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Basic notations

R set of real numbers.
R+ set of nonnegative real numbers.

N set of positive integers.

Rn the euclidean n-dimensional space.

int(E) the interior of the set E.

dist(x,y) given a metric space E and x,y 2 E, dist(x,y) de-
notes the distance between x and y.

k ·k the Euclidean norm of Rn (i.e, kxk= (x · x)1/2).

diam(E) the diameter of the set E (i.e., diam (E) =

sup{kx� yk : x,y 2 E}).

L•(E) the space of limited values functions f : E ! R.

Ei the i-th Cartesian power of E (i.e., Ei = E ⇥
E . . .⇥E, i times).



xii Basic notations

E? denotes the set
S+•

i=1 Ei.

s(A) the spectrum of the matrix A = (ai j) 2 Rn⇥n, that
is, the set of its eigenvalues.

r(A) the spectral radius of A, r(A) := max{|l | : l 2
s(A)}.

sp(A) the number of nonzero elements of A.

h·, ·i the standard inner product on Rn.

kAk the Euclidean norm of matrix A.

D(u)(x) the gradient of the function u at x, i.e., D(u)(x) =⇣
du(x)
dx1

, . . . , du(x)
dxn

⌘
, x 2 Rn.



Introduction

In robotics, motion planning has been intensively researched in the last twenty years.
Dedicated algorithms have been developed for different applications, from industrial
machines to human-like robots. An interesting research area within this field is mo-
tion planning for Automatic guided vehicles (AGVs). AGVs have became increas-
ingly important in different domains. In industry and agriculture, these robots are
used to save human resources, being employed in fertilizing as well as to automati-
cally move materials. In the automotive domain, driverless cars are able to navigate
in urban environments in presence of traffic lights, road signs, and traffic participants.
Currently, many prototypes are evolving, but no cars permitted on public roads are
fully autonomous. They all require a human driver who must be ready to take control
at any time. This is because this technology is still under development or too expen-
sive for practical use and ethical issues must be solved before autonomous cars are
ready for market.
Advanced driver assistance systems (ADAS) are one of the fastest-growing segment
in automotive industry. These systems are developed to automate and improve ve-
hicle systems for safety and better driving. In particular, according to analysts, au-
tonomous valet parking systems will play an important role in next years. The main
benefits for such systems include enhancing the comfort of the driver, reducing stress
related to finding a free place and performing a, possibly complex, parking maneu-
ver. They also decrease the overall travel time. They increase safety, preventing the
vehicle from collisions with fixed obstacles, other vehicles or pedestrians. They may
allow a better usage of available space in parking areas, reducing the fuel needed for
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the parking operation. The implementation of an automatic parking system involves
several disciplines from computer vision (to perceive the environment in which the
vehicle moves), to control theory (to plan the trajectory to perform the task).
The aim of this thesis is to develop a path planning algorithm which is able to find a
feasible path between two arbitrary vehicle configurations in order to compute a park-
ing maneuver. In particular, the path planning problem is addressed using two differ-
ent methods: Dynamic Programming and Search-based Planning. The first method,
based on the numerical solution of the Hamilton-Jacobi-Bellman equation, allows
finding an optimal solution at the expense of a high computational cost. On the other
hand, Search-based Planning converts the path planning problem into a minimum
path problem on a graph, and allows finding a solution to a planning task rather
quickly, even for large and high-dimensional operating spaces. In this thesis, Dy-
namic Programming is first used to find an optimal solution for a small operating
space. Afterwards, this approach is integrated with Search-based Planning in order to
obtain a sub-optimal solution for large environments.

The thesis is structured as follows. Chapter 1 describes the problem of motion plan-
ning and presents previous works on path planning for car-like robots. In addition,
this chapter gives a brief introduction of Search-based Planning and Dynamic Pro-
gramming approaches. Here, it is shown that, using Search-based Planning, a motion
planning task can be converted into a path finding problem on a graph, while Dy-
namic Programming methods convert the same problem into a fixed-point iteration.

One problem related to the Dynamic Programming approach is that the convergence
speed of the fixed-point iteration is rather poor. Chapter 2 proposes a Jacobi-like ac-
celeration that allows improving the convergence speed. The acceleration technique
is implemented to solve a minimum-time maneuver problem in absence of obstacles.

Chapters 3,4 present two path planning algorithms for computing optimal parking
maneuvers for road vehicles, operating in a known environment in the presence of
static obstacles. Both algorithms are based on the numerical solution of the Hamilton-
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Jacobi-Bellman equation. The first algorithm allows finding the minimum length tra-
jectory with a bounded number of direction changes. In the second one, the vehicle
is described by a switched system, composed of 6 autonomous systems, such that
its motion can be represented as a concatenation of lines and arc segments of con-
stant curvature. Here, the algorithm finds the trajectory that minimizes a cost function
that takes into account the length of the parking maneuver and a penalty related to
the number of switchings. The choice of this penalty allows taking into account the
number of changes of direction and steering angle in the selection of the parking ma-
neuver.

Both Optimal Control and Search-based Planning are used extensively for path plan-
ning and have their own set of advantages and disadvantages. Chapter 5 presents
the algorithm FOCS (Fusion of Optimal Control and Search) that combines these
two approaches. FOCS finds a path exploiting the advantages of both approaches
while providing a bound on the sub-optimality of its solution. The returned path
is the concatenation of the path found by graph-based search and the path gener-
ated by following the negative gradient of the value function obtained as solution
of the Hamilton-Jacobi-Bellman equation. This chapter analyzes the algorithm and
illustrates its effectiveness in finding a minimum-time path for a car-like vehicle in
different environments.





Statement of contribution

This thesis leverages some recent results on Dynamic Programming in order to de-
velop a determinist path planning algorithm for car-like vehicles. The main novel
contributions of this work are listed below.

1. The dynamic programming method is based on the solution of the HJB equa-
tion. Since the HJB equation is a nonlinear partial differential equation, a
closed form solution does not exist for the general case. Some recent ap-
proaches, after some simplifications, convert the problem into a fixed-point
iteration. One problem related to the iteration is that its convergence speed is
rather poor. As a first contribution, this thesis describes a Jacobi-like accelera-
tion that allows improving the convergence speed.

2. This thesis formulates the motion planning for car-like vehicles as an optimiza-
tion problem for a switching system. This approach leads to the development
of two new algorithms.

(a) The first algorithm allows finding the minimum length path with a num-
ber of direction changes bounded by an assigned constant.

(b) The second algorithm characterizes the vehicle as a switched system,
composed of 6 autonomous systems, such that its motion is represented
as a concatenation of lines and arc segments of constant curvature. This
algorithm finds the trajectory that minimizes a cost function that takes
into account the length of the parking maneuver and a penalty related
the number of switchings. The choice of this penalty allows taking into
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account the number of changes of direction and steering angle in the se-
lection of the parking maneuver.

3. Optimal Control and Search-based Planning are combined in a single algorithm
that exploits the advantages of both approaches while providing a bound on the
sub-optimality of its solution. The algorithm is called FOCS (Fusion of Opti-
mal Control and Search). It returns a solution as a concatenation of the path
found by graph-based search and the path generated by following the negative
gradient of the value function obtained as the solution of the Hamilton-Jacobi-
Bellman equation. This approach allows finding a solution for large environ-
ments, even when the operating space around the target configuration is tight,
exploiting the performances of search-based algorithms and the accuracy of
the HJB equation.



Chapter 1

Motion planning: main concepts
and algorithms

A motion planning algorithm produces a continuos motion from the current config-
uration of the robot to its goal configuration (or to a set of goal configurations) such
that:

• it satisfies the environmental (e.g., avoid the obstacles) and the kinematics con-
straints of the robot,

• it minimizes some cost function, such as the length of the path to reach the goal
configuration (or the time, the energy, some risk, etc.).

A configuration describes the pose of the robot and the configuration space is the
set of all configurations. The set of configurations that satisfies the environment con-
straints is called free space and its complement obstacle space. The subspace of the
free space which represents the set of goal configurations is called target space.
In this thesis, the vehicle is described by the following kinematic car-like model with
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rear-wheel drive (see Figure 1.1):
8
>>><

>>>:

ż(t) = vcosq(t)

ẏ(t) = vsinq(t)

q̇(t) = w(t),

(1.1)

where (z,y) represents the position of the center of the real wheel axle, q the orien-
tation angle and parameter l is the distance between the centers of the front and rear
wheel axels. In this way, a configuration of the vehicle is represented by the triplet
x = (z,y,q). The control input is given by u = (v,w), where v and w are, respec-
tively, the linear and angular velocities. The angular velocity is related to the front

l

θ 

Z

y ll
v

δ

Figure 1.1: Car-like model.

ω

vvmax

ωmax

ωmin

 vmin

Figure 1.2: Set of admissible controls
(shaded region).

wheel steering angle d by relation w = 1
l v tand . The input variables are constrained

as follows
vmin < v < vmax, wmin < w < wmax. (1.2)

Figure 1.2 represents the resulting set of admissible controls for v and w . Consider-
ing the maneuvering scenario of Figure 1.3, the motion planning problem consists in
finding a control signal u = (v,w) able to lead the vehicle to a target configuration.
In particular, the planned trajectory is subject to a starting and target vehicle con-
figuration, to obstacle avoidance and kinematic constraints (1.2). The basic model
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Figure 1.3: A perpendicular maneuvering scenario with obstacles whose edges are
represented with red segments. On the left, starting and target state are represented
with green and respectively, blue rectangles. The figure on the right shows a planned
trajectory that allows reaching the target state.

(1.1) only considers the kinematic properties of the vehicle. However for a parking
maneuver the speed of the vehicle is low enough such that the dynamic behavior is
not relevant. For this reason, this motion planning problem can be decomposed into
two subproblems using the Path-Velocity-Decomposition approach [1]: planning a
collision-free path which satisfies kinematic constraints (1.2) and planning the veloc-
ity along the path. In this thesis we will focus on the path planning problem.

1.1 Relevant literature for path planning for car-like robots

Early works on path-planning for system (1.1) study the problem of connecting two
arbitrary configurations by a shortest path. In reference [2], Dubin provides a method
for connecting two arbitrary configurations. There, it is shown that the shortest path
between two configurations is composed of a concatenation of at most three lines or
arc segments of constant curvature. Note that the shortest path has a continuos tangent
but not a continuos curvature. Moreover, it is assumed that the space is unbounded,
without obstacles and only forward motion is considered. The results have been ex-
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tended in [3], where backward motion is also allowed. In more recent years, due to
the developments in automotive industry, path planning problems for system (1.1)
have received great consideration in literature and have been addressed with different
approaches.
Some works are based on geometrical considerations tailored to specific parking con-
figurations. For instance, [4] describes a simple algorithm for parallel parking for the
Ackerman steering configuration. Paper [5] uses a probabilistic roadmap to create
a graph of randomly generated collision-free configurations that is used by a local
path planner. These strategies do not provide systematic and deterministic methods
to solve motion planning problems, but provide anyway practically usable maneu-
vers. More recently, the Defense Advanced Research Projects Agency (DARPA) has
organized several DARPA Urban Challenges that originated significant new ideas.
For instance, [6] and [7] use an incremental search on a multiresolution lattice state
space to generate dynamically-feasible maneuvers. Work [8] uses an extended RRT
algorithm to find a motion compatible with the vehicle dynamical constraints. A sim-
ilar approach has been used in [9].
A different approach is represented by the numerical solution of the Hamilton-Jacobi-
Bellman (HBJ) equation. This method allows finding a deterministic solution to the
motion planning problem, at the expense of a greater computational cost. For in-
stance, this approach is used in [10] that considers the problem of optimal path plan-
ning for a Dubins’car using a finite difference numerical approximation of the HJB
equation.

1.2 Deterministic Path Planning in Robotics

Different approaches have been used in literature for Path Planning with their own
set of advantages and disadvantages. In this chapter, we focus on the deterministic
approaches of Search-based Planning and Optimal Control. In contrast to non deter-
minist approaches (such as probabilistic algorithms) that do not always produce a
feasible path when one exists, this class of algorithms either produces a solution in a
finite time or correctly reports that there is none.
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1.2.1 Search-based Planning

Search-based algorithms convert a motion planning task into a path finding problem
on a graph. To this end, the configuration space of the robot is discretized and each
vertex in the graph corresponds to one of the discretized robot configurations. The
motion of a robot is decomposed into a small set of short motion primitives that con-
stitute the edges of the graph. Heuristic search algorithms such as A⇤ can then be
used to search this graph for an optimal or close-to-optimal path from the vertex that
corresponds to the current robot configuration to the vertex that corresponds to its
goal configuration. This approach allows finding a solution to a planning task rather
quickly, even for large and high-dimensional operating spaces by utilizing heuristic
search algorithms that provide real-time performance combined with rigorous sub-
optimality bounds with respect to the chosen discretization. Search-based planning
can then be decomposed in two problems: turning the problem into a graph, and
searching the graph for finding the optimal solution.

