
Dottorato di Ricerca in Tecnologie dell’Informazione

XXX Ciclo

AUTONOMOUS NAVIGATION,

FROM SENSING TO PLANNING

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutor:

Chiar.mo Prof. Pietro Cerri

Dottorando: Daniele Molinari

Anni 2014/2017





A tutti coloro che trovano quiete solo nel miglioramento,
gli eterni insoddisfatti,

gli instancabili camminatori.





List of Contents

Introduction 1
0.1 Why autonomous driving . . . . . . . . . . . . . . . . . . . . . 1
0.2 Brief history of autonomous driving . . . . . . . . . . . . . . . 3

1 Autonomous Driving: Problem Statement 13
1.1 The different levels of autonomy . . . . . . . . . . . . . . . . . 13
1.2 Introduction to autonomous vehicles . . . . . . . . . . . . . . . 15

1.2.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Data fusion . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Autonomous vehicle hardware . . . . . . . . . . . . . . . . . . . 19
1.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Computing hardware . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Drive-by-wire . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.4 Communication hardware . . . . . . . . . . . . . . . . . 21

1.4 Ways to autonomous driving . . . . . . . . . . . . . . . . . . . 22
1.4.1 Startup’s way . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.2 Carmaker & OEM’s way . . . . . . . . . . . . . . . . . . 24
1.4.3 VisLab’s way . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Test vehicle setup: DEEVA . . . . . . . . . . . . . . . . . . . . 27
1.5.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2 Computing hardware . . . . . . . . . . . . . . . . . . . . 28



ii List of Contents

1.5.3 Drive by wire . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Perception: Ego-Lane Detection 39
2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Limitations of classic lane detection . . . . . . . . . . . . . . . 42
2.3 CenterNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.5 Conclusions and future development . . . . . . . . . . . 72

3 Data Fusion: Road Path Estimation 75
3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Update model . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.3 Association and refinement . . . . . . . . . . . . . . . . 86
3.3.4 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.5 New model creation . . . . . . . . . . . . . . . . . . . . 91
3.3.6 Output computation . . . . . . . . . . . . . . . . . . . . 93

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.1 Scenario-I . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.2 Scenario-II . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Conclusions and future development . . . . . . . . . . . . . . . 106

4 Planning: Local Trajectory Computation 107
4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3 Path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Contents iii

4.3.1 Curvature parametrization and path computation . . . 117
4.3.2 Cost function and optimization . . . . . . . . . . . . . . 121
4.3.3 Improving stability and planning horizon: path chunks . 140
4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.4 Speed planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.4.1 Speed limits . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.4.2 Speed policies . . . . . . . . . . . . . . . . . . . . . . . . 156
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.5 Trajectory planning results . . . . . . . . . . . . . . . . . . . . 166
4.5.1 Conclusion and future development . . . . . . . . . . . . 169

5 Conclusions And Future Development 171
5.1 Demo: setup and execution . . . . . . . . . . . . . . . . . . . . 172

5.1.1 DEEVA setup . . . . . . . . . . . . . . . . . . . . . . . . 172
5.1.2 Demo structure . . . . . . . . . . . . . . . . . . . . . . . 174

5.2 Future development . . . . . . . . . . . . . . . . . . . . . . . . 178

Bibliography 181

Acknowledgments 195





List of Figures

1 American Wonder car. . . . . . . . . . . . . . . . . . . . . . . . 3
2 Autonomous vehicles advertisement . . . . . . . . . . . . . . . . 4
3 VaMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 ALVINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 ARGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 DARPA Grand Challenge . . . . . . . . . . . . . . . . . . . . . 8
7 DARPA Urban Challenge . . . . . . . . . . . . . . . . . . . . . 9
8 Porter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9 The BRAiVE car . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10 Google’s self driving car. . . . . . . . . . . . . . . . . . . . . . . 11

1.1 AV main functions . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Analysis of AD applications. . . . . . . . . . . . . . . . . . . . . 22
1.3 Startup way to AD . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 OEM and carmakers way to AD . . . . . . . . . . . . . . . . . 24
1.5 VisLab’s path to AD . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 DEEVA autonomous vehicle . . . . . . . . . . . . . . . . . . . . 27
1.7 Sensors position on DEEVA . . . . . . . . . . . . . . . . . . . . 29
1.8 DEEVA’s cameras FOV . . . . . . . . . . . . . . . . . . . . . . 30
1.9 Cameras and LIDARs on DEEVA . . . . . . . . . . . . . . . . 31
1.10 DEEVA’s front camera rack . . . . . . . . . . . . . . . . . . . . 32
1.11 DEEVA’s mirror . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.12 DEEVA’s computing hardware . . . . . . . . . . . . . . . . . . 34



vi List of Figures

1.13 Steering wheel actuator . . . . . . . . . . . . . . . . . . . . . . 35
1.14 Gas/brake pedals actuator . . . . . . . . . . . . . . . . . . . . . 36
1.15 AEVIT control panel . . . . . . . . . . . . . . . . . . . . . . . . 37
1.16 Components derived from this work . . . . . . . . . . . . . . . 38

2.1 Lane marking detection results . . . . . . . . . . . . . . . . . . 40
2.2 Final results for the collision warning system. . . . . . . . . . . 41
2.3 Missing lane markings on a old road. . . . . . . . . . . . . . . . 42
2.4 Left marking blacked by the guardrail shadow. . . . . . . . . . 43
2.5 Sun reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Lane marking mis-detection . . . . . . . . . . . . . . . . . . . . 44
2.7 Right camera of the FFN stereo couple . . . . . . . . . . . . . . 46
2.8 Example image . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9 Transformation process of the original image . . . . . . . . . . 49
2.10 Final CenterNET sample with overlaid annotation. . . . . . . . 50
2.11 Localization of the image with respect to the recorded centerline 52
2.12 Summary of the projection process. . . . . . . . . . . . . . . . . 53
2.13 Pitch compensation . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.14 Input distribution . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.15 Augmentation techniques . . . . . . . . . . . . . . . . . . . . . 59
2.16 Dataset scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.17 Schematic CenterNET architecture. . . . . . . . . . . . . . . . . 62
2.18 Different centerline length . . . . . . . . . . . . . . . . . . . . . 65
2.19 Cartesian error weights . . . . . . . . . . . . . . . . . . . . . . . 67
2.20 CenterNET good predictions . . . . . . . . . . . . . . . . . . . 70
2.21 CenterNET prediction failures . . . . . . . . . . . . . . . . . . . 70
2.22 CenterNET acceptable predictions (red) with ground truth (green). 70
2.23 CenterNET predictions in adverse lighting . . . . . . . . . . . . 71
2.24 CenterNET predictions in nighttime environment . . . . . . . . 71
2.25 No road in the image . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1 Lane markings detection output. . . . . . . . . . . . . . . . . . 77



List of Figures vii

3.2 Barriers and curbs. . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3 Image and corresponding radar echoes. . . . . . . . . . . . . . . 79
3.4 Navigation and body reference systems. . . . . . . . . . . . . . 80
3.5 Parma fairs, with track highlighted in red. . . . . . . . . . . . . 96
3.6 Test scenario-I . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.7 Scenario-I track. . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.8 Error on the track. . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.9 Raw measures in scenario-I. . . . . . . . . . . . . . . . . . . . . 99
3.10 Test scenario-II: Parmamia. . . . . . . . . . . . . . . . . . . . . 100
3.11 Satellite view of test scenario-II. . . . . . . . . . . . . . . . . . 101
3.12 Track of test scenario-II. . . . . . . . . . . . . . . . . . . . . . . 102
3.13 Distribution of scenario-II errors on the map. . . . . . . . . . . 103
3.14 Scenario-I raw measures. . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Equivalent bicycle model for car-like kinematics. . . . . . . . . 109
4.2 Comparison of lattice and non-lattice . . . . . . . . . . . . . . . 111
4.3 Example of curvature profile. . . . . . . . . . . . . . . . . . . . 118
4.4 Curvature profile and relative path. . . . . . . . . . . . . . . . . 120
4.5 Another example of curvature and resulting path. . . . . . . . . 121
4.6 Cartesian and road coordinates for the same point. . . . . . . . 123
4.7 Ambiguous projections, wrongs marked with ‘X’. . . . . . . . . 124
4.8 Projection process . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.9 Evaluation points. . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.10 Border painting . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.11 Road aligned bounding box. . . . . . . . . . . . . . . . . . . . . 128
4.12 Obstacles painting . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.13 Effect of car’s speed on obstacle painting. . . . . . . . . . . . . 130
4.14 Jump example . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.15 Test scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.16 Test scenarios results . . . . . . . . . . . . . . . . . . . . . . . . 144
4.17 Effect of the orientation error . . . . . . . . . . . . . . . . . . . 145



viii List of Figures

4.18 Obstacle avoidance in a wide track . . . . . . . . . . . . . . . . 146
4.19 Narrow track . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.20 Smoothing effect on a noisy reference. . . . . . . . . . . . . . . 147
4.21 Lane change maneuvers. . . . . . . . . . . . . . . . . . . . . . . 148
4.22 Potential map used to perform lane change maneuvers. . . . . . 149
4.23 Reference track with speed limit . . . . . . . . . . . . . . . . . 154
4.24 Speed limit with backward smoothing. . . . . . . . . . . . . . . 155
4.26 ACC test case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.27 ACC test case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.28 Complete stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.29 Emergency avoidance . . . . . . . . . . . . . . . . . . . . . . . . 168

5.1 Demo course . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2 DEEVA view during the demo. . . . . . . . . . . . . . . . . . . 176
5.3 Driver and front passenger monitoring the demo safe execution. 176
5.4 Captures of the demo execution from inside the car . . . . . . . 177



List of Tables

1.1 Summary of the SAE automation levels. . . . . . . . . . . . . . 15

2.1 Network architecture for type-I feature extraction. . . . . . . . 64
2.2 Network architecture for type-II feature extraction. . . . . . . . 64
2.3 Inference architecture. . . . . . . . . . . . . . . . . . . . . . . . 66
2.4 Training results. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Scenario-I optimization results. . . . . . . . . . . . . . . . . . . 136
4.2 Scenario-II optimization results. . . . . . . . . . . . . . . . . . . 136
4.3 Scenario-III optimization results. . . . . . . . . . . . . . . . . . 137





Introduction

This thesis presents the research path I followed during my three years of
PhD at the Università degli Studi di Parma, working in the VisLab research
laboratory.

During these years I worked on different technologies that enable the pos-
sibility of autonomous driving. I contributed to the development of different
levels of autonomy on three robotic car platforms, facing both the theoretical
and practical development challenges of this research.

The focus of my work is autonomous navigation and covers the problem of
detecting the navigation reference from sensors and actually driving the car
on that reference in compliance with the road rules. The results of this work
have been validated on VisLab’s latest autonomous vehicle.

The following introduction frames the problem of autonomous driving into
a context that sustain the decisions made about the many-choices faced when
approaching the problem of autonomous driving; these choices had a profound
impact and delineated the development of my research.

0.1 Why autonomous driving

Autonomous driving, AD for short, refers to the ability of a particular vehi-
cle, usually called autonomous vehicle (AV), to carry out driving tasks with
potentially limited human supervision.

This maturing technology applied to personal mobility has the potential to

http://www.unipr.it/
http://vislab.it/
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reshape the way society approaches the transportation problem. Motivated by
the opportunities conveyed by AD, the last decade has seen a quickly increasing
research efforts, in both the academia and industry, toward reaching a reliable
level of automation. The potential benefits of AD impact multiple aspects:
safety, financial, health and quality of living.

Maybe the most obvious motivation for AD is the goal of reducing road
fatalities. As reported by CARE1 statistics, in the year 2015 the total num-
ber of road fatalities was 26100 in the EU [1]. In a similar fashion, the latest
NHTSA2 report indicates a total of 35092 fatalities in the US [2]. Of these
casualties, about 94% are attributed to human errors with 31% involving in-
toxicated drivers and 10% due to driver’s distraction [3]. AV would certainly
be able to eliminate the risk factor associated with an altered state of the
driver (distracted, sleeping, intoxicated, etc. . . ) or with deliberate violation
of the road rules. This potential safety gain is confirmed also by the latest
NHTSA strategic plan that included deployment of automated vehicle as a
strategic goal [4]. The potential reduction of accidents related to the driver’s
performances is still unclear, as some study suggests [5].

Another potential benefit of AV is the ability to reduce traffic congestion,
[6] shows that even a single AV can dump the effect of the so-called phantom
jams. This would impact fuel consumption, environmental pollution and would
help reduce the harming effect of driving stress in traffic jams [7].

A further major impact of AV would be the recover of the actual driving
time. Estimates suggest that, in US, the average citizen spend 17600 minutes
driving every year [8, 9]. The redeem of this time, converted to productivity
or leisure, would have an estimated financial impact of around $1.2T a year,
bigger than all the previous factors considered together [10].

Finally, it is well known that car are used less than 10% of their life time
[11]. Based on this consideration, a new paradigm of personal mobility is pos-

1The European Union’s road accidents database https://ec.europa.eu/transport/
road_safety/specialist/statistics_en

2National Highway Traffic Safety Administration https://www.nhtsa.gov/

https://ec.europa.eu/transport/road_safety/specialist/statistics_en
https://ec.europa.eu/transport/road_safety/specialist/statistics_en
https://www.nhtsa.gov/
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sible: combining car sharing with AD to provide transportation on demand. A
case study in Singapore suggests that this paradigm is a financially convenient
alternative to the classic transportation model reducing the number of vehicle
up to 1/3 [12].

0.2 Brief history of autonomous driving

The idea of a “driverless” car dates back to the 20’s. It was 1925 when Houd-
ina Radio Control Co. equipped a car with radio communication and publicly
demonstrated a drive in New York’s street with no one on board [13]. Named
American Wonder (figure 1), the car had motors to control the movement and
was teleoperated by a following car. The car was demonstrated again in 1932

Figure 1: American Wonder car.

in Fredericksburg with the name of Phantom Auto, the local paper “The Free
Lance-Star" was writing:

[. . . ] “Phantom Auto” will be piloted through the streets of the city
without a driver or occupant, with no wires or strings attached to
it.

It sounds unbelievable but it is true [. . . ] [14]

While not being properly autonomous, since full human supervision was re-
quired, this was probably the first step toward AV.
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In 1939, at the New York World’s Fair, Norman Bel Geddes demonstrated
the first car with automated driving. The car was driving thanks to electronic
circuits embedded in the pavement. In his book Magic Motorways, Geddes
also advocated the removal of humans from the task of driving [15].

While in 1956 America’s Power Companies’ were advertising a future with
autonomous vehicles, as shown in figure 2, the research continued in the di-
rection of vehicle driven by a road infrastructure equipped with proper circuit
in the pavement. While these products were expected to become a reality by

Figure 2: America’s Power Companies’ advertisement showing a future with
autonomous vehicles driven by a smart road infrastructure.

the mid 70’s, the funding of this research was later dismissed.
Later in ’80s the pioneering work led by Ernst Dickmanns made AV a real

possibility. With his team at the Bundeswehr University of Munich they drove
a Mercedes-Benz van up to a speed of 63km/h on streets without traffic [16].

In the same years the massive research project PROMETHEUS (e749M)
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was funded to develop autonomous vehicles. The culminating demonstration
was in 1994, when the VaMP AV drove over 1000Km with top speed of
130Km/h in a multi-lane highway in Paris [17], figure 3.

Figure 3: The vehicle VaMP autonomously driving in a multi-lane highway.

In 1989 the Carnegie Mellon University pioneered the use of neural network
to drive the car directly from camera images [18], figure 4.

In 1995, the CMU Navlab demonstrated further progress with 2849 miles
driven with automated steering across America [19].

1996 was the year professor Alberto Broggi, from the Università degli Studi
di Parma, with the project ARGO lunched the “Mille Miglia in Automatico”
(one thousand automatic miles) traveling 1900Km over six days in the high-
ways of north Italy. The modified Lancia Thema (figure 5) was using the lane
marks to drive in the unmodified highway environment, detecting obstacles
and other vehicles. About 94% of the journey was in automatic mode with the
longest stretch being 55Km [20].

The years 2004-2007 witnessed a big leap forward thanks to the DARPA
funded Grand Challenge competitions. The first challenge was in 2004 and re-
quired the participant to finish a 150 miles drive in the Mojave desert without
any human intervention [21]. The $1M prize remained unclaimed as no team
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Figure 4: ALVINN autonomous vehicle, driven by a neural network.

were able to complete the course. Figure 6 shows example of failures experi-
enced by the teams. In 2005 the challenge was repeated and 5 teams were able
to complete the race [22]. DARPA later founded the Urban Challenge in 2007,
vehicles were required to cooperate in a fully simulated urban environment
with traffic, pedestrian and GPS denial [23], figure 7.

In 2010 the VisLab team, led by professor Alberto Broggi, ran the Vis-
Lab Intercontinental Autonomous Challenge (VIAC): a 15900Km drive from
Rome to Shanghai. This marked the first intercontinental land journey com-
pleted by autonomous vehicles [24] (figure 8). Again in 2013, VisLab completed
the PROUD (Public ROad Urban Driverless) test: the vehicle BRAiVE suc-
cessfully drove from the university campus to the downtown of Parma without
human intervention. The 13Km drive comprised different road types (rural,
urban and highway) and the car had to negotiate junctions, roundabout and
traffic lights [25, 26]. Picture 9 shows the arrival in the downtown.

Later the same year, Daimler R&D made a Mercedes-Benz S-class drive
autonomously the historic Bertha Benz Memorial Route, about 100Km from
Mannheim to Pforzheim, Germany [27].

In the following years the number of research projects and demonstrations
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Figure 5: The ARGO car driven about 1900Km of highway with automated
steering.

grew exponentially. Notably in 2014 Google unveils some prototypes of AV and
the research project, secretly started in 2009, continues as Waymo in 2016 [28],
figure 10. In 2015 Tesla Motors introduces the Autopilot capability, enabling
automation of steering and gas/brake in favorable conditions [29]. 2016 sees
the introduction of AV fleets in Pittsburgh by UBER and in Singapore by
nuTonomy, two new startups born out of this increasing interest toward AD.

It is now evident that the financial interest in this technology, and the
consequent engagement of the industry, turned the development of AD into
a real race. These years are exciting times for the AD research and the final
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Figure 6: Example of failure during the desert ride.

goal seems, like never before, really at hand.
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Figure 7: During DARPA Urban Challenge vehicle were operating in human
traffic. The other vehicles were driven by stunts obliged to follow the road
rules.

Figure 8: Porter: the electric vehicles that faced VIAC, equipped with solar
panel for extended autonomy.



10 Introduction

Figure 9: The BRAiVE car negotiated regular urban traffic finishing its drive
in the very downtown of Parma. The final stretch was driven with no person
on the driving seat.
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Figure 10: Google’s self driving car.





Chapter 1

Autonomous Driving:
Problem Statement

This chapter contains introductory material to the problem of autonomous
driving (AD) and the platforms used to develop the relative solutions: au-
tonomous vehicles (AV).

First, the official classification autonomy’s degree is introduced, followed
by an overview of the typical AV functionalities and hardware. Lastly, the
main approaches to the AD problem are presented, highlighting the choices
made in the context of this research and the impact they had.

1.1 The different levels of autonomy

Over the years, the term autonomous vehicle has been used in a somewhat
ambiguous way and the previously given definition ( “[. . . ] carry out driving
tasks with potentially limited human supervision”) is intentionally vague to
account for the many shades of meaning attributed to it.

To set a common ground when talking about AD, in 2014 SAE Interna-
tional published the J3016 standard, named “Taxonomy and Definitions for
Terms Related to On-Road Motor Vehicle Automated Driving Systems”, that
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establish 6 automation level, from 0 (full manual) to 5 (full autonomous) [30].
The latest 2016 revision has been adopted also by NHTSA to uniform the
definitions regarding AD.

To understand the different levels, it is important to introduce some defi-
nition. The driving task is divided in 3 aspects:

• operational: operation of steering, throttle/brake and monitoring of the
vehicle and roadway.

• tactical: responding to external events, determining when to change lane,
turn, use signals, etc.

• strategic: determining destinations. In the following it is assumed that
this aspect always falls on the human driver/passenger.

Moreover the term driving mode refers to a specific driving scenario like: high-
way, high speed cruising, low speed traffic jam, etc.

Each autonomy level is detailed in the following:

Level 0 – No Automation : the driving task falls completely on the hu-
man driver, even when aided by warning or intervention systems. This
includes car with no automation of either steering or throttle/brake, even
when equipped with systems like ABS, lane departure warning, etc. . . .

Level 1 – Driver Assistance : mode-specific automation of either steering
or throttle/brake. The human driver is expected to monitor the environ-
ment and perform the remaining driving tasks. In this category fall the
cars with lane keeping and adaptive cruise control functionalities.

Level 2 – Partial Automation : mode-specific automation of both steering
and throttle/brake. The driver is expected to monitor the environment
and perform the tactical aspect of driving.

