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Summary 
 

 

 

In Italy, non-ductile reinforced concrete structures, designed and built in areas declared 

seismic by the current regulations, are an important part of the building heritage. These 

structures have been designed to resist only gravitational loads, without considering the actions 

induced by earthquakes; consequently, the structural elements of these buildings are often 

undersized and lack structural details. The lack of structural details generates unexpected 

collapses, typically not present in new buildings, and linked to brittle failure on the concrete 

side or to the instability of the longitudinal rebars. Moreover, most of these buildings date back 

to the post-war period and therefore reached and surpassed their service life; therefore, 

scenarios of degradation and decay are configured for the mechanical properties of the 

structural elements. 

Recent and past seismic events (L'Aquila, April 6th 2009; Finale Emilia, May 20th 2012; 

Medolla, May 29th 2012; Rieti, August 24th 2016; Norcia, October 30th 2016) have 

highlighted the seismic vulnerability of old reinforced concrete buildings, making the theme of 

the existing buildings modeling of great interest. For these reasons, a crack model for the 

prediction of the structural response of new and existing reinforced concrete buildings subjected 

to static and dynamic loadings, called PARC_CL 2.1 (abbreviation of Physical Approach for 

Reinforced Concrete under Cyclic Loading condition) is proposed. 

The PARC_CL 2.1 crack model allows to take into account plastic and irreversible 

deformations in the unloading-reloading phases, considering the hysteretic cycles of concrete 

and steel. These phenomena are of great relevance for cyclic and dynamic analyses because 

they always provided a plastic and irreversible component of the deformation. 

The PARC_CL 2.1 crack model has been implemented as a user subroutine within a finite 

element program (ABAQUS) in order to combine the need for an accurate modeling of the 

material behavior with the potential of a valid commercial solver. 
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The PARC_CL 2.1 model also allows evaluating the effects induced by shrinkage, which 

can strongly influence the serviceability state of RC structures, as well as the interaction 

between steel and cracked concrete (tension-stiffening). 

Finally, the PARC_CL 2.1 model has been extended to the evaluation of existing structures 

behaviour, implementing, in first analysis, two constitutive laws able to consider the damage of 

the longitudinal reinforcement in compression. The buckling of longitudinal reinforcements can 

strongly influence the response of reinforced concrete structural elements, especially when it is 

associated with existing buildings characterized by poor quality of execution and absence of 

adequate stirrups. In fact, reinforced concrete structures, built before the modern seismic codes, 

were designed only for gravitational loads, without considering the horizontal actions induced 

by earthquakes. The structural elements of these structures generally have a sub-dimensioned 

cross-section which, when subjected to large transverse and/or cyclic deformations, fail for 

spalling of concrete cover with consequent buckling of the longitudinal reinforcement. Indeed, 

during loading inversions, the concrete prevents the development of high compressive 

deformations in steel bars, but, when the concrete fails, the compressive steel strains increase 

with buckling of longitudinal rebars. The buckling of longitudinal reinforcement is avoided or 

limited by the stabilising effect provided by stirrups if they are not too distant. 

Buckling of longitudinal reinforcement can be obtained by different modelling approaches, 

as for example adopting discrete reinforcement, using non-linear steel-concrete interface 

elements and considering the geometric non-linearity. In the case of cracking models, as the 

PARC_CL 2.1 model, it is instead necessary to adopt a constitutive law for the steel able to 

consider the effects induced by buckling. 

The comparison of the experimental evidence with the results obtained from the non-linear 

finite elements analyses, by means the PARC_CL 2.1 crack model, demonstrated the efficiency 

and potentiality of the proposed model. Future developments will be necessary for the 

application of the model to the evaluation of the seismic behaviour of degraded structures. 

 



 

 

 

Sommario 
 

 

 

In Italia le strutture in calcestruzzo armato non duttili, progettate e costruite in zone dichiarate 

sismiche dalla attuale normativa, costituiscono una importante porzione del patrimonio edilizio. 

Tali strutture sono state progettate per resistere ai soli carichi gravitazionali, senza considerare 

le azioni indotte dal sisma; di conseguenza gli elementi strutturali di questi edifici sono spesso 

sottodimensionati e privi degli opportuni dettagli costruttivi. Queste carenze generano 

meccanismi di collasso tipicamente legati a rotture fragili lato calcestruzzo o all’instabilità delle 

barre verticali, non individuabili in edifici di nuova costruzione. Inoltre, la maggior parte di tali 

edifici risale al trentennio post-bellico e ha quindi raggiunto e superato la propria vita utile; si 

configurano pertanto scenari di degrado e decadimento anche delle proprietà meccaniche degli 

elementi strutturali. 

I recenti e passati eventi sismici (l’Aquila, 6 Aprile 2009; Finale Emilia; 20 Maggio 2012; 

Medolla, 29 Maggio 2012; Rieti, 24 Agosto 2016; Norcia, 30 Ottobre 2016) hanno mostrato 

l’elevata vulnerabilità del patrimonio edilizio italiano, rendendo il tema della modellazione di 

edifici esistenti di grande attualità e interesse. Questi sono stati i presupposti che hanno indotto 

alla realizzazione di un modello fessurativo per la previsione della risposta strutturale di edifici 

in cemento armato sia nuovi che esistenti denominato PARC_CL 2.1 (abbreviazione di Physical 

Approach for Reinforced Concrete under Cyclic Loading condition).  

Il modello PARC_CL 2.1 consente di valutare le deformazioni plastiche e irreversibili in 

fase di scarico-ricarico sia del calcestruzzo sia dell’acciaio. Tali fenomeni sono di rilevante 

importanza nelle analisi cicliche statiche e dinamiche in quanto in tali tipi di sollecitazione è 

sempre prevista una componente plastica ed irreversibile della deformazione.  

Il modello fessurativo PARC_CL 2.1 è stato implementato come user subroutine 

all’interno di un programma ad elementi finiti (ABAQUS) al fine di conciliare la necessità di 
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un’accurata modellazione del comportamento del materiale con le potenzialità di un valido 

solutore commerciale. 

Il modello consente inoltre di valutare gli effetti indotti dal ritiro oltre che l’interazione tra 

acciaio e calcestruzzo fessurato (tension-stiffening). 

Il modello PARC_CL 2.1 è stato infine esteso alla valutazione del comportamento di 

strutture esistenti, implementando, in prima analisi, due legami costitutivi per l’acciaio capaci 

di simulare il danno delle armature longitudinali a compressione. L’instabilità (buckling) delle 

armature longitudinali può influenzare in modo consistente la risposta degli elementi strutturali 

in cemento armato specialmente quando si parla di edifici esistenti realizzati con scarsa qualità 

esecutiva e caratterizzati da staffature inadeguate o talvolta assenti. Infatti, le strutture in 

cemento armato, costruite prima dell’entrata in vigore dei codici sismici moderni, erano 

progettate per resistere ai soli carichi gravitazionali, senza perciò considerare le azioni indotte 

dal sisma. Gli elementi strutturali di tali edifici presentano generalmente una sezione trasversale 

sotto dimensionata che, quando sottoposta a grandi deformazioni trasversali e/o cicliche, 

subisce rotture per espulsione del copriferro con conseguente fenomeno di buckling delle 

armature longitudinali. Infatti, durante inversioni di carico il calcestruzzo nella zona compressa 

impedisce lo sviluppo di elevate deformazioni di compressione nell’acciaio, ma quando il 

calcestruzzo perde la sua resistenza, come nel caso di espulsione del copriferro, è probabile lo 

sviluppo di alte deformazioni di compressione nelle armature con conseguente rottura per 

buckling. L'unico fattore che si oppone all'inarcamento delle armature longitudinali sono le 

staffe trasversali che, se presenti, non devono però avere passi troppo elevati per essere 

efficienti. 

Nelle analisi non lineari agli elementi finiti il buckling delle armature può essere colto in 

diversi modi, ricorrendo ad esempio ad una modellazione dell’armatura discreta, inserendo 

elementi di interfaccia acciaio- calcestruzzo e considerando la non linearità geometrica. Nel 

caso di modelli fessurativi, come il modello PARC_CL 2.1, risulta invece necessario adottare 

un legame costitutivo per l’acciaio che sia in grado di considerare gli effetti indotti dal buckling.  

Il confronto delle evidenze sperimentali con i risultati ottenuti dalle analisi non lineari agli 

elementi finiti condotte con il modello fessurativo PARC_CL 2.1 ha dimostrato l’efficienza e 

le potenzialità del modello proposto. Futuri sviluppi saranno necessari per l’applicazione del 

modello alla valutazione del comportamento sismico di strutture degradate. 

 



 

 

 

List of Symbols 
 

Roman lower case letters 

am average crack spacing; 

b strain hardening ratio in Menegotto-Pinto model; 

b+ hardening ratio in tension, defined in Monti-Nuti model; 

b- hardening ratio in compression, defined in Monti-Nuti model; 

b0 length of the control perimeter; 

d effective depth; 

dg aggregate size; 

dmax maximum aggregate size; 

fc cylinder compressive strength of concrete; 

fcf flexural tensile strength; 

fcm mean value of compressive strength of concrete; 

ft axial tensile strength of concrete; 

fyi yield strength of ith order of reinforcing steel; 

t

iyf  yield strength of ith order of reinforcing steel in tension; 

c

iyf  yield strength of ith order of reinforcing steel in compression; 

fui ultimate strength of ith order of reinforcing steel; 

h overall depth of member; 

heq crack band width of the finite element; 

lx,ly finite element dimensions in the x,y-directions; 

ls,max length over which the slip between concrete and steel occurs; 

s slip (relative displacement between steel and concrete cross-section); 

si bar spacing; 

t finite element thickness; 

v crack sliding; 

w crack width; 
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ctuw  maximum crack opening; 

z internal level arm. 

Roman upper case letters 

Ac area of concrete cross section; 

As area of reinforcement; 

D Longitudinal diameter;  

bE  initial unloading stiffness in case of unloading from compression to tension, 
defined in Kashani et al. model; 

Ec modulus of elasticity of concrete; 

1cE′  tangent stiffness modulus of concrete in 1-direction; 

2cE′  tangent stiffness modulus of concrete in 2-direction; 

Ee age-adjusted effective modulus; 

Ehi hardening modulus of the ith order of bars; 

Esi modulus of elasticity of the ith order of bars; 

siE′  tangent stiffness modulus of the ith order of bars; 

Esec unloading stiffness of steel in case of unloading from tension to compression, 
defined in Kashani et al. model; 

Eun initial unloading stiffness of steel in case of unloading from tension to 
compression, defined in Kashani et al. model; 

G elastic shear modulus of concrete in the un-cracked phase; 

12G′  tangent shear modulus of concrete in the 1,2-coordinate system; 

GC fracture energy of concrete in compression; 

Gcr secant shear modulus of concrete in the cracked phase; 

G*
cr 

secant shear modulus of concrete associated to the first linear branch in the 
cracked phase; 

Geq equivalent overall shear modulus; 

GF fracture energy of plain concrete in tension; 

RC
FG  fracture energy of reinforced concrete in tension; 

L computational length; 

Pcr cracking load; 

Pcr,sh cracking load in case of shrinkage; 

R curve transition parameter defined in Menegotto-Pinto model; 

0R  initial curve transition value defined in Menegotto-Pinto model; 
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Us bar perimeter; 

VRm,c design shear resistance of member without shear reinforcement. 

 

Greek symbols 

α mass-proportional damping coefficient for Rayleigh damping; 

αi angle between the xi-direction and the 1-direction; 

β stiffness-proportional damping coefficient for Rayleigh damping; 

12γ  biaxial shear strain of concrete in the 1,2-coordinate system; 

12γ&  shear strain increment with respect to the time of concrete in the 1,2-coordinate 
system; 

12γ  uniaxial shear strain of concrete in the 1,2-coordinate system; 

cr,12γ  shear strain in the cracked phase of the concrete; 

el,12γ  shear elastic strain; 

n
pγ  additional plastic excursion, defined in Monti-Nuti model; 

sγ  normalized superposition length, representing the distance between the tensile 
curve and the monotonic compressive curve after the yield point, defined in Monti-
Nuti model; 

xyγ  shear strain in the x,y-coordinate system; 

δ shape parameter, defined in Kashani et al. model;  

ε* normalized strain in Menegotto-Pinto model; 

n
0ε  steel strain corresponding to the yield point of the n half cycle; 

1ε  biaxial strain of concrete along 1-direction; 

1ε  uniaxial strain of concrete along 1-direction; 

1ε&  strain increment with respect to the time of concrete along 1-direction; 

2ε  biaxial strain of concrete along 2-direction; 

2ε  uniaxial strain of concrete along 2-direction; 

2ε&  strain increment with respect to the time of concrete along 2-direction; 

crc,ε  concrete strain corresponding to the peak stress in compression; 

cfε  concrete strain caused by stress; 

plc,ε  plastic compressive strain in the compressive domain; 
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rec,ε  experienced minimum compressive strain by concrete on the monotonic curve; 

uc,ε  ultimate crushing strain; 

hε  strain of the hyperbolic curve of steel, defined in Kashani et al. model; 

pε  plastic strain amplitude of steel, defined in Kashani et al. model; 

n
rε  steel strain corresponding to the reversal point; 

sfε  steel strain caused by stress; 

shε  free shrinkage strain of concrete; 

0,shε  shrinkage strain of reinforced concrete; 

crt ,ε  cracking strain; 

plt ,ε  plastic compressive strain in the tensile domain; 

ret ,ε  experienced maximum tensile strain by concrete on the monotonic curve; 

ut ,ε  ultimate cracking strain; 

xε  strain along x-direction; 

ixε  strain of the ith order of bars along xi-direction; 

ixε&  strain increment with respect to the time of the ith order of bars in x,y-coordinate 
system; 

yε  strain along y-direction; 

ζ softening coefficient of concrete; 

η amplification coefficient of the seismic acceleration time history; 

θi angle between the direction of the ith order of bars and the x-direction; 

λ computational slenderness; 

λcr critical slenderness ratio; 

µ strain hardening ratio defined in Kashani et al. model; 

υ Poisson’s ratio; 

n
maxξ  maximum plastic strain hardening of previous half cycles, defined in Monti-Nuti 

model; 
n
pξ  plastic strain hardening at the nth half cycle, defined in Monti-Nuti model; 

ρi reinforcement ratio related to the ith order of bars; 

*σ  asymptotic value of the compressive stress of steel, defined in Kashani et al. 
model; 
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n
0σ  steel stress corresponding to the yield point of the n half cycle; 

1σ  concrete stress along 1-direction; 

2σ  concrete stress along 2-direction; 

crcl ,σ  concrete close cracking residual bond stress; 

hσ  stress of the hyperbolic curve defined in Kashani et al. model; 

minσ  minimum stress value reached by steel in compression in case of buckling, defined 
in Kashani et al. model; 

n
rσ  steel stress corresponding to the reversal point; 

*
sσ  normalized stress in Menegotto-Pinto model; 

mintσ  minimum stress value reached by steel in compression in case of absence of 
buckling, defined in Kashani et al. model; 

ixσ  stress of the ith order of bars along xi-direction; 

ycσ  updated value of the buckling stress, defined in Kashani et al. model; 

∞σ  asymptotic value of the compressive stress of steel, defined in Monti-Nuti model;  

2,1τ  shear stress of concrete in the 1,2-coordinate system; 

tsτ  average bond stress along the segment; 

τ bond stress; 

φ nominal diameter of bar; 

Ψ angle between the 1-direction and the x-direction; 

n
pΦ  plastic work of nth half cycle, defined in Monti-Nuti model; 

n
Iσ∆  stress variation due to isotropic strain hardening at nth half cycle, defined in 

Monti-Nuti model; 

n
KMσ∆  stress variation due to kinematic strain hardening and memory rule in presence of 

buckling at nth half cycle, defined in Monti-Nuti model; 

n
KIMσ∆  stress variation due to kinematic and isotropic hardening and memory rule in 

presence of buckling at nth half cycle, defined in Monti-Nuti model. 

 

Matrices and vectors 

}{ 2,1ε  biaxial strain field for concrete in 1,2-coordinate system; 

}{ 2,1ε  uniaxial strain field for concrete in 1,2-coordinate system; 
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{ }cε  strain field of concrete in x,y-coordinate system; 

{ }cfε  strain field of concrete in x,y-coordinate system caused by external force; 

{ }sε  strain field of steel in x,y-coordinate system; 

{ }sfε  strain field of steel in x,y-coordinate system caused by external force; 

{ }shε  shrinkage strain field in x,y-coordinate system; 

}{ , yxε  strain field in x,y-coordinate system; 

}{ , iyixε  strain field in xi,yi-coordinate system; 

}{ 2,1σ  stress field of concrete in 1,2-coordinate system; 

damp}{ 2,1σ  damping contribute to the stress vector of concrete in 1,2-coordinate system; 

}{ , yxσ  overall stress field, considering the contribution of both concrete and bars, in x,y-
coordinate system; 

}{ , iyixσ  stress field for the ith order of bars in xi,yi-coordinate system; 

dampiyix }{ ,σ  damping contribute to the stress vector of the ith order of bars; 

cyx }{ ,σ  stress field for concrete in x,y-coordinate system; 

isyx ,, }{σ  stress field for the ith order of bars in x,y-coordinate system; 

[ ]C  Rayleigh damping matrix; 

[ ]2,1D  Jacobian matrix of concrete in 1,2-coordinate system; 

[ ]yxD ,  overall Jacobian matrix, considering the contribution of both concrete and bars, in 
x,y-coordinate system; 

[ ]
iyixD ,  Jacobian matrix of the ith order of bars in xi,yi-coordinate system; 

[ ]K  stiffness matrix; 

[ ]M  mass matrix; 

[ ] [ ]
i

TT ϑψ ,  transformation matrices; 

[ ] [ ]t
i

t
TT ϑψ ,  transpose of the transformation matrices. 
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1 
 

Advanced non-linear finite element analysis (NLFEA) has become an increasingly widespread 

tool for the design of new buildings and assessment of existing structures. Indeed, by means of 

NLFEA it is possible to assess safety using realistic descriptions of the material behaviour able 

to take into account hidden structural capacities.  

In the Level of Approximation framework, suggested by fib Model Code 2010 (fib, 2013) 

for new reinforced concrete (RC) structures, NLFEA can be used to achieve the highest level-

of approximation. The idea behind this concept is that the higher the level-of-approximation, 

the more sophisticated are the analysis and the estimation of safety, together with the 

possibilities of finding more realistic structural capacities. On the other hand, the chance of 

avoiding over-conservative designs and reassessments increases the probability of avoiding 

unnecessary costs. Depending on the stage of the project, several levels of design expressions 

and design methods are distinguished. The lower levels-of-approximations are well-described 

in fib (2013) by means of clear expressions whereas the situation is remarkably different when 

it comes to using non-linear finite element analysis. Moreover, the fib Model Code provides 

safety formats to be used in correlation with non-linear finite element analysis by defining 

safety factors for the material properties and the global structural resistance.  

If the fib Model Code suggested design concepts and strategies for new RC structures, the 

reference code for existing RC structures is Eurocode 8 - part 3 (EN 1998-3:2005). Indeed, one 

of the main objective of Eurocode 8 - part 3 (EN 1998-3:2005) is to provide criteria for the 

evaluation of the seismic performance of existing individual building structures. More 

specifically, Eurocode 8 - part 3 indicates that the seismic action effects may be evaluated using, 

for example, non-linear static analysis (pushover) and non-linear time history dynamic analysis.  
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It is beyond doubt that the results of non-linear finite element analysis can be substantially 

influenced by the adopted model and human factors. NLFEA can be a powerful design tool 

that, during the design process, can offer a refined verification by simulating the structural 

response under design actions. However, NLFEA reliability depends on the analyst’s 

experience and awareness. A possible strategy is to verify NLFE programs by calibrating them, 

using selected test results. In this way, the accuracy of the prediction can be optimized before 

its use for design and assessment of similar types of members. Furthermore, NLFEA guidelines 

are important to reduce the sensibility or the scatter of analysis and most of all analyst’s errors. 

Useful examples are the Guidelines for Non-linear Finite Element Analysis of Concrete 

Structures for static analyses published by the Dutch Ministry of Public Works (Hendriks et al., 

2017). 

1.1 Context of the Research Topic  

In general, NLFEAs allow to consider realistic material modelling in order to obtain accurate 

structural behaviour. However, the results obtained from NLFEAs strongly depend on the 

modelling strategies. For this reason, attending blind predictions and round robin competitions 

is a fundamental step of NLFEA effectiveness check. The SMART 2013 international 

benchmark experience is an example of blind prediction in which the University of Parma took 

part.  

Participants to the benchmark were invited to provide the response assessment of scaled 

RC nuclear structure facility, Figure 1.1a, tested under strong motion input (Richard et al., 

2015). The aim of the research was to evaluate the predictive capacity of the modelling in terms 

of global and local response, in order to try to partially fill the gap between the need of non-

linear calculation for large structures and the modelling technique. Figure 1.1 shows the 

different modelling approaches adopted by participant teams, that represent the main modelling 

strategies used in engineering practice. 

Figure 1.1b-c is an example of frame approach using beam elements. The beam elements 

approach is particularly indicated for modelling frame structures (Yazgan and Dazio, 2011). By 

means of this approach the structure is modelled as an assembly of interconnected frame 

elements in which the non-linear flexural behaviour can be assessed using two different models: 

the lumped plasticity models allow to concentrate the non-linearity in some limited part of the 
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element. The lumped plasticity model is simpler and computationally lighter but, on the other 

hand, it requires a lot of experience by the operator to establish the non-linear behaviour and 

the characteristic length of the non-linear parts. On the contrary, the distributed plasticity 

models (also known as fibre models) allow capturing the spread of non-linearity through the 

whole member. The cross section of the element is discretized into smaller subregions referred 

to as fibres. A uniaxial cyclic stress-strain model is assigned to each fibre depending on the 

material it represents. The main advantages are related to the accuracy in the global response 

prediction and to the computational efficiency for the non-linear dynamic response analysis of 

structures with several hundred members (Spacone et al., 1996a; Spacone et al., 1996b). 

However, it is difficult to capture the shear failure (associated with the development of inclined 

crack) or phenomena associated with torsional effects. 

 

Figure 1.1: SMART2013 International Benchmark (Richard et al., 2018): (a) pictures of the RC specimen and 
modelling approaches adopted by participants: (b) lumped mass based models, (c) beam element based model, 

(d) plate and shell element model, (e) solid element model, (f) shell and solid elements. 

Another modelling approach that can be adopted is the solid elements one, Figure 1.1e. In 

this case, the structural member is subdivided into three dimensional (3-D) finite elements 

characterized at each node by translational degrees of freedom. This approach can describe the 

geometry of the structure, especially the connection of adjacent members (e.g. walls and slabs), 
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more accurately than beam or shell element models. Moreover, due to the fact that these 

elements are defined in the 3-D space, they can capture different failure modes, related to 

flexural and shear behaviour both in-plane and out-of-plane. However, prediction of the non-

linear response of the structure, modelled using brick elements, is high time and memory 

demanding; convergence issues are usually affecting the NLFEA solutions and the response is 

strongly dependent on material models which requires a 3D formulation. Solid elements have 

the tendency to produce large systems of equations and for this reason are usually applied when 

other approaches are unsuitable or would produce inaccurate analysis results.  

Figure 1.1d-f is an example of modelling using 2D elements. In particular Figure 1.1f 

shows the modelling strategies adopted by the team from the University of Parma using shell 

elements (of which the author of this Ph.D. thesis takes part), (Belletti et al., 2017). Shell 

elements can be considered as a simplification, with respect to solid element, based on two main 

hypotheses. The first one is that a plane section remains a plane before and after deformation. 

The second consideration is that stresses, acting normal to the mid-surface of the shell elements, 

are negligible (Maekawa et al., 2003) 

Within the same modeling approach is also possible to assign the non-linear behaviour of 

materials in different ways. For example, during the CASH benchmark (organized by OEDC-

NEA - Nuclear Energy Agency), to which the University of Parma participated, most of the 

participants have been using shell elements to assess the capacity of full scale RC walls 

extracted from a nuclear power plants (NPP) building subject to various seismic loading 

intensities. The non-linearity at the integration points of shell elements has been assigning by 

means of different strategies: plasticity models, damage mechanics models, and non-linear 

elastic models. 

Stress-based plasticity models are useful for modelling concrete subjected to triaxial stress 

states (Grassl et al., 2002; Cervenka and Papanikolaou, 2008). In these models, the elastic part 

of the strain is separated from the plastic one in order to realistically represent the observed 

deformations in confined compression. However, plasticity models are not able to describe the 

reduction of the unloading stiffness, experimentally observed.  

Conversely, strain based damage mechanics models are able to consider the gradual 

reduction of the elastic stiffness (Mazars and Pijaudier-Cabot, 1989). On the other hand, 

isotropic damage mechanics models are often unable to describe irreversible deformations 
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observed in experiments and are mainly limited to tensile and low confined compression stress 

states.  

For this reason, combinations of isotropic damage and plasticity are widely used to model 

both tensile and compressive failure (Grassl and Jirasek, 2006). These kinds of constitutive laws 

allow a physical description of crack initiation and development but are less useful in case of 

severe loadings. 

A different approach is based on non-linear elastic models (discrete crack models or 

smeared crack models, described in Chapter 2). The smeared crack approach is the procedure 

most commonly employed. The basic assumption is that the first crack is developed 

perpendicular to the principal tensile direction. After cracking, the material can be described 

with an orthotropic model. In this context, this Ph.D. thesis is placed. A smeared crack model 

for the prevision of RC elements subjected to cyclic and dynamic loading is proposed. 

1.2 Research Scope and Methodology 

The non-linear behaviour of RC structures is related to the highly non-linear response of 

material to cyclic loading, in particular seismic one. For this reason, realistic cyclic constitutive 

models are required to obtain reasonably accurate simulations of RC members.  

Existing commercial finite-element codes often have limitations in representing cyclic 

behaviour, due to idealizations in material models, or due to the fact that they are not able to 

consider particular failure modes, for example, those associated to existing buildings. 

The need to handle every single constitutive law and to add, as needed, different 

contributions led to the creation of a new crack model for reinforced concrete elements, called 

PARC_CL 2.1 (Physical Approach for Reinforced Concrete under Cyclic Loading condition). 

The PARC_CL 2.1 model is a smeared and fixed crack model for the cyclic and dynamic 

response provision of RC structures, able to consider plastic and irreversible deformation 

occurring during the unloading/reloading phases. The PARC_CL 2.1 crack model is 

implemented as a user subroutine, written in the fortran language, for the Abaqus software. 

In the PARC_CL 2.1 crack model, the quantities that control the problem are the opening 

and the sliding of the crack lips, as well as the strain of the concrete struts that are located 

between cracks. Applied to a local analysis of cracked reinforced concrete, the above variables 
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allow for the effective modeling of compatibility and equilibrium conditions and take into 

account phenomena such as aggregate interlock, tension stiffening, and buckling. 

Once the knowledge of the behaviour of a single element is reached, it is easily possible to 

study entire structures as an assemblage of many elements, Figure 1.2. 

More specifically, the user subroutine is created for the application to multi-layered shell 

elements. The advantages of multi-layered shell finite element modelling are many, including 

the ability to consider the interaction between the stresses acting both in the plane and out of 

the element's main plane. 

 

Figure 1.2: (a) Entire structure considered as the assembly of multi-layered shell elements: (b) shell element in 
plane and (c) shell section. 

The thesis presents formulations implemented in the PARC_CL 2.1 and demonstrates the 

reliability of the model through the methodical comparison with the experimental results of 

different types of structural elements. After demonstrating the efficiency of the model for the 

prediction of the structural response of new buildings, it was possible to extend the formulation 

to existing buildings as well. This interest arises from the need for a correct analysis of the 

vulnerability of existing structures, in which unexpected local and global mechanisms may 

develop, linked to lack of details and often accompanied by poor material characteristics. 



General Introduction 7 

 
Herein lies the true peculiarity of the PARC_CL 2.1 model. The knowledge of such mechanisms 

would lead to great advantages in the "conceptual design" of the seismic assessment, so as to 

maximize its effectiveness. This procedure is essential for the safeguard and development of 

the existing building. 

The buckling failure mode due to the instability of the vertical bars, often anticipated by 

corrosive phenomena, turns out to be pernicious for existing RC structures characterized by a 

lack of detail. For this reason, the first step to extend the model to existing buildings concerned 

the study of buckling of longitudinal rebars. 

The aim of the thesis is therefore to develop a model for RC elements capable of evolving 

according to the type of problem that needs to be explored, in order to overcome the limits 

imposed by the commercial programs. 

 Lacunae in Current Knowledge 

This research aims to provide a contribution to a correct methodological and engineering 

approach to the problem of predictive evaluation of the collapse mechanisms typical of new 

and existing structures. In fact, there is only limited research available that combines 

deterioration modelling with numerical analyses of the member resistance of existing 

structures.  

Some collapse mechanisms typical of existing structures are not observed in new buildings, 

such as the buckling of longitudinal reinforcements caused by insufficient stirrups. This is due 

to the fact that reinforced concrete structures, built before the modern seismic codes, were 

designed only for gravitational loads, without considering the horizontal actions induced by 

earthquakes. The elements of these structures generally have a sub-dimensioned cross-section 

which, when subjected to large transverse and/or cyclic deformations, fail for spalling of 

concrete cover with consequent buckling of the longitudinal reinforcement.  

There are currently a very limited models able to predict the non-linear response of RC 

elements accounting for the combined effect of inelastic buckling and cycle fatigue degradation. 

