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Abstract

This dissertation presents advancements in next-best view algorithms applied to 3D recon-
struction. 3D reconstruction has been a topic of great interest in recent years, due to the diffu-
sion of cheap depth sensors such as the Microsoft Kinect. Algorithms such as KinectFusion
have been developed to merge multiple views from these sensors. The experimental setup
used in this thesis involves a Kinect sensor mounted on a robot arm. The robot can move the
sensor in order to reconstruct the objects in a tabletop scenario. Next-best view algorithms
compute the optimal sensor placement to observe the unknown space. Such algorithms are
computationally expensive, since they need to simulate the sensor from each candidate pose.
In this thesis, the concept of attention is applied to next-best view, in order to reduce the
computation time and concentrate robot exploration towards a goal. According to attention,
a vision system assigns different importance to various parts of a scene. Resources can then
be focused on the most important parts of the scene. In the first approach presented in this
dissertation, attention is driven by the user, who moves objects in the tabletop scenario. Then,
the robot updates the 3D representation, by focusing views in the areas where changes have
happened. In the second approach, the robot is attracted by the objects already present in the
scene, as they are discovered during exploration. A segmentation algorithm is used in order
to partition the scene. A saliency value is assigned to each segment, and the most salient
one is selected. In both approaches, experiments were carried out in order to highlight the
reduced computation time and the goal-oriented behavior of the robot. Further work in this
thesis proposes advancements towards the use of the ElasticFusion reconstruction algorithm.
Unlike KinectFusion, ElasticFusion operates on a surfel-based 3D representation. Surfels are
designed for computer graphics, and they are processed faster on GPU than KinectFusion
volumetric representation. A color and position enhancement filter is proposed, to be run
alongside ElasticFusion 3D reconstruction, in order to obtain a better segmentation.
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Introduction

Overview

This thesis presents advancements on the topic of next-best view (NBV) algorithms,
applied to 3D reconstruction using a robot arm. In particular, the thesis proposes
the application of the spatial attention concept to NBV. An attention-based system
focuses on interesting regions of the environment. Advantages include faster compu-
tation and accurate exploration of the interesting regions, to the detriment of others.

3D reconstruction has been a topic of great interest in recent years after the dif-
fusion on the market of cheap RGB-D sensors, like the Microsoft Kinect. RGB-D
sensors produce color and depth images, i.e. images in which each pixel represents
the distance of the point from the sensor. These sensors have a high framerate and
are able to acquire a large amount of data. However, they have low accuracy and lim-
ited field of view. Algorithms have been developed to merge multiple views of these
sensors into a single 3D reconstruction.

The first well-known solution has been the KinectFusion algorithm [8], which
merges the views in a volumetric representation. Other algorithms, like ElasticFu-
sion [9], operate on a surfel-based representation. These algorithms are designed to
perform 3D reconstruction while a user moves the sensor around in the environment.
Such 3D reconstruction algorithms are able to estimate the sensor motion from the
sensor data itself, without the need for an external tracking source.

These algorithms may be decomposed into two broad phases, which are run iter-
atively for each sensor frame. In the tracking phase, the current data acquired by the



2 Introduction

Figure 1: The robot system.

sensor is compared with the (partial) 3D reconstruction from the previous iteration,
and the sensor pose is estimated. In the integration phase, the new data is merged
with the 3D reconstruction. The tracking phase is often simplified by the hypothesis
that the sensor did not move excessively since the last acquisition. This assumption
only holds if enough frames are processed per time unit, so real-time constraints are
often present.

A 3D representation updated in real-time may be useful for robot planning and
navigation. When the sensor is mounted on the robot itself, the robot can perform
exploration and mapping tasks. As the robot moves around the environment, infor-
mation is accumulated in the 3D representation. The experimental setup used in most
parts of this thesis involves a robot manipulator (Fig. 1) with a sensor in eye-in-hand
configuration. The robot is a Comau SMART SiX manipulator, with six degrees of
freedom. The robot has a Kinect sensor mounted on the wrist, and is able to move the
sensor around the environment. Objects to be reconstructed are placed on the table in
front of the robot.

The movement performed by the robot while exploring and reconstructing the en-
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vironment may be optimized, in order to maximize the acquired information. The op-
timization is performed online, exploiting the previously acquired information. This
problem pertains to the domain of active perception. Active perception problems ap-
pears whenever a robot is able to actively move one of its sensors.

A common approach to solve active exploration and 3D reconstruction problems
is the use of a next-best view algorithm. A NBV algorithm estimates the “best” con-
figuration in which a sensor should be placed to observe the environment, according
to some metric and/or heuristic. NBV algorithms operate on a partially-unknown en-
vironment representation. In other words, the result is the best solution as far as it is
currently known. When the sensor is moved in the selected configuration, the knowl-
edge of the environment is updated, and the following NBV is computed taking into
account the new information.

The result of a NBV iteration depends on the previously acquired data, which in
turn depends on all previous NBV iterations. Therefore, a complete NBV applica-
tion necessarily depends on the actual state of the real environment (or a simulation),
which makes the task challenging. Moreover, sensor placement may be slow or ex-
pensive, and computation of the NBV must be executed online while the robot is in a
ready state, waiting for the next pose.

NBV approaches are usually composed of two phases. In the view generation
phase, a discrete set of candidate viewpoints are generated. In the viewpoint eval-
uation phase, viewpoints are evaluated and the most promising one is selected. In
traditional NBV approaches [10], viewpoints are generated by sampling configura-
tions constrained on a sphere centered around the object. Then, a score is computed
for every viewpoint, in order to find the best candidate. Both phases may benefit from
a heuristic which is able to reduce the number of viewpoints generated or evaluated.
In this thesis, attention has been investigated to this purpose.

Attention is a concept originated in psychology, by observing the way in which
humans (and other animals) are able to focus on specific input stimuli at the expense
of others. A common explanation for this behavior is the limited availability of sens-
ing and processing resources. The human eye is able to see with maximum acuity
only in a very small part of the retina, the fovea, only about 5◦ wide. As such, a hu-
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man being can only perceive a very small region of space with maximum accuracy.
The human brain behaves similarly: processing resources can be allocated (voluntar-
ily or not) on specific parts of the environemt.

In computer vision, attention is commonly simulated by assigning a numeric
value (called saliency) to parts of the scene. The saliency value is computed by a
heuristic which assigns high values to highly-informative regions, i.e. parts where
more detail is available. Image processing can then focus only on those highly-
informative regions. Often, the attentional behavior leads to a reinforcing loop, where
new information is discovered in the region, thus further increasing its saliency.

Contributions

The goal of this thesis is the application of spatial attention to enhance NBV al-
gorithms. Spatial attention is applied to 3D volumes, for which a saliency value is
computed. Such concept of spatial attention lends itself to the enhancement of NBV
approaches. A NBV algorithm exploits the attention system to generate viewpoints
oriented towards the most salient regions. Moreover, viewpoint evaluation time is
reduced by excluding viewpoints without enough saliency.

Two approaches which exploit attention for Next Best View have been proposed
in this thesis. In the first approach (Chapter 2) the attention of the robot is attracted
by the user actions. The environment (i.e. the table top, with objects) is initially com-
pletely known. The user performs actions which may cause changes, e.g. the move-
ment of an object. A NBV cycle is started to explore the regions where changes are
likely to have occurred, in order to restore an updated representation of the environ-
ment.

For this approach, two novel methods have been developed. Firstly, a user hand
trajectory analysis approach has been developed to compute the salient regions of
space. Trajectory analysis is performed by fitting a Gaussian Mixture Model (GMM)
on the trajectory points. The GMM reduces the trajectory into a set of Gaussians.
Regions where the user performed manipulation actions are represented by round and
thick Gaussians in the model. Conversely, less relevant regions such as the movement
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between manipulation actions are represented by long and thin Gaussians. Based on
this observation, heuristics are applied to compute a spatial saliency value from the
model. Secondly, extensive modifications have been applied to KinectFusion in order
to integrate next-best view into it. KinectFusion performs ray casting as part of its
tracking phase, in order to project the current 3D representation and compare it with
the current sensor input. The same ray casting procedure was exploited for NBV
evaluation. Therefore, ray casting was performed on GPU, with greatly increased
efficiency.

In the second approach (Chapter 3), an exploration system is proposed, in which
the environment is initially unknown. The robot attention is attracted by the objects
as they are discovered. This attention approach leads to the evaluation of a lower
number of poses, i.e. only poses pointing towards the objects. A novel method to
generate view poses from the 3D reconstruction itself has been developed, exploiting
frontiers between known and unknown space. Therefore, poses are not constrained
on spheres, and POIs are not needed. Moreover, a spatial attention heuristic based on
segmentation has been proposed. The 3D representation is partitioned into segments.
Each segment is assigned a saliency value, based on a heuristic which favors segments
belonging to objects. In the experimental setup, the Kinect sensor was replaced with
a Kinect V2. A novel shadow removal filter has been developed in order to remove
artifacts produced by this sensor, which is based on time-of-flight technology.

In Chapter 4, further improvements are shown, for the surfel-based 3D repre-
sentation of ElasticFusion [9]. In this thesis, a preliminary investigation of a NBV
algorithm based on ElasticFusion surfel-based 3D representation has also been inves-
tigated, and a few contributions are proposed towards this goal. It has been observed
that the averaging process in ElasticFusion produces blur around color discontinu-
ities, which can hamper segmentation. Therefore, an improvement for segmentation
has been proposed based on a mode filter. The mode filter keeps track of multiple
possible positions and colors during ElasticFusion 3D reconstruction. The loss of in-
formation due to the averaging process is reduced. To efficiently generate a ground
truth for segmentation, an innovative annotation tool was also developed. The an-
notation tool is based on the selection of sparse control points on the point cloud.
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The remaining points acquire the label of the nearest control point, according to a
shortest-path tree segmentation algorithm.

Thesis structure

This thesis is organized as follows. Chapter 1 analyzes the state of the art for the
topics involved in the thesis. In Chapter 2, the devised user-driven spatial attention
system [11, 12] is described. The object-driven approach [13] is described in Chap-
ter 3. Improvements towards the use of a surfel-based representation [14][15] are
presented in Chapter 4. Experiments and results are reported at the end of the respec-
tive chapters, with a brief discussion. Final remarks, conclusions and future work are
proposed in Chapter 5.



Chapter 1

State of the Art

1.1 Next best view planning

The first solution to the next-best view problem was presented in 1985 by Connolly
[10]. In this approach, the volumetric 3D representation, based on an octree, encoded
empty, occupied and unknown space. Viewpoints were sampled on a sphere centered
on a target point, corresponding to the center of the object to be reconstructed. The
view direction was oriented towards the target point. From each view direction, a
depth camera was simulated through ray casting. A score function counted the num-
ber of unknown voxels visible from each candidate pose. The pose with the highest
score was chosen as the next-best view.

Connolly’s work introduced the seminal concepts for next-best view computa-
tion. A ternary 3D representation stores the current state of 3D reconstruction pro-
cess. Unlike a standard binary representation, a ternary representation keeps track of
occupied space, empty space and unknown space, which should be explored. A por-
tion of the volume is marked as empty if the sensor observed through it. During the
view generation phase, the candidate view poses are generated. Using a sensor model,
a virtual sensor is simulated in each candidate pose. The pose evaluation phase com-
putes a score for each candidate, and finds the best one.

The problem of choosing the target point in Connolly’s system was solved by
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Banta et al. [16]. Target points were generated as the centroids of unknown volume
clusters.

Pito [17] proposed a next-best view system using a turntable which rotated a
single object with respect to a fixed range camera. In this configuration, a turntable
provided only one degree of freedom. Moreover, Pito’s experiments were limited
to single objects. However, an alternative pose generation method was introduced,
based on the incomplete borders of the object, to detect the regions where further
exploration is possible. Moreover, a polygon mesh was used as 3D representation,
instead of an octree. In this case, an explicit representation of the unknown space
is not needed, because edges of the mesh were blindly explored, regardless of the
expected information gain. A ternary mesh representation was introduced in [18]. In
this case, the mesh surface was labeled as “measured” between occupied and empty
space, or “void”, between empty and unknown space. The next-best view algorithm
attempted to maximize the “void” surface visible from the chosen candidate pose.

The view direction for maximum quality should always be perpendicular to the
unexplored surface of the object. Since the unexplored surface is unknown, this con-
straint on pose generation is an open issue of next-best view algorithms. Several
approaches have been developed to estimate the unknown surface by extrapolation.
Whaite et al. [19] approximated the objects in the scene with simple parametric mod-
els based on superquadrics. The shape of the unexplored parts was approximated in
[20] by closing the partial mesh, in order to estimate the unknown volume. In [21],
the object was approximated by B-Splines, and the next-best view metric was based
on entropy. In [22], the shape of the object was inferred by fitting a local spheroid
on the object edges. Approximation-based approaches were only useful for simple
objects, which can be extrapolated from the trend of the known surface.

Several approaches for full six-degrees-of-freedom planning around a single ob-
ject have been proposed. In [23], a next-best view algorithm was integrated with a
robot arm planner, in order to obtain collision free sensor poses. The next-best view
algorithm was adapted in [24] to reduce the registration error between the data ac-
quired from inaccurate view poses. In [25], the observations were directed towards
the object using a visual servoing approach. Unlike the solutions proposed in this
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Figure 1.1: The reconstruction system used by Kriegel. A laser scanner, an ASUS
Xtion depth camera and a stereo camera pair were mounted on the robot arm. On
the right, Kriegel’s boundary-based view generation method computed the average
normal in the red area. Image source: [1].

thesis, these approaches considered a single object in the environment.

Constraint-based next-best view were proposed in [26], which performed mesh-
based 3D reconstruction on a turntable. The space in which candidate view poses
were sampled is limited by occlusion constraints, i.e. volumes where the target point
was not visible.

In [27], a candidate view score function was modified to include the distance trav-
eled. Also, the expected quality of the candidate view was estimated from the normal
of nearby occupied voxels. The proposed approach was agnostic with respect to the
actual technical solution for sensor movement. It was evaluated only in simulation.

A probabilistic framework for next-best view planning in cluttered environments
was presented in [28]. The rays during ray casting did not stop at the first intercepted
unknown voxel. Instead, the probability of an unknown object increased the longer
the ray could travel in the unknown space without entering empty or occupied space.

In [29] optimizations of the next-best view algorithm for autonomous UAV explo-
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ration were proposed. It is one of the few examples where next-best view was com-
puted on the GPU. Another optimization on GPU is proposed in this thesis (Chapter
2), but for the general-purpose reconstruction algorithm KinectFusion.

Kriegel et al. [30] presented an autonomous reconstruction system for tabletop
scenes that supports next-best view planning and object recognition. He investigated
and combined multiple sensors, depth cameras and laser scanners, as shown in Fig.
1.1. In [31], Kriegel also investigated the generation of the next-best scan path for a
laser scanner. In [32] a non model-based approach was introduced for next-best view
using the boundaries of the scan. The approach estimated the surface trend of the
unknown area beyond the boundaries. A limitation of the use of boundaries is that
they work differently for square and rounded objects. Indeed, the trend beyond the
corner of a square object seen from the front can’t be estimated. A special case was
added by Kriegel to solve this issue. An alternative solution without special cases is
shown in Chapter 3.

1.2 Active robot exploration

Robot exploration is a natural application of next-best view algorithms. In an explo-
ration scenario, a robot starts with a partial representation of the environment and
needs to expand it. The problem may be solved using a next-best view cycle, where
the robot iteratively computes the best viewing pose. This approach to exploration is
used in Chapter 3 of this thesis.

The automated 3D reconstruction system by Kriegel [1] has already been reported
in previous Section 1.1. However, unlike Kriegel’s work, robotic applications do not
usually focus on the improvement of the next-best view algorithm itself. Instead, they
use it as a building block for more complex systems.

Next-best view has been applied to exploration systems aimed at object recog-
nition. In [33], the robot classified the objects in the scene against a fixed model
database. The classification procedure produced recognition hypotheses, which were
then verified by further observations from other viewpoints. Similarly, [34] distin-
guished between similar objects by focusing the camera on details like text and bar-
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Figure 1.2: The segmentation-based exploration system by Xu et al. Image source:
[2].

code labels. In [35], the object 3D models were analyzed in advance, in order to find
the best viewpoints for classification. During exploration, the view pose were scored
according to their discriminatory value, i.e. the probability that decisive details could
be acquired from that view pose.

Several applications of exploration for robot grasping have been proposed. In
[36], a humanoid robot held an object in one hand. The robot reconstructed the object
by rotating it. Next-best view was performed to find the best rotation and to minimize
occlusion caused by the robot hand. In [37], the system was extended with dual-arm
grasping. The 3D reconstruction could not be completed with only one hand, because
part of the object was occluded. Therefore, the object was grasped from another side
by the other hand and the reconstruction process continued. In [38], a PR2 robot used
KinectFusion and next-best view to explore a tabletop environment, and found object
handles to be grasped. In [39] a multi-scale variant of KinectFusion was developed,
to maintain a fine representation for object grasping and a coarse representation for
room navigation.

In recent years, few works have investigated the use of next-best view in conjunc-
tion with segmentation. These works are based on the same assumption presented in
Chapter 3, i.e. the segmentation may provide cues for robot exploration. In [40] an
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active object recognition system was proposed for a mobile robot. Box-like objects
were segmented. A feature-based model was used to compute the next-best view by
predicting both visibility and likelihood of feature matching. The robot had only two
degrees of freedom, the position around the table and the distance from it. The mobile
robot was not autonomous, but it was placed on the floor as dictated by the next-best
view algorithm. In [2] (Fig. 1.2) a graph cut object segmentation was performed on
an initial robot scan. The 3D representation was obtained through Kinect V1 and
KinectFusion. Then, the PR2 robot combined next-best push planning and next-best
view planning to perform proactive exploration of ambiguously segmented regions.
Unlike the exploration system presented in this thesis, next-best view planning was
performed only on pushed objects.

Other exploration strategies have also been proposed where the robot interacts
with the environment by pushing objects. In [41], the robot autonomously moved the
objects to improve segmentation. A probabilistic model was used to detect regions
where segmentation is ambiguous. However, next-best view planning was not used
and the sensor was moved on a fixed trajectory. A similar approach was proposed by
[42]. Whenever the robot pushes an object, a probabilistic model was used to detect
the region of the scene that changed according to the robot motion. That region likely
belonged to the pushed object.

1.3 Robot attention

In computer vision, the main goal of attention is the assignment of a saliency value
to each image pixel. Sensor movement, when possible, is usually accomplished with
a simple pan-tilt head. Traditionally, the computation of saliency derives from two
approaches. In the bottom-up approach, saliency is a function of local properties of
the image itself, i.e. of local features or information density. For the top-down ap-
proach, external cues are exploited to compute saliency, e.g. the color of the object
that the system is trying to locate. In many current approaches, bottom-up and top-
down saliency are combined together.

In [43], attention was attracted to local features in the environment. These fea-



1.3. Robot attention 13

Figure 1.3: The saliency method by Schauerte et al. From left to right: the scene, the
image-based saliency map (bottom-up saliency) and the gesture-based saliency map
(top-down saliency). Images source: [3] © 2010 IEEE.

tures were classified by a neural network. Over time, the neural network learned to
detect features that mark salient objects. A pan-tilt head moved the sensor to focus
on the most salient region. A blob-based approach was proposed in [44]. The im-
age was segmented into blobs using color discontinuities. Saliency was attributed to
blobs using the difference between the color of the blob and the average color of the
surroundings.

Novelty detection, i.e. the localization of regions of space where changes have
occurred, may be used to attract the attention of a robot. In Chapter 2 of this thesis,
novelty detection is triggered by user actions. Many approaches detected differences
between multiple scans of the same region by a robot. Drews et al. [45] introduced
a method for novelty detection from laser scan data. The laser scanner was mounted
on a mobile robots which explored repeatedly the environment, in order to construct
and maintain a consistent 3D representation. A Gaussian Mixture model was fit onto
the 3D point cloud. The models obtained by subsequent explorations were compared
and significant changes in the Gaussian configuration were detected.

Many works addressed the novelty detection problem in conjunction with seg-
mentation. However, these approaches aimed at segmentation enhancement using
novelty detection as a clue. In this thesis, segmentation was used to enhance attention,
as shown in Chapter 3. Moreover, active exploration using next-best view planning
was not considered. In the work of Alimi et al. [46], scene 3D reconstruction was
repeated multiple times. Differences in the scene were detected and were assumed to
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be linked to objects which were moved around. These differences were used to obtain
a 3D representation of the moved objects. In [47] a similar method was used in order
to train a segmentation algorithm. A similar assumption about moved objects was
used by Herbst et al. [48, 49]. In [48], the assumption was applied to algorithm for
object discovery from multi-scene Markov random field analysis. In [49], a similar
method was presented for online 3D object segmentation and mapping.

A few works have investigated saliency or novelty detection based on user ac-
tions, as proposed in Chapter 2 of this thesis. Schauerte et al. [3] developed a method
to detect the object pointed at by the user. Saliency computation was assisted by ana-
lyzing the directions of the pointing gesture (Fig. 1.3). Similarly, in [50] the focus of
attention was estimated by gaze direction and exploited in a human-robot interaction
task. Petsch et al. [51] proposed a framework for detection of unexpected (surprising)
manipulation events. Manipulation events were represented by a graph of positions
and connecting gestures. When a movement performed by the user is not present in
the graph, the “surprise” may mark the discovery of a new gesture. In [52] a weakly
supervised method identified daily actions from video sequences. The actions were
differentiated according to the changes produced in the enviroment.