Level 3 – Conditional Automation : mode-specific automation of the op-
erational and, possibly, strategic aspect of driving. The driver is expected
to take over the driving when warned with a “request to intervene”.
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Level 4 – High Automation : mode-specific automation of the operational
and strategic aspect of driving. The system is expected to behave prop-
erly even when the driver doesn’t respond to a “request to intervene”.

Level 5 – Full Automation : full automation of every aspect of driving,
under every scenario and condition that can be managed by a human
driver.

The important aspects of each level are summarized in table 1.1.

Level Operational Autonomy Environment Monitoring Mode
0 none human n/a
1 partial human restricted
2 full human restricted
3 full system+human fallback restricted
4 full system restricted
5 full system everywhere

Table 1.1: Summary of the SAE automation levels.

Of course these categories are not perfectly separated and there can be
applications that are hybrids of different levels.

1.2 Introduction to autonomous vehicles

In the context of this thesis, Autonomous Vehicle (AV for short) is the term
used to indicate any robotic-car platform used to develop/deploy autonomous
driving. The terms agent and robot will also be used when referring to AV.

We can think of the AV as a robotic agent immersed into a dynamic envi-
ronment it needs to interact with. Like any agent of this sort, the AV need to
perform the following operations:

• perceive the surrounding environment.
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• understand the state of the relevant elements.

• act accordingly.

These operations define the three main functional area for AD: perception,
data fusion and planning. As indicated in figure 1.1, the main data flow goes

Figure 1.1: AV main functions: perception, data fusion and planning.

from perception to data fusion and, from there, to planning (solid arrows).
It’s anyway appropriate to include also feedback connections (dashed arrows)
because the data fusion might switch focus given the future actions and the
perception might use informations coming from the data fusion, like the refined
vehicle attitude.

To perform these functions the AV also requires some additional hardware.
The functionalities and hardware are the focus of the next sections.

1.2.1 Perception

Any physical agent interacting in a dynamic environment needs some form
of perception. When the state of the surrounding is not completely known
a priori, the robot need to directly sense it to infer its actual state. Except
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for completely controlled experiment, this is the case for AV because its en-
vironment has some dynamic characteristic. While we can assume to know
the position of the road in advance (for example with a pre-recorded map),
there are elements that are intrinsically dynamic. First among all, there are
other road users: their state (position, speed, etc.) can’t be predicted without
some direct perception and they greatly affect the required driving behavior.
Secondly there are road infrastructures that change state over time, like traffic
light and rail crossing. Finally, to achieve the higher levels of autonomy, the
agent must properly react to unexpected conditions, being that road work,
traffic policemen or roadblocks. Moreover, since maps are not always viable,
also the perception of the road geometry and topology is of great interest,
along with street sign and other road features.

1.2.2 Data fusion

Data fusion refers to the process of aggregating data coming from different
sources to extrapolate a richer representation. This operation, also called scene
understanding, has the general goal of providing an estimate of the most-likely
state of the world. This definition is quite general because the range of tasks
performed can be broad depending on the actual overall architecture.

A typical data fusion task is obstacle tracking. This amount to using multi-
ple detections, possibly coming in different forms, to provide a stable and accu-
rate estimate of the obstacles’ state. When information about the road topol-
ogy/geometry is available, other vehicle’s state can be augmented with high
level information like lane of travel and future action estimate (lane change,
turn, etc.).

Another example of data fusion task is ego localization: providing an ac-
curate estimate of the AV position w.r.t. some reference system. At the basic
level this means fusing IMU information with the GPS signal. When rich map
are available, the localization can be refined comparing the detected features
with the recorded one.
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1.2.3 Planning

To achieve AD, the vehicle need to act according to the world state: the
decision process is called planning, while the actual action is delegated to
the control system.

The planning system is responsible for determining an appropriate be-
havior for the car and finding a reference trajectory that implements that
behavior.

Examples of behavior might be: follow the current lane, change to the
left/right lane, yield at the intersection, etc. This high level description must
be translated to a reference trajectory: a series of future positions in the space
and velocity set-points that the vehicle should follow.

The task of having the car actually following this reference is a problem by
itself and it’s covered by the control theory. Basically the vehicle is a dynamic
physical system and imposing positions/velocities in its configuration space
require some form of feedback.

One remark is needed about the proposed division between perception,
data fusion and planning. This structure is inherited by the robotic field and
provide a clean division between tasks [31]. Some sources omits the data fu-
sion part, collapsing it into the perception system [32, 33]. I advocate this
distinction because detection and fusion operate at different abstraction and
semantic level, using a set of entirely different techniques. This architecture
has the advantage of providing a system made of explainable sub-parts, that
can be developed almost independently, but it’s not the only possible one. In
particular, with the recent advancement in machine learning a new paradigm
has emerged: end-to-end driving. This paradigm is based on a single neural
network that computes driving command directly from camera images [34, 18].
Although this represent a significant advance in the field, such a system is not
suited for real applications because it offers little insight on its internal behav-
ior, limiting the possibility of tuning and fixing undesired results.
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1.3 Autonomous vehicle hardware

Cars are historically designed to be driven by humans. To support AD, some
form of specialized hardware is needed; this can be divided in three different
categories: sensors, computing hardware and drive-by-wire.

1.3.1 Sensors

We can divide sensors in two categories: proprioceptive, that give information
about the ego vehicle, and exteroceptive, that sense the external environment.

Exteroceptive sensors are the primary mean for the vehicle to perceive
the world around. They feed the input to the perception system in forms of
images, scans or echoes.

Cameras observe the surrounding capturing images that can be processed.
Images are a very rich representation of the world, but this dense information
is typically hard and expensive to process. They need an appropriate quantity
of light to work properly, so they’re sensitive to scarcity (e.g. night, tunnels,
etc.) or excess (e.g. sun blinding) of light.

LIDAR1, also called laser scanner, measure the distance of objects using
a revolving laser beam. They provide scans containing the distance given the
horizontal and vertical angle of the beam. The information is poor in semantic,
but the distance are measured with great precision and accuracy. Being active
sensors, they’re also relatively insensitive to light condition.

RADAR2 emit electro-magnetic pulses and, through the echoes, measure
position and speed of reflecting objects. Their information is sparse and very
straightforward to process3. They’re analogous to LIDARs but work in a much
lower band-width that gives them different characteristics. They have ex-
tremely high range of detection, but also a sensible minimum distance. They’re

1LIght Detection And Ranging
2RAdio Detection And Ranging
3This claim comes from the observation that RADAR doesn’t output raw data, but the

outcome of some processing.
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not as accurate as LIDARs, but their ability to measure speed is valuable.
SONAR4 measure distance of close object emitting acoustic pulses. Their

range is extremely short and the information is far from being precise, but for
application like park assist/autonomous parking they’re still useful.

Proprioceptive sensors are used to measure the state of the ego vehicle.
They usually provide informations relative to the position and movement of
the vehicle that are used to perform proper localization.

The GPS5 is the primary mean to have an absolute localization. The lo-
calization precision it can supply depends on multiple factor: the number of
satellites, the power of the signal and the availability of augmentation ser-
vices. When corrected with augmentation services it’s usually called GNSS,
which stands for Global Navigation Satellite System, to emphasize that the
reached precision is sufficient for vehicle navigation. Even with the most ad-
vanced platforms, the urban scenario poses the hard challenge of severe GPS
outage. In the urban canyons, reflection and multiple paths for the signal can
fool the position around leaving little clue that something wrong is happening
(the number of satellites and the signal power may look good).

IMU6 data are often used to refine GPS position. These platform provide
data about the acceleration and angular rate of the vehicle, information that
can be used to locally smooth the GPS movement.

Finally the car itself usually provide some odometry information like speed
coming from the wheel encoders, internal IMU, engine power, braking torque,
etc.

1.3.2 Computing hardware

For the functions of perception, data fusion and planning to take place, the car
need some form of computing hardware. Usually one or more PC are present
on board, but the actual hardware really change from vehicle to vehicle. For

4SOund NAvigation and Ranging
5Global Positioning System
6Inertial Measurement Unit
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example, in the case of [34] the car is equipped also with powerful GPU’s to
support the neural network inference.

For the future of AV, it’s commonly agreed that the computing will be
performed on some specialized hardware, reducing encumbrance and power
consumption.

1.3.3 Drive-by-wire

The driving devices present on cars, steering wheel and throttle/brake, are
designed to be operated by humans. To let a computer drive the car, some
form of interface is necessary: the drive-by-wire.

On car that are fully manual, specialized actuators are installed to me-
chanically operate the steering wheel and the gas/brake pedals. These electric
engine can be controlled via some communication interface (typically CAN,
but might be a different technology too), setting appropriate set-points.

Some recent car models are designed to natively support operation of steer-
ing and gas/brake via electronic signals. These systems are currently used to
implement ADAS and, with little modification, are suitable also for AD.

1.3.4 Communication hardware

Some branches of development go in the direction of implementing a thick
communication network connecting the vehicles and the road infrastructure
[35, 36]. In this paradigm, called V2X, the vehicles will communicate with
each other transmitting the current state and the future intentions. In the
same fashion, the road infrastructure will play an active role, arbitrating the
negotiation of junctions and providing the vehicles useful information such as
the position of stop lines, state of traffic-lights, etc. . .

It can be assumed that this will improve the environmental awareness of the
vehicles, but as long as the road remain accessible to ‘entities’ not connected
to this network (being those pedestrians or regular vehicles), the necessity for
a complete and reliable perception system persists.
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1.4 Ways to autonomous driving

As previously mentioned, there are many ways to tackle AD depending on
the context in which the problem is framed. Each context imposes different
hardware choices and limitations that greatly affect the requirements and de-
velopment of the perception, data fusion and planning systems.

Following [10], the AD applications are analyzed considering separately
the level of automation (< 5) and the scale and scope of application, as shown
in figure 1.2. The top-right corned of this diagram corresponds to the NHTSA

Figure 1.2: Analysis of AD applications separating the automation from the
scale and scope of application.

level 5 (full autonomy everywhere) and it’s presumably the ultimate goal of
AD research.

The next two sections presents the two major contrasting path to level 5:
the one followed by startups and the one adopted by carmakers/OEM. Their
approach is antithetic because the scope of the problem is entirely different.
Ultimately the approach followed by VisLab is presented, an hybrid that blends
elements from the other two.
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1.4.1 Startup’s way

The newborn startups, sometimes generated from the academia, are the lead-
ing edge in terms of achieved automation. Examples of such startups are
Waymo [28], nuTonomy [37] and Uber ATG [38].

Their common feature is that they see the AV as a service as opposed to a
product. This vision enables the mobility-on-demand paradigm, capturing the
benefits of car sharing. From the financial perspective it also justifies the use of
expensive hardware since the vehicle is company owned. Moreover, the service
can be deployed in limited areas and suspended in case of adverse condition,
limiting the requirements for the initial deployment.

Since full autonomy (level ≥ 4) is essential to pursue this way, the startups
take advantage of the advanced hardware they can use and their effort is
directed toward expanding the scope of level 4 platforms.

Their research path is thus summarized in figure 1.3.

Figure 1.3: Startup way to AD. They work toward expanding the scope of full
autonomous platforms.
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1.4.2 Carmaker & OEM’s way

On the opposite side, carmakers and OEM7 see the AV as a product. This
could mean actually having driverless-car for sale or selling AD as an optional
feature on selected car models. The biggest constraint this vision imposes is
the actual price of the final product: keeping this in a reasonable range requires
the use of low-cost components. Furthermore, the path to level 5 must pass
through sellable intermediate products.

For these reasons, the research effort from these companies is directed to-
ward improving the autonomy on platforms that can be readily mass-deployed,
as illustrated in figure 1.4.

Figure 1.4: OEM and carmakers way to AD. They work toward improving the
autonomy of mass-deployable platforms.

Achieving high level of automation using low-cost components requires to
solve additional challenges and is inherently harder compared to the case with
no cost limitations.

7Original Equipment Manufacturer, the original producers of vehicles’ components.
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1.4.3 VisLab’s way

Both the presented ways are viable research paths to AD, each justified by
the relative problem context. They represent quite opposite approaches and
intermediate solutions are also valid. An example is the approach adopted in
our research laboratory at VisLab. Born as a spin-off from the Università degli
Studi di Parma, VisLab has always been in contact with major players in the
automotive field. With this target in mind, the goal of the research has been to
develop high automation applications using technologies that result appealing
in the automotive context.

Summarized in figure 1.5, the research path worked in both the directions of
improving the system automation and widening the range of handled scenario,
always using low-cost solutions and automotive hardware.

Figure 1.5: VisLab adopted an intermediate solution toward AD, delivering
high automation using only automotive hardware.

As already mentioned, using low cost/automotive hardware poses addi-
tional problems to be solved. The next sections will highlight the major chal-
lenges and the way they affected the development of my research.
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Allowed sensors

A big restriction concern the actual sensors the vehicle can mount.
The precise and reliable LIDAR is not suited for automotive application

because of the excessive cost and the high power consumption. For this reason,
the preferred sensors are cameras, RADAR and SONAR. These sensors already
made their way into the automotive field and conform the requirements in
terms of price and power consumption.

As a result, the precise 3D measurements of LIDAR are not available. This
information can be recovered sparsely using RADAR or in a dense manner with
stereo-camera technology. The major impact of this limitation regards obstacle
detection.

Localization and maps

A typical solution to the vehicle localization problem is to use a precise INS
that combines GNSS and IMU (e.g. PINPOINT8 and OxTS9). Those plat-
forms provide an accurate and smooth absolute localization, but are typically
very expensive and thus not viable in our scope. Another possible solution, is
to infer the vehicle position confronting the detected features with a database
of localized features mapped in advance. While it’s hard by itself to guaran-
tee a high precision due to detection noise, it’s also not safe to assume the
availability of this augmented maps everywhere.

For these reason we generally don’t want to rely on precise global local-
ization. The absence of global positioning, also negate the possibility of using
mapped road paths as a navigation reference. To have a consistent driving
it’s therefore necessary for the AV to perceive the road path using the on-
board sensors. This problem motivates my work in road-path detection and
estimation and will be covered in more details in the following chapters.

8http://torc.ai/pinpoint/
9http://www.oxts.com/
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Computation power

The cost and power consumption limits cast severe limitations also on the
available computing power. While the prototype vehicle can be equipped with
regular PC, extra caution must be taken during algorithms development in
perspective of moving to low-power platforms.

For this reason, computational efficiency will be a major concern through-
out this thesis. This limitation had a big impact especially in the development
of the planning system, a function that’s notoriously computation hungry.

1.5 Test vehicle setup: DEEVA

The work presented in this thesis has been implemented, tested and validated
on an actual autonomous vehicle: DEEVA [39].

DEEVA,figure 1.6, is the latest AV platform developed at VisLab and
represents a significant effort toward automotive-compatible robotic cars. Based

Figure 1.6: The latest VisLab’s autonomous vehicle: DEEVA.

on a AUDI A4, this car is equipped with sensors,computers and drive-by-wire
to support AD development.
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The major distinctive feature of this platform is that all the sensors and
additional hardware have been seamlessly integrated and, as the picture shows,
the overall look is one of a regular car. The next sections describe the hardware
installed in this platform.

1.5.1 Sensors

DEEVA, being a prototype, has a large number of sensors that provide total
coverage of the environment, redundancy and act as a ground truth during
the development process.

A peculiar trait is the presence of 26 cameras, organized in 13 stereo couple
placed in the positions indicated by thew gray boxes in figure 1.7.

Image 1.8 shows the field of view (FOV) of the installed cameras, divided
in near (1.8a) and far (1.8b).

Beyond cameras, DEEVA mounts 4 LIDAR that cover the front and the
back of the vehicle, as indicated by the red boxes in figure 1.7. Their pri-
mary use is as ground truth for some perception algorithms, mainly obstacle
detection.

A long-range RADAR is installed in the front of the vehicle, indicated
by the green box in figure 1.7. This RADAR is used for long-range vehicle
detection and high speed adaptive cruise control.

Images 1.9,1.10 and 1.11 show the final look of sensors integration.
Finally, the car install a OxTS RT-3300: an high precision INS platform

that provides global positioning with an accuracy of few centimeters. This is
used as a ground truth for the vehicle localization.

1.5.2 Computing hardware

To process the huge stream of data coming from the 26 cameras, the entire
trunk is devoted to host the computational backbone of the car, figure 1.12.

Up to 20 industrial-grade PC are installed in four racks. The communi-
cation between computers and sensors is supported by 3 Gigabit Ethernet
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Figure 1.7: Sensor suite on DEEVA: 13 stereo couples (gray boxes), 4 laser
scanners (red boxes) and radar (green box).

switches. This hardware architecture obviously impact also the software de-
sign that must distribute the computation among different nodes.

1.5.3 Drive by wire

DEEVA is equipped with the AEVIT RPV drive by wire system. The main
components are the external mechanical actuators intended to operate the
steering wheel and the gas/brake pedals.

Image 1.13 highlights the actuator installed in the steering column. The
electric engine is integrated inside the column and the yellow ball marks the
device to engage/disengage the mechanical coupling.
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(a) Near cameras FOV

(b) Far cameras FOV

Figure 1.8: Field of view of cameras installed on DEEVA.
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Figure 1.9: Final integration of cameras and LIDARs.

The gas and brake pedals are operated by another mechanical actuator,
shown in image 1.14.

All actuators are fail-safe with redundant electric engine and can be op-
erated via CAN interface. Set-points commands for steering and gas/brake
are expected to be received at 50Hz, otherwise the system trigger a stop-state
applying a configurable brake.

Also the gear shift is replaced by a control panel, shown in figure 1.15, that
allows the gear to be controlled by both human drivers and computers.
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Figure 1.10: The frontal camera rack. It provides medium and far range image
coverage.
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Figure 1.11: The mirror integrates 4 cameras: two fish-eye camera for lateral
view and two long range, rear facing cameras.
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Figure 1.12: DEEVA’s computing hardware: up to 20 PC connected with 3
switches.
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Figure 1.13: Steering wheel actuator.
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Figure 1.14: Gas/brake pedals actuator.
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Figure 1.15: AEVIT control panel.
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1.6 Scope of work

This introduction delineated the context of my research.
First, solid motivations for the interest in autonomous driving are given,

providing also an historic perspective on the research evolution.
Secondly, a general introduction to autonomous vehicles is presented, de-

tailing the main functions such vehicles must execute and the hardware em-
ployed to support those functions.

Thirdly, the impact of the intended solution scope on the research path is
outlined, highlighting the direction pursued by the VisLab research laboratory.

Lastly, the test vehicle DEEVA is introduced, being this the validating
platform for the outcome of my research.

The focus of this work is autonomous navigation, meaning the detection
of the road path from the sensory input, the stable estimation of the path
geometric position and the planning process to drive the car on the reference.
This problem spans over the three main function of autonomous vehicles and
it’s of paramount importance to enable autonomous driving. In figure 1.16 the
components derived form this work are indicated in green.

Figure 1.16: The components derived from this work are highlighted in green.
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Perception: Ego-Lane
Detection

2.1 State of the art

Lane detection is an important component for both autonomous vehicles and
advanced safety systems. A big advancement came with the DARPA Grand
Challenge and Urban Challenge and, in the latest years, it received a lot of
attention also from automotive companies since it is the key to ADAS1 like lane
departure warning[40] and lane keeping assistance[41]. While many approaches
propose fusion of LIDAR and camera images [42, 43, 44], I restrict my attention
to methods based solely on images for the reasons explained in the previous
chapter.

In [45] the authors perform lane detection through lane markings detection
and propose a two-steps method composed of a detection phase and a track-
ing stage. First, the camera image is transformed using the IPM[46] and the
dark-light-dark patterns are highlighted [47]. The resulting points are clustered
together and approximated with continuous piece-wise linear functions.

Secondly, the new poly-lines are confronted with the tracked lane markings
1Advanced Driving Assistance System
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to produce new candidate and perform expansion operations to join pertinent
non-connected components.

Finally the candidates are assigned a score and a threshold is used to
produce the final result. Figure 2.1 shows some example of obtained results.

(a) Urban environment (b) Queued vehicles

Figure 2.1: Lane marking detection results.

A more recent approach for a collision warning system [48] integrates the
disparity image to improve the results of lane markings detection. The pro-
cessing is based on IPM, but the transformed image is thresholded removing
the area relative to the obstacles detected using the disparity information.

This thresholded IPM is processed with a Sobel filter to highlight the edges
of the lane markings. Hough transform is then applied to detect the dominant
line and, from there, additional ROI are proposed in the Hough image to
extract the other markings. Image 2.2 shows some results.
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Figure 2.2: Final results for the collision warning system.
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2.2 Limitations of classic lane detection

As can be deduced from the state of the art, the basic approach for lane
detection in images hasn’t changed much since 2010 and it’s based on lane
marking detection. This exposes a fundamental limitation: the approaches are
constrained by the actual presence of the lane markings in the image. There
are however many practical cases of interest in which the markings are poorly
visible or missing altogether. Newly paved or old roads are a good examples of
common situation with missing road markings (image 2.3). Image 2.4 shows an

Figure 2.3: Missing lane markings on a old road.

example of extreme shadow contrast that blacken the left marking. Reflections
can be another source of problems, like in picture 2.5. Note, however, that in
this case the image is not completely white and still contains the information
about the course of the road.