Environment representation
In order to properly represent the problem with a graph, we first need to discretize
the configuration space in a finite set of states. The choice of the state variables varies
depending on the application. For instance, for a car, one can represent a state with
a position vector (x,y) and an orientation angle. For a helicopter, the state is repre-
sented by the position vector (x, y, z) and, roll, pitch, and yaw angles. In a robotic
arm, it is represented by the positions of each joint in the arm. The set of all possible
states is defined as the state space. For a car, if we have a 100⇥ 100 grid of posi-
tions and 6 possible angles for each position, we would have a state space of size
100⇥100⇥6 = 60000.
Figure 1.4 shows a small portion of a 2D state space where the robot configurations
are represented as a node with a state ID (S1, S2, ...). In this 2D state space, for some
robot, a good strategy could be to define a path as a series of adjacent states, for ex-
ample S2 � S4 � S5. But, in general, adjacent states do not respect the kinodynamic
constraints of the robot. For instance, consider the case in which the robot is a car
facing north at x, y location (2,2). Using this strategy a path could contain sequence
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s1

s1

s2
s2

s3
s3

s4s4 s5s5

s6

s6

Figure 1.4: From left to right: 2D environment, small portion of the state space for
the 2D environment, part of the graph constructed with adjacent states.

(2,2)-(1,2) and, while these two states are adjacent, the car cannot move sideways
to achieve this transition. For this reason, Search-based Planning uses lattice-based
graphs [7], [11] that are constructed using motion primitives. Figure 1.5 shows the
motion primitives, for the car example with forward motion only, when the car is
facing right. In this case, adjacent states (or what are usually called successors) are

Figure 1.5: Example of motion primitives for a car with forward motion only.

not necessarily spatially adjacent. The valid successors of a given state are the states
that can be reached with these motions while not colliding with obstacles (see Figure
1.6). In this way, motion primitives allow encoding the kinematic constraints of the
robot into any environment. They also allow assigning different costs to each motion.
For instance, if we prefer forward motions for a car, we might assign a high cost to
backward motion primitives. A significant feature of a lattice-based graph is that the
conversion of the motion planning problem to a minimum path problem into a graph
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s1
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s8

s9

s10

s11

s12

s13

s14

s15

s16
s17

s18

s19

s20

Figure 1.6: Small portion of a lattice-based graph constructed from the motion prim-
itives of Figure 1.5.

is completely decoupled from how the problem is solved. Since each state is encoded
into a single identifying number (state IDs) the graph searching algorithms do not
need to know what the original domain was. This means that the algorithms can op-
erate on any problem that can be represented as a graph (see Figure 1.7).

Planning
Suppose that the task of motion planning is converted into a path planning problem
defined on an lattice-based graph. In this graph the nodes represent a finite set of
states S. The edges are the connections between these nodes. The cost of the edge
between nodes s and s0 is denoted as c(s,s0) , where c(s,s0) = • if there are no edges
between s and s0. Therefore, SUCCESSOR(s) := {s0 2 S | c(s,s0) 6= •}, represents all
successors of s and c⇤(s,s0) denotes the cost of the optimal path from state s to s0. In
this graph, path P : sstart ! sgoal is a concatenation of edges that connects starting
state sstart to goal state sgoal .
The simplest approaches to search a lattice-based graph are Dijkstra’s and A⇤ al-
gorithms, which return the cost-minimal path between a given start and goal state.
However, these algorithms can be slow and memory expensive. Moreover, in most
cases, we do not need to find the optimal path, but one that is good enough. One
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Figure 1.7: Principals steps of a search-based algorithm: construction of the graph
from state space and motion primitives, searching of the graph for the optimal solu-
tion.

algorithm that does this is weighted A⇤ (WA⇤).
WA⇤ [12] is a variant of A⇤ with inflated heuristics, meaning the heuristic values are
multiplied by an inflation factor h > 1 (for h = 1 WA⇤ is equal to A⇤). The inflation
factor h provides a greedy flavor to the search, which finds a solution in less time at
the cost of optimality ( [13], [14], [15]). At each iteration of the main loop (lines 6-16
of Algorithm 1), WA⇤ selects the path that minimizes the function f : S ! R:

f (s) = g(s)+hh(s),

where s is the last node on the path, g(s) denotes the current cost of the best path
from sstart to s, and h(s) is the heuristic for state s, which is an estimate of the cost
of the path from s to sgoal . In this way, function f is an estimate of the total cost to
travel from sstart to sgoal going through s. WA⇤ maintains a priority queue, OPEN, of
states which it plans to expand and a list, CLOSED, for keeping track of the expanded
states. The OPEN queue is sorted by f , so that WA⇤ always expands next the state
which appears to be on the shortest path from sstart to sgoal . WA⇤ initializes the OPEN
list with the start state sstart (line 4). Each time it expands the state that minimizes
function f (line 14), ending when goal state sgoal is expanded (line 6).

Usually, A⇤ and WA⇤ take as input a heuristic h(s) that is admissible and consistent.
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Algorithm 1 WA⇤

Input: sgoal: goal state, sstart : starting state, h > 1: inflation factor.
Output: P⇤(h) : sstart ! sgoal: sub-optimal path.

1: procedure MAIN( )
2: g(sgoal) = • g(sstart) = 0
3: OPEN = CLOSED =?
4: insert sstart into OPEN with f (sstart) = hh(sstart)

5: s⇤ = sstart

6: while s⇤ 6= sgoal do
7: for each s0 2 SUCCESSOR(s⇤) do
8: if s0 was not visited before then
9: g(s0) = •

10: if g(s0)> g(s⇤)+ c(s⇤,s0) then
11: g(s0) = g(s⇤)+ c(s⇤,s0)
12: if s0 /2 CLOSED then
13: insert s0 into OPEN with f (s0)

14: s⇤ = argmin
s2OPEN

{ f (s)}

15: remove s⇤ from OPEN
16: CLOSED = CLOSED[ s⇤

17: return P⇤(h) : sstart ! sgoal
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Heuristic h(s) is considered admissible if it never overestimates the best path cost to
sgoal , which means that:

h(s) c⇤(s,sgoal),8s 2 S, (1.3)

and is consistent if it satisfies:

(
h(sgoal) = 0,

h(s) h(s0)+ c(s,s0), 8s,s0 | s0 2 SUCCESSOR(s),s 6= sgoal .

In [16], it is proven that if h(s) is admissible, then the solution of WA⇤ is bounded as
follows:

g(s)+hh(s) h(g⇤(s)+h(s)), 8s 2 S, (1.4)

where g⇤(s) is the cost of an optimal path from sstart to s. In other words, the solution
cost returned by Algorithm 1, c(P⇤(h)), is no greater than h times the cost of the op-
timal solution returned by A⇤. Moreover, Algorithm 1 does not require re-expansions
to guarantee bound (1.4) if h(s) is consistent [15].
Parameter h allows trading off how good the path is versus how long it takes to com-
pute. Different algorithms have been implemented (for instance see [15], [17], [18]
and [19]) to search a lattice-based graph to produce paths with user-specified h . In
some cases, using hight values of h , a suboptimal solution can be returned very
quickly while for a specified amount of time a lower h-solution can be found. This is
how ARA⇤ works [15]. For instance, if a car is driving really fast, one can reduce the
optimality of the path in order to reduce the computation time. If the car is driving
slowly, and we would like minimal-cost paths, then we can allot more time for the
algorithm to run.

1.2.2 Dynamic Programming

The Dynamic Programming approach to the motion planning problem involves the
numerical solution of the Hamilton-Jacobi-Bellman (HJB) equation. The heart of the
algorithm relies in finding the optimal value function (or optimal cost-to-go function)
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which is the solution to the first-order differential equation (the HJB equation). This
value function represents the minimal cost for completing the task from the current
configuration of the robot. The minimum-cost path can then be found following the
negative gradient of the value function.

The dynamic programming method
Assume that the motion of a robot is modeled by an ordinary differential equation
(ODE) of the form:

8
<

:
ẋ(t) = f (x(t),u(t)),

x(0) = x0.
(1.5)

Here, the starting configuration x0 2Rn and the continuous function f : Rn⇥U !Rn

are known. Function u : [0,•)!U is the control input and U 2 Rm is a compact set
of admissible controls. The cost functional we want to minimize, is defined as:

Jx0(u) :=
tZ

0

l(x(t),u(t))dt, (1.6)

where x(t) solves (1.5) for the control u(t), and l : Rn ⇥U ! R is a continuous cost
function.
The goal is to find an optimal control u⇤(t) (it can be not unique) that minimizes cost
functional (1.6) and allows us to find an optimal solution for system (1.5).
Following [20], we assume that there exist positive real constants L f , Ll , Mf , Ml such
that, 8x1,x2 2 Rn, 8u 2U ,

k f (x1,u)� f (x2,u)k  L f kx1 � x2k, k f (x1,u)k  Mf ,

kl(x1,u)� l(x2,u)k  Llkx1 � x2k, kl(x1,u)k  Ml.

The value function v̄ : Rn !R is defined as the best value of cost functional (1.6) for
the starting state x0:

v̄(x0) = inf
u2U

Jx0(u). (1.7)
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Since the value function (1.7) is generally unbounded, a common approach is to per-
form the following rescaling of v̄ (see [21] and [22]):

v(x0) =

8
<

:

1
l if v̄(x0) = +•,

1
l � 1

l e�l v̄(x0) otherwise,
(1.8)

where l is a positive scalar. The change of variable (1.8) is called the Kružkov
transformation and gives several advantages. In particular, v takes values in

⇥
0, 1

l
⇤

(whereas v̄ is generally unbounded), and this helps in both the analysis and the nu-
merical approximation. Function v : Rn ! R is itself a value function defined as

v(x0) = inf
u2U

•Z

0

l(x(t),u(t))e�l tdt, (1.9)

and is the unique viscosity solution of HJB equation:

lv(x)+ sup
u2U

{�Dv(x) f (x,u)� l(x,u)}= 0, x 2 Rn, (1.10)

where Dv denotes the gradient of v at x. See [23] for the derivation of equation (1.10).
The dynamic programming method can be decomposed as follows.

• Step 1 Solve dynamic programming equation (1.10) to compute the value func-
tion v.

• Step 2 Use the value function v to design an optimal feedback control u⇤(t) for
system (1.5).

Step 1 In general, the HJB equation (1.10) is a nonlinear partial differential equation,
so it is computed by numerical procedures which allow finding a linear approximation
to the value function (see [24], [25], [26]). Here, we will consider the approximation
scheme described in Appendix A of [20]. This scheme is based of two steps. First a
time discretization of the original control problem is performed by time step h = Dt.
Then a space discretization with space step k = Dz is computed.
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Thus, we first make a discretization in time of the dynamic programming equation,
approximating Dv(x) f (x,u)' h�1(v(x+h f (x,u))�v(x)) where h is a small positive
real number that represents an integration time. In this way, (1.10) becomes

(1+lh)v(x) = min
u2U

{v(x+h f (x,u))+hl(x,u)}= 0, x 2 Rn,

by approximating (1+lh)�1 ' (1�lh), (1+lh)�1h ' h one arrives at the follow-
ing HJB equation in discrete time

vh(x) = min
u2U

{(1�lh)vh(x+h f (x,u))+hl(x,u))}, x 2 Rn. (1.11)

For a more rigorous derivation of (1.11), again, see [20].
In order to make a space discretization, we compute a triangulation on a finite set of
vertices S = {xi}⇢ Rn, i = 1, . . . ,N. Evaluating (1.11) at x 2 S, we have

vh(xi) = min
u2U

{(1�lh)vh(xi +h f (xi,u))+hl(xi,u))},

i = 1, . . . ,N.
(1.12)

Note the dependence of the value cost function on the choice of the integration step
h. Using the triangulation, function v can be approximated by a linear function of the
finite set of variables vh(xi), i = 1, . . . ,N.

Theorem 2.1 of Appendix A of [20] shows that, if l > L f and h 2 (0, 1
l ], sys-

tem (1.12) has a unique solution that converges uniformly to the solution of (1.10)
as h,k, k

h tend to 0. Note that, to have convergence, one cannot choose l arbitrarily
small since it is bounded from below by L f .

To further simplify (1.12), it is possible to discretize the control space, substitut-
ing U with a finite set of controls {u1, . . . ,uM}, so that we can replace (1.12) with

vh(xi) = min
uk

{(1�lh)vh(xi +h f (xi,uk))+hl(xi,uk))},

i = 1, . . . ,N and k = 1, . . . ,M.
(1.13)

Figure 1.8 illustrates a step of the construction of problem (1.13). Namely, for each
node of the triangulation xi and each value of the control uk, all end points xi +

h f (xi,uk) of the Euler approximation of the solution of ODE (1.5) from the initial
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xi

xi + hf(xi, uk)

Figure 1.8: Approximation of the HJB equation on a 2-D triangulation with four
controls.

state xi are computed. The value cost function for these end points is given by a linear
combination of its values on the triangulation vertices.