1.4 Human task segmentation

In Chapter 2, Section 2.2.4, a method for trajectory analysis is proposed. The method
fits a Gaussian Mixture Model (GMM) on the user hand trajectory. Then, a saliency
value is computed for each multivariate Gaussian, in order to estimate the positions
in which the user has changed the environment. The use of a GMM to segment a
trajectory was first proposed by [4]. Automatic segmentation of full-body motion tra-
jectories was achieved by fitting the model through Expectation Maximization (Fig.
1.4). Given multiple recordings of the motion, regression was performed to estimate
a continuous trajectory reproducible by a robot. The approach was only intended for
task segmentation and trajectory simplification. It was not designed to detect mean-
ingful and salient manipulation tasks.

Some traditional approaches for human task segmentation were based on hand
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Figure 1.4: Trajectories (left) and the corresponding GMM (right), as obtained by
Sang Hyoung Lee et al. Image source: [4] © 2012 IEEE.

velocity analysis. A similar method is compared in Section 2.4.2 with the GMM-
based method proposed in this thesis. In [53] manipulation tasks were segmented
into pre-grasp, grasp and manipulation phases. Hand speed and fingertip polygon
sweep volume were monitored, and the trajectory was segmented at local minima.
Yeasin et al. [54] used a binocular vision system and feature tracking to learn skills
from multiple human demonstrations. Demonstrations were performed by the user,
while the hand and four fingers were tracked. Then, a robot manipulator repeated the
user actions. Trajectories were decomposed into simple motion primitives at signif-
icant speed variations. In [55], trajectory analysis was performed based on velocity
features. Such velocity features were used to train a Hidden Markov Model. The Zero
Velocity Crossing (ZVC) method was employed to detect regions where velocity is
low or reverses direction.

Faria et al. [56, 57] proposed an approach to segment and classify the action
phases of a grasping task. The approach exploited hand orientation, trajectory curva-
ture and human gaze direction. In [58], the hand trajectory was split by analyzing the
video of the movement. Each video frame was segmented using watershed algorithm.
Frame segmentations were compared between subsequent frames. When the neigh-
borhood relation between the image segments changed, the start of a new trajectory
segment was marked.
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Figure 1.5: RGB image (left), noisy depth image (center) and enhanced depth image
using temporal mode filter (right). Image source: [5] © 2012 IEEE.

1.5 RGB-D enhancement

In Chapter 4, Section 4.1, an enhancement algorithm for surfel-based 3D recon-
struction is presented. The algorithm improves the reconstruction process to produce
sharper discontinuities in the final 3D representation. Multiple hypotheses are tracked
and a mode filter choses the most frequent at the end of reconstruction. A guided filter
[59] is used for depth enhancement. The sharper discontinuities are then exploited for
segmentation. Online 3D reconstruction enhancement to improve segmentation was
not considered before.

Most enhancement algorithm operate on single RGB-D images. Depth enhance-
ment is usually guided by the RGB image, which has lower noise. Joint bilateral
filter has seen widespread use for depth enhancement and upsampling, due to its
edge-preserving properties. In [60], joint bilateral filter was introduced to upsample
a low-resolution image using an high resolution guidance image. Joint bilateral fil-
ter was modified in [61] to deal with the effect of occlusions and misalignments in
RGB-D cameras. In [62], joint bilateral filter was combined with a depth-only bilat-
eral filter to reduce noise in flat areas. In this thesis, a guided filter has been used.
The guided filter has edge-preserving properties similar to the joint bilateral filter,
but its computation is faster and (according to [59]) it produces less artifacts. Other
works have exploited the guided filter to enhance depth in RGB-D images [63, 64].
Mode-based filters are known for their edge-preserving properties [65], but they have
been rarely used.
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Unlike single-image filtering, temporal filtering exploits a number of previous
sensor frames in order to improve the current image. Temporal filtering may be ap-
plied whenever an image stream is available. RGB-D video temporal enhancement
has received some attention in recent years, mostly in relation to 3D television. In
[66] a temporal median filter was used for depth filtering and hole filling for a Kinect
depth camera. In [5] a mode filter was used to enhance temporally adjacent depth
frames (Fig. 1.5), but no underlying 3D model was present. Image segmentation has
been used to improve RGB-D frames, but the use of RGB-D temporal enhancement
for object segmentation (i.e. the opposite) has not been considered before. In [67],
RGB image segmentation was used to correct discontinuities in the depth map. In
[68] inconsistencies were fixed by comparing multiple input images. RGB-D frames
were segmented into uniform patches. Patches in subsequent input images were as-
sociated using variational inference and inconsistencies were removed.

1.6 Point cloud segmentation

Point cloud segmentation is the process of partitioning a point cloud into subparts,
called segments. A good segmentation algorithm produces segments which have
some meaning, e.g. whose points belong to a single real-world object. Point cloud
segmentation has been exploited in this thesis, in Chapter 3 and Section 4.1.

The 3D reconstruction algorithm proposed in Section 4.1 improves the segmen-
tation of the final, unorganized point cloud. However, most works segment single
frames of a RGB-D sensor. Segmentation of single frames takes advantage of the
neighborhood relation between image pixels in order to detect discontinuities, as in
[69]. In [70], segmentation in real-time during surfel reconstruction itself was accom-
plished by propagating the labels of single-frame segmentation. In [71], a method to
segment an unorganized point cloud was proposed. The points neighborhood rela-
tions were computed by K-nearest-neighborhood search. Then, the cloud was seg-
mented along normal discontinuities. Segmentation of partially reconstructed point
clouds was studied in [72].

In Chapter 3 the Supervoxel-LCCP [73, 6] (Fig. 1.6) algorithm is used as part
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Figure 1.6: Segmentation examples using Supervoxel-LCCP. Image source: [6]
© 2014 IEEE.

of the saliency computation process. Moreover, in Section 4.1 the same algorithm
is used to evaluate the 3D reconstruction enhancement algorithm. The Supervoxel-
LCCP segmentation algorithm is aimed at unorganized point cloud segmentation.
It has been employed in many applications since its inclusion into the Point Cloud
Library. The algorithm initially over-segments the point cloud and builds patches
called supervoxels. Then, nearby supervoxels are merged in order to obtain convex
segments. In [74], Supervoxel segmentation was used as a pre-processing step to
compute saliency in a 3D model. In [75], Supervoxels were merged to infer scene
semantics.

1.7 Annotation interfaces

In order to obtain a ground truth for the segmentation algorithm presented in Chapter
4, a novel annotation tool was developed (Section 4.2) during this thesis. The tool
offers assisted annotation. In this section, the state of the art of assisted annotation is
briefly discussed.

The annotation of organized point clouds, such as those obtained from single
frames of range cameras, may ignore the 3D nature of the data, since the point cloud
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can be projected back onto the sensor image frame. Annotation of RGB-D images
was considered in the work by Russell et al. [76], which extends the LabelMe online
annotation tool [77]. Annotation was performed on the range image using a polyline
selection technique. In [78], annotation of RGB-D images was assisted by inferring
the 3D structure of the scene through structural and geometric priors learned from
previous annotation sessions. In [79] an interactive semantic modeling approach for
indoor scenes was proposed for RGB-D images. The approach proposes a segmen-
tation to the user, who can correct it by painting strokes. In [80] a 3D reconstruction
and labeling tool was proposed where annotated labels were propagated from one
frame to another.

The annotation tool proposed in this thesis supports unorganized point clouds.
Unorganized point cloud annotation poses additional challenges, since there is no
obvious mapping between the 2D space of a computer screen and 3D space of a
point cloud. Some attempts have been made to extend selection on a 2D image to
3D space. Several selection strategies were proposed in literature for discrete objects
as discussed by Bacim et al. [81]. In [82] two spatial, structure-aware selection tech-
niques were developed. These techniques only required users to draw a lasso, i.e.
a loop around the 2D projections of important parts of the 3D point cloud. While
effective, such selection algorithm was quite complex and did not work in real-time.

Many authors investigated the use of 3D interfaces for selection. 3D interfaces
make use of a 3D “cursor” which moves in space, instead of a 2D mouse pointer.
Coffey et al. [83] proposed a virtual reality system exploiting a touch interface with
support to selection of data subsets. As part of the 3DUI contest, several solutions
like [84, 85] were proposed, based on virtual reality and hand gestures. In [86], a pre-
selection phase allowed easier navigation in the 3D environment. Then, a 3D pointer
was implemented to perform actual selection. A disadvantage of 3D user interfaces
is that they often require non-standard 3D hardware, which may require additional
training. Moreover, advanced 3D interfaces like virtual reality may be tiring for the
user.

Machine learning techniques for large scale assisted annotation have also been
investigated by Boyko et al. in [87, 88]. The approach assumed that the point cloud
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Figure 1.7: Point cloud annotation process (left to right) using min-cut algorithm and
constraints. Green dots are placed to define the foreground, red dots to define the
background. Image source: [7] © 2009 IEEE.

is composed by many similar objects whose shape could be learned by the system.
An approach similar to the one presented in this thesis was proposed in [7], where

“constraints” (points or planes) were selected on the point cloud (Fig. 1.7). Con-
straints were used to perform a min-cut algorithm on the point cloud, in order to
separate a foreground object from the background. Likewise, in [89] a min-cut al-
gorithm exploiting user painted strokes was introduced. However, while effective to
segment a single object from the background, the min-cut algorithm is not suitable to
segment an arbitrary number of objects in a scene.



Chapter 2

User-driven spatial attention

In this chapter, the first approach for the application of spatial attention to next-best
view is presented [11, 12]. A robot manipulator actively updates the 3D represen-
tation of the scene only where a change is detected in the environment. Changes in
the environment are caused by user manipulation activities, which draw the atten-
tion of the robot. The robot can not observe at once the whole environment because
of occlusions and kinematic constraints. Hence, the robot moves the sensor on its
end-effector to complete and update the representation of the environment. The robot
focuses the viewpoint of the eye-in-hand sensor towards the regions where user ac-
tions are more likely to have produced changes. This robot system is an example of
active perception, since it closely links perception and motion planning.

The attention approach proposed in this chapter is developed for the 6-DoF robot
manipulator already presented in the introduction. The robot arm operates in a table-
top scenario. The robot is equipped with a Kinect V1 range sensor (Fig. 2.1). Relevant
changes in the environment are caused by manipulation actions of a person interact-
ing with objects, which may include moving or removing an object in the scene or
placing new objects. Potential changes are detected by analyzing the motion of the
user hand by motion capture. The 3D environment representation is updated by the
robot system only when one or more relevant changes are detected.

To merge information acquired by the range sensor from different views a mod-
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Figure 2.1: Experimental setup (left). Example of KinectFusion output (top right).
Motion planning environment (bottom right).

ified version of KinFu was developed. The KinFu Large Scale (KinFu LS) project
[90] is an open source implementation of KinectFusion [8] based on the PCL li-
brary [91]. The environment is modeled as a volumetric 3D voxel grid using a trun-
cated signed distance function. Each voxel is labeled as unknown, empty or occupied.
When salient user activities are detected, points of interests are computed from the
estimated regions of the environment where something has possibly changed. Then, a
next-best view (NBV) algorithm is executed iteratively to plan the best pose where the
sensor must be placed to observe the regions of interest. Multiple views of the robot
may be required in order to achieve a complete update of each region of interest. The
robot exploration phase of each region of interest continues until information gain is
negligible.

The main advancement proposed in this chapter is the application of attention to
next-best view planning. A novelty detection system is developed, which mantains
and updated 3D representation by analyzing user activities. Moreover, next-best view
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planning is applied to KinectFusion 3D reconstruction. Two strategies for next-best
view have been evaluated: keeping the KinFu active during the robot motion be-
tween consecutive views and turning it on only at the planned viewpoints. Finally,
an algorithm is proposed which segments the human hand trajectory using a Gaus-
sian Mixture Model (GMM) to detect where salient user actions occur. The proposed
algorithm has been evaluated on a dataset of user activities and compared to a zero-
velocity crossings (ZVC) approach.

As further contribution, the original KinFu algorithm has been adapted to the
task proposed here. The adaptation has been published as open-source at https:
//github.com/RMonica/ros_kinfu. The next-best view algorithm is exe-
cuted directly on the GPU, which required modifications to KinFu ray casting and
shifting procedure. Moreover, KinFu has been modified to improve accuracy by ex-
ploiting the accurate kinematics of the robot, as in [39], instead of performing egomo-
tion estimation. Experiments are reported to compare the GPU-based next-best view
algorithm to the same algorithm executed on the CPU. As expected, the GPU-based
next-best view is faster.

The chapter is organized as follows. Section 2.1 provides an overview of the
proposed approach. KinectFusion is introduced in Section 2.2. Section 2.2 also de-
scribes the NBV algorithm developed on the GPU, how KinFu was adapted, and the
algorithm for determination of the regions of interest. In section 2.3 the software ar-
chitecture based on the PCL library is discussed as well as the integration with the
ROS middleware. Section 2.4 illustrates the experimental results, which are briefly
discussed in Section 2.5.

2.1 Method overview

The proposed attention-based approach enables a robot manipulator to update the
3D representation of the environment each time a change is detected. The update
procedure consists of taking new observations using the eye-in-hand sensor in the
regions where a user performed a task. The general behavior of the system is out-
lined in Figure 2.2. First, an initialization phase occurs, where the robot acquires data

https://github.com/RMonica/ros_kinfu
https://github.com/RMonica/ros_kinfu


24 Chapter 2. User-driven spatial attention

Figure 2.2: The general flowchart of the system.

along a predefined scan trajectory (which is assumed not to collide with any object)
using KinectFusion. 3D data acquired after the initial scan only serves as a starting
representation of the environment and may include large unseen areas due to object
occlusions. Then, the robot moves to a “stand-by” configuration where it waits for a
user to perform a task.

The user can interact with the environment by performing object manipulation
tasks. Each user task may involve one or more sequential actions, each of which
can be performed in different regions of the environment. For example, a pick-and-
place task requires to direct the attention of the robot to both the initial and final
configurations of the object. The trajectory of the user hand during a task is acquired
by a motion capture sensor (described in Section 2.4) and it is analyzed by the GMM-
AS algorithm, detailed in Section 2.2.4. GMM-AS generates a set of Points of Interest
(POI). Each POI represents the approximate location of a region of interest where a
change in the environment might have occurred.

Then, all the regions of interest are cleared with unknown voxels and the robot
starts an update phase (Section 2.2) to explore all the now unknown regions of in-
terest. After the update phase, the robot returns back to the “stand-by” configura-
tion. The 3D representation of the environment is computed by the KinectFusion
algorithm. The PCL KinFu LS implementation of KinectFusion was adopted and
extended. An overview of the algorithm is reported in Section 2.2.1, while the imple-
mentation in Section 2.3.

The robot update phase is driven by a NBV algorithm [16, 10], detailed in Section
2.2.3. Given a ternary volumetric representation (occupied, empty, unknown) of the
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environment, the NBV algorithm simulates the Kinect range sensor and produces a
sequence of viewpoints ranked by their highest theoretical information gain. Collision
free robot movements are planned using the OpenRAVE engine [92]. Occupied and
unknown voxels are considered as obstacles in the motion planner. To speedup the
planning phase, the representation is conservatively subsampled to voxels of size 4
cm.

2.2 Robot attention approach

The update phase of the environment 3D representation, detailed in Algorithm 1,
starts when a set of Points Of Interest is generated (to be explained in Section 2.2.4).
Each POI is characterized by a center point and a surrounding spherical shape S(POI),
describing the region of interest that it generates. First, all the regions of interest are
filled with unknown voxels (line 2) which will be considered as obstacles while plan-
ning robot movements. Then, the first POI of the sequence is selected and viewpoints
are computed to explore its region of interest S(POI) by applying the NBV algorithm
(line 5). The NBV algorithm scores viewpoints maximizing the estimated informa-
tion gain. Information gain of each viewpoint Gain[I] is computed as the number of
unknown visible voxels. NBV evaluation is limited to the shape S(POI) of the current
POI, since other POIs will be better served by subsequent observations, centered on
them.

All the viewpoints are then attempted one after the other, starting from the most
promising in decreasing order. If one viewpoint predicts an information gain less
than a given threshold S(POI) is considered completely reconstructed and the next
POI, if any, is selected (line 7). Viewpoints are re-computed after each successful
observation (line 14). Once a valid viewpoint is found, a trajectory for the robot
is planned (line 10). A viewpoint is skipped either when unreachable, due to robot
kinematics, or when already attempted for the current POI. All information acquired
by KinectFusion is used to update the environment representation, thus it may happen
that a region of interest S(POIi) is partially observed during the exploration of another
POI j. This case is implicitly handled by the proposed algorithm.
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Algorithm 1 Environment representation update phase
Require: WS: 3D volumetric environment representation;
Require: POIs: Point of Interest array;
Ensure: WS: The updated representation;

1: for each POI in POIs do
2: ForgetAround(WS,POI);
3: end for
4: for each POI in POIs do
5: (Viewpoints,Gain)← NextBestView(WS,POI);
6: for I from 1 to size(Viewpoints) do
7: if Gain[I] < IncT h then
8: break;
9: end if

10: (Ok,Tra j)← PlanRobotTo(Viewpoints[I]);
11: if Ok then
12: MoveRobotAlong(Traj);
13: PerformRobotOscillation();
14: (Viewpoints,Gain)← NextBestView(WS,POI);
15: end if
16: end for
17: end for

When a viewpoint configuration is reached, the robot moves so that the Kinect
sensor tilts slightly (±5 degrees) around the sensor horizontal axis (line 13), allow-
ing KinFu to work properly on a continuous input stream of depth images from that
viewpoint. The tilting motion is modeled in the NBV algorithm by configuring the
simulated sensor with a wider vertical field of view than the real Kinect sensor. Two
variations of the NBV exploration strategy have been evaluated. In the first, called
“KinFu On ViewPoint” (KFOVP), KinFu is allowed to acquire new data only from
the observation viewpoints as described above. In the second, called “KinFu On Mo-
tion” (KFOM), KinFu is also kept active during the motion of the robot between two
consecutive viewpoints. KFOM should require a lower number of views to complete
the environment update phase. Both KFOVP and KFOM use KinFu output as the
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3D volumetric reconstruction of the scene. KinFu is not reset after each viewpoint
observation.

2.2.1 The KinectFusion algorithm

KinectFusion is an iterative algorithm for real-time tracking of a moving depth cam-
era and 3D fusion of the environment observations in a volumetric data structure.
Software implementations exploit highly parallel GPU techniques (CUDA). The 3D
environment representation is accessible at any time, provided a fast access to the
GPU memory is available. KinectFusion represents the environment as an implicit
surface model using a truncated signed distance function (TSDF). TSDF is a clamped
function R3 → R which maps the 3D coordinates (x,y,z) to the distance from the
nearest surface, negative inside objects and positive outside. KinectFusion samples
a TSDF volume in a regular grid of voxels with fixed size. Each voxel contains two
values: a TSDF sampled value v and a weight w that counts the number of times the
voxel has been observed.

Each KinectFusion iteration consists of four steps. Ray casting: A synthetic depth
map (point cloud) is generated from the current TSDF volume, as seen by a virtual
sensor placed in the last known sensor position. Depth map conversion: The latest
measured depth image is converted into an organized point cloud. Camera track-
ing: The point cloud is aligned with the synthetic depth map using a modified point-
to-plane ICP (Iterative Closest Point) algorithm and then the motion of the sensor
is estimated from the ICP transformation. Volumetric integration: The point cloud
is converted to global coordinates and merged with the TSDF volume. Ray casting
and volumetric integration steps are described next to explain how KinectFusion was
adapted to work with the NBV algorithm.

In the ray casting step, each ray of the sensor is sampled with constant step and
traversed until it exits the TSDF volume or a zero crossing of the TSDF is found.
When a zero crossing of the TSDF is found a new point is saved in the point cloud
using a trilinear interpolation of the TSDF values of neighboring voxels. Since Ki-
nectFusion is executed on the GPU, each ray is evaluated in parallel.

During the volumetric integration phase, the latest sensor pose and the corre-
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sponding observed points are converted in global coordinates. Then, the voxels inter-
sected by the view ray are updated up to the observed point as follows. The weight
value is used to average the new value with past values and it is increased at each
new voxel observation. The weight value is capped to a maximum value Mw: thus, af-
ter some observations, the update procedure becomes a running average. The update
equations of the TSDF and weight values of each intersected voxel can be written as
follows:

vSDF = ‖ p−o ‖−‖ c−o ‖ (2.1)

v′ =
v ·w+ clamp(vSDF/Mv,−1,1)

w+1
(2.2)

w′ = min(w+1,Mw) (2.3)

where p is the point observed by the sensor from position o and c is the position
of the voxel in the TSDF volume, along the view ray op. The temporary value vSDF

represents the Signed Distance Function, not yet truncated. The vSDF value is normal-
ized by the maximum value Mv and clamped between−1 and 1 to obtain the updated
TSDF v′. Empty voxels far outside the surface have a TSDF value equal to 1, empty
voxels near the surface have a TSDF value between 1 and 0, while occupied voxels
inside the surface have a TSDF value below 0 (Figure 2.3). Voxels never observed
have a 0 weight and their TSDF value remains at its default 0 value. Since the view
ray stops at the observed point, voxels inside objects are never updated, even though
from update equation 2.2 the TSDF value should be set to −1.

2.2.2 KinFu Large Scale

A limitation of the KinectFusion algorithm is that it can neither acquire data outside
the TSDF volume, nor use data outside the TSDF volume for sensor tracking. Be-
sides, the TSDF volume can not be expanded indefinitely due to limited GPU mem-
ory. Improved versions of KinectFusion have been developed based on the concept
of downloading part of the 3D representation on the CPU memory, thus freeing space
on the GPU for data processing [93]. This operation is called shifting.