Even when the markings are present, there is another problem in these
approaches: the total lack of semantic in the detection process. Not every
dark-light-dark pattern, or straight white line, in the image is a marking. In
image 2.6 there is an example of misdetection due to the fact that the top of
the curb offers a dark-light-dark pattern much stronger than the one of the
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Figure 2.4: Left marking blacked by the guardrail shadow.

real marking.
For humans, the task of detecting those markings is trivial because we’re

familiar with the road environment and we put a lot of prior knowledge and
semantic in the process. While the tracking phase and some hand-designed
rules try to tackle this problem, they are somehow heuristic and can fail to
achieve the intended result.

A further limitation is due to the fact that, like in [48], many approaches
constrain the markings to fit a particular continuous model. Beyond straight
line, which is very restrictive, other popular models are polynomials, clothoids
and splines. The model choice is always a compromise between expressive
power and noise rejection. The problem is that very restrictive models can fail
to represent some topologies of interest, while models that are too expressive
often surrender to the noise in the detection.

To overcome these limitations, the idea is to use a tool able to capture
the semantic of the image and that doesn’t impose model restrictions: deep
learning. Deep learning is a field of machine learning that received a steadily
increasing attention due to the long story of successes in almost every branch of
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Figure 2.5: Sun’s reflection can wipe the marks from the image.

(a) Original image. (b) Wrong detection on the right mark.

Figure 2.6: The pattern on top of the right curb is clearly stronger than the
actual lane marking.

computer science. Image classification, image captioning, image segmentation,
machine translation, speech recognition, speech synthesis and game playing are
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just some examples of applications where deep learning established the state-
of-the-art performance. There exist an exhaustive literature on deep learning
applications and for a complete reference see [49].

The following section describes how I employed this flexible tool to achieve
reliable lane detection.

2.3 CenterNET

The main limitations of the classic approaches to lane detection, are related to
the use of lane markings as indicators. They represent the most obvious hand-
designed feature for such problem, and one that should be easily identified
in the image. They’re not, however, the only indicator of the road lanes and
there are other visual features that could help in the process. For this reason,
the ability of CNN2 to automatically learn the relevant features present in the
input is very valuable. Convolutions are the standard way to process images
in neural networks, and they laid the foundations of modern image processing
[50].

Leveraging a CNN architecture I designed the CenterNET, which stands
for Centerline NETwork, to predict the position of the ego-lane center in the
image. The following presents the detail of such application.

2.3.1 Dataset

Deep learning application are known to be data hungry: to properly exploit
the high capacity of the model, a big set of labeled examples is needed. Man-
ual labeling is a very expensive and time consuming process. For this reason I
designed a convenient semi-automatic annotation process. The choice of pre-
dicting the center of the ego lane, comes with the important advantage that
its position can be recorded just driving the car in the middle of the road.

Projecting the future position of the car on the current image, enables the

2Convolutional Neural Network
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production of annotated examples in a very cheap and fast way. To compare
this semi-automatic annotation with manually labeled examples, given that
both solutions require “car time” to record the images, the system takes 7ms
to process a sample while a fast human annotator requires 4–5s. The actual
annotation time is about 650x faster and even the quantity of images annotated
with the same amount of “car-time” can be 2–3x as will be detailed later. This
is the key that enabled the readily deployment of accurate ego-lane detection
with CenterNET.

Input and output

The input to the network is a gray-scale image of the road as seen by the
vehicle. The image comes from the right camera of the FFN (Far Front Nar-
row) stereo couple installed on DEEVA. Figure 2.7 shows the position of the

(a) Position of the camera. (b) Closeup.

Figure 2.7: The right camera of the FFN stereo couple is used to acquire the
images in the dataset.

camera, behind the windshield, facing the road ahead. The camera is an IDS
UI-5242LE-C-MB with an e2V EV76C560ACT 1/1.84" CMOS optical sensor
and 12Mpixel 8mm lens. An example of image produced by the camera is in
figure 2.8. The lens distortion is assumed to be removed with the appropriate
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Figure 2.8: Example of image coming from the FFN-Right camera.

LUT3 [51].
To reduce the computational cost, the original 1280x880 pixels image is

down-sampled to the size of 300x200 and, to focus the processing on the road,
the top 100 rows are discarded, reaching the final size of 300x100. Image 2.9
show the initial image, the intermediate down-sampled image and the final
cropped result. This image is the input fed to the network.

The intended output of the network is the position, in the image, of the
ego-lane center. Once the image projection of the center is computed, the
label contains, for each row with a projected point, the normalized horizontal
coordinate of such point. The coordinate are expressed in the interval [0,1]
with 0 being the left and 1 the right side of the image. Image 2.10 shows a

3LookUp Table
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final training sample with the label overlaid.
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(a) Original image.

(b) Downsampled version.

(c) Final cropped image.

Figure 2.9: Transformation process of the original image to obtain the final
input for CenterNET.
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Figure 2.10: Final CenterNET sample with overlaid annotation.
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Semi-automatic annotation

To develop this semi-automatic annotation I leveraged the availability of the
car position ground truth through the high precision INS installed on DEEVA.
The described operations are performed, in post-processing, on the data recorded
with VisLab’s integration framework GOLD [52].

The process requires what I call a “annotation lap” in which the car is
driven along the intended road, staying in the approximate middle of the lane.
Note here that, since this is made by a human driver, the recorded track
will not be at the exact center of the lane. To account for this imprecision,
multiple annotation laps are taken for every recording session in such way that
the multiple small variations from the true center will hopefully compensate
each other. One thing has to be noted here, since multiple annotation laps can
be taken for each recording session, and they express the centerline position
in a global fixed reference system, every run can be processed with all the
annotation laps. This doesn’t just compensate for annotation inaccuracies,
but it also means that N annotation laps will provide Nx valid number of
training samples for the same amount of car time.

The annotation lap provides the GPS coordinate of the center of the car’s
ego-lane. The GPS is also used to know the exact position at which every
image is taken, figure 2.11. To proceed with the point projection, another
important ingredient is needed: an accurate camera calibration. The FFN-
Right camera is supplied with intrinsic and extrinsic calibration parameters
[53]. The calibration of the camera provides access to the projection matrix
K ∈ R3×3 and the coordinate conversion T ∈ R3×4. Both matrices work in
homogeneous coordinate [54], T transform the coordinates of point expressed
w.r.t. the INS (which is the reference point for the extrinsic calibration) to
the camera reference frame (losing the trailing ‘1’ which is irrelevant for the
following transformation), while K applies the projection equations for the
pin-hole model obtaining the image coordinate of the given world point. [55]
provides an extensive coverage on the subject of calibration and projection
matrices. Image 2.12 shows the reference systems involved and provides a
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Figure 2.11: The high precision INS provides localization of the recorded im-
ages with respect to the centerline coming from the annotation lap.

schematic summary of the projection process.
For every image to be annotated, the GPS coordinate of the centerline must

be converted in the current INS reference frame. Th GPS coordinate are given
complying with the WGS84 standard and the conversion is executed through
the intermediate transformation to ECEF4 coordinate, a Cartesian reference
system centered in the Earth’s center of mass. The conversion from GPS coor-
dinate to ECEF involves the projection on the ellipsoid approximation of the
Earth and will be indicated with:

pe = ecef(pw) (2.1)

where pw are the WGS84 coordinate of the centerline’s point p and pe are the
coordinate of the same point in the ECEF reference system. The conversion
equations are well know and can be found in [56]. Having the ECEF coordi-

4Earth Centered Earth Fixed



2.3. CenterNET 53

Figure 2.12: Summary of the projection process.

nate of the centerline’s points pe,i and the current reference point (the car’s
position) re, the relative coordinates are obtained with a simple difference, ob-
taining rpe,i. To finally recover the navigation ENU5 coordinates pn, the ECEF
points must be rotated about the Z and Y axis of the longitude and latitude
angles with the matrix n

e R. See [56] for a detailed coverage on this topic. The
ENU reference system has the axis aligned with the cardinal direction, so the
heading of the car (the angle relative to the North) must be considered with

5East North Up, indicating the direction of the X, Y and Z axes respectively.
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a further rotation about the new Z axis with the additional matrix R̄ ∈R3×3.
For a precise projection, also the attitude of the car relative to the ground

plane must be compensated. Bump and imperfection in the pavement cause
the car to pitch and, when turning, the suspension springs allow the car to
have a roll angle. The instantaneous rotation angles are also provided by the
INS platform and these new rotations about X and Y are incorporated in the
matrix R̄. Indicating with ρ,θ and ψ the roll, pitch and yaw angle respectively,
the final form of the matrix R̄ is:

R̄ =


cos(θ)cos(ψ) cos(θ)sin(ψ)

sin(ρ)sin(θ)cos(ψ)− cos(ρ)sin(ψ) sin(ρ)sin(θ)sin(ψ) + cos(ρ)cos(ψ)
cos(ρ)sin(θ)cos(ψ) + sin(ρ)sin(ψ) cos(ρ)sin(θ)sin(ψ)− sin(ρ)cos(ψ)
−sin(θ)

sin(ρ)cos(θ)
cos(ρ)cos(θ)


(2.2)

Figure 2.13 display a case where a bump cause the car to pitch sensibly, note
that without proper pitch compensation the annotation is projected far above
the road plane.

Putting everything together, the final transformation is:

imagep=
(
up

vp

)
= K T|R̄ n

e R (ecef(pw)− ecef(rw)) (2.3)

where the vertical bar | indicates the extension of the vector to homogeneous
coordinate.

With the detailed projection process, all the centerline points in front of
the current position are converted in image coordinates until the projection
ends outside of the image size. Since the projection uses the original camera
parameters, it is equivalent to projecting the points in the non-scaled version
of the image. The horizontal and vertical scale factors ηW and ηH , are applied
to the u-v coordinate of the projected points:(

ũp

ṽp

)
=
(
up/ηW

vp/ηH

)
(2.4)
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(a) Centerline projection without pitch compensation.

(b) Centerline projection with pitch compensation.

Figure 2.13: Example of pitch compensation.

The final u-coordinate (corresponding to the image column) of the projected
points are obtained averaging the values falling in the same row:

ū= 1
n

∑
p

ũp

∣∣∣∣∣bṽpc= v̄, v̄ = 0,1, . . . (2.5)

Input distribution

One thing that must be taken with extreme care is the distribution over the
input images. Since the output of this component will influence somehow the
driving behavior, there exist the possibility of a catastrophic feedback loop. If



56 Chapter 2. Perception: Ego-Lane Detection

the CenterNET detects a centerline which is not accurate, the car might react
steering toward the incorrect estimated position. This can take the camera to
see images different than the one shown by the human driver, which is likely
to drive close to the center of the lane. In turns, the CenterNET is unlikely
to properly react to inputs that lay outside the training distribution, so the
error will grow resulting in a completely faulty driving behavior. This is an
example of distribution mismatch, a well known problem in machine learning
applied to agent that can act and modify the environment.

This problem must be taken into consideration and the key to the solution
is a smart use of the auto-annotation process. Since the same annotation can
be used across different recordings, the only run constrained to be driven in
the middle is the annotation lap itself. The other runs are allowed, encouraged
in fact, to explore other point of view within the same lane.

Following this precaution, every recording session captured the same course
in multiple ways. Other than the annotation lap, the runs are taken driving in
the left/right side of the lane or oscillating in the middle in order to provide
even extreme angles on the road. Figures 2.14 shows the same road from
different perspective, as present in the training data.

Driving the car with an offset from the center also prevents the CenterNET
to overfit the most likely centerline position, which for the low rows would
always be at the center regardless of the shape of the road.

This smart choice for the input distribution stabilize the network and helps
the generalization process, as the CenterNET is actually forced to find ex-
planatory cause for the different centerline position. The next section describe
another technique to further help with stabilizing the network.
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(a) Car on the left, aligned with the road.

(b) Car steering left.

(c) Car on the right, aligned with the road.

(d) Car steering right.

Figure 2.14: Examples of different input distributions.
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Dataset augmentation

Dataset augmentation is a popular technique for increasing the training set
size and improve the generalization of the network. It consist in modifying
the training samples in a way that doesn’t affect their label (or the effect is
know and can be compensated). The benefits are twofold. First, the overall
size of the training set is increased as it contains both the original and the
modified samples. Secondly, if the modifications don’t affect the label, the
network should learn to be invariant to the injected perturbations.

I used aggressive dataset augmentation to further stabilize the CenterNET.
The first augmentation technique I used is noise injection. Since the noise

in the image should not modify the predicted position of the centerline, this
simple technique can effectively decrease the network sensibility to small vari-
ations in the input. Qualitatively, this technique alone was able to appreciably
reduce the output oscillations due to the sensor’s noise during the actual de-
ployment on the car.

Another, more aggressive, augmentation technique I explored is the sim-
ulation of “missing” image region, overwritten with black squares. This per-
turbation loosely simulate the effect of image occlusion and encourage the
CenterNET to exploit the remaining features.

Finally, to further encourage the use of context beside the lane markings’
edges also a Gaussian blur is used as an augmentation technique.

Figure 2.15 shows the effect of the employed augmentation techniques on
a training example.
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(a) Original example.

(b) Noise injection.

(c) Black square painting.

(d) Gaussian blur.

Figure 2.15: Examples of the applied augmentation techniques.
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Statistics

The generated dataset contains a total of 184059 labeled examples. The sce-
nario distribution in the dataset is the following:

Scenario type # of examples relative %
Rural 61175 33.2%
Highway 51737 28.1%
Urban 49204 26.7%
Ring road 21466 11.7%

Of this examples, 1929 constitute the test set (about 1%) with the same
scenario distribution. Other notable statistics are:

Feature relative %
Left lane 3.9%
Nighttime 1.0%

Figure 2.16 provides examples for each scenario.
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(a) Rural.

(b) Highway.

(c) Urban.

(d) Ring road.

Figure 2.16: Examples of the different scenarios present in the dataset.
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2.3.2 Architecture

The network needs to process an input image to predict the centerline posi-
tion of the ego-lane. The standard way to process images in neural networks is
through a series of convolutions, so the CenterNET follows the typical struc-
ture of CNN.

Figure 2.17: Schematic CenterNET architecture.

The architecture can be roughly divided in two sections: feature extraction
and inference (figure 2.17). The feature extraction part is composed by a
series of convolutions. The image is transformed in several features maps with
smaller dimension and, at the final stage, a linear feature vector is obtained.
The inference part takes this feature vector and, using fully connected layers,
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produces the final output.
The next sections provide a detailed description of each part.

Feature extraction

The feature extraction part is responsible, as the name suggests, for extracting
a vector of relevant features from the image. This is performed with a series
of convolutions that shrink the image, but increase the number of channels.
This intermediate images are called feature maps and should contain relevant
information, preserving the spatial relations.

The usual convolutional layer (used for examples in classification tasks) is
composed by the convolution, followed by a transfer function and a pooling
layer [57]. The pooling layer is used to shrink the image size and, in the case
of image classification, provide some translation invariance with respect to the
pattern of interest. Since CenterNET is not performing classification, but ac-
tual detection I decided to exclude pooling layers from the architecture and
shrink the image using convolution with strides greater than 1. The removal of
pooling layers has another practical advantage: it reduces the size of interme-
diate data the network needs to store. Making the network smaller in memory
allows bigger batches to be processed at the same time, effectively speeding
up the training process.

The results are provided for 2 different variants of feature extraction: Type-I
and Type-II, detailed in table 2.1 and 2.2 respectively. Both Type-I and Type-
II include a dropout layer [58] to regularize the network.
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# Layer type Parameters
1 2D convolution kernel=5×5, channels=1→ 12, stride=1,1
2 leaky ReLU leak=0.1
3 2D convolution kernel=5×5, channels=12→ 12, stride=1,1
4 leaky ReLU leak=0.1
5 2D convolution kernel=5×5, channels=12→ 12, stride=1,1
6 leaky ReLU leak=0.1
7 dropout p=0.3
8 2D convolution kernel=5×5, channels=12→ 12, stride=2,2
9 leaky ReLU leak=0.1
10 2D convolution kernel=5×5, channels=12→ 12, stride=2,2
11 leaky ReLU leak=0.1
12 2D convolution kernel=5×5, channels=12→ 4, stride=2,2

feature vector of 1056 elements

Table 2.1: Network architecture for type-I feature extraction.

# Layer type Parameters
1 2D convolution kernel=5×5, channels=1→ 64, stride=2,2
2 leaky ReLU leak=0.1
3 2D convolution kernel=5×5, channels=64→ 64, stride=2,2
4 leaky ReLU leak=0.1
5 dropout p=0.3
6 2D convolution kernel=5×5, channels=64→ 64, stride=2,2
7 leaky ReLU leak=0.1
8 2D convolution kernel=5×5, channels=64→ 64, stride=1,1

feature vector of 1050 elements

Table 2.2: Network architecture for type-II feature extraction.
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Inference

The inference part makes the actual prediction of the centerline position using
the extracted feature vector.

The inference block produces a fixed-size centerline prediction, meaning
that the final layer outputs a vector of N values representing the position of
the centerline on N rows of the image selected in advance. To train such a
network, only the training samples containing a centerline point for all the
rows are used. Note that the number of rows occupied by the centerline can
vary considerably with the scenario. The figure 2.18 show two examples of
different centerline length found in urban and highway scenarios.

(a) Urban environment. (b) Highway environment.

Figure 2.18: Examples of different centerline length due to different scenarios.

Finally, batch normalization [59] is applied to the initial feature vector to
speedup the learning process. Table 2.3 details the structure of the inference
block, where N is the size of the feature vector andM is the size of the output
which is the number of rows for which the network provides a prediction. Using
fully connected layers, this section contains the vast majority of the network’s
parameters. Assuming an output dimension of 66 rows, the inference block
contains 99.95% of the 1608576 parameters for Type-I and 99.29% of 1804399
for Type-II.
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# Layer type Parameters
1 leaky ReLU leak=0.1
2 batch normalization
3 linear layer size=N → 1000
4 leaky ReLU leak=0.1
5 linear layer size=1000→ 500
6 leaky ReLU leak=0.1
7 linear layer size=500→M

Table 2.3: Inference architecture.

2.3.3 Training

Loss function

The loss function used to train the CenterNET is a weighted variant of the
standard MSE6 loss. Since the same detection error at different rows corre-
sponds to different errors in the world space, I decided to assign a different
weight to every row. In particular, the top rows of the image correspond to
road points that are further away, so they’re assigned a bigger weight. To ob-
tain a detection error that relate directly to the error projected in the world
and measured in meters, the road is assumed to be a flat plane, corresponding
to Z =−h, where h is the height of the INS reference system from the ground.
With this simplifying assumption, knowing the camera calibration, it is pos-
sible to compute the IPM [46] transformation and know the world coordinate
of the image points projected on the road. Leveraging the IPM, every row is
assigned a weight equal to the Y displacement of the projected point, relative
to a 1 pixel displacement in the image, as shown in figure 2.19.

So the final form of the loss function is:

E(ŷ,y) =
N∑
i=1

[wi (ŷi−yi)]2 (2.6)

6Mean Squared Error
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Figure 2.19: The weights are the Cartesian displacement corresponding to a
1pixel error in the image.

where ŷ ∈ RN is the output produced by the network and y ∈ RN is the true
label.

Optimization

The followed training procedure is the same for both Type-I and Type-II.
The network’s parameters are optimized with the ADAM [60], a first-order

gradient based optimization algorithm for stochastic function. ADAM uses
adaptive estimation of first and second order moments with bias correction,
which are used to adjust a per-parameter learning rate vector. The value of
the algorithm’s hyper-parameters are:

Hyper-parameter Value
initial learning rate 10−4

β1 0.9
β2 0.999

The gradient is stochastically computed with mini-batches of 512 samples
and the norm is clipped to 106 to prevent “gradient-explosion” and instability.
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The network is trained for a maximum of 500 epochs, using early stopping
on a validation set composed of the 5% of the training examples. The valida-
tion error is computed every 20 iterations and the training is halted when no
improvement is observed for 50 consecutive checks.

2.3.4 Results

The table 2.4 report the error statistics on the test set. The “global” error is
obtained averaging over all the rows, while the various distance ranges con-
sider only the rows that, on the road plane, correspond to that longitudinal
distance. The error is expressed in meters and is obtained with the weights
detailed in 2.3.3. This measure reflects directly the reliability of the detection
in terms of autonomous navigation, which is the most relevant in the context
of this research. From the results emerges that the two architectures perform
similarly, but Type-II is consistently able to achieve lower average error and
variance, while Type-I yields the minimum max error.

Note that the average error for Type-II is about 10cm, which is in the
precision threshold that can be expected from the human-driven annotation
lap.

Due to the novelty details of this application, there are no state of the art
results to compare with. The presented state of the art in lane detection pro-
vides only qualitative results and they solely concern lane markings detection.
Moreover the detection error in the image is loosely related to the quality of
the detected path, which is also not directly available, while the reported re-
sults for CenterNET are immediately relevant for the autonomous navigation
task.