Set vector z := [vh(x1),vh(x2), . . . ,vh(xN)], in this way z2RN represents the value
of the cost function on the grid points.

Note that, for each xi,uk, the right-hand side of (1.13) is affine with respect to z,
so that problem (1.13) can be rewritten in form

z = min
i=1,...,M

{Aiz+bi} , (1.14)

where, for i = 1, . . . ,M, Ai 2RN⇥N
+ are suitable nonnegative matrices and bi 2RN

+ are
suitable nonnegative vectors.
Define map T : RN

+ ! RN
+ as

T (x) := min
i=1,...,M

{Aix+bi} . (1.15)

In [20] it is shown that T is a contraction, so that (1.14) can be solved as a fixed point
iteration. Namely, setting

(
x(k+1) = T (x(k)),
x(0) = x0 ,
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the solution z of (1.14) is obtained as z = limk!• x(k), for any initial condition x0.

Step 2 An approximated optimal control can be obtained from the numerical solution
of HJB equation by setting u⇤(x) = u⇤h(x) such that:

vh(x) = (1�lh)vh(x+h f (x,u⇤k))+hl(xi,u⇤k)).

For instance, approximating the solution of ODE (1.5) with an Euler approximation:
8
<

:
zr+1 = zr +h f (zr+1,ur), r 2 N

z0 = x0,

the feedback control law is:

u⇤r = u⇤h(zm), r 2 N.

In other word we design the optimal control choosing the control such that the mini-
mum in HJB is obtained.

The minimum-time maneuvering problem
A classical path planning task is to find the minimum-time path to perform a parking
maneuver. In order to employ the dynamic programming method to this problem we
first describe the car-robot by an ordinary differential equation. For instance we can
use the kinematic car-like model with rear-wheel drive (see Figure 1.1):

8
>>><

>>>:

ż = vcosq

ẏ = vsinq

q̇ = w,

where the triplet x = (z,y,q) represents a configuration of the vehicle and the control
input is given by u = (v,w); and v and w are, respectively, the linear and angular ve-
locities. The angular velocity is related to the front wheel steering angle d by relation
w = 1

l v tand . The input variables are constrained as follows

vmin < v < vmax, wmin < w < wmax.
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Now we need to appropriately define the cost functional to formulate the car ma-
neuvering task as a minimum-time problem. Let x f := (z f ,y f ,q f ) be a desired final
configuration and let R̄ ⇢ R ⇢R2⇥S1 be closed balls of radiuses ē > e > 0, centered
at x f . Cost function l : R2 ⇥S1 ! R is defined as

l(x) :=

8
><

>:

0 if x 2 R̄,
kx�x f k�e

ē�e if x 2 R\ R̄,
1 otherwise.

Then the cost functional (1.6) begins

Jx0(u) :=
•Z

0

l(x(t))e�l tdt . (1.16)

Using (1.16), value function (1.9) represents the minimum time to reach the target set
R̄ for the starting state x0

An approximated optimal control can then be obtained from the numerical solution
of HJB equation (1.10) by setting the following feedback control law u?h : RN !U :

u?h(x) = argmin
uk

{(1�lh)vh(x+h f (x,uk))+hl(x,uk)},

k = 1, . . . ,M.
(1.17)

Note that it is also possible to take into account the presence of obstacles by suitably
modifying l, for instance assigning to l a very high value in subsets of the state space
corresponding to forbidden regions (see [20] for details).



Chapter 2

A Jacobi-like acceleration for
dynamic programming

This chapter is based on [27].

In section 1.2.2, we saw how dynamic programming provides a general method
to solve optimal control problems. Dynamic programming is based on the solution of
the HJB equation which is a nonlinear partial differential equation and a closed form
solution does not exist for the general case. Thus, various numerical procedures have
been developed for its solution. In particular, after some simplifications, the problem
can be converted into a fixed-point iteration. One problem related to the iteration is
that its convergence speed is rather poor. This chapter proposes a Jacobi-like accel-
eration to improve this convergence speed and shows the results of its application to
the minimum-time maneuvering problem (see section 1.2.2).
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2.1 Problem Statement

As shown in section 1.2.2, the solution of the HJB equation (1.10) is obtained by the
following fixed point iteration

8
<

:
x(k+1) = min

i=1,...,M
{Aix(k)+bi},

x(0) = x0,
(2.1)

where x0 2RN and, for i= 1, . . . ,M, Ai 2RN⇥N
+ are nonnegative matrices and bi 2RN

+

are nonnegative vectors.
Note that, according to the discussion in the previous section, iteration (2.1) is

convergent and x? = limk!• x(k) satisfies

x? = min
i=1,...,M

{Aix?+bi}, (2.2)

and is the solution of our optimization problem.

Remark 1. Note that, due to the sparse structure of matrices Ai, for i = 1, . . . ,M,
problem (2.1) can be considered a consensus problem. The consensus equilibrium is
represented by the fixed point x = T (x).

At this point, we make some additional assumptions on Ai that are justified by
the properties of the triangulation. To this end, let D be the maximum degree of the
graph associated to the triangulation, that is, D represents the maximum number of
neighbours of any vertex. Moreover, let ` be the minimum length of an edge of the
triangulation.

Let h be such that hMf < `, then, for any i = 1, . . . ,N, k = 1, . . . ,M, vector
xi + h f (xi,uk) belongs to a triangle of the triangulation of which xi is one of the
vertices. Let xi1 ,xi2 , . . . ,xil 2 S, l  D be the other vertices. Then, there exist posi-
tive coefficients l j, j = 0, . . . , l, such that xi +h f (xi,uk) = l0xi +Â j=1,...,l l jxi j , with
Â j=0,...,l l j = 1. It is easy to prove that l0 � 1� Mf h

` and Â j=1,...,l l j 
Mf h
` . Further,

consider set

S j,k := {i = 1, . . . ,N : xi +h f (xi,uk) belongs to a triangle that has x j as a vertex}.
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It is easy to verify that |S j,k| D, for any i = 1, . . . ,N, k = 1, . . . ,M. Set Ak = (ai j,k),
then, the previous considerations imply that, for k = 1, . . . ,M,

aii,k � (1�lh)
✓

1�
Mf h
`

◆
,

Â
i 6= j

ai j,k  (1�lh)
Mf h
`

,

Â
i 6= j

a ji,k  (1�lh)
DMf h
`

.

Define the constant C =
DMf
` .

The speed of convergence of the fixed point iteration (2.2) can be measured by the
convergence rate, defined as

c = max
x,y2RN, x 6=y

⇢
kT (x)�T (y)k

kx� yk

�
,

with T as in (1.15). We want to find an acceleration policy for computing x?, namely
we want to solve the following problem.

Problem 1. Find matrices Âi and vectors b̂i, for i = 1, . . . ,M, such that sp(Âi) 
sp(Ai), for i = 1, . . . ,M and the solution of problem

8
<

:
x̂(k+1) = min

i=1,...,M
{Âix(k)+ b̂i},

x̂(0) = x0

(2.3)

satisfies limk!• x̂(k)� x(k) = 0.
Further, we require that ĉ < c where

ĉ = max
x,y2RN, x 6=y

⇢
kT̂ (x)� T̂ (y)k

kx� yk

�
,

with T̂ defined as in (1.15) over Âi and b̂i.

In other words, we want to find modified matrices Âi and vectors b̂i such that
the convergence of the new fixed-point iteration (2.3) is faster than the original iter-
ation (2.1). The sparsity requirement sp(Âi)  sp(Ai), i = 1, . . . ,M, is important to
ensure that the computation of the sparse matrix product in iteration (2.3) does not
require more processing time than the original problem.
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2.2 Main Result

When solving linear systems one can use Jacobi’s method choosing as preconditioner
the diagonal of the matrix associated to the system (see [28]), but this is not applicable
in general when solving nonlinear systems. However, this kind of preconditioning is
computationally cheap since it requires the inversion of a diagonal matrix, so one
would like to generalize this method in order to apply it to a wider class of problems.
To this end, let us define a diagonal preconditioner D as

D := max
i=1,...,M

{I �diag(Ai)}= I � min
i=1,...,M

{diag(Ai)}, (2.4)

where I 2RN⇥N is the identity matrix and diag(A)= (di j) is a diagonal matrix defined
as follows:

di j :=

8
<

:
0, if i 6= j,

ai j, if i = j,

for i, j 2 {1, . . . ,N}, with A = (ai j) 2 RN⇥N .
Given A = (ai j) 2 RN⇥N let us define, for k = 1, . . . ,N

sk(A) :=
N

Â
j=1

ak j.

Note that D = (di j) defined in (2.4) is a positive diagonal matrix, since

8k 2 {1, . . . ,N} 8i 2 {1, . . . ,M} dkk > 1� sk(Ai) = 1�µ > 0,

where µ := 1�lh 2 (0,1).
One can rewrite (2.2) as:

(D�D+ I)x? = min
i=1,...,M

{Aix?+bi},

that is
Dx? = min

i=1,...,M
{(Ai +D� I)x?+bi} .

Thus, it is natural to set Âi := D�1(Ai +D� I) and b̂i := D�1bi in (2.3). In the
following theorem, which is our main result and will be proved in section 2.4, we
claim that this choice provides a solution to problem (1):
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Theorem 1. If

0 < h  l
(2C+l )(C+l )

,

the choice

Âi = D�1(Ai +D� I), b̂i = D�1bi, (2.5)

for i = 1, . . . ,m, solves problem (1). In particular, 8x,y 2 RN
+

kT̂ (x)� T̂ (y)k< kT (x)�T (y)k, (2.6)

moreover

ĉ  C(1�lh)
l +C(1�lh)

.

2.3 Numerical Experiments

Let us consider the parking problem presented in section 1.2.2. A uniform triangula-
tion with 34848 vertices is performed over the torus W = [�0.5,16.5]⇥ [�4,9]⇥S1,
with final configuration x f = (8,0,0).
Figure 2.1 shows the value of error norm kx(k)� x?k for the classic fixed-point iter-
ation T and the Jacobi-like acceleration T̂ . In accordance to Theorem 1, T̂ converges
faster to the fixed point than T . The number of iterations required to satisfy the ter-
mination condition for the classic fixed point iteration (i.e. kT (x(k))� x?k  10�4)
is 3510 whilst for the Jacobi-like iteration (i.e. kT̂ (x(k))� x?k  10�4) it is 496.
Figure 2.2 shows some car maneuvers obtained with the control obtained from the
numerically computed cost function, corresponding to different initial conditions.
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Figure 2.2: Two car maneuvers, with different initial conditions, obtained by control
law (1.17). In light grey the initial position, in dash-dot grey the desired final position
and in dark grey the actual final reached position.
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2.4 Proofs of the Main Result

Theorem 2 (Perron-Frobenius). Let A 2RN⇥N
+ be a nonnegative matrix. Then 9 l 2

s(A) : l = r(A) and

min
k=1,...,N

sk(A) r(A) max
k=1,...,N

sk(A). (2.7)

In addition, if A is irreducible, (2.7) holds with equalities on both sides if and only if
8k, l 2 {1, . . . ,N} sk(A) = sl(A).

For a proof of Theorem 2, see [29] and [30].

Theorem 3 (Gershgorin Circle). Let A = (ai j) 2 CN⇥N be a complex matrix and let,
for i = 1, . . . ,N,

Ri :=
N

Â
j=1, j 6=i

|ai j|, D(aii,Ri) := {z 2 C||aii � z| Ri}.

Then

s(A)⇢
N[

i=1
D(aii,Ri).

For a proof of Theorem 3, see [31].

Proposition 1. For all x 2 RN
+

T̂ (x) = (I �D�1)x+D�1T (x),

where T and T̂ are defined as in (1.15).

Proof. Rewrite Âi as

Âi = D�1(Ai +D� I) = Ai +(D�1 � I)(Ai � I)

then

T̂ (x) = min
i=1,...,M

{Aix+(D�1 � I)(Ai � I)x+D�1bi}=

=�(D�1 � I)x+ min
i=1,...,M

{Aix+(D�1 � I)Aix+D�1bi}=
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=�(D�1 � I)x+D�1 min
i=1,...,M

{Aix+bi}=

=�(D�1 � I)x+D�1T (x) .

Given preconditioner D = (di j) as in (2.4), for k = 1, . . . ,N and i = 1, . . . ,M we have
that

sk(Âi) =
µ +dkk �1

dkk
= 1� 1�µ

dkk
.

Since sk(Âi) = sk(Â j), for all i, j 2 {1, . . . ,M}, we can define

sk := 1� 1�µ
dkk

, for k = 1, . . . ,N,

and, set a =Ch, let

S := max
k=1,...,N

sk = 1� 1�µ
max

k=1,...,N
dkk



1� 1�µ
1�µ(1�a)

=
µa

1�µ +µa
.