PCL KinFu LS uses a cyclical buffer to obtain a faster shifting procedure, without
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Figure 2.3: An example of 2D TSDF volume. The red line represents the object sur-
face. The yellow area represents the negative values inside the object, while the cyan
area the positive ones.

the need of memory deallocation and reallocation. The TSDF volume is allocated as
a 3D matrix of fixed size. Whenever shifting occurs, the origin of the TSDF volume
is translated, so it can represent a different area of the workspace. Slices of the TSDF
volume are downloaded from the GPU memory to the CPU RAM. The now free
slices on the GPU are then refilled with existing data (if any) from the CPU, or reset
to unknown state (v = 0, w = 0). The new TSDF volume is partially overlapped with
the old one, hence some data is kept on the GPU memory. Since the TSDF volume
is organized as a 3D cyclical buffer only the origin is shifted and no data needs to be
moved on the GPU. Downloaded slices would need a large amount of CPU memory,
if they were saved as a voxel grid. The solution proposed by KinFu LS is to convert
slices to a point cloud. Each point is defined by the 3D global coordinates of the voxel
and the TSDF value. The weight value is lost in the process. Moreover, to reduce the
size of the point cloud, all points with TSDF value v = 1 or never observed (w = 0)
are removed from the representation.

KinFu LS introduces a number of translated and scaled reference frames. Refer-
ence frame {W} is the world frame in real metric coordinates. The expanded frame
{E} is the origin in expanded coordinates, scaled with respect to world coordinates
so that each TSDF voxel has edge 1, i.e. a point E p in frame {E} can be expressed
as:

E p =
W p
e

(2.4)
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Figure 2.4: A 2D representation of the KinFu LS reference frames. Unit vectors for
{O}, {E} and {H} are shorter, since they use expanded (scaled) coordinates.

where e is the voxel size. The TSDF shift frame {H} is centered at the voxel of
index (0,0,0) in the TSDF volume in expanded coordinates. The TSDF frame {O}
is centered at the voxel of the TSDF volume that determines the shifting operation,
in expanded coordinates. The TSDF frame {M} has the same origin of {O} but it
is defined in real world metric coordinates. An overview of the reference frames is
shown in Fig. 2.4.

Reference frames defined above are updated at each shifting operation. In the
following, the notation b

at indicates the translation vector of reference frame a with
respect to frame b. Given that the TSDF volume is cyclical, a point H p in TSDF shift
coordinates can be expressed in extended coordinates E p as:

E p =
[(H p+O

H t +SV
)

mod SV
]
+E

O t (2.5)

where SV is an array which contains the size of the TSDF volume in voxels and mod
is the component-wise modulo operator. SV is added to (H p+O

H t) so that the result is
always positive.

In the attention-based system a spherical region of interest S(POI) of the TSDF
volume has to be cleared if the following inequality holds:

||W Sc−W p||<W Sr (2.6)
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where W Sc is the sphere center and W Sr is the radius. TSDF voxels can be processed
in parallel using a CUDA kernel. Each thread evaluates a different voxel, with index
in TSDF shift coordinates H p. To verify inequality 2.6, H p has to be converted to W p
for each thread using equation 2.5 and then equation 2.4. However, it can be noticed
that equation 2.4 can be applied to inequality 2.6 in advance, once for all on CPU.
The CUDA kernel can then operate directly in the expanded coordinates {E}, and
considering that

OSc =
E Sc +

O
E t (2.7)

inequality 2.6 can be rewritten as:

||OSc−O p||<O Sr (2.8)

Hence, a slightly simpler equation than 2.5 may be used to obtain the point to be
evaluated for inclusion in S(POI):

O p =
(H p+O

H t +SV
)

mod SV (2.9)

If the voxel satisfies the inequality it is set to unknown.

2.2.3 Next-best view approach

This section describes the GPU-based NBV algorithm. The algorithm follows the
two-step approach proposed in [16, 10]. In the first step, candidate viewpoints are
sampled on a sphere with fixed radius centered on the current POI. Each sensor po-
sition is uniquely defined by assigning the radius (d), the POI and three attributes:
longitude (φ ), latitude (θ ) and rotation around the sensor axis (ψ) as shown in Fig-
ure 2.5. Rotation ψ is mainly important to ease the search for a reachable pose of
the robot manipulator. The three attributes are uniformly sampled in their ranges:
φ ∈ [0◦,360◦), θ ∈ [0◦,90◦], ψ ∈ [0◦,360◦), to cover all the upper hemisphere. The
sampling intervals are respectively 30◦, 10◦ and 45◦, resulting in a total of 960 sam-
pled viewing poses. The radius d is fixed at 0.8 m having the Kinect sensor a mini-
mum sensing distance of 0.5 m.
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Figure 2.5: The sphere sampled by NBV algorithm around the POI with radius d.

In the second step, viewpoints are evaluated and sorted in decreasing order by
a scoring function which counts the number of unknown visible voxels. The NBV
algorithm must find where each viewing ray, passing through a pixel of the virtual
sensor, intersects the first non-empty voxel in the environment representation. Thus,
the second phase is the most time consuming. Unknown voxels are counted only if
inside the current shape S(POI). Therefore, a voxel ν viewed by the simulated sensor
of the NBV algorithm will contribute to the expected gain Gain[I] of a viewpoint with
index I as:

Gain[I]←

Gain[I]+1 if ν = unkn.∧ν ∈ S(POI)

Gain[I] otherwise
(2.10)

The proposed algorithm, named NBV-GPU, exploits the TSDF volume itself. In-
deed, it may be observed that the ray casting phase of KinFu can be adapted to obtain
the observed TSDF voxels, provided the point of view of the virtual sensor can be ar-
bitrarily set. The main advantage of this novel solution is that the GPU allows fast
computation of the NBV at higher resolution than the CPU can achieve. Moreover,
it does not require data to be extracted from the TSDF volume and converted on the
CPU, and it uses exactly the same sensor model as KinFu.

In particular, the ray casting phase of KinFu has been modified to be executed
on-demand by the NBV algorithm, from an arbitrary pose. When traversed by the



2.2. Robot attention approach 33

Algorithm 2 NextBestView(KinFu,POI)
Require: KinFu: KinFu world representation;
Require: POI: Current Point of Interest;
Ensure: Viewpoints: Array of viewpoints;
Ensure: Gains: Scores assigned to each viewpoint;

1: Viewpoints← GenerateViewpointsAround(POI);
2: Gains← array[size(Viewpoints)];
3: KinFu.ForceShiftToPoint(POI);
4: for I from 1 to size(Viewpoints) do
5: Gains[I]← 0;
6: Voxels← KinFu.RayCast(Viewpoints[I]);
7: for each Voxel in Voxels do
8: if S(POI).Contains(Voxel) and Voxel.IsUnknown then
9: Gains[I]← Gains[I] + 1;

10: end if
11: end for
12: end for
13: OrderViewpointsAndGains(Viewpoints,Gains);

NBV algorithm rays must stop at zero crossings (default behavior), but also when an
unknown voxel (with 0 weight) is intersected. An overview of the NBV procedure,
called NextBestView in Algorithm 1, is shown in Algorithm 2. Initially, a shifting
is forced to set the origin {M} of the TSDF volume to the POI (line 3). This shift
loads the region of interest on the TSDF volume. Unfortunately, as stated in Section
2.2.2, all shifting events, including those that happen when KinFu is active, cause the
loss of both the weight values and the empty voxels with TSDF value v = 1. Hence,
empty voxels far from the surface and the unknown voxels become impossible to
distinguish. This information must be restored in the TSDF volume for the NBV to
work properly. Keeping track of both unknown and empty voxels is achieved by using
a custom octree data structure on CPU memory. This data structure was designed to
efficiently store points observing that the number of unknown and empty voxels is
much higher than the number of occupied ones. Details are provided in Section 2.3.2.
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The NBV-GPU algorithm was compared to a standard algorithm where NBV is
computed on the CPU (NBV-CPU). As explained above NBV-CPU requires volu-
metric data to be extracted from the GPU TSDF volume to the CPU. In addition,
extracted data needs to be converted to a standard ternary representation (occupied,
empty and unknown voxels). A conversion rule can be defined as follows:

w = 0 → unknown voxel

w > 0

v≤ 0 → occupied voxel

v > 0 → empty voxel

(2.11)

To speed-up ray casting NBV-CPU uses a standard PCL octree data structure, which
is queried recursively to find the first intersection. In particular, NBV-CPU uses
the getIntersectedVoxelCenters method of the pcl::octree::OctreePointCloudSearch
class, configured to stop at the first non-empty octree voxel. This algorithm is opti-
mized with respect to a raycasting algorithm in which the ray is followed through a
voxel grid with a fixed step (named NBV-CPU-step in section 2.4.4), since the ray
skips empty volumes thanks to the octree data structure.

2.2.4 Determination of regions of interest

Task trajectories are automatically recorded when the user hand is inside the bound-
ing box of the workspace. The user hand is tracked by a motion capture sensor, de-
scribed in section 2.4. When the hand exits the bounding box, the trajectory is an-
alyzed. An overview of the procedure for trajectory acquisition, segmentation and
POIs extraction is shown in Fig. 2.6.

The proposed algorithm for POIs extraction, named Gaussian Mixture Models
Activity Saliency (GMM-AS), is reported in Algorithm 3. The hand trajectory is
defined as T = {qi} = {(xi,yi,zi)}, a sequence of points qi with i ∈ 1 . . .N, where N
is the length of the trajectory. Motion analysis for the determination of the POIs is
executed in the augmented 4D space S = {(xi,yi,zi, ti)} which includes time stamp
information (lines 1 to 4). Including the time stamp helps the separation of points
close in space but far in time. Indeed, self-intersections should not be encoded by the
same Gaussian in the model.
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Algorithm 3 GMM-AS POI detection
Require: T : the trajectory, sequence of points;
Ensure: POIs: the POI array;

1: S← empty set;
2: for i from 1 to size(T ) do
3: S← S ∪ {[xi yi zi ti]};
4: end for
5: MinBIC← +∞;
6: GC← 1;
7: repeat
8: GMM← ExpectationMaximization(S,GC);
9: BIC← ComputeBIC(GMM,S);

10: if BIC < MinBIC then
11: (MinBIC,BestGMM,c∗)← (BIC,GMM,GC);
12: end if
13: GC← GC+1;
14: until BIC > MinBIC + BICT h;
15: SortByTimestamp(BestGMM);
16: for g from 1 to size(BestGMM) do
17: sg = ComputeSaliency(Gg,c∗);
18: end for
19: POIs← empty array;
20: for g from 2 to size(BestGMM)−1 do
21: thg ← 1

2·Λ ∑
Λ
i=1 (sg+i + sg−i);

22: if sg > POIT h · thg then
23: POIs← POIs + {[Gg.µx Gg.µy Gg.µz]};
24: end if
25: end for
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Figure 2.6: The trajectory recorder and POI detection as functional blocks.

GMM-AS fits a Gaussian Mixture Model p(S) = ∑
K
j=1 π jN (S|µ j,Σ j) on the tra-

jectory through Expectation Maximization (EM). EM is computed in function Ex-
pectationMaximization (line 8), which takes as its arguments S and the number of
Gaussians GC to be fitted, and it returns the GMM. The EM algorithm is initialized
as in [4] by splitting the time span of the trajectory in equal segments and by as-
signing a Gaussian to each segment. The means and covariances of each Gaussian
component are initialized using the sample mean and the sample covariances of the
points which fall in the corresponding segment.

Since to apply the EM algorithm the number of Gaussians must be known, EM is
executed multiple times with an increasing number of Gaussian components, starting
from 1. For each GMM a BIC index [4] is computed by ComputeBIC (line 9). The
lower the value of the BIC index the better the GMM fits the trajectory. It is assumed
that the best fitting GMM model is in the first local minimum of the BIC index. The
algorithm terminates when the current BIC exceeds the best found BIC by a small
threshold BICT h (lines 10 to 14). The Gaussians are ordered by increasing timestamp
mean value in function SortByTimestamp (line 15).

It can be observed that, in the GMM, intermediate hand movements between ma-
nipulation actions (e.g. object transportation phases) are likely to be represented by
long and narrow Gaussians, that exhibit a single dominant direction with high vari-
ance (Figs. 2.7 and 2.8). On the opposite, Gaussians with more balanced variances
and a higher weight appear where the user performs a manipulation action. This can
be explained by observing that user actions are usually performed at slow speed and
involve changes of hand direction, hence more points are sampled without a domi-
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Figure 2.7: An example trajectory (left image) obtained from the placing task of
an object in point A. The superimposed GMM (right image). Only the blue “thick”
Gaussian correctly determines a POI.

nant direction. This facts can be exploited by evaluating each Gaussian Gg using a
ComputeSaliency function (line 17) defined as follows:

σi =
√
|λi| i ∈ {1,2,3} (2.12)

s =
σ1 ·σ2 ·σ3

σ1 +σ2 +σ3
·π · c∗ (2.13)

where λ1, λ2 and λ3 are the eigenvalues of the Gaussian G covariance matrix, marginal-
ized over Cartesian coordinates, s is the saliency, c∗ is the Gaussian count and π is
the weight (prior) of the Gaussian in the model. The saliency sg of each Gaussian is
compared to the average saliency of the neighbor Gaussians (lines 20-25). The first
and last Gaussians are ignored, since they ofter suffer from boundary effects (line
20). If saliency is higher than the average saliency multiplied by POIT h (line 22), the
spatial coordinates (Gg.µx, Gg.µy, Gg.µz) of the mean of the current Gaussian are
added as a new POI. It must be noted that there is no reliable correlation between the
shape (or size) of a Gaussian and the shape of the potential region of interest. Indeed,
the shape of the Gaussian is mostly determined by the user’s (local) trajectory and
not by the shape of the object. Thus, the spherical region of interest S(POI) is set
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Figure 2.8: An example trajectory (left image) obtained from the task of picking and
placing an object from A to B. The superimposed GMM (right image). Only the blue
and the yellow “thick” Gaussians correctly determine two POIs.

with a fixed radius (W Sr = 0.2 m), larger than most common objects in manipula-
tion scenarios. The user can, in principle, perform an arbitrary number of tasks. Each
task can include an arbitrary number of actions. However, after each task the user
must wait for the robot to complete the environment update phase before performing
the following task. GMM-AS may generate multiple close POIs which, however, do
not affect the performance of the system since these close POIs are simultaneously
explored.

The GMM-AS algorithm was compared to an adaptive zero-velocity crossings
(ZVC) algorithm, which is based the idea of looking for points of interest where
slower hand movements appears. First, a mean filter with width (2B+1) is applied
to the trajectory to reduce noise. The average speed at index i is then computed as:

v̄i (r) =
1

‖Ri(r)‖ ∑
j∈Ri(r)

||q j−q j−1||
t j− t j−1

(2.14)

where Ri is the set of the indices of the neighboring samples of qi within a radius r,
defined as:

Ri (r) = { j | ∀k ∈ ([ j, i]∪ [i, j]) , ‖qk−qi‖< r } (2.15)

A slow hand movement is detected whenever the local speed is significantly lower
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than the speed averaged on a wider range. In particular, the average speed is computed
for two values of r: r1 = 10 cm and r2 = 25 cm. Segments of trajectory that satisfy
v̄i (r1) ·ZVCT h < v̄i (r2), where ZVCT h is a constant multiplier, generate a POI at
the average time index of the segment.

2.3 Software architecture

2.3.1 Extension of KinFu Large Scale for robot attention

KinFu LS defines KinfuTracker as the main class. KinfuTracker can be instantiated to
a function object where the operator() method accepts a new depth map and executes
one iteration of the algorithm. Two storage classes, TsdfVolume and CyclicalBuffer
manage the world model. TsdfVolume acts as a proxy for the TSDF volume loaded on
the GPU. CyclicalBuffer manages TSDF shifting and updates the reference frames.
A nested class WorldModel manages the point cloud with intensity (pcl::PointXYZI)
that contains the downloaded slices. The intensity value here represents the TSDF
value v. Overall nesting relations are shown in Fig. 2.9.

To use KinFu as a persistent environment representation for the robot attention
algorithm the following features were added. First, KinFu has to be interrupted and
restarted on demand, for example when the robot reaches the stand-by configuration.
Second, part of the environment has to be cleared, i.e. set to unknown to generate the
regions of uncertainty of the POIs.

Interrupting KinFu can easily be achieved by not calling the operator() method as
there is no active thread in the implementation. However, as the ICP algorithm works
under the assumption of small sensor movements between consecutive readings, if
a movement is too large egomotion estimation by ICP does not converge. This case
happens if KinFu is suspended and resumed from another viewpoint. Therefore, to
solve this issue, KinFu must be provided with the actual pose of the sensor. To this
purpose a parameter, named hint, was added to operator(). The hint parameter accepts
a struct of type Hint, defined as in Listing 2.1.

Three modes of operations are allowed: HINT_TYPE_NONE causes KinFu to
use the default ICP egomotion tracking; HINT_TYPE_FORCED disables ICP and
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Figure 2.9: Relations among the most important classes of KinFu LS.

struct Hint

{

enum Type

{

HINT_TYPE_NONE,

HINT_TYPE_HINT,

HINT_TYPE_FORCED

};

Type type;

Eigen::Affine3f pose;

};

Listing 2.1: The Hint struct.

forces the use of the pose parameter; HINT_TYPE_HINT where ICP is enabled but it
initialized with the pose parameter and not with the last sensor pose. In the proposed
system, the pose of the sensor is computed from the robot kinematics. The third mode
was added to allow an additional hybrid approach.

Clearing parts of the environment affects both TsdfVolume and WorldModel classes.
The point cloud contained by the WorldModel class is in expanded coordinates {E}.
Points not existing in this model are considered unknown when loaded into the TSDF
volume. All the points in the WorldModel which verify inequality 2.6 (Section 2.2.2)
in expanded coordinates are set to unknown. The sphere must also be cleared in the
TSDF volume, accessed through the TsdfVolume class in reference frame {O}. This
procedure is executed in parallel, on the GPU, for each voxel of the TSDF volume,
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using equation 2.9 to clear voxels that satisfy inequality 2.8. If the voxel is inside the
sphere, the voxel is set to unknown (TSDF value v = 0 and weight w = 0). A wrapper
method was added to the main KinfuTracker class to convert the sphere to {E} and
{O} coordinates and consistently clear both the WorldModel and the TsdfVolume.

2.3.2 Extension of KinFu Large Scale for next-best view

KinFu LS defines a RayCaster class that can be used to execute raycasting from an
arbitrary pose in the TSDF volume. The RayCaster class can be configured with ar-
bitrary intrinsics parameters: focal length and image size. The default configuration
is changed, by setting a wider vertical field of view, when simulating the tilting mo-
tion of the real sensor described in Section 2.2. RayCaster uses a CUDA kernel to
perform ray casting and to fill a vertex map with the voxels that are viewed by the
virtual sensor. A boolean template parameter was added to enable the kernel to be
used for the next-best view algorithm without affecting the original behavior.

For the next-best-view implementation rays need to be stopped at the first non-
empty voxel. A knowledge map was added on the GPU, filled with values indicating
if the ray intercepted an unknown voxel, an occupied voxel or exited the volume
intercepting only empty voxels. Unknown voxels in the knowledge map are counted,
to estimate the number of unknown voxels seen by the virtual sensor, only if the
corresponding point in the vertex map is inside the shape S(POI) (eq. 2.10).

As stated in Section 2.2.2, shifting loses distinction between unknown (w = 0)
and empty (v = 1) voxels when downloading data from the GPU, as w is discarded
in the WorldModel. For this reason, KinFu LS was modified in such a way that the
distinction between unknown and empty voxels is properly saved and restored for
the shifted slices. Adding additional information to the KinFu WorldModel would
be extremely expensive in terms of memory occupation. Thus, a data structure was
introduced to only distinguish empty and unknown voxels. This structure, named Bit-
maskOctree, is based on the pcl::octree::OctreeBase class. BitmaskOctree operates
at lower (1/8) resolution with respect to the TSDF volume. To match with the TSDF
resolution, each octree leaf contains a 3D matrix boost::bitmask of 8 ·8 ·8 = 512 bits.
The compression is lossless in terms of resolution, however the actual value is bina-
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rized to 0 (unknown) if w = 0 and 1 (known, i.e. empty or occupied) if w > 0. Octree
leaves that are completely unknown are not stored in memory. The minimum amount
of memory for a bitmask with a single point is 64 bytes. However, this event is very
unlikely, since known voxels tend to form clusters and most of the bitmasks will be
completely set. Indeed, leaves in the BitmaskOctree that are completely set are on
average 69% of the total number of leaves.

class WeightCubeListener

{

public:

virtual void onReset() = 0;

virtual void onClearSphere(...) = 0;

virtual void onNewCube(...) = 0;

virtual bool retrieveOldCube(...) = 0;

};

Listing 2.2: The WeightCubeListener interface. Parameters are omitted.

For the sake of generality BitmaskOctree was wrapped in a listener class. Cycli-
calBuffer was modified to accept a listener class which implements the WeightCu-
beListener interface, defined in listing 2.2. The onReset and onClearSphere methods
are called when clearing the whole workspace or a spherical region of interest. When
a shifting occurs, the method onNewCube is called to save TSDF weights before the
shifting procedure. In addition, the retrieveOldCube method is polled during shifting
and at each KinFu iteration until binarized weight information for the new TSDF vol-
ume origin is returned, extracted from the BitmaskOctree. The weight information is
then merged with the TSDF volume in the GPU as follows. If the BitmaskOctree leaf
is 1, the weight value in the TSDF volume is incremented by 1. Otherwise, the value
on the TSDF volume is left unchanged. If incrementing the weight value results in a
previously unknown TSDF voxel changing to known, the TSDF value is initialized to
1 (empty). The load operation may be executed at any time, amid KinFu iterations, as
soon as the retrieveOldCube returns the weight information. Indeed, voxels changing
from unknown to empty in the TSDF do not affect the correctness of the KinFu LS
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Figure 2.10: The multithread shifting procedure.

algorithm, because during standard execution the two types of voxel are treated in the
same manner.