The images 2.20 show some good results taken from the test set, while
in 2.21 there are examples of prediction failures. In some cases, while being
different from the ground-truth label, the network’s result is acceptable, like
in 2.22.

A notable result is the ability of the network to produce reasonable pre-
dictions in adverse lighting conditions. Images 2.23 shows example with hard
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Type-I Type-II

<
10

m avg 0.080 0.071
max 0.72 0.91
std 0.085 0.079

10
-2

0m

avg 0.11 0.095
max 1.2 1.3
std 0.12 0.10

20
-3

0m

avg 0.21 0.17
max 2.9 3.0
std 0.26 0.22

G
lo

ba
l avg 0.11 0.097

max 1.1 1.1
std 0.11 0.097

Table 2.4: Training results.

shadows, sun reflection and partial blinding. In the same way, also in the
nighttime environment (about 1% of training examples) the network shows
consistent performance, figure 2.24.
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Figure 2.20: CenterNET good predictions (red) with annotation (green).

Figure 2.21: CenterNET prediction failures (red) with ground truth (green).

Figure 2.22: CenterNET acceptable predictions (red) with ground truth
(green).
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Figure 2.23: CenterNET predictions in adverse lighting (red) with ground
truth (green).

Figure 2.24: CenterNET in nighttime environment (red) with ground truth
(green).
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2.3.5 Conclusions and future development

CenterNET is a novelty application of CNN in the context of autonomous
driving and a new approach to ego-lane detection. The network is able to
perform detection within a satisfying accuracy in challenging environments,
without being constrained to the presence of visible lane markings. It also han-
dles arbitrary road shape, without limitations to predefined models. Moreover,
the newly introduced semi-automatic annotation procedure enables fast and
efficient production of training examples, making possible to handle arbitrary
scenarios within a short development time.

CenterNET has been successfully deployed on DEEVA, helping with the
task of autonomous navigation in difficult environment.

There are however some limitations that must be highlighted.

Figure 2.25: Example of driving case where the image contains the road only
in the very bottom rows.

Predicting a fixed-size ego-centerline has the advantage of making the ar-
chitecture simple and the problem relatively easy to learn. A major drawback
is that, at test time, there is no mean to establish if the centerline is actually
present in the image rows. While normal driving condition will, most likely,
place the centerline in the image, if the car faces something that’s not the



2.3. CenterNET 73

road (for example during a tight turn), the network will still make a predic-
tion for the rows selected at training time. Image 2.25 shows an example of
such condition, occasionally occurring in some driving scenarios. To overcome
this limitation, the network should be able to dynamically adjust the predic-
tion range based on the image content. The typical deep learning networks
have a static architecture, meaning that the “shape” of the output is fixed
when defining the network. To allow a dynamic prediction range, there are
two main possible approaches.

One solution is to move from a pure feed forward architecture to a mixed
feed forward and recurrent architecture. In particular, the fully connected layer
of the inference block should be replaced with a one-to-many RNN7[61]. This
RNN would be trained to output a sequence of prediction, one for every valid
row of the image, conditioned on the extracted feature vector. These kind of
RNN are referred to as one-to-many because they output an arbitrary sequence
of values for a single input [62]. The assumption here is that the valid rows
in the image are always a contiguous interval starting from the bottom of the
image; in other words when the image contains an invalid row, moving toward
the top, also the remaining ones are considered to be invalid.

An alternative approach is to keep a pure feed forward architecture, but
augment the network with an additional output vector that express the prob-
ability of the rows to be valid. This additional vector would be used at test
time to assess for which rows the network prediction is valid. The potential
advantage of this solution is that it avoids a recurrent architecture that is
known to be more difficult and less efficient to train.

Another limitation of the proposed CenterNET architecture is that it is tied
to the concept of ego-lane. While being relevant in the context of autonomous
navigation, the concept can be blurry, for example when changing lane, and
in the general case it would be helpful to have information about all the
available lanes. To overcome this limitation it could be possible to change the
inference block with a series of upsampling convolutions [63] (also known as full

7Recurrent Neural Network
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convolutions or fractionally strided convolutions) that produce a 2 dimensional
output. This output image could be interpreted as the probability of a given
pixel to belong to a centerline of some lane. Using the same semi-automatic
annotation, with multiple annotation laps, it could be possible to train such a
network to predict the center of all the lanes present in the image.

The proposed solutions would allow to overcome the highlighted limita-
tions, delivering a more flexible and powerful CNN based lane detection.



Chapter 3

Data Fusion: Road Path
Estimation

3.1 State of the art

The previous chapter introduced a novelty approach to lane detection that
tries to overcome some limitations of classic methods. While the system shows
good accuracy over a variety of scenarios, the output is still affected by noise
and it’s not suitable for a direct use as a navigation reference. The presence
of noise is a common problem to every detection algorithm and the solution
commonly adopted is to add a tracking/filtering phase of the obtained results.

The tracking phase can be performed at different levels. For example [64]
tracks the final lane model’s parameters, while [45] performs tracking of the
single lane marking proposals. The tracking technique is selected according to
the specific needs. If the tracking is performed separately for each instance,
or if the problem has a unimodal distribution of parameters, some flavor of
Kalman filter is used [65, 66, 67]. When multiple hypothesis need to be tracked
at the same time, or the distribution is multinomial, the particle or PHD filter
can be used [68, 69].

A careful tuning of tracking parameters can greatly improve the stability
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and smoothness of the output, however relying on a single source of informa-
tion poses serious limitations on the overall reliability. As denoted in section
2.1, the vast majority of visual lane detection algorithms are based on lane
markings, and section 2.2 already highlighted some situations in which these
features are insufficient to identify the ego-lane. Moreover, all the vision-based
algorithms are susceptible to difficult lightning conditions and share the same
failure modes. To improve the robustness of the ego-lane estimation, the sys-
tem should integrate information coming from various visual cues and even
from sensors with different failure modes. A popular choice in the literature
is to use the LIDAR to identify occlusion due to obstacles [70], estimate the
ground roughness to help the segmentation task [71, 72] and detect curbs
and berms [73]. RADAR is another sensor that can be used to detect road
boundaries [74] or the road plane itself [75].

3.2 Proposed approach

Without a centimeter level absolute localization, recorded lane tracks are not
a viable solution, so the only navigation reference the system has is the one
that can be perceived with the on-board sensors. For this reason, in our con-
text, a stable and reliable road path estimation is of paramount importance
for autonomous navigation. Unlike most of the literature work that focus on
understanding the topology of the road, counting the lanes and estimate which
one is occupied by the ego-vehicle, I focus on getting a quantitative measure of
the ego-lane position that can act as a navigation reference for the path plan-
ner, like in [76]. This application imposes rigid requirements on the reliability
and stability of the estimation to achieve a safe and smooth navigation.

To achieve the required solution quality I propose a multi-sensors fusion
approach framed in the context of moving horizon estimation [77]. The fu-
sion algorithm leverage all the pertinent features available on the DEEVA’s
perception system: lane markings, CenterNET, radar obstacles, barriers and
curbs.
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Lane markings : the lane boundaries are identified with a lane marking de-
tector based on [45]. Using a IPM transform, the markings detected in
the image are projected on the road plane and their Cartesian coordi-
nates, with respect to the car body, are computed. As already discussed,
various condition can hinder the marking detection and this feature is
not available in all the roads. Figure 3.1 provides some examples of out-
put from the lane marking detector.

Figure 3.1: Lane markings detection output.

CenterNET : the center of the ego-lane is detected with the newly introduced
CenterNET. Similarly to lane markings, the Cartesian coordinates of the
centerline are recovered with the IPM transform. CenterNET exploits
many different visual features, but it’s subject to the camera’s failure
modes. Moreover, being a machine learning application, its stability can
only be statistically assessed and some unexpected input can induce
detection errors. Some output examples are shown in section 2.3.4.

Barriers, curbs : the disparity image from the FFN couple is used to gain
further information about the road border. Vertical contiguous barri-
ers and curbs are detected and used as indicators of the road bound-
aries. Using the disparity information, these features natively provide
the Cartesian coordinates. The performance of these applications is di-
rectly related to the quality of the disparity information. Adversarial
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lightning conditions and lack of textures can prove a serious challenge
for stereo matching algorithms with consequent degrade of the detection
accuracy. Examples of barrier and curb detections are depicted in figure
3.2.

Figure 3.2: Barriers and curbs.

RADAR obstacles : to provide robustness to the camera’s failure mode,
the RADAR information is integrated. RADAR provides a very reliable
detection for some kind of road boundaries. Light poles, street signs and,
occasionally, trees are good indicators of the road border in urban envi-
ronment. In the highway scenario the guardrail marks a neat boundary
and when driving tunnels their walls play the same role. While being re-
liable, the RADAR information is also very poor in semantic and should
be used with care especially at long detection range. Figure 3.3 shows
some examples of road boundaries properly detected from the RADAR.

All the mentioned measures are, somehow, affected by noise, so the fusion
algorithm must properly deal with detections’ imprecisions. Assuming a zero
mean noise in the data, the proposed approach utilizes a sliding window buffer
of measures to perform refined estimations. The idea is that, averaging multiple
measures, the small variations from the true value will compensate each other.
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Figure 3.3: Image and corresponding radar echoes.

Using this window of buffered measures, the fusion algorithm estimates any
number of valid lane models using little prior knowledge about the road. The
optimal estimation is provided in closed form and the procedure is independent
form the actual model used to represent the lane, that can be chosen in the
broad family of linear basis models.

The following sections detail the developed fusion algorithm, providing also
results for some actual use cases.

3.3 Algorithm

This section introduces the fusion algorithm, starting with the general opera-
tion flow and then detailing the relevant sections.

Before starting the description, it’s important to introduce some basic
concept used in the algorithm: the involved reference systems, the lane models
and the road reference.

The algorithm works in 2D, constraining the road to lay on a plane, and
uses two different reference frames: body and navigation, shown in figure 3.4.
The body frame is attached to the vehicle and it’s the one used to express
the sensors’ calibration. This means that the Cartesian measures coming from
the detection algorithms are natively expressed in this reference system. The
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Figure 3.4: Navigation and body reference systems.

other is the navigation frame, a global reference system the position of which
is fixed with respect to the world. Note that having a global frame doesn’t
mean that the system needs a precise global localization. The only require-
ment for the navigation frame is to be locally consistent: in a short period of
time, the estimated movement should be as close as possible to the real one.
The estimation of the navigation pose can come from the integration of odom-
etry and IMU signals; long-term divergence is not a concern. The meaning of
“locally” and “long-term” depends on the temporal window used for the fusion
process: it will be assumed that the movement estimation is consistent within
the temporal span of the buffered measures.

The road is considered to be a collection of lanes, so the estimation is
focused on the individual lane models. A lane model is assumed to be a function
of the body coordinates. This choice reflects and exploits the regularities of
the road shapes as perceived by the vehicle, allowing fairly simple models to
represent a great variety of situations. Moreover, the lane model is constrained
to belong to the family of linear basis functions:

y = f(x;σ) =
n∑
i=1

σiφi(x) (3.1)

where φi are the basis function, assumed to be twice differentiable. With this
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model family, computing the optimal model reduces to estimating the optimal
coefficient vector σ∗ = (σ∗1, . . . ,σ∗n)>.

The basic input of the algorithm is referred to as road reference: a col-
lection of Cartesian 2D points that can be expressed with respect to either
body or navigation frames. As an example, the output of the lane detector
is a series of road references, one for each marking, every of which contains
multiple 2D points that represent the body coordinates associated with that
marking. During the processing, additional informations are attached to the
road reference, like the source algorithm (whether it is lane marking detection,
CenterNET, etc. . . ), the buffering time and possible associations with the es-
timated models. For clarity of notation, a short label is assigned to every
detection algorithm:

lm : lane markings detection.

cn : CenterNET.

rd : RADAR.

br : barriers detection.

cr : curbs detection.

and T = {lm, cn, rd, br, cr} is used to refer to the collection of all the sources.
When fed as input, the road references are assumed to be expressed in body

reference frame relative to the current car position, also provided as input to
the algorithm. Note that if the detections comes from different time-points,
the coordinate of the relative road references must be transformed to account
for the car movement as estimated from the change of navigation coordinates.

The first operation on the input data, called preprocessing, is aimed at
reducing the number of false measures being later considered. Once cleaned,
the new road references are transformed into the navigation frame (using the
provided car position) and inserted into the road reference buffer, saving the
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original source and the time of insertion. Road references older than a config-
urable time threshold are removed from the buffer.

At this point, association between the estimated lanes and the buffered
road references are searched for. Each model is refined with the associated
measures or gets discarded if no valid associations are found. Road reference
with compatible associations to the same lane model are fused together to
improve stability.

Once the refinement is completed, or when there are no estimated lanes,
the road references from lane markings are processed searching for couples of
markings that can generate new valid lane models.

The final step consists in determining if there’s a valid ego-lane and com-
puting the output for the planning system.

The procedure is detailed by algorithm 3.1 and the following sections ex-
plain in details the relevant steps.
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Algorithm 3.1 Road path estimation
Data:

L= {l1, . . . , ln} . estimated lane models
Bt = {rrt,1, . . . , rrt,mt}, ∀t ∈ T . buffer of road references for every type of
road indicator

Input:
RRt = {rt,1, . . . , rt,qt}, ∀t ∈ T . detections for every type of road reference
pcar . car position in global reference

Output: the refined road path estimation
1: for all t ∈ T , and r ∈RRt do
2: Preprocess(r)
3: convert r in global frame
4: add r to buffer Bt . measures buffering
5: end for
6: convert Bt . . . in body reference . the model is expressed in body frame
7: for all l ∈ L do
8: UpdateModel(l,pcar)
9: RefineModel(l,Bt . . .)

10: end for
11: SpawnNewModels(Bt . . .)
12: convert Bt . . . in global reference . buffering in global frame
13: return ComputeOutput(L)
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3.3.1 Preprocessing

During the preprocessing, some heuristics are used to discard measures that
are obviously not relevant or correspond to false detection. The filtering is
based on the orientation and lateral displacement of the road reference. The
lateral displacement is considered to be the y coordinate of the geometric
center of road reference, while the orientation, when applicable, is the average
point-to-point orientation. To properly compute the orientation, the points
are sorted in ascending value of x. These values are confronted with loose
thresholds that eliminate the measures only when they’re very far from the
car or are oriented with extreme angles. The underlying assumption is that
the car is driving in the road with a coherent orientation. The actual threshold
value is specific to every kind of road reference and it’s a configuration value
provided to the algorithm.

Remaining measures are trimmed up to a confidence range, removing point
beyond this distance. The thresholds and confidence range are separate con-
figurations for every input source in T .

Once cleaned, the new road references are transformed into the navigation
frame (using the provided car position) and inserted into the road reference
buffer, saving the original source and the time of insertion. Road references
older than a configurable time threshold are removed from the buffer.
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Algorithm 3.2 Detection preprocessing
Input:

r = {p1, . . . ,pn|pi =
(
xi

yi

)
∈ R2} . road reference

t ∈ T . source type
1: function Displacement(r)
2: return 1

n

∑n
i=1 yi

3: end function
4: function Orientation(r)

5:

(
δx

δy

)
← 1

n−1
∑n−1
i=1

(
yi+1−yi
xi+1−xi

)
6: return atan2(δy, δx)
7: end function
8: function Preprocess(r, t)
9: disp←Displacement(r)

10: ori←Orientation(r)
11: if disp > dt or ori > ot then
12: discard r . eliminate di road reference
13: return
14: end if
15: for all pi ∈ r do
16: if xi >Dt then
17: discard pi . remove measures beyond confidence range
18: end if
19: end for
20: end function
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3.3.2 Update model

Algorithm 3.3 Model updates
Input:

l . lane model to be update
pcar . current car position in navigation frame

1: function UpdateModel(l,pcar)
2: P = {X,Y }← navigation points of l . saved centerline points for l
3: convert P in body frame with pcar
4: l← FitModel(X,Y )
5: end function

The lane models express the y-coordinates of the centerline given the x-
coordinates in the body reference system. Between consecutive execution of
the algorithm the car typically moves, thus the same lane centerline (that is
assumed to remain fixed with respect to the world) will be represented as a
function of the body coordinates with different σ parameters.

For each estimated model, the navigation coordinate of the centerline are
computed at the end of every execution, so the updated coefficient σ can be
computed performing a model fitting on those point converted in the new body
frame. Section 3.3.4 will detail the model fitting procedure.

3.3.3 Association and refinement

To produce a refined estimation of the road path, the existing lane models
have to be associated with the buffered road references. This association pro-
cess exploits the regularities exhibited by the environment. From the analysis
of different scenarios, it was evident that, for a given scenario, every road in-
dicator category is in a consistent relationship with the lanes. For example,
in the urban environment the distance from the curb to the lane marking is
somehow constant, and in the highway scenario the distance of the guardrail
from the lanes is fixed. These regularities are important to properly exploit
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Algorithm 3.4 Association and refinement
Input:

l . lane model to be update
pcar . current car position in navigation frame

1: function CheckAssociation(l,X,Y,t,α,ρ)
2: σ← model parameters of l
3: ∆← f (X;σ)−Y −1α(w2 +ρ)
4: if 1

n‖∆‖
2 ≤ Tht then

5: return true
6: else
7: return false
8: end if
9: end function

indicators such as curbs, barriers and radar obstacles that need to be config-
ured with a set of possible offsets from the lane border. The problem doesn’t
arise for lane markings and CenterNET that are, respectively, at the border
and center of the lane.

The association procedure checks if the considered model is compatible
with the road reference points translated with a valid offset. The translation if
defined by two parameters: α∈{−1,0,+1} indicates in which side the indicator
lays (left, center or right) and ρ is an offset additional to the lane width. The
following restrictions apply:

• α= 0 for CenterNET.

• α ∈ {−1,+1} for indicators other than CenterNET.

• ρ= 0 for lane markings.

The compatibility is assessed based on the average quadratic residual of
the lane model f(·;σ) evaluated on the coordinates of the road reference.
This value is compared against a threshold that is again specific to every
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10: function RefineModel(l,Bt . . .)
11: Xl,Yl←{} . points that will refine the lane model
12: for all t ∈ T do
13: Xt,Yt←{} . empty collection of point
14: for all rr ∈Bt do
15: X,Y ← points of rr
16: for all valid αi, ρj do . try all the combinations of α and ρ
17: if CheckAssociation(l,X,Y,t,αi,ρj) then
18: Xt←{Xt,X}
19: Yt←{Yt,Y +1αi(w2 +ρj)} . add the translated points
20: break
21: end if
22: end for
23: end for
24: merge road references with compatible associations
25: σt← FitModel(Xt,Yt)
26: add to Xl and Yl, Nt samples of f(·;σt) between [minXt,maxXt]
27: end for
28: if Xl = ∅ then
29: discard model l
30: else
31: σ← model parameters of l
32: add to Xl and Yl, Nself samples of f(·;σ) between [minXl,maxXl]
33: σ← FitModel(Xl,Yl)
34: adjust lane width
35: end if
36: end function
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road reference type. The actual value for the threshold must be chosen as
a compromise between rejecting non-pertinent measures and adapting to the
change of the road shape. If a model doesn’t generate any valid association it
gets discarded.

To allow for a configurable confidence for each indicator type, the associa-
tion process is carried out separately for each buffer type. Once all the associ-
ations have been determined for a given road reference source, a new model is
estimated from their points translated with the associations parameters. This
new model is sampled along the x-span of the relative measures, extracting a
configurable number of equally spaced samples: these sampled points will be
later used to refine the lane model estimate. This process is repeated for every
type of road reference that gives positive associations, collecting together the
points. To further reduce noise, some samples are collected also from the old
model. The new estimate is produced fitting all these points with a new model
that will replace the old one.

To improve the stability of the algorithm, the road references from the same
source that are associated with the same parameters α and ρ are considered
to represent the same physical indicator and are merged together.

The final refinement is made on the estimated lane width. When the model
is associated with road references coming from lane markings on both sides, a
new estimate of lane width is provided as a difference of the road references’
lateral displacement (as computed by algorithm 3.2). To smooth out oscilla-
tions due to detection noise, the accepted value is an exponential average of
the old width and the new estimation.

3.3.4 Model fitting

Given the coordinate X = (x1, . . . ,xm)> ∈ Rm and Y = (y1, . . . ,ym)> ∈ Rm of
a set of points, the model fitting is performed minimizing the mean square
error:

E(σ) = 1
2‖Y −f (X;σ)‖2 (3.2)
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Algorithm 3.5 Model fitting
Input:

X = (x1, . . . ,xm)> . x coordinates
Y = (y1, . . . ,ym)> . y coordinates

1: function FitModel(X,Y )
2: build Φ(X) . kernel matrix
3: return

(
Φ(X)>Φ(X)

)−1
Φ(X)>Y

4: end function

over the model’s parameters σ ∈ Rn, where the model function f is applied
element-wise on the components xi of X. The result is the parameters’ vector
σ∗ = (σ∗1, . . . ,σ∗n)> that satisfy:

σ∗ = min
σ
E(σ) = min

σ

1
2‖Y −f (X;σ)‖2 (3.3)

Exploiting the linearity of f respect to σ:

f (x;σ) =
n∑
i=1

σiφi(x) (3.4)

the function evaluation f (X;σ) can be rewritten as:

f (X;σ) = Φ(X)σ (3.5)

where the matrix Φ(X) ∈ Rm×n is constructed in the following way:

Φ(X) =


φ1(x1) φ2(x1) . . . φn(x1)
φ1(x2) φ2(x2) . . . φn(x2)

...
... . . . ...