(2.8)

Proposition 2. For all x,y 2 RN
+, it holds that

kT̂ (x)� T̂ (y)k  µa
1�µ +µa

kx� yk.

Proof. Let Ã 2 RN⇥N
+ and b̃ 2 RN

+ be such that Ãy+ b̃ = T̂ (y). Then

kT̂ (x)� T̂ (y)k= kT̂ (x)� (Ãy+ b̃)k 

 kÃx+ b̃� (Ãy+ b̃)k 

 kÃ(x� y)k 

 r(Ã)kx� yk.
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By Frobenius Theorem 2 and (2.8) we know that

r(Ã) S  µa
1�µ +µa

,

that is
kT̂ (x)� T̂ (y)k  µa

1�µ +µa
kx� yk.

Now we provide an overestimation of the convergence rate c of (2.2), that is, we give
a lower bound on c .

Proposition 3. For all x,y 2 RN
+, it holds that

kT (x)�T (y)k � µ(1�2a)kx� yk.

Proof. For all v = (vi) 2 RN , sgn(v) 2 {0,1}N is the component-wise sign of v, that
is, for i = 1, . . . ,N,

sgn(v)i :=

8
<

:
1, if vi > 0,

0, if vi  0.

Given x,y 2 RN
+, let Ax,Ay 2 RN⇥N

+ and bx,by 2 RN
+ be such that

Axx+bx = T (x) and Ayy+by = T (y),

then we can define Ā 2 RN⇥N
+ in the following way

Ā :=UAx +(I �U)Ay, b̄ :=Ubx +(I �U)by,

where U = (ui j) 2 RN⇥N
+ is a diagonal matrix such that

uii = sgn(x� y)i, for i = 1, . . . ,N. Then it holds that

hT (x)�T (y)� Ā(x� y), x� yi � 0, (2.9)

in fact, for components such that x� y  0, we have

T (x)�T (y)� Ā(x� y) = T (x)� (Āx+ b̄) 0,
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and for those such that x� y > 0,

T (x)�T (y)� Ā(x� y) = (Āy+ b̄)�T (y)> 0.

Inequality (2.9) implies that

hT (x)�T (y), x� yi � hĀ(x� y), x� yi= (x� y)T ĀT (x� y). (2.10)

If we rewrite matrix Ā as the sum of its symmetric part H = (hi j) := (Ā+ ĀT ) and
skew-symmetric part K := (Ā� ĀT ) we obtain

Ā =
1
2

H +
1
2

K.

Now, since 8v 2RN vT ĀT v = vT Āv, it holds that 8v 2RN vT Kv = 0. This means that

(x� y)T ĀT (x� y) = (x� y)T 1
2

HT (x� y)� lminkx� yk2, (2.11)

where lmin represents the smallest eigenvalue in magnitude of 1
2 HT . Our aim now is

to provide a lower bound on this eigenvalue. By Gershgorin Circle Theorem 3, letting

h̃ := min
k=1,...,N

hkk, R̃ := max
l=1,...,N

Rl, DR := D(h̃ , R̃)\R,

and recalling that the eigenvalues of a symmetric matrix are real, we know that for
all lH 2 s

� 1
2 HT �:

lH � min
z2DR

z � min
k=1,...,N

hkk � max
l=1,...,N

N

Â
p=1,p6=l

hl p �

�µ(1�a)�µa = µ(1�2a).

(2.12)

Let us now recall Cauchy-Schwarz inequality:

||T (x)�T (y)|| · ||x� y||� hT (x)�T (y), x� yi. (2.13)

Hence, putting together (2.10), (2.11), (2.12) and (2.13), we can conclude that

||T (x)�T (y)||� µ(1�2a)||x� y||.
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We are now ready to prove Theorem 1.

Proof. By Propositions (2) and (3), statement (2.6) holds if

µa
1�µ +µa

< µ(1�2a),

Recalling that a =Ch > 0 and µ = 1�lh, we obtain

a <
3µ �3+

p
µ2 �10µ +9

4µ
,

that is

Ch <
�3lh+

p
l 2h2 +8lh

4(1�lh)
.

Now, since 1�lh < 1, we strengthen the constraint requiring that

Ch  �3lh+
p

l 2h2 +8lh
4

<
�3lh+

p
l 2h2 +8lh

4(1�lh)
,

from which follows that

(4C+3l )h 
p

l 2h2 +8lh.

By squaring both members of the previous inequality we obtain

h[(2C+l )(C+l )h�l ] 0,

that leads to
h 2

✓
0,

l
(2C+l )(C+l )

�
.





Chapter 3

Path planning with limited
numbers of maneuvers

The content of this chapter is based on [32].

This chapter presents a deterministic algorithm for path planning of parking ma-
neuvers. On the basis of a know environment in the presence of static obstacles, the
algorithms finds the trajectory that minimizes the length of the parking maneuver and
has a number of direction changes lower than a fixed constant. This method is pro-
posed in contrast to the common approach of finding a minimum-time path without
taking into account the numbers of direction changes. The rationale for this approach
is twofold. First, in automatic parking systems each change of direction is a time-
consuming operation, since it requires a deceleration to a full stop, a gear change and
an acceleration. For this reason, a longer trajectory with a small number of direction
changes is preferable to a shorter one with more maneuvering points. In addition, this
choice better reproduces the approach of a typical human driver, that prefers a longer
and simpler maneuver to a shorter but complex one, with more maneuvering points.
For instance, in Figure 3.1, a human driver would prefer the trajectory on the right,
due to the availability of a large maneuvering space.
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Figure 3.1: Different paths that reach the same target configuration (represented in
blue).

The proposed algorithm is based on Dynamic Programming and uses a cost function
that allows taking into account both the length of the path and a chosen maximum
number of maneuvers. To numerically solve this problem, we leverage some recent
results on the optimal control of switching systems. In particular:

• We use the results presented in [33], that show that the cost function corre-
sponds to the viscosity solution of a system of quasi variational inequalities
(QVIs).

• Using the method presented in [34], we convert the problem into the solution
of a sequence of decoupled QVIs.

• Each QVI is solved with the finite element method presented in [35].

3.1 Problem Statement

Let W ⇢
�
R2 ⇥ [0,2p[

�
be a bounded and connected domain, which represents the

operating space of the vehicle. This space is partitioned as W = W f ree [Wobst , with
W f ree \Wobst = ?, where W f ree is the free space and Wobst is the subset of the oper-
ating space covered by obstacles. Consider the kinematic car-like model with rear-
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wheel drive defined by system:
8
>>><

>>>:

ż = vcosq

ẏ = vsinq

q̇ = w,

where the triplet x = (z,y,q) represents a configuration of the vehicle and the control
input is given by u = (v,w); and v and w are, respectively, the linear and angular ve-
locities. The angular velocity is related to the front wheel steering angle d by relation
w = 1

l v tand . The input variables are constrained as follows

vmin < v < vmax, wmin < w < wmax.

We model the car-like vehicle with the switched system ẋ(t) = f (x(t), i,u(t)), where
f : W⇥{1,2}⇥R! W is defined as:

f (x,1,w) =

0

B@
V+(x)cosq
V+(x)sinq

w

1

CA , (3.1)

f (x,2,w) =

0

B@
V�(x)cosq
V�(x)sinq

w

1

CA , (3.2)

where V+,V� : W ! R are defined by

V+(x) =

(
v+r if x 2 Wobst ,

v+ otherwise ,

V�(x) =

(
v�r if x 2 Wobst ,

v� otherwise ,

and 0 < r << 1 is a small number. Here, v� < 0 < v+ are the speeds associated to
reverse and forward gears and i 2 {1,2} denotes the configuration of the vehicle.
Namely, i = 1 is associated to forward gear and i = 2 to reverse gear. Note that, if
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x 2 Wobst , the velocity of the vehicle is reduced by factor r. Being r close to zero,
the vehicle is very slow when traveling on obstacles. Since we will be interested in
minimum time trajectories, for small values of r optimal trajectories will not intersect
set Wobst for relevant intervals of time. Note that this is not the only way to take into
account the presence of obstacles, for instance, one could add boundary conditions
on the border of Wobst .
The control signal is given by the couple a =(w,s), where w : [0,+•)! [wmin,wmax]

is the steering control input and s 2 (R,{1,2})? is the sequence of configuration
changes. In this way, the set of the control signals is defined as A=L•(R,[�wmin,wmax])

⇥(R,{1,2})?. If (tk, ik) 2 s , then the controller switches to subsystem ik at time tk.
The sequence of switches satisfies:

0 = t1 < t2 < · · ·< tK ,

ik�1 6= ik, 2  k  K.

Define function I : R! {1,2} as I(t) = ik̄(t) where k̄(t) = max{k 2 N : tk  t}.
In this way, k̄(t) represents the total number of switchings occurring in interval [0, t].
Given a = (u,s) 2 A, the trajectory of the switched system (3.1), (3.2) is defined as
the solution of equation:

8
<

:
ẋ(t) = f (x(t), I(t),u(t))

x(0) = x0,
(3.3)

and is denoted by yx0,a(t) = x(t).
Consider a target set G ⇢ W, closed and such that int(G) 6= ?. We define a cost

function t : W⇥{1,2}⇥A ! R[{+•} that associates to each initial state x0, initial
configuration i0 and control a 2 A the cost

t(x0, i0,a) =

(
+• if yx0,a (t) 62 G, 8t > 0 ,

inf
t2R+

{t : yx0,a (t) 2 G} otherwise ,
(3.4)

where we consider t(x0, i0,a) = +• if the solution never reaches set G for any t > 0.
In this way, the value function T : W⇥{1,2}!R[{+•} for problem (3.4) is given
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by

T (x0, i0) = inf
a2A

t(x0, i0,a) (3.5)

and represents the first time of arrival on the target G. It is possible to solve problem
(3.5) via dynamic programming by characterizing the value function in terms of a first
order Hamilton-Jacobi-Bellman (HJB) equation. We refer to [33], [34], [36], [37] and
[38] for the results related to the solution of Problem (3.5). In particular, as discussed
in in section 1.2.2, it is possible to obtain a boundary problem for the HJB equation
performing the following rescaling of T :

V (x0, i) =

8
<

:

1
l if T (x0, i) = +•,

1
l � 1

l e�lT (x0,i) otherwise,

where l is a positive scalar. It can be proved that V : W⇥{1,2}!R[{+•} is itself
a value function, that is

V (x0, i) = inf
a2A

Jx0,i(t), (3.6)

where J(x0, i) =
t(x0,i0,a)R

0
e�l tdt.

3.2 Problem Resolution

3.2.1 Analytical Analysis

As already mentioned in section 3.1, problem (3.6) can be addressed via dynamic
programming. In particular, it falls into the class of optimal switching control prob-
lems which was formulated and studied in [33]. There, it is proven that the value
function (3.6) is uniformly bounded, Hölder continuos, and is the unique viscosity
solution of the following HJB equation:

max

8
><

>:

V (x, i)�min
ī6=i

{V (x, ī)}

lV (x, i)+ sup
w2W

{�D(V )(x, i) f (x, i,w)�1}

9
>=

>;
= 0, (3.7)
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where V 2 C(W ⇥ {1,2}, [0,+•)), x 2 W ⇢ R3, i 2 {1,2}, W ⌘ [wmin,wmax] and
D(V )(x, i) denotes the gradient of function V at x.

Leveraging the results shown in [34], we obtain Algorithm 5 for solving system (3.7)
with a sequence of decoupled QVIs.

Algorithm 2 Algorithm for solving problem (3.7)
Function Solver (G, i1,e)
Input: G: target state set, i1: target configuration, e: termination tolerance.
Output: V 0, . . . ,V K : cost functions.

1: compute V 0 as the solution of

lV 0(x)+ sup
w2W

{�D(V 0)(x) f (x, i1,w)�1},

k = 0, i = i1
2: while kV k �V k�1k• > e do
3: k = k+1
4: i = mod(i+1,2)+1
5: compute V k by

max

8
<

:
V k(x)�{V k�1 (x)}

lV k(x)+ sup
w2W

{�D(V )(x) f (x, i,w)�1})

9
=

;= 0.

return {V 0, . . . ,V K}

Note that this algorithm corresponds to the algorithm presented in [34] applied to our
case in which i 2 {1,2}.
In line 1 of Algorithm 5, V 0 is computed as the solution of the HJB equation for a car-
like vehicle that proceeds to final state set G in forward (i1 = 1) or backward (i1 = 2)
direction, without direction changes. Then, in loop 2-5, V k is computed so that, for
any x such that V k(x) < V k�1(x), V k is the solution of the HJB equation applied al-
ternatively to subsystems (3.1), (3.2). In other words, V 0,V 1, . . . ,V K is a sequence of
functions such that V k represents the value function that solves the optimal maneuver-
ing problem with a maximum of k+1 maneuvers. In this way, V k �V k�1 represents
the decrease in cost function that can be obtained by passing from k to k + 1 ma-
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neuvers. This is reiterated until the stopping condition in line 2 is satisfied. Note that
loop 2-5 ends when an additional maneuver does not significantly reduce the cost
function. See [34] for more details on Algorithm 5.
The numerical implementation of the above algorithm relies on the solution of HJB’s
equations of the form:

max

(
V (x)�f(x)

lV (x)+ supw2W{�D(V )(x) f (x, i,w)�1}

)
= 0, (3.8)

with f =V k�1.

