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Abstract

In this dissertation, a novel approach to program JADE (Java Agent DEvelopment Frame-
work) agents and Multi-Agent Systems (MASs) is proposed. JADE is a well-known agent
platform which provides support to consolidated agent technologies, an agent-oriented dis-
tributed architecture, and several tools, both textual and graphical, for the creation of agents
and MASs. The work presented in this dissertation originates from the need to assist program-
mers by means of tools that reduce the complexity and speed up the building of JADE MASs.
The need for a simpler and more intuitive way to program JADE MASs in all their parts, from
agents and behaviours to ontologies and interaction protocols, has led to the construction of a
high level Domain-Specific Language (DSL), explicitly tailored for JADE agent and MASs.
The proposed agent-oriented DSL is called JADEL, which stands for JADE Language. The
language is designed to support the effective implementation of JADE MASs in the scope
of model-driven development. JADEL provides a simple and clean syntax to describe agents
and message passing among agents, behaviours and sub-behaviours, and JADE ontologies
with their propositions, concepts and predicates. Moreover, it allows to integrate JADE-native
agents, behaviours, and ontologies within JADEL code, which is translated into Java code.
One of the main results of the proposed approach is that it permits to clearly put agent-
oriented programming methodologies above the object-oriented programming paradigm of
JADE programs, decoupling the agent meta-model from the Java meta-model.
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Introduction

In this thesis, a novel agent-oriented programming language is presented. The lan-
guage is called JADEL, which stands for JADE Language, since it is based on the
Java Agent DEvelopment Framework (JADE). In the early design phase, three main
requirements to meet were identified. In detail,

1. JADEL must follow the Agent-Oriented Programming (AOP) paradigm;

2. JADEL must rely on the JADE platform; and

3. JADEL must be described in terms of a Domain-Specific Language (DSL).

Such requirements are determined by a few general considerations, as follows:

1. AOP is a promising programming paradigm that permits developers to think in
terms of agents, and that it takes advantage of consolidated agent technologies;

2. JADE is currently one of the most complete, solid and popular agent platform;

3. DSLs allow developers to manage a certain domain, e.g., the JADE agents
domain, in a efficient and effective way, to the extent that they provide lighter
syntaxes and specific constructs, which are tailored for the target domain; and

4. DSLs support Model-Driven Development (MDD).

Those considerations are far from being sufficient motivations for the develop-
ment of a novel language from scratch. As a matter of fact, designing and imple-
menting a programming language, yet also a DSL, is a difficult task that requires a
substantial effort.



2 Introduction

First, from the very early phases of language development, its meta-model and
structure must be clear, from main entities to little parts such as single expressions.
This implies that the language developer has to understand deeply the domain that the
language aims at supporting, and he/she must also delineate precisely target users,
whose can be programmers or not (in case of graphical modeling languages, for
example). A formalization of the target domain could be useful. There are lots of
different approaches that can be suitable to model the domain, which span from in-
formal definitions of main concepts involved, such as use-case or Unified Modeling
Language (UML) diagrams, to more formal specifications, such as transformation
functions or transition systems.

Second, a language developer is demanded to master a high number of imple-
mentation details that derive from the use of different technologies, such as lexer and
parser generators, code translators and compilers. Moreover, modern languages often
came together with other tools such as editors or, better, Integrated Development En-
vironments (IDEs). Hence, developing a language means not only producing a com-
piler or an interpreter for a newly-defined grammar, but it also means constructing
the environment for the language development.

Other problems go beyond the design and implementation phases. For example,
maintenance costs have to be correctly evaluated, and a maintenance plan has to be
assessed to ensure usability over time. Another important part is the estimation of
language capabilities and its actual advantages. Methods for calculating the sound-
ness of a language depend on the type of language, its purposes and motivations, its
target domain, and so on. Several metrics have been proposed and used, but they are
very related to the language for which they are defined. Only few of these metrics are
suitable for almost every language, such as the count of Lines of Code (LOCs). Thus,
estimating the impact of the language, in terms of usability and readability, as well as
requirements matching and maintenance costs, is often an important exercise.

JADEL responds to some issues which involve JADE development, such as the
reduction of the complexity of the framework for new users, and the renovation of
the JADE user experience for others.

In the following of this introduction, motivations are largely explained. The ad-
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vantages in incorporate AOP in the development process of an application are high-
lighted, and the improvement that a DSL can provide is discussed. The importance of
JADE as leading technology in the agent context is clarified, as well as its limitations
which made necessary an enhancement.

Agents and Multi-Agent Systems

AOP is a programming paradigm which puts agents as basic building blocks for soft-
ware development. Agents in Artificial Intelligence (AI) are entities which are the-
oretically capable to perform intelligent actions, i.e., their aim is to act in order to
achieve a rational behaviour. As a matter of fact, the term agent derives from the latin
word agere, which means to act, or, more generically, to do.

According to a classic subdivision of AI definitions [Russell and Norvig, 2002],
there are four distinct categories that describe different purposes of AI. Such cate-
gories are obtained by intersecting two axes: the first dimension is divided into think-
ing and acting, and the second spaces from human to rational behaviours. Hence, the
four categories are (i) thinking humanly; (ii) thinking rationally; (iii) acting humanly;
and (iv) acting rationally. Only the last category is covered in this dissertation: as a
matter of fact, agents falls in that category.

Due to the inherent complexity of the problem of achieving a rational behaviour
through actions, there is not a unique standard definition of agent. On the contrary,
many kinds of agents were studied and developed by researchers and practitioners in
the field of AI.

As a first definition, Intelligent Agents (IAs) are presented. IAs are kind of au-
tonomous entities, which have actuators and sensors, and that affect a certain en-
vironment of which they have partial or complete knowledge. Such agents can be
computer programs, or they can be physically embedded in their environment.

Sometimes, IAs are also called Rational Agents (RAs), but there are actually few
differences between IAs and RAs. In fact, RAs are concept used mainly in AI or
game theory to model anything that has goal-oriented behaviours and that can make
decisions in order to maximize its utility function. This introduces another concept
besides sensors, actuators, and environment: a measure of performance. Also rational
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agents can be software programs, but they can also be humans or any other being.

Finally, in the field of Computer Science, there are Software Agents (SAs), called
here agents when no ambiguity can arise. Such agents are computer programs which
must have certain features to guarantee a high degree of autonomy, reactivity and
persistence. Sometimes they are known as bots, from robots. Examples of software
agents are personal assistants, chat bots, Unix-like system daemons, and so on.

Mentioned definitions are generic, and sometimes they overlap. A notable im-
provement to the concept of agent is the introduction of communicative capabilities,
which allow the agent to cooperate or coordinate with other agents. A group of agents
defines a distributed system, whose basic units are in some measure autonomous
or intelligent, and that exchange messages to each others and collaborate towards
common goals. Such distributed systems, which are composed of agents and aim at
performing rational actions for achieving a shared objective, are called Multi-Agent
Systems (MASs). MASs are widely employed for studying Distributed Artificial In-
telligence (DAI) problems.

In AOP, agents capabilities are specified with the aid of a dedicated language or
infrastructure, such as a framework or a graphical interface. The AOP paradigm is
inherently different from the Object-Oriented Programming (OOP) one. As a matter
of fact, agents are characterized by mental states and they exchange specific types
of messages, responding to them in a truthful and consistent way. To this extent,
agents are viewed as specialization of objects. Viewing agents as specializations or
extensions of objects is somehow intuitive, and points out the active capabilities of
agents. Nevertheless, agents and objects abstractions are completely different. As
stated in [Baldoni et al., 2016], the behavioral dimension is not sufficient to compare
agents and objects, lacking the concepts of goals and environment. For this reason, the
management of agents and MAS often requires the use of specific languages, which
focus on agent-oriented abstractions and provide particular constructs and structures.

There are many Agent Programming Languages (APLs), some imperatives, others
declarative languages, that follow different agent models or meta-models, and that
are useful for different purposes. Also, a long list of AOP frameworks, called Agent
Platforms (APs), were developed in order to respond to diverse necessity and to target
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various applications. A comprehensive but not exhaustive list of APLs and agent
platforms is shown in Chapter 1, where different solutions are discussed, according
to some classifications and their main characteristics.

The JADE Platform

JADE is a development framework which provides a Java Application Program In-
terface (API), and graphical tools for building and running complex MASs. JADE
first release is dated in the early 2000s, but nowadays JADE is still one of the most
popular agent platforms, both in industrial and in academic environments [Kravari
and Bassiliades, 2015]. Many factors contributed to its durable success.

First, a critical role was played by its compliance to FIPA (Foundation for In-
telligent Physical Agents)1 specifications. FIPA is a body for the standardization of
software agents which are heterogeneous and that interacts among each others. As a
matter of fact, FIPA specifies standards for Agent Communication Languages (ACLs),
i.e., the languages which agents use in their interactions, and defines a number of In-
teraction Protocols (IPs) that provide patterns for message passing among agents.