A multithread solution was implemented to execute asynchronously the setting
and retrieval of values in the BitmaskOctree, without disrupting the KinFu execution,
as shown in the sequence diagram in Fig. 2.10. The listener is an active object, with
its own processing thread. At the first retrieveOldCube call the request is scheduled
in a queue and, when the result is ready, it is returned during one of the subsequent
polling calls to the method. Also, the onNewCube calls return immediately, while
data is placed in the same queue for later processing.

2.3.3 System integration in ROS

KinFu LS was integrated into the ROS (Robot Operating System) framework and
it is available for download (https://github.com/RMonica/ros_kinfu).
Integration is based on the KinFuLS ROS wrapper [94], which publishes the synthetic
depth map to a ROS topic and the current tracked sensor pose. The PCL KinFu LS

https://github.com/RMonica/ros_kinfu
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implementation is primarily designed to acquire data from the Kinect sensor, visual-
ize it and save data to a file before termination. A post-processing phase is required
to obtain a polygon mesh, by calling an executable which runs the Marching Cubes
algorithm. In contrast to this standard behavior, as explained in Section 2.3.1 the
attention-based system requires the use of KinFu as a persistent tool for environment
representation.

In this work, the main kinfu node from [94] was extended to handle the modifi-
cations of KinFu LS. The extended kinfu node interacts with the ROS environment
by accepting two types of messages: commands and requests. Commands affect the
behavior of the system and do not require any further processing. Commands include
SUSPEND, RESUME, CLEAR_SPHERE. Each command may also supply a hint or
a forced hint, which act as defined in section 2.3.1. Also, a SET_FORCED_TF_-
FRAME command binds the KinFu tracking to a reference frame using ros-tf. This
feature is used to feed KinFu tracking with the robot odometry. Commands change
asynchronously the state of a command subscriber, which applies the new configura-
tion at the next iteration of the KinFu.

Request messages ask the kinfu node to publish a part of the environment. The
part of the environment may be extracted in various formats, such as a point cloud,
a polygon mesh or a voxel grid. Also, the projection of the environment on a virtual
sensor (used for NBV) is executed through a request. Each request is served by a
dedicated thread, different from the main KinFu thread. Requests copy data from the
WorldModel and the BitmaskOctree after waiting for any KinFu pending operation in
the WeightCubeListener queue or any retrieveOldCube unfinished calls. Each request
thread must acquire an exclusive lock on KinFu to copy data. However, additional
processing can be performed in parallel, such as execution of marching cubes to
obtain the polygon mesh, or subsampling to reduce the size of the point cloud in the
response.
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2.4 Results

The experimental setup includes a small robot arm (Comau SMART SiX) with six
degrees of freedom and a Kinect sensor mounted on the end-effector. The Kinect
is calibrated with respect to the robot wrist. A Polhemus FasTrak is used for 3D
hand tracking, calibrated with respect to the robot base frame. FasTrak is an electro-
magnetic device which tracks in real-time the position and orientation of a small
receiver located on the wrist of the user. The advantage of using a magnetic motion
capture device is that it does not suffer from occlusion problems. The overall configu-
ration of the system is shown in Fig. 2.1. The software runs under the ROS framework
on an Intel Core i7 4770 at 3.40 GHz, NVidia GeForce GTX 670.

2.4.1 Evaluation of Kinect sensor tracking solutions

Initial tests were performed to evaluate to what extent the internal drift of KinFu
egomotion tracking may affect the robot attention system. In this section, KinFu ego-
motion tracking is compared with an alternative solution where KinFu is fed with the
robot forward kinematics. Tests were performed by moving the robot arm along the
trajectory used for the initial observation of the environment. Experiments were con-
ducted in two scenarios with different objects as shown in Fig. 2.11. Tracking errors
are computed as the difference between the robot forward kinematics (ground truth)
and the KinFu egomotion estimation. Figure 2.12 shows the translation (Euclidean
distance) and rotation (angle-axis representation) errors in the first scenario. The er-
rors increase with time during robot motion. Egomotion tracking accumulates a large
drift, as the translation error at the end is about 12 cm.

To further evaluate the accuracy of the two solutions three parameters were mea-
sured for each object and compared to the ground truth values: the object height and
the lengths of the major and minor axis of the object projection on the horizontal
table. Average errors for the parameters are reported in Table 2.1. The 3D reconstruc-
tion using the robot kinematics exhibits much higher accuracy than the one obtained
using KinFu egomotion tracking. For this reason, during all the experiments of the
attention-based system presented in Sections 2.4.3 and 2.4.4, the KinFu was fed with



46 Chapter 2. User-driven spatial attention

Figure 2.11: The two environments used for testing KinFu tracking accuracy.

Table 2.1: 3D object reconstruction errors.

Scenario Tracking method Mean abs. (m) St. dev. (m)
1 Egomotion 0.031 0.040
1 Robot kinematics 0.005 0.006
2 Egomotion 0.027 0.041
2 Robot kinematics 0.006 0.008

robot kinematics.

2.4.2 GMM-AS algorithm evaluation

The robustness of the GMM-AS algorithm was evaluated on a dataset of 330 tasks
performed by four subjects. The dataset was published online at https://github.
com/RMonica/hand-polhemus-dataset. The dataset contains 110 place-
ment tasks of new objects in the environment, 110 object removal tasks from the en-
vironment and 110 pick-and-place tasks. Each recorded task trajectory was inspected
manually and ground truth POIs were placed where actions actually occurred, i.e. at
the initial location of the object for removal tasks, at the final location of the object
for insertion tasks and at both the initial and final object locations for pick-and-place
tasks. Object placement and removal tasks were evaluated together as they are char-
acterized by a single action and they exhibit quite similar trajectories. Instead, pick-

https://github.com/RMonica/hand-polhemus-dataset
https://github.com/RMonica/hand-polhemus-dataset
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Figure 2.12: KinFu egomotion tracking error in the first scenario of Figure 2.11.

Table 2.2: Evaluation of GMM-AS and ZVC-like (Λ = 2, POIT h = 2.5, B = 4,
ZVCT h = 1.72).

Tasks Algorithm Precision Recall
Placements and removals ZVC-like 96.4% 97.3%
Placements and removals GMM-AS 95.4% 95.9%
Pick-and-place ZVC-like 94.5% 98.2%
Pick-and-place GMM-AS 97.7% 97.3%

and-place tasks are characterized by two actions. Actions were counted as correctly
detected if the distance to the true POI was within 20 cm (POI radius). False posi-
tives (FP) were counted when a POI was detected far from any ground truth POIs.
False negatives (FN) were counted when the algorithm did not detect any POI near a
ground truth POI. Tests were performed at different speeds of the task by undersam-
pling ( 1

2×, 1
4×) and oversampling (2×, 4×) the trajectories. Additional tests were

performed by adding to the trajectories white Gaussian noise.

The GMM-AS and the ZVC-like algorithms show comparable results on the
dataset (Table 2.2). Also, ZVC-like shows a slightly better result than GMM-AS
when the two algorithms are tested at different speeds (Table 2.3). However, to obtain
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Table 2.3: Evaluation of GMM-AS and ZVC-like at different speed multipliers, on
the whole dataset.

Speed multiplier Algorithm Precision Recall
0.25 ZVC-like 96.6% 93.0%
0.25 GMM-AS 98.0% 86.1%
0.50 ZVC-like 95.7% 97.7%
0.50 GMM-AS 97.0% 95.9%
1.00 ZVC-like 95.5% 97.7%
1.00 GMM-AS 96.6% 96.6%
2.00 ZVC-like 95.7% 97.7%
2.00 GMM-AS 96.8% 92.5%
4.00 ZVC-like 96.4% 97.7%
4.00 GMM-AS 97.0% 80.7%

this result the noise-reduction window parameter B of ZVC must be at most 4. Such
higher bound for B reduces the maximum noise that the ZVC-like algorithm is able
to compensate. As seen in Table 2.4, GMM-AS is able to detect POIs even with 2.5
cm of standard deviation, while the ZVC-like algorithm fails.

The ZVC-like algorithm takes some milliseconds of computational time, while
the GMM-AS takes a few (2∼8) seconds. Nonetheless, this higher execution time
does not affect the performance of the robot attention system which is mostly affected

Table 2.4: Evaluation of GMM-AS and ZVC-like at various noise standard deviation
values.

Std. dev. (cm) Algorithm Precision Recall
0.1 ZVC-like 95.4% 97.7%
0.1 GMM-AS 97.5% 98.4%
2.5 ZVC-like 95.1% 12.5%
2.5 GMM-AS 97.0% 80.2%
5.0 ZVC-like 97.5% 0.5%
5.0 GMM-AS 98.6% 56.8%
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Table 2.5: The saliency computed for each Gaussian in Fig. 2.13.

Gaussian nr. Saliency Threshold POI
1 0.005880 - NO
2 0.001646 0.040424 NO
3 0.001352 0.031084 NO
4 0.073616 0.002673 YES
5 0.001749 0.038675 NO
6 0.002383 - NO

Table 2.6: Saliency computed for each Gaussian in Fig. 2.14.

Gaussian nr. Saliency Threshold POI
1 0.002341 - NO
2 0.025118 0.002693 YES
3 0.001191 0.036059 NO
4 0.001855 0.035187 NO
5 0.066844 0.002574 YES
6 0.000679 0.035919 NO
7 0.003140 - NO

by planning and by the slow velocity of the robot.

Figure 2.13 shows an example trajectory of an object placement task. The saliency
assigned to each of the Gaussians is reported in Table 2.5. Only one Gaussian (the
fourth) is classified as a salient action (placement) and generates a single POI. An-
other example, for a pick-and-place task, is shown in Fig. 2.14 and Table 2.6. In this
case, only the second and the fifth Gaussians are detected as salient actions generating
two POIs, which correspond to object picking and placing respectively.

2.4.3 Evaluation of the robot attention system

This section presents two complete experiments of the attention based system (Fig.
2.15) using NBV-GPU. Each experiment was performed two times using the same
recorded user hand trajectory, the first one with KFOVP and the second with KFOM.
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Figure 2.13: A trajectory representing an object placement task to location A (left)
and the superimposed GMM (right).

Figure 2.14: A trajectory representing a pick-and-place task from location A to B
(left) and the superimposed GMM (right).
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Figure 2.15: The environment before (left), during (center) and after (right) the user
task. First experiment (top row) and second experiment (bottom row).

In the first experiment, the user placed a plastic bottle in the environment, among
a group of boxes. In the second experiment, the user picked up a jug from a pallet
and then placed the jug on a wooden disc after passing over a briefcase. The tasks
generated POIs and corresponding regions of interest as shown in Fig. 2.16. GMM-
AS generated a single correct POI in the first experiment. In the second experiment
GMM-AS generated a total of three POIs, two of them almost superimposed where
the jug is moved.

Figure 2.17 shows images of OpenRAVE planning, robot NBV configurations,
KinFu synthetic depth maps and environment representations of KFOVP exploring
the single POI in experiment 1. Figure 2.18 shows all the five views performed by
KFOVP in experiment 2. The first view (first column) observes the empty space above
the pallet where the jug is picked up (first POI). The other four views are needed to
reconstruct the second and the third (almost superimposed) POIs where the jug is
moved on the wooden disc.

Figure 2.19 illustrates the final result for the KFOVP experiments. The average
accuracy of the reconstructed objects involved in the tasks was measured by using
the same parameters introduced in Section 2.4.1. KFOM and KFOVP achieve the
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Table 2.7: Reconstruction error, completeness, number of views and execution time
for KFOM and KFOVP.

Abs. error (m) Compl. Views Time (s)
Experiment 1
KFOVP 0.005 8 3 194
KFOM 0.008 9 2 191
Experiment 2
KFOVP 0.005 10 5 402
KFOM 0.007 7 3 304

Table 2.8: Time (seconds) of the most relevant algorithm phases, averaged for each
experiment.

Phase
Experiment 1 Experiment 2

KFOVP KFOM KFOVP KFOM
Clear S(POI) 0.07 0.07 0.08 0.06
NBV-GPU 10.43 10.91 12.21 12.83
Robot movement 6.86 27.76 7.58 20.71

Table 2.9: Execution times for one phase of NBV-GPU, NBV-CPU and
NBV-CPU-step (times in seconds).

NBV-GPU NBV-CPU NBV-CPU-step
Execution time 10.6 211.5 619.6
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Figure 2.16: The environment 3D representation with user hand trajectory (left),
GMM (center) and generated spherical regions of uncertainty (right) for the first (top
row) and second experiment (bottom row) in black color.

same reconstruction accuracy as shown in Table 2.7. A qualitative score from 1 to
10 was given to evaluate the completeness of the reconstruction of each object. In
the first experiment KFOM is not significantly faster than KFOVP, even if KFOM
requires one less view. This can be explained by the slower robot movement during
acquisition required by KFOM. The difference in total completion time is, however,
higher in the second experiment where KFOVP requires two views more than KFOM.
Table 2.8 shows the execution times of specific phases of the algorithm. As expected,
the robot movement is slower in KFOM. In addition, for both KFOVP and KFOM the
NBV-GPU algorithm is about 20% slower in the second experiment than in the first.
This indicates that the computational time depends on the shape of the environment.
In general, it can be concluded that there are no large differences between KFOM
and KFOVP in terms of reconstruction accuracy and completeness. KFOM is slightly
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Figure 2.17: KFOVP snapshots in experiment 1. From left to right: OpenRAVE plan-
ning, robot NBV configuration, KinFu synthetic depth map and reconstruction in the
ternary representation (unknown voxels are displayed in black), for each view pose
(top to bottom).

Figure 2.18: KFOVP snapshots in experiment 2. Robot NBV configuration (top row),
KinFu synthetic depth map (middle row) and the reconstruction in the ternary rep-
resentation (bottom row, unknown voxels are displayed in black) for each view pose
(left to right).
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Experiment 1, KFOVP Experiment 1, KFOM

Experiment 2, KFOVP Experiment 2, KFOM

Figure 2.19: Final environment representation for KFOM and KFOVP in the two
experiments.

faster than KFOVP when a large number of views is required.

Figure 2.20 shows the number of unknown voxels in the 3D representation, for
each POI. The number of voxels decreases as the robot explores the environment
and it never reaches 0 due to unknown voxels inside objects. In experiment 2, the
number of unknown voxels in the first POI, above the pallet, decreases almost to 0
at the first view. Also, in experiment 2 it can be noticed that when using KFOM the
robot observes voxels in the second and third POI simultaneously as it travels to the
first view pose to observe the first POI, hence the number of unknown voxels of the
second and third POI decreases even before NBV planning starts for these two POIs.
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Figure 2.20: The number of unknown voxels inside each uncertainty region, after
user task (U) and at each robot NBV iteration.

2.4.4 Evaluation of the developed KinFu LS extensions

A test scenario, shown in Figure 2.21, was set up to compare the performance of
NBV-GPU and NBV-CPU. A single POI is detected when a plastic bottle is placed
by the user on top of a box. The NBV-GPU algorithm takes about 10.6 seconds to
compute the next best view, thus confirming the results found in Section 2.4.3. In
contrast, when running the NBV-CPU algorithm at the same resolution the experi-
ment was aborted due to excessive execution time. In Table 2.9 the execution times
for the first NBV phase of the experiment are reported, for each NBV algorithm.
The step used for the NBV-CPU-step algorithm was 0.3 cm, about half a voxel size.
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Figure 2.21: Environment (left), ternary representation (center) and POI (right), for
the experiment described in section 2.4.4.

Table 2.10: Comparison of overhead in standard KinFu LS and NBV-GPU (times in
ms).

Phase Std KinFu LS NBV-GPU
Shifting 830 836
weights download 0 283
read octree (parallel) 0 3396
weights upload 0 45
write octree (parallel) 0 1638
Total time 830 6232

These results confirm the advantage in terms of efficiency of using NBV-GPU, i.e. ex-
ecuting the ray casting phase on the GPU. In Table 2.10 the computational overhead
introduced by NBV-GPU when downloading and uploading weight data between the
BitmaskOctree and the TSDF volume is analyzed. A shifting operation takes about 6
seconds, compared to 800 ms of the standard KinFu LS implementation. However,
thanks to the developed multithreading architecture, read and write operations on the
octree run in parallel. Indeed, the actual overhead with respect to the standard KinFu
LS implementation is only about 283 ms, which is due to the weight download phase,
when KinFu must be locked exclusively. An additional exclusive lock must be ac-
quired when uploading on the GPU the stored weight values from the CPU, however
this phase requires only 45 ms.
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2.5 Discussion

In this chapter, an attention strategy was applied to next-best view, in order to main-
tain an updated representation of a tabletop environment. The system presented here
is user-driven, i.e. it is triggered by the user actions. Saliency is estimated using a
GMM-based algorithm, and approximate locations of the salient user actions are
computed. The next-best view planner focuses on those locations, thus exploiting
the saliency information. The robot moves the range sensor to observe the locations,
in order to update the 3D representation.

By focusing on the salient locations, the robot is able to update the representation
without re-scanning the whole environment. The robot next-best views are focused
on the relevant parts of the environment. Moreover, the tradeoff between two possible
strategies has been evaluated. In the KFOVP strategy, the sensor acquires data only
from the viewpoint estimated by the next-best view algorithm. In the KFOM strategy,
data is acquired also during robot movement. It has been shown that the KFOM
requires less views, but slower robot movement.

The system presents a number of novel research contributions. First of all, the
error of KinFu egomotion tracking has been evaluated. The error has been shown
to be too high for proper operation of the system. Therefore, the KinFu tracking
was replaced with robot forward kinematics. Moreover, a GMM-AS algorithm is
presented, which estimates the location of salient actions using only the user hand
trajectory. The execution of next-best view on GPU, exploiting the very same ray
casting mechanism of KinectFusion, allows for a much faster evaluation than the
common CPU-based approach.

A few possible extensions of the system have not been investigated in this chap-
ter. Human motion analysis may be enhanced by exploiting both skeletal tracking and
3D information from the Kinect sensor itself. Moreover, the difficult task of next-best
trajectory, which plans optimal sensor motion trajectories instead of single poses, has
not been investigated. The 3D representation is initialized by an exploration phase on
a pre-defined trajectory, which is supposed to be collision-free and to produce a rea-
sonably complete 3D reconstruction. Indeed, the proposed attention system cannot
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be used as an exploration system, since it is triggered by the user actions. Instead, the
object-driven attention system proposed in the next Chapter 3 is an exploration sys-
tem, which exploits attention to produce a complete reconstruction of a static scene.





Chapter 3

Object-driven spatial attention

In this chapter, the concept of attention is applied to an exploration system for a static
scene [13]. User activity is not expected in this scenario, but attention is driven by the
objects detected in the scene.

The system is composed of the already mentioned 6-DoF robot manipulator and
a Kinect V2 sensor in eye-in-hand configuration. The robot is tasked with the explo-
ration of a tabletop scenario. The scene is initially unknown, and the robot moves
the sensor along a short pre-defined trajectory on one side, in order to acquire data
and initialize the representation. Then, the goal of the robot is to complete the 3D
reconstruction of the tabletop scene.

The usual active perception behavior drives the robot by iteratively computing
the next-best view and moving the robot to acquire new information. Next-best view
algorithms attempt to maximize the information gain by exploring unknown or in-
complete parts of the scene. They do so by maximizing of the area of unknown space
visible from the next view pose. However, in this case the robot may prioritize large
occluded areas that do not contain any interesting object. In particular, the robot may
aim to explore the large unexplored volume at the edge of the scene, without com-
pleting already discovered objects.

To address this issue, in this chapter a novel approach for next-best view planning
which exploits attention is proposed. A high saliency value is given to the incomplete
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discovered objects in the scene, to prioritize them before looking for more informa-
tion in the unexplored regions of the environment. The saliency is attributed without
any prior knowledge about the object shape and position. Such non-model-based ap-
proach is achieved by applying a point cloud segmentation algorithm and then by
assigning a saliency value to each segment. A heuristic method is developed to iden-
tify meaningful segments that belong to the objects. The point cloud segmentation
method is based on Locally Convex Connected Patches (LCCP) [95], which is avail-
able within the Point Cloud Library. The approach is fully autonomous and it does
not assume the existence of a dominant plane in the scene.

The development of the system presented in this chapter involves some additional
improvements with respect to the state of the art. Firstly, the KinFu- and GPU-based
next-best view system presented in the previous chapter is adapted to an exploration
task. In particular, it is shown how candidate viewpoint directions can be extracted
directly from the KinFu TSDF volume, using a local contour extraction algorithm.
Moreover, version 2 of the Kinect sensor is used. This sensor is based on time-of-
flight technology, unlike version 1 which is based on structured light triangulation
principle. While more accurate, time-of-flight technology produces some undesired
artifacts. In order to remove these artifacts, a novel procedure has been developed for
Kinect V2 depth image pre-processing.

The chapter is organized into three sections. Section 3.1 describes the proposed
active perception system. Section 3.2 illustrates the experiments and the results. Sec-
tion 3.3 discusses the results and provides further insights.

3.1 Proposed method for next-best view planning

In traditional non-model-based approaches next-best view planning (NBV) is per-
formed in two phases. In the first phase, candidate view poses are generated. In the
second phase, all the poses are evaluated according to a score function to find the
next-best view pose. The proposed pipeline to compute the NBV, illustrated in Fig.
3.1, differs from traditional approaches as it introduces an intermediate phase be-
tween viewpoint generation and evaluation. In the intermediate phase the input point
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Figure 3.1: Pipeline of the view planning algorithm. The grey background highlights
the intermediate phase

cloud is segmented into clusters and a saliency value is computed for each point
cloud segment. The aim of the point cloud segmentation phase is to automatically
detect segments that belong to the objects of the scene. In the evaluation phase po-
tential view poses are associated to point cloud segments and the NBV is searched
among view poses in decreasing order of segment saliency.