3.2.2 Numerical Implementation

In order to implement a numerical solution of (3.8), we note that there exist positive
real constants L f , Mf , such that, 8x1,x2 2 W, 8w 2W , i 2 {1,2},

k f (x1, i,w)� f (x2, i,w)k  L f kx1 � x2k, k f (x1, i,w)k  Mf ,

so that we can apply the approximation scheme presented in section 1.2.2, based on a
finite approximation of state and control spaces and a discretization in time. Roughly
speaking, in (3.8) one can approximate D(V (x)) f (x, i,w)' h�1(V (x+h f (x, i,w))�
V (x)), where h is a small positive real number that represents an integration time. In
this way, the second of (3.8) becomes

(1+lh)V (x) = min
w2W

{V (x+h f (x, i,w))+h}= 0,

for x 2 W and, by approximating (1+lh)�1 ' (1�lh), (1+lh)�1h ' h one ends
up with the following discrete time HJB equation

Vh(x) = min

(
f(x)

min
w2W

{(1�lh)Vh(x+h f (x, i,w))+h)}

)
, (3.9)

with x 2 W. For a more rigorous derivation of (3.9) see [20].
A grid is computed on a finite set of vertices S = {xl}⇢ W, l = 1, . . . , p. Evaluat-

ing (3.9) at x 2 S, we obtain
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Vh(xl) = min

(
f(xl)

min
w2W

{(1�lh)Vh(xl +h f (xl , i,w))+h)}

)
, (3.10)

with l = 1, . . . , p. Note the dependence of the value cost function on the choice of
the integration step h. Using the grid, function V can be approximated by a linear
function of the finite set of variables Vh(xl), l = 1, . . . , p.

By Theorem 2.1 of Appendix A of [20], if l > L f and h 2 (0, 1
l ], system (3.10)

has a unique solution that converges uniformly to the solution of (3.8) as h,d, d
h tend

to 0, where d = maxl diam(Sl) and Sl is the set of all the hyper-rectangles formed
by the vertices of the grid. To further simplify (3.10), it is possible to discretize the
control space, substituting W with a finite set of controls {w1, . . . ,wm}, so that we
can replace (3.10) with

Vh(xl) = min

8
<

:
f(xl),

min
w j

{(1�lh)Vh(xl +h f (xl , i,w j))+h)}

9
=

; , (3.11)

where l = 1, . . . , p and j = 1, . . . ,m. Figure 4.2 illustrates a step of construction of
the right-hand side of problem (3.11). Namely, for each node of the grid xl and each
value of the control w j, all end points xl +h f (xl, i,w j) of the Euler approximation of
the solution of (3.3) from the initial state xl are computed. The value cost function
for these end points is given by a multi-linear combination of its values on the grid
vertices.

Set vector z := [Vh(x1),Vh(x2), . . . ,Vh(xp)], in this way z2Rp represents the value
of the cost function at grid points.

Assume the cost function f is non-negative, for each xl,w j, the right-hand side
of (3.11) is affine with respect to z, so that problem (3.11) can be rewritten in form

z = min
j=1,...,m

{f(xl), min{A jz+b j}} (3.12)

where for j = 1, . . . ,m, A j 2Rp⇥p
+ are suitable nonnegative matrices and b j 2Rp

+ are
suitable nonnegative vectors.
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Figure 3.2: Approximation of the HJB equation on a grid with two controls. For
each node xl (depicted in black) the controls w j are applied to obtain the end points
xl +h f (xl, i,w j) (depicted in red).

Let w 2 Rn, define map M : Rp
+ ! Rp

+ as

Mw(z) := min{w, min{A jz+b j}}, (3.13)

using the results of [20] it can be shown that M is a contraction, so that (3.12) can be
solved as a fixed point iteration. Namely, setting

(
x(s+1) = Mf(xl)(x(s)),
x(0) = x0 ,

(3.14)

the solution z of (3.12) is obtained as z = lims!• x(s), for any initial condition x0.
Note that in (3.13) matrixes A j and vectors b j depend on subsystem i 2 {1,2}. So for
any w 2 Rp and i 2 {1,2}, we define map Mw,i : Rp

+ ! Rp
+ as

Mw,i(z) := min{w, min{Ai
jz+bi

j}}.

The numerical implementation for solving system (3.7) is presented in Algorithm 3.
In lines 1-7 of Algorithm 3 the value function V 0 is computed by a fixed point it-
eration with error tolerance e . In lines 8-15, V k is computed by contraction (3.14).
Subsystems (3),(4), alternate until the chosen maximum number of maneuvers kmax

is reached.
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Algorithm 3 Numerical algorithm for solving (3.7)
Function NumericalSolver (G, i1,Kmax,e)
Input: G: target states set, i1: target configuration, Kmax: maximum number of maneu-
vers, e: termination tolerance,
Output: V 0, . . . ,V Kmax : cost functions.

1: set V 0(xl) = 0 for each xl 2 G
2: set V 0(xl) =

1
l for each xl 62 G

3: s = 0
4: while |V 0(s)�V 0(s�1)|• > e do
5: V 0(s+1) = MV 0(0),i1(V

0(s))
6: s = s+1
7: V 0 =V 0(s)

i = i1
8: for k = 1, . . . ,Kmax do
9: i = mod(i+1,2)+1

10: V k(0) =V k�1

11: s = 0
12: while |V k(s)�V k(s�1)|• > e do
13: V k(s+1) = MV k(0),i(V

k(s))
14: s = s+1
15: V k =V k(s)

return {V 0,, . . . ,V Kmax}
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3.3 Feedback controls

In the solution of the car maneuvering problem, the optimal trajectory that reaches the
final state set G may end with either a forward maneuver (i1 = 1) or with a reverse one
(i1 = 2). Thus, for any initial state x0, we define the cost function T ⇤ :Rn !R[{+•}
as

T ⇤(x0) = min
i2{1,2}

T (x0, i). (3.15)

Define the optimal final condition as i⇤ = {i 2 {1,2}|T (x0, i) = T ⇤(x0)} and let
{V ⇤,0, . . . ,V ⇤,Kmax} be the solutions of Algorithm 3. Assuming i⇤ = 1, the synthesis of
feedback controls for problem (3.15) starting from state x0 is given by Algorithm 4.
If i⇤ = 2 the algorithm to solve problem (3.15) is the same except for line 4, where i
is set as mod(k+1,2)+1.

Algorithm 4 Synthesis of feedback controls for system (3.1),(3.2)

Function FeedbackControls ({V ⇤,0, . . . ,V ⇤,Kmax},x0,e)
Input: {V ⇤,0, . . . ,V ⇤,Kmax}: value functions returned by Algorithm 3, x0: start state, e:
distance tolerance,
Output: W: vector of controls w , I: vector of the indexes of the subsystems.
x = x0

k = Kmax

l = 0
1: while dist(x1,x0)> e do
2: while interp(V ⇤,k,x)> interp(V ⇤,k�1,x) do
3: k = k�1
4: i = mod(k,2)+1
5: j⇤ = argmin

j
{interp(V ⇤,k,x+h f (x, i,w j))}

6: x = x+h f (x, i,w j⇤)

7: W[l] = w j⇤

8: I[l] = i
9: l = l +1

return [W, I]

Starting from initial state x0, Algorithm 4 performs the synthesis of feedback controls,
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and returns the vector W of controls and the vector of system configurations I that
allow reaching the target state x1. In loop 1-9, the synthesis of feedback controls is
obtained by a reiterated Euler integration step until the distance between the current
and target state is less than the allowed error e . In the internal loop 2-3, the current
value function is updated. Note that function interp(V,x) evaluates the value cost
function at x as a multi-linear interpolation of the vector V of the values of the cost
function on grid vertices.

3.4 Numerical Tests

Referring to the car-like model (see Figure 1.1), set dmax = 0.44 rad and l = 2.57 m.
Setting v� =�1 and v+ = 1 in subsystems (3.1), (3.2), the maximum angular veloc-
ity is given by 1

l v+ tandmax = 0.183 s�1, so that W = {�0.183,0.183}. Let x1 a target
state and let G be an ellipsoid centered at x1 with semi axes rz = ry = 0.12 m and
rq = 0.08.
Figure 3.3 shows the path computed by Algorithm 4 for a parallel parking maneu-
ver scenario using a different number of maximum maneuvers Kmax. In Algorithm 3,
we used 525231 vertices to approximate the torus W = [�8,23]⇥ [�10,10]⇥ [0,2p),
with target state x1 = (2,8.5,p), and target configuration i1 = 1. Note that, decreas-
ing Kmax, the number of maneuvers decreases while the shape of the path remains
approximately the same (Figures 3.3a, 3.3b) until, for Kmax = 1, a single forward ma-
neuver is planned with a significant increase of path length (Figure 3.3c). A similar
consideration can be made for the perpendicular parking maneuver scenario of Fig-
ure 3.4. In this case a grid with 534216 vertexes is computed over W = [�20,20]⇥
[�15,15]⇥ [0,2p), with target state x1 =

�
9.55,�10.4, p

2
�
, and target configuration

i1 = 1.

3.4.1 Computational Time

Consider a C++ implementation for Algorithms 3 and 4 running on Intel Core i7-
3920XM CPU at 2.90 GHz processor with 16 GB RAM. Referring to the parallel
parking scenario described in Figure 3.5a, Algorithm 3 is solved on a grid of 72971
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(a) Kmax = 20, M = 7, L = 17.04 m.
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(b) Kmax = 10, M = 3, L = 19.56 m.
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(c) Kmax = 1, M = 1, L = 45.83 m.

Figure 3.3: A parallel maneuvering scenario with obstacles whose edges are repre-
sented with red segments. The reverse maneuvers are depicted with red curves, while
the reached final state with black polygons. Parameters: e = 10�2, l = 0.01.
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(c) Kmax = 2, M = 2, L = 59.65 m.

Figure 3.4: A perpendicular parking scenario. The paths have been computed with
different values of Kmax on a grid of 534216 vertexes on W = [�20,20]⇥ [�15,15]⇥
[0,2p), with target state x1 =

�
9.55,�10.4, p

2
�

and starting state x0 = (�12,9,0).
Parameters: e = 10�2, l = 0.01.
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vertexes over W = [�2,18]⇥ [2,11]⇥ [0,2p), target state x1 = (6,4.35,0), target con-
figuration i1 = 2 and maximum number of maneuvers Kmax = 4. The total computa-
tional time, including the resolution of Algorithm 4 with starting state x0 = (5,8,0.3),
is 5.2894 s. Note that the execution time is proportional to the chosen maximum num-
ber of maneuvers Kmax. For instance, Figure 3.5b shows a parking exit for the same
scenario with target state x1 = (6.5,8,0), target configuration i1 = 2 and Kmax = 6.
Here the resolution of the problem takes a total computational time of 7.5087 s. More-
over, the computational time is proportional to the dimension of the discrete space Wl .
In fact, solving Algorithm 3 by a grid of 17830 vertices for the simple parking exit
maneuver of Figure 3.5c the total time is reduced to 0.2584 s.
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(a) x1 = (6,4.35,0), i1 = 2, x0 = (5,8,0.3). Pa-
rameters: e = 10�4, l = 0.05, Kmax = 4.

-2 0 2 4 6 8 10 12 14 16 18
Z

2

4

6

8

10

12

Y

(b) x1 = (6.5,8,0), i1 = 2, x0 = (9.4,4.5,p). Pa-
rameters: e = 10�4, l = 0.05, Kmax = 6.
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(c) x1 = (13,8,0), i1 = 1, x0 = (7,4.5,0). Param-
eters: e = 10�4, l = 0.02, Kmax = 2.

Figure 3.5: A parallel parking scenario. The red dotted lines represents the edges of
the free space, the red polygons correspond to the obstacles.
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Table 3.1 reports the computational time for solving the parking scenarios discussed
above (Figures 3.5a-3.5c), on two different hardware architectures. Now consider to

Table 3.1: Computational time for solving the parking scenarios of Figures 3.5a-3.5c)
using two different hardware architectures.