φ1(xm) φ2(xm) . . . φn(xm)

 (3.6)

The problem can be expressed as:

σ∗ = min
σ

1
2‖Y −Φ(X)σ‖2 (3.7)
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from which is evident that E(σ) is a convex function of σ. From the convex
optimization theory, follows that if a local minimum exists, it is also a global
minimum [78]. Therefore σ∗ must be solution of:

∂E

∂σ
= 0 (3.8)

Expressing the equation as:

∂

∂σ

1
2 (Y −Φ(X)σ)> (Y −Φ(X)σ) = 0 (3.9)

it can be shown that the solution is:

σ∗ =
(
Φ(X)>Φ(X)

)−1
Φ(X)>Y (3.10)

The matrix
(
Φ(X)>Φ(X)

)−1
Φ(X)> is called Moore-Penrose pseudoinverse of

Φ(X) and can be efficiently computed from the QR factorization [79].

3.3.5 New model creation

The initialization of new lane models is performed through the analysis of lane
markings alone. In particular, the lane marking buffer is searched for couple
of road reference that are not associated to the same model and are placed at
a relative distance compatible with a lane.

If no models are currently being estimated, the road references from lane
markings are subject to a pre-association phase that merge together measures
that correspond to the same physical marking, as determined by the position
and orientation of the road references.

To initialize a new model, the road references are required to have a min-
imum length and to have been perceived for a minimum time span. These
checks help avoid the initialization of spurious models coming from plausi-
ble false detections. Another condition is that the model fit procedure gives
a bounded residual, meaning that the two markings need to have a similar
shape and compatible with possible road models.
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Algorithm 3.6 New models creation
Input:

Blm = {rr1, . . . , rrn} . lane markings buffer
L . estimated models

1: function SpawnNewModels(Blm,L)
2: if L= ∅ then . perform pre-association
3: for all ri, rj , i 6= j ∈Blm do
4: di,oi←Displacement(ri),Orientation(ri)
5: dj ,oj ←Displacement(rj),Orientation(rj)
6: if |di−dj |< Thd and |oi−oj |< Tho then
7: merge ri and rj
8: end if
9: end for

10: end if
11: for all ri, rj , i 6= j ∈Blm do
12: di,dj ←Displacement(ri),Displacement(rj)
13: if wmin < |di−dj |<wmax then . min and max lane width
14: X,Y ← points of ri and rj
15: l← FitModel(X,Y )
16: if l is feasible then
17: if L= ∅ or @l̂ ∈ L|not Compatible(l, l̂) then
18: L←{L,l}
19: end if
20: end if
21: end if
22: end for
23: end function
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24: function Compatible(l, l̂) . l new model, l̂ estimated model
25: Y = {y1, . . . ,yn}← y-samples of l
26: Yav,Yvar← average and variance of Y
27: Ŷ = {ŷ1, . . . , ŷn}← y-samples of l̂
28: Ŷav, Ŷvar← average and variance of Ŷ
29: if |Yav− Ŷav|<wmin or |Yvar− Ŷvar|> Th then
30: return false
31: else
32: return true
33: end if
34: end function

When new models are created, they are checked against some validation cri-
teria like having limited lateral offset, curvature and orientation offset. More-
over, when there other models already exist, these are used to ensure that the
new models don’t lay in the area of an existing lane and that the shape is
consistent withing the same road. The initial width for the new models is set
to a default parameter and later refined with lane markings.

3.3.6 Output computation

The final step of the algorithm is the output computation. This output is
intended to be used as a navigation reference for the planning stage.

To comply with the planner requirements, the Cartesian coordinates of the
lanes’ centerline must be augmented with orientation, curvature and width.
While the width is directly estimated, the orientation and curvature can be
easily recovered from the first and second derivative of the lane model f . Each

point pi =
(
xi

yi

)
has orientation and curvature equal to:

θi = atan
(
f ′(xi)

)
(3.11)
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Algorithm 3.7 Output computation
Input:

L . estimated models
1: function ComputeOutput(L)
2: O←{}
3: for all l ∈ L do
4: σ← model parameters of l

5: P =
{
pi =

(
xi

yi

)
|yi = f(xi;σ)

}
. position sampled from the model

6: Θ = {θi = atan(f ′(xi;σ))} . orientation of the lane

7: K =
{[

f
′′(xi;σ)

1+f ′(xi;σ)2

] 3
2
}

. curvature of the lane

8: O←{O,P,Θ,K}
9: end for

10: return O

11: end function

κi =
[

f
′′(xi)

1 +f ′(xi)2

] 3
2

(3.12)

Based on proximity considerations, the lanes are also ordered and the left-
right relationship are reflected in the data structure used to communicate with
the planner.

3.4 Results

The road path estimation algorithm has been successfully deployed on DEEVA.
It enabled stable and comfortable navigation with reference from sensory in-
put. Quantitative results are presented for two different scenarios, indicated
with I and II. These two test case feature different environments with distinct
challenges.
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The results are presented using a simple 2nd order polynomial as lane
model:

f(x;σ) = σ0 +xσ1 +x2σ2 (3.13)

This model, while being very simple, it’s sufficient to represent a variety of sit-
uations and shows a good compromise between noise rejection and expressive
power.

The ground truth used to provide the results is obtained from the Center-
NET annotation laps: it’s the recorded position of the car driven in the middle
of the lane (see section 2.3.1 for details). For this reason, it should be kept in
mind that the accuracy of the ground truth itself is within the limits of human
driving. The error is presented as the distance of the estimated centerline from
the ground truth and is divided based on the distance of the estimate from the
car. Note that the most relevant error is the closest to the car (within the first
10 meters), because it’s the one actually used to navigate. The accuracy of the
prediction further from the car it’s still important to plan the path ahead, but
before the vehicle reaches those points they will be iteratively recomputed. To
highlight the improvement due to the fusion of multiple source, the error will
also be computed using lane markings as the only input.

To present a fair evaluation, in both scenarios the results exclude the round-
abouts because they’re beyond the limits of both the perception system and
the lane model representation.

The following sections presents the details and results for the two scenarios.

3.4.1 Scenario-I

The first presented test case, scenario-I, is a rural road with two lanes for each
driving direction, corresponding to the “Parma fiere” area, picture 3.5. Figure
3.6 shows a camera image of the environment in the condition used for testing.

In scenario-I the lane markings are quite visible and part of the course
is lined by a guard rail. Due to the relatively high speed of the track, the
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Figure 3.5: Parma fairs, with track highlighted in red.

(a) example of scenario-I (b) long turn

Figure 3.6: Examples of test scenario I.

algorithm should provide an estimation of, at least, 40m. The major difficulty
is represented by a long turn driven in both ways, shown in picture 3.6b. Figure
3.7 shows the track plot where the red areas correspond to roundabouts and
have been removed from error computations.

The global error statistics are:



3.4. Results 97

Figure 3.7: Scenario-I track.

Global
Distance [m] Average [m] Max [m] Std [m]

<10 0.056 0.33 0.05
10-20 0.079 0.48 0.067
20-30 0.12 0.65 0.11
30-40 0.17 1.1 0.19
40-50 0.24 1.8 0.27
50-60 0.26 1.3 0.29

Note that, close to the car, the maximum error is less than 40cm, which is
enough to safely navigate the road that has a lane width of 3.4m. Image 3.8

Figure 3.8: Error on the track.

shows the error within the first 10 meters plotted on the track.
To gain intuition of the value added with the fusion of different informa-

tions, the next table report the error obtained using only lane markings:
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Lane markings only
Distance [m] Average [m] Max [m] Std [m]

<10 0.16 0.85 0.15
10-20 0.15 0.78 0.15
20-30 0.16 0.85 0.15
30-40 0.17 1.1 0.19
40-50 0.24 1.7 0.27
50-60 0.24 1.3 0.33

Note how, due to the good visibility of lane markings, the average error is
very similar. However in the proximity of the vehicle, using other informations
improves and stabilizes the estimation, reducing also the maximum error.

To provide a further hints on the filtering action of the algorithm, in figure
3.9 a detail of the course is plotted with all the raw measures overlaid.
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(a) Areas where the raw measurements are shown.

(b) Central roundabout

(c) Long turn

Figure 3.9: Raw measures in scenario-I.
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3.4.2 Scenario-II

(a) Cluttered urban environment. (b) Tight turn with little indicators.

Figure 3.10: Test scenario-II: Parmamia.

The second test case, shown in image 3.10, comes from a urban environ-
ment with a single lane for driving direction. It corresponds to the “Parmamia”
area in the city of Parma, image 3.11. This scenario is much more challenging
as it features tight turns and a cluttered environment that induces many false
detections. It also pushes to the limit the simple 2nd order polynomial model.

The hardest segment is a narrow road, without lane markings and little
of other indicators, that exhibits a turn close to 90◦ followed by a change in
the curvature direction, figure 3.10b corresponding to the green area in plot
3.12. This is the only situation where the algorithm is not able to consistently
provide a navigation reference. It would be possible if the parameters were
tuned specifically for this case, but the settings are kept constant for all the
run.

The global error statistics are:
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Figure 3.11: Satellite view of test scenario-II.

Global
Distance [m] Average [m] Max [m] Std [m]

<10 0.16 1.5 0.13
10-20 0.25 2.3 0.19
20-30 0.46 4.8 0.4
30-40 0.59 4.6 0.37

and image 3.13 shows how the error is distributed in the track. Note how
the biggest error correspond to the left turn at the top: right after the turn
the model is invalidated because the sensible detections becomes very sparse
and, due to model limitations, the algorithm is unable to perform correct
associations. This situation is depicted in figure 3.14b.

The errors obtained using only lane markings are the following:
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Figure 3.12: Track of test scenario-II. Red areas correspond to roundabouts
and the green square indicates the hardest pass of the course.

Lane markings only
Distance [m] Average [m] Max [m] Std [m]

<10 0.35 7.8 0.46
10-20 0.75 25 1.7
20-30 0.53 6.2 0.8
30-40 0.71 6.1 1.1

It’s evident that the fusion of multiple indicators improves the results and,
especially, increases the overall robustness as indicated by the difference in
the maximum error.
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Figure 3.13: Distribution of scenario-II errors on the map.
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(a) Areas where the raw measurements are shown.

(b) Left turn on top.
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(c) Bottom straight road.

Figure 3.14: Scenario-I raw measures.
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3.5 Conclusions and future development

The previous section introduced a fusion algorithm for road-path estimation
from multiple road indicators. The tests conducted on different scenarios point
out the ability of the proposed approach to leverage the different information
sources and provide a stable measure of the road path. It shows consistent
improvement over the estimation from lane markings only in terms of accuracy
and stability of the measure. The algorithm was also successfully employed on
DEEVA to perform autonomous navigation from sensory reference.

There are however some limitations that must be highlighted.
First, constraining the road model to be a function in body coordinate can

be too limiting, especially in urban environment. In particular, roundabouts
cannot be represented because the lane has multiple y values for the same
x. This limitations could be removed switching to a bi-dimensional approach,
like potential fields, but this would greatly impair the ability to ignore false
detections. Overall, the benefits of imposing a model seems to overcome the
shortcomings. Another problem with using a fixed model is that it can fail
to let the algorithm adapt to the changing condition of the road. If we had
clues about the approximate shape of the road, coming for example from
ADAS maps, the algorithm could adapt the model to the actual conditions.
For example, knowing that a road is straight, the algorithm could use first
grade polynomial further improving the noise rejection.

The other major limitation is the need of manual parameter tuning. The
procedure’s outcome depends on many configurations parameters that need
to be adjusted for the different environments. To overcome this problem, the
algorithm could adjust the additional offsets ρ observing the distance of other
road indicators with respect to the associated lane markings. Such process
would introduce more variance in the estimation, but could be able to adapt
the parameters to the changes in the environment.



Chapter 4

Planning: Local Trajectory
Computation

4.1 State of the art

The problem of planning arises in any case where there is an agent that needs
to achieve some goal through actions. This problem is ubiquitous in robotics
and it is of central importance for autonomous vehicles.

The formulations of the planning problem are as various as its possible
applications. In the context of autonomous driving, in the most general terms,
planning refers to the process through which the vehicle exhibits intelligent
behavior given an understanding of the surrounding environment. This general
definition is usually broken down into 3 levels of decreasing abstraction:

Route planning: this is the highest level of abstraction in the planning pro-
cess. The goal is to select a route through the road network that would
take the vehicle from the current position to the requested destination.
The road network is normally represented as a directed graph and the
problem reduces to graph path searching. However, due to the potential
large (continental) scale of the graph, classic approaches like A* and
Dijkstra [80, 81] might be unfeasible and specialized large-scale algo-
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rithm must be used [82]. This functionality is analogous to that of a
GPS navigator and is required only to achieve autonomy of SAE level 3
or higher.

Behavioral planning: once a sequence or roads has been set, the vehicle
needs to navigate those roads and act according to the road infrastruc-
ture and other road participants. Defining a sequence of driving behavior
to safely navigate along the route is the task of the behavioral planner.
This refers to taking over the tactical aspects of driving, for example
deciding when to change lane, stop at a stop line and yield at inter-
sections. The behavioral planning problem has a discrete nature and
methods based on finite state machines have been the dominant ap-
proach for years [83]. The need to model uncertainty and more complex
interactions, led to the use of probabilistic planning formalisms based
on Markov Decision Processes and their Partially-Observable variants
[84, 85].

Local trajectory planning: this is the planning level with the lowest ab-
straction, that deals directly with the car movement. After choosing a
driving behavior, a motion planner is responsible for finding a reference
trajectory that implements the required behavior. The term trajectory
is used to indicate a feasible series of states for the system (position and
orientation for the car), with the additional information of the tempo-
ral instants they should be visited.There are several approaches to the
solution of the motion planning problem.

In my work, I focused on the local trajectory planning. The problem can
be formalized in the following way. Let X be the configuration manifold and
Xobs ⊆X the set of configurations that results in the system being in collision
with obstacles. Defining Xfree = X rXobs the set of free configurations and
Xgoal the set of target configurations, such that Xgoal∩Xfree 6= ∅, the trajectory
planning can be stated as finding a curve, function of time, π : [0,T ]→X such
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that:
π(0) = zinit
π(T ) ∈ Xgoal
subject to:

π(t) ∈ Xfree ,∀t ∈ [0,T ]
D(π,π′,π′′, . . .) ,∀t ∈ [0,T ]

Where D(·) indicates a set of possible additional constrains that must be
satisfied.

In the context of autonomous cars, X is usually the pose and speed of the
vehicle so that z = (x,y,θ,v)> ∈X = R2×S1×R specifies the 2D position, ori-
entation and speed of the vehicle. The car model is also subject to differential
constraints that can be derived from the equivalent bicycle model [86], shown
in figure 4.1. Assuming zero side-slip of the wheel, the kinematic equations

Figure 4.1: Equivalent bicycle model for car-like kinematics.

are: 
ẋ = v cos(θ)
ẏ = v sin(θ)
v̇ = a(t)
θ̇ = v

L tanδ(t)

(4.1)
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where δ is the steering angle, L is the car wheel-base and a the car’s longitu-
dinal acceleration. The coordinates (x,y) are the one of the rear axle’s center,
which is the reference point on the car used to derive the equations. The be-
havior of the system is determined by the control functions δ(t) and a(t) that
are subject to the bounds constraints:

δmin ≤ δ(t)≤ δmax ,∀t
amin ≤ a(t)≤ amax ,∀t

(4.2)

that represent the intrinsics limits of the vehicle of having a minimum turn-
ing radius and limited acceleration/braking power. For a trajectory π to be
feasible, it must satisfy (4.1) and (4.2) so they must be included in D(·).

The problem statement is usually reformulated to frame it in the context
of the solution method applied, but the basics requirements stay the same: the
trajectory must be feasible, free from collisions and reach some kind of goal.
In the context of autonomous driving, there are three main approach families
to the solution of this problem: lattice search, RRT and variational methods.

Lattice approaches reduce the planning problem to a graph search prob-
lem. The graph is generated from a set of proper motion primitives, also called
generators, and exhibits a lattice structure meaning that each vertex can be
expressed as a linear combination of the graph’s generators. The lattice graph
shows a regular structure, see image 4.2 for a comparison between lattice and
non-lattice graphs taken from [87]. Choosing the appropriate motion primi-
tives, this approach can easily handle dynamic-constrained system [88] and a
trajectory can be generated including time in the space of the graph [89]. Re-
moving edges that intersects obstacles, the planning is then performed search-
ing a path in the graph that reaches the goal region while optimizing some
cost.

RRT, which stands for Rapidly exploring Random Trees [90], is another
family of approaches that requires the search over a graph, but the graph
generation process is profoundly different. The “rapidly exploring” property
comes from the fact that the vertices of the graph are sampled from a dis-
tribution that covers all the available space. When a new vertex is drawn
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Figure 4.2: Comparison of the space coverage of lattice graph (left) and non-
lattice graph (right).

from the appropriate distribution, the graph is expanded including an addi-
tional vertex that connects the new one with the closest edge. The procedure
that connect the vertexes can account for the system dynamic and make sure
that the path is collision-free. While the original algorithm has been shown to
converge, almost surely, to a sub-optimal solution, the variant RRT* [91] is
probabilistically optimal given enough computation time.

A totally different approach is the one of (direct) variational methods,
that frame the problem of planning in the general framework of non-linear
continuous optimization. So the planning problem is expressed as:

argmin
π∈X×T

J(π)

subj. to: π(t) ∈ Xfree ,∀t ∈ [0,T ]
π(0) = zinit
π(T ) ∈ Xgoal
f(π,π′,π′′, . . .) = 0 ,∀t ∈ [0,T ]
g(π,π′,π′′, . . .)≤ 0 ,∀t ∈ [0,T ]

For a properly designed J . To leverage the existing non-linear optimization
methods, the infinite-dimensional trajectory space is projected on a finite-
dimensional vector space. The planning is then performed optimizing J over
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this vector space, mapping vectors to possible trajectories [92, 93].The system
dynamic is handled as equality constraints of the optimization problem.

These approaches are fundamentally different and further considerations
will be provided in the next section.

4.2 Proposed approach

All the approaches presented have been employed in the field of autonomous
driving, but they have very different properties and they’re not all suitable to
be used in the context of this research.

Lattice search, while being very successful with mobile robots, can pose
substantial difficulties in the case of self-driving car. The main problem is the
choice of the motion primitives used to generate the graph. With a very struc-
tured environment, like a urban road, finding primitives that both generate
a lattice and adapt to the widely varying road shape can be difficult. Even
discarding the requirement of the graph being a lattice, the size is exponential
in the number of motion primitives (each node can be expanded with any of
them) so choosing a large number of primitives can lead to a huge graph, and
thus long computation time, while selecting too few can result in rough final
trajectories.

Also RRT have some shortcomings: the random sampling might results in
wasted computation time to explore regions of little interest. Even for RRT*
a large number of iterations may be required to find a trajectory free from
unwanted oscillations. Moreover, the extensive computation required to build
the whole tree offers limited benefits in a highly dynamic, unpredictable envi-
ronment and alternate version designed to explicitly deal with replanning [94]
have a run time of several tens of seconds. Overall, their random and iterative
nature makes them mostly unfit for real-time applications.

On the other hand, variational methods are widely know to quickly con-
verge to local minima of the cost function. While this has been seen mostly
as a problem, we must recognize that, with a properly designed cost function,
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the fact that the algorithm doesn’t provide the true global optimum is of little
practical interest, as long as the solution is safe and comfortable. Moreover,
the variational methods have the tremendous advantage of allowing the opti-
mization of an arbitrary cost function J . This flexibility helps overcome what
I think is one of the biggest limitations of classic approaches: the definition
of Xgoal. While some scenarios offer a natural concept of Xgoal, i.e. the final
pose for a parking maneuver, there are cases where these intermediate goals
are not readily available. As an example, the navigation of a lane has the final
goal of reaching the end of it (maybe the next junction) but that might be
beyond the planning horizon when the car is just at the beginning of the road.
Choosing intermediate goal regions along the way is less straightforward than
it seems:

• The goal region must be actually accessible, otherwise the algorithm
might run forever. Even in case of safeguard to prevent infinite loops,
there must be a criterion to select the best trajectory among those that
fail to reach the goal.

• Having a goal region that is too wide, to prevent unaccessible regions,
might instead result in a premature algorithm termination for reaching
a goal that is too close. Preventing this behavior means having, again,
a criterion to establish which final point / solution trajectory is better
among those that reach the goal zone.