A more detailed overview of the proposed view planning pipeline is reported in
Algorithm 4. The view generation phase is performed by a contour extraction algo-
rithm (line 1), detailed in Section 3.1.1, which extracts contour points, i.e. points at
the border of incomplete surfaces. Contour extraction also produces a view direction
for each contour point. Then, from each view direction multiple view poses are gen-
erated, as shown in Fig. 3.2, mainly to increase the probability of finding a reachable
pose for the robot manipulator. In particular, for each direction four additional view
directions towards the same contour point are sampled within a small solid angle (15
degrees). To convert each view direction into a pose for the sensor, a distance from
the contour point must be selected, compatible with the sensor minimum and maxi-
mum sensing distance. In theory, view poses may be generated by selecting multiple
distances. However, for the experiments shown in next section 3.2 a fixed distance
of 80 cm was adopted, which was empirically determined by evaluating the aver-
age maximum distance that the robot is able to reach from the objects in the current
experimental setup. In addition, a rotation angle around the view direction must be
chosen. Eight samples for each view direction are generated at 45 degrees intervals,
starting from an arbitrary initial orientation.
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Algorithm 4 View planning
Require: WS: 3D volumetric environment representation
Ensure: Next-best view

1: Contour← ContourExtraction(WS)
2: ∀b∈Contour b.Viewpoints← GetViewpoints(b)
3: PointCloud ← ExtractSurfacePts(WS)
4: Segments← SegmentPointCloud(PointCloud)
5: Saliency← SegmentSaliency(Segments)
6: Segments← OrderBy(Segments,Saliency)
7: for i from 1 to size(Segments) do
8: SContour← FindNear(Contour,Segments[i])
9: SViewpoints←

⋃
b∈SContour b.Viewpoints

10: Scores← EvaluateViewpoints(SViewpoints)
11: SViewpoints← OrderBy(SViewpoints,Scores)
12: for j from 1 to size(SViewpoints) do
13: if Scores[ j] > ScoreT H then
14: return SViewpoints[ j]
15: end if
16: end for
17: end for
18: return {no suitable viewpoint found}

In line 3, a point cloud (PointCloud) is extracted from the TSDF volume using
the marching cubes algorithm, already available in KinFu. Marching cubes generates
a mesh from the isosurface between positive (empty) and negative (occupied) TSDF
voxels. The vertices of the mesh define the point cloud. In the segmentation phase
(line 4) the point cloud is segmented using the LCCP algorithm. Then, a saliency
value is computed for each segment (line 5), as described in Section 3.1.2. Finally,
the segments are ordered by decreasing saliency (line 6).

In the viewpoint evaluation phase (lines 7-17) view poses are associated to seg-
ments and are processed by decreasing segment saliency. In particular, all contour
points close to the current segment are determined (line 8). Given the set PC (≡
PointCloud) of all points in all segments, a contour point p is close to the current
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Figure 3.2: Flowchart of viewpoint generation (line 2 in Algorithm 4). Each candidate
view direction generates 40 view poses for the sensor.

segment S if the nearest point to p in PC belongs to S. All view poses generated by
the contour points of the current segment are then retrieved (line 9). View poses as-
sociated to a segment are evaluated by assigning a score proportional to the expected
information gain, as in traditional NBV approaches. Indeed, the expected information
gain of each view pose is given by the amount of unknown voxels visible from that
pose. The amount of unknown voxel is computed as stated in previous Chapter 2. A
voxel contributes to the score only if it falls inside a sphere with radius 20 cm larger
than the bounding sphere of the segment.

View poses associated to the current point cloud segment are then ranked and
processed in decreasing order of score. If the expected information gain of a view
pose exceeds a threshold value (line 13) that pose is considered the NBV. Otherwise,
if the expected information gains of all the view poses of the current segment are
below the threshold, the algorithm moves to evaluate the view poses of the next most
salient segment. In summary, the proposed procedure is aimed at giving priority to
active exploration of salient segments of unknown objects, not fully reconstructed,
rather than favoring viewpoints that blindly try to minimize the size of the unknown
space.

3.1.1 Contour extraction from TSDF volume

As explained in Chapter 2, the TSDF volume is a volumetric representation of the
environment used by the KinectFusion algorithm. The space is subdivided into a
regular 3D grid of voxels and each voxel holds the sampled value v(x,y,z) of the
Truncated Signed Distance Function R3 → R, which describes the signed distance
from the nearest surface, clamped between a minimum and a maximum value. The
TSDF is positive in empty space and negative in occupied space. Each voxel also
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contains a weight w, initialized to 0, that counts the number of times the voxel has
been observed, up to a maximum amount. The TSDF value v and the weight can
be used to distinguish between empty, occupied and unknown voxels as shown in
Equation 2.11, which is recalled here for convenience:

w = 0 → unknown voxel

w > 0

v≤ 0 → occupied voxel

v > 0 → empty voxel

(3.1)

Rarely observed voxels have a low weight, while completely unknown voxels have
0 weight. In unexplored space, or deep inside the surface of objects, voxels are un-
known.

In NBV planning a frontier is defined as the region between seen-empty voxels
and unknown space. A frontier is a region that can be explored, since the viewing
sensor might be placed in the empty space next to the frontier to observe the unknown
space. Occupied voxels do not belong to the frontier, since the sensor can not see
through them. However, occupied voxels lying next to a frontier have implications
for NBV planning. Indeed, observation of the region of space in close proximity to
occupied voxels next to a frontier can extend the perception of the surface of the
object those occupied voxels belong to.

In this chapter, a contour is defined as the set of empty voxels that are near to
occupied voxels next to a frontier, i.e. a contour consists of empty voxels that are near
to both an occupied voxel and an unknown voxel. To exclude false positive known
voxels from being processed, due to noise, a voxel is considered known if observed
at least 5 times, i.e. w ≥Wth, where Wth = 5 is a lower bound threshold. Given the
6-connected neighborhood N6

e and the 18-connected neighborhood N18
e of a voxel at

position e, the voxel belongs to a contour if the following conditions hold:
w(e)≥Wth ∧ v(e)> 0

∃ u ∈ N6
e | w(u)<Wth

∃ o ∈ N18
e | w(o)≥Wth ∧ v(o)≤ 0

(3.2)
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Figure 3.3: A simplified 2D example of the contour extraction algorithm using Von
Neumann neighborhood (4-connected) and Moore neighborhood (8-connected). In
the previous view the sensor observed the object from the right side. A computed
contour cell is marked with the cross. The thicker square highlights the Moore neigh-
borhood of the contour cell. The green segment represents a frontier. Known and
occupied cells are displayed in red, known and empty cells are in white, unknown
cells are in dark grey.

A simplified 2D example is shown in Fig. 3.3, using the Von Neumann neigh-
borhood (4-connected) and the Moore neighborhood (8-connected) in place of the
6-connected neighborhood N6

e and the 18-connected neighborhood N18
e used in the

3D case. In the previous view the sensor observed the object from the right side, thus
the view was partially obstructed and the cells in the lower left part of the image are
not observed and left unknown. The cross marks a computed contour cell.

Given the previous definitions a method to compute a potential view direction
from each contour voxel is described next. For optimal observation, the sensor should
observe the object perpendicularly to its surface. Thus, if the object were fully known,
the opposite of the surface normal computed on the occupied voxel next to the contour
voxel could be used as potential view direction. The normal to the surface can be
computed from the TSDF volume as the gradient ∇v(x,y,z) of v.

Given a neighborhood Ne of a voxel at position e, the normal may be approxi-
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(a) (b)

Figure 3.4: Generation of the next potential viewpoint for (a) a rounded object (b)
an object with sharp edges. Viewpoints B (computed from the surface normal) and C
(computed from the frontier normal) are very similar in case (a), but not in case (b).
Only in case (b) viewpoint C allows the observation of the unknown volume behind
the sharp edge.

mated as (normalization omitted):

ne = ∑
c∈Ne

v(c) · c− e
‖c− e‖

(3.3)

which, for a 6-connected neighborhood, reduces to

ne =

 v(x+1,y,z)− v(x−1,y,z)
v(x,y+1,z)− v(x,y−1,z)
v(x,y,z+1)− v(x,y,z−1)

 (3.4)

since (c− e)/‖c− e‖ are unary vectors of the coordinate system.
The limitation of this approach is shown in Figures 3.4a and 3.4b. In both exam-

ples the sensor takes a first observation from the bottom, at position A. The observed
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volume is displayed in light grey. An object, marked with a dashed line, is partially
observed in the red region. The volume behind the object remains unknown (black).
The surface normal for the computed contour cell is displayed as a red arrow pointing
outside the object. The generated potential viewing pose (B) from the surface normal
is shown as the red triangle. In Fig. 3.4a for a rounded object the surface normal pro-
vides a good direction for the next view. However, for objects with sharp edges (like
boxes), as illustrated in Fig 3.4b, the normal at the edge does not reflect the trend of
the object in the unknown space behind the edge. Thus, the normal at the contour
cell does not provide a suitable view direction since it does not allow the observation
of the region of the object in the unknown space. Indeed, in this second example at
location B the sensor can not acquire any new information, since the lower plane of
the box has already been observed from the initial view.

To overcome this limitation, in this section a method is proposed, that computes
the potential view directions using the normal to the frontier, i.e. the normal to the
unknown volume. The normal to the frontier is indicated as view C. While in Fig.
3.4a for a rounded object the viewing pose is rather similar to the one computed by
the surface normal, in Fig. 3.4b for a sharp edge view C provides a much better view
direction to observe the object from the side.

The normal of the frontier may be approximated locally using the gradient of the
weight function ∇w(x,y,z) which can be computed as

ne = ∑
c∈N26

e

w′ (c) · c− e
‖c− e‖

(3.5)

where the 26-connected neighborhood of a voxel is used to reduce noise and sampling
effects.

Since w(c) is a positive integer value, equation 3.5 uses a modified weight func-
tion w′ defined as

w′ (c) =

−Wth if c occupied

min (w(c)−Wth,Wth) otherwise
(3.6)

For occupied voxels weight w is set to −Wth, since the normal should point away
from them. Otherwise, w is first centered around 0 and then truncated to Wth.
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In practice, after extraction of all the contour voxels with their view directions
(line 1 in Algorithm 4), similar contour voxels are reduced into a contour point by
a region growing algorithm. Two contour voxels at position e1 and e2, with view
direction n1 and n2 are considered similar if‖e1− e2‖< Dth

‖n1 ·n2‖< Ath

(3.7)

Each group of similar voxels is reduced to a single contour point with an associated
view direction by averaging the positions and the view directions of the voxels.

Figures 3.5 and 3.6 show an example of contour extraction and viewpoint com-
putation. In Fig. 3.5 the sensor observes a jug from the current NBV and a partial
3D representation is produced by KinFu. As shown by the ternary volumetric rep-
resentation, voxels behind the object remain unknown. Contour voxels are extracted
and clustered as illustrated in Fig. 3.6. The normal vectors point outwards towards
the empty space. Thus, from that directions the robot may be able to observe the
unknown space behind the object.

3.1.2 Saliency of point cloud segments

This section illustrates how the segmentation of the point cloud, extracted from the
TSDF volume, is performed and how the saliency value of each segment is computed
(lines 4-5 in Algorithm 4). The procedure is illustrated in Fig. 3.7. The point cloud
is segmented by the LCCP [95] algorithm, available in the PCL library. LCCP parti-
tions the input point cloud into a set of Segments (line 4 in Algorithm 4) by merging
patches, called supervoxels, of an over-segmented point cloud. Supervoxels are gen-
erated by the a Voxel Cloud Connectivity Segmentation algorithm (VCCS) by [73].

VCCS requires knowledge about the normals to the point cloud. Such vertex
normals can computed with minimum overhead by using the gradient of the TSDF
volume, as shown by equation 3.3 in Section 3.1.1, using a 6-connected neighborhood
which is is already available for marching cubes operations.

The saliency function is a heuristic model that should provide an objectness mea-
sure, i.e. it should provide higher values for segments that belong to real objects of the
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Figure 3.5: Left: a jug observed from the current sensor viewpoint. Center: the 3D
mesh reconstructed by KinFu. Right: the volumetric representation (rotated view),
with occupied (white) and unknown (black) voxels.

Figure 3.6: Left: contour voxels (black) and the contour points (red). Right: contour
points with normals. A contour point represent a group of similar contour voxels.

Figure 3.7: Proposed procedure for point cloud segmentation and computation of the
saliency value of each segment.
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scene. Here, the saliency of each segment is computed as a function of two features:
the segment roundness and the degree of isolation.

The roundedness of a segment S is estimated as the ratio of the minimum and
maximum sizes of the Oriented Bounding Box (OBB) of S. The sizes (d1,d2,d3) of
the OBB are defined in a local reference frame TOBB centered at the mean point of
the segment whose axes are given by the eigenvectors of the covariance matrix of the
points (principal axes of inertia). More formally,

d1 = max
c∈S

(c′x)−min
c∈S

(c′x)

d2 = max
c∈S

(
c′y
)
−min

c∈S

(
c′y
)

d3 = max
c∈S

(
c′z
)
−min

c∈S

(
c′z
) (3.8)

where c is a point of S in the world reference frame and c′ is the transformed point in
the local reference frame

c′ = T−1
OBB · c (3.9)

The minimum and maximum sizes of the OBB of S are then

dmax = max
i∈{1,2,3}

(di)

dmin = min
i∈{1,2,3}

(di)
(3.10)

The degree of isolation of a segment is defined as the fraction of points for which
the distance to points belonging to other segments is at least Bth. Given a segment
S ∈ Segments and the set Ŝ of all the points not in S, the degree of isolation of S is
given by

F(S) =

∥∥{c ∈ S | ∀o ∈ Ŝ , |c−o|> Bth
}∥∥

‖S‖
(3.11)

where ‖S‖ is the total number of points in S. Equation 3.11 can be efficiently com-
puted using a KdTree radius search of size Bth. Feature F has three benefits. First, it
is meant to reward isolated segments belonging to partially observed objects, since
a large part of their boundary is not shared with any other segment. Second, this
heuristic is helpful for noise rejection as noisy segments, not well separated from
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Figure 3.8: Example of point cloud segmentation and saliency evaluation. Brighter
segments have higher saliency value. (1): a picture of the scenario, (2): saliency evalu-
ated by segment roundness alone, (3): saliency evaluated by segment isolation alone,
(4): saliency evaluated by both segment roundness and isolation according to equa-
tion 3.12. The segment isolation factor reduces the saliency of the noisy segments
inside the red ellipse.

Figure 3.9: Saliency computed after the initial scan in experiment 2 described in
Section 3.2.2, using Bth ∈ {0.005,0.01,0.02,0.05,0.1(m)} (from left to right).

other segments, often have a large boundary. Third, equation 3.11 penalizes small
segments.

Finally, the saliency value of a segment S is computed as

Saliency(S) = F(S) · dmin

dmax
(3.12)

so that saliency is proportional to the degree of segment isolation and it grows the
more the maximum and the minimum sizes of the OBB are similar. An example of a
segmented point cloud with saliency values is shown in Fig. 3.8. It can be noted that
the segment isolation factor reduces the saliency value of noisy segments (inside the
red ellipse).

Figure 3.9 shows the effect of Bth on the saliency. As Bth increases, the saliency
value of the noisy segments at the front decreases. However, when Bth is too high, all
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the points of the small segments are rejected and, therefore, small objects assume a
zero saliency value (black color). Hence, for the experimental evaluation reported in
Section 3.2, the value Bth = 0.02 m was chosen.

3.1.3 Kinect V2 depth image pre-processing

This section describes a low-level pre-processing filter to improve the quality of
Kinect V2 depth data. The Kinect2 driver (Freenect2) provides two pre-processing
filters: a bilateral filter and an edge-aware filter. The proposed filter is executed at the
end of the standard filtering pipeline in place of the edge-aware filter, which does not
strongly contribute to the removal of invalid points. It is a known issue that Kinect
V2 often produces incorrect measurements near the borders of occluded surfaces,
as shown in Fig. 3.10. In this section, two types of invalid points are detected and
removed from the depth map.

Points visible by the camera but falling in the shadow of an IR emitter have a
low accuracy. In this context, these points are called shadow points. Shadow points
appear in a blind area, created by the displacement between the IR emitter and the
camera (Fig. 3.11), which is approximately ∆ = 8 cm.

The filter presented here is less concerned about depth image restoration of the
regions that are not directly observed by the camera, because a 3D reconstruction
system observes the same region of space from multiple viewpoints and the measured
data are merged by KinFu. Instead, the main goal is the removal of invalid points, so
they do not appear in the 3D reconstruction in the first place.

Shadow points appear in the regions of occlusion where a background object
is observed only by the camera, but it is not illuminated by the IR emitter (yellow
areas). The geometry of the sensor field is illustrated in Fig. 3.12. Let u and v be
the horizontal and vertical image coordinates of the sensor, starting from the upper
left corner. Let also be the intrinsic parameters of the IR camera defined as follows:
[ fu, fv] the focal lengths, [mu,mv] the principal point, [umax,vmax] the depth image size
and [∆,0] the displacement between the IR emitter from the IR camera, which are
aligned horizontally. Given a measured distance zuv along the sensor axis z at image
coordinates [u,v], the coordinates of the measured point referred to the IR camera are
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Figure 3.10: Top left: a scene as seen from the sensor. Top right: the image from
the depth camera. Lower left: the point cloud acquired by the sensor, filtered by the
Freenect2 driver. Lower right: the point cloud filtered by the proposed method: both
shadow points and veil points are correctly removed.

Figure 3.11: The Kinect V2 sensor with IR camera, RGB camera and IR emitters.
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Figure 3.12: The Kinect V2 (on the left) observes a scene composed by an object (in
the center) and a background plane (on the right). The object partially occludes the
background plane. Three kinds of occlusions are possible: camera only (yellow), IR
emitter only (blue), both (red).

given by
xuv =

u−mu
fu
· zuv

yuv =
v−mv

fv
· zuv

(3.13)

while the horizontal angle, shown in Fig. 3.13, referred to the camera is

αuv = atan
(

xuv

zuv

)
+

π

2
= atan

(
u− cu

fu

)
+

π

2
(3.14)

which is monotonically increasing with respect to u. However, when referred to the
leftmost IR emitter, the x coordinate becomes

x′uv =
u−mu

fu
· zuv +∆ (3.15)

and the horizontal angle becomes

βuv = atan
(

x′uv

zuv

)
+

π

2
(3.16)

Unlike αuv, the value of βuv is not monotonically increasing with respect to u. It
can be observed that an increase in u which causes a decrease in βuv means that the
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Figure 3.13: Illustration of the horizontal angles α and β of the camera and IR emitter
with respect to the observed points.

depth measurement zuv suddenly increased, i.e. the sensor is no longer observing an
occluding object but the object behind it.

Let p j be an observed point in the shadow of the IR emitter (yellow area in Fig.
3.13). Let also be α j the angle from the camera origin, computed using Eq. 3.14.
There exists a point pi on the object along the illumination ray O′p j. There also
exists a point pk inside angle ÔO′p j that belongs to the object. At least pk ≡ pi can
be chosen. Since pk belongs to ÔO′p j, then βk ≥ β j. Point pk also belongs to the
interior of angle Ô′Op j as the object does not intersect segment Op j. Then, αk < α j.
Therefore, a necessary condition for a point p j being in shadow is the existence of a
point pk that satisfies both βk ≥ β j and αk < α j.

Thus, the depth measurements are removed if:

β j ≤ max
k |αk<α j

βk (3.17)

i.e., since α is monotonic with respect to u:

atan
(

x′uv

zuv

)
≤ max

k∈{0..(u−1)}
atan

(
x′kv
zkv

)
(3.18)

which can be efficiently computed in parallel for each v ∈ {0..(vmax−1)} as shown
in Algorithm 5.



78 Chapter 3. Object-driven spatial attention

Algorithm 5 Kinect V2 shadow points removal

Require: v: vertical coordinate
Require: zuv: depth image

1: β ′max ←−∞

2: for u from 0 to umax−1 do
3: x′← u−cu

fu
· zuv +∆

4: β ′← x′
zuv

5: if β ′ ≤ β ′max then
6: RemovePoint(u,v)
7: else
8: β ′max ← β ′

9: end if
10: end for

Although it is very likely that a point pk is observed by the sensor, since the
object is near the sensor and the resolution is very high, condition 3.17 is still heuris-
tic. Indeed, in real scenarios an object may be closer to the sensor than the Kinect
V2 minimum range, hence pk may not be really observed. Moreover, only a neces-
sary condition was demonstrated. Indeed, some valid points may be misclassified as
shadow points.

In the pre-processing phase invalid points called veil points are also removed
as shown in Fig. 3.10. Veil points are caused by the lidar technology, which tends to
interpolate points near the object border with the background. Veil points are removed
if an angle higher than Θmax = 10◦ is detected with respect to the observing ray. In
particular, given a point pi on the depth image, the point is removed if there is a point
pk in its Von Neumann (4-connected) neighborhood so that

∣∣∣∣ (pk− pi) · pi

‖pk− pi‖ · ‖pi‖

∣∣∣∣> cos(Θmax) (3.19)



3.2. Experimental evaluation 79

Figure 3.14: The experimental setup (left). Motion planning environment based on
Moveit! (top right). Screenshot of KinFu output during the initial scan phase (bottom
right).