Hardware a b c
2.90 GHz Core i7, 16 GB RAM 5.2894 s 7.5087 s 0.2584 s
2.60 GHz Core i5, 8 GB RAM 7.039 s 9.1622 s 0.5729 s

work on a 2.60 GHz Intel Core i5 processor with 8 GB RAM. In Figure 3.6 an inver-
sion maneuvering scenario with 2 different values of l is solved. With this example
we highlight the fact that the computational time also depends on the choice of this
parameter. In fact, using a grid of 72971 vertexes over W= [�2,18]⇥ [2,11]⇥ [0,2p),
the computational time for l = 0.2 and l = 0.07 is 4.5406 s and 6.9819 s respec-
tively.
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(a) l = 0.2.
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(b) l = 0.07.

Figure 3.6: An inversion maneuvering scenario. Target state x1 = (13,8,p), target
configuration i1 = 2 and starting state x0 = (2,8,0). Parameters: e = 10�4, Kmax = 6.



Chapter 4

Path planning by optimal
concatenation of arcs and
segments

In chapter 3 we discussed the importance in autonomous parking of preferring a
simplest maneuver to a shortest but more complex one. With respect to the previous
chapter, this chapter presents a determinist method to find a path that is composed of
a concatenation of lines and arc segments of constant curvature. This method models
the vehicle with a switched system, composed of 6 autonomous systems, where each
ones generates a trajectory with constant curvature and velocity. The algorithm finds
the trajectory that minimizes a cost function that takes into account the length of
the parking maneuver and a penalty related to the number of switchings. The choice
of this penalty allows taking into account the number of changes of direction and
steering angle in the selection of the parking maneuver.
As in chapter 3, to numerically solve this problem, we leverage some recent results
on the optimal control of switching systems. In particular:

• We use the results presented in [33], that show that the cost function corre-
sponds to the viscosity solution of a system of quasi variational inequalities
(QVIs).
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• Using the method presented in [34], we convert the problem into the solution
of a sequence of decoupled QVIs.

• Each QVI is solved with the finite element method presented in [35].

4.1 Problem Statement

Let Q ⇢
�
R2 ⇥ [0,2p[

�
be a bounded and connected domain, which represents the

operating space of the vehicle. This space is partitioned as Q = Q f ree [Qobst , with
Q f ree\Qobst =?, where Q f ree is the free space and Qobst is the subset of the operating
space covered by obstacles. Consider the kinematic car-like model with rear-wheel
drive defined by system:

8
>>><

>>>:

ż = vcosq

ẏ = vsinq

q̇ = w,

where the triplet x = (z,y,q) represents a configuration of the vehicle and the control
input is given by u = (v,w); and v and w are, respectively, the linear and angular ve-
locities. The angular velocity is related to the front wheel steering angle d by relation
w = 1

l v tand . The input variables are constrained as follows

vmin < v < vmax, wmin < w < wmax.

We model the car-like vehicle with the switched system ẋ(t) = f (x(t), i), where f :
Q⇥{1,2,3,4,5,6}! Q is defined by the following autonomous systems:

f (x,1) =

0

B@
v+(x)cosq
v+(x)sinq

W+

1

CA , (4.1)

f (x,2) =

0

B@
v+(x)cosq
v+(x)sinq

0

1

CA , (4.2)
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f (x,3) =

0

B@
v+(x)cosq
v+(x)sinq

W�

1

CA , (4.3)

f (x,4) =

0

B@
v�(x)cosq
v�(x)sinq

W�

1

CA , (4.4)

f (x,5) =

0

B@
v�(x)cosq
v�(x)sinq

0

1

CA , (4.5)

f (x,6) =

0

B@
v�(x)cosq
v�(x)sinq

W+

1

CA , (4.6)

where v+,v� : Q ! R are defined by

v+(x) =

(
V+r if x 2 Qobst ,

V+ otherwise ,

v�(x) =

(
V�r if x 2 Qobst ,

V� otherwise .

and 0 < r << 1 is a small number. Here, V� < 0 < V+ are the speeds associated to
forward and reverse gears, W� < 0 < W+ are the angular velocity associated to a full
right or left steering, and i 2 {1,2,3,4,5,6}= I denotes the configuration of the ve-
hicle. Namely, i = 1 is associated to forward gear with a full right steering, i = 2 to
forward gear with the angle of steering set to zero and so forth . Note that, if x2Qobst ,
the velocity of the vehicle is reduced by factor r. Being r close to zero, the vehicle is
very slow when traveling on obstacles. Since we will be interested in minimum time
trajectories, for small values of r optimal trajectories will not intersect set Qobst for
relevant intervals of time.
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The control signal is given by s 2 (R,I)? = A, that represents the sequence of con-
figuration changes so that if (tk, ik) 2 s , then the controller switches to subsystem ik
at time tk. The sequence of switches satisfies:

0 = t1 < t2 < · · ·< tK ,

ik�1 6= ik, ik 6= h(ik�1),

2  k  K.

(4.7)

Here h : I! I is the function such that h(i) is the subsystem that has opposite direc-
tion and same steering angle of subsystem i:

h(i) =

8
<

:
6 if i = 3,

mod(i+3,6) otherwise .

In this way we avoid that the sequence contains subsequences of the form i,h(i). In
fact, these subsequences generate a path with duplicate states (z,y,q) and, for this
reason, are not part of the optimal control signal.
Define function I : R! I as I(t) = ik̄(t), where k̄(t) = max{k 2N : tk  t} represents
the total number of switchings occurring in interval [0, t]. Let the control signal s 2A,
the trajectory of the switched system (4.1)-(4.6) is defined as the solution of equation:

8
<

:
ẋ(t) = f (x(t), I(t))

x(0) = x0,
(4.8)

and is denoted by yx0,s (t) = x(t).
Define function p : I⇥ I! R+ as p(i, j) = Pi, j, such that:

p(i, j)> 0, p(i, i) = 0,

for all i, j, 2 I, i 6= j, j 6= h(i). The positive constant Pi, j represents the cost for
switching from subsystem i to subsystem j. For instance, Figure 4.1 shows all the
possible transitions and the related costs for subsystem i = 2.
Consider a target set G⇢Q, closed and such that int(G) 6=?, we define a cost function
t : Q⇥ I⇥A ! R[ {+•} that associates to each initial state x0, and control s 2 A
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Figure 4.1: Reachable subsystems (depicted in green) starting from subsystem i = 2
and related costs.

the cost

t(x0, i,s) =

8
>><

>>:

+• if yx0,s (t) 62 G, 8t > 0 ,

inf
t2R+

(
t +

k̄(t)

Â
k=1

p(ik�1, ik) : yx0,s (t) 2 G

)
otherwise ,

(4.9)
where we consider t(x0, i) = +• if the solution never reaches set G for any t > 0. In
this way, the value function T : Q⇥ I! R[{+•} for problem (4.9) is given by

T (x0, i) = inf
s2A

t(x0, i,s) (4.10)

and represents the first time of arrival on the target G, incremented by the sum of all
the switching costs occurred in interval [0, t]. We solve problem (4.10) via dynamic
programming by characterizing the value function in terms of a first order Hamilton-
Jacobi-Bellman (HJB) equation. To this end we use the Kružkov transformation (1.8)
in order to obtain the following boundary problem for (4.10):
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V (x0, i) =

8
<

:

1
l if T (x0, i) = +•,

1
l � 1

l e�lT (x0,i) otherwise ,

where l is a positive scalar. It can be proved that V : Q⇥ I ! R[ {+•} is itself a
value function, that is

V (x0, i) = inf
s2A

Jx0,i,s (t), (4.11)

where

J(x0, i,s) =

t(x0,i,s)Z

0

e�l tdt.

In particular, if t = t(x0, i,s) it can be proved that

J(x0, i,s) =

tZ

0

e�l tdt +
k̄(t)

Â
k=1

p(ik�1, ik).

4.2 Problem Resolution

4.2.1 Analytical Analysis

As already mentioned in section 4.1, problem (4.11) can be addressed via dynamic
programming. In particular, it falls into the class of optimal switching control pro-
blems which was formulated and studied in [33]. Using those results, it can be pro-
ved that the value function (4.11) is uniformly bounded, Hölder continuos, and is the
unique viscosity solution of the following HJB equation:

max

8
<

:
V (x, i)� min

ī 6={i,h(i)}
{p(i, ī)+V (x, ī)}

lV (x, i)�D(V )(x, i) f (x, i)�1

9
=

;= 0, (4.12)

where V 2 C(Q⇥ I, [0,+•)), x 2 Q ⇢ R3, i 2 I and D(V )(x, i) denotes the gradient
of function V at x.
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Leveraging the results shown in [34], we obtain Algorithm 5 for solving system (4.12)
with a sequence of decoupled QVIs.

Algorithm 5 Algorithm for solving problem (4.12)
Function Solver (G,e)
Input: G: target state set, e: termination tolerance.
Output: V1, . . . ,V6: cost functions.
for each i 2 I set boundary conditions for V 0

i according to G
k = 0

1: while for some i 2 I : kV k
i �V k�1

i k• > e do
2: k = k+1
3: for each i 2 I compute V k

i by

max

8
<

:
V k

i (x)� min
ī 6={i,h(i)}

{p(i, ī)+V k�1
ī (x)}

lV k
i (x)�D(V k

i )(x) f (x, i)�1)

9
=

;= 0.

for each i 2 I set Vi =V k
i

return {V1, . . . ,V6}

In loop 1-3 of Algorithm 5, V k
i is computed so that, for any x such that V k

i (x) <
minī 6={i,h(i)}{Pi,ī +V k�1

ī (x)}, V k
i is the solution of the HJB equation applied to sub-

system i. In this way, V1,V2, . . . ,V6 are the output functions such that Vi represents the
value function that solves the optimal maneuvering problem with subsystem i taking
into account the penalties of switching to all the subsystems ī 6= {i,h(i)}. In partic-
ular Vi � (Pi,ī +Vī) represents the decrease in cost function that can be obtained by
passing from subsystem i to ī. This is reiterated until the stopping condition in line 1
is satisfied (see [34] for more detail about Algorithm 5).
The numerical implementation of the above algorithm relies on the solution of HJB’s
equations of the form:

max

(
V (x, i)�f(x, i)

lV (x, i)�D(V )(x, i) f (x, i)�1

)
= 0, (4.13)
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with fi = min
ī 6={i,h(i)}

{Pi,ī +V k�1
ī }.

4.2.2 Numerical Implementation

In order to implement a numerical solution of (4.13), we apply the approximation
scheme presented in section 1.2.2, based on a finite approximation of state space
and a discretization in time. In (4.13) we approximate D(V (x, i)) f (x, i)' h�1(V (x+
h f (x, i), i)�V (x, i)), where h is a small positive real number that represents an inte-
gration time. In this way, the second of (4.13) becomes

(1+lh)V (x, i) =V (x+h f (x, i), i)+h = 0,

for x 2 Q and, by approximating (1+lh)�1 ' (1�lh), (1+lh)�1h ' h one ends
up with the following discrete time HJB’s equations

Vh(x, i) = min

(
f(x, i)

(1�lh)Vh(x+h f (x, i), i)+h

)
, (4.14)

with x 2 Q and i 2 I. For a more rigorous derivation of (4.14) see [20].
A grid is computed on a finite set of vertices S = {xl}⇢ Q, l = 1, . . . ,L. Evaluat-

ing (4.14) at x 2 S, we obtain

Vh(xl, i) = min

(
f(xl, i)

(1�lh)Vh(xl +h f (xl, i), i)+h

)
, (4.15)

with l = 1, . . . ,L and i 2 I. Note the dependence of the value cost function on the
choice of the integration step h. Using the grid, function Vi can be approximated by a
linear function of the finite set of variables Vh(xl, i), l = 1, . . . ,L. Figure 4.2 illustrates
a step of construction of the right-hand side of problem (4.15). Namely, for each node
of the grid xl , all end points xl +h f (xl, i) of the Euler approximation of the solution
of (4.8) from the initial state xl are computed. The value cost function for these end
points is given by a multi-linear combination of its values on the grid vertices.

For each i 2 I set vector zi := [Vh(x1, i),Vh(x2, i), . . . ,Vh(xL, i)], in this way zi 2RL

represents the value of the cost function on grid points for subsystem i.
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Figure 4.2: Approximation of the HJB equation on a grid for an autonomous sub-
system i. For each node xl (depicted in black) an Euler integration step is applied to
obtain the end points xl +h f (xl, i) (depicted in red).