Second, JADE is fully written in Java. This is not surprising, since in the years
of JADE launching, Java was a novel and promising technology, and programmers
wanted to use it for their applications. It was common opinion that it would have
changed radically the way software was built, and it was the technology that marked
the growth of the Web. Thus, as a core design decision, JADE completely relies on
Java. Just a few projects, e.g., the .NET porting bundled with the source code distri-
bution of JADE, tried to loose the tie that couples JADE and Java.

Furthermore, JADE is currently actively developed, and there are some satellite
projects that have been advanced in the meanwhile. The growth of the framework and
its extension to other application domains increase and strengthen JADE reliability
as software tool for professional use. Just to cite a notable industrial example, JADE
has been in daily use for service provision and management in Telecom Italia for
more than six years, serving millions of customers in one of the largest and most

1www.fipa.org

www.fipa.org
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penetrating broadband networks in Europe [Bergenti et al., 2015a].
These factors made JADE success, but there are also important drawbacks. FIPA

specifications are already in use, and are still important in MAS development, but (i)
other standardizations, not necessarily tied with agent-oriented development, are now
acquiring significance in this field, mainly because of the request of interoperability
among different systems; and (ii) JADE is currently not the only agent platform which
complies with FIPA standards, and many different proposals come up to be valid
alternatives.

The fact that JADE is fully written in Java is somehow a limitation. As a mat-
ter of fact, nowadays, the 100% pure Java approach of the beginnings becomes less
appealing to developers mostly because (i) a number of valid alternatives are becom-
ing popular; (ii) the minimalistic syntax of Java is perceived as a limitation; and (iii)
the number of researchers and practitioners advocating the use of DSLs is quickly
growing.

Finally, JADE has already more than 15 years of use and it is currently expanding.
This rapid growth had increased JADE complexity and had lowered its compliance
with AOP. In fact, a good JADE developer is required to master a high number of
implementation details, in addition to his/her familiarity with the basics of MAS pro-
gramming, following the AOP paradigm. Thus, the chances of making mistakes, both
in the technical implementation and in the agent design, increase considerably. In ad-
dition, the constant growing of JADE in terms of features made it difficult for new
developers and students. These difficulties are due to the fact that JADE significantly
increased its complexity and now it has a steep learning curve. The main problems in
developing agent-based applications and MASs in JADE can be listed as follows.

1. The complexity of the framework requires not only expertise in management
of distributed MAS but also a deep understanding of JADE mechanisms;

2. The lack of a fixed agent model sometimes causes unclear or incorrect utiliza-
tions of the available agent technologies; and

3. Some procedures and patterns become repetitive or verbose, hence not clear in
terms of AOP, due to the gap between the AOP and OOP paradigms.
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In summary, factors that made JADE success, namely FIPA compliance, Java as
unique programming language for the framework, and the rise of related projects
as well as newly-developed features, are now weaker and cause of some problems.
Stating the JADE importance in the agent-oriented context, its is not desirable that
such problems remain unsolved. On the contrary, there is the necessity of a solution
that preserves the stability and reliability of JADE, enhancing at the same time its
compliance with AOP, and, hopefully, simplifying the way JADE MASs are build.
This dissertation focus on the search for such a solution.

The Role of DSLs in Software Development

DSLs are programming languages that refer to a specific application domain, in con-
trast to General Purpose Languages (GPLs) that are meant for any use case. The
definition of what is a specific domain and what is not is unclear, and it is often a
matter of taste and degree of specialization.

The majority of the modern mainstream languages are GPLs, such as Java, C++,
Python, and so on, but there are also very popular languages that are usually clas-
sified as DSLs, such as SQL, HTML, EBNF for grammars. Actually, some of these
DSLs are not proper programming languages, and they are referred to as markup lan-
guages, specification languages or modeling languages. A natural way to delineate
the specificity of a language with respect to a domain is to put it on a range from very
specialized languages, such as EBNF, to very general ones, such as C++.

The number of expressions and constructs the language has, or the number of ap-
plications for which it is suitable are not always a good measure for defining DSLs.
A DSL can be very little, a small language which does not include many of the fea-
tures of GPLs, and that is used by a single application. Such DSLs are called mini-
languages. Other DSLs are meant to be easily integrated with a host language, which
is typically a GPL, simply adding to it specific expressions, in a way similar to an
application library.

The wide range of technologies and tools involved in the development of a DSL
is brightly discussed in [Mernik et al., 2005; Oliveira et al., 2009], where DSLs are
clearly marked as important tools to support MDD. Deciding in favor of a DSL in-
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stead of an API is not trivial and it depends on many factors. In fact, the API of an
application library is written in a certain language, usually a GPL, and it consists
in a set of methods or procedures that provide the needed building blocks to make
easier the development of a program, by abstracting the underlying implementation.
Thus, a GPL in combination with a suitable API behaves as a DSL. The difference
is that a DSL can go beyond the notation offered by a GPL, and that a mapping be-
tween domain-specific abstractions and library features is not always simple. Briefly,
GPLs user-defined operators and functions are often not so direct as DSLs specific
expressions and constructs.

The use of a DSL for a specific application domain leads to important benefits.
As a matter of fact, the syntax of a DSL is tailored on the specific domain that it
describes, with the aid of user-friendly notations that are simpler than the respective
general-purpose ones. This facilitates code understanding, and it allows many repet-
itive and tedious activities to be automated. Moreover, hosting a DSLs into another
language ensures applicability and reusability of domain-specific code in real-world
scenarios, where interoperability with existing code is essential. On the other hand,
APIs are in most cases cheap solution, in terms of development and maintenance of
the API itself.

A significant body of research in software engineering includes important studies
on DSLs and Domain Specific Modeling Languages (DSMLs). Such an approach is
part of the so called Model-Driven Engineering (MDE), which aims at driving the
whole development process in high-level modeling of entities. In fact, MDE proposes
the systematic use of models as primary engineering artifacts. Meta-modeling and
model transformations are basic approaches in MDE for ensuring interoperability,
portability, and reusability of software.

Language Semantics and Formalizations

Programming languages, both DSLs and GPLs, are fundamental tools for every de-
velopers. Hence, it is extremely important to assess their capabilities, potential, and
semantics, in an almost objective way. Such a task is feasible for programming lan-
guages because they do not have the complexity of a natural language, neither they
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contain the typical ambiguities of spoken languages. On the contrary, programming
languages have precise rules, and they are limited in their expressive power [Felleisen,
1991] and computational power [Turing, 1937].

The art of studying formal languages is the Mathematical Logic discipline. In
mathematical logic, formal languages are studied by means of a meta-language, which
puts a layer between the mathematical model and the actual subject of the study. Such
a meta-language is used to define the morphology, the syntax, and the semantics of
a formal language. In the programming languages case, a specialization of such a
discipline is used. Mathematical models were developed specifically for studying
programming languages, and opened a new field of research. In detail, a program-
ming language is defined by means of syntactic categories, that describe the way
expressions are build. In other words, syntactic categories specify how to write in
that language, i.e., which words and phrases are allowed.

Given the way programs have to be written, their meaning is obtained by impos-
ing a semantics. In a classic book on the semantics of programming language, [Winskel,
1993], three different types of semantics are defined, namely, the operational, the de-
notational, and the axiomatic semantics. All three semantics have different usage
and purposes, but it can be shown that they are equivalent. An almost complete refer-
ence for the Structural Operational Semantics (SOS) is [Plotkin, 2004]. In particular,
Plotkin defines Labeled Transition System (LTS) for automata, and then it applies the
same approach to programming languages.

The operational semantics of a programming language is based on its syntax cate-
gories. Given a correct expression, the transition system shows how the expression is
evaluated, under which circumstances, and what is the result of the evaluation on the
environment. Such a detailed description of the meaning of an expression is useful
to avoid mistakes, and to validate the correctness of a program in doing something.
Especially for critical software, validating and verifying the semantics of a program
or a code fragment is a crucial phase of software development. In general, a formal
semantics of a language permits reasoning on language properties, such as type safe-
ness. This is the reason for providing a new language such a formal semantics. GPLs
often do not have formal specifications of their semantics, due to their complexity.
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Giving a formal semantics for Java-like languages is yet a challenging research prob-
lem. A survey on the state of the art in Java formalization can be found in [Alves-
Foss, 1999] and in [Joy et al., 1998]. Notably, a formalization of events is provided
in [Cenciarelli et al., 1999]. DSLs are often smaller and simpler than GPLs, and giv-
ing them a formalization is easier. For this reason, in developing a novel DSLs, a
detailed mathematical description of its semantics is expected.