3.2 Experimental evaluation

3.2.1 Robot setup and experimental procedure

The experimental setup (Fig. 3.14) used for the evaluation consists of a robot arm
(Comau SMART SiX) with six degrees of freedom. The robot has a maximum hori-
zontal reach of about 1.4 m. A Kinect V2 sensor is mounted on the end-effector and
it has been calibrated with respect to the robot wrist. The developed software runs
under the ROS framework on an Intel Core i7 4770 at 3.40 GHz, equipped with an
NVidia GeForce GTX 670. Collision free robot movements are planned using the
MoveIt! ROS stack.

Occupied and unknown voxels are considered as obstacles in the motion planning
environment. Experiments have been performed on a workspace of size 2 m×1.32
m. The volumetric representation of the environment within KinFu uses voxels of
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size 5.8 mm. In the motion planning environment voxels are undersampled to 4 cm.
As already shown in the previous Chapter 2, KinFu is fed with the robot forward
kinematics to improve the accuracy of point cloud registration with respect to the
standard sensor ego-motion tracking approach.

The experimental procedure consists of the following steps. At the beginning
of each experiment the environment is completely unknown and the robot, starting
from a collision-free configuration, takes a short initial scan of the scene from one
side, using KinFu. Then, the system iteratively computes the NBV as described in
Algorithm 4. If the motion planner finds a collision-free path the robot is moved to
the NBV. Otherwise, the NBV is skipped. KinFu is turned on when the robot reaches
each planned next-best view configuration, as for the KFOVP (KinFu On ViewPoint)
strategy previously presented in Chapter 2, Section 2.2. The Kinect sensor is slightly
tilted around the NBV by rotating the robot wrist. The volumetric representation of
the environment is updated by KinFu after each observation. For the evaluation of the
proposed approach for active exploration the experiments were concluded after the
fifth NBV.

3.2.2 Experiments

Experiments have been performed in four different scenarios shown in Fig. 3.15.
Each experiment contains multiple objects with complex geometry. In particular, in
experiment 1 the environment comprises two stacks of objects, while experiment 2
has been performed in a cluttered scene with eight objects.

The performance of the proposed method was compared to the standard next-

Figure 3.15: The experimental scenarios used for the evaluation.
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Table 3.1: Average total time (seconds) and standard deviation over the four
experiments for each phase

Method
Phase Proposed Standard

Segm. + saliency 46.1 ±2.5 -
Views generation 2.1 ±0.1 2.1 ±0.1
Views evaluation 26.0 ±4.1 288.5 ±39.0

Subtotal 74.2 ±4.8 290.6 ±39.0

Planner map update 46.0 ±1.6 44.6 ±0.4
Motion planning 88.1 ±17.9 78.3 ±13.8
Robot motion 110.5 ±3.9 108.5 ±7.7

Total 318.7 ±19.1 522.0 ±42.0

best view approach where view pose is chosen at each iteration as the viewpoint that
maximizes the size of the expected unknown volume of the whole environment that
becomes visible. The standard approach has been developed by skipping the point
cloud segmentation phase and by assigning the same saliency value to all points.

Quantitative data about the average computational time for each phase are re-
ported in Table 3.1. The average time for point cloud segmentation and saliency com-
putation is about 23% of the total time. A first advantage of the proposed method is
that it completes the five next-best views faster than the standard approach. The av-
erage times for motion planning and robot movement are rather similar, since these
are fixed costs due to the experimental setup, as well as the running time for updating
the collision map of the motion planning environment (planner map update). Also,
the time required for viewpoint generation is very short (2.1 seconds for five views),
since the computation is performed on the GPU directly on the TSDF volume. The
running time required for the computation of the NBV is reported as a subtotal. It can
be noted that for the NBV computation phase the proposed attention-based approach
is 3.9 times faster than the standard approach, even though the standard approach
does not require point cloud segmentation and saliency evaluation.
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Figure 3.16: Candidate viewpoints (represented by arrows) for the proposed approach
(experiment 1, third NBV). Left: candidate viewpoints of all segments. Right: candi-
date viewpoints for the most salient segment only.

The main difference between the two approaches in the time required to compute
a NBV lies in the viewpoint evaluation phase. The standard approach evaluates all
candidate viewpoints generated in the environment (on the order of thousands), most
of which are located on the edges of the supporting table. On the contrary, being able
to focus only on the most salient segments, the proposed method rarely evaluates
more than two hundreds candidate viewpoints at each iteration. Indeed, the proposed
method is strictly focused on the exploration of the salient segments, whose extension
is smaller than the size of all the unknown regions of the environment.

In Fig. 3.16, an example of the generated viewpoints is shown. The total num-
ber of candidate viewpoints for all segments is 91960. Using the standard approach
all viewpoints would be evaluated to find the optimal NBV. Instead, the proposed
method focuses only on the most salient segment and, therefore, only 960 viewpoints
are evaluated. In this case, a reachable pose for the robot was found among these
viewpoints. If a reachable pose had not been found the system would have evaluated
the second most salient segment, and so on. In Table 3.2 the saliency values of the
point cloud segments are shown as well as the number of associated viewpoints. Had
the algorithm tried other segments after the most salient one, the number of evaluated
viewpoints would have increased up to 10480, which is the total number of candidate
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Table 3.2: Saliency values and number of view poses for the point cloud segments in
Fig. 3.16 (in descending order of saliency) up to the first segment not belonging to
the objects (part of the supporting table)

Saliency No. of poses Description

0.589 960 Cork jug (top part)
0.565 3640 Cork jug (bottom part)
0.510 1680 Plastic jug (top part)
0.459 1560 Box under cork jug
0.424 600 Plastic jug (bottom part)
0.312 1080 Ball
0.300 400 Box under plastic jug
0.212 240 Box under plastic jug
0.177 320 Box under plastic jug
0.172 7720 Part of the table

viewpoints actually pointing towards the objects. The proposed saliency function is
working properly even with some degree of over-segmentation by the LCCP algo-
rithm. Indeed, some of the objects are segmented in multiple parts. For example,
both jugs are split into two segments and one of the boxes is segmented into three
parts. Nonetheless, each of those parts received a high saliency.

In Table 3.3 marks are reported that indicate whether each NBV points towards
the objects or not. In the proposed approach all next-best views pointing towards the
objects always occur before any other view, not focused on the objects. In the stan-
dard approach next-best views pointing towards the objects occur in an unpredictable
order. Therefore, it is possible to conclude that a second and more important advan-
tage of the proposed approach is that it allows a more rapid exploration of the objects
thanks to point cloud segmentation and saliency evaluation at the segment level. This
conclusion is also supported by the graphs in Fig. 3.17, which show the number of
unknown residual voxels near the objects over the first five next-best views.

Images of the planned next-best views for experiment 1 are reported in Figures
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Table 3.3: Marks showing NBVs pointing towards the objects (X) or not (×), for all
the experiments

NBV
Method Exp. 1 2 3 4 5

Proposed

1 X X X X ×
2 X X X × ×
3 X X X × ×
4 X X X X X

Standard

1 × X × X ×
2 X × × × X

3 × × X × X

4 × × X × ×

3.18 and 3.19. Images of the planned next-best views for experiment 3 are reported
in Figures 3.20 and 3.21. In experiment 1 the robot focuses on the objects for the
first four views. Afterwards, as there are no reachable viewing poses to observe the
right side of the objects, due to kinematic constraints, the robot explores a region of
space that does not contain any object. In particular, the robot observes the space on
the supporting table in the front of the objects, which is incomplete due to noise. A
similar behavior is evident, for the proposed approach, in experiment 3. Conversely, it
can be noted that the standard approach prioritizes exploration of the unknown voxels
occluded by the objects as shown, for example, in the first two views of experiment 3.
In the third view of experiment 3 the standard approach takes a frontal observation of
the objects, but in the fourth view the robot observes again a region of the supporting
plane without any object.

In some cases at the beginning of the exploration, after one or two next-best
views, the standard approach achieves a lower number of unknown residual voxels.
An example can be seen in Fig. 3.17 for experiment 1, after the second NBV. This is
due to the fact that in the standard approach when the robot observes the unknown
voxels occluded by the objects it also partially observes the back of the objects, since
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Figure 3.17: The graphs show the number of unknown voxels near the objects in the
scene for the first five next-best views.

the sensor has a large field of view (70×60 degrees).

The final voxel-based reconstruction is shown in Fig. 3.22 for all experiments.
The reconstruction of the objects is always more complete for the proposed method.
Some unknown voxels are still present, mostly due to unreachable poses aimed at
observing the back or below the objects, as stated above. Also, it can be noted that
most of the irrelevant voxels around the back panel of the scene remained unknown
for the proposed method, while these voxels have been observed by the standard NBV
approach.
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Figure 3.18: Images of experiment 1 using the proposed method (left to right). Top:
saliency map of point cloud segments; middle: 3D volumetric representation; bottom:
planned robot next-best views.

Figure 3.19: Images of experiment 1 using the standard NBV approach. Top: 3D
volumetric representation; bottom: planned robot next-best views.
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Figure 3.20: Images of experiment 3 using the proposed method (left to right). Top:
saliency map of point cloud segments; middle: 3D volumetric representation; bottom:
planned robot next-best views.

Figure 3.21: Images of experiment 3 using the standard NBV approach. Top: 3D
volumetric representation; bottom: planned robot next-best views.
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Figure 3.22: 3D volumetric representation of the environment in the four experiments
after five next-best views: proposed method (top), standard approach (bottom).

3.2.3 Evaluation of depth image pre-processing

The proposed Kinect V2 depth image pre-processing filter (Section 3.1.3) has been
evaluated in the scenario shown in Fig. 3.23 (top-left). The environment contains
only planar surfaces to facilitate ground truth annotation. A bounding box was de-
fined around the workspace to remove the background of the room. Thus, any point
that does not belong to a plane can be considered as an outlier. Depth images were
obtained by averaging 30 frames (one second) acquired by the sensor to simulate the
noise-reduction effect of the KinFu algorithm. A maximum distance threshold of 3
cm was defined to consider a point as belonging to a plane.

In Fig. 3.23 it can be noted that the proposed pre-processing method successfully
removes the shadow on the left of the box-shaped object. The total number of false
negatives, i.e. outlier points not belonging to any plane, are reported in Table 3.4 as
well as the number of measurements, i.e. the number of valid points reported by the
algorithms. The proposed algorithm reports a significantly lower number of outliers
compared to the standard filtering algorithms already available in the Freenect2 driver
(a bilateral and an edge-aware filter). Being conservative, however, it also reports a
lower number of valid measurements.

In Section 3.1.3 it was pointed out that the proposed filter for shadow points
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Figure 3.23: From left to right: the scenario used for testing the proposed depth image
pre-processing filter, image preprocessed by the Freenect2 bilateral filter only, image
preprocessed by the Freenect2 bilateral and edge-aware filters, image preprocessed
by the Freenect2 bilateral filter and the proposed filter. The image is displayed in color
although the algorithm operates on the depth map only. Outliers points are displayed
in red.

Table 3.4: Number of measurements and false measurements produced by each
algorithm.

Method Measurements Outliers

Bilateral 83125 1874
Bilateral+Edge-aware 81611 849
Bilateral+Proposed filter 79756 182

removal only provides a necessary condition and that false positives may still be
present. Evaluation of false positives was carried out in a simulated environment
shown in Fig. 3.24, which contains a ground plane, a wall, and an object (long box).
The object is at a distance of 1.5 m from the wall and the Kinect V2 sensor is placed
at 1 m from the object. The sensor view of the wall and ground plane is partially
occluded by the object. The IR emitter and the camera were simulated as separate
entities according to the Kinect V2 technical specifications. The shadow points re-
moval filter was tested by varying the width of the object and the observation angles
of the sensor around the object. Table 3.5 reports the ratio between the incorrectly
removed points and all the removed points (false discovery rate). For normal-sized
object (8− 16 cm width) the false discovery rate is low. However, for thin objects
(4 cm width) as the one displayed in Fig. 3.24 (left) the false discovery rate is over
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Figure 3.24: The simulated environment, with object size 4 cm (left) and 16 cm
(right). White: area illuminated by the emitter only. Grey: area illuminated and prop-
erly acquired by the camera. Red: shadow visible by the camera. The vertical blue
band in the right image is a region of space that is neither illuminated by the emitter
nor observed by the camera.

Table 3.5: False discovery rate of shadow points

Sensor angle (deg.) -60 -30 0 30 60

Object
width (cm)

4 41% 50% 50% 47% 42%
8 0% 1% 4% 5% 7%

16 1% 0% 0% 14% 5%

40%. This is due to the fact that light from the emitter can pass behind a thin object
and illuminate part of the background which could be correctly perceived by the real
sensor, but it is actually removed by the proposed filter. It may be noted, however,
that this negative result is quite rare as it happens only if a thin object is in front of a
far background; moreover, in these cases only the background region is affected.
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3.3 Discussion

In this chapter, an object-driven method for robot exploration based on next-best
view was presented. It was demonstrated that the addition of spatial attention to an
exploration system may improve its performance. As expected for an attention-based
system, the advantage lies mainly in the increased focus of the resources of the system
towards the desired goal.

Two resources are focused. The computation time is reduced as shown in Section
3.2.2, Table 3.3, due to the lower number of viewpoints evaluated by the next-best
view algorithm. Specifically, only the viewpoints oriented towards the most salient
segment are evaluated. Only if all these viewpoints are unreachable, the ones of the
other segments are evaluated in decreasing order of saliency.

Moreover, in the experimental setup the the number of views is a limited resource,
since the experiments have been stopped at the fifth next-best view. If the experi-
ments had continued indefinitely, with an infinite number of views, the robot would
have eventually completed the 3D reconstruction, including the objects. Thanks to
attention, however, the five available views were allocated immediately to observe
the objects. Therefore, the final 3D reconstruction of the objects was more complete,
at the expense of general exploration, as noted in Section 3.2.2 regarding Fig. 3.22.

The last remark shows the attention heuristic tradeoff. The addition of attention to
an exploration system improves its performance as long as the heuristic is compliant
with the goals of the system. In the example shown in this chapter, if the robot sys-
tem had aimed at a rough exploration of the whole enviroment, an opposite heuristic
would have produced better results. The evaluation of alternative heuristics and their
improvement represent a direction for further investigation. Moreover, the proposed
heuristic depends on the LCCP segmentation algorithm, which was chosen mainly
for its standardization within the Point Cloud Library. Segmentation algorithms de-
signed specifically for saliency evaluation may be developed. Following the results
about real-time segmentation by [96, 69, 97], this system may also be extended with
real-time attention computation.





Chapter 4

Extension towards a surfel-based
next-best view planner

The approaches presented in previous Chapters 2 and 3 operate on a volumetric 3D
representation. Specifically, KinectFusion maintains a TSDF volume, which encodes
in every voxel the signed distance to the nearest surface. It has been shown that the
TSDF value may be easily converted into a ternary representation with empty, un-
known and occupied voxels. The volumetric representation of KinectFusion is essen-
tially implemented as a 3-dimensional array. Such implementation has large memory
usage, which requires the use of a “cyclical buffer” data structure as explained in
Section 2.2.2, Chapter 2, in order to download and compress data from GPU memory
periodically. Moreover, GPUs are not optimized to render a volumetric representa-
tion, and the synthetic depth map is produced through ray casting.

For these reasons, in recent years scientific interest has been oriented towards
surfel-based 3D representations. Surfels (Surface Elements) are disks described by
a center, a normal, a radius and possibly a color. Many surfels may be assembled
to describe a 3D surface. In practice, a set of surfel is represented as a point cloud,
where each point has normal, color and radius attributes. The memory usage is pro-
portional to the number of surfels, and large regions between surfaces do not require
any memory. Moreover, surfel rendering is efficient, since the GPU is able to render
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points and the rendering of small disks may be accelerated using shaders.
ElasticFusion [9] is a surfel-based 3D reconstruction algorithm, adopted in this

chapter. It is a state-of-the-art RGB-D reconstruction algorithm, with color support,
sensor egomotion tracking and loop closure. The algorithm has seen widespread use
due to its open-source implementation, written in C++, GLSL (GPU shading lan-
guage) and CUDA.

Surfel-based 3D representation does not allow next-best view operations to be
performed. Surfels only describe a surface and there is no difference between “empty”
and “unknown” space. A preliminary investigation has been performed, aiming to
track the frontier between known and unknown space in surfel-based 3D reconstruc-
tion, using surfel-like elements. Such solution would facilitate integration with Elas-
ticFusion, e.g. with the cloud deformation due to loop closure. Moreover, surfels can
be projected into a simulated viewport by rendering, which may be faster on GPU
than ray casting and provide a speedup for next-best view. Due to the preliminary
nature of this investigation, the analysis was not included in this dissertation.

In Section 4.1, it is observed that the averaging process in ElasticFusion pro-
duces blur around color discontinuities. The blur may hamper segmentation, which
is needed (for example) for the saliency method shown in Chapter 3, which is based
on Supervoxel-LCCP [6]. A mode filter is proposed in order to reduce this negative
effect. In order to evaluate the effect of the segmentation enhancement method, a
ground truth was produced using an annotation tool, which is presented in Section
4.2.
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4.1 Surfel segmentation enhancement

3D reconstruction algorithms like ElasticFusion merge multiple views from a sensor
into a single environment representation. The reconstruction process usually involves
a mean average. As a point in space is observed by multiple viewpoints, the attributes
for that point are obtained by averaging the observations. In the final 3D model, the
position, color and normal of each point are the result of this averaging process.
Indeed, in presence of Gaussian noise, the averaging process is the best choice to
locate the most likely attributes for that point.

However, in presence of sensor pose uncertainty, the correspondence between the
observed points and the points already in the reconstruction may be uncertain as well.
In regions of space close to discontinuities, the sensor may observe from either side of
the discontinuity alternately. In other words, close to discontinuities the noise ceases
to be Gaussian and it becomes multi-modal, each mode corresponding to a side of the
discontinuity. Segmentation algorithms rely on these discontinuities in order to detect
and split segments. As shown in Fig. 4.1, the blur effect may reduce the effectiveness
of segmentation algorithms.

Therefore, in this section a color and position enhancement filter [14] is proposed,
to be run alongside ElasticFusion [9]. The proposed filter keeps track of multiple pos-
sible color and position values for each surfel, thus modeling the multi-modal nature
of the input data. At every new observation, for each surfel, only the hypothesis with
most similar color to observation is updated. Only at the end of the reconstruction,
the choice on one of the modes for each surfel is made through the Winner Takes All
(WTA) policy. The filter thus estimates the mode of all the observed values of the
surfel.

Two segmentation algorithms, a region growing (Flood Fill) algorithm and the
SV-LCCP [6] algorithm, are applied to the final reconstruction, with and without the
proposed enhancement filter. The final segmentation is then compared with a ground
truth and evaluated in each case, using the border precision/recall and Bidirectional
Consistency Error metrics. The ground truth was produced manually in environments
containing small objects, using the annotation tool presented in next Section 4.2.
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Figure 4.1: The reconstruction with mean color (top left) is more blurred than the
output of the proposed filter (top right). As such, segmentation with the proposed
filter (bottom right) is better than without using it (bottom left).

This section is organized into four subsections. In subsection 4.1.1, the mode filter
is presented. The experimental pipeline is detailed in subsection 4.1.2. In subsection
4.1.3, the results are presented and briefly discussed in subsection 4.1.4.

4.1.1 Method

Framework overview

ElasticFusion maintains a surfel cloud. Surfels are points characterized by a 3D po-
sition p(x,y,z), a normal N (nx,ny,nz), a radius r and a color c(R,G,B). Thus, each
surfel represents a small, colored disk in the 3D model. In addition, ElasticFusion
keeps track of an observation counter ws for each surfel. An ID s is associated to each
surfel, which does not change during the execution of ElasticFusion.

ElasticFusion operates in two phases, which are iterated for each new frame f
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acquired by the sensor. In the first phase, i.e. the tracking phase, the algorithm es-
timates the new pose Pf of the sensor, by comparing the new information with the
existing data in the 3D model. In the second phase, i.e. the mapping phase, the new
information is merged with the 3D model.

At the beginning of the mapping phase, ElasticFusion renders the 3D model onto
the (estimated) current sensor viewport. The projection is required to find a corre-
spondence between each pixel, as acquired by the RGB-D sensor, and a surfel in
the surfel cloud. If some pixels of the sensor frame are not covered by any surfel, a
new surfel may be created. The 3D model rendering is also used in the next tracking
phase, to find the sensor movement since the last estimated pose.

Each frame Ff acquired by the sensor is composed by a color image C f and
a depth image D f , with same resolution (umax,vmax). These frames contain color
values c′f ,uv, and depth values d′f ,uv, where (u,v) are the image coordinates. From
depth values d′f ,uv position p′f ,uv can be computed through a standard pinhole model.
ElasticFusion produces an index image S f , composed by the surfel indices s f ,uv. This
image associates each image pixel to the corresponding surfel, if any correspondence
is found.

The update is essentially performed as a weighted average:

ps← (psws + p′wuv)/(ws +wuv)

cs← (csws + c′wuv)/(ws +wuv)

ws← ws +wuv

(4.1)

Weight wuv of pixel (u,v) is computed as a function of the distance from the
image center (uc,vc), as in [98], to model higher sensor noise towards the border of
the image, i.e.:

∆uv =
(u−uc)

2+(v−vc)
2

u2
max+v2

max

wuv = e
− ∆uv

(2·σ2
img)

(4.2)
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Algorithm 6 Enhancement method
Require: Ms: previous set of tuples mi

Require: c′: new color
Require: d′: new depth
Require: Pf : current sensor pose
Ensure: Ms: new set of tuples

1: p′← Pf ·BackProjectuv (d
′)

2: if Ms =∅ then
3: Ms ← Ms∪{〈c′,wuv, p′〉}
4: return
5: end if
6: n← argmini ‖ci− c′‖
7: δn ← ‖cn− c′‖
8: if δn > K ·σc then
9: if ‖Ms‖> (Mmax−1) then

10: ir ← argmini wi

11: Ms ← Ms−{mir}
12: end if
13: Ms ← Ms∪{〈c′,wuv, p′〉}
14: return
15: end if
16: d ← Projectuv

(
P−1

f pn

)
17: γ ← (cn,d)
18: d′e ← GuidedFilter(d′,γ)
19: p′← Pf ·BackProjectuv (d

′
e)

20: mn ←Merge(mn,〈c′,wuv, p′〉)
21: for each mi ∈ (Ms−{mn}) do
22: if pN (ci,cn,σc) ·wn > pN (ci,ci,σc) ·wi then
23: mn ←Merge(mn,mi)

24: Ms ← Ms−{mi}
25: end if
26: end for
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Figure 4.2: Flowchart of the method for surfel segmentation enhancement.