Assume the cost function fi is non-negative, for each xl, i 2 I, the right-hand side
of (4.15) is affine with respect to zi, so that problem (4.15) can be rewritten in form

zi = min{fi(xl), Aizi +bi} (4.16)

where for i 2 I, Ai 2 RL⇥L
+ are suitable nonnegative matrices which contains the pos-

itive coefficients for subsystem i that perform the multi-linear combination on the
node of the grid to obtain the value of xl +h f (xl, i); and bi 2RL

+ are suitable nonneg-
ative vectors.
Let w 2 RL, define map M : RL

+ ! RL
+ as

Mi,w(u) := min{w, Aiu+bi},

using the results of [20] it can be shown that M is a contraction, so that (4.16) can be
solved as a fixed point iteration. Namely, setting

(
xi(s+1) = Mi,f s

i
(xi(s)),

xi(0) = x0 ,
(4.17)

with f s
i = min

ī6={i,h(i)}
{Pi,ī + xī(s)}, the solution zi of (4.16), for each i 2 I, is obtained

as zi = lims!• xi(s), for any initial condition x0. The numerical implementation for
solving system (4.12) is presented in Algorithm 6.
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Algorithm 6 Numerical algorithm for solving (4.12)
Function NumericalSolver (G,e)
Input: G: target states set, e: termination tolerance.
Output: V1, . . . ,V6: cost functions associated to subsystems i 2 I.

1: set V 0
i (xl) = 0 for each xl 2 G, i 2 I

2: set V 0
i (xl) =

1
l for each xl 62 G, i 2 I

s = 0
3: while for some i 2 I : |V s

i �V s�1
i |• > e do

4: for each i 2 I compute
5: f s

i = min
ī 6={i,h(i)}

{Pi,ī +V s
ī (s)}

6: V s+1
i = Mi,f s

i
(V s

i )

set Vi =V s
i for each i 2 I

return {V 1, . . . ,V 6}

In lines 1,2 of the algorithm, considering the time horizon is
⇥
0, 1

l
⇤
, for each value

function Vi the boundary conditions are set. In lines 3-6 of Algorithm 6, for each i2 I,
V s

i is a non-increasing function associates to subsystem i that is computed by fixed
point iteration (4.17) with error tolerance e . In particular, the output Vi represents a
value function that is zero for each xl 2 G, while for each xl 62 G represents the cost
to reach the target set G using the subsystem i.

4.3 Feedback controls

In the solution of the car maneuvering problem, we need to find the optimal se-
quence of the subsystems (4.1)� (4.6), occurred in time [0, t], that represents the
optimal control signal s that solves problem (4.11). Note that, considering we use
autonomous subsystems, the information about direction and steering of the vehi-
cle are in the dynamics of the subsystem itself. To this end, let {V ⇤

1 , . . . ,V
⇤
6 } be the

solutions of Algorithm 6, the synthesis of feedback controls for problem (4.11) start-
ing from state x0 is given by Algorithm 7. Starting from initial state x0, Algorithm
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Algorithm 7 Synthesis of feedback controls for system (4.1)-(4.6)
Function FeedbackControls ({V ⇤

1 , . . . ,V
⇤
6 },x0,e)

Input: {V ⇤
1 , . . . ,V

⇤
6 }: value functions returned by Algorithm 6, x0: start state e:

distance tolerance,
Output: I: vector of the indexes of the subsystems.
k = 0
x = x0

ik = argmin
i2I

{interp(V ⇤
i ,x)}

I[k] = ik

1: while dist(x1,x0)> e do
2: k = k+1
3: r = argmin

i6={h(ik�1),ik�1}
{interp(V ⇤

i ,x)+Pik�1,i|interp(V ⇤
i ,x)+Pik�1,i < interp(V ⇤

ik�1 ,x)}

4: if r 6= NULL then
5: ik = r
6: else
7: ik = ik�1

8: x = x+h f (x, ik)
9: I[k] = ik

return I
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7 performs the synthesis of the feedback controls, and returns the vector of system
configurations I that allow reaching the target state x1. In loop 1-9, the synthesis of
feedback controls is obtained by a reiterated Euler integration step of subsystem ik

until the distance between the current and target state is less than the allowed error
e . In line 3, the value of variable r is assigned with the index of the subsystem that
allows decreasing the cost function taking into account the penalty of switching. If
no one transition can reduce the cost function, r is set to NULL. In line 5 the current
subsystem is updated with the subsystem r, while in line 7 the current subsystem is
set with the same subsystem of the previous iteration. Note that function interp(V,x)
evaluates the value cost function at x as a multi-linear interpolation of the vector V of
the values of the cost function on grid vertices.

4.4 Numerical Tests

Consider a C++ implementation for Algorithms 6 and 7 running on Intel Core i7-
3920XM CPU at 2.90 GHz processor with 16 GB RAM. Referring to the car-like
model (see Figure 1.1), set dmax = 0.44 rad and l = 2.57 m. Setting v� = �1 and
v+ = 1 in subsystems (4.1), . . . ,(4.6), the maximum angular velocity is given by
1
l v+ tandmax = 0.183 s�1, so that W = {�0.183,0.183}. Let x1 a target state and let
G be an ellipsoid centered at x1 with semi axes rz = ry = 0.12 m and rq = 0.08.
Figures 4.3a-4.3c show some car maneuvers for different starting states for a parallel
parking scenario. In these tests the penalties to switch from subsystem i to subsystem
j are:

Pi, j =

2

6666666664

P11 P12 P13 � P15 P16

P21 P22 P23 P24 � P26

P31 P32 P33 P34 P35 �
� P42 P43 P44 P45 P46

P51 � P53 P54 P55 P56

P61 P62 � P64 P65 P66

3

7777777775

=

2

6666666664

0 0.1 0.1 � 0.1 0.1
0.1 0 0.1 0.1 � 0.1
0.1 0.1 0 0.1 0.1 �
� 0.1 0.1 0 0.1 0.1
0.1 � 0.1 0.1 0 0.1
0.1 0.1 � 0.1 0.1 0

3

7777777775

= A.
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(a) x0 = (5,8,0.3).
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(b) x0 = (5,8,0).
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(c) x0 = (9.4,8,p).

Figure 4.3: A parallel parking scenario with target state x1 = (6,4.35,0) and Pi, j =

A. For each subsystem (4.1)� (4.6) the corresponding trajectory is depicted with
different colours.
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Using the same and low penalty for each possible transition between subsystems
(4.1)-(4.6), the result is a solution that is close to the minimum-length path. This, in
some cases, produces solutions with a high number of direction changes (see Figure
4.3c). Anyway, a suitable choice of penalties Pi, j can take into account the direction
changes. For instance, Figure 4.4 shows the results for the same scenario of Figure
4.3c using the penalties:

Pi, j =

2

6666666664

0 Psteer Psteer � Pdir Pdir

Psteer 0 Psteer Pdir � Pdir

Psteer Psteer 0 Pdir Pdir �
� Pdir Pdir 0 Psteer Psteer

Pdir � Pdir Psteer 0 Psteer

Pdir Pdir � Psteer Psteer

3

7777777775

= B,

where Psteer = 0.3 is the penalty associated with the change of the steering angle,
and Pdir = 2 represents the penalty associated with the change of direction of the
vehicle. In accordance with chosen penalties Pi, j = B, the returned path is longer and
presents a lower number of direction changes. The number of maneuvers is reduced
to 7 from 14 of Figure 4.3c. In Figure 4.5, using Pdir = 6 the number of maneuvers
is reduced to 6. In all tests Algorithm 6 is solved on a grid of 72971 vertexes over
W = [�2,18]⇥ [2,11]⇥ [0,2p), target state x1 = (6,4.35,0), error tolerance e = 10�4

and discount factor l = 0.05. Algorithm 6 takes a time of 3.5783 s for Pi, j = A and
3.5231 s for Pi, j = B. Instead, Algorithms 7 takes a time in the order of milliseconds.
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Figure 4.4: Target state x1 = (6,4.35,0), starting state x0 = (9.4,8,p), Pi, j = B with
Psteer = 0.3 and Pdir = 2.
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Figure 4.5: Target state x1 = (6,4.35,0), starting state x0 = (9.4,8,p), Pi, j = B with
Psteer = 0.3 and Pdir = 6.





Chapter 5

FOCS: Fusion of Optimal Control
& Search

This chapter is based on a work of Piero Micelli and Maxim Likhachev1.

As discussed in chapter 1, many motion planning tasks in robotics can be rep-
resented as a path finding problem on a graph. To this end, the configuration space of
the robot is discretized with each vertex in the graph corresponding to one of these
discretized robot configurations and the motion of a robot is decomposed into a small
set of short motion primitives that constitute the edges in the graph. Heuristic search
algorithms such as A⇤ can then be used to search this graph for an optimal or close-to-
optimal path from the vertex that corresponds to the current robot configuration to the
vertex that corresponds to its goal configuration. This approach allows to find a solu-
tion to a planning task rather quickly, even for large and high-dimensional operating
spaces by utilizing anytime heuristic search algorithms that provide real-time per-
formance combined with rigorous sub-optimality bounds with respect to the chosen
discretization. For this reason, search-based algorithms are widely used for motion
planning in different domains ( [39], [7] or [40]).

1Maxim Likhachev is with The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
15213 USA.
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Another approach to motion planning involves the numerical solution of the Hamilton-
Jacobi-Bellman (HJB) equation. In this case, the heart of the algorithm relies in find-
ing the optimal value function (or optimal cost-to-go function) which is the solution
to the first-order differential equation (the HJB equation). This value function repre-
sents the minimal total cost for completing the task from the current configuration of
the robot. The optimal solution can then be found using Dynamic Programming Prin-
ciple [20]. In general, the HJB equation is a nonlinear partial differential equation, so
it is computed by numerical procedures which allow to find a linear approximation to
the value function ( [24], [25], [26]). In contrast to search-based algorithms, optimal
control methods allow finding an optimal solution to the motion planning problem
but at the expense of a greater computational cost.
In this chapter, these two methods are combined in a single algorithm that we call
FOCS (Fusion of Optimal Control and Search). The aim of this approach is to address
the motion planning problem exploiting the advantages of Optimal Control Theory
and Search-based Planning.
For instance, consider the navigation scenario shown in Figure 5.1 for a non-holonomic

A

B

Figure 5.1: A navigation scenario with narrow space around goal configurations A
and B.

robot. Here, the choice of the set of the primitives near goal configurations A or B is
critical in order for the search-based algorithm to find a solution through the dense set
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of obstacles. On the other hand, optimal control algorithms can only find solutions
in small operating spaces. This motivates us to construct an approach as follows:
Search-based Planning is used to reach a small region that contains the goal config-
uration, the motion planning task inside the goal region is completed via Dynamic
Programming-based optimal control. FOCS finds on its own how to concatenate the
two portions of the path together to return a single path with guarantees on its qual-
ity. This chapter first describes algorithm FOCS and its proprieties, then shows the
results of its application to navigation to find the minimum-time path for a car-like
vehicle.

5.1 Problem statment

Let W ⇢ Rn be a bounded and connected domain, which represents the operating
space and let Wopt ⇢ W be a region such that target state sgoal 2 Wopt . We define a
lattice-based graph (see section 1.2.1) on a finite set of states in domain W, which we
call S. In this graph the edges are the connections between these states (nodes). In this
way c(s,s0) is the cost of the edge between nodes s and s0, where c(s,s0) = • if there
are no edges between s and s0. Therefore, SUCCESSOR(s) := {s0 2 S | c(s,s0) 6= •},
represents all successors of s and c⇤(s,s0) denotes the cost of the optimal path from
state s to s0. Moreover, we define path P : sstart ! sgoal as a concatenation of motion
primitives of the robot that connects starting state sstart to goal state sgoal .
Now, in subset Wopt , consider to model the motion of the robot by the following
ordinary differential equation:

8
<

:
ż(t) = f (z(t),u(t)),

z(0) = z0,

where f : Wopt ⇥U ! Wopt is a continuous function, z0 is the initial state, u(t) 2 U
is the control input, U is a compact set of admissible controls and yz0,u is a solution
of the system. Here, we want to find the control function u that minimizes the cost
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functional

Jz0(u) :=
•Z

0

c̄(z(t),u(t))dt, (5.1)

where c̄ : Wopt ⇥U ! R is a continuous cost function. As shown in section 1.2.2,
dynamic programming approach provides a method for the solution of this optimal
control problem introducing the value function v̄ : Wopt ! R:

v̄(z0) = inf
u2U

Jz0(u). (5.2)

Value function (5.2) represents the best cost value we can get from cost functional
(5.1) and, as it satisfies the HJB equation, enables us to construct the optimal solution
y⇤z0

for any state in Wopt .

5.2 Algorithm FOCS

FOCS (Algorithm 8) selects the path that minimizes function f̄ : S ! R:

f̄ (s) =

8
<

:
g(s)+ v̄(s) if s 2 Wopt ,

g(s)+hh(s) otherwise ,

where s is the last node on the path, g(s) denotes the current cost of the best path
from sstart to s, v̄(s) represents the optimal cost from s to sgoal and h(s) is the heuristic
function.
Given a couple of starting and goal state (sstart ,sgoal) (such that sgoal 2Wopt), inflation
factor h � 1, value function v̄ defined over Wopt , and heuristic function h; FOCS
returns a feasible path as a concatenation of the search-based path P : sstart ! s and
the optimal path y⇤s (t), with s 2 Wopt (line 2).
Algorithm 8 uses OPEN and CLOSED lists for keeping track of the frontier states
and of the expanded states, respectively. In Loop 13-26, node s⇤ represents the last
node on the current best path. In for loop 14-23, each successor s0 of s⇤ is evaluated: if
s0 is a new node, in lines 16,17 variable g is initialized to infinity and variable optimal
to false. Variable optimal is set to true if state s0 is part of Wopt (line 19).
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Algorithm 8 FOCS
Input: sgoal: goal state, sstart : starting state, h � 1: inflation factor.
Output: [P : sstart ! s, y⇤s ]: s 2 Wopt .

1: procedure PATH(s)
2: return [P : sstart ! s, y⇤s ]
3: procedure PRIORITY(s)
4: if optimal(s) then
5: return g(s)+ v̄(s)
6: else
7: return g(s)+hh(s)
8: procedure MAIN( )
9: g(sgoal) = • g(sstart) = 0

10: OPEN = CLOSED =?
11: insert sstart into OPEN with PRIORITY(sstart)

12: s⇤ = sstart

13: while not optimal(s⇤) do
14: for each s0 2 SUCCESSOR(s⇤) do
15: if s0 was not visited before then
16: g(s0) = •
17: optimal(s0) = false
18: if s0 2 Wopt then
19: optimal(s0) = true
20: if g(s0)> g(s⇤)+ c(s⇤,s0) then
21: g(s0) = g(s⇤)+ c(s⇤,s0)
22: if s0 /2 CLOSED then
23: insert s0 into OPEN with PRIORITY(s0)

24: s⇤ = argmin
s2OPEN

{PRIORITY(s)}

25: remove s⇤ from OPEN
26: CLOSED = CLOSED[ s⇤

27: return PATH(s⇤)

In line 21 value g(s0) is updated if the path through s⇤ has a lower cost and, if s0 has
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not yet been expanded, the node is stored in OPEN. In this way, at each iteration,
node s⇤ is updated with the node in OPEN that minimizes function f̄ (line 24). FOCS
ends when a node that is part of Wopt is expanded (line 13).

5.2.1 Theoretical Analysis

Using an admissible and consistent heuristic, all the theoretical guarantees for WA⇤

hold for FOCS.

Theorem 4. Let a 2 Wopt a state such that the terminal condition in Algorithm 8 (line
13) is satisfied, then we have that:

argmin
s2OPEN

f̄ (s) = g(a)+ v̄(a) hc⇤(sstart ,sgoal). (5.3)

In other words, the cost of the solution returned by FOCS is no greater than h times
the cost of the optimal solution returned by A⇤.

Proof. To prove it by contradiction we suppose that there exists a path P⇤ : sstart !
sgoal such that:

g(a)+ v̄(a)> hc(P⇤) = hc⇤(sstart ,sgoal). (5.4)

Case 1. At the end of Algorithm 8, OPEN contains a state from P⇤ that is part of
region Wopt . Let d be such state, using (5.3) it follows that:

g(d)+ v̄(d)� g(a)+ v̄(a),

and, by proprieties (1.4):

hg⇤(d)+ v̄(d)� g(a)+ v̄(a).

Considering that h is a positive scalar, greater or equal to 1, one ends up with
the following equation:

h (g⇤(d)+ v̄(d))� g(a)+ v̄(a).
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Hence, by definition (5.2), we have that for any s 2 Wopt , v̄(s)  c⇤(s,sgoal), and
so that:

h
�
g⇤(d)+ c⇤(d,sgoal)

�
� g(a)+ v̄(a). (5.5)

From the initial hypothesis (d is part of P⇤) we have that g⇤(d)+ c⇤(d,sgoal) =

c(P⇤). Thus equation (5.5) contradicts (5.4).

Case 2. At the end of Algorithm 8, OPEN contains state c from P⇤, that is not part
of region Wopt . As for Case 1, by (5.3) and (1.4), we obtain the following chain of
inequalities:

argmin
s2OPEN

f̄ (s) = g(a)+ v̄(a)

 g(c)+hh(c)

 h (g⇤(c)+h(c))
(i)
 h

�
g⇤(c)+ c⇤(c,sgoal)

�
= hc(P⇤).

Here, inequality (i) is due to the admissibility properties (1.3) of heuristic function h.
Thus, hypothesis (5.4) is again contradicted.

Theorem 5. Any state in the graph is expanded no more than 1 times by FOCS.

Proof. (Sketch) It is a consequence of the fact that Algorithm 8 works as WA⇤, ending
when a state s, such that optimal(s) is true, is expanded.

5.3 Application of FOCS to navigation

We use FOCS to find the minimum-time path for a car-like vehicle. In order to do
this, we first define the lattice-based graph and value function (5.2) for this particular
application.
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Lattice-based graph. We use lattice-state [7], [11] to obtain a discretization of the
configuration space W into the finite set of states S, where every connection between
these states represents a feasible path. As shown in section 1.2.1, the two key elements
to build a lattice are: the choice of the representation of the states in the lattice, and
the action space (or control set) used for the inter-state connections. In this case, each
state in the lattice is represented by coordinates (x,y,q), where the couple (x,y) rep-
resents the center of the real wheel axle of the vehicle and q the orientation angle. The
offline construction of the action space is based on the work [11] by Pivtoraiko and
Kelly that aims to create near-minimal spanning action spaces. Moreover, to gener-
ate feasible actions for each state, we use a trajectory generation algorithm originally
developed by Howard and Kelly [41]. In this way an action in the lattice represents a
feasible path between two states. We assign the cost of an action to be the time it takes
to the vehicle for traversing with constant velocity the path associated with the action.

Value function. Since, for our application we are interested in finding the minimum-
time path for a car-like vehicle, we refer to the deterministic method presented in
chapter 3. This method allows to define a value function, on domain Ŵopt = R2 ⇥
[0,2p), which represents the minimum time to reach a target set G 2 Ŵopt . In par-
ticular, the method allows finding the shortest and collision-free path, with a limited
number of direction changes. Let {V ⇤,0, . . . ,V ⇤,Kmax} be the corresponding solution of
Algorithm 3 of Chapter 3, with at most kmax direction changes, we define function
¯̄v : S ! R[{+•} as:

¯̄v(s) =

(
+• if s 62 Ŵopt ,

argmin
k

⇢
� 1

l
ln(1�l interp(V ⇤,k,s))

�
otherwise ,

where interp(V,s) is the function that evaluates the value cost function at s as a
multi-linear interpolation of the vector V of the values of the cost function on grid
vertices. Function ¯̄v represents the optimal time to reach target set G, for any state
s in the lattice, using at most Kmax direction changes. Since for this application we
are interested in finding a minimum time trajectory we will use an high value for
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parameter Kmax. Note as for Kmax !+• in Algorithm 3, 8s 2 Ŵopt we have:

¯̄v(s) c⇤(s,sgoal).

The optimal trajectory y⇤s , 8s 2 Ŵopt , can then be found using Algorithm 4 of Chapter
3.

5.3.1 Numerical Tests

We validate FOCS, through the following scenarios:

1. the complex scenario of Figures 5.3,5.4,

2. a parking lot (Figure 5.5),

3. a randomly generated environment (Figure 5.6).

We used a 2.6 GHz Intel Core i5 processor with 8GB RAM.
In Algorithm 8, we compute heuristic h as the Euclidean distance in 2D (x,y), and
value function ¯̄v by Algorithm 3: here we set Kmax = 8 and target set G as an ellipsoid
centered in sgoal with semi-axis rx = ry = 0.06 m and rq = 0.05 rad. In our tests, the
vehicle is size 4.2⇥2 m with a minimum turning radius of 6 m and constant velocity
equal to 1 ms�1.
In the lattice, we employ 16 angles, a 2D (x,y) resolution of 0.2 m for scenario 1, and
0.25 m for scenarios 2,3. Moreover, we use an action space with 8 actions for each
state. Figure 5.2 illustrates the action space for a single state in the lattice when the
vehicle is facing right.

1) Complex Scenario. Figures 5.3,5.4 show the path computed by FOCS for a
parallel parking maneuver and a diagonal parking maneuver. Here, we depict the
boundaries of the optimal control region Ŵopt and the switching state in red. As
per “switching state” we mean the state s⇤ that ends Algorithm 8, which is the one
that joins paths P : sstart ! s⇤ (depicted in green) and y⇤s⇤ (depicted in blue). In the
first parking maneuver, value function ¯̄v is solved on a grid of 67126 vertexes over
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Figure 5.2: Action space for a single state in the lattice. For each action the end point
is represented by the cross marker.

Ŵopt = [60,80]⇥ [30,40]⇥ [0,2p), and takes a computational time of 10.3826 s. For
the diagonal parking maneuver, the time to compute the value function on a grid of
63851 vertexes, over Ŵopt = [0,22]⇥ [0,12]⇥ [0,2p), is 7.6821 s. In both cases we
use discount factor l = 0.07. Table 5.1 shows the performance of Algorithm 8 for
these two parking maneuvers with different values of h .
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Figure 5.3: Planned path for sstart = (24,4,0.571) and sgoal = (67.1,38,6.173) with
h = 1.
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Figure 5.4: Planned path for sstart = (60.1,26.3,3.711) and sgoal = (2.5,5.1,0.25)
with h = 3 (top picture) and h = 1 (bottom picture).

Table 5.1: Performance of FOCS for the parallel and diagonal parking with different
values for inflation factor h

h 3 2 1.6 1.4 1.2 1
Parallel: time (s) 0.004 0.021 0.49 1.419 3.416 5.433
Diagonal: time (s) 0.001 0.193 0.862 2.083 4.938 6.938
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2) Parking lot. In the 200⇥ 200 m parking lot environment of Figure 5.5, the
horizontal and vertical lanes are wide 6 and 10 meters, respectively. Here, we test our
algorithm computing 100 tests with goal state sgoal =

�
13.9,46.2, p

2
�

and randomly
generated starting states (xr

start ,yr
start ,q r

start), for different value of h . In particular
for angle q r

start , we chose a random value between interval [�p
6 ,

p
6 ][ [�p

6 + p, p
6 +

p] when the random couple (xr
start ,yr

start) drops in an horizontal lane, and interval
[p

4 ,
3p
4 ][ [p

4 +p, 3p
4 +p] otherwise. For all the experiments the solution is found. Table

5.2 shows the mean time over the 100 tests for each value of h . In this case, value
function ¯̄v is solved on a grid of 63676 vertexes over Ŵopt = [7,26]⇥ [44,57]⇥ [0,2p),
with l = 0.05, and takes a computational time of 6.947 s.

Table 5.2: Performance of FOCS for the parking lot environment with different values
for inflation factor h

h 3 2 1.6 1.4 1.2 1
Mean time (s) 0.003 0.004 0.011 0.029 0.102 1.982

3) Random Environment. We also evaluate Algorithm 8 in the randomly gener-
ated environment of Figure 5.6. In this environment we use 100 pairs of random start-
ing and goal states (sr

goal,s
r
start). The performance of these experiments are shown in

Table 5.3. In this case we solve ¯̄v over the torus Ŵopt = [xr
goal �9,xr

goal +9]⇥ [yr
goal �

9,yr
goal + 9]⇥ [0,2p), with l = 0.05. The resolution of the value function takes a

mean time of 8.1247 s for a mean number of 76480 vertexes. For all the experiments
the solution is found.

Table 5.3: Performance of FOCS for the random environment with different values
for inflation factor h

h 3 2 1.6 1.4 1.2 1
Mean time (s) 0.811 0.884 0.953 1.074 1.306 2.204

Note that, in general, the total time to find a solution by FOCS is given by the sum
of the time to solve value function v̄ and the time to run Algorithm 8. However, if
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Figure 5.5: Planned path for sstart = (140,180,2.6180) with h = 1 in the 200⇥200
meters parking lot environment.
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Figure 5.6: Planned path for sstart =(140,180,4.4124) and sgoal =(107,23,2.9), with
h = 1, in the 200⇥200 meters randomly generated environment.
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the target state is known and the obstacles in the optimal control region Wopt are
static, one can compute the value function offline and consider only the time to run
Algorithm 8.





Conclusions

This thesis presented a general time optimal approach for path planning of road ve-
hicles. The proposed approach, based on the numerical solution of the Hamilton-
Jacobi-Bellman equation, has been implemented in two algorithms for performing
a parking maneuver for a car-like vehicle. With respect to search-based algorithms,
this approach allowed finding an optimal solution at the expense of a greater compu-
tational cost. However, both these optimal control-based algorithms are not suitable
for finding a solution in large environments. For this reason, this thesis presented an
algorithm called FOCS (Fusion of Optimal Control and Search) that combined the
advantages of these two approaches while providing a bound on the sub-optimality
of its solution. This approach allowed finding a solution for large environments, even
when the operating space around the target configuration is tight, exploiting the per-
formances of search-based algorithms and the accuracy of the HJB equation.
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