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ABSTRACT

The development of a physics-based approach and of a numerical model for the

study of the mechanical behavior of advanced polymeric materials is moti-

vated by several real-world applications. The description of the energy state of

polymeric materials through their network’s chains configuration allows to model the

problem, by accounting for the main involved mechanisms (such as rate-dependence,

damage, swelling, etc.) and is suitable for developing a continuous approach, readily

usable for the Finite Element implementation. The models proposed in the literature

already present singularly some of the above mentioned features, nevertheless a com-

prehensive and physics-based approach is particularly desired for the development of

new polymer-like materials and for the so-called advanced «responsive polymers».

The aim of this thesis is to develop a comprehensive theoretical formulation, deeply

rooted in the physics of the involved phenomena, and also its Finite Element implemen-

tation, for the simulation of real problems requiring to determine quantitatively the

mechanical response of such a class of materials. Particular attention has been paid

to the rate-dependent response of polymers, as well as to the chains failure (damage

mechanism); the mixing with a fluid phase inducing the swelling of the material and

the presence of the so-called mechanophore molecules - inducing mechanical effects to

the network - has also been taken into account. For each of the above listed features, a

detailed explanation is provided and the proposed theoretical model is illustrated; more-

over, numerical examples are provided in order to underline the effects of the involved

physical parameters and to prove the reliability of the proposed solution. Subsequently,

the Finite Element implementation of the proposed theoretical model is illustrated

and some numerical parametric tests are illustrated. Finally, some real experimental

cases are presented and the mechanical response is numerically simulated through the

developed theory, implemented in a nonlinear Finite Element code.





SOMMARIO

Lo sviluppo di una formulazione teorica basata su concetti fisici e di un idoneo

modello numerico risulta particolarmente necessaria per lo studio della risposta

meccanica di materiali polimerici avanzati, utilizzati oggigiorno in un gran

numero di applicazioni pratiche. La valutazione dello stato energetico dei polimeri - ot-

tenuta mediante la descrizione della configurazione delle catene polimeriche - consente

di modellare il materiale tenendo conto dei principali fenomeni coinvolti (dipendenza

dal tempo, danno, rigonfiamento, ecc.). Tale approccio risulta particolarmente adatto

per lo sviluppo di un modello continuo, facilmente implementabile in una formulazione

agli Elementi Finiti. In letteratura sono disponibili diversi modelli che tengono conto

di alcuni dei predetti fenomeni; tuttavia un approccio globale basato sulla fisica dei

fenomeni coinvolti non risulta ancora disponibile, nonostante risulti assolutamente

necessario per lo sviluppo di materiali polimerici innovativi, come i cosiddetti polimeri

«responsivi».

Scopo della presente tesi è quello di sviluppare una formulazione teorica, fondata

sulla fisica dei meccanismi alla microscala, e la sua implementazione in un codice agli

Elementi Finiti, finalizzato alla simulazione di problemi reali che richiedano lo studio

quantitativo della risposta meccanica di tali materiali. Una particolare attenzione

è stata posta alla modellazione del comportamento viscoelastico dei polimeri ed ai

meccanismi di danneggiamento derivanti dalla rottura delle catene polimeriche. La

formulazione proposta tiene inoltre conto della possibile presenza di un fluido che inter-

agisce col polimero e ne provoca il rigonfiamento, così come della presenza di molecole

sensibili a stimoli esterni che provocano effetti meccanici rilevabili sul polimero stesso.

Per ciascuno dei predetti fenomeni viene fornita un’illustrazione dettagliata del modello

teorico proposto. Sono inoltre riportati alcuni esempi numerici finalizzati ad evidenziare

gli effetti sulla risposta meccanica dei principali parametri fisici coinvolti e dimostrare

l’efficacia del modello proposto. Viene inoltre illustrata l’implementazione agli Elementi

Finiti del modello teorico sviluppato e vengono riportati i risultati di alcuni esempi

parametrici significativi. Vengono infine presentati i risultati di alcuni test sperimentali

condotti su materiali viscoelastici e su materiali responsivi; i risultati sperimentali sono

confrontati con quanto ottenuto mediante le simulazioni numeriche ottenute tramite la

teoria sviluppata, implementata in un codice non lineare agli Elementi Finiti.
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NOMENCLATURE

B0, B reference and current configuration of a body, respectively
b, bi j left Cauchy-Green deformation tensor
b length of a Kuhn’s segment
C, Ci j right Cauchy-Green deformation tensor
Cs, cs solvent concentration in the reference and current configuration, respec-

tively
CA, CD frequency factors for the mechanophores activation and deactivation, res-

pectively
D global nodal displacement vector
D damage
D dissipated power
E, E i j Green-Lagrange strain tensor
Eb stiffness of the chemical bond between two Kuhn’s segments
e, e i j Euler-Almansi strain tensor
F, Fi j deformation gradient tensor
f, f i force vector in a polymer chain
G functional
G, G i body force vector in the reference configuration
g, g i body force vector in the current configuration
h, h fraction of active mechanophores and network’s average value, respectively
I identity tensor
J volume ratio
Jsw volume ratio related to the mechanophores activation
K global stiffness matrix
ka, kd dynamic cross-links activation and deactivation rate, respectively
kA, kD mechanophores activation and deactivation rate, respectively
kB Boltzmann constant, kB = 1.38 ·10−23 J/K
L, L i j velocity gradient tensor
L , L −1 Langevin function and its inverse, respectively
N number of Kuhn’s segment in a polymer chain
n number of polymer chains per unit volume
na number of active polymer chains per unit volume
nµ number of polymeric chains per unit volume evaluated from the shear

modulus
p hydrostatic pressure
P, Pi j first Piola-Kirchhoff stress tensor
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R Rayleigh dissipation function
R global unbalanced nodal forces vector
r0, r0 i mean square end-to-end vector
r, r i end-to-end vector in the current configuration
R dissipated power due to the polymer-solvent interaction
S, Si j second Piola-Kirchhoff stress tensor
t time
T absolute temperature
U, Ui j stretch tensor
u, ui displacement vector
Vs molar volume of solvent
W work
w bond strength
X, X i position vector in the reference configuration
x, xi position vector in the current configuration

αsw volume fraction of mechanophores
∆GA, ∆GD Gibbs energy barriers for activation and deactivation reac-

tions, respectively
∆S entropy variation
δi j Kronecker’s delta
δssw mechanophore size change
ε, εi j Hencky strain tensor
ζ friction-like parameter of the polymer-solvent interaction
η viscous-like unfolding parameter
λ stretch
λb stretch of a Kuhn’s segment
µ shear modulus
Π potential energy
ρ, ρ0, ρ0 current, reference and initial Chain Configuration Density

Function (CCDF), respectively
σ, σi j Cauchy stress tensor
ϕ, ϕ0, ϕ0 current, reference and initial normalized Chain Configuration

Density Function (CCDF), respectively
χ Flory-Huggins mixing parameter
ψ free energy of a single polymer chain
ψb free energy related to the stretch of a Kuhn’s segment
ψsw free energy related to the mechanophore activation
Ψ free energy density of a polymer network
Ψmix mixing free energy density
ω f failure rate
Ω, Ω0 current and reference configuration space, respectively
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1
INTRODUCTION

Polymers and polymer-like materials have known a huge diffusion in the last

decades in many advanced and every-days application fields. Since their me-

chanical behavior can be usefully employed to describe the response of quite

different materials - such as soft tissues and biological matters - the development of a

comprehensive mechanical model, enabling to quantify their response under mechani-

cal loading is quite desirable. A physics-based model, accounting for the main involved

phenomena (entropic-governed response, damage, chains unentanglement, dynamic

bond and bond exchange, swelling, etc.), allows to model and predict the response

of existing polymer-like materials and to design new ones, according to the desired

properties or performances.

Motivation of the work

The aim of the present work is to develop a model capable of capturing the mechanical

response of polymers and polymer-like materials, by accounting for the main physical

involved phenomena.

We consider the basic entropic nature of this class of materials, as well as the main

aspects that enter into the scene when a real material is stretched: rate-dependent

phenomena, damage mechanisms and failure of chains, disentanglement effects and

1



CHAPTER 1. INTRODUCTION

fluid uptake (swelling), typically occurring in polymers having a good affinity with

a fluid (gels). Moreover, dealing with advanced materials – typically identified as

«functional» or «stimuli-responsive» polymers – we account for the presence of stimuli-

responsive molecules inserted into the polymer network; such molecules provide a

mechanical detectable effect at the mesoscale level, leading to a so-called responsive

material.

A physics-based model – based on the general idea to describe the polymer’s mechan-

ical response through the evolution of its chains network configuration – is proposed.

It has the ability to consider all the above mentioned phenomena, whose effects are

accounted for through their influence on the network configuration and chains force.

Finally, the theoretical model has been implemented in a finite element (FE) code and

some numerical simulations have been performed.

Outline of the thesis

The thesis is organized as follows.

Chapter 2 presents a short introduction on the mechanics of polymeric materials,

illustrating the main physical aspects involved and the most diffused literature

models.

Chapter 3 deals with the illustration of the basic concept of the proposed model: the

idea of updating the state of the material through the update of the network’s

chains configuration is presented in various cases, from the purely elastic network

deformation to the case of polymers with physical bonds, which enables the so-

called dynamic crosslinking (i.e. the spontaneous material re-arrangement at the

microscale), up to the unfolding and the chains failure phenomena.

Chapter 4 considers the mechanics of polymers with embedded switchable molecules

(also known as mechanophores), whose activation can be triggered by both chem-

ical or mechanical actions; since the case of a chemical stimulus is typically

associated to the presence of a fluid phase carrying the chemical agent, the

swelling mechanism has also been accounted for. At the end of each chapter, some

representative examples are presented and discussed.

Chapter 5 discusses the main aspects of the numerical implementation of the above

proposed physics-based model into a FE code. Starting from the strong form of the

2



governing equations, the weak form is derived and the matrix-based formulation

of the resulting FE is obtained; finally, some parametric examples are presented

and illustrated.

Chapter 6 presents some numerical tests performed on real elements and the com-

parison with experimental results is discussed.
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2
INTRODUCTION TO THE MECHANICS OF POLYMERIC

MATERIALS

Polymers are one of the most diffused kind of substances in modern world. Sev-

eral billions of tons of industrial goods made of materials which share a single

chemical property - the high molecular weight obtained through repeating

structural units - have been produced since 1950s [60]. Artificial materials such as

plastics are basically made by polymers and proper additives. This simple and effective

structure is widespread in Nature: examples are DNA and proteins, which are made of

large size chains formed by the covalent union of various monomer units.

The ubiquitous use of plastic changed the costumes and the economy in the second

half of the 20th century. On the other hand, plastics represent a great part of the waste

produced in the world, which uncontrolled release in the environment causes huge

pollution problems, such as the marine garbage patches [42].

Elastomers (or rubber) were firstly mentioned in 1516 in the book «De Orbe Nuovo»

by Pietro Martire d’Anghiera and were a natural rubber obtained from the tree Heveea

Brasiliensis. The word «polymer» was firstly used in 1833 by Jons Jacob Berzelius. In

his studies, he discovered that two substances may have the same chemical composition

and different molecular weight. In the late XIX century, August Kekulé, suggested

that natural organic substances, like proteins, starch and cellulose, may consist of

very long chains, and also derive their special properties from this structure. A great

5



CHAPTER 2. INTRODUCTION TO THE MECHANICS OF POLYMERIC MATERIALS

progress in polymer science was due to Hermann Staudinger, that demonstrated that

polymerization process lead to long chains of covalently bonded monomers [135]. The

large-scale industrial production of plastics, fibers and elastomers for low-cost goods,

and also for engineering applications, dramatically increased after World War II [51].

Polymer science boasts seven Nobel prizes, six of them in Chemistry and one

in Physics. The chemists were: Staudinger (1953), Natta and Ziegler (1963), Flory

(1974), MacDiarmid, Heeger and Shirakawa (2000), Fenn, Tanaka and Wüthrich (2002),

Grubbs, Schrock, Chauvin (2005); the physician was de Gennes in 1991.

The great interest in the field of polymer chemistry is confirmed by the number

of international journals devoted to this issue, such as: Progress in Polymer Science,

Polymer Reviews, Macromolecules, Polymer Chemistry, Polymer, European Polymer

Journal, Polymer Degradation and Stability, Journal of Polymer Science, Reactive and

Functional Polymers, Polymer Testing, Polymer Journal.

Papers about polymer physics, and in particular related to the mechanical aspects,

can be found in journals devoted to mechanics of materials, such as: Nature Materials,

Materials Science and Engineering, Advanced Materials, Materials Today, Materials

Horizons, International Journal of Plasticity, International Materials Reviews, Journal

of the Mechanics and Physics of Solids.

On the other hand, journals traditionally devoted to the mechanics of material

often report researches dealing with such a class of materials.

2.1 Literature review on engineering applications of
polymeric materials

Polymeric materials are widely used in our everyday life, but applications in new fields

are constantly explored by researchers: for example, polymer-based biomaterials are

used for implants and medical devices [8]; polymer membranes are used to separate

gases, such as hydrogen and carbon dioxide from natural gas, or to desalinize seawater

and to clean dirty water [116]; electroactive polymers are promising materials for

actuators, sensors or soft robots [127]; polymers can be also used for manifacturing

deformable solid batteries [159]. Futhermore, polymeric materials have also noticeable

properties in the fields of fracture and contact mechanics, because of the large defor-

mations that they can reach [27] and the high fracture toughness that, often, exhibit

[25]. The stress field near to a geometrical discontinuity, e.g. due to a crack or to a

6



2.1. LITERATURE REVIEW ON ENGINEERING APPLICATIONS OF POLYMERIC
MATERIALS

contact surface, is deeply different to the stress field observed in more stiff materials,

like metals or ceramics [98]. This peculiar stress field is the key to understand the

effectiveness of an elastomeric sealant [18], as well as the high defect resistance of

elastomeric thin plates in presence of defects [24, 28, 29] and to study the fracture

behavior occurring during cutting processes [133, 134].

Polymers can be classified in several ways. A common classification divides polymers

into three main groups: thermoplastics, thermosets and elastomers.

Thermoplastics. The main property of a thermoplastic polymer is to become mal-

leable above a certain temperature and to solidify upon cooling. Thermoplastics have

long linear or branched chains, jointed together by intermolecular bonds without

cross-links. The plasticity of these materials increases with temperature because heat

promotes the rupture of the weak intermolecular bonds. Thermoplastics are normally

fabricated by the simultaneous application of heat and pressure; the processes are

totally reversible and may be repeated, so thermoplasts can be easily recycled.

Among the thermoplastics we can mention: Polyacetals, used for manifacturing of

mechanical components because of their good strenght and stiffness; Acrylics, used

for lenses and displays because of their tunable optical properties; Fluoroplastics,

which have unique non-adhesive and low friction properties; Aramids, used as rein-

forcing fibers and bulletproof vests; Polycarbonate, used for helmets and wind shields;

Polyethylene, ubiquitously used because of its low cost; Polystyrene, Polyvinyl Chloride,

etc.

Thermosets. Thermosetting plastics are polymeric materials obtained through irre-

versibly curing from a soft state to a stronger form. They are composed of long chains

strongly cross-linked to one another to form a rigid 3D network structure. Heat is

required, during the curing process, to permanently set the plastic. Thermosets cannot

be recycled and are, usually, more brittle than thermoplastics but they often possess

better mechanical, thermal, chemical and electrical resistance and better dimensional

stability than thermoplastics.

Examples of thermosets are: Epoxies, which posses excellent mechanical and ad-

hesive properties and are widely used as sealants or as matrix for fiber reinforced

structural components; Polyesters, used in car chassis, often with the addition of rein-

forcing fibers; Polyurethanes, one of the largest classes of polymers, with mechanical

properties that can be tailored over a wide range; Silicones, Phenolics, Polyimides, etc.

7
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Elastomers. Also known as rubbers, these polymers, at room temperature, can

undergo large elongations under load and return to their original shape when the load is

released. As the termosets, elastomers usually require a curing process (vulcanization)

to form crosslinks, but the low linking degree lets high freedom of motion to the chains,

so these materials can withstand elastically high deformations.

Examples of elastomers are: Polybutadiene rubber, which is the main component

of tires; Chloroprene rubber, used for gaskets, hoses, etc.; Cloroprene, commercially

known as Neoprene; Silicone rubber, Polyisoprene, Nitrile rubber, etc.

2.2 Literature review on mechanical models for
polymers

2.2.1 Nonlinear solid mechanics

In this section, we briefly recall some basis of the nonlinear theory of continuum

mechanics. A comprehensive review of these topics can be found in [70].

Configurations. Let us consider a body which, at a reference time t0, occupies a

region B0 of the space; thereafter, some deformations occur on the body, so that, at

current time t, it occupies a region B. A material point of the body has coordinates X
in the reference configuration, while in the current configuration it occupies the spatial

point identified by the position vector x.

Adopting the Lagrangian (or material) description, the kinematic and static quan-

tities are referred to the reference configuration, while in the Eulerian (or spatial)

description, all these quantities are referred to the current deformed configuration.

Kinematics. The deformation gradient F is a second-order tensor which linearly

transforms a material distance vector dX into the corresponding spatial distance vector,

dx=FdX. Using this definition, it can be expressed as

Fi j = ∂xi

∂X j
= xi, j = ui, j +δi j or F=Gradu+I (2.1)

where the displacement field u is defined, in the Lagrangian framework, as u : B0 ×
T → R3 | u(X, t) = x(X, t)−X(t0), being T the time domain. The determinant of the

deformation gradient tensor, J = detF > 0, indicates the volume change associated

8
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to the deformation F of an infinitesimal material element, i.e. it represents the ratio

between the current and the reference volume of the element. The deformation gradient

can be decomposed into its volumetric part Fvol and its deviatoric part Fdev using

the multiplicative decomposition, F=Fvol Fdev, being Fvol = J1/3 I and Fdev = J−1/3 F,

where I is the identity tensor.

The material time derivative of the deformation gradient is

Ḟi j = ∂ẋi

∂X j
= ∂ẋi

∂xk

∂xk

∂X j
= L ikFk j or Ḟ=LF (2.2)

where the tensor L is the spatial velocity gradient, namely L i j = ∂ẋi/∂x j. It is worth

mentioning that the trace of L is the divergence of the velocity field; recalling the

continuity equation, if the material is incompressible the divergence of the velocity

vanishes, i.e. trL= L ii = ẋi,i = 0.

The deformation gradient can be also decomposed into the product of the stretch

tensor U and the rotation tensor R by the so-called polar decomposition, F=RU. The

principal components of the material tensor U are the eigenvalues λ1,λ2,λ3 (called

principal stretches) that satisfy UN = λN for the set of eigenvectors N(1),N(2),N(3),

which form the principal reference system.

The right Cauchy-Green deformation tensor C=FTF represents a simpler way to

compute the pure stretching part of F; in fact, using the polar decomposition, it results

C=FTF=UTRTR U=U2, because RT =R−1 and UT =U. The spectral decomposition

of the right Cauchy-Green tensor is [38]

C=U2 =
3∑

k=1
λ2

k N(k) ⊗N(k) (2.3)

The principal stretches λ1, λ2 and λ3 are the square roots of the eigenvalues of C.

Useful quantities are the three invariants of the right Cauchy-Green tensor, namely

I1 = trC= Cii =λ2
1 +λ2

2 +λ2
3

I2 = 1
2

[
(trC)2 − tr(C2)

]= 1
2

(
C2

ii −Ci jCi j
)=λ2

1λ
2
2 +λ2

1λ
2
3 +λ2

2λ
2
3

I3 = J2 = detC=λ2
1λ

2
2λ

2
3

(2.4)

Strain measures. The definition of strain is not unique, so that different measures

could be defined. A family of strain measures is [69, 129]

ε=


1
n

(Un −I) if n 6= 0

lnU if n = 0
(2.5)

9
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setting n =−2 we obtain the Euler-Almansi strain tensor, e = (I−U−2)/2, with n = 2

we have the Green-Lagrange strain tensor E= (C−I)/2, while with n = 0 we have the

Hencky true strain tensor ε= lnU.

Stress measures. In the following discussion we mainly use three measures of

stress: the Cauchy stress tensor σ (also called true stress), the first Piola-Kirchhoff

stress tensor P (also called nominal stress) and the second Piola-Kirchhoff stress tensor

S. These three quantities are related each other through [70, cap. 3]

σ= J−1 PFT = J−1 FSFT , P= JσF−T =FS , S= J F−1σF−T =F−1 P (2.6)

The Cauchy stress is referred to the current deformed configuration, while the first and

second Piola-Kirchhoff stresses are referred to the initial undeformed configuration.

Among them, the first Piola-Kirchhoff stress tensor results to be not-symmetric.

Hyperelastic material. A material is defined Cauchy-elastic if there exists a biu-

nique correspondence between the stress and the deformation state, i.e. if the stress

field depends only on the state of deformation and not on the deformation history.

As a subclass of elastic materials, a material is called hyperelastic if a scalar-valued

function of the deformations, Ψ=Ψ(F), whose derivatives are the stresses, exists. Such

a function is called free energy, or strain energy density; physically it represents the

elastic energy per unit volume stored in the material. The existence of solutions of the

mechanical problem is based on the condition of convexity of the strain-energy function,

which requires, beyond others, Ψ(F)≥ 0 and Ψ(I)= 0 [6, 37].

For an hyperelastic material, the stress tensors can be obtained in terms of deriva-

tives of the free energy function as

P= ∂Ψ(F)
∂F

, S= 2
∂Ψ(C)
∂C

, σ= 2J−1 ∂Ψ(b)
∂b

b (2.7)

where b=FFT is the left Cauchy-Green deformation tensor. For an isotropic material,

the stress can be also written in terms of the strain invariants. Expressing the free

energy as Ψ=Ψ(I1, I2, I3) we have [70, §6.2], [125]

S= 2
[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I− ∂Ψ

∂I2
C+ I3

∂Ψ

∂I3
C−1

]
(2.8)

σ= 2J−1
[(

I2
∂Ψ

∂I2
+ I3

∂Ψ

∂I3

)
I+ ∂Ψ

∂I1
b− I3

∂Ψ

∂I2
b−1

]
(2.9)
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The stress can be also written in terms of principal stretches; expressingΨ=Ψ(λ1,λ2,λ3)

we have

Pi = ∂Ψ

∂λi
, Si = 1

λi

∂Ψ

∂λi
, σi = J−1λi

∂Ψ

∂λi
(2.10)

The spectral decomposition of the stress tensors shows that their principal directions

are coaxial with the principal directions of the deformation gradient.

Incompressible Hyperelastic Materials. The incompressibility condition, J =
detF= 1, may be forced by introducing a Lagrange multiplier p into the strain energy;

the amended form becomes Ψ=Ψ(F)− p(J−1). Physically p represents an hydrostatic

pressure acting on the material point. The constitutive relations (2.7), in this case

becomes

P= ∂Ψ(F)
∂F

− pF−T , S= 2
∂Ψ(C)
∂C

− pC−1 , σ= ∂Ψ(F)
∂F

FT − pI (2.11)

Furthermore, the relations (2.8) become

S= 2
(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I−2

∂Ψ

∂I2
C− pC−1 , σ=−pI+2

∂Ψ

∂I1
b−2

∂Ψ

∂I2
b−1 (2.12)

and the (2.10) become

Pi = ∂Ψ

∂λi
−λ−1

i p , Si =λ−1
i
∂Ψ

∂λi
−λ−2

i p , σi =λi
∂Ψ

∂λi
− p (2.13)

Such a hydrostatic pressure can be determined from the equilibrium equation.