Scope and Structure of the Dissertation

In summary, a number of problems that involve JADE were identified, in particular
its compliance with AOP and MAS development, and a possible solution consists in
the use of a DSL that can put agent-oriented features of JADE on a higher level of
abstraction, in the scope of MDD.

Each of those problems have been analyzed and the proposed solution aims at
integrating and enhancing JADE, as well as simplifying the use of the framework.

1. The expertise and knowledge of JADE mechanisms is confined in a DSL that
provides shortcuts and simple constructs for expressing the most complicated
procedures of the framework;

2. The agent model is given by a selection of abstractions of the DSL, which
forces the major methodology; and

3. The AOP features and main patterns of communications are enclosed in a lim-
ited number of specific expressions that put the agent-oriented concepts in a
higher level than object-oriented ones.

The approach used in the preparation and development of JADEL can be sum-
marized as follows. An in-depth study of the state of the art was made, in order to
correctly pose JADEL into the wide variety of AOP technologies. In Chapter 1, some
of the most popular agent-oriented proposals are described, by listing the main fea-
tures of each methodology, platform, and language. Such an enumeration does not
aim at providing a comprehensive or exhaustive list of AOP approaches. Producing
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such a complete survey on AOP is a very difficult exercise, and it is out of the scope
of this work. On the contrary, Chapter 1 equips the reader with a quick reference of
the most successful AOP proposals. A brief conclusion compares the depicted agent-
oriented technologies with the novel proposal discussed in this dissertation.

Then, a formalization of the major concepts of JADE is produced, that permits
an analysis of JADE patterns and idioms. Such a work is presented in details in
Chapter 2. The formalization is based on the core calculus Featherweight Java (FJ),
first presented in [Igarashi et al., 2001]. An extension of such a calculus is proposed,
adding to it non-functional features, and using stores and LTS. A subset of important
functionality of JADE APIs are selected, and the related patterns and methods are
included in the proposed system. The system consists also of some sub-systems, that
point out different aspects of JADE programs. For example, a dedicated system is
devoted to the managing of events. A final discussion evaluates the outcome of the
JADE formalization and delineates future developments and purposes.

In Chapter 3, JADEL syntax is defined, and an operational semantics of the lan-
guage is provided. Such a semantics is proposed in the same fashion of JADE formal-
ization, highliting differences between the newly-developed JADEL and the platform
it was built on, JADE. As a matter of fact, the semantics of JADEL is very important
to understand its capabilities and the improvement it give to the direct JADE pro-
gramming. The next step consists of the actual implementation of the language, and
many examples are developed in order to highlight all of its features.

Finally, for evaluating the work on JADEL, examples are used as case-studies
and tested in terms of readability, simplicity, and performance. Chapter 4 is devoted
to the quantitative and qualitative assessment of JADEL as a programming language
in the field of agents and MAS.

A conclusion provides an overview of the present work, the achieved results and
spaces for future improvements.





Chapter 1

Agent-Oriented Programming

First Law. A robot may not injure a human being or,
through inaction, allow a human being to come to harm.

– Isaac Asimov

The first rule that is required to meet by JADEL is the compliance with the Agent-
Oriented Programming (AOP) paradigm. AOP is a programming paradigm first in-
troduced in [Shoham, 1997], which identifies as core abstractions some autonomous
and proactive entities, known as agents.

Over the years, several languages, frameworks, and platforms, as well as meta-
models and programming methodologies, were studied and developed in order to
coherently support AOP. The interest in such tools dates back to the introduction of
agent technologies and, since then, it has grown rapidly. Nowadays, there are a high
number of different alternatives that provide advanced features for the development
of agents and Multi-Agent Systems (MASs). A particular mention goes to Agent Pro-
gramming Languages (APLs), that turned out to be especially convenient to model
and develop complex MASs, in contrast with traditional (lower-level) languages, that
are often considered not suitable to effectively implement AOP. In this chapter, a sur-
vey on agent-oriented methodologies, platforms, and languages is presented, in order
to precisely delineate the state of the art in AOP.
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1.1 Agent-Oriented Software Engineering

Agent-Oriented Software Engineering (AOSE) is a branch of software engineering,
which studies and disciplines the available approaches and methodologies involved
in the development of agent-oriented applications, agents, and MASs [Bergenti et al.,
2004]. A lot of different AOSE methodologies have been proposed to take advan-
tage of AOP. In the scope of such methodologies, some meta-models for MAS were
specified. Usually, such meta-models describe only the main elements of a MAS to-
gether with the relations among them, using models as primary artifacts, and their
transformations as primary phases, in the respective methodologies.

A survey of the state of the art of Model-Driven Development (MDD) method-
ologies in AOSE is provided in [Kardas, 2013], together with an evaluation of de-
scribed approaches. Model-driven techniques have already proved to be effective to
deal with the complexity of MASs design, and many studies in the literature propose
model-driven approaches, sometimes by introducing modeling languages based on
the Unified Modeling Language (UML). Notably, the work presented in this thesis
can be considered as an another approach to Model-Driven Engineering (MDE).

In the rest of this section, the most significant methodologies and meta-models
available for AOSE are listed in chronological order and briefly described.

AALAADIN [Ferber and Gutknecht, 1998] is a meta-model based on three main
organizational concepts, namely agents, groups, and roles. Agents can be members
of groups, and they are atomic entities. Agents can also play a role in such groups. An
extension of the AALAADIN meta-model states that an agent can be part of a group or
another agent, thus subdividing agents into atomic and not atomic. Roles and groups
aim at capturing system requirements, so a precise and concrete definition of the kind
of roles and groups played in a MAS is the key for ensuring the effectiveness of the
AALAADIN representation. In particular, it allows building MAS with different forms
of organizations, such as market-like and hierarchical organizations, by describing
coordination and negotiation schema.
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Gaia [Wooldridge et al., 2000; Zambonelli et al., 2003] is a well-known method-
ology for agent-oriented analysis and design. As pointed out by the original authors,
Wooldridge et al., the name Gaia comes from the Gaia hypothesis formulated by
James Lovelock in the 1970s. Such an hypothesis states that all the living organisms
on Earth can be considered as components of a single entity, which co-evolve with
their environment and interact among each others for self-regulation. As a matter
of fact, the idea of a number of heterogeneous components that cooperate together
to achieve a common goal is relevant in the development of a MAS, and the Gaia
methodology is founded on this idea. In Gaia, a MAS is viewed as a computational
entity that consists of many components (agents) that play a number of diverse inter-
acting roles.

AUML (Agent UML) [Bauer et al., 2001] is a set of UML idioms and extensions to
the UML class diagrams, which allows the description of software agents in terms of
both internal and external behaviours, and it also provides suitable artifacts to define
Interaction Protocols (IPs). This approach is closely related to the object-oriented
software modeling, and extends it in order to help developers in the passage from
object-oriented to agent-oriented technologies.

Tropos [Bresciani et al., 2004] is an AOP methodology, based on the notion of
agents with mental capabilities, such as the ability to make plans in order to achieve
their goals. The required mental notions follow an agent architecture known as Be-
lief, Desire, Intention (BDI) paradigm. Moreover, Tropos covers the activities that
precede the first phase of software requirements specification, by means of a early
requirements analysis, in order to better understand the environment where agents
operate and the kind of interactions among them.

Prometheus [Winikoff and Padgham, 2004] is a methodology for building agent
based systems, which consists in three phases, namely system specification, archi-
tectural design, and detailed design. The scope of Prometheus is to be complete and
detailed as well as easily understandable, as target users are both undergraduate stu-



16 Chapter 1. Agent-Oriented Programming

dents and industrial practitioners that do not have a previous background in AOP.
Thus, the methodology responds both at educational and industrial needs. Moreover,
in [Gascueña et al., 2012], the MDE paradigm and some meta-modeling techniques
of MDD are analyzed, using Prometheus for validating their proposal.

ADELFE A methodology for adaptive MAS is proposed in [Bernon et al., 2005],
which is called Atelier de Développement de Logiciels à Fonctionnalité Emergente
(ADELFE). It uses both UML and AUML notations to specify three phases, namely
the requirement, the analysis, and the design workflows. ADELFE is not general,
as Gaia or Tropos, but it is meant for adaptive MAS, i.e., software used to manage
open systems or unpredictable environment situations. For this reason, the require-
ment workflow, which can be found also in the Tropos methodology, is important for
modeling the environment, while the analysis identifies the agents as entities of the
system, and the design workflow the agent model.

INGENIAS Some approaches that adopt MDD in the scope of AOSE can be found
in [Pavón et al., 2005, 2006; Fuentes-Fernández et al., 2010; Gómez-Sanz et al.,
2010], where the Engineering for Software Agents (INGENIAS) methodology and re-
lated tools were discussed. INGENIAS is used to define MAS specifications as the
main development artifacts, and it provides model-to-text tools to transform speci-
fications into executable code and documentation. Agents have mental capabilities
and they are goal-oriented, but they do not follow the BDI paradigm. Rather, they are
characterized by mental states. Agents can also take roles and participate to interac-
tions.