This aspect led to extend the PARC_CL 2.1 formulation to existing RC structures. The first 

step of this work was the implementation of constitutive models able to take into account for 

buckling effect. 
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 Research Objectives 

This Ph.D. research focuses on the following main objectives: 

• Develop a new crack model, called PARC_CL 2.1, for the response prevision of RC 

elements or structures subjected to static and dynamic loading; 

• Develop a numerical model to assess the contribute given by bond-slip mechanism 

between steel and concrete and shrinkage effects; 

• Validate the PARC_CL 2.1 model by means of comparison, both in terms of global 

and local response, with experimental data available in literature; 

• Extend the PARC_CL 2.1 crack model to the structural response assessment of 

existing RC structures. In this sense the first step consists in the implementation of 

constitutive laws for steel accounting for buckling of the longitudinal rebars; 

• Develop a numerical model capable of evolving according to the type of problem 

that needs to be explored. 

 Thesis Outline 

This thesis work is divided into six chapters each of which is organized in the following 

way, Figure 1.3: 

• introduction to literature background; 

• presentation of the implemented formulation; 

• validation of the PARC_CL 2.1 model by means of comparison with experimental tests 

inherent the implemented contribute; 

• conclusion and remarks about potentiality and possible improvements of the 

PARC_CL 2.1 crack model. 

This methodology of work has allowed to create a cracking model increasingly more 

complex and able to grasp various aspects that affect the RC structures. For clarifying the 

versatility of the proposed model, the systematic verification is carried out through comparison 

with some experimental test. 

In Chapter 2 the concepts underlying the different theoretical approaches will be described, 

highlighting the peculiarities of the proposed model and the common aspects to other 

approaches. It will thus be possible to place the proposed model more accurately within the 

studies carried out by other authors on RC elements subject to in-plane stresses. Furthermore, 
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the main formulations for RC elements subjected to cyclic loading are presented and the 

comparison with the results obtained by another NLFEA program are shown. 

Chapter 3 presents a proper numerical modelling able to consider the concrete shrinkage 

effect. Shrinkage is an important contribute because it affects the cracking resistance of 

structural elements, as well as their deformations even under short-term loading. To this aim, 

concrete shrinkage is explicitly considered by treating it as a prescribed deformation. This 

permits to avoid inaccurate predictions of structural performances at serviceability conditions. 

 

 

Figure 1.3: Thesis outline. 

The combined effect of shrinkage deformations and tension-stiffening will be treated in 

Chapter 4. In fact, shrinkage causes time-dependent cracking and gradually reduces the 

beneficial effects of tension stiffening. On the other hand, the tension stiffening is the effect 

induced by the interaction between concrete and steel after cracking: concrete between cracks 

of RC elements carries tensile stress due to the bond between the reinforcing bars and the 

surrounding concrete. Moreover, the modeling of the tension stiffening will allow taking into 
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account splitting failure and the sliding of the bars due to debonding, caused by lack of details 

as bad anchoring of the bars. 

Chapter 5 presents the first development of the PARC_CL 2.1 model to RC existing 

structures. Existing structures, designed and built before seismic codes, are characterized by 

lack of details, often associated with high stirrups spacing. This aspect is relevant above all in 

Italy where there is a high building heritage dating back to the 60s and 70s, a period of great 

building growth. The first step of this study consists in the implementation of the buckling of 

longitudinal rebars. The constitutive laws chosen for steel offer the possibility to be extended 

also to corrosion.   

Eventually, major findings and conclusions together with suggesting for further 

developments are exposed in Chapter 6.  
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 The PARC_CL 2.1 Crack Model 

 

2 
2.1 Overview 

The description of cracking and failure mechanisms of RC structures within finite element 

analysis has led to two fundamentally different approaches: the discrete and the smeared one. 

The smeared model was first introduced by Rashid (1968) and Červenka and Gerstle 

(1971,1972). It considers the cracked solid as a continuum by reducing stiffness properties and 

considering cracks smeared over a distinct area, typically finite element or an area 

corresponding to an integration point of the finite element, Figure 2.1a. The smeared approach 

permits a description in terms of stress-strain relations passing from an isotropic constitutive 

law to an orthotropic law after the crack formation. This approach maintains the original mesh 

and does not impose restrictions on cracks inclination. 

 

Figure 2.1: Example of (a) smeared crack model and (b) discrete crack model. 

(b)

σ1

σ2
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On the contrary, discrete crack models represent cracks as a geometrical discontinuity using, 

for example, interface elements. The first introduction to concrete structures has been made by 

Saouma and Ingraffea (1981). This method is theoretically more suitable to capture the failure 

localization. On the other hand, an adaptive re-meshing technique is required to account for 

phenomena such as progressive failure, Figure 2.1b. Furthermore, the crack is constrained to 

follow a predefined path, so it is a more suitable method to simulate the behavior of a structure 

dominated by the presence of one or few cracks. The main disadvantage of the discrete crack 

concept is the need of more specialized software and it is the main reason why the smeared 

method has become more widespread.  

A further distinction can be done between the smeared rotating crack model (Rots and 

Blaauwendraad, 1989) and smeared fixed crack model. The first one assumes that, during 

loading, the crack pattern should change direction and for this reason the shear stresses are not 

considered (Stevens et al., 1991; Palermo and Vecchio, 2004; He et al., 2008); the second one 

hypothesizes the starting crack pattern as fixed (Okamura et al., 1991; Sittipunt and Wood, 

1995). In this last case, the prediction of shear stresses generated along the cracks become very 

important, most of all when the structural behaviour is dominated by aggregate interlock 

phenomena.  

More recently, a new strategy based on embedded discontinuities is developed (Belytschko 

et al. 1988; Dvorkin et al. 1990; Dias-da-Costa et al. 2009). By means elements with embedded 

discontinuities, the explicit remeshing is obtained by additional degrees of freedom that capture 

the jump in the displacement field inside the element. The partition-of-unity-based methods 

exploit the properties of the finite-element shape functions so that the extra degrees of freedom 

are overlaid to the regular nodes in the domain subjected to the enrichment. 

With the advent of the new seismic codes, the interest in more realistic predictions of the 

non-linear behaviour of RC structures has increased. In fact, one of the main characteristics of 

RC structures is the highly non-linear response to cyclic loading, in particular seismic one. For 

this reason, realistic cyclic constitutive models are required to obtain reasonably accurate 

simulations of RC members. Nevertheless, if numerous are the constitutive models applied for 

monotonic loading case, as summarized by Bažant (2002) and de Borst (2002), the cyclic ones 

are less common in literature.  

Existing commercial finite-element codes often have limitations in representing cyclic 

behavior, due to idealizations in material models. For example, to solve convergence problems, 

the tensile behaviour of concrete is commonly assumed to be secant in the unloading/reloading 
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phases, Figure 2.2a, even if the experimental evidence demonstrates that irrecoverable tensile 

strains remain in concrete (Gopalaratnam and Shah, 1985; Yankelevsky and Reinhardt, 1987). 

Furthermore, the crack closing process implies that the concrete path does not pass through the 

origin (Mansour and Hsu, 2005), Figure 2.2b. Indeed, under reversed cyclic loading, concrete 

may repeatedly experience crack closing and reopening. During this process, due to the 

aggregate interlock and the bond between steel and concrete, the compressive stress can be still 

transferred through the crack before it is fully closed. More complexities, as stiffness 

degradation in concrete and the Bauschinger effect of steel bars, are introduced by cyclic loads.  

 

Figure 2.2: Tensile behaviour for concrete: (a) secant unloading/reloading phases; (b) crack closing process.  

For all these reasons, a reliable numerical model able to catch these types of non-linearity 

and characterized by sufficiently accurate response predictions and simplicity in formulation is 

necessary. Therefore, a Physical Approach for Reinforced Concrete under Cyclic Loading 

condition (PARC_CL 2.1) is proposed in this Ph.D. research.  

The PARC model, Figure 2.3, was proposed in 2001 for the analysis of the behavior of 

reinforced-concrete membranes, subjected to plane stresses and monotonically loaded up to 

failure, (Belletti et al. 2001). The applications of the PARC model demonstrated the reliability 

of the obtained results; however, even a structure subjected to monotonic loading could 

experience unloading/reloading cylces due to the redistribution of internal actions (think for 

example to crack opening and closing). Therefore, it is useful to implement appropriate 

formulations that consider the possibility of loading and reloading branches. Furthermore, for 

the design of RC structures in seismic areas, the availability of cyclical constitutive laws 

becomes essential in order to conduct non-linear dynamic analyses. For all these reasons, the 
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model PARC_CL 1.0 was proposed as an extension to cyclic loads (Belletti et al., 2013a), Figure 

2.3. This release was characterised by secant unload/reload path not permitting to consider the 

real hysteretic behaviour of RC structures, (Belletti et al., 2013b; Damoni et al., 2014).  To 

overcome this limit a new version called PARC_CL 2.1, developed by the author of this 

research, is proposed. The PARC_CL 2.1 permits to take into account hysteretic cycles and 

plastic strains in the unloading phase. The model is implemented in a user subroutine UMAT.for 

for the analyses of RC members by means of ABAQUS code. More specifically, it is possible 

to assess the static, cyclic and dynamic behavior of slabs, structural walls buildings, and floors 

by means of multi layered shell or membrane elements, Belletti et al. (2017b) and Belletti et al. 

(2018). PARC_CL 2.1 is an improvement of PARC_CL 2.0 (Belletti et al., 2017a), in which 

some modification in the cyclic concrete formulation and some important contribution like 

shrinkage, tension stiffening, and buckling effect are added.   

 

Figure 2.3: PARC model evolution. 
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2.2 Material Constitutive Models Implemented in PARC_CL 2.1 

 

Figure 2.4: PARC_CL 2.1 crack model: (a) RC membrane element subject to plane stress state, (b) crack 
parameters. 

The proposed PARC_CL 2.1 model is based on a total strain fixed crack approach, in which at 

each integration point two reference systems are defined: the local x,y-coordinate system and 

the 1,2-coordinate system along the principal stress directions. The angle between the 1-

direction and the x-direction is denoted as ψ, whereas θi is the angle between the direction of 

the ith order of bars and the x-direction; αi =θi - ψ is the direction of the ith bars with respect to 

direction 1.  

The element begins to crack when the principal tensile strain in concrete exceeds the concrete 

tensile limit strain εt,cr. Since the formation of the first crack, the 1,2-coordinate system remains 

fixed, Figure 2.4a. The cracking is assumed as being uniform, the orientation of the cracks 

remains fixed upon further loading and the crack spacing am is assumed to be constant. The 

main quantities that govern the problem are the crack opening w and the crack slip v, Figure 

2.4b.  

 Strain Fields 

The concrete behavior is assumed orthotropic both before and after cracking and the total strains 

at each integration point are calculated in the orthotropic 1,2-system, Eq.(2.1): 

{ } [ ] { }yxT ,2,1 εε ψ ⋅=      (2.1) 
 

where [ ]ψT  is the transformation matrix given by Eq.(2.2): 
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{ε1,2} and {εx,y} represent respectively the biaxial strain fields in 1,2-system and x,y-

system, as shown in Eq.(2.3) and Eq.(2.4). 
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The stress-strain behavior presented herein is calculated on the base of the uniaxial strains 

( 1ε , 2ε , 12γ ) in the 1,2-coordinate system, according to Eq.(2.5)-(2.7). 
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After the first crack, the Poisson’s ratio ν is assumed to be zero. As consequence, biaxial 

strains coincide with uniaxial strains. 

 

The reinforcement is assumed smeared in concrete. The steel strain field along the 

reference system of each bar {εxi,yi} is obtained rotating the strains in the x,y-system {εx,y}, as 

shown in Eq.(2.8): 

{ } [ ] { }yxiiyix T ,, εε ϑ ⋅=  (2.8)

where [ ]
i

Tθ is the transformation matrix given by Eq.(2.9): 
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 Stress Fields 

The concrete stress field in the 1,2-coordinate system {σ1,2} is given by Eq.(2.10): 
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where σ1 and σ2 represent the normal stresses in concrete along 1 and 2 directions calculated 

following the relation presented in §2.2.5, whereas τ12 is the shear stress in concrete calculated 

according to the aggregate interlock model, §2.2.6. 

 

The steel stress field {σxi,yi}, defined for each ith order bars in the xi,yi-system, is given by 

Eq.(2.11): 
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where σxi
 represents the stress along the axis of the ith order of bar and it can be calculated 

following the Menegotto-Pinto’s procedure explained in §2.2.7. The dowel action phenomenon 

is not considered yet in the model; for this reason, in Eq.(2.11) there are not stresses in the 

direction perpendicular to the axis of the bar. 

 

Both the concrete stress field cyx }{ ,σ and the steel stress fields isyx ,, }{σ can be 

transformed from their local coordinate system to the overall global x,y coordinate system using 

respectively Eq.(2.12) and Eq.(2.13): 

{ } [ ] { }2,1, σσ ψ ⋅= t

cyx T  (2.12)

{ } [ ] { }
iyix

t
iisyx T ,,, σσ θ ⋅=  (2.13)

Finally the total stress field in the x,y-system is obtained by assuming that concrete and 

reinforcement behave like two springs placed in parallel, Eq.(2.14): 
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where ρi is the reinforcement ratio related to the ith order of bars. 

 Rayleigh Stiffness Proportional Damping 

Damping is a peculiar energy dissipation mechanism, which happens during structure vibration. 

The matrix equation of motion takes the well-known form of Eq.(2.21): 

[ ] { } [ ] { } [ ] { } { }FtuKtuCtuM =⋅+⋅+⋅ )()()( &&&  (2.15)

More specifically, the most widely used Rayleigh damping [C] is investigated, Eq.(2.16): 

[ ] [ ] [ ]KMC ⋅+⋅= βα   (2.16)

Thus, the matrix [C] consists of a mass-proportional term [M] and a stiffness-proportional 

term [K]. 

ABAQUS code (Abaqus, 2012) allows the definition of the mass-proportional damping, 

α, as an input value for the non-linear finite element analysis whereas the definition of the 

stiffness-proportional damping, β, depends to the stiffness matrix, which is defined in the user 

subroutine. Therefore, the stiffness-proportional damping contribute is introduced in the user 

subroutine by modifying the stiffness matrix. 

The damping contributes to the concrete stress field damp}{ 2,1σ can be calculated using 

Eq.(2.17). 
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In the same way, the damping contributes to the steel stress field dampiyix }{ ,σ can be 

calculated as follow, Eq.(2.18): 
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When the damping contribute is needed, the { }2,1σ  concrete stress field is updated and 

calculated as the sum of the static contribution of the material { }
static2,1σ , defined in Eq.(2.10) 

and the damping contribution { }
damp2,1σ , calculated according to Eq.(2.19). The final concrete 

stress field is given in Eq.(2.19): 

{ } { } { }
dampstatic 2,12,12,1 σσσ +=  (2.19) 

The same procedure is adopted for the calculation of the steel stress field in Eq.(2.20): 

{ } { } { }
dampiyixstaticiyixiyix ,,, σσσ +=

 (2.20) 

 Stiffness Matrix and Numerical Solution Procedure 

The proposed PARC_CL 2.1 model is based on a tangent approach, in which the Jacobian 

matrix in the local coordinate system of each material is composed by derivatives as shown in 

Eq.(2.21) for concrete and in Eq.(2.22) for each ith order of bars. 
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To avoid numerical problems (i.e. negative value in the stiffness matrix), the stiffness 

contributes of concrete became secant in softening branches. When, after the first crack the 

Poisson’s ratio is assumed to be zero, the terms out of the diagonal become zero. The stresses 

presented herein are calculated according to Eq.(2.24), (2.25) and (2.30) for concrete and 

Eq.(2.38) for steel.  
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Figure 2.5: Flowchart of main steps of PARC_CL 2.1 crack model. 
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The global stiffness matrix in x,y-coordinate system [ ]yxD , is obtained by Eq.(2.23): 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
iiyix

t

i

n

i
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t
yx TDTTDTD θθψψ ρ ⋅⋅∑+⋅⋅=

=
,

1
2,1,  (2.23)

The stiffness matrix is updated until a solution is closely approximated. The main steps of 

the implemented algorithm are given in the flowchart reported in Figure 2.5. An iterative 

procedure was performed until all the equilibrium, compatibility and constitutive equations 

were satisfied. 

 Cyclic Uniaxial Constitutive Law for Concrete 

The tensile envelope curve, presented in Eq.(2.24) and shown in Figure 2.6a, is characterized 

by a bilinear stress-strain relation Model Code 2010 (fib, 2013) prior to cracking; after cracking 

the softened trend is represented by an exponential law (Cornellissen et al., 1986). 

 

Figure 2.6: Constitutive law for concrete: (a) tension and (b) compression. 
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where: 

• Ec and ft are the Young’s modulus and the uniaxial tensile strength of concrete; 

• ctelt Ef⋅= 9.0,ε is the elastic strain in tension;  

• 00015.0, =crtε  is the initial cracking strain;  

• ( )teqFcrtut fhG ⋅⋅+= 136.5,, εε  is the ultimate cracking strain;  

• c1=3 and c2=6.93 are material constants. 

 

The compressive envelope curve presented in Eq.(2.25) and shown in Figure 2.6b, is 

characterized by a first elastic part followed by a parabolic formulation, proposed by Feenstra 

(1993): 
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where: 

• fc is the uniaxial compressive strength of concrete; 

• ( )ccelc Ef ⋅= 3,ε  is the elastic strain in compression;  

• elccrc ,, 5 εε ⋅=  is the strain corresponding to the maximum concrete strength in 

compression;  

• ( )ceqCcrcuc fhG ⋅⋅−= 5.1,, εε  is the ultimate crushing strain. 

The value of heq in the PARC_CL 2.1 crack model is fixed equal to the square root of the 

average element area, according to Hendrinks et al. (2012). The value of the fracture energy of 

concrete in tension GF (Figure 2.6a) is evaluated according to Model Code 1990 (1993) and it 

is the energy required to propagate a tensile crack in a unit area of concrete. In order to pass 

from the dissipated energy by a single macro-crack in concrete, GF, to the energy dissipated by 

several macro-crack in RC, GF
RC, Eq.(2.26) is needed: 
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where am is the average crack spacing, assumed to be constant during the analysis. Its value is 

evaluated on the base of the length over which the sleep between concrete and steel occurs, 

ls,max as defined in Model Code 2010 (fib, 2013).  

The value of the fracture energy of concrete in compression GC (Figure 2.6b) is assumed 

equal to 250GF according to Nakamura and Higai (2001). 

As stated in the introduction, the PARC_CL 2.1 crack model allows considering plastic 

and irreversible deformations in the unloading phase., More specifically, the unloading paths 

in tension are simplified by a straight line with slope Ec from the experienced maximum tensile 

strain on the monotonic curve (εt,re) to the plastic tensile strain (εt,pl), as shown in Figure 2.7.  

 

Figure 2.7: Cyclic behaviour of concrete (not to scale). 

Passing from tension to compression it is necessary to determinate the stress with no 

deformation σcl,cr , called the residual bond stress by Okamura and Maekawa (1991), as 

reported in Eq.(2.27).  
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In compression, the unloading paths are characterized by a straight line, with variable 

slope, from the experienced minimum compressive strain on the monotonic curve (εc,re) to the 

plastic compressive strain (εc,pl), Eq.(2.28). The passage from compression to tension is with 

zero stress. 
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The biaxial state of concrete in compression, due to transverse cracking, is also taken into 

account, according to Vecchio and Collins (1993), by reducing the compressive stress fc and 

the compressive peak strain εc,cr with the ζ coefficient, Eq.(2.29):  
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Figure 2.8: Cyclic behaviour considering the biaxial state of concrete. 
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deformation of concrete reaches the minimum compressive strain of the previous cycle εc,re. In 

Figure 2.8 is shown an example of the cyclic behaviour in which the concrete pass from a 

biaxial envelope curve with ζ1 coefficient to a biaxial curve with ζ2 coefficient, where ζ2<ζ1. 

 The Aggregate Interlock Effect 

The PARC_CL 2.1 is a smeared fixed crack model. For this reason, the prediction of shear 

stresses generated along the cracks become fundamental and an aggregate interlock relation is 

necessary to be defined.  

Starting from the Gambarova (1983) formulation, Eq.(2.30), the aggregate interlock effect 

is evaluated on the basis of the crack width, w, and the crack sliding, v, Figure 2.9a: 
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where cf⋅= 27.0τ ; τ45.23 =a ; ( )τ4144.24 −⋅=a  and dmax is the maximum aggregate size. 

The passage from τ12-γ12,cr to τ12-v  is possible considering that mcr av ⋅= ,12γ , Figure 2.9b. 

The crack width, w, is obtained by multiplying the plastic part of the tensile strain by am. 

To simplify the previous relation, it is possible to schematized Eq.(2.30) with a bilinear 

curve Figure 2.9a. In this case the endpoint of the elastic part P(γ*
cr, τ*) has coordinates equal 

to Eq.(2.31) and (2.32). If the value of w increases, the peak value reached by the point P 

diminishes, Figure 2.9c. 
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Figure 2.9: (a) Linearization of Gambarova’s relation for a given crack width; (b) shear stress-strain relation for 
a fixed value of w; (c) influence of w on τ12-γ12,cr curve. 

Before cracking the shear stress-strain relation is defined by a straight line with a slope 

equal to the shear modulus G. After cracking a bilinear curve is used to define the stress-strain 

relationship between the shear stress τ12 and the shear strain γ12,cr in the cracked phase of the 

concrete, Figure 2.9-a. In this phase, the shear modulus, Gcr, is derived by Eq.(2.33): 
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where G*
cr represents the secant shear modulus associated with the first linear branch in the 

cracked phase, Figure 2.9b.  

The τ12-γ12 curve, including the elastic part, is shown in Figure 2.10b, where γf corresponds 

to the shear strain at the onset of concrete cracking and γ* defines the point after which the shear 

strain remains constant, Eq.(2.34). 
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fcr γγγ += **  (2.34) 

 

Figure 2.10: Aggregate interlock effect. Overall behavior τ12-γ12 based on the total strain assumption. 

According to the total strain concept, the PARC_CL 2.1 crack model assumes that the un-

cracked concrete, characterized by the elastic deformation γ12,el, and the cracked concrete, 

characterized by the cracking deformation γ12,cr, behave like two springs in series, Figure 2.10. 

Therefore, the equivalent overall shear modulus, Geq, in the cracked phase can be calculated 

according to Eq.(2.35). 
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where G is the elastic shear modulus, Eq. (2.36), and Gcr  is calculated according to Eq. (2.33). 
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Combining the cracked shear modulus, Gcr, with the elastic shear modulus, G, using 

Eq.(2.35), the overall τ12-γ12 behavior can be derived, as reported in Eq.(2.37) and in Figure 

2.10. 
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where G*
eq is calculated using Eq.(2.35) by substituting Gcr with G*

cr. 

 

Figure 2.11: Aggregate interlock effect. Cyclic behaviour: (a)τ12-γ12,cr curve with loading and unloading phase,  
(b) influence of crack width on τ12-γ12,cr cyclic curves. 

The overall behaviour in case of cyclic loading is presented in Figure 2.11a as an extension, 

made by the author of this Ph.D. thesis, of the Gambarova’s formulation. In the unloading 

phase, a branch with slope G*
eq, as illustrated in Figure 2.11a, has been defined. Changing the 

crack width, w, the value of G*
eq changes and, as a consequence of this, different cyclic curves 

can be derived as shown in Figure 2.11b.  

 Cyclic Uniaxial Constitutive Law for Embedded Mild Steel Bars  

The constitutive relation for steel is based on Menegotto and Pinto (1973) model and allows to 

consider the hysteretic stress-strain behaviour of reinforcing steel bar also including yielding, 

strain hardening, and Bauschinger effect, Figure 2.12. 
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Figure 2.12: Hysteretic model for steel. 

The Menegotto-Pinto formulation, applied axially to the bar, can be expressed following 

Eq.(2.38). 
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Eq.(2.38) consists in a curved transition from a straight line asymptote with slope 
is

E  

(from the origin to the point A) to another asymptote with slope 
ihE (A-B line). The stress σ0 

and the strain ε0 define the intersection point of the two asymptotes of the branch considered 

(e.g. point A in Figure 2.12); similarly, σr and εr  are the stress and the strain in the point where 

the last strain reversal occurs (e.g. point B in Figure 2.12). As shown in Figure 2.12, (σ0, ε0) 

and (σr, εr) are updated after each strain reversal. b is the strain-hardening ratio and can be 

calculated as in Eq. (2.41):  
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Rn is the parameter that influences the shape of the transient curve and it allows to consider 

the Bauschinger effect, (2.42). R0 is the value of the parameter Rn during the first loading cycle. 

ξ 
n is updated following the strain reversal, Eq.(2.43), and its value does not change when 

reloading occurs after partial unloading, Figure 2.12.  

nn
r

n
0εεξ −=

 

(2.43) 

 

It is assumed that R0=20, a1=18.45 and a2=0.001 according to Gomes and Appleton (1997). 

2.3 Applications of the PARC_CL 2.1 Model to RC Members 

In order to assess the efficiency of the proposed PARC_CL 2.1 model under monotonic, cyclic 

and dynamic loading the above described procedure, as well as of its correct implementation 

into a commercial finite element (FE) code (ABAQUS), is verified herein through comparisons 

with different case studies. The first validation consisted of simple RC panels subjected to 

cyclic static loading. In the next paragraphs, more complex case studies will be analysed, and 

the results obtained for RC multi-storey walls and deck slabs will be presented. 

 Cyclic Analyses of RC Panels 

8 out of 12 specimens referred to Mansour and Hsu (2005) are selected to validate the 

PARC_CL 2.1 model comparing the experimental results with the NLFEA results. 

The panels were performed using the “Universal Element Tester” facility at the University 

of Houston and it consists of 12 panel specimens tested under reversed cyclic shear stresses, 

(Figure 2.13). All panels were 1398x1398x178 mm in size, except panels CE4, CA4, and CB4, 

which were 1398x1398x203 mm in size. The specimens were reinforced with two parallel steel 

grids placed at angles of 45° (CA and CB-series Figure 2.13a) and 0° (CE-series Figure 2.13b) 

to the x-direction. The properties of the panels are summarized in Table 2.1.  
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Figure 2.13: Steel bar orientations in test panels: (a) Panels of CE-series (θi=0°) and (b) CA-and CB-series 
(θi=45°).  

Table 2.1:Material properties and steel bar arrangement of test panels. 

    Concrete Steel in x-i direction Steel in y-i direction  

Series  Panel 
fc GF GC ρx-i fy ρy-i fy θi 

[MPa] [N/mm] [N/mm] [%] [MPa] [%] [MPa] [degrees] 

CE 

CE2 49 0.147 36.78 0.54 424.1 0.54 424.1 0 

CE3 50 0.148 36.90 1.20 425.4 1.20 425.4 0 

CE4 47 0.146 36.50 1.90 453.4 1.90 453.4 0 

CA 

CA2 45 0.145 36.20 0.77 424.1 0.77 424.1 45 

CA3 44.5 0.145 36.20 1.70 425.4 1.70 425.4 45 

CA4 45 0.145 36.20 2.70 453.4 2.70 453.4 45 

CB 
CB3 48 0.147 36.63 1.70 425.4 0.77 424.1 45 

CB4 47 0.146 36.50 2.70 453.4 0.67 424.1 45 
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        (c) 

 
        (d) 

Figure 2.14: Comparison of measured and predicted shear-stress versus shear-strain curves in the i,j-system for 
the CA-series:(a) Modeling of the test setup; (b) CA2-panel; (c) CA3-panel; (d) CA4-panel.  

A single 4-node membrane element with reduced integration scheme (defined M3D4R in 

Abaqus) was used to carry out NLFEA. An external frame was modelled using truss elements 

in Abaqus (2012) to simulate the same loading condition (Figure 2.14a). At the frame’s end, 

the cyclic displacement time history was imposed. 
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      (a) 

 
        (b) 

Figure 2.15: Comparison of measured and predicted by NLFEA shear-stress versus shear-strain curves in the i,j-
system for the CB-series: (a) CB3-panel; (b) CB4-panel.  
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(a) 

 
(b) 

 
(c) 

Figure 2.16: Comparison of measured and predicted shear-stress versus shear-strain curves in the i,j-system for 
the CE-series: (a) CE2-panel; (b) CE3-panel and (c) CE4-panel. 
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Figure 2.17: Squat walls and relative 2-D panel element (Hsu and Mo, 2010): (a) conventional horizontal and 
vertical steel bars configuration and (b) diagonal steel bars configuration. 

One of the main purposes of the experimental tests carried out by Mansour and Hsu (Pang 

and Hsu, 1995; Hsu and Mo, 2010) was to investigate the effect of the steel bar orientation on 

the cyclic behaviour. Indeed, the steel bar orientation produces different cyclic response of the 

shear members: this becomes evident comparing the hysteretic loops of two RC panels with 

symmetrical reinforcement, CA3-panel (Figure 2.14c) and CE3-panel. In order to explain these 

different behaviours and to check the PARC_CL 2.1 validity, a detailed study is conducted 

according to Hsu and Mo (2010). 

In Figure 2.14-Figure 2.16 the experimentally-measured shear stress vs. shear strain 

responses, in the i,j system (Figure 2.13), for CA, CB and CE-series are compared with the 

PARC_CL 2.1 model predictions. An acceptable level of agreement is observed between model 

and test results in terms of shear stress capacity, stiffness, ductility, shape of the 

unloading/reloading loops and pinching characteristics of the response.  