Mechanical problem. The mechanical problem to be solved has three independent

unknown fields: displacement, stretch (or strain) and stress. The three equations

required to find the solution are: the equilibrium equation, a proper constitutive

relation and the compatibility equation, beyond the essential and natural boundary

condition.

In the Lagrangian framework there relations are

DivP+G= 0 , P= ∂Ψ

∂F
, F=Gradu+I , in B0 (2.14)

u=u in ∂B0 u , P N=Text in ∂B0σ , with ∂B0 = ∂B0 u ∪∂B0σ

(2.15)

where G are the body force, u are the displacements applied to the boundary region

∂B0 u, N are the unit vectors normal to the surface and Text are the stresses applied to

the boundary region ∂B0σ.
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On the other hand, in the Eulerian framework the above equations become

divσ+g= 0 , σ= 2J−1 ∂Ψ

∂b
b , b=FFT in B (2.16)

u=u in ∂Bu , σn= text in ∂Bσ , with ∂B = ∂Bu ∪∂Bσ (2.17)

2.3 Hyperelastic constitutive models

Many hyperelastic constitutive models, based on different expressions of the free energy,

are available in literaure [1, 16, 67, 103, 122]. These model can be divided into three

classes: phenomenologicals, experimentals and physics-based.

Phenomenological models. In this class of models the strain energy Ψ is estab-

lished a priori using arbitrary mathematical functions. Many models adopt functions

based on series expansion; a good example is the Rivlin’s power series of the strain

invariants [124]

Ψ=
∞∑

i, j=0
Ci j(I1 −3)i(I2 −3) j , C00 = 0 (2.18)

where Ci j are material parameters. Examples of phenomenologial models can be found

in Mooney [108], Biderman [12], Carmichael et al. [34], Ogden [113], James et al. [75],

Tobisch [139], Shariff [131]. These models require the knowledge of various parameters,

often difficult to be determined and not always with a clear physical meaning.

Experimentally motivated models. In this class of models the strain energy func-

tion is determined by fitting experimental data with proper functions. An example is

the Gent’s model [58]

Ψ=−E
6

Jm ln
(
1− J1

Jm

)
(2.19)

where E is the elastic modulus for small deformations, J1 = I1−3 is a stretch invariant

and Jm is the experimentally measured limit value of J1. Such a model implies the

existence of a limit stretch due to a singularity of the stress for J1 = Jm.

Models developed to fit experimental data can be found in Rivlin and Saunders

[126], Gent and Thomas [59], Klingbell and Shield [84], Hart-Smith [67], Valanis and

Landel [147], Yeoh and Fleming [157, 158].
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Physics-based models. In this class of models the strain energy arises from the

statistical thermodynamic of the polymer chains network. Some authors focuse on

the geometric pattern of an elementary network cell, such as the neo-Hookean [143],

the 3-chains [76], the 4-chains [55, 151], the 8-chains [3] or the full-network models

[107, 138, 146, 156]. Other models attempt to reproduce the chemo-physical properties

of real chains, like in Isihara et al. [73], or the Slip-Link [7], the van der Waals [81] and

the constrained junctions [54] model. Other models are based on topological constraints

which limit the chain’s freedom, such as the tube [50] and the extended-tube models

[79].

2.3.1 Polymer chain mechanics

Several relations are available in literature to model the force vs. extension of a single

polymer chain. A widely adopted model is the freely jointed chain [65, 86], in which the

chain is replaced by a sequence of rigid segments of constant length; each segment can

rotate freely around the junction point with respect to the subsequent segment.

Other Authors limit the chain’s degrees of freedom by considering the internal

constraints arising from the chemical properties of the molecular’s bond, such as in the

freely-rotating model [5], or in the rotational isomeric state model [4]. Other models

consider the «excluded volume» in order to avoid self-intersections of the chain [49, 52],

for instance by using the random-walk theory [33].

Chains with non-negligible bending stiffness, such as DNA or proteins, are often

studied with the worm-like chain model [35, 85], in which the chain is seen as a

continuously flexible rod.

In the middle 1980s, the development of experimental techniques based on atomic

force microscopy [13] opened the opportunity to directly measure the force vs. extension

curve of a single polymer chain. For instance, the experimental campaign carried out

by Ortiz [114] pointed out that many biological polymers can be described by the freely

jointed chain model or by the worm-like chain model for strains smaller than the

full stretch limit. When the molecule’s conformation approaches its contour length,

the elastic contribution to the mechanical behavior becomes important and must be

considered. The experiments carried out by Bemis et al. [10], Cocco et al. [41], Rief

et al. [123], Marszalek et al. [106], Liphardt et al. [97] showed the J-shaped form of

the force vs. extension relation for many polymers. Furthermore, they observed that

biological polymers are often in a folded state when they are stress free. The presence
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of an external force induces the unfolding of the molecule, highlighted by sharp drops

of the measured force during the experiments carried out by controlling the applied

displacement.

2.3.2 Thermodynamic definition of the free energy

The free energy Ψ is a thermodynamic quantity defined as

Ψ
.=U −TS (2.20)

where U is the internal energy, T is the absolute temperature and S is the entropy.

From this definition, the variation of the free energy is dΨ= dU −TdS−SdT. If the

deformation process takes place at constant temperature (isothermal process) this

relation reduces to dΨ= dU −TdS.

The first law of thermodynamics states that the variation of internal energy dU

during a process is dU = dQ+dW , where dQ is the heat flux and dW the infinitesimal

work done by the external forces. Furthermore, the second law of thermodynamics

defines the exchange of heat dQ for a reversible process as dQ = TdS. Using these

two founding laws, for an elastic deformation taking place at constant temperature, it

results dΨ= dW, which implies that the variation of the free energy is equal to the

work done by the applied forces.

Furthermore, if the system is closed, its internal energy is constant, namely dU = 0,

from which the free energy variation is [144, §1.2.1]

dΨ= dW =−TdS (2.21)

By integrating both sides of the above relation from the initial and final thermodynamic

states, it results Ψ=−TS.

Let us consider a polymeric chain whose ends are at the distance r. We indicate the

free energy of a single polymer chain with the lowercase symbol ψ. If we apply a force

f to that chain, which modifies the distance between the chain’s ends by the quantity

dr, we produce a work dW = f dr; thus, that force can be related with the free energy

through

f = ∂ψ

∂r
=−T

∂S
∂r

(2.22)

The above expression states that a linear relation between mechanical force and the

entropy variation exists. The role of entropy marks an essential difference between
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rubber elasticity and the mechanical behavior of other materials, like metals, ceramics,

rocks, etc. In fact, materials with crystalline structure are characterized by an enthalpic

elasticity, which means that external work increases the enthalpy of the crystal because

it moves the atoms from their position of minimum energy. On the other hand, rubbers

are characterized by an entropic elasticity, because the external work produces mainly

a reduction of the entropy of the network.

According to the statistical theory developed by Boltzmann, the variation of entropy

∆S of a thermodynamic system is given by [53]

∆S = kB ln
Ω

Ω0
(2.23)

where, in our case, Ω0 is the number of possible conformations of the chain in the

reference configuration, while Ω is the same number in the current configuration.

We consider, as reference configuration, a free chain without restraints or applied

forces, and as current configuration a chain whose extremities are forced, by some

external actions, to have a fixed distance. The presence of external actions reduces

the freedom of the chain, so it results Ω<Ω0 for any deformation process. It means

that the reference configuration is the state of maximum entropy and any deformation

reduces the entropy of the chain up to the lower (theoretical) limit of fully stretched

chain, in which Ω= 1. Furthermore, the ratio Ω/Ω0 can be viewed as the probability

distribution of the chain’s conformations.

2.3.3 Freely Jointed Chain (FJC)

The polymer chain is modeled as a sequence of N rigid segments with length b [88, 145].

The orientation of each segment is assumed to be independent from the orientation

of the others. The shape of the chain can be assumed to be described by a random

walk of constant length b. The 3D vector between the initial and final point of the

chain is denoted by r and it is called end-to-end distance. The end-to-end distance is

the only parameter that characterizes a molecular conformation (i.e. the shapes, or

arrangements) of a chain.

2.3.3.1 Gaussian statistic

Let us consider a single Kuhn’s segment of length b, which can rotate freely in the

space. The projection of the end-to-end vector b of the segment along a given direction
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has uniform probability distribution with expected value 0 and variance b2/3, with

b = ‖b‖. The end-to-end vector r of a freely jointed chain with N Kuhn’s segments

can be obtained as r = ∑N
i=1 bi. If all vectors bi are independent, the Central Limit

Theorem states that, for N →∞, the distribution of r is normal with expected value

0 and standard deviation b
p

N/3. More specifically, if the initial point of the chain is

fixed in the origin, the probability density that the final point is in the infinitesimal

volume around the point of coordinates r= (rx, r y, rz) is

ϕ(r)= 1
b3

(
3

2πN

)3/2
exp

(
− 3 r2

2Nb2

)
(2.24)

where r = ‖r‖. It can be noted that the probability density has spherical symmetry

and it can be expressed as the product of three independent normal distributions; this

implies that the distribution is isotropic. The probability that the final point of the

chain is on the surface of a sphere of radius r is

ϕs(r)= 1
b3

(
3

2πN

)3/2
exp

(
− 3 r2

2Nb2

)
·4πr2 (2.25)

where 4πr2 is the surface of the sphere. The expected value of this distribution is

r2
0 =

∫ ∞
0 rϕs(r)dr∫ ∞
0 ϕs(r)dr

= Nb2 (2.26)

This is a crucial result of the statistical theory, because it means that in the force-free

state, the most probable conformations of a freely jointed chain are those characterized

by the end-to-end distance r0 = b
p

N, which is also called mean-square distance. All

the possible values of the end-to-end distance can be referred to the mean-square value

as r =λr0, where λ represents the chain’s stretch. When the chain is fully-stretched,

the end-to-end distance reaches the value r = Nb, that is to say λ=p
N, which is the

limit stretch of the chain, assuming that the Kuhn segments are rigid.

Replacing the distribution (2.24) in the definition (2.23), the entropy and the free

energy become

∆S(r)= kB ln
ϕ (r)
ϕ (0)

=−3kBr2

2Nb2 , ψ(r)=−T∆S = 3kBT
2Nb2 r2 (2.27)

where ϕ (0) is the probability density evaluated in r = 0, i.e. in the reference state Ω0.

Finally, the force acting on the chain can be obtained from (2.22) as follows

f = ∂ψ

∂r
=−kBT

ϕ (r)
∂ϕ (r)
∂r

= 3kBT
Nb2 r = 3kBT

b
· λp

N
(2.28)
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where λ= r/r0 is the chain’s stretch w.r.t. the mean-square end-to-end distance r0 =
b
p

N.

This simple linear relationship between stretch and force allows us to make some

observations: 1) in the Gaussian regime, the chain behaves as a linear elastic spring

governed by Hooke’s law; 2) when the chain is unstretched, that is to say when λ= 1,

the force is not zero; 3) the chain’s force is equal to zero if and only if λ= 0. The last

condition is physically impossible for a bulk material, while it has a clearly meaning in

the light of the statistical thermodynamic. The condition λ= 0, or r = 0, corresponds

to the situation in which all the configurations are equally probable, namely for an

isolated chain, such as a chain immersed in a large amount of neutral solvent. 4) The

stretch is always λ≥ 0 and so also the force is always f ≥ 0, thus the chain is always

elongated and it can bear only tensile forces.

2.3.3.2 Non-Gaussian statistic

The use of the Gaussian probability distribution is valid only under the restrictive

assumption of «not too large» extension of the chain, i.e. for stretch up to about 150%

[103]. To overcome this restriction it is necessary to use a different distribution of the

end-to-end distance. The founders of the non-Gaussian theory were Kuhn and Grün in

the early 1940s. In their pioneeristic work [87], they proposed the use of the Langevin

function as the probability distribution. The Langevin function L (x) is defined as

L (x) .= coth(x)− 1
x

(2.29)

In the statistical formulation it is necessary to use the inverse of the above function,

L −1(x), which does not have an explicit mathematical expression. Several approximate

expressions of the function L −1(x) have been proposed [44], such as the Taylor series

expansion

L −1(x)≈ 3x+ 9
5

x3 + 297
175

x5 + 1539
875

x7 + . . . (2.30)

or the one suggested by Jedynak [77], which is more efficient for numerical approxima-

tions

L −1(x)≈ x
3−2.6x+0.7x2

(1− x)(1+0.1x)
(2.31)

L −1(x) is defined in the interval −1< x < 1 and it is a continuous, smooth and mono-

tonically increasing function. In the interval of interest for our problems, i.e. 0≤ x < 1,
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it is always non-negative. The values at the extremities of the interval are L −1(0)= 0

and limx→1 L −1(x)=∞.

Adopting the Langevin statistic distribution implies that the orientation of each

Kuhn segment is influenced by the orientation of the whole chain. The resulting free

energy is [156]

ψ= kBTN
(
λp
N
β+ ln

β

sinhβ

)
, β=L −1

(
λp
N

)
(2.32)

and the force in the chain is

f = kBT
b

β (2.33)

It can be noticed that the above expression of the force can be linearised by adopting

the Taylor series expansion (2.30) arrested to the first term as L −1(x) ≈ 3x; in this

way, the expression (2.28) previously obtained using the Gaussian distribution, can be

recovered.

The force vs. stretch plot of (2.33) is illustrated in fig. 2.1 together with the linear

expression (2.28) and with the outcome of the so-called Extended Freely Jointed Chain

model (EFJC, see §2.3.3.3). It can be observed that the non-Gaussian theory leads to a

finite deformability of the chain, because the chain’s stiffness tends to infinity when

the stretch approaches the limit deformation λ=p
N. Furthermore, the model does not

consider the rupture of the chain, which can thus sustain any tensile load value.

2.3.3.3 Extended Freely Jointed Chain (EFJC)

An interesting improvement of the Freely Jointed Chain model can be obtained by

removing the assumption of rigidity of the Kuhn segments and assuming, instead, that

each segment behaves as an elastic element [102]. The segment’s length is b in the

undeformed configuration and λbb in the current, deformed, configuration, where λb

represents the segment’s stretch. Let us define the enthalpic energy related to the

stretch of a single segment as a function of λb, namely ψb = ψb(λb). Then, the free

energy of a chain made of N elastic segments is

Ψ= Nψb +kBTN
(

λ

λb
p

N
βb + ln

βb

sinhβb

)
, βb =L −1

(
λ

λb
p

N

)
(2.34)

where λ= r/r0 is the chain’s stretch. The chain’s force is given by

f = kBT
bλb

βb (2.35)
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Figure 2.1: Chain force vs. chain stretch curves obtained by using the Gaussian and the
Langevin distribution and the Extended Freely Jointed Chain model.

In this way, the free energy of the chain is decomposed inTO an enthalpic and an

entropic part. For a given chain stretch λ, the enthalpic contribution increases with

λb, while the entropic contribution decreases. The solution value of λb is the one that

fulfills the condition of minimum of the free energy ∂Ψ/∂λb = 0. This condition provides

the supplementary relation
∂ψb

∂λb
= kBTp

N
· λ
λ2

b
βb (2.36)

A possible choice of the function ψb is [102]

ψb =
1
2

Eb ln2λb (2.37)

where Eb has the dimensions of energy and represents the stiffness of the segments.

According to this formulation, the resulting force vs. stretch curve overcomes the

limitation λ<p
N. In fig. 2.1 such a behavior is compared to the one of a Gaussian and

a Langevin Freely Jointed Chain.

2.3.4 Networks of freely jointed chains

Let us consider a network obtained by cross-linking a large number of polymer chains.

To incorporate the individual chain statistics into a constitutive framework, it is

necessary to have a model that relates the chain stretch of individual chains to the
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applied deformation. Among the models available in literature, we are interested in

those where the whole network is seen as the repetition of an elementary cell, such as

the 3-chains [16], the 4-chains (or Flory-Rehner) [55, 151], the 8-chains [3] and the full

network model [156]. In these models, the elastic behavior of the network is governed

by the spatial orientation of the chains.

The simplest kind of cell is made of three freely jointed chains in Gaussian region,

lying parallel to the local principal axis [143]. Such a network contains n chains per

unit volume, each one made of N rigid segments of equal length b. The deformation

is assumed to be affine, that is to say the deformation of a end-to-end vector is equal

to the deformation of the continuum medium in which the chain is embedded in, i.e.

r=Fr0. Under these assumptions, the free energy function is

Ψ= 1
2

nkBT
(
λ2

1 +λ2
2 +λ2

3 −3
)

(2.38)

where λ1, λ2, λ3 are the three principal stretches of the unit cell. The above expression

corresponds to the so-called neo-Hookean model Ψ = µ (I1 −3)/2; the comparison of

these models provides a microscopic interpretation of the shear modulus µ = nkBT,

which is proportional to the number of chains (and also of cross-links) and to the energy

kBT. More general expressions for the elastic constants can be found by considering

that the network’s cross-links are not in fixed positions, but they can fluctuate around

the most probable position [76].

2.3.4.1 Network with non-uniform chain’s weight

Since the crosslinking process cannot be controlled precisely, the formation of network

whose chains have the same contour length (a so-called monodisperse network) is

not possible. More often, the network is made of chains with random contour length

(polydisperse network). Molecular dynamic simulations of the cross-linking process,

reported in [63], showed that the number of cross-links per chain follows a Gaussian

distribution, while the contour length between two cross-links follows an exponential

distribution law. Using the freely jointed chain model, such a distribution can be written

[137]

P(N)= 1
N

exp
(
− N

Navg

)
(2.39)

where P(N) is the probability to find a chain formed by N Kuhn segments while Navg

is the average number of segments per chain.
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Sometimes the presence of multiple networks is a desired feature to improve the

mechanical properties of the material [62, 105, 153]. If the polymer is made of a double

network with short and long chains, the external loads are bear mainly by the first

network and, only after the rupture of the shortest chains, the stress is transferred to

the longest ones.

The network’s polydispersity leads to the surprising conclusion that, even in a

stress-free state, the chains’ stretch and force are not homogeneous. The complexity of

the internal stress state of the network is highlighted in [150], in which the Authors

considered a network where the chains are linked together in series, thus, under a

macroscopic stretch, they undergo the same force but different stretch. Under this

assumption, they define the number of segments in a chain belonging to an equivalent

monodisperse network, which represents the real polydisperse one, as follow

Neq =
( ∑∞

N=1 P(N)N∑∞
N=1 P(N)

p
N

)1/2

(2.40)

where P(N) is the fraction number of chain with N segments, such that
∑∞

N=1 P(N)= 1.

The force in the hybrid representative chain is given by a relation similar to (2.33)

f = kBT
b

L −1

(
λnet√

Neq

)
(2.41)

where λnet is the macroscopic stretch of the whole hybrid chain. The Authors conclude

that the stretch in a chain with N segments is related to the macroscopic stretch

through the relation
λNp

N
= λnet√

Neq
(2.42)

In the reference, stress-free state, the stretch of a chain with N segments is λ0
N =√

N/Neq, thus short chains (N < Neq) have λ0
N < 1, while long chains (N > Neq) have

λ0
N > 1.

2.4 Polymer swelling and gel dynamics

When a polymer with a good fluid affinity is placed in contact with a fluid, the small

molecules of the fluid migrate inside the network, which becomes a solution called

gel, made of a solid solute and a fluid solvent [48]. Fluid absorption increases the

volume of the polymer; however the gel is still incompressible because it can change its
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volume only by absorbing solvent, but not because of mechanical actions. Rubber can

be regarded as a special case of a dry gel in which there is no solvent [47]. The amount

of fluid absorbed by the polymer depends on the solid-fluid affinity and by the stress

state of the network, so the mechanical deformation and the fluid motion are coupled.

The free energy of the gel depends on the deformation state of the network and on

the amount of fluid inside the network itself. In polymer physics, a common choice to

quantify the presence of solvent is the use of the volume fraction of polymer in the gel

(see e.g. [48]), that is, because of its mechanical incompressibility, equal to J−1, where

J = detF is the volume ratio. In the present work, we adopt the deformation gradient

F and the solvent concentration as state parameter. To a nominal concentration equal

to Cs in the reference configuration, corresponds a true concentration cs = Cs/J in the

current configuration.

Following Flory and Rehner [56], the free energy of the gel can be written as the

sum of the free energy of the dry polymer Ψ(F) and the free energy of mixing Ψmix(Cs).

A common form of the mixing energy is [104]

Ψmix(Cs)=−kBT
Vs

[
VsCs ln

(
1+ 1

VsCs

)
+ χ

1+VsCs

]
(2.43)

where Vs is the volume of the solvent molecules and χ is called Flory-Huggins mixing

parameter; it measures the chemical dis-affinity between polymer and solvent [117].

The potential energy, i.e. the Lagrangian of the coupled polymer-solvent system can

be written as

Π(F,Cs)=Ψ(F)+Ψmix(Cs)+ p(1+VsCs − J) (2.44)

where p is the Lagrange multiplier which enforces the condition J = detF= 1+VsCs

stating that the material can change its volume only by absorbing fluid. Physically, p

represents the osmotic pressure exerted by the fluid on the network.

The linear momentum balance requires the conditions Div P = 0 in the bulk and

P ·N = Pext on the boundary, being P and Pext the internal and the applied stress,

respectively, while N is the unit vector normal to the boundary of the undeformed body.

Moreover, the solvent’s balance requires the conditions Div Q= Ċs in the bulk and

Q ·N=Qext on the boundary, being Q the vector flow of solvent and Qext the flow across

the boundary, respectively.

The nominal stress can be obtained by deriving the potential Π w.r.t. the gradient

tensor, so P= ∂Π/∂F= ∂Ψ/∂F+ pJF−T , while the chemical potential can be obtained

by deriving Π w.r.t. the concentration, H = ∂Π/∂Cs = ∂Ψmix/∂Cs +Vs p. Such chemical
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potential H can be viewed as the agent which moves the solvent, so H dCs is the work

related to the mixing of an infinitesimal amount of solvent within the polymer [15].

Following the theory developed by Hong et al. [71], the nominal flux Q i in the

reference configuration can be related to the chemical potential by

Q i =−Mik
∂H
∂Xk

(2.45)

where Mik is a symmetric and positive-definite tensor called mobility tensor which

relates the flux to the gradient of the chemical potential. The above relations have

the same structure of the well-known Fick’s law of diffusion. Since the mobility tensor

depends on the stretch, the solvent diffusion usually is nonlinear and non-isotropic.

Using (2.45), the balance of solvent in the reference configuration becomes

∂Cs

∂t
=−∂Qk

∂Xk
=− ∂

∂Xk

(
Mk j

∂H
∂X j

)
(2.46)

It is worth mentioning that the mobility tensor generally depends on F, as shown in

[71], and so the flux exhibits an anisotropy which depends on the applied stretch.