PASSI (Process for Agent Societies Specification and Implementation) [Cossentino,
2005] is a methodology for designing MAS step-by-step from the early requirement
phases to the actual implementation, by means of UML notations. It proposes five
models, namely system requirements, agent society, agent implementation, code, and
deployment.
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PIM4Agents A general-purpose meta-model called Platform-Independent meta-
model for Multi-Agent Systems (PIM4Agents) is presented in [Hahn et al., 2009].
PIM4Agents is an enhancement of a Platform-Independent Meta-Model (PIMM) for
MASs. In the PIM4Agents meta-model, modeling concepts are grouped into seven
viewpoints, namely Multiagent, Agent, Behavioral, Organization, Role, Interaction,
and Environment.

VigilAgent Prometheus and INGENIAS were used as basis for another model-
driven technique called VigilAgent [Gascueña et al., 2014], which uses model-to-
model and model-to-text transformation to ease interoperability between these two
methodologies.

1.2 Agent-Oriented Frameworks and Platforms

Several tools have been provided over the years to support the effective construction
of agents and MASs, in the scope of AOP, and taking advantage of AOSE methodolo-
gies. Many of these tools are software development frameworks, which offer Appli-
cation Program Interfaces (APIs) for helping developers in building agent-oriented
solutions for their applications. Such frameworks, which are specifically targeted for
programmers, often co-exist with other technologies, such as visual interfaces that
permit the management of agent-oriented concepts. It is not uncommon that such
graphical interface are meant to be easy to use for agent-oriented domain experts,
although they are not professional developers. A comprehensive tool for developing
and running complex MASs, with the aid of both application libraries and comple-
mentary interfaces is called Agent Platform (AP).

The rest of this section is devoted to the description of a selection of those frame-
works and platforms, in alphabetical order. Only the most popular platforms are cited,
but a complete survey can be found in [Kravari and Bassiliades, 2015].

INGENIAS Development Kit The INGENIAS methodology takes advantage of a
tool for developing MAS in a model-driven approach. Such a tool is called INGENIAS
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Development Kit (IDK) [Pavón et al., 2005] and it consists of a visual editor, pro-
duced by INGEME (INGENIAS Meta-Editor), and of the INGENIAS Agent Frame-
work (IAF). The visual editor permits to process MAS specifications into source code,
HTML documents, and other related artifacts.

JaCaMo (Jason, CArtAgO, Moise)1 [Boissier et al., 2013] is a multi-agent frame-
work, which uses Jason (described later in this section) for programming autonomous
agents, Common Artifacts for Agents Open framework (CArtAgO) [Ricci et al., 2006]
for the environment artifacts2, and Moise [Hübner et al., 2010] for MASs organiza-
tions3. It is a combination of these three different technologies, that were put to-
gether in order to obtain a comprehensive approach for developing complex MASs.
The BDI agents of Jason cooperate inside a shared environment defined by CArtAgO
artifacts, following a programming agent model called JaCa. Moise provides an or-
ganizational meta-model to describe groups and roles for structuring agents, a way
to define scheme, missions, and goals, and a norm entity for constraining agent be-
haviours.

JACK Intelligent Agents [Howden et al., 2001; Winikoff, 2005] is a Java agent
platform that brings the concept of Intelligent Agent (IA) into a mature commercial
software. It uses the BDI paradigm and provides several different tools, such as the
JACK Plan Language (JPL) and the JACK Development Environment (JDE), which
strengthen its relevance and its usability in industrial contexts. JACK is currently ac-
tively developed and maintained, and many extensions were released since its first
launch. Notably, JACK was used as a solid base for testing and validating the Pro-
metheus methodology. A model transformation which compile PIM4Agents models
into source code for JACK is shown in [Hahn et al., 2009].

1jacamo.sourceforge.net
2cartago.sourceforge.net
3moise.sourceforge.net

jacamo.sourceforge.net
cartago.sourceforge.net
moise.sourceforge.net
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JADE (Java Agent DEvelopment Framework)4 [Bellifemine et al., 2005, 2007,
2001] is an agent platform and a software framework for building MAS by taking
advantages of a wide and comprehensive API, entirely written in Java. Currently,
JADE is one of the most popular FIPA (Foundation for Intelligent Physical Agents)
compliant agent platform, both in academy and industry [Kravari and Bassiliades,
2015]. A JADE methodology was defined in [Nikraz et al., 2006]. A process for
model transformation from models into source code for JADE in the scope of the
Gaia methodology was proposed in [Moraitis and Spanoudakis, 2006], and another
transformation from PIMP4Agents models to JADE sources was illustrated in [Hahn
et al., 2009]. WADE (Workflows and Agents Development Environment) [Bergenti
et al., 2012; Caire et al., 2008] can also be considered a tool to transform graphical
workflows into executable JADE code.

Jadex [Braubach et al., 2005] is a software framework that implements a BDI-
based reasoning engine. It combines declarative and imperative approaches by using
a specification language based on XML (Extensible Markup Language) to define be-
liefs, goals and plans, and by using Java as procedural language to implement plans.
Although Jadex does not introduce a specific syntax besides using XML, it underpins
an APL. The Jadex framework can be used on top of different agent platforms, even
if it was originally intended to work on top of JADE. Jadex is intended for practical
and commercial use5.

Janus [Cossentino et al., 2007; Galland et al., 2010]6 is an open-source software
platform for developing agent-based applications. It is fully implemented in Java, but
Janus agents can also be written by using its specific APL. As a notable feature, Janus
supports the development of particular types of agents, namely holons and recursive
agents.

4jade.tilab.com
5www.activecomponents.org
6www.janusproject.io

jade.tilab.com
www.activecomponents.org
www.janusproject.io
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Jason [Bordini et al., 2007]7 is an agent platform that provides an interpreter for
an extension of the AgentSpeak(L) abstract programming language. AgentSpeak(L)
is a formally defined language for producing BDI agents. As a matter of fact, Jason
is based on the BDI architecture. As an addition to the AgentSpeak(L) features, it
supports agent interactions and MAS organizations. It is an open-source software
fully developed in Java and it offers support for IDEs, such as Eclipse. For distributing
a MAS over the network Jason can be used side by side with JADE.

1.3 Agent-Oriented Programming Languages

APLs are a class of programming languages that usually rely on a specific agent
model, which is often formally defined, and they aim at providing specific constructs
to adopt such a model at a high level of abstraction, thus ensuring a correct and
effective use of the underlying agent technology.

Nowadays, APLs are widely recognized as crucial tools in the development of
agent technologies and represent an important topic of research [Bordini et al., 2006;
Bădică et al., 2011]. The transparency of the agent model, simplicity and ease of use
are some of the characteristics which made the success of such languages among
developers. As a matter of fact, those languages are especially convenient to model
and develop complex systems, and they allow developers to expedite the creation of
agents and MASs.

Despite these similarities, the features of various APLs may differ significantly,
concerning, e.g., the selected agent mental attitudes (if any), the integration with an
agent platform (if any), the underlying programming paradigm, and the underlying
implementation language.

Some classifications of relevant APLs have already been proposed [Bădică et al.,
2011; Bordini et al., 2006] to compare the characteristics of different languages and to
provide a clear overview of the current state of the art of APLs. For example, [Bădică
et al., 2011] classify APLs on the basis of the use of mental attitudes. According to
such a classification, APLs can be divided into: AOP languages, BDI languages, hy-

7jason.sourceforge.net

jason.sourceforge.net
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brid languages, which combine the two previous classes, and other languages, which
fall outside previous classes. It is worth noting that such a classification recognizes
that BDI languages follow the AOP paradigm, but it reserves special attention to
them for their notable relevance in the literature. The study in [Bordini et al., 2006]
proposes a different classification, where languages are divided into declarative, im-
perative, and hybrid. Declarative languages are the most common because they focus
on automatic reasoning, both from the AOP and from the BDI points of view. Some
relevant imperative languages have also been proposed, and most of them were ob-
tained by adding specific constructs to existing procedural programming languages.
Finally, the presence (or absence) of a host language is an important basis of compar-
ison among APLs.

Due to the long history of the research on agents and MASs, which lasts vari-
ous decades, several APLs have been designed and implemented. In the rest of this
section, some of the most important languages are cited in chronological order.