Enhancement Method

For each surfel with ID s, a set of possible tuples Ms is maintained. Each tuple mi,s in
the set is defined as:

mi,s = 〈ci,s,wi,s, pi,s〉 (4.3)

where c is the color vector (r,g,b), p is the 3D position vector (x,y,z) and w is the
weight. The tuple in the set represents possible colors and positions assigned to the
surfel. The surfel normal and radius are not recomputed by the proposed algorithm
and are computed by ElasticFusion.

During reconstruction, ElasticFusion associates to each input pixel (u,v) of frame
f (C f ,D f ) the corresponding surfel s f ,uv, and it also provides the current sensor pose
Pf . Each input pixel provides a new possible tuple 〈c′,wuv, p′〉 with color, weight
(as defined in Eq. 4.2) and position. Alg. 6 is executed for each pixel, in order to
merge the observation into the existing set Ms. The algorithm may be decomposed
into five phases, shown in Fig. 4.2 and explained next. Subscript f ,uv is omitted in
the following, as the algorithm is executed independently for each frame and pixel.

1) Tuple association: In this phase, the tuple in set Ms which corresponds to new
tuple 〈c′,wuv, p′〉 is found. This tuple represents the local mode which is most likely
to have generated the new tuple. If the set Ms is empty, the new tuple is added (lines
2-5 in Alg. 6). Otherwise, the tuple with the most similar color is selected at line 6. If
the most similar color cn is too different from the new color c′ (lines 8-15), then the
new tuple represents a different mode and should not be merged. Then, it is added to
Ms with weight wuv (from Eq. 4.2). To limit memory usage, if Ms exceeds a maximum
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number of tuples Mmax, the tuple with lower wi is removed (lines 9-12).

Algorithm 7 Guided filter
Require: γ: 4-channel guidance image
Require: d′: input depth
Ensure: d′e: enhanced depth

1: avgγ ← Fm (γ)

2: avgd′ ← Fm (d′)
3: corrγ ← Fm

(
γ · γT

)
4: corrγd′ ← Fm (γ ·d′)
5: varγ ← corrγ − avgγ · avgT

γ

6: covγd′ ← corrγd′ − avgγ · avgd′

7: A←
(
varγ +ΣE

)−1 · covγd′

8: B← avgd′ −AT · avgγ

9: avgA ← Fm (A)
10: avgB ← Fm (B)
11: d′e ← avgT

A · c+ avgB

2) Depth enhancement: A new, enhanced depth value d′e for each pixel (u,v) is
estimated as in lines 16-19 in Alg. 6, Synthetic position puv is converted into sensor
coordinates and projected onto the sensor frame, to obtain synthetic depth d. The
values d and the color vectors c for each pixel are combined to form the guidance
image Γ(γuv) = Γ(cuv,duv) (line 17). A guided filter (line 18) is applied with a 4-
channel guidance image. Definition and formal derivation of the guided filter may
be found in [59]. The general procedure is recalled in Alg. 7. Each line in Alg. 7 is
executed for each pixel (u,v). The function Fm is defined as a circular mean in the
pixel neighborhood with Rm pixel radius:

Fm (Φ) = Fm (Φ(u,v)) =
avg
({

Φ(u+δu,v+δv) , ∀ (δu,δv) | δ 2
u +δ 2

v ≤ R2
m
}) (4.4)

where Φ corresponds to various functions of (u,v) as shown in the algorithm. Param-
eter ΣE (line 7, Alg. 7) is a diagonal matrix of order 4. The three top-left elements of
the matrix are equal to color variance σ2

c and the fourth elements is depth variance
σ2

d .
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3) Data integration: In the previous phases, a color and an enhanced position
have been found. In this phase, they are merged with the associated tuple mn (line 20,
Alg. 6) with a weighted average:

cn←
cn ·wn + c′ ·wuv

wn +wuv
wn← wn +wuv (4.5)

pn←
pn ·wn + p′ ·wuv

wn +wuv
(4.6)

4) Compression: During data integration, a mode may have converged to a value
similar to another mode. Thus, a compression test is performed, to find values in the
set M which are redundant with respect to updated tuple n (lines 21-26). A color ci

may be produced by an observation of cn affected by Gaussian noise N (cn,σc), with
mean cn and standard deviation σc. The noise has probability density pN (c,cn,σc).
The probability density that ci is generated by color cn is:

p(ci) = p(ci | n) ·P(n) (4.7)

The a priory probability of tuple n is unknown. It is estimated from the number of
times that the tuple has been observed in the past:

P(n) =
wn

∑ j w j
(4.8)

The probability density of observing ci given color cn is pN (ci,cn,σc). Thus, the
probability density that ci is generated by cn is:

p(ci) = pN (ci,cn,σc) ·
wi

∑ j w j
(4.9)

Colors are merged if the probability density that ci is generated by cn is greater than
the probability density of it being generated by a noisy observation of ci itself.

pN (ci,cn,σc) ·
wn

∑ j w j
> pN (ci,ci,σc) ·

wi

∑ j w j
(4.10)

From Eq. 4.10, the condition at line 22 is obtained.
5) Winner Takes All: At the end of the reconstruction, the tuple with the highest

w (i.e. the mode) for each surfel s is selected by Winner Takes All policy, i.e.:

imax← argmax
i

wi,s cs = cimax,s ps = pimax,s (4.11)
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Figure 4.3: The experimental pipeline.

4.1.2 Data processing pipeline

The processing pipeline for the evaluation of the proposed method is shown in Fig.
4.3. An RGB-D frame sequence is acquired with a range sensor and it is processed by
ElasticFusion [9], to generate a surfel cloud. For its internal processing, ElasticFusion
needs to find a correspondence between each pixel (u,v) in each frame f and a surfel
in the surfel cloud. This correspondence represents the surfel index s( f ,uv), required
as input to the proposed mode filter.

Then, surfel colors and positions are recomputed using the mode filter (“Surfel
C. P. Recomputation” in Fig. 4.3). For comparison, data are also processed by per-
forming a simple weighted average on the colors and position as follows:

cs =
∑ f ,uv c′f ,uv ·w′uv

∑ f ,uv w′uv
( f , (u,v) | s f ,uv = s) (4.12)

This average results in an output similar to ElasticFusion (as shown in equation 4.1,
section 4.1.1) and it is named “Not Enhanced” in this section. By using this recom-
puted value instead of ElasticFusion output, it is guaranteed that the same function
for wuv is used for both algorithms, as defined in equation 4.2.
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In order to evaluate the effects on segmentation, a segmentation algorithm is ap-
plied to the surfel reconstruction. Two algorithms have been tested, as shown in Fig.
4.3: a standard Flood Fill algorithm and the Point Cloud Library implementation of
the Supervoxel-LCCP algorithm [73][6].

The Flood Fill segmentation algorithm operates on the surfel cloud neighborhood
graph. Two surfels are connected if the distance between their centers is lower than
the sum of their respective radii (equation 4.13). Then, a similarity graph is built by
pruning the neighborhood graph. Only edges that satisfy inequality 4.14 are kept, i.e.:

‖ps1− ps2‖< rs1 + rs2 (4.13)

αc‖cs1− cs2‖+αn (1−Ns1 ·Ns2)< Tff (4.14)

where csi are the colors, with range [0,1] and N are the normals of the surfels, as
computed by ElasticFusion. Tff is a threshold, αc and αn are multipliers that represent
the importance of colors and normals, respectively. Connected components in the
similarity graph represent the segments.

The Supervoxel-LCCP algorithm was slightly modified to take advantage of the
color information. While the algorithm can exploit color when generating supervox-
els, LCCP uses only position and normal information to merge supervoxels after-
wards. As such, the supervoxel neighborhood graph is pruned if the color of two
adjacent supervoxels is too different:

‖cs1− cs2‖> Tlccp (4.15)

Finally, the resulting segmentation was compared to a ground truth and evaluated.
A precision/recall method based on boundaries was used, as proposed by [99] and
[100]. The evaluation method is defined for images, and it is extended here to handle
surfel clouds. A neighborhood graph is generated, which connects each surfel with
surfels closer than Teval . On this graph, the set of near-boundary surfels BN is defined
as those surfels having at least one surfel with a different label from their own in their
neighborhood. To find the boundary of a surfel cloud, for every surfel bN ∈ BN , the
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nearest surfel bi with a different label is found. The boundary B is defined as the set
of these nearest surfels bi, i.e.:

B =

{
b

∣∣∣∣∣ ∃bN , b = argmin
bi∈BN

‖bi−bN‖,with lbi 6= lbN

}
(4.16)

where lbi and lbN are the labels of b and bN respectively.
To compare a segmentation with boundary surfel set B and the ground truth with

boundary BGT , an (approximate) minimum distance assignment is performed be-
tween the elements of B and BGT . Assignments with distance longer than Teval are
discarded. Elements without assignment count as false positives, if they belong to the
segmentation being evaluated, or false negatives, if they belong to the ground truth.
Successful assignments count as true positives.

Moreover, the results were also evaluated using the Bidirectional Consistency
Error (BCE), as defined by D. Martin in [100]. The BCE index is an extension of
Martin’s own Local Consistency Error [101], sensitive to over-segmentation. Like
LCE, BCE is constrained between 0 (no error) and 1 (maximum error). Each surfel
can be treated as a pixel for BCE, because neighborhood information is not needed.

4.1.3 Results

The approach was tested in five scenarios, shown in Fig. 4.4. For each scenario, a
manually-annotated ground truth was available. The ground truth was annotated with
attention to the smallest details of the scene, which pose greater challenge to segmen-
tation. Annotation was performed on the point cloud without enhancement. Ground
truth segments which are not connected on the neighborhood graph (as defined in
Eq. 4.13) were automatically split into multiple segments. Neither Flood Fill nor
Supervoxel-LCCP are able to merge spatially unconnected segments.

The first, second and third scenarios were acquired with an ASUS Xtion PRO
LIVE sensor. In the first and second scenarios, vignetting effect was also corrected as
in [102]. The fourth and fifth scenarios were acquired using a Kinect v2 sensor.

Table 4.1 reports the number of frames for each scenario, as well as the number
of ground truth points and ground truth labels. The parameters used for evaluation



4.1. Surfel segmentation enhancement 105

are shown in Table 4.2. The only exception is scenario 3, where a σimg of 0.1 was
used, to compensate for higher vignetting effect.

In Fig. 4.5, 4.6, 4.7 and 4.8, close-ups of the scenarios are provided, with segmen-
tation. The original reconstruction is shown on the left, while the enhanced version
on the right. As already shown in Fig. 4.1, the enhancement reduces blur. After the
enhancement, the segmentation algorithm is able to detect a higher amount of de-
tails. Moreover, a lower number of single-surfel segments are produced along image
borders, since the color gradient is sharper.

In Fig. 4.9, the effect of depth enhancement is shown. The figure shows only posi-
tion difference: surfel color and viewpoint are the same in both images. The thin (∼ 3
cm) wooden panel has been separated from the white wall by the depth enhancement,
and the black background has become visible through the gap between them. Also,
some of the veil points which connect the red handle to the wall have been moved to
the wall or the handle itself.

Results of the Boundary Precision/Recall evaluation for the Flood Fill algorithm
and the Supervoxel-LCCP algorithm are shown in Figs. 4.10 and 4.11 respectively.
The curve is drawn by varying parameters Tff and Tlccp, for Flood Fill and LCCP
respectively. It may be seen that the PR curve is higher for the proposed algorithm,
denoting a better tradeoff between precision and recall. The enhancement is less evi-
dent for the Supervoxel-LCCP algorithm, as it does not depend on sharp edges during
the Supervoxels generation phase.

In the case of Scenarios 4 and 5, it may also be noticed that the enhanced case has

Table 4.1: Dataset statistics

Scenario Frames Points Ground truth labels

1 1737 120K 87
2 1737 114K 196
3 2209 134K 164
4 1831 287K 139
5 1698 100K 97
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Figure 4.4: The five scenarios (left) and their ground truth segmentation (right).
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◆♦t ❊♥❤❛♥❝❡❞ ❊♥❤❛♥❝❡❞

✶Figure 4.5: Close-up of scenario 1, reconstruction and segmentation using Flood Fill.
With the enhanced method, the segmentation of the small tools on the panels is more
complete.

◆♦t ❊♥❤❛♥❝❡❞ ❊♥❤❛♥❝❡❞

✶Figure 4.6: Close-up of scenario 2, reconstruction and segmentation using Flood Fill.
In the enhanced case, a lower number of single-surfel segments are produced along
image borders, since the color gradient is sharper.

◆♦t ❊♥❤❛♥❝❡❞ ❊♥❤❛♥❝❡❞

✶Figure 4.7: Close-up of scenario 4, reconstruction and segmentation using SV-LCCP.
The difference between segmentations is less evident.
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◆♦t ❊♥❤❛♥❝❡❞ ❊♥❤❛♥❝❡❞

✶Figure 4.8: Close-up of scenario 5, reconstruction and segmentation using Flood Fill.
In the enhanced case, the segmentation of the two magazines is complete, and details
(e.g. the heading) have been properly detected.

Figure 4.9: Detail of scenario 1, with position not enhanced (left) and enhanced
(right).

a slightly lower precision for the highest values of recall. This is due to the Kinect
v2 auto-gain feature, which may cause the same point to be acquired with multiple
colors in different frames. If the frequency of the colors is similar, the Winner Takes
All policy may select different modes in nearby points and generates small color dif-
ferences. For low values of the color thresholds Tff and Tlccp, these differences are
detected as segments. An example may be seen in Fig. 4.8. In the enhanced version,
single-surfel segments appear in regions with uniform color. These segments corre-
spond to areas on the table where color randomly switches between two similar grey
tones. This observation may suggest that the mode filter is less robust to some sensor
nonidealities.
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✶Figure 4.10: Precision/Recall curves for Flood Fill, for the five scenarios.
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✶Figure 4.11: Precision/Recall curves for Supervoxel-LCCP, for the five scenarios.
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Table 4.2: Fixed Parameters

Symbol Value Description

σc 0.005 Color std. dev. (in unitary RGB cube)
σd 5 cm Depth std. dev.
K 5 σc multiplier (Alg. 6, line 8)
Rm 3 pixels Circular mean radius (eq. 4.4)

Teval 2 cm Precision/Recall distance threshold
Vlccp 1 cm Voxel size for Supervoxel-LCCP
Slccp 5 cm Supervoxel size for Supervoxel-LCCP
αp 0.1 Supervoxel position importance
αn 0.5 Supervoxel and eq. 4.14 normal importance
αc 1.0 Supervoxel and eq. 4.14 color importance

σimg 0.3 Radial noise model (eq. 4.2)
Mmax 10 Maximum tuples per surfel (Alg. 6, line 9)

For each value of Tff and Tlccp, the Bidirectional Consistency Error was also com-
puted. In Table 4.3, the minimum value (i.e. the best value) reached by BCE is re-
ported for each algorithm, for both the not enhanced (NE) and enhanced (E) cases.
The segmentation on the enhanced cloud provides a lower error by 5% for Flood Fill
and 1% for LCCP.

Runtime is about 100ms per frame, with 8 threads on an Intel Core i7 4770 at
3.40 GHz. Therefore, the algorithm is not real-time for a common 30 fps RGB-D
sensor. Most of the processing time is spent by the guided filter (61 ms per frame).
Instead, runtime for the averaging Not Enhanced method is about 12 ms per frame.

4.1.4 Discussion

In this section, a color and position enhancement algorithm was presented for surfel-
based 3D reconstruction. The algorithm is intended to enhance color and position dis-
continuities and facilitate segmentation. Therefore, it was evaluated by applying two
segmentation algorithms, a region growing algorithm (Flood Fill) and a Supervoxel-
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Table 4.3: Minimum Bidirectional Consistency Error

Scenario
Flood Fill SV-LCCP

NE E NE E

1 0.361 0.259 0.310 0.277
2 0.677 0.578 0.597 0.569
3 0.538 0.486 0.492 0.484
4 0.674 0.604 0.580 0.565
5 0.565 0.518 0.516 0.493

LCCP algorithm. Two metrics were used for evaluation, Boundary Precision/Recall
and Bidirectional Consistency Error.

It has been shown that the segmentation produces better results after the en-
hancement. The result is significant especially for the Flood Fill algorithm. The
Supervoxel-LCCP algorithm is more complex and is likely able to compensate the
blur from ElasticFusion averaging process. In fact, the segment merging procedure
is based on the average properties of surfels in the supervoxel. Such average is not
affected significantly by the color at segment discontinuities.

The computation time of 100ms is not enough to make the algorithm real-time at
30fps. However, a GPU-accelerated implementation which could provide the neces-
sary speedup is likely possible. The effect of ElasticFusion loop closure on the en-
hancement filter has yet to be investigated. The filter was evaluated on pre-computed
poses.

The filter may be applied to real-time incremental segmentation algorithms, as
they have been proposed in recent years [96]. Indeed, real-time segmentation may
then be applied to the attention system described in Chapter 3.
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4.2 Point cloud annotation tool

In previous Section 4.1, a segmentation enhancement algorithm was presented. To
evaluate segmentation algorithms, a ground truth is needed. The ground truth is a
segmentation produced and validated by a user, who guarantees that the segmen-
tation makes sense for a human. Data annotation is notoriously a tedious and time
consuming task for humans. As an example, in the previous section (Table 4.1) the
ground truth consists of about one hundred label for each of the five scenarios, each
of which is composed of hundreds of thousands of points. The manual assignment
of each point to the right label is therefore not attainable, and a faster way has to be
developed.

Annotated 3D datasets are increasingly important in research and engineering,
since they are needed for algorithm evaluation. Moreover, annotated data is needed
by supervised machine learning algorithms (e.g. deep learning), and can support data
association and retrieval in databases.

For these reasons, an annotation tool [15], novel with respect to the state of the
art, has been developed. The multi-label assisted annotation tool which has been de-
veloped has proven to be very efficient, and is a scientific contribution in itself. In-
deed, while many methods have been presented for image or organized point cloud
annotation, 3D unorganized data requires dealing with selection of volumes and with
visualization issues.

In the proposed method, the user selects sparse “control points” on the point
cloud. Multiple control points on the same object may be selected and associated to
the same label. The selected control points are used as input for an automatic point
cloud segmentation algorithm. The segmentation algorithm operates on the point
neighborhood graph, weighted by point dissimilarity. Each non-selected point in the
point cloud is assigned to the nearest control point by applying a shortest-path tree al-
gorithm. Aiming at the annotation of surfel clouds, the tool exploits color and normal
information to compute a more accurate distance function between points. However,
the method may work even in absence of this information.

Fig. 4.12 shows a picture of the graphical user interface. The annotation tool was
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Figure 4.12: The RViz-based interface of the annotation tool.

developed on top of the RViz visualization tool [103] in ROS and has been released
as open-source in [104]. The tool uses a standard mouse-based user interface, which
is simple to learn and use.

A user study has also been carried out in this section, in order to verify the ef-
fectiveness and ease of use of the annotation tool. Results indicate that the proposed
annotation method is simpler and faster than a standard technique, used in many 3D
software tools, where all points of the objects to be segmented need to be iteratively
selected by dragging 2D rectangles on the screen.

The section is subdivided into four subsection. In subsection 4.2.1 the underlying
segmentation method is detailed. Optimizations are described for the common case of
addition and removal of control points one at a time, in order to improve the algorithm
performance. Subsection 4.2.2 describes the user interface. The results of the user
evaluation are shown in Subsection 4.2.3 and discussed in subsection 4.2.4.
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Figure 4.13: Annotation example on the neighborhood graph. The virtual point is
displayed in light gray and it is connected to all the control points (dashed arcs).

4.2.1 Method

The undelying segmentation algorithm operates on the nearest neighbor graph of the
points in the point cloud. Given a set of selected control points, a shortest-path tree is
computed to partition the point cloud into segments. All control points are connected
to a virtual node r, which acts as the root of the shortest-path tree. Each control point
is the root of a subtree of the virtual node. Points in a subtree share the same label,
which is the label of the root control point. Multiple control points may have the same
label. Given enough control points, objects in the scene can be properly segmented.

An annotation example is shown in Fig. 4.13. The control points are displayed by
larger nodes and are connected to the virtual node (displayed in light grey). Each node
acquires the label (color) of the nearest control point reachable in the shortest-path
tree. In the reported example two control points have the same green label, therefore,
all points in both subtrees have the same label.

In detail, given a point cloud C and a set of user-selected control points CP ⊂C,
the goal of the algorithm is to assign a label Li to each point i ∈ C. Each point is
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described by a position vector pi, a RGB color ci and a normal vector ni. While po-
sition pi is mandatory, colors and normal vectors are optional. A label L j is assigned
to each control point j ∈CP. Also, a subtree label li, which contains the index of the
subtree root (i.e. the control point), is assigned to each point of the point cloud. Then,
the global label Li of a point is computed as Lli .