These difficulties arise because the problem actually lacks the concept of in-
termediate goal. Beyond staying within the lane boundaries, we don’t want to
constraint the car to be in a certain region at a certain time, we just want it
to progress safely along the road toward the true final goal. This concept of
progress fits nicely in the optimization framework.

Because of their efficiency and flexibility, I decided to adopt a variational
approach to the solution of the trajectory planning problem. The outline of
the developed method is given next, with details in the following sections.
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The planning problem is known to incur in what’s known as “the curse of
dimensionality” [95], that basically imply that the problem difficulty is expo-
nential in the dimensionality of the solution space. Since the trajectory belong
to the Cartesian product of the configuration space and time span, X ×T ,
it implies that solving for a trajectory is strictly harder than finding a path
and, subsequently, the speed to traverse it. This would amount to finding
two functions π : [0,1]→X and σ : [0,T ]→ [0,1] that combined together are
equivalent to a trajectory. With little reformulation, the kinematic car model
admits a clean separation between the path, determined by the curvature func-
tion, and its travel speed, which is the longitudinal car velocity. To improve
the computational efficiency, the trajectory planning problem is hence split in
the path planning and speed tuning problems. This technique, called “speed
tuning method”, is a known trick to reduce the computational complexity of
planning problems [96].

The proposed approach exploits the speed tuning method and split the
problem in path and speed planning. Path planning is solved with a variational
approach, while the speed is computed with reactive policies.

To properly define the scope of the developed trajectory planner, I restrict
my focus to the problem of navigating a reference path with given bound-
aries, obstacles and speed limits. This focus is not excessively restrictive since
such trajectory planner can be used to perform lane keeping, lane change and
junction negotiation and thus covers most of the driving scenarios, given the
proper behavioral planner and reference path.

The navigation reference is assumed to be provided as a sorted series of
waypoints that have the following information:

• 2D Cartesian coordinate of the center.

• Orientation.

• Width.

• Curvature.
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• Speed limit.

Of these information, the coordinate of the center, orientation and width are
used to perform path planning, while the curvature and the speed limit are
relevant to choose the proper speed for the planned path. When, during lane
change, two or more lanes are available they will be represented as separate
navigation references with adjacency informations.

For what concern the obstacles, the separate solution for path and speed
forces a distinction on their type. There are obstacles that must be avoided
with evasion maneuvers and thus influence the shape of the path. These are
mostly static obstacles that are found within the road boundaries (parked
cars and general small obstacles) and will be called raw obstacles. There are,
however, obstacles that must be avoided without changing the shape of the
driven path, but adjusting the car speed accordingly. These are typically the
other road participants, vehicles and crossing pedestrians, and will be called
road obstacles.

With the introduced distinctions, the following sections will explain in
detail the planning strategies for both path and speed.

4.3 Path planning

For the sake of efficiency, the trajectory planning problem is solved as path
planning followed by speed planning. To perform this separation, the derivative
of the state variables (x,y,θ)> ∈R2×S1 are taken with respect to the traveled
space:

x′ = dx

ds
= dx

dt

dt

ds
= ẋ

1
v

(4.3)

Thus the system (4.1) becomes:
x′ = cos(θ)
y′ = sin(θ)
θ′ = tan(δ)

L

(4.4)
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where the equation relative to the dynamic of v has been discarded. Introduc-
ing the vehicle curvature κ= tan(δ)/L, the final dynamic is:

x′ = cos(θ)
y′ = sin(θ)
θ′ = κ

(4.5)

with the constraint:
κmin ≤ κ≤ κmax (4.6)

Since the integration variable is the traveled space s, also the control κ is a
function of s.

The manifold R2×S1, obtained from the Cartesian product of R2 with the
unit-circle S1, is called Special Euclidean group of order 2 and will be indicated
with SE(2) [97].

The inputs to the path planning process are:

• The initial state for the car zinit.

• The navigation reference R, as a series of waypoints with position, width
and orientation.

• The raw obstacles Or.

Equations (4.5) constrain the evolution of the path in the configuration
space SE(2) and hence, given the initial state zinit, the path is completely
determined by the curvature function κ(s) and the total traveled space sf . For
this reason, the projection of the path on a finite-state space ca be easily done
finding a parametrization of the curvature function κ. Exploiting the curvature
parametrization, the proposed variational approach finds the optimal path P
minimizing a cost function J(P,κ;R,Or) over the curvature parameters space,
as shown in algorithm 4.1.

The next sections detail the ingredients of the path planning procedure.
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Algorithm 4.1 Path planning procedure
Input:

zinit . initial state
R . navigation reference
Or . raw obstacles

Output: best path P ∗

1: p← initial guess p0

2: while not termination condition do
3: κ← curvature from parameters p
4: P ← path determined by κ and zinit
5: c← J(P,κ;R,Or)
6: p← optimization step with p and c
7: end while
8: return the path from the best parameters p∗

4.3.1 Curvature parametrization and path computation

Choosing a parametrization basically means constraining the curvature func-
tion to belong to a certain functions family. There are infinite possible fam-
ilies, thus some criteria are needed to drive the choice. From the analysis of
the problem, the following requirements can be derived:

1. The parametrization should be, relatively, low dimensional to allow a
fast optimization.

2. The total length of the path should be derived from the parameters to
allow adaptive path lengths.

3. The parametrization should have enough expressive power to allow both
smooth driving and sharp avoidance maneuvers.

4. It should be easy to enforce the limited-curvature constraint (4.6).

As an example, [92] utilizes a 5-dimensional parameters vector to represent
a 3rd degree polynomial with the final length. While this representation meets
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some of the requirements, it also has some problems. Besides the poor nu-
meric conditioning of polynomials coefficient and the limited expressive power
(for example constant radius turns are not part of the family), this represen-
tation has the big disadvantage of not having a natural way to enforce the
limited curvature constraint. The authors, in fact, were forced to impose the
approximate proxy condition:∫ sf

0
κ(s)2ηds < κ2η

max (4.7)

that for η ∈ N,η� 1 is somehow related to the maximum curvature.
To overcome these limitations, I propose to choose the curvature function

to be piecewise linear, such that the parameters represent the control points,
equally spaced in its total length. The parameters vector (κ0,κ1, . . . ,κN−1,sf )> ∈
RN+1 represents a sequence ofN−1 linear segments {(κ0,κ1),(κ1,κ2), . . . ,(κN−2,κN−1)}
each of length sf/(N −1). An example for N = 6 is provided in figure 4.3.

κ0

κ1

κ2 κ3

κ4

κ5

sf

κ

s

Figure 4.3: Example of curvature profile.
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In addition to being arbitrarily low-dimensional and having a variable
length, this representation format has the following advantages:

• The limited curvature constraint is trivial to apply since the values κi
are the local minima/maxima of the function.

• Not only it can represents a broad range of shapes, but the “manoeu-
vrability” of the path is inversely proportional to its length and thus fits
nicely with both long smooth turns and short sharp evasion paths.

A drawback of this format is that the curvature function κ(s) has only a
piecewise definition:

κ(s) =

 κi+ (κi+1−κi)
(N−1)s−i sf

sf
, if ∃i | i≤ s(N−1)

sf
< i+ 1

undefined ,otherwise
(4.8)

so a nice derivative expression is not readily available.
The kinematic car model (4.5) defines an ordinary differential equations

(ODE) system. Fixing the initial state zinit and the curvature function κ(s),
specifies an initial-value problem and a wide literature exists on the solution of
such problem. Since the performance are of utmost importance, error-control
solution methods are appealing since they can adjust the solution-step ac-
cording to the approximation error. The solution algorithm of choice is the
Dormand–Prince method of order 5 (DOPRI5) from the family of Runge–
Kutta with error control [98]. This algorithm is applied to integrate the system
(4.5) from the initial condition zinit to the limit value sf for the integration
variable. The intermediate states {z(s) ∈ SE(2)|s ∈ [0,sf ]} are the samples of
the final path P . While extracting a fixed number of states in [0,sf ] could be
computationally advantageous, for long paths this would mean having sam-
ples of the path that are spatially very sparse. This sparsity could pose serious
threat to safety since states might jump over obstacles and even road bound-
aries. To avoid such dangerous jumps, the states are extracted with a constant
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step ∆s, so the path:

P =

zi =


xi

yi

θi

= z(i∆s) | 0≤ i∆s≤ sf

 (4.9)

has a variable number of elements that depends on the overall length sf .
Figures 4.4 and 4.5 show examples of curvature functions and resulting paths.

Figure 4.4: Curvature profile and relative path.

This section detailed the parametrization of the curvature function and
the procedure to map this curvature to a path, given an initial state.
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Figure 4.5: Another example of curvature and resulting path.

4.3.2 Cost function and optimization

The great flexibility of the variational methods resides in the design of the
cost function J that maps a path P to a scalar cost c. This function should
be shaped to account for all the requirements on the final path:

1. It must stays within the road boundaries.

2. It must avoid collisions with static obstacles.

3. It must be comfortable.

4. It must progress along the road.

As it’s often the case, the requirements can be conflicting and some sort of
importance weights should be assigned to them. Of course safety concerns
should be primary, so requirements 1 and 2 are of higher importance than 3
and 4.
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To further guide the choice of J , there’s another important consideration
about the computational performances. Given that the computation complex-
ity is inevitably dependent on the number of elements in P , it should be
avoided introducing a further dependence on the (unknown) number of obsta-
cles. While the size of P can be limited constraining the total length sf , the
number of obstacles comes from the environment and there’s no control on
their maximum number. For this reason, the common approach of assigning
a cost inversely proportional to the car-obstacles distance, as measured from
the minimum vertex-vertex distance, introduces a potentially large computa-
tion burden on each evaluation of J . A convenient solution that permits the
seamless integration of boundaries and obstacles and that doesn’t introduce
explicit computation dependence on the number of obstacles is the use of a
potential function. Assigning high cost to boundaries and obstacles forces the
path to stay within the road and avoid collisions.

Since the optimization is likely to converge to a local minimum, J must be
designed to admit minima that correspond to acceptable paths. An information
that helps the convergence to good paths is the orientation error between the
car and the track. The dynamic of θ in the ODE is basically an integration
of κ(s), so assigning an error on the orientation provides a strong guidance
toward curvature profiles that keep the car orientated like the road, which is
often the right choice.

To address the comfort issue, the path should avoid unnecessary oscillations
and abrupt sharp turns. This factor can be evaluated directly from the κ(s)
function.

Finally, J should encourage the path to progress along the road, when
possible. This progress can be measured tracking the road span covered by
the path: the higher the difference between the first and last points on the
road, the higher the bonus for advancing along the reference.

This concludes the description of the necessary components of the cost
function J . The details for each contribution will be presented in the following
sections.
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Potential function

The potential function Φ : R2 → R assigns a scalar value to every point in
the space that represents the cost of traversing that area. This function can
embed any information that translates to zones that should be preferred or
avoided, so road boundaries and obstacles are easily embedded in the potential
function.

Since the potential doesn’t depends on the path being evaluated, but only
on the navigation reference R and the raw obstacles Or, the values of Φ can be
computed in advance to provide a fast access during the optimization process.
To precompute the function’s values, the space must be discretized in some
way and the potential evaluated on the selected locations. While using a square
Cartesian grid would be straightforward, this would result in computation and
memory being wasted for zones of no real interest since the width of this grid
should be large enough to include turns in the navigation reference. Choosing a
discretization that is memory-efficient requires to restrict the attention on the
most relevant space portion: the navigation reference. To achieve an efficient
sampling of Φ, I defined the potential on the coordinate system generated
by the curvilinear abscissa along the reference R and the orthogonal distance
from the identified point along the curve. These coordinates will be called

Figure 4.6: Cartesian and road coordinates for the same point.

road coordinates and indicated with s (curvilinear abscissa) and d (lateral
orthogonal distance). Figure 4.6 shows the relationship between the road and
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Cartesian coordinates. Sampling Φ over a road coordinates grid provides an
efficient coverage of all the relevant space for the navigation task.

To utilize such potential function, conversion between Cartesian and road
coordinates is needed. The conversion equations depend on the navigation ref-
erence R = {w1,w2, . . . ,wn} as the road coordinates unfold with the series of
waypoint. To provide a fast and efficient conversion, a linear approximation of
R will be considered, effectively discarding the orientation and curvature infor-
mation. Each waypoint wj is assumed to have Cartesian coordinates (xj ,yj)>

and curvilinear abscissa sj . Since the conversion from Cartesian to road is not
generally unique, the following assumptions will hold:

1. A Cartesian point is converted to the road coordinates that results in
the lowest orthogonal displacement.

2. In case of multiple lowest orthogonal displacements, the point is pro-
jected on the lowest curvilinear abscissa.

This amount to force the conversion procedure to return, among the possible
results, the least in lexicographic order over d and s. The pathological situa-
tions resolved by the introduced assumptions are shown in figure 4.7. Given

Figure 4.7: Ambiguous projections, wrongs marked with ‘X’.

a Cartesian point cp = (xp,yp)>, the closest segment (wi,wi+1) is identified
computing the point-segment distance and using assumptions 1-2. Introducing:

σi = wi+1−wi =
(
xi+1−xi
yi+1−yi

)
=
(

∆xi
∆yi

)
(4.10)
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σ⊥i =
(

∆yi
−∆xi

)
(4.11)

The road coordinates of rp = (sp,dp)> are obtained through orthogonal pro-
jections on σi and σ⊥i :

sp = si+ 〈cp−wi,
σi
‖σi‖
〉 (4.12)

dp = 〈cp−wi,
σ⊥i
‖σi‖
〉 (4.13)

where 〈·, ·〉 denotes the scalar product and si is the curvilinear abscissa asso-
ciated to wi. The graphical representation of this process is depicted in figure
4.8.

Figure 4.8: The coordinate (dp,sp) obtained through projection on σi and σ⊥i .

One remark is needed about the evaluation of the potential function. Since
the car is not a punctual entity its encumbrance must be accounted for. In-
stead of evaluating Φ at the corners of a box approximating the car shape,
to reduce the number of required evaluations, the width of the car wc is con-
sidered padding boundaries and obstacle with half its value. With a slightly
larger car width, this approximation is safe for small angles between the car
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and the road, which is a reasonable assumption. The length of the car lc , con-
versely, is accounted using two evaluation points: one centered in the vehicle’s
coordinates and another corresponding to the tip of the vehicle, figure 4.9. Of

Figure 4.9: Evaluation points.

these two values, the maximum is assumed to be the potential value for the
given car state.

With the conversion equations established, the process of embedding infor-
mation on the potential function is described next. Focusing on the sampling
of the function Φ, the potential is treated as being an image whose pixel
Φi,j = Φ(i∆s,j∆d) represents the samples’ value. The sampling steps ∆s and
∆d establish how the samples are distributed in the (s,d) space. In the fol-
lowing, metric measures are implicitly converted to pixel using ∆s and ∆d.
With this perspective, the embedding of information in Φ is called potential
painting.

Using road coordinates, boundaries have a very natural representation: for
every value of s, they correspond to d=±w/2, where w is the reference width.
Given the value assigned to boundaries pB, the potential image will have
two stripes of value pB at d = ±w/2 extending for wc/2 toward the center.
To ease the optimization process, instead of having a neat boundary mark,
this is linearly smoothed toward the center. Figure 4.10 shows the final effect
of painting the boundaries on the potential map. When displaying potential



4.3. Path planning 127

maps, black correspond to the lowest potential area while yellow is the highest
value.

(a) (b)

Figure 4.10: Border painting, displayed in Cartesian 4.10a and road coordi-
nates 4.10b.

Embedding obstacles requires little more work. Assuming that each obsta-
cle is expressed as the collection of contour vertices, their road coordinates are

computed with equations (4.12)-(4.13), obtaining or = {p1, . . . ,pn|pi =
(
si

di

)
}.

To handle sparse contours, the obstacles are approximated with their road-
aligned bounding box, which is a rectangle in road coordinate defined by the
two corners:

pbl =
(
sbl = mini si
dbl = mini di

)

ptr =
(
str = maxi si
dtr = maxi di

) (4.14)

See 4.11 for an example. When embedding the obstacles in the potential, two
expedients are used to help the optimization.

First, when the obstacles are located near one side of the reference it’s easy
to locate the best evasion direction. To help the path converge toward the best
avoidance maneuver, the potential is painted asymmetrically, assigning higher
cost to the “wrong” evasion side. If the potential assigned to obstacles is pO,
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Figure 4.11: Road aligned bounding box.

the obstacle is painted with values that change linearly from ηpO (η > 1) to pO
going from one side to the other. Image 4.12 shows an example of asymmetric
obstacles painting.

Secondly, to address the issue of limited planning horizon, the potential of
the obstacle is back-smoothed up to a distance proportional to the speed of
the car. If the obstacles were painted as boxes with sharp boundaries, when
planning a path the cost function would assign high cost only to paths long
enough to reach the obstacles’ zone. This would mean that, even with the
obstacles already in the potential map, the car would not react until it’s close
enough that the planned paths interact directly with the obstacles, possibly
resulting in abrupt avoidance maneuvers. Avoiding “last-moment” evasions,
requires the path to be aware of the presence of obstacle ahead; this is obtained
smoothing the obstacles’ potential in the decreasing s direction up to a distance
obtained multiplying the current car speed with a configured reaction time tr.
Figure 4.13 shows the effect of increasing speed on the potential smoothing.
To further discourage paths in collision course even with far obstacles, a small
potential εO is assigned to d= [dbl,dtr] for s≤ sbl.

The exposed procedures permit the definition of the full potential map
Φi,j . The samples are then linearly interpolated to provide access to any (s,d)
coordinates. Given the path to evaluate P = {z1, . . . ,zn|zi = (xi,yi,θi)} final
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(a)

(b) (c)

Figure 4.12: Obstacles on the track 4.12aand relative potential in Cartesian
4.12b and road coordinates 4.12c.

contribution of the potential on J is:

1
n

n∑
i=1

max{Φ(xi,yi),Φ(xi+ lc cosθi,yi+ lc sinθi)} (4.15)

where the function Φ(·, ·) subsume the conversion between Cartesian and road
coordinates. The accumulated potential is normalized on the number of states
to provide a fair comparison between paths with different number of samples.
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(a) Car speed = 0m/s.

(b) Car speed = 5m/s.

(c) Car speed = 10m/s.

Figure 4.13: Effect of car’s speed on obstacle painting.
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Orientation error

While the potential penalizes trespassing the reference boundaries, more in-
formations can be incorporated to guide the convergence even when the paths
are not crossing those boundaries. The problem with using only the potential
is that the cost is assigned on a semi-binary basis: positions inside the lane are
not penalized, regardless of the relative orientation1, while faulting the limit
results is high cost. This behavior probably reflects in the cost function as
a relatively flat region, which is known to make the optimization harder. To
compensate for this, an error contribution on the relative orientation between
the car and the navigation reference can be introduced.

The dynamic of θ, as prescribed by the equation (4.5), is a straight inte-
gration of the control function κ(s), so assigning an error on θ can provide a
strong signal to accelerate the convergence.

It must be noted that this contribution might be contrasting with the min-
imization of the accumulated potential: avoidance maneuvers take the car’s
orientation away from the one of the road. Since the potential encodes in-
formations directly related to safety, the orientation errors must be weighted
with a proper coefficient αo ≥ 0 in order to allow avoidance maneuvers when
needed.

The introduced orientation error effectively helps the convergence, but it
also introduces a side effect: the car follows the exact same shape of the road.
While this can sound pretty natural, when tested on the real car it results in
a quite unnatural driving behavior. This feeling comes from the tendency of
human drivers to “cut the corners” so, to result comfortable, the car should
drive in a similar way.

To achieve this natural driving style, the orientation error can be modified
introducing a look-ahead distance dl. For each car pose, the error contribution
is computed comparing the orientation the car would have keeping the current
curvature constant for dl meters, with the one of the reference dl meters ahead

1Assuming that also the tip of the car is inside the reference.
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from the current position.
Assuming R(s) represents the reference point with curvilinear abscissa s,

and s̄i being the curvilinear abscissa corresponding to the ith path sample zi,
the error contribution with look-ahead is:

αo
n

n∑
i=1
|Λ(θi+dlκ(i∆s),R(s̄i+dl)) | (4.16)

Where Λ(a,b) computes the distance between a and b taking into account the
S1 topology [97].

Comfort

The requirement of the path being comfortable is the most troublesome to
express, as there’s not exact definition of what “comfort” is. There is, however,
consensus in acknowledging that lateral acceleration and jerk are related to
the perceived comfort [99]. Acceleration and jerk (the acceleration’s derivative)
depend, through the car speed, on the path curvature and curvature derivative,
therefore it’s natural to impose some regularization on the function κ(s). This
regularization shall not prevent the car from correctly following the road and
avoid obstacles, hence it’s weight should be adjusted accordingly. The comfort
contribution is:

αc
sf

∫ sf

0
|κ(s)|+αc,κ′ |κ′(s)| ds (4.17)

where again there’s the normalization coefficient 1/sf to properly compare
path of different lengths.