AGENT0 AOP was first introduced in [Shoham, 1993], together with his AGENT0
language [Shoham, 1991], as a first example of the application of the AOP paradigm.
The work of Shoham is very important because it affected most of the developments
of APLs, thus opening a wide and promising research area. In detail, Shoham de-
scribes a framework in which agents have a mental state and computation is seen
as sequence of collaborative and/or competitive interactions among agents. Mental
states of agents in AGENT0 are divided into two categories: beliefs and commit-
ments. Such states change over time, which is represented as a sequence of discrete
steps whose granularity is specified by the programmer. Computation in AGENT0 is
described by means of an agent program, which describes and governs the behaviour
of agents. First, an AGENT0 agent program initializes beliefs and commitments, then
commitment rules referring to future actions are given. The life cycle of an agent is
a loop in which incoming messages are processed, beliefs and commitments are up-
dated, and actions are executed.
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PLACA The direct descendant of AGENT0 is the language called PLAnning Com-
municating Agents (PLACA) [Thomas, 1993]. It extends the capabilities of AGENT0
by providing improved syntax and new mental categories. Its major improvement
with respect to AGENT0 is that agent communications is lighter in terms of the
amount of needed messages. Actually, the contents of message refer to high-level
goals [Bădică et al., 2011] rather than to single actions. This choice allows reasoning
on desired results of actions, thus easily adding planning capabilities to agents. Just
like AGENT0, PLACA has experimental nature and it was not meant for practical
use.

Concurrent METATEM [Fisher, 1994] is an APL based on temporal logic that
can be used to program agents and MASs. In Concurrent METATEM, the life cycles
of an agent and of its actions are described by sets of rules. Such rules can be divided
into temporal ones and non-temporal ones. Temporal rules can be parted into three
main categories, namely: start rules, step rules, and sometimes rules. In Concurrent
METATEM, agents act asynchronously and the interactions among them are based on
message passing. The structure of a METATEM agent provides a context set, which
can contain another agent, or a group of agents.

AgentSpeak(L) An important example of a classic APL is AgentSpeak(L), whose
syntax and semantics were formalized in [Rao, 1996]. The proposed formalization
is based on the BDI agent model, and it uses first-order logics and Horn clauses to
define a language to declaratively write agent programs with no need of low-level
implementation details. The abstractions of beliefs, goals, events, and actions are
formalized in first-order logics and they are used to define plans and intentions. An
agent is described as a tuple which collects all such characteristics. The first widely
usable implementation of AgentSpeak(L), called Jason [Bordini et al., 2007], has
become very popular recently.

3APL (An Abstract Agent Programming Language) [Hindriks et al., 1999b] is a
BDI APL which includes features of both imperative and logic programming lan-
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guages. It provides a set of abstractions that are used in the development of MASs
composed of agents with reasoning capabilities. The agents of 3APL have mental
states that consist of collections of goals and beliefs. Agents have the ability of mod-
ifying their mental states by means of sets of practical reasoning rules which provide
plans to achieve goals. Java and Haskell implementations of 3APL have been made
available recently8.

KLAIM A programming language for managing mobile agents into a networks is
Kernel Language for Agents Interaction and Mobility (KLAIM) [De Nicola et al.,
1998]. Processes, like data, can be moved from one computing environment to an-
other, and this made KLAIM suitable for programming mobile code applications.
A formal operational semantics of the language is provided, defining a type system
to control access violations and determine operations in a locality, and focusing on
mobile agents coordinations.

JAL The JACK platform [Winikoff, 2005] provides an environment to build MASs
in which agents are based on the BDI paradigm. The JACK Agent Language (JAL)
is an APL whose host language is Java. JAL adds to Java features of logic languages
and specific statements which allow the creation of plans. Moreover, JAL supports the
creation of agent teams and organizations, thus ensuring a high level of modularity.
JACK and JAL are intended for practical and commercial use9.

CLAIM A Computational Language for Autonomous Intelligent and Mobile Agents
(CLAIM) [El Fallah-Seghrouchni and Suna, 2003] is an agent language that supports
agent mobility. CLAIM agents are entities embedded in a bounded environment, and
they have lists of sub-agents, so that they are organized hierarchically. CLAIM agents
have two types of reasoning capabilities, namely forward and backward reasoning,
which represent the reactive and the goal-driven behaviours of agents, respectively.

8www.cs.uu.nl/3apl
9aosgrp.com

www.cs.uu.nl/3apl
aosgrp.com


24 Chapter 1. Agent-Oriented Programming

Message passing among agents is allowed and, in addition, specific messages are
used by the underlying system to support agent mobility.

GOAL (Goal-Oriented Agent Language) [Hindriks et al., 2000; Hindriks, 2009;
Hindriks and Dix, 2014] is an APL that incorporates the concept of declarative goals.
It aims at reducing the gap between agent logic and agent programming frameworks.
As a matter of fact, the latter are mainly focused on agents that perform tasks in
order to realize their plans, instead of agents that have a final goal to be realized.
Thus, GOAL agents are rational agents, and their actions depend on their beliefs and
goals. GOAL provide programming construct to structure the agent decision-making
process, and to define its mental states, i.e., beliefs and goals.

SEA_L The Semantic web-Enabled Agent Language (SEA_L) [Demirkol et al.,
2012; Challenger et al., 2016b,a] is a DSL for modeling and developing MASs in
the scope of the Semantic Web. SEA_L aims at overcoming common limitations of
traditional frameworks for MASs when working with the Semantic Web. In particular,
it targets domain experts by putting the agent meta-model at a platform-independent
level, from which developers can obtain OWL (Web Ontology Language) models,
and generate code for the Jadex BDI engine. The introduction of this textual DSL
can be found in [Demirkol et al., 2013]. Both SEA_L syntax and semantics are
formally specified. A DSML, called Semantic web-Enabled Agent Modeling Lan-
guage (SEA_ML) [Challenger et al., 2014], is also available for graphical modeling
of MASs.

SARL [Rodriguez et al., 2014] is one of the latest entries in the plethora of APLs10.
It is a general-purpose imperative language with an intuitive syntax, and it can be
considered platform-agnostic, even if it is commonly used with the dedicated agent
platform Janus. One of its main features is the support for the creation of holonic
agents. SARL provides a syntax to declare agents and some constructs for handling

10www.sarl.io

www.sarl.io
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events, that can be also user-defined. Moreover, SARL permits the definition of agent
capabilities.

PROFETA (Python RObotic Framework for dEsigning sTrAtegies) [Fortino et al.,
2015; Fichera et al., 2017] is a software framework for programming BDI-based
autonomous robots or agents. It is inspired by AgentSpeak(L), but, as a notable fea-
ture, PROFETA offers a unique environments for both imperative and declarative
constructs, in order to ease the definition of the behaviour of a robot. As AgentS-
peak(L), PROFETA has goals, actions, beliefs, and plans. Such an extension to the
AgentSpeak(L) semantics is completely implemented in Python, allowing developers
to program high-level robot behaviours within a single runtime environment.

1.4 The Scope of JADEL in AOP

In this chapter, some of the most significant and impacting agent-oriented methodolo-
gies, agent-oriented platforms and frameworks, and agent-oriented languages were
listed and described. A plethora of metodologies have been developed mainly be-
cause adapting object-oriented analysis to agents and MAS has many disadvantages,
due to the significant differences between the two abstractions. The JADE method-
ology [Nikraz et al., 2006] points out such drawbacks, and shows an approach for
JADE programming that is suitable for the agent paradigm, although JADE is en-
tirely written in an object-oriented language. Nevertheless, the JADE methodology
covers only the analysis and the design phases of MAS development, lacking the for-
malization of the implementation phase. The work on JADEL aims at simplifying the
implementation of MASs, and it would improve the JADE methodology by providing
the developer with an effective tool to approach that phase.

Moreover, JADEL comes with a formalization of the main concepts of JADE,
and rules that establish JADEL semantics. Such an approach is not new in agent
technologies history, rather it was used from the earlier studies on AGENT0, when an
operational semantics was specified in [Hindriks et al., 1999a]. Then, other semantics
were developed for APLs. METATEM and 3APL have both a formal specification, de-



26 Chapter 1. Agent-Oriented Programming

scribed in [Wooldridge, 1997] and in [Hindriks et al., 1998]. The work on METATEM
includes also an analysis of its temporal rules, [Fisher, 1996]. Also, a verifiable se-
mantics for agent communication languages was provided, in [Wooldridge, 1998].
AgentSpeak(L) speech-act based communication was analyzed in [Vieira et al., 2007].
A more recent work, [Getir et al., 2014], shows a DSLs for agents in the Semantic
Web context, together with a precise formalization of the language, and its transfor-
mation functions. The request for formalizations of APLs is not unusual, since the
strength that such an analysis provide to a language is known, for example, for ver-
ifying important properties and helping programmers in avoid mistakes. Other stud-
ies, such as [Damiani et al., 2012], that explains advantages in introducing the type-
checking in JaCaMo, and [Ricci and Santi, 2013], that formalizes an algorithm for
verifying types on that platform, illustrates well that a formalization could be useful
also for agent-oriented platforms, beside APLs. The type-checking problem applied
to MASs is discussed in [Baldoni et al., 2014a] and in [Baldoni et al., 2014b].