When the point cloud is first loaded, the undirected neighborhood graph is gen-
erated. In particular, each point i is connected with its Knn nearest neighbors, which
define the neighborhood set Ni. By this definition, if point i has neighbor point j ∈Ni,
it can happen that i 6∈ N j. In these cases, graph symmetry is ensured by adding i to
N j.

For each edge, a cost is pre-computed as

hi j = αp‖pi− p j‖+αn (1−ni ·n j)+αc‖ci− c j‖ (4.17)

where (αp,αn,αc) are constant weight parameters of position, normal and color prop-
erties. The higher the weight the more segmentation is affected by the corresponding
property. For example, if a high weight is assigned to color, then segment borders
will follow color discontinuities. While αn and αc are dimensionless, αp should be
set according to the scale of the point cloud. The edge cost is symmetric, i.e hi j=h ji.
Moreover, unless there are duplicate points, the edge cost is always positive.

The shortest-path tree is built from the graph by using Uniform Cost Search (Di-
jkstra’s algorithm variant). A maximum path length Ωmax is imposed, so that further
points are left unlabeled. When a control point a is added or removed, only points j
where

‖pa− p j‖< Ωmax/αp (4.18)

can change label, even assuming uniform color and normal (according to Eq. 4.17).
The maximum path length is added only to guarantee locality of user’s selections and
to prevent label changes at too large distances. In particular, the selection of the first
control point does not label the whole point cloud at once. Therefore, the parameter
Ωmax is set to a value comparable with αc and αn, to prevent effects on the assisted
annotation. To be useful, it should also be lower than αpW , where W is the largest
dimension of the point cloud.
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Figure 4.14: Example of point cloud labeling from control point selection and com-
putation of the shortest-path tree. Colors correspond to global labels Li.

Equation 4.17 depends on the point position, which originates from a sensor af-
fected by noise. Moreover, as stated above, the size of the tree is constrained by the
Ωmax parameter. Hence, in practice, the presence of multiple shortest paths to the
same point is unlikely, i.e. the shortest-path tree is unique, and since the shortest-path
tree is defined by CP and labels by Li, the annotation is not affected by the order in
which control points are processed.

Let ωi be the shortest-path length for each point i. When there are no control
points ωi=∞ and labels are null, i.e. ∀i li= /0. When a control point is added or deleted,
all the values ωi and li are updated to reflect the new shortest-path tree configuration.

An example annotation process is shown in Fig. 4.14 for a simple 2D point cloud.
Initially three green and three blue control points are selected that split the point
cloud into two segments, roughly in the middle (left image). Upon addition of the
red control point (center image) a new subtree is generated in the center, reducing the
size of both the green and blue segments. Upon deletion of the two top-most control
points (right image) the red subtree expands upward.

The procedure described in this section is performed incrementally each time a
new control point is added or deleted, as detailed next.
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Algorithm 8 Uniform Cost Search
Require: Ni: neighborhood set
Require: hi j: edge cost
Require: S: set of starting nodes
InOut: ωi: shortest path length for point i
InOut: li: subtree label for point i

1: Q← S
2: while Q not empty do
3: i← argmin

j∈Q
ω j

4: Q← Q−{i}
5: for each j ∈ Ni do
6: ω ′← hi j +ωi

7: if (ω ′ < ω j) and (ω ′ < Ωmax) then
8: l j ← li
9: ω j ← ω ′

10: Q← Q∪{ j}
11: end if
12: end for
13: end while

Control point addition

When a control point a is added, an edge ear with zero cost is created that connects the
new control point to the virtual node r. This corresponds to setting the shortest-path
length ωa to zero. Since a new subtree has been created the label of the control point
a is set to la ← a. Then a Uniform Cost Search is performed on the neighborhood
graph (as illustrated in Alg. 8), with starting node a stored in set S. The algorithm
propagates the label (line 8) and stops when the cost exceeds Ωmax (line 7).

The algorithm gives label a to all and only the points of the subtree rooted at
control point a, as shown in the following propositions, where apex ′ marks the state
after the current iteration, Pi j is the path from i to j and

∣∣Pi j
∣∣ is the path length.

Proposition 1. If a point i is labeled as a by Alg. 8, then the shortest path Pir from i
to the root r contains a.
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Proof. Alg. 8 updates a point i only if ω ′i < ωi (line 7). If this happens, the new path
P′ir includes the new edge ear. Let us assume, by contradiction, that P′ir would have
existed in the input tree with |P′ir|< |Pir|. Then, the input tree would not have been a
shortest-path tree.

Proposition 2. When control point a is added, if the shortest path P′ri of a point i with
previous label b contains a, then i is labeled as a by Alg. 8.

Proof. By hypothesis, there is a shortest path P′ai with |P′ai|=|P′ri|<|Pri|=|Pbi|. For ev-
ery point j ∈ P′ai, it must be ω ′j =

∣∣∣P′a j

∣∣∣< ∣∣Pb j
∣∣= ω j, otherwise a shorter path may be

found by replacing P′a j with Pb j in P′ri. When Alg. 8 starts from control point a, there
exists at least the path P′ai for point i where ω ′j < ω j for each j ∈ P′ai. Therefore, there
exists at least one path, starting from a, which Alg. 8 can follow to relabel i with label
a.

Control point removal

When a control point a is removed the subtree rooted at a is visited (Algorithm 9).
All labels of the points within the subtree are cleared (line 8) and their cost is set to
infinite (line 9).

The neighboring points j∈Ni with label l j 6=a are not visited, but they are stored
in set S (line 13). These points belong to other subtrees, which may then expand in
the newly unlabeled space. Then, Alg. 8 is executed using the points in S as input.

Proposition 3. Given a point i labeled as a, it is reached and cleared by Alg. 9 when
control point a is removed.

Proof. All points j in the shortest path Pai are labeled as a if i is labeled as a. Other-
wise, if any j was labeled as b, there would exist a path Pbi with |Pbi|< |Pai|, replacing
Pa j with Pb j in Pai. Thus, there exists at least path Pai for Alg. 9 that clears i.

Proposition 4. When control point a is removed, given a point i previously labeled
as a, if the new shortest path P′ir contains control point b, and P′ir is shorter than Ωmax,
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Algorithm 9 Subtree removal
Require: Ni: neighborhood set
Require: d: index of removed control point
Require: hi j: edge cost
InOut: ωi: shortest path length for point i
InOut: li: subtree label for point i
Ensure: S⊂C: set of seeds

1: Q← {d}
2: ld ← /0
3: ωd ← ∞

4: while ∃i ∈ Q do
5: Q← Q−{i}
6: for each j ∈ Ni do
7: if l j = ld then
8: l j ← /0
9: ω j ← ∞

10: Q← Q∪{ j}
11: else
12: if l j 6= /0 then
13: S← S∪{ j}
14: end if
15: end if
16: end for
17: end while

then by executing Alg. 8 i is relabeled as b.

Proof. Point i was labeled as a, so a∈Pir (shortest path) before removal of edge ear.
Cost of |P′ir|=|Pib|, since hbr=0. There cannot be any point j∈Pib for which ω j>Ωmax,
otherwise also ωi>Ωmax (since hi j>0). Moreover, there cannot be a j ∈ Pib labeled
with a different label l j=c. Otherwise, there would exist a sub-path Pjc shorter than
Pjb and P′ir would contain c with i labeled as c. Thus, any point j∈Pib can only have
previous label l j ∈ {a,b}. Then, there is some edge e jk ∈ Pib which connects a point
with label l j=b and a point with label lk=a. By Proposition 3, the edge is reached by
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Figure 4.15: Point cloud viewer (left and middle). Labels only (right image).

Alg. 9. The condition at line 7 is false and j is added to S (line 13). Therefore, there
exists at least path Pji for Alg. 8 to update point i.

4.2.2 User interface

The software tool implementing the annotation method was developed on top of the
RViz visualization program of the ROS framework. The user interface, shown in Fig.
4.12, consists of two main elements: a tool panel and an interactive 3D point cloud
viewer. A ROS node updates in the background the software state and manages all
the events generated by the user interface. In particular, mouse events are handled by
RViz Interactive Markers.

In the 3D point cloud viewer each point i is rendered as a square, with color ci,
that contains a smaller square colored as the point label (Fig. 4.15). This enables
simultaneous visualization of both point colors and their labels. Control points are
rendered as spheres. The user can interact with single points of the point cloud by
clicking on their square or, in case of control points, on the sphere. The point cloud
may be navigated using standard RViz 3D navigation.

The annotation panel (Fig. 4.17) is a RViz Panel plugin. The menu allows to
save and load annotations. The label selection buttons allow selection of the current
label Li. Each button has a different color and the number on it indicates the value
of the associated control point. Label colors are generated by the GlasbeyLUT [105]
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Figure 4.16: Rectangular selection: before selection (left), during selection (center),
after selection (right). During selection, a yellow rectangle is displayed on the area
being selected.

lookup table included in the Point Cloud Library. Subtree labels li are automatically
generated and are not visible to the user. Only a limited number of labels can be
visualized at once in the label selection area. The current label Lcurr and the range of
labels currently visible on the annotation panel are also displayed.

The action selection buttons are used to specify the action to be performed upon
mouse click on a point of the point cloud: None for no action, Set to add control
points, Del to delete control points, Pick to set the current label to the one of the
clicked point. Thus, the current label can be specified either by pressing a label sec-
tion button or by picking a previously labeled point.

The tool selection buttons are used to specify the selection method: Point for the
proposed control point selection, Surface rect and Deep rect for standard rectangular
selection. Rectangular selection is performed by dragging the mouse on the screen
(Fig. 4.16). In particular, Surface rect selects only the visible points in the rectangle,
while Deep rect selects all points whose projection lies within the rectangle. The user
can perform undo/redo operations. The user can also increase and decrease the point
size, which is most useful for Surface rect selection. If the point size is too small,
gaps between points may cause the unwanted selection of background parts.

Using the toggle visualization buttons, point rendering mode can be changed.
For example, by deselecting the Cloud button, each point is rendered with its square
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Figure 4.17: The annotation panel.

Parameter Value Notes

αp 1.0 m−1

αn 0.5
αc 1.0 RGB cube edge is 1

Ωmax 1.0
Knn 10

Table 4.4: Parameters used in the experiments.

filled by the color of its label (Fig. 4.15, right). In this mode, unlabeled points appear
black. The user can use this feature to detect segmentation errors. Finally, the user
can assign a descriptive text to the current label by typing in the label description text
box.

The final segmentation can be exported in the standard PCD format used by the
Point Cloud Library. An external text file is produced for the label descriptions.
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Figure 4.18: Two test scenarios (right and left column) for the user study. Point cloud
(first row), ground truth annotations for Control Points selection (second row) and
Rectangular Selection (third row).

4.2.3 Results

The proposed approach was evaluated in a user study. Ten persons were asked to
annotate the two tabletop scenarios shown in Fig. 4.18. Each user annotated the two
scenarios twice, using the proposed Control Points selection (CP) approach and using
the Rectangular Selection (RS) technique, in random order. In each trial participants
were instructed to annotate the same four objects.

RGB-D data were acquired by using the Asus Xtion Pro Live sensor, while in
the second scenario data was acquired by a Kinect V2 sensor. The ElasticFusion 3D
reconstruction algorithm [9] was used for 3D reconstruction. The full 3D reconstruc-
tions were cropped manually in a box volume, to reduce the size. The resulting point
clouds consist of 150868 and 124966 points respectively. Table 4.4 reports the numer-
ical values of the parameters defined in section 4.2.1 used in the experiments. Users
were recruited among university students. They were not familiar with range sensing
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Figure 4.19: Top row: the user first places green control points on the background
(middle image) and then red points on the object (right image). Bottom row: the user
first places red control points (middle image) on the object and then green control
points on the background (right image). The resulting annotations are equivalent.

and segmentation tasks. Most of the users had previous experience with interfaces for
navigation in 3D spaces.

Each user performed an initial training session of about 30 minutes on a test point
cloud to learn both annotation strategies. During training, participants were given
some hints. In particular, for the RS technique users were shown how to change point
size to close surface gaps. For the CP annotation approach users were instructed to
select a label for the background and to alternate between placing control points on
the objects and on the background, in order to refine the annotation. Users should
not attempt to exploit the maximum path length (Eq. 4.18) to leave the background
unlabeled. In particular, users were suggested to place at least a few control points
on the background before annotating the objects themselves (Fig. 4.19). Indeed, even
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Index CP RS p < 0.05

Time (min.) 6.0±2.2 9.4±1.1 Yes
Undo/min. 0.72±0.5 0.35±0.25 Yes
Errors 1203±687 3551±761 Yes

Table 4.5: Average task completion time, number of Undo operations per minute,
and number of annotation errors for scenario 1.

though placing control points on the object first, and then on the background, leads to
the same result, it may cause confusion due to the label spreading out of the object.

For the RS technique participants were allowed to use both Surface rect selection
as well as Deep rect selection. A time limit of 10 minutes was given to the users to
complete each trial. Users were free to complete a trial before the time limit. Tables
4.5 and 4.6 report average results with standard deviation. Statistical significance has
been assessed by standard correlated t-test and reported in the “p < 0.05” column.
It can be noticed that participants were significantly faster when using the proposed
control point annotation method. Users placed on average 26.5±14.9 control points
in the first scenario and 31.0±11.0 in the second scenario. The difference in the num-
ber of Undo operations was also statistically significant for scenario 1. Indeed, users
performed more Undo operations with the Control Point annotation technique to re-
move wrong control points. Instead, in the case of an incorrect rectangular selection,
users often chose to refine the annotation rather than undoing the whole action.

The error score was computed by comparing the result with two ground truth
segmentation produced using CS and RS, produced by myself without time limit. The
two ground truth annotations differ by 860 (scenario 1) and 674 (scenario 2) point
labels respectively. The error score counts the number of points having a different
label with respect to the ground truth annotation, including points with null label.
The background label was considered equivalent to the null label. Results indicate
that the number of errors is significantly lower for the Control Point method.

Common errors with the RS method arise from stray points and missing points.
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Index CP RS p < 0.05

Time (min.) 6.8±2.1 9.5±1.1 Yes
Undo/min. 0.75±0.76 0.53±0.41 No
Errors 926±346 4349±1744 Yes

Table 4.6: Average task completion time, number of Undo operations per minute,
and number of annotation errors for scenario 2.

Stray points (Fig. 4.20) appear in case of occluding objects whenever the Deep rect
tool was used, or whenever the point size was not properly set to close surface gaps.
Additionally, stray points may be appear when the boundaries of the objects to be
segmented are wrongly estimated due to similarities with the background. In case of
well separated objects, stray points may be easily deleted by changing the current
viewpoint, as some users did. Instead, stray points are barely removable in case of
occlusions.

Missing points may be caused by the Surface rect tool, which does not select
points behind the visible surface. Instead, in CP mode occluded points, being con-
nected by the neighborhood graph, are selected and included in the subtree of a con-
trol point. Fig. 4.21 illustrates this issue where (black) missing points appear inside a
labeled object.

Stray points may also affect the CP method, when control points are accidentally
selected through the gaps of the visible surface. In this case, however, the effect on the
overall segmentation is clearly visible, and users corrected them immediately. Diffi-
culties to find the control point have been reported. Some users also asked the feature
of deleting a control point by just clicking on any point belonging to its subtree.

Users were also asked to answer a questionnaire at the end of their session to pro-
vide a qualitative evaluation of the annotation methods. Participants rated questions
from 0 to 10 on a Likert scale (with 0 as the lowest and 10 as the highest) regard-
ing learnability, ease of use, (perceived) efficiency, (perceived) effectiveness, and a
global rating. Results of the questionnaire are summarized in Table 4.7. Most indices
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Figure 4.20: Stray points (highlighted by circles) behind the small horse object (top
right image) and on the white box (bottom right image).

are statistically significant in favor of the proposed CP method. No significant dif-
ference was found in learnability, which is remarkable since Rectangular Selection
is a standard selection approach for many software applications. Hence, it may be
concluded that the method is intuitive and that the developed user interface is easy
to use. Some participants suggested changes in the Rectangular Selection, such as
the ability of using a polyline instead of a rectangular shape. Moreover, a “smarter”
RS solution was requested, capable of selecting the points slightly below the surface
automatically using some heuristics.

Table 4.8 shows average execution times of the underlying algorithms, for sce-
nario 1 (150868 points). Experiments were performed on an Intel Core i7 4770 at 3.40
GHz. The neighborhood graph construction is the most expensive operation, how-
ever, it is only executed once. Memory usage is about 150 MB for the point clouds
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Figure 4.21: A cork jug seen from the inside (left). RS annotation (middle) and CP
annotation (right). Missing (black) points appear in the RS case.

used in the tests. Computing annotation from the control points using Uniform Cost
Search takes 41 ms for 90 control points. As the number of control points increases,
the delay may become noticeable by the user. Incremental addition and removal of
single control points is more efficient, and is the operation that users perform most
frequently.

Index CP RS p < 0.05

Learnability 8.9±0.8 8.6±0.9 No
Ease of use 8.3±1.1 7.1±1.0 Yes
Efficiency 7.4±2.1 5.8±1.9 Yes
Effectiveness 8.2±0.8 7.3±1.3 Yes
Global eval. 8.9±0.9 7.8±1.1 Yes

Table 4.7: Questionnaire results, showing subjective evaluation by the users.
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Operation Time (ms)

Neighborhood graph 520
Computing annotation 41
Addition 10
Deletion 11

Table 4.8: Execution times.

4.2.4 Discussion

In this section, an annotation tool for unorganized point clouds was presented. The
approach was compared to a standard rectangular selection technique by using an
annotated ground truth dataset. Users provided a more positive feedback about their
experience when using the developed annotation tool. Moreover, when compared
with the ground truth, the resulting annotation contained less errors on average.

The proposed method may also be suitable for collaborative annotation. The use
of control points may reduce accidental interference between users working on differ-
ent parts of the scene. The distributed architecture of the underlying ROS framework
may be exploited in order to connect the interface on multiple machines.

A limit of the proposed approach involves the parameters of the segmentation al-
gorithm which, in the reported experiments, were fixed to constant values (Table 4.4).
Indeed, active control for these parameters may be required by the user, in relation to
the local characteristics and information density of the point cloud.

The current implementation requires both the point cloud and the neighborhood
graph to fit in memory at once. For larger datasets, this may not be feasible. However,
the updating procedure is spatially local, as defined in Subsection 4.2.1. Therefore,
the algorithm could be extended in order to operate with only a part of the graph in
memory at once.





Chapter 5

Conclusions

In this dissertation, novel attention-based approaches for next-best view planning
have been presented, using a robot manipulator equipped with a range sensor (Kinect)
in eye-in-hand configuration. The robot creates the 3D representation of a tabletop
scenario using state-of-the-art reconstruction algorithms. The next-best view algo-
rithm computes the optimal sensor placement in order to maximize information gain.
Attention was used to optimize next-best view and to focus the views towards the
goal of the robot.

In the first proposed approach, the goal of the robot was to update the 3D rep-
resentation of the environment after a user performed object manipulation actions.
Relevant manipulation actions are detected by tracking the motion of the human hand
and by applying a GMM-based algorithm for saliency estimation. The approximate
locations of the user actions are used to orient the sensor towards the regions where
the changes are likely to have happened. It was shown that, by focusing on the salient
locations, the robot is able to update the representation without re-scanning the whole
environment.

Moreover, the KinFu implementation of the KinectFusion algorithm was modi-
fied to perform next-best view planning in the TSDF volume on GPU. A data struc-
ture was added to store the difference between unknown and empty space, which
would have been lost during shifting operations. A high performance improvement
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was demonstrated due to that modification, since next-best view could exploit the
KinFu internal ray-casting algorithm.

The second approach proposed in this thesis is a non-model-based next-best view
method for an exploration system. The tabletop scenario is initially unknown and
the goal of the robot is to explore objects as they were discovered. A segmentation
algorithm is used to split the 3D representation. A heuristic was developed to assign a
high saliency value to segments which represent objects. Segments with high saliency
are prioritized during exploration. Moreover, the candidate view generation for next-
best view is performed using the frontiers in the KinectFusion TSDF volume.

It was shown that the robot prioritizes the completion of already discovered ob-
jects before exploring the other parts of the scene. The prioritization of some views
determines a reduction of the computation time, since less views are evaluated at each
next-best view iteration.

In this second application, the Kinect V2 sensor was used, in place of the Kinect
V1. A novel depth enhancement filter was developed, in order to remove some arti-
facts produced by the sensor.

In addition to the two attention-based approaches outlined above, an initial inves-
tigation has been performed towards the implementation of next-best view in surfel-
based 3D reconstruction. Surfel-based 3D reconstruction exploits the GPU rendering
pipeline and promises better performance than volumetric reconstruction. However,
unlike KinectFusion, surfel-based 3D representation does not track empty space.

A mode filter has been developed in order to reduce blur due to the averaging pro-
cess in the surfel-based 3D reconstruction. It was demonstrated that the filter enables
better segmentation to be produced from surfel clouds. To evaluate the segmentation,
a user-friendly assisted annotation tool was also developed, which has been shown to
outperform standard rectangle-based annotation.

Several directions for further research have been left open by this thesis. The
algorithm used for next-best view finds the optimal sensor placement and disregards
its trajectory to reach the desired configuration. Information acquisition during sensor
movement was evaluated in Section 2.4.3, but the improvement was shown to be
limited. A next-best trajectory algorithm, which finds the optimal sensor trajectory for
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data acquisition, may be investigated. Moreover, real-time segmentation algorithms
have been recently developed and may be integrated with the KinectFusion TSDF
volume. Hence, a way to produce saliency in real-time may be investigated.

The surfel-based next-best view approach suggested in Chapter 4 will also be
developed in future research.
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