Progress along the road

The great flexibility of variational methods reside in the possibility of incorpo-
rating the goal in the cost function. This makes possible to express preferences
for certain conditions, as opposed as fixing mandatory final poses or regions.
When not fixed final position/region is naturally available, the intermediate
goal it’s just to progress along the road and this can be easily embedded in
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J . To encourage the advancement, J assigns a reward (negative cost) at the
difference between the curvilinear abscissa of the last and first path samples,
as measured by their projection on the reference track. Note that, unlike re-
warding the total path length, this goal doesn’t encourage long paths that
oscillate within the reference.

Assuming s̄i being the curvilinear of the ith path sample, out of n, the
reward is:

αr(s̄n− s̄1)

With αr ≤ 0 to properly balance advancement against the other requirements.
This simple rewarding, however, hides potential problems. Pathological

road shapes, like the one shown in figure 4.14, might induce the path to “jump”
over the reference boundaries to gain a substantial reward (the potential pB
must be finite for optimization-stability reasons). This can be prevented with
the indicator function:

I(s̄i,s̄i+1) =
{

1 if s̄i+1− s̄i > Th
0 otherwise

Figure 4.14: Example of “jump”: cutting along the arrow, the car would gain
the bonus corresponding to the solid line.
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Including the “anti-jump” contribution, the final reward is:

αr(s̄n− s̄1) +M
n−1∑
i=1

I(s̄i,s̄i+1) (4.18)

Where M > 0 is the penalty assigned to paths that jumps across the bound-
aries. Aiming to prevent only pathological cases, M can be chosen to be as
large as it’s required to counter the reward gain from a jump.

Optimization

The previous sections described the components required for a cost function
J that comply with the requirements 4.3.2. Aggregating all the contribution,
the final form for J is:

J(p;R,Or) = J̄(P,κ;R,Or) = 1
n

n∑
i=1

max{Φ(xi,yi),Φ(xi+ lc cosθi,yi+ lc sinθi)}

+ αo
n

n∑
i=1
|Λ(θi+dlκ(i∆s),R(s̄i+dl)) |

+ αc
sf

∫ sf

0
|κ(s)|+αc,κ′ |κ′(s)| ds

+αr(s̄n− s̄1) +M
n−1∑
i=1

I(s̄i,s̄i+1) (4.19)

Where it’s implicit that P and κ are functions of the parameter vector p, as
described in 4.3.1.

To enforce the feasibility of the path, it’s simply necessary to introduce
bounds constraints in the optimization process. Assuming the parameters to
be p= (κ0, . . . ,κN−1,sf )> ∈ RN+1, a lower and upper bounds are defined as:

plb = (κmin, . . . ,κmin, lmin)> ∈ RN+1 (4.20)

pub = (κmax, . . . ,κmax, lmax)> ∈ RN+1 (4.21)

And the feasibility constraints become:

plb ≤ p≤ pub (4.22)
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where the inequality is intended element-wise. Many nonlinear optimization
algorithm can easily handle bound constraints [100].

Since κ has only a piece-wise definition and the ODE (4.5) doesn’t ad-
mit closed form solution, there is no readily available gradient expression for
J(p). Therefore, to perform optimization, two choices are available: computing
numeric gradient or use algorithms that don’t require the gradient.

To compute the numeric gradient of the function, many formulas are avail-
able with different degrees of accuracy. High order formulas provide greater
accuracy, given that the function’s higher derivatives are sufficiently smooth
[101]. Since there are no guarantees that J satisfy such conditions, the pre-
ferred formula is the cheap forward difference, that requires onlyN+2 function
evaluations. Indicating with pi, i= 1, . . . ,N +1 the components of p and with
p̄ the parameter being evaluate, the approximation formula is:

∇J |p=p̄ =


∂J
∂p1

∣∣∣
p=p̄
...

∂J
∂pN+1

∣∣∣
p=p̄


∂J

∂pi

∣∣∣∣
p=p̄
≈ J(p̄+hiei)−J(p̄)

hi
(4.23)

where ei is the ith vector of the natural basis of RN+1, and hi a sufficiently
small positive scalar.

The function J is generally not convex, so the optimization cannot be
performed with a local method, but a global optimization algorithm is needed.
The optimization results will be reported for two different algorithms: CRS
and StoGO.

Controlled Random Searches (CRS), is a global derivative-free optimiza-
tion algorithm [102, 103]. It’s sometimes compared to evolutionary algorithm,
in that it starts with a random set of samples and evolve them with local
transformation in a way similar to the Nelder-Mead algorithm [104].

Stochastic Global Optimization (StoGO) is another global algorithm that
makes use of gradient information [105, 106]. It works by iteratively dividing
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# J eval
CRS StoGO

8 parameters 16 parameters 8 parameters 16 parameters
8000 -0.051116 -0.023040 -0.026461 0.017616
4000 -0.033066 -0.005641 -0.018617 0.017616
2000 -0.019973 0.050888 -0.016061 0.017616
1000 0.024884 0.102560 -0.016061 0.075202
500 0.080545 0.190447 -0.016061 0.510867

Table 4.1: Scenario-I optimization results.

# J eval
CRS StoGO

8 parameters 16 parameters 8 parameters 16 parameters
8000 -0.029977 -0.029928 -0.097759 -0.090566
4000 -0.029942 -0.029499 -0.096771 -0.083746
2000 -0.029499 -0.029499 -0.091908 -0.083746
1000 -0.029499 -0.029499 -0.083993 -0.083746
500 -0.029499 -0.029499 -0.083993 -0.063290

Table 4.2: Scenario-II optimization results.

the bound-constrained search space into smaller hyper-rectangles via branch-
and-bound. Each subspace is searched with a variant of the BFGS local search
[107].

The two optimization algorithm are compared on 3 test cases, selected to
provide different situations:

Scenario-I : a long double turn, picture 4.15a.

Scenario-II : a straight road segment, picture 4.15b.

Scenario-III : a straight road segment with an obstacle in front of the car
position, picture 4.15c.
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# J eval
CRS StoGO

8 parameters 16 parameters 8 parameters 16 parameters
8000 0.040723 0.058243 0.075119 0.081119
4000 0.054579 0.093885 0.079349 0.087597
2000 0.078608 0.192431 0.079936 0.090856
1000 0.162671 0.280404 0.080588 0.091706
500 0.277530 0.360404 0.080588 0.091706

Table 4.3: Scenario-III optimization results.

The comparison is based on the average final value obtained for J varying
the number of allowed cost function evaluations (considering also the evalua-
tion required to numerically compute ∇J) and the size of the optimized vector
(which is 1 plus the number of curvature control points). Note that the actual
cost value it’s not meaningful because it depends on many configuration pa-
rameters (tuned to achieve the intended path shape) and the value of the true
optimum in unknown.

Tables 4.1–4.3 shows the results obtained on the three test cases. The first
consideration is that allowing too much control over the curvature function,
increasing the size of the optimized vector, makes the problem harder without
providing apparent benefits. Another consideration is that StoGO, using the
derivative information, is much less sensitive to both the maximum number
of function evaluations and the size of the optimized vector. With the excep-
tion of scenario-II, where StoGO performs much better than CRS, the general
tendency is that CRS outperforms StoGO with enough computation power.
With a C++ implementation on a Intel(R) Core(TM) i7-4790 CPU, to run
at 10Hz the real-time computation limit lies around 2000 evaluations, which
is roughly where the performance of the two algorithm match. For these rea-
sons, considering the improved robustness to compute power limitations, the
solution algorithm of choice is StoGO. Moreover, for the lack of benefits, the
path is parametrized with 7 curvature control points, for a total size of 8.
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Qualitative results will be presented for the path planning problem, solved
with the selected parametrization and algorithm.
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(a) Scenario-I

(b) Scenario-II

(c) Scenario-III

Figure 4.15: Test scenarios. The blue rectangle represents the car with the tip
of the triangle pointing in the heading direction. The black line indicates the
road borders and the black circles are simulated obstacle’s vertexes.
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4.3.3 Improving stability and planning horizon: path chunks

The introduced procedure can successfully plan local path that progress along
the navigation reference in a collision-free and comfortable way. There are,
however, some issues that must be addressed.

First, since the optimization is bounded by the computation time available
and the function evaluation cost depends on the length of the path, there
must be a reasonable bound on the maximum length of the planned path.
This length is also referred to as the planning horizon, meaning that it’s the
(distance) limit beyond which the planner is unaware of the environment.
While the obstacle embedding has been specifically designed to tackle this
problem, in some cases having a long planned path is beneficial. This is the case
of high-speed driving, where a longer preview is needed to properly stabilize
the vehicle on the path.

Secondly, a proper strategy for replanning must be defined. The planning
environment is highly dynamic, both because of its very nature and the use of
on-board sensors, thus the car must properly react to changes and this requires
an adaptation of the plan: a replan. The basic strategy for replanning is to
compute a new path from scratch every planning iteration. While it would
provide the frame-by-frame optimal path, when tested on the car this results
in a very poor strategy. Each replanning is likely to produce, possibly minimal,
modifications to the path. Even when the environment is static, due to the
different car positions, the “old” path will not generally be in the span of
possible new paths since the chosen parametrization somehow restricts the set
of feasible shapes. Due to the low-level control action, each path modification
results in a slight adjustment of the steering that is , in turn, perceived as
unnecessary and detrimental for the comfort feeling.

To provide solution to the highlighted issues, the final path is obtained
piecewise with the subsequent planning of two shorter path chunks. Once
the first path P1 has been planned, the following invocations of the planning
procedure will perform different actions. First, P1 is checked to see if it’s
still consistent with the potentially new environment, as indicated by a large
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change in the cost assigned to the path. If P1 it’s still acceptable, a new path
P2 will be computed starting from the last point of P1. Subsequently, if P1 is
valid and a path P2 already exists, the global optimization process is resumed
to further improve P2. When the car reaches P2, the first chunk is discarded
and the second will assume the role of P1. If instead, at any moment, P1 is
found to be invalid all the paths are discarded and a new one is planned from
scratch. This procedure is detailed in algorithm 4.2.

Algorithm 4.2 Chunk planning algorithm
Require:

Plan . local path planning procedure
1: function ChunkPlanning
2: if ∃P1∧ its cost has changed then
3: P1,P2←∅
4: end if
5: if ∃P1∧∃P2 then
6: improve P2

7: else if ∃P1 then
8: P2←Plan(from the end of P1)
9: else

10: P1←Plan(from the current position)
11: end if
12: return P1

⋃
P2

13: end function

The benefits of such planning strategy are manifold.
First the planned path is maintained fixed as long as it’s still consistent

with the environment. The consistency is checked in terms of assigned cost.
Filtering the small variations of cost, only large change induced by modifi-
cations of obstacles or road borders trigger a full replanning. This replanning
strategy tries to keep the path fixed, resulting in a smooth driving and reacting
only when changes in the environment pose potential threat to safety.
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Moreover, the concatenation of multiple paths results in a longer planning
horizon, providing adequate preview also for high speed driving. It must be
noted that planning a long path as two short pieces, it’s not equivalent to
perform it in a single pass. In particular, the solution might be sub-optimal
because the second path is obtained from the fixed final point of the first one,
which was optimal only respect the previous portion of potential. While lacking
theoretical optimal-guarantees this technique it’s still very useful, especially
when combined with the used replanning strategy. When keeping the path
fixed, having a further separate path head avoids the car coming dangerously
close to the end of the planned reference before computing a new one.

Lastly, another important advantage of this strategy is that, with the ex-
cept of the very first one, each path is effectively computed with a time bound
larger than the one assigned to a single execution. In a real-time context,
this ameliorate the potential problems deriving from the limited availability
of computational time.

4.3.4 Results

The introduced path planning method is consistently able to find feasible paths
that smoothly adapt to road navigation and obstacle avoidance.

Figure 4.16 show the planning results for the test scenarios selected for the
optimization comparison.

In picture 4.17 is shown the effect of the orientation error contribution on
the final solution. Note how, using only the potential function and the comfort
contribution, the path proceeds straight until it “bounces” on the borders.
Properly blending the orientation contribution helps the path to negotiate the
turn and, using the look-ahead distance, it finally achieve a natural “corner-
cutting” behavior.

The approach can successfully adapt to a wide variety of planning situa-
tions. Figure 4.18 shows examples of navigation with obstacle avoidance in a
wide track. Image 4.19 depicts navigation results in case of narrow reference
tracks.
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A big advantage of the introduced approach is that it can provide a com-
fortable driving even when the navigation reference is noisy. Explicitly in-
cluding the comfort in the cost function allows the algorithm to find a nice
balance between matching the reference shape and avoiding continuous oscil-
lations. Image 4.20 shows a comparison between the planned curvature and
the one of the intentionally noisy reference, it can be seen how the path filters
the unnecessary oscillations.

Using a properly shaped potential function, the proposed method can suc-
cessfully plan also lane change maneuvers, depicted in figure 4.21. In case of
lane change, the potential is painted with a high value for the current lane,
gradually decreasing toward to the target lane, shown in picture 4.22.

This section introduced a new approach to path planning in urban envi-
ronment based on variational methods. The algorithm is able to plan local
paths that are feasible, collision-free and follow a navigation reference. With
the introduction of a carefully designed cost function, this approach removes
the need of specifying intermediate goal positions leading to a natural driving
style. Explicitly including the comfort in the optimized function, this plan-
ner is able to effectively smooth the potential noise that affect the navigation
reference when it’s estimated from sensory data. The proposed approach has
been implemented in C++ and deployed on the DEEVA platform, enabling a
consistent real-time path planning with computation time as low as 30–40ms
on a Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz.
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Figure 4.16: Qualitative results on the test scenarios used in the previous
section.
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(a) No orientation error. (b) Simple orientation error.

(c) Orientation error with look-ahead distance.

Figure 4.17: Effect of the orientation error on the planned path.
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Figure 4.18: Obstacle avoidance results navigating a wide reference track.
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Figure 4.19: Navigation results with a narrow reference track.

Figure 4.20: Smoothing effect on a noisy reference.
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Figure 4.21: Lane change maneuvers.
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Figure 4.22: Potential map used to perform lane change maneuvers.
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4.4 Speed planning

Speed planning is the procedure that complements the path planning in com-
puting a trajectory with the speed tuning approach. Once a path in the config-
uration space π : [0,1]→ SE(2) is fixed, speed planning seeks a timing function
σ : [0,T ]→ [0,1], that specifies the speed the path should be traversed with.
With reference to the car kinematics (4.1), this is equivalent to finding an
acceleration function a(t).

The speed planning takes in consideration the dynamics neglected in (4.5):

v̇ = a(t) ,∀t ∈ [0;T ] (4.24)

amin ≤ a(t)≤ amax ,∀t ∈ [0;T ] (4.25)

where v is the longitudinal speed of the car and a(t) the applied acceleration
at time t and T it’s a chosen time planning horizon. Since the shape of the
path is already fixed, the x,y and θ coordinates are not relevant anymore and
the car is assumed to be an entity moving along an established curve, with
relevant states being now the speed v and the curvilinear abscissa s. Therefore,
the new configuration space is (v,s)> ∈R2 and the differential constraints are:

{
v̇ = a(t)
ṡ= v

(4.26)

The classic motion equations provide the explicit solution to the state evolu-
tion:

v(t) = v0 +
∫ t

0
a(τ)dτ (4.27)

s(t) = s0 +
∫ t

0
v(τ)dτ (4.28)

where v0 and s0 are the initial values for the state variables.
Beyond the limited longitudinal acceleration expressed in (4.25), there is

another constraint due to an effect not modeled in the kinematic model, but
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that can’t be neglected due to safety considerations: limited lateral accelera-
tion. This constraint is related to vehicle handling: the tires can exert only a
limited amount of lateral force due to their cornering stiffness [108, 109]. In
terms of circular motion, this translates in a maximum value of lateral accel-
eration that can be achieved by the car. This acceleration, in turns, depends
on the speed and the curvature applied to the vehicle:

ay = v2|κ| ≤ ay,max (4.29)

Considering the curvature to be fixed, the speed of the vehicle must satisfy:

v ≤
√
ay,max
|κ|

(4.30)

assuming both ay,max ≥ 0 and v ≥ 0.
Just like the curvature determines the path, the acceleration function a(t)

determines the evolution of the speed and curvilinear abscissa, thus the speed
planning reduces to finding a proper acceleration reference value. This accel-
eration should be chosen such that:

1. The car abide the speed limit laws.

2. The car doesn’t collide with other cars and abide the safety distance.

3. It respect the limited acceleration constraint (4.25).

4. The speed of the car satisfy (4.30).

5. The resulting driving is comfortable.

This problem is known to be easier to solve than path planning, thus the
proposed solution approach is based on set of reactive speed policies. Details
are given in the next sections.
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4.4.1 Speed limits

The requirements of abiding the law speed limits and not exceeding the maxi-
mum lateral acceleration both result in a upper bound for the speed of the car.
This speed limit is associated with a particular position on the road or on the
planned path, so the resulting constraint is:

0≤ v(t)≤ vmax(s(t)) (4.31)

for an appropriate function vmax(s).
The function vmax(s) aggregates three different contributions:

• The speed limit associated with road segment the car is navigating vlaw.

• The limit from the planned path curvature κp.

• The limit from the road curvature κr.

While the road curvature will not be, in general, the exact curvature the
car will follow, it still gives a very good idea of the speed a turn should be
approached with. Assuming that the curvilinear abscissa is consistent for both
the road and the path, the function vmax(s) can be chosen to be:

vmax(s) = min
{
vlaw,

√
ay,max
|κr(s)|

,

√
ay,max
|κp(s)|

}
(4.32)

where the planned path contribution is included only when applicable. Enforc-
ing the minimum upper bound will ensure that they are all satisfied. Image
4.23 shows an example of reference track with relatives speed limits.

Note that (4.32) express a mandatory speed limit that either results from
law prescription or vehicle handling limitations, but that doesn’t take into
account the comfort of driving. A strategy to seamlessly integrate the comfort
requirements is to define a secondary speed limit for the purpose. Since humans
are not sensitive to absolute speed, the comfort speed limit can be derived from
a lower lateral acceleration limit ay,comf:

vcomf(s) = min
{√

ay,comf
|κr(s)|

,

√
ay,comf
|κp(s)|

}
(4.33)



4.4. Speed planning 153

This speed limit is not mandatory, so no violent braking/acceleration actions
should be applied to strictly follow its value.

The speed planning suffers from the limited horizon problem, just like the
path planning did. For example, if the speed limit contains a sudden drop
(maybe due to a tight turn), the car will react only when the state s will reach
that point within the time horizon T . This situation might result in a unnec-
essarily late and violent braking action, or even worse if T is not long enough.
To prevent this dangerous situations, the speed limits are preprocessed with
a “backward smoothing” through a proper acceleration value as. Considering
a sampled version of the generic speed limit vx(s):

vx,i = vx(i∆s) , i= 1, . . . ,N (4.34)

the smoothing replaces each sample with the minimum between its value and
the speed needed to arrive at the next sample’s speed with acceleration as.
The equation is:

vx,i = min
{
vx,i,

√
v2
x,i+1−2as∆s

}
, i=N −1,N −2, . . . ,1 (4.35)

This smoothing ensures that the progression of speed limits can be followed
applying a brake value of at most as.

The profiles vmax and vcomf, due to their distinct nature, should be smoothed
with different braking values. The maximum speed vmax can be smoothed with
a value close to amin because it represents the feasibility limit. On the other
hand, vcomf should be smoothed with the braking value acomf that is consid-
ered to be comfortable for the passengers. Image 4.24 provides an example of
speed limit smoothed with this technique.
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Figure 4.23: Reference track with speed limit. The curvilinear abscissa is in the
origin of the Cartesian coordinates, increasing counter-clockwise. The speed
limit is set to 37m/s and lowered to enforce a maximum lateral acceleration
of 6m/s2. The shape is jagged because the track is obtained from a recorded
drive so the curvature contains some oscillations.



4.4. Speed planning 155

Figure 4.24: Speed limit with backward smoothing.
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4.4.2 Speed policies

The previous section showed how most requirements can be expressed as static
speed limits, changing with the curvilinear abscissa but fixed in time. The other
situation that needs to be considered is the one deriving from the presence of
road obstacles. Other traffic participant are entities that change state with
time and, thus, the generated constraints must be time-dependent too.

The two type of constraints, static and time-varying, are quite different and
this reflects also a distinction in the way they should be handled. In particular,
human drivers react differently to an upcoming turn and the presence of a slow
vehicle in the road. To allow for a clean separate tuning of the two different
behaviors, the proposed solution approach is based on a set of reactive policies.
The rationale behind it is that each policy is a simple method, devised to deal
with a specific defined case, that can be configured independently from the
others. Properly aggregating policies for the cases of interest, the emerging
behavior adjust smoothly to the conditions.

Three distinct policies have been identified:

Speed limit keeping : it selects the acceleration according to the static
speed limit.

Adaptive cruise control : it selects an acceleration that adjust the ego-
speed to that of the leading vehicles and keeps a safe distance.