The present work deals with the problem of a formalization of the JADE plat-
form, before the actual definition of JADEL syntax and semantics. Then, the newly-
developed APL is informally described, and an assessment of its capabilities is done,
following some of the methodologies in [Challenger et al., 2016a] for the evaluation
of agent-oriented DSLs.



Chapter 2

JADE Agents and MASs

Second Law. A robot must obey the orders given it by human beings
except where such orders would conflict with the First Law.

– Isaac Asimov

As a second requirement, JADEL must be founded on the Java Agent DEvelop-
ment Framework (JADE). JADE is an Agent Platform (AP), which provides an Ap-
plication Program Interface (API) and graphical tools to ease common tasks in the
creation of agents and distributed Multi-Agent Systems (MASs). JADE does not un-
dertake a specific Agent-Oriented Software Engineering (AOSE) methodology, and
it does not force developers to employ a specific agent model. Nevertheless, it has
a well-defined architecture, and its features rely on precise structures. Hence, it is
necessary to deeply analyze such architecture and structures, and formalize them in
a suitable way to infer JADEL concepts. The formalization is based on the use of
Labeled Transition Systems (LTSs). This work presents the first attempt at formal-
izing JADE agents and MASs, but other formalizations of agent-based systems can
be found in the wide literature of Agent Programming Languages (APLs). The pro-
posed transition system provides an operational semantics [Plotkin, 2004] for the life
cycle of an agent which describes the agent main loop, picking up the procedures
from user-defined agent classes. Thus, the entire formalization relies on Java, and the
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major feature of that language have to be defined with a coherent notation. An out-
line of the proposed formalization was shown in preliminary works [Bergenti et al.,
2015c,b].

Next sections are structured as follows. First, a brief introduction on JADE en-
tities and on the architecture of a JADE application is provided. Then, a complete
formalization of JADE agents and MASs is illustrated, starting from a description of
the notation and background definitions. Finally, a complete example of a computa-
tion of a MAS is shown.

2.1 JADE Architecture and Concepts

The JADE main abstraction is the agent. JADE agents are multi-tasking, yet single-
threaded, entities that live in the JADE runtime environment. The Agent base class
offered by the core JADE APIs can be extended by developers in order to create their
own agent classes. The creation of an agent is done by instantiating the desired agent
class, i.e., a class subclass of Agent, in the scope of a JADE runtime environment
and by providing the desired local name of the agent. An agent is characterized by an
execution state that can change during its life cycle. For example, the execution state
of an agent at the beginning of its life cycle is active, and it can become suspended
or waiting, to reflect its actual runtime state. An agent life cycle is divided into three
main phases, namely, a start-up phase, a control loop, and a final, or take-down phase.
During start-up, the agent initializes. Such an initialization phase is primarily used to
provide an initial list of actions, which the agent can use in next phases. In fact, during
the control loop, the agent chooses the next action to perform in an autonomous way,
and its list of available actions can change dynamically. Moreover, an agent can sense
interesting events during its life cycle, and normally it reacts to them. The JADE
runtime environment manages such events by means of a hidden event queue which
does not necessarily require the aid of the developer.

A particular type of event is the reception of a message. Such an event does not
trigger a change of agent state, but the agent takes into account the received message
by storing it into a message queue. Then, the agent can activate and perform actions



2.1. JADE Architecture and Concepts 29

in order to read or reply to messages, in their incoming order. Actions are encapsu-
lated into JADE behaviours. JADE APIs offer the Behaviour class, whose purpose
is to provide JADE agents with tasks that can be executed. As a matter of fact, de-
velopers can implement their own behaviours by subclassing that Behaviour class.
Implementing a behaviour consists in the definition of an action, which can be added
to the list of available actions of the agent. In other words, JADE provides behaviours
as structured entities which represent tasks and actions that an agent can perform dur-
ing its life cycle. An agent holds a list of available behaviours for its entire life cycle
and it chooses behaviours to perform actions whenever needed. Each action main-
tains a state, which can be active or blocked, and it refers to the actual state of the
behaviour within the agent list of available behaviours. A notable distinction among
behaviours is given by two subclasses of Behaviour that are provided directly by
JADE, namely the CyclicBehaviour and the OneShotBehaviour classes. Such a
distinction causes cyclic and one-shot behaviour actions to adopt different semantics
when they are chosen by the agent. The action of a one-shot behaviour is performed
only once, because such a behaviour is removed from the list of the agent immedi-
ately after the first execution of its action. Conversely, the action of a cyclic behaviour
can be performed repeatedly, because such a behaviour is removed from the list of
the agent only upon explicit request.

Besides agents and behaviours, another abstraction is needed to develop useful
JADE agents. Such an abstraction is the so called (communication) ontology. On-
tologies support the semantics of agent communication for specific problems, and
they can be used to reason on messages. Although there are no constraints on the
definition of the actions of behaviours, actions are often used for message passing,
i.e., to send and/or receive messages which comply with a known ontology.

A JADE MAS is composed of several agents that interact with each others and
that perform actions, sending and reading messages by using a common ontology.
Figure 2.1 shows a typical JADE interaction. Message are exchanged among three
agents, and vertical lines show agents life cycles from initialization to take-down.

The architecture of a JADE application is organized in terms of platforms, which
are also subdivided in containers. The latter are actually the running instances of
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Figure 2.1: An example of interaction among three JADE agents.
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Figure 2.2: The generic architecture of a JADE application hosted in several plat-
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the JADE runtime environment and they contain several agents. A main container is
always present in a running platform to provide the platform with management ser-
vices, e.g., a Directory Facilitator (DF). A newly created container can register with
the main container of a platform, thus effectively joining that platform. This is done in
a transparent way, even if containers are distributed on different network hosts, possi-
bly mobile [Bergenti et al., 2014]. Several agents can be instantiated into a container,
and upon creation they are provided with a so called Agent IDentifier (AID), i.e., a
globally unique name made of a local name plus a set of network addresses. The
agent name consists in the local name of the agent followed by its platform name,
and its addresses are those of the platforms the agent lives in. The AID is used in
agent communications to ensure messages would reach only intended recipients. An
example of JADE architecture is shown in Figure 2.2.

2.2 Notation and Background Definitions

Transition systems were introduced by Plotkin [Plotkin, 2004] to describe the struc-
tural operational semantics of programming languages. The proposed formalization
uses Java statements which refer to JADE APIs. This is the reason why there is no
need to specify a dedicated syntax, as, e.g., in the formalization of AgentSpeak(L)
proposed by Vieira et al. [Vieira et al., 2007], that uses first-order logic and Horn
clauses to define a new language which can be used to write agent programs with-
out implementation-level details. Such an approach makes the formalization self-
contained but it forces the adoption of a new programming language. On the contrary,
the proposed approach relies on Java statements both for the syntax and for the se-
mantics, thus accommodating any agent written using Java and JADE. This section is
devoted to an introduction of the notations used in the formalization of JADE agents,
and it provides a basic background of definitions and rules.

First, the syntax of a minimal core of Java statements is provided [Igarashi et al.,
2001]. Such a fragment is composed of the syntax of FJ, and a little extension of it.
Such an extension differs from FJ because void methods and two more syntax cat-
egories are introduced. The first category consists in a small set of imperative Java
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Cdecl ::= classC extends D{ F M }
F ::= C f ;
M ::= C m(C x){ return e; } | void m(C x) { s}
e ::= x | v | null | e. f | e.m(e) | newC(e) | (C)e
s ::= C x = e; | x = e; | if(b){ st } else{ s f } | while(b){ s}
b ::= true | false | e0 == e1 | b0 && b1 | b0 || b1 | !b

Figure 2.3: Syntax of a minimal core of Java. C and D are metavariables that denote
class names, f denotes a field name, m a method name and x a variable.

statements, namely, the declaration of a variable, the assignment, and the if−else

and while constructs. The second category introduces boolean expressions. The pro-
posed extension is called FJI, because it adds imperative features to FJ.

The syntax is defined by the EBNF grammar shown in Figure 2.3. The notation X
stands for the repetition of X zero or more times, and it is used to identify a sequence.
An empty sequence is identified by symbol ε . The i-th element of a sequence X is
indicated by Xi.

The class declaration Cdecl is borrowed from FJ syntax, but it contains only fields
and methods. In fact, in contrast to original FJ, constructors are declared implicitly.
The implicit constructor is assumed to have a number of parameters equal to the
number of fields, in the order of inheritance and declaration. The implicit constructor
first calls the constructor of its superclass, then it initializes all fields by means of its
parameters. Fields are declared by specifying their type, which can be only a class
name. Methods are divided into methods with a return type (again, a class name), and
void methods which have as a body a list of statements.