 

Each tested panel can represent an element taken from the web of a squat wall subject to 

horizontal load V. Figure 2.17a can represent the case of the CA-panel, in which the angle αi is 

45°, is shown; whereas Figure 2.17b can refer to the CE-panel, in which the αi angle is 0°, is 

presented. 

To better explain how the response of the panels changes in function of different steel bar 

orientations it is necessary to study the materials behaviour. For example, the concrete and steel 

behaviour for CA3 and CE3-panels are reported in Figure 2.18. A reduction in the maximum 

attained compressive strengths of concrete is registered: panel CA3 reaches a value of fc of 

almost 15 MPa (33% of its maximum compressive strength). This is due to the presence of 

cracks in the orthogonal direction that causes the biaxial state of concrete in compression, 

Figure 2.8, Eq.(2.29). Instead, CE3 element remains mainly in tension, reaching a fc value of 3 
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MPa. In CA3-panel, bars remain in the tensile domain, Figure 2.18c, because of compressive 

stresses are resisted by concrete. Instead, steel bars in the CE3 panel are subjected to tension 

and compression stresses (Figure 2.18d): it is due to the steel bars orientation that are set parallel 

to the externally applied stresses. These observations lead to different global response (in terms 

of shear strain and stresses) as shown in Figure 2.14c and Figure 2.16b. More specifically, the 

steel bar orientation produces differences in terms of shear ductility and energy dissipation 

capacity. When the steel bars are oriented in the 1,2-system, the hysteretic loops are fully 

rounded and the behavior is ductile; whereas when they are oriented at 45° (CA3-panel), the 

behavior is much less ductile. The PARC_CL 2.1 model is able to predict the pinched shape as 

well as the fully rounded of the hysteretic loops. In fact, the obtained curve for the CA3-panel 

(and of the CA series in general) is severely ‘pinched’ near the origin, whereas the CE-series is 

fully rounded. 

 

Figure 2.18: Cyclic stress-strain curves by means PARC_CL 2.1: (a) and (c) CA3 panel; (b) and (d) CE3 panel. 

To better clarify the pinching mechanism, the first hysteretic cycle after yielding for CA3 

and CE3-panels, obtained by means PARC_CL 2.1, is studied (Figure 2.19 and Figure 2.20). 

-15

-12

-9

-6

-3

0

3

-0.005 0.000 0.005 0.010 0.015 0.020 0.025

Strain in the 1-direction

S
tr

es
s 

in
 t

he
 1

-d
ir

ec
ti

o
n 

[M
P

a]

-15

-12

-9

-6

-3

0

3

-0.005 0.000 0.005 0.010 0.015 0.020

(a)

-500

-400

-300

-200

-100

0

100

200

300

400

500

0.000 0.002 0.004 0.006 0.008 0.010

Strain in the xi-direction

S
tr

es
s 

in
 t

he
 x

i-
di

re
ct

io
n

[M
P

a]

-500

-400

-300

-200

-100

0

100

200

300

400

500

0.000 0.005 0.010 0.015 0.020

(c)

C
O

N
C

R
E

T
E

S
T

E
E

L

Strain in the 1-direction

S
tr

es
s 

in
 t

he
 1

-d
ir

ec
ti

o
n 

[M
P

a]

(b)

Strain in the xi-direction

S
tr

es
s 

in
 t

he
 x

i-
di

re
ct

io
n

[M
P

a]

(d)

CA3 CE3



The PARC_CL 2.1 Crack Model 39 

 
Four points A, B, C, D are chosen to show the correlation between the shear stresses and strain 

and the corresponding stresses and strain in steel and concrete.  

 

Figure 2.19: One hysteretic cycle for CA3-panel: (a) shear stress vs. strain curve, (b) element configuration, (c) 
and (d) stress-strain curve for concrete, (e) and (f) stress-strain curve for steel. 

For CA3-panel, point A is the last point of the shear loading; point B is the minimum shear 

stress in the positive strain domain whereas C is the corresponding point in the negative strain 

domain and they delimit the pinching zone. Point D is the minimum stress point. When the 

element is unloaded from point A to point B, also the steel stress is reduced (Figure 2.19-e,f): 
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the behavior of the steel is equal in the xi-direction and yi-direction because of the same 

reinforcement ratio. Consequently, the concrete in the 1-direction reduces its strain and vertical 

cracks start to close. At point B, shear stress, steel stresses, and concrete stresses are close to 

zero. Proceeding from point B to point C the vertical cracks in one direction are fully closed 

and horizontal cracks start to open: this region, with a very small shear resistance, is called 

pinching zone. Finally, from point C to point D the vertical strain increases and produces 

reloading of the steel bars; consequently, the shear stiffness increases. 

 

Figure 2.20: One hysteretic cycle for CE3-panel: (a) shear stress vs. strain curve, (b) element configuration, (c) 
and (d) stress-strain curve for concrete, (e) and (f) stress-strain curve for steel. 
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The PARC_CL 2.1 results for the CE3 panel are illustrated in Figure 2.20: steel bars are 

oriented in the direction of the applied stresses so the pinching mechanism is absent. As in the 

previous panel in the first cycle after yielding is presented: with the help of 4 points, it is 

remarked the correlation between materials. Point A represents the maximum shear strain of 

the cycle; point B is the minimum shear stress in the positive domain, point C is in the negative 

strain region and it represents the moment in which the steel in the yi-direction reaches yielding 

(Figure 2.20-f). Point D is the minimum shear strain reached by the panel. When the element is 

unloaded from point A to point D the panel is subject to compressive stress in the horizontal 

direction (1-axis) and to tensile stress in the perpendicular direction (2-axis) as demonstrated to 

the concrete behaviour. Consequently, also the bars are subject to the same type of load: the 

bars along the compressive direction (xi) reduces the stress whereas the steel in the 

perpendicular direction (yi) is subject to tensile load. The reinforcement is offering a high shear 

stiffness from point B to point C. 

 PARC_CL 2.1 versus Other Crack Models  

It is in the Author’s opinion that, for the validation of a new model it is necessary to make 

comparisons not only with experimental results but also with models of proven validity.  

This is even more significant if done on simple elements, whose theoretical behavior and failure 

mode is known. 

For these reasons, the results obtained with the PARC_CL 2.1 are compared to those 

obtained with a commercial software, DIANA 10.0 (Manie 2015).  

Two panels with different failure mode are selected: the CE4-panel and the CB4-panel. 

CE4-panel, Figure 2.13, is characterized by reinforcements placed in parallel to the applied 

principal stresses with the same reinforcement ratios in the xi-yi directions and its response in 

terms of shear stress-strain curve is dominated by the stiffness offered by the reinforcements. 

The CB4-panel is characterized instead by two parallel steel grids placed at angles of 45° with 

different steel ratio. This last case study is dominated by the aggregate interlock effect so it is 

very interesting to compare the aggregate interlock cyclic formulation implemented in the 

PARC_CL 2.1 crack model with other approaches available in the DIANA software. 

The DIANA’s concrete modeling is based on a total strain rotating crack model with 

exponential softening in tension and parabolic behavior in compression. The tensile softening 

of concrete depends on the tensile fracture energy, GF, whereas the compressive softening 
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depends on the compressive fracture energy, GC (Hendriks et al. 2012). The reduction of 

compressive strength of concrete due to lateral cracking is taken into account and, accordingly 

to the PARC_CL 2.1 crack model, the lower limit was set at 0.4. Furthermore, a variable 

Poisson’s ratio of concrete is assumed. Both in tension and in compression the cyclic behaviour 

of concrete is defined with unloading-reloading paths secant to the origin. The Menegotto-Pinto 

model is assumed for reinforcement bars assuming the same parameters adopted in the 

PARC_CL 2.1 model. 

For concrete 4-node membrane element (Q8MEM, Belletti et al. 2013c) is used for meshing 

the panel with a full Gauss integration scheme (2×2). The reinforcement bars are modelled with 

embedded truss elements with two Gauss integration points along the axis of the element. 

Perfect bond is assumed.   

The CE4-panel is modeled using the fixed crack model available in DIANA software (Manie 

2015). The shear stiffness after cracking Gcr is reduced using a constant shear retention factor 

βconst as in Eq.(2.44). 

GGG constcr ⋅=⋅= 03.0β  (2.44) 

Figure 2.21a shows that the DIANA result reaches the experimental shear stress value only 

in the first cycle than the model presents a lower resistance. Even if the same Menegotto-Pinto 

parameter have been used, DIANA results seem to present a low strength than PARC_CL 2.1, 

Figure 2.21b. 

As mention before, to validate the aggregate interlock formulation presented in §2.2.6 the 

CB4-panel is chosen. Figure 2.22 shows the results obtained using different approaches 

presented in the DIANA material library, compared with the results obtained using PARC_CL 

2.1 crack model.  

The comparison between PARC_CL 2.1 fixed crack model and DIANA rotating crack 

model is presented in Figure 2.22a: in the first cycles, DIANA results better reproduce the 

experimental ones, reaching higher values of shear stress than PARC_CL 2.1. However, the 

last cycles do not capture the softening of the experimental curve. 
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Figure 2.21: (a) comparison between experimental shear-stress versus shear-strain curves in the i,j-system and 
DIANA and PARC_CL 2.1 results for the CE4 panel; (b) comparison between DIANA and PARC_CL 2.1 

stress-strain curve for steel. 

Furthermore, the same panel is modeled using different fixed crack models available in the 

DIANA library: 

1) constant shear retention factor; the elastic shear modulus of concrete G is multiplied 

for a constant coefficient β, as presented in Eq.(2.44) with βconst = 0.01. Figure 2.22b shows 

that the response prediction obtained using a constant shear retention factor result presents an 

increasing curve not able to capture the softening of the shear stress. 

2) damage based shear retention factor; the shear stiffness Gcr decays similarly to the 

normal stiffness after the crack, Eq.(2.45): 
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where E* and ν* are the reduced stiffness and Poisson’s ratios respectively. In Figure 2.22c 

DIANA result presents a lower resistance due to a shear modulus underestimation. For positive 

strains, the cycles are full, whereas for negative strains the cycles are slimmer, maybe due to 

the different behaviour of steel in tension and in compression. 

3) aggregate size based shear retention factor; the shear stiffness diminishes with the crack 

opening. It is assumed that aggregate interlock equals zero for crack opening width values 

higher than half the maximum aggregate size. The linear decay of the shear retention is defined 

in Eq. (2.46): 

GG aggregcr ⋅= β
 (2.46) 

where mnaggreg ad ⋅⋅−= εβ )2(1 max  being εn the crack strain values (which are the plastic part 

of the maximum principal strain values). Since for low value of εn the shear retention factor is 

close to 1 the aggregate interlock model causes a strong overestimation of the shear stresses 

above all in correspondence of the first cycle, Figure 2.22d. 

Differently to PARC_CL 2.1 model, the adopted aggregate interlock modeling 

implemented in DIANA software, Figure 2.22, depends only to the crack opening w and not to 

the crack sliding v. Figure 2.22 demonstrates that aggregate interlock modeling implemented 

in PARC_CL 2.1 leads a better prediction of the results thanks to the plastic strains. 
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Figure 2.22: CB4 panel: comparison between experimental results, PARC_CL 2.1 results and DIANA results 
using different aggregate interlock models. 
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 The CASH Benchmark Phase 2 

In 2017, an international benchmarking program called CASH-phase 2 on the beyond design 

seismic capacity of RC shear walls was organized by OEDC-NEA (Nuclear Energy Agency) 

(N005_A469_2014_EDF_B). Participants were invited to carry out pushover and dynamic 

analyses to assess the capacity of two full scale RC walls extracted from a nuclear power plants 

(NPP) building. The main objective of the CASH benchmark was the evaluation not only of the 

reliability of finite element commercial software but also of the ability, in current engineer 

practice, to calculate the resistance of RC walls subject to various seismic loading. 

Comparison between Phase 2 results, obtained from various teams coming from academia, 

industry and nuclear research organizations, were presented during the workshop organised in 

Paris 1-2 of June 2017. The predictions of about half of the participants were in good agreement. 

The strong differences recorded by other teams were due to modelling errors or to the use of 

unsuitable software for the required analysis.  

The used software were both commercial like ATHENA, ABAQUS, SOFISTIK, 

SOLVIA, Ls-Dyna and open access like CAST3M, Code, Aster, VecTor2. NLFEA have been 

carried out using plasticity-based model or crack models available in the software material 

libraries; only the team from the University of Toronto and the team from the University of 

Parma adopted crack models self-implemented in user subroutines. In this paragraph, the results 

obtained by the University of Parma team are presented.  

 

 The work was organized in three different tasks with increasing complexity to check, 

improve and assess the modelling technique of participants. Before to start, Cash benchmark 

organizers required to provide the non-linear material behaviour of a single finite element 

subject to cyclic loading. Four nodes membrane element with a single integration Gaussian 

point was used by the team from the University of Parma for the description of the non-linear 

material behavior. The concrete response to cyclic tension-compression loads and alternated 

shear cycles is illustrated in Figure 2.23. As shown in Figure 2.23b, the reduced shear strain 

level imposed by the organizers does not allow to appreciate the hysteretic behavior 

implemented in the PARC_CL 2.1 and explained in §2.2.6.  

Figure 2.24 illustrates the cyclic behavior of steel obtained by using the implemented 

Menegotto-Pinto formulation, presented in §2.2.7. 
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Figure 2.23: Concrete response under (a) tension and compression cyclic loading and (b) cyclic shear loading. 
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Figure 2.24: Steel response under tension and compression cyclic loading. 

After the calibration of the constitutive laws, two full scale four floors and two bays RC 

walls are analysed. The total height of the walls is 16 meters, the width is 12 meters and the 

thickness is 0.4 meters, Figure 2.25. The irregular wall differs from the regular one due to the 

absence of the shear wall on Level 2 at the second bay. An interior column of 0.4x0.4m is 

located in the middle of the structure. To simulate the presence of perpendicular walls and floor 

slabs, two lateral flanges 0.4x1.0m and interstorey beams 0.4x1.0m have been added to the 

walls, respectively. This aspect is of particular interest because in nuclear power plants (NPP) 

building RC walls are connected to the RC floor slab at every floor level. During earthquake 

shaking, the non-linear behavior of wall-to-slab connections and slabs are particularly 

important because they affect the seismic load distribution and the damage pattern in the 

structural members of the system (Pantazopoulou et al. 1992). Nevertheless, even if the in-plane 

non-linear behavior of individual RC walls (Belletti et al., 2014a) and floor slabs (Qadeer et al., 

1969; Paulay et al., 1981) is well documented in literature, an exhaustive investigation on the 

response of RC walls systems and on the behaviour of slab-wall junction under earthquake 

motion is not nowadays achieved (Kaushik, 2017). Therefore, there are still several 

uncertainties regarding both demand and capacity assessment., Figure 2.25.  

Table 2.2 shows the mean values of the mechanical properties of concrete and steel. Shear 

walls, beams, and columns reinforcements are indicated in Figure 2.26 as reinforcement ratio 
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ρ; these quantities are obtained by Cash benchmark organizers from the design study, 

considering a determined seismic ground motion. 

 

Figure 2.25: Geometry description. 

Table 2.2: Mechanical properties of concrete and steel. 

Concrete Steel 

fc 

[MPa] 
Ec 

[MPa] 
ft 

[MPa] 
ν density 

[kg/m3] 
fy 

[MPa] 
Es 

[MPa] 
Eh 

[MPa] 
density 
[kg/m3] 

35.0 30000.0 2.0 0.2 2300.0 500.0 200000.0 1000.0 7500.0 

 

The loads consist of self-weight of structural elements, vertical masses applied on the 

floors to model the live loads (per floor Mz = 60 t) and horizontal masses applied on the floors 

to adjust the first horizontal frequency (per floor Mh = 500 t). 

The adopted FEM model is reported in Figure 2.27. 864 nodes and 644 multi-layered shell 

elements with 4 nodes and full integration scheme, with average element size equal to 550 mm, 

have been used to model the walls. The mesh allows running non-excessive time consuming 

analysis for the adopted computer (3.20 GHz CPU with 16 GB RAM). The self-weight of 

structural members has been applied as density whereas the horizontal and vertical masses as 

lumped mass elements. The wall structure is clamped at the base and the out of plane 

displacements are prevented in all nodes. 

The analyses were conducted using the ABAQUS 6.12 software by means the PARC_CL 

2.1 crack model.  
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Figure 2.26: Reinforcement ratio of (a) shear walls and (b) columns and beams. 

 

Figure 2.27: Adopted finite element mesh for (a) regular wall, (b) irregular wall. (c) Shell elements thickness. 
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The Newton-Raphson method has been adopted as a convergence criterion. For dynamic 

analyses the default Abaqus/Standard Hilber-Hughes-Taylor time integration has been used. 

For Task 1 the principal vibration modes and the spectral analysis response from the entire 

modelling of the multi-storey RC walls are expected. The acceleration spectrum is given in 

Figure 2.28. A viscous damping ratio ξ  equal to 7% has been adopted for spectral analyses as  

well as a reduced Young modulus Ec/2 for concrete.  

Figure 2.29 shows the first mode deflected shape for the regular and irregular wall having 

frequencies f respectively equal to 4.02 Hz e 3.42 Hz, in good agreement with the values 

provided in Table 2.3 by the benchmark organizers.  

Figure 2.30 illustrates the diagram of the shear force, the bending moment and the inter-

storey drift for the regular and the irregular wall, obtained by spectral analysis and considering 

only the first vibration mode. Figure 2.30c highlights the substantial difference between the 

deformed shape of the irregular wall and the regular one due to the presence of the opening at 

Level 2.  

 

Figure 2.28: Elastic Response Spectrum. 

 

Table 2.3: Rayleigh coefficient 

Wall Analysis f1 [Hz] ξ1 f2 [Hz] ξ2 α β 

Irregular 
Non-linear 5.2 2% 35 2% 1.138 1.584E4 

Linear 3.68 7% 35 7% 2.927 5.761E4 

Regular 
Non-linear 6.2 2% 35 2% 1.324 1.545E4 

Linear 4.38 7% 35 7% 3.427 5.658E4 
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Figure 2.29: First mode deflected shape for (a) regular wall and (b) irregular wall. 

 

Figure 2.30: Spectral analysis results obtained for regular and irregular wall: (a) shear force, (b) bending moment 
and (c) inter-storey drift diagrams. 

The aim of Task 2 was the evaluation of the non-linear response of the specimens up to 

their ultimate capacity. Non-linear Pushover analyses have been conducted in load control 

applying a first mode proportional distribution of horizontal forces, as indicated in Figure 2.31a 

and in Eq.(2.47). 
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Only horizontal mass per floor [M] has been taken into account and the horizontal force 

has been applied to each floor along the wall/slab interface. The normalized force distribution 

at each level is (0.15, 0.43, 0.72, 1) for the regular wall and (0.09, 0.31, 0.73, 1) for the irregular 

wall. The full elastic modulus has been used. 

Figure 2.31b shows the shear base–P4B displacement curve for the regular and irregular 

wall. For the irregular wall, the pushover analysis has been conducted in direction +x and –x. 

The analyses have been interrupted when material strains achieved an assumed threshold limit 

equal to 3.5‰ for concrete and 0.4% for steel (as suggested by Cash benchmark organisers). 

The capacity, in terms of resistance and ductility, of the irregular wall is lower than the capacity 

of the regular wall because of the presence of the opening. Furthermore, the irregular one 

presents a lower capacity if the forces are applied in –x direction again due to the presence of 

the opening. 

 

Figure 2.31: (a) Pushover force and node groups; (b) Pushover analysis for the regular and irregular wall. 

Figure 2.32 shows the contour plot of longitudinal reinforcement strain values for different 

levels of displacement of the P4B point for the regular and the irregular walls (in grey the 

longitudinal reinforcement strain values higher than the steel yielding strain). Observing Figure 

2.32 it is possible to note that the failure occurs after the yielding of the longitudinal rebars in 

correspondence of the lateral flanges. This phenomenon appears particularly localized at Level 

2 both for the regular and irregular wall. Furthermore, the irregular wall presents high values 

of crack width and strain both of longitudinal and horizontal rebars at the corners.  

[ ] { }1φ⋅= MF  (2.47) 
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Figure 2.32: Longitudinal reinforcement strain values for the regular wall in correspondence of P4B node for 
displacement equal to: (a) 10 mm, (b) 25 mm, (c) 50 mm; for the irregular wall at (d) 25 mm, (e) 50 mm, (f) 80 

mm. 

Finally, Task 3 required linear and non-linear incremental dynamic analysis. Figure 2.33a 

shows the seismic acceleration time history to be amplified by a coefficient η (according to 

incremental dynamic analysis) and applied only in the x direction (no excitation is applied along 

the vertical direction). More specifically, η equal to 1 is used for the prediction of quasi-elastic 

behaviour (i.e. slight levels of damage), η equal to 2 scales the accelerogram to simulate an 

earthquake that causes high levels of damage to structures. η value equal to η5 has to be 

determined as the accelerogram scaling multiplier value that causes an inter-storey drift equal 

to 5 ‰. 

Table 2.3 shows the Rayleigh coefficients α and β, to be used in the input file to obtain a 

damping ratio ξ of 7% for linear dynamic analysis and 2% for non-linear dynamic analyses. 

These coefficients have been fixed by benchmark organizers on the base of their estimated 

frequencies f1 and f2 and correspond to typical values for nuclear industry practice. 
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Figure 2.33: (a) Seismic acceleration time history (η = 1); Regular wall base shear-P4B node displacement for 
accelerogram multiplier equal to: (b) η=1, (c) η=2, (d) η=5. 

 

Figure 2.34: Regular wall: (a) longitudinal reinforcement strain-time curve for the highlighted element when a 

scaled factor of η=2 is used; (b) longitudinal reinforcement strains at the maximum horizontal displacement 
occurring at 5 seconds. 
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Figure 2.33 and Figure 2.36 show, for regular and irregular wall respectively, the shear 

base–P4B node displacement curve for accelerogram multiplier equal to η=1, η=2 and η=5 

respectively. More specifically, Figure 2.33a and Figure 2.36a show that if the walls are loaded 

with the basic accelerogram, they remain in the quasi-elastic range. 

As shown in Figure 2.34 for the regular wall and Figure 2.37 for the irregular wall, when 

the walls are subject to a scaled accelerogram (η=2) they experience major damage and the 

yield of the longitudinal bars is reached.  

Figure 2.35 and Figure 2.38 illustrate the inter-storey drift recorded for a scaled 

accelerogram (η = 5). The maximum interstorey-drift, fixed by the benchmark organizers equal 

to 5 ‰, was reached at Level 2 both for the regular and irregular wall. 

 

Figure 2.35: Regular wall: drift vs time curve for an accelerogram scaled of a value η=5. 
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Figure 2.36: Irregular wall base shear-P4B node displacement for accelerogram multiplier equal to (a) η=1, (b) 
η=2, (c) η=5. 

 

Figure 2.37: Irregular wall: (a) longitudinal reinforcement strains vs time curve for the highlighted element when 

a scaled factor of η=2 is used; (b) longitudinal reinforcement strains at the maximum horizontal displacement 
occurring at 6 seconds. 
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Figure 2.38: Irregular wall: drift vs time curve for an accelerogram scaled of a value η=5. 

 Diaphragm Effects 

Stiffness, resistance, and ductility of RC multi-storey walls depends on diaphragm effects, 

which reduces free rotation of walls in correspondence of floors and wall-to-slab connections. 

From the past experimental research on a single storey slab-wall system (Pantazopoulou et al., 

1992), it was observed that the shear wall-slab junction experienced large stress concentration 

under combined axial and cyclic lateral loading. Although various studies have been carried out 

on coupling action of the beam and floor slab in building with shear walls, the failure modes of 

shear wall-floor slab junction and their possible implications on the seismic design of walls 

have not been studied extensively. However, none of the past studies has focused on the detailed 

investigation of the behavior of floor slab and shear wall junction under earthquake shaking. 

Furthermore, the interaction between these two systems is usually ignored by designers for 

simplicity.  

In order to consider the presence of the diaphragm, beams (1 meter width) have been 

introduced at each level by the organizer of CASH-phase 2 benchmark. Since these beams are 

free to deform, it is authors opinion that the stiffening effect provided by RC slabs at each level 

could be more pronounced than the stiffening effect provided by the modelled beams. 

Furthermore, the actual geometry of RC slabs, properly modelled, could lead to a different 

distribution of internal stresses on RC multi-storey walls. To maximize the stiffening effect 

provided by diaphragms, the regular wall has been modelled assuming a shear type behavior 

by preventing beam rotations. Even if the shear type static scheme is not representative of the 
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actual stiffening effect provided by diaphragms, it represents the opposite circumstance with 

respect to the modelling of the multi-storey wall carried out in the benchmark, where nodes are 

free to rotate in correspondence of floor, determining a cantilever static scheme for the analysed 

multi-storey wall. Since the detected non-linear behavior of the regular wall and the regular 

wall – Shear type are, as expected, very different, it means that the modelling of the actual 

geometry of the diaphragms deserves to be modelled in future development of this research.  

Figure 2.39 shows the first mode deflected shape for the regular wall - shear type model 

having a natural frequency equal to 6.47 Hz much higher than the natural frequency of the 

regular wall analysed in the benchmark equal to 4.02 Hz. Considering the response spectrum 

illustrated in Figure 2.28, seismic actions applied to RC multi-storey walls could increase 

significantly if the stiffening effect provided by diaphragms is taken into account. 

 

Figure 2.39: First mode deflected shape for the regular wall with shear type behaviour. 

 

Figure 2.40: Comparison between pushover results obtained for regular wall and regular wall – Shear type 
models. 
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A pushover analysis has been carried out on the regular wall - shear type model by applying 

a first mode proportional distribution profile of horizontal forces characterized by a normalized 

force distribution equal to (0.35, 0.65, 0.87, 1).  

Figure 2.40a shows the comparison between the shear base force vs top displacement 

curves obtained from the pushover analyses carried out on the regular wall and the regular wall 

- shear type model. Pushover curves are interrupted at the achievement of an interstorey-drift 

equal to 0.5%. 

The crack pattern of the regular wall, illustrated in Figure 2.41, is governed by flexural 

mechanism, whereas at the contrary the crack pattern of the regular wall – Shear type model is 

governed by shear mechanisms. More specifically, for a horizontal displacement equal to 10 

mm, Figure 2.41, the crack pattern is describing a shear mechanism of a squat wall at Level 1 

limited by adjacent diaphragms. For horizontal displacement equal to 50 mm, Figure 2.41, the 

crack pattern is describing a shear mechanism of the entire wall governed by an inclined crack, 

formed perpendicularly to compressive stresses of the inclined strut, joining the top and left 

corner of the wall to the bottom right corner of the wall were the maximum value of compressive 

strain is achieved in concrete, Figure 2.41.  

In Figure 2.41 it is also shown the contour plot of the horizontal reinforcement strain 

values. For a drift equal to 0.5% (critical value for nuclear power plants), corresponding to top 

displacement equal to 50mm, the yielding of the transversal reinforcement has been reached 

along the shear crack. 

In conclusion: 

• The response prediction of complex structures like a multi-storey wall with and without 

opening can be reliably obtained using NLFE tools both via pushover and incremental dynamic 

analyses. 

• Considerable efforts are still needed to understand the behavior of seismic-resisting wall 

systems. Normative prescriptions are often based on a few experimental campaigns carried out 

on isolated elements. In order to better understand the non-linear behavior, numerical methods 

able to predict the response of seismic-resisting wall systems and their interaction with 

diaphragms and secondary structural elements are required hopefully supported by 

experimental evidence. 

• Different hypotheses, used to simulate the presence of the RC slabs, lead to different 

failure mechanisms and distribution of strains in multi-storey walls. Future studies will be 

focalized on a more refined and realistic modelling of the diaphragm and wall-to-slab junction. 
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Figure 2.41: Contour plot for regular wall – Shear type. 
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 Analyses of RC Deck Slabs of Hollow Box Bridges  

 

Figure 2.42: Longitudinal view of the bridge. 

Figure 2.42 shows a view of the typology of the viaduct analysed in this paragraph as case 

study. The dimensions and the reinforcement layout, assumed in this study, for the viaduct are 

not representative of a specific viaduct but representative of typical configurations of existing 

viaducts. 

In the verification of bridges and viaducts, the longitudinal and transversal behavior are usually 

considered independent among them. Generally, concentrated loads are taken into account only 

in the verification of the cross section without considering the interaction between longitudinal 

moments and transverse shear resistance. The objective of this work, conducted with Ecole 

Polytechnique Fèdèral de Lausanne, is to analyse the interaction between longitudinal bending 

moment and transverse shear strength. 

The bridge has a 56.2m span, except for the first and last spans, which are 45 m long. The 

cross section and reinforcement details are reported in Figure 2.43. The bridge deck is 

characterized by a tapered section with thicknesses varying from 250mm to 400mm, whereas 

webs and bottom slab have constant thickness, respectively equal to 500mm and 600mm. The 

bridge deck is 11m wide, characterized by a 3.8m central top slab and two cantilevers 3.105m 

long. Table 2.4 reports the mean values of the mechanical properties.  
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Figure 2.43: Transverse cross-section and reinforcement layout (dimensions in meters) 

The shear resistance of the cantilever of the bridge deck has been evaluated considering 

the load case illustrated in Figure 2.44 (characterized by a distance av equal to 2d which 

maximize the transversal shear at the web).  

 

Figure 2.44: Loading arrangement according to EN 1991. 

The interaction between longitudinal bending moment and transverse shear of the bridge 

deck has been accounted by applying a uniform profile of strains ranging from -0.3‰ to +3.0‰ 

along the bridge deck. The minimum compressive strain value corresponds to scenarios of 

maximum values of prestressing forces applied, whereas the maximum tensile strain value 

corresponds to yielding of longitudinal bars due to hogging moment occurring at supports of 

continuous span bridges. 

Table 2.4: Mechanical properties of materials. 

concrete steel 
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The response prediction of the bridge deck has been evaluated using two different 

modelling strategies. In the first one, a portion of the bridge has been entirely modelled, Figure 

2.45a, whereas in the second one, only the cantilever of the bridge deck has been modelled, 

Figure 2.45b.  

 

Figure 2.45: Modeling of (a) a portion of the bridge and (b) the cantilever. 

In both cases, NLFEA has been carried out using multi–layered shell elements and the 

PARC_CL 2.1 (Belletti et al., 2017a) crack model. Since PARC_CL 2.1 crack model is suitable 

for plane stress analyses, the thickness of the slab is subdivided into layers. 7 layers have been 

used to model with good accuracy the position of longitudinal and transversal rebars at the top 

and bottom sides of the bridge deck. 4 Gauss integration points in the plane of eight –nodes 

shell element, and 3 Simpson integration points in the thickness of each layer have been 

adopted.  

Since the adopted multi-layered shell elements are not able to predict the non-linear 

behaviour over the thickness of the slab, two post-processing approaches, based on the Critical 

Shear Crack Theory (Muttoni et al., 2008) and Model Code 2010 formulations (fib, 2013) have 

been used. 

The symmetry of loading and boundary conditions has been exploited for both the 

modelling strategies by applying symmetric boundary conditions to one end, Figure 2.46.  
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Figure 2.46: Boundary conditions applied to (a) a portion of the bridge and (b) the cantilever. 

Therefore, compressive or tensile longitudinal strains have been imposed to the bridge 

deck in load case 1 by applying longitudinal displacements to nodes of the opposite bridge deck 

end, Figure 2.47. Figure 2.47b shows that load case 1 causes curvature of the transverse cross 

section in case of the modelling of the entire portion of the bridge that cannot be obviously 

observed in the case of the modeling of the cantilever. Therefore layers, subdividing the 

thickness of the bridge deck, will be subject to variable longitudinal strains along the thickness 

when the entire portion of the bridge is modelled whereas they will be subject to a constant 

value of longitudinal strains along the thickness when only the cantilever is modelled. 

 

Figure 2.47: Load case 1 for (a) the cantilever and (b) portion of the bridge. 

Load case 2 consisted in applying concentrated loads, Q, as pressure on the elements 

belonging to the loading areas having dimensions 0.4 m x 0.4 m (according to Load model 1 

by EN 1991). Figure 2.48 shows load case 2 applied to the modelled portion of the bridge. The 

same loading scheme has been applied to the cantilever. 



66 The PARC_CL 2.1 Crack Model

 

 

Figure 2.48: Load case 2 applied to the modelled portion of the bridge. 

The bridge deck response has been predicted with and without considering the geometrical 

non-linearity. The geometric non-linearity, which has to be set to evaluate membrane actions, 

is considered by adopting a Lagrangian formulation. 

 Evaluation of the Transverse Shear Resistance attributed to the Concrete  

The transverse shear resistance of the bridge deck is evaluated according to Model Code 2010 

(fib, 2013) and the Critical Shear Crack Theory (Natario et al., 2014). 

 Model Code 2010 

The shear resistance attributed to the concrete is calculated referring to the control section 

located at a distance equal to d from the face of supports having length bw2 or bw4 and effective 

depth, d, as illustrated in Figure 2.49. Table 2.5 reports all the geometrical quantities required 

for calculations.  

Since the concentrated load is applied at a distance d < av ≤ 2d from the edge of the support, 

an amplifier coefficient β for the design shear force, VEd, equal to 1 has been assumed. The 

design shear resistance of members without shear reinforcement, VRm,c , is given by Eq.(2.48): 
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where γc has been assumed equal to 1, z is the internal level arm, and bw is the width of web. 

Coefficient kv is calculated using Eq.(2.49) for Level of Approximation LoA II: 
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where εx is the axial strain, kdg=32/(16+dg)≥ 0.75 with dg equal to the maximum size of 

aggregate. 
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Table 2.5: Geometrical quantities at the critical section (in mm) and referred to Figure 2.49. 

h d c av z bw2=2a+b bw4=2c+b 

393.1 333.1 50 680 299.8 7080 3080 

  

Figure 2.49: Geometrical quantities adopted for the transverse shear resistance evaluation (dimensions in 
meters). 

Shear resistance according to LoA IV has been obtained by NLFEA results. Since the 

presented shell modelling approach cannot detect shear failures along the thickness of the 

bridge deck, a post-processing method of NLFE results has been carried out, Figure 2.51a. More 

specifically, the shear resistance per unit length, vRm,c, can be achieved at the intersection of the 

failure envelope given by Eq.(2.50) with the NLFEA curve, relating the shear stress values 

(averaged along the effective length), Figure 2.50a, to the mid-depth strain, calculated as shown 

in Figure 2.50b. 
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Figure 2.50: (a) Effective length for averaging shear stresses and (b) mid-depth strain. 

 Critical Shear Crack Theory 

The Critical Shear Crack Theory (CSCT) allows determining the shear strength of slender one 

or two – way slabs on the basis of the opening of the critical shear crack (Muttoni et al., 2008). 

Muttoni et al. (2008) proposed a failure criterion in terms of one – way shear that estimates the 

maximum shear force for a given critical crack width. Such a parameter can be assumed 

proportional to the product of a reference longitudinal strain ε times the effective depth d. CSCT 

formulation evaluates the shear strength in the critical section at 0.5d from the point of 

maximum acting moment, Figure 2.50b. The reference longitudinal strain is assessed at 0.6d 

from the outer compressive fibre considering a linear elastic behavior of concrete in 

compression, neglecting concrete tensile strength. Hence, taking into account the effects of the 

critical shear crack width, the aggregate size dg and the concrete compressive strength fc, the 

failure criterion is described by Eq.(2.51): 
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The longitudinal strain ε and the cflex are defined by Eq.(2.52) and (2.53): 
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Experimental outcomes carried out by Natario et al. (2014) show for linearly supported 

slabs under concentrated loads clear and rather significant redistributions of the reactions. 
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Redistributions occur not only due to bending cracks but also for the development of the 

inclined shear cracks. Indeed, as the level of applied load increases, the reaction in the region 

close to the load enhances at a slower rate because load starts to be transferred to the adjacent 

regions, which are less affected by the shear crack. To account for this distribution of internal 

forces, a unitary average shear stress vavg,4d is calculated along a distance 4d from unitary shear 

stresses obtained by NLFEA. The reference longitudinal strain ε is calculated in correspondence 

of the maximum unitary acting moment m. Then, it is calculated the parameter k, as the ratio of 

the acting moment mi to the average unitary shear vavg,4d (both of them evaluated in the critical 

section). Hence, the ultimate shear failure value VR is evaluated following an iterative procedure 

at the intersection with the failure criterion of Eq.(2.51).The main results are presented in Figure 

2.51b. 

 

Figure 2.51: Shear resistance evaluation according to LoA IV and failure envelope evaluated using a) Model 
Code 2010 (fib, 2013) formulations and b) CSCT (Muttoni et al., 2008). 

Table 2.6: Transverse shear resistance. 

fib MC2010 CSCT 

LoA II 
(kN) 

LoA IV 
(kN) 

LoA IV 
(kN) 

1649.93 2054.57 1583.51 

 

Table 2.6 reports the comparisons between transverse shear resistance values obtained 

using the previously explained approaches without considering longitudinal strains applied to 

the bridge deck, therefore without considering longitudinal moments applied to the bridge 

section. 
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 Interaction between Longitudinal Bending Moment and Transverse 

Shear Strength  

Parametric analyses have been carried out to investigate the interaction between longitudinal 

moment and transverse shear resistance by imposing longitudinal strains to bridge decks. 

Longitudinal strain values are ranging from compressive strain values due to self-weight and 

prestressing forces to tensile strain values corresponding to yielding of longitudinal bars due to 

hogging moment at supports of continuous span bridges. Therefore, the parametric analyses 

have been carried out by imposing longitudinal strain values equal to -0.3‰, -0.2‰, -0.1‰, 

0.0‰, +0.5‰, +1.0‰, +1.5‰, +2.0‰, +2.5‰, +3.0‰. 

Figure 2.52a and Figure 2.52b, together with Table 2.7, report the transverse shear 

resistances attributed to concrete against the applied longitudinal strain values evaluated, 

respectively, according to Model Code 2010 (fib, 2013) and CSCT failure criterion together 

with analytical calculations, which are neglecting the effects of longitudinal moments.  

 

Figure 2.52: Transverse shear resistances values with respect to applied longitudinal strain. 

Table 2.8 reports the corresponding maximum values of the resultant force of the load 

model that can be applied to the bridge deck. It results in an average increment, due to 

compressive strain applied to the bridge deck, equal to 20% using Model Code 2010 (fib, 2013) 

failure envelope and 11% using CSCT failure envelope. Moreover, an average decrease due to 

tensile strain equal to 11% using Model Code 2010 (fib, 2013) failure envelope and 25% using 

CSCT failure envelope have been obtained. 

Therefore, the resultant force of tandem system assessment carried out by neglecting the 

effects of the longitudinal bending moment could be non-conservative. 

The main reason for the interaction between longitudinal bending moment and transverse 

shear resistance can be attributed to the reduction or increment of compressive strength of 
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concrete due to the multi-axial state of stresses. Indeed, the cracking induced by the imposed 

longitudinal tensile strain causes a reduction of compressive strength of concrete (when the 

transverse bending behavior is observed) and therefore higher values of axial strains at mid-

depth of the transverse cross section, Figure 2.53. Since the shear failure criterion attributed to 

concrete is dependent on axial strains at mid-depth of the transvers cross section, it results in a 

lower transvers shear resistance. On the other hand, when compressive strains are imposed, the 

confining effects increase the compressive strength of concrete and provide positive effects to 

the non-linear transverse behavior. 

 

Figure 2.53: The cracking induced by the imposed longitudinal tensile strain causes a reduction of compressive 
strength of concrete. 

Table 2.7: Transverse shear resistance values. 

 

Table 2.8: Maximum values of external forces applied to the bridge deck. 

 

 

Figure 2.54 reports the comparison between the transverse shear resistance values obtained 

from the portion of the bridge and cantilever modelling. Since longitudinal strains imposed to 

bridge deck cause inflections of the portion of the bridge modelling (Figure 2.47a), layers used 

to subdivide the slab thickness are subjected to different values of longitudinal and transverse 

strains. At the contrary, a constant value of longitudinal strain is imposed on the cantilever. 

Therefore, the transverse shear resistance obtained with the bridge modelling results lower than 

-0.3‰ -0.2‰ -0.1‰ +0.5‰ +1‰ 1.5‰ +2.0‰ +2.5‰ +3‰
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the shear resistance obtained with the cantilever modelling. So, the modelling of the cantilever 

results non-conservative for this study.  

 

Figure 2.54: Transverse shear resistance values obtained from the portion of the bridge and cantilever modelling. 

From Figure 2.55 it can be appreciated how membrane action effects can affect the 

transverse shear resistance assessment. Indeed, it is well known that when geometrical non-

linearity and second order effects are considered, positive effects due to membrane action can 

be exploited.  

In conclusion: 

• the resultant force of tandem system assessment carried out by neglecting the effects of 

the longitudinal bending moment could be non-conservative; 

• the modelling of an entire portion of the bridge results more conservative than the 

modelling of the cantilever, only for transverse shear resistance verifications; 

• membrane action can play an important role in the transverse shear resistance 

assessment; 

• future studies will be carried out with different values of transverse reinforcement ratios. 
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Figure 2.55: Membrane action effects on the transverse shear resistance assessment for the cantilever modelling. 

2.4 Concluding Remarks 

In this chapter the basic formulation of the PARC_CL 2.1 model was presented and validated 

by means of simulation of different RC structural members  

The PARC_CL 2.1 crack model was primarily validated by means of comparison with 

experimental tests on simple RC panels carried out at the University of Houston (Mansour and 

Hsu, 2005). Furthermore, in order to verify the aggregate interlock law implemented in the 

PARC_CL 2.1 model, the results obtained with the PARC_CL 2.1 are compared to those 

obtained with the commercial software DIANA 10.0. 

Subsequently, the PARC_CL 2.1 was applied to more complex structural members, such 

as RC walls and deck slabs.  

It has been demonstrated, through comparison with experimental tests, that the PARC_CL 

2.1 model is able of providing reasonably accurate predictions of the non-linear response of RC 

members subjected to cyclic and dynamic loading. In fact, thanks to the tangent approach is 

possible to take into account plastic strains. 

It is in the author’ opinion that the non-linear shell and membrane modeling using the 

PARC_CL 2.1 crack model may be a powerful tool for the assessment of both local and global 

damage indicators (like crack width and displacements) which are strongly relevant in the 

seismic performances of RC structures. 

The powerful of a self-implemented model is the chance, with respect to the standard 

models available in the libraries of the commercial finite element software products, to evaluate 
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for several mechanical phenomena in order to achieve a more refined response of the structural 

member.  

New contributions, aimed to apply the PARC_CL 2.1 to more generalized case studies, 

will be presented in the next chapters. 
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It is well-known that concrete is a brittle material which cracks when the tensile stresses exceed 

the tensile strength of the material. Cracking in concrete can be a consequence of different 

contributions like thermal contraction, large differential temperatures within the concrete body, 

external or internal restraints, too large deformations, applied loads but, one of the most 

common reasons is shrinkage. Concrete is particularly prone to cracking at a very young age. 

Early-age cracking due to shrinkage can present a significant problem in concrete because the 

tensile strength of the material is still developing. In the meantime, volume changes are already 

taking place due to the combined effect of heat of hydration, the binder hydrating and the outer 

surfaces drying out. Restrained volume changes drive tensile stress development.  

Another important question is related to RC members, where the presence of embedded 

reinforcement produces a restraining of concrete shrinkage, affecting the cracking resistance of 

structural elements, as well as their deformations even under short-term loading (Bischoff, 

2001; Scanlon et al., 2008). 

Nevertheless, in the design of RC members, creep and shrinkage effects are usually taken 

into account for the evaluation of long-term deflections and pre-stress losses, whereas on short-

term response are often neglected (Gilbert, 2001; Gribniak et al., 2013). The phenomena of 

shrinkage and creep are linked: some models take this interdependence into account (Bažant 

and Baweja, 2000), whereas others assume that the two terms are independent and overlapped 

(Gilbert, 1988).  
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Eurocode 2 (1992) and Model Code 2010 (fib, 2013) provide analytical formulations for 

the evaluation of the average shrinkage deformation. These formulations are easy to use and, 

in general, assure the achievement of safety conditions. However, they are not always able to 

catch all the phenomena that involve the material in the non-linear phase, and they are not 

representative of the physical reality of the phenomenon. 

The cracking of concrete may severely affect the durability performance and service life 

of structures since it contributes to the corrosion of the reinforcement, it aggravates freeze-thaw 

cycles, resulting in quick deterioration, and facilitates alkali-aggregate reactivity. Severe 

cracking often calls for costly measures to fix. As a result, research aiming at the prevention of 

shrinkage cracking and predicting early-age cracking risk has been on the rise (Holt, 2001; Holt 

and Leivo, 2004; Tongaroonsri, 2009).  

In terms of NLFEA, a proper numerical modelling able to consider the shrinkage effect 

and able to avoid inaccurate predictions of structural performances at serviceability conditions 

is needed. To this aim, concrete shrinkage can be explicitly considered by treating it as a 

prescribed deformation or as a fictitious force in the analyses (Maekawa et al., 2006; Luo et al., 

2015).  

In this chapter, the shrinkage formulation implemented in PARC_CL 2.1 model is 

presented, and the effectiveness of the proposed procedure is verified herein through the 

modelling of tensile members.  

3.1 Shrinkage Effect on a Uniaxial Tension Member 

For an uncracked and unreinforced concrete section, shrinkage would cause a free shortening 

equal to xsh ∆ε , Figure 3.1a (where shε  is the free shrinkage strain of the concrete). If 

reinforcement is provided, it restrains the free shrinkage of concrete, Figure 3.1b. The 

reinforcement would be subjected to a compressive force sss AE ε while an opposite tensile force 

would be applied to the concrete (denoted as ∆  in Figure 3.1b). Due to this restraint to 

shrinkage, the shortening of the section changes xsh ∆⋅0,ε . The value of the initial strain 0,shε  

is determined in Eq.(3.1) and it is less than shε  (Bischoff, 2001). 

n
shsh

ρ
εε

+
=

1

1
0,

 
(3.1) 
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where cs EEn /= . 

 

Figure 3.1: Shrinkage effect on (a) unreinforced element; (b) tension member. 

Bischoff (2001) proposed to consider the initial uncracked member response by including 

the free shrinkage strain, shε , of the concrete as part of the relationship for the total concrete 

strain cε , Eq.(3.2); whereas for the reinforcement is given by Eq.(3.3). 

shcfcm εεεε −==  (3.2) 

sfsm εεε ==  (3.3) 

where cfε  is the concrete strain caused by stress, equal to cc E/σ before cracking (i.e. tc f<σ ), 

and sfε represents the stress strain caused by stress and equal to ss E/σ , for ys ff < . The elastic 

stresses in concrete and steel are given by σc and σs respectively. In both instances, the total 

concrete strain εc and total steel strain εs equal the member strain εm. Substituting Eq.(3.2) and 

Eq.(3.3) and their corresponding linear elastic stress-strain relationship into the equilibrium 

equation it is possible to obtain the cracking load P, Eq.(3.4): 

sfsscfccssccsc EAEAAAPPP εεσσ +=+=+=  (3.4) 

where Pc and Ps are the loads associate to the concrete and to the steel respectively. 

Considering the condition of zero axial load (P=0),  the shortened member strain im ,ε  and 

the initial strains in materials, icf ,ε  and isf ,ε , are shown in Eq. (3.6) and (3.7): 

εsh,0 ∆x

εsh∆x

∆T

P

P

(a)

(b)
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where the concrete shrinkage shε  has a negative value for shortening. 

 

If the member is loaded, shrinkage of the concrete causes a significant change in the load-

deformation response, as shown in Figure 3.2. Analyses of results from past work generally 

neglected to account for shrinkage, assuming in most cases that the response of a RC tension 

member starts off at zero deformation before the load is applied, curve OAB. However, concrete 

can experience significant amounts of shrinkage before testing. 

Figure 3.2 shows the idealized instantaneous and time-dependent responses of a 

concentrically reinforced concrete member subjected to axial tension, both before and after 

cracking. The instantaneous response (curve OAB) is linear until the reaching of the first 

cracking (at P = Pcr) and non-linear after cracking. The load at which cracking occurs depends 

on the tensile strength ft of the concrete at the time of loading.  

Observing the effect of the shrinkage on the response curve, O’A’B’ in Figure 3.2, it is 

possible to conclude that before cracking: 

• shrinkage causes the shortening of the member and, at low tensile loads, the load-

deformation curve moves to the left, O’A’ by a strain equal to 0,shε .  

• Restraint to shrinkage causes a gradual build-up of tensile stress in the concrete that 

reaches an initial stress equal to 0,cσ , Eq.(3.28): 

n

n
Ecshc

ρ

ρ
εσ

+
−=

1
0,  (3.8) 

• The initial stress causes a reduction of the cracking load from Pcr to Pcr,sh, Eq.(3.29): 
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where crP is the cracking load in case of no shrinkage.  

 

After the first crack is formed (P > Pcr), cracking and the deterioration of bond result in a 

slip at the concrete-steel interface. These two physical mechanisms are primarily responsible 

for the reduction in tension stiffening due to restraint to shrinkage. In absence of cracks, the 

incremental increase of stress, caused by the restraint to shrinkage, would cause an increase in 

tension stiffening. The formation of new cracks and the resulting bond slip result in a 

subsequent overall (net) drop in tension stiffening. 

 

Figure 3.2: Response of an axially loaded tension member 

 Simplified Model for the Calculation of Uniform Shrinkage Strain 

In order to apply the previously proposed formulations, it is necessary to know the initial value 

of the shrinkage strain. In fact, the shrinkage strain is not always given as data in the 

experimental campaigns. For this reason, it is necessary to rely on simplified analytical 

formulations, able to provide the initial value of shrinkage strain to be assigned. In this sense, 

the main codes provide simplified calculation models for the assessment of shrinkage strain. 

They adopt sectional approaches, reducing the effects of the phenomenon to an average 

deformation on the cross-section of the element. Starting from the hypothesis that the section 

remains plane, such formulations return only the final state of the effect. These models are 
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easily expendable in the design practice, as they simply return the effects of shrinkage in terms 

of deformation and critical load. Simplified models neglect the temporal and spatial evolution 

of the phenomenon and are based on the mechanical characteristics of the material and 

environmental conditions. 

More specifically, Eurocode2 (EN 1992-1-1, 2002) defines the total shrinkage strain, εcs, 

as a sum of two components: the drying shrinkage strain, εcd, and the autogenous shrinkage 

strain, εca, Eq.(3.10). The drying shrinkage strain develops slowly since it is a function of the 

migration of the water through the hardened concrete. The autogenous one develops during the 

hardening of the concrete: the major part, therefore, develops in the early days after casting. 

Autogenous shrinkage is a linear function of the concrete strength. It should be considered 

specifically when new concrete is cast against hardened concrete.  

cacdcs εεε +=  (3.10) 

The development of the drying shrinkage strain in time, εcd (t), follows from Eq.(3.11): 

0,),()( cdhsdscd kttt εβε ⋅⋅=  (3.11) 

where βds(t,ts) is defined in Eq.(3.12), kh is a coefficient depending on the notional size h0 

according to Table 3.1 and εcd,0 is the drying shrinkage strain at the initial time. 

Table 3.1: Values for kh, Eurocode2. 

h0 kh 

100 1.00 

200 0.85 

300 0.75 

≥500 0.70 
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where t is the age of the concrete at the moment considered (in days), ts is the age of the concrete 

(days) at the beginning of drying shrinkage (or swelling); (t-ts) represents the duration of drying 

in days. h0 is the notional size (mm) of the cross-section and equal to 2Ac/u, where Ac is the 

concrete cross-sectional area and u is the perimeter of that part of the cross section which is 

exposed to drying. 



Shrinkage Effect in the PARC_CL 2.1 Crack Model 85 

 
The basic drying shrinkage strain εcd,0 is calculated from Eq.(3.28): 
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where fcm is the mean compressive strength (MPa), fcmo is assumed equal to 10 MPa, αds1 and 

αds2 are coefficients which depend on the type of cement, Table 3.2; RH is the ambient relative 

humidity (%) and RH0  represents the saturation condition (100%). 

Table 3.2: Value of αds1 and αds2 for different cement classes, Eurocode2. 

Cement Class αds1 αds2 

S 3 0.13 

N 4 0.12 

R 6 0.11 

 

The autogenous shrinkage strain follows from Eq.(3.15): 

( )∞⋅= caasca tt εβε )()(  (3.15) 

where: 

610)10(5.2)( −⋅−=∞ ckca fε  (3.16) 

( )5.02.0exp1)( ttas ⋅−−=β  (3.17) 

 

Also, Model Code 2010 (fib, 2013) proposes a formulation for total shrinkage deformation 

in which the two contributions for drying and autogenous are distinguished, in a similar form 

to the Eq.(3.10). 

The autogenous shrinkage strain, εcbs is shown in Eq.(3.18): 

( )tft bscmcbscbs βεε ⋅= )()( 0,  (3.18) 

where: 
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The drying shrinkage εcds(t,ts) is reported in Eq.(3.21) and it is calculated by means of the 

notional drying shrinkage coefficient εcds,0(fcm), Eq.(3.22), the coefficient βRH(RH), Eq.(3.23), 

taking into account the effect of the ambient relative humidity and the function βds(t-ts), 

Eq.(3.24), describing the time development: 

)()()(),( 0, sdsRHcmcdsscds ttRHftt −⋅⋅= ββεε  (3.21) 

where: 

[ ] 6
210, 10)exp()110220()( −⋅⋅−⋅⋅+= cmdsdscmcds ff ααε   (3.22) 









>

≤≤



















−−

=

1

1

3

%9925.0

%9940
100

155.1

s

s
RH

RH

RH
RH

β

β
β  (3.23) 

( )
( )

5.0

2035.0
)( 









−+⋅

−
=−

s

s
sds

tth

tt
ttβ  (3.24) 

1
35

1.0

1 ≤







=

cm
s

f
β  (3.25) 

The αbs, αds1 and αds2 coefficients depend on the type of cement as indicated in Table 3.3 

Table 3.3: Coefficient used in Eq.(3.19) and Eq.(3.22), Model Code 2010 (fib, 2013). 

Strength class of cement αbs αds1 αds2 

32.5 N 800 3 0.013 

32.5 R, 42.5 N 700 4 0.012 

42.5 R, 52.5 N, 52.5 R 600 6 0.012 
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3.2 Implementation of the Shrinkage Effect in the PARC_CL 2.1 

Model 

In the PARC_CL 2.1 crack model the shrinkage effect is obtained in a simplified way, by 

implementing it as an average deformation, without resolving the solution of thermo-

hygrometric problems and neglecting temporal and spatial evolution of the phenomenon. The 

aim of the model is to capture the shrinkage effects in terms of initial strain and critical load 

(Wu, 2008).  

In the PARC_CL 2.1 crack model, shrinkage is applied as an additional tensile strain, 

called free shrinkage strain {εsh}, Eq.(3.26), (Bernardi et al., 2016):  

{ }
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0

sh

sh

sh ε

ε

ε  (3.26) 

The PARC_CL 2.1 assumes perfect bond condition between concrete and steel; for this 

reason, the strain field of the RC element {εm} in the x,y-reference system is given by Eq.(3.27): 

{ } { } { }
















===

xy

y

x

scm

γ

ε

ε

εεε  (3.27) 

where {εc} is the strain vector of concrete and {εs} is the strain vector of steel in the x,y-

reference system. Therefore, the linear elastic un-cracked response is modelled by including 

the free shrinkage strain { }shε  of the concrete in the total concrete strain field, Eq.(3.28): 

{ } { } { } { }shcfcm εεεε −==
 (3.28) 

where {εcf} is the concrete strain field caused by external force.  

For the steel reinforcement the total strain is given by Eq.(3.29): 

{ } { } { }sfsm εεε ==  (3.29) 

where {εsf} is the steel strain field caused by external force.  

After the strain fields have been corrected, considering the strains induced by shrinkage, 

the PARC_CL 2.1 is able to calculate the stress fields and the stiffness matrix as explained in 

§2.2. 
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3.3 Validation of the Implemented Formulation  

Short-term uniaxial tension members, referred to Wu and Gilbert (2008), are selected to validate 

the shrinkage contribute implemented in the PARC_CL 2.1 model. The main objectives of the 

experimental program were the quantification of tension stiffening in RC members under 

increasing load and the shrinkage effect on tension stiffening prior to cracking; moreover, the 

authors measured the effect of creep and shrinkage on the magnitude of tension stiffening and 

the effects of the time-dependent change in tension stiffening on the crack width and crack 

spacing. In this chapter, only the shrinkage effect will be taken into account in order to 

demonstrate the efficiency of the PARC_CL 2.1 crack model in predicting the effects of 

shrinkage. The effects of shrinkage on tension stiffening will be deal with in §4. 

 Simulation of Uniaxial Tension Members  

Four specimens out of six referred to Wu and Gilbert (2008) experimental campaign are 

analysed in this paragraph.  

 

Figure 3.3: Specimen details of uniaxial tension members (all dimensions in mm), Wu and Gilbert (2008). 

The specimens were characterised by a cross-section equal to 100 mm by 100 mm and 

length of 1100 mm, Figure 3.3. A single ribbed reinforcing bar was placed in the centre of the 

cross-section. The tensile axial force P was applied to the ends of the reinforcing bar. Over the 

middle 600 mm length of each specimen, 25 strain gauges were attached to the reinforcing bar 

at 25mm centres in order to monitor the local steel strains. In this work, only the specimens 

tested under short-term monotonically increasing load are analysed. The specimens are called 

STN12, STN16, STS12, and STS16. “ST” indicates the duration of the test, short-term. The 

third letter indicates if the specimen commenced drying and began to shrink prior to the 
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application of load; “S” if yes and “N” if no. The final number indicates the reinforcing bar 

diameter, either 12 mm or 16 mm. Two different diameters were chosen by the authors to 

investigate the influence of reinforcing ratio on tension stiffening.  

The tests were undertaken in an Instron universal testing machine in displacement control. 

The corresponding tensile force was recorded by a pressure transducer connected to the 

machine grips. Loads, elongation and steel strains (strain gauges) were all recorded 

electronically using an HBM amplifier and stored in the computer hardware by a data logger. 

All the short-term specimens (“ST”) were cast from the same batch of ready-mixed 

concrete and cured under wet burlap. Specimens “STN” were tested immediately after wet 

curing so that relatively little shrinkage had occurred at the time of testing. Specimens “STS” 

were uncovered and permitted to dry for a period of four weeks before testing. 

Table 3.4: Reinforcing bar properties. 

Bar 
φ 

[mm] 

fy 

[MPa] 

Es 

[MPa] 

12 12 500 200000 

16 16 500 204000 

Table 3.5: Concrete properties. 

Specimen 
fc 

[MPa] 

ft 

[MPa] 

fcf 

[MPa] 

Ec 

[MPa] 

STN12 
21.56 2.04 3.05 22400 

STN16 

STS12 
24.73 2.15 3.08 21600 

STS16 

 

In Table 3.4 and Table 3.5 steel and concrete properties are reported respectively. In 

particular, the compressive strength fc and the elastic modulus of concrete Ec were measured on 

standard 100 mm diameter concrete cylinders. The indirect concrete tensile strength was 

measured on standard cylinders using the Brazil tests and the flexural tensile strength, fcf was 

measured on 100mm by 100mm by 600mm concrete prisms. 

 Analytical Calculations 

Wu and Gilbert (2008) provided the free shrinkage strain εsh for each specimen at the age of the 

test, 32 days for STN specimens and 57 days for STS specimens. However, shrinkage strains 



90 Shrinkage Effect in the PARC_CL 2.1 Crack Model

 
are difficult to measure and therefore are not always provided. Alternatively, Eurocode2 and 

Model Code 2010 (fib, 2013) provide analytical formulation for estimating the shrinkage strain. 

Briefly, the shrinkage strain values for the STS specimens (specimens subjected to 

shrinkage) obtained from the analytical calculations are compared with those experimentally 

measured, Table 3.6. The formulations proposed by Eurocode2 and Model Code 2010 (fib, 

2013) do not depend on the reinforcement ratio. Therefore, only one value of εsh is obtained for 

STS12 and STS16 samples. 

Table 3.6 shows that Eurocode2 slightly overestimates the shrinkage strain value, whereas 

Model Code 2010 (fib, 2013) provides values closer to the experimental ones. 

Table 3.6: Value of εsh for STS specimens: comparison between the experimental value and analytical 

calculations. 

 εsh (10-6) 

Experimental 249.0 

Eurocode2 294.0 

Model Code 2010 239.0 

 NLFEA Results 

Taking advantage by the symmetry of the problem, only one half of each specimen is simulated, 

by adopting an FE mesh constituted by quadratic, 4-node isoparametric membrane elements 

with 4 Gauss integration points (defined M3D4 in Abaqus). Similarly to test setup, numerical 

analyses are performed under displacement control, Figure 3.4. 

 

Figure 3.4: Adopted mesh, boundary conditions and applied loads. 

STN specimens were tested at the age of 32 days. The measured drying shrinkage strains 

shε   in the unreinforced companion member were indicated in Table 3.7. Consequently, using 

550 mm 1000 mm
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the formulation presented in §3.1, it is possible to calculate the value of the initial strain 0,shε , 

and the cracking load Pcr,sh, Table 3.7. 

Table 3.7: Analytical calculation for specimens STN12 and STN16. 

Specimen εsh n ρ εsh,0 Pcr,sh [kN] 

STN12 -28 x 10-6 8.93 0.0114 -25.4 x 10-6 20.8 

STN16 -28 x 10-6 8.93 0.02 -23.7 x 10-6 22.3 

 

STS specimens were identical to the respectively STN specimens except that they were 

tested at the age of 57 days. The drying properties are indicated in Table 3.8. At the time of the 

test the creep coefficient associated with the initial period of shrinkage was ϕ=1.13, and 

consequently the average strain in the specimen prior to loading (accounting for the restraint 

provided by the reinforcement) is calculated using the age-adjusted effective modulus method 

proposed by Gilbert (1988), Eq.(3.30): 

*0,
1

1

n
shsh

ρ
εε

+
=  (3.30) 

where es EEn /* = and )1/( χϕ+= ce EE . 

Figure 3.5 shows the comparison between the NLFEA results obtained by using PARC_CL 

2.1 crack model and the experimental ones for specimens STN12 and STN16, i.e. with a low 

value of shrinkage. The implemented formulation has demonstrated to be able to correctly 

calculate the response of the specimen in terms of initial shrinkage strain εsh,0, and the cracking 

load Pcr,sh, returning the expected values, Table 3.9. The bare bar curve in Figure 3.5 is obtained 

by using the Menegotto-Pinto formulation §2.2.7. 

Table 3.8: Analytical calculation for specimens STS12 and STS16. 

Specimen εsh Ee 
*n  ρ εsh,0 Pcr,sh[kN] 

STS12 -249 x 10-6 11344 17.6 0.0114 -208 x 10-6 17.2 

STS16 -249 x 10-6 11344 17.6 0.02 -184 x 10-6 17.3 
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Figure 3.5: Comparison between NLFEA results and experimental (Wu and Gilbert, 2008) results in terms of 
axial load vs average axial strain for (a) STN12 and (b) STN16. 

Table 3.9: Comparison between NLFEA results and experimental (Wu and Gilbert, 2008) results for STN 

specimens. 

 STN12 STN16 

 Experimental PARC_CL 2.1 Experimental PARC_CL 2.1 

εsh,0 -25⋅10-6 -25.4⋅10-6 -23⋅10-6 -23.7⋅10-6 

Pcr,sh [kN] 21.1 20.8 23.0 22.9 
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Figure 3.6: Comparison between NLFEA results and experimental (Wu and Gilbert, 2008) results in terms of 
axial load vs average axial strain for (a) STS12 and (b) STS16. 

Table 3.10: Comparison between NLFEA results and experimental (Wu and Gilbert, 2008) results for STS 

specimens. 

 STS12 STS16 

 εsh,0 Pcr,sh [kN] εsh,0 Pcr,sh [kN] 

Experimental -209⋅10-6 13.0 -185⋅10-6 11.6 

PARC_CL 2.1 -225⋅10-6 16.4 -210⋅10-6 15.1 

PARC_CL 2.1 (creep) -208⋅10-6 17.2 -184⋅10-6 17.3 

 

Two different NLFEA are conducted for STS specimens: 

1. ignoring the effects of creep, black curve in Figure 3.6 (“PARC_CL 2.1”). According 

to this approach, the initial shrinkage strain is calculated using Eq.(3.1), without 

considering the age-adjusted effective modulus method proposed by Gilbert (1988); 

-500 0 500 1000 1500 2000 2500 3000

PARC_CL 2.1
PARC_CL 2.1 (creep)
Bare bar
Experimental

A
xi

al
L

o
ad

[k
N

]

Average axial strain [⋅106]
(a)

-500 0 500 1000 1500 2000 2500 3000 3500

PARC_CL 2.1
PARC_CL 2.1 (creep)
Bare bar
Experimental

A
xi

al
L

o
ad

[k
N

]

Average axial strain [⋅106]
(b)



94 Shrinkage Effect in the PARC_CL 2.1 Crack Model

 
2. considering the effects of creep, the grey curve in Figure 3.6 (“PARC_CL 2.1 

(creep)”). According to this approach, the initial shrinkage strain is calculated using 

Eq.(3.30), changing the elastic concrete modulus Ec with the age-adjusted effective 

modulus Ee.  

The results obtained from NLFEA are presented in Figure 3.6 and show that, if the effect of the 

creep is considered, the estimation of 0,shε is more accurate. However, the cracking load Pcr,sh 

is higher than the value obtained without considering the effect of creep. In addition, the 

stiffness in the elastic phase underestimates the experimental one. 

3.4 Concluding Remarks 

Shrinkage effects can significantly influence the serviceability performance of RC elements. In 

fact, the restraint provided by the reinforcement on concrete causes a reduction of the cracking 

load of the structural element, as well as an increase of its deflection. For this reason, the 

PARC_CL 2.1 crack is modified in order to include early-age shrinkage effects. 

For validating the model, four tensile members (Wu and Gilbert, 2008) with different 

reinforcement ratios and initial shrinkage strains are modelled. 

The NLFEAs conducted using the PARC_CL 2.1 demonstrate the capability of the model 

to return congruent results respect to analytical calculation in terms of Pcr,sh and εsh,0. On the 

over hand, the NLFEA underestimates the experimental strength and generally is not able to 

catch the experimental crack pattern. This is due to the simplified adopted modelling in which 

the reinforcement is smeared along the entire height of the section. This is the reason why the 

response of the tension member is uniform and the PARC_CL 2.1 is not able to show the 

discrete crack propagation. 

Future studies will focus on a more realistic modelling, trying, for example, to localize the 

reinforcement in a smaller number of elements. This procedure will allow to distinguish 

elements characterized only by concrete and elements with steel and concrete.  

Another important remark concerns the underestimation of the results after the reaching of 

the crack loading. This is due to the fact that the NLFEA do not consider the effect induced by 

the tension stiffening phenomenon. In order to analyse how the combined effect of shrinkage 

and tension-stiffening changes the analyses, the same specimens will be analysed in the next 

paragraph.  
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4 
 

 

 

Concrete between cracks of RC elements carries tensile stress due to the bond between the 

reinforcing bars and the surrounding concrete. This effect is well known as tension stiffening. 

Tension stiffening effect depends on several factors, such as member dimensions, 

reinforcement ratio, rebars diameters and material properties. It occurs until yielding of the 

longitudinal reinforcement and it tends to increase as the reinforcement ratio of the member 

decreases. 

The description of the tension stiffening effect of RC structures within finite element 

analysis has led to two fundamentally different approaches: the microscopic and the 

macroscopic one. The macroscopic one is often associated with a smeared crack approach. 

Generally, it adjusts the constitutive relationship for concrete in tension to include an unloading 

branch after cracking (Lin and Scordelis, 1975; Gilbert and Warner, 1978; Guptam and 

Maestrini, 1990; Prakhya and Morley, 1990; Barros et al., 2001; Ebead and Marzouk, 2005; 

Nayal and Rasheed, 2006). Alternatively, tension stiffening has been included by adjusting the 

constitutive relationship for the tensile reinforcement (Gilbert and Warner, 1978; Choi and 

Cheung, 1994; CEB manual designer, 1985). Instead, the microscopic approaches model 

cracking as discrete discontinuities in the concrete and consider the bond stress on the interface 

of steel and concrete as a function of slip between them (Floegl and Mang, 1982; Russo and 

Romano, 1992; Choi and Cheung, 1996; Kwag and Song, 2002). Since tension stiffening is 
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basically generated from the bond, this approach seems to be a more realistic model of the state 

of stress and strain between the cracks in the tension zone. 

In general, macroscopic models are easier to implement. However, most models 

oversimplify the problem considering only one equation to describe the post-cracking range of 

the tensile stress-strain curve, independently of the member reinforcement ratio or material 

properties. 

 

Tension-stiffening effects can influence the deformational behaviour of RC elements in 

the service range as confirmed by a large number of publications (Bazant and Oh, 1984; 

Vecchio and Collins, 1986; Hsu, 1996; Kaklauskas, 2009; Gilbert, 2007; Bischoff, 2008). In 

addition, rheological effects can influence considerably the serviceability range by the 

introduction of additional deformations (Ghali et al., 2012; Gilbert, 2001). More specifically, 

the combined effect of shrinkage deformations and tension-stiffening will be treated in this 

paragraph. In fact, shrinkage causes time-dependent cracking and gradually reduces the 

beneficial effects of tension stiffening (Bischoff, 2001; Kaklauskas et al., 2009). 

A new tension-stiffening model, based on macroscopic hypothesis, is developed. In this 

thesis, only the monotonic law will be presented, but extensions to cyclic loads are under 

development. 

4.1 Implementation of a Tension Stiffening Model for RC elements 

This section presents the modelling tool proposed to solve the bond problem along the distance 

between two adjacent cracks. The model aims at the calculation of the stress-strain distribution 

along the crack spacing of a centrically tensioned RC member under monotonic loading, Figure 

4.1. The crack pattern is supposed to be fully developed and the crack spacing known.  

For any given average rebar strain εgiven and length of reinforcing bar between adjacent 

cracks, ls,max as defined in Model Code 2010 (fib, 2013), the stress-strain profile along the 

reinforcement can be computed based on the bond stress distribution. Satisfying the equilibrium 

conditions on a small segment along the reinforcing bar, Figure 4.1, the equilibrium equation 

is derived, Eq.(4.1): 

s

s
ts

x

A

U

dx

d
τ

σ
=  (4.1) 
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where 

dx
d xσ is the gradient of steel stress along the bar, Us is the bar perimeter, As in the area 

of the rebars, and tsτ  is the average bond stress along the segment.  

The half crack spacing (ls,max/2) is divided into n-1 segments and n nodes, Figure 4.2: 

)1(2

max,

−
=∆

n

l
x

s
 (4.2) 

 

 

Figure 4.1: Stress transfer mechanism along the small segment dx. 

ls,max

L

FF

F

ls,max /2

∆x

Strain profile along rebar

∆x

(Us ⋅ ∆x)⋅τts
Asσs,i Asσs,i+1



100 Tension Stiffening Effect in the PARC_CL 2.1 Crack Model

 

 

Figure 4.2: Discretization of the section between the cracks and numerical procedure. 

The first section (i=1, x=0) is located at the midway between two adjacent cracks. The 

bond stress τ and the slip s associated to the first section are assumed equal to zero. Assuming 

the strain value at the middle of two cracks as an input data, εgiven, the stress and strain profiles 

are computed by solving the equilibrium compatibility equations, segment by segment along 

the rebar, Eq.(4.1). 

At this point it is important to underline two fundamental assumptions of the PARC_CL 

2.1 crack model (presented in detail in §2.2): 

• The PARC_CL 2.1 calculates stresses, for each material, starting from the strains in 

the x,y-reference system. 

• The PARC_CL 2.1 hypothesizes perfect bond between steel and concrete. 
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The first assumption implies that strains are a not modifiable input data for the user 

subroutine. For this reason, the tension stiffening phenomenon is taken into account as an 

increment of stress and not, as usually, as an increment of strain, applied to steel bars. The 

second assumption implies that is not possible to calculate the slip, s, as a difference of concrete 

strain and steel strain. In order to overcome the problem an iterative procedure is proposed. 

 

Figure 4.3: Flowchart of computing stress-strain profile along the rebars. 

The flow chart for solving bond-governing equations along the reinforcement is shown in 
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assuming the strain increment ∆εts (for the first attempt) equal to the given strain, εgiven, the 

stress and the slip value at the other side of the segment (i=i+1) and consequently the bond 

stress, are computed.  

Increasing the strain increment ∆εts (compared to the previous step), an iterative procedure 

is used until the obtained stress value satisfies the equilibrium condition (point 1 in Figure 4.3). 

The computed strain and slip of the first segment are the boundary conditions for the next 

segment. A similar computation procedure is followed to attain the stress and slip profile along 

the reinforcing bar, (point 2 in Figure 4.3).  

To complete the problem, the bond-slip formulation provided by the Model Code 2010 

(fib, 2013) is used, Eq.(4.3). 
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where the parameters are defined in Table 4.1 (Model Code 2010). 

Table 4.1: Parameters defining the mean bond stress-slip relationship of ribbed bars (Model Code 2010). 

 Pull-Out (PO) Splitting (SP) 

 

Good bond 
condition 

All other 
bond 

condition 

Good bond condition All other bond condition 

unconfined stirrups unconfined stirrups 

τu cmf5.2  cmf25.1  

25.0

25
7 








⋅ cmf

 

25.0

25
8 








⋅ cmf

 

25.0

25
5 








⋅ cmf

 

25.0

25
5.5 








⋅ cmf

 

s1 1.0 mm 1.8 mm s(τu) s(τu) s(τu) s(τu) 

s2 2.0 mm 3.6 mm s1 s1 s1 s1 

s3 cclear* cclear* 1.2⋅s1 0.5⋅cclear 1.2⋅s1 0.5⋅cclear 

τf 0.4⋅τu 0.4⋅τu 0 0.4⋅τu 0 0.4⋅τu 

*cclear is the clear distance between ribs. 
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The Model Code 2010 (fib, 2013) formulation is based on Eligehausen et al. (1983) model 

and it distinguishes the pull-out failure to splitting failure. The pull-out behaviour consists of 

an initial non-linear relationship, followed by a plateau. After, the bond stress decreases linearly 

to the value of the ultimate frictional bond resistance τf. Different va1ues of s1, s2, s3, τu are 

proposed for unconfined concrete regions (failing by splitting of concrete cover) and for 

confined concrete regions (failing by pull-out), Figure 4.4. 

 

Figure 4.4: Analytical bond stress-slip relationship: (a) Pull-Out failure and (b) splitting failure, Model Code 
2010 (fib, 2013). 

When the stress profile is given for each n-1 segments and n nodes, the rebar stress σxi at 

the integration point is updated (output in Figure 4.3).  

Figure 4.5 shows the modified constitutive law of the rebar in terms of stress-strain. For 

each given strain εgiven a new stress is defined. The tension stiffening effect is calculated starting 

from the simplified equation of a bare bar and does not take into account of R0 (Menegotto and 

Pinto parameter that influences the shape of the transient curve). When the yielding of the rebar 

is reached, the tension stiffening effect is not longer considered and the Menegotto and Pinto 

(1973) formulation is adopted. 
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Figure 4.5: Tension stiffening contribution at integration point. 

4.2 Effects of Shrinkage on Tension Stiffening  

As mentioned in §3, shrinkage and tension-stiffening are strictly correlated. To evaluate if the 

tension-stiffening formulation implemented in the PARC_CL 2.1 crack model is sufficiently 

accurate the same tensile members proposed in §3.3.1 are modelled. Furthermore, the effect of 

shrinkage on tension-stiffening will be pointed out. Subsequently, a more refined case studies 

will be presented. In particular, the PARC_CL 2.1 crack model, considering the complementary 

effect induced by shrinkage and tension-stiffening, has been applied to beams and continuous 

slabs. 

 Uniaxial Tension Members  

In this section, more attention is payed to the tension-stiffening effect on tension members. 

Consider the uniaxially loaded tension member shown in §3.3.1. Experimentally, a tension 

member performs the following step: 

• before cracking, the concrete tensile stress increases with load (Figure 4.6a). This 

corresponds to an elastic part in the load-strain curve, Figure 4.7. 

• When the stress in the concrete reaches, for the first time,  the tensile strength at the 

weakest section, cracking occurs in correspondence of the load Pcr, point 1 in Figure 

4.7. In the weakest section, the stress in the concrete drops to zero (Figure 4.6b). A new 

redistribution of stresses develops in the member: due to steel-concrete bond, the 

concrete stress increases with the increase of the distance from the crack. At distance 

ls,max  from the crack, the concrete stress is no longer affected by the crack, (Figure 4.6b).  
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Figure 4.6: Tension stiffening in an axial loaded tension member: (a) before cracking; (b) after the first crack 
formation; (c) primary crack formation. 

• Slip at the concrete-steel interface in the region of significant bond stress (ls,max  on either 

side of the crack) causes the crack opening. A relatively small increase in load causes 

the development of a second crack at a distance x ≥ ls,max from the first crack, thereby 

reducing the concrete stress in the vicinity of that crack.  

• Under increasing load, the primary crack pattern is established, (Figure 4.6c). The 

concrete tensile stress in correspondence of each crack is zero, rising to a maximum 

value (less than the tensile strength of the concrete) mid-way between adjacent cracks. 

Consequently, cracking is accompanied by a drop in the average tensile stress carried by the 
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concrete and, hence, a reduction in tension stiffening, Figure 4.7. After the primary crack pattern 

is established, further increases in load may result in a further slip at the concrete-steel interface. 

The slip causes cover-controlled cracks between the primary cracks and a gradual breaking 

down of the bond between the steel and the concrete, thereby reducing tension stiffening still 

further, Figure 4.7.  

 

Figure 4.7: Tension stiffening effect in an axially loaded tension member: axial load versus average axial strain 
response. 

Figure 4.7 shows what happens to the experimental tension members proposed by Wu and 

Gilbert (2008). The experimental tests are modelled as explained in §3.3.1 using membrane 

elements with smeared reinforcement and the PARC_CL 2.1 crack model. In this paragraph, 

also the tension-stiffening contribution is taken into account.  

Figure 4.8 and Figure 4.9 show the comparison between NLFEA and experimental results 

for the tension member with 12mm and 16mm diameter bars respectively. The NLFEA 

considering at the same time shrinkage (SH) and tension stiffening (TS) are compared with the 

results obtained in §3.3.1, i.e. considering only shrinkage (SH).  

As experimentally demonstrated, the tension stiffening increases as the reinforcement ratio 

of the member decreases. The tension stiffening model implemented in the PARC_CL 2.1 is 

able to reproduce this effect. Indeed, comparing the results of the ST12 member with 12mm 

diameter bars (Figure 4.8) to the ST16 member with 16 mm diameter bars (Figure 4.9), it is 

possible to observe that this condition is respected. 
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Figure 4.8: Comparison between NLFEA and experimental (Wu and Gilbert, 2008) results in terms of axial load 
vs average axial strain for (a) STS12 and (b) STN12. 

Considering the tension stiffening effect has permitted to obtained better results in terms 

of load-strain curve; however, the tension stiffening contribution increases with the strain, 

differently to experimental observation. This is due to the simplified adopted modelling in 

which the reinforcement is smeared along the entire height of the section. Consequently it was 

necessary to load the tension member along its entire section, Figure 3.4. This fact caused equal 

strains in all the non-linear elements and, above all, cracks smeared in all the integration points. 

Therefore, in this case, the model is not able to show discrete crack propagation as well as the 

real stress redistribution. Nevertheless, the PARC_CL 2.1 crack model is able to produce 

-500 0 500 1000 1500 2000 2500

Experimental

NLFEA SH

NLFEA SH + TS

Bare bar

A
xi

al
L

o
ad

[k
N

]

Average axial strain [⋅106]

(a)

-500 0 500 1000 1500 2000 2500

Experimental

NLFEA SH

NLFEA SH + TS

Bare bar

A
xi

al
L

o
ad

[k
N

]

Average axial strain [⋅106]

(b)



108 Tension Stiffening Effect in the PARC_CL 2.1 Crack Model

 
results, in terms of load-strain, very close to the experimental ones, adopting a simplified 

modelling that does not require large computational costs. 

 

Figure 4.9: Comparison between NLFEA and experimental (Wu and Gilbert, 2008) results in terms of axial load 
vs average axial strain for (a) STS16 and (b) STN16. 

 Simulation of RC Beams 

An experimental campaign of 12 RC beams subjected to bending tests and short-term loads was 

carried out at the Structures Laboratory of the Civil Engineering School of the Polytechnic 

University of Madrid (UPM) during the period between May to October 2009 and May to June 

2018 by Caldentey et al (2013), (Parrotta et al., 2014).  

All beams were characterized by the same geometry and the same material properties, 

indicated in Table 4.2. The beams had a rectangular cross-section (450mm deep and 350mm 
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wide) and a central span of 3420mm, with two cantilever spans of 900mm. The test 

configuration is presented in Figure 4.10 and corresponds to the well-known “four points test”. 

Hydraulic jacks located at the end of the cantilever spans loaded a simply supported beam, with 

a load cell in each support; the jacks applied the load at 750 mm from each support. Thus, due 

to the fact that the load is applied only at the ends, and dead weight had a small effect, the 

central span was subjected to a constant bending moment that allowed studying the mean 

(smeared) behaviour of the beam. 

Table 4.2: Material properties. 

Property Value 

fy  500 MPa 

fu   550 MPa 

Es   200000 MPa 

Maximum elongation  7.5% 

Concrete type   HA-25/B/20/Iia 

Cement type   CEM II/AM-VL 42.5 R 

Water/cement ratio  0.55 

Density    2280 kg/m3 

fcm,7d    21.9 MPa 

fcm,28d      26.9 MPa 

 

Figure 4.10: Experimental set-up: four points test. 

The beams were designed to study the influence of the following parameters on tension-

stiffening:  

• φ/ρ: half of the beams were reinforced with 4φ 25 and the other half with 4φ12; 

• concrete cover: half of the beams had a concrete cover of 20mm and the other half had 

70 mm;  

• influence of stirrup spacing: four beams had no stirrups, four had stirrups spaced at 

300mm and the remaining four specimens had stirrups spaced at 100mm. 
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More specifically, the specimens were coded XX-YY-ZZ, where XX is referred to the 

diameter of the longitudinal reinforcements (12 or 25mm), YY is referred to concrete cover (20 

or 70mm) and ZZ is referred to stirrup spacing in the central span (00 for no stirrups). 

All beams had the same number and position of the rebars into the cross-section: four 

rebars in tension (top reinforcement) and two rebars in compression (bottom reinforcement). 

Other two rebars were added at the middle height of the section for controlling the cracking. 

The diameter of the central and bottom reinforcement was 12mm, equal for all specimens. 

In order to evaluate the efficiency of the PARC_CL 2.1 model, only two RC beams of the 

experimental campaign by Caldentey et al (2013) will be analysed in this work. More 

specifically, two beams with the same geometry and different reinforcing bars diameter will be 

modelled: beam 12-70-00 and 25-70-00. Table 4.3 summarizes the mean properties of the 

analysed beams.  

An important aspect is referred to the cantilever spans, in which is always present a number 

of stirrups for preventing the shear failure. Beams 12-70-00 had a double stirrup of 12mm 

spaces 150mm and the beam 25-70-00 had a double stirrup of 12mm spaces 100mm, Figure 

4.11. 

Table 4.3: Material properties obtained experimentally for the selected beams. 

TEST 
φ (long. reinf.) 

 [mm] 

cover 

[mm] 

Ec 

[MPa] 

fcm 

[MPa] 

ft 

[MPa] 

GF 

[N/mm] 

12-70-00 12 70 31263 26.9 2.3 0.085 

25-70-00 25 70 31192 26.9 2.3 0.085 

 

Figure 4.11: Test specimen cross-sections. 

Before being tested, the beams have been kept in the laboratory, in order to wait for the 

concrete maturity, under the same condition of temperature and humidity. The beams were 

tested in different days implying different values of shrinkage and creep, Table 4.4.  
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Table 4.4: Rheological characteristic. 

TEST 
Age 

[days] 

T 

[°C] 

RH 

[%] 

εsh 

[-] 
φ 

12-70-00 91 22.2 38.2 -5.14e-4 2.75 

25-70-00 84 21.6 38.4 -5.02e-4 2.69 

 

Taking advantage by the symmetry of the problem, only one half of each beam is 

simulated, by adopting an FE mesh constituted by quadratic, isoparametric 8-node membrane 

elements with reduced integration (4 Gauss integration points), Figure 4.12. The average size 

of the membrane element is equal to 25x18mm: The standard implicit Abaqus solver is adopted 

for the resolution of the analysis. The Newton-Raphson method is adopted as convergence criterion. 

 

Figure 4.12: Modelling of the beams. 

Concentrated loads should be applied to loading plates. Interface elements having “no-

tension” behaviour should be inserted between the loading plate and concrete in order to 

properly reproduce the actual load transfer mechanism. The analyses are conducted in 

displacement control. For each beam three different case studies are considered to evaluate 

singularly the effect of tension stiffening and shrinkage on the NLFEA: 

• considering only the contribution of tension stiffening (TS) and neglecting shrinkage: 

PARC_CL 2.1 TS; 

• considering only the contribution of shrinkage (SH) and neglecting tension-stiffening 

effect: PARC_CL 2.1 SH; 

• considering shrinkage and tension stiffening: PARC_CL 2.1 TS-SH.  

Furthermore, in order to better understand the effect induced by tension stiffening, the 

theoretical behaviour in state I and state II have been calculated. The analytical values are 

obtained by using the classical constitutive equations for serviceability. For  the analysed beams 

the static scheme and the deflections are presented in Figure 4.13. 
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Figure 4.13: (a) Static scheme of the beam and (b) deflections. 

The maximum deflection in the cantilever, f1, and at the mid-span, f2, are obtained by 

applying the principle of virtual work, Eq.(4.4) and (4.5). 
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In order to evaluate deflections of the beam, it is necessary to calculate the inertial 

properties of the cross section for the uncracked state (State I) and fully cracked state (State II). 

It is well known that the displacements are inversely proportional to the flexural rigidity, 

given by the product of the elasticity modulus of concrete and second moment of area of the 

uncracked cross-section. The deflection resulting is related to the uncracked state (State I). 

Conversely, for the fully cracked state (State II) the second moment of the cracked cross-section 

must be calculated. 

In addition, the deflections induced by shrinkage have been evaluated starting from the 

Eurocode 2 prescription for the calculation of the shrinkage curvature, Eq.(4.6): 
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where Ec,ef  is the concrete effective modulus. SS is the first moment of area of the reinforcement 

about the centroid of the section and Ig is the second moment of area of the section, calculated 

for state I and state II. 

 T 12-70-00 Beam 

T 12-70-00 beam is characterized by 4 longitudinal reinforcements of 12mm with a concrete 

cover of 70mm without stirrups, Figure 4.14. The adopted mesh and material sets are reported 

in Figure 4.14. 
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Figure 4.14: T 12-70-00 beam. 

The comparison between the NLFEA, conducted using three different versions of 

PARC_CL 2.1, and the experimental results is shown in Figure 4.15 in terms of load-deflection 

curve. In the left side of the graph, the displacement underneath the loading point (point A) is 

presented whereas in the right side the displacement at mid-span (point B) is shown. 

Furthermore, the theoretical behaviour in State I and State II, according to §4.2.2, is reported. 

The NLFEA curve registered in point A is stiffer than the experimental one, whereas, respect 

to point B, the stiffness is about the same. This difference in stiffness is not registered by 

theoretical calculation which, instead, is quite similar to NLFEA results. 

Figure 4.16 refers only to deflections registered underneath point B. Figure 4.16 evidences 

that PARC_CL 2.1 produces closer results when the combined effect of shrinkage and tension 

stiffening is activated. When the hardening plateau of the rebar is reached the experimental 

peak load is evaluated with good approximation by the PARC_CL 2.1 crack model.  

In Figure 4.16, three different values of load are remarked corresponding to 60 kN, 100 

kN and 150 kN respectively. For these three different loads, the experimental crack pattern is 

available. Point “2” should represent the stabilized cracking stage, whereas point “3” allows 

appreciating the behaviour of the beam when it is almost collapsed. For each referred loading 

points the crack pattern obtained by PARC_CL 2.1 TS-SH is compared to the experimental 

one, Figure 4.17. Experimentally, the beam presented only bending cracks at about the same 

distance and did not show failure. 



114 Tension Stiffening Effect in the PARC_CL 2.1 Crack Model

 

 

Figure 4.15: Comparison between NLFEA and experimental results for T 12-70-00 beam. 
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Figure 4.16: Comparison between NLFEA and experimental results in terms of load-deflection at mid-span for T 
12-70-00 beam. 

 

 

Figure 4.17: Crack pattern evolution: comparison between PARC_CL 2.1 TS-SH and experimental results for T 
12-70-00 beam. 
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Figure 4.18 shows the strain evolution along the longitudinal rebars for the same values of 

load. Starting from 100 kN the upper reinforced layer starts to yield in some integration points 

(yield strain equal to 0.0025). When the load reaches a value of 150 kN, the upper reinforced 

layer is completely yielded and also a big part of the middle layer is yielded. The maximum 

value of strain reached by the reinforcement is equal to 0.03967, so there is not integration point 

that reaches the ultimate strain value equal to 0.075 (as indicated in Table 4.2). For this reason, 

the NLFEA did not highlight failure, according to the experimental result. 

 

Figure 4.18: Rebar strain evolution obtained by PARC_CL 2.1 TS-SH for T 12-70-00 beam. 
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 T 25-70-00 Beam 

Finally, the T 25-70-00 beam is shown in Figure 4.19. 

 

Figure 4.19: T 25-70-00 beam. 

 

 

Figure 4.20: Comparison between NLFEA and experimental results for T 25-70-00 beam. 



118 Tension Stiffening Effect in the PARC_CL 2.1 Crack Model

 

 

Figure 4.21: Comparison between NLFEA and experimental results in terms of load-deflection at mid-span for T 
25-70-00 beam. 

The comparison between the NLFEA and the experimental results in terms of load-

deflection is shown in Figure 4.20. NLFEA present the same overall behaviour of the previous 

case study confirming that the combined effect of shrinkage and tension stiffening provides 

better results both in terms of load-deflection curve, Figure 4.20 and Figure 4.21 and crack 

pattern, Figure 4.22. 

Also for T 25-70-00 beam, three different values of load are indicated in Figure 4.21 in 

order to compare the crack pattern obtained from the NLFEA, obtained using PARC_CL 2.1 

TS-SH, and the experimental one (Caldentey et al., 2013). Observing Figure 4.21, Point “1” is 

the point in which the first cracks are formed: it is representative of the passage from State I 

and State II. Point “3” allows to appreciate the behaviour of the beam in correspondence of the 

maximum registered load, corresponding to the yielding of the longitudinal bars. 

During the experimental test the beam shown only bending cracks, equally spaced, and did 

not show failure at the end of the test. However, the crack widths are not detected during the 

test and for this reason detailed comparison are not possible. 

Figure 4.23 shows the strain evolution along the longitudinal reinforcement of the beam, 

confirming that, for a load equal to 440kN, the yielding of the upper layer of the rebars is 

reached by NLFEA.  
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Finally, comparing the NLFEA curve obtained for the two beams (Figure 4.16 and Figure 

4.21 ) it is possible to observe that the contribute given by the tension stiffening is lower for T 

25-70-00 beam respect to T 12-70-00 beam. This is due to the fact that the tension-stiffening 

effect tends to increase as the reinforcement ratio of the member decreases.  

 

Figure 4.22:Crack pattern evolution: comparison between PARC_CL 2.1 TS-SH and experimental results for T 
25-70-00 beam. 
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Figure 4.23: Rebar strain evolution obtained by PARC_CL 2.1 TS-SH for T 25-70-00 beam. 
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 Simulation of RC Continuous Slabs 

In this paragraph, some results of a wider study published in Belletti et al. 2018 on continuous 

slabs has been presented. The main objective of this research concerns the dependency between 

membrane action and punching shear resistance on the reinforcement layout and boundary 

conditions of continuous slabs.  

Reinforced concrete (RC) flat slabs are common structural solutions in residential and 

multi-storey buildings. The behaviour of reinforced concrete flat slabs can be governed at 

failure by punching shear close to columns. Most of the code formulations for punching shear 

strength assessment (fib, 2013; Eurocode 2, 1992; ACI, 2014) are based or calibrated on 

experimental tests usually carried out on isolated specimens. Nevertheless, the bending and the 

shear resistance of isolated specimens can be lower than the resistance of actual continuous RC 

flat slabs due to moment redistribution and compressive membrane action (CMA) or tensile 

membrane action (TMA) effects (Figure 4.24).  

 

Figure 4.24: (a) Membrane Action – radial and tangential stresses (σrad and σtang) and effect of the tension ring on 
the hogging area; (b) Moment redistribution between hogging and sagging areas. 

The study is of particular interest because NLFEA is conducted applying tension stiffening 

and observing how considering shrinkage or not influences the results in terms of concrete 

cracking and punching shear resistance. This aspect could be significant for the structural 

assessment of existing structures carried out using refined numerical tools, like non-linear finite 

element methods, which are able to take into account hidden resistance capacities, but are less 

conservative than analytical approaches (Belletti et al., 2015b). 

To this aim, a parametric study has been carried out in Belletti et al. (2018) to investigate 

the dependency of membrane action and moment redistribution on the geometrical features and 

reinforcement layout of continuous slabs. Different values of base column dimension, slab 

thickness (with constant value of the effective depth, which means that the influence of 
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reinforcement cover of the tensile reinforcement is investigated), slab span and ratios of 

hogging and sagging reinforcement have been considered focusing on the region of the slab 

supported on internal columns without openings, where the highest influence of compressive 

membrane action may be expected. In this paragraph, only a case study extracted from Belletti 

et al. (2018) has been selected to investigate the dependency of the punching resistance of RC 

continuous slabs on stiffening effects of boundary conditions.  

Figure 4.25 shows the Self Confined (SC) analysed slab. The mechanical properties for 

concrete and steel are indicated in Table 4.5; whereas the geometrical parameters of the slabs 

(column size c, thickness h, effective depth d, the span between adjacent columns L) are 

reported in Table 4.6. Three cases with three different hogging reinforcement ratios in the 

column area (0.4 L x 0.4 L) are studied: ρhogg = 1.5%, 0.75%, 0.375%. The sagging 

reinforcement is uniformly distributed over the span with a reinforcement ratio ρsagg / ρhogg equal 

to 1/3 in Zone 1, to 2/3 in Zone 2 and to 1 Zone 3, as indicated in Figure 4.25. 

 

Figure 4.25: Self Confined slab: portion of modelled slab and layout of reinforcements zones. 

Table 4.5: Mechanical properties of steel and concrete. 

fc 

[MPa] 

Ec 

[MPa] 
fy 

[MPa] 

Es 

[MPa] 

35 32600 520 200000 

Table 4.6: Geometrical parameters for the analyses. 

c 

[mm] 

L 

[m] 

h 

[mm] 

d 

[mm] 

260 6 250 210 
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Since membrane actions are strongly dependent on slab boundary conditions, different 

cases are investigated (Figure 4.25): 

• Isolated slab reproducing the hogging area of a flat slab having dimensions 0.22L 

x 0.22L corresponding to experimental test set-up; 

• Self-confined continuous flat slab with regular spans L loaded with a uniform 

pressure, simulating permanent and variable loads (Figure 4.25); 

• Continuous flat slab restrained with horizontal stiffening springs having regular 

spans L loaded with a uniform pressure. Non-linear springs having no-tension 

behaviour and compressive stiffness, calculated assuming as vertical members RC 

wall 3.50 m high and 0.3 m thick, have been used;  

• Fully restrained continuous flat slab with regular spans L loaded with a uniform 

pressure, which lateral displacements set equal to zero.  

Since shrinkage may affect the crack pattern in a different way depending on the erection 

phases of buildings, this last case is divided into two subcases: 

• Fixed restrained continuous slab: the lateral displacements at boundaries are 

restrained before the application of shrinkage, self-weight, and pressure load; 

• Post-Fixed restrained continuous slab: the lateral displacements at boundaries are 

restrained after the application of shrinkage and self-weight but before the 

application of pressure load. 

In both cases, the membrane action effect is considerable if compared to isolated 

specimens. Shrinkage effect, in an unsaturated environment, causes an anticipate cracking of 

concrete specimens, leading to a decrease of bearing capacity. This problem becomes more 

serious if slab contraction is restrained. A constant shrinkage strain εsh equal to 3·10-4 is 

considered (equal to a value which takes place about to 2 years after construction according to 

Model Code 2010), as an additional tensile strain in PARC_CL 2.1 crack model. 

 Membrane Action Effects on Punching Shear Resistance 

Since multi-layered shell elements are not able to predict the non-linear behaviour over the 

thickness of the slab, a post-processing based on the Critical Shear Crack Theory (Muttoni, 

2008) is applied. 

The CSCT failure criterion is able to predict the punching shear resistance of a slab, 

subjected to a concentrated load, as a function of the maximum slab rotation Ψ, Figure 4.26b. 
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The formula for the failure criterion (Muttoni, 2008; Guidotti, 2010; Muttoni et al., 2017) is 

given in Eq.(4.7): 
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where b0 is the length of the control perimeter at distance 0.5d from the column edge, Figure 

4.26a, d is the effective depth of the slab, fc is the concrete compressive strength in [MPa], dg 

is the maximum aggregate size, and dg0 is the reference aggregate size (16 mm). Punching shear 

failure occurs at the intersection between the load-rotation curve (obtained from NLFEA) and 

the CSCT failure criterion, Figure 4.26. 

 

Figure 4.26: (a) Punching shear strength correlated to the crack opening; (b) assumption of control perimeter at 
0·5d from the edge of the column; (c) punching shear resistance at the intersection between non-linear load–

rotation curve and CSCT failure criterion. 

The punching shear resistance corresponds to the intersection of the load-rotation curves 

with the CSCT failure criterion. It can be observed that the response of continuous slabs is 

stiffer than the response of isolated specimens, leading to higher punching shear resistances. In 

addition, the difference between continuous and isolated slab response predictions increases 

when the hogging reinforcement decreases (Belletti et al., 2018). 
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Figure 4.27: Load-Rotation curves vs CSCT Failure Criterion without shrinkage effect for: (a) ρhogg =1.5%, (b) 
ρhogg  =0.75%, (c) ρhogg  =0.375%. 

In Figure 4.27, the load-rotation curves without shrinkage effect for the isolated specimen, 

self-confined continuous flat slab and laterally restrained slabs with springs and fixed boundary 

conditions are shown. To appreciate the difference between the resistance of flat slabs without 

and with shear reinforcement (SR), the failure criterion associated with shear reinforcement is 

also considered. 

In case of lateral stiffening provided by shear walls, (the so called “Spring” case), the 

increasing of punching shear resistance with respect to the self-confined slab is very limited 

and the resistance increases as the hogging reinforcement decreases. There are no differences 

in the “Fixed” and “Post-Fixed” cases because the shrinkage effect is not considered. 

Figure 4.28 shows the influence of concrete shrinkage on the punching shear resistance for 

all the cases investigated. Shrinkage effects on punching shear resistance are more evident in 

the “Fixed” case, causing anticipated cracking of the slab and initial loss of stiffness. For “Post-
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Fixed” case the initial loss of stiffness is not observed because the shrinkage is imposed before 

lateral displacement restraining. “Springs” and “Self-Confined” resistances with shrinkage 

effects are lower than without shrinkage effects. The shrinkage effect for “Isolated” cases is 

quite negligible. 

 

Figure 4.28: Load-Rotation curves vs CSCT Failure Criterion with shrinkage effect for: (a) ρhogg =1.5%, (b) ρhogg 
=0.75%, (c) ρhogg=0.375%. 
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This phenomenon increases stiffness and consequently the strength of slabs (Einpaul et al., 

2015; Einpaul et al., 2016; Belletti et al., 2015a). The average values of radial stresses σrad, over 

the control perimeter b0 at distance 0.5d from the edge of the column, have been calculated 
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Figure 4.29 shows the graph radial membrane action σrad vs slab rotation for the cases 

without shrinkage effect. For “Springs” case a negligible increment of σrad is observed, as 

expected. No differences between the “Fixed” and “Post-Fixed” cases can be obtained without 

shrinkage effects. 

 

Figure 4.29: Radial stress without shrinkage effect for: (a) ρhogg =1.5%, (b) ρhogg =0.75%, (c) ρhogg =0.375%. 

Figure 4.30a-c shows the radial membrane action σrad vs slab rotation for the cases with 

shrinkage effect. As expected, the concrete shrinkage leads to a reduction of radial stress σrad. 

For “Fixed” case, due to the anticipated cracking of continuous slab, an initial tensile radial 

stress can be registered in the graph σrad vs Ψ, causing a reduction of the compressive radial 

stress σrad peak and, consequently, a reduction of the punching shear resistance. For “Springs” 

case, applied before the application of shrinkage effects and self-weight, Figure 4.30a-c shows 

a similar trend than “Fixed” case but with lower consequences. For “Post-Fixed” case, the 

confining effects, achieved with fixed restrain of lateral displacement, can provide the 
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the peak values of compressive radial stress as a function of the hogging reinforcement ratio 

over the column. As expected, the maximum tensile stresses, causing anticipated cracking, is 

occurring for highest reinforcement ratios; at the contrary, the maximum compressive radial 

stresses can be encountered for lowest reinforcement ratios. 

 

Figure 4.30: Radial stress with shrinkage effect for: (a) ρhogg =1.5%, (b) ρhogg =0.75%, (c) ρhogg =0.375%. (d) 
Peak tensile and compressive stresses with ρhogg. 

Higher compressive stresses are observed in case of lower reinforcement ratios due to the 

higher difference between the stiffness in hogging and sagging zones. 

Figure 4.28 and Figure 4.30 demonstrate that, for brittle failure mode (like shear and shear 

punching failure mode), the shrinkage effects at an early stage and boundary conditions 

(connected to the erection phases of buildings) can severely affect the serviceability and 

ultimate limit states. Furthermore, Figure 4.28 and Figure 4.30 show that membrane actions 

and punching shear resistance are affected by shrinkage effects in different measure depending 

not only on boundary conditions but also on reinforcement ratios. 
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Figure 4.31: Radial stress with shrinkage effect for “Fixed” and “Post-Fixed” cases: (a) ρhogg =1.5%, (b) ρhogg 
=0.75%, (c) ρhogg =0.375%. 

Figure 4.31 shows radial stress σrad for the “Post-Fixed” and “Fixed” cases considering 

shrinkage of concrete. The most interesting “events” are marked on radial membrane action σrad 

vs slab rotation Ψ: cracking of concrete (corresponding to εt,cr), maximum crack opening 

(corresponding to wctu, calculated as wctu = εt,u·am where am is the distance between cracks, see 

Belletti et al., 2017), yielding strain of hogging and sagging reinforcement (εsy). It can be noted 

from Figure 4.31a-c, that the peak value of radial stresses σrad occurs when the maximum crack 

opening wctu (corresponding to a zero residual tensile stress) is achieved in the sagging area 

since this circumstance corresponds to the maximum tension ring effect. Depending on the 

intersection between NLFEA curve and CSCT failure criterion, punching shear failure occurs 

before yielding of hogging reinforcement for high reinforcement ratio (ρhogg = 1.5%), after 

yielding of hogging reinforcement but before yielding of sagging reinforcement for medium 

and low reinforcement ratio (ρhogg = 0.75% and ρhogg = 0.375%). Note that for the “Fixed” 

case, the cracking of hogging and sagging zone are almost simultaneous because of tensile in-
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plane stresses. The achievement of wctu corresponds to the first plateau observed in load-rotation 

curves Figure 4.27 and Figure 4.28. 

It is important to observe that the sequence of aforesaid events is the same also without 

considering shrinkage effect. 

 Moment Redistribution Effect 

The most significant assumption of design methods consists in a constant position of the 

contraflexure point at 0.22 L, that is valid for isolated elements up to failure. However, for self-

confined or fully confined slabs, moment redistribution occurs after the loss of stiffness in the 

hogging area due to cracking of concrete, triggering to a reduction of rs. 

Figure 4.32 shows the variation of the point of contraflexure rs with the slab rotation Ψ, 

neglecting the shrinkage effect. Before cracking in the hogging area, the position of this point 

remains constant and corresponds approximately to 0.22 L, as expected, then it tends to move 

closer to the column. Figure 4.32a shows the position of the point of contraflexure rs for a “Self-

Confined” slab; Figure 4.32b shows the “Post-Fixed” case (equivalent of “Fixed” case if 

shrinkage effect is neglected), where rs tends to decrease more than for self-confined slab, 

leading to an increment of the punching shear resistance. After a rotation Ψ about 2 mrad, the 

point of contraflexure tends to move again to the column, for both cases. It is important to point 

out that the changing position of rs is more pronounced for low reinforcement. 

 

Figure 4.32: Variation of the point of contraflexure rs as a function of the rotation Ψ without shrinkage effect: (a) 
“Self-Confined” slab, (b) “Post-Fixed” (or “Fixed”) case. 
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4.3 Concluding Remarks 

In this chapter, the combined effect of tension stiffening and shrinkage is analysed.  

Shrinkage affects significantly tension stiffening causing an underestimation of its value, 

in function of the amount of shrinkage and the reinforcing percentage. More specifically, 

neglecting shrinkage leads to a perceived effect on tension stiffening.  

Firstly, the tension members analysed in Chapter 3 are modelled in order to validate the 

implemented formulation. Considering the combined effect of shrinkage and tension stiffening 

has permitted to obtained better results in terms of load-strain curve respect to consider only 

the shrinkage contribution; however, the tension stiffening contribution increases with the 

strain, differently to experimental observation. This is mainly due to the simplified modelling 

approach adopted in this work, that considers the reinforcement smeared along the entire height 

of the section. Adopting a simplified modelling means that, when the tension member is loaded 

equal strains characterize all the non-linear finite elements. Consequently, all elements and all 

integration points are cracked. 

Afterwards the updated version of the PARC_CL 2.1 formulation was applied to RC beams 

tested by Caldentey et al (2013). The beams were designed to study the influence of different 

mechanical parameters on tension-stiffening. In this case, a more refined modelling technique 

is used: this aspect has permitted to obtain a more realistic crack pattern and stress-strain 

profiles along rebars length. Comparison with experimental results has been demonstrated the 

reliability of the model and the importance to consider the combined effect of shrinkage and 

tension-stiffening in order to obtain more realistic results by means NLFEA. 

Finally, tension stiffening and shrinkage formulations are applied to the study of 

continuous slabs. The dependency between membrane action and punching shear resistance on 

the reinforcement layout and boundary conditions are analysed. Very interesting conclusions 

about shrinkage are emerged: 

• shrinkage of concrete leads to a reduction of membrane action and, consequently, of 

punching shear resistance. This effect is more pronounced for slabs with high 

reinforcement ratios (where restrained deformations cause higher tensile membrane 

stresses with anticipated cracking).  

• shrinkage effect is strongly depending on boundary conditions and erection phases of 

buildings. 
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RC structures designed and built before the entry into force of seismic codes are characterized 

by lacking details and/or poor material characteristics. As consequence, they constitute a source 

of seismic risk worldwide, due to their vulnerability. The crisis of these structures can determine 

the global collapse with serious economic damage and possible loss of lives. 

 

Figure 5.1: Seismic mapping of Italy: (a) classification according to the decrees issued until 1984; (b) 
classification according to OPCM n.3274 20.03.2003. 
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The Italian building heritage is characterized by an important component of RC structures 

built before the seismic classification of the site. Currently, in Italy, it is estimated that 60% of 

the existing buildings were built in areas classified, at the time of the construction, as non-

seismic. Moreover, a large part of these buildings mostly dates back to the post-war period, in 

particular the 60s, and have therefore reached and overcome their conventional service life. 

This could lead to deterioration and material deterioration problems even of the mechanical 

properties of the structural elements. 

Despite the first Italian seismic regulations dates back to the beginning of the twentieth 

century, only in 1984 there was a first seismic classification of the Italian territory, which 

considered a large part of northern Italy "no seismic risk". In 2003 with the PCM Ordinance no. 

3274 of 20.03.2003 the classification of the territory has been refined and extended also to the 

not yet categorized areas, Figure 5.1. 

From a study conducted by Parisi et al. (2013) it emerged that, using the seismic zoning 

established in 2003 by Italian code, almost 60% of the structures (about three million) have 

been built without reference to seismic criteria, Figure 5.2. 

 

Figure 5.2: Distribution of RC buildings in seismic area, with reference to regulatory requirements at the time of 
construction, Parisi et al. (2013). 

Furthermore, it must be considered that the previous seismic regulations imposed the 

problem of security in different terms, with less explicit objectives than the current situation, 

which is characterized by a clear reference to the limit states of damage and collapse and an 
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explicit treatment of post-elastic behavior. In general terms the previous seismic regulations 

follow a lower level of protection. 

The analysis of the damage caused by the 2009 L'Aquila earthquake has shown (Oliveto 

et al., 2011) the main deficiencies that most influence the seismic response of buildings: 

• “soft/weak” storey; 

• frame designed only for gravity loading characterized by a weak and a strong 

direction of column; 

• presence of squat columns; 

• risk of collapse of non-structural elements;  

• lack of details: bracketing of columns and nodes, anchoring length and reinforcement 

overlap; 

• insufficient quality of concrete; 

• smooth bars. 

As consequence, existing RC structures are often subject to unexpected collapses typically 

not present in new buildings, linked to brittle failure on the concrete side or to the instability of 

longitudinal rebars. The need to develop numerical tools for the reliable prediction of failure 

mechanisms and of the performance of existing structures (also subject to corrosive 

phenomena) has emerged (Cosenza et al., 2002; Del Gaudio et al., 2018).  

5.1 The Buckling Phenomenon 

One of the main characteristic of existing structures is the presence of columns with sub-

dimensioned cross-section. When subjected to large transverse and/or cyclic deformations, 

these elements typically fail for spalling of concrete cover (typically for strain values between 

0.003 and 0.004, Papia et al., 1988) with consequent buckling of the longitudinal reinforcement 

(Wallace et al., 2012; Massone, 2013). In fact, during loading inversions, the concrete prevents 

the development of high compressive deformations in steel bars, but, when the concrete fails, 

the compressive steel strains increase with buckling of bars, Figure 5.3. 
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Figure 5.3: RC columns subjected to buckling: (a) shear crack and (b) absence of adequate stirrups at Scuola 
Media Statale Craducci, Aquila, Italy (Salvatore et al., 2009); (c) failure at the bottom of a column of the 

Imperial County Services building due to not adequate confinement (Comartin et al., 2004). 

The cyclical damage and post-elastic buckling are also significant in the beam-column 

nodes, since the construction practice before the seismic regulations did not include brackets or 

prescribed too high spacing between them. Furthermore, the typical failure mechanism of RC 

bridges subjected to seismic loading is associated with flexural yielding of the columns or piers 

characterized by buckling and followed by fracture of longitudinal reinforcing bars. 

 

Figure 5.4: Buckling of longitudinal rebars: (a) a real case by Salvatore et al. (2009) and (b) local buckling. 

The buckling of longitudinal reinforcement is avoided or limited by the stabilising effect 

provided by stirrups if they are not too distant. The typically observed failure modes associated 

with this phenomenon are primarily the bending of the longitudinal reinforcement between two 

consecutive stirrups, Figure 5.4, and, less commonly, an increase in slenderness due to the 

breaking of a stirrup, (Massone and López, 2014). 
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Since after cracking, the behaviour of the reinforced concrete section is controlled mainly 

by the steel, the accurate prediction depends on the precision of the steel constitutive law. It is, 

therefore, necessary to use a model able to consider the buckling effect of the longitudinal 

reinforcements. However, if the modelling of the monotonic behaviour has been carefully 

studied, the modelling of the cyclic behaviour is still under investigation (Monti and Nuti, 1992; 

Dodd and Restrepo-Posada, 1995; Gomes and Appleton, 1997; Albanesi et al., 2001; Dhakal 

and Maekawa, 2002a) both for ribbed and plain bars (Cosenza and Prota, 2005), Figure 5.5.  

The monotonic compressive behaviour of steel subjected to buckling changes with the 

slenderness ratio λ, i.e. the ratio between the stirrups distance L and the longitudinal bar 

diameter D, Figure 5.4b. Mau and El-Mabsout (1989) through observation of the compressive 

behaviour of steel bars with different slenderness ratio founding that higher λ was, lower the 

yielding strength was. They identified a limit value of λ, equal to 5: if λ is lower than 5, the 

behaviour in tension and in compression is similar; otherwise, the buckling effect occurs. 

 

Figure 5.5: Authors who have proposed steel constitutive law including buckling in case of cyclic loading. 

Monti and Nuti (1992) proposed the first model able to consider the effect of buckling in 

the cyclic behaviour of steel reinforcing bars. The model takes into account the effects of strain 

hardening on the yield stress and hardening ratio in compression by means a series of 

“hardening rules”.  

 The formulation was based on the experimental observation of carbon steel rebar Feb44 

with yield stress 450 MPa. For this reason, the model is not able to properly catch the effect of 

buckling in case of bars with different yield stresses. Furthermore, the formulation is valid only 

for a limited range of slenderness values, i.e. less than 11. 

Gomes and Appleton (1997) proposed a simplified model in which the monotonic 

compressive skeleton curve was based on the equilibrium of plastic mechanism of a buckled 

rebar. The authors described the buckled compressive branch with the proposed model and 

simulated the tensile branch and the unbuckled compressive branch by means the Menegotto 
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and Pinto (1973) model. The Gomes and Appleton model was set up based on the equilibrium 

equation of fix-ended column and hypothesized the plastic hinge occurring in the mid-span of 

the column. Furthermore, the model was not able to consider the effect of cyclic loading and 

unloading on the yield stress variation. 

Rodriguez et al. (1999) conducted an experimental campaign on steel bars typically used 

in the construction industry in Mexico (fy = 410 MPa and fu 550MPa) with slenderness values 

of 2.5, 4, 6, 8 as prescribed by Mexican seismic regulations. From these results derived a 

tension-strain model for steel with buckling. However, the model was not innovative because 

of the limited values of slenderness. 

Dhakal and Maekawa (2002a), starting from Monti and Nuti (1992) experimental tests, 

elaborated the monotonic skeleton curves of reinforcement both in tension and compression. 

The formulation was based on the Menegotto and Pinto one but also took into account the 

update of the tangent modulus at the reversal points in tension and compression, respectively. 

However, this model too did not consider the yield stress variation at the reversal. Furthermore, 

the authors demonstrated (Dhakal and Maekawa, 2002b) that the compressive behaviour of 

reinforcing bar subjected to buckling depended both on the yield stress and the slenderness. In 

fact, through a series of experimental tests, they showed that reinforcements with different 

slenderness ratios and different yield stresses could generate an identical stress-strain curve if 

the combined parameter was the same. 

Since in early 1970s smooth steel bars were widely used in Italy, Cosenza and Prota (2006) 

started a study on the cyclic behaviour of this type of reinforcement. The aim of the study was 

the calibration of a new constitutive model for smooth bars able to consider buckling. They 

proposed a new monotonic curve for smooth bars with a slenderness ratio between 5 and 70. 

They also extended this study to the cyclic case (Cosenza and Prota, 2009) but they did not 

propose analytical formulations. However, they highlighted that for the very high value of 

slenderness, the compression to tension reloading curve was characterized by an accentuated 

pinching effect. 

More recently, Kashani et al. (2015) conducted a parametric study of the non-linear cyclic 

behaviour of ribbed reinforcing bars with and without corrosion. The behaviour of rebars with 

slenderness ratio higher than 8 is characterized by complex pinching. This effect is not included 

in existing constitutive models but it has a significant influence on the cycle degradation of RC 

elements subjected to seismic loading. 
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In this sense, a proper steel material model for rebar incorporating buckling is crucial for 

the seismic analysis of reinforced concrete structures. As a result, behaviour at large inelastic 

deformations may be over predicted with respect to strength and ductility. 

Recently steel formulations including buckling were implemented in NLFE programs, 

specifically in fiber models. For example, the uniaxial steel model incorporating the combined 

material laws proposed by Gomes-Appleton (1997) and Dhakal-Maekawa (2002a) was 

implemented in Opensees (2011) (“ReinforcingSteel”) as well as the Kashani et al. (2014) 

model including buckling of corroded rebars. However, even if the fibre models are widely 

diffused in engineering practice, it is important to observe that this’ type’ of model is able to 

consider only flexural failure and not shear or torsional effects. Nevertheless, buckling failure 

is associated also to shear failure, Figure 5.6. In order to fill this gap, formulations for steel 

including buckling have been implemented in the PARC_CL 2.1 crack model. 

 

Figure 5.6: (a) Shear failure of columns and subsequent buckling of vertical reinforcement between the ties, 
(Comartin et al., 2004); (b) shear failure in beam-column joint (Verderame et al., 2009).  

5.2 Implementation of Steel Constitutive Laws Including Buckling 

In order to extend the PARC_CL 2.1 crack model to the analyses of existing RC structures, two 

different constitutive laws for steel accounting for buckling have been implemented. More 

specifically, the Monti and Nuti model (1992) and Kashani et al. (2015) are first deeply studied 

and then added to the user subroutine. 

The first constitutive law that will be presented (§5.2.1) is the Monti and Nuti (1992) one 

in its updated version by Zhou (2015), Zhou et al. (2014) and Zhou et al. (2015). The model 
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has been chosen because the basic formulation is based on the Menegotto and Pinto (1973) one 

already introduced in PARC_CL 2.1. This allowed exploiting already existing variables without 

overloading the user subroutine with new variables to be memorized. 

However, during the numerical simulations performed on experimental tests, which will 

be presented in detail in (§5.3), some shortcomings and limitations have been observed. For 

this reason, it was decided to introduce also the formulation proposed by Kashani et al. (2015) 

(§5.2.2). The results obtained by the two models are compared in terms of reliability respect to 

experimental results. 

Both the constitutive laws are extensible to the case of corroded reinforcement. This feature 

is essential for future developments of the PARC_CL 2.1 model.  

 Implementation of Monti and Nuti (1992) Model 

 Monotonic Behaviour 

The Monti and Nuti (1992) formulation is based on the behaviour of bare bars 

characterized by different lengths L and diameters D. The L/D ratio is defined as slenderness 

ratio λ.  

Experimental tests on bare bars subjected to monotonic load show that the buckling occurs 

when the slenderness ratio exceeds the critical slenderness ratio, λcr, equal to 5. Indeed, when λ 

≤ 5, the monotonic curve in compression coincides with the tensile one. In this case, the first 

branch in compression is defined by a straight-line asymptote with slope Esi until the yielding 

point A, followed by the asymptote (1) with slope equal to b0
+Esi, where b0

+ is the hardening 

coefficient in tension, defined as the ratio between the elastic modulus Esi and the hardening 

modulus Ehi, Figure 5.7. Instead, when λ exceeds the critical value, two different behaviours 

can be defined: 

• 5< λ < 11: the monotonic response is affected by buckling after the overcoming of γs. 

For a length equal to γs, defined in Eq.(5.1), an asymptote with positive slope b0
+Esi 

defines the rebar behaviour. Then, from the point B, an asymptote with negative slope 

equal to b0
-Esi (3) is followed. b0

- decreases with the increasing of the slenderness ratio 

and it does not depend to material properties. 

0
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≥

−
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λ
γ
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e  

(5.1) 

where c is a parameter related to the type of rebar, equal to 0.5 in Monti and Nuti’s test. 
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• λ ≥ 11: once the point A is reached the curve presents a negative slope b0

-Esi, line (2). 

 

Figure 5.7: Monotonic compressive behaviour of steel, Monti and Nuti (1992). 

The limit of the compressive stress, in presence of buckling, is defined by the asymptotic value 

∞σ , defined by Eq.(5.2), Figure 5.8.  

λσ /6
iyf⋅=∞  (5.2) 

 

Figure 5.8: Asymptotic limit value in compression, Monti and Nuti (1992). 
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 Cyclic Behaviour 

The Monti and Nuti (1992) model updates the yield stress and the hardening coefficient b at 

each half-cycle. The stress variation is calculated using equations that incorporate the effects of 

hardening, generated by the plastic deformation of the bars caused by the achievement of the 

yield stress. If an isotropic sample subjected to tensile or compressive stresses undergoes, in 

the process, a load which exceeds the yield stress, a discharge and again a reload with respect 

to the opposite direction, the yield stress becomes smaller or greater depending on the plastic 

deformation to the previous half-cycle. This effect is characterized by a kinematic component 

and an isotropic component. 

Due to buckling, the absolute value of the compressive stress decreases with increasing 

deformations after the yield stress. The yield stress referred to the n+1 half-cycle, 1
0

+nσ , is 

therefore defined in Eq.(5.3): 

11
0 )( ++ ∆+−⋅= n

KIM
n
piy

n signf σξσ  (5.3) 

where 
iyf  is the initial value of the yield stress for the ith order of bars. In this sense, it is 

necessary to underline that in case of not isotropic stainless steel rebar, i.e. rebars in which the 

yield strengths in tension and in compression are different, to distinguish two different values 

of yield stress are defined: 
i

t

y
f in tension and 

i

c

y
f  in compression. ξp

n is the plastic excursion 

and 1+∆ n
KIMσ is the additional contribution due to the kinematic and isotropic hardening, defined 

as in Eq.(5.4): 

)()1(1 n
p

n
I

n
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n
KIM signPP ξσσσ −⋅∆−+∆=∆ +  (5.4) 

where P is the weight attributed to each rule (isotropic and kinematic) and can be calibrated on 

the basis of the experimental results as reported in Monti and Nuti (1992). P can range between 

0 and 1. n
KMσ∆  and n

Iσ∆  represent the stress contributions due to the kinematic and isotropic 

hardening respectively. 

 Kinematic and Memory rules 

As shown in Figure 5.9, the kinematic hardening effect in tension differs from compression. In 

fact, tensile strain (point B) can cause a reduction of the absolute value of the yield stress in 
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compression (point C); whereas the compressive strain (point D) can cause an increment of the 

yield stress in tension (point E2). Observing the half-cycles in Figure 5.9, it can be noticed that: 

• n=1 half-cycle: the hardening branch AB is characterized by a positive slope that 

generates a positive stress increment (∆σ1); 

• n=2 half-cycle: the absolute value of the stress at the point C is less than the yield 

stress in compression (point A1). The stress decrease (∆σ1) is due to the kinematic 

rule. The negative value of the hardening branch causes a further decrease of the 

absolute value of the compressive stress in correspondence of the point D; 

• n=3 half-cycle: the increase of the absolute value of the yield stress, from point E1 to 

point E2, is due to the effect of the kinematic contributions deriving from the previous 

half-cycles n=1 and n=2. 

The stress variation due to the kinematic contribution, n
KMσ∆ , is evaluated in Eq.(5.5): 

∑=∆
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n
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i
p

iin
KM Eb

1
γσ  (5.5) 

The memory rule is introduced by an additional plastic excursion, γp
n, Eq.(5.6): 

)(max
n
p

nn
p

n
p sign ξξξγ ⋅−=  (5.6) 

where )(uuHu = is the step function. If u>0, H(u) = 1 otherwise H(u) = 0. n
maxξ is the 

maximum plastic excursion of the nth half-cycle and is defined in Eq.(5.7): 

n
p

n ξξ =max  (5.7) 

The plastic excursion at the nth half-cycle, n
pξ , is defined in Eq.(5.8) and shown in Figure 

5.9: 

nn
r

n
p 0εεξ −=

 

(5.8) 

where n
rε  is the strain corresponding to last strain reversal at the end of the nth half-cycle (in 

Figure 5.9 point B for n=1 and point D for the n=2); n
0ε  defines the intersection point of the 

two asymptotes of the nth half-cycle (in Figure 5.9 point C for n=2 and point E2 for the cycle 

n=3), Eq.(5.9). 
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where n
0σ  is the yield stress at the nth half cycle, Eq.(5.3), and 1−n

rσ  is the last stress reversal 

of (n-1)th half-cycle. 

In summary, the kinematic hardening rule results in a shift upwards. Moreover, the 

kinematic hardening has not effect if the absolute value of the plastic hardening of the current 

half-cycle, n
pξ , does not exceed the maximum plastic deformation of the previous half-cycle, 

)1(
max

−nξ  (for example, if 1
max

2 ξξ ≤p the variation of the tension is ∆σ2 = 0): this means that, in 

presence of buckling, the kinematic hardening n
KMσ∆ is characterized by a memory component. 

 

Figure 5.9: Kinematic and memory rule, Monti and Nuti (1992). 

 Isotropic Rule  

The effect of isotropic hardening generates an expansion of the cyclic curve. In fact, analysing 

Figure 5.10, it is possible to observe: 

• n=1 half-cycle: the hardening branch AB is characterized by a positive slope b+ 

generating an upward displacement of the curve; 
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• n=2 half-cycle: the yielding point C undergoes a downward displacement due to 

the isotropic rule applied to the previous half-cycle; 

• n=3 half-cycle: the yielding point passes from E1 to E2. The updated yield stress 

is translated by a quantity equal to the sum of the contributions of the two previous 

half-cycles. 

The stress contribution associated with the isotropic rule is expressed in Eq.(5.10): 
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where n
pΦ  is the plastic work, defined in Eq.(5.11). 
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Figure 5.10: Isotropic rule, Monti and Nuti (1992). 
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of the compressive yield stress increases; whereas in compression the stress variation 

)( 0
nn

r σσ −  is positive whereas the plastic excursion n
pξ  is negative, consequently, the yield 

stress decreases.  

 The curvature parameter R  

R is the parameter that influences the shape of the transient curve from the first to the second 

asymptote: its value decreases with the half-cycles. So, R1> R2> R3, Figure 5.11. 

 

Figure 5.11: Degradation of curve transition. 

In tension, ∆ε>0, R is defined in Eq.(5.12): 
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where to consider the possibility of anisotropic rebars (characterized by different behaviour in 

compression and tension), the following parameters are defined in Eq.(5.13)-(5.18). 
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where R0 is the first value assumed by the curvature. In general, it is imposed equal to 20 as 

indicated in §2.2.7. 
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In compression, the value of R is expressed by means Eq.(5.19):  
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 The hardening ratio b  

In Figure 5.7, the effect of the hardening ratio b on the monotonic compressive curve is 

presented: 
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• b=b+ > 0, both stress and strain increase after reaching the yield stress; 

• b=b- < 0, the absolute value of the stress decreases whereas the deformation increases 

after reaching the yield stress. 

Subsequently, the value of b varies according to the plastic deformation, n
pξ .  

In tension, the value of b is formulated by Eq.(5.25). 
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where b0 is the ratio between the initial hardening, defined as in §2.2.7. 

In compression, the value of b is formulated by Eq.(5.26).  
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where: 

)(0 λλ −⋅=−
crab  (5.27) 

with the experimental parameter a=0.0025. 

 Elastic modulus Es 

According to experimental analyses, the elastic modulus at the reversal from compression to 

tension could be different from the original elastic modulus Esi of the rebar. So, two different 

formulations in tension and in compression are proposed, Figure 5.12: 

- in tension the elastic modulus does not degrade, remaining equal to the initial one Esi; 

- in compression the elastic modulus is degraded, and it is calculated as in Eq.(5.28): 

( ) ( ) 











−⋅−+=

− 21
655 exp1

n
pis

n

is aaaEE ξ  (5.28) 

with a6=1500 and: 

( )
5.7

15

λλ −
+= cra  (5.29) 



PARC_CL 2.1 Crack Model for Existing RC Members 153 

 

 

Figure 5.12: Elastic modulus degradation in compression. 

One of the main limitations of the model is that formulations have been calibrated 

according to the results obtained on a limited set of reinforcements. Taking as reference the 

parameter a5 presented in Eq.(5.29) and used for the calculation of the degraded elastic 

modulus, it is shown in Figure 5.13a that, when λ exceeds the value of 12.5, a5 becomes 

negative. These values do not negatively influence the analysis until 1−n
pξ does not reach high 

values (typical of buckling failure). When it becomes large (this value can change according to 

λ, Figure 5.13b), the square bracket in Eq.(5.28) becomes negative and consequently the 

reduced elastic modulus becomes negative. This involves non-physical values. 
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Figure 5.13: Value of a5 in function of (a) λ for assigned values of 1−nξ  and (b) 1−nξ for assigned values of λ . 

 Implementation of Kashani et al. (2015) Model 

Kashani et al. (2013a) conducted a parametric study on the behaviour of corroded and non-

corroded bars subjected to monotonic and cyclic loading. The results on bare bars with yield 

strength between 400 and 500 MPa showed that, when the slenderness ratio λ exceeded the 

value of 8, the reinforcements present a complex pinching effect in the hysteretic cycles. 

Furthermore, it becomes more sever increasing the slenderness ratio λ. Also, Nakamura et al. 

(2002) and Prota et al. (2009) came up to the same conclusions. Despite the pinching effect has 

a significant influence on the cyclical degradation of elements subjected to cyclic loads, it is 

not considered by the Monti and Nuti (1992) model. For this reason, the model proposed by 
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Kashani et al. (2015) has been implemented in the new version of the PARC_CL 2.1 crack 

model. 

 

The experimental campaigns, conducted on reinforcement bars with yield stresses between 

400 and 500 MPa and subjected to compressive loads, have highlighted that buckling does not 

manifest itself for λ < 6. In this case, the compressive behaviour can be assumed to be equal to 

their tensile behaviour. For 6 < λ < 8 the samples buckle but, since the length is relatively small, 

the buckling effect does not influence the post-yield softening in compression. Also in this case 

the compressive behaviour can be assumed as elastic perfectly plastic. When λ ≥ 8, the effect 

of buckling results in a compression softening curve, Figure 5.15. 

 

Figure 5.14: Compressive envelope curve for different slenderness ratio. 

Therefore, starting from the observation of bare bars with 8 ≤ λ ≤ 30, Kashani et al. (2015) 

proposed a stress-strain model able to consider the cyclical and fatigue degradation in 

compression and the pinching effect. 

The model is composed of the following main states: tensile envelope TE; compression 

envelope CE; unload-reload response for tension to compression URTC; unload-reload 

response for compression to tension URCT. These represent the main curve as shown in Figure 

5.15. In addition, three more branches are proposed: incomplete unload-reload cycle IURC; 

degradation in buckling strength due to cyclic loading BUCKDEG; degradation in tension 

strength due to low-cycle fatigue/cyclic loading FATDEG. In the PARC_CL 2.1 crack model, 

for now, FATDEG rule is not taken into account. 
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Figure 5.15: The main curve of the phenomenological hysteretic model proposed by Kashani et al. (2014). 

 Tensile Envelope TE 

 

Figure 5.16: Tensile envelope curve of steel, Balan et al. (1998). 

A continuous hyperbolic function between the two asymptotes of slope Esi and Ehi (Balan et 

al., 1998), Eq.(5.30), is used to simulate the monotonic tensile curve of the steel bar, Figure 

5.16. 
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where µ is equal to Ehi/ Esi, whereas δ is a shape parameter that defines the curvature radius of 

the transition between linear elastic and hardening region of the curve, according to Balan et al. 

(1998). 

 Compressive Envelope CE 

The expression used to define the compressive envelope curve is a function of the so called 

non-dimensional slenderness ratio λp (Dhakal and Maekawa, 2002c) defined in Eq. (5.31): 

The compressive envelope is defined by a first elastic part until the yielding, followed by 

an exponential law (Hill et al., 1989; Thai et al., 2011), Eq.(5.32): 

where ρ1 is the initial tangent of the post-buckling response curve, ρ2 is the rate of change of 

the tangent, εp= |ε-εy| is the plastic strain and σ* is the asymptotic lower stress limit, Figure 

5.17. 

43.74572.41 −= pλρ  (5.33) 
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The parameters defined in Eq.(5.33)-(5.35) were obtained through post-processing of 

experimental results by means Matlab tools, as explained in Kashani et al. (2015). A large 

database consisting of 50 bare bars samples with different yield stress values and slenderness 

ratios was used. 
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Figure 5.17: Buckling effect on the compressive envelope curve, Kashani et al. (2014). 

 

Figure 5.18: Comparison of experimental results obtained on bare bars with different values of slenderness ratio 
(Kashani et al., 2014) and PARC_CL 2.1 ones. 

These formulations have been included in the PARC_CL 2.1 model and used to perform 

non-linear finite element analyses on bare bars, tested monotonically by Kashani et al. (2014), 

with the aim to validate the model. The samples have been modeled with simple M3D4R 

membrane elements characterized by a single integration point. In Figure 5.18, the PARC_CL 

2.1 results are compared with the experimental results (Kashani et al., 2014) providing good 

results in terms of stress-strain behaviour and minimum stress limit asymptote σ*. 
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The experimental results have shown that the cyclic behaviour of bare bars or 

reinforcement of RC columns (Moyer and Kowalsky, 2003) depends on the applied strain 

history and the slenderness ratio (Cosenza and Prota, 2009). The results obtained from tests on 

bare bars with different values of λp and different load history were used by Kashani et al. 

(2014) to develop a constitutive model capable of predicting the stress and stiffness degradation 

during the unloading-reloading cycles induced by buckling phenomenon. 

 Unloading Reloading from Tension to Compression URTC 

The unloading branch from tension to compression is defined by means of two linear branches 

defining the URTC branch. The first branch ends when the stress reaches a zero value and is 

characterized by the unloading stiffness Eun, calculated as proposed by Dodd et al. (1995), 

Eq.(5.36). 
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where εp is the plastic strain and it is defined as εp=εun-εy. 

The second branch is defined by the reloading stiffness Esec, obtained by Kashani et al. 

(2015) from numerical simulations of bare bars, Eq.(5.37). 
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Finally, to consider the degradation of the compressive stress, the value of the buckling 

stress σyc is updated at each cycle in function of the plastic strain εp, Eq.(5.38). 
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Figure 5.19 shows the effects of Eq.(5.36)-(5.38) on the unloading URTC curve. 
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Figure 5.19: Unloading from tension to compression. 

 Unloading Reloading from Compression to Tension URCT 

Kashani et al. (2014) and Cosenza and Prota (2009) observed that the unloading-reloading 

branch from compression to tension of bare bars with slenderness ratio greater than 8 is strictly 

dependent on the cycle’s amplitude. When cycles develop at small strain demands, this branch 

is convex in shape, whereas, if the strain demand increases, the unloading-reloading response 

becomes concave and pinched. For this reason, in the Kashani et al. (2014) model two different 

equations are proposed: 

•  ε ≤ 9εyi , trilinear curve, Figure 5.20a; 

•  ε > 9εyi , linear-hyperbolic curve, Figure 5.20b; 

As shown in Figure 5.20, the initial unloading stiffness Eb is defined in Eq.(5.39).  
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where minσ is the minimum stress value reached by steel in compression in case of buckling 

and mintσ  minimum stress value reached by steel in compression in case of absence of 

buckling. 

In case of small strains, Figure 5.20a, the first linear branch develops until the reaching of 
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iyf3.0 ). Then it follows a second linear branch up to 
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ε0.85 (which corresponds to a stress equal to 

iyf85.0 ). Finally, the third section is characterized 

by a slope equal to 0.06Esi up to the intersection with the tensile envelope. 

 
(a) 

 
(b) 

Figure 5.20: Modelling of compression unloading branch according to Kashani et al. (2014): (a) at small strain 
demand (ε≤9εy); (b) at large strain demand (ε>9εy). 

In case of large strain demand, Figure 5.20b, the linear branch with slope Eb develops up 

to ε0.15 (that corresponds to the achievement of 
iyf15.0 ). Then a hyperbolic branch is defined 

until reaching ε0.85 (corresponding to 
iyf85.0 ). The hyperbolic curve is defined in Eq.(5.40):  
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where σh and εh are the coordinates of the hyperbolic curve referred to its reference system. 

Instead, the hyperbolic curve coordinates in the xi,yi-system of the rebar are defined in Eq.(5.41) 

and Eq.(5.42). 

15.0εεε += h  (5.41) 
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Finally, the third branch is characterized by a slope of 0.06Es until the intersection with the 

tensile envelope.  

 Incomplete Unload-Reload Cycles IURC 

In order to simulate a generic load history, partial loading-unloading cycles formulations have 

been included. In fact, generally, it is possible that unloads or reloads occur before the reaching 

of the compressive or tensile envelope curve. In case of the partial reload occurs in the tensile 

domain, Figure 5.21, an elastic line with slope Eun (equal to the unloading one) is expected, 

Eq.(5.36). If the partial reload occurs in the compressive domain, Figure 5.22, the reload line 

has a slope equal to Esec, Eq.(5.37). 

Figure 5.23 shows an example of the result obtained for a cyclic load history applied to a 

bare bar with a slenderness ratio equal to L/D = 20 and yield stress σy = 500 MPa. As shown, 

the cyclic degradation due to buckling leads to a reduction of the compressive stress and 

degradation of the elastic modulus. Furthermore, the URCT law changes from a linear to an 

hyperbolic law with increasing strain demand. 
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Figure 5.21: Incomplete unloading reloading cycle IURC in the tensile domain, Kashani et al. (2014). 

 

Figure 5.22: Incomplete unloading reloading cycle IURC in the compressive domain, Kashani et al. (2014). 
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Figure 5.23: Comparison between NLFEA with PARC_CL 2.1 and numerical simulation by Kashani et al. 2015 
for a bare bar with L/D=20. 

5.3 Validation of the Implemented Formulations  

The objective of this work is to use existing models for steel (Monti and Nuti, 1992; Kashani 

et al., 2015), which have shown good performance in representing the local buckling, to 

simulate existing RC structures. Typically, the inelastic behaviour of RC structures subjected 

to seismic loading is analysed by using fiber-based discretization of the member cross section 

(Mullapudi, 2010). Indeed, both the Monti and Nuti (1992) and the Kashani et al. (2015) 

formulations are implemented in a fibre model. For the first time, two constitutive laws for steel 

including buckling are implemented in a smeared crack model, the PARC_CL 2.1 one.  

Firstly, the effectiveness of the proposed model is tested through the comparison of 

NLFEA results with the experimental measurements of bare bars. Subsequently, a non-

conforming column tested at the University of Bergamo (Meda et al., 2014) is analysed.  

 Simulation of Bare Bars 

The effectiveness of the presented model has been verified by simulating the cyclic behaviour 

of bare bars by means of the PARC_CL 2.1 crack model. 3 specimens are selected: XC1, XC2 

and XC3 by Zhou (2015). The specimens are characterised by different values of tensile and 

compressive yield stress, respectively fy
t and fy

c. NLFEA has been carried out using a single 4-

node membrane element with reduced integration scheme (defined M3D4R in Abaqus), Figure 

5.24. The properties of the reinforcements are reported in Table 5.1. 
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Figure 5.24: Strain hystories for XC1, XC2, XC3 bare bars (Zhou, 2015). 

NLFEA has been conducted with PARC_CL 2.1 model using the three constitutive laws 

implemented for steel: Menegotto and Pinto (1973), Monti and Nuti (1992) and Kashani et al. 

(2015). 

Table 5.1: Mechanical properties of the bare bars proposed by Zhou (2015). 

Test λ 
fy

t 

[MPa] 

fy
c 

[MPa] 

Es 

[MPa] 
b 

XC1 11 790 680 200000 0.02 

XC2 11 790 680 200000 0.02 

XC3 11 790 680 200000 0.02 

 

The obtained results are shown in Figure 5.25: the Menegotto&Pinto model is able to 

estimate with good approximation the tensile stress value but, due to its formulation, it is not 

able to simulate the softening in compression caused by buckling. Instead, the Monti&Nuti as 

well as the Kashani model is able to catch both the tensile and compressive response in terms 

of achieved stress. However, the Kashani et al. (2015) model shows a markedly underestimation 

of the unload-reload from compression to compression (URCT) branches when strains occur in 

small ranges, Figure 5.25a,b. This does not happen when strains increase as in the case of the 

XC3 specimen, Figure 5.25c. The experimental curve of the XC3 specimen presents an average 

behaviour between the curves obtained with the Monti&Nuti model and the Kashani et al. 

(2015) model. 
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Figure 5.25: Comparison between experimental results and NLFEA conducted by means PARC_CL 2.1 crack 
model for (a) XC1, (b) XC2 and (c) XC3 bare bars, Zhou (2015). 
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Other two samples proposed by Kashani et al. (2013b) and subjected to symmetrical strain 

history have been modelled. The mechanical properties are reported in Table 5.2 and the applied 

strain history is shown in Figure 5.26. 

Table 5.2: Bare bars mechanical properties by Kashani et al., 2013b. 

Test number λ 
fy

t 

[MPa] 

Es 

[MPa] 

Eh 

[MPa] 

1 10 540 210000 2000 

2 15 540 210000 2000 

 

Figure 5.26: Strain hystories for Test 1 and 2 (Kashani et al. 2013b). 

Figure 5.27 shows the results obtained by means of the PARC_CL 2.1 using the three 

implemented models for steel. In this case, the strain history load is symmetrical in tension and 

compression, and only the Kashani et al. (2015) model is able to catch with good approximation 

the experimental results. In general, the Monti&Nuti model overestimates the results both in 

reloading from compression to tension and in the compression branch. As shown in Figure 

5.27b, the Monti&Nuti model is highly limited in the buckling branch due to the asymptotic 

limit of the compressive stress, ∞σ , Eq.(5.2). Indeed, when ∞σ  is reached, the curve can no 

longer diminish, and, as consequence, the stress-strain curve underestimates the buckling effect.  
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Figure 5.27: Comparison between NLFEA obtained using the PARC_CL 2.1 crack model and experimental 
results for (a) Test 1 and (b) Test 2 Kashani et al. (2013b). 

 Simulation of RC Elements 

The constitutive laws for steel, presented in the previous paragraphs, have been calibrated on 

the basis of the average behavior of a bare bar cyclically stressed, Figure 5.28a. It remains to 

be seen whether these laws are suitable for simulating the behaviour of reinforcement in RC 

elements and not only the behavior of bare bars. However, in literature, there are not cyclic tests 

on RC elements (with high slenderness ratios) to compare with the results of numerical 

simulation. 
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So, before proceeding to analyze complex structural elements, it was necessary to validate 

the model by means the simulation of a simple RC element, Figure 5.28b. This element, 

characterized by a length of L and the presence of a longitudinal bar, can be thought as an 

element extracted from a column between two consecutive stirrups, Figure 5.28c. 

 

Figure 5.28: From the bare bars behaviour to RC elements: (a) bare bar, (b) bar in a simple RC element and (c) 
RC column. 

Consider, for example, a RC element, Figure 5.28b, with a square cross-section of 

120x120mm and 300mm long, characterized by the presence of a reinforcing bar with a 

diameter of 16mm. The obtained slenderness ratio is equal to 18.75. The hypothesized 

mechanical properties are presented in Table 5.3. 

Three different modellings are used, Figure 5.29. The first modeling was made using a 

single 4-node membrane element with reduced integration scheme (M3D4R), Figure 5.29a. The 

result of this model is presented in Figure 5.30 and it was used as a reference for comparison 

with the other two approaches. The analyses are conducted in displacement control and using 

the three constitutive laws for steel. Obviously, the slenderness ratio is irrelevant for the 

Menegotto&Pinto model, whereas the Monti&Nuti model is not able to reach slenderness ratio 
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higher than 11. For this reason, the slenderness ratio for the Monti&Nuti NLFEA was fixed 

equal to 11. 

 

Figure 5.29: Different modelling approaches for the validation of the buckling effect in RC elements: (a) 
membrane element with a single integration point, (b) discretization of the problem with 16 elements, (c) 

typically adopted mesh for RC elements. 

The second configuration, shown in Figure 5.29b, is characterized by 16 M3D4R elements 

and has the purpose of analyzing if the average global behavior changes when the mesh used 

changes. Finally, the last approach proposed is the one closest to the type of modeling that is 

usually adopted for the simulation of columns and beams, Figure 5.29c. This approach involves 

placing the reinforcing bar in its exact position (in this case, in the center) and concentrating its 

presence in a row of elements. In this way, it is possible to distinguish two materials: the first 

consisting of concrete (the green one in Figure 5.29c) and the second of reinforced concrete  

(the grey one in Figure 5.29c). The results obtained for both the proposed meshes are identical 

to the results shown in Figure 5.30. This is due to the fact that all the integration points respond 
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in the same way to the cyclic imposed history, by returning an average behaviour identical to 

that obtained by the model with only one integration point. This means that different meshes 

do not influence the result of the non-linear analysis. In fact, it could happen that the strong 

non-linearity associated with the softening branch (induced by buckling) could cause 

convergence problems and consequently difference deformations between the elements of the 

mesh, preventing the desired average behaviour from being obtained. 

 

Figure 5.30: Results of NLFEA obtained for the RC element shown in Figure 5.29: (a) load-displacement result, 
(b) concrete cyclic behaviour and (c) steel cyclic behaviour. 

 Simulation of an Existing RC Column 

In framed structures, columns are generally the most important structural members. 

Understanding their seismic behavior is very helpful for the evaluation of the structural 

response of entire buildings in terms of deformations, forces, and energy dissipation capacities. 

Furthermore, in most old-framed building, beams have much more flexural stiffness and 

strength than columns.  
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For these reasons, to evaluate the efficiency of the two implemented models for steel 

including buckling, a RC column tested at the University of Bergamo by Meda et al. (2014) has 

been analysed. More specifically, two 1800mm height columns were tested, one corroded and 

one not corroded. This aspect is certainly of interest because the corrosion phenomenon is a 

contribution in phase of implementation in the PARC_CL 2.1 crack model; however, in the 

present work, only the results obtained for the uncorroded column will be presented. The 

columns were characterized by the same geometry: a square section of 300mm x 300mm 

reinforced with four longitudinal bars φ16mm, with concrete cover equal to 30mm. The 

transverse reinforcement consisted in φ 8mm stirrups, 300mm spaced, except near to the load 

application, placed at 1.50m from foundation extrados, where the spacing between the stirrups 

became 100mm, Figure 5.31. The non-seismic resistant details are typical of structures built in 

Italy in the 60s and 70s. Considering the slenderness ratio as the ratio between the distance 

between stirrups and the longitudinal rebar diameter, for this case study, a slenderness ratio 

equal to 19 has been obtained except for the higher part of the column where the stirrups were 

closer. The element was cast on a 500mm thick foundation, as shown in Figure 5.31. The 

foundation was 1300mm x 600mm x 500mm, symmetrically reinforced with 4φ20 rebars. 

 

Figure 5.31: Column geometry (Meda et al., 2014). 
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The adopted materials were typical of the '70s buildings in Italy, Table 5.3. An axial load 

of 400kN was applied with two hydraulic jacks and monitored by a pressure transducer. Then 

the horizontal cyclic load (Figure 5.32) was applied by means of an electro-mechanical jack at 

a height of 1500m from the column foundation connection. 

Table 5.3: Mechanical properties of materials for RC column (Meda et al., 2014). 

Concrete Steel 

fc 

[MPa] 
ft 

[MPa] 
Ec 

[MPa] 
fy 

[MPa] 
Es 

[MPa] 
Eh 

[MPa] 

19 1.5 25000 521 210000 1050 

 

 NLFEA by means of PARC_CL 2.1 crack model 

Two different modelling techniques are proposed in this PhD thesis, for the RC column tested 

by Meda et al. (2014). The first modelling approach has been characterized by large size 

elements. Thanks to the small number of the elements, the analyses was quick. The concrete 

cover has not been modelled in the shell plane because the first row of elements is characterized 

by the co-presence of reinforcement and concrete. For this reason, the concrete is helped by the 

reinforcement and the real spalling of concrete cover has not been considered. However, for 

taking this into account, a modified constitutive law for concrete has been adopted. 

For the second modelling technique a more refined mesh has been used. In this case it has 

not been necessary to induce the spalling of concrete cover because the external row of elements 

has been characterized by concrete material without reinforcement. 

In both cases, the column has been modelled with 4 nodes multi-layered shell elements 

(S4, Abaqus 2016). A complete Gaussian integration scheme has been adopted in the plane of 

the elements, whereas 3 Simpson integration points have been adopted for each layer along the 

thickness. The foundation has been modelled with an elastic material, whereas the column has 

been divided into sections with different material properties to distinguish the slenderness ratios 

of longitudinal rebars and reinforcement ratios of stirrups. The thickness of the element has 

been subdivided into 7 layers to properly describe the reinforcement layout, Figure 5.34 (coarse 

mesh) and Figure 5.40 (fine mesh). 

The NLFEA has been performed in displacement control by imposing horizontal 

displacements and using the Newton-Raphson incremental iterative method.  
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Figure 5.32: Experimental cyclic load history applied to the RC column (Meda et al., 2014). 

All nodes have been constrained to displacement in z direction at the base section. 

Furthermore, the extreme nodes of the foundation have been constrained in the x direction and 

finally, all the nodes have been constrained in the y direction (Figure 5.34a).  

The NLFEA have been conducted with the software Abaqus and the PARC_CL 2.1 user 

subroutine using three different implemented laws for modelling the cyclic response of the 

longitudinal reinforcement.  

 

Figure 5.33: NLFEA cyclic history. 

As explained in §5.2.2, the FATDEG branch (degradation in tension strength due to low-

cycle fatigue/cyclic loading) of the original Kashani et al. (2015) model is not yet implemented 

in PARC_CL 2.1. Furthermore, the formulation proposed by Monti and Nuti (1992) does not 
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take into account degradation. For this reason, when cycles have the same amplitude, i.e. the 

maximum reached strain does not increase from cycle to cycle, the hysteretic curve remains the 

same. This aspect together with the need to reduce time calculation, induced the author of this 

thesis to apply a reduced loading history. The maximum applied drift was applied once as 

shown in Figure 5.33. 

 Simplified modelling approach 

 

Figure 5.34: Coarse mesh adopted for the RC column: (a) orientation and boundary condition; (b) geometry and 
applied loads; (c) shell elements. 

The first adopted modelling approach consists of a coarse mesh, Figure 5.34, in which the 

average size of the elements is about 90x90mm. In this way, longitudinal rebars are positioned 

in the middle of the first elements, Figure 5.34c.  

In Figure 5.34a-b different colors are adopted to highlight the assigned materials, in order 

to distinguish the zone in which the slenderness ratio is equal to 19 (red) and 6 (ochres).  

Since this type of modelling does not permit to consider properly the concrete cover, 

because the longitudinal rebars are smeared in the element, the spalling of concrete cover is 

added. The constitutive law for concrete is modified in order to consider this contribute. 

Specifically, when a compressive strain equal to 0.025 is reached by the concrete, it is assumed 
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that the integration points of the cover elements do not contribute anymore to the global 

resistance and stiffness, Figure 5.35. 

 

Figure 5.35: Constitutive law for concrete in PARC_CL 2.1: spalling of concrete cover. 

Figure 5.36 shows the load-drift curve obtained from NLFEA carried out with the 

PARC_CL 2.1 model using three different laws (Menegotto et al., 1973, Monti et al., 1992 and 

Kashani et al., 2015). The pinching in the experimental curve starts when the buckling of 

longitudinal bars occurs for drifts greater than 2%, (Meda et al.,2014).  

The first cycles for the three load-drift curves are very similar. Indeed, until 2.5% drift, the 

concrete controls the global behavior of the column and does not permit to the bars to exhibit 

large deformations in compression, Figure 5.37c-d. When the spalling of the concrete occurs, 

the compressive stresses in bars are suddenly increasing, leading to buckling phenomena, 

Figure 5.37a-b. As shown in Figure 5.37a, the only model that really catch the buckling failure 

is the Kashani model, (Kashani et al. 2015). Due to the large displacements involved, the 

analysis finishes before completing the last reloading, Figure 5.36. 

 

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0

Strain

S
tress [M

P
a]

Concrete constitutive law
Spalling of concrete cover



PARC_CL 2.1 Crack Model for Existing RC Members 177 

 

 

Figure 5.36: Comparison between the experimental result and the NLFEA with PARC_CL 2.1 crack model 
using different steel laws in terms of load-drift curve. 

Figure 5.38 shows the influence of the steel constitutive law on the global behaviour of the 

column for a drift equal to 3.5%. In this case, the compressive behaviour of the steel rebars, 

Figure 5.38b-c for the three different laws (Menegotto and Pinto, 1973; Monti and Nuti, 1992; 

Kashani et al., 2015) is similar. This is due to the fact that the compressive strains are not large 

and the buckling is not so evident. When the column is loaded in the positive x direction (from 

point 1 to 2, Figure 5.38a) the rebars on the left side of the column pass from compression to 

tension and this influences the global shape of the load-drift curve, Figure 5.38b. At the same 

time, the rebars on the right side of the column pass from tension to compression, Figure 5.38c. 

When the load is inverted (from point 2 to 3 in Figure 5.38), until the drift is in the positive 

domain, the unloading constitutive law of the rebars on the right side controls the load-drift 

curve, but, when the drift becomes negative the behaviour is inverted and the stress-strain law 

of the rebars at the right side controls the global response. Instead, the unloading phase is 

controlled by rebars in tension, explaining the few differences between the Kashani model, the 
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Monti-Nuti model (Monti et al., 1992) and the Menegotto-Pinto model (Menegotto et al., 1973). 

Indeed, as illustrated in Figure 5.38b, the unloading phase (from point 2 to 3) is similar in the 

three models. This is probably due to the fact that this modelling approach is too simplified. 

 

 

Figure 5.37: Stress-strain behaviour of the corner element at the left side: (a) concrete and (b) steel; behaviour of 
the corner element at the right side: (c) concrete and (d) steel. 
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Figure 5.38: Comparison between PARC_CL 2.1 and experimental results for drift equal to 3.5%: (a) load-drift 
curve, (b) steel cycle for the element at the left side and (c) steel cycle for the element at the right side. 

Figure 5.39 shows the crack pattern for different values of drift, obtained using the 

PARC_CL 2.1 crack model and the Kashani model for steel, (Kashani et al. 2015). The crack 

pattern obtained by the NLFEA shows that the higher cracks localize at the base of the column 

as shown in the experimental results (Meda et al. 2014). Flexural cracks affect a zone of about 

200mm in NLFEA. 
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Figure 5.39: Crack pattern obtained using coarse mesh and PARC_CL 2.1 with Kashani et al. (2015) law for 
drift equal to: (a) 0.3%, (b) 1.25%, (c) 2%, (d) 5%. 

Thanks to the modification applied to the concrete constitutive law in compression, the 

spalling of concrete cover is taken into account; as consequence, the peak curve in the last 

cycles is reduced. However, it is an approximation due to the simplification of the problem. 

Indeed, the presence of longitudinal rebars in the external elements of the column does not 

permit to the concrete to reach high value of strains and to follow the softening branch in 

compression. For this reason, a more refined modelling technique is proposed in the next 

paragraph.  
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 Detailed modelling 

 

Figure 5.40: Fine mesh adopted for the RC column. 

 

Figure 5.41: Mesh discretization: shell elements in plane and out of plane layers. 

A more refined modelling technique is proposed in this paragraph, Figure 5.40. For this case 

study, the average size of the elements is about 30x30mm, Figure 5.41.  
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According to a study presented in Kashani et al. (2016) on the influence of pinching 

parameters on the non-linear cyclic response of RC column, a modification on the constitutive 

law for steel is proposed. Kashani et al. (2016) used the hysteretic energy dissipation during the 

cycles as a parameter to measure the accuracy of the prediction. They demonstrated that, for 

RC columns, better results can be obtained by reducing the pinching effect. In other terms for 

RC elements it is not properly correct to take into account the high value of pinching 

mechanisms. Indeed, the pinching effect is related to the geometrical non-linearity on stress–

strain behaviour of isolated bars. However, when reinforcing bars are inside the concrete the 

cyclic response of longitudinal bars is influenced by tie stiffness. Therefore, the pinching effect 

in cyclic response of reinforcing bars inside the concrete is not as severe as in the isolated bars. 

For this reason, according to this remark, the Kashani et al. (2015) model implemented in 

PARC_CL 2.1 has been modified, Figure 5.42.  

 

Figure 5.42: Modification of the URCT branch according to Kashani et al. (2016). 

In Figure 5.43 the comparison between the original law for steel proposed by Kashani et 

al. (2015) and the modified law according to Kashani et al. (2016) for the RC element presented 

in §5.3.2 is shown. The reduction of the pinching effect in the steel law, Figure 5.43c, produces 

a different global response not only in the reloading from compression to tension branch but 

also into the unloading from tension to compression branches, Figure 5.43a. 

According to this important remark, the NLFEAs of the RC column have been conducted 

using the modified law. 
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Figure 5.43: Comparison between the Kashani et al. (2015) law and the modification proposed in Kashani et al. 
(2016) for the RC element of §5.3.2.  

Figure 5.44 shows the load-drift curve obtained from NLFEAs carried out with the 

PARC_CL 2.1 model using three different laws (Menegotto and Pinto, 1973, Monti and Nuti, 

1992 and Kashani et al., 2015). However, it is important to underline that only with the Kashani 

model it has been possible to use the real slenderness ratio of the column, equal to 18.75, for 

the analysis. The slenderness ratio used for the NLFEA conducted with the Monti&Nuti model 

has been equal to 11. As a consequence of this, the model has not been able to catch the real 

softening behaviour caused by buckling. The softening trend of the experimental curve started 

due to buckling of longitudinal bars for drifts greater than 2%, (Meda et al., 2014). As shown 

in Figure 5.44 the best fitting of the experimental curve is obtained by Kashani et al. (2015) 

model both in terms of load-drift curve and stiffness during the unloading reloading branches. 

On the other hand, the Monti&Nuti model better reproduces the first cycles. Observing 

Figure 5.45 is possible to highlight that the Kashani model (Figure 5.45a), with respect to the 

Monti&Nuti one (Figure 5.45b), overestimates the load until a drift equal to 1.25%. This is due 

to the formulation of the TE branch. Indeed, observing Figure 5.45c it is possible to see the 
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differences between the two monotonic laws. The Monti&Nuti law is based on the 

Menegotto&Pinto one and depends only on the R parameter (described at §5.2.1.2.3), whereas 

the Kashani model uses the formulation proposed by Balan et al. (1998). This formulation 

depends basically to δ, called shape parameter. The first adopted value used for the analyses 

was 0.005 as proposed by Balan et al. (1998). Using the results obtained by Monti&Nuti as 

reference, it was possible to calibrate this parameter to improve the prediction, Figure 5.46a. 

 

Figure 5.44: Comparison between the experimental result and the NLFEA with PARC_CL 2.1 crack model 
using different steel laws in terms of load-drift curve. 

After the calibration of the shape parameter, the NLFEA obtained with the Kashani et al. 

(2015) formulation shows better results both in terms of strength and stiffness respect to the 

Monti&Nuti one. For this reason, more details will be detected for this model. 
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Figure 5.45: Load-drift curve obtained with: (a) Monti and Nuti (1992) model and (b) Kashani et al. (2015) 
model. (c) Differences between the tensile envelope in the two models. 
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Figure 5.46: (a) Modified tensile envelope and (b) comparison between the modified Kashani et al. (2015) model 
and Monti and Nuti (1992) model. 

In Figure 5.47 the load-drift curves obtained by using the Kashani et al. formulation, are 

reported and compared with the experimental results for different values of drift. By means of 

these comparisons it is possible to highlight the effectiveness of the model during cycles. Indeed 

PARC_CL 2.1 is able to predict with good accuracy the hysteretic behavior of the cycles, both 

for low (Figure 5.47a-b) and high levels of drift (Figure 5.47c-d). The NLFEA results are able 

to simulate the response in terms of strength and stiffness. 

Finally, the crack patterns during the loading history are shown in Figure 5.48. The 

experimental results reported that the first crack was formed for a drift equal to 0.3%. A stress 

localization at the column base connection led to concrete cover spalling and buckling of 

longitudinal rebars, (Meda et al., 2014). These observations can be deduced also by the NLFEA, 
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Figure 5.48. Until a drift equal to 2%, PARC_CL 2.1 produces horizontal cracks localized at 

the base of the column, Figure 5.48a-b; in the last cycles, the crack propagation along the height 

of the column and related to concrete spalling is observed, Figure 5.48c-d. 

Figure 5.49 shows the evolution of the stresses along the longitudinal rebars. It is 

interesting to observe that, when the drift increases and the concrete cover spalls, the buckling 

localizes at the base of the column causing deformations of finite elements. As consequence, 

when the buckling effect increases the strength reduction becomes more evident. 

 

Figure 5.47: Comparison between experimental and numerical results for drifts equal to: (a) 0.4%, (b) 1.25%, (c) 
2% and (d) 5%. 
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Figure 5.48: Crack pattern obtained with PARC_CL 2.1 using the Kashani et al. (2015) law for drift equal to: (a) 
0.3%, (b) 1.25%, (c) 2%, (d) 5%. 

 

Figure 5.49: Longitudinal rebars stresses obtained with PARC_CL 2.1 using the Kashani et al. (2015) law for 
drift equal to: (a) 0.3%, (b) 1.25%, (c) 2%, (d) 5%. 
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5.4 Concluding Remarks 

The buckling of longitudinal reinforcement can substantially influence the response of RC 

existing structural elements. For this reason, a numerical model able to reproduce the buckling 

failure is developed and applied to a RC column experimentally tested. 

Three different models for steel are implemented in the PARC_CL 2.1 crack model which 

assumes reinforcement smeared in the hosting concrete element. The first one is the widely 

known Menegotto&Pinto (Menegotto et al., 1973), the second one is the Monti&Nuti (Monti 

et al., 1992) and the third one is the Kashani (Kashani et al., 2015). The Monti&Nuti and the 

Kashani models are able to consider the buckling effect, differently to the Menegotto&Pinto 

formulation. For evaluating the efficiency of the models, the cyclic response of a RC column is 

compared with the NLFEA conducted with PARC_CL 2.1 model.  

Two different modeling strategies are proposed: coarse mesh with high mesh size and a 

more refined version with smaller element size. The second approach has shown more accurate 

results both in terms of load-drift curve and crack pattern. This is mainly due to the presence of 

the concrete cover, i.e. elements in which only concrete is modeled without reinforcement. 

The main outcomes are briefly reported: 

• the Monti&Nuti (1992) model and the Kashani et al. (2015) model are able to catch the 

buckling localization at the base of the column with respect to the Menegotto&Pinto (1973). 

• Even if the three NLFEA load-drift curves are similar in terms of global response mostly 

in the first cycles, the stress-strain relationship of the steel is very different. 

• Each model adopted for steel is calibrated on the basis of bare bars behaviour and 

without taking into account the interaction with the surrounding concrete. For this reason, the 

modification proposed in Kashani et al. (2016) is introduced in the PARC_CL 2.1 model. 

Thanks to this improvement it was possible to obtain effective results. 

The Menegotto&Pinto model is the most widespread used for modeling the cyclic behavior 

of steel in RC elements. However, it has been demonstrated that this model is not able to capture 

the resistance reduction induced by the buckling of longitudinal reinforcements. This lead to an 

overestimation of the resistance of about 60% in case of drift equal to 5%, corresponding to the 

last drift reached by the column before failure. Furthermore, also the stiffness in the unloading 

and reloading branches is overestimated and the model is not able to accurately simulate the 

hysteretic cycles. However, the most important aspect to be underlined is the impossibility of 

the model to predict the ultimate ductility recorded during the experimental test. Indeed,   
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Figure 5.50 shows the behaviour of the column until failure using the Menegotto&Pinto 

law. The NLFEA demonstrates that the failure would occur because of the achievement of the 

ultimate stress of the reinforcements, corresponding to a drift equal to 12% (more than double 

that recorded experimentally).  

This analysis highlights the need for an efficient model capable of grasping a more realistic 

behavior of the materials as well as the failure mode. A model for steel including buckling, 

therefore, avoids overestimation of the strength and ultimate capacity of the structure. 

Future improvement will focus on the modelling of degradation of tensile strength, due to 

low-cycle fatigue loading. By means of this contribution it will be possible to predict the loss 

of strength due to a high number of cycles.  

  

Figure 5.50: NLFEA using Menegotto&Pinto model until failure. 

Further validation will be necessary to assess the efficiency of the proposed model for the 

prevision of existing RC elements typically characterized by poor structural details, as beam-

column joints (Verderame et al., 2018). Even if conventional modelling approach considers 

only beam and column flexibility, the seismic performance of existing buildings is typically 

influenced by the non-linear behavior of joints (characterized by lack of an adequate transverse 

reinforcement, deficiencies or absence in the anchorage), De Risi et al. (2015). 

Another important aspect will concern the modelling of corrosion effects. Indeed, one of 

the most interesting characteristics of the Kashani law is the extensibility of the formulation to 
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corroded rebars. In this way, it may be possible to analyze the corroded column tested by Meda 

et al. (2014). Starting from this validation further corroded RC elements will be modeled. 
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This research aims to provide a contribution to a correct methodological and engineering 

approach to the problem of predictive evaluation of the collapse mechanisms typical of new 

and existing structures. 

The proposed theoretical model, suitable for the analysis of multi-layer shell elements, is 

implemented as a user subroutine UMAT.for in Fortran code within the software Abaqus.  

The basic assumptions of PARC_CL 2.1 refer to the first version of the PARC model 

proposed by Belletti et al. (2001): the cracking is assumed as being uniform, the orientation of 

the cracks remains fixed upon further loading, the crack spacing is assumed to be constant and 

the reinforcement is smeared in the element. However, the limitation of the PARC model was 

the impossibility of being applied to structures subjected to cyclic and dynamic loading. For 

this reason, the model has been extended to be generalized to any loading case. 

Reliable constitutive models are necessary, most of all in case of seismic analyses, in order 

to represent the significant aspect during cycles, as for example, irrecoverable strains, energy 

dissipation, stiffness, and strength deterioration. In the PARC_CL 2.1 crack model, constitutive 

laws for concrete and steel enable to consider plastic and irreversible deformation in the 

unloading phase and to take into account the hysteretic cycles are implemented.  

Another fundamental aspect refers to the aggregate interlock phenomenon. In fact, being 

a fixed crack model, the prediction of shear stresses generated along the cracks becomes 

fundamental and an aggregate interlock relation is necessary to be defined. To do this, the 

Gambarova (1983) formulation is extended to cyclic loading. The validity of the formulation is 
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demonstrated by means of the comparison not only with experimental results on simple RC 

panels but also with the NLFEA results obtained with DIANA software. 

Moreover, in order to proper analyze the dynamic behaviour, the Rayleigh damping 

stiffness-proportional coefficient is developed. 

A proper numerical modelling able to consider shrinkage effect is needed in order to avoid 

inaccurate predictions of structural performances at serviceability conditions. To this aim, in 

the PARC_CL 2.1 model, concrete shrinkage is considered by introducing it as a prescribed 

deformation. Subsequently, by means of an iterative procedure, the tension stiffening effect is 

also added to the model, with the aim to evaluate tensile stresses due to the bond between the 

reinforcing bars and the surrounding concrete. Since shrinkage gradually reduces the beneficial 

effects of tension stiffening, experimental tests are simulated by NLFEA taking into account 

both the effects.  

The tension stiffening formulation will allow to consider phenomena directly associated 

with existing buildings. Indeed, in case of bad anchorage, for example, splitting failure and 

sliding of the bars due to debonding could develop. 

Currently, in Italy, it is estimated that 60% of the existing buildings were built and designed 

without reference to seismic criteria imposed by codes. The need for a correct structural 

prevision of these types of buildings is evident. Indeed, due to the lack of details, often 

accompanied by poor material characteristics, these structures show different collapse 

mechanisms compared to those of new structures.  

Despite the vulnerability of existing buildings being a very current topic, only limited 

research that combines deterioration modelling with numerical analyses is available. For this 

reason, new formulations are added to the PARC_CL 2.1 crack model in order to proper 

evaluate the structural behaviour of existing buildings. To this aim, the buckling of longitudinal 

rebars is firstly detected and two different constitutive laws able to consider its effect are 

implemented. In particular, the Kashani et al (2015a) formulation, together with the basic 

formulation for RC elements, has been demonstrated to provide good results. The potentialities 

of the Kashani et al. (2015a) model are many, including the possibility of being extended to 

corrosion and to consider strength degradation due to low-cycle fatigue. 

In conclusion, the proposed model has been able to predict with good accuracy the 

response of structural elements of increasing complexity, constituting a valid starting point for 

future extensions. The comparisons with the experimental results of different structural 

typologies show a good agreement, evidencing the reliability of the PARC_CL 2.1 model in 
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reproducing the different mechanism of failure. The potentialities of the model lie in its 

versatility, in having the direct control of the mechanisms as well as the possibility of adding 

contributions according to the need. 

6.1 Recommendation for Future Research 

The extension of the PARC_CL 2.1 crack model to the existing building response prevision 

represents a fundamental development. For now, only the buckling effect is taken into account 

but future developments are recommended.  

 

• Implementation of the low-cycle fatigue degradation 

Experimental evidence has shown that failure in RC members is influenced by the number 

of loading cycles to which the structure is subject in its life. The main observed failure modes 

are the fracture of longitudinal reinforcing steel bars due to low-cycle fatigue, the fracture of 

transverse reinforcement and the buckling of longitudinal reinforcing bars.  

The cyclic nature of the earthquake loading causes strength and stiffness deterioration of 

structural members, resulting in a cumulative reduction of their service life. More specifically, 

long-duration earthquakes increase the total number of loading cycles which the structure might 

experience during its lifetime. The seismic damage accumulated by structural elements can lead 

to increase vulnerability to failure.  

For this reason, a cumulative damage model for RC structures in seismic application is 

needed. The Kashani et al. (2015a, 2015b) model provides formulation able to simulate the 

combined effect of buckling and fatigue degradation in RC elements. However, the fatigue 

contribution is not yet implemented in the PARC_CL 2.1 crack model.  

 

• Implementation of hysteretic model for corroded reinforcing bars 

A serious durability problem has been observed in the RC structures exposed to corrosive 

environments like deicing salts and seawater. In these cases, the main cause of deterioration is 

related to the corrosion of the embedded reinforcement that provokes the reduction of the 

structural performance, both in terms of strength and ductility. Indeed, the corrosion process 

mainly determines a reduction of the steel cross-section (uniform or localized on the entire 

reinforcement length) and a worsening of the reinforcing steel strength and ductility properties 

(Cairns et al., 2005; Imperatore and Rinaldi, 2008; Apostolopoulos and Matikas, 2016). 
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Moreover, corrosion causes reduction of the compressive capacity of the cracked cover concrete 

and reduction of bond strength at the steel and concrete interface. Consequently, a reduction of 

the bearing and dissipative capacity of the structural element occurs (Castel et al., 2000; 

Coronelli and Gambarova, 2004; Rinaldi et al., 2008; Imperatore et al., 2012; Imperatore et al., 

2016; Di Carlo et al., 2017). 

Even if the issue of the degradation in aged reinforced concrete structures attracts a 

considerable attention, NLFE models able of predicting the non-linear response with 

degradation effects are still under development.  

Kashani et al. (2013a, 2013b, 2013c) conducted an extended experimental campaign to 

explore the impact of corrosion on the non-linear behaviour of reinforcement. The authors 

proposed a more advanced uniaxial material models to improve the accuracy of the prediction, 

combining the effect of inelastic buckling and low-cycle fatigue degradation in presence of 

corrosion. 

The basic formulation of the Kashani et al. (2015a) model for not corroded member is 

already implemented in the PARC_CL 2.1 crack model and represents the starting point for 

future extension to corrosion. 

 

• Implementation of bond-slip law for corroded rebars 

Corrosion of reinforcing bars greatly influences also the bond between concrete and steel. 

The volume increase due to corrosion causes splitting and leads to weakening of the bond, 

which directly affects the serviceability and the ultimate strength of RC members within a 

structure (Cabrera, 1996; Yoon et al., 2000; Malumbela et al., 2009). When corrosion affects 

ribbed bars, reduction of the interlocking forces between the ribs of the bars and the surrounding 

concrete is verified (Wang and Liu, 2006). The reduction of both the strength and ductility 

behaviour of RC structures due to corrosion has to be considered, in particular when cyclic 

loading response is to be detected. 

In order to consider this effect in the PARC_CL 2.1 crack model, the bond-slip law, already 

implemented in the model, could be modified by translating the curve obtained in absence of 

corrosion, as a function of the confinement and the level of corrosion of the longitudinal bar 

(Lundgren et al., 2012). 

 

• Implementation of cyclic constitutive law for smooth bars 
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Existing concrete buildings reinforced by smooth bars were very common in Europe, Asia, 

and Oceania. They were generally built before the 1970s and were characterized by the absence 

of seismic detailing in the structural members (e.g. beams, columns, joints, etc.).  

Cosenza and Prota (2005, 2009) conducted an extensive experimental campaign on smooth 

steel bars tested both monotonically and cyclically. The authors explored a broad range of 

slenderness ratio demonstrating that, for high slenderness values, the reloading branch from 

compression to tension presented an accentuated pinching effect with a change of sign of the 

curvature. 

In RC structures, smooth bars differ from deformed ones for bond properties. In fact, 

deformed bar bond to concrete is mostly provided by a mechanical interlock between the ribs 

and concrete, whereas smooth bar bond to concrete is mostly provided by the chemical 

adherence of steel to concrete cement paste (Abrams 1913; Feldman and Bartlett 2005). It 

results in lower bond strength. Due to low bond strength, the seismic response of RC members 

with smooth bars significantly change compared to members with deformed bars (Arani et al., 

2014; Verderame et al., 2008; Di Ludovico, 2014). Experimental investigations have been 

shown that RC columns reinforced with smooth bars and subjected to lateral displacement are 

characterized by a limited number of cracks along the specimen length. Furthermore, these 

columns may experience bar slipping and end rotations for a quasi-rocking mode of deflection. 

In order to model all different cases involved in real structures by means the PARC_CL 

2.1 crack model, the definition of an accurate theoretical constitutive law for smooth bars is 

needed. 

 

• Modelling of beam to column joints 

Another aspect that can highly influence the vulnerability of non-seismically detailed RC 

frame structures is the non-linear behaviour of beam to column joints.  

Typically, beam to column joints of existing RC structures are characterized by insufficient 

shear reinforcements, or even lack of shear reinforcement in the joint core and poor seismic 

details (insufficient anchorage length, short lap splices, and discontinuous longitudinal bars). 

These lack of structural details increases the probability of shear, bond, or buckling failure in 

the beam to column joints determining the overall behaviour of the structure. For these reasons, 

the assessment of the seismic response of RC joints in terms of failure mode, strength, and 

ductility deserves more attention.  
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Many investigations have been conducted to evaluate the inelastic response of RC joints 

but few numerical procedures are able to take into account the beam-to-column joint failure 

during the overall assessment of the non-linear behavior of an entire building. Multi-layered 

shell elements could be used to assess the non-linear response of beam to column joints instead 

of post-analyses checks usually carried out in case of beam element modelling. 

 

• Application of the PARC_CL 2.1 to the robustness assessment of RC 

structures 

Structural robustness is actually one of the major issues faced by the international scientific 

community. Extreme events (i.e. terrorist attacks, vehicle impacts, explosions, etc.) often cause 

local damage to building structures as failure of one or more vertical load-bearing components, 

leading to the progressive collapse of the structure or part of it. The resistant mechanisms, that 

are activated due to progressive collapses, produce a non-linear behaviour often associated with 

dynamic effects. Thus, the NLFEA must be capable to provide accurate information about the 

structural behaviour (Izzudin et al., 2008; Qian et al., 2015; Petrone et al., 2016).  

The progressive collapse resistance of one-way reinforced concrete beam–slab 

substructures under a middle-column-removal scenario has been investigated by Ren et al., 

2016. The experimental campaign has shown large areas of concrete spalling and rebar buckling 

in the severely damaged beam.  

The possibility to apply the PARC_CL 2.1 model to the structural robustness theme could 

be interesting in order to evaluate the influence of the buckling effect on the NLFEA results. 
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