Complete stop : it takes the car to stop at a certain distance. This additional
case is needed to complement the speed limit keeping policy.

These policies are intentionally very simple, which translates to easy to
tune, and they compute an instantaneous reference value for the car’s accel-
eration, assumed to be kept constant until the next planning iteration. The
computation doesn’t explicitly consider the acceleration’s bounds, so the final



4.4. Speed planning 157

value is clipped in the feasibility interval:

a=


amin , if ā < amin

ā , if amin ≤ ā≤ amax

amax , otherwise
(4.36)

With a proper tuning of the policies’ parameters this clipping is enough to
obtain satisfactory results.

The policies will be detailed next, providing also a safe integration scheme.

Speed limit keeping

The speed limit keeping (SLK in the following) policy deals with the static
speed limits vmax and vcomf. Adopting a control-system like approach, this
policy computes an instantaneous reference for the acceleration as a weighted
sum of speed errors between the ego speed and the speed limits. To smoothly
adapt to the changes in the speed limit, the reference is not computed only
for the current position, but using all the values within a look-ahead distance.

Assuming that vcar is the ego-speed, vmax,i = vmax(i∆s) and vcomf,i =
vcomf(i∆s) are the sampled speed limits, ī is the sample index that corre-
spond to the current car position and M is the number of samples needed to
cover the look-ahead distance, the acceleration is computed according to:

aSLK = 1−γs

1−γM+1
s

ī+M∑
i=ī

γi−īs

[
K+

s,m (vmax,i−vcar)+ +K−s,m (vmax,i−vcar)−

+K+
s,c (vcomf,i−vcar)+ +K−s,c (vcomf,i−vcar)−

]
(4.37)

where ()+ and ()− indicates respectively the positive and negative part of a real
number such that x = (x)+ + (x)−. Different gains for positive and negative
speed errors permit to achieve the required asymmetry: the car should firmly
brake for exceeding vmax, but should not equally accelerate to achieve its value.
The parameter γs, chosen to be 0< γs < 1, is a discount factor to weight more
the speed limit close to the car and exponentially less the far values. To keep
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the resulting acceleration consistent also when changing the look-ahead M ,
the summation is normalized with (1− γs)/(1− γM+1

s ) which is the value of
the truncated geometric series.

Adaptive cruise control

The adaptive cruise control (ACC in the following) policy is designed to deal
with road obstacles. It’s assumed that a road obstacle oi is provided with
informations about it’s curvilinear abscissa si(t) and speed vi(t) along the road.
It’s also assumed that a reasonable estimate of its future states is available for
t ∈ [0,T ].

The function dS(v) is used to indicate the safety distance required given the
speed v. This function must be selected to provide a reasonable time margin
for the vehicle to react to events, an example of such function is:

dS(v) = max{dmin, v} (4.38)

which is the distance covered during 1 second at constant speed v, saturated to
avoid having a null safety distance. To avoid having the car oscillating around
the required safety distance, the additional contribution of the speed error
between the ego and leading vehicle is added.

To compute the acceleration reference, a time step ∆t is established and
all the leading road obstacles are considered within enough steps to cover the
time horizon T . Assuming n obstacles and m= dT/∆te preview steps, vcar the
speed of the car and scar(t) that car’s curvilinear abscissa at time t (assuming
constant speed), the acceleration is computed according to:

aACC = min
i=1,...,n
j=0,...,m

γja

[
K+

a,v(vi(j∆t)−vcar)+ +K−a,v(vi(j∆t)−vcar)−

+K+
a,d(si(j∆t)−dS(vi(j∆t))−scar(j∆t))+

+K−a,d(si(j∆t)−dS(vi(j∆t))−scar(j∆t))−
]

(4.39)
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Considering all the road obstacles, choosing the lowest acceleration that results
from any of them is necessarily a safe choice. In the same way, the minimum
is also considered across time, predicting how the distance and speed error
will evolve if the ego-vehicle keeps constant speed, using the parameter γa

(0≤ γa ≤ 1) to model the uncertainty about the future. The safety distance is
computed using the obstacle’s speed to avoid triggering oscillation when the
ego-car slows down to match the leading speed, reducing the required safety
speed which, in turn, might cause the car to speed up again and so forth.

Complete stop

Due to the design of the SLK policy, it’s evident that a zero speed sample
will not cause the car to stop at the required position. To compensate for this
behavior and enable a precise stop at a given location, the additional complete
stop policy is added to the set. This policy is enabled by the presence of a null
speed limit sample and iteratively computes the required constant acceleration
to end the motion at the stop location.

The complete stop also takes into account another problem that arises
when the stop location is derived from sensors. Due to the noise in the de-
tection process, the stop coordinates may oscillate around the true value and
this might cause oscillations in the brake set-point. Although this is usually
not a safety concern, the hesitating brake action is very uncomfortable. To
avoid this situation, the complete stop policy introduces an hysteresis to fil-
ter small variations and iteratively keeps the minimum among the computed
accelerations.

Assuming s0 is the car’s curvilinear abscissa, vcar the current car speed,
sS is the stop’s coordinate, and aCS,i−1 the previous acceleration value, the
acceleration set-point is computed as:

aCS,i = min
{
aCS,i−1 ,

v2
car

2(sS−s0)

}
(4.40)

The hysteresis is reset is the different between the set-points is higher than a
certain threshold and when the policy is no more applicable.
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Integration scheme

A proper integration scheme is needed to compute the final reference a(t) from
the policies set. A popular approach in robotics is to define some scenario-
dependent priorities and apply a winner-take-all strategy [110]. This exclusive
selection technique, applied to speed policy arbitration, makes hard to handle
mixed situations like performing ACC while stopping at a junction.

To achieve a smooth and safe integration of all the policies, a different
scheme is adopted: all the applicable policies are evaluated and the acceleration
is selected to be the lowest among all. This approach seamlessly handles mixed
scenarios and, because all the constraints specify an upper bound for speed,
choosing the lowest acceleration always result in a safe and feasible choice.

The applicability conditions for the speed policies are:

Speed limit keeping : always applicable.

Adaptive cruise control : presence of leading road obstacles in the road.

Complete stop : presence of a 0 value in vmax.

Results are presented in the next section.

4.4.3 Results

The reactive speed policies successfully provide a consistent smooth accel-
eration reference for the driving cases of interest. The results are presented
from the simulation of scenarios designed to show the behavior of the three
developed policies.

Figure 4.25a shows the car speed against the speed limits. The speed limit
is saturated at 30m/s and the low peaks are due to the lateral acceleration
constraints. The car’s speed is always lower than vmax, loosely following vcomf

but allowing some violations to avoid excessive braking action. Image 4.25b
depicts the relative acceleration reference showing that it changes smoothly
and thus results in a comfortable driving.
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To evaluate the adaptive cruise control policy, figure 4.26 shows the car’s
reaction to the presence of a road obstacle. The obstacle has a constant speed
of 20m/s and is detected at a distance of about 40m. Note how the car’s speed,
despite a speed limit of 50m/s, adjust to the obstacle’s speed and the distance
from the obstacle sets on the intended value of 20m without oscillations. An-
other case is provided in picture 4.27 that corresponds to a late detection of a
slow obstacle. This scenario is more challenging and requires a more aggressive
reaction. The obstacle’s speed is 10m/s and the detection distance about 20m.
Moreover, after few seconds, the obstacle suddenly brakes with acceleration
−3m/s2 to a complete stop, forcing the car to another emergency brake. Note
how the car’s braking action is firm to avoid a potential collision.

Finally, figure 4.28 shows the acceleration reference deriving from the com-
plete stop policy when approaching a stop line. The car end it’s motion at the
intended distance from the stop line.
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(a) Speed of the car and speed limits.

(b) Acceleration reference from the speed limit keeping policy.
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(a) Speed and acceleration of the ego-car.

(b) Distance from the leading vehicle.

Figure 4.26: ACC results when approaching a vehicle from the distance.
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Figure 4.27: ACC results when a slow obstacle is detected at short distance.
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Figure 4.28: Complete stop.
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4.5 Trajectory planning results

The presented algorithms to path and speed planning are integrated to produce
a local trajectory for the car. First, the path planning routine is executed
to find a feasible path that keeps the car within the driving reference and
avoids static obstacles. The final path is thoroughly checked, providing for
each sample the distance from the navigation borders and the closest obstacle.
These informations are used to adjust the speed accordingly: the speed limit
is set to 0 before a collision and lowered when passing close to obstacles and
borders. Secondly, an acceleration reference is computed in order to satisfy the
speed’s upper bounds, safety distance and possible active stop lines. Combining
path and acceleration, the trajectory for the car is fully specified.

As previously stated, the separate solution of path planning and speed
tuning makes the overall problem easier, but the solution found is potentially
sub-optimal. The most relevant example of sub-optimality is the behavior of
the car when facing a road obstacle that cannot be avoided with the pure
braking action. This undesirable situation can arise from detection latencies
and pose a serious safety threat. To deal with this situation and other poten-
tial unwanted behaviors, a dedicated preprocessing is carried out before the
planning phase. Each road obstacle is checked to establish whether it can be
avoided with the pure braking action. Accounting for delays and a fixed reac-
tion time, the motion of the car subject to an emergency brake is compared
with the future states of the obstacles to see if a collision state is predicted.
If the obstacle results in a potential collision, then it’s not treated just like
a road obstacle, but it’s instantaneous state is used also as a raw obstacle,
triggering an avoidance maneuver. In this way, beside the aggressive braking,
the car also tries a swerve to avoid the impact. Figure 4.29 shows a sequence
in which the car avoids a collision in this way; the potential is provided to
emphasize that the road obstacle is treated also like a raw obstacle.

Another unwanted behavior is the car trying to avoid an obstacle that
totally occludes the navigation reference. While a collision is avoided adjusting
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the speed limit, the steering action causes a very uncomfortable driving feeling.
To avoid this minor issue, the raw obstacles that leave a free passage that is
not enough for the car to comfortably fit, are treated as static road obstacles
(subject to previous check). Using this trick, the car comes comfortably to a
stop without modifying the regular driving path.



168 Chapter 4. Planning: Local Trajectory Computation

(a) (b)

(c) (d)

Figure 4.29: Sequence showing an emergency avoidance. A close, slow obstacle
is detected triggering a full brake 4.29a. The car comes close to the obstacle
within a safe distance 4.29b, ,but the obstacle suddenly brakes 4.29c. The car
tries an avoidance maneuver to mitigate the impact 4.29d.
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4.5.1 Conclusion and future development

The described local trajectory planner is able to provide a feasible, collision-
free local trajectory to execute a wide range of maneuvers like lane keeping,
lane change and basic intersection negotiation. Leveraging a separate solution
method for path and speed, it can deliver real-time results with limited com-
putational effort. The innovative cost function design departs from the classic
quadratic cost to deal with problems arising from real driving cases and often
neglected in the purely theoretic solution approaches.

The proposed method has, however, some limitations that should be over-
come.

First, the separate solution method that permits real-time performance is
also a weak spot of the algorithm. Planning the speed having the path already
fixed leads to possible sub-optimality in the resulting behavior. Fixing the most
relevant unwanted behaviors requires hand-designed “tricks” that, however,
fail to be general and cover other cases. In particular, complex configurations
of moving obstacles can only be handled in a conservative way with braking
action. Resolving this issue requires the simultaneous planning of path and
speed. To perform this joint planning efficiently, the algorithm might use a
series of motion approximations with increasing detail in order to perform
the final complete trajectory optimization in a well defined spacial-temporal
region.

The other major limitation is related to the speed tuning method. This
simple solution approach has the drawback of handling only upper bounds con-
straints on the speed. This limitation is due to the chosen integration scheme
and restricts the planner from handling complex merging scenario where the
car might be required to have a minimum speed in order to safely merge into
the traffic. This restriction is not severe and can be solved introducing a new
policy, activated in mutual exclusion with the others, explicitly designed to
handle such case. Such problem would not arise with a joint solution method.





Chapter 5

Conclusions And Future
Development

The previous chapter introduced some key components, in the three main au-
tonomous vehicles’ functional areas, that enable autonomous navigation from
sensory information in structured environments. In the perception domain, a
novelty application of CNN to ego-lane detection was introduced, along with
a semi-automatic annotation technique that enabled the fast and cheap devel-
opment of a relatively large dataset. In the data fusion area, a new approach
to road path estimation from multiple sensors was proposed. Using the mov-
ing window estimation technique, the algorithm achieved a good precision and
satisfying stability despite the noise present in the input. Finally, in the plan-
ning domain, an efficient local trajectory planner, based on speed-tuning and
variational methods, was introduced proving the ability to provide feasible,
collision-free trajectory to implement several maneuvers.

The newly introduced components have been specifically designed and im-
plemented to be employed on the autonomous driving platform DEEVA, de-
scribed in section 1.5. Since the focus of this work is the practical application
on a real vehicle, the development of all the algorithm needed to manage all
the problematics arising from real-world applications. This research work tries
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to be a point of contact between theory and application, aiming for a balance
between theoretical justification and practical applicability.

To further prove the applicability of the outcomes of this thesis, the next
section describes the setup and execution of a public demo, held in Parma in
March 2017, which saw DEEVA driving in urban environment from sensory
inputs with controlled traffics [111].

5.1 Demo: setup and execution

The platform used to demonstrate the autonomous driving ability is the DEEVA
vehicle. The following sections detail the DEEVA’s software setup and the
overall demo structure.

5.1.1 DEEVA setup

DEEVA features a distributed software architecture that reflects the network
of computing nodes. The communication is based on a publisher-subscriber
protocol that establish the format for the data exchange. Exploiting the UPD
broadcast, this protocol allows the transparent communication between any
application regardless of their physical location.

A complete list and description of the algorithms used to enable level-3
autonomy is provided next.

Perception

The sensor suite used for the perception task is composed of solely the FFN
stereo couple and the front RADAR, see 1.7 for the sensors’ map. The FFN
right camera is used to execute a lane detection algorithm, the CenterNET and
a street sign detector. The stereo information is used by the barriers and curbs
detection algorithm and by a stereo obstacle detector. The obstacle detector
also integrates two classifiers to identify vehicles and pedestrians.
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These perception algorithm are distributed on two separate PCs, one runs
the lane detector, the CenterNET and the street sign detector, while the other
takes care of curbs/barriers and obstacles detection.

Data fusion

The data-fusion module runs on a dedicated PC, communicating with both the
perception algorithms and the planner/control. It is composed of 4 separate
filters that accomplish different tasks.

The fundamental block is the positioning filter. Its information is used by
all the other filters and it’s dispatched to the planning module. This filter esti-
mates the positioning of the vehicle in two different references systems: global
and navigation. The global reference system provides the absolution localiza-
tion of car using a low-cost GPS and matching the detected features with a
geo-localized map. The global positioning represents the most likely estimate
of the car’s absolute location in the world, but lacks any local consistency
in that it can discontinuously jump to follow new detections. The navigation
reference, instead, derives from the integration of the car’s odometry, refined
with accelerations and angular rates. It has no absolute meaning, but provides
local consistency.

The road path estimation filter provides a navigation reference from lane
markings, CenterNET, RADAR and barriers/curbs as described in chapter 3.

The obstacle filter produces a refined estimation of the obstacle’s posi-
tion, motion and classification using the informations from the stereo obstacle
detector, RADAR and pedestrian/vehicle classifier.

Finally, the map manager filter handles the map database, dispatching the
relevant geo-localized features or recorded navigation tracks when available.
The use of recorded tracks, which contradicts the scope of this work, is ex-
ploited to handle the roundabouts present in the course without interrupting
the autonomous driving. Since the correct detection of a driving reference
when in roundabouts is beyond the ability of this setup (due to both sensors’
FOV and algorithmic limitations), when the car approaches a roundabout, the
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system sends a recorded track to be used in place of the one derived from the
sensors. The absolute localization is precise enough to allow navigation from
maps because the beginning of roundabouts is very rich in features (street
signs, curbs, markings).

Planning

The planning module uses another dedicated PC and integrates a basic be-
havioral layer with the local trajectory planner previously introduced. Since
the demo follows a predetermined course, no routing algorithm is needed.

The behavioral planner is responsible for providing basic intersection han-
dling, yielding to pedestrian and regular lane navigation. The handling of
intersections (roundabout) is based on simple occupation considerations: if a
vehicle is detected within the intersection limits, the ego-car will stop and yield,
navigating the recorded intersection track when free. Pedestrian are handled
similarly, if they’re detected near the zebra crossing, the stop line will activate
causing the car to stop and wait for the area to be clear. For safety reason,
pedestrian detected within the road boundaries always trigger a stop line be-
fore their position. This layer also takes care of switching between perceived
and recorded track when approaching roundabouts.

The selected navigation reference, with possible active stop lines, is used
by the local trajectory planner to find a proper trajectory for the car.

The same computing node hosts the low level controller for the car. The
control scheme is split between steering and gas/brake. A path tracker based
on pure pursuit [112] controls the steering wheel. The gas and brake pedals
are actuated from a couple of second order linear controllers that compensate
the car dynamics and follow the speed and acceleration reference.

5.1.2 Demo structure

The public demonstration was held in Parma’s neighborhood Parmamia, on
March 23, 2017. The demo area was in a controlled traffic state, designed to
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show all the autonomous features of the DEEVA’s setup. Figure 5.1 shows
the demo’s course in red, highlighting different zones corresponding to specific
challenges. Picture 5.2, provided by [111], shows DEEVA during the demo

Figure 5.1: Demo course with specific zones highlighted.

execution.
In zone 1, parked vehicles were present on the side of the road, some were

intentionally parked there other were already in place. Since the cars were
actually inside the road boundaries, DEEVA demonstrated the ability to avoid
static obstacles. Picture 5.4a shows a capture from the inside of the vehicle
when avoiding a side obstacle.

Zone 2 is where the ACC ability was displayed, safely following one of
VisLab’s vehicle. This area ended with a simulated jam, causing a stop-and-
go like behavior of DEEVA. Picture 5.4b shows the simulated jam.

Finally, in zone 3 the pedestrian crossing was activated by our actors and
DEEVA stopped, waiting for the zebra to be clear. This can be seen in picture
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Figure 5.2: DEEVA view during the demo.

Figure 5.3: Driver and front passenger monitoring the demo safe execution.

5.4c.
As already described, the car navigated using the sensory informations

everywhere except when in roundabouts; those were negotiated using pre-
recorded tracks and global localization coming from low cost GPS and feature
matching. DEEVA successfully completed multiple runs, during which the
driver and passenger were monitoring the execution for safety reasons, see
figure 5.3 from [111].
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(a) Zone 1: avoidance of parked vehicles.

(b) Zone 2: ACC and traffic jam.

(c) Zone 3: yield at pedestrian crossing.

Figure 5.4: Captures of the demo execution from inside the car. The PC that
can be seen on the right was used for monitoring the health of the system.



178 Chapter 5. Conclusions And Future Development

5.2 Future development

The present work introduced important elements to enable autonomous driv-
ing from sensory input. For what concerns the detection and data-fusion, em-
phasis was placed on improving the stability and reliability of the derived
navigation reference. Planning main focus was to provide a natural and com-
fortable driving and to guarantee robustness to noisy references.

The CNN based ego-lane detection can be further improved collecting more
data and covering more cases. Moreover, the fixed-length limitation should be
removed and the estimation of other lanes enabled. In it’s ultimate evolution,
this network should be able to identify all the available driving reference in
the image, correctly identifying also the topology of intersections.

The road path estimation robustness could be improved using, when avail-
able, maps informations to exclude false detections and provide a prior on the
road shape. Estimating intersections will eventually be a required capability
of this component also.

Finally, the local trajectory planner should be evolved in order to manage
general timing constraints on the vehicle states.This capability is required to
perform complex merging maneuver, for example when moving “bubbles” in
the traffic can be exploited to safely merge in.

As a general development direction, I think the focus should shift on em-
powering the feedback connections between the three functional ares. The
classic “feed-forward” view of perception, data fusion and planning has a se-
vere limitation: it fails to capture the “attention” mechanism likely needed
to handle complex scenarios within human-level reaction times. An example
of such feedback interaction could be: the behavioral planning communicates
the intention of changing lane, in response the data-fusion changes the accep-
tance threshold of incoming obstacle from that lane, possibly allowing some
false-positives (relatively harmless in this situation), but minimizing the false-
negatives that would result in a dangerous situation. Moreover, as part of the
feedback, the data fusion can ask the perception to focus on a particular region
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that has high uncertainty. This feedback interaction is a proposal that moves
toward an architecture that minimize the information loss due to the separa-
tion of the functionalities in different blocks. Ideally, the architecture should
allow the computation to be conditioned on every relevant bit of information,
regardless of its functional classification.

The achievement of level 5, full-autonomous driving seems to get closer
by the day. The potential benefits of this revolutionary technology are huge
and, whether it will be a product or a service (we will eventually see both
applications), the impact will be profound. The methods proposed in this thesis
provide only a fraction of the functionalities required for AD, but represent a
small step toward its practical solution.
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