Expressions e are similar to FJ expressions, with the notable exception of values
v and null. A value is a Java object, i.e., a pair that consists in the class name of
the object and in the values of its fields, which are also objects. It is briefly denoted
by the notation v = 〈C,v〉, where C is the class name and v is the list of values
(objects) associated with its fields. An object v and the sequence of its field values v
are indicated with the same letter.

Other two syntax categories are added, namely, the statements s and the boolean
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f ields(Object) = ε (F-Obj)

classC extends D{ F M } f ields(D) = G

f ields(C) = F ,G
(F)

classC extends D{ F M } B m(B x){ return e; } ∈M

mtype(m,C) = B→ B
(MT)

classC extends D{ F M } void m(B x){ s} ∈M

mtype(m,C) = B→ ε
(MT-Void)

classC extends D{ F M } m 6∈M
mtype(m,C) = mtype(m,D)

(MT-Super)

classC extends D{ F M } B m(B x){ return e; } ∈M
mbody(m,C) = 〈x,e〉 (MB)

classC extends D{ F M } void m(B x){ s} ∈M
mbody(m,C) = 〈x,s〉 (MB-Void)

classC extends D{ F M } m 6∈M
mbody(m,C) = mbody(m,D)

(MB-Super)

Figure 2.4: FJ fields and methods lookup.

C <: C
C <: D D <: E

C <: E
classC extends D{ F M }

C <: D

Figure 2.5: Subtyping.
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expressions b. Statements consist in the assignment, the if−else, and the while

constructs. A boolean expression can assume values in the set Bool = {>,⊥} of
the Boolean domain, it can state an equality relation between two expressions e0

and e1 with the symbol ==, or it can be a proposition. The symbols &&, || and !
correspond to ∧, ∨ and ¬, the logical operation on the two-element Boolean algebra
on Bool.

As in FJ, given the syntax of such a minimal Java fragment, three auxiliary lookup
functions are defined. In Figure 2.4, the rules that define such functions are shown.
Starting from the class definition, a function f ields associates each class name with
its own fields plus the inherited ones, as defined by rule (F). A function mtype maps
to each pair of method name and class name the sequence of parameter types and the
corresponding return type of the method. If such a method is void, the return type is
indicated with ε . Finally, a function mbody returns a pair of parameters names and
body statements from method name and class name, as illustrated more precisely by
rules (MB), (MB-Void), and (MB-Super).

It is worth noting that class name Object is the name of a distinguished class that
does not have a superclass, and it cannot be declared as a normal class. As a matter
of fact, Object is a peculiar class that does not have any fields and methods. Hence,
the lookup functions have special cases for it, and they return the empty sequence of
fields and the empty set of methods.

A relation <: is defined in Figure 2.5, in order to describe subtyping rules. As a
matter of fact, a class declaration class C extends D{ F M } defines a class C of
superclass D, i.e., C is a subclass of D. Each class is always subclass of itself, and the
subclassing relation is transitive. As an assumption, such a relation have no cycles,
e.g., if C <: D then D 6<: C. Hence, <: defines a partial order over the set of classes.
One of the previous assumptions states that the Object class is a distinguished class
that cannot be declared, nor it has fields or methods. Thus there are no D such that
Object<: D, i.e., Object is a maximum for <:.

The semantics of FJI is given as an operational semantics which relies on a store
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〈x,σ〉 →FJI σ(x) 〈v,σ〉 →FJI v 〈null,σ〉 →FJI null
〈ei,σ〉 →FJI vi

〈(newC(e)),σ〉 →FJI 〈C,v〉

〈e,σ〉 →FJI 〈C,v〉 f ields(C) =C f
〈e. fi,σ〉 →FJI vi

〈e,σ〉 →FJI 〈C,v〉 C <: D
〈(D)e,σ〉 →FJI v

〈e′[e/this,e/x],σ〉 →FJI w
mtype(C,m) = B→ B mbody(C,m) = 〈x,e′〉

〈e.m(e),σ〉 →FJI w

〈s[e/this,e/x],σ〉 →jstmt 〈ε,σ ′〉
mtype(C,m) = B→ ε mbody(C,m) = 〈x,s〉

〈e.m(e),σ〉 →FJI null

Figure 2.6: Operational semantics of FJI.

σ defined as follows.

σ : Var→Values

x 7→ v = 〈C,v〉

where Var is the set of variables (an expression e can be a variable x, as in Fig-
ure 2.3), and Values is the set of values v (including null). The semantics consists in
two transition systems, namely the FJI one, and the jstmt one. The former computes
an expression e into a value, taking into account the values of the variables by means
of the store σ . It does not have side effects on σ . The second transition system com-
putes a statement s into the next statement, or into ε , which denotes termination. The
assignment can change the value of a variable, thus updating the store σ , with the
following notation.

σ [v/x](x′) =

σ(x′) if x 6= x′

v if x = x′

In Figure 2.6, an operational semantics of FJI with void methods is given. A configu-
ration of FJI transition system consist of a pair 〈e,σ〉 ∈Expr×Σ, where Expr denotes
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BJtrueKσ => BJfalseKσ =⊥

BJe0 == e1Kσ =


> if 〈e0,σ〉 →FJI v,

〈e1,σ〉 →FJI w, and v = w

⊥ otherwise

BJb0 && b1Kσ = BJb0Kσ ∧BJb1Kσ BJb0 || b1Kσ = BJb0Kσ ∨BJb1Kσ

BJ!bKσ = ¬BJbKσ

Figure 2.7: Denotational semantics of boolean expressions.

the set of all expressions and Σ the set of all stores. The set of possible configurations
is called ΓFJI . The set of terminal configurations is the set of values ΛFJI = Values.
A transition relation is defined, as usual, on ΓFJI×ΛFJI and it is indicated with→FJI .
Such a relation is described by the rewriting rules in the Figure 2.6.

In order to support the definition of the jstmt transition system, a straightforward
denotational semantics for the evaluation of boolean expressions is given, and defined
in Figure 2.7. A function B : BoolExpr→ (Σ→ Bool) is defined from the set of all
boolean expressions to the applications that maps a store with the elements of Bool.
A definition of such a function is given by structural induction, where a store σ is
fixed.

Finally, in Figure 2.8, an operational semantics of the jstmt transition system is
given. It relies on both FJI and boolean expressions semantics. Also FJI system uses
the jstmt one, when it has to compute the body of a void method. As a matter of
fact, such a body is composed by statements, whose semantics is defined by the jstmt
system. On the other hand, into the jstmt system, in the evaluation of the right-hand
side of an assignment, a void method can accidentally be called. It is worth noting
that this situation may cause loops, thus non-termination of programs. The proposed
semantics reflects such a possibility.
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〈e,σ〉 →FJI v
〈C x = e; ,σ〉 →jstmt 〈ε,σ [v/x]〉

〈e,σ〉 →FJI v
〈x = e; ,σ〉 →jstmt 〈ε,σ [v/x]〉

s = s0 s1 . . . sn 〈s0,σ〉 →jstmt 〈ε,σ ′〉
〈s,σ〉 →jstmt 〈s1 . . . sn,σ ′〉

BJbKσ =>
〈if(b){ st } else{ s f },σ〉 →jstmt 〈st ,σ〉

BJbKσ =⊥
〈if(b){ st } else{ s f },σ〉 →jstmt 〈s f ,σ〉

BJbKσ =⊥
〈while(b){ s},σ〉 →jstmt 〈ε,σ〉

BJbKσ => 〈s,σ〉 →jstmt 〈ε,σ ′′〉 〈while(b){ s},σ ′′〉 →jstmt 〈ε,σ ′〉
〈while(b){ s},σ〉 →jstmt 〈ε,σ ′〉

Figure 2.8: Operational semantics of jstmt.

2.3 A Formalization of JADE Entities and Events

In this section, the main features and entities of JADE are described and then for-
mally defined. JADE APIs consist of several Java classes that help developing MASs
by providing proper methods and base classes which can be directly used or extended.
Only a notable subset of such classes is considered, in order to describe clearly the
behaviour of a MAS. To this extent, the main classes that a developer must adopt if
he/she wants to deal with JADE are selected, namely the Agent class, the Behaviour
class, with some of its subclasses, and the ACLMessage and MessageTemplate

classes, for agent interactions.

2.3.1 Entities

The formalization of agents consists in the definition of a new type of value, which
identifies the instantiated agent in a running environment. Such a value reflects the
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specific characteristic of that instantiated agent, as described previously. Values are
treated as in the formalization of objects in Section 2.2.

Definition 1 (Agent). Let Agents be the set of all agents and

SA = {initiated,active,waiting,suspended,deleted}

the set of all agent runtime states. An agent a ∈ Agents is a tuple

a = 〈C,sa,Lb,Le,Q〉

where C <: Agent is the agent class name, sa ∈ SA is the state of the agent, Lb a finite
list of available actions, Le is a finite list of events, and Q is a message queue.

The fact that each agent has a start-up and a final take-down phase is formal-
ized by specifying the proper methods that the Agent class provides, namely, a void
setup method and a void takeDown method. Such methods have no parameters and
they are empty placeholder for user-defined code. Agent subclasses must redefine
such methods properly.

mbody(setup,Agent) = mbody(takeDown,Agent) = 〈ε,ε〉
mtype(setup,Agent) = mtype(takeDown,Agent) = ε → ε

Let us now define the second entity that JADE provides for the development of
useful agents, namely the Behaviour class. As for the agents, behaviours formaliza-
tion consists in the definition of a new type of value.

Definition 2 (Behaviour). Let Behaviours be the set of all behaviours, and

SB = {initiated,active,blocked,done}

the set of behaviour action states. A behaviour b ∈ Behaviour is a tuple

b = 〈C,a,sb〉

where C <: Behaviour is the name of the behaviour class, a is the name of the
associated agent, and sb ∈ SB is the state of the behaviour action.
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OneShotBehaviour<: Behaviour CyclicBehaviour<: Behaviour

B <: Behaviour A <: Agent
B ∈ behaviours(A)

btype(Behaviour) = ε

B <: OneShotBehaviour
btype(B) = one−shot

B <: CyclicBehaviour
btype(B) = cyclic

Figure 2.9: Behaviours lookup.

The Behaviour base class provides a field myAgent, which is used to access the
associated agent of the behaviour, and a method action, which is empty but it can
be overridden by the developer in order to implement the actual action.

Agent myAgent ∈ f ields(Behaviour)

mbody(action,Behaviour) = 〈ε,ε〉
mtype(action,Behaviour) = ε → ε

Two lookup functions are defined in Figure 2.9, namely the behaviours and the btype
functions. From an agent class name, behaviours computes the set of all available
behaviours. As an assumption, each subtype of Behaviour is available for every
agent. The btype function maps its action type, namely one−shot or cyclic, to
each behaviour class name.

In a MAS, instantiated agents can exchange messages with each other. A message
is another entity of the JADE system: it has a sender, a list of recipients, a content and
a performative, which may be inform, request, not−understood, and so on, as
in FIPA specifications. The message entity of the JADE system is defined as follows.

Definition 3 (Message). A message m ∈Messages is a tuple:

m = 〈a,R,c, p〉
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p ::= accept−proposal | agree | cancel | cfp | confirm
| disconfirm | failure | inform | inform−if | inform−ref

| not−understood | propagate | propose | proxy | query−if

| query−ref | refuse | reject−proposal | request
| request−when | request−whenever | subscribe | unknown

t ::= x | x | v | p | t0∧ t1 | t0∨ t1 | ¬t

Figure 2.10: Performatives and message templates syntaxes.

where a is the name of the sender agent, R is a list of recipients, c is an object that
acts as the content of the message, and p is a performative.

Finally, message templates are entities that play a key role in agent messaging.
The simplest form of message template can be understood as a particular message
which can have undefined values. Such template describes the kind of messages the
agent expects from other agents. JADE provides the method receive(t), where t

is a template, to allow an agent to pick the first message in its message queue which
matches the message template. JADE allows combining simple message templates
into complex message templates using connectives. Therefore, a template is a sort of
logical combination of message templates. In Figure 2.10, the complete list of per-
formatives and the syntax used for message templates is shown. In detail, a message
template can be a variable, denoting, for example, the desired sender agent, or it can
be a sequence of variables, as recipients of the message. It can be also a value, i.e.,
an object, or a performative. Combination of templates are made by using logical
connectives.

2.3.2 Events

During the life cycle of a MAS, a sequence of events is formed and each agent is
fed with a sub-sequence of such events. The sub-sequence of events of each agent
are partitioned into external and internal ones, because they can change the state of
the system—these are the external events—and/or the state of agents and respective
behaviours—these are the internal events. Note that in JADE each agent is single-
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q0

q1

q2

q3

q4

q5

Create(a,F)

Wait(a)Wake(a)

Activate(a)

Suspend(a)

Activate(a)

Suspend(a)

Kill(a)

Kill(a)

Kill(a)

Kill(a)

Figure 2.11: Agent life cycle events and their relationships. The life cycle state
constants are q0 = initiated, i.e., the initial state, q1 = active, q2 = waiting,
q3 = suspended from active, q4 = suspended from waiting and the final state
q5 = deleted.
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threaded and it manages only one event at a time. Events are formalized as predicates
and the set of notable events that JADE manages, called Events, contains the follow-
ing elements:

• Create(a,C) denotes the creation of the agent a of class C, and it is and external
event;

• Kill(a) denotes the destruction of the agent a, and it is an external event;

• Wait(a) denotes the state change of the agent a to waiting, and it is an internal
event;

• Wake(a) denotes the state change of the agent a from waiting to active, and
it is an internal event;

• Suspend(a) denotes the state change of the agent a to suspended, and it is an
internal event;

• Activate(a) denotes the state change of the agent a from suspended to the
previous state, and it is an internal event;

• Create(a,b,C) denotes the creation of the behaviour b of class C, associated
with the agent a, and it is an external event;

• Block(b) denotes the state change from active to blocked for the behaviour
b, and it is an internal event;

• Restart(b) denotes the state change from blocked to active for the behaviour
b, and it is an internal event;

• Done(b) denotes the state change from active to done for the behaviour b,
and it is an internal event;

• Message(m) denotes that the message m was sent, and it is an external event;

• Start(MAS) denotes the creation of the MAS, and it is an external event; and
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• End(MAS) denotes the termination of the MAS, together with all related agents
and behaviours, and it is an external event.

The events in Events that denote changes in the state of an agent are related to each
other as shown by the Finite State Machine (FSM) in Figure 2.11. Formally, such a
FSM can be defined as a quintuple

〈q0,QA,LA,δA,FA〉

where q0 = initiated is the initial state, QA = {q0,q1, . . . ,q5} is the finite set of
all states, LA is the finite set of agent internal events, plus the Create(a,C) event,
δA : QA× LA → QA is the transition function defined informally by the figure, and
FA = {q5} contains only the final state q5 = deleted.

An agent state change is activated by a specific event in E. Note that for an agent
a, the states q3 = suspended from active and q4 = suspended from waiting cor-
respond to the same state sa = suspended ∈ SA of JADE. To properly merge them
into one the previous state of the agent has to be memorized, so that a correct reaction
to an Activate(a) event could be provided. A FSM does not have explicit memory,
so a list of events occurred in the agent life cycle has to be maintained. Such a list is
called Le and it appears in Definition 1 as a specific agent feature.

Figure 2.12 shows the FSM which represents the state changes of a behaviour.
As for agent state changes, a FSM is defined as a quintuple

〈q0,QB,LB,δB,FB〉

where q0 = initiated is the initial state, QB = SB = {q0,q1,q2,q3} is the finite set
of all states, LB is the finite set of behaviour internal events, plus the Create(a,b,C)

event, δB : QB×LB→ QB is the transition function, and FB = {q3} is the set of final
states, containing only the q3 = done state. No additional memory is required to
model the life cycle of a behaviour because no return to previous state is demanded.

2.4 Syntax and Semantics of JADE

This section describes an extension of the FJI and jstmt syntax and semantics with
notable features selected from the wide range of JADE APIs. A list of few method
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q0

q1

q2

q3

Create(a,b,F) Done(b)

Restart(b)Block(b)

Figure 2.12: Behaviour life cycle events and their relationships: q0 = initiated,
q1 = active, q2 = blocked and q3 = done.

com ::= e.addBehaviour(e) | e.removeBehaviour(e) | e.send(e)
| x = e.receive() | x = e.receive(e) | e.addReceiver(e)
| e.setContent(e)

ev ::= e.doWait() | e.doSuspend() | e.doWake() | e.doActivate()
| e.doDelete() | e.block() | e.restart()

Figure 2.13: JADE commands and events.
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calls are added to the basic syntax of FJI. Such calls are fundamental in writing JADE
agents and behaviours, because they actually provide them with an agent oriented
semantics, over the Java one.

In Figure 2.13, a syntax of a JADE fragment is given. Two syntax categories are
defined, namely commands, and event commands. As a matter of fact, some state-
ments and method calls of JADE APIs are used to manage the agent behaviours list,
or the agent communication, and they are called commands. Apart from such com-
mands, other method calls are devoted to managing agents and behaviours life cycles,
by triggering internal events, and they are called event commands.

It is worth noting that the proposed extension uses FJI expressions and variables,
and defines two more assignments. Method calls and assignments already exist in
FJI syntax but they are computed by FJI and jstmt semantics into