A different theory was proposed earlier by Tanaka et al. [136]. The authors assume

that the kinetic energy of the fluid molecules will be dissipated during the swelling

process by viscous forces. The dissipated power R, due to such a friction-like effect, can

be written in a Rayleigh form as

R = 1
2
ζĊ2

s (2.47)

where ζ is a dissipation factor. The Lagrange equation for a non-conservative systems

provides the evolution of the concentration [47]

∂Π

∂Cs
=− ∂R

∂Ċs
→ ∂Ψmix

∂Cs
+ pVs =−ζĊs (2.48)

so the balance between the chemical potential and the osmotic pressure provides the

time evolution of the solvent concentration.

2.5 Conclusions

Polymers are among the most diffused materials for industrial and technological appli-

cation and their micromechanical behavior is quite important because it successfully

describes also the response of some tissues and biomaterials. Their structure is made

of many long entangled molecules, each obtained by the repetition of an elementary
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unit, jointed together at discrete points called cross-links, whose density determine the

stiffness of the material.

Synthetic polymers can be roughly subdivided in thermoplastics, thermosets and

elastomers. In particular, thermoplastic – differently by thermoset – are characterized

by temperature recoverable bonds, while elastomers can undergo very large elastic

deformations without losing their mechanical properties.

The description of the mechanical behavior of an elastomeric solid requires the

use of non-linear continuum mechanics theory, accounting for the effects of large

deformations and displacements.

Within this theoretical framework, the mechanics of polymers is typically described

by using a proper hyperelastic constitutive model, which can be derived from phe-

nomenological aspects or, more consistently, through the polymer network’s physics.

The polymer’s elasticity for a not too large deformation regime, is typically ruled by

entropy, rather than by the internal energy.

In this thesis the so-called Freely Jointed Chains model, based on the micromechan-

ical features of the involved physical phenomena, is adopted to obtain the hyperelastic

constitutive relation for a polydisperse network, i.e. for a network made of chains with

different contour length.

Moreover, when a polymer is prone to uptake a fluid (good chemical fluid-polymer

affinity), the two substances mix together in a solution called gel; the mechanical

behavior in such a case must account also for the swelling phenomenon that becomes

fully coupled with the purely mechanical behavior.
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TIME-DEPENDENT RESPONSE OF ELASTOMERIC POLYMERS

Natural and synthetic polymers very often show a time-dependent mechanical

response, such as creep, stress relaxation, self-healing or energy dissipation

due to hysteresis [11, 80]. In the study of biological materials, such as the

human myocardium, skin or others tissues, the viscoelasticity is a crucial aspect

that should be considered in the constitutive model [64, 111]. Furthermore, the time

dependency of the mechanical response of synthetic polymers (such as plastics, rubbers

and asphalts) governs their damping and insulating properties against vibration and

noise, and plays also an important role in the manufacturing process. Moreover, polymer

melts exhibit complex time-dependent behavior, and their response ranges from that

of an elastic solid to that of a viscous fluids depending on the rate of stretching [46].

The deformation velocity influences also the ultimate properties of polymers both in

terms of strain and stress [26]; in fact, slow deformations usually allow the material

to rearrange its internal structure, because the chains tend to align along the loading

directions with a subsequent increase of the deformability and of the resistance of the

material [30].

Modeling such different behaviors can be addressed through the classical linear

models, obtained by combining linear elements such as springs and dashpots. On the

other hand, for many materials, the linear theories are not adequate. Dealing with

nonlinear viscoelasticy, it is necessary to consider the whole deformation history of the
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material from the reference time t = 0 to the current one t. A general form of this class

of constitutive laws is expressed mathematically as

σ(t)=F
[
F(θ)|tθ=0

]
(3.1)

where F is a tensor-valued response functional, θ is a generic time (0≤ θ ≤ t) and the

symbol F(θ)|t
θ=0 indicates that the whole deformation history is considered. Several

forms of the functional F are available in the literature (e.g. see [155]); most of them

can be classified as phenomenological models (see §2.3) because they are based on

mathematical considerations instead of the physical nature of the phenomena involved

in viscoelasticity.

Another common assumption, alternative to (3.1), is to separate the effects of the

deformations from the effects of time with the following relation [80]

σ(F, t)=σ0(F) g(t) with g(t)= g∞+∑
i

g i e−t/τi (3.2)

where τi are the relaxation times and σ0 is the instantaneous response to the stretch

F; the parameters in the dimensionless function g(t) must satisfy the conditions

0< g∞ ≤ 1, 0≤ g i < 1 and g∞+∑
i g i = 1.

The phenomenological models and the models obtained by fitting experimental

data are quickly usable for simulations and they are usually accurate if the material’s

properties and the simulation’s conditions are within the range of the calibration tests.

Unfortunately, these models have not general validity, and their use is limited by the

accuracy of the fitting procedure. Furthermore, such models do not give any information

about the material’s micro-structure, so they cannot be used to design new materials. In

order to overcome these limitations, a strategy can be the development of physics-based

models.

In the present work, we develop a physics-based constitutive model able to capture

the main aspects of the network’s mechanics. The fundamental idea is to focus on

the statistical description of the network’s state through a proper density function

defined in the three-dimensional chains configuration space. The external macroscopic

solicitations make the describing function of the network state to evolve, providing a

clear and direct correlation between the micro-scale and the macro-scale phenomena.

In the present chapter, we define the configuration space and the «Chain Configu-

ration Density Function» (CCDF) that describes the network’s state; subsequently we

study the network evolution in response to the elastic deformation of the continuum
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in which the network is embedded in. After that, we introduce a time-dependency in

the mechanical response through the concept of «dynamic cross-links» and irreversible

deformations through the concept of «chain unfolding». Finally, we consider the damage

of the network by introducing the chain’s failure. The developed theory has general

validity, since our attention is on the evolution law of the statistical description of the

network state, which is the same for a wide number of polymers. The theory is also

flexible and adaptable to the specific chemo-physical properties of the polymer, since

different micromechanical models can be adopted: for example, the description of the

force-stretch curve of a polymer chain can be achieved by adopting the Gaussian, the

Langevin statistic, the worm-like chain model or other models.

3.1 Configuration space

Let us define the configuration space as the set of all the possible end-to-end vec-

tors that a polymer chain can assume. Using the Lagrangian approach, the chain is

identified by its mean-square end-to-end vector r0 (see §2.3.3.1), thus the reference con-

figuration space Ω0 can be defined as Ω0 ≡ {r0 | r0 ∈R3}; by using the affine deformation

assumption, the current configuration of a chain can be obtained as r=Fr0, being F
the deformation gradient tensor. On the other hand, using the Eulerian approach, the

chain is identified by its current end-to-end vector r, thus the current configuration

space Ω can be defined as Ω≡ {r | r ∈R3}; the reference configuration of a chain can be

obtained as r0 =F−1 r. In the following, we will use mainly the Eulerian approach for

its theoretical convenience; the corresponding Lagrangian relations will be discussed

when appropriate.

We assume the reference coordinates system of the configuration space to be parallel

to that of the physical space. At each point of the configuration space (identified by

the end-to-end vector r ∈Ω), the associated chain force vector f can be defined, thus

the function f :Ω 7→ R3 | f = f (r) can be seen as a vector field. The chain force can be

obtained from the chain free energy ψ (see §2.3.2) as

f=∇ψ= dψ
dr

= dψ
dr

dr
dr

= f (r)
d
p

r ·r
dr

= f (r)
r
r
= f (r) r̂ (3.3)

where ψ=ψ(r) and f = f (r) are the free energy and the force in a chain with end-to-end

distance r = |r|, respectively, while r̂ is the unit vector of r, so that r= r r̂. The above

expression shows that f is a central vector field generated by the scalar potential ψ. The
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existence of a potential is a necessary and sufficient condition to have a conservative

field; thanks to such a property, the curl of the field is identically zero, i.e. ∇× f = 0,

which implies f i, j = f j,i. Furthermore, the work done by the force field when a chain

extremity is moved, is path-independent, since it depends only on the initial and final

end-to-end vectors; in particular, if the path is closed, the work done is zero.

3.1.1 Chain Configuration Density Function (CCDF)

Let us consider a polymer network and let us define, in the configuration space Ω,

a scalar function ρ :Ω→ R | ρ = ρ(r) which represents the probability density of the

chains distribution, so that it provides the number of chains per unit volume with

end-to-end vector r. We call such a function Chain Configuration Density Function

(CCDF). The physical dimensions of the CCDF is [L]−6, since it represents a number

of chains per unit volume in the configuration space and per unit volume in the

physical space. The CCDF can be written as ρ : B0×Ω→R | ρ (X,r)= na(X)ϕ (r), where

na : B0 → R | na = na(X) is the chains density
(
[L]−3)

in the physical space, while

ϕ :Ω→R |ϕ=ϕ (r) is the chains density
(
[L]−3)

in the configuration space.

In order to simplify the notation, let us define the operator 〈•〉 as the integral over

the whole configuration space Ω⊆R3

〈•〉 =
∫
Ω
• dΩ (3.4)

The operator 〈•〉 can be expressed explicitly in rectangular and spherical coordinates as

〈•〉 =
∫ +∞

x=−∞

∫ +∞

y=−∞

∫ +∞

z=−∞
•dx d y dz

〈•〉 =
∫ 2π

ω=0

∫ π

θ=0

∫ ∞

r=0
• r2 sinθ dr dθ dω

(3.5)

where (x, y, z)≡ (r,θ,ω) are the rectangular and spherical coordinates of a given point

of the configuration space, respectively. Furthermore, we define the operator 〈•〉∂ as

〈•〉∂ =
∫
∂Ω

• d(∂Ω) (3.6)

where ∂Ω represents the boundary of Ω.

Since the normalized function ϕ represents a probability density, it has the property

〈ϕ〉 = 1 because the integral is performed over the entire domain of definition; as a

consequence, the integration of the CCDF over Ω provides the number of chains per

unit volume, i.e. 〈ρ〉 = na〈ϕ〉 = na.
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3.1.2 Network energy

The energy stored in a network,Ψ, can be obtained by adding the energy stored in each

chain composing the network itself, i.e. as Ψ= 〈ρψ〉, being ψ=ψ(r) the free energy of a

chain with end-to-end vector r.

Let us consider a material made only of chains not connected each other. The

most probable configuration for a free chain is r = 0 (see §2.3.3.1), so the CCDF of

such a network can be written as ρ(r)= naδ(r), being δ(r) the Dirac distribution. The

corresponding network’s energy results to be zero, since Ψ = 〈ρψ〉 = 〈
naδ(r)ψ(r)

〉 =
naψ(0)= 0. Physically, this zero-energy situation corresponds to a group of molecular

chains before the formation of the network.

Let us now consider the same group of chains after the cross-linking process that

creates the network. In the stress-free configuration, the network chains are always

elongated (see §2.3.3.1) and the most probable end-to-end distance is the mean-square

given in (2.26), while the CCDF is the Gaussian distribution with mean 0 and standard

deviation b
p

N/3 [48]

ρ0(r)= ρ0(r)= na

b3

(
3

2πN

)3/2
exp

(
− 3 |r|2

2Nb2

)
(3.7)

where we make use of the symbol ρ0 to indicate the CCDF in the reference state

and of the symbol ρ0 to indicate the three-dimensional Gaussian function, while N

and b are the number and the length of the Kuhn segments, respectively. The free

energy in the reference stress-free state can be obtained as 〈ρ0ψ〉, thus it is greater

than zero, since ρ0(r)≥ 0 ∀r ∈Ω. Such an energy is stored in the network during the

cross-linking process, thus it is pre-existent to any applied external deformation and it

is not available to be transformed in mechanical work.

Finally, we stretch the network by applying the (macroscopic) deformation gradient

F. According to the affine deformation assumption, the end-to-end vector of a chain

evolves from r to Fr and the CCDF evolves from ρ0(r) to ρ(r) = ρ0(F−1r). The total

amount of energy stored in the network is 〈ρψ〉.
Since the deformation process is assumed to be isothermal and reversible, the

free energy corresponds to the deformation work (see eq. 2.21). Moreover, the work

done by a conservative force field depends only on the initial and final position of the

chain extremities, as recalled in §3.1. The initial and final position of a chain in the

configuration space is defined by r and Fr, respectively; under these assumptions, the
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deformation free energy Ψ of a network can be obtained as the difference between the

energy in the final state (i.e. 〈ρψ〉) and the energy in the reference state (i.e. 〈ρ0ψ〉), so

that it results

Ψ= 〈(
ρ−ρ0

)
ψ

〉
(3.8)

for a more detailed explanation we refer to [24]. Using the Lagrangian description,

the free energy is written as Ψ(F) = 〈(
ρ0(F−1 r)−ρ0(r)

)
ψ

〉
, while using the Eulerain

description it is Ψ(F)= 〈(
ρ(r)−ρ(Fr)

)
ψ

〉
. We note that such a formulation respects the

condition Ψ(F= I)= 0 (see §2.2.1).

3.2 Evolution law of the CCDF

We assume that the CCDF, which rules the mechanical response of the polymer network,

can evolve in time because of four different mechanisms, described in the following.

The first mechanism is due to the affine deformation assumption, according to

which the network undergoes the same deformation of the continuum in which it

is immersed in; a detailed description of the effects of such an assumption on the

statistical modeling of the network’s state can be found in [24].

The second mechanism is due to the presence of dynamic cross-links, i.e. we assume

that the number of cross-linked chains can vary in time because of a dynamic balance

between attachment and detachment of chains, as typically occurs in polymer with

physical bonds; more specifically, the model assumes that a stretched chain can detach

and subsequently attach in a stress-free state, as proposed in [149] and [30]. Such

a mechanism was observed since the 1960s by Tobolsky [140], which reported two

types of chain’s scission, both leading to stress relaxation: a destructive one, in which

the bonds are definitively broken, and a non-destructive one, in which the bonds are

regenerated.

The third mechanism we consider is the «unfolding» process of the chains, i.e. the

fact that the contour length of the network’s chains can vary because of the evolution

of the entanglement of the network itself. The basic idea is that the entanglement

degree of a stretched network is lower than the one of an unstretched network: as a

conseguence, the degree of freedom of its chains - represented by the contour lenght -

increases with the deformation, since the topological constrain due to the entanglement

becomes less strong [7, 97, 106, 123].
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The fourth mechanism here considered is the chains failure, represented by the

irreversible rupture of the chemical bonds between two consecutive units of a polymer

chains, or the rupture of the bonds in a cross-link. The idea to relate the strenght

of polymers to the chains scission mechanism was suggested in the 1960s by Lake

et al. [90] and successively adopted by many others (see, e.g. [101]); a study about

the influence of the chains scission mechanism on the statistical description of the

network’s state can be found in [148].

In order to take into account the four above mentioned mechanisms, we can formally

write the CCDF evolution law as

ρ̇ = ρ̇L + ρ̇X L + ρ̇un + ρ̇ f (3.9)

where the four contributions to the time derivative ρ̇ of the CCDF are: ρ̇L for the

body deformation (through the affine deformation assumption), ρ̇X L for the dynamic

cross-links, ρ̇un for the unfolding and ρ̇ f for the chains failure. In the following sections

we define in detail each contribution.

3.2.1 CCDF evolution due to the network’s deformation

Let us now consider the term ρ̇L of (3.9), quantifying the evolution of the CCDF due to

the deformation of the network, which is assumed to be equal to the deformation of the

body.

Let Ω∗ ⊆ Ω be an arbitrary subset of the configuration space, which contains∫
Ω∗ ρdΩ chains. The time derivative of the amount of chains contained in Ω∗ can be

evaluated by using the Reynold’s transport theorem as

d
dt

∫
Ω∗
ρ dΩ=

∫
Ω∗
ρ̇ dΩ +

∫
∂Ω∗

ρṙ ·m d(∂Ω∗) (3.10)

where m is the unit vector normal to the boundary of Ω∗, namely ∂Ω∗. By applying the

divergence theorem we obtain

d
dt

∫
Ω∗
ρ dΩ=

∫
Ω∗

(
ρ̇+div(ρ ṙ)

)
dΩ (3.11)

Here, the number of cross-linked chains in the network is assumed to be constant, so

that no chains are lost or gained, thus the amount of chains contained in Ω∗ does not

change in time. Since the left-hand side of the above relation is zero and Ω∗ is arbitrary,

we found

ρ̇+div(ρ ṙ)= 0 (3.12)
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Interestingly, the above relation has the same structure of the continuity equation

commonly used in fluid dynamics. Physically, it means that in a small volume of the

configuration space centered in r, the variation of the chains density ρ̇ is equal to the

flux of chains div(ρ ṙ) (assumed positive if outgoing). The divergence can be rewritten

as div(ρ ṙ)= ∂(ρ ṙ i) /∂r i = ρ,i ṙ i +ρ ṙ i,i, so that the above relation becomes

ρ̇ =−ρ,i ṙ i −ρ ṙ i,i (3.13)

Eq. (3.13) relates the time evolution of the CCDF with the velocity field in the configu-

ration space. By using the affine deformation assumption, such a velocity field can be

related to the deformation of the continuum by using the velocity gradient L i j defined

in (2.2), so that

ṙ i = L i j r j ṙ i,i = ∂ṙ i

∂r i
= ∂

(
L i j r j

)
∂r i

= L i j δi j = L ii (3.14)

where δi j is the Kronecker’s delta tensor. We can obtain the rate ρ̇L by replacing (3.14)

in (3.13) as

ρ̇L =−(
ρ,i r j +ρ δi j

)
L i j , or ρ̇L =−(∇ρ⊗r+ρ I

)
: L (3.15)

the above evolution law requires the initial condition ρ(t = 0)= ρ0, being ρ0 the initial

CCDF defined in (3.7).

Finally, we note that, if the material is incompressible, the divergence of ṙ vanishes

(see §2.2.1), thus it results ṙ i,i = tr(L) = L ii = 0 and the above eq. (3.15) reduces to

ρ̇L = −ρ,i r j L i j = −∇ρ⊗r : L. It can be appreciated that, in this particular case, the

value of the CCDF in the origin of the configuration space does not change in time,

since in that point its time derivative vanishes, i.e. ρ̇L(r= 0)= 0.

3.2.2 CCDF evolution due to dynamic cross-links

Let us assume that the deformation state in the network is kept constant and both

the chains failure and unfolding are absent, so the network’s state evolves only be-

cause of the dynamic cross-links, such as in polymers with weak physical bonds. The

current number of cross-linked chains arises from the dynamic balance between the

attachment and the detachment process. In the unit time, the fraction ka of detached

chains becomes attached, while the fraction kd of attached chains detaches. The two

frequencies ka and kd are called attaching and detaching rates, respectively, and are

characteristic parameters of the material.
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3.2. EVOLUTION LAW OF THE CCDF

After a sufficiently long time from the polymerization of the material, the dynamic

process reaches the steady state in which the number of attached chains does not

change anymore. We assume that the shear modulus µ is measured in this steady state

condition, thus the corresponding number of attached chains is (see §2.3.4)

nµ = µ

kBT
(3.16)

The above relation arises from the three-chains model in the so-called Gaussian regime,

which is an acceptable assumption for the shear modulus measured for small deforma-

tions.

The evolution equation and the initial value of the number of attached chains are,

respectively
∂na

∂t
= ka(nmax −na)−kdna , na(t = 0)= na0 (3.17)

where nmax is the total number of chains available to attach, while na0 is the number

of attached chains at time t = 0. In the above relation, the quantity ka(nmax −na) is

the number of detached chains that becomes attached in the unit time, while kdna is

the number of attached chains that becomes detached in the same time interval. If ka

and kd are constants, the solution of the above evolution law is

na(t)=
(
na0 − ka

ka +kd
nmax

)
e−(ka+kd)t + ka

ka +kd
nmax (3.18)

where it can be clearly acknowledged the transient term and the steady state one; the

latter is expressed as

nss = lim
t→∞na(t)= ka

ka +kd
nmax (3.19)

The above value can be obtained directly from (3.17) by using the steady state condition

ṅa = 0. Since the shear modulus is measured in the steady state, it results nµ = nss, so

that the relations (3.16) and (3.19) can be combined to obtain nmax as

nmax = nµ
ka +kd

ka
(3.20)

By replacing the above expression in (3.18) we have

na(t)= (
na0 −nµ

)
e−(ka+kd)t +nµ (3.21)

If we assume that at t = 0 the material is already in a steady state condition, it results

na0 = nµ, thus there is no evolution of the number of chains, since from (3.21) we obtain

na(t)= nµ.
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Now, we can write the term ρ̇X L of (3.9) by modifying (3.17). From the definition

of the CCDF, we know that a chain, just before it passes from the attached to the

detached state, is associated to the distribution ρ. It is reasonable to assume that the

same chain, just after passing from the detached to the attached state, is associated to

the stress-free distribution ρ0 defined in eq. (3.7). The time derivative of the CCDF at

constant deformation, using (3.17) and recalling ρ = naϕ, is [30]

ρ̇X L = ka
nmax −na

na
ρ0 −kdρ (3.22)

with the initial conditions na(t = 0)= na0 and ρ(t = 0)= ρ0.

The rate ρ̇X L can be conveniently rewritten in a easier form by recalling (3.20) and

the fact that the number of chains remains constant in time, i.e. na(t)= nµ, so that we

have

ρ̇X L =−kd
(
ρ−ρ0

)
(3.23)

from which it becomes clear that the effect of the dynamic cross-links is to reduces the

current CCDF to the stress-free CCDF (3.7); furthermore, the evolution depends on the

detachment rate kd, but not on the attachment rate.

A chain who detaches, and subsequently attaches, changes its stretch state and

consequently changes its deformation energy. Since the amount of chains that in the

unit time are subjected to the detachment/attachment process, for a given end-to-end

vector, is ρ̇X L, the variation of the stored energy due to this process is ρ̇X Lψ and so the

internal power dissipated in the whole network can be expressed as

DX L = 〈
ρ̇X Lψ

〉=−kd
〈(
ρ−ρ0

)
ψ

〉
(3.24)

where the dissipated power DX L has the physical dimensions of an energy per unit

volume (in the physical space) and per unit time. The condition DX L < 0, which means

energy dissipation, is satisfied when ρ̇X L < 0 or, assuming kd as a material constant,

when ρ > ρ0.

3.2.3 CCDF evolution due to the chain’s unfolding

The so-called reptation theory [45, 115] has been formulated and successfully adopted

to interpret the unusual response shown by entangled polymers, enabling the correct

explanation of experimental outcomes. The main idea behind this theory is to reduce

the complex chains interaction to a simple snakes-like slithering of the polymer chains
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3.2. EVOLUTION LAW OF THE CCDF

through one another. It has been used as a mechanical model to explain viscous flow in

amorphous polymers. Entanglement is closely related to reptation and indicates the

topological restriction of molecular motion by other chains. It has been shown [91] that

polymers disentangle because of correlated constraint release, which leads to a balance

of internal deformation modes. Natural elastomeric proteins unfold sequentially when

subject to stretching forces; this mechanism allows to a wide variety of natural materi-

als to show high toughness, leading to an efficient shock-absorber system [32]. Upon

stretching, such elastomeric proteins show a saw-tooth pattern for the force–extension

curves, leading to a significant mechanical stability. Often such elastomeric-like matter

refold upon stress removal and recover their initial state [39].

The same idea has been adopted here to simulate the stress relaxation in entangled

polymers, in which an irreversible unfolding is assumed to occur at a rate that is related

to the applied mechanical stress. The polymer is assumed to be made of entangled

molecules whose physical state is characterized by a given number Np of Kuhn’s

segments, while only a smaller number of segments N0 is initially assumed to be

available for the deformation process. Under a mechanical stress, the polymer chains

tend to unfold at a rate proportional to the applied stress, through a viscous unfolding

coefficient. This simple concept is exploited in the following to model the time-dependent

mechanical model for polymer network; in some way it represents an alternative to the

concept of dynamic cross-links that can be usefully adopted, beyond the effective case

of polymers with an internally rearranging microstructure, to simulate the viscous

response of polymers.

Let us now consider the term ρ̇un in (3.9) which is here considered to account

for two contributions to the evolution of the CCDF: the chain’s unfolding and the

elastic deformation of the chain’s segments. The deformation of the Kuhn segments is

a reversible and instantaneous phenomenon (see §2.3.3.3), while the chain’s unfolding

is assumed to be an irreversible and time-dependent phenomenon, since the number

of segments per chains increases permanently in consequence of the applied force. In

order to take into account for these effects, we modify the expression of ṙ given in (3.14)

and make use of (3.13).

Firstly, we consider a one-dimensional case; we focus on a specific chain whose
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end-to-end vector is r (Lagrangian approach) to obtain its time rate ṙ

ṙ = ∂

∂t
(λr0)= λ̇r0 +λṙ0 = λ̇b

p
N +λ ∂

∂t

(
b
p

N
)
= λ̇b

p
N +λ

(
ḃ
p

N + b

2
p

N

∂N
∂t

)
=

=λb
p

N
(
λ̇

λ
+ ḃ

b
+ Ṅ

2N

) (3.25)

where λ is the applied deformation, while b and N are the current segment’s length and

the current number of segments, respectively, λ̇ is the stretch rate, ḃ is the segments’

deformation rate and Ṅ represents the «unfolding rate» of the chain. It is worth

mentioning that the unfolding and the segments’ deformation affects only the reference

mean-square distance r0; in fact, if these two phenomena were not present (ḃ = 0 and

Ṅ = 0) we would have ṙ0 = 0, r0 = const and so the end-to-end distance rate reduces

to ṙ = λ̇b
p

N. The evaluation of the unfolding rate Ṅ is discussed in §3.5, while the

evaluation of ḃ can be performed by using the Extended Freely Jointed Chain model

(EFJC, sse §2.3.3.3). From the above relation, the mean-square distance evolves in

time as

ṙ0 = b
p

N
(

ḃ
b
+ Ṅ

2N

)
(3.26)

Let us now extend the relation (3.25) to a more general three-dimensional case

ṙ= ∂

∂t
(F r0)= Ḟ r0 +F ṙ0 =L F r0 +F

∂

∂t

(
b
p

N r̂0

)
=

=L r+F
(
∂b
∂t

p
N r̂0 + b

2
p

N

∂N
∂t

r̂0 +b
p

N
∂r̂0

∂t

) (3.27)

where r̂0 is the unit vector of r0, so that r0 = b
p

N r̂0. Again, if we assume ḃ = 0 and

Ṅ = 0 we recover ṙ = Lr, which is the same relation in (3.14). In the above relation,

the term ∂r̂0 /∂t represents the time evolution of the unit vector of the chain in the

reference state; we assume that the unfolding modifies only the contour length of the

chain, but not its orientation in the configuration space; for that reason we assume

∂r̂0 /∂t = 0. This assumption is supported by the fact that the chain unfolding is driven

by the force acting on the chain that, being oriented as its end-to-end vector, does not

promote any change of the chain orientation. Relation (3.27) can be rewritten as

ṙ=L r+b
p

N
(

ḃ
b
+ Ṅ

2N

)
F r̂0 (3.28)

From the above relation we conclude that the reference end-to-end vector of a given

chain evolves according to

ṙ0 = b
p

N
(

ḃ
b
+ Ṅ

2N

)
r̂0 (3.29)
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where N and b are the current values of the number of Kuhn segments and the

segments’ length, respectively. By noting that Fr̂0 = Fr0
/

r0 = r
/

r0 = r
/

(b
p

N), the

relation (3.28) can be rewritten as

ṙ=L r+
(

ḃ
b
+ Ṅ

2N

)
r or ṙ i = L i j r j +

(
ḃ
b
+ Ṅ

2N

)
r i (3.30)

The divergence of ṙ can be obtained from the above relation as

ṙ i,i = L ii +3
(

ḃ
b
+ Ṅ

2N

)
(3.31)

Replacing ṙ i and ṙ i,i in (3.13), after some calculation we obtain

ρ̇ =−(
ρ,i r j +ρ δi j

)
L i j︸ ︷︷ ︸

ρ̇L

−(
ρ,i r i +3ρ

)( ḃ
b
+ Ṅ

2N

)
︸ ︷︷ ︸

ρ̇un

(3.32)

from which the term ρ̇un can be finally recognized to be

ρ̇un =−(
ρ,i r i +3ρ

)( ḃ
b
+ Ṅ

2N

)
(3.33)

Interestingly, relation (3.32), accounting for the effect of the deformation and of the

chains length variation, can be rewritten as

ρ̇ =−(
ρ,i r j +ρ δi j

)[
L i j +

(
ḃ
b
+ Ṅ

2N

)
δi j

]
(3.34)

from which we see that the effect of the chain’s length variation is superimposed to

the network’s deformation. It is worth noting that the quantity ḃ/b can be neglected

if compared to Ṅ/N, since the deformation of the segments depends on atomic bonds,

while the unfolding depends on the chains entanglement [102].

3.2.4 CCDF evolution due to failure of chains

The conservation of the chain density is expressed, in the Eulerian approach, through

eq. (3.12) as ρ̇+div(ρṙ) = 0, in which div(ρṙ) physically represents the flow density

through a given point in the configuration space. It is possible to take into account for

the chains failure by modifying the continuity equation as follows

∂ρ

∂t
=−div(ρṙ)−ω f ρ (3.35)
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where ω f :Ω→R |ω f =ω f (r) represents the failure rate, i.e. the number of chains per

unit volume which fails in the unit time. The expression (3.35) can be recovered, in the

Lagrangian approach, by writing the material time derivative of the number of chains

contained in an arbitrary subset Ω∗ ⊆Ω as

d
dt

∫
Ω∗
ρ dΩ=

∫
Ω∗
ω f ρ dΩ (3.36)

and subsequently by using the Reynold’s transport theorem (3.10). Finally, the term ρ̇ f

in (3.9) can be written, by using (3.35), as

ρ̇ f =−ω f ρ (3.37)

Such a formulation implies a loss of material, leading to a reduction of the bearing

capacity of the network. The damage level of the polymer can be measured through the

quantity D defined as

D = 1−〈ϕ〉 (3.38)

being 0≤D ≤ 1, with D = 0 for an undamaged polymer and D = 1 for a fully damaged

polymer.

3.2.5 CCDF evolution law accounting for all the contributions

Finally we can write explicitly the evolution law (3.9) by using the contributions derived

in the previous sections; the final expression reads

ρ̇ =−(
ρ,i r j +ρ δi j

)
L i j︸ ︷︷ ︸

ρ̇L

−kd
(
ρ−ρ0

)︸ ︷︷ ︸
ρ̇X L

−(
ρ,i r i +3ρ

)( ḃ
b
+ Ṅ

2N

)
︸ ︷︷ ︸

ρ̇un

−ω f ρ︸ ︷︷ ︸
ρ̇ f

(3.39)

with the initial condition ρ(r, t = 0) = ρ0(r), being ρ0 the Gaussian function given in

(3.7).

It is worth mentioning that the above relation is valid for any polymer, since

no hypothesis on the material characteristics have been assumed until now for its

derivation. To specify the above relation for a particular polymer, it is necessary to

define the proper constitutive models for kd, which rules the dynamic cross-linking

process, for ḃ, which defines the enthalpic contribution to the deformation energy, for

Ṅ, which rules the unfolding mechanism and for ω f , which rules the damage process.

In the present work, we assume kd as a constant material parameter, while other

Authors have found that it depends on the chain force [149]. Furthermore, we neglect
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the term ḃ/b with respect to Ṅ/N. A model for the unfolding rate Ṅ is discussed in §3.5,

while the constitutive model for ω f is discussed in §3.6.

As a final observation, we can prove a particular feature of the CCDF; let us suppose

that, at a certain time instant, the CCDF has a central symmetry with respect to the

origin of the configuration space, i.e. ρ(−r, t)= ρ(r, t); then, from that moment on, the

CCDF remains central-symmetric. In fact, if the CCDF is central-symmetric, its time

derivative is also central-symmetric, since

ρ̇(−r, t)=−kd
(
ρ(−r)−ρ0(−r)

)−
− (−ρ,i(−r, t) r j +ρ(−r, t) δi j

)[
L i j +

(
ḃ
b
+ Ṅ

2N

)
δi j

]
−ω f ρ(−r, t)= ρ̇(r, t)

(3.40)

being ρ(−r, t)= ρ(r, t) by assumption and ρ,i(−r, t)=−ρ,i(r, t) 1, so that ρ̇(−r, t)= ρ̇(r, t).

Since ρ̇ is central-symmetric, then ρ remains so even after the time increment dt. Since

we assume that for t = 0 the distribution is central-symmetric (i.e. the Gaussian (3.7)),

then the CCDF is always central-symmetric.

3.3 Derivation of stress

Let us complete the constitutive model by deriving the stress tensor from the free

energy. The second principle of thermodynamics states that, for an isothermal process,

the dissipated power D is the difference between the deformation power and the

internal power [148], i.e.

D = Ψ̇−σ : L≥ 0 (3.41)

where the energy dissipation must be positive to ensure the thermodynamic consistency.

In §3.1 we have obtained the internal energy of the network as Ψ = 〈(
ρ−ρ0

)
ψ

〉
with the fundamental assumption of dealing with conservative forces only. On the other

hand, in § 3.2 we have introduced non-conservative actions in the network, since the

1This statement can be easily proved by evaluating the derivatives of ρ in a generic point of the
configuration space with coordinates (−rx,−r y,−rz). By considering, for instance, the derivative w.r.t. rx,
one can obtain

∂ρ

∂rx
(−rx,−r y,−rz, t)= lim

h→0

ρ(−(rx +h),−r y,−rz, t)−ρ(−rx,−r y,−rz, t)
h

=

= lim
h→0

ρ(rx +h, r y, rz, t)−ρ(rx, r y, rz, t)
h

= ∂ρ

∂rx
(rx, r y, rz, t)

where the second equality arises from the assumption ρ(−r, t)= ρ(r).
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presence of dynamic cross-links, chains unfolding and failure imply a loss of energy.

The use of the above mentioned expression, even in presence of non-conservative forces,

is desirable for its simplicity, but needs a further justification.

Let us firstly consider the simplest case of no energy dissipation. In the Eulerian

approach, the free energy of a single chain, ψ, is a spatial quantity, so it does not depend

on time, while the CCDF evolves in time only with the applied deformation, according

to (3.15). Then, the internal power can be written as Ψ̇= 〈(
ρ̇− ρ̇0

)
ψ

〉= 〈
ρ̇ψ

〉−〈
ρ̇0ψ

〉
,

where ρ̇0 = ρ̇(t = 0) is the initial value of the CCDF rate. Using (3.15)

〈
ρ̇ ψ

〉=−〈(
ρ,i r j +ρ δi j

)
ψ

〉
L i j (3.42)

integrating by parts the first term on the right hand side we get

〈
ρ̇ ψ

〉=−
[
�����〈
ρ r jψ

〉
∂−

〈
ρ
∂
(
r jψ

)
∂r i

〉
+〈

ρ δi jψ
〉]

L i j (3.43)

being
〈
ρ r jψ

〉
∂ = 0 since the CCDF is always zero on the boundary of the configuration

space. Furthermore, by developing the derivative w.r.t. r i we have

〈
ρ̇ ψ

〉=−[−�����〈
ρ δi jψ

〉−〈
ρ r jψ,i

〉+�����〈
ρ δi jψ

〉]
L i j =

〈
ρ f i r j

〉
L i j (3.44)

where we have considered that ψ,i provides the chain’s force f i. The above derivation

can be repeated by using ρ0 instead of ρ. The final expression of the internal power

becomes

Ψ̇= 〈
ρ̇ψ

〉−〈
ρ̇0ψ

〉= 〈
ρ f⊗r

〉
: L−〈

ρ0 f⊗r
〉

: L= 〈(
ρ−ρ0

)
f⊗r

〉
: L (3.45)

In absence of dissipation, the thermodynamic condition (3.41) reduces to Ψ̇=σ : L, since

L is the measure of strain rate work-conjugate with the Cauchy stress; by comparing

with the above relation, the stress results to be

σ= 〈(
ρ−ρ0

)
f⊗r

〉
(3.46)

Interestingly, the same conclusion can be recovered by applying the time derivative to

the chain’s energy, instead of to the CCDF

Ψ̇= 〈(
ρ−ρ0

)
ψ̇

〉=〈(
ρ−ρ0

) ∂ψ
∂r i

∂r i

∂t

〉
= 〈(

ρ−ρ0
)

f i L i j r j
〉= 〈(

ρ−ρ0
)

f i r j
〉

L i j (3.47)

even if the quantity
〈(
ρ−ρ0

)
ψ̇

〉
does not have a clear physical meaning.
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Let us now consider the presence of both conservative and non-conservative forces.

When the body is stretch-free (F= I), the energy stored in the material is equal to E 0;

after the application of the stretch λ, the stored energy becomes E = E 0+Eel , where Eel

is the elastic (reversible) energy, corresponding to the difference between the final and

initial energy E −E 0 = Eel . If the material loses the energy Ed because of dissipative

effects, the final stored energy is E = E 0 +Eel −Ed, so that the difference between final

and the initial energy is E −
(
E 0 −Ed

)
= Eel . By comparing these two expressions we

can note that the effect of the energy dissipation can be included in the initial energy,

which can be rewritten as the difference between the initial and the dissipated energy

as E0(t)= E 0 −Ed(t).

In the case of a polymer network, the stored energy is E = 〈
ρψ

〉
, the initially stored

energy is E 0 =
〈
ρ0ψ

〉
, the elastic energy is Eel =

∫ t
0 σ : L dt and the dissipated energy is

Ed = ∫ t
0 D dt, so that 〈

ρψ
〉= 〈

ρ0ψ
〉+∫ t

0
σ : L dt−

∫ t

0
D dt (3.48)

If we write the dissipation in the form D = 〈
ρ̇d ψ

〉
, in which ρd can be interpreted as a

«chain density loss», we can rewrite (3.48) as〈[
ρ−

(
ρ0 −

∫ t

0
ρ̇d dt

)]
ψ

〉
=

∫ t

0
σ : L dt (3.49)

from which it appears clearly that the effect of the non-conservative forces is to modify

the reference CCDF from the initial Gaussian distribution ρ0 to the one corresponding

to the current state ρ0

ρ0 = ρ0 −
∫ t

0
ρ̇d dt (3.50)

We can easily evaluate the current reference CCDF ρ0 at time t by locking all

the non-conservative contributions, and subtracting the elastic energy from
〈
ρψ

〉
by

mapping r into Fr (as recalled in §3.1.2), so that

ρ0(r)= ρ (Fr) (3.51)

We use the expression «current reference configuration» to highlight the fact that the

initial (reference) configuration must be updated with the non-conservative effects.

3.4 Full-network model

Relation (3.8) can be regarded as a generalization of the so-called full-network model.

Such a model was suggested by Thomas [138], that determined the free energy of a
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monodisperse polymer by assuming the chains to be randomly oriented in the space.

Treloar and Riding [146] developed a bi-dimensional full network using Langevin

statistic. Wu and van der Giessen [156] proposed a three-dimensional full network

model for a monodisperse polymer with Langevin statistic; they defined the distribution

of the chains orientation as a function C(θ,ω,λi), depending on the two orientation

angles θ and ω and on the principal macroscopic stretches λi. The plot of the chain

orientation function C in two orthogonal planes, for three different deformations, is

illustrated in fig. 3.1. In the stretch free state (λ1 = λ2 = λ3 = 1) the function C is

greater than zero and it has spherical symmetry. The function C increases with the

stretch along the deformation directions, since the chains are preferentially oriented

in the loading direction. They obtained the free energy of the network by using the

affine deformation assumption and by integrating the energy of the chains over all the

possible orientations:

Ψ= n
∫ π

0

∫ 2π

0
ψC(θ,ω,λi)sinθdθdω (3.52)

Exploiting the spherical chains arrangement, the authors found that the distribution

of the orientations depends on the macroscopic stretches λi

C(θ,ω;λi)= 1
4π

λ3(θ,ω;λi) λ=
(∑

i

m2
i

λ2
i

)−1/2

(3.53)

where λ(θ,ω;λi) is the chain stretch, for a given set of external stretches λi, of a chain

whose current orientation is defined by θ and ω, while mi are the components of the

unit vector r
/‖r‖.

The Authors provided an expression of the principal Cauchy stresses through the

equation [156]

σi = 1
4π

nkBT
p

N
∫ π

0

∫ 2π

0
L −1

(
λp
N

)
λ4m2

i sinθdθdω− p (3.54)

where p is the unknown pressure that enforce the incompressibility constraint. Once

the principal stresses are known, the stress tensor is expressed as σ=∑
iσi(ei ⊗ei),

where ei are the principal axis of the Eulerian triad.

By comparing (3.52) with (3.8), is appears that the model proposed by Wu and

van der Giessen does not take into account for the distribution of the chain density

along r; furthermore, they considered such a distribution as a mere consequence of
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Figure 3.1: Chain orientation distribution function C (see [156]) vs. orientation angles
ω and θ. Plot of C vs. ω in the plane e1 −e2 (a) and C vs. θ in the plane e2 −e3 (b).

the spherical geometry. Finally, the network is assumed to be perfectly elastic and the

distribution function changes only in response to external deformations.

As the author pointed out, the full network can be seen as a generalization of the

3-chains and 8-chains models. These two latter models can be recovered by using an

orientation function allowing to account for preferential directions. Their work were

reviewed and compared by other models (3,4,8-chains) by Beatty [9] and used by Puso

[121]. A full network scheme were adopted by Miehe et al. [107] with a non-affine

deformation assumption. Subsequently, the full network model was extended by Verron

and Gros [150] and by Itskov and Knyazeva [74] to the case of polydispersed polymers.

Tehrani and Sarvestani [137] used it for polydispersed polymers by accounting for the

Eyring-like bond rupture.

3.5 Unfolding rate

In this section we propose a model for the unfolding rate Ṅ (see §3.2.3). Let us consider

a particular chain of the network, having in the reference state N0 Kuhn segments

43



CHAPTER 3. TIME-DEPENDENT RESPONSE OF ELASTOMERIC POLYMERS

𝑟0 = 𝑏 𝑁0

𝑁0

𝑟 𝑡

𝑁 𝑓 = 𝑁0 +  
0

𝑡

 𝑁𝑑𝑡

(a) (b)

𝐟

Figure 3.2: Scheme of the chain’s unfolding under an applied stretch starting from the
initial state (a) to a generic one (b). The unfolding mechanism ends when the number of
Kuhn segments reaches the maximum physical chain length Np.

available to deform, while its physical length (maximum number of Kuhn segments

that can take part of the deformation) is Np ≥ N0. The remaining Np − N0 Kuhn

segments are entangled with others chains, so they are not initially available to take

part to the deformation process (fig. 3.2).

Upon stretching, the chain portion available to deform starts to elongate (fig. 3.2(b));

because of the chain force increases, it is reasonable to assume that such a force triggers

the chain unfolding, i.e. a fraction of the previously unavailable segments enters into

the deformation process. In general, at a generic time instant, the full chain length has

still to be attained, since the chain has not completely deployed until the maximum

number of segments Np has been made available to deform.

We assume that, for a given chain, its number of segments increases in time

since the chain undergoes a force greater than that existing in the reference state. In

particular, because of the unfolding of the polymer segments during the deformation

process, the actual effective length N(t) of the chain whose end-to-end vector is r (i.e.

the number of segments available to deform) can be assumed to fall within the range

N0 ≤ N(t)≤ Np (fig. 3.2(b)), i.e. the current chain length is greater than the initial one

and less than the physical length Np of the polymer chain in turn; the ratio

0≤ ep(t)= 1− N(t)−N0

Np −N0
≤ 1 (3.55)

can be assumed as a measure of the entanglement degree of the chain: ep = 1 indicates

a fully entangled chain, while ep = 0 corresponds to the chain with the minimum

entanglement degree, corresponding to a completely unfolded state.

Let us consider all the chains with end-to-end vector r; during the deformation
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process the contribution of that chain to the whole stress can be expressed as

s= (ρ−ρ0) f⊗r (3.56)

being σ = 〈s〉 from (3.46). Since the chains are oriented in every direction of the

configuration space, the hydrostatic part of s, i.e. tr(s) /3, can be assumed to be the

cause of the segments unfolding. The governing law for such an unfolding mechanism

can be assumed to obey to a Maxwell-like relationship law in the form

Ṅ(t)= Np −N(t)
η

· tr(s)
3

(3.57)

where η is a viscous-like parameter governing the unfolding rate. Since the chain force

is coaxial with r, we can write f= f r̂ (see eq. (3.3)), thus the trace of s can be rewritten

tr(s)= (ρ−ρ0) f r tr(r̂⊗r̂). Moreover, being tr(r̂⊗r̂)= 1, we obtain tr(s)= (ρ−ρ0) f r, then

we can rewrite the evolution law (3.57) as

Ṅ(t)= Np −N(t)
η

· (ρ−ρ0) f r
3

(3.58)

The proposed model is illustrated in fig. 3.3 where some polymer-related quantities

vs. the applied stretch are displayed for a simple case by varying η. An increasing

monotonic stretch starting from λ = 1 up to λ = 4 is assumed to be applied to the

material in the time interval t ∈ [0, tmax]. It can be appreciated that the viscosity

parameter η plays a key role in the mechanics of polymer unfolding: in fact, low

values of the viscosity promote the unfolding mechanism, while high values induces

the chain to maintain its initial number of Kuhn segments (N0). The entanglement

degree, defined according to (3.55), starts from unity and tends to zero as the unfolding

proceeds (fig. 3.3(a)), meanwhile the chain force shows a transition behavior, changing

from an initial increasing trend for moderate unfolding, to a decreasing phase when

the disentanglement is more pronounced; finally it starts to increase again when the

unfolding is almost complete, i.e. when N approaches the physical length of the polymer

Np (fig. 3.3(b)). In fig. 3.3(c) the current number of segments available to deform divided

by the maximum number of segments of the chain, N/Np, is displayed, while in fig.

3.3(d) the unfolding rate vs the applied stretch is illustrated; as far as Ṅ is concerned,

it can be observed that it starts from zero at the beginning of the deformation process,

reaches a maximum and then tends to zero as N → Np.

The effect of the strain rate on the mechanical response can be appreciated in fig.

3.4, where the chain force vs. stretch is shown by changing the time required to reach
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Figure 3.3: Stretching of a folded chain. Entanglement degree vs. applied stretch λ for
four polymers with different values of the unfolding viscosity parameter η (a). Chain
force vs. λ (b), ratio between current and initial number of segments vs. λ (c) and
unfolding rate vs. λ (d). In the present case the initial and maximum number of Kuhn
segments have been assumed equal to N0 = 10 and Np = 50, respectively.

the maximum deformation, tmax. Lower strain rates (fig. 3.4(a)) allow the chains to

unfold more easily, leading to lower value of the chain force; on the other hand, by

adopting a higher strain rate, the response is much more rigid, since the chains have

not enough time to unfold (fig. 3.4(b)).

3.6 Failure rate of the polymer chains

In this section we formulate a model for the failure rate ω f . The kinetic of bonds

rupture can be modeled with the reaction rate theory of Eyring [36, 61, 128]. The

number of chains with N segments and separation r that fails in the unit time, can be
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Figure 3.4: Chain force vs. λ for two different values of the viscosity-like parameter η
and a strain rate equal to λ̇= 0.03 s−1 (a) and λ̇= 3 s−1 (b).

evaluated through the statistical thermal fluctuations of the energy as [93]

ω f =
N
τ

exp
(

w
kBT

)
(3.59)

where w is the work done the by the chain force and τ a characteristic time. Following

[102], w can be identified with the enthalpic part of the chain’s free energy (see §2.3.3.3),

so that w =ψb, with ψb defined in (2.37). The characteristic time τ can be expressed as

[72]

τ= h
kBT

exp
(

w
kBT

)
(3.60)

where h is the Planck’s constant (h = 6.626 ·10−34 Js) and w is the bond’s strength

expressed in term of energy. With such a definition of τ, the failure rate becomes

ω f =
kBT

h
N exp

(
ψb −w
kBT

)
(3.61)

The failure rate can be interpreted as the probability of chains to break, evaluated on

the basis of the chain’s stored energy. It is worth noting that it is proportional to N

since the rupture of a single segment entails the failure of the whole chain.

3.7 Parametric tests

In the present section we use the above described model by simulating some simple

cases. In order to show separately the effects of each considered phenomenon, we acti-

vate one contribution at a time. We consider a representative elementary volume of an
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incompressible polymer subjected to a uniaxial stretch. The tests are performed on such

a sample by controlling the three principal stretches, whose values - according to the

incompressibility condition - are λ1 =λ, λ2 =λ3 =λ−1/2. Once the body’s deformations

are known, the evolution of the CCDF is evaluated by using eq. (3.39) and the corre-

sponding reference CCDF ρ0 is evaluated by using eq. (3.51). Then, eq. (3.46) provides

the stress tensor σ, which must be corrected by applying the hydrostatic pressure

p in order to ensure the incompressibility of the material; the unknown pressure is

evaluated from the boundary condition σ2 =σ3 = 0, which leads to p =−σ2 =−σ3. For

the details of the numerical integration in the configuration space we refer to chapter 5.

The effects of the applied deformation, without other phenomena involved, are

shown in §3.7.1, while the effects of the dynamic cross-links are tested in §3.7.2, the

effects of the unfolding mechanism in §3.7.3 and the effects of the chains failure in

§3.7.4.

The values of the parameters adopted for the simulations are the same for all the

cases, except when differently indicated. The assumed polymer is made of a single

network with N = 50, with shear modulus equal to µ= 1 MPa, while the length of each

chain segments is b = 1 nm and the temperature is T = 300 K.

3.7.1 Purely elastic polymer

In the first case we evaluate the stress arising in the polymer because of the elastic

deformation of the network, which is governed by the affine deformation assumption.

The stress vs. stretch curves of two different polymers, characterized by N = 20 and

N = 50, respectively, are illustrated in fig. 3.5. The stress is evaluated by using two

different models for the chain energy ψ, i.e. the formulation based on the Gaussian

(2.27) and the Langevin (2.32) statistic. The polymer with the shortest chains (N = 20)

appears to be more stiff than the one with the longest chains (N = 50). Moreover, the

curves obtained with the Gaussian statistic are closer to the corresponding curves

based on the Langevin formulation for the polymer with N = 50 than for the polymer

with N = 20; this result can be justified by the fact that the polymer with N = 20 is

influenced by the nonlinear terms of the force vs. extension curve of the Langevin

model for lower deformation level than the polymer with N = 50.

The CCDF ϕ of the two considered polymers is depicted in fig. 3.6 for the same

deformation level λ = 3.5. The CCDF in the plane rz = 0 of the configuration space,

i.e. the function ϕ = ϕ (rx, r y,0), is illustrated through the contour plot of fig. 3.5(a)
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Figure 3.5: Stress vs. stretch curves evaluated with the Gaussian and the Langevin
statistic for two polymers, characterized by N = 20 and N = 50, respectively.

for the polymer with N = 50 and in fig. 3.5(b) for the polymer with N = 20. In both

cases, the density function is not isotropic but it is deformed along the direction of the

applied external deformation, in accordance with the affine deformation assumption,

since we assume that the reference system of the configuration space is parallel to

that of the physical space. The CCDF along the deformation direction, i.e. the function

ϕ=ϕ (rx,0,0), is plotted, with the corresponding reference CCDF ϕ0, in fig. 3.6(c) and

3.6(d) for the polymer with N = 50 and N = 20, respectively. The distribution for the

polymer with N = 50 (fig. 3.6(c) and (e)) appears to be more disperse than the one

for the polymer with N = 20 (fig. 3.6(d) and (f)). Along the x-direction (fig. 3.6(c) and

(d)), the distribution ϕ is always greater than the distribution ϕ0, while along the

y-direction (fig. 3.6(e) and (f)) the distribution ϕ is lower than ϕ0. As previously noted

(see §3.2.1) the value of ϕ in the origin of the configuration space does not change

during the deformation process, i.e. ϕ(r= 0)=ϕ0(r= 0).

3.7.2 Polymer with dynamic cross-links

Let us now consider a representative volume of a polymer whose chains can attach

and detach dynamically in time. We assume that the total number of chains remains

constant, that is to say the polymer has reached a steady state condition before the

application of the load (see §3.2.2). The stress vs. time curves of a polymer characterized
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Figure 3.6: CCDF of the two considered polymers (N = 50 and N = 20) for the stretch
λ= 3.5. Contour plot of the CCDF in the plane rz = 0 for the polymer with N = 50 (a)
and for the polymer with N = 20 (b); plot of the CCDF along the stretching direction
for the polymer with N = 50 (c) and N = 20 (d); plot of the CCDF along the direction
normal to the applied stretch for the polymer with N = 50 (e) and N = 20 (f).
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Figure 3.7: Stress vs. time curves of polymers characterized by different values of the
detachment rate kd compared with the elastic response (kd = 0). Monotonic stretch
history with a final constant part (a) and cyclic stretch history (b).

by N = 50, for two different load histories and different values of the detachment rate

kd, are illustrated in fig. 3.7.

In the case reported in fig. 3.7(a), for 0< t < 1 s, the stretch increases linearly from

λ= 1 up to λ= 1.5, then it is kept constant at λ= 1.5 when 1 < t < 2 s. The stress vs.

time curve relative to the case of no dynamic cross-links (i.e. kd = 0) corresponds to the

purely elastic response of the material. As expected, by increasing the detachment rate

(kd = 0.2,0.4,0.6,0.8 Hz, respectively), the dynamic cross-links mechanism increases

its effectiveness in inducing the stress relaxation of the material, which quicker tends

to return to the stress-free state.

In the case reported in fig. 3.7(b), the deformation history is composed of three

parts: in the first one (0 < t < 1 s) the stretch increases linearly from λ= 1 to λ= 1.5,

then (1 < t < 2 s) the stretch goes back to λ = 1 and in the third one (2 < t < 3 s) the

stretch increases again up to λ= 1.5. Again, the elastic response (kd = 0) is compared

to the relaxing behavior induced by the dynamic cross-links, for different values of the

deactivation rate kd. At the end of the second part of the stretch history, when the

applied stretch is near to 1, the corresponding stretch results to be negative for all

the considered cases, except for the elastic one; furthermore, the compression stress

increases as the deactivation rate increases. This behavior is justified by the fact that

the network, under the effect of the dynamic cross-links, rearrange its structure and
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tends to the stress-free CCDF; as a result, after the application of a stretch, it is

necessary to compress the polymer to recover the initial shape of the sample. This

aspect underlines the difficulties in defining a proper reference configuration for the

polymer, since such a configuration evolves in time. It is worth mentioning that the

assumed values of the detachment rate kd have been chosen according to the adopted

time scale, i.e. the characteristic time of the detachment rate should be comparable to

the physical stretching time interval.

3.7.3 Effects of chains unfolding

Let us now consider the effect of the unfolding mechanism on the constitutive response

of a representative volume of polymer. According to (3.57), the unfolding process is

governed by three parameters: the number of segments per chain in the folded (N0) and

fully unfolded (Np) state and the viscosity-like parameter η, which rules the unfolding

rate.

We consider, again, a representative elementary volume of an incompressible

polymer subjected to uniaxial stretch. The stress vs. stretch curves of a polymer with

N0 = 50 and Np = 70 are reported in fig. 3.8(a). Two different values of the unfolding

viscosity η are considered (η= 1 kPa·s and η= 5 kPa·s). The responses of such materials

are compared with the behaviors of two purely elastic polymers (i.e. without unfolding),

with N = 50 and N = 70, respectively. For a given value of the stretch, the corresponding

stress decreases by reducing the unfolding viscosity, since a faster unfolding implies a

reduction of the chains stretch.

The curves related to the polymers subjected to the unfolding process are, for small

stretch, close to response of the purely elastic polymer with N = 50; by increasing

the stretch, the response of the polymer with the lowest viscosity (η= 1 kPa·s) starts

to deviate from the elastic behavior, followed, for larger stretch, by the curve of the

polymer with the highest viscosity (η= 5 kPa·s), which, nevertheless, remains close to

the elastic curve with N = 50. By increasing again the stretch, the two curves tend to

the response of the purely elastic polymer with N = 70. The two elastic behaviors can be

considered as limit curves, since the polymer subjected to unfolding can reproduce the

elastic curve with N = 50 when η→∞, while it can reproduce the curve with N = 70

when η→ 0. Moreover, the unfolding mechanism moves the limit stretch of a given

chain from
√

N0 to
√

Np >√
N0.

The stress vs. stretch curves of a polymer, characterized by different values of the
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Figure 3.8: Stress vs. stretch curves of networks with different values of the unfolding
viscosity parameter η compared to the response of an elastic network: monotonic stretch
history (a) and cyclic stretch history (b).

unfolding viscosity and subjected to a stretch cycle, are reported in fig. 3.8(b). The

load cycle is composed of two part, as shown in the insert of fig. 3.8(b); in the first one,

the applied stretch increases linearly from 1 to 1.2 in 1 s, while in the second one it

goes back linearly from 1.2 to 1 in 1 s. The polymer is characterized by N0 = 50 and

Np = 70, while three different values of the unfolding viscosity are tested, i.e. η= 40,

200, 800 Pa·s, respectively; the obtained stress vs. stretch curves are compared with the

response of a purely elastic polymer. Again, by decreasing the viscosity, the unfolding

process becomes faster, and tends to reduce the stress; in fact, for a given stretch, the

corresponding stress measured during the first part of the stretch cycle is lower for low

viscosity values. Furthermore, the area under the curve increases by decreasing the

viscosity, since the energy dissipation becomes more pronounced when the unfolding is

faster.

3.7.4 Effect of bond strength on chains failure

In the last case we consider the mechanical response of a polymer whose chains can

fail according to the criterion (3.61), written in terms of the bond energy evaluated

through the Extended Freely Jointed Chain (EFJC) model (see §2.3.3.3).

The stress vs. stretch curve of two polymers with different values of the normalized

bond strength w /kBT, subjected to a load cycle, are shown in fig. 3.9(a); the curves

are compared with the curve relative to an elastic, undamaged, network. The applied
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Figure 3.9: Polymer networks with breakable bonds under a displacement history.
Cauchy stress vs. stretch curve of two polymers with different bond strength compared
to that of an elastic network (a); Damage vs. stretch curve for the same polymers (b).

stretch cycle is reported in the insert of the same figure 3.9(a): from the stress-free

state, the stretch increases up to λ= 2 in 1 s, and subsequently returns to λ= 1 in 1

s. The curve related to the elastic behavior is the same for both the loading and the

unloading phase of the cycle, while when the chains failure is taken into account, the

curve takes a different path during the unloading part of the cycle. As expected, by

decreasing the failure energy the damage becomes more pronounced. The evolution of

the damage D of the polymer, as defined in (3.38), with the applied stretch is illustrated

in fig. 3.9(b). The damage increases during the whole deformation history because of

the stretch of the network’s chains, but in the loading phase of the history (0≤ t ≤ 1) the

damage increases faster than in the unloading phase. We have still a damage increase

during unloading, because the chains are still more stretched than in their reference

configuration (λ= 1).

Finally, a double network polymer, in which each network has different bond

strength, is considered. In the first case, the networks are assumed to have the same

normalized bond strength w1 = w2 = 33.69kBT, while in the second case the bond

strength of the second network falls at w2 = 32.59kBT and in the third case it further

reduces to w2 = 32.08kBT. The two networks are both characterized by N = 50 and by

the same volume fraction, equal to 50%. In fig. 3.10(a), the Cauchy stress vs. stretch

curves of the three considered polymers are reported. For a given stretch, the overall

stress in the polymer decreases with the bond strength of the weakest network. Simi-
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Figure 3.10: Double network polymers made of networks with different bond strength.
Cauchy stress vs. applied stretch curves (a) and damage vs. stretch curves (b) for three
double network polymers. The strongest network has bond strength w1, while the weakest
one has bond strength w2 ≤ w1.

larly, the damage of the material increases when the second network becomes weaker,

as it can be seen in fig. 3.10(b), in which the damage of the polymers vs. the stretch is

reported.

3.8 Conclusions

Polymeric materials exhibit a complex time-dependent mechanical response, that

generally depends on the load history.

In the present chapter, a theoretical constitutive model based on the statistical

description of the polymeric network, has been presented and discussed. The state of a

representative volume of a polymer network is described by the Chain Configuration

Density Function (CCDF) defined in the three-dimensional configuration space. Such

a function provides the connection between the micro-scale and the continuum scale

level. The evolution law of the CCDF has been derived by taking into account for: (i)

the deformation applied to the material, (ii) the dynamic process of chains attachment

and detachment, (iii) the chains unfolding mechanism and (iv) the chains failure. Once

the CCDF and its evolution with the applied deformation are known, the stress state

in the material can be evaluated. The developed micromechanical model allows for a

simple determination of the involved parameters thanks to its physic-based nature.
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Finally, some numerical tests carried out through the proposed model, have been

presented and discussed in terms of stress vs. stretch curves.
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POLYMERS WITH STIMULI-RESPONSIVE MOLECULES

The introduction of properly designed molecules can lead to the development of a

new class of polymers, capable to respond to external stimuli by changing their

own physical or chemical properties [154]. Stimuli-responsive polymers have

been synthesized to be responsive to temperature [120], pH [43], mechanical stress

[96], electric and magnetic fields [99], light [78], etc.

Among this wide class of materials, we focus on mechanochemically responsive poly-

mers, i.e. materials with embedded molecules that undergo chemical transformations

triggered by chemical and/or mechanical actions. Mechanoresponsive materials are

obtained by adding proper functional groups, called mechanophores, to the polymer.

According to Brantley et al. [17], a mechanophore is «any chemical entity that possesses

mechanically labile bonds; that is, a functional group that changes under the influence

of exogenous mechanical forces».

Most of the mechanophores reported so far are characterized by the presence of

strategically weakened bonds [57], electrocyclic ring-opening reactions [68], isomer-

izations [94], release of small molecules [92] or activation of latent transition metal

catalysts [118].
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CHAPTER 4. POLYMERS WITH STIMULI-RESPONSIVE MOLECULES

4.1 Switchable molecule-based mechanophores

A possible strategy to obtain a molecular actuator is to exploit the so-called molecular

switch. A mechanophore with such a property possesses, at least, two molecular stable

states called isomers [100]; the transition from an isomer to another is triggered and

tuned through proper external stimuli such as chemical, temperature, light, electric

and/or magnetic fields, mechanical stress, etc [83, 112, 119]. The stable states are

characterized by different geometrical, physical and sometimes chemical properties.

When the switching mechanism implies a change in the geometry of the molecule, such

a mechanism can be exploited to get a molecular-level actuator [23].

The phenomenon is often called stereoisomerism or conformational switching if the

positions of the atoms change in space without modification of the atomic bonds. In

other cases, the switching implies the rearrangement of the molecule, with breaking

of some bonds and the formation of others. Another switching mechanism is related

to redox reactions or pH variations, when the molecules are charged by electrons or

protons, respectively. The change in the electronic configuration of the molecule often

induces a change of the geometrical configuration [142].

Since the conformation change takes place at the molecular level, the actuating

response of the material can be obtained at any dimensional scale, enabling their use

in a very wide scale range, useful for advanced applications, such as in nanodevices.

4.1.1 Switching mechanism

From the energetic point of view, the isomers are distinct stable molecular configura-

tions that correspond to local minima of the Gibbs energy. In fig. 4.1 it is represented

a possible trend of the Gibbs energy vs. the mechanophore’s conformation. The two

stable states of the mechanophore are separated by an energy barrier, and the confor-

mation switch implies to pass through an unstable state. The Gibbs energy required

to overcome the barrier derives from the thermal agitation of the molecules itself, or

from an external source, such as a mechanical work or a chemical potential. A possible

measure of the mechanophore’s conformation is the molecule’s size. For that reason,

the switching mechanism can be considered as an instability phenomenon (analogous

to the well-known snap through phenomenon in structual mechanics), triggered by

external stimuli capable to provide the energy required to overcome the energy barrier

[22]. In the present study we consider switchable molecules with two distinct stable

58
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Figure 4.1: Gibbs energy vs. mechanophore’s conformation. The «active» and «inactive»
conformations are stable states, while the intermediate conformation is unstable. The
switching between the two stable conformations requires to overcome an energy barrier.

states, identified as «inactive» and «active», where the word «activation» is synonymous

of switching.

Let us consider a large number of mechanophores and let us indicate the fraction

of active molecules - among all the mechanophores - with h. The evolution law of the

active fraction can be obtained from a standard kinetic equation [66, 152], which has

the same form of Eq. (3.17) describing the attached fraction of polymer chains [23]

dh
dt

= kA(1−h)−kD h (4.1)

where kA and kD are the activation and deactivation rates, respectively. These rates

can be obtained with a thermodynamic approach to the transition state theory, that

leads to the well-known Arrhenius equation [2, 20]

kA0 = CA exp
(
−∆GA0

kBT

)
kD0 = CD exp

(
−∆GD0

kBT

)
(4.2)

where CA and CD are the so-called frequency factors or pre-exponential factors, while

∆GA0 and ∆GD0 are the Gibbs energy barriers associated to the activation ad deac-

tivation reactions in absence of external stimuli, respectively. Such energy barriers

can be experimentally measured, for instance, by the Nuclear Magnetic Resonance

(NMR) spectroscopy [109] or numerically determined through Molecular Dynamics

simulations [82].
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CHAPTER 4. POLYMERS WITH STIMULI-RESPONSIVE MOLECULES

In the present study, we focus on mechanophores responsive to mechanical and

chemical stimuli. The mechanical stimuli comes from the force transmitted by the

polymer chains to the mechanophore, while the chemical stimuli is induced by the

presence of a proper solvent carring the molecules that react with the mechanophores

[22].

The effect of the mechanical stress or of the triggering solvent is to promote the

activation reaction and hinder the deactivation one, since these actions modifies the

energy barriers from ∆GA0 to ∆GA and from ∆GD0 to ∆GD [31], i.e.

∆GA =∆GA0 − f δssw −∆GA0
Cs

Ĉs
, ∆GD =∆GD0 + f δssw +∆GD0

Cs

Ĉs
(4.3)

where f is the polymer chain’s force, δssw is the displacement traveled by the force f ,

Cs is the solvent concentration inside the polymer and Ĉs is the solvent concentration

required to activate all the mechanophores present in the unit volume. We empha-

size that f δssw represents the mechanical work done by the chain force times the

displacement corresponding to the mechanophore’s switching, thus δssw is a physical

property of the mechanophore, depending on its size change. Using (4.3) the activation

and deactivation rates can be finally expressed as

kA = kA0 exp
(

f δssw

kBT

)
exp

(
∆GA0

kBT
· Cs

Ĉs

)
kD = kD0 exp

(
− f δssw

kBT

)
exp

(
−∆GD0

kBT
· Cs

Ĉs

)
(4.4)

Let us consider the particular case characterized by a constant applied stretch and

solvent concentration in time, so that also kA and kD are constant. The solution of

(4.1), by adopting the initial condition h(t = 0)= 0, is

h(t)= kA

kA +kD

[
1− e−(kA+kD )t

]
(4.5)

that correspond, at the steady state, to an active fraction of molecules equal to h =
kA

/
(kA +kD)≤ 1.

4.2 Polymer chain with a bi-stable molecule

Let us consider a single polymer chain connected to a mechanophore which has two

stable conformational states. If we ideally perform a tensile test on such a chain by

controlling the displacement of its free ends (as shown in fig. 4.2), we obtain the force

vs. extension curve reported in fig. 4.2(a) [23].

60
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Figure 4.2: Mechanical response of a polymer chain linked to a bi-stable mechanophore:
plot of the force and the chain energy vs. the elongation for a Freely Jointed Chain with
a mechanophore (a); scheme of the bi-stable chain in four different states (b); active and
inactive states of the element representing the mechanophore.

In the scheme of fig. 4.2(b), the mechanophore is represented by an element whose

left end is kept fixed and its right end is linked to a chain; the mechanophore is

characterized by a size change between the two states equal to δssw.

In the state labeled with (1) in fig. 4.2(b), the force f1 corresponding to the separation

r1 arises from the FJC model, meanwhile the mechanophore is inactive. In the state

(2) the force reaches the threshold value f th at which the mechanophore becomes

instantaneously active. During the activation, i.e. in the transition between (2) and (3),

the mechanophore increases its size of the quantity δssw; at the same time, the chain

reduces its extension of the same quantity, since the activation is instantaneous and

its right end does not change position. The activation leads to an instantaneous drop of

the force and, after this point, in the range (4), the behavior goes back to that of the

FJC model as in the range (1) (fig. 4.2(a)).

Such a force drop can be observed in the force vs. extension curve of long folded

molecules, such as DNA [41], RNA [31, 97] or synthetic polymers [10]; in these studies,

the force vs. extension curve of single polymer chain were experimentally measured by

using Atomic Force Microscopy [13].

The presence of a range in which the function f (r) has a decreasing trend (see fig.

4.2(a)) implies that, in such an interval, the stiffness of the chain is negative; therefore,

the free energy results to be non-convex, being the stiffness the second derivative of

the energy itself.
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CHAPTER 4. POLYMERS WITH STIMULI-RESPONSIVE MOLECULES

A similar force drop can be considered as a local mechanical instability phenomenon,

since a small variation of the force causes a large variation of the displacement, until a

new stable configuration is reached. The force acting on the mechanophore is equal to

the force in the chain, so it can be written [21]

fm = kBT
b

L −1
(

r−H δssw

Nb

)
(4.6)

where the step function H ,accounting for the inactive (H = 0) or active (H = 1) state

of the mechanophore, is defined as

H =H f ( f )+Hs(ns)−H f ( f )Hs(ns) (4.7)

H f ( f )=
0 if f < f th

1 if f ≥ f th

Hs(ns)=
0 if ns < Sr

1 if ns ≥ Sr

(4.8)

being f th the threshold force required to activate the mechanophore (i.e. the force in

the state (2) of fig. 4.2), ns the number of solvent molecules available for the reaction

and Sr is the number of solvent molecules required to activate the mechanophore, i.e.

it represents the stoichiometric ratio that activates the reaction.

In the following, we indicate with f the chain’s force evaluated for an end-to-end

length r, while f ′ is the force evaluated for r′ = r−δssw, namely

f = kBT
b

L −1
( r

Nb

)
f ′ = kBT

b
L −1

(
r−δssw

Nb

)
(4.9)

Finally, we can define the free energy associated to the switching, ψsw, as the work

done by the chain force times the switching displacement

ψsw =
∫

sw
fm(r) dr ≈ δ fsw δssw (4.10)

where the integral is evaluated during the switching mechanism, and δ fsw is the force

drop.

4.2.1 Mechanophore switching as an unstable mechanical
phenomenon

Let us consider the dynamic linear momentum balance in presence of inertia actions

and viscous effects; using the Eulerian approach it reads

mü= divσ−η u̇ (4.11)
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4.3. NETWORK WITH SWITCHABLE MOLECULES

where m is the mass density, u is the displacement from the reference to the current

configuration, η is the coefficient of viscous damping and σ is the Cauchy stress tensor.

The stability of the system can be studied by perturbing the above dynamic equilibrium

equation, i.e. by introducing a variation of the displacement δu and assuming that the

CCDF does not change in consequence of such a variation. Under these assumption,

the corresponding variation of the Cauchy stress is

δσ= 〈(
ρ−ρ0

)
δf⊗r

〉
(4.12)

where the variation of the chain force is δf= kBT
b L −1

(
δr
bN

)
r̂. In this case, the variation

of the chains forces is induced by the mechanophore switching, whose effect is to reduce

the chain’s end-to-end distance of the quantity δr = δssw. At the chain-scale level, the

mechanophore switching induces a snap-through instability in the mechanophore-chain

system (see fig. 4.2), while the free energy ψ appears to be non convex [130].

4.3 Network with switchable molecules

Let us consider a representative volume of a network whose chains are linked to bi-

stable molecules; a deformation history is applied to the material, which is further

assumed to be immersed in a fluid (solvent). Our goal is to obtain the internal stress

state and the fraction of active mechanophores when the external actions on the

material are known.

In §4.1.1 the quantity h is defined as the fraction of active mechanophores; here we

specify that h :Ω×T → [0,1] | h = h(r, t) is a function defined in the configuration space

Ω and in the time interval T , which returns the fraction of active mechanophores, for

a given end-to-end vector r and for a given time instant t. Moreover, we define h as the

total fraction of active mechanophores in the representative volume, i.e. the number of

active molecules divided by the number of mechanophores in the network. With the

above definitions, the total active fraction can be computed as

h(t)= 〈
h(r, t)ϕ(r, t)

〉
(4.13)

where ϕ is the normalized CCDF.

We quantify the amount of mechanophores in the network through the parameter

αsw, which represents the volume fraction of the material occupied by the mechanophores

at t = 0; correspondingly, the volume fraction of the polymer is 1−αsw.
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CHAPTER 4. POLYMERS WITH STIMULI-RESPONSIVE MOLECULES

The switching mechanism usually implies a conformation change of the mechanophore,

i.e. a change in shape and size; we quantify the deformation induced in the material

through the corresponding deformation gradient tensor Fsw whose principal compo-

nents are λsw1, λsw2 and λsw3. Let us consider a fictitious material made only of

mechanophores uniformly oriented in every direction of the 3D space. The deformation

gradient in such a material, induced by the switch of all the mechanophores, can be

obtained by an integration over all the possible orientations, i.e.

Fsw = 1
4π

∫
S

AFsw AT dS = λsw1 +λsw2 +λsw3

3
I (4.14)

where S represents the unit sphere and A the three-dimensional rotation tensor. The

volume ratio of this fictitious material made of switched mechanophores is

Jsw = detFsw =
(
λsw1 +λsw2 +λsw3

3

)3
(4.15)

Since we are also in presence of a fluid phase, the absorption of the fluid by the

polymer and the consequent swelling of the material must be taken into account. The

chemical affinity of the mechanophores with the solvent is assumed to be negligible, so

that only the polymer fraction of the material is responsible for the solvent absorption

and volume swelling (the theory of polymer swelling is recalled in §2.4). Here we need

to modify the potential energy of the polymer-solvent mixing given in (2.44), because of

the presence of the mechanophores.

For sake of simplicity, here we neglect the chains attachment/detachment mecha-

nism (i.e. we assume ka = kd = 0), unfolding (Ṅ = 0), enthalpic deformation (ḃ = 0) and

failure (ω f = 0). With the above hypothesis the CCDF’s evolution law (3.39) reduces to

ρ̇ =−(
ρ,i r j +ρ δi j

)
L i j. The potential energy of the coupled system made of polymer,

solvent and mechanophores becomes [22]

Π= 〈(
ρ−ρ0

)[
(1−αsw)ψ−αsw hψsw

]〉+ (1−αsw)Ψmix + p (J−1−VsCs − Jsw) (4.16)

where ψ is the free energy of a polymer chain (defined in §2.3.3), ψsw is the work

associated to the mechanophore’s activation (defined in (4.10)), Ψmix is the mixing

energy given in (2.43), Cs is the solvent concentration measured in the reference

configuration, Vs is the molar volume of the fluid, while p is the hydrostatic pressure

enforcing the constraint

J = 1+VsCs + Jsw (4.17)
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where J is the volume ratio of the material, VsCs is the (dimensionless) volume of the

absorbed solvent and Jsw is the volume ratio due to the mechanophores expansion.

Since the polymer is assumed to be incompressible, the above expression reduces to

J = 1 in absence of solvent and mechanophores activation.

The potential energy Π depends on two unknowns: the deformation gradient Fi j

and the solvent concentration Cs. As recalled in §2.4, the stress state can be obtained

from Pi j = ∂Π / ∂Fi j, while the chemical potential from H = ∂Π / ∂Cs. Following the

procedure discussed in §3.3, the first Piola-Kirchhoff and the Cauchy stress tensors

are, respectively

Pi j =
〈(
ρ−ρ0

) [
αsw h f ′i + (1−αsw h) f i

]
rk

〉
F−T

k j + pJF−T
i j δi j (4.18)

σi j =
〈(
ρ−ρ0

) [
αsw h f ′i + (1−αsw h) f i

]
rk

〉+ pδi j (4.19)

where the symbol F−T
i j refers to the i j-component of tensor F−T , and similarly for Ḟ−T

k j
and L−T

k j . The solvent concentration evolution law is given by eq. (2.48). It is worth

noting that the stress and swelling coupling takes place through the pressure p.

4.4 Solution procedure

In this section we summarize the mathematical procedure adopted to solve the above

described mechanical problem.

Unknowns. We start from the known data of the problem: the deformation history

applied to the material F=F(t), the initial conditions of the evolution laws for Cs and

h, and the material parameters. The unknowns of the problem are the stress state σ,

the solvent concentration Cs and the active fraction h of the mechanophores.

Initial conditions. At time t = 0 the material is assumed to be in a stress-free state,

with all the mechanophores inactive, i.e. h(r, t = 0)= 0 ∀r ∈Ω. The initial dimensionless

CCDF is ϕ(r, t = 0)=ϕ0(r), where ϕ0(r) is the Gaussian distribution given in (3.7). The

initial solvent concentration inside the material is Cs(t = 0) = Cs0, while the initial

value of the hydrostatic pressure is p(t = 0)= 0. Furthermore, in the following examples,

the number of cross-links is assumed to be constant (na(t) = nµ), the segments are

assumed rigid (ḃ = 0) and the chains unfolding is neglected (Ṅ = 0).
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CHAPTER 4. POLYMERS WITH STIMULI-RESPONSIVE MOLECULES

Procedure flowchart. To solve the problem we use the following procedure:

1. the evolution law ρ̇ = −(
ρ,i r j +ρ δi j

)
L i j is used to update the CCDF, starting

from the initial reference function ρ0(r)= nµϕ0(r), by using the velocity of defor-

mation L i j;

2. the solvent concentration Cs(t) is updated by using the evolution law (2.48),

starting from the initial concentration Cs0 and the initial value of the hydrostatic

pressure p;

3. for each end-to-end vector |r| and for each value of N (if the polymer is poly-

disperse, i.e. it contains more than one network), the chain forces f and f ′ are

determined using (4.9); then the activation and deactivation rates are evaluated

using (4.4). Finally, the active fraction function h = h(r, t) is updated for the

current r by using (4.1);

4. since the current CCDF, the solvent concentration Cs and h = h(r, t) are now

known for the current time, the stress state can be evaluated using (4.19), in

which the hydrostatic pressure p is determined from the boundary conditions of

the problem.

The above described procedure is repeated through the time steps adopted, until the

whole deformation history is completed.

4.5 Simulations

The above discussed procedure is used to simulate the mechanical response of a repre-

sentative volume of an incompressible polymer containing switchable mechanophores;

the effects of the solvent and of the applied deformation history are considered. The

goal of the simulations is to determine the stress state and the total active fraction

of mechanophores. Three parametric cases are reported and discussed in order to

underline the role played by the different mechano-chemical stimuli.

Except when differently specified, the polymer under study is formed by a double

network with the following characteristics: the first network is made of chains with

N1 Kuhn’s segments and contributes to the 50% of the total volume, while the second

one is made of chains with N2 Kuhn’s segments and occupies the remaining 50% of the

volume. In order to study the effect of polydispersity on the switching mechanism, we
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4.5. SIMULATIONS

assume N1 = 100 for the first network, while for the second one we tests three different

values, i.e. N2 = 100, N2 = 60 and N2 = 40. The volume fraction of switchable molecules

is αsw = 2% in all cases.

The values of the other parameters, common to all the simulations, are the following:

polymer’s shear modulus µ= 5 MPa, absolute temperature T = 300 K, Flory-Huggins

dimensionless parameter χ = 0.4 (typical value for a good polymer-solvent affinity),

mechanophore’s size variation δssw = 10b (being b = 1 nm the length of a Kuhn seg-

ment), solvent molar volume Vs = 5 dm3/mol, stoichiometric ratio Sr = 10 (number of

solvent molecules required to activate one mechanophore), swelling’s friction coefficient

ζ= 60.2 kJm3s, Gibbs energy for the activation ∆GA = 0.30 J/mol, Gibbs energy for the

deactivation ∆GD = 6022 J/mol, activation frequency CA = 10−10 Hz and deactivation

frequency CD = 10−5 Hz.

4.5.1 Polymer under the effect of a monotonic deformation

Let us consider an incompressible polymer enriched with switchable molecules, un-

der the action of an uniaxial stretch, without any chemical agent triggering the

mechanophores activation.

We apply a deformation along the principal direction 1, while in the other directions

the material is unconstrained. The applied deformation history is as follows: for 0≤ t ≤ 6

ks the material is unstretched (λ1(t) = 1), for 6 ≤ t ≤ 12 ks the stretch λ1 increases

linearly from 1 to 1.5, for 12 ≤ t ≤ 18 ks the deformation is kept constant at the

value λ1 = 1.5 and for 18 ≤ t ≤ 24 ks the stretch increases linearly from 1.5 to 2. The

initial unstretched time period is adopted to reach the steady state for the switching

mechanism, according to the kinetic law (4.1). The dimensionless true stress in the

stretching direction σ1/µ vs. the applied stretch λ1 is illustrated in fig. 4.3(a).

For the same deformation value, the stress in the polymer increases when the

number N2 of segments in the second network decreases. During the time intervals 0

÷ 6 ks and 12 ÷ 18 ks the mechanophores activation is due to the kinetic switching

equilibrium, thus no significant deformation takes place in the networks and the arising

stress is negligible. In fig. 4.3(b) the evolution of the total active fraction h is illustrated.

When the deformation is kept constant (0 ≤ t ≤ 6 ks and 12 ≤ t ≤ 18 ks), the fraction

of switched molecules increases because of the evolution of the kinetic equilibrium;

instead, when the stretch increases (6≤ t ≤ 12 ks and 18≤ t ≤ 24 ks) the active fraction

h increases significantly because of the tensile forces induced in the network’s chains.
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Figure 4.3: Uniaxial stretch of three different polymers with embedded switchable
molecules. The polymers consists of two networks, both with volume fraction of 50%,
characterized by N1 and N2 segments per chain and a content equal to 2% of swithcable
molecules. Plot of the stress vs. time curves (a), of the active fraction vs. time curves
(b) and of the volume ratio of the material (c) for the monotonic deformation history
depicted in (a). In (d) the evolution of the active fraction for the polymer with N1 = 100
and N2 = 40 is reported where the contributions of two networks are singularly indicated.

It’s worth noting that h increases when N2 decreases since the network becomes more

stiff and the force in the chains are greater for the same applied deformation value; the

mechanical stimulus is thus more effective in inducing the mechanophore switching for

low values of N2. The volume ratio of the material is proportional to the active fraction

of mechanophores, since the polymer itself is incompressible and in this example there

is no swelling due to solvent uptake. The time evolution of the volume ratio, J = J(t),

is depicted in fig. 4.3(c).

In fig. 4.3(d) the time evolution of the active fraction of mechanophores for the poly-

mer with N1 = 100 and N2 = 40 is illustrated by showing separately the contribution

of the two networks: again, the shortest network (N2 = 40) displays higher values of
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Figure 4.4: Uniaxial stretch of a monodisperse polymer with embedded switchable
molecules. Plot of the function h = h(rx, r y, rz = 0) for t = 6 ks (a) and for t = 24 ks
(b) in the plane rx − r y of the configuration space. The three-dimensional surface h =
h(rx, r y, rz = 0) is sectioned in r y = 0 and the plot of the obtained function h = h(rx, r y =
0, rz = 0) is reported in (c) and (d) for the corresponding time instants.

the function hN , because of the higher values of the forces arising in its chains with

respect to those of the longer network.

Finally, in fig. 4.4 the contour plot of the function h(rx, r y) = hN=N1(rx, r y, rz = 0),

for the case N1 = N2 = 100, is illustrated for two representative time instants, t = 6

ks and t = 24 ks. In the same figure is reported, moreover, the plot of the function

hN=N1(rx, r y = 0, rz = 0) vs. the component rx of the end-to-end vector r. For t = 6 ks,

the function h(rx, r y) is close to zero for |r| < 600 nm, irrespectively of the direction,

while it is close to 1 for end-to-end distance greater than such a value, with a sharp

increase. At the beginning the distribution is isotropic since the activation is driven by

the kinetic equilibrium in absence of external stimuli. For t = 24 ks the distribution is
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not isotropic, since in the x-direction the function h(rx, r y) shows a sharp transition in

rx ≈ 400 nm, while it changes slightly in the y-direction.

4.5.2 Polymer under the effect of a permeating solvent

In this example the polymer is exposed to a chemical agent; the material absorbs the

fluid from the surrounding environment, thus it increases its volume because of the

swelling; furthermore, the chemical agent enter in contact with the mechanophores,

causing the switching to occur.

In fig. 4.5(a) the time evolution of the solvent concentration Cs for the three

polymers considered in §4.5.1 is reported. The initial value of the concentration is

Cs(t = 0) ≈ 0 and after a transient time interval it reaches a steady state value. It

appears that the most compliant polymer (i.e. that with N1 = N2 = 100) allows a more

easily solvent diffusion, so the concentration is higher.

The time evolution of the active fraction of mechanophores, h, is shown in fig. 4.5(b);

as expected, h tends to an asymptotic value representing the steady state condition of

the kinetic equilibrium. For a given time, the polymer with higher stiffness presents

a higher value of the active fraction h, since a greater chain’s force promotes the

activation process.

The volume ratio due only to the switching mechanism, Jsw, is illustrated in fig.

4.5(c); the trend of such curves is proportional to that shown in fig. 4.3(b) for h. Again,

the volume change induced by the switching mechanism increases its effectiveness

with the stretching of the network, i.e. for lower values of N2.

In fig. 4.5(d) the polymer with N1 = 100 and N2 = 40 is considered to study the

contribution of the two networks; again, the shortest network (N2 = 40) is more effective

in inducing the activation of the switchable molecule.

Finally, fig. 4.6 shows the contour plot of the function h(rx, r y)= hN=N1 (rx, r y, rz = 0)

for the polymer with N1 = N2 = 100 for t ≈ 0 (fig. 4.6(a)) and for t = 2 ks (fig. 4.6(b)).

It can be appreciated that the function is isotropic during the whole process, so in

the three-dimensional configuration space (rx, r y, rz) it has spherical symmetry, since

the chemical-induced activation does not have preferential directions and the stretch

induced by the swelling is isotropic. We assume the reference system (rx, r y, rz) in the

configuration space to be coaxial with the principal reference system (r1, r2, r3) in the

physical space. The section of the function h(rx, r y) for r y = 0 vs. the x-component of

the end-to-end vector r is reported in fig. 4.6(c) and 4.6(d) for the two time instants.
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Figure 4.5: Effect of a fuild solvent on three different polymers with embedded switchable
molecules. The polymers consists of two networks, both with volume fraction of 50%,
characterized by N1 and N2 segments per chain and a content equal to 2% of swithcable
molecules. Plot of the solvent concentration (a), of the active fraction (b) and of the
volume ratio of the material due only to the switching (c) versus time. Active fraction for
the polymer with N1 = 100 and N2 = 40 represented separately for the two networks (d).

At the very beginning of the simulation, only the molecules connected to chains with

|r| > 800 nm are active, while at the steady state the active molecules can be found

for |r| greater than about 700 nm. The fraction of switched mechanophores is initially

greater for large values of rx, being the chains along this direction the most elongated

ones and so the more stressed. Furthermore, the function h increases also because of

the swelling expansion induced by the solvent absorption.

4.5.3 Polymer under cyclic loading in presence of a solvent phase

In the last parametric analysis we investigate the effects, on a monodisperse polymer

with switchable molecules, of an imposed deformation history in combination with the

presence of a solvent phase. The deformation history applied to the material is shown
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Figure 4.6: Effect of a fluid solvent on a monodisperse polymer (N=100) with embedded
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same time instants, (c) and (d).

in the insert of fig. 4.7(a): in the time interval 0≤ t ≤ 1 ks no external deformation is

applied to the material in order to let the material reaching the steady state for the

swelling and the switching mechanism; then, a tensile cycle is applied by stretching

the material linearly for 1 ks (1≤ t ≤ 2 ks) up to λ1 = 1.6, by keeping the deformation

constant for 1 ks (2 ≤ t ≤ 3 ks) and by reducing the stretch to λ1 = 1 in 1 ks (3 ≤ t ≤ 4

ks); after that, a smaller compressive cycle is applied, by reaching the stretch λ1 = 0.6

in 1 ks (4 ≤ t ≤ 5 ks), by maintaining this value for 1 ks (5 ≤ t ≤ 6 ks) and then going

back to λ1 = 1 in 1 ks (6≤ t ≤ 7 ks), while in the last interval 7≤ t ≤ 8 ks λ1 = 1 is kept

constant.

In this example, the polymer is characterized by N = 100, the Flory-Huggins
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Figure 4.7: Effect of a fluid solvent and of a mechanical action on a polymer with
embedded switchable molecules. Plot of the true stress vs. time (a) for the polymer with
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switching volume ratio (c) and swelling volume ratio (d) vs. time

parameter is χ= 1.8 (corresponding to a low polymer-solvent affinity), the size variation

associated to the mechanophores activation is δsw = 50b, while the mechanophores

contents is assumed to be αsw = 0% or 20%.

In fig. 4.7(a) the true stress vs. time is reported for the two considered mechanophores

contents. During the tensile cycle, the stress in the polymer with mechanophores

(αsw = 20%) reaches a lower value than in the case without mechanophores (αsw = 0),

because no stress relaxation induced by the mechanophores activation in the chains

takes place in the second case.

The time evolution of the active fraction h is reported in fig. 4.7(b); in the time

interval 0÷1 ks the fraction evolves because of the chemical stimulus, while in 1÷2

ks it increases faster because of the mechanical action. During the unloading phase
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(2÷3 ks), the fraction of active mechanophores does not change significantly, because

the switching mechanism is sensible only to tensile forces, being the compression not

allowed to occur in the polymer chains. A further small increase of the active fraction

occurs during the compressive cycle (4÷7 ks), due to the stretch increase of the chains

normal to the load.

Again, the volume ratio of the material due only to the switching mechanism,

Jsw, is proportional to the active fraction h, fig. 4.7(c). The swelling of the material,

quantified by the volume ratio Jmix = CsVs, is illustrated in 4.7(d) for the polymer

with mechanophores. It appears that an increase of the applied stretch promotes the

fluid absorption (1÷3 ks and 6÷7 ks), while a stretch reduction (3÷5 ks) induces the

expulsion of the solvent.

Finally, in fig. 4.8 the contour plot of the function h = h(rx, r y, rz = 0) is illustrated

for t = 1 ks (fig. 4.8(a)) and for t = 3 ks (fig. 4.8(b)). As expected, when the activation is

promoted only by the chemical stimulus, the function has spherical symmetry, while

the stretch increases the active fraction preferentially along the x-axis. In fig. 4.8 (c)

and (d) the function h = h(rx, r y = 0, rz = 0) is represented for the same time instants; it

is appreciable the reduction, in the configuration space, of the number of chains jointed

to inactive mechanophores.

4.6 Comparision with experimental tests

In this section we compare the results obtained through the above described model

with those from some experimental tests. Firstly, we simulate the test reported in [136]

related to the swelling of a polyacrylamide gel; then we consider the test reported in

[132] considering the activation of a spiropyran mechanophore in a glassy polymer

matrix; finally, we attempt to reproduce the results of an experiment [142] on the

activation of a quinoxaline cavitand mechanophore embedded in a PDMS elastomer

under the exposure to an acid vapor.

4.6.1 Swelling of a polyacrylamide gel

In [136] the results of an experimental campaign on the free swelling of spherical

polyacrylamide gel samples immersed in water are reported. For the details about the

sample preparation and the test execution, we refer to the cited paper. The spherical

samples has an initial radius of 0.315 mm; after 700 minutes in water, the radius
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Figure 4.8: Effect of a fluid solvent combined to a mechanical action on a polymer with
embedded switchable molecules. Contour plot of the function h = h(rx, r y, rz = 0) for
t = 1 ks (a) and for t = 3 ks (b) on the rx − r y plane of the configuration space. Plot of the
function h = h(rx, r y = 0, rz = 0) vs. the x-component of the end-to-end vector r for the
same time instants, (c) and (d).

became 0.338 mm. The Authors measured the sphere’s radius during the swelling

process, thus it is possible to compute the volume ratio of the sphere, assuming an

homogeneous expansion, as J(t)= (
r(t)

/
r(t = 0)

)3, where r(t) is the radius of the sphere

at time t and r(t = 0)= 0.315 mm is the radius at t = 0.

In fig. 4.9 the experimental curve J = J(t), obtained from the data reported in

[136], is compared with three curves obtained with the model for three different values

of the ζ parameter, i.e. ζ = 24,36,54 kJm3s, since the exact value for the present

material is not provided in literature. The shear modulus of the polyacrylamide gel is

assumed to be µ= 40 kPa [110], while the Flory-Huggins parameter is χ= 0.4986 for

the polyacrylamide-water interaction [95].
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Figure 4.9: Swelling of a polyacrylamide gel in water. Evolution of the volume ratio
with time. Experimental results derived from [136] and results of simulations for three
different values of the ζ-parameter.

4.6.2 Responsive PMMA under mechanical load

In [132] some tests on a polymethyl methacrylate (PMMA) polymer enriched with a

spiropyran mechanophores have been reported. Such a mechanophore has two stable

isomers, called spiropyran and merocyanine; the merocyanine is fluorescent and thus

can be easily detected under UV light. The PMMA sample is mechanically tested

by applying a torsion load meanwhile the activation level of the mechanophores is

quantified by measuring the fluorescence intensity. We identify the «inactive» state

with the spiropyran and the «active» state with the merocyanine, thus we associate the

measured fluorescence intensity to the fraction h of active molecule.

As reported in [132], the shear modulus of the PMMA sample is µ = 0.74 GPa,

while the mechanophore is characterized by a Gibbs energy ∆GA0 = 48.2 kJ/mol for

the activation and ∆GD0 = 150.6 kJ/mol for the deactivation, respectively. The torsion

load increases monotonically with constant rate, while the test is performed at room

temperature and no solvent is present. From the experimental results, the activation

phenomenon appears to be slightly influenced by the strain rate.

In order to fit the measured fluorescent of the sample, the polymer is assumed to be

monodisperse with N = 2000, the characteristic size variation between spiropyran and

merocyanine is assumed to be δssw = 5b and the activation and deactivation rates are
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Figure 4.10: Torsion test on a PMMA polymer enriched with spiropyran mechanophores.
Evolution of the active fraction with the applied shear deformation. Experimental data
from [132] compared with the results of a simulation.

assumed to be kA0 = 10−22 Hz and kD0 = 10−5 Hz, respectively. We highlight that the

assumed rate values are related to the time scale adopted in the experimental tests.

In fig. 4.10 the results of the simulation, i.e. the active fraction vs. shear deformation

curve, is illustrated and compared with the experimental data reported in [132]. The

numerical and the experimental data appear to be in a satisfactory agreement, in

particular for strain values lower than about 0.9.

4.6.3 Responsive PDMS elastomer exposed to an acid

The last example is related to a polydimethylsiloxane (PDMS) elastomer containing, as

responsive mechanophores, quinoxaline cavitands. We consider the experimental tests

reported in [142] on unconstrained samples exposed to trifluoroacetic acid vapor, which

permeates the elastomer and promotes the mechanophores activation. During the test,

performed at room temperature, the polymer samples increase their volume because of

the swelling and the own expansion of the mechanophores during their conformational

change. The volumetric deformation of the samples were measured by using a Digital

Image Correlation technique.

The two conformational stable isomers, called vase and kite [89], of the quinoxaline

cavitand are depicted in fig. 4.11, with some representative dimensions. The chains of
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Calcolo percentuale in volume di cavitando nel Sylgard® 

 

Le dimensioni del cavitando in forma chiusa (vase) e in forma aperta (kite), riportate nella figura 

sotto, sono state ricavate da strutture a raggi-X e da calcoli computazionali (Macromodel)1. 

 

 
         (a)          (b) 

 

Il volume è stato calcolato approssimando la forma del cavitando a un parallelepipedo: 

 

Vol molecola vase (nm3) Vol molecola kite (nm3) 

2.06 2.85 

 

Dalle quantità di CAM66 introdotta è possibile ricavare il volume totale di CAM66 nel campione di 

Sylgard e rapportarla al volume di quest’ultimo (13 cm x 1.5 cm x 0.3 cm = 5.85 cm3): 

 
Voltot CAM 66 vase (cm3) % Vol CAM 66 vase Voltot CAM 66 kite (cm3) % Vol CAM 66 kite 

0.024 0.41 0.033 0.57 

 

La variazione di volume da chiuso ad aperto è pari a 0.009 cm3, che è circa il 40% del volume iniziale. 

 

 

 

Deformazioni principali del cavitando 

Le deformazioni del cavitando, calcolate con le dimensioni indicate nella fig. precedente, valgono: 

 

𝜺𝒄 = (

𝜀1 0 0
0 𝜀2 0
0 0 𝜀3

) = (
1.445 0 0
0 0.9056 0
0 0 0

) 

 

 

 

 

 

                                                        
1 F. Lagugné-Labarthet, Y. Q. An, T. Yu, Y. R. Shen, E. Dalcanale, D. K. Shenoy, Langmuir 2005, 21, 7066-

7070. 

(b) kite(a) vase

Figure 4.11: Conformational stable states of the Quinoxaline cavitand: vase (a) and kite
(b).

the hosting polymer are connected to the cavitands wings in the top plane of fig. 4.11,

while the other arms are not connected [141]. For that reason, the deformation due to

the conformational change is more effective in that plane. The volume ratio associated

to the vase-kite transition for a material made of quinoxaline cavitands only can be

computed by using (4.15); by adopting the dimensions showed in fig. 4.11 it results

Jsw = 5.67.

The experimental results of the tests are reported in fig. 4.12 in term of surface

strain vs. time for a sample containing mechanophores and for a control sample without

mechanophores; the control sample is necessary to quantify the swelling contribution to

the whole expansion. In the same figure the results of the numerical simulation carried

out with the proposed model are also reported. The parameter used to perform the

simulation are the following: volume fraction of mechanophores αsw = 0.41% (αsw = 0%

for the reference sample), shear modulus of the PDMS elastomer µ= 0.5 MPa, Flory-

Huggins parameter χ= 0.6, Gibbs energy ∆GA0 = 13.7 kJ/mol for the mechanophores

activation and ∆GD0 = 28.1 kJ/mol the deactivation, respectively, stoichiometric ratio

for the quinoxaline cavitand-trifluoroacetic acid reaction Sr = 4 (i.e. 4 moles of acid are

required to activate 1 mole of cavintands), ζ-parameter ζ= 180.7 kJm3s, size variation

of the mechanophore δssw = 0.86 nm, number of segments per chain N = 100. Being the

specimens thin flat plates, we use the surface expansion as a representative measure

of the volume expansion of the material.
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Figure 4.12: PDMS elastomer with quinoxaline cavitands exposed to an acid. Sur-
face strain of the samples vs. time: experimental and numerical results for the
mechanophores-added polymer and for a reference one with αsw = 0%.

The numerical simulation appears to be in good agreement with the experimental

outcomes for the reference sample, while for the sample enriched with mechanophores

the simulation predict a more abrupt volume increase than in the test.

4.7 Conclusions

Stimuli responsive materials are capable to respond to external stimuli by changing

their physical or chemical properties. Mechanochemically responsive polymers can be

obtained by introducing inside the network special molecules, called mechanophores,

capable to change their conformation in response to external stimuli.

In the present chapter, a micromechanical model has been developed to study the

mechanical response of polymers enriched with switchable mechanophores character-

ized by two stable states, characterized by different sizes.

The conformation change has been considered to be induced by both mechanical

or chemical stimuli; the equilibrium condition is determined on the basis of a kinetic

equilibrium law. Since the assumed chemical stimulus is driven by the presence of

an «active» solvent, the absorption mechanism of such a fluid has been considered

(swelling).

79



CHAPTER 4. POLYMERS WITH STIMULI-RESPONSIVE MOLECULES

The effect of the abrupt size change of the mechanophores on the polymers chains

can be considered as an unstable phenomenon and so the corresponding mechanical

description can be done also by taking advantag of the theory of material or pointwise

instability. The mechanical response of the whole network have been obtained by

upscaling the micromechanical model to the macroscale through the network’s model

developed in chap. 3.

Some parametric examples of polymer enriched with mechanophores subjected to

mechanical and/or chemical stimuli have been discussed. Finally, the results of three

experimental tests on different polymers, have been reported and simulated through

the proposed model.

80



C
H

A
P

T
E

R

5
NUMERICAL MODELING

The mechanical problem we are interested in requires to calculate the displace-

ment, the strain, the stress, the solvent concentration and the active fraction

of mechanophores in each point of a continuum body, by knowing the geometry

of the body itself, the external actions (mechanical or chemical) and the kinematic

boundary conditions.

In this chapter we present the numerical solution of such a problem through a Finite

Element approach, implementing the model discussed in the previous chapters. Firstly,

we recall the set of relations to be solved (strong form formulation); secondly, we discuss

the formulation of the mechanical problem in term of variational principles (weak form

formulation); then the linearization of the weak form problem and the discretization

of the continuum body are presented; finally, we illustrate the implementation of the

numerical procedure in a in-house Finite Element code. At the end of the chapter, some

parametric tests performed with the FE algorithm are presented and discussed.

5.1 Strong form formulation

The strong form of the mechanical problem we need to solve is composed of two sets of

equations: the linear momentum balance (2.14), corrected because of the presence of

a linear energy dissipation due to the solvent uptake, and the solvent concentration
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evolution law (2.48).

5.1.1 Linear momentum balance equation

By adopting a Lagrangian description, the linear momentum balance equation, ac-

counting for a viscous-like dissipation, is [136]

DivP+G= ζ u̇ in B0 (5.1)

where P is the first Piola-Kirchhoff stress tensor, G is the body force vector, ζ is the

polymer-solvent friction coefficient and u̇ is the velocity field. The Cauchy problem is

completed by the boundary conditions

u=u on ∂B0 u , P N=T on ∂B0σ with ∂B0 = ∂B0 u ∪∂B0σ (5.2)

where u are the displacements applied to the boundary region ∂B0 u, N is the unit

vector normal to the body’s boundary ∂B0 and T is the stress vector applied to the

boundary region ∂B0σ.

5.1.2 Evolution law of the solvent concentration

Following the theory developed by Tanaka et al., the evolution law for the solvent

concentration evolution is [136]

∂Ψmix

∂Cs
+ pVs =−ζĊs (5.3)

where Ψmix is the mixing free energy defined in (2.43), p is the osmotic pressure and

Vs is the volume of the incoming solvent molecules. The initial condition of the above

evolution law is

Cs(t = 0)= Cs0 in B0 (5.4)

being Cs0 the initial concentration.

5.2 Weak form formulation

The above strong form problem can be conveniently rewritten in a weak form. We

choose as independent field variables the displacements u : B0 ×T → R3 | u = u(X, t)

and the solvent concentration Cs : B0×T →R | Cs = Cs(X, t), being T the time domain.
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Formally, the weak form formulation of eq. (5.1) has the form G (u, u̇,δu) = 0,

where δu is a test function representing an arbitrary infinitesimal variation 1 of the

displacement field u and G is the following functional

G (u, u̇,δu)=
∫
B0

[
P : Grad(δu)− (G−ζ u̇) ·δu

]
dB0 −

∫
∂B0σ

T ·δu d(∂B0σ) .= 0 (5.5)

The linear momentum balance (5.5) is valid for any material mechanical behavior, since

it does not require the knowledge of the constitutive properties of the material.

Let us now introduce the hypothesis that the material is characterized by an hyper-

elastic behavior (see §2.2.1), so that we can define the energy density Π=Π(F(u), Cs),

whose derivatives w.r.t. F are the nominal stress, while the derivative w.r.t. Cs is the

chemical potential (see § 2.4). Under the hyperelasticity assumption, the weak form

formulation of the coupled equations (5.1) and (5.3) takes the form G (u,Cs)= 0, where

the functional G (u,Cs) is now defined as

G (u,Cs)=Wint(u,Cs)+Wext(u) (5.6)

Wint(u,Cs)=
∫
B0

Π(F(u), Cs) dB0 (5.7)

Wext(u)=−
∫
B0

G ·u dB0 −
∫
∂B0σ

T ·u d(∂B0σ) (5.8)

where Wint(u,Cs) and Wext(u) are the potential energies of the internal and external

actions, respectively, while Π(F(u), Cs) is the energy per unit volume previously defined

in (4.16) as

Π(F(u), Cs)=Ψ(F(u) )+ (1−αsw)Ψmix(Cs)+ p (J−1−VsCs − Jsw) (5.9)

The energy density Π takes into account for the physical phenomena described in the

previous chapters: the network’s deformation, the stress relaxation due to the dynamic

cross-links, the chains unfolding, the mechanophores activation, the mixing with the

fluid and for the constraint represented by the incompressibility of the polymer.

The solution of the problem written in the weak form requires the functional

G (u,Cs) to be stationary with respect to the unknown fields u and Cs. Since the energy

dissipation due to the polymer-solvent interaction is linear (see eq. (5.1)), we can define

the Rayleigh’s dissipation function R =R(Cs) as in eq. (2.47). The variational principle

δG (u,Cs)= 0 can be explicitly written as [47]

δG (u,Cs)
δu

=−∂R
∂u̇

= 0 ,
δG (u,Cs)

δCs
=− ∂R

∂Ċs
(5.10)

1The operator δ (•) has the following properties: δ(Grad•)=Grad(δ•) and δ
∫

X •dX = ∫
X δ• dX .
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where the first identity is justified since R does not depend on the velocity. The above

system of nonlinear equation is hereafter solved through a staggered technique: each

field is determined independently, by using the latest calculated value of the other

field, assumed to be constant during the current time step increment. The iterative

calculation is repeated until a proper convergence criterion is fulfilled.

5.3 Linearization and discretization

We adopt the Finite Element technique to find the numerical solution of the above

discussed problem. The Finite Element method requires to linearize the nonlinear

equations (5.5) involved in the weak form formulation and the discretization of the

continuum domain in a finite number of elements characterized by nodal degrees of

freedom.

5.3.1 Linearization

Let u be a given displacement field and ∆u an unknown displacement increment

such that u+∆u satisfies (5.5), i.e. G (u+∆u)= 0. The functional G can be linearized

through a first-order series expansion as G (u+∆u)=G (u)+∆G (u,∆u), where∆G (u,∆u)

represents the increment of G due to the increment ∆u for a fixed u. The linearization

of eq. (5.5) leads to

G (u)+∆G (u,∆u)= 0 (5.11)

The term ∆G (u,∆u) in the above expression is the slope of δWint in the direction of u
times the displacement increment ∆u; formally it can be expressed as

∆G (u,∆u)= ∂ (δWint)
∂u

∆u=∆Gg(u,∆u)+∆Gm(u,∆u) (5.12)

where ∆Gg(u,∆u) is the so-called geometric part of ∆G (u,∆u), while ∆Gm(u,∆u) is

the so-called material part. Using the Total Lagrangian approach, the geometric

contribution is

∆Gg(u,∆u)=
∫
B0

Grad(δu)⊗Grad(∆u) : S dB0 (5.13)

while the material contribution is

∆Gm(u,∆u)=
∫
B0

FTGrad(δu) :C : FTGrad(∆u) dB0 (5.14)

84



5.3. LINEARIZATION AND DISCRETIZATION

where S is the second Piola stress tensor, and C is the fourth-order elasticity tensor,

that can be obtained from (5.9) as

C= ∂2 Π

∂F ∂F
, C=C0 = ∂2 Π0

∂F ∂F
(5.15)

where the first expression refers to the so-called tangent stiffness method, while the

second to the initial stiffness method, being Π0 the energy density (5.9) evaluated in

the reference configuration. In the present study we adopt the initial stiffness method.

5.3.2 Discretization

The Finite Element method requires to discretize the domain B0 in a finite number of

elements

B0 ≈
nele⋃
e=1

Be
0 (5.16)

The mapping between the natural and the reference coordinates of a given element

is provided by the shape functions NI , I = 1, . . . ,nnod. By adopting the isoparametric

formulation, the geometry and the displacement are interpolated with the same shape

functions, so that

X(ξ)≈
nnod∑
I=1

NI (ξ) XI , u(ξ)≈
nnod∑
I=1

NI (ξ) uI (5.17)

where XI and uI are the coordinates and the displacement vector of the I-th node of

the considered element, while ξ are the coordinates (in the natural reference system of

the element) of a generic finite element’s point, corresponding to the material point X
in the reference configuration. The material gradient of the displacement vector u can

be evaluated as

Grad(u)≈
nnod∑
I=1

uI ⊗Grad(NI ) (5.18)

while the material gradient of the increments δu and ∆u are

Grad(δu)≈
nnod∑
I=1

δuI ⊗Grad(NI ) , Grad(∆u)≈
nnod∑
I=1

∆uI ⊗Grad(NI ) (5.19)

Finally, the material gradient of the shape functions is

Grad(NI )=J−T
e

d NI

dξ
with Je = dX

dξ
=

nnod∑
I=1

XI ⊗ d NI

dξ
(5.20)
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The weak-form of the problem requires the stationarity (5.10) of the potential energy

W , i.e. δW = 0; the discretized form of such relations, for each finite element e, is

δW e = δW e
int −δW e

ext = 0 (5.21)

The discretized internal and external potential energies are

δW e
int =

nnod∑
I=1

δuI · f int
I , δW e

ext =
nnod∑
I=1

δuI · f ext
I (5.22)

where f int
I and f ext

I are the internal and external nodal forces, respectively, referred to

the I-th node

f int
I =

∫
Be

0

Grad(NI ) S dBe
0 , f ext

I =
∫
Be

0

NI b dBe
0 +

∫
∂Be

0

NI T d(∂Be
0) (5.23)

being S the second Piola stress tensor (2.6).

Let us define the umbalanced force vector for the I-th node RI as the difference

between the internal and external nodal forces, i.e. RI = f int
I − f ext

I . The nodal equi-

librium equation requires RI = 0 for each node I = 1, . . . ,nnod. The solution of such

an equation can be found, for instance, through a Newton-Raphson iterative solution

technique, which can be written, for the k-th iteration, as R k+1
I =R k

I +∆R k
I = 0, where

the increment ∆R k
I is

∆Rk
I =

nnod∑
J=1

dRI

duJ
∆uJ (5.24)

In the above expression, the derivative dRI /duJ represents the tangent stiffness

matrix , i.e.

KIJ = dRI

duJ
=

∫
Be

0

[
Grad(NI ) ·C ·Grad(NJ)+ (

Grad(NI ) ·S ·Grad(NJ)
)
I
]
dBe

0 (5.25)

where C is he fourth-order elasticity tensor defined in (5.15) and S is the second Piola-

Kirchhoff stress tensor. The global stiffness matrix K, the global umbalanced forces

vector R and the global displacement vector D can be obtained through the following

standard assembling operation

K=
nele⋃
e=1

Ke, R=
nele⋃
e=1

Re, D=
nele⋃
e=1

De (5.26)

where Ke is the stiffness matrix (with dimension nnod×nnod) of the element e, while

Re and De are the unbalanced force vector and the displacement vector (both with
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dimension nnod) relative to the element e, respectively. Finally, the nodal equilibrium

equations become

Rk +Kk∆Dk = 0 with ∆Dk =Dk+i −Dk (5.27)

the iterative procedure - involving the above equations - provides the solution for the

discretized displacement field D at each time instants.

5.4 Implementation in a Finite Element Code

The above discussed formulation has been implemented in a in-house Finite Element

code whose flowchart is illustrated in fig. 5.1. The algorithm can solve 2D problems in

plane stress, plane strain or axisymmetric condition.

The algorithm discretizes the time in a finite number of steps and, for each step,

solves the mechanical problem with a non-linear iterative procedure. At the beginning

of each step, the global stiffness matrix K is evaluated with the current nodal displace-

ments by using (5.25) and assembled through (5.26); the external nodal force vector

f ext is evaluated by using (5.23) and finally the constraints are applied by using the

so-called penalty method.

After these initial operations, the iterative solution procedure starts. The internal

nodal force vector f int is evaluated for the current stress state by using (5.23) and the

reaction forces in the constrained nodes are updated accordingly. Then, the unbalanced

(or residual) force vector Rk is evaluated for the current k-th iteration as the difference

between the internal and external nodal forces. Since the umbalanced forces are

known, it is possible to compute the increment of nodal displacement for the current

iteration ∆Dk by using (5.27) as ∆Dk =−K−1Rk, being K−1 the inverse of the stiffness

matrix for the current step. After that, the global displacement vector is updated as

Dk = Dk−1 +∆Dk, and also the coordinates of the nodes and of the elements’ Gauss

point are updated accordingly. Thus, the stress arising at each Gauss point is evaluated

by following the procedure described in §5.4.1. Finally, if the convergence criteria

are fulfilled, the execution proceeds to the next step, otherwise a further iteration is

performed. The convergence of the iterative procedure to an acceptable solution is

assumed to be fulfilled when both the following inequalities are fulfilled

|∆Dk|
|Dk| ≤ tollD ,

|∆Rk|
|Rk| ≤ tollR (5.28)
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Figure 5.1: Flowchart of the algorithm of the developed Finite Element code.
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where the operator | • | indicated the usual Euclidean norm, while the tolerances tollD

and tollR are assumed sufficiently small.

5.4.1 Numerical evaluation of the stress state

The evaluation of the stress state at the Gauss points is performed by following the

flowchart of fig. 5.2. The algorithm evaluates the deformation gradient tensor F and

the velocity gradient L at each Gauss point of the mesh, by interpolating the nodal

displacement with the shape functions of the element to which the Gauss point belongs.

The z-term of the deformation gradient, i.e. the deformation gradient term related to the

direction normal to the plane of the 2D problem, cannot be evaluated by interpolating

the displacement field, but it arises from the assumption of plane state. Since we are

dealing with a 2D problem, the nonzero terms of the deformation gradient tensor are

F=


Fx Fxy 0

Fyx Fy 0

0 0 Fz

 (5.29)

In particular, the term Fz in plane stress condition is evaluated from the incompress-

ibility condition detF= 1, leading to Fz = (FxFy −FxyFyx)−1; in plane strain condition

it is, by definition of plane strain, Fz = 1; in axisymmetry it is Fz = r /R, being r and R

the current and reference distance of the point from the axis of symmetry, respectively.

Once the deformation and the velocity gradient tensors, F and L= ḞF−1, are known

in the Gauss point, the stress state can be evaluated with the model discussed in the

previous chapters (see below). Finally, the Green-Lagrange deformation tensor and the

first Piola stress tensor are derived.

The evaluation of the stress state in a given Gauss point is performed by following

the flowchart depicted in fig. 5.3. The integration domain in which the operator 〈•〉 is

defined is a finite subset of the configuration space Ω, and it is defined by {r ∈R3 | |r i| ≤
rmax, i = x, y, z} ⊂Ω, where rmax is the (finite) dimension of the integration domain.

The numerical integration is performed, in the configuration space, by using a n×n×n

grid (n = 30) of integration points, whose positions are determined according to the

Gauss’ quadrature rule, so that the operator 〈•〉 becomes

〈•〉 =
nnet∑

inet=1
qinet

n∑
i=1

n∑
j=1

n∑
k=1

•∆Ω (5.30)
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Figure 5.2: Flowchart of the algorithm for the evaluation of the stress state in the
discretized body.

90



5.4. IMPLEMENTATION IN A FINITE ELEMENT CODE

Figure 5.3: Flowchart of the algorithm for the evaluation of the stress state in a given
Gauss point.
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where nnet is the number of networks present in the polymer, qinet is the volume

fraction of each network, so that
∑nnet

inet=1 qinet = 1, and ∆Ω is the weight of each Gauss

point. At t = 0 the CCDF of each network is set to a standard Gaussian distribution

with mean value equal to 0 and standard deviation equal to b
p

N/3. The gradient of the

CCDF ∇ρ is numerically evaluated through a quadratic interpolation of the discretized

CCDF in the chain configuration space.

For every iteration, the solvent concentration Cs is updated by using the evolution

law (2.48), while the evolution of the chains concentration is evaluated for each network

by using the evolution law (3.17).

Then, for each chain configuration, provided by the end-to-end vector r= (rx, r y, rz),

the active fraction of mechanophores h is evaluated by using the kinetic equilibrium

(4.1), while the unfolding rate Ṅ is evaluated by using (3.58) and the failure rate ω f

by using (3.61). Once all these contributions are known, it is possible to compute the

CCDF time derivative defined in (3.39) and to update the CCDF. Thus, the CCDF ρ0(r)

is evaluated as indicated in eq. (3.51) as ρ0(r) = ρ(Fr) by interpolating, with linear

shape functions, the values of ρ in the three-dimensional grid of the integration point.

Finally, the Cauchy stress are evaluated by using (3.46).

Once the Cauchy stress tensor in the Gauss point is known, it is possible to compute

the osmotic pressure which enforces the incompressibility constraint; in plane stress

such a pressure can be obtained from the boundary conditions along the z-direction,

σ3 = 0, while in plane strain or axisymmetric situations it is obtained from the con-

straint condition required by the deformation. Once the osmotic pressure is known,

the stress tensor is correct accordingly. Finally, the deformation gradient is updated

by taking into account the expansion due to the fluid absorption and the volumetric

deformation effect due to the mechanophores activation.

5.5 Parametric FE analysis

In this section we present the results of some parametric tests performed with the

Finite Element algorithm. The body considered for the tests is the 5×1×0.1 m cantilever

beam subjected to a vertical displacement δ= 0.3 m applied to the top-right corner of

the element. The geometry of the body is illustrated in fig. 5.4(a), while the adopted

mesh and boundary condition is illustrated in fig. 5.4(b).

The material is assumed to be an incompressible polymer with shear modulus µ= 1
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Figure 5.4: Cantilever beam subjected to an imposed vertical displacement. Geometry of
the problem (dimensions in meters) (a), deformed mesh for δ= 0.3m (b) and adopted FE
mesh whit the constraints (c).

MPa for all the considered cases. The applied displacement history is assumed to be

made of two phases: in the first one (0≤ t ≤ 1 s) the displacement factor α(t) (such that

δ(t)= δ ·α(t)) increases linearly from 0 to 1, while in the second phase (1≤ t ≤ 2) it goes

back to 0 (see insert of fig. 5.5).

In §5.5.1 the results related to the beam made of a polymer with dynamic cross-

links is presented, while in §5.5.2 the material is assumed to be characterized by the

unfolding phenomenon and, finally, in §5.5.3 the polymer damage is considered.

5.5.1 FE analysis of a beam made of polymers with dynamic
cross-links

In the present case, the material composing the beam is assumed to be a polymer

with dynamic cross-links. Three polymers, characterized by different values of the

deactivation rate kd (kd = 0.6, 1.8 and 3.0 Hz, respectively) are considered. The polymer

is made of a single network with N = 50.

The vertical reaction force at the restraint vs. time for the three considered polymers

and for a purely elastic polymer is illustrated in fig. 5.5(a). The effect of the dynamic

cross-links is to induce a stress relaxation, which becomes more pronounced as the

deactivation rate increases. In fig. 5.5(b) the stress σx vs. time evaluated in the upper

part of the constrained section of the beam is illustrated. Again, the stress relaxation
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Figure 5.5: FE parametric test on a cantilever beam made of polymers with dynamic
cross-links. Vertical reaction force in the clamped section vs. time (a). Cauchy stress σx
vs. Green-Lagrange strain Ex for the different values of the deactivation rate kd; the
stress and the strain are evaluated in the point highlighted in fig. 5.6 (b).

Figure 5.6: FE parametric test on a cantilever beam made of polymers with dynamic
cross-links. Contour plot of the Cauchy stress σx for δ= δ= 0.3m (see insert of fig. 5.5).
kd = 0 (elastic case) (a), kd = 0.6Hz (b), kd = 1.8Hz (c), kd = 3Hz (d).

is clearly evident. The contour plot of the axial stress σx in the beams, for the four

assumed values of the deactivation rates kd, are illustrated in fig. 5.6 at the time

instant t = 1 s (i.e. when the load factor is equal to α= 1 and the applied displacement

is equal to δ). By increasing the deactivation rate, the stress decreases in all the points

of the beam.
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Figure 5.7: FE parametric test on a cantilever beam made of polymers with unfolding
chains. Vertical reaction force in the clamped section vs. time (a). Cauchy stress σx vs.
time for the two values of the unfolding parameter η (b); the stress is evaluated in the
point highlighted in fig. 5.8.

5.5.2 FE analysis of a beam made of polymers with unfolding chains

In the present case, the material composing the beam is assumed to be a polymer

whose chains are subjected to the unfolding phenomenon. Two polymers, characterized

by different values of the viscosity-like unfolding parameter η (η= 1.0 kPa·s and η=
5.0 kPa·s, respectively) are considered. The polymer is made of a single network with

folded length N0 = 50 and physical length Np = 70 (see §3.5).

The vertical reaction force at the restraint vs. time for the considered polymers

is illustrated in fig. 5.5(a). The effect of the unfolding phenomenon is that to induce

a stress relaxation, which becomes more pronounced for low values of the viscosity-

like parameter η, since the unfolding process takes place more becomes more rapidly.

During the unloading phase of the displacement cycle, the resulting reaction force

becomes negative, which means that it is necessary to push the beam with a force

directed along +y to recover the original position of the control point, i.e. δ= 0. In fig.

5.5(b) the stress σx vs. time evaluated in the upper part of the constrained section of

the beam is illustrated. The stress changes sign during the last part of the load cycle,

according to the sign of the reaction.

The contour plot of the axial stress σx in the beams, for the two assumed values of

the unfolding parameter η, are illustrated in fig. 5.8 at the time instant t = 1 s (i.e. when

the load factor is equal to α= 1). By reducing the viscosity parameter, the unfolding
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Figure 5.8: FE parametric test on a cantilever beam made of polymers with unfolding
chains. Contour plot of the Cauchy stress σx for δ = δ = 0.3m (see insert of fig. 5.7).
η= 1.0kPa ·s (a), η= 5.0kPa ·s (b).

mechanism becomes faster and the stress decreases.

5.5.3 FE analysis of a beam made of polymers with breakable chains

In the present case, the effect of the failure of the polymer chains is considered in the

FE analysis of the beam. Two different polymers, with different values of normalized

bond strength w /kBT, i.e. 32.59 and 32.08, are considered. The polymer is made of a

single network with N = 50.

The evolution of the vertical reaction force in time for the two considered beams and

for a beam made of an elastic polymer is illustrated in fig. 5.9. The effect of the chains

failure produces a reduction of the bearing capacity of the material; the reduction

is more pronounced for low values of the bond strength. The time evolution of the

horizontal stress in a representative point of the beam (i.e. in the upper part of the

constrained section, as indicated in fig. 5.10) is showed in fig. 5.9(b). For the same

applied displacement, the material with the lower bond strength (w = 32.08kBT) shows

lower stress than the material with the higher bond strength (w = 32.59kBT). In fig.

5.10 the contour plot of the axial stress σx in the two beams with breakable chains for

the same applied displacement δ (i.e. for α= 1 at t = 1 s) is represented. The beam with

lower bond strength shows lower values of the stress with respect to the beam with

the higher bond strength. It is worth noting that the stress reduction is the same for

the tensile part and for the compressed part of the beam. In fig. 5.11 the contour plot

of the damage parameter D (see eq. (3.38)) for the stress levels depicted in fig. 5.10 is

represented; the beam with higher bond strength (fig. 5.11(a)) shows lower damage

values than the beam with low strength (fig. 5.11(b)), furthermore the damage becomes

more pronounced in the region close to the beam’s constraint.
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Figure 5.9: FE parametric test on three beams made of polymers with breakable chains.
Reaction force vs. time (a) and axial stress vs. Green-Lagrange strain (b) for the different
values of the normalized bond strength w /kBT; the stress and the strain are evaluated
in the point highlighted in fig. 5.10.

Figure 5.10: FE parametric test on two beams made of polymers with breakable chains.
Contour plot of the Cauchy stress σx for δ= 0.3m (α= 1 at t = 1s, see fig. 5.5): polymer
with normalized bond strength w /kBT = 32.59 (a) and 32.08 (b).

Figure 5.11: FE parametric test on two beams made of polymers with breakable chains.
Contour plot of the damage parameter D for δ = 0.3m (α = 1 at t = 1s, see fig. 5.5):
polymer with normalized bond strength w /kBT = 32.59 (a) and 32.08 (b).
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5.6 Conclusions

The solution of the boundary value problem in a continuum body made of a responsive

material capable of adsorbing a fluid, involves the evaluation, at any time instants, of

the displacement and of the strain and stress fields, as well as the solvent concentration

and the active fraction of mechanophores in each point of the body.

In the present chapter, a Finite Element formulation implementing the proposed

constitutive model, has been presented. The non-linear discretized problem has been

numerically solved through the Newton-Raphson approach by using the initial stiff-

ness method. The formulation considers the large deformations theory and takes into

account for the geometric the geometric stiffness due to the large displacements as-

sumption. The 3D chains configuration space is discretized (at each FE Gauss point)

through a grid of points whose configurational coordinates are defined according to the

Gaussian quadrature rule. The evaluation of the stress state (accounting for the pres-

ence of dynamic cross-links, damage and chains unfolding) and of the active fraction of

mechanophores is numerically evaluated in the discretized configuration space.

Finally, the results of some parametric FE analysis, accounting for the main in-

volved phenomena, are illustrated. The effects induced by the variation of the main

physical parameters of the problem have been studied and discussed; the obtained

results are clearly consistent with the physics of the problem and outline the reliability

of the proposed approach.
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FE ANALYSIS PERFORMED WITH THE PROPOSED MODEL

The FE formulation presented in chap. 5 is used henceforth to study, through

the proposed constitutive model, real cases involving structural elements. The

mechanical behavior of traditional polymers, commonly used in industrial

applications, can be simulated by taking into account the main related aspects, such

as the time-dependent response, damage and irreversible deformations. Furthermore,

the enhanced features of stimuli-responsive polymers can be accounted for through

the evaluation of the mechanophores activation triggered by mechanical or chemical

stimuli.

In the present chapter, two experimental tests are simulated through the FE

formulation implementing the proposed constitutive model: the first considered case

is a series of tensile test, performed with different loading rates on thermoplastic

polyolefin (TPO) samples, while the second case is a three-point bending test carried

on an elastomeric sample enriched with a self-diagnostic molecular probe.

6.1 Tensile tests on a TPO samples

Thermoplastic polyolefins (TPO) are common polymeric materials used in high con-

sumption commodities, for example in the automotive field. They are made of a blend

of a thermoplastic polymer (usually an elastomer) and a filler.
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 (a) (b)

Figure 6.1: TPO sample. Main dimensions defined in ISO 527 (a) and picture of a
sample (b).

A series of tensile tests has been conducted on TPO specimens in order to investigate

the mechanical properties of the material, by taking into account for the strain rate

effect. The samples have been manufactured through molding in a dog-bone shape,

according to the standards ISO 527 (see fig. 6.1). The tensile tests were performed in

the Strength of Materials Laboratory of Polytechnic University of Timisoara by using a

Zwick Proline Z005 testing machine, having a maximum load capacity of 5 kN. The

strain was measured with an extensometer with length gauge of 30 mm and the elastic

modulus has been also experimentally determined. Because of the large deformations

reached by the specimens, the extensometer was removed during the tests after a 10

mm elongation, while the tests were continued up to break. The sample’s deformation

was measured by the crosshead travel, by recording the grip-to-grip separation, starting

from the initial length equal to 90 mm. The tests were performed under displacement

control at three different loading speeds, i.e. 4, 40 and 400 mm/min; three TPO samples

after the tensile test are shown in fig. 6.2 together with an as-built sample. The tests

were performed at the room temperature of 294 K.

FE analysis simulating the tensile test are carried out with the code presented

in chap. 5. In fig. 6.3 the adopted mesh, composed of 75 four-nodes bilinear elements

with 2 × 2 integration points, is illustrated. The analysis are performed in plane stress

condition. The polymer is assumed to be incompressible and made of a single network;

the elastic modulus, measured through the test, is equal to 629.2 MPa.

In fig. 6.4(a) the measured Cauchy true stress vs. Hencky true strain (see eq. (2.5))

curves for the three adopted displacement rates are reported. The stress vs. strain

relationship show an initial highly stiffness branch trend in the early stage of the

deformation, followed by the characteristic J-shape curve. Because of the viscoelastic

nature of the material, the stiffness increases with the strain rate.
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20 mm

(a)

(b)

(c)

(d)

Figure 6.2: TPO samples after the tensile test. Sample tested with displacement rate
equal to 4 mm/min (a), 40 mm/min and 400 mm/min (c) compared to an integer
sample (d). The sample (a) did not reach the failure during the test.

Figure 6.3: FE mesh of the TPO sample.

In fig. 6.4(b) the Cauchy stress vs. true strain curves obtained through the FE analy-

sis are reported. The values of the material’s parameter adopted to fit the experimental

curves are the following: bond strength w /kBT = 39.901, number of Kuhn segments

per chain N = 55, segments length b = 1nm. Three different values of the deactivation

rate are assumed, i.e. kd = 6.022 ·10−7 Hz for the displacement rate δ̇= 400 mm/min,

kd = 8.310 ·10−5 Hz for δ̇= 40 mm/min and kd = 8.732 ·10−4 Hz for δ̇= 4 mm/min.

The FE analysis captures the mechanical response of the TPO samples, in particular

the viscoelastic behavior and the damage of the material. The simulations suggest that

a dependency of the cross-links deactivation rate on the applied strain rate exists.

6.2 Strain field detection in elastomers with molecular
probes

The inclusion of a proper designed molecular probe in the micro-structure of a polymer

allows for the visualization of the strain field and the detection of damage due to
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Figure 6.4: Tensile test on TPO samples. Cauchy stress vs. true strain curves experimen-
tally measured (a) and numerically obtained (b).

excessive deformations. Mechanophores-based molecular probes are activated by a

sufficiently high values of the force in the polymer’s chain, which triggers a detectable

signal, such as a light emission [14, 40].

In the case reported in [57], we have performed an experimental test in which a

fluorescent molecular probe is introduced in a Polydimethylsiloxane (PDMS) elastomer

in order to enable the detection of the strain field in the material. Pre-notched samples

made of such a self-diagnostic polymer were subjected to a three-point bending test;

after the test, the fluorescence field in the elastomer were measured through a special

camera under the UV light. The samples’ geometry is depicted in fig. 6.5(a); the main

dimensions are: span length L = 110 mm, height H = 25 mm, thickness t = 2.5 mm and

initial notch’s depth c = 5 mm. The test was carried out by controlling the displacement

δ, which was increased at constant rate equal to 0.05 mm/s. A picture of the sample

after the three-point bending test is shown in fig. 6.5(b); a crack starting from the notch

is clearly visible.

A FE simulation of the three-point bending test is carried out with the code pre-

sented in chap. 5. The analysis is performed in plane stress condition. The adopted

mesh is illustrated in fig. 6.6(a); it is composed by 131 four-nodes bilinear elements

with 2 × 2 integration points; the notch (visible in the insert of the figure) has a tip

radius of 0.2 mm. The material is assumed to be elastic and incompressible (no damage

or strain rate effects are considered), with a shear modulus µ = 3 MPa and N = 10
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Figure 6.5: PDMS pre-notched sample. Geometry (a) and picture of a sample taken
after the three-point bending test (b). The dimensions indicated in (a) are: span length
L = 110mm, height H = 25mm, thickness t = 2.5mm, initial notch’s depth c = 5mm.

Figure 6.6: FE simulation of the three-point bending test of a PDMS sample containing
molecular probes. Adopted mesh (a) and contour plot of the Cauchy stress σx for an
imposed displacement δ= 5mm.

Kuhn segments with length b = 1 nm per polymer chain. The temperature is assumed

to be T = 300 K and no fluid solvent is present. The mechanophores representing the

molecular probe are characterized by the following parameters: size variation upon

switching δssw = 5b, energy barriers for the activation reaction ∆GA0 = 4.82 ·104 J/mol

and for the deactivation reaction ∆GD0 = 1.51 ·10−1 J/mol, activation and deactivation

frequencies CA = 6.02 ·101 Hz and CD = 6.02 ·104 Hz, respectively. The volume fraction

of the mechanophore is assumed to be αsw = 2%. In fig. 6.6(b) the contour plot of the

Cauchy stress σx for δ= 5 mm is shown; the stress concentration near the notch tip is

clearly visible.

The contour plot of the fraction h of active (i.e. luminescent) mechanophores,

evaluated according to the model proposed in chap. 4, is illustrated for two values

of the applied displacement δ = 2.5 mm and δ = 5 mm, in fig. 6.7. Since the stress

concentration promotes the switching of the mechanophores, the highest value of the

active fraction is localized in a small region of the sample near the notch tip; meanwhile,

in the rest of the sample far from the tip, the active fraction reaches lower values,
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Figure 6.7: FE simulation of the three-point bending test of a PDMS sample containing
molecular probes. Contour plot of the active fraction h of mechanophores for an imposed
displacement δ= 2.5mm (a) and δ= 5mm (b).

mainly due to the spontaneous activation. The light emission detected in the stress-free

material can be seen as a background noise in the fluorescent signal.

The measured fluorescent signal is normalized with respect to the maximum value

expected for the given concentration of molecular probes in the elastomer, such that the

normalized fluorescence is equal to 1 when all the molecular probes are activated. By

assuming that each molecular probe emits the same amount of light, the normalized

fluorescence is proportional to the fraction of active molecular probes h.

In fig. 6.8(a), the normalized fluorescence intensity measured near the notch tip

is compared to the active fraction h obtained from the FE analysis. The notch tip,

observed with a microscope, is approximately circular with radius equal to about

0.2 mm. The fluorescence have been measured with a microscope operating at the

UV wavelength; the highest values occurred ahead the notch tip in a region whose

extension is 2÷3 times the notch’s radius. The region with the highest active fraction h,

evaluated through the FE analysis, has an extension similar to the experimental one.

In fig. 6.8(b) the evolution of the active fraction, evaluated with the FE analysis in the

Gauss point closest to the notch’s tip, is reported vs. the imposed displacement δ. The

evolution of h appears to be approximately linear with the imposed displacement and

starts from a value greater than zero according to the kinetic equilibrium (4.1) (see

[19]).

In fig. 6.8(c), a picture of the fluorescent intensity under UV light near to the notch

tip has been reported. It is clearly visible, directly ahead to the tip, a white region

caused by the high concentration of emitting mechanophores. The extension of such

a fluorescent zone can be related to the critical energy release rate of the material,
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Figure 6.8: Three-point bending test of a PDMS sample containing molecular probes.
Contour plot of the measured fluorescence field near to the notch’s tip compared to the
active fraction h evaluated through a FE analysis (a). Evolution of the active fraction
in the Gauss point closest to the notch tip vs. imposed displacement δ (see green dot
in (a)) (b). Picture of the fluorescent intensity under UV light near to the notch tip (c).
Comparison between the observed fluorescence and the iso-hydrostatic strain curves
evaluated for different values of the surface energy: Gc = 110 N/m (critical energy for
material failure), G1 = 83 N/m, G2 = 55 N/m, G3 = 27 N/m and G4 = 11 N/m (d). The
images (c) and (d) are reported from [57].
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as it can be appreciated in fig. 6.8(d), in which the extension of the fluorescent zone

is compared to the iso-hydrostatic strain curves evaluated for different values of the

surface energy G , i.e. Gc = 110 N/m (critical energy for material failure), G1 = 83 N/m,

G2 = 55 N/m, G3 = 27 N/m and G4 = 11 N/m) [57].

6.3 Conclusions

In the present chapter, two mechanical tests have been simulated through FE analysis

by adopting the proposed physics-based model.

Tensile tests on thermoplastic polyolefin (TPO) loaded at three different displace-

ment rates have been experimentally performed. The tests have been simulated with

FE analysis providing the mechanical response of the material in terms of stress vs.

stretch curve. Furthermore, a three-point bending test on an elastomeric sample en-

riched with a self-diagnostic molecular probe have been performed. When activated

by the polymer chain forces, the considered molecular probes change their optical

properties (within the UV-light wavelength interval), allowing the visualization of the

strain field in the material and the detection of localized damage. The mechanical test

has been simulated with FE analysis in order to compare the calculated activation

level of the molecular probes with the measured UV fluorescence.

The results have shown that the FE approach is able to reproduce the main aspects

involved in the mechanical behavior of polymeric materials, such as viscoelasticity and

damage, and also to evaluate quantitatively the activation of responsive molecules,

sensible to mechanical and/or chemical stimuli, added to a polymer network.
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The mechanics of polymers can be usefully adopted to describe the response of a variety

of materials, such as elastomers, plastics, soft tissues and biological matters. Several

phenomena play a role in the definition of the so-called «entropic elasticity» of polymers:

damage, network entanglement, dynamic bond and bond exchange, swelling, etc. A

comprehensive constitutive model for such a class of materials is useful for the analysis

of polymer-based structural elements and for the design of new polymers.

In the present thesis, a physics-based model has been developed to capture the

mechanical response of polymers and polymer-like materials, by accounting for the

main physical phenomena involved. The proposed theory is based on a thermodynamic

description of the entropic elasticity of the polymer networks, based on the evolution

of the network’s chains configuration. The time-dependent mechanical response is

represented through two different irreversible phenomena that can be encountered in

real polymers: through the concept of dynamic cross-links and through the unfolding

of the entangled network’s chains. The material’s damage, due to the failure of the

polymer chains, is taken into account by limiting the chains’ bond strength.

Furthermore, the study focused on polymers with enhanced features, commonly

identified as «functional» or «stimuli-responsive». The presence in the polymer net-

work of properly designed stimuli-responsive molecules («mechanophores») provides

detectable effects at the meso-scale level, leading to a so-called «responsive material».

The proposed constitutive model is enriched by considering the effect of switchable

mechanophores whose activation can be triggered by both chemical and/or mechanical

actions; since the chemical stimulus generally requires a fluid phase carrying the

chemical agent, the fluid uptake and the related swelling phenomenon have been also

accounted for.

The theoretical model has been implemented in a in-house Finite Element code

formulated by accounting for the large displacements and the large deformation effects

typical of this class of materials. Some representative numerical analysis have been
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performed with the developed FE code, as well as some simulation of real experimental

cases.

The proposed approach have shown the capability to capture the main physical

phenomena and reproduce the complex mechanical response of polymeric materials.

Future advances of the proposed theory could be, among others, the introduction of:

temperature-driven effects (e.g. glass transition); topological constraints to the chains

motions; force-dependence of the dynamic cross-link phenomenon; spatial descrip-

tion of the swelling mechanism and its dependence on temperature, strain rate and

mechanophores activation; uncertainties in the distribution of the bond’s strength in

the polymer; reversibility of the unfolding phenomenon in some networks; development

of a theory for electric field-polymer interaction (Electroactive Polymers, EAPs) in pres-

ence of mechanophores; mechanical model of stimuli-responsive polymers containing

active molecules sensible to different stimuli such as magnetic field, light, etc.
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