the solution of the direct problem, by 

considering six fictitious functionals form for the thermophysical properties. The 

chosen stopping criteria was the Morozov’s discrepancy principle (Morozov1984). 

Results showed that the presented approach was able of recovering discontinues 

functions, which are the most difficult to be recovered by an inverse analysis.  

A more practical application was presented by Jurkowski et al. (Jurkowski1996), 

who estimated the thermal conductivity of thermoplastics under moulding conditions 

characterized by a high pressure and temperature values. A specific apparatus was 

designed while a parameter estimation method was used for the experimental data 

processing. The research was based on the solution of a one-dimensional non-linear 

Inverse Heat Conduction Problem. The optimisation algorithm developed required 

the iterative evaluation of the cost function in order to solve the problem in an 

efficient and stable way. This new algorithm is a combination of the well-known 

Gauss (Beck1977), Levenberg (Levenberg1994) and Marquardt (Marquardt1963) 

algorithms of which the authors took the best feature of each one: speed (Gauss), 

stability (Levenberg) and convergence (Marquardt). The estimated results using this 

new algorithm were compared with each separated algorithm itself. They observed 

that the stability and convergence of the algorithm they developed was not related to 

the measurement noise. Moreover they observed that no convergence was reached 

using the Gauss method while the Levenberg algorithm reach the convergence very 

slowly compared with the Marquardt method that reached the convergence but to a 

wrong value. The same consideration related to the comparison between the 

Levenberg and Marquardt method was obtained by Davies et al. (Davies1972) and 

confirmed by Beck (Beck1977). Confidence intervals of the estimated parameters 

took into account errors both in the temperature measurements and in the model 

parameters, while the heat capacity was estimated from calorimetric measurements. 

 

- Estimation of radiation properties 

The estimation of the radiation properties is becoming more and more interesting, 

especially because of the space industry, since in the deep space, the heat transfer 

could happen only through the radiation mechanism.  

One of the first works related to the inverse estimation of the radiation properties is 

by Li et al. (Li1994). The authors presented a methodology for the simultaneous 

estimation of the unknown temperature distribution and the diffuse surface 
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reflectivity in an absorbing, emitting, and isotropically scattering grey plane-parallel 

medium from the knowledge of the external radiation intensities. The inverse 

radiation problem was stated as an optimization problem in a finite-dimensional 

space and the conjugate gradient method of minimization was then used for its 

solution. The scheme was shown to be stable, insensitive to the initial guess and, in 

the absence of measurement errors, the estimated solution converged to the exact 

result. Moreover, the authors performed a sensitivity analysis respect to the unknown 

parameter. The inverse procedure was tested by using simulated measurement 

contaminated with different levels of noise on both the measurements of the radiation 

intensities of the two surfaces. With no measurement errors, the estimated solutions 

converged to the exact values. The estimation became more sensitive to the 

measurement errors as the optical thickness was increased. 

Using the same minimization technique applied to the same cost function, Park et al. 

(Park1999) estimated the radiative parameter using the inverse framework with the 

simultaneous presence of radiation and conduction. They considered a parallelepiped 

enclosure in which the heat could be transferred via conduction and radiation. For 

the inverse solution, they measured the temperature in different location inside the 

enclosure and, using the conjugate gradient method suggested by Fletcher and 

Reeves (Fletcher1964), they were able to minimize the cost function consisting in 

the square root of the squared differences between the simulated and the measured 

temperatures. They used simulated measurements in order to study the feasibility of 

the problem and its accuracy. Since the temperature field is much more sensible to 

the absorption coefficient with respect to the scattering coefficient, its simultaneous 

estimation could not work unless the initial approximation was near to the exact 

value. In order to overcome this difficulty, the authors performed a two-stage 

estimation. In the first stage, they assumed to be known the less sensitive parameter 

(the scattering coefficient) and performed the optimization only on the most sensible 

parameter (the absorption coefficient), reaching its convergence. Once they got the 

estimated value, which was near to the exact one, they assumed it as known and 

started the optimization on the other variable (the scattering coefficient). Finally they 

performed the simultaneous estimation of both parameters, starting from their 

singular estimation. 

Ertuk et al. (Ertuk2001) made a comparison of the performance, in terms of 

reconstruction quality, between three different types of algorithms: Conjugate 
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gradient (CG method), bi-conjugate gradient (BGC method) and truncated singular 

value decomposition (TSVD). The study concerned the reconstruction of the 

imposed boundary condition in a three-dimensional enclosure, that simulated a 

furnace. All the physical properties were assumed to be known as well as the 

geometry of the system. The authors observed that the bi-conjugate gradient method 

required more iterations that the conjugate gradient method. Moreover, they tried to 

compare the three methodologies using the same number of iteration and of singular 

values and iterations number for the TSVD, CG and BCG respectively. It has to be 

pointed out that this type of comparison is not exactly correct since the two quantities 

(number of singular values and number f iterations) have different physical meaning. 

Moreover, they showed the computational time required from all the three 

methodologies to perform the estimation, that is an interesting quantity, but is also 

interesting the number of times that the cost function was called. Finally they 

observed the loose of physical meaning, since for high noise level negative emissive 

powers were predicted. This situation is very common when we are dealing with an 

inverse problem; for this reason, bounded least square approaches were proposed in 

the past. 

 

- Estimation of boundary conditions 

The estimation of the boundary conditions is one of the most important type of 

inverse problems. This type of problem has to deal with the reconstruction of 

unknown values of the boundary conditions. 

There are many applications related to the estimation of the boundary conditions, 

especially in the heat transfer enhancement field. Bozzoli et al. (Bozzoli2013) 

investigated optimal filtering of raw input data acquired by means of infrared 

thermographic technique in order to solve an inverse heat conduction problem. The 

authors tested their algorithm on both numerical and experimental data, showing the 

necessity of filtering the noise from the measurements in order to achieve a stable 

solution of the inverse problem. The experimental setup concerned the estimation of 

the heat source field on a thin conductive wall. The filtering technique approach was 

already successfully adopted in the literature with regard to the inverse heat 

conduction problem and it could be understood as a regularization method in the 

sense that it is based on computing the smoothest approximated solution consistent 

with the available data. The authors compared the effect of different filtering 
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techniques, namely the ideal low-pass, the Gaussian and the Wiener filter, focusing 

on the optimal choice of the cut-off frequency. The different filters were compared 

using synthetic 1-D periodic signal and then applied to the experimental temperature 

maps acquired on the rear surface of a copper thin plate on which two point heat 

sources were located. The authors observed that the particular shape of the transfer 

function that was derived by applying two consecutive Wiener windows, amplified 

the self-adaptive capacity of the filter by making it particularly suitable for de-

noising thermal images by minimizing, at the same time, the undesired signal 

attenuation effect. 

The same authors (Bozzoli2014) estimated the boundary conditions on the internal 

surface of a coiled tube. This device is often used as a heat transfer enhancement 

device since the presence of the Dean’s vortices reduce the boundary layer, 

increasing the heat transfer capabilities of the device. This type of wall curvature is 

able to passively enhance the convective heat transfer and it is particularly effective 

in the thermal processing of highly viscous fluids. The highly uneven convective heat 

flux distribution along the circumferential coordinate, due to the presence of the 

secondary vortices, significantly impact the performance of the fluid thermal 

treatment. In their work, the authors estimated the local convective heat flux 

acquiring the temperature distribution maps on the external wall surface of the coil 

wall. Those measurements were used as an input data in order to solve the inverse 

heat conduction problem in the solid domain of the tube. The estimation procedure 

was based on the Tikhonov regularization technique, while the experimental 

campaign was particularly focused on the laminar regime. The authors concluded the 

local investigation in coiled tube, paying particular attention to the turbulent regime 

(Bozzoli2017) using the same solution strategy. 

The inverse problem was successfully addressed by Hsu et al. (Hsu2000) for the 

estimation of the heat flux in a film condensation on a vertical surface. The inverse 

analysis was based on thickness readings, taken at several different points on the 

plate. The linear least square method was used in order to minimize the cost function 

that consisted in the mismatch between the measured and the simulated thickness of 

the condensed film layer. The methodology was tested using simulated 

measurements spoiled with different level of white noise with zero mean, in order to 

test the robustness of the approach. The authors observed that the algorithm 



59 

successfully deal with the estimation procedure, also with a few points of 

measurement.  

- Estimation of reaction function 

The study of reaction-diffusion problems has several application, such as in chemical 

reactors analysis and in combustion processes. A vast amount of literature exists on 

the analysis and solution of linear inverse reaction problems. In the case of nonlinear 

inverse diffusion problem, the available works are mostly concerned with the 

estimation of temperature-dependent properties, such as thermal conductivity and 

heat capacity. 

One of the most interesting works concerning the estimation of reaction function was 

presented by Orlande et al. (Orlande1994). In this work the authors used a function 

estimation approach based on the conjugate gradient method with adjoint equation 

in order to estimate the unknown reaction function in a reaction-diffusion parabolic 

problem thorough the solution of an inverse problem. They assumed that no prior 

information was available on the functional form of the unknown quantity. Extra-

temperature measurements were used in order to overcome the lack of information 

related to the unknown value of the boundary condition. Since the conjugate gradient 

method requires the solution of the direct, adjoint and sensitivity problems, the 

authors were able to identify the best position of the sensor in order to maximize its 

sensibility to the unknown parameter. The ability of the mathematical model to 

reconstruct the unknown function, was tested using synthetic data produce by 

numerical simulation. The robustness of the approach was then tested by spoiling the 

synthetic measurements with withe noise having zero mean. The results showed a 

good ability of the algorithm to estimate the reaction function using extra-

temperature measurement also in the presence of noise in the temperature 

measurements. 

Related to the reaction function estimation, an interesting work was made by Brizaut 

et al. (Brizuat1993). The authors estimated the reaction function involved in a model 

of vulcanization of a thick piece of rubber. The reticulation kinetics was determined 

using different approaches, as for example: mechanical (rheometry), thermal 

(differential scanning calorimetry) or dielectric properties.  The authors used the 

thermal reticulation model in order to estimate the reaction function. They tested the 

robustness of the algorithm using synthetic data spoiled with different levels of noise. 

Since the algorithm shown a good agreement between the estimated and the exact 
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solutions, the authors applied the algorithm also to experimental measurements. The 

only a priori information needed was the factorization of the temperature 

dependence; however, the kinetics that they obtained was the same obtained by other 

models, validating the mathematical model used. The authors concluded that the 

proposed method appear as a promising approach to construct new kinetic 

characterization equipment. 

 

- Control and optimization 

Many problems of control can be understood as an inverse problem.  

One of the main researchers who applied the control theory to the inverse heat 

transfer problem was Zabaras. One of his main research topic was related to the 

control of the interface morphology during a solidification process in the presence of 

natural convection (Zabaras1995). In particular, the boundary heat flux was 

calculated such that a desired freezing front velocity and shape were obtained. A 

front tracking deforming finite element technique was employed in order to follow 

the solidification front. Moreover, a brief review of the front tracking deforming 

finite element technique for a general viscous incompressible material was presented. 

The minimization of the cost functional was performed by the conjugate gradient 

method via the solutions of the direct, sensitivity and adjoint problems. In particular, 

the inverse solidification design problem was decomposed into two independently 

solvable problems. The first of these problems was a direct convection problem in 

the liquid phase, while the second one is an inverse design problem in the solid phase 

that employs the interface heat fluxes calculated from the solution of the former 

problem. Finally, an example was presented for the solidification of a superheated 

incompressible liquid aluminium, where the effects of natural convection in the 

moving interface shape were controlled with a proper adjustment of the cooling 

boundary conditions. 

A similar project was investigated by Colaço et al. (Colaço2006), but in this work, 

the authors optimized the electrodes that control the magnetic field during the 

solidification process in the presence of natural convection, of a magnetic alloy, in 

order to control the solidification front. The work concerned the reduction and control 

the natural convection effects in a cavity filled with a molten material by applying an 

external magnetic field whose intensity and spatial distributions were obtained by the 

use of a hybrid optimizer, which incorporates automatic switching among several of 
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the most popular optimization modules: the Davidon-Fletcher-Powell (DFP) gradient 

method, a genetic algorithm (GA), the Nelder-Mead (NM) simplex method, quasi-

Newton algorithm of Pshenichny-Danilin (LM), differential evolution (DE), and 

sequential quadratic programming (SQP). The solidification front shape, distribution 

of the charged particles in the accrued solid, and the amount of accrued solid phase 

in such processes can be influenced by an appropriate distribution and orientation of 

the electric field. The transient Navier-Stokes and Maxwell equations were 

discretized using the finite volume method in a generalized curvilinear non-

orthogonal coordinate system. The inverse problem was formulated in order to find 

the electric boundary conditions in such a way that the temperature gradients along 

the horizontal direction were minimized. The optimization results have shown that it 

is possible to control the natural convection phenomena by using an externally 

applied electric field. This conceptually new approach to manufacturing could be 

used in creation of layered and functionally graded material objects. 

Experimental application of the optimization interpretation of the inverse problem 

was also used in the determination of the best chemistry composition of a hard 

magnetic alloy (Jha2016). The generated candidate alloy compositions were 

examined for phase equilibria and associated magnetic properties using a 

thermodynamic database in the desired temperature range. These initial candidate 

alloys were manufactured, synthesized and tested for desired properties. Then, the 

experimentally obtained values of the properties were fitted with a multi-dimensional 

response surface. The desired properties were treated as objectives and were 

extremized simultaneously by utilizing a multiobjective optimization algorithm that 

optimized the concentrations of each of the alloying elements. A few of the best 

predicted Pareto optimal alloy compositions were then manufactured, synthesized 

and tested to evaluate their macroscopic properties. Several of these Pareto optimized 

alloys outperformed most of the candidate alloys on most of the objectives. A 

sensitivity analysis of each of the alloying elements was also performed to determine 

which of the alloying elements contributes the least to the desired macroscopic 

properties of the alloy. These elements can then be replaced with other candidate 

alloying elements such as not-so-rare earth elements.  
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- Estimation of boundary’s shapes of bodies 

The inverse heat transfer problem was successfully solved also for the estimation of 

the boundary shapes of bodies.  

Among the scientific contribution from the scientific community, it has to be pointed 

out the work of Cheng (Cheng2003). In their paper, the authors presented a simplified 

conjugate gradient method for shape identification based on thermal data. The 

authors tested the reconstruction capabilities of the proposed algorithm using 

different simulated measurements. These test cases used three kinds of thermal data 

measured on the outer surface of a solid body, including temperature distribution, 

local heat flux distribution, and the overall heat transfer rate. Results show that for 

all test cases, the optimization process leads to acceptable accuracy for the objective 

functions of different forms. The authors made a very interesting work testing the 

algorithm capabilities in presence of different noise levels added to the measurements 

and with different initial guesses of the shape that had to be reconstruct. Moreover 

they performed the estimation using different measurement as well as using one type 

of measurement per time (e.g. only temperature, only heat flux, both of them, etc.). 

The identification of boundary’s shape is more interesting in the structural 

mechanical application. In particular, Banks et al. (Banks1990) were able to identify 

structural flaws in a two-dimensional domain. For a thermal diffusion system with 

external boundary input, observations of the temperature on the surface were used in 

a least-squares approach. Parameter estimation techniques based on the ‘method of 

mappings’ were discussed and approximation schemes were developed based on a 

finite element Galerkin approach. Theoretical convergence results for both simulated 

noisy data and experimental data applied at the Nondestructive Measurement Science 

Branch at NASA Langley Research Center showed the ability of the methodology to 

identify flaws using thermal testing on structural materials. 

Another application related to the shape identification through thermal 

measurements, was done by Huang et al. (Huang1995). In particular, the authors 

estimated the solution of an inverse geometry heat conduction problem (shape 

identification problem) detecting the unknown irregular boundary in a two-

dimensional domain. In order to solve the inverse problem, they used the Levenberg-

Marquardt method (LM), for the minimization of the objective cost function, 
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comparing its results with the conjugate gradient method (CG). A sequence of 

forward steady-state heat conduction problems was solved, measuring the 

temperatures at different sensors locations. The authors observed that the conjugate 

gradient method was better than the Levenberg-Marquardt method since it: (i) needs 

very short computational time ; (ii) does not require a very accurate initial guess for 

the boundary shape ; and (iii) needs a few number of sensors. Finally, the effects of 

the measurement errors in the inverse solutions were discussed.  

 

- Non-direct sensor reading 

This is a particular inverse problem application to the heat transfer field. Almost all 

the sensors are not able to directly measure the quantity that we are looking for. Let 

us consider a thermocouple. These are the most used sensors in thermometry, since 

they are small, cheap and accurate, if used with an understanding on their working 

mechanism. Thermocouple is a device that convert thermal energy into electrical 

energy. The first research related to this energy conversion was published by Seebeck 

(Seebeck1823), who observed that, when two different metals form a closed electrical 

circuit and their junctions are kept at different temperatures a current starts to pass 

inside the metals. The current flow generation depends on the material couple used 

and on the temperature difference between the two junctions. The Seebeck effect is 

actually the combination of two other phenomena: the Peltier effect (Peltier1834), 

which state that a temperature gradient in a solid generate an electromotive force 

within it, and the Thomson effect (Thomson1848), which state that the contact of two 

different metals generates an electromotive force. Usually the Thomson effect is 

negligible compared to the Peltier effect, if the thermocouple is properly designed. 

Since the thermal reading is related to the temperature difference between the two 

junction, we need to fix the temperature of one junction (called cold junction) in order 

to know the absolute temperature of the hot junction (used to probe the temperature 

in in the measurement point).  

The construction of the calibration curve that links the voltage measurement to the 

temperature of the hot junction is a typical parameter estimation problem in which 

we known the function (that could be an exponential function) and we would like to 

estimate its parameters. 
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Chapter 3 

 

Solution techniques 
 

3.1 Introduction 

 

In the Inverse Heat Transfer Problem, many of the encountered difficulties are related to the 

non-stability of the solution, since small perturbations in the input data (e.g. noise contented 

in the temperatures measurements) could yields to a completely different estimated solution 

that has nothing to do with the physical system under study. 

Since there are many different solution strategies that could be used in order to estimate the 

solution of the inverse problem, Beck (Beck1979) suggested a list of possible criteria useful 

to evaluate the different IHTP methods: 

- the method should be stable with respect to measurement errors; 

- the predicted quantity should be accurate if the measured data are of high accuracy; 

- temperature measurements from one or more sensors should be permitted; 

- the method should have a statistical basis and permit various statistical assumptions 

for the measurement errors; 

- the method should not require the input data to be a priori smoothed; 
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- the method should be stable for small time steps or intervals, permitting to obtain an 

higher number of information and a better resolution of the time variation respect to 

those obtainable by large time steps; 

- the method should not require continuous first derivatives of unknown functions. 

Furthermore, this method allows using functions containing significant 

discontinuities; 

- the method should not be restricted to any fixed number of observations; 

- the method should be able to consider complex physical situations, as composite  

solids, temperature variable properties, moving boundaries, combined modes of heat 

transfer, multi-dimensional problems and irregular geometries; 

- a deep experience in mathematics should not be required in order to use the method; 

- the computational cost should be moderate; 

- the method should permit extensions to more than one unknown; 

- the method should be easy to program. 

 

3.2 Problems statement and solution techniques 

 

Among all the possible problems that could arise in the heat transfer field, concerning a heat 

exchanger, two of the most interesting application are related to the estimation of the average 

and local performances of the heat transfer devices. The direct measurement of those two 

quantities is usually difficult, thus their estimation through the inverse heat transfer approach 

is required.  

The present chapter is subdivided in two section: parameter estimation and function 

estimation. The subdivision is not related to the estimation capabilities of the inverse solution 

technique here proposed (some of the presented approaches could be used for both the 

parameter and the function estimation) while is related to the number of unknown variables 

that has to be estimated in order to characterize the heat exchanger. For this reason, two 

different problems are going to be introduced in order to define the practical application in 

which the IHTP was successfully applied. The same subdivision will be used in the next 

chapters for the presentation of the new solution methodologies (Chapter 4), their 

verification using synthetic data measurements (Chapter 5) and their application to 

experimental data sets (Chapter 6). 
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3.2.1 Parameter estimation  

This category of inverse problem, usually have to deal with the estimation of a small/medium 

number of unknown parameters; for example, from the industrial point of view, it is 

interesting the estimation of the average performances of the heat transfer devices such as 

thermal, fluid dynamic and overall heat transfer efficiencies. Related to this aspect, it is 

possible to consider the physical problem, represented in Figure (3.1), which consists in a 

counter flow tube in tube heat exchanger. 

The fluid that is passing through the system is assumed to be water in both the tube and shell 

side. Both the fluids are characterized by the thermal properties 𝑘, 𝜌 and 𝑐  which represent 

the thermal conductivity, density and specific heat, respectively. Those quantities are 

assumed varying with the temperature of the fluid. The temperatures at the inlet and outlet 

of both the tube and shell sides are assumed to be known as well as the two mass flow rates. 

The system is assumed to be in a steady state regime without exchanging energy with the 

environment. Therefore, it is possible to write: 

 

𝑄 = �̇� 𝑐 (𝑇 − 𝑇 ) 

𝑄 = �̇� 𝑐 𝑇 − 𝑇  

(3.1.1) 

(3.1.2) 

 

where �̇� and 𝑄 are the mass flow rate and the exchanged power, respectively.  

Thus, the energy balance becomes: 

�̇� 𝑐 (𝑇 − 𝑇 ) = �̇� 𝑐 𝑇 − 𝑇  (3.2) 

 

 

Figure 3.1: Parameter estimation: geometrical domain 
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The direct problem consist in the determination of the outlet temperate, knowing the input 

variables ℎ  and ℎ . In order to generalize the shell and tube performances, it is possible to 

define: 

 

𝑁𝑢 = 𝑁𝑢 , ,…,  

𝑁𝑢 = 𝑁𝑢 , ,…,  

(3.3.1) 

(3.3.2) 

 

where 𝑁𝑢 is the Nusselt number at each side characterized by a set coefficients individual 

for heat exchanger. This type of mathematical approach is commonly used in the literature 

in order to describe the thermal characteristic of heat transfer devices (Incoprera2002, 

Rainieri2004) having water as a working fluid. 

Usually, the coefficients 𝛼, 𝛽 and ℎ appearing in the equations (3.3.1)-(3.3.2) are unknown 

and since they can not be directly measured, their inverse estimation is required. In 

particular, the inverse problem have to deal with the estimation of both 𝛼 and 𝛽 coefficients 

related to the tube and shell side, knowing, at least, four temperature measurements, since 

the fourth one could be derived by the energy balance provided by the Equation (3.2). Since 

the problem is non-linear with respect to the unknown variables, the usage of non-linear 

optimization algorithm is required. The optimization procedure could be done using: 

A) deterministic methods; 

B) evolutionary and stochastic methods; 

C) hybrid methods. 

As suggested by Beck (Beck1974), since the problem is non-linear, its sensitivity matrix 

change each time a new information is added; for this reason it has to be recalculated for 

each solution step making the algorithm expensive from the computational point of view. 

As already mentioned in the beginning of this section, the solution strategies proposed here 

could also be used in function estimation problems, but since they are coming from the 

optimization field in which the number of variables that has to be estimated is usually small, 

the estimation procedure listed above are here introduced in agreement with the final goal of 

the proposed problem. 
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A) Deterministic methods 

These types of methods, usually applied to non-linear minimization problems, generally 

rely on establishing an iterative procedure, which, after a certain number of iterations, 

will hopefully converge to the minimum of the objective function. The iterative 

procedure can be written in the following general form (Beck1977): 

 

𝑷 = 𝑷 + 𝜉𝒅  (3.4) 

 

where 𝑷 is the vector of the design variables (e.g. 𝛼 and 𝛽 coefficients for the tube and 

the shell side), 𝜉 is the search step size, 𝒅 is the direction of descent and 𝑘 is the number 

of iterations. 

An iteration is acceptable if the value of the objective function at the iteration 𝑘 + 1 is 

lower than the value of the same objective function at the iteration 𝑘. It is possible to 

define the stationary point of the objective function as the point in which the gradient of 

the objective function is zero. It is straightforward that the optimization algorithm has 

to reach a stationary point in order to minimize the objective function. The convergence 

to the global minimum can be guaranteed only if it can be shown that the objective 

function has no other stationary point than the global minimum, but as suggested by 

Bard (Bard1974), this kind of optimization algorithms reach the local minimum in the 

valley in which the initial guess for the iterative procedure was located.  

Here the Conjugate Gradient method (CG) and the Levenberg-Marquardt algorithm 

(LM) are going to be introduced but it has to be pointed out that exists many other 

deterministic optimization algorithms such as the Steepest Descent method (SD), the 

Newton-Raphson method (NR), the Quasi-Newton method (QN) (Broyden1967), etc. 

 

 

Conjugate gradient method 

The conjugate gradient method is an iterative algorithm used to regularized the 

estimated solution of both linear and non-linear inverse problems. This method 

improves the convergence rate of the steepest descent method by choosing directions of 

descent that are a linear combination of the gradient direction with the directions of the 

descent of the previous iterations. In this iterative procedure, at each iteration a suitable 

step size is considered along the descent direction in order to minimize the objective 

function. The descent direction is obtained as a linear combination of the negative 
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gradient direction at the current iteration with the direction of descent of the previous 

iteration (Ozisik2000). The iterative procedure of the Conjugate Gradient method for 

the solution of a general inverse heat transfer problem concerning the estimation of 𝑁 

unknown parameters 𝑃  , 𝑗 = 1,2,3, … , 𝑁  , based on the minimization of the ordinary 

least square norm 𝛱(𝑷) is written as follows: 

 

𝑷 = 𝑷 + 𝜉𝒅  (3.5) 

 

where 𝜉  is the search step size at each iteration k and 𝒅  is the direction of descent, 

which can be expressed as follows: 

 

𝒅 = −∇𝛱(𝑷 ) 

𝒅 = −∇𝛱(𝑷 ) + 𝛾 𝒅  

(3.6.1) 

(3.6.2) 

 

Different version of the CG method can be found in literature depending on how the 

conjugation coefficient 𝛾  is computed (Powell1977). For instance in the Polak-Ribiere 

(Polak1971) version it is computed as: 

 

𝛾 = 0,   𝑘 = 0 

𝛾 =
∑ {[∇𝛱(𝑷 )] [∇𝛱(𝑷 ) − ∇𝛱(𝑷 )] }

∑ [∇𝛱(𝑷 )]
,         𝑘 = 1,2,3, … 

(3.7) 

 

while in the Fletcher-Reeves (Fletcher1963, Fletcher1964, Fletcher2000)it is written 

as: 

 

𝛾 = 0,   𝑘 = 0 

𝛾 =
∑ [∇𝛱(𝑷 )]

∑ [∇𝛱(𝑷 )]
,         𝑘 = 1,2,3, … 

(3.8) 

 

The search step size 𝜉  can be found by minimizing the ordinary least square norm 

𝛱(𝑷 ) at the 𝑘 + 1 iteration with respect to the search step size 𝜉  at the iteration 𝑘: 

 

𝑚𝑖𝑛 𝛻𝛱(𝑷 ) = 𝑚𝑖𝑛[𝒀 − 𝑻(𝑷 )] [𝒀 − 𝑻(𝑷 )] (3.9) 
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The procedure that avoids the minimum search goes beyond the present thesis, but the 

reader is referred to the works of Armijo (Armijo1966), Goldstein (Goldstein1962, 

Goldstein1965, Goldstein1967) and Wolfe (Wolfe1969, Wolfe1971) who proposed 

different criteria for the definition of the search step size. 

By substituting Equation (3.5) into Equation (3.9): 

𝑚𝑖𝑛 𝛻𝛱(𝑷 ) = 𝑚𝑖𝑛[𝒀 − 𝑻(𝑷 + 𝜉 𝒅 )] [𝒀 − 𝑻(𝑷 + 𝜉 𝒅 )] (3.10) 

By following a standard approach (Bozzoli2011, Huang2005) the temperature vector 

𝑻(𝑷 + 𝜉 𝒅 ) can be linearized with Taylor series expansion. Rearranging and 

considering the sensitivity matrix 𝑿  the search step size can be written as: 

𝜉 =
[𝑿 𝒅 ] [𝑻(𝑷 ) − 𝒀]

[𝑿 𝒅 ] [𝑿 𝒅 ]
 (3.11) 

After calculating the gradient direction ∇𝛱(𝑷 ), the sensitivity matrix 𝑿 , the 

conjugation coefficient 𝛾 , and the search step size 𝜉 , the iterative procedure expressed 

by Equation (3.5) can be implemented until a stopping criterion is reached one of the 

most used stopping criteria for this procedure is the discrepancy principle that states that 

the inverse problem solution is regarded to be sufficiently accurate when the difference 

between the estimated and the measured temperatures is close to the standard deviation 

of the measurements (Morozov1984). An adequate choice of the stopping criterion 

permits to reduce the oscillations that could appear in the inverse problem solution due 

to its ill-posed nature. 

 

Levenberg-Marquardt algorithm 

This technique is a powerful iterative technique that can be applied to the solution of a 

large variety of inverse problems (Ozisik2000). This method was firstly derived by 

Levenberg (Levenberg1944) by modifying the ordinary least square norm and later also 

by Marquardt (Marquardt1963) by using a different approach. The solution of a general 

inverse heat transfer problem concerning the estimation of 𝑁 unknown parameters 𝑃 at 

different time 𝑡 , is based on the minimization of the ordinary least square norm:  

Π(𝑷) = [𝒀 − 𝑻(𝑷)] [𝒀 − 𝑻(𝑷)] = 𝑌 − 𝑇 (𝑷)  (3.12) 
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where 𝑷 is the vector of unknown parameters. To minimize it, it is necessary to have 

the derivatives of Π(𝑷) equal to zero: 

∇Π(𝑷) = 2 −
𝜕𝑻 (𝑷)

𝜕𝑷
[𝒀 − 𝑻(𝑷)] = 0 (3.13) 

 

Where the transpose of the term 
𝑻 (𝑷)

𝑷
 is the sensitivity matrix 𝑿(𝑷): 

 

𝑿(𝑷) = −
𝜕𝑻 (𝑷)

𝜕𝑷
=

⎣
⎢
⎢
⎢
⎡
𝜕𝑇

𝜕𝑃
⋯

𝜕𝑇

𝜕𝑃
⋮ ⋱ ⋮

𝜕𝑇

𝜕𝑃
⋯

𝜕𝑇

𝜕𝑃 ⎦
⎥
⎥
⎥
⎤

 (3.14) 

 

Therefore, Equation (3.13) can be written as: 

 

2𝑿𝑻(𝑷)[𝒀 − 𝑻(𝑷)] = 0 (3.15) 

 

If the inverse problem is linear the sensitivity matrix is not a function of the unknown 

parameters and thus Equation (3.15), according to Beck (Beck1977), can be solved in 

explicit form for the vector of the unknown parameters 𝑷: 

 

𝑷 = (𝑿𝑻𝑿) 𝟏𝑿𝑻𝒀 (3.16) 

 

The situation is more complicated in case of non-linear problems where the sensitivity 

matrix depends on the unknown parameters vector. For this reason it is necessary to 

introduce an iterative procedure, obtained by linearizing the vector of estimated 

temperature 𝑻(𝑷) with a Taylor series expansion around the current solution 𝑷  at 

iteration k: 

 

𝑻(𝑷) = 𝑻(𝑷 ) + 𝑿 (𝑷 − 𝑷 ) (3.17) 

 

Substituting it in Equation (3.16) and rearranging the resulting expression according to 

Beck (Beck1977) it is possible to define the iterative procedure that is able to estimate 

the vector of unknown parameters: 
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𝑷 = 𝑷 + 𝑿𝒌 𝑿
𝟏

 (𝑿 )  [𝒀 − 𝑻(𝑷 )] (3.18) 

Actually, the iterative procedure based on this equation is named Gauss Method (GM). 

It is possible to demonstrate that this algorithm suffers of instability if the inverse 

problem is ill-posed. For this reason Levenberg and Marquardt added a damping factor 

𝜆 to Equation (3.18): 

 

𝑷 = 𝑷 + 𝑿𝒌 𝑿 + 𝜆𝛀  
𝟏

 (𝑿 )  [𝒀 − 𝑻(𝑷 )] (3.19) 

 

where 𝜆 is a scalar factor and 𝛀 is a diagonal matrix often expressed as 

𝑑𝑖𝑎𝑔[(𝑿 ) 𝑿 ]  even if there are many other possible formulation (e.g. the identity 

matrix). 

Here the positive parameter 𝜆 is adjusted during the course of the algorithm to ensure 

the convergence. One important reason for using a positive value of 𝜆  is that the λ𝛀 

term ensures that the matrix is non-singular.  

 

B) Evolutionary and stochastic methods 

The CG method and the LM algorithm are deterministic approaches that use the gradient 

of the objective function in order to find the direction of descent to the global minimum. 

On the other hand, evolutionary algorithms (Deb2002), such as genetic algorithm 

(Goldberg1989), differential evolution (Storn1996), simulated aneling (Corana1987, 

Goffe1994), ant colony (Dorigo2004) and particle swarm (Kennedy1995, Kennedy1999) 

do not rely, in general, on strong mathematical basis. Those estimation methodologies 

try to mimic the nature in order to find the minimum of the objective function, by 

selecting, in a fashionable and organized way, the points where such function is going 

to be computed (Colaço2006). 

Here the popular Genetic Algorithm method (GA) and the Particle Swarm Optimization 

method (PSO) are going to be introduced but it has to be pointed out that exists many 

other deterministic optimization algorithms such as the Simulated Aneling (SA) and 

Differential Evolution (DE) (Colaço2006). 
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Genetic algorithm 

Genetic algorithms are heuristic global optimization methods that are based on the 

process of natural selection. In particular the algorithm tries to increase the quality of 

the population, generation after generation, by exchanging genetic information between 

the members of the population, in what is referred to as the crossover operation. If the 

crossover produces members with higher quality than the parents, then they will be used 

to populate the next generation (Goldberg1989, Deb2002), otherwise they will be 

discharged. The basic genetic algorithm works iteratively with a collection (or 

population) of potential solutions to the minimization problem. At each iteration (or 

generation), three operators are applied to the entire population of designs: selection, 

crossover, and mutation. For the operators to be effective, each potential solution (or 

design) must be represented as a collection of finite parameters (or genes) referred as 

chromosome. It has to be pointed out that, each design must have a unique sequence of 

genes. The genes themselves are often encoded as binary strings although they can be 

represented as real numbers. The length of the binary string determines how precisely 

the value, also know as the allele of the gene, is represented. 

The optimization process based on the genetic algorithm methods begins with an initial 

population of random designs in which each gene is generated by randomly extracted 

0’s and 1’s. The objective function is evaluated for each design in the population and a 

fitness value, which corresponds to the value of the objective function for that design, 

is assigned to each chromosome. In the case of minimization, a higher fitness is assigned 

to designs with lower values of the objective function. Next, each member of the 

population is evaluated for reproduction, based on its fitness. The selection operator 

randomly chooses pairs of individuals from the population and the ones with higher 

fitness will mate and produce offspring. Once a mating pair is selected, the crossover 

operator is applied offspring are generated by combining the genes from the parent 

designs in a stochastic manner. For example in the uniform crossover scheme, it is 

possible to obtain any combination of the two parent’s chromosomes assigning a 

random number between 0 and 1 to each bit in each gene. If a number greater than 0.5 

is generated then that bit is replaced by the corresponding bit in the gene from the other 

parent. If it is less than 0.5, the original bit in the gene remains unchanged. This process 

is repeated for the entire chromosome for each of the parents. When complete, two 

offspring are generated, which may replace the parents in the population. The mutation 

process follows next. Each bit in each gene in the design is subjected to a chance for a 
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change from 0 to 1, or vice-versa (also known as the mutation probability, which is 

usually small). This introduces additional randomness into the process, which helps to 

avoid local minima. Completion of the mutation process signals the end of a design 

cycle. Many cycles are usually needed before the method converges to an optimum 

design.  

 

Particle swarm 

This optimization methodology was created by Kennedy J. and Eberhart R. 

(Kennedy1995, Kennedy1999, Naka2001, Eberhart2001) as an alternative to the 

Genetic Algorithm method. This method, based on the observation of the social 

behaviour of various species, tries to equilibrate the individuality and sociability of the 

individuals in order to locate the optimum of interest. The original idea of Kennedy and 

Eberhard came from the observation of birds looking for nesting places. In particular, 

when the individuality is increased, the search for alternative places for nesting is also 

increased (if the individuality becomes too high, the individual might never finds the 

best place) while if the sociability is increased, the individual learns more from its 

neighbours experience, reaching a compromise for the nest location (if the sociability 

becomes too high, all the individuals might converge to the first minima found, which 

is possibly a local minima). 

In this method, the iterative procedure is given by: 

 

𝑃 = 𝑃 + 𝑣  (3.20) 

 

where  

 

𝑣 = 𝛼𝑣 + 𝛽 𝑟 ,  𝑃∗ − 𝑃 + 𝛽 𝑟 ,  𝑃∗ − 𝑃  ,   

0 < 𝛼 < 1   𝑎𝑛𝑑   1 < 𝛽 < 2 
(3.21) 

 

𝑃  is the 𝑖 − 𝑡ℎ parameter that has to be estimated of the vector 𝑷 and 𝑣  is its velocity, 

𝑟 ,  and 𝑟 ,  are two random number with uniform distribution between 0 and 1, while 

𝑃∗and 𝑃∗ are the best values found for the parameter 𝑃  and of the entire population, 

respectively. 

In Equation (3.21), the second term on the right hand side represents the individuality 

while the third term represents the sociability. The first term on the right-hand side 
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represents the inertia of the particles and, in general, must be decreased as the iterative 

process runs. In this equation, the vector 𝑃∗ represents the best value ever found for the 

𝑖 − 𝑡ℎ component vector of parameters 𝑃  during the iterative process. Thus, the 

individuality term involves the comparison between the current value of the 𝑖 − 𝑡ℎ  

individual 𝑃  with its best value in the past. The vector 𝑃∗ is the best value ever found 

for the entire population of parameters (not only the 𝑖 − 𝑡ℎ individual). Thus the 

sociability term compares 𝑃  with the best value of the entire population in the past. 

 

C) Hybrid methods 

The Hybrid methods are a combination of the deterministic and the 

evolutionary/stochastic methods in which the advantages of each one of them are used. 

Those methods usually employ an evolutionary/stochastic method in order to identify 

the region where the global minimum is located and then switches to a deterministic 

method to get closer to the exact point faster. The core of the algorithm is the heuristic 

method, which does almost the entire optimization task. When some percentile of the 

population find a minima, the algorithm switches to the deterministic optimization 

method. If there is an improvement of the objective function, the algorithm returns to 

the heuristic method, meaning that some other region is more prone to have a global 

minimum. If there is no improvement of the objective function, the global minimum is 

reached. Finally, the algorithm returns again to the heuristic method in order to check if 

there are any changes in the minimum location and the entire procedure is repeated in 

order to test the robustness of the result. More involved Hybrid Methods, dealing with 

the application of other deterministic and stochastic methods, can be found in references 

(Colaço2003a, Colaço2003b, Colaço2003c, Colaço2004, Dulikravich2003a, 

Dulikravich2003b, Dulikravich2003c, Dulikravich2004). 
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3.2.2 Function estimation 

This category of inverse problem, usually have to deal with the estimation of a large amount 

of unknown parameters; for example, from the industrial point of view, it is interesting the 

estimation of the local convective heat flux distribution (e.g. food treatment, heat removal 

from electrical devices, etc.). Related to this aspect, it is possible to consider the physical 

problem, represented in Figure (3.2), which consists in a cross-section of a circular duct with 

internal radius 𝑟  and external radius 𝑟 . The thermal conductivity of the material, 𝑘, is 

assumed to be constant and uniform such as the environmental temperature 𝑇  and the bulk 

temperature 𝑇  of the fluid that flows inside the tube. Both the external and internal surfaces 

are subjected to Robin's boundary condition: there is a prescribed convective heat transfer 

coefficient distribution ℎ  at the inner surface Γ  of the pipe, while the exterior surface 

Γ  is subjected to an overall convective heat transfer coefficient ℎ . The domain Ω is also 

subjected to an internal heat generation per unit of volume 𝑞 . 

The equations that describe the physical problem are listed below: 

 

∇ 𝑇 = −
𝑞

𝐾
in Ω

−𝐾
𝜕𝑇

𝜕𝐧
= ℎ (𝑇 − 𝑇 ) on Γ

−𝐾
𝜕𝑇

𝜕𝐧
= ℎ (𝑇 − 𝑇 ) on Γ

 

(3.22.1) 

(3.22.2) 

(3.22.3) 

 

 

 
 

(a) (b) 
Figure 3.2: Function estimation: (a) Geometrical domain and (b) direct problem 

boundary conditions schemes 
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The direct problem presented in equations (3.22.1)-(3.22.3) concerns the determination of 

the temperature field 𝑇 within the Ω domain given the distribution of the convective heat 

transfer coefficient on both the internal and external surfaces. As it is possible to see, from 

the system of Equations (3.22) the direct problem is linear respect to the unknown variable 

𝑇, while the inverse problem related to the estimation of the convective heat flux distribution 

is not linear in the unknown variable ℎ . This unwanted behaviour could be overcome by 

formulating an auxiliary problem in which the internal surface is subjected to an imposed 

heat flux distribution: 

∇ 𝑇 = −
𝑞

𝐾
in Ω

−𝑘
𝜕𝑇

𝜕𝐧
= 𝑞(𝜃) on Γ

−𝑘
𝜕𝑇

𝜕𝐧
= ℎ (𝑌 − 𝑇 ) on Γ

 

(3.23.1) 

(3.23.2) 

(3.23.3) 

where 𝑌 are some extra temperature measurements taken at the external surface Γ  by 

means of the thermographic camera. 

In this way, the system of Equation (3.23) becomes linear with respect to the imposed heat 

flux and the convective heat flux distribution could be calculated, once the heat flux 

estimation is performed, as: 

 

ℎ (𝜃) =
𝑞(𝜃)

𝑇 (𝜃)| − 𝑇  𝐴
 (3.24)      

 

 
Figure 3.3: Function estimation: Inverse Heat Condition Problem boundary conditions 

scheme 
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As already mentioned in the previous chapter, the linearity of the problem is an interesting 

property since it allows solving the problem in an easy way, avoiding the usage of iterative 

procedure that are cost-expensive in terms of computational requirement.  

As suggested by Beck (Beck1985) and Dennis (Dennis2013), since the problem is linear with 

respect to the heat flux 𝑞(𝑥), it can be written in the discrete domain as follows: 

 

𝑻 = 𝑿𝒒 + 𝑻𝒒 𝟎 (3.25) 

 

where 𝑻 is the estimated temperature on the sampling position (e.g. in all the entire), 𝑿 is 

the sensitivity matrix, 𝒒 is the imposed heat flux distribution and 𝑻  is the estimated 

temperature on the sampling position if no heat flux is applied on the boundary at Γ . The 

homogeneous term 𝐓  has to take care about the forcing term (e.g. internal heat source, 

imposed potential boundary conditions, etc.): it represents the response of the system if no 

heat flux 𝒒 is imposed highlighting the effect of the forcing term. The sensitivity matrix is 

the linear application that links the heat flux at each discretization point 𝑚, to the measured 

temperature at any location 𝑛. It can be calculated analytically or numerically (e.g. Finite 

Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), 

Boundary Element Method (BEM), etc.). Each column of the sensitivity matrix represents 

the response of the system after a perturbation of one of the discretizing parameter is applied. 

It follows that the sensitivity matrix has a number of columns that is equal to the discretising 

number of parameters and a number of rows that is equal to the number of sensors used to 

measure the effect of the perturbation. It follows that the quantities present in the Equation 

(3.25) are given by: 

 

𝑻𝑻 = [𝑇 , 𝑇 , 𝑇 , … 𝑇 , … , 𝑇 ] (3.26) 

𝒒𝑻 = [𝑞 , 𝑞 , 𝑞 , … 𝑞 , … , 𝑞 ] (3.27) 

𝑿𝑻 =

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝑇 /𝜕𝑞 𝜕𝑇 /𝜕𝑞 ⋯ 𝜕𝑇 /𝜕𝑞 ⋯ 𝜕𝑇 /𝜕𝑞

𝜕𝑇 /𝜕𝑞 𝜕𝑇 /𝜕𝑞 ⋯ 𝜕𝑇 /𝜕𝑞 ⋯ 𝜕𝑇 /𝜕𝑞
⋮

𝜕𝑇 /𝜕𝑞
⋮

𝜕𝑇 /𝜕𝑞

⋮
𝜕𝑇 /𝜕𝑞

⋮
𝜕𝑇 /𝜕𝑞

𝜕𝑇 /𝜕𝑞

⋯ ⋯

⋮
𝜕𝑇 /𝜕𝑞

⋮
𝜕𝑇 /𝜕𝑞 ⎦

⎥
⎥
⎥
⎥
⎤

 (3.28) 

 

where 𝑖 is the total number of sensors while 𝑗 is the total number of discretizing parameters. 
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It has to be highlighted that in the heat transfer field, the systems are usually overdetermined. 

Thus, the number of equations is much larger than the number of parameters (e.g. 𝑖 > 𝑗). 

It has to be pointed out that the sensitivity matrix represents the temperature responses of 

the system after the perturbation of the imposed heat flux is applied, while the homogeneous 

term take care of the imposed forcing boundary condition. For this reason it is possible to 

conclude that sensitivity matrix 𝑿 has to be calculated each time the geometry of the heat 

exchanger changes, while the homogeneous term 𝑻  has also to be calculated each time 

the boundary conditions value, change. 

For the point of view of the linear algebra, if the final goal of the Inverse Heat Conduction 

Problem is the estimation of the heat flux distribution, it is possible to invert the linear system 

of Equation (3.25) to get: 

 

𝒒 = 𝑿 𝟏 𝒀 − 𝑻𝒒 𝟎  (3.29) 

 

where 𝒀 = [𝑌 , 𝑌 , 𝑌 , … , 𝑌 , … , 𝑌 ] is the vector of the discrete thermal measurements. In 

this case, the linear system of equation defined in Equation (3.29) links the effects (e.g. the 

discrete temperature measurements 𝒀), to the causes (e.g. the heat flux distribution 𝒒). It has 

to be pointed out, that usually the sensitivity matrix 𝑿 is not square, thus its direct inversion 

is not possible.  

For this reason, is often used the pseudo-inverse of the sensitivity matrix that yields to the 

following formulation of the heat flux distribution: 

 

𝒒 = (𝑿𝑻 𝑿) 𝟏 𝑿𝑻 𝒀 − 𝑻𝒒 𝟎  (3.30) 

 

As suggested by many researchers (Bozzoli2013), the presence of noise in the measurement 

𝒀 can completely damage the estimation of the unknown imposed heat flux; for this reason, 

the estimated solution has to be regularized. Among all the solution strategies, it has to be 

pointed out the: 

A) Least Square Problem; 

B) Singular Value Decomposition; 

C) Tikhonov regularization method; 

D) Reciprocity functional. 
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A) Unconstrained Least Squares: 

From the historical point of view, the first solutions estimation was done by using the 

Least Square Approach; there are many different types of Least Square Approaches, but 

the first developed one was the Unconstrained Least Square. 

Using this methodology the temperature measurements are forced to match the 

estimated temperature given by Equation (3.25) by tuning the imposed heat flux from 

Equation (3.30). 

It is possible to write the linear system of Equation (3.25) in terms of relative 

temperature, as follows: 

 

𝑻𝒓𝒆𝒍 = 𝑻 − 𝑻𝒒 𝟎 = 𝑿𝒒 (3.31) 

 

As suggested by Aster (Aster2005), for a full rank application matrix 𝑿, it is frequently 

the case that no solution 𝒒 is able to exactly satisfy the Equation (3.30). This happens 

because the dimension of the range of 𝑿 is smaller than the total number of observation 

𝑗 and a noisy data vector can easily lie outside of the range of 𝑿. A useful approximation 

of the solution of the inverse problem 𝒒 could be find by minimizing the mismatch 

between the temperature measurements 𝒀 and the estimated temperature in the same 

locations 𝑻, obtained by the linear application (e.g. sensitivity matrix) 𝑿 (Eq.(3.25)). 

Therefore, the residual vector, which is the objective function of the approach, is defined 

as: 

 

𝒓 = 𝒀 − 𝑿𝒒 + 𝑻𝒒 𝟎  (3.32) 

 

One common model to measure the misfit is the 2-norm of the residual: 

 

𝒒𝒓𝒆𝒔𝒕𝒐𝒓𝒆𝒅 = 𝐦𝐢𝐧
𝒒

𝒀 − 𝑿𝒒 + 𝑻𝒒 𝟎
𝟐

 (3.33) 

 

It is possible to demonstrate that the solution provided by the minimization problem 

introduced by the Equation (3.33) is equal to the once obtained in Equation (3.30) by 

making some simple observation. 
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Under the assumption that the standard deviation of the measurements is a known 

parameter, another useful indicator of the misfit between the measurement and their 

estimated value is the chi-square statistic: 

 

𝝌𝟐 =
𝒀 − 𝑿𝒒 + 𝑻𝒒 𝟎

𝟐

𝜎
 

(3.34) 

 

where 𝜎 is the standard deviation of the measurement. 

The Unconstrained Least Square approach (ULS), is of particular interest since it turns 

out to be statistically the most likely solution, if the data errors are normally distributed 

(e.g. assumption that has to be proven, but at the same time, is also the most common 

situation.). If the errors in the measurements are not Gaussian distributed or the 

mathematical model has a different form respect to what was introduced in Equation 

(3.29), there are many other different model that can be used in order to properly 

measure the misfit. For example, if the error are distributed with a double-side 

exponential distribution: 

 

𝑓(𝑥) =
1

2𝜎
𝑒

| |

 
(3.35) 

 

where 𝜇 is the mean value of the measure. It is possible to demonstrate that the 𝐿  

regression represents the maximum likelihood interpretation for data sets with this error 

distribution typology. Moreover, it is possible to demonstrate that the 𝐿  regression is 

more robust to the presence of outliers than the 𝐿  regression previously introduced.  

 

𝒒𝒓𝒆𝒔𝒕𝒐𝒓𝒆𝒅 = 𝐦𝐢𝐧
𝒒

𝒀 − 𝑿𝒒 + 𝑻𝒒 𝟎
𝟏

 (3.36) 

 

It has to be pointed out that data sets characterized by a noisy distribution given by 

Equation (3.35) are not commonly encountered in engineering applications. 

Nevertheless, the solution provided by Equation (3.36) has to be considered rather than 

the solution provided by the Equation (3.33) if there is reason to suspect the presence of 

outliers (even if most of the measurement are normally distributed). The more 

robustness of the ‖∙‖  compared to the ‖∙‖  in presence of outliers, is because the ‖∙‖  

solution does not square each of the terms in the misfit measure, as ‖∙‖  does. An 
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interesting example that compare the 𝐿  and the 𝐿  norm is provided by Aster 

(Aster2005). 

 

Weighted Least Square: 

In this approach, in order to reduce the high sensibility of the inverse problem to the 

noise, a penalty term related to the standard deviation of the noise is added. It is usually 

assumed that the response data is of equal quality and, therefore, has constant variance. 

If this assumption is violated, the reconstruction quality will be corrupted by data of 

poor quality. To improve the reconstruction quality, it is possible to use the Weighted 

Least-Squares approach. This approach is similar to the unconstrained least squares 

approach, but in this case, an additional scale factor (the weight) is included in the 

process. The weights determine how much each response value influences the final 

parameter estimates. A high-quality data point influences the fit more than a low-quality 

data point. Weighting the data is recommended if the weights are known, or if there is 

justification that they follow a particular form. In particular, the reconstructed heat flux 

is penalized by the introduction of the diagonal matrix 𝑊, in which the diagonal terms 

represent the variance of the measurements in the data set: 

 

𝑤 = 1/𝜎  (3.37) 

 

where 𝜎  is the standard deviation of the i-th parameter that has to be estimated. 

The restored heat flux distribution is estimated by simply extending the Equation (3.30): 

 

𝒒𝒓𝒆𝒔𝒕𝒐𝒓𝒆𝒅 = (𝑿𝑻 𝑾 𝑿) 𝟏 𝑿𝑻 𝑾 𝒀 − 𝑻𝒒 𝟎  (3.38) 

 

As it is possible to see, if the parameters that have to be estimated are of the same type, 

the weighting factor acts as a scaling factor, avoiding modification to the shape of the 

reconstructed signal. On the other hand, if the estimated parameters are of different type, 

the weighting factor may have different values yielding to different reconstructed signal.  

The standard deviation of the measurements is not the only parameter that could be used 

in order to assign the weights in a weighted least square approach. There are many other 

different strategies in order to establish the entity of weights, such as in the Iterative 

Reweighted Least Square approach (IRLS). Using this approach, the weights consist in 
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the residual vector defined by the Equation (3.32). The iterative algorithm start with a 

classical ULS method to determine the starting residual vector 𝒓 : 

 

𝒓𝟎 = 𝒀 − 𝑿𝒒 + 𝑻𝒒 𝟎  (3.39) 

 

Then the weighting matrix is build such as: 

𝑤 = 1/ r   (3.40) 

 

It is straight forward that if the residual becomes zero, the procedure fails. For this 

reason, when the residual goes below a certain tolerance 𝜖, the weight factor is fixed to: 

 

𝑤 = 1/|𝜖|  (3.41) 

 

Once the weighting matrix is build, it is possible to proceed with the estimation of the 

unknown heat flux distribution: 

 

𝒒𝟏 = 𝑿𝑻 𝑾𝒓𝟎
 𝑿

𝟏
 𝑿𝑻 𝑾𝒓𝟎

 𝒀 − 𝑻𝒒 𝟎  (3.42) 

 

and the procedure can be repeated, calculating the new residual vector, weighting 

matrix, heat flux estimation and so on so forth.  

The procedure has to be repeated until the algorithm converge. A typical stopping 

criteria is: 

 

‖𝑞 − 𝑞 ‖

1 + ‖𝑞 ‖
< 𝜏 

(3.43) 

 

where 𝜏 is a tolerance value defined by the researcher. 

It is possible to demonstrate that this approach converge to a 𝐿  norm minimizing 

scheme. 

 

Bounded Least Square:  

Bound constraint methods allow using a priori knowledge related to the permissible 

range of parameter values. In many physical applications there are physical bounds 

connected to the physical meaning of the parameters that are going to be estimated. 
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There are different types of bound that can be applied to the more general ULS. One of 

the most common constraint is related to the estimation of positive define function. This 

particular case of the ULS, is called Non-negative Least Square approach (NLS). In 

particular, the solution is subjected to an extra-constrain defined as: 

 

𝑚𝑖𝑛 ‖𝑿𝒒 − 𝑻 ‖𝟐         𝒒 ≥ 0 (3.44) 

 

where 𝒒 > 0 means that all the values of the reconstructed heat flux has to be positive 

defined. The non-negative least square approach was originally developed by Lawson 

(Lawson1995); the same authors were also able the generalize the approach for a general 

lower and upper limited bounded problem. It has to be pointed out, that a general bound 

constraint condition could be applied to the Tikhonov regularization scheme 

(Stark1995). 

It is obvious that this approach can only be used when the defined constrains are in 

agreement with the phenomena under investigation. The usage of this approach is in 

agreement with the general concept that adding new information related to problem 

increases the reconstruction quality of the inverse solution. 

 

B) Singular Value Decomposition: 

A better estimation of the inverse problem can be achieved by using the Singular Valued 

Decomposition (SVD). In particular the sensitivity matrix X can be decomposed into 

three matrices as follows: 

 

𝑿 = 𝑼𝚺𝑽 = 𝑢 𝜎 𝑣  
(3.45) 

 

where 𝑼 = [𝑢 , 𝑢 , … , 𝑢 ] and 𝑽 = [𝑣 , 𝑣 , … , 𝑣 ] are matrices with orthogonal 

columns that represent a basis in the data space, 𝑅  and  a basis in the model space, 𝑅  

respectively. 

The diagonal matrix 𝚺 containing the singular values.  

 

𝚺 = 𝑑𝑖𝑎𝑔(𝜎 , 𝜎 , … , 𝜎 ) (3.46) 
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The Singular Values contained in the Σ matrix are non negative and they appear in a 

decreasing order: 

 

𝜎 ≥ 𝜎 ≥ ⋯ ≥  𝜎  (3.47) 

 

It has to be pointed out that some singular value may be zero. Therefore, assuming that 

the first 𝑝 singular values are non-zero, it is possible to write the matrix that contains 

the singular values as: 

 

𝚺 =
𝝈 0

0 0
 (3.48) 

 

where 𝝈  is a 𝑝 x 𝑝 diagonal matrix containing the first 𝑝 non-zero singular values. 

Therefore, it is possible to write the Equation (3.47) as: 

 

𝑿 = 𝑼𝚺𝑽 = 𝑼 , 𝑼
𝝈 0

0 0
𝑽 , 𝑽  (3.49) 

 

where 𝑼  and 𝑽 denotes the first 𝑝 column of 𝑼 and 𝑽 respectively, while 𝑼  and 

𝑽 denotes the last 𝑚 − 𝑝 column of 𝑼 and 𝑛 − 𝑝 column of 𝑽 respectively. It has to be 

observed that 𝑼  and 𝑽 , which are the column of the matrices 𝑼 and 𝑽, will be 

multiplied by the null vectors of the 𝚺 matrix. Thus they will not participate in the 

reconstruction of the signal, reducing the space dimension of the possible solution. It 

has to be observed that 𝑼  and 𝑽  constitute a orthonormal base of the null space 𝑿 as 

well as the orthonormal bases 𝑼  and 𝑽 . Due to this observation, it is possible to write 

the last expression in a more compact form: 

 

𝑿 = 𝑼 𝚺 𝑽  (3.50) 

 

Based on this decomposition, it is possible to write the linear system of Equation (3.31), 

as: 

 

𝑻𝒓𝒆𝒍 = 𝑿𝒒 = 𝐔 𝚺 𝑽  𝐪 = 𝑢 𝜎 𝑣 𝑞

𝒑

𝒊 𝟏

 
(3.51) 
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The SVD can be used in order to compute the generalized inversion of a matrix in the 

Moore-Penrose [Moore1920, Penrose1955] sense: 

 

𝑿 = 𝑽 𝚺 𝟏𝑼  (3.52) 

 

It is possible to demonstrate that the pseudo-inverse of a matrix in the Moore-Penrose 

sense always exist; this is not true for the generalized inverse matrix (𝑿  𝑿)  if 𝑿 is 

not a full rank matrix. 

Based on the singular value decomposition, it is possible to estimate the solution of the 

inverse problem as: 

 

𝒒 = 𝐗 𝒀 − 𝑻 = 𝑽 𝚺 𝑼  𝒀 =
𝑢

𝜎
𝑣  𝒀 − 𝑻  

(3.53) 

 

Aster (Aster2005) showed that the estimation based on the SVD is both least square 

solution and a minimum length solution. 

As already mention, singular values could be vary small; therefore it is useful to examine 

their range of values. In particular, small singular value cause a generalized inverse 

solution to be extremely sensible to the noise present in the measurements. It has to be 

pointed out, that the distinction between extremely small and zero singular values is a 

difficult task. As it is possible to see form the Equation (3.53), small singular values can 

give a very large coefficient in the model space 𝑽 thus this basis vector can dominate 

the solution making the answer useless. A measure of the instability of the solution is 

the condition number: 

 

𝑐𝑜𝑛𝑑(𝑿) =
𝜎

𝜎
 (3.54) 

where 𝑘 is the minimum number between the total number of unknown parameters and 

the total number of measurements. 

The condition number is a property of the linear application and can be computed in the 

design phase of the experiment, before any data are collected.  
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Filtered Singular Value Decomposition 

In order to stabilize the reconstructed solution with respect to the noise, many different 

penalty functions were introduced in the literature (Bozzoli2017b), being the most 

adopted the Truncated Singular Value Decomposition (TSVD) or the Damped Singular 

Value Decomposition (DSVD). 

In the Truncated Singular Value Decomposition, the smallest Singular Values are 

neglected at some singular value 𝑝 < 𝑝 in order to increase the well-posedness of the 

inverse matrix. One way to decide when the matrix has to be truncated is to use the 

discrepancy principle. Using this approach, the truncation parameter 𝑝′ is the one that 

satisfies the following inequality: 

 

𝑿 𝒒 − 𝒀 ≤ 𝜎 (3.55) 

 

where, 𝑿  is the truncated pseudo-inverse of order 𝑝′ ≠ 𝑝 and 𝜎 is the standard 

deviation of the measurements. The final solution can be written as: 

 

𝒒 = 𝑽𝚺 𝑼  𝒀 =
𝑢

𝜎
𝑣 𝑓  𝒀 

(3.56) 

 

where 𝑓  is a filter function defined as: 

  

𝑓 =
0 ,   𝜎 > 𝜎

1 ,   𝜎  ≤ 𝜎
 

(3.57) 

 

where 𝜎 > 𝜎 > 𝜎  is the regularization parameter. 

In the Damped Singular Value Decomposition (DSVD), the filter function is 

continuously defined in terms of singular value and is given by: 

 

𝑓 =
𝜎

𝜎 + 𝜎
 (3.58) 

 

The penalization of the smallest singular values of the diagonal matrix 𝚺 goes under the 

category of the regularization technique. Those techniques, reduce the space solution 

assuming as valid only the possible solution characterized by a regular shape. This 
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restriction is physically justified, since the nature of the physical problem is continuous 

(e.g. it is not possible to have a heat flux defined by a step function, since this required 

an infinity energy). 

It has to be pointed out that, the application of a window filter (TSVD) implies that all 

the information after the cut-off frequency can not be used. On the other hand, 

smoothing the singular value (DSVD) allows using more singular values than in the 

TSVD, thus it is possible to add more information to the inverse problem and then 

increase the reconstruction quality. 

 

C) Tikhonov regularization: 

All the techniques previously described are effected by a high sensibility to the noise 

present in the measurement. For this reason, a regularization technique is required. 

These regularization techniques are a modification of the least square approach, in 

particular adding a penalty term, which plays the role of a damping factor, which is 

added to the objective function that has to be minimized. One of the most common 

regularization schemes is the Tikhonov (TM). This approach is also known as ridge 

regression, Tikhonov-Miller method, Phillips-Twomey method, etc.  

 

Starting from the SVD approach, it is possible to derive the Tikhonov regularization 

technique, which is a solution strategy that is able to give greater weight to larger 

singular values in the SVD and at the same time, less weight to small singular values. 

In the Tikhonov regularization technique, the goal is to select among all the possible 

solution characterized by 𝒀 − 𝑿𝒒 + 𝑻 ≤ 𝛿 the one that minimize the ‖𝒒‖ . 

The reason to select the minimum norm of the imposed heat flux is that this should 

ensure the presence of high oscillating heat flux values that are supposed to be not 

physical. It has to be pointed out that ‖𝒒‖  represents the measure of the variability of 

the unknown heat flux distribution 𝒒. The problem can be stated, using the Lagrange 

multipliers in a damped least square problem as: 

 

min 𝒀 − 𝑿𝒒 + 𝑻𝒒 𝟎 + 𝜆 ‖𝒒𝑳‖      𝜆 > 0 (3.59) 

 

where ‖ ∙ ‖  stands for the square of the two-norm, λ is the unknown regularization 

parameter and 𝑳 is the identity matrix: 
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𝑳 =
𝟏 𝟎

⋱
𝟎 𝟏

 
 

(3.60) 

 

The Tikhonov regularization procedure, based on 𝑳 = 𝑰 is called zero-order Tikhonov 

regularization, since the 𝑳 matrix could be understand as the zero order discrete 

derivative of the unknown heat flux distribution 𝒒. 

The minimization of the objective function reported in Equation (3.59) require an 

optimal balance between the reconstruction fidelity to the data and the stability of the 

solution that could be done by properly tuning the regularization parameter 𝜆. There are 

many different ways that can be used in order to estimate the regularization parameter 

𝜆, such as the: L-curve, Morozov’s discrepancy principle, generalized cross-validation¸ 

etc. A brief discussion related to this aspect is addressed in the next paragraph. 

It is possible to write the problem defined in Equation (3.59) in the following way: 

 

min
𝑿
𝜆𝑳

𝒒 −
𝒀 − 𝑻

0
      𝜆 > 0 

(3.61) 

 

As long as 𝜆 is a non-zero coefficient, the problem defined by the Equation (3.61) can 

be solved by the method of the normal equations as follows: 

 

[𝑿 𝜆𝑳]
𝑿
𝜆𝑳

𝐪 = [𝑿 𝜆𝑳]
𝒀 − 𝑻

0
     𝜆 > 0 (3.62) 

 

which yield to: 

 

(𝑿 𝑿 + 𝜆 𝑳)𝒒 = 𝑿𝑻 𝒀 − 𝑻     𝜆 > 0 (3.63) 

 

It is possible to demonstrate that the solution of the last system of equation is given by: 
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𝒒 = (𝑿 𝑿 + 𝜆 𝑳 𝑳) 𝑿 𝒀 − 𝑻𝒒 𝟎

=         
𝑠

𝑠 + 𝜆

𝑢

𝜎
𝑣   𝒀 − 𝑻

= 𝑓  
𝑢

𝜎
𝑣   𝒀 − 𝑻  

(3.62) 

 

As it is possible to see, the solution kernel is the same as what was already shown for 

the SVD approach, except for the term 𝑓 =  , which represents the filter factor of 

the Tikhonov regularization scheme. 

The same considerations, related to the regularization parameter and provided during 

the discussion of the Filtered SVD, are still valid; in particular, some of the common 

schemes usually used in order to find the regularization parameter will be discussed in 

the next paragraph. 

It is possible to assume in the Tikhonov regularization scheme different 𝑳 matrices in 

order to measure the variability of 𝒒. For example it is possible to use the first or second 

order discrete derivative, which are define as: 

𝑳𝟏 =

⎣
⎢
⎢
⎢
⎡

𝟏 −𝟏 𝟎
⋱ ⋱

𝟎

⋱ ⋱
⋱ −𝟏

𝟏 ⎦
⎥
⎥
⎥
⎤

 

 

𝑳𝟐 =

⎣
⎢
⎢
⎢
⎡
−𝟐 𝟏 𝟎
𝟏 ⋱ ⋱

𝟎

⋱ ⋱
⋱

⋱
⋱
𝟏

𝟏
−𝟐⎦

⎥
⎥
⎥
⎤

 

 

 

(3.63.1) 

 

 

 

(3.63.2) 

 

It has to be observed that, if the unknown heat flux distribution is not one-dimensional, 

it is better to approximate the discrete derivative with the finite-difference 

approximation of the Laplacian operator. 

It has to be highlight that, many other 𝑳 matrices could be used instead of 𝑳 , 𝑳  and 𝑳  

(Hansen2008). Related to this aspect, Hansen (Hansen2008) provided a very interesting 

example on the effect of the discrete smoothing norm. Moreover, the author pointed out 

the requirement of using the ‖∙‖  in order to increase the reconstruction accuracy related 

to the discontinuous function (Dahl2010). 
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To extend the zero-order Tikhonov regularization to higher order regularization, it is 

necessary to use the Generalized Singular Value Decomposition (GSVD) which is the 

extension of the SVD approach for higher order regularization schemes. 

 

D) Reciprocity functional: 

This particular solution technique needs low computational resources since it avoids the 

calculation of the sensitivity matrix 𝑿. Two important works by Andrieux (Andrieux1993, 

Andrieux1996) showed the concept and use of reciprocity functional. This approach is based 

on Betti's theorem, also known as Maxwell-Betti reciprocal work theorem. The theorem 

states that for a linear elastic structure subject to two sets of forces 𝑃 and 𝑄, the work done 

by the force 𝑃 through the displacements produced by the force 𝑄 is equal to the work done 

by the force 𝑄 through the displacements produced by the force 𝑃. Starting from the research 

provided by Andrieux, other studies based on the reciprocity functional began to emerge in 

different areas. Delbary (Delbary2008) developed a qualitative method for breast cancer 

detection by combining the reciprocity functional method with the linear sampling method. 

Colaço (Colaço2013) estimated the spatial variation of the thermal contact conductance by 

using a reciprocity functional approach with the method of fundamental solutions and non-

intrusive temperature measurements. Shifrin (Shifrin2010) developed a method for 

identifying small defects in an anisotropic elastic body based on the reciprocity functional 

method. Other studies, regarding the estimation of the thermal contact conductance through 

the reciprocity functional, using non-intrusive measures, can be found in (Colaço2013, 

Colaço2015a). 

Recently, Colaço et al. (Colaço2015) presented a methodology, based on the reciprocity 

functional approach, to estimate internal convective heat transfer coefficients in ducts, using 

only data available at an exterior boundary and the solutions of two auxiliary problems that 

depends only on the system geometry. By this approach, here referred as Numerically 

integrated Reciprocity Function (NRF) method, the two auxiliary problems are solved 

numerically and the unknown function can be estimated solving a linear system, where the 

solution vector is composed of integrals of the measured boundary data.  

Given the domain Ω represented in Figure (3.2) it is possible to estimate the local convective 

heat flux coefficient distribution, by defining two auxiliary problem, as suggested by Colaço 

(Colaço2015). The first auxiliary problem concerns the estimation of the unknown local 

internal heat flux distribution; in particular, the following well-posed auxiliary problem, 

given by the Equations (3.64.1)–(3.64.3) can be introduced: 
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∇ 𝐺 = 0 in Ω
𝜕𝐺

𝜕𝐧
= 0 on Γ

𝐺 = 𝜓 on Γ

 

(3.64.1) 

(3.64.2) 

(3.64.3) 

 

where 𝜓  is a set of orthogonal functions, which, for a 2D case, can be written as a standard 

orthonormal Fourier’s basis (3.65.1)-( 3.65.3): 

 

𝜓 =
1

𝑟 √2𝜋
for 𝑘 = 1

𝜓 =
1

𝑟 √𝜋
cos

𝑘

2
𝜃 for 𝑘 = 2,4,6, … 𝑁 − 1

𝜓 =
1

𝑟 √𝜋
sin

𝑘 − 1

2
𝜃 for 𝑘 = 3,5,7, … 𝑁

 

(3.65.1) 

 

(3.65.2) 

 

(3.65.3) 

 

where 𝜃 is the angular coordinate. 

The Betti’s theorem allows identifying flaws in materials, but it could be extended to the 

heat transfer flied considering a continuous and homogeneous medium Ω, subjected to two 

different potential fields both in equilibrium: the imposed heat flux 𝒒 and an auxiliary 

unknown potential filed 𝜓 that allows using the Betti’s formulation. Therefore, it is possible 

to define the reciprocity functional as: 

 

𝑅 , = 𝜓
𝜕𝑇

𝜕𝐧
− 𝒀

𝜕𝐺

𝜕𝐧
dΓ

= −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝒀

𝜕𝐺

𝜕𝐧
dΓ  

(3.66) 

 

where ℎ  and 𝑇  are the constant and uniform convective heat flux coefficient with the 

environment and the temperature of the environment, respectively, while 𝐾 is the thermal 

conductivity of the solid domain Ω and 𝒏 is its normal derivative at the external surface Γ . 

It is possible to define the integral of the internal heat source as: 

 

𝑄 , = 𝐺
𝑞

𝐾Ω
dΩ 

(3.67) 
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where 𝑞  is the constant and uniform heat flux generation. 

As suggested by Colaço (Colaço2015), it is possible to write the following identity: 

 

𝐺
𝜕𝑇

𝜕𝐧Γ
dΓ = −𝑅 , − 𝑄 ,  (3.68)      

 

Using the orthonormal basis defined in Equations (3.65.1)-( 3.65.3) and defining 𝛾  as the 

trace of the solution 𝐺  on Γ  , the last expression can be manipulated in order to get: 

 

−𝑅 , − 𝑄 , = 𝐺
𝜕𝑇

𝜕𝐧Γ
dΓ = 𝛾

𝜕𝑇

𝜕𝐧Γ
dΓ  (3.69)     

 

The normal derivative of the temperature on the internal surface can be approximated by 

using the induced basis 𝛾 , … , 𝛾  as follows:  

 

𝜕𝑇

𝜕𝐧 Γ
= 𝛼 𝛾 + ⋯ + 𝛼 𝛾  (3.70)      

 

Truncating the expansion with N terms, the system of Equations (3.69) is reduced to the 

following linear system 

 

𝛾 α 𝛾
Γ

dΓ = 𝛾 𝛾 α
Γ

dΓ = −𝐑𝑮 − 𝐐𝑮     

for 𝑗 = 1,2,3, … , 𝑁 

(3.71)      

Equation (3.71) can be written in matrix form as: 

 

𝐌 𝛂 = −𝐑𝑮 − 𝐐𝑮 (3.72)      

 

Since the trace of the solution 𝛾 , … , 𝛾  are linearly independent, the system in invertible, 

therefore the 𝛼  coefficients can be found as: 

 

𝛂 = 𝐌 (−𝐑𝑮 − 𝐐𝑮) (3.73)      
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Finally, the estimation of 𝜕𝑇/𝜕𝒏|Γ  is obtained by simply using the expansion presented 

in Equation (3.70). 

The auxiliary problem presented in Equations (3.64.1)-(3.64.3) can be solved by using 

different approaches such as: finite difference, finite element, boundary element, method of 

fundamental solutions, etc. 

As already mentioned, in order to estimate the local convective heat flux distribution, it is 

necessary to introduce two auxiliary direct problems in which the first one concerned the 

estimation of the internal heat flux distribution. The second auxiliary problem is related to 

the estimation of the internal wall temperature distribution; in particular, as suggested by 

Colaço (Colaço2015), the following auxiliary problem, has to be solved in order to obtain 

𝑇| : 

 

∇ 𝐹 = 0 in Ω 

𝐹 = 0 on Γ  

𝐹 = 𝜓 on Γ  

(3.74.1) 

(3.74.2) 

(3.74.3) 

 

This problem is well posed and, for simplicity, the same basis defined in the first auxiliary 

problem by the Equations (3.65.1)-(3.65.3) could be used. Following the same procedure, it 

is possible to define the second reciprocity functional and the integral of the heat generation 

terms as: 

 

𝑅 , = 𝜓
𝜕𝑇

𝜕𝐧
− 𝑌

𝜕𝐹

𝜕𝐧
dΓ

= −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝑌

𝜕𝐹

𝜕𝐧
dΓ  

𝑄 , = 𝐹
𝑞

𝐾
dΩ 

(3.75) 

 

 

 

(3.76) 

 

In the same fashion, it is possible to define the following identity: 

 

𝑇
𝜕𝐹

𝜕𝐧Γ
dΓ = 𝑅 , + 𝑄 ,  (3.77)      
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Using the orthonormal basis defined in Equations (3.65.1)-(3.65.3) and defining the 𝜉 as the 

trace of the solution 𝐹  on Γ , the last expression can be manipulated in order to get: 

 

𝑅 , + 𝑄 , = 𝑇
𝜕𝐹

𝜕𝐧Γ
dΓ = (𝜉 𝑇)

Γ
dΓ  (3.78) 

 

The temperature on the internal surface can be approximated by using the induced basis 

𝜉 , … , 𝜉  as follows:  

 

𝑇|  = 𝛽 𝜉 + ⋯ + 𝛽 𝜉  (3.79)      

 

Truncating the expansion with N terms, the system of equations (3.78) is reduced to: 

 

𝜉 𝜷𝒋𝜉
Γ

dΓ = 𝜉 𝜉 𝜷𝒋
Γ

dΓ = −𝑹 , − 𝑸 ,     

 for 𝑗 = 1,2,3, … , 𝑁 

(3.80) 

 

which can be written in the following matrix form: 

 

𝐍 𝛃 = −𝐑𝑭 − 𝐐𝑭 (3.81)      

 

The system is invertible since 𝜉 , … , 𝜉  are linearly independent, therefore Equation (3.79) 

is easily solved having the 𝛽  coefficient as unknown: 

 

𝛃 = 𝐍 𝟏(−𝐑𝑭 − 𝐐𝑭) (3.82)  

 

Finally, the estimation of the internal wall temperature 𝑇|  is obtained simply by using the 

expansion presented in equation (3.70). 

Once the heat flux (Equation (3.70)) and temperature (Equation (3.82)) distributions are 

known at the internal boundary Γ , it is possible to estimate the convective heat transfer 

coefficient distribution as suggested form the Equation (3.24). 

As already mentioned for the first auxiliary problem, there are many different approaches 

that could be used in order to determine the solution of the direct auxiliary problem. In the 

next chapter the Classical Integral Transform Technique (CITT) will be used.  
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3.3 Stopping criteria 

There are many different criteria that could be used in order to choose the regularization 

parameter. Among all it has to be pointed out the L-curve method and the Morozov’s 

discrepancy principle, but there are many other approaches such as the Generalized Cross 

Validation (GCV) and the Fixed-point method that could be used. 

 

L-curve method 

The L-curve method is the easiest methodology that could be used in order to identify the 

regularization parameter 𝜆. This approach is based on graphically finding the best balance 

between the data misfit and the solution regularity (Figure (3.4)). 

In order to deal with this problem, the measure of the regularity of the solution ‖𝒒𝝀‖  has to 

be plotted as a function of the data misfit 𝑿𝒒𝝀 − 𝒀 − 𝑻 . When these two quantities 

are plotted in a log-log scale, the graph often takes a characteristic L shape but multiple notch 

could arise if the inverse problem is severely ill-posed. The L-shape of the chart happens 

because ‖𝒒𝝀‖  is a strictly decreasing function of 𝜆 while 𝑿𝒒𝝀 − 𝒀 − 𝑻  is a strictly 

increasing function of 𝜆. The sharpness of the notch varies from problem to problem but it 

is frequently well-defined.  

Hansen (Hansen1992, Hansen1993, Hansen1999) provided a very good analysis related to 

the formulation and application of the L-curve criterion for both the Tikhonov and the SVD 

regularization schemes. He also observed the curvature of the L-curve and provided an 

automatic algorithm for the identification of the notch.  
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Figure 3.4: Example of a L-curve (Hansen1999) 

 

Morozov’s discrepancy principle 

The importance of the choice of the regularization parameter was widely analysed in the 

literature. In particular, Hansen (Hansen1999) performed a survey on the Tikhonov 

regularization parameter choice. From the qualitative point of view, adopting large 

regularization parameters means that the solution will be extremely stable and smooth, 

prejudicing the data fitting, while adopting a very small regularization parameter will 

estimate a solution that perfectly fits the data but that is completely unstable. The effect of 

different criteria was already investigated by Bazàn (Bazàn2009), but is the Morozov’s 

discrepancy principle that, from a practical point of view, could suggest one of the feasible 

values of λ. 

In particular, the Morozov’s discrepancy principle affirms that the regularization parameter 

has to be the smallest parameter that satisfy the following inequality: 

 

𝒀 − 𝑿𝒒 − 𝑻

√𝑁
≈ 𝜎 

(3.83) 

 

where σ is the expected standard deviation of the measurement.  

According to this criterion, the solution of the inverse problem is assumed to be satisfactorily 

accurate when the difference between the simulated 𝑿𝒒 − 𝑻  and measured 𝒀 

temperature distributions, is close to the standard deviation of the raw data, 𝜎.  
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Figure 3.5: Example of discrepancy principle 

 

This could be interpreted also as that there is no more information that could be extracted 

from the signal once it is only noise. 

 

Fixed-point 

The fixed point of a function is an element of the function’s domain that is mapped onto 

itself by the function. Application of the fixed-point method requires the computation of the 

solution semi-norm and the corresponding residual norm, and it selects the parameter that 

minimises the product of these norms subjected to the minimum distance from the origin as 

a function of the regularisation parameter. Like the L-curve, the reason to use this algorithm 

is that the sought minimiser corresponds to a good balance between the size of these norms. 

Algorithmically, the regularisation parameter chosen by the fixed-point method is the limit 

value of the sequence: 

 

𝜆∗ = 𝜙(𝜆∗ ) =
𝒀 − 𝑿𝒒 − 𝑻

‖𝑳𝒅𝒒‖
,   𝑘 = 0,1,2, … 

(3.84) 

 

In order to ensure the convergence of the fixed point sequence, the invariance and the 

contractivity of the sequence has to be guarantee, but this particular aspect goes beyond the 

scope of the present thesis. 

The value for the regularisation parameter can also be visually represented as a fixed-point 

of the curve 𝜙(𝜆∗). 

𝒀
−

𝑿
𝒒

−
𝑻

⬚

√
𝑁

 

σ 

λ 
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In practice, the sequence converges very quickly, and the computed regularisation parameter 

yields to solutions with accuracy comparable to that of the L-curve method, but it is more 

robust and computationally less expensive (Bazán2008, Bazán2009). 

The regularised solution 𝒒𝝀∗  is computed efficiently by means of the GSVD of the matrix 

pair [𝑿, 𝑳], which simplifies the implementation of the fixed-point algorithm according to 

Bazàn (Bazán2008). 

The fixed-point method, like the L-curve approach, does not require a priori knowledge of 

the noise level. 
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Chapter 4 

 

New methodologies 
 

4.1 Introduction 

 

As already mentioned in the previous chapter, the new methodologies proposed here are 

subdivided in two groups: parameter estimation and function estimation. The subdivision is 

not related to the estimation capabilities of the inverse solution technique (some of the 

presented approaches could be used for both the parameter and the function estimation), but 

it is related to the number of unknown variables that has to be estimated in order to 

characterized the heat exchanger in each specific application introduced in Chapter 3. 

 

4.2 Parameter estimation 

 

Among all the possible technique coming from the optimization research field that could be 

used for a parameter estimation, one common algorithm is the non-linear fit based on the 

IRLS method.  
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This particular estimation procedure was applied to the estimation of the 𝛼, 𝛽 and 𝛾 

coefficients appearing in the common Nusselt number formulation (Incopera2005, 

Rainieri2004): 

 

𝑁𝑢 = 𝛼 𝑅𝑒 𝑃𝑟  (4.1) 

 

The Nusselt number function defined in Equation (4.1) is based on the assumption that the 

heat transfer mechanism is governed by the single-phase forced convection. If evaporation 

or condensation occurs, then other terms drive the heat transfer mechanism (e.g. vapour 

quality, heat flux, and pressure). 

The approach is based on the minimization of the objective function defined as: 

 

𝑟 = 𝑈 − 𝑈  (4.2) 

 

where 𝑈  and 𝑈  are respectively the experimental and the predicted global heat 

transfer coefficient. 

In a general industrial application, it is common to have a shell and tube heat exchanger in 

which could pass different fluids. Therefore, it is interesting the estimation of the interaction 

with the system of both the fluid that is passing thorough the shell and the fluid that is passing 

through the tube. Hence, a six parameter optimization procedure is required in order to 

retrieve the 𝛼, 𝛽 and 𝛾 coefficients for both the tube and the shell side needed for the 

definition of the Nusselt number function (Equation (4.1)). 

For any double flow heat exchanger in a steady state condition, characterized by a perfect 

thermal insulation from the environment, in which is negligible the heat conduction in the 

flow direction, it is possible to determine the average overall heat transfer coefficient 𝑈 for 

the inner heat transfer surface area 𝐴  as follows: 

 

𝑈 =
𝑄

𝐴 Δ𝑇
 (4.3) 

 

where Δ𝑇  is the logarithmic mean temperature difference while 𝑄 is the exchanged heat 

flow rate. 
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The exchanged heat flow rate could be determined by the energy balance: 

 

𝑄 = �̇� 𝑐 (𝑇 − 𝑇 ) =  �̇� 𝑐 (𝑇 − 𝑇 ) (4.4) 

 

where �̇� and 𝑐  are the mass flow rate and the specific heat capacity, respectively, while ∙  

and ∙  stay for the tube and the shell side, respectively 

Due to the electrical analogy, it is possible to define the overall heat transfer coefficient as a 

summation of thermal resistances as follows: 

 

1

𝑈𝐴
=

1

ℎ 𝐴
+ 𝑅 +

1

ℎ 𝐴
 (4.5) 

 

where ℎ  and ℎ  are the internal and external convective heat transfer coefficient 

respectively, while 𝐴  and 𝐴  are the internal and the external heat exchanger surface areas, 

respectively. 

Due to the quasi-cylindrical configuration characteristic of a tube side heat exchanger, the 

thermal resistance of the wall 𝑅  could be approximated as: 

 

𝑅 =
ln

𝐷
𝐷

 

2𝜋𝐾 𝐿
 (4.6) 

 

where 𝐷  and 𝐷  are the external and internal hydraulic diameters of the tube, respectively, 

while 𝐾  and 𝐿 are the thermal conductivity and the length of the tube that is exchanging 

heat, respectively. Thus it is possible to assume the thermal resistance of the wall to be 

known, for a given heat exchanger configuration, under a given operating condition.  

Assuming that the internal diameter of the tube is known, as well as the characteristic length, 

it is possible to define the internal Nusselt number coefficient as: 

 

𝑁𝑢 =
ℎ 𝐷

𝐾
 (4.7) 

 

where 𝐾 is the thermal conductivity of the fluid that is passing inside the tube. 

The convective heat transfer coefficients ℎ  and ℎ  appearing in the Equation (4.5) are 

unknown. Moreover, their values are difficult to be determined also because they change for 
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each application. Therefore, they can be estimated, with a suitable accuracy, by adopting a 

parameter estimation technique under an inverse data processing problem methodology 

(Beck1977). This implies that the following cost function has to be minimised: 

 

𝑟 , , , , , = 𝑈 , − 𝑈 ,  (4.8) 

 

where 𝑀 is the total number of measurements made by varying both the Reynolds number 

at the shell and the tube side 𝑅𝑒  and 𝑅𝑒 , respectively, and the working fluid (represented 

by the Prandtl number) at the both tube 𝑃𝑟  and the shell 𝑃𝑟 . 

It is possible to write the Equation (4.5), highlighting the effect of the unknown parameters: 

 

𝑈 = 𝐴
𝐷

𝐴 𝜆 𝛼 (𝑅𝑒 ) (𝑃𝑟 )
+ 𝑅 +

𝐷

𝐴 𝜆 𝛼 (𝑅𝑒 ) (𝑃𝑟 )
 (4.9) 

 

The optimization algorithm will find the best set of unknown parameters that are able to 

minimise the cost function defined by the Equation (4.8), giving also their confidence 

intervals. 

 

 

4.3 Function Estimation 

 

Two new solution strategies for the function estimation procedure were developed for the 

solution of the ICHP. The main goal of this type of problem is the estimation of the internal 

heat flux distribution, given some external extra-measurements of the solid body 

temperature.  

The first solution technique is an upgrade of the Singular Value Decomposition, in which a 

new filter function based on the Gaussian distribution was applied in order to overcome some 

of the limitation related to the TSVD. 

The second solution scheme is based on the RF and, due to its analytical formulation, it was 

developed for the two-dimensional annular domain. 
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4.3.1 Gaussian Filtered Singular Value Decomposition 

The regularization approach for the unconstrained linear least square problem proposed here, 

improves the classical methods based on the singular value decomposition approach by 

employing the Gaussian filter. This kind of filter has been proved to be effective in several 

applications related to noise suppression with regards to inverse problems (Bozzoli2013).  

In the classical SVD approach, the inverse matrix is approximated by the Moore-Penrose 

pseudo inverse. In order to increase the stability of the reconstructed signal, the solution 

space is even reduced by truncating the singular values used in the approximation of the 

inverse matrix (TSVD). Although this technique is very effective, some authors have 

proposed improvements in order to overcome some of its acknowledged limitations.   

In particular, TSVD approach is not conservative when the signal to be estimated is 

characterised by a wide-spectrum. Ekstrom (Ekstrom1974), suggested a modified approach 

called DSVD that damps the small singular values instead of neglecting them, in order to 

increase the reconstruction quality of the signal. Therefore, while the TSVD approach filters 

the singular value series by a sharp ideal high-pass filter, the damped SVD smooths the 

singular value series by a first-order filter. The idea behind this type of approach is that 

singular values near by the cut-off frequency of the ideal high-pass filter (TSVD) could add 

more information than instability during the reconstruction procedure, increasing the quality 

of the estimated solution. 

An upgrade to the DSVD can be done simply by changing the filter factor, since it is the 

function that describe the way in which the singular values are dumped. 

As already shown in the Chapter 3 (Equation 3.67), it is possible to write the estimated 

solution given by the filtered SDV as the product of a filter function 𝑓  times the SVD 

expansion. In particular, a Gaussian function distribution is adopted, since its properties to 

smooth noisy data has been successfully experimented also in the image quality 

enhancement within graphics software (Murio1993).  

The Gaussian filter factor assumes the following expression: 

 

𝑓 = 𝑒  (4.11) 

 

where λ is the regularization parameter that should be adequately chosen. The application of 

a Gaussian factor has the effect of reducing large 1/𝜎  values in order to overcome the ill-

posedness of the problem. 
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This approach, as well as the TSVD, DSVD and Tikhonov regularization methodologies, is 

based on the idea that the singular values appearing in the 𝚺 matrix of the SVD expansion 

has to be damped as far as the noise inside the measurement increase, in order to retrieve a 

smooth estimated solution (properties that are required, due to the continuous behaviour of 

the nature).  

The filter factor of the investigated approaches are listed below: 

 

Table 4.1: Filter factor summary 

TSVD 𝑓 =
0, 𝑓𝑜𝑟 𝜎 > 𝜆
1, 𝑓𝑜𝑟 𝜎 ≤ 𝜆

 (4.12.1) 

DSVD 𝑓 =
𝜎

𝜎 + 𝜆
 (4.12.2) 

GFSVD 
𝑓 = 𝑒  (4.12.3) 

TM 𝑓 =
𝜎

𝜎 + 𝜆
 (4.12.4) 

 

The shape of the four considered filter functions is reported in Figure (4.1), where the cut-

off value 𝜎 , which is the frequency at which the filter function in equal to √2, is introduced 

according to the classical definition (Bozzoli2013). 

As it is possible to see, the trend at which the singular values are pushed to zero as far as 

their values increase is different for each filter form.  

 

 
Figure 4.1: Filter functions 
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Once the heat flux is estimated according to equation (3.56), the internal wall temperature 

of the tube 𝑇  can be estimated by solving the direct auxiliary problem defined by the linear 

system of equations (3.23). 

Under the assumption that the bulk temperature is known, it is possible to determine the 

convective heat transfer coefficient as: 

 

ℎ =
𝑞

𝐴  (𝑇 − 𝑇 )
 (4.13) 

 

where 𝐴  is the internal wall surface area. 

It has to be pointed out that, the computational requirement of the GFSVD is comparable 

with the ones of TSVD and DSVD methods since all the solution strategies require the 

filtering of the singular value coefficients. For this reason, the comparison has to be 

performed in terms of reconstruction capabilities instead of computational requirements. 

 

4.3.2 Filtered Reciprocity Functional 

The new methodology here presented, starts from the findings of Colaço (Colaço2013, 

Colaço2015) with the aim of overcome the limit of the numerical solution of the auxiliary 

problems by means of the Classical Integral Transform Technique (CITT), a well-known 

analytical method (Ozisik1993) used for the solution of the Partial Differential Equations 

system. In this way, thanks to a fully analytical approach, it is possible to understand how 

the RF approach deals with the noise content in the experimental data and therefore the 

regularization factor can be tuned in order to improve the robustness of the approach. The 

new solution methodology, named Filtered Reciprocity Functional (FRF), is fully 

demonstrated in Appendix 2, numerically verified in Chapter 5 and experimentally validated 

in Chapter 6.   

 
DETERMINING THE NORMAL DERIVATIVE OF THE TEMPERATURE AT THE 

INTERNAL BOUNDARY   𝜕𝑇/𝜕𝒏: 

As suggested by Colaço (Colaço2015), the following well-posed auxiliary problem, already 

introduce in Chapter 3 and here reminded, can be used in order to obtain 
𝒏

: 

∇ 𝐺 = 0 in Ω
𝜕𝐺

𝜕𝐧
= 0 on Γ

𝐺 = 𝜓 on Γ

 
(4.14.1) 
(4.14.2) 
(4.14.3) 
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where 𝜓  is a set of orthogonal functions, which, for a 2D case, can be written as a standard 

orthonormal Fourier’s basis (4.15.1)-( 4.15.3): 

 

𝜓 =
1

𝑟 √2𝜋
for 𝑘 = 1

𝜓 =
1

𝑟 √𝜋
cos

𝑘

2
𝜃 for 𝑘 = 2,4,6, … 𝑁 − 1

𝜓 =
1

𝑟 √𝜋
sin

𝑘 − 1

2
𝜃 for 𝑘 = 3,5,7, … 𝑁

 

(4.15.1) 

 

(4.15.2) 

 

(4.15.3) 

 

Defining the reciprocity functional and the integral of the internal heat source, respectively, 

as follows 

 

𝑅 , = 𝜓
𝜕𝑇

𝜕𝐧
− 𝑌

𝜕𝐺

𝜕𝐧
dΓ

= −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝑌

𝜕𝐺

𝜕𝐧
dΓ  

𝑄 , = 𝐺
𝑞

𝐾Ω
dΩ 

(4.16) 

 

 

 

(4.17)    

 

it is possible to write the following identity: 

 

𝐺
𝜕𝑇

𝜕𝐧Γ
dΓ = −𝑅 , − 𝑄 ,  (4.18)      

 

More details about the equation above can be found in Colaço (Colaço2015). 

Using the orthonormal basis defined in Equations (4.15.1)-(4.15.3), and defining 𝛾  as the 

trace of the solution 𝐺  on Γ , the last expression can be manipulated in order to get: 

 

−𝑅 , − 𝑄 , = 𝐺
𝜕𝑇

𝜕𝐧Γ
dΓ = 𝛾

𝜕𝑇

𝜕𝐧Γ
dΓ   (4.19)     
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The normal derivative of the temperature on the internal surface can be approximated by 

using the induced basis 𝛾 , … , 𝛾  as follows:  

 

𝜕𝑇

𝜕𝐧 Γ
= 𝛼 𝛾 + ⋯ + 𝛼 𝛾  (4.20)      

 

Therefore, truncating the expansion with 𝑁 terms, the system of equations (4.19) is reduced 

to the following linear system 

 

𝛾 α 𝛾
Γ

dΓ = 𝛾 𝛾 α
Γ

dΓ = −𝐑𝑮 − 𝐐𝑮    for 𝑗

= 1,2,3, … , 𝑁 

(4.21)      

 

Equation (4.21) can be written in matrix form as: 

 

𝐌 𝛂 = −𝐑𝑮 − 𝐐𝑮 (4.22)      

 

The system is invertible since 𝛾 , … , 𝛾  are linearly independent and therefore the 𝛼  

coefficients can be found as: 

 

𝛂 = 𝐌 (−𝐑𝑮 − 𝐐𝑮) (4.23)      

 

After that, the estimation of 
𝒏

 is obtained by simply using the expansion presented in 

Equation (4.20). 

The auxiliary problem presented in equations (4.14.1)-(4.14.3) is then solved analytically by 

using the Classical Integral Transform Technique (Ozisik1993). Initially, equation (4.14.1) 

is expressed in the cylindrical coordinate system: 

 

𝜕 𝐺

𝜕𝑟
+

1

𝑟

𝜕𝐺

𝜕𝑟
+

1

𝑟

𝜕 𝐺

𝜕𝜃
= 0 (4.24)      

 

Then, defining the integral transform as 
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𝐺 , ≡ 𝐺 (𝑟, 𝜈) = 𝐺 (𝑟, 𝜃′) cos[𝜈(𝜃 − 𝜃′)] d𝜃′ (4.25) 

 

and the inversion formula as 

 

𝐺 ≡ 𝐺 (𝑟, 𝜃) =
1

2𝜋
�̅� (𝑟, 𝜈 = 0) +

1

𝜋
�̅� (𝑟, 𝜈) (4.26)      

 

Equation (4.24), multiplied by cos[𝜈(𝜃 − 𝜃 )]and integrated, becomes: 

 

d 𝐺 ,

d𝑟
+

1

𝑟

d𝐺 ,

d𝑟
+

1

𝑟
𝜈 𝐺 , = 0 (4.27) 

 

With the same procedure, Equation (4.14.2), which expresses the boundary condition 

imposed on the internal boundary Γ , result to get:  

 

d𝐺 ,

d𝑟
= 0 (4.28) 

 

and the external boundary condition can be re-written as follows: 

 

𝐺 , = 𝜓 ,  (4.29) 

 

where 𝜓 ,  is the transformation of the potential imposed in the first auxiliary problem given 

by Equation (4.14.3): 

 

𝜓 , =  𝜓 cos[𝜈(𝜃 − 𝜃 )] d𝜃  (4.30) 

 

Using the above equations, the transformed first auxiliary problem is finally obtained as: 
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d 𝐺 ,

d𝑟
+

1

𝑟

d𝐺 ,

d𝑟
+

1

𝑟
𝜈 𝐺 , = 0 in Ω

d𝐺 ,

d𝑟
= 0 on Γ

𝐺 , = 𝜓 , on Γ

 

(4.31.1) 

 

(4.31.2) 

 

(4.31.3) 

 

whose solution can be found as: 

 

𝐺 , = 𝜓 , cosh 𝜈 ln
𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
  (4.32) 

 

In order to obtain the solution of the first auxiliary problem, the above equation has to be 

inverted using the definition given by Equation (4.26): 

 

𝐺  =
1

2𝜋
𝜓 , +  

1

𝜋
𝜓 , cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
 (4.33)      

The measurements 𝒀 are decomposed by the Fourier series expansion, in order to take 

advantage of the harmonic decomposition of the Classical Integral Transform Technique: 

 

𝒀(𝜃) =
𝑎

2
+ [𝑎 cos(𝜈𝜃) + 𝑏 sin(𝜈𝜃)] (4.34)      

 

where 𝑎 and 𝑏  are real numbers and 𝜈 is an integer number.  

Thanks to this, it is possible to distinguish between the signal and the noise. In almost every 

practical situation (Bozzoli2013), the signal content is mainly present at low frequencies, 

while noise is present over the whole spectrum. 

This approach, whose details are reported in the Appendix 1, enables to conveniently express 

the terms of Equation (4.22) in the following way: 

The main advantage of the analytical solution of the reciprocity functional consist in the 

diagonal form that characterized the matrix of the inner products 𝑴. This behaviour is due 

to the proper choice of the 𝜓 basis appearing in the definition of the auxiliary problem that 

are orthogonal to the eigenfunctions appearing in the solution of the auxiliary problem 

provided by the CITT. 
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𝛂 =

𝛼  
𝛼

⋮
𝛼

 (4.35) 

 

𝐑𝑮 = − 𝜋𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ √2

ℎ

𝐾
(𝑎 − 𝑇 )

ℎ

𝐾
− tanh  ln

𝑟

𝑟
 

1

𝑟
𝑎

ℎ

𝐾
− tanh  ln

𝑟

𝑟
 

1

𝑟
𝑏

ℎ

𝐾
− tanh  2 ln

𝑟

𝑟
 

2

𝑟
𝑎

ℎ

𝐾
− tanh  2 ln

𝑟

𝑟
 

2

𝑟
𝑏

⋮
ℎ

𝐾
− tanh  𝜈 ln

𝑟

𝑟
 

𝜈

𝑟
𝑎

ℎ

𝐾
− tanh  𝜈 ln

𝑟

𝑟
 

𝜈

𝑟
𝑏

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.36) 

 

𝐐𝑮 =

⎣
⎢
⎢
⎢
⎢
⎡𝑞

𝐾

𝜋

2𝑟
(𝑟 − 𝑟 ) 

0
⋮
0 ⎦

⎥
⎥
⎥
⎥
⎤

 (4.37) 

 

𝐌

=
𝑟

𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0

sech 1 ln
𝑟

𝑟

sech 1 ln
𝑟

𝑟

sech 2 ln
𝑟

𝑟

sech 2 ln
𝑟

𝑟

⋱

sech 𝜈 ln
𝑟

𝑟

0 sech 𝜈 ln
𝑟

𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(4.38) 
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𝛄 =
1

𝜋𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1

√2

cos(1 𝜃) sech 1 ln
𝑟

𝑟

sin(1 𝜃) sech 1 ln
𝑟

𝑟

cos(2 𝜃) sech 2 ln
𝑟

𝑟

sin(2 𝜃) sech 2 ln
𝑟

𝑟
⋮

cos(𝜈 𝜃) sech 𝜈 ln
𝑟

𝑟

sin(𝜈 𝜃) sech 𝜈 ln
𝑟

𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.39) 

 

The values of 𝛼  coefficient, which are the goal of the first auxiliary problem, are easily 

obtained from a mathematical point of view by Equation (4.23). Due to the ill-posed nature 

of the problem and the presence of the noise in the measurement vector 𝒀 = [𝑦 , 𝑦 , … , 𝑦 ], 

the inversion of the matrix 𝑴 has to be approached by inverse problem solution techniques 

in order to find a realistic estimation of the unknown heat flux. 

Since the matrix 𝑴 is diagonal, its inverse can be easily determined as follows: 

 

𝐌 𝟏 =
𝑟

𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0
1

sech 1 ln
𝑟
𝑟

1

sech 1 ln
𝑟
𝑟

1

sech 2 ln
𝑟
𝑟

1

sech 2 ln
𝑟
𝑟

⋱
1

sech 𝜈 ln
𝑟
𝑟

0
1

sech 𝜈 ln
𝑟
𝑟 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.40) 

 

The analytical expression achieved clearly highlights the destructive effect of the noise on 

the reconstruction of the 𝛼  coefficient: the values of 𝑴  matrix components, following the 

1/ sech [𝜈 ln(𝑟 /𝑟 )]  function, increase with the number of the harmonic. For this 

reason, these terms work as operators that amplifies the high frequency components of 𝑹𝑮 

more than the low ones of a given input data set 𝒀. In Figure (4.3), the values of 𝑴  

components are plotted for a representative ratio 𝑟 /𝑟 = 0.9 as a function of the 

harmonic order.  
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Figure 4.2: Diagonal elements of the 𝑴  matrix for a representative value 𝑟 /𝑟 =

0.9 
 

For cases where both the signal and the noise have frequency components equally distributed 

over the spectrum of interest, the 𝑴  matrix does not deteriorate the signal content in 

comparison to the original data. Unfortunately, in almost all practical situations, the signal 

has frequency components concentrated in the low frequency range of the spectrum, while 

the spectral components of noise is expected to be uniformly distributed over the entire 

frequency domain, (Bozzoli2013). Therefore the 𝑴  operator makes very difficult the 

extraction of some useful information from the 𝑹𝑮 vector. For this reason, some 

regularization technique is needed. 

In the present work this problem is tackled by conveniently truncating the 𝑴  matrix, 

considering only the first 𝜈 harmonics as suggested by Bozzoli (Bozzoli2013) in an 

analogous inverse problem. The number of harmonics to keep is chosen by the classical 

discrepancy principle, originally formulated by Morozov (Morozov1984). More efficient 

approaches in terms of computational costs are available, but since this aspect is related to 

the stopping criteria and not to the methodology itself, more studies are needed in order 

investigate the effect of the criteria adopted. 
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DETERMINING THE INTERNAL WALL TEMPERATURE   𝑇| : 

As suggested by Colaço (Colaço2015), the following auxiliary problem, already introduce 

in Chapter 3 and here reminded, can be used in order to obtain 𝑇| : 

 

∇ 𝐹 = 0 in Ω
𝐹 = 0 on Γ

𝐹 = 𝜓 on Γ
 

(4.41.1) 
(4.41.2) 
(4.41.3) 

 

This problem is well posed and, for simplicity, we used the same basis defined in the first 

auxiliary problem, equations (4.15.1)-(4.15.3). Following the same steps used in the first 

auxiliary problem, the second reciprocity functional and the integral of the heat generation 

terms can be defined as: 

 

𝑅 , = 𝜓
𝜕𝑇

𝜕𝐧
− 𝑌

𝜕𝐹

𝜕𝐧
dΓ

= −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝑌

𝜕𝐹

𝜕𝐧
dΓ  

𝑄 , = 𝐹
𝑞

𝐾
dΩ 

(4.42) 

 

(4.43) 

 

Therefore, it is possible to write the following expression: 

 

𝑇
𝜕𝐹

𝜕𝐧Γ
dΓ = 𝑅 , + 𝑄 ,  (4.44)      

 

Using the orthonormal basis defined in equations (4.15.1)-(4.15.3) and defining 𝜉 as the trace 

of the solution 𝐹  on Γ , the last expression can be manipulated in order to get: 

 

𝑅 , + 𝑄 , = 𝑇
𝜕𝐹

𝜕𝐧Γ
dΓ = (𝜉 𝑇)

Γ
dΓ  (4.45) 
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The temperature on the internal surface can be approximated by using the induced basis 

𝜉 , … , 𝜉  as follows:  

 

𝑇|  = 𝛽 𝜉 + ⋯ + 𝛽 𝜉  (4.46)      

 

Therefore, truncating the expansion with 𝑁 terms, the system of Equations (4.45) is reduced 

to the following linear system (4.47): 

 

𝜉 𝜷𝒋𝜉
Γ

dΓ = 𝜉 𝜉 𝜷𝒋
Γ

dΓ = −𝑹 , − 𝑸 ,     for 𝑗

= 1,2,3, … , 𝑁 

(4.47) 

 

which can be written in the following matrix form: 

 

𝐍 𝛃 = −𝐑𝑭 − 𝐐𝑭 (4.48)      

 

The system is invertible since 𝜉 , … , 𝜉  are linearly independent. Equation (4.47) is easy to 

solve having the 𝛽  coefficient as unknown: 

 

𝛃 = 𝐍 𝟏(−𝐑𝑭 − 𝐐𝑭) (4.49)      

 

After that, the estimate of 𝑇|  is obtained simply by using the expansion presented in 

equation (4.46). 

Analogously to the approach adopted in the previous problem, the second auxiliary problem, 

presented in equations (4.41.1)-(4.41.3), is solved analytically by using the Classical Integral 

Transform Technique. For 2D problems, it is possible to write the Laplacian defined in 

equation (4.41.1) as: 

 

𝜕 𝐹

𝜕𝑟
+

1

𝑟

𝜕𝐹

𝜕𝑟
+

1

𝑟

𝜕 𝐹

𝜕𝜃
= 0 (4.50)      
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Defining the integral transform as: 

 

𝐹 , ≡ 𝐹 (𝑟, 𝜈) = 𝐹 (𝑟, 𝜃′) cos[𝜈(𝜃 − 𝜃′)] d𝜃′ (4.51) 

 

and the inversion formula as (4.52): 

 

𝐹 ≡ 𝐹 (𝑟, 𝜃) =
1

2𝜋
𝐹 (𝑟, 𝜈 = 0) +

1

𝜋
𝐹 (𝑟, 𝜈) (4.52)      

 

it is possible to transform equation (4.50) as follows: 

 

d 𝐹 ,

d𝑟
+

1

𝑟

d𝐹 ,

d𝑟
+

1

𝑟
𝜈 𝐹 , = 0 (4.53) 

 

By an analogous elaboration, the boundary condition imposed on the internal boundary Γ , 

Equation (4.41.2), results to get:  

 

 𝐹 , = 0 (4.54) 

 

In the same way, the external boundary condition can be rewritten as: 

 

𝐹 , = 𝜓 ,  (4.55) 

 

Where 𝜓 ,  is the transformation of the potential imposed in the second auxiliary problem, 

Equation (4.41.3), according to the equation (4.30). 

Using the above equations, the transformed second auxiliary problem is obtained as: 

 

∇ 𝐹 , = 0 in Ω

𝐹 , = 0 on Γ

𝐹 , = 𝜓 , on Γ

 

(4.56.1) 

(4.56.2) 

(4.56.3) 
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whose solution is: 

 

𝐹 , = 𝜓 , sinh 𝜈 ln
𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟
  (4.57) 

 

In order to obtain the solution of the second auxiliary problem, the above equation needs to 

be inverted using the definition given in the Equation (4.52): 

 

𝐹 =
1

2𝜋
𝜓 ,

ln
𝑟
𝑟

ln
𝑟
𝑟

+
1

𝜋
𝜓 , sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟
   (4.58)      

 

Analogously to the previous problem, in order to take advantage of the harmonic 

decomposition of the Classical Integral Transform Technique and to obtain a fully analytical 

expression, it is useful to represent the measurements 𝒀 as a Fourier series expansion: 

 

𝒀(𝜃) =
𝑎

2
+ [𝑎 cos(𝜈𝜃) + 𝑏 sin(𝜈𝜃)] (4.59)      

 

This approach, whose details are reported in Appendix 1, enables to conveniently express the 

terms of Equation (4.48) in the following way: 

 

𝛃 =

𝛽  
𝛽

⋮
𝛽

 (4.60) 
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𝐑𝑭 = − 𝜋𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
√2

ℎ

𝐾
1 −

𝐾

ℎ 𝑟 ln
𝑟
𝑟

𝑎 − 𝑇

ℎ

𝐾
− cotanh  ln

𝑟

𝑟
 

1

𝑟
𝑎

ℎ

𝐾
− cotanh  ln

𝑟

𝑟
 

1

𝑟
𝑏

ℎ

𝐾
− cotanh 2 ln

𝑟

𝑟
 

2

𝑟
𝑎

ℎ

𝐾
− cotanh 2 ln

𝑟

𝑟
 

2

𝑟
𝑏

⋮
ℎ

𝐾
− cotanh 𝜈 ln

𝑟

𝑟
 

𝜈

𝑟
𝑎

ℎ

𝐾
− cotanh 𝜈 ln

𝑟

𝑟
 

𝜈

𝑟
𝑏

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.61) 

 

𝐐𝑭 =

⎣
⎢
⎢
⎢
⎢
⎡𝑞

𝐾

𝜋

2𝑟
 𝑟 +

1

2

(𝑟 − 𝑟 )

ln
𝑟
𝑟

0
⋮
0 ⎦

⎥
⎥
⎥
⎥
⎤

 (4.62) 

 

𝐍

=
1

𝑟 𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1

ln
𝑟
𝑟

0

csch 1 ln
𝑟

𝑟

csch 1 ln
𝑟

𝑟

2 csch 2 ln
𝑟

𝑟

2 csch 2 ln
𝑟

𝑟

⋱

𝜈 csch 𝜈 ln
𝑟

𝑟

0 𝜈 csch 𝜈 ln
𝑟

𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(4.63) 
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𝛏 =
1

𝜋𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1

√2

1

ln
𝑟
𝑟

𝑟

1

𝑟
cos(1 𝜃) csch 1 ln

𝑟

𝑟
1

𝑟
 sin(1 𝜃) csch 1 ln

𝑟

𝑟
2

𝑟
 cos(2 𝜃) csch 2 ln

𝑟

𝑟
2

𝑟
 sin(2 𝜃) csch 2 ln

𝑟

𝑟
⋮

𝜈

𝑟
 cos(𝜈 𝜃) csch 𝜈 ln

𝑟

𝑟
𝜈

𝑟
 sin(𝜈 𝜃) csch 𝜈 ln

𝑟

𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.64) 

 

The values of 𝛽  coefficients, which are the goal of the second auxiliary problem, are 

obtained from a mathematical point of view by Equation (4.49). Due to the ill-posed nature 

of the problem and the presence of the noise in the measurement vector 𝒀, the inversion of 

the matrix 𝑵 has to be approached by inverse problem solution techniques in order to find a 

realistic estimation of the unknown heat flux.  

The diagonal behaviour of the matrix of the inner product 𝑵 allows us easily calculating its 

inverse as follow: 

 

𝐍 𝟏

= 𝑟 𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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0

1

csch 1 ln
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𝑟

1

csch 1 ln
𝑟
𝑟

1

2 csch 2 ln
𝑟
𝑟

1

2 csch 2 ln
𝑟
𝑟

⋱
1

𝜈 csch 𝜈 ln
𝑟
𝑟

0
1

𝜈 csch 𝜈 ln
𝑟
𝑟 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(4.65) 

 

This operator has many points in common with the operator defined in Equation (4.40) for 

the previous auxiliary problem. It means that, also in this case, the presence of noise has a 
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negative impact on the estimation of the 𝛽 coefficients because the values of 𝑵  matrix 

components, following 1/𝜈 csch [𝜈 ln(𝑟 /𝑟 )]  function, increase with the number of 

the harmonic. In Figure (4.4), the values of 𝑵  components are plotted for a representative 

ratio 𝑟 /𝑟 = 0.9 as a function of the harmonic order. Also in this case, the values of the 

diagonal terms of the 𝑵  matrix increase as the harmonic order increases; for this reason 

the matrix in regularized by the same approach that was already employed in the solution of 

the first auxiliary problem.  

Finally it has to be pointed out that, comparing Figure (4.3) with Figure (4.4), there are more 

than 6 orders of magnitude between 𝑴  and 𝑵 . Therefore, the estimation of the internal 

heat flux is a more delicate procedure compared to the estimation of the internal wall 

temperature. 

 

 
Figure 4.4: Diagonal elements of the 𝑵  matrix for a representative value 𝑟 /𝑟 =

0.9 
 

It has to be pointed out that, the computational requirement of the FRF is comparable with 

the ones of TSVD and RF methods since all the solution strategies require the filtering of 

the singular value coefficients. For this reason, the comparison has to be performed in terms 

of reconstruction capabilities instead of computational requirements. 
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Chapter 5 

 

Numerical verification 
 

5.1 Introduction 

 

Following the classification introduced in Chapter 3, the analysis of the new methodologies 

proposed in Chapter 4 is subdivided in Parameter estimation and Function estimation 

problem. In particular, synthetic data produced by virtual experiments (e.g. numerical 

simulation) were performed in order to compare to the exact values, the reconstruction 

capabilities of the new estimation methodologies together with some of the common 

reconstruction algorithms presented in Chapter 3. In Chapter 6 the new methodologies will 

be then employed for the estimation of the thermal performances in heat exchangers using 

real measurements. 
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5.1 Parameter estimation 

 

The new proposed methodology is going to be tested within the Matlab® environment by 

adopting synthetic data. The physical problem considered in the present work, according to 

the conditions reported in the available literature (Navickaite20018), consists in a counter 

flow shell and tube heat exchanger characterized by tubes having internal diameter of 𝑑 =

0.005𝑚 and thickness of 𝑡 = 1𝑚𝑚, while the shell has an internal diameter of 𝑑 =

0.0185𝑚. Water was assumed to be the working fluid in both the sides of the heat exchanger 

and its inlet temperature was assumed be constant and equal to 𝑇 = 323.15𝐾 and 𝑇 =

283.15𝐾 at the tube and the shell side respectively. 

The thermal conductivity of the pipe 𝑘 = 250𝑊/𝑚 𝐾 was assumed to be constant such as 

the environmental temperature 𝑇 = 283.15𝐾.  

The boundary condition values together with the geometrical characterization of the heat 

exchanger are summarized in Table (5.1), while a representation of the geometrical domain, 

is shown in Figure (5.1). 

As already mentioned in Chapter 4, the estimation procedure was applied to the estimation 

of the 𝛼 and 𝛽 coefficients appearing in the common Nusselt number formulation 

(Incropera2005, Rainieri2004) at both the shell and tube sides: 

 

𝑁𝑢 = 𝛼 𝑅𝑒 𝑃𝑟  (5.1) 

 

 

Figure 5.1: Parameter estimation: geometrical domain 
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Since the working fluid is supposed to be the same in all the working conditions, being the 

Prandtl number slightly dependent on the fluid temperature, there is no sensibility concerned 

the effect of the Prandtl number on the heat transfer mechanism, therefore Equation (4.1) 

could be simplify to the classical expression (Incropera2005): 

𝑁𝑢 = 𝛼 𝑅𝑒 𝑃𝑟 .  (5.2) 

which yields to a four parameters estimation procedure (𝛼 , 𝛽 , 𝛼  and 𝛽 ).  

The Nusselt number function defined in Equation (4.1) is based on the assumption that the 

heat transfer mechanism is governed by the single-phase forced convection since, if 

evaporation or condensation occurred, then other terms would drive the heat transfer 

mechanism (e.g. vapour quality, heat flux, and pressure). 

The approach is based on the minimization of the objective function defined as: 

𝑟 = 𝑈 − 𝑈  (5.3) 

where 𝑈  and 𝑈  are respectively the experimental and the simulated global heat 

transfer coefficient. 

The synthetic measurements were produced by analytically solving the energy balance; in 

particular, for any double flow heat exchanger in a steady state condition, perfectly thermally 

insulated from the environment in which the heat conduction in the flow direction is 

negligible, it is possible to write the energy balance as follows: 

 

𝑄 = �̇� 𝑐 (𝑇 − 𝑇 ) =  �̇� 𝑐 𝑇 − 𝑇 = 𝑈 𝐴  Δ𝑇  (5.4) 

 

where Δ𝑇  is the logarithmic mean temperature difference while 𝑄 is the exchanged heat 

flow rate, �̇� and 𝑐  are the mass flow rate and the specific heat capacity, respectively, while 

∙  and ∙  stand for the tube and the shell side, respectively. 

 

Table 5.1: Geometrical and boundary conditions parameters 
Parameter Tube Shell 
Internal diameter [m] 0.005 0.0185 
Thickness of the tube [m] 0.001 0.0015 
Thermal conductivity [𝑊/𝑚𝐾] 250 15 
Working fluid Water Water 
Length [m] 0.25 0.25 
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(a) (b) 

Figure 5.2: Scaled sensitivity coefficient of the unknown parameter for the representative test 
case T1: (a) fixed tube Reynolds number (e.g.𝑅𝑒 = 1750) and (b) fixed shell Reynolds 

number (e.g.𝑅𝑒 = 3500) 
 

Therefore, assuming the outlet temperature as the unknown variable of the direct problem, 

the solution of the last system of equations yield to: 

𝑇 = 𝑇 −
𝑄

�̇� 𝑐
 

𝑇 =
𝑄

�̇� 𝑐
+ 𝑇  

𝑄 =
(𝐵 − 1) 𝑇 − 𝑇

𝐵
𝑚 𝑐

−
1

𝑚 𝑐

  

(5.5.1) 

 

(5.5.2) 

 

(5.5.3) 

where: 

𝐵 = exp 𝑈𝐴
𝑚 𝑐 − 𝑚 𝑐

𝑚 𝑐 𝑚 𝑐
 (5.6) 

Due to the electrical analogy, it is possible to define the overall heat transfer coefficient as a 

summation of resistance as follows: 

 

1

𝑈𝐴
=

1

ℎ 𝐴
+ 𝑅 +

1

ℎ 𝐴
 (5.6) 

 

where ℎ  and ℎ  are the internal and external convective heat transfer coefficients 

respectively, while 𝐴  and 𝐴  are the internal and the external heat exchanger surface areas, 

respectively. 
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Due to the quasi-cylindrical configuration characteristic of a tube side heat exchanger, the 

thermal resistance of the wall 𝑅  can be approximated as: 

 

𝑅 =
ln

𝑑
𝑑

 

2𝜋𝑘 𝐿
 (5.7) 

 

where 𝑑  and 𝑑  are the external and internal diameter of the tube, respectively, while 

𝑘  and 𝐿 are the thermal conductivity and the length of the tube that is exchanging heat, 

respectively. Thus it is possible to assume known the thermal resistance of the wall, for a 

given heat exchanger configuration, under a given operating condition.  

Assuming the internal diameter of the tube as the characteristic length, it is possible to define 

the internal Nusselt number coefficient as: 

 

𝑁𝑢 =
ℎ 𝑑

𝑘
= 𝛼 𝑅𝑒 𝑃𝑟 .  

𝑁𝑢 =
ℎ 𝑑

𝑘
= 𝛼 𝑅𝑒 𝑃𝑟 .  

(5.8.1) 

 

(5.8.2) 

 

where 𝐾 is the thermal conductivity of the fluid. 

Therefore, substituting Equations (5.6)-(5.8) into the system of Equations (5.5) and assuming 

the coefficients listed in Table (5.2) for three different test cases, the synthetic measurements 

that will be used in order to test the estimation capabilities of the methodology proposed 

here, can be generated. 

It has to be pointed out that the thermal properties of the fluid were assumed to be constant 

and they were referred to the average bulk temperature between the inlet and outlet bulk 

temperature at each side. 

It has to be highlighted that even if the heat transfer mechanism is influenced by the mass 

flow rate of the working fluids, in order to generalize the results, the correlations are 

proposed in terms of the Reynolds number. Related to this aspect, it was assumed: 

𝑅𝑒 =
𝑣 𝑑

𝜈
 

𝑅𝑒 =
𝑣 (𝑑 − 𝑑 )

𝜈
 

(5.9.1) 

 

(5.9.2) 

where 𝑣 is the average fluid velocity, while 𝜈 is the cinematic viscosity of the fluid, with 

average bulk temperature previously defined. 
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(a) (b) 

  
(c) (d) 

Figure 5.3: Relative error as a function of the noise level for the estimated coefficients:           
(a) 𝛼 , (b) 𝛼 , (c) 𝛽  and (d) 𝛽  

 

It has to be pointed out, that since the 𝛽 coefficients play a small effect compared to the 𝛼 

coefficients in the overall heat transfer coefficient 𝑈, they were not modified during the 

analysis of the estimation capabilities of the method proposed here. 

The parameters that correlate the response of system to the input parameters are the 

sensitivity coefficient. Since the magnitude of the sensitivity coefficients can be different for 

each parameter, the scaled sensitivity coefficient has to be defined according to 

(Rainieri2014): 

 

𝐽∗ 𝑃 =
1

𝑈

𝜕𝑈

𝜕𝑃
𝑃   (5.10) 

 

In order to perform a trustworthy comparison among the techniques, the synthetic 

measurement of the global heat transfer coefficient 𝑈 were deliberately spoiled by random 

noise and then used as input data for all the mathematical inverse model. 
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(a) (b) 

  
(c) (d) 

Figure 5.4: Confidence interval as a function of the noise level for the estimated coefficients:           
(a) 𝛼 , (b) 𝛼 , (c) 𝛽  and (d) 𝛽  

 

In particular, a Gaussian white noise characterized by a standard deviation ranging from 𝜎 =

1% to 𝜎 = 50% was introduced according to: 

𝑈 = 𝑈 (1 + 𝜎𝜖) (5.11) 

where ϵ is a random Gaussian variable with zero mean and unit variance. 

The estimation quality was measured by looking at different indexes. In particular, the 

relative errors of each estimated parameter were determined as follows: 

 

𝜖 𝑃 =
𝑃 − 𝑃

𝑃
 100 (5.12) 

Table 5.2: Test cases 

Case: 𝛼  𝛽  𝛼  𝛽  𝑅𝑒  𝑅𝑒  𝑇  [𝐾] 𝑇 [𝐾] 

T1 0.05 0.8 0.05 0.8 500÷4500 500÷4500 323.15 283.15 
T2 0.1 0.8 0.05 0.8 500÷4500 500÷4500 323.15 283.15 
T3 0.05 0.8 0.1 0.8 500÷4500 500÷4500 323.15 283.15 
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(a) 

  
(b) (c) 

Figure 5.5: (a) 𝑅  index as a function of the noise level for the test cases here investigated, 
(b) Example of the correlation between the estimated and the measured global heat transfer 

coefficient for the test case T1 𝜎 = 1% and (c) 𝜎 = 10% 
 

where 𝑃  is the 𝑗 − 𝑡ℎ  parameter that has to be estimated (e.g. 𝛼 , 𝛽 , 𝛼  and 𝛽 ). 

More interesting than the relative error on each parameter, is the relative estimation error 

between the exact and the estimated Nusselt number correlation: 

 

𝜖 𝑁𝑢 =
‖𝑁𝑢 − 𝑁𝑢 ‖

‖𝑁𝑢 ‖
 (5.13) 

 

Form the statistical point of view, the value of the estimated parameter, is an important 

aspect, but at the same time the confidence interval 𝐶𝐼 𝑃  has to be considered. 

The added noise depends intrinsically on the random sequence generated by Matlab®, thus 

the estimation procedure was repeated 300 times for different random noise sequences and 

an average value 𝜖 was calculated for each noise level for both Equation (5.12) and (5.13). 
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(a) (b) 

Figure 5.6: Relative error on the estimated correlation as a function of the noise level at both 
the tube (a) and the shell (b) sides for the three test cases 

 

It is well known that the estimation capabilities of the optimization algorithms strongly 

depends on the starting point, therefore, for all the estimation here performed, the starting 

point was assumed to be forthy percent lower than the exact set of coefficients. 

As it is possible to see in Figure (5.2-a) the scaled sensitivity coefficient related to the 

unknown parameters at the shell side, for a fixed tube side Reynolds number, decreases as 

far as the shell side Reynolds number increases. This behaviour is justified by observing 

that, if the shell side Reynolds number increases, it is the thermal resistance at the tube side 

that governs the heat transfer phenomena. The opposite considerations are valid for the 

scaled sensitivity coefficient at the tube side. 

The same considerations are valid for Figure (5.2-b) were the scaled sensitivity coefficients 

are plotted as function of the internal Reynolds number, for a fixed Reynolds number at the 

shell side.  

Table 5.3: Estimation results for two representative noise level 

Case: 𝛼  𝛽  𝛼  𝛽  

Exact T1 0.05 0.8 0.05 0.8 
T2 0.1 0.8 0.05 0.8 
T3 0.05 0.8 0.1 0.8 

Starting 
point 

T1 0.03 0.48 0.03 0.48 
T2 0.06 0.48 0.03 0.48 
T3 0.03 0.48 0.06 0.48 

𝜎 = 1% T1 0.0502±3.9% 0.7994±0.76% 0.0503±3.5% 0.7993±0.68% 
T2 0.0981±5.3% 0.8026±1.1% 0.0497±2.7% 0.8009±0.54% 
T3 0.0507±3.3% 0.7977±0.58% 0.0989±5.4% 0.8021±0.90% 

𝜎 = 10% T1 0.0564±38.7 0.7807±7.62 0.0404±34.8 0.8312±6.76 
T2 0.0827±52.5% 0.8284±10.6% 0.0511±27.9% 0.7961±5.3% 
T3 0.0444±30.6% 0.8185±5.9% 0.1096±45.1% 0.7833±9.0% 
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(a) (b) 

  
(c) (d) 

Figure 5.67 Nusselt number function at the tube side for two representative noise level (a) 
𝜎 = 1% (c) 𝜎 = 10% and Nusselt number function at the shell side for two representative 

noise level (b) 𝜎 = 1% (d) 𝜎 = 10% 
 

As it is possible to see in Figure (5.3), even if the relative errors on each parameter were 

averaged on 300 different sets of measurements, they are not monotonically increasing as 

the noise contented in the measurements increases: this aspect suggest that the estimation 

algorithm is not perfectly stable. 

From a statistical point of view, the value estimated from the optimization algorithm has to 

be presented with its confidence interval. As it is possible to see in Figure (5.4), the 

confidence interval of all the test cases here considered is monotonically increasing as far as 

the noise contented in the measurement is increasing.  

This aspect suggest that even if the estimated  parameter is very sensible to the set of noise 

randomly produced by the calculator, the estimation procedure is stable. 

As it is possible to see in Figure (5.5-a) the coefficient of determination (𝑅 ) is 

monotonically decreasing as far as the noise contented in the measurement is increasing: this 

behaviour is clearly understandable from the correlation graphs shown in Figures (5.5-b)-

(5.5-c) for two different noise level, related to the test case T1. As it possible to see, the 
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correlation between the estimated solution and the measured one decreases as the noise 

contented in the measurement increases. 

Since the main goal of the estimation approach is the identification of the correlation between 

the Nusselt and the Reynolds numbers, the relative error defined in Equation (5.13), is 

plotted in Figure (5.6) for both the tube and shell side. As already observed for the confidence 

interval, the relative error on the estimated Nusselt number correlation is monotonically 

increasing as the noise contented in the measurement increases, suggesting the stability of 

the estimation procedure. 

The comparison between the estimated and the exact Nusselt number correlations, together 

with the confidence interval bands, are reported in Figure (5.7) for both the tube and the shell 

side for two representative noise levels (e.g. 𝜎 = 1% and 𝜎 = 10%). As it is possible to see, 

the estimation procedure was able to estimate with a good accuracy the Nusselt number 

correlation, suggesting its application to a set of experimental data (Chapter 6). 

It has to be pointed out that, for what concern the tube side, the test case T3 is overlapped to 

the test case T1 since those two sets of data share the same equation coefficients at the tube 

side. The same considerations are valid for the shell side where the test case T2 is overlapped 

to the test case T1. 
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5.2 One dimensional function estimation 

 

The 1D inverse problem here addressed, was stated in Chapter 3 as a function estimation 

procedure, since the number of unknown variables is lerger than in the previous case. The 

estimated results, provided from the new methodologies formulated in Chapter 4, are 

compared with the estimated results coming from some of the common techniques presented 

in Chapter 3.  

The new proposed methodologies are going to be compared within the Matlab® environment 

by adopting synthetic data. The finite element method implemented in Comsol 

Multiphysic® was used in order to generate the synthetic measurements (sampled at the 

external surface of the pipe) by imposing a known distribution of ℎ  at the internal wall 

surface of the tube. The physical problem considered in the present work, according to the 

conditions reported in the available literature (Bozzoli2014a, Colaço2015), consists in a 

cross-section of a circular duct with internal radius 𝑟 = 0.007𝑚 and external radius 𝑟 =

0.008𝑚. The thermal conductivity of the pipe 𝑘 = 15𝑊/𝑚 𝐾 was assumed to be constant 

such as the environmental temperature 𝑇 = 298.15𝐾 and the bulk temperature              

𝑇 = 292.15 of the fluid that flows inside the tube. The exterior surface Γ  of the tube was 

subjected to an overall convective heat transfer coefficient ℎ = 5𝑊/𝑚 𝐾 with the 

environment and the domain Ω that was assumed to be homogeneous and isotropic, and 

subjected to an internal heat generation  per unit of volume 𝑞 = 10 𝑊/𝑚 . 

A representation of the geometrical domain, together with the boundary conditions applied 

to both the direct and inverse problem is shown in Figure (5.8). 

Since it is well known that the effectiveness of the estimated solution of the inverse problem 

depends on the shape of the function being estimated, different test cases were implemented 

in order to perform a robust comparison. The shapes of the internal convective heat transfer 

coefficients that were used as test functions are reported in Table (5.4). Test cases h1 and h2 

are the classical step function with different amplitudes, chosen in order to test the limits of 

the estimation approaches, while case h3 and h4 are instead examples smooth functions. 

Moreover, test case h1-h3 and h2-h4 were assumed to have the same maximum ℎ , 

minimum ℎ   and average ℎ  values in order to make the comparison of different test 

functions more objective, minimizing the effect of the of the signal’s amplitude. 
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Table 5.4: Test functions: internal convective heat transfer coefficient distribution 

Case: ℎ  
W

m K
: ℎ  

W

m K
: ℎ  

W

m K
: ℎ  

W

m K
: 

h1 

0 −𝜋 < 𝜃 < −
2

3
𝜋 

400 0 600 600 −
2

3
𝜋 < 𝜃 <

2

3
𝜋 

0 
2

3
𝜋 < 𝜃 < 𝜋 

h2 

0 −𝜋 < 𝜃 < −
2

3
𝜋 

4000 0 6000 6000 −
2

3
𝜋 < 𝜃 <

2

3
𝜋 

0 
2

3
𝜋 < 𝜃 < 𝜋 

h3 −600
 𝜃

𝜋
+ 600 −𝜋 < 𝜃 < 𝜋 400 0 600 

h4 −6000
 𝜃

𝜋
+ 6000 0 < 𝜃 < 2𝜋 4000 0 6000 

 

It is well known that the effectiveness of all regularization approaches strongly depends on 

the choice of a proper value of the regularization parameter (Bazàn2012, Bozzoli2014a). In 

the present analysis, to make the comparison between the considered regularization 

techniques more straightforward, the criterion provided by the discrepancy principle, 

originally formulated by Morozov (Tikhonov1977, Beck1985), was adopted for all the 

techniques. 

In order to perform a trustworthy comparison among the techniques, the synthetic 

measurement temperatures 𝑌 were deliberately spoiled by random noise and then used as 

input data for all the mathematical models. In particular, a Gaussian white noise 

characterized by a standard deviation ranging from 𝜎 = 0.01𝐾 to 𝜎 = 5𝐾 was introduced 

according to: 

 

𝑌 = 𝑇 | + 𝜎𝜖 (5.14) 

 

where ϵ is a random Gaussian variable with zero mean and unit variance. 

In order to perform a quantitative comparison among the three considered approaches, the 

global relative estimation error between the exact and the estimated internal heat transfer 

coefficient was calculated as a relative error in L2 norm: 
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𝐸 =
‖𝒉 − 𝒉 ‖

‖𝒉 ‖
 (5.15) 

 

The added noise depends intrinsically on the random sequence generated by Matlab®, thus 

the estimation procedure was repeated 50 times for different random noise sequences and an 

average value 𝐸  as calculated for each noise level. 

 

 
 

(a) (b) 

 
(c) 

Figure 5.8: Function estimation: (a) Geometrical domain, (b) direct problem and (c) 
inverse problem boundary conditions schemes  
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5.2.1 Gaussian Filtered Singular Value Decomposition 

Since this new proposed methodology is characterized by an smooth low pass filter function, 

its estimated results are going to be compared with the ones provided by its precursor TSVD 

and a common regularization scheme based on a smooth filter function, TM approach. 

The reconstruction results related to the test function here analysed are shown in Figure 

(5.9)-(5.10), for two representative noise level (e.g. 𝜎 = 0.1𝐾 and 𝜎 = 1𝐾). As it is possible 

to see, the three estimation algorithms present different degrees of reconstruction accuracies, 

depending on the noise level and the test case considered.  

In particular, the TSVD method suffer of ringing artefacts compare with the GFSVD and 

TM: this behaviour is due to the discontinue filter function, characteristic of the truncation 

methodologies. The instabilities of the estimated solution, that promotes the presence of the 

ringing artefacts are mitigated in the GFSVD and TM since the presence of damped high 

frequency harmonics compensate the lack of information typical of the truncation 

methodologies. 

(a) (b) 

(c) (d) 
Figure 5.9: Reconstruction of the internal heat transfer coefficient for a) test case h1, b) 

test case h2, c) test case h3 and d) test case h4 (𝜎 = 0.1𝐾) (Mocerino2018) 
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(a) (b) 

(c) (d) 
Figure 5.10: Reconstruction of the internal heat transfer coefficient for a) test case h1, b) 

test case h2, c) test case h and, d) test case h4 (𝜎 = 1𝐾) (Mocerino2018) 
 

It has to be pointed out that for all the estimation procedures here addressed, the Morozov’s 

discrepancy principle was adopted as a criterion for the determination of the regularization 

parameter. 

As it is possible to see in Figure (5.11), this criterion was able to identify the regularization 

parameter for all the test functions used and listed in Table (5.4), since the residual between 

the estimated and the measured external wall temperatures are randomly distributed with 

zero mean and standard deviation equal to the once expected. 

Figure (5.12) shows the Morozov’s discrepancy principle of the three methodologies here 

investigated for a representative noise level 𝜎 = 0.1𝐾. 

As it is possible to see, for the TSVD and the GFSVD methodology, the standard deviation 

of the residuals between the measured and the estimated temperature at the external 

boundary monotonically decreases as far as the regularization parameter increase. 
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(a) (b) 

  
(c) (d) 

Figure 5.11: Residuals between the reconstructed and the measured external wall 
temperature for a representative noise level 𝜎 = 0.1𝐾: (a) h1, (b) h2, (c) h3 and (d) h4 

 

This behaviour is justified since incrementing the regularization parameter more information 

about the signal is preserved during the estimation procedure, thus reducing the misfit 

between the temperature estimation at the external boundary and the measured one. The 

opposite observation can be made for the TM method, since in this case the augmentation of 

the regularization parameter will produce an over-smoothed estimated solution, thus 

increasing the misfit between the temperature estimation at the external boundary and the 

measured one.  

As highlighted by Figure (5.13), GFSVD method was able to estimate far better than the 

classical TSVD, which always shows the worst behaviour. Moreover, it estimation 

capabilities are comparable to the TM method, suggesting this approach to future application 

and development. 

It has to be highlighted that the stopping criteria used affects the quality of the reconstruction 

as already shown by Bazàn (Bazàn2012), who compared the fixed-point criteria with the 

Morozov’s discrepancy principle. 
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(a) 

(b)  (c) 
Figure 5.12: Morozov’s discrepancy principle for a representative noise level 𝜎 = 0.1𝐾: 

(a) TSVD, (b) GFSVD and (c) TM 
 

As observed in all inverse problems (Beck1977), the presence of the noise in the 

measurements corrupts the reconstruction of the unknown heat flux distribution. In almost 

every practical condition, the noise is uniformly distributed on the whole spectrum while the 

signal is almost always present in the lower harmonic orders. 

Given the above observation, it is possible to conclude that the new regularization approach 

for the unconstrained linear least squares problem was able to successfully estimate the 

internal convective heat transfer coefficient. In particular, the numerical results here 

presented highlight the goodness of GFSVD and TM in solving this kind of inverse problem 

and the limits of TSVD that, although being probably the most widely used approach, suffers 

ringing artefacts in the reconstruction of the wanted information at low noise level.  

GFSVD, thanks to the smooth penalty function added to the classical SVD approach, 

exhibited almost the same high-level performance as TM, providing an original point of view 

on the regularization techniques. 
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(a) (b) 

(c) (d) 
Figure 5.13: Average estimation error as a function of the dimensionless noise level for 

different test case: a) h1 b) h2 c)h3, and d) h4 
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4.3.2 Filtered Reciprocity Functional 

Since this new proposed methodology is characterized by an ideal low pass filter function, 

its estimated results are going to be compared with the ones provided by its precursor NRF 

and the TSVD algorithm, a common regularization scheme based on the same filter function. 

The numerical data set used for the validation of the new methodology is the same that was 

adopted for the validation of the GFSVD. 

The reconstruction results related to the test function here analysed are shown in Figure 

(5.14)-(5.15), for two representative noise level (e.g. 𝜎 = 0.1𝐾 and 𝜎 = 1𝐾). As it is 

possible to see, the three estimation algorithms present different degrees of reconstruction 

accuracies depending on the noise level and the test case considered. Moreover, it is possible 

to see that the reconstruction provided by FRF and TSVD are almost the same, while the 

once obtained from the NRF is less accurate. It has to be remarked that, the number of 

harmonics to keep is chosen by the classical discrepancy principle, originally formulated by 

Morozov (Morozov1984), in order to compare straightforwardly the three considered 

approaches.  

(a) (b) 

(c) (d) 
Figure 5.14: Reconstruction of the internal heat transfer coefficient for a) test case h1, b) 

test case h2, c) test case h3 and d) test case h4 (σ=0.1K) 
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(a) (b) 

(c) (d) 
Figure 5.15: Reconstruction of the internal heat transfer coefficient for a) test case h1, b) 

test case h2, c) test case h and, d) test case h4 (σ=1K) 
 

As suggested by Bazàn (Bazàn ), the stopping criterion used affects the quality of the 

reconstruction; moreover, Colaço (Colaço ) already showed that the reconstruction due the 

NFR could be better if a different stopping criterion is used. 

Since the noise is uniformly distributed in all the frequencies, while the signal is almost 

present at low frequency, the worst reconstruction provided by the RFN compared to TSVD 

and FRF is due to its incapability to separate the signal form the noise, which means filter 

out the high harmonic frequencies. 

Therefore, the noise content in the measurements is passed to the inversion algorithm which 

promotes instabilities in the estimated solution, yielding to high ringing artefact . 

It has to be pointed out that for all the estimation procedure here addressed, the Morozov’s 

discrepancy principle was adopted as a criterion for the determination of the regularization 

parameter. 
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(a) (b) 

  
(c) (d) 

Figure 5.16: Residuals between the reconstructed and the measured external wall 
temperature for a representative noise level 𝜎 = 0.1𝐾: (a) h1, (b) h2, (c) h3 and (d) h4 

 

As it is possible to see in Figure (5.16), the criterion was able to identify the regularization 

parameter for all the test function used and listed in Table (5.4) since the residual between 

the estimated and the measured external wall temperature are randomly distributed with zero 

mean and standard deviation equal to the once expected. 

Figure (5.17) shows the Morozov’s discrepancy principle of the three methodologies here 

investigated for a representative noise level 𝜎 = 0.1𝐾. 

As it is possible to see, for all the methodologies here investigated, the standard deviation of 

the residuals between the measured and the estimated temperatures at the external boundary 

monotonically decrease as far as the regularization parameter increase. 

This behaviour is justified since incrementing the regularization parameter more information 

about the signal are preserved during the estimation procedure, thus reducing the misfit 

between the temperature estimation at the external boundary and the measured one.  

As highlighted by Figure (5.18), FRF estimates better than the classical RFN, which shows 

always the worst behaviour. Moreover, it estimation capabilities are comparable to the 

TSVD method, suggesting this approach to future application and development. 
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(a) 

  
(b)  (c) 

Figure 5.17: Morozov’s discrepancy principle for a representative noise level 𝜎 = 0.1𝐾: 
(a) TSVD, (b) FRF and (c) RFN 

 

This means that the harmonic decomposition of the Classical Integral Transform Technique 

enables to efficiently remove the unwanted information from the measured data.  

It has to be highlighted that the stopping criterion used affects the quality of the 

reconstruction as already shown by Bazàn (Bazàn2012) that compared the fixed-point 

criteria with the Morozov’s discrepancy principle; moreover, Colaço (Colaço2013) already 

showed that the reconstruction due the NFR could be better if a different stopping criterion 

is used. 

As already mentioned, in every practical condition, the noise is uniformly distributed on the 

whole spectrum while the signal is almost always present in the lower harmonic orders; 

under this statement, the magnification effect of the 𝑀  and 𝑁  matrices (Chapter 4), 

which increases as the harmonics order increase, requires the truncation of their diagonal 

elements. This kind of truncation can be performed according to the Morozov’s discrepancy 

principle in the same fashion as it was already adopted for the TSVD approach. 

This behaviour is clarified by Figure (5.19), which shows the reciprocity functional values 

for both the first and the second auxiliary problem as a function of the harmonic order, for 

the two representative test case h1 and h3.  
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(a) (b) 

(c) (d) 
Figure 5.18: Average estimation error as a function of the dimensionless noise level for 

different test case: a) h1 b) h2 c)h3, and d) h4 
 

In order to improve the readability of these plots, the reciprocity functionals are expressed 

in a more compact polar form, following the classical notation: 

 

𝑅∗ = 𝑅 ( ∗) + 𝑅 ( ∗ )  

𝑅∗ = 𝑅 ( ∗) + 𝑅 ( ∗ )  

(5.16) 

where: 𝑘∗ = 2,4,6, … , 𝑁 − 1. 

In all the graphs presented in Figure (5.19), the reciprocity functional of the noiseless signal 

(filled dot) is compared to the reciprocity functional of a representative set of white noise 

having standard deviation of 𝜎 = 0.1𝐾 (empty dot), that were used to spoil the synthetic 

data. They confirm that, in the reciprocity functionals, the signal prevails for the lower 

harmonics, while the noise overcomes the signal for the higher harmonics. 

Given the above results, it is possible to conclude that, the approach here developed was able 

to deals with the estimation of the local internal heat transfer coefficient in a convective heat  
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(a) (b) 

(c) (d) 
Figure 5.19: RG and RF for two representative test case: a) RG for test case h1 b) RG 

for test case h3 c) RF for test case h1 and d) RF for test case h3 
 

transfer problem, given the external temperature measurements, by solving an Inverse Heat 

Conduction Problem.  

The approach, named Filtered Reciprocity Functional approach, presents some practical 

advantages over the more classical inverse problem solution techniques since it is completely 

analytical and, for this reason, computationally inexpensive if compared to the NFR and 

TSVD approaches. 

The application of FRF to the numerical measurements highlighted its effectiveness and 

robustness, suggesting the application to other challenging inverse problems. Moreover, the 

obtained formulation enables, from the theoretical point of view, to highlight the ill-posed 

nature of the inverse problem and, from the practical point of view to filter efficiently the 

noisy content thanks to the harmonic nature of CITT and the Fourier series expansion. 

In the next chapter the methodologies here compared are going to be applied to a set of 

experimental measurements acquired by means of the thermographic camera. 
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5.2 Two dimensional function estimation 

 

The 2D inverse problem here addressed concerns the estimation of the local thermal 

performances at the internal wall surface of tubes characterized by a circular cross-section. 

The methodology used is based on the Tikhonov regularization technique presented in 

Chapter 3. The inverse procedure is implemented in within the Matlab® environment by 

adopting synthetic data (sampled at the external surface of the pipe) generated by the finite 

element method implemented in Comsol Multiphysic® by imposing a known distribution of 

ℎ  at the internal wall surface of the tube. The physical problem considered in the present 

work, according to the conditions reported in the available literature (Bozzoli2014a, 

Colaço2015), consists in a piece of circular duct characterized by an internal radius 𝑟 =

0.007𝑚, external radius 𝑟 = 0.008𝑚 and length 𝐿 = 0.016𝑚. The thermal conductivity 

of the pipe, 𝑘 = 15𝑊/𝑚 𝐾, was assumed to be constant such as the environmental 

temperature, 𝑇 = 294.2𝐾, and the bulk temperature, 𝑇 = 291.9, of the fluid that flows 

inside the tube. The exterior surface Γ  of the tube was subjected to an overall convective 

heat transfer resistance, 𝑅 = 0.2𝑚 𝐾/𝑊, with the environment and the domain Ω, that 

was assumed to be homogeneous and isotropic, and subjected to an internal heat generation  

per unit of volume 𝑞 = 2.8 10 𝑊/𝑚 . 

A representation of the geometrical domain, together with the boundary conditions applied 

in both the direct and inverse problem is show in Figure (5.20). 

The direct problem could be stated as follows: 

 

∇ 𝑇 = −
𝑞

𝑘
in Ω

−𝑘
𝜕𝑇

𝜕𝐧
= ℎ (𝜃, 𝑧) on Γ

−k
𝜕𝑇

𝜕𝐧
= ℎ (𝑇 − 𝑇 ) on Γ

 

−𝑘
𝜕𝑇

𝜕𝐧
= 0 on Γ  

−𝑘
𝜕𝑇

𝜕𝐧
= 0 on Γ  

(5.17.1) 

(5.17.2) 

(5.17.3) 

(5.17.4) 

(5.17.5) 
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where ℎ  is the internal convective heat transfer coefficients used to produce the synthetic 

measurements which is defined as (Bozzoli2016a): 

 

ℎ = 𝐴 + 𝐵 sin 𝜃 + 2𝜋
𝑧

𝑝
  (5.18) 

 

where 𝑝 = 0.029𝑚 while 𝐴 and 𝐵 were chosen to be equal respectively to 400𝑊/𝑚 𝐾 and 

300𝑊/𝑚 𝐾. A representation of the adopted internal heat flux distribution is shown in 

Figure (5.14) together with the produce noiseless temperature distribution. 

The direct problem presented in Equations (5.17.1)-(5.17.5) concerns the determination of 

the temperature field 𝑇 within the Ω domain given the distribution of the convective heat 

transfer coefficient on both the internal and external surfaces. As it is possible to see, from 

the system of Equations (5.17), the direct problem is linear with respect to the unknown 

variable 𝑇, while the inverse problem related to the estimation of the convective heat flux 

distribution is not linear in the unknown variable ℎ , since the internal wall temperature of 

the duct could not be directly measured. This unwanted behaviour could be overcome 

formulating an auxiliary problem in which the internal surface is subjected to an imposed 

heat flux distribution:  

 

∇ 𝑇 = −
𝑞

𝑘
in Ω

−𝑘
𝜕𝑇

𝜕𝐧
= 𝑞 (𝜃, 𝑧) on Γ

−𝑘
𝜕𝑇

𝜕𝐧
= ℎ (𝑌 − 𝑇 ) on Γ

 

−𝑘
𝜕𝑇

𝜕𝐧
= 0 on Γ  

−𝑘
𝜕𝑇

𝜕𝐧
= 0 on Γ  

(5.18.1) 

(5.18.2) 

(5.18.3) 

(5.18.4) 

(5.18.5) 

 

where 𝑌 are some extra temperature measurements taken at the external surface Γ  by 

means of a thermographic camera, while 𝒒(𝜃) is the unknown boundary condition that has 

to be estimated. 
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(a) 

 
 

(b) (c) 
Figure 5.20: Function estimation: (a) Geometrical domain, (b) coordinate system and 

(c) internal heat flux discretization scheme  
 

In this way, the system of Equation (5.18) becomes linear with respect to the imposed heat 

flux and the convective heat flux distribution can be calculated, once the heat flux estimation 

is performed, as: 

ℎ (𝜃) =
𝑞(𝜃)

𝑇 (𝜃)| − 𝑇  𝐴
 (5.19)      

 

As already mentioned in the previous chapter, the linearity of the system is an interesting 

property, since it allows to solve the problem in an easy way, avoiding the usage of iterative 

procedures that are cost-expensive in terms of computational requirement.  

As suggested by Beck (Beck1985) and Dennis (Dennis2013), since the problem is linear with 

respect to the heat flux 𝑞(𝑥), it can be written in the discrete domain as follows: 

 

𝑻 = 𝑿𝒒 + 𝑻𝒒 𝟎 (5.20) 
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where 𝑻 is the estimated temperature on the sampling position (e.g. in all the entire), 𝑿 is 

the sensitivity matrix, 𝒒 is the imposed heat flux distribution and 𝑻  is the estimated 

temperature on the sampling position if no heat flux is applied on the boundary at Γ . The 

homogeneous term 𝐓  has to take care about the forcing term (e.g. internal heat source, 

imposed potential boundary conditions, etc.): it represents the response of the system if no 

heat flux 𝒒 is imposed, highlighting the effect of the forcing term. It follows that the 

quantities present in the Equation (5.20) are given by: 

 

𝑻𝑻 = [𝑇 , 𝑇 , 𝑇 , … 𝑇 , … , 𝑇 ] (5.21) 

𝒒𝑻 = [𝑞 , 𝑞 , 𝑞 , … 𝑞 , … , 𝑞 ] (5.22) 

𝑿𝑻 =

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝑇 /𝜕𝑞 𝜕𝑇 /𝜕𝑞 ⋯ 𝜕𝑇 /𝜕𝑞 ⋯ 𝜕𝑇 /𝜕𝑞

𝜕𝑇 /𝜕𝑞 𝜕𝑇 /𝜕𝑞 ⋯ 𝜕𝑇 /𝜕𝑞 ⋯ 𝜕𝑇 /𝜕𝑞
⋮

𝜕𝑇 /𝜕𝑞
⋮

𝜕𝑇 /𝜕𝑞

⋮
𝜕𝑇 /𝜕𝑞

⋮
𝜕𝑇 /𝜕𝑞

𝜕𝑇 /𝜕𝑞

⋯ ⋯

⋮
𝜕𝑇 /𝜕𝑞

⋮
𝜕𝑇 /𝜕𝑞 ⎦

⎥
⎥
⎥
⎥
⎤

 (5.23) 

 

where 𝑖 is the total number of sensors while 𝑗 is the total number of discretizing parameters. 

The problem can be stated using the Lagrange multipliers in a damped least square problem: 

 

min 𝒀 − 𝑿𝒒 + 𝑻𝒒 𝟎 + 𝜆 ‖𝒒𝑳‖      𝜆 > 0 (5.24) 

 

where ‖ ∙ ‖  stands for the square of the two-norm, λ is the unknown regularization 

parameter and 𝑳, for the zero order Tikhonov regularization, is the identity matrix: 

 

𝑳 =
1 0

⋱
0 1

  (5.25) 

 

As long as 𝜆 is a non-zeros coefficient, the problem defined by the Equation (5.24) can be 

solved by the method of the normal equations as follows: 

 

(𝑿 𝑿 + 𝜆 𝑳)𝒒 = 𝑿𝑻 𝒀 − 𝑻     𝜆 > 0 (5.65) 

 

which yields to the estimated internal wall heat flux: 
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𝒒 = (𝑿 𝑿 + 𝜆 𝑳 𝑳) 𝑿 𝒀 − 𝑻𝒒 𝟎  (5.27) 

 

It has to be pointed out that since the boundary conditions adopted on the top and on the 

bottom of the pipe are not the ones that better model the phenomenon, it was necessary to 

extend the module under investigation two times before and two times after the test section, 

as shown in Figure (5.20). 

It has to be pointed out that, the unknown heat flux distribution was discretized in order to 

have the same pitch in both the circumferential and axial coordinate: in particular, it was 

discretised in 360 values along the 𝜃 coordinate and 1310 values along the 𝑧 coordinate.  

This configuration allowed using the same regularization parameter in both directions, 

giving the same weight to the filter function. The same discretization was adopted for the 

temperature measurements available at the external surface, after the image processing 

procedure.  

It is well known that the effectiveness of all regularization approaches strongly depends on 

the choice of a proper value of the regularization parameter (Bazàn2012, Bozzoli2014a). 

 

 
(a) 

 
(b) 

Figure 5.21: Function estimation: (a) internal convective heat transfer coefficient and 
(b) simulated temperature distribution  
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(a) 

 
(b) 

Figure 5.22: Function estimation: internal convective heat transfer coefficient for two 
representative noise level (a) 𝜎 = 0.1𝐾 and (b) 𝜎 = 1𝐾 

 

In the present analysis, to make the comparison between the considered regularization 

techniques more straightforward, the criterion provided by the discrepancy principle, 

originally formulated by Morozov (Tikhonov1977, Beck1985), was adopted for all the 

techniques. 

In order to test the estimation capabilities of the methodology adopted, the synthetic 

measurement temperatures 𝑌 were deliberately spoiled by random noise and then used as 

input data for all the mathematical models. In particular, a Gaussian white noise 

characterized by a standard deviation ranging from 𝜎 = 0.01𝐾 to 𝜎 = 5𝐾 was introduced 

according to: 

 

𝑌 = 𝑇 | + 𝜎𝜖 (5.28) 

 

where ϵ is a random Gaussian variable with zero mean and unit variance. 
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(a) 

 
(b) 

Figure 5.23: (a) Residual between the estimated and the reconstructed external wall 
temperature and (b) Morozov’s discrepancy principle, for a representative test case 𝜎 =

0.1𝐾 
 

In order to give a quantitative indication of the estimation capabilities of the methodology 

adopted, the global relative estimation error between the exact and the estimated internal 

heat transfer coefficient was calculated as: 

 

𝐸 =
‖𝒉 − 𝒉 ‖

‖𝒉 ‖
 (5.29) 

 

The added noise depends intrinsically on the random sequence generated by Matlab®, thus 

the estimation procedure was repeated 50 times for different random noise sequences and an 

average value 𝐸  was calculated for each noise level. 

The results of the local estimation of the heat transfer coefficient are reported in Figure 

(5.22). As it is possible to see, the reconstruction related to two different noise levels (𝜎 =

0.1𝐾 and 𝜎 = 1𝐾) suffer of small ringing artefact. 
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(a) (b) 

  
(c) (d) 

Figure 5.24: (a) longitudinal and (b) circumferential convective heat transfer coefficient 
distribution for a representative test case 𝜎 = 0.1𝐾 and (c) and (d) for 𝜎 = 1𝐾 

 

It has to be pointed out that the Morozov’s discrepancy principle was able to estimate the 

regularization parameter that has to be adopted, in all the noise levels here presented. This 

aspect is confirmed by the random behaviour of the residuals between the measured and the 

estimated external wall temperature profiles shown in Figure (5.23) for a representative noise 

level 𝜎 = 0.1𝐾. 

As it is possible to see, the standard deviation of the residuals between the measured and the 

estimated temperature at the external boundary, monotonically increases as far as the 

regularization parameter increases. 

This behaviour is justified, since the increment of the regularization parameter will produce 

an over-smoothed estimated solution, thus increasing the misfit between the temperature 

estimation at the external boundary and the measured one.  

In order to better understand the reconstruction capabilities of the TM here implemented, the 

comparison between the reconstructed and the imposed convective heat transfer coefficient 

is reported in Figure (5.24) for two representative noise levels. As it is possible to see, in 

both the longitudinal and circumferential directions, the algorithm was able to restore the 

internal convective heat transfer coefficient stating form the external temperature 



156 

measurements. It has to be pointed out that, as far as the noise level inside the measurements 

increase, the reconstructed signal becomes smoother and smoother, since a higher 

regularization is required in order to respect the Morozov’s discrepancy principle. 

As observed in all inverse problems (Beck1977), the presence of the noise in the 

measurements corrupts the reconstruction of the unknown convective heat transfer 

coefficient. The average estimating performances of the proposed method are reported in 

Figure (5.25). 

 

 
Figure 5.25: Average estimation error as function of the dimensionless noise level 
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Chapter 6 

 

Experimental applications 
 

The experimental applications here considered are relate to both parameter and function 

estimation. In particular, four different applications are going to be introduced and analysed:  

- inverse estimation of the average performances of a bio-inspired double corrugated 

tube 

- inverse estimation of the local convective heat transfer coefficient in coiled tubes 

- inverse estimation of the local convective heat transfer coefficient in straight tubes 

using insert devices 

- inverse estimation of the local convective heat transfer coefficient in straight tubes 

with cross-helix wall corrugated surface 

The above mention applications are analysed using the new estimation methodologies 

presented in Chapter 4 and their results are compared with some of the common estimation 

procedure presented in Chapter 3. 

The usage of the IHCP for the estimation of the thermal characteristic of the heat exchangers, 

is going to be a common task in the scientific community, but it still be far away from the 

industrial application. The aim of the present chapter is the experimental estimation of the 

thermal performances of the heat exchanger to problems 0D, 1D and 2D with respect to the 

unknown variable. This type of analysis will allow the researcher to understand the local 
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phenomena that is driving the heat transfer mechanism as well as the industry to customize 

their devices for each application (increasing the performances of their products); it will also 

produce a set of experimental data that the mathematical community could use in order to 

test new estimation techniques. 

 

6.1 Inverse estimation of the average performances of a    

bio-inspired double corrugated tube 

 

INTRODUCTION 

The 0D inverse problem here addressed, is stated in Chapter 3 as a parameter estimation 

procedure, since the number of unknown variables is small. The defined problem, is here 

specifically applied for the estimation of the thermal performances of a bio-inspired double 

corrugated tube. 

Nature can be an excellent source of inspiration for advanced structures, designs and 

materials, and the approach is referred to as biomimetic (Bhushan2009). According to 

Mattheck (Mattheck1993), as early as 1893, it was suggested by K. Metzger that trees grow 

in a way that results in an even stress distribution throughout their structure. For example, 

the concept of even stress flow in mechanical systems has resulted in numerical models that 

can explain how trees grow and adapt to their unique loading case, including how root 

systems grow. Flies, beetles, spiders and geckos have specialized attachment geometries on 

their skin that allow them to climb up smooth vertical surfaces (Artz2003). Sharks have small 

riblets on their skin that reduce drag (Dean2010). In this article, we look to nature for 

examples of advanced heat exchanger designs, although there are relatively few examples 

of biological systems that require high heat transfer performance.  

Many examples of complex thermal insulation techniques can be found in nature, but cases 

where high heat transfer is required are less common. Examples of insulation techniques 

include the fur of arctic animals or the insulating blubber layer found on seals and whales 

(Scholander1950). Some examples of high heat transfer performance in nature include the 

feet of some birds that have a counter-flow heat exchanger composed of blood vessels 

entering and exiting the feet (Johansen1983). This heat exchanger allows the feet to operate 

at a lower temperature than the rest of the bird’s body and thus eliminates the need for 

insulation, in the form of feathers, on the feet. The counter-flow vascular heat exchanger at 

the core of several fish species, such as lamnid sharks and tuna (Dickson2004), while opahs 
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Figure 6.1: Photo of blood vessels in the rete mirabile, which is located in the gill of the 
opah. Reproduced from a figure from Wegner (Wegner2015) 

 

(Wegner2015) represents a compact, high performance heat exchanger. This heat exchanger 

recovers heat generated in the fish’s muscles that is carried in the blood before it is pumped 

to the gills where the heat is rejected to the surroundings, giving these fish the unique ability 

to maintain a body temperature that is significantly higher than their surroundings. This heat 

recovery technique allows them to hunt in waters with lower temperatures than fish without 

the regenerative heat exchanger. For example, the heat exchanger section of a 1.9 kg skipjack 

tuna was found to have over 250,000 blood flow passages with two distinct diameters of 

approximately 0.036 mm and 0.084 mm (Stevens1974). 
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Figure 6.2: 3D magnetic resonance imaging  of the opha blood vessels (Börnert1995) 

 

In Figure (6.1), it can be seen that some blood vessels are nearly circular, others resemble 

ellipses, and others are irregular. Cross-sections such as shown in Figure (6.1) only show the 

geometry at one plane in the heat exchangers, and it is not known how the cross section of 

these blood vessels behave along the flow direction. To get an idea of how these blood 

vessels might behave in 3D, we can look at imaging of larger blood vessels. Börnert, 

(Börnert1995) present a 3D image of coronary arteries shown in Figure (6.2) using magnetic 

resonance imaging.  

In the 3D reconstruction, the shape of the arteries seems to fluctuate along the flow path but 

we assume that the area for flow stays nearly constant to prevent any high flow resistance 

areas, which would cause stress on the heart. Based on the images in Figure 6.1 and using 

fish such as the tuna and opah as inspiration, a double corrugated tube geometry for enhanced 

heat transfer rate was suggested. The considered flow cross-section is elliptical and 

constantly changes aspect along the flow path while maintaining a constant hydraulic 

diameter in order to continuously break up the thermal boundary layer that attempts to form 

in the fluid flow. A similar concept was suggested by Jantsch, (Jantsch1953) where a tube 

was deformed to change the cross sectional shape while maintaining a constant flow area. 

Jantsch, (Jantsch1953) claimed that the geometry gave “an effective kneading of the fluid 

in the column” that improved contact between the tube wall and fluid.  

With growing energy consumptions, the appeal for more efficient techniques to harvest or 

use the available energy is increasing instantly. Food industry, aerospace, paint production, 

naval, chemical engineering, and paper manufacturing are only few examples where 

enhanced heat transfer is on high request (Rainieri1997, Meng2005, Fan2009, Webb1994, 

Dong2001, Pethkool2001). In most applications, laminar flow or viscous fluids are required 

and that reduces the thermal efficiency of such processes or apparatuses. 
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EXPERIMENTAL SET-UP 

In this experimental study, double corrugated tubes and an equivalent straight tube 

manufactured using selective laser melting (SLM) technique were investigated in a counter-

flow tube-in-shell heat exchanger setup. The concept of the double corrugation is similar to 

Alternating Elliptical Axis (AEA) tubes. However, the transition in a cross-section is 

smoother for double corrugated tubes, which would lead to a lower pressure drop. The 

double corrugated tubes have an elliptical cross section and the 𝐷  is held constant at any 

point in a flow channel. The walls of double corrugated tubes periodically impinge the fluid 

flow preventing development of thermal boundary layers and promoting the heat transfer 

enhancement. The experimental study is carried out at flow with low Re using city water, 

supplied form a district system. The obtained thermal performance results are presented in a 

form of Nu correlations. The pressure drop in the investigated tubes is measured for 

isothermal flow conditions. The global thermos-hydraulic performance of double corrugated 

tubes is evaluated at the same pumping power. 

The double corrugated tubes and an equivalent straight tube were manufactured using 

selective laser melting technique in AlSi10Mg powders with a relative density of the alloy 

after SLM equals to 99.5%, while the thermal properties were described by Mertens 

(Mertens2015). The double corrugated tubes here investigated, are characterized by an 

elliptical cross section that changes aspect ratio (𝜉) in the cross-sectional plane while keeping 

a constant hydraulic diameter (𝐷 ) along the tube axis. The geometry of the investigated 

tubes is defined by Equation (6.1): 

 

⎩
⎨

⎧ x=ξ
sin

2π
z

+
𝑅

2

y=
𝑅

2
ξ

sin
2π

z
+

𝑅

2

 (6.1) 

 

where 𝑥 and 𝑦 are the Cartesian coordinates that define the cross-sectional plane of the tube, 

while 𝑧 corresponds to the tube’s axis coordinate, 𝑅 is the radius of an equivalent straight 

tube, 𝑝 is a corrugation pitch.  
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Figure 6.3: 3D printed tubes with the 𝐷  constant (a) the straight reference tube, (b) 
double corrugated tube with 𝜉 = 2.0 and p = 7.5 mm, (c) double corrugated tube with 

    𝜉= 2.2 and p = 20.0 mm. 
 

 

Therefore, the cross section of the tube at any point in the flow direction is defined as an 

ellipse with one axis equal to x and the other equal to y, that periodically become equal, 

forcing the cross-section to be a circle. Parametric equation tool and Lofted Boss/Base 

feature build in Solidworks® environment, was used to approximate the Equation (6.1) with 

a maximum inaccuracy of ± 3.6 % on the hydraulic diameter 𝐷 . It is noticeable, that 

inaccuracy decreases with decreasing 𝜉 or increasing p. 

The geometrical data and the inaccuracy in 𝐷  of the tested tubes are given in Table (6.1) 

where 𝐴 ,  and 𝐴 ,  are the internal and external heat transfer surface are while 𝛿 is the wall 

thickness of the tubes, respectively. 

 

 

Table 6.1: Geometrical characteristics of the investigated wavy tubes 

Tube name 𝜉 
(adm) 

𝑝 
(mm) 

𝑙 
(mm) 

𝐴 ,  
(mm²) 

𝐴 ,  
(mm²) 

𝐷  
(mm) 

𝛿 
(mm) 

𝐸     
(%) 

𝜉1.6 p7.5 1.6 7.5 250 4195.4 5873.3 5 1 ±0.4 

𝜉2.0 p7.5 2.0 7.5 250 4525.2 6349.8 5 1 ±2.8 

𝜉1.6 p20 1.6 20.0 250 4087.5 5526.9 5 1 ±1.8 

𝜉2.0 p20 2.0 20.0 250 4280.2 5893.9 5 1 ±2.9 

𝜉2.2 p20 2.2 20.0 250 4396.8 6028.2 5 1 ±3.6 

Straight  - - 250 3925.0 5495.0 5 1 - 
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(a) 

 

 

 
(b) (c) 

Figure 6.4: (a) Experimental test rig: [A] Pressure drop connector, [B] Shell, [C] air 
separator, [D] thermocouples holder with water passage, [E] 3D printed connector and 
[F] turned nylon connector, (b) Head of the shell heat exchanger [F] and (c) installation 

scheme of the calibrated thermocouple 
 

The double corrugated tube geometry varies in 𝜉 and p. The manufacturing process of the 

tubes may result in higher inner surface roughness of the tubes. Therefore, surface roughness 

analysis was carried out using a LEXT OLS4100 3D Measuring Laser Microscope made by 

Olympus Corporation. A sample for the surface roughness analysis was cut along the flow 

direction of the straight tube. The surface root square mean roughness, 𝑆 , of a rectangular 

area 0.62 × 6.56 mm was directly measured according the standard ISO 4287 and found to 

be 0.013 mm with the maximum difference between the highest and the lowest measured 

points of 145.6 ± 13 μm. 
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(a) 

 
(b) 

Figure 6.5: (a) Comparison of all the3D printed tested tubes and (b) measured internal 
surface roughness 

 

As it is possible to see in Figure (6.5-b) the surface roughness of the 3D printed tube is 

comparable to the once produced by the standard manufacturing tools, therefore the heat 

transfer enhancement due to the modification of the solid-fluid interface is negligible if 

compared to the effect induced by the here adopted wall corrugation profile. 

The geometry of double corrugated tubes, shown in Figure (6.3) for three representative test 

cases, constantly impinges the fluid flow and prevents the development of boundary layers.  
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The double corrugated tubes were experimentally investigated in a tube-in-tube counter flow 

heat exchanger shown in Figure (6.4). As it is possible to see, the air contented in the hot 

water going inside the shell was separated by the air-separator [C]. 

In order to make a robust temperature measurement, two calibrated T-type thermocouples 

[D] were used on each of the four sides of the heat exchanger and the average value of each 

pair were used during the inverse estimation. In order to prevent leakages form the shell to 

the tube side and vice-versa a 3D printed connector [E] were sealed on the tube, while O-

rings were used to prevent leakages between the connector [E] and the shell closer [F]. 

On this particular customized part [F], were also drilled holes for the pressure drop 

measurement [A] as well as for the temperature measurements of both the shell and tube side 

as is possible to see in Figure (6.5). The component [F] were also used in order to seal the 

shell [B] from the environment. 

A schematic representation of the test facility is shown in Figure (6.7).  

The water to the test rig was supplied from a district water supply system; in particular, the 

water flow was separated into two streams by a manifold with giving the possibility to 

regulate both flows using valves [1]. 

A cold-water stream was directly connected to the inlet shell side, on which stream two 

valves [1] were fitted in order to regulate the flow rate, while the outlet went to the drain. 

The mass flow rate measurement was made by weighting the mass of water contained in a 

flax coming out from the outlet of the shell in a time period 𝑡 measured with a chronometer. 

The second stream separated from the district water system was connected through a thermal 

reservoir with a copper coil heat exchanger.  

 

 
Figure 6.6: 3D CAD model of the here developed shell and tube heat exchanger 
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Figure 6.7: Schematic of the experimental setup  

 

The reservoir was installed in order to increase the thermal inertia of the system 

compensating the oscillation of the inlet water temperature. The thermal reservoir was 

maintained at a fixed temperature using a thermal bath with the set point 𝑇 = 70°𝐶. The 

heated water flow was regulated using two valves [1] at the inlet of the tube and one valve 

[1] at the outlet of the tube. The hot water, was then pushed to the air separator [3] before 

going into the tube under test. This flow regulation technique ensured the air-bubble-free 

water flow with no temperature stratification at low flow rates.  

 

ESTIMATION PROCEDURE 

As already mention in Chapter 3 the main goal of this kind of heat transfer characterisation 

is the estimation of the coefficients comparing in the Equation (3.9.1-3.9.2). In order to 

estimate their values, the IRLS algorithm presented in Chapter 3 was used, following the 

methodology presented in Chapter 4. 

In particular, the inverse problem procedure, requires the estimation of the unknown 

coefficient 𝛼 and 𝛽 related to both the tube and shell side, the correlate the Nusselt to the 

Reynold number as follows (Incropera2005, Rainieri2004): 

 

𝑁𝑢 = 𝛼 𝑅𝑒 𝑃𝑟 .  (6.2) 

 

The approach is based on the minimisation of the objective function defined as: 

 

𝑟 = 𝑈 − 𝑈  (6.3) 
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where 𝑈  and 𝑈  are respectively the experimental and the simulated global heat 

transfer coefficient. 

For any double flow heat exchanger in a steady state condition, perfectly thermally insulated 

from the environment in which is negligible the heat conduction in the flow direction, it is 

possible to determine the average overall heat transfer coefficient 𝑈 for the inner heat 

transfer surface area 𝐴  as follows: 

 

𝑈 =
𝑄

𝐴 Δ𝑇
 (6.4) 

 

where Δ𝑇  is the logarithmic mean temperature difference while 𝑄 is the exchanged heat 

flow rate, that could be determined by: 

 

𝑄 = �̇� 𝑐 (𝑇 − 𝑇 ) =  �̇� 𝑐 (𝑇 − 𝑇 ) (6.5) 

 

where �̇� and 𝑐  are the mass flow rate and the specific heat capacity, respectively, while ∙  

and ∙  stay for the tube and the shell side, respectively 

Due to the electrical analogy, it is possible to define the overall heat transfer coefficient as a 

summation of resistance as follows: 

 

1

𝑈𝐴
=

1

ℎ 𝐴
+ 𝑅 +

1

ℎ 𝐴
 (6.6) 

 

where ℎ  and ℎ  are the internal and external convective heat transfer coefficient 

respectively, while 𝐴  and 𝐴  are the internal and the external heat exchanger surface areas, 

respectively. 

Due to the quasi-cylindrical configuration characteristic of a tube side heat exchanger, the 

thermal resistance of the wall 𝑅  could be approximated as: 

 

𝑅 =
ln

𝐷
𝐷

 

2𝜋𝑘 𝐿
 (6.7) 

 

where 𝐷  and 𝐷  are the external and internal hydraulic diameter of the tube, respectively, 

while 𝑘  and 𝐿 are the thermal conductivity and the length of the tube that is exchanging 
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heat, respectively. Thus it is possible to assume known the thermal resistance of the wall, for 

a given heat exchanger configuration, under a given operating condition.  

Assuming the internal diameter of the tube, as the characteristic length, it is possible to define 

the internal Nusselt number coefficient as: 

 

𝑁𝑢 =
ℎ 𝐷

𝑘
 (6.8) 

 

where 𝐾 is the thermal conductivity of the fluid that is passing inside the tube. 

The convective heat transfer coefficients ℎ  and ℎ  appearing in the Equation (6.6) are 

unknown, moreover, its value is difficult to be determined also because it changes for each 

application. Therefore, they can be estimated, whit a suitable accuracy, by adopting a 

parameter estimation technique under an inverse problem data processing methodology 

(Beck1977). This implies that the following cost function has to be minimised: 

 

𝑟 , , , = 𝑈 , − 𝑈 ,  (6.9) 

where 𝑀 is the total number of measurements made for a given Reynolds number in the shell 

side 𝑅𝑒 , varying the Reynolds number 𝑅𝑒 . 

It is possible to write the Equation (6.6), highlighting the effect of the unknown parameters: 

 

𝑈 = 𝐴
𝐷

𝐴 𝜆 𝛼 (𝑅𝑒 ) (𝑃𝑟 ) .
+ 𝑅 +

𝐷

𝐴 𝜆 𝛼 (𝑅𝑒 ) (𝑃𝑟 ) .
 (6.10) 

 

The optimization algorithm will find the best set of unknown parameters that it is able to 

minimise the cost function defined by the Equation (6.9) giving also their confidence 

intervals. 
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RESULTS 

The obtained experimental results are presented in terms of both absolute and relative 

Nusselt number in order to understand quantitatively the heat transfer enhancement and its 

increment with respect to the straight tube. Moreover, in order to enable a straight forward 

comparison of the double corrugated tubes when designing heat exchangers with other heat 

transfer enhancement devices, the presented 𝑁𝑢 correlations are obtained using all the 

geometrical data (such as surface heat transfer area 𝐴 , the cross-section area 𝐴  and 

hydraulic diameter 𝐷 ) of the equivalent straight pipe. Using this approach, the benefits of 

the enhanced surface area are already included into the comparison. Moreover, Bergles 

(Bergles1974) pointed out that it is more convenient to use nominal geometry for identifying 

heat transfer augmentation especially if the enhanced tube is used as a direct replacement of 

an existing straight tube.  

The experimental heat transfer results for the straight tube were compared to the correlation 

developed by Hausen and Sieder both valid for thermal entry region (Incoprera2002) in the 

laminar flow regime but for different thermal boundary condition; in particular, the 

correlation presented by Hausen is valid for constant surface temperature boundary 

condition, while the correlation developed by Sieder is valid for constant imposed heat flux 

boundary condition. Figure (6.8) shows that the obtained results agrees very good with the 

Hausen correlation within a confidence of 85 % and 95 % with Sieder correlation. These 

results indicates that the experimental set-up together with the data analysis methodology is 

reliable.  

 

 
Figure 6.8: Straight pipe: Comparison between the experimental results and the 

correlations provided by Hausen and Sider (Incoprera2002) 
 



169 

The accuracy associated with the estimated values was assigned by the parametric bootstrap 

method (Efron1982, Blackwell2010). In this procedure the term 𝑈  has been substituted 

by the distribution: 

 

𝑈 = 𝑈 ∙ (1 + 𝜖) (6.11) 

 

where 𝑈  was obtained from Equation (6.11) adopting the heat transfer coefficients found 

by Equation (4.1) while 𝜖 represents a uniformly distributed random noise with zero mean 

and variance 𝜎 which is assumed to be equal to the uncertainty related to the measured 

quantity Δ𝑇 = 𝑇 − 𝑇 . In order to find the 𝑈  value, 𝛼 and 𝛽 coefficients obtained 

from the estimation procedure using the experimental measurements, were used. 

Considering the overall heat transfer coefficient 𝑈  re-sampled from its probability 

distribution, as starting value, the unknowns are re-estimated using the same methodology 

discussed in Chapter 4. The re-estimation procedure was repeated many times for different 

sets of noise sequences, and the results are processed using the standard statistical techniques 

for evaluating 95% confidence intervals. 

The experimental results presented in Figure (6.9) show that the higher 𝑁𝑢 values are 

obtained for double corrugated tubes with shorter corrugation pitch. Moreover, it is possible 

to see that the thermal performance of the double corrugated tubes strongly depends on the 

corrugation pitch, while the aspect ratio represents an effect of the second order. 

 
Figure 6.9: Experimental observation at the tube side: Nusselt number distribution as a 

function of Reynolds number 
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Figure 6.10: Proposed correlation with 95% Confidence Interval at the tube side: 

Nusselt number distribution as a function of Reynolds number 
 

As it is possible to see, the double corrugated tubes with 𝑝 = 7.5𝑚𝑚 show up to 35 % higher 

Nu than double corrugated tubes characterized by 𝑝 = 20𝑚𝑚. 

It has to be highlighted that the double corrugated tube with 𝜉 = 1.6 and 𝑝 = 7.5𝑚𝑚 

outperforms the tubes characterized by 𝜉 = 2.0 and 𝑝 = 7.5𝑚𝑚 once 𝑅𝑒 is higher than 

2200, approximatively. This suggest that more intense corrugations are more thermally 

efficient at lower 𝑅𝑒 than the lower intense corrugation profile. 

In order to compare the obtained result, with the once available in literature, the unified 

correlation derived by Meng (Meng2005) for the alternating elliptical axis tubes, valid in the 

Reynolds number range 500 < 𝑅𝑒 < 10  was experimentally observed to be: 

𝑁𝑢 = 0.0615 𝑅𝑒 . 𝑃𝑟 .   
𝑃𝑟

𝑃𝑟

.

  (6.12) 

 

where 𝑃𝑟  and 𝑃𝑟  are the Prandtl number calculated at the fluid bulk temperature and wall 

temperature respectively. 

The heat transfer enhancement was also compared to one of the common insert devices 

usually employed as a heat transfer enhancement promoter (Sivashanmugam2006) in the 

Reynolds number range 200 < 𝑅𝑒 < 3000: 

𝑁𝑢 = 0.017 𝑅𝑒 . 𝑃𝑟 
𝑝

𝐷
  (6.13) 

 

where 𝑝 and 𝐷  are the helix pitch and diameter, respectively. 
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Figure 6.11: Tube side: thermal efficiency 

 

The same consideration could not be extended to the set of tubes characterized by a 

corrugation pitch of 20𝑚𝑚 for which the higher thermal performance was obtained for tubes 

with lower aspect ratios. This phenomena could probably be related to the formation of 

stagnation point in the valley of the tubes with high aspect ratio that limits the heat transfer 

capabilities of this kind of geometry. In order to validate this theory, a new experiment has 

to be performed with higher values of Reynolds number, condition that should ensure the 

disruption of the stagnation point in tubes with high aspect ratio. Figure (6.11) shows that 

the double corrugated tubes are up to 500 % (when 𝑝 = 7.5𝑚𝑚) and up to 200 % (when 

𝑝 = 20𝑚𝑚) more efficient than an equivalent straight tube. Moreover, it is possible to see 

that, for the here investigated Reynold number range, the thermal efficiency of the tubes 

characterized by a pitch of 7.5𝑚𝑚 is almost twice of the corrugated tubes with 𝑝 = 20𝑚𝑚. 

 

Table 6.2: Correlation coefficients and Nusselt number uncertainties for the tube side 

Tube name 𝛼 (adm) 𝛽 (adm) 𝜖𝑁𝑢 

𝜉1.6 p7.5 0.039 0.88 ±8.0% 

𝜉2.0 p7.5 0.16 0.77 ±8.5% 

𝜉1.6 p20 0.056 0.75 ±9.0% 

𝜉2.0 p20 0.037 0.76 ±11.0% 

𝜉2.2 p20 0.016 0.91 ±9.0% 

Straight  0.52 0.33 ±14.0% 
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The experimentally obtained data of thermal performance for the investigated tubes was 

correlated as given in Equation (4.1) for the tube side, and the obtained correlation 

coefficients are given in Table (6.2) together with their uncertainties. 

The agreement between the experimental data and correlation was checked in terms of 

overall heat transfer coefficient 𝑈. Figure (6.12) shows the comparison between 

experimental and correlated 𝑈 values for the double corrugated tube with 𝜉 = 2.0 and 𝑝 =

7.5𝑚𝑚 versus Re inside the tube (a) and inside the shell (b). 

It is possible to conclude that the methodology presented in Chapter 4 and validated in 

Chapter 5 using synthetic data measurements, was able to estimate the thermal performance 

of the double corrugated tubes here presented.  

The experimental validation of the methodology was performed by testing a straight smooth 

pipe and compering, with a good agreement between them, the estimated correlation with 

the equation provided by Hausen and Sider (Incoprera2002). 

The same estimation procedure, was also applied to the double corrugated tubes showing a 

high increment of the thermal performances of this new type of passive heat transfer 

enhancement technique respect to the straight pipe. In particular, the thermal performance 

of the double corrugated tubes is up to 500 % higher in terms of 𝑁𝑢/𝑁𝑢  for the Reynolds 

number range here investigated. 

An interesting phenomena, probably related to the formation of a stagnation point in the 

valley of the corrugation, was observed. In particular, higher thermal performances were 

observed for the smallest aspect ratio of corrugation for the tubes family characterized by 

the biggest pitch of corrugation; phenomena that is in contrast with what was observed for 

the family of tubes characterized by the smallest pitch of corrugation in which the stagnation 

zone is smaller. In order to confirm what it is here supposed to happen, other experiments 

have to be done extending the Reynolds number range to higher and lower values from the 

ones here presented. 

It is also noticeable that, the corrugation period has higher influence in the thermal 

performance of double corrugated tubes than its aspect ratio. 

It has to be mentioned that the maximum enhancement of the surface area in the investigated 

double corrugated tube was less than 16%, thus it is of lower importance respect to the 

thermal enhancement (due to the particular flow motion) that is going to be presented. 
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                          (a)                                  (b) 

 
(c) 

Figure 6.12: Global heat transfer coefficient U for the double corrugated tube with       
𝜉= 2.0 p = 7.5 mm measured experimentally (red ‘◊’) and calculated using the obtained 

correlations (blue ‘+’) as a function of Re in the tube side (a) in the shell side (b) and 
correlation graph (c) 

 

Due to the experimental evidence of the good performance of this new type of wall 

corrugated tubes, it is possible to conclude that they could be used to revamping the existing 

heat exchanger increasing their thermal efficient as well as to build new compact heat 

exchanger smaller and cheaper than the one already available on the market. 
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6.2 Inverse estimation of the local convective heat transfer 

coefficient in coiled tubes 

 

INTRODUCTION 

The 1D inverse problem here addressed, is stated in Chapter 3 as a function estimation 

procedure, since the number of unknown variables is bigger than in the previous case. The 

defined problem, is here specifically applied for the estimation of the local convective heat 

transfer coefficient in coiled tubes and the estimated results, provided from the new 

methodologies formulated in Chapter 4, are compared with the estimated results coming 

from some of the common techniques presented in Chapter 3. 

Coiled tubes have found a lot of applications in industry since they represent a very powerful 

solution to passive enhance the heat transfer rate. In particular, the curvature of the tubes 

makes the fluid flowing inside the pipe experiencing the centrifugal force. This force gives 

rise to secondary flows caused by the particles of the fluid that move with different axial 

velocity and have the ability to increase the heat exchange. The characteristics of the single-

phase heat transfer in tubes was extensively studied by researchers both experimentally and 

theoretically. As reported by Berger (Berger1983) coiled tubes have been investigated since 

the last years of the nineteenth century and first years of the twentieth (Thomson1876; 

Grindley1908). An important observation was firstly made by Williams (Williams1902) 

about the velocity distribution inside curved pipes: they stated that the location of the 

maximum axial velocity is shifted toward the outer wall of the tube.  

 

 
(a) (b) 

Figure 6.13: Coiled tube: (a) 3D model and (b) geometrical dimension definition 
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In 1910 Eustice (Eustice1910) demonstrated the presence of a secondary flow by injecting 

coloured ink inside a water flux in a pipe. 

A fundamental step forward in the study of curved tubes is represented by the studies 

performed by Dean (Dean1927, Dean1928). The author analysed the fluid motion inside a 

toroidal pipe and mathematically described the phenomenon by considering the toroidal 

geometry. Moreover the author observed that the characteristic length of this kind of heat 

exchanger is represented by the ratio between the internal radius of the pipe and the radius 

of curvature of the coil. In particular it is possible to define a new dimensionless parameter 

called Dean number: 

 

𝐷𝑒 = 𝑅𝑒 𝑑/𝐷 (6.14) 

 

where 𝑑 and 𝐷 are the diameter of the pipe and the diameter of the toroid, respectively. 

Due to the presence of the centrifugal force that displaces the slower moving fluid close to 

the wall inward and the fast-moving fluid close to the wall outward, in the stream flow a pair 

of counter rotating vortices, placed symmetrically with respect to the plane of symmetry 

appear as shown in Figure (6.14). It is straightforward that as far as the Dean number 

increases, the centrifugal force increases leading to an increment of the circumferential 

velocity. It follows that the fluid is pushed toward the outer bend of the coil reducing the 

boundary layer nearby the wall, while in the inner bend of the coil the boundary layer 

becomes thicker. 

Among all the researcher that investigated this particular passive heat transfer enhancement 

technique, Berger and McConalogue (Berger1983, McConalogue1968) analysed the fluid  

 

  

 
Figure 6.14: Secondary streamlines and axial-velocity contours at low Dean number  

(I=inner bend, O=outer bend) (Berger1983, McConalogue1968) 
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motion in a curved pipe for a wide Reynolds number range detecting the outward movement 

of the location of the maximum velocity as it is shown in Figure (6.14). 

The analytical formulation of the problem becomes more difficult with the introduction of 

helically coiled tubes. Two new parameters that characterized the flow are present 

(Liu1993): the torsion 𝜏 (6.4) and a modified curvature ratio 𝛿  (Equation (6.16)): 

 

𝜏 =

𝑝
2𝜋

𝐷
2

+
𝑝

2𝜋

 

 

𝛿 =

𝐷
2

𝐷
2

+
𝑝

2𝜋

 

(6.15) 

 

 

 

(6.16) 

 

Performing the loose-coiling analysis it is possible to find another dimensionless group that 

contributes to describe the fluid motion in a coiled pipe, the Germano number: 

 

𝐺𝑛 = 𝑅𝑒 𝜏 = 𝑅𝑒

𝑝
2𝜋

𝐷
2

+
𝑝

2𝜋

 (6.17) 

 

The Germano number measures the ratio between the twisting forces and the viscous forces 

also by taking in account the torsion effect. Truesdell (Truesdell1970) suggested the 

possibility to apply the toroidal model to coiled tube by simply substituting the curvature 

radius of the toroidal pipe with the helical one. The minor importance of the pitch compared 

to the torsion, in terms of Nusselt number, were also observed by Murata (Murata1981). In 

particular, the authors confirmed the possibility to use the correlation proposed for the 

toroidal tube by substituting curvature radius of the toroidal pipe with the helical one; on the 

other hand their results showed important differences in the local distribution, in particular 

in the secondary flow pattern.  

The effect of the torsion on the laminar convective heat transfer in helically coiled tube was 

also studied by Yang (Yang1995): The results showed that the heat transfer behaviour in a 

helicoidal pipe is significantly affected by three factors: Dean number, torsion and Prandtl 

number. The authors, also confirmed that the secondary flow intensity is stronger with the 

increasing of the Dean number, which effect generates higher temperature gradient close to 
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the outer wall of the coil. Finally, the authors investigated the effect of the torsion, showing 

that it significatively affect the temperature field; dependencies that was visible also in terms 

of the Nusselt number. In particular, 𝑁𝑢 decreases ad far as 𝜏 increases, while on the other 

hand it increases as far as 𝐷𝑒 and 𝑃𝑟 increase.  

A side effect of the wall curvature concern the stabilization of the fluid motion. White 

(White1929) showed that the flow could be maintained laminar for substantially higher 

Reynolds numbers than it is possible in straight pipes. Sreenivasan (Sreenivasan1983) 

observed that when a flow through a straight tube is passed through a coiled pipe a stabilizing 

effects appear: in a determinate Reynolds number range the turbulent flow in straight pipes 

becomes laminar in coiled section and the stabilization effect persisted to a certain degree 

even after the flow downstream of the coil has been allowed to develop in a long straight 

section. Moreover, as numerically observed by Di Piazza (DiPiazza2011) for the toroidal 

tubes, the departure from the laminar flow regime is characterized by a complex behaviour: 

a first transition to a periodic flow followed by a second transition to a quasi periodic flow 

and then by a transition to a chaotic flow is required before reach the fully turbulent fluid 

flow regime. 

A wide review on helically coiled tubes and other curved pipes was realized by Naphon 

(Naphon2006).  

In order to better understand the mechanisms that govern the heat transfer in coiled pipes, 

the convective heat transfer coefficient distribution along the cross section circumference 

represents a primary information. The asymmetrical distribution of the velocity field over 

the cross-section of the tube, that locally increases the temperature gradient at the wall 

maximising the heat transfer, leads to a significant variation in the convective heat-transfer  

 

 

(a) (b) 
Figure 6.15: (a) Experimental test rig scheme and (b) experimental data acquisition 

scheme 
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coefficient along the circumferential angular coordinate presenting higher values at the outer 

bend side compared to the inner bend side (Bai1999; Jayakumar2010).  

The irregular temperature distribution may be critical in some industrial applications, such 

as in those that involve a thermal process. For example, in food industry, the pasteurisation 

process has to be uniform possibly avoiding local burning (which could damage the food 

taste) as well as local under-heating (which reduce the bacteria heat-killing).  

Although many authors have investigated the forced convective heat transfer in coiled tubes, 

most of them have presented the average performances while only a few number authors 

have studied the local phenomenon and most of them have adopted the numerical approach. 

For this reason, the solution of the ICHP, starting from the temperature distribution acquired 

on the external wall surface, could give an experimental evidence to the numerical observed 

non-uniform heat flux distribution at the fluid-solid interface. 

 

 
(a) 

 
(b) 

Figure 6.16: Experimental apparatus: (a) mechanical reducer and volumetric pump and 
(b) recirculation circuit 
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EXPERIMENTAL SET-UP 

In order to dealing with this type of problem, the test facility shown in Figure (6.15) was 

used. The experimental apparatus, essentially composed by an hydraulic circuit coupled with 

an acquisition data system, was made available by the laboratory of the Industrial 

Engineering Department of the University of Parma. In this test rig (Figure (6.15-a)) the 

fluid was heated and later cooled in order to keep the working fluid temperature constant at 

the inlet tube’s section. In this way it was possible to work in a steady state regime, condition 

that was assumed during the development of the new methodologies shown in Chapter 4.  

The heating was performed by Joule effect in the solid wall of the tube (Figure (6.15-b)), 

while the cooling was made by a secondary heat exchanger (Figure (6.17)-a), fed with city 

water. A holding tank of 30 litres of capacity, made of stainless steel, was used as a reservoir 

keping the fluid coming from the heated section. The working fluid contained in the tank is 

pushed by a volumetric pump into a counter flow shell and tube heat exchanger. This type 

of pump (Figure (6.16-b)), made by CSF (model A1 246300 JABSCO series), guarantees a 

high stability flowrate, that could be modify by tuning the rotational velocity of the pump 

using a mechanical reducer made by Motovario S.p.a (type TKR-10) that works between the 

range 40-200 rpm (Figure (6.16-a)). The maximum flowrate value is determined by the 

coupling pump-mechanical reducer and it varied between 60 and 200 l/h. The introduction 

of a recirculating circuit (see the top of Figure (6.16-b)), activated through a manually 

operated valve, permitted to reduce the flowrate to values lower than 60 l/h. Downstream 

the heat exchanger a holding section, equipped with a small vent valve on the top of the tank 

(Figure (6.17-b)) used in order to eliminate the air that accidentally entered the circuit, was 

installed in order to eliminate entrance effect.  

After the holding tank, the fluid pass through the tube under test, which is fixed to the 

structure by a junction made by Teflon® material (Figure (6.17-b)). It has to be pointed out 

that the usage of a non-metallic junction is due to the necessity, for safety reason, to 

electrically insulate the rest of the circuit from the pipe (since it is heated by Joule effect 

inside the solid wall of the tube). The helical section of the tube is heated by the energy 

dissipation due to the Joule effect. In particular, the electric current is delivered by a power 

supply model HP 6671A that work in the range 0-8 V and 0-220 A.  
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Figure 6.17: (a) Counter current re-conditioning heat exchanger and (b) Electrical 

insulator 
 

The power supply is connected to the tube by means of electric cables coupled with stainless 

steel fins of 1 mm thickness directly welded to the tube. It has to be highlighted that this 

characteristic heating system is necessary to approximate the imposed constant heat flux 

boundary condition at the fluid-solid interface, keeping the external wall of the tube 

accessible for the thermographic imaging process. Moreover, it has to be noted that the 

imposed constant heat flux boundary condition could be approximated only if the axial and 

peripheral heat conduction effects within the wall can be considered negligible, assumption 

that could be made since the thermal conductivity and the wall thickness of the tube are 

small. 

The whole length of the heat transfer section was thermally insulated in order to minimize 

the heat transfer to the environment. The insulation was achieved by superimposing two 

layers of cellular rubber having a thickness of 9 mm and 32 mm respectively. Both the wall 

and the inlet and outlet fluid temperature were measured using calibrated T-type 

thermocouples connected to a multichannel ice-point reference, type KAYE K170-50C. The 

fluid temperature upstream the starting heating section, was measured by a thermocouple 

probe placed on the tube’s wall. Due the absence of the axial conduction effect within the 

tube as well as of heating source, the fluid was assumed to be in thermal equilibrium with 

the tube, therefore the temperature read on the tube external surface is also representative of 

the bulk temperature of the fluid in the same section. The bulk temperature distribution was 

assumed to be a linear function of the curvilinear length of the tube; hypothesis that was 

checked by monitoring the outlet bulk temperature in the same fashion as previously 

described for the inlet bulk temperature of the fluid. The heat losses towards the environment 

were estimated in a preliminary calibration of the apparatus in order to estimate the overall 

thermal resistance between the internal tube wall and the environment: for the estimation, 
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the temperature difference between the environment and the heated pipe without have fluid 

flow inside, was measured. The value 6 m·K/W was found for the overall thermal resistance 

that yielded heat losses of about 1% of the supplied power. The signal coming from the ice 

point reference was read by high precision multimeter (type HP 3458A) connected to a 

switch control unit (type HP 3488A) driven by a Personal Computer, while the 

communication between all the devices, was based on commercial software Labview. 

Since the aim of the present work is the local estimation of the circumferential convective 

heat flux distribution on a cross-section of the tube, a small portion of the external tube wall 

was made accessible to a thermal imaging camera by removing the thermally insulating 

layer. In order to precisely acquire the temperature distribution, using a FLIR SC7000 unit, 

with a 640 x 512 pixel detector array, the external wall surface of the tube were painted with 

an high emissivity paint. It has to be pointed out that the effective emissivity of the coating 

was estimated in situ by shooting a target at different known temperatures and the value 0.99 

was found, while the thermal sensitivity of the thermographic camera, as reported by the 

instrument manufacturer, is 20 mK at 303 K, while its accuracy is ±1 K. In order to measure 

the temperature distribution on the whole test section surface, multiples images were 

acquired, moving the infrared camera around the section. In particular, the viewing angle 

was limited to less than ± 30° in order to reduce the distortion due to the perspective (Figure 

(6.18-d)). The acquired images, thanks to a position reference fixed on the tube wall (Figure 

(6.18-a)), were conveniently cropped, processed by perspective algorithms (Cyganek2011) 

and merged together in Matlab® environment to obtain continuous temperature functions on 

the tube wall versus the circumferential angular coordinate (Figure (6.18-c)); at the end of 

the image processing, the external temperature distribution of the tube, were discretized in 

256 angular values over the whole circumferential section.  

Like in the previous experiment, the volumetric flow rate was obtained by measuring, at the 

outlet of the test section, the time required to fill a flask whose mass was weighted by a high 

precision digital balance (Tamagnini.srl). Ethylene Glycol was used as working fluid in the 

Reynolds number range 70÷1300 which, due to the characteristic dimensions of the coiled 

tubes under test, corresponded to the Dean number range 12÷290. In the temperature range 

achieved during the experiments, the Prandtl number of the working fluid varied within the 

range 125÷280.  

The tube under test consists in a stainless steel AISI-304 coiled tube with circular cross-

section having an internal radius 𝑟 = 0.007𝑚 and an external radius 𝑟 = 0.008𝑚. The 

thermal conductivity of the pipe  𝑘 = 15𝑊/𝑚𝐾  is assumed constant as well as the 
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environmental temperature 𝑇 = 296.8𝐾 and the bulk temperature 𝑇 = 294.7𝐾 of the 

fluid that flows inside the tube. The exterior surface Γ  of the tube was subjected to an 

overall convective heat transfer coefficient ℎ = 5𝑊/𝑚 𝐾 with the environment while 

the domain Ω, that is assumed to be homogeneous and isotropic, was subjected to an internal 

heat generation per unit of volume 𝑞 = 4.8 ∙ 10 𝑊/𝑚 . 

As it is possible to see in Figure (6.18-a), since the temperature gradient along the axis of 

the tube is almost negligible, the test section can be efficiently modelled as a 2-D solid 

domain. To evaluate the local value of the convective heat transfer coefficient at the fluid 

internal wall interface on a given cross section (Figure (6.18-b) - Figure (3.2)), the 

temperature distribution was acquired on the external wall surface and then the IHCP within 

the wall domain was solved by considering unknown the convective heat flux distribution 

on the internal wall surface. 

  
(a) (b) 

 

 
(c) (d) 

Figure 6.18: (a) Example of a thermographic image (b) 1D temperature acquisition zone 
(c) acquired temperature around the tube after the unwrapping and cropping procedures 

and (d) perspective correction and unwrapping scheme 
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ESTIMATION PROCEDURE 

In the fully developed region, the physical system could be modelled as a 2D geometrical 

domain, in which the temperature and the internal convective heat flux coefficient 

distribution could be assumed to be a function of the angular coordinate 𝜃. The direct 

problem presented in Chapter 3 (Equations (3.22)) could be linearized by writing the internal 

boundary condition in terms of wall heat flux instead of the convective heat flux coefficient, 

as follows: 

 

∇ 𝑇 = −
𝑞

𝑘
in Ω

−𝑘
𝜕𝑇

𝜕𝐧
= 𝑞(𝜃) on Γ

−𝑘
𝜕𝑇

𝜕𝐧
= ℎ (𝑌 − 𝑇 ) on Γ

 

(6.18.1) 

(6.18.2) 

(6.18.3) 

 

where 𝑌 are some extra temperature measurements taken at the external surface Γ  by 

means of the thermographic camera while 𝑞(𝜃) is the unknown boundary condition that has 

to be estimated. 

In this way, the system of Equation (6.18) becomes linear respect to the imposed heat flux 

and the convective heat flux distribution could be calculated, once the heat flux estimation 

is performed, as: 

 

ℎ (𝜃) =
𝑞(𝜃)

𝑇 (𝜃)| − 𝑇  𝐴
 (6.19)      

 

In order to generalize the results obtained, the heat transfer performances are compared in 

terms of Nusselt number: 

 

𝑁𝑢 (𝜃) =
ℎ (𝜃) 𝐷

𝑘
 (6.20)      

 

Since the absolute value of the Nusselt number depends on the vortex intensity, in order to 

compare different flow regime, the ratio between the local internal Nusselt number (Eq. 

(6.20)) and its maximum is presented in Figure (6.27). 



184 

For what concerned the estimation based on the calculation of the sensitivity matrix 𝑿 (e.g. 

TM, TSVD, GFSVD), it is possible to observe that the system of Equation (6.19) is linear in 

the unknown variable 𝒒, therefore it could be written in the discrete domain as follows: 

 

𝑻 = 𝑿𝒒 + 𝑻𝒒 𝟎 (6.21) 

 

where 𝑻 is the estimated temperature on the sampling position (e.g. in all the entire), 𝑿 is 

the sensitivity matrix, 𝒒 is the imposed heat flux distribution and 𝑻  is the estimated 

temperature on the sampling position if no heat flux is applied on the boundary at Γ . 

It is possible to demonstrate that, in order to regularize the inversion of the sensitivity matrix, 

the three methodologies that are going to be compared could be written in terms of filter 

factor: 

 

𝒒 = 𝐗 𝒀 − 𝑻 = 𝑽 𝚺 𝑼  𝒀

=
𝑢

𝜎
𝑣 𝑓  𝒀 − 𝑻  

(6.22) 

 

where 𝑼 = [𝑢 , 𝑢 , … , 𝑢 ] and 𝑽 = [𝑣 , 𝑣 , … , 𝑣 ] are matrices with orthogonal columns 

that represent a basis in the data space, 𝑅  and a basis in the model space, 𝑅  respectively, 

while 𝚺 is a diagonal matrix containing the singular values 𝚺 = 𝑑𝑖𝑎𝑔(𝜎 , 𝜎 , … , 𝜎 ). Those 

matrices represents the singular value decomposition of the sensitivity matrix 𝑿 while the 

filter coefficients 𝑓  are provided by the filter function summarized in Table (4.1). 

On the other hands, the estimation procedures that are not based on the sensitivity matrix 

(e.g. NRF and FRF), require the solution of two auxiliary problems defined by the system 

of Equations (3.64) and (3.74). Those systems, could be numerically solved for every kind 

of geometry, but their analytical solution provided by the FRF for the annulus domain, 

improved the reconstruction quality of the RF method. 

It has to be pointed out that for all the estimation procedure used in the present experiment, 

the unknown heat flux distribution was discretized in 360 values, which was the same 

number of temperature measurement available at the external surface, after the image 

processing procedure.  
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RESULTS 

The results are analysed using the new methodologies presented in Chapter 4, and the 

reconstruction provided by those new algorithm are compared with some of the procedure 

suggested in Chapter 3.  

In Figure (6.20) it is reported the Nusselt number as a function of the Reynolds number 

together with the traditional correlation provided by Dittus-Boelter (Incoprera2002) for 

turbulent regime in straight smooth tubes.  

These data show a significant increment of the thermal performances compared to the 

straight smooth wall pipe without inserts, confirming the goodness of this type of devices as 

convective heat transfer enhancement technique. 

A further insight into the phenomena correlated to the heat transfer rate augmentation was 

found in the analysis of the local heat flux distribution at the internal wall surface. It has to 

be remarked that the since the IHCP is non-linear in terms of the convective heat transfer 

coefficient, the problem has to be re-written in terms of heat flux rate. In this way, it is 

possible to estimate the convective heat flux coefficient after the solution of one direct 

problem in which the imposed heat flux at the internal boundary, is the one provided by the 

inverse estimation.  

The FRF method is going to be compared with the NRF and the TSVD, since all those three 

methodologies are based on the ideal low pass filter. As already mention, the solution 

procedure start with the estimation of the local heat flux distribution, then the local internal 

temperature distribution could be computed (Figure (6.21)). 

 

  
(a) (b) 

Figure 6.19: Function estimation: (a) Geometrical domain and (b) inverse problem 
boundary conditions schemes 
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Figure 6.20: Average Nusselt number as a function of the Reynolds number 

 

Finally the results in terms of local convective heat flux coefficient reconstruction are shown 

in Figure (6.22). 

As it is possible to see in Figure (6.22), the reconstruction provided by the FRF and TSVD 

are almost the same, confirming the robustness of the new approach here presented. It has to 

be noticed that the NRF reconstruction suffer of ringing artefact, as was shown in the 

previous chapter using four different test functions. 

It has to be pointed out that the Morozov’s discrepancy principle was able to estimate the 

regularization parameter that has to be adopted, for all the three methodologies here 

presented, as it is possible to see from the random behaviour of the residual between the 

measured and the estimated external wall temperature profiles showed in Figure (6.23-a).  

The application of the discrepancy principle to the three methodologies here analysed is 

shown in Figure (6.23-b)-(6.23-d). As it is possible to see, the standard deviation of the 

residuals between the measured and the estimated temperature at the external boundary 

monotonically decrease as far as the regularization parameter increase. 

This behaviour is justified since incrementing the regularization parameter more information 

about the signal are preserved during the estimation procedure, thus reducing the misfit 

between the temperature estimation at the external boundary and the measured one. 

It has to be pointed out that the standard deviation of the measurement error, which is an 

input information for the Morozov’s discrepancy principle, was estimated by measuring the 

surface temperature distribution while maintaining the pipe wall under isothermal 

conditions. 
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(a) 

  
(b) (c) 

Figure 6.21: Comparison between the truncated reconstruction methodologies proposed 
in literature and presented in Chapter 3 (TSVD and NRF) and the new method 

developed in Chapter 4 (FRF): (a) heat flux distribution, (b) estimated internal wall 
temperature distribution and (c) estimated and measured external wall temperature 

distribution 
 

On the other hand, the continuous behaviour of filter function characteristic of the GFSVD 

require its comparison with the TM approach.  

The estimation procedure is the same already discussed for the truncated reconstruction 

methodologies. In particular, in Figure (6.24) the estimated heat flux as well as the 

temperature profiles at the internal and external boundaries are reported. 

As it is possible to see, the reconstruction provided by the TSVD methods suffer of ringing 

artefacts, compared to the reconstruction made by the GFSVD and TM methodologies.  

The results in terms of local convective heat flux coefficient reconstruction are shown in 

Figure (6.25): as it is possible to see, the reconstruction provided by the GFSVD is 

comparable with the once obtained by the TM confirming the robustness of the new 

approach here presented. 
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Figure 6.22: Comparison between the truncation reconstruction methodologies proposed 

in literature and presented in Chapter 3 (TSVD and NRF) and the new method 
developed in Chapter 4 (FRF) 

 

It is also possible to see how the TSVD suffer of ringing artefact compare to the continuous 

filtering regularization technique. The truncation estimation procedure gives less accurate 

results, compared to the filtering estimation procedure, even if both the methodologies are 

based on the regularization principle. The outperform of the truncated estimated solution, 

compared to the filtered one, is due to the less number of harmonic component comparing 

in the reconstructed signal. 

It has to be pointed out that the Morozov’s discrepancy principle was able to estimate the 

regularization parameter that has to be adopted, for all the three methodologies here 

presented, as it is possible to see from the random behaviour of the residual between the 

measured and the estimated external wall temperature profiles showed in Figure (6.26-a). 

The application of the discrepancy principle to the three methodologies here analysed is 

showed in Figure (6.26-b)-(6.26-d).  

As it is possible to see, for the TSVD and the GFSVD methodology, the standard deviation 

of the residuals between the measured and the estimated temperature at the external 

boundary monotonically decrease as far as the regularization parameter increase. 
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(a) (b) 

  
(c) (d) 

Figure 6.23: (a) Residual between the measured and the estimated external wall 
temperature, (b) Morozov’s discrepancy principle for TSVD method, (c) Morozov’s 

discrepancy principle for FRF method and (d) Morozov’s discrepancy principle for NRF 
method, 

 

This behaviour is justified since incrementing the regularization parameter more information 

about the signal are preserved during the estimation procedure, thus reducing the misfit 

between the temperature estimation at the external boundary and the measured one. The 

opposite observation could be made for the TM method, since in this case the augmentation 

of the regularization parameter will produce an over-smoothed estimated solution, thus 

increasing the misfit between the temperature estimation at the external boundary and the 

measured one.  

In Figure (6.20) and Figure (6.23) it is possible to see a great variation between the 

convective heat transfer coefficient at the outer bend side of the coil and the one at the inner 

bend side confirming the necessity of taking care about the flow distribution during the 

design of this type of heat exchanger, especially for all those application in which the 

homogeneity and the security of the product is necessary.  
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(a) 

  
(b) (c) 

Figure 6.24: Comparison between the filtered reconstruction method proposed in 
literature and presented in Chapter 3 (TM) and the new method developed in Chapter 4 
(GFSVD): (a) heat flux distribution, (b) estimated internal wall temperature distribution 

and (c) estimated and measured external wall temperature distribution 
 

As is possible to see in Figure (6.20) and Figure (6.23), the torsion effect creates a rotation 

force that affects the flow pattern making the distribution of the convective heat transfer 

coefficient non-symmetrical, as already observed by Yang (Yang1995).  

Moreover, it is possible to see that the pattern is particularly steep and 𝑁𝑢/𝑁𝑢  is above 

0.8 for approximately 75% of the circumference. 

In order to compare the Nusselt number distribution experimentally reconstructed with the 

results provided in literature for different working conditions, the 𝑁𝑢/𝑁𝑢  ratio was 

determined, as showed in Figure (6.26).  
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Figure 6.25: Comparison between the filtered reconstruction method proposed in 

literature and presented in Chapter 3 (TM) and the new method developed in Chapter 4 
(GFSVD) 

 

As it is possible to see in Figure (6.27), the data provided by Yang (Yang1995) match the 

distribution here reconstructed, even if some discrepancies are registered, especially close to 

the inner bend side of the coil; this mismatch that could be related to the different working 

fluid used by Yang (𝑃𝑟 = 5). 

Given the above consideration, it is possible to conclude that both the new solution 

methodologies are able to reconstruct the local convective heat flux coefficient, providing 

results comparable in terms of accuracy, to the common and vastly investigated solution 

strategies (e.g. TSVD, TM). Moreover, the results obtained are comparable to the ones 

provided by Yang (Yang1995) even if the working fluid employed was different. 

The local inverse estimation of the convective heat transfer coefficient here addressed was 

able to give a better understand on the mechanisms that govern the heat transfer in coiled 

pipes highlighting the primary role played by the non-uniform flow distribution. 

The effectiveness of wall curvature, already discussed in Chapters 1 and here resume, is due 

to the centrifugal force acting on the fluid. In particular the coil curvature, generates a 

velocity field characterized by a local maxima near by the outer bend of the coil that locally 

increases the temperature gradient at the wall maximising the heat transfer coefficient. 
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(a) (b) 

  
(c) (d) 

Figure 6.26: (a) Residual between the measured and the estimated external wall 
temperature, (b) Morozov’s discrepancy principle for TSVD method, (c) Morozov’s 

discrepancy principle for GFSVD method and (d) Morozov’s discrepancy principle for 
TM method, 

 

Moreover, the local analysis of the convective heat transfer coefficient, showed a non-

asymmetrical distribution of the velocity field over the cross-section of the tube due to the 

coil pitch. 

Finally, it has to be pointed out that the irregular distribution of the heat flux, could be critical 

in some industrial applications, such as in those that involve a thermal process. For instance, 

in food pasteurisation, the irregular temperature field induced by the wall curvature could 

reduce the bacteria heat-killing or could locally overheat the product damaging the taste as 

well as the organoleptic properties. Therefore, to correctly characterize this type of heat-

transfer apparatus, it is necessary to know the local heat transfer coefficient distribution at 

the fluid-wall interface. 
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Figure 6.27: Normalized Nusselt number compared with the data by Yang (Yang1995) 
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6.3 Inverse estimation of the local convective heat transfer 

coefficient in straight tubes using insert devices 

 

INTRODUCTION 

The 2D inverse problem here addressed, required the estimation of the local convective heat 

transfer coefficient in a straight tube fitted with a butterfly shaped turbulator, which 

represents a new interesting heat transfer enhancement technique. The solution of the IHCP 

was made by the zero-order Tikhonov regularization method couples with the Morozov’s 

discrepancy principle both described in Chapter 3. 

The heat transfer enhancement techniques constitute a very interesting research issue in the 

heat transfer field. In many industrial applications, such as those that involve the food, 

chemical and pharmaceutical products, engineers have been struggling for techniques 

generating enhanced heat transfer coefficients, accompanied by reduced pumping power 

requirement. Today this research topic is attracting a renewed interest in the process industry 

due to the increase of energy and raw materials cost. The heat transfer enhancement 

techniques essentially reduce the overall thermal resistance by increasing the heat transfer 

coefficients. Therefore, it could possible to reduce the size of the heat exchanger as well as 

to decrease the temperature difference at which they work. Related to this aspect, it has to 

be highlighted that the reduction of the temperature difference between the heat exchanger 

and the product, imply the reduction of the thermal stress for the product that yields to a 

lower damage of the organoleptic properties of the treated food. 

The solutions that could be used in order to increase the convective heat transfer can be 

divided into active techniques, which require mechanical aid or electrostatic fields, and 

passive techniques that do not require external power (Bergles1998). Since the passive 

techniques do not require a new external power input, they are usually more attractive from 

the industrial point of view. The passive heat transfer enhancement techniques are based on 

the changes induced on the fluid flow through a proper conformation of the surface, such as 

curvature of the walls, surfaces roughness, corrugation, insertion of devices in the main flow 

directly or by means of additives (Bergles1998, Webb1994). Since the insert devices could 

be installed after market, they represent an interesting solution in all those industrial 

application of plant revamping and renewing. In particular, the inserts are elements that are 

positioned in the flow passage with the aim of increasing the heat transfer rate. This 

enhancement technique results particular attractive for the low cost, the rapid installation 
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and the easy maintenance (Tu2015). Within this category of passive heat transfer 

enhancement techniques, displaced devices, twisted tapes, wire coils are the most commonly 

adopted. Twisted tapes are metallic or non-metallic strips twisted, with some suitable 

technique at the desired shape and dimension, which are inserted in the flow with the aim of 

introducing swirl components into the flow that could disrupt the boundary layer at the pipe 

fluid surface (Liu2013). It is straightforward that the pressure drop inside the tube will 

increase, after the introduction of the twisted-tape, therefore it could be necessary to change 

the pump that is installed in the working plant. Twisted-tape inserts have been the object of 

many research works that analysed the different configurations of this devices studying full-

length and short-length twisted tape having constant or variable pitch (Date1972, Hong1976, 

Manglik1993) in order to investigate the optimal design in terms of both thermal and friction 

loss performances. Hong (Hong1976) performed one of the first experimental work on 

twisted-tape inserts investigating both the pressure drops and the heat transfer enhancement 

in pipes by using water and ethylene glycol as working fluids. The authors, observed that 

the insertion of twisted tapes produced an increase of the Nusselt number up to 9 times the 

one registered by employing a straight empty tube in the same working conditions. Manglik 

(Manglik1993) developed empirical correlations for the Nusselt number and friction factor, 

identifying a new dimensionless parameter called swirl number (which contain the same 

information provided by the Dean number (Bozzoli2018a)). The authors highlighted the 

crucial role played by this parameter in the description of the heat transfer mechanism and 

the interaction between viscous, inertia and centrifugal forces, for this particular type of 

insert devices. Ujhidy (Ujhidy2003) investigated laminar flow in coils and tubes containing 

twisted tapes and helical static elements. These authors highlighted the similarity of the flow 

pattern characterised by swirl components present in coils and tubes with twisted tapes or 

helical static elements. Sarma (Sarma2002) investigated the turbulent regime in pipes fitted 

with twisted-tape inserts; these authors suggested a correlation for the Nusselt number as a 

function of the Reynolds and Prandtl numbers and the twisted tape pitch to tube diameter 

ratio.  

Among all the above mentioned techniques, one of the most promising solution concerned 

the inserts solution is related to the displacement devices. For this reason, the local 

estimation of the convective heat transfer coefficient is investigated in order to better 

understand the heat transfer enhancement mechanism related to those devices.  
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(a) (b) 

Figure 6.28: (a) experimental scheme and (b) thermographic camera positions 

 

The displacement devices, are positioned inside straight smooth pipes, with the aim of 

increasing the heat transfer rate by displacing the hot fluid to the colder regions of the tube 

and vice versa (Dewan2004). This mixing effect, reduce the boundary layer thickness 

consequently increasing the convective heat transfer coefficient. Many studies were carried 

out on different types of displacement enhancement devices (e.g., metal grids, disks, cones, 

static mixers, crowns and balls) (Dewan2004, Promvonge2007, Promvonge2008c, 

Jadoaa2011), but among all, the butterfly shaped turbulator are one of the most remarkable. 

In many industrial fields, such as in the food, chemical and pharmaceutical industries, 

engineers have then been striving for techniques producing enhanced heat transfer 

coefficients, accompanied by reduced pumping power requirements. Displaced 

enhancement devices are a particular kind of inserts that leaves the heated surface 

substantially unaltered and changes the fluid flow near the pipe wall increasing the 

transferred energy. Therefore, this particular type of enhancement technique results 

attractive for the low cost, rapid installation and easy maintenance.  

Displaced enhancement devices has been mainly discussed in literature by considering only 

the heat transfer performance averaged over the entire tube heat transfer surface area. This 

approach is acceptable for many applicative cases however the local measuring of the 

convective heat flux coefficient at the internal wall surface of a pipe could give a better 

understand on the phenomenon, especially because these inserts usually induce significant 

spatial variation of local thermal performances. 
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EXPERIMENTAL SET-UP 

The test facilities used for the type of measurements was already described in the previous 

paragraph, however it has to be pointed out that due the simple external geometry of the 

tube, a new measurement system was designed as shown in Figure (6.28). The working fluid, 

water, entered the test section equipped with stainless-steel fin electrodes, which were 

connected to a power supply. Like in the previous paragraph, it was possible to approximate 

the constant wall heat flux boundary condition by dissipating energy in the solid domain 

through the Joule effect. The whole length of the heat transfer section was thermally 

insulated in order to minimize the heat transfer to the environment. Both the inlet and outlet 

bulk temperature were measured by placing a thermocouple probe on the tube’s wall far 

away from the heating section. A small portion of the external tube wall, around the position 

of the insert, was made accessible to a thermal imaging camera by removing the thermally 

insulating layer, and it was coated with a thin film of high emissivity paint. This thin paint 

layer changes the surface emissivity without affecting the heat conduction problem in the 

tube wall. The surface temperature distributions were acquired by means of a FLIR SC7000 

unit, with a 640 x 512 pixel detector array. Its thermal sensitivity, as reported by the 

instrument manufacturer, is 20 mK at 303 K, while its accuracy is ±1 K. A schematic view 

of the infrared thermographic system arrangement is shown in Figure (6.28). 

The tube was fitted with a butterfly-shaped device, as schematically shown in Figure (6.29), 

and its global and local thermal performances were tested at different fluid flow velocities. 

A picture of the considered butterfly-shaped device is reported in Figure (6.29): the device 

is characterised by two “wings” and two “indentions” having a maximum diameter of 13 

mm. The inserts were positioned inside a stainless steel tube having an internal diameter that 

fits the maximum dimension of the turbulator, and a wall thickness of 1.0 mm. The pipe was 

three meters long and the butterfly-shaped devices were positioned at a distance of 300 mm 

one from the other in order to not override the effects of two consequential inserts.  

 
 

(a) (b) 

Figure 6.29: Butterfly shaped turbulator: (a) 3D turbulator’s scheme and (b) 3D 
mounting scheme 
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(b) 

 
(a) (c) 

Figure 6.30: (a) experimental setup (b) 3D printed butterfly shaped turbulator and (c) 
turbulator mounted on the aluminium rod 

 

Moreover, it has to be highlighted that the turbulators were maintained in a prescribed 

position thanks to a central aluminium rod, as it is possible to see from Figure (6.30). 

To measure the temperature distribution on the whole test section surface, six images were 

acquired, moving the infrared camera around the tube’s axis in different measure station 

(Figure (6.31)).  

 

  
(a) (b) 

Figure 6.31: (a) thermographic camera images and (b) image processing scheme 
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Figure 6.32: Experimental temperature measurements after the image processing  

(𝑅𝑒 = 7118) 
 

The camera was conveniently fixed on a support, in order to keep the optical axis normal to 

the tube axis and minimizing perspective artefacts. Thanks to limiting the viewing angle to 

less than ± 30°, the surface was considered as a diffuse grey emitter (Pavelka2013). The 

effective emissivity of the coating was estimated in situ by shooting a target at different 

known temperatures, and the value 0.99 was found.  

In Figure (6.32) a representative temperature map of the external surface of the tube, is 

depicted. It is clearly visible the distortion of the wall temperature distribution caused by the 

presence of the insert device (which is located at 𝑧 ≈ 0.03𝑚). 

The image processing procedure was made complex by the non-flat behaviour of the target. 

In order to overcome this problem, common photo-plans tools based on well-known 

equations of central projection could be employed but this is not really an easy task when 

dealing with curved objects (Pavelka2013). The image processing procedure adopted, 

presented by Bozzoli (Bozzoli2016a) permitted to rectify optical deformations of the 

collected images caused by surface curvature, then the acquired images were cropped and 

merged together to obtain continuous temperature map on the tube wall, thanks to adequate 

position references fixed on the tube wall.  In order to validate the unwrapping algorithm, 

the typical “chessboard test” was performed: the pattern shown in Figure (6.33) was fixed 

on the external tube surface and shot by a digital camera, like in the infrared image 

processing previously used.   
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(a) (b) 

Figure 6.33: (a) input image (b) unwrapped total image 

 

The obtained pictures were elaborated by a common procedure called “texture unwrapping”.  

The process was made complex by the fact that the observed target surface is not flat: 

common photo-plans can be produced from images of planar objects by image processing 

tools based on well-known equations of central projection but this is not really an easy task 

when dealing with curved objects (Pavelka2013). The image processing procedure adopted 

permits to rectify optical deformations of the collected images caused by surface curvature. 

Figure (6.33) sketches how a cylindrical surface is projected on a plane when the plane is 

parallel to the cylinder axis. 

 

 
Figure 6.34: Cylindrical surface projection on a plane 

 

Under the assumption that the camera is sufficiently far from the pipe, the planar (𝑥, 𝑦) 

temperature distribution could be mapped into the (𝛼, 𝑧) cylindrical as follows: 
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𝛼 = arctan
𝑥

𝛹
+ 𝛼

𝑧 = Ω ∙ y + z
 

 

 

where Ψ, Ω, z0 and α0 are parameters, depending on camera lenses and camera relative 

position. These parameters can be easily determined by calibrating the acquisition system 

with a known sample pattern fixed on the tube wall (Pavelka2013, Cyganek2011). 

In Figure (6.34) the processing steps of a sample image are reported.  It is easy to notice 

from Figure (6.34a) that, for clear geometrical causes, the unwrapping of the image close to 

the pipe borders is not perfectly achievable and for this reason only the central part of the 

processed image was considered in the surface reconstruction process. In order to reconstruct 

the whole image of the test surface, the camera was moved around the section acquiring six 

different images that were then unwrapped with the procedure discussed above; finally, 

thanks to the position references (i.e. letters above and below the chessboard pattern) the 

unwrapped images were merged together to obtain the continuous map on the tube wall 

(Figure (6.32)). The comparison between the final unwrapped image (Figure (6.32b)) and 

the original source pattern (Figure (6.32a)) confirms the effectiveness of the procedure.  

 

 

 

 

 

 
(a) (b) 

Figure 6.35: (a) Example of a camera shot in the visible spectrum  (b) Example of the 
central part of the sample 
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ESTIMATION PROCEDURE 

The direct problem presented in Chapter 5 (Equations (5.16)) could be linearized by writing 

the internal boundary condition in terms of wall heat flux instead of the convective heat flux 

coefficient, as follows: 

 

∇ 𝑇 = −
𝑞

𝑘
in Ω

−𝑘
𝜕𝑇

𝜕𝐧
= 𝑞(𝜃, 𝑧) on Γ

−𝑘
𝜕𝑇

𝜕𝐧
= ℎ (𝑌 − 𝑇 ) on Γ

 

−𝑘
𝜕𝑇

𝜕𝐧
= 0 on Γ  

−𝑘
𝜕𝑇

𝜕𝐧
= 0 on Γ  

(6.23.1) 

(6.23.2) 

(6.23.3) 

(6.23.3) 

(6.23.3) 

 

where 𝑌 are some extra temperature measurements taken at the external surface Γ  by 

means of the thermographic camera while 𝑞(𝜃) is the unknown boundary condition that has 

to be estimated. 

In this way, the system of Equation (6.23) becomes linear respect to the imposed heat flux 

and the convective heat flux distribution could be calculated, once the heat flux estimation 

is performed, as: 

 

ℎ (𝜃) =
𝑞(𝜃)

𝑇 (𝜃)| − 𝑇  𝐴
 (6.24)      

 

Since the inverse problem is linear in the unknown variable 𝒒, it is possible to write the 

system of equation in the discrete domain as follows: 

 

𝑻 = 𝑿𝒒 + 𝑻𝒒 𝟎 (6.25) 

 

where 𝑻 is the estimated temperature on the sampling position (e.g. in all the entire), 𝑿 is 

the sensitivity matrix, 𝒒 is the unknown heat flux distribution and 𝑻  is the estimated 

temperature on the sampling position if no heat flux is applied on the boundary at Γ . 
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The problem could be state, using the Lagrange multipliers in a damped least square problem 

(Chapter 3): 

 

min 𝒀 − 𝑿𝒒 + 𝑻𝒒 𝟎 + 𝜆 ‖𝒒𝑳‖      𝜆 > 0 (6.26) 

 

where ‖ ∙ ‖  stands for the square of the two-norm, λ is the unknown regularization 

parameter and 𝑳, for the zero order Tikhonov regularization, is the identity matrix: 

 

𝑳 =
1 0

⋱
0 1

  (6.27) 

 

As long as 𝜆 is a non-zeros coefficient, the problem defined by the Equation (6.26) could be 

solved by the method of the normal equations as follows: 

 

(𝑿 𝑿 + 𝜆 𝑳)𝒒 = 𝑿𝑻 𝒀 − 𝑻     𝜆 > 0 (6.28) 

 

which yields to the estimated internal wall heat flux: 

 

𝒒 = (𝑿 𝑿 + 𝜆 𝑳 𝑳) 𝑿 𝒀 − 𝑻𝒒 𝟎  (6.29) 

 

It has to be pointed out that since the boundary condition adopted on the top and on the 

bottom of the pipe are not the one that better model the phenomenon, it was necessary to 

extend the module under investigation two times before and two times after the test section, 

as shown in Figure (6.36). 

It has to be pointed out that, the unknown heat flux distribution was discretized in order to 

have the same pitch in both the circumferential and axial coordinate: in particular, it was 

discretised in 360 values along the 𝜃 coordinate and 1125 values along the 𝑧 coordinate.  
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(a) 

  
(b) 

Figure 6.36: Function estimation: (a) Geometrical domain and (b) inverse problem 
boundary conditions schemes 

 

This configuration allowed using the same regularization parameter in both the direction, 

giving the same weight to the filter function. The same discretization was adopted for the 

temperature measurement available at the external surface, after the image processing 

procedure.  

Finally, in order to generalize the results obtained, the heat transfer performances are 

compared in terms of average Nusselt number as a function  of the Reynolds number: 

 

𝑁𝑢 (𝜃) =
ℎ (𝜃) 𝐷

𝑘
 (6.30)      
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RESULTS 

In Figure (6.37) it is reported the Nusselt number as a function of the Reynolds number 

together with the traditional correlation provided by Dittus-Boelter (Incoprera2002) for 

turbulent regime in straight smooth tubes.  

These data show a significant increment of the thermal performances compared to the 

straight smooth wall pipe without inserts, confirming the goodness of this type of devices as 

convective heat transfer enhancement technique. 

A further insight into the phenomena correlated to the heat transfer rate augmentation was 

found in the analysis of the local heat flux distribution in correspondence of the insert. It has 

to be remarked that the since the IHCP is non-linear in terms of the convective heat transfer 

coefficient, the problem has to be rewritten in terms of heat flux rate. In this way, it is 

possible to estimate the convective heat flux coefficient after the solution of one direct 

problem in which the imposed heat flux at the internal boundary, is the one provided by the 

inverse estimation. In order to understand the thermal efficiency compared to the straight 

smooth pipe, it is possible to define the local heat flux efficiency η: 

 

𝜂 =
𝑞

𝑞
 (6.31) 

 

where 𝑞  is the internal heat flux for the tube, in the same experimental conditions, without 

the inserts. The maps of this parameter are fundamental to investigate the effect of the inserts 

in terms of local peaks, stagnation points and influence lengths. 

 

 
Figure 6.37: Average Nusselt number as a function of the Reynolds number 
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(𝑅𝑒 = 7115) 

 

(𝑅𝑒 = 8800) 

 

(𝑅𝑒 = 11870) 

Figure 6.38: Local heat flux efficiency 𝜂 for three representative Reynolds numbers 
 

The local estimation procedure was repeated for different Reynolds number values in 

turbulent flow regime in the range 5000 < Re < 12000 in order to investigate the effect of 

the insert on the heat transfer mechanism. 

In Figure (6.38) it is reported the local heat flux efficiency distribution for three different 

Reynolds number: from these data it is possible to notice that the butterfly-shaped device 

produces a stagnation point in correspondence of the two extreme parts of the “wings” where 

the temperature of the fluid reaches the highest values and the heat flux distribution presents 

its minimum.  
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(a) 

 
(b) 

Figure 6.39: (a) Residual between the measured and the estimated external wall 
temperature, (b) Morozov’s discrepancy principle for a representative case (𝑅𝑒 = 8800) 

 

It has to be pointed out that the Morozov’s discrepancy principle was able to estimate the 

regularization parameter that has to be adopted, for all the three methodologies here 

presented, as it is possible to see from the random behaviour of the residual between the 

measured and the estimated external wall temperature profiles shown in Figure (6.39-a). 

The application of the discrepancy principle to the three methodologies here analysed is 

shown in Figure (6.39-b).  

As it is possible to see, the standard deviation of the residuals between the measured and the 

estimated temperature at the external boundary monotonically decrease as far as the 

regularization parameter increase. This behaviour is justified since by incrementing the 

regularization parameter less information about the signal is preserved during the estimation 

procedure, thus increasing the misfit between the temperature estimation at the external 

boundary and the measured one producing an over-smoothed estimated solution. 
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(a) (b) 

 
 

(c)  (d) 
Figure 6.40: Local heat flux efficiency 𝜂: (a) axial distribution for different angle (𝑅𝑒 =

8800) (b) axial distribution at 𝛼 = 𝜋 for three representative Reynolds numbers,  
(c) circumferential distribution at 𝑧 = 0.03 𝑚 for three representative Reynolds numbers 

and (d) axial distribution at 𝛼 = 𝜋/2 for three representative Reynolds numbers 
 

The application of the discrepancy principle to the three methodologies here analysed is 

shown in Figure (6.39-b). As it is possible to see, the standard deviation of the residuals 

between the measured and the estimated temperature at the external boundary monotonically 

decrease as far as the regularization parameter increase. 

Moreover, it is possible to see that around the stagnation point there is an increase of heat 

flux and that it is due to the fluid acceleration. Finally, wakes appear in the downstream 

region. All these behaviours are similar to the ones observed in case of external flow on cross 

cylinder (Incoprera2002). It is also possible to notice that on the wall, by the central part of 

the indention, there is a local minimum in the heat flux distribution: a further investigation 

on this unexpected aspect is needed and the introduction of further criteria to valuate local 

performance should be considered. 

In order to better analyse the qualitatively results shown in Figure (6.38), the axial 

distribution of the local heat flux efficiency 𝜂 for different values of the angular coordinate 

𝛼 is reported for the representative Reynolds number 𝑅𝑒 = 7180. In particular, there were 
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considered two different distributions, one in correspondence of a “wing” (𝛼 = 3.14 𝑟𝑎𝑑) 

and one in the central zone of the “indention” of the butterfly shaped insert (𝛼 = 1.52 𝑟𝑎𝑑). 

In correspondence of the wing (𝑧 = 0.03 𝑚) it is evident the peak of minimum heat flux due 

to the stagnation point preceded by a local maximum due to the fluid acceleration in front 

and at the side of the wings. The central zone of the indention presents instead a decreasing 

trend: as first hypothesis, it could be due to a zone of lack of fluid mixing, but further 

investigations are needed. The same consideration could be extended to the other Reynolds 

numbers analysed.  

For what concerned the circumferential distribution of the local heat flux efficiency 𝜂, the 

results are shown, using polar coordinate, in Figure (6.40-c) for the axial coordinate value 

𝑧 = 0.03 𝑚 (e.g. center of the insert). As it is possible to see for all the Reynolds number 

investigated, there is a local minima in correspondence of the two extreme parts of the wings 

(e.g. 𝛼 = 0° and 𝛼 = 180°) and the two local peaks at the side of each wing.  

All the three distribution of the local heat flux efficiency reported present similar trends but 

some differences in the values of the peaks could be observed. In fact, with the increasing of 

the Reynolds number the peak value decreases and the minimum value increases. In all 

probability, as observed by Li (Li2017), with increasing of the Reynolds number value, the 

higher turbulence intensity promotes a more efficient fluid mixing that tends to lessen the 

difference between the maximum and the minimum values. 

The same consideration could be extended to the local convective heat transfer coefficient, 

since it is derived by the heat flux distribution; therefore, only the local maps of the 

convective heat transfer coefficients are reported (Figure (6.41)). 

Given the above observation it is possible to conclude that the local estimation of the 

convective heat flux in pipes equipped with butterfly-shaped inserts was necessary to 

understand the reason of the experimentally measured average heat transfer enhancement. 

The local investigation was fundamental since it was able to demonstrate the great 

temperature and heat flux variation nearby the turbulator: characteristic that could be crucial 

in some practical application such as food and pharmacy industry. It was observed that the 

butterfly-shaped device produces a stagnation point in correspondence of the two extreme 

parts of the “wings” where the heat flux distribution presents its minimum. Moreover, it was 

possible to notice that around the stagnation point there was an increase of the local heat flux 

probably due to the fluid acceleration. Finally, wakes appear in the downstream region. All 

these behaviours are similar to the ones observed in case of external flow on cross cylinder. 
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(𝑅𝑒 = 7115) 

 

(𝑅𝑒 = 8800) 

 

(𝑅𝑒 = 11870) 

Figure 6.41: Local convective heat transfer coefficient for three representative Reynolds 
numbers 

 

 

The experimental results obtained in the present investigation are particularly useful in the 

design of innovative heat exchangers equipped with these type of devices, as well as in the 

revamping of already installed smooth tube heat exchanger in order to increase their thermal 

efficiency. 

 

 

 

 



211 

6.4 Inverse estimation of the local convective heat transfer 

coefficient in straight tubes with cross-helix wall 

corrugated surface 

 

INTRODUCTION 

The 2D inverse problem here addressed, required the estimation of the local convective heat 

transfer coefficient in a straight tube characterized by a cross-corrugated wall. The solution 

of the IHCP was made by the zero-order Tikhonov regularization method couples with the 

Morozov’s discrepancy principle both described in Chapter 3. 

Such as in the previous paragraph, the local thermal performance is investigated in order to 

better understand the heat transfer enhancement mechanism related to this particular profile 

of corrugation. 

There are a lot of industrial applications in which the working fluids is thermally treated in 

laminar flow regime where only low convective heat transfer coefficients could be reached: 

for example, this situation is encountered for highly viscous Newtonian fluids, like oils and 

many fluid food products. Therefore, it is straightforward that, in order to increase the 

thermal heat transfer efficiency of the heat exchanger, it is necessary to apply some 

techniques for increasing the heat transfer rate.  

Among the many different methods which have been considered for enhancing the heat 

transfer in forced convection (Webb1994), the techniques which promote secondary 

recirculation flows, by inducing non-axial velocity components, appear very interesting in 

many practical applications. The secondary flow filed could be achieved by employing 

different methodologies such as spiral fins applied to the heat transfer surface, metallic 

twisted tape inserted into the tube, spirally roughened walls, etc. Watkinson 

(Watkinson1975) had experimentally investigated the forced convection of oils in straight 

smooth and internally spiralled fin tubes. The authors observed that for low Reynolds 

number values, the secondary flow field induced by the presence of the helix in the internal 

tube wall, cause a significant augmentation in the heat transfer coefficient. In particular, they 

suggest a correlation which predicts a dependence of the average Nusselt number on the fin 

pitch concluding that the spiral components produce a stronger effect in laminar than in 

turbulent flow. Moreover, the authors observed that the secondary swirl flow due to the fins 

causes instability by inducing an early transition to the turbulent flow, to which a strong heat 

transfer enhancement is associated. Almost the same dependence on the helix pitch has been 
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predicted by Ravigururajan (Ravigururajan1996) in the fully turbulent flow regime, for 

small helix angle. The numerical results reported by Date (Date1974) show that for highly 

viscous fluids heat transfer enhancement up to 70% can be obtained by using swirl flow 

inserts. Manglik (Manglik1993) observe the presence of two different flow regimes: for low 

Reynolds number values, the flow field is characterized by spiral pattern due to the tape’s 

surface; while for high Reynolds number values the centrifugal force due to the rotating 

components prevails over the spiral pattern producing a secondary flow that mixes the fluid. 

A significant heat transfer enhancement is associated to both these flow regimes. 

The review produced by Garimella (Garimella1997) shows that most of the published 

experimental works are focused on the turbulent flow, also because this type of corrugation 

produces an early transition to this flow regime: aspect that is of primary importance since 

the heat transfer rate is higher than in the laminar regime. Related to this aspect, Rainieri 

(Rainieri1996) experimentally observed that the integral inner-fin tubes, for Reynolds 

number values lower than the critical one usually taken for the smooth wall, a significant 

enhancement of both the Nusselt number and the friction factor occurs. This behaviour 

suggests an early transition to the turbulent regime. In the turbulent flow regime in the rage 

1000÷15000, Garimella (Garimella1988) reported a heat transfer enhancement up to about 

500% caused by the onset of swirl components into the main flow that periodically disrupt 

of the boundary layer. Related to these phenomena Nakayama (Nakayama1983) formulate 

the hypothesis that, according to the angle of the corrugation to the tube axis, different flow 

regimes can occur: for low helix angles the fluid flows try to follow the corrugation pattern 

close to the wall, while for high angles the fluid tends to cross the corrugation inducing a 

periodic separation of the boundary layer which induces important augmentation of the heat 

transfer coefficient.  

The tube here tested was characterised by a cross-corrugation wall surface, which is obtained 

by the double corrugation of a pipe with two helix having different rotation direction: one 

clockwise and the other counter-clockwise. This particular type of corrugation produces two 

different grooves, which meet each other two times per pitch (Figure (6.42)). Due to the 

complex velocity field caused by the wall corrugation, the local analysis of the thermal 

performances could give a better understand of the heat transfer mechanism providing a new 

tool for the design of this type of heat exchanger, customizing the corrugation profile 

according to the products and production that has to be managed.  
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EXPERIMENTAL SET-UP 

The experimental facility is the same describe in the previous paragraph and schematically 

shown in Figure (6.28).  

The tested tube was made by stainless steel AISI-304. The corrugation profile was 

characterized by a corrugation pitch of 𝑝 = 29 𝑚𝑚 and a corrugation depth of 𝑒 = 0.6 𝑚𝑚 

while the tube had an internal diameter, which was assumed as the characteristic length to 

evaluate both the Reynolds and the Nusselt number, of 𝐷 = 14 𝑚𝑚 and a wall thickness 

of 𝑡 = 1 𝑚𝑚. The meaning of the parameters used to describe the geometry under 

investigation are reported in a schematic drawing in Figure (6.42-a), while a picture of the 

tube tested is shown in Figure (6.42-b).  

The tube wall is equipped with stainless steel fin electrodes which are connected to a power 

supply, type HP 6671A, working in the ranges 0–8 V and 0–220 A. Because of the low 

thermal conductivity of the wall material, the Joulean dissipation in the tube wall enables to 

approximate the condition of uniform heat flux at the fluid boundary. The heated section is 

about 2m long and it is preceded by an unheated development approach section of about 1 

m. The whole section is thermally insulated by a 35 mm thick rubber thermal insulator layer, 

to minimize the heat exchange to the environment. The surface temperature distributions 

were acquired by means of a FLIR SC7000 unit, with a 640 x 512 pixel detector array. Its 

thermal sensitivity, as reported by the instrument manufacturer, is 20 mK at 303 K, while its 

accuracy is ±1 K. In this case, the inlet temperature has been measured by thermocouple 

probe directly immersed in the fluid upstream and downstream the heated zone. The 

uncertainties associated to the directly measured quantities have been assumed to be 0.2 C 

for temperature, and <0.1 C for temperature difference. For what concerns mass–flow rate 

and wall heat flux a percent uncertainty less than 1% has been estimated. The bulk 

temperature was assumed to be a linear function of the axial length of the tube, and its values 

were determined at any location of the heat transfer section starting from the power supplied 

to the. The data acquisition system consists essentially of a high precision multimeter (type 

HP 3458A) connected to a switch control unit (type HP 3488A) driven by a Personal 

Computer.  
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(a) 

 
(b) 

Figure 6.42: Tested tube (a) drawing scheme and (b) studied pipe coated with high 
emissivity paint and fitted with markers for the image cropping process 

 

Flow rates were obtained by measuring the time needed to fill a volumetric flask placed at 

the outlet of the test section: the time required to fill a flask was measured with a high 

precision chronometer, while the mass was weighted by a high precision digital balance 

(Tamagnini.srl). Ethylene Glycol characterized by Prandtl number, in the temperature range 

achieved during the experiments, within the range 125-280 was used as working fluid in the 

Reynolds number range 365-910. 

Since the tested tube is characterized by a rectilinear axis, it was possible to use the same 

test facility employed in the previous paragraph; therefore, the camera was conveniently 

fixed on the panel keeping its optical axis normal to the tube axis, minimizing perspective 

artefacts. Also in his case, the acquired images were trimmed with an angle of view lower 

than ± 30°, therefore the surface, coated with effective emissivity paint which emissivity was 

experimentally estimated by shooting a target at different known temperatures, was 

considered as a diffuse grey emitter (Pavelka2013). 
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Figure 6.43: Experimental temperature measurements after the image processing (raw 

data) (𝑅𝑒 = 910) 
 

The image processing procedure was made complex by the non-planar geometry of the 

target. In order to partially overcome this problem, common photo-plans tools based on well-

known equations of central projection could be employed but this is not really an easy task 

when dealing with curved objects (Pavelka2013). The image processing procedure adopted, 

presented by Bozzoli (Bozzoli2016a) permitted to rectify optical deformations of the 

collected images caused by surface curvature nevertheless is has to be pointed out that the 

external wall surface of the tube, was assumed to be cylindrical during the image processing, 

neglecting the surface deformation of the tube due to the corrugation process. The acquired 

images were cropped and merged together to obtain continuous temperature map on the tube 

wall, thanks to adequate position references fixed on the tube wall (Figure (6.42)). 

In Figure (6.43) a representative temperature map of the external surface of the tube, is 

presented. It is clearly visible the distortion of the wall temperature distribution caused by 

the presence of the helical corrugation. 
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ESTIMATION PROCEDURE 

The same estimation procedure described in the previous paragraph is used for the estimation 

of the convective heat transfer coefficient in cross-helix wall corrugated tube. In particular, 

the direct problem presented in Chapter 5 (Equations (3.22)) could be linearized by writing 

the internal boundary condition in terms of wall heat flux instead of the convective heat flux 

coefficient, as follows: 

 

∇ 𝑇 = −
𝑞

𝑘
in Ω

−𝑘
𝜕𝑇

𝜕𝐧
= 𝑞(𝜃, 𝑧) on Γ

−𝑘
𝜕𝑇

𝜕𝐧
= ℎ (𝑌 − 𝑇 ) on Γ

 

−𝑘
𝜕𝑇

𝜕𝐧
= 0 on Γ  

−𝑘
𝜕𝑇

𝜕𝐧
= 0 on Γ  

(6.32.1) 

(6.32.2) 

(6.32.3) 

(6.32.3) 

(6.32.3) 

 

where 𝑌 are some extra temperature measurements taken at the external surface Γ  by 

means of the thermographic camera while 𝒒(𝜃) is the unknown boundary condition that has 

to be estimated. 

In this way, the system of Equation (6.32) becomes linear respect to the imposed heat flux 

and the convective heat flux distribution could be calculated, once the heat flux estimation 

is performed.  

Since the inverse problem is linear in the unknown variable 𝒒, the zero order Tikhonov 

regularization method could be used for the internal wall heat flux estimation: 

 

𝒒 = (𝑿 𝑿 + 𝜆 𝑳 𝑳) 𝑿 𝒀 − 𝑻𝒒 𝟎  (6.33) 

 

where 𝑻 is the estimated temperature on the sampling position (e.g. in all the entire), 𝑿 is 

the sensitivity matrix, 𝒒 is the unknown heat flux distribution, 𝑻  is the estimated 

temperature on the sampling position if no heat flux is applied on the boundary at Γ .and 𝑳 

is the identity matrix. 
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It has to be pointed out that since the boundary condition adopted on the top and on the 

bottom of the pipe are not the one that better model the phenomenon, it was necessary to 

extend the module under investigation two times before and two times after the test section, 

as shown in Figure (6.44). 

It has to be pointed out that, the unknown heat flux distribution was discretized in order to 

have the same pitch in both the circumferential and axial coordinate: in particular, it was 

discretised in 360 values along the 𝜃 coordinate and 750 values along the 𝑧 coordinate.  

This configuration allowed using the same regularization parameter in both the direction, 

giving the same weight to the filter function. The same discretization was adopted for the 

temperature measurement available at the external surface, after the image processing 

procedure.  

Finally, in order to generalize the results obtained, the heat transfer performances are 

compared in terms of average Nusselt number as a function of the Reynolds number. 

 

 

 
(a) 

 
 

(b) 
Figure 6.44: Function estimation: (a) Geometrical domain and (b) inverse problem 

boundary conditions schemes 
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RESULTS 

Before examining the local convective heat transfer characteristics of the cross-helix wall 

corrugated tubes, it was investigated how these devices impact the overall thermal 

performance of the pipes under test. The heat transfer performances were dimensionless 

quantified by means of the Nusselt number in order to generalize the obtained results. The 

methodology used for the estimation of the average performances was already described in 

the previews experiment and the results are shown in Figure (6.45) where the Nusselt number 

if graphed as a function of the Reynolds number together with the traditional correlation 

provided by Shah (Shah1978) for the laminar regime in straight smooth tubes.  

These data show a significant increment of the thermal performances compared to the 

straight smooth wall pipe without inserts, confirming the goodness of this type of devices as 

convective heat transfer enhancement technique. The local Nusselt number along the 

dimensionless abscissa, defined in Equation (6.20), is reported in Figure (6.46), for two 

representative Reynolds number values, together the analytical solution holding for the 

smooth wall pipe with uniform heat flux boundary condition (Shah1978).  

𝑥∗ =
𝑥

𝑅𝑒 𝑃𝑟 𝐷
 (6.34) 

where 𝑥 is the axial coordinate of the tube. 

The effect of the corrugation is clearly visible: by increasing the Reynolds number the heat 

transfer characteristics of the corrugated tube depart from the smooth wall behaviour by 

providing a significant heat transfer augmentation. For the lowest investigated Reynolds 

number values, the thermal behaviour is close to smooth wall while for the highest Reynolds 

number values the heat transfer enhancement due to the wall corrugation appear. 

In Figure (6.46) it is also possible to observe that, in agreement with the findings of Rainieri 

(Rainieri1996), in the fully developed region of corrugated pipes the local Nusselt number 

distribution is not constant but it presents peaks and valleys due to the continuous disruption 

and formation of the boundary layer caused by the wall corrugation.  
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Figure 6.44: Average Nusselt number as a function of the Reynolds number 
 

Moreover, it is possible to notice that one of the main effects of the corrugation is the early 

transition from the laminar to the unstable flow regime, phenomena that seem occurs through 

a sequence of intermediate state as found by Guzman (Guzman1996). In fact, it is possible 

to see a first transition to an unstable regime occur around 𝑅𝑒 = 300 while a second 

transition to the complete unstable regime is visible around 𝑅𝑒 = 700. 

A further insight into the heat transfer phenomena was found in the analysis of the local heat 

transfer performance over the entire surface. It has to be remarked that since the IHCP is 

non-linear in terms of the convective heat transfer coefficient, the problem has to be re-

written in terms of heat flux rate. In this way, it is possible to estimate the convective heat 

flux coefficient after the solution of one direct problem in which the imposed heat flux at the 

internal boundary is provided by the inverse estimation.  

In order to understand the thermal efficiency compared to the straight smooth pipe, it is 

possible to define the local heat flux efficiency η: 

 

𝜂 =
𝑞

𝑞
 (6.35) 

 

where 𝑞  is the internal heat flux for the tube, in the same experimental conditions, without 

the inserts. The maps of this parameter are fundamental in order to investigate the effect of 

the corrugation in terms of local peaks, stagnation points and influence lengths. 
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(a) 

 
(b) 

Figure 6.46: Axial Nusselt number as a function of the dimensionless abscissa for two 
representative Reynolds number (a) 𝑅𝑒 = 100 and (b) 𝑅𝑒 = 909 

 

The local estimation procedure was repeated for different Reynolds number values in 

laminar flow regime in the range 100 < Re < 900 in order to investigate the effect of the 

corrugation on the heat transfer mechanism.  

In Figure (6.47) is reported the local heat flux efficiency distribution for three different 

Reynolds number: from these data it is possible to notice that for all the Reynolds number 

here investigated, the corrugation profile in not effective where the two helixes meet each 

other, while the efficiency is higher when they are on the opposite sides of the tube. This 

phenomena is more visible as far as the Reynolds number increases, according to the 

observation provided by Nakayama (Nakayama1983).  
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(𝑅𝑒 = 365) 

 

(𝑅𝑒 = 685) 

 

(𝑅𝑒 = 910) 

Figure 6.47: Local heat flux efficiency 𝜂 for three representative Reynolds numbers 
 

It has to be pointed out that in all the cases, the regularization parameter was defined 

according to the Morozov’s discrepancy principle (Figure (6.48)). The application of the 

discrepancy principle to the three methodologies here analysed is shown in Figure (6.48-b). 

As it is possible to see, the standard deviation of the residuals between the measured and the 

estimated temperature at the external boundary monotonically decrease as far as the 

regularization parameter increases. 
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(a) 

 
(b) 

Figure 6.48: (a) Residual between the measured and the estimated external wall 
temperature, (b) Morozov’s discrepancy principle for a representative case (𝑅𝑒 = 685) 

 

It is possible to see that in correspondence of the crossing grooves, the heat transfer 

efficiency is always negligible compared to the straight tube, while in correspondence of 

opposite grooves the efficiency becomes significant. Finally, it is clearly visible the 

appearing of a different heat flux efficiency pattern distribution according to the different 

flow regimes: the pattern is smooth and continuous for low Reynolds number values, it 

becomes unstable around the transitional regime in which start to appear structures that 

become clearly distinguishable in the pure turbulent flow regime. 

In particular in correspondence of the corrugation crossing, the fluid flow overcomes the 

corrugation without any perturbation for all the Reynolds number here investigated 

highlighting the non-effectiveness of the corrugation in this particular position. 
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Figure 6.49: Local heat flux efficiency 𝜂 for three representative Reynolds numbers in 
two different cross-sections of the pipe 

 

On the other hand, when the corrugation grooves are in opposite positions the efficiency 

becomes significant for high Reynolds number, while for the lower ones the fluid flow still 

be able to overcome the corrugation without any significant perturbation. 

More details could be catch by analysing the circumferential heat flux efficiency (Figure 

(6.49)). In particular it is possible to see, that the local efficiency in correspondence of the 

corrugation crossing is almost negligible, while it becomes significant when the corrugation 

are opposite. In this configuration is clearly visible the characteristic lobe behaviour assume 

by the local heat flux efficiency that recall the position of the corrugation groove. 

A better understand on the phenomena could be achieved by looking at the local efficiency 

along two generative of the tube, as shown in Figure (6.50). 

Looking at the upper part of Figure (6.49), which represents the heat flux efficiency along 

the brown line superimposed on the tube scheme depicted below the graph, it is clearly 

possible to see that for low Reynolds number values, the fluid overcomes the corrugation 

with small fluctuation that becomes more severe increasing the Reynolds number values.  
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Figure 6.50: Local heat flux efficiency 𝜂 for three representative Reynolds numbers 
along two different generative of the pipe 

 

Looking more into detail of this graph, an interesting behaviour that correlate the heat flux 

efficiency with the corrugation profile comes out. In particular, it is possible to see that, for 

all the Reynolds numbers here investigated, the heat flux efficiency peaks appear in 

correspondence of opposite corrugation, while the valleys appear in correspondence of the 
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corrugation crossing. This aspect confirm what already suggested by Nakayama 

(Nakayama1983) and is in completely agreement with wat was observed in Figure (6.42). 

Moreover it is possible to observe the transition from the laminar to the turbulent regime: 

for the lowest Reynolds numbers reported, the fluid pass over the corrugation in a pretty 

regular fashion (pure laminar regime), behaviour that is keep also for the highest Reynolds 

number value (pure turbulent regime) but is lost for the intermediate Reynolds number 

(transitional regime). This aspect is in completely agreement with the average values 

reported in Figure (6.44). 

For what concerned the lower part of Figure (6.50), which represents the heat flux efficiency 

along the purple line superimposed on the tube scheme depicted above the second graph it 

is clearly possible to see that for all the Reynolds number values here investigated, the fluid 

overcomes the crossing grooves with small random fluctuations in which it is difficult to 

understand a common scheme like in presence of opposite grooves. This behaviour could be 

related to the onset of secondary flows caused by the presence of the two helixes that drive 

the flow form one crossing point to the second one but further investigation are required. 

The same consideration could be extended to the local convective heat transfer coefficient, 

since it is derived by the heat flux distribution; therefore, only the local maps of the 

convective heat transfer coefficients are reported (Figure (6.51)). 

Given the above observation it is possible to conclude that the local estimation of the 

convective heat flux in wall cross-corrugated pipes was necessary to understand the reason 

of the experimentally measured average heat transfer enhancement. In fact, the physical 

phenomena governing the heat transfer enhancement for wall cross-corrugated enhanced 

tubes have not been wholly understood, despite the fact that many empirical correlations 

have been suggested for predicting their overall thermal performance.  

In terms of average heat transfer enhancement performances the forced convective heat 

transfer in cross-helix corrugated wall tubes was studied in the Reynolds and Prandtl number 

ranges 100÷900 and 125÷280 respectively, by adopting ethylene glycol and water-ethylene 

glycol mixtures as working fluids. The results were expressed in terms of average Nusselt 

number as well as of local heat flux efficiency and convective heat transfer coefficient. The 

data show that the corrugation produce an clearly departure from the laminar to the turbulent  

flow regime, compared to the smooth wall, occurring around 𝑅𝑒 = 300 and a probable 

second transition is present around 𝑅𝑒 = 600. These data confirm that the transition from 

laminar to unstable regime can occur through a sequence of intermediate state as observed 

by Guzman (Guzman1996).  
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The local investigation was fundamental to clearly understand the heat transfer phenomena, 

since it was able to demonstrate the great non-uniform convective heat flux distribution. In 

particular, the local inverse estimation procedure, was able to highlight the zone in which 

the corrugation profile is more effective suggesting the possibility of design of new 

customized corrugation profile that could enhance the local performances of this type of heat 

exchanger. Finally, the identification of different heat flux pattern due to different mass flow 

rate suggest the usage of the local estimation procedure for the identification of different 

flow regimes. 

 

(𝑅𝑒 = 365) 

 

(𝑅𝑒 = 685) 

 

(𝑅𝑒 = 910) 

Figure 6.51: Local convective heat transfer coefficient for three representative Reynolds 
numbers 
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Conclusion 

 
The aim of this thesis was to develop and test new methodologies able to solve the inverse 

heat transfer problem, in order to characterize some types of heat transfer devices. First, 

three new estimation procedures were developed and verified using virtual experiments. 

After, they were applied to four original experiments built both for industrial and research 

interest. 

The main characteristic of the inverse analysis is to provide information on boundaries that 

are not directly observable. Therefore, the inverse estimation here addressed allowed to 

develope new and easy to configure test rigs able to provide useful information related to 

the non-accessible boundaries although giving valuable information on the physical 

phenomena occurring inside the pipe. Those information could also be used to optimize the 

heat transfer device, customizing it for each particular application. It has to be pointed out 

that even if the experimental setup could be easier, the post processing of the measured data 

through the inverse estimation could be a more complex task. 

Since the inverse estimation is a versatile procedure, all the methodologies proposed could 

be easily extended to different experimental setup if a proper mathematical description of 

the physical phenomena is given and the sensitivity analysis is performed. Moreover, the 

local estimation of thermal performances could also be used in order to validate numerical 

models comparing the results coming from the simulation with the once experimentally 

observed.  
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The computational effort required from the estimation of the solution of the linear inverse 

problem, here addressed, by means of the Tikhonov regularization and the Singular Value 

Decomposition are concentrated in the sensitivity matrix calculation. This matrix change 

each time the physical domain and the boundary condition change requiring its re-

calculation. It is straight forward that this problem could be limited if the analytical solution 

of the direct problem is achievable; it is related to this aspect the proposed improvement of 

the Reciprocity Functional gap here presented. This original methodology, here named 

Filtered Reciprocity Functional, require the solution of two auxiliary direct problems that, 

in this thesis, were analytically solved yielding to the reduction of the disruptive effect of 

the noise contented in the measurement during the inverse estimation. The beneficial effect 

introduced by the analytical solution of the auxiliary problems is related to the possibility of 

separate the signal, which is assumed to be prevalent at the low frequency, from the noise, 

which is assumed to be uniformly distributed in the frequency domain, by using an ideal low 

pass filter.  

The results showed that the new method outperform the Truncated Singular Value 

Decomposition and the Numerically integrated Reciprocity Functional, estimating solution 

with a lower averaged error. 

It has to be pointed out that, the above mentioned techniques are characterized by a 

discontinuous filter function. Related to this aspect, an original improvement of the 

Truncated Singular Value Decomposition characterized by a continuous filter function, here 

named Gaussian Filtered Singular Value Decomposition, was proposed. The results showed 

that the new method outperform the Truncated Singular Value Decomposition providing 

estimated solution comparable with the one obtained by using the Tikhonov regularization 

scheme. The improvement in the reconstruction quality of the signal is due to the 

preservation of some high harmonics order that, even if dumped by the filter function, can 

give additional information during the inverse estimation. 

The experimental application of the inverse analysis allowed to characterize the heat transfer 

devices considered in the present work. In particular, the new methodology, based on the 

Iterative Re-weighted Least Square approach, was able to estimate the average thermal 

performances of a tube in tube heat exchanger, estimating also the confidence interval on 

each unknown parameter. The inverse estimation were also able to propose useful correlation 

for the estimation of the average Nusselt number at both the shell and tube sides at different 

flow regimes. The experimental results demonstrate that the bio-inspired tubes significantly 

increase the heat transfer performances of the tube, compared to the smooth straight one, in 
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the tested Reynolds number region. In particular, the thermal performance of the bio-inspired 

tubes is up to 500 % higher in terms of relative Nusselt number. Moreover, the experimental 

campaign showed that the bio-inspired tubes with shorted corrugation period are generally 

more efficient compared to the long period once. It is also noticeable that the corrugation 

period has higher impact on the thermal performances compared to the aspect ratio. 

For what concern the local estimation of the convective heat transfer coefficient in coiled 

tube, the inverse estimation showed that these devices promote a highly uneven convective 

heat flux distribution along the circumferential coordinate, impacting on the performances 

of the thermal treatment: in particular the measurements showed that the convective heat 

transfer coefficient is lower at the inner bend side than at the outer bend side where its 

distribution is more flat. These results are representative of a wide range of technical 

applications and they might be particularly useful in the validation of numerical models or 

in the design of innovative coiled tube heat exchangers. 

Regarding the 3D local estimation of convective heat transfer coefficient in straight tubes 

fitted with butterfly-shaped insert devices, the inverse analysis showed that even if this kind 

of insert is very effective, its employment could be critical in some applications due to the 

presence of great variations in both the temperature and the heat flux distribution. The 

experimental measurements, pointed out that the butterfly-shaped device promotes a 

stagnation point in correspondence of the “wings” where the heat flux distribution presents 

its minimum; it was also possible to notice that around the stagnation point there was an 

increase of the local heat flux probably due to the fluid acceleration which promotes the 

presence of wakes in the downstream region. The local estimation of the thermal 

performances appeared to be particularly useful in the design of innovative heat exchangers 

equipped with these type of devices especially during the optimization the insert shape. 

Finally, the straight cross-helix wall corrugated tubes were analysed. Those devices are 

employed in a broad variety of industrial applications in order to increase the convective 

heat transfer by reducing the thickness of the boundary layers. The experimental 3D local 

estimation of convective heat transfer coefficient of those devices by inverse analysis, 

allowed to better understand the heat transfer mechanism. In particular, it was possible to 

observe that the helical corrugation induces significant swirl components for the lower 

Reynolds number here investigated, while for the higher one, the fluid flow pattern is lost 

due to the onset of instability introduced by the wall corrugation. Moreover, the local 

estimation showed the presence of a highly non-uniform heat flux and temperature 

distribution that could affect the thermal treatment of the fluid that is passing into the tube. 
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Finally, the inverse estimation allowed identifying of different fluid flow regimes 

characterized by different fluid flow structure. 

Future development could be related to the formulation of new algorithms as well as to the 

application of the inverse estimation to new experimental setup. For what concern the 

estimation of the average performances of the tube in tube heat exchanger, it has to be 

pointed out that the cost function here adopted is based on the residual between the estimated 

and the measured global convective heat transfer coefficient. Thus, the estimation quality 

could be probably improved by defining a new cost function based on the observed variable 

(e.g. the temperature of the fluid) and not on a quantity from it derived (e.g. the global 

convective heat transfer coefficient). This aspect require a more detail investigation since 

more the one temperature, as well as combinations of temperatures can be monitored, while 

the global convective heat transfer coefficient is defined in order to take into account the 

global performance of the heat exchanger.  

For what concern the local estimation of the thermal performances by means of the Filtered 

Reciprocity Functional, a significant improvement could be achieved if a continuous filter 

function will be applied. 

Finally, all the algorithms here developed were related to the steady state condition, 

nevertheless their extension to the transitional regime could be achieved by properly tattling 

the sensitivity matrices, for the sensitivity based solution strategies, and the auxiliary 

problems, for the reciprocity functional based approach. 

Since the inverse estimation is a versatile approach, the new methodologies could be 

employed for the estimation of the innovative heat transfer devices such as microchannels, 

heat pipes, thermal energy storage, etc. 
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Appendix 1 

 

Filtered Reciprocity Functional: 
mathematical development 
 

A.1 Solve the first auxiliary problem system using the Classical Integral Transform 

Technique: 

 

The linear system presented in Chapter 4 (Equation (4.14)) could be solved analytically by 

using the Classical Integral Transform Technique. The analytical solution of the PDE system 

avoid the use of numerical method to solve this system making the code computationally 

fast. 

Operate on the physic in θ direction: 

Due to physical problem, is possible to write the Laplacian defined in the Equation (4.14.1) 

using the cylindrical coordinate: 

 

1

𝑟

𝜕

𝜕𝑟
𝑟

𝜕𝐺

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝜃

𝜕𝐺

𝜕𝜃
= 0 

𝜕 𝐺

𝜕𝑟
+

1

𝑟

𝜕𝐺

𝜕𝑟
+

1

𝑟

𝜕 𝐺

𝜕𝜃
= 0 

(A.1)   
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Figure A.1: 2D domain 

 

Defining the integral transform as: 

 

�̅� = 𝐺( , , ) 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃′ (A.2) 

 

and the inversion formula, that could be divided in two part: the first one is a constant term 

while the second one is function of the number of the harmonics: 

 

𝐺 =
1

2𝜋
�̅�( , , ) +

1

𝜋
�̅�( , , ) (A.3)     

 

is possible to re-write the Laplacian in cylindrical coordinate, defined in the Equation (A.1), 

multiplying times 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] and integrating it: 

 

𝜕 𝐺

𝜕𝑟
 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 +

1

𝑟

𝜕𝐺

𝜕𝑟
 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃

+
1

𝑟
 
𝜕 𝐺

𝜕𝜃
  𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 = 0 

 

𝜕

𝜕𝑟
𝐺 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 +

1

𝑟

𝜕

𝜕𝑟
 𝐺 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃

+
1

𝑟
 
𝜕 𝐺

𝜕𝜃
  𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 = 0 
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substituting the definition given in the Equation (A.2) is easy to get: 

 

𝑑

𝑑𝑟
�̅� +

1

𝑟

𝑑

𝑑𝑟
�̅� +

1

𝑟
 
𝜕 𝐺

𝜕𝜃
  𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 = 0 (A.3)     

 

the last integral of this equation can be solved integrating by part two times: 

 

𝑐𝑜𝑠[𝜈(𝜃 − 𝜃 )]
𝜕 𝐺

𝜕𝜃
𝑑𝜃′ 

=
𝜕𝐺

𝜕𝜃
cos[ 𝜈(𝜃 − 𝜃 ) ] − −𝜈 sin[𝜈(𝜃 − 𝜃 )] 

𝜕𝐺

𝜕𝜃
 𝑑𝜃

=
𝜕𝐺

𝜕𝜃
cos[ 𝜈(𝜃 − 𝜃 ) ] − (−𝐺𝜈 sin[𝜈(𝜃 − 𝜃 )])

− 𝜈 cos[𝜈(𝜃 − 𝜃 )] 𝐺 𝑑𝜃 = −𝜈 �̅� 

       

 

Substituting this expression in the Equation (A.3) the transformation of the physical 

problem, become: 

 

𝑑

𝑑𝑟
�̅� +

1

𝑟

𝑑

𝑑𝑟
�̅� +

1

𝑟
𝜈 �̅� = 0 (A.4)      

 

Operate on the boundary conditions: 

The conditions imposed at the internal boundary Γ  (Equation (4.14.2)) is easy transformed 

by multiplying times 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] and integrating it to get:   

 

𝜕𝐺

𝜕𝑟
cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃 =

𝜕𝐺

𝜕𝑟
 𝐺 cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃         

 

remembering the definition given in the Equation (A.2) is possible to re-write the last 

expression to get the transformation of the internal boundary condition: 

 

𝑑�̅�

𝑑𝑟
= 0 (A.5) 
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The conditions imposed at the external boundary Γ  (Equation (4.14.3)) is easy 

transformed by multiplying times 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] and integrating it to get:   

 

𝐺 cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃 =
𝜕𝐺

𝜕𝑟
 𝜓 cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃         

 

remembering the definition given in the Equation (A.2) is possible to re-write the last 

expression to get the transformation of the external boundary condition: 

 

�̅� = 𝜓 (A.6) 

 

where 𝜓 is the transformation of the potential imposed in the first auxiliary problem 

(Equation (4.14.3)): 

 

𝜓 =  𝜓 cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃  (A.7)     

 

Final system of equation and its solution: 

The transformation of the auxiliary problem defined by the Equations (4.14.1)-(4.14.3) is: 

 

∇ �̅� = 0 𝑖𝑛 Ω
𝑑�̅�

𝑑𝑟
= 0 𝑎𝑡 Γ

�̅� = 𝜓 𝑎𝑡 Γ

 (A.8) 

 

the last system of equations is easy to solve. The solution of the transformed problem is: 

 

�̅� = 𝜓 cosh 𝜈 ln
𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
  (A.9)    

 

In order to obtain the solution of the first auxiliary problem, the last equations has to be 

inverted using the definition given in the Equation (A.3): 
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𝐺 =
1

2𝜋
𝜓 cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟

+
1

𝜋
 𝜓 cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
 

=
1

2𝜋
𝜓 +  

1

𝜋
 𝜓 cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
 

(A.10)     

 

being cosh 𝜈 ln = 1 and sech 𝜈 ln = 1. 

 

A.2  Build the solution of the first auxiliary problem: 

 

According to the definition given in the Equations (4.15.1)-(4.15.3), the solution has to be 

divided in at least three steps for different values of harmonic frequencies k of the 

orthonormal basis function: 

 

k=1 

As defined in the Equation (4.15.1): 

 

𝜓 =
1

𝑟 √2𝜋
𝑓𝑜𝑟 𝑘 = 1  

 

According to the Equation (A.7): 

 

𝜓 =
1

𝑟 √2𝜋
cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 =

1

𝑟 √2𝜋
cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √2𝜋

sin[𝜈𝜃] − sin[𝜈𝜃 − 2𝜋𝜈]

𝜈𝜃
= 0 

 

while: 

 

𝜓 =
1

𝑟 √2𝜋
cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃 =

1

𝑟 √2𝜋
𝑑𝜃′

=
1

𝑟 √2𝜋
2𝜋 =

2𝜋

𝑟
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since cos[𝜈(𝜃 − 𝜃 )] = 1. 

According to Equation (A.10) the auxiliary function is defined as: 

 

𝐺 =
1

2𝜋
𝜓 +  

1

𝜋
 𝜓 cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟

=
1

2𝜋
𝜓 =

1

2𝜋

2𝜋

𝑟
=

1

2𝜋 𝑟
 

 

 

The trace of the auxiliary function at the internal boundary Γ  is: 

 

𝛾 = 𝐺| =
1

2𝜋 𝑟
  

 

The normal derivative of the auxiliary function at the external boundary is: 

 

𝜕𝐺

𝜕𝒏
= 0  

 

Therefore, the reciprocity functional defined in the Equation (4.16) became: 

 

𝑅 = −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝑌

𝛿𝐺

𝛿𝒏
𝑑Γ

= 𝑟 −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝑌

𝛿𝐺

𝛿𝒏
𝑑𝜃  

 

 

since the normal derivative of the auxiliary function at the external boundary is null and the 

temperature profile at the same boundary is supposed to be known and acquired through the 

thermo-camera imaging, the last equation become: 

 

𝑅 = −𝑟 𝜓
ℎ (𝑌 − 𝑇 )

𝐾
 𝑑𝜃

= −𝑟
1

2𝜋𝑟

ℎ

𝐾
 𝑌 𝑑𝜃 − 𝑇  𝑑𝜃  

 

 



233 

Using the Fourier’s series expansion, the integral of the measurement at the external 

boundary Γ  in the last expression can be re-written as: 

 

𝑌 𝑑𝜃 = 𝑎 + 𝑎 cos[𝜃 ] + 𝑏 sin[𝜃 ] + ⋯

+ 𝑎 cos[𝑘 𝜃 ] + 𝑏 sin[𝑘 𝜃 ] 𝑑𝜃

= 𝑎 𝑑𝜃 + 𝑎 cos[𝜃 ] 𝑑𝜃 + 𝑏 sin[𝜃 ] 𝑑𝜃 + ⋯

+ 𝑎 cos[𝑘 𝜃 ] 𝑑𝜃 + 𝑏 sin[𝑘 𝜃 ] 𝑑𝜃   

 

 

where 𝑎 , 𝑎 , 𝑏 , … , 𝑎 , 𝑏  are the Fourier’s expansion coefficients. 

Since the finite integral, from zero to 2𝜋, of both the harmonic function sine and cosine is 

null, the last expression becomes: 

 

𝑌 𝑑𝜃 = 2𝜋𝑎   

 

The environmental temperature is supposed to be constant, therefore its integral is: 

 

𝑇  𝑑𝜃 = 2𝜋𝑇   

Substituting those results, the reciprocity functional becomes: 

 

𝑅 = −𝑟
1

2𝜋𝑟

ℎ

𝐾
 𝑌 𝑑𝜃 − 𝑇  𝑑𝜃

= −𝑟
1

2𝜋𝑟

ℎ

𝐾
 [2𝜋𝑎 − 2𝜋𝑇 ]

= − 2𝜋𝑟
ℎ

𝐾
 [𝑎 − 𝑇 ] 

 

 

According to the Equation (4.17) the integral of the internal heat generation is: 
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𝑄 = 𝐺
𝑞

𝐾
𝑑𝛺 = 𝑟

𝑞

𝐾

1

2𝜋 𝑟
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

2𝜋 𝑟
𝑟 𝑑𝑟 𝑑𝜃 =

𝑞

𝐾

𝜋(𝑟 − 𝑟 )

2𝜋𝑟
 

  

 

According to the definition given by the Equation (4.21), the first element of the matrix of 

the inner product becomes: 

 

𝑀 = 〈𝛾 , 𝛾 〉  𝑑Γ = 𝑟  〈𝛾 , 𝛾 〉 𝑑𝜃  

= 𝑟
1

2𝜋𝑟  

1

2𝜋𝑟  
 𝑑𝜃 =

𝑟

𝑟
 

 

 

k=2,4,6,…,N-1 & k≠2ν 

As defined in the Equation (4.15.2): 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃 𝑓𝑜𝑟 𝑘 = 2,4,6, … 𝑁 − 1  

 

According to the Equation (a.7): 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 0 

 

 

Since the harmonic functions that appear in the inner product have different frequency, their 

inner product is null. In the same way is possible to calculate the transformation of the basis 

for the zero harmonic, as follows: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃   
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since cos[𝜈(𝜃 − 𝜃 )] = 1 the last expression becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ 𝑑𝜃 =

1

𝑟 √𝜋
 

2

𝑘
sin

𝑘

2
𝜃  = 0  

 

Considering that 𝜓 and 𝜓  are null, the auxiliary function G is null and also all the other 

result are zeros thus those frequency of the orthonormal basis function doesn’t participate in 

the solution. 

 

k=2,4,6,…,N-1 & k=2ν 

As defined in the Equation (4.15.2): 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃 𝑓𝑜𝑟 𝑘 = 2,4,6, … 𝑁 − 1  

According to the equation (A.7): 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
𝑐𝑜𝑠

2𝜈

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃  

 

 

Is possible to re-write the last integral using the subtraction formula for the cosine terms, 

getting: 
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𝑐𝑜𝑠[𝜈𝜃 ]cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 𝑐𝑜𝑠[𝜈𝜃 ](cos[𝜈𝜃 − 𝜈𝜃 ]) 𝑑𝜃

= 𝑐𝑜𝑠[𝜈𝜃 ](cos[𝜈𝜃] cos[𝜈𝜃 ] + sin[𝜈𝜃] sin[𝜈𝜃 ]) 𝑑𝜃

= 𝑐𝑜𝑠[𝜈𝜃 ]cos[𝜈𝜃] cos[𝜈𝜃 ] 𝑑𝜃′

+ 𝑐𝑜𝑠[𝜈𝜃 ] sin[𝜈𝜃] sin[𝜈𝜃 ] 𝑑𝜃

= cos[𝜈𝜃] 𝑐𝑜𝑠[𝜈𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′

+ sin[𝜈𝜃] 𝑐𝑜𝑠[𝜈𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃  

 

 

since ∫ 𝑐𝑜𝑠[𝜈𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′ = 𝜋 and ∫ 𝑐𝑜𝑠[𝜈𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃 = 0 the last 

expression becomes: 

 

𝑐𝑜𝑠[𝜈𝜃 ]cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 𝜋 cos[𝜈𝜃]  

 

Then the transformation of the basis becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

2𝜈

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 =

1

𝑟 √𝜋
cos[𝜈𝜃]  

 

Then the transformation of the basis for 𝜈 = 0 is: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃   

 

since cos[𝜈(𝜃 − 𝜃 )] = 1 the last expression become: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ 𝑑𝜃 =

1

𝑟 √𝜋

sin
𝑘
2

𝜃

𝑘
2

= 0  
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According to the Equation (A.10) the auxiliary function is defined as: 

 

𝐺 =
1

2𝜋
𝜓( ) +  

1

𝜋
 𝜓( ) cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟

=
1

𝜋𝑟
cos[𝜈𝜃] cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
 

 

 

The trace of the auxiliary function at the internal boundary Γ  is: 

 

𝛾 = 𝐺| =
1

𝜋𝑟
cos[𝜈𝜃] sech 𝜈 ln

𝑟

𝑟
  

 

The normal derivative of the auxiliary function at the external boundary is: 

 

𝜕𝐺

𝜕𝒏
= −

1

𝜋𝑟
cos[𝜈𝜃] sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
   

 

The reciprocity functional defined in the Equation (4.16) became: 
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𝑅 = −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐺

𝛿𝒏
𝑑Γ

= 𝑟 −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐺

𝛿𝒏
𝑑𝜃

= −𝑟 𝜓
ℎ

𝐾
𝑌 − 𝜓

ℎ

𝐾
𝑇 − 𝑌

𝛿𝐺

𝛿𝒏
𝑑𝜃

= −𝑟 𝑌 𝜓
ℎ

𝐾
−

𝛿𝐺

𝛿𝒏
𝑑𝜃 − 𝑟 𝜓

ℎ

𝐾
𝑇  𝑑𝜃  

= −𝑟 𝑌
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′

ℎ

𝐾

−
1

𝑟 √𝜋
cos[𝜈𝜃′]  sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

− 𝑟
1

𝑟 √𝜋
𝑐𝑜𝑠[𝜈𝜃′]

ℎ

𝐾
𝑇  𝑑𝜃

= −𝑟 𝑌
1

𝑟 √𝜋
𝑐𝑜𝑠[𝜈𝜃′]

ℎ

𝐾

−
1

𝑟 √𝜋
cos[𝜈𝜃′] sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

− 𝑟
1

𝑟 √𝜋

ℎ

𝐾
𝑇 𝑐𝑜𝑠[𝜈𝜃′]  𝑑𝜃  

 

 

since ∫ 𝑐𝑜𝑠[𝜈𝜃′]  𝑑𝜃 = 0 the last expression become: 

 

𝑅 = −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐺

𝛿𝒏
𝑑Γ =

= −𝑟 𝑌
1

𝑟 √𝜋
𝑐𝑜𝑠[𝜈𝜃′]

ℎ

𝐾

− sech 𝜈 ln
𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

= −𝑟
1

𝑟 √𝜋

ℎ

𝐾

− sech 𝜈 ln
𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑌𝑐𝑜𝑠[𝜈𝜃′] 𝑑𝜃  
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Using the Fourier’s series expansion, the integral of the measurement at the external 

boundary Γ  in the last expression can be re-written as: 

 

𝑌 cos[𝜈𝜃 ] 𝑑𝜃

= 𝑎 cos[𝜈𝜃 ]

+ 𝑎 cos[𝜃 ] cos[𝜈𝜃 ] + 𝑏 sin[𝜃 ] cos[𝜈𝜃 ] + ⋯

+ 𝑎 cos[𝑘 𝜃 ] cos[𝜈𝜃 ] + 𝑏 sin[𝑘 𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃

= 𝑎 cos[𝜈𝜃 ] 𝑑𝜃 + 𝑎 cos[𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃

+ 𝑏 sin[𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃 + ⋯

+ 𝑎 cos[𝑘 𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃

+ 𝑏 sin[𝑘 𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃   

 

 

since ∫ 𝑎 cos[𝜈𝜃 ] 𝑑𝜃 = 0, ∫ 𝑏 sin[𝑘 𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′ = 0 for every 𝑘 , and:  

 

𝑎 cos[𝑘 𝜃′] cos[𝜈𝜃 ] 𝑑𝜃′ =
0        𝑖𝑓 𝑘 ≠ 𝜈 
𝜋𝑎 𝑖𝑓 𝑘 = 𝜈

  

 

the integral of the measurement at the external boundary becomes: 

 

𝑌𝑐𝑜𝑠[𝜈𝜃′] 𝑑𝜃 = 𝜋𝑎   

 

and the reciprocity functional becomes: 
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𝑅

= −𝑟
1

𝑟 √𝜋

ℎ

𝐾

− sech 𝜈 ln
𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑌𝑐𝑜𝑠[𝜈𝜃 ] 𝑑𝜃

= −𝑟
𝜋𝑎

𝑟 √𝜋

ℎ

𝐾
− sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
  

= −𝑎 𝜋𝑟
ℎ

𝐾
− tanh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
  

 

 

According to the Equation (4.17) the integral of the internal heat generation is: 

 

𝑄 = 𝐺
𝑞

𝐾
𝑑𝛺

= 𝑟
𝑞

𝐾

1

𝜋𝑟
cos[𝜈𝜃] cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

𝜋 𝑟
sech 𝜈 ln

𝑟

𝑟
𝑟 cos[𝜈𝜃] cosh 𝜈 ln

𝑟

𝑟
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

𝜋 𝑟
sech 𝜈 ln

𝑟

𝑟
cos[𝜈𝜃] 𝑑𝜃 𝑟′ cosh 𝜈 ln

𝑟

𝑟′
𝑑𝑟  

 

 

since ∫ 𝑐𝑜𝑠[𝜈𝜃′]  𝑑𝜃 = 0 the heat generation terms is null. 

The even elements of the diagonal matrix of the inner product becomes: 

 

𝑀 = 〈𝛾 , 𝛾 〉  𝑑Γ = 𝑟  〈𝛾 , 𝛾 〉 𝑑𝜃  

= 𝑟
1

𝜋𝑟
cos[𝜈𝜃] sech 𝜈 ln

𝑟

𝑟
 

1

𝜋𝑟
cos[𝜈𝜃] sech 𝜈 ln

𝑟

𝑟
 𝑑𝜃

=
𝑟

𝜋𝑟
sech 𝜈 ln

𝑟

𝑟
cos [𝜈𝜃]  𝑑𝜃  

 

 

since ∫ cos [𝜈𝜃]  𝑑𝜃 = 𝜋 the last expression becomes: 
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𝑀 = 〈𝛾 , 𝛾 〉  𝑑Γ =
𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
  

 

k=3,5,7,…,N & k≠2ν+1 

As defined in the Equation (4.15.3): 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃 𝑓𝑜𝑟 𝑘 = 2,4,6, … 𝑁 − 1  

 

According to the Equation (A.7): 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 0 

 

 

Since the harmonic functions that appear in the inner product have different frequency, their 

inner product is null. 

In the same way is possible to calculate the transformation of the basis for the zero harmonic, 

as follows: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃   

 

since cos[𝜈(𝜃 − 𝜃 )] = 1 the last expression becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ 𝑑𝜃 =

1

𝑟 √𝜋
 2 cos

𝑘 − 1
2

𝜃

𝑘 − 1
 

= 0 

 

 

Considering that 𝜓 and 𝜓  are null, the auxiliary function 𝐺 is null and also all the other 

result are zero thus those frequency of the orthonormal basis function does not participate in 

the solution. 
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k=3,5,7,…,N & k=2ν+1 

As defined in the Equation (4.15.3): 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃 𝑓𝑜𝑟 𝑘 = 2,4,6, … 𝑁 − 1  

 

According to the Equation (A.7): 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
𝑠𝑖𝑛

(2𝜈 + 1) − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃  

 

 

is possible to re-write the last integral using the subtraction formula the for cosine terms, 

getting: 

 

𝑠𝑖𝑛[𝜈𝜃 ]cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 𝑠𝑖𝑛[𝜈𝜃 ](cos[𝜈𝜃 − 𝜈𝜃 ]) 𝑑𝜃

= 𝑠𝑖𝑛[𝜈𝜃 ](cos[𝜈𝜃] cos[𝜈𝜃 ] + sin[𝜈𝜃] sin[𝜈𝜃 ]) 𝑑𝜃

= 𝑠𝑖𝑛[𝜈𝜃 ]cos[𝜈𝜃] cos[𝜈𝜃 ] 𝑑𝜃′

+ 𝑠𝑖𝑛[𝜈𝜃 ] sin[𝜈𝜃] sin[𝜈𝜃 ] 𝑑𝜃

= cos[𝜈𝜃] 𝑠𝑖𝑛[𝜈𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′

+ sin[𝜈𝜃] 𝑠𝑖𝑛[𝜈𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃  

 

 

since ∫ 𝑠𝑖𝑛[𝜈𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′ = 0 and ∫ 𝑠𝑖𝑛[𝜈𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃 = 𝜋 the last 

expression becomes: 

 

𝑠𝑖𝑛[𝜈𝜃 ]cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 𝜋 sin[𝜈𝜃]  
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Then the transformation of the basis becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 =

𝜋

𝑟
sin[𝜈𝜙]  

 

The transformation of the basis for 𝜈 = 0 is: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃   

 

since cos[𝜈(𝜃 − 𝜃 )] = 1 the last expression becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ 𝑑𝜃 =

1

𝑟 √𝜋

cos
𝑘 − 1

2
𝜃

𝑘 − 1
2

 
= 0  

 

According to the Equation (A.10) the auxiliary function is defined as: 

 

𝐺 =
1

2𝜋
𝜓( ) +  

1

𝜋
 𝜓( ) cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟

=
1

𝜋𝑟
sin[𝜈𝜃] cosh 𝜈 ln

𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
 

 

 

The trace of the auxiliary function at the internal boundary Γ  is: 

 

𝛾 = 𝐺| =
1

𝜋𝑟
sin[𝜈𝜃] sech 𝜈 ln

𝑟

𝑟
  

 

The normal derivative of the auxiliary function at the external boundary is: 

 

𝜕𝐺

𝜕𝒏
= −

1

𝜋𝑟
sin[𝜈𝜃] sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
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The reciprocity functional defined in the Equation (4.16) became: 

 

𝑅 = −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐺

𝛿𝒏
𝑑Γ

= 𝑟 −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐺

𝛿𝒏
𝑑𝜃

= −𝑟 𝜓
ℎ

𝐾
𝑌 − 𝜓

ℎ

𝐾
𝑇 − 𝑌

𝛿𝐺

𝛿𝒏
𝑑𝜃

= −𝑟 𝑌 𝜓
ℎ

𝐾
−

𝛿𝐺

𝛿𝒏
𝑑𝜃 − 𝑟 𝜓

ℎ

𝐾
𝑇  𝑑𝜃  

= −𝑟 𝑌
1

𝑟 √𝜋
sinh

𝑘

2
𝜃′

ℎ

𝐾

−
1

𝑟 √𝜋
sin[𝜈𝜃′]  sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

− 𝑟
1

𝑟 √𝜋
𝑠𝑖𝑛[𝜈𝜃′]

ℎ

𝐾
𝑇  𝑑𝜃

= −𝑟 𝑌
1

𝑟 √𝜋
𝑠𝑖𝑛[𝜈𝜃′]

ℎ

𝐾

−
1

𝑟 √𝜋
sin[𝜈𝜃′] sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

− 𝑟
1

𝑟 √𝜋

ℎ

𝐾
𝑇 𝑠𝑖𝑛[𝜈𝜃′]  𝑑𝜃  

 

 

since ∫ 𝑠𝑖𝑛[𝜈𝜃′]  𝑑𝜃 = 0 the last expression become: 

𝑅 = −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐺

𝛿𝒏
𝑑Γ =

= −𝑟 𝑌
1

𝑟 √𝜋
𝑠𝑖𝑛[𝜈𝜃′]

ℎ

𝐾

− sech 𝜈 ln
𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

= −𝑟
1

𝑟 √𝜋

ℎ

𝐾

− sech 𝜈 ln
𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑌𝑠𝑖𝑛[𝜈𝜃′] 𝑑𝜃  
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Using the Fourier’s series expansion, the integral of the measurement at the external 

boundary Γ  in the last expression can be re-written as: 

 

𝑌 sin[𝜈𝜃 ] 𝑑𝜃

= 𝑎 sin[𝜈𝜃 ] + 𝑎 cos[𝜃 ] sin[𝜈𝜃 ] + 𝑏 sin[𝜃 ] sin[𝜈𝜃 ]

+ ⋯ + 𝑎 cos[𝑘 𝜃 ] sin[𝜈𝜃 ] + 𝑏 sin[𝑘 𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃

= 𝑎 sin[𝜈𝜃 ] 𝑑𝜃 + 𝑎 cos[𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃

+ 𝑏 sin[𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃 + ⋯

+ 𝑎 cos[𝑘 𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃

+ 𝑏 sin[𝑘 𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃   

 

 

since ∫ 𝑎 sin[𝜈𝜃 ] 𝑑𝜃 = 0, ∫ 𝑎 cos[𝑘 𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃′ = 0 for every 𝑘 , and:  

 

𝑏 sin[𝑘 𝜃′] sin[𝜈𝜃 ] 𝑑𝜃′ =
0        𝑖𝑓 𝑘 ≠ 𝜈 
𝜋𝑏 𝑖𝑓 𝑘 = 𝜈

  

 

the integral of the measurement at the external boundary becomes: 

 

𝑌 sin[𝜈𝜃′] 𝑑𝜃 = 𝜋𝑏   

 

and the reciprocity functional becomes: 
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𝑅

= −𝑟
1

𝑟 √𝜋

ℎ

𝐾

− sech 𝜈 ln
𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑌𝑠𝑖𝑛[𝜈𝜃 ] 𝑑𝜃

= −𝑟
𝜋𝑏

𝑟 √𝜋

ℎ

𝐾
− sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
  

= −𝑏 𝜋𝑟
ℎ

𝐾
− tanh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
  

 

 

According to the Equation (4.17) the integral of the internal heat generation is: 

 

𝑄 = 𝐺
𝑞

𝐾
𝑑𝛺

= 𝑟′
𝑞

𝐾

1

𝜋𝑟
sin[𝜈𝜃′] cosh 𝜈 ln

𝑟

𝑟′
sech 𝜈 ln

𝑟

𝑟
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

𝜋 𝑟
sech 𝜈 ln

𝑟

𝑟
𝑟′ sin[𝜈𝜃′] cosh 𝜈 ln

𝑟

𝑟′
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

𝜋 𝑟
sech 𝜈 ln

𝑟

𝑟
sin[𝜈𝜃′] 𝑑𝜃 𝑟′ cosh 𝜈 ln

𝑟

𝑟′
𝑑𝑟

= 0 

 

 

since ∫ 𝑠𝑖𝑛[𝜈𝜃′]  𝑑𝜃 = 0 the heat generation terms is null. 

 

The odd elements of the diagonal matrix of the inner product becomes: 

 

𝑀 = 〈𝛾 , 𝛾 〉  𝑑Γ = 𝑟  〈𝛾 , 𝛾 〉 𝑑𝜃  

= 𝑟
1

𝜋𝑟
sin[𝜈𝜃] sech 𝜈 ln

𝑟

𝑟
 

1

𝜋𝑟
sin[𝜈𝜃] sech 𝜈 ln

𝑟

𝑟
 𝑑𝜃

=
𝑟

𝜋𝑟
sech 𝜈 ln

𝑟

𝑟
sin [𝜈𝜃]  𝑑𝜃  
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since ∫ sin [𝜈𝜃]  𝑑𝜃 = 𝜋 the last expression becomes: 

 

𝑀 = 〈𝛾 , 𝛾 〉  𝑑Γ =
𝑟

𝑟
sech 𝜈 ln

𝑟

𝑟
  

 

A.3  Heat flux estimation: 

 

The solution of the first auxiliary problem is easy to get by simply solving the linear system 

defined in the Equation (4.23). Once the 𝛼 coefficients are determined, is possible estimating 

the internal heat flux according to the Equation (4.20). 

The results obtained are here summarized: 

 

𝑅 = − 𝜋𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ √2

ℎ

𝐾
(𝑎 − 𝑇 )

ℎ

𝐾
− tanh  ln

𝑟

𝑟
 

1

𝑟
𝑎

ℎ

𝐾
− tanh  ln

𝑟

𝑟
 

1

𝑟
𝑏

ℎ

𝐾
− tanh  2 ln

𝑟

𝑟
 

2

𝑟
𝑎

ℎ

𝐾
− tanh  2 ln

𝑟

𝑟
 

2

𝑟
𝑏

⋮
ℎ

𝐾
− tanh  𝜈 ln

𝑟

𝑟
 

𝜈

𝑟
𝑎

ℎ

𝐾
− tanh  𝜈 ln

𝑟

𝑟
 

𝜈

𝑟
𝑏

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝛼 =

𝛼  
𝛼

⋮
𝛼

 

𝑄 =

⎣
⎢
⎢
⎢
⎢
⎡𝑞

𝐾

𝜋

2𝑟
(𝑟 − 𝑟 ) 

0
⋮
0 ⎦

⎥
⎥
⎥
⎥
⎤
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𝑀
=

𝑟 𝑟

⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡
1

0

se
ch

1
ln

𝑟 𝑟

se
ch

1
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𝑟 𝑟

se
ch

2
ln

𝑟 𝑟

se
ch

2
ln

𝑟 𝑟

⋱

se
ch

𝜈
ln

𝑟 𝑟

0
se

ch
𝜈

ln
𝑟 𝑟

⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤  

𝛾
=

1 𝜋
𝑟

⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡
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⋯
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⋯
1
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𝑟 𝑟
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𝜋
]
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𝑟 𝑟
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]
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𝜋
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𝑟 𝑟
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]
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𝑟 𝑟

⋯
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𝑟 𝑟
⋯

co
s[

2
 2

𝜋
]
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2
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𝑟 𝑟

⋮
⋮

⋮
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s[

𝜈
 0

]
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𝜈
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𝑟 𝑟

⋯
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s[
𝜈

 𝜃
]
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ch

𝜈
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𝑟 𝑟
⋯

co
s[

𝜈
 2

𝜋
]
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ch

𝜈
ln

𝑟 𝑟

si
n

[𝜈
 0

]
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𝜈

ln
𝑟 𝑟

⋯
si

n
[ 𝜈

 𝜃
]
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ch

𝜈
ln

𝑟 𝑟
⋯
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𝜈
 2

𝜋
]
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ch

𝜈
ln

𝑟 𝑟
⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤  
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It is worth noting that the M matrix of the inner product is diagonal thus its determinant is 

given by the product of the its diagonal terms. Since the M matrix as to be inverted, its 

determinant has to be strictly close to one in order to increase its well conditioning; for this 

reason, the tube has to be as thin as possible as shown in Figure (A.2.a). This observation is 

physically justified since as much as the thickness of the tube is small, the easier is to 

estimate the properties at the inner surface Γ . This consideration is in contrast with the 

sensitivity of the transformation of the internal heat generation 𝑄  (Figure (A.2.b)), but, from 

the experimental point of view, this problem could be avoided by increasing the internal heat 

generation 𝑞  or increasing the external radius of the tube (Figure (A.2.b)). Related to aspect, 

it has to be pointed out that increasing the external radius, will also increase the element of 

the diagonal matrix M (Figure (A.2.c)) thus increasing its determinant and its capability to 

be inverted. 

As shown in Figure (A.3.a) increasing the numbers of the harmonics, the 𝑀 matrix becomes 

ill-conditioned making the solution unstable. For this reason, the solution has to be filtered. 

The filter here applied require the truncation of the element of the M as far as the noise 

contented in the measurement increase, according to the Morozov’s discrepancy principle. 

 

 
(a) (b) (c) 

Figure A.2: (a) effect of the tube thickness on the M matrix, (b) effect of the external 
dimension of the tube for three different thickness on the 𝑄  term and (c) effect of the 
external dimension of the tube for two different thickness and harmonic frequencies on 

the M matrix 
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(a) (b) 
Figure A.3: (a) effect of the numbers of harmonics on the 𝑀 for a representative value 

𝑟 /𝑟 = 0.9 and (b) 𝛾 basis  
 

A.4 Solve the second auxiliary problem system using the Classical Integral Transform 

Technique: 

 

The linear system presented in Chapter 4 (Equation (4.41)) could be solved analytically by 

using the Classical Integral Transform Technique. The analytical solution of the PDE system 

avoid the use of numerical method to solve this system making the code computationally 

fast. 

Operate on the physic in θ direction: 

Due to physical problem, is possible to write the Laplacian defined in the Equation (4.41.1) 

using the cylindrical coordinate: 

 

1

𝑟

𝜕

𝜕𝑟
𝑟

𝜕𝐹

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝜃

𝜕𝐹

𝜕𝜃
= 0 

 

𝜕 𝐹

𝜕𝑟
+

1

𝑟

𝜕𝐹

𝜕𝑟
+

1

𝑟

𝜕 𝐹

𝜕𝜃
= 0 

(A.11)     

 

Defining the integral transform as: 

 

𝐹 = 𝐹( , , ) 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃′ (A.12)     
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and the inversion formula, that could be divided in two part: the first one is a constant term 

while the second one is function of the number of the harmonics: 

 

𝐹 =
1

2𝜋
𝐹( , , ) +

1

𝜋
𝐹( , , ) (A.13)      

 

is possible to re-write the Laplacian in cylindrical coordinate defined in the Equation (A.11) 

multiplying times 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] and integrating it: 

 

𝜕 𝐹

𝜕𝑟
 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 +

1

𝑟

𝜕𝐹

𝜕𝑟
 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃

+
1

𝑟
 
𝜕 𝐹

𝜕𝜃
  𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 = 0 

 

𝜕

𝜕𝑟
𝐹 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 +

1

𝑟

𝜕

𝜕𝑟
 𝐹 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃

+
1

𝑟
 
𝜕 𝐹

𝜕𝜃
  𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 = 0 

   

 

substituting the definition given in the Equation (A.12) is easy to get: 

 

𝑑

𝑑𝑟
𝐹 +

1

𝑟

𝑑

𝑑𝑟
𝐹 +

1

𝑟
 
𝜕 𝐹

𝜕𝜃
  𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)] 𝑑𝜃 = 0 (A.14) 

 

the last integral of this equation can be solved integrating by part two times: 

 

𝑐𝑜𝑠[𝜈(𝜃 − 𝜃 )]
𝜕 𝐹

𝜕𝜃
𝑑𝜃′ 

=
𝜕𝐹

𝜕𝜃
cos[ 𝜈(𝜃 − 𝜃 ) ] − −𝜈 sin[𝜈(𝜃 − 𝜃 )] 

𝜕𝐹

𝜕𝜃
 𝑑𝜃

=
𝜕𝐹

𝜕𝜃
cos[ 𝜈(𝜃 − 𝜃 ) ] − (−𝐹𝜈 sin[𝜈(𝜃 − 𝜃 )])

− 𝜈 cos[𝜈(𝜃 − 𝜃 )] 𝐹 𝑑𝜃 = −𝜈 𝐹 
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Substituting this expression in the Equation (A.14) the transformation of the physical 

problem, become: 

 

𝑑

𝑑𝑟
𝐹 +

1

𝑟

𝑑

𝑑𝑟
𝐹 +

1

𝑟
𝜈 𝐹 = 0 (A.15)     

 

Operate on the boundary conditions: 

The conditions imposed at the internal boundary Γ  (Equation (4.41.2)) is easy transformed 

by multiplying times 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)]:   

 

𝐹 = 𝐹 cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃         

 

remembering the definition given in the Equation (4.41.2) is possible to re-write the last 

expression to get the transformation of the internal boundary condition: 

 

 𝐹 = 0  

 

The conditions imposed at the external boundary Γ  (Equation (4.41.3)) is easy 

transformed by multiplying times 𝑐𝑜𝑠[𝜈(𝜃 − 𝜃′)]:   

 

 𝐹 = 𝜓 cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃   

 

remembering the definition given in the Equation (4.41.3) is possible to re-write the last 

expression to get the transformation of the external boundary condition: 

 

𝐹 = 𝜓 (A.16)      

 

where 𝜓 is the transformation of the potential imposed in the second auxiliary problem 

(Equation (4.41.3)): 

 

𝜓 =  𝜓 cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃  (A.17)      
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Final system of equation and its solution: 

The transformation of the auxiliary problem defined by the Equations (4.41.1)-(4.41.3) is: 

 

∇ 𝐹 = 0 𝑖𝑛 Ω
𝐹 = 0 𝑎𝑡 Γ

𝐹 = 𝜓 𝑎𝑡 Γ

 (A.18) 

 

the last system of equations is easy to solve. The solution of the transformed problem is: 

 

𝐹 = 𝜓 sinh 𝜈 ln
𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟
  (A.19)    

 

In order to obtain the solution of the second auxiliary problem, the last equations has to be 

inverted using the definition given in the Equation (A.13): 

 

𝐹 =
1

2𝜋
𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟

+
1

𝜋
 𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟
  

(A.20)      

 

The first term on the right hand side of the last equation can be re-written as: 

 

1

2𝜋
𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟

=
1

2𝜋
𝜓

sinh 𝜈 ln
𝑟

𝑟

sinh 𝜈 ln
𝑟

𝑟

=
0

0
  

 

 

then using the L’Hopital rule: 
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1

2𝜋
𝜓  sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟

=
1

2𝜋
𝜓  

sinh 𝜈 ln
𝑟

𝑟

sinh 𝜈 ln
𝑟
𝑟

=
1

2𝜋
𝜓  

𝜕
𝜕𝜈

sinh 𝜈 ln
𝑟

𝑟
𝜕

𝜕𝜈
sinh 𝜈 ln

𝑟
𝑟

=
1

2𝜋
𝜓  

ln
𝑟

𝑟
cosh 𝜈 𝑙𝑛

𝑟
𝑟

ln
𝑟
𝑟

cosh 𝜈 𝑙𝑛
𝑟
𝑟

=
1

2𝜋
𝜓  

ln
𝑟

𝑟

ln
𝑟
𝑟

  

 

 

Finally, the Equation (A.19) became: 

 

𝐹 =
1

2𝜋
𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟

+
1

𝜋
 𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟

=
1

2𝜋
𝜓  

ln
𝑟

𝑟

ln
𝑟
𝑟

+
1

𝜋
 𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟
  

(A.21) 

 

A.5  Build the solution of the first auxiliary problem: 

 

According to the definition given in the Equations (4.15.1)-(4.15.3), the solution has to be 

divided in at least three steps for different values of harmonic frequencies k of the 

orthonormal basis function: 

 

k=1 

As defined in the Equation (4.15.1): 

 

𝜓 =
1

𝑟 √2𝜋
𝑓𝑜𝑟 𝑘 = 1  
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According to the Equation (A.17): 

 

𝜓 =
1

𝑟 √2𝜋
cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 =

1

𝑟 √2𝜋
cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √2𝜋

sin[𝜈𝜃] − sin[𝜈𝜃 − 2𝜋𝜈]

𝜈𝜃
= 0 

 

 

while: 

 

𝜓 =
1

𝑟 √2𝜋
cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃 =

1

𝑟 √2𝜋
𝑑𝜃′

=
1

𝑟 √2𝜋
2𝜋 =

2𝜋

𝑟
 

 

 

since cos[𝜈(𝜃 − 𝜃 )] = 1. 

According to the Equation (A.21) the auxiliary function is defined as: 

𝐹 =
1

2𝜋
𝜓  

ln
𝑟

𝑟

ln
𝑟
𝑟

+
1

𝜋
 𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟

=
1

2𝜋
𝜓

ln
𝑟

𝑟

ln
𝑟
𝑟

=
1

2𝜋

2𝜋

𝑟

ln
𝑟

𝑟

ln
𝑟
𝑟

=
1

2𝜋 𝑟

ln
𝑟

𝑟

ln
𝑟
𝑟

 

 

 

The trace of the auxiliary function at the internal boundary Γ  is: 

 

𝜉 =
∂F( )

∂𝐧
= −

1

2𝜋 𝑟

1

ln
𝑟
𝑟

𝑟
  

 

The normal derivative of the auxiliary function at the external boundary is: 

 

𝜕𝐹

𝜕𝒏
= −

1

2𝜋 𝑟

1

ln
𝑟
𝑟

𝑟
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The reciprocity functional defined in the Equation (4.42) became: 

 

𝑅 = −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑Γ

= 𝑟 −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑𝜃  

 

 

since the temperature profile at the external boundary is supposed to be known and acquired 

through the thermo-camera imaging, the last equation become: 

𝑅 = −𝜓
ℎ (𝑇 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑Γ

= 𝑟 −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑𝜃

= −𝑟 𝜓
ℎ (𝑌 − 𝑇 )

𝐾
+ 𝑌

𝛿𝐹

𝛿𝒏
𝑑𝜃

= −𝑟
1

2𝜋 𝑟

ℎ (𝑌 − 𝑇 )

𝐾

− 𝑌
1

2𝜋 𝑟

1

ln
𝑟
𝑟

𝑟
𝑑𝜃

=
−𝑟

2𝜋 𝑟

ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

1

ln
𝑟
𝑟

𝑟
𝑑𝜃

=
−𝑟

2𝜋 𝑟
𝑌

ℎ

𝐾
−

1

ln
𝑟
𝑟

𝑟
 𝑑𝜃

−
ℎ

𝐾
𝑇  𝑑𝜃

=
−𝑟

2𝜋 𝑟
⎝

⎛
ℎ

𝐾
−

1

ln
𝑟
𝑟

𝑟
𝑌 𝑑𝜃

−
ℎ

𝐾
𝑇  𝑑𝜃

⎠

⎞ 
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Using the Fourier’s series expansion, the integral of the measurement at the external 

boundary Γ  in the last expression can be re-written as: 

 

𝑌 𝑑𝜃 = 𝑎 + 𝑎 cos[𝜃 ] + 𝑏 sin[𝜃 ] + ⋯

+ 𝑎 cos[𝑘 𝜃 ] + 𝑏 sin[𝑘 𝜃 ] 𝑑𝜃

= 𝑎 𝑑𝜃 + 𝑎 cos[𝜃 ] 𝑑𝜃 + 𝑏 sin[𝜃 ] 𝑑𝜃 + ⋯

+ 𝑎 cos[𝑘 𝜃 ] 𝑑𝜃 + 𝑏 sin[𝑘 𝜃 ] 𝑑𝜃   

 

 

where 𝑎 , 𝑎 , 𝑏 , … , 𝑎 , 𝑏  are the Fourier’s expansion coefficients. 

Since the finite integral, from zero to 2𝜋, of both the harmonic function sine and cosine is 

null, the last expression becomes: 

 

𝑌 𝑑𝜃 = 2𝜋𝑎   

 

Since the environmental temperature is supposed to be constant, its integral is: 

 

𝑇  𝑑𝜃 = 2𝜋𝑇   

 

Substituting those results, the reciprocity functional becomes: 

 

𝑅 =
−𝑟

2𝜋 𝑟
⎝

⎛
ℎ

𝐾
−

1

ln
𝑟
𝑟

𝑟
𝑌 𝑑𝜃 −

ℎ

𝐾
𝑇  𝑑𝜃

⎠

⎞ =

=
−𝑟

2𝜋 𝑟
⎝

⎛
ℎ

𝐾
−

1

ln
𝑟
𝑟

𝑟
2𝜋𝑎 −

ℎ

𝐾
2𝜋 𝑇

⎠

⎞

= − 2𝜋𝑟
ℎ

𝐾

⎝

⎛ 1 −
𝐾

ln
𝑟
𝑟

𝑟 ℎ
𝑎 − 𝑇

⎠

⎞ 
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According to the Equation (4.43) the integral of the internal heat generation is: 

 

𝑄 = 𝐹
𝑞

𝐾
𝑑𝛺 = 𝑟

𝑞

𝐾

1

2𝜋 𝑟

ln
𝑟

𝑟

ln
𝑟
𝑟

𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

2𝜋 𝑟

1

ln
𝑟
𝑟

2𝜋 𝑟 ln
𝑟

𝑟
𝑑𝑟  

  

 

The integral that appear in the last expression can be solved integrating by part: 

 

𝑟 ln
𝑟

𝑟
𝑑𝑟 = ln

𝑟

𝑟

1

2
𝑟  −

1

2
𝑟 −

1

𝑟
𝑑𝑟

= ln
𝑟

𝑟

1

2
𝑟 +

1

2
𝑟 𝑑𝑟

= ln
𝑟

𝑟

1

2
𝑟 − ln

𝑟

𝑟

1

2
𝑟 +

1

4
(𝑟 − 𝑟 )

= ln
𝑟

𝑟

1

2
𝑟 +

1

4
(𝑟 − 𝑟 ) 

  

 

then the integral of the internal heat generation become: 

 

𝑄 = 𝐹
𝑞

𝐾
𝑑𝛺 =  

𝑞

𝐾

𝜋

2 𝑟
𝑟 +

1

2

𝑟 − 𝑟

ln
𝑟
𝑟

   

 

The first element of the matrix of the inner product becomes: 

 

𝑁 = 〈𝜉 , 𝜉 〉  𝑑Γ = 𝑟  〈𝜉 , 𝜉 〉 𝑑𝜃  

= 𝑟
1

2𝜋 𝑟

1

ln
𝑟
𝑟

𝑟

1

2𝜋 𝑟

1

ln
𝑟
𝑟

𝑟
 𝑑𝜃

=
1

ln
𝑟
𝑟

𝑟 𝑟
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k=2,4,6,…,N-1 & k≠2ν 

As defined in the Equation (4.15.2): 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃 𝑓𝑜𝑟 𝑘 = 2,4,6, … 𝑁 − 1  

 

According to the Equation (A.17): 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 0 

 

 

Since the harmonic function that appear in the inner product have different frequency, their 

inner product is null. In the same way is possible to calculate the transformation of the basis 

for the zero harmonic, as follows: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃   

 

since cos[𝜈(𝜃 − 𝜃 )] = 1 the last expression becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ 𝑑𝜃 =

1

𝑟 √𝜋
 

2

𝑘
sin

𝑘

2
𝜃  = 0  

 

Considering that 𝜓 and 𝜓  are null, the auxiliary function F is null and also all the other 

result are zeros thus those frequency of the orthonormal basis function doesn’t participate in 

the solution. 

 

k=2,4,6,…,N-1 & k=2ν 

As defined in the Equation (4.15.2): 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃 𝑓𝑜𝑟 𝑘 = 2,4,6, … 𝑁 − 1  
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According to the Equation (A.17): 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
𝑐𝑜𝑠

2𝜈

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
 
4𝜋 cos[𝜈𝜃] + sin[𝜈𝜃] − sin[𝜈(𝜃 − 4𝜋)]

4𝜈

=
1

𝑟 √𝜋
cos[𝜈𝜃] 

 

 

is possible to re-write the last integral using the subtraction formula the for cosine terms, 

getting: 

 

𝑐𝑜𝑠[𝜈𝜃 ]cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 𝑐𝑜𝑠[𝜈𝜃 ](cos[𝜈𝜃 − 𝜈𝜃 ]) 𝑑𝜃

= 𝑐𝑜𝑠[𝜈𝜃 ](cos[𝜈𝜃] cos[𝜈𝜃 ] + sin[𝜈𝜃] sin[𝜈𝜃 ]) 𝑑𝜃

= 𝑐𝑜𝑠[𝜈𝜃 ]cos[𝜈𝜃] cos[𝜈𝜃 ] 𝑑𝜃′

+ 𝑐𝑜𝑠[𝜈𝜃 ] sin[𝜈𝜃] sin[𝜈𝜃 ] 𝑑𝜃

= cos[𝜈𝜃] 𝑐𝑜𝑠[𝜈𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′

+ sin[𝜈𝜃] 𝑐𝑜𝑠[𝜈𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃  

 

 

since ∫ 𝑐𝑜𝑠[𝜈𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′ = 𝜋 and ∫ 𝑐𝑜𝑠[𝜈𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃 = 0 the last 

expression becomes: 

 

𝑐𝑜𝑠[𝜈𝜃 ]cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 𝜋 cos[𝜈𝜃]  

 

Then the transformation of the basis becomes: 
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𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

2𝜈

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 =

𝜋

𝑟
cos[𝜈𝜙]  

Then the transformation of the basis for 𝜈 = 0 is: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃   

 

since cos[𝜈(𝜃 − 𝜃 )] = 1 the last expression become: 

 

𝜓 =
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′ 𝑑𝜃 =

1

𝑟 √𝜋

sin
𝑘
2

𝜃

𝑘
2

= 0  

 

According to the Equation (A.21) the auxiliary function is defined as: 

 

𝐹 =
1

2𝜋
𝜓  

ln
𝑟

𝑟

ln
𝑟
𝑟

+
1

𝜋
 𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟

=
1

𝜋
 

𝜋

𝑟
cos[𝜈𝜙] sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟
  

      

 

The normal derivative of the auxiliary function at the external boundary is: 

 

𝜕𝐹

𝜕𝒏
= −

1

𝜋𝑟
cos[𝜈𝜃] csch 𝜈 ln

𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
   

 

The trace of the auxiliary function at the internal boundary Γ  is: 

 

𝜉 =
𝜕𝐹

𝜕𝒏
= −

1

𝜋𝑟
cos[𝜈𝜃] csch 𝜈 ln

𝑟

𝑟

𝜈

𝑟
   

 

The reciprocity functional defined in the Equation (4.42) became: 
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𝑅 = −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑Γ

= 𝑟 −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑𝜃

= −𝑟 𝜓
ℎ

𝐾
𝑌 + 𝜓

ℎ

𝐾
𝑇 + 𝑌

𝛿𝐹

𝛿𝒏
𝑑𝜃

= −𝑟 𝑌 𝜓
ℎ

𝐾
−

𝛿𝐹

𝛿𝒏
𝑑𝜃 − 𝑟 𝜓

ℎ

𝐾
𝑇  𝑑𝜃  

= −𝑟 𝑌
1

𝑟 √𝜋
𝑐𝑜𝑠

𝑘

2
𝜃′

ℎ

𝐾

−
1

𝑟 √𝜋
cos[𝜈𝜃′] csch 𝜈 ln

𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

− 𝑟
1

𝑟 √𝜋
𝑐𝑜𝑠[𝜈𝜃′]

ℎ

𝐾
𝑇  𝑑𝜃

= −𝑟 𝑌
1

𝑟 √𝜋
𝑐𝑜𝑠[𝜈𝜃′]

ℎ

𝐾

−
1

𝑟 √𝜋
cos[𝜈𝜃′] sech 𝜈 ln

𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

− 𝑟
1

𝑟 √𝜋

ℎ

𝐾
𝑇 𝑐𝑜𝑠[𝜈𝜃′]  𝑑𝜃  

 

 

since ∫ 𝑐𝑜𝑠[𝜈𝜃′]  𝑑𝜃 = 0 the last expression become: 

 

𝑅 = −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑Γ =

= −𝑟 𝑌
1

𝑟 √𝜋
𝑐𝑜𝑠[𝜈𝜃′]

ℎ

𝐾

− csch 𝜈 ln
𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

= −𝑟
1

𝑟 √𝜋

ℎ

𝐾

− csch 𝜈 ln
𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑌𝑐𝑜𝑠[𝜈𝜃′] 𝑑𝜃  
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Using the Fourier’s series expansion, the integral of the measurement at the external 

boundary Γ  in the last expression can be re-written as: 

 

𝑌 cos[𝜈𝜃 ] 𝑑𝜃

= 𝑎 cos[𝜈𝜃 ]

+ 𝑎 cos[𝜃 ] cos[𝜈𝜃 ] + 𝑏 sin[𝜃 ] cos[𝜈𝜃 ] + ⋯

+ 𝑎 cos[𝑘 𝜃 ] cos[𝜈𝜃 ] + 𝑏 sin[𝑘 𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃

= 𝑎 cos[𝜈𝜃 ] 𝑑𝜃 + 𝑎 cos[𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃

+ 𝑏 sin[𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃 + ⋯

+ 𝑎 cos[𝑘 𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃

+ 𝑏 sin[𝑘 𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃   

 

 

since ∫ 𝑎 cos[𝜈𝜃 ] 𝑑𝜃 = 0, ∫ 𝑏 sin[𝑘 𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′ = 0 for every 𝑘 , and:  

 

𝑎 cos[𝑘 𝜃′] cos[𝜈𝜃 ] 𝑑𝜃′ =
0        𝑖𝑓 𝑘 ≠ 𝜈 
𝜋𝑎 𝑖𝑓 𝑘 = 𝜈

  

 

the integral of the measurement at the external boundary becomes: 

 

𝑌𝑐𝑜𝑠[𝜈𝜃′] 𝑑𝜃 = 𝜋𝑎   

 

and the reciprocity functional becomes: 
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𝑅

= −𝑟
1

𝑟 √𝜋

ℎ

𝐾

− csch 𝜈 ln
𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑌𝑐𝑜𝑠[𝜈𝜃 ] 𝑑𝜃

= −𝑟
𝜋𝑎

𝑟 √𝜋

ℎ

𝐾
− csch 𝜈 ln

𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
  

= −𝑎 𝜋𝑟
ℎ

𝐾
− coth 𝜈 ln

𝑟

𝑟

𝜈

𝑟
  

 

 

According to the Equation (4.43) the integral of the internal heat generation is: 

 

𝑄 = 𝐹
𝑞

𝐾
𝑑𝛺

= 𝑟
𝑞

𝐾

1

𝜋𝑟
cos[𝜈𝜃] sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

𝜋 𝑟
csch 𝜈 ln

𝑟

𝑟
𝑟 cos[𝜈𝜃] sinh 𝜈 ln

𝑟

𝑟
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

𝜋 𝑟
csch 𝜈 ln

𝑟

𝑟
cos[𝜈𝜃′] 𝑑𝜃 𝑟′ sinh 𝜈 ln

𝑟

𝑟′
𝑑𝑟  

 

 

since ∫ 𝑐𝑜𝑠[𝜈𝜃′]  𝑑𝜃 = 0 the heat generation terms is null. 

The even elements of the matrix of the inner product becomes: 

 

𝑁 = 〈𝜉 , 𝜉 〉  𝑑Γ = 𝑟  〈𝜉 , 𝜉 〉 𝑑𝜃  

= 𝑟
1

𝜋𝑟
cos[𝜈𝜃] csch 𝜈 ln

𝑟

𝑟

𝜈

𝑟

1

𝜋𝑟
cos[𝜈𝜃] csch 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

=
𝑟

𝜋𝑟
csch 𝜈 ln

𝑟

𝑟

𝜈

𝑟
cos [𝜈𝜃]  𝑑𝜃  
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since ∫ cos [𝜈𝜃]  𝑑𝜃 = 𝜋 the last expression becomes: 

 

𝑁 = 〈𝜉 , 𝜉 〉  𝑑Γ =
𝜈

𝑟 𝑟
csch 𝜈 ln

𝑟

𝑟
  

 

k=3,5,7,…,N & k≠2ν+1 

As defined in the Equation (4.15.3): 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃 𝑓𝑜𝑟 𝑘 = 2,4,6, … 𝑁 − 1  

 

According to the Equation (A.7): 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 0 

 

 

Since the harmonic function that appear in the inner product have different frequency, their 

inner product is null. In the same way is possible to calculate the transformation of the basis 

for the zero harmonic, as follows: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )] 𝑑𝜃   

 

since cos[𝜈(𝜃 − 𝜃 )] = 1 the last expression becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ 𝑑𝜃 =

1

𝑟 √𝜋
 2 cos

𝑘 − 1
2

𝜃

𝑘 − 1
 

= 0 

 

 



266 

Considering that 𝜓 and 𝜓  are null, the auxiliary function 𝐺 is null and also all the other 

result are zero thus those frequency of the orthonormal basis function doesn’t participate in 

the solution. 

 

k=3,5,7,…,N & k=2ν+1 

As defined in the Equation (4.41.3): 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃 𝑓𝑜𝑟 𝑘 = 2,4,6, … 𝑁 − 1  

 

According to the Equation (A.7): 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃

=
1

𝑟 √𝜋
𝑠𝑖𝑛

(2𝜈 + 1) − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃  

 

 

is possible to re-write the last integral using the subtraction formula the for cosine terms, 

getting: 

 

𝑠𝑖𝑛[𝜈𝜃 ]cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 𝑠𝑖𝑛[𝜈𝜃 ](cos[𝜈𝜃 − 𝜈𝜃 ]) 𝑑𝜃

= 𝑠𝑖𝑛[𝜈𝜃 ](cos[𝜈𝜃] cos[𝜈𝜃 ] + sin[𝜈𝜃] sin[𝜈𝜃 ]) 𝑑𝜃

= 𝑠𝑖𝑛[𝜈𝜃 ]cos[𝜈𝜃] cos[𝜈𝜃 ] 𝑑𝜃′

+ 𝑠𝑖𝑛[𝜈𝜃 ] sin[𝜈𝜃] sin[𝜈𝜃 ] 𝑑𝜃

= cos[𝜈𝜃] 𝑠𝑖𝑛[𝜈𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′

+ sin[𝜈𝜃] 𝑠𝑖𝑛[𝜈𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃  

 

 

since ∫ 𝑠𝑖𝑛[𝜈𝜃 ] cos[𝜈𝜃 ] 𝑑𝜃′ = 0 and ∫ 𝑠𝑖𝑛[𝜈𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃 = 𝜋 the last 

expression becomes: 
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𝑠𝑖𝑛[𝜈𝜃 ]cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 = 𝜋 sin[𝜈𝜃]  

 

Then the transformation of the basis becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃 =

𝜋

𝑟
sin[𝜈𝜙]  

 

Then the transformation of the basis for 𝜈 = 0 is: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ cos[𝜈(𝜃 − 𝜃 )]𝑑𝜃   

 

since cos[𝜈(𝜃 − 𝜃 )] = 1 the last expression becomes: 

 

𝜓 =
1

𝑟 √𝜋
𝑠𝑖𝑛

𝑘 − 1

2
𝜃′ 𝑑𝜃 =

1

𝑟 √𝜋

cos
𝑘 − 1

2
𝜃

𝑘 − 1
2

 
= 0  

According to the Equation (A.21) the auxiliary function is defined as: 

 

𝐹 =
1

2𝜋
𝜓  

ln
𝑟

𝑟

ln
𝑟
𝑟

+
1

𝜋
 𝜓 sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟

=
1

𝜋
 

𝜋

𝑟
sin[𝜈𝜙] sinh 𝜈 ln

𝑟

𝑟
csch 𝜈 ln

𝑟

𝑟
  

       

 

The normal derivative of the auxiliary function at the external boundary is: 

 

𝜕𝐹

𝜕𝒏
= −

1

𝜋𝑟
sin[𝜈𝜃] csch 𝜈 ln

𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
   

The trace of the auxiliary function at the internal boundary Γ  is: 

𝜉 =
𝜕𝐹

𝜕𝒏
= −

1

𝜋𝑟
sin[𝜈𝜃] csch 𝜈 ln

𝑟

𝑟

𝜈

𝑟
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The reciprocity functional defined in the Equation (4.42) became: 

 

𝑅 = −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑Γ

= 𝑟 −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑𝜃

= −𝑟 𝜓
ℎ

𝐾
𝑌 − 𝜓

ℎ

𝐾
𝑇 − 𝑌

𝛿𝐹

𝛿𝒏
𝑑𝜃

= −𝑟 𝑌 𝜓
ℎ

𝐾
−

𝛿𝐹

𝛿𝒏
𝑑𝜃 − 𝑟 𝜓

ℎ

𝐾
𝑇  𝑑𝜃  

= −𝑟 𝑌
1

𝑟 √𝜋
sin

𝑘

2
𝜃′

ℎ

𝐾

−
1

𝑟 √𝜋
sin[𝜈𝜃′] csch 𝜈 ln

𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

− 𝑟
1

𝑟 √𝜋
𝑠𝑖𝑛[𝜈𝜃′]

ℎ

𝐾
𝑇  𝑑𝜃

= −𝑟 𝑌
1

𝑟 √𝜋
𝑠𝑖𝑛[𝜈𝜃′]

ℎ

𝐾

−
1

𝑟 √𝜋
sin[𝜈𝜃′] csch 𝜈 ln

𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

− 𝑟
1

𝑟 √𝜋

ℎ

𝐾
𝑇 𝑠𝑖𝑛[𝜈𝜃′]  𝑑𝜃  

 

 

since ∫ 𝑠𝑖𝑛[𝜈𝜃′]  𝑑𝜃 = 0 the last expression become: 

𝑅 = −𝜓
ℎ (𝑌 − 𝑇 )

𝐾
− 𝑌

𝛿𝐹

𝛿𝒏
𝑑Γ =

= −𝑟 𝑌
1

𝑟 √𝜋
𝑠𝑖𝑛[𝜈𝜃′]

ℎ

𝐾

− csch 𝜈 ln
𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

= −𝑟
1

𝑟 √𝜋

ℎ

𝐾

− sech 𝜈 ln
𝑟

𝑟
sinh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑌𝑠𝑖𝑛[𝜈𝜃′] 𝑑𝜃  
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Using the Fourier’s series expansion, the integral of the measurement at the external 

boundary Γ  in the last expression can be re-written as: 

 

𝑌 sin[𝜈𝜃 ] 𝑑𝜃

= 𝑎 sin[𝜈𝜃 ] + 𝑎 cos[𝜃 ] sin[𝜈𝜃 ] + 𝑏 sin[𝜃 ] sin[𝜈𝜃 ]

+ ⋯ + 𝑎 cos[𝑘 𝜃 ] sin[𝜈𝜃 ] + 𝑏 sin[𝑘 𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃

= 𝑎 sin[𝜈𝜃 ] 𝑑𝜃 + 𝑎 cos[𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃

+ 𝑏 sin[𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃 + ⋯

+ 𝑎 cos[𝑘 𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃

+ 𝑏 sin[𝑘 𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃   

 

 

since ∫ 𝑎 sin[𝜈𝜃 ] 𝑑𝜃 = 0, ∫ 𝑎 cos[𝑘 𝜃 ] sin[𝜈𝜃 ] 𝑑𝜃′ = 0 for every 𝑘 , and:  

 

𝑏 sin[𝑘 𝜃′] sin[𝜈𝜃 ] 𝑑𝜃′ =
0        𝑖𝑓 𝑘 ≠ 𝜈 
𝜋𝑏 𝑖𝑓 𝑘 = 𝜈

  

 

the integral of the measurement at the external boundary becomes: 

 

𝑌 sin[𝜈𝜃′] 𝑑𝜃 = 𝜋𝑏   

 

and the reciprocity functional becomes: 
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𝑅

= −𝑟
1

𝑟 √𝜋

ℎ

𝐾

− csch 𝜈 ln
𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑌𝑠𝑖𝑛[𝜈𝜃 ] 𝑑𝜃

= −𝑟
𝜋𝑏

𝑟 √𝜋

ℎ

𝐾
− csch 𝜈 ln

𝑟

𝑟
cosh 𝜈 ln

𝑟

𝑟

𝜈

𝑟
  

= −𝑏 𝜋𝑟
ℎ

𝐾
− coth 𝜈 ln

𝑟

𝑟

𝜈

𝑟
  

 

According to the Equation (4.43) the integral of the internal heat generation is: 

 

𝑄 = 𝐹
𝑞

𝐾
𝑑𝛺

= 𝑟′
𝑞

𝐾

1

𝜋𝑟
sin[𝜈𝜃′] sinh 𝜈 ln

𝑟

𝑟′
csch 𝜈 ln

𝑟

𝑟
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

𝜋 𝑟
csch 𝜈 ln

𝑟

𝑟
𝑟′ sin[𝜈𝜃′] sinh 𝜈 ln

𝑟

𝑟′
𝑑𝑟 𝑑𝜃

=
𝑞

𝐾

1

𝜋 𝑟
csch 𝜈 ln

𝑟

𝑟
sin[𝜈𝜃′] 𝑑𝜃 𝑟′ sinh 𝜈 ln

𝑟

𝑟′
𝑑𝑟

= 0 

 

 

since ∫ 𝑠𝑖𝑛[𝜈𝜃′]  𝑑𝜃 = 0 the heat generation terms is null. 

The odd element of the diagonal matrix of the inner product becomes: 

 

𝑁 = 〈𝜉 , 𝜉 〉  𝑑Γ = 𝑟  〈𝜉 , 𝜉 〉 𝑑𝜃  

= 𝑟
1

𝜋𝑟
sin[𝜈𝜃] csch 𝜈 ln

𝑟

𝑟

𝜈

𝑟

1

𝜋𝑟
sin[𝜈𝜃] csch 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 𝑑𝜃

=
𝑟

𝜋𝑟
csch 𝜈 ln

𝑟

𝑟

𝜈

𝑟
 sin [𝜈𝜃]  𝑑𝜃  

 

 

since ∫ sin [𝜈𝜃]  𝑑𝜃 = 𝜋 the last expression becomes: 
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𝑁 = 〈𝜉 , 𝜉 〉  𝑑Γ =
𝜈

𝑟 𝑟
csch 𝜈 ln

𝑟

𝑟
  

 

A.6  Solve the second auxiliary problem: 

 

The solution of the first auxiliary problem is easy to get by simply solving the linear system 

defined in the Equation (4.48). Once the 𝛽 coefficients are determined, is possible estimating 

the internal heat flux by those coefficients according to the Equation (4.46). 

The results obtained are here summarized:  

 

 

𝑅 = − 𝜋𝑟

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
√2

ℎ

𝐾

⎝

⎛ 1 −
𝐾

ℎ 𝑟 ln
𝑟
𝑟

𝑎 − 𝑇

⎠

⎞

ℎ

𝐾
− coth  ln

𝑟

𝑟
 

1

𝑟
𝑎

ℎ

𝐾
− coth  ln

𝑟

𝑟
 

1

𝑟
𝑏

ℎ

𝐾
− coth  2 ln

𝑟

𝑟
 

2

𝑟
𝑎

ℎ

𝐾
− coth  2 ln

𝑟

𝑟
 

2

𝑟
𝑏

⋮
ℎ

𝐾
− coth  𝜈 ln

𝑟

𝑟
 

𝜈

𝑟
𝑎

ℎ

𝐾
− coth  𝜈 ln

𝑟

𝑟
 

𝜈

𝑟
𝑏

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑄 =

⎣
⎢
⎢
⎢
⎢
⎡𝑞

𝐾

𝜋

2𝑟
 𝑟 +

1

2

(𝑟 − 𝑟 )

ln
𝑟
𝑟

0
⋮
0 ⎦

⎥
⎥
⎥
⎥
⎤

 𝛽 =

𝛽  
𝛽

⋮
𝛽
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𝑁
=

1

𝑟
𝑟

⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡
1

ln
𝑟 𝑟

0

cs
ch

1
ln

𝑟 𝑟

cs
ch

1
ln

𝑟 𝑟

2
cs

ch
2

ln
𝑟 𝑟

2
cs

ch
2

ln
𝑟 𝑟

⋱

𝜈
cs

ch
𝜈

ln
𝑟 𝑟

0
𝜈

cs
ch

𝜈
ln

𝑟 𝑟
⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤  

𝜉
=

1 𝜋
𝑟

⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡
1

⋯
1

⋯
1

co
s[

1
 0

]
se

ch
1

ln
𝑟 𝑟

⋯
co

s[
1

 𝜃
]

se
ch

1
ln

𝑟 𝑟
⋯

co
s[

1
 2

𝜋
]

cs
ch

1
ln

𝑟 𝑟

si
n

[ 1
 0

]
se

ch
1

ln
𝑟 𝑟

⋯
si

n
[ 1

 𝜃
]

se
ch

1
ln

𝑟 𝑟
⋯

si
n

[ 1
 2

𝜋
]

cs
ch

1
ln

𝑟 𝑟

co
s[

2
 0

]
se

ch
2

ln
𝑟 𝑟

⋯
co

s[
2

 𝜃
]

se
ch

2
ln

𝑟 𝑟
⋯

co
s[

2
 2

𝜋
]

cs
ch

2
ln

𝑟 𝑟

si
n

[ 2
 0

]
se

ch
2

ln
𝑟 𝑟

⋯
si

n
[ 2

 𝜃
]

se
ch

2
ln

𝑟 𝑟
⋯

si
n

[ 2
 2

𝜋
]

cs
ch

2
ln

𝑟 𝑟

⋮
⋮

⋮

co
s[

𝜈
 0

]
se

ch
𝜈

ln
𝑟 𝑟

⋯
co

s[
𝜈

 𝜃
]

se
ch

𝜈
ln

𝑟 𝑟
⋯

co
s[

𝜈
 2

𝜋
]

cs
ch

𝜈
ln

𝑟 𝑟

si
n

[𝜈
 0

]
se

ch
𝜈

ln
𝑟 𝑟

⋯
si

n
[ 𝜈

 𝜃
]

se
ch

𝜈
ln

𝑟 𝑟
⋯

si
n

[ 𝜈
 2

𝜋
]

cs
ch

𝜈
ln

𝑟 𝑟
⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤  
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As it is possible to see in Figure (A.2.a), the element of the matrix of the inner product of 

the second auxiliary problem increase as far as the tube becomes thin. It has to be pointed 

out that in this case the elements appearing on the diagonal of the N matrix, could become 

very large highlighting the less ill-posedness of the problem respect to the heat flux 

estimation. 

Like in the previous case, as far as the tube becomes thinner, the sensitivity to the heat 

generation parameter become smaller, therefore it is necessary to increase the heat 

generation due to the Joule effect in the tube, or increase its the external diameter (Figure 

(A.2.b)). The increment of the external diameter has also a beneficial effect on the matrix of 

the inner products (Figure (A.2.c)), since its diagonal elements increase as far as the external 

diameter becomes bigger. 

 

 
(a) (b) (c) 

Figure A.4: (a) effect of the tube thickness on the N matrix, (b) effect of the external 
dimension of the tube for three different thickness on the 𝑄  term and (c) effect of the 
external dimension of the tube for two different thickness and harmonic frequencies on 

the N matrix 
 

As shown in Figure (A.3.a) increasing the numbers of the harmonics, the matrix of the inner 

product becomes ill-conditioned making the solution unstable. For this reason, the solution 

has to be filtered. The filter here applied require the truncation of the element of the M as far 

as the noise contented in the measurement increase. In particular the same number of 

harmonic used during the estimation of the heat flux was assumed. 
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(a) (b) 
Figure A.5: (a) effect of the numbers of harmonics on the 𝑁 for a representative value 

𝑟 /𝑟 = 0.9 and (b) 𝜉 basis  
 

 

A.7.  Filtering requirement 

 

As far as the harmonic order increase, the diagonal elements of the matrices of the inner 

product become smaller and smaller. This behaviour require the filtering of the harmonic 

number used to reconstruct the signal. In fact, since the matrices of the inner product has to 

be inverted in order the estimate the internal boundary condition values, small diagonal 

elements will produce extremely high diagonal element in the inverted matrices, making the 

solutions unstable. It is straightforward that as far as the noise contained in the measurement 

increase, the number of harmonic used to reconstruct the signal has to decrease in order to 

keep the solution stable. Moreover, that the reduction of the number of harmonic used to 

reconstruct the signal will reduce its quality especially if it is characterized by a sharp 

behaviour. 

As already shown in Chapter 3, due to the linearization of the problem, all the methodologies 

based on the sensitivity matrix, require the inverse estimation of the internal wall heat flux 

before the estimation of the internal convective heat transfer coefficient. Therefore, the core 

of the inverse problem is the estimation of the heat flux distribution, being the convective 

heat flux coefficient derived from it. The Reciprocity Functional approach is not based on 

the sensitivity matrix, moreover the two auxiliary problem are not linked together. 

Nevertheless, the same pattern could be recognised since the critical point of this estimation 

procedure is the assessment of the internal wall heat flux: behaviour due to the elements of 

the diagonal matrix M that go to zero faster than the elements of the N matrix. 

Lemma 1: 
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If the harmonic order increase, the diagonal elements of the M matrix go to zero. 

Proof 1: 

lim
→

𝑑𝑖𝑎𝑔(𝑀) = lim
→

sech 𝜈 log
𝑟

𝑟
= 0  

 

Lemma 2: 

If the harmonic order increase, the diagonal elements of the N matrix go to zero. 

Proof 2: 

lim
→

𝑑𝑖𝑎𝑔(𝑁) = lim
→

𝜈 csch 𝜈 log
𝑟

𝑟
= lim

→
𝜈

1

sinh 𝜈 log
𝑟
𝑟

=
∞

∞
  

The application for two times of the l’Hopital rule is needed: 

 

lim
→

𝑑𝑖𝑎𝑔(𝑁) = lim
→

2𝜈
1

ln
𝑟
𝑟

2 sinh 𝜈 log
𝑟
𝑟

cosh 𝜈 log
𝑟
𝑟

= 0  

 

Lemma 3: 

If the harmonic order increase, the ratio between the elements of M and N goes to zero. 

Proof 3: 

lim
→

𝑑𝑖𝑎𝑔(𝑀)

𝑑𝑖𝑎𝑔(𝑁)
= lim

→

1

𝜈

sech 𝜈 log
𝑟
𝑟

csch 𝜈 log
𝑟
𝑟

= lim
→

1

𝜈
tanh 𝜈 log

𝑟

𝑟
= 0  

 

 

 

A.8.  Reciprocity functional analysis 

 

The information contained in the measurement is passed to the inverse problems through the 

reciprocity functionals. Even if the functional gaps are related to two different problems, 

they share the same set of data; therefore, as far as the harmonic order increase, they tend to 

the same value.  

 

 

 

Lemma 4: 
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If the harmonic order increase, the ratio between the elements of 𝑅  and 𝑅  goes to one. 

Proof 4: 

lim
→

𝑅

𝑅
= lim

→

ℎ
𝐾

−
𝜈

𝑟
tanh  𝜈 ln

𝑟
𝑟

 𝑐

ℎ
𝐾

−
𝜈

𝑟
coth  𝜈 ln

𝑟
𝑟

 𝑐

= lim
→

ℎ
𝐾

−
𝜈

𝑟
tanh  𝜈 ln

𝑟
𝑟
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where 𝑐  is a general coefficient of the Fourier’s series expansion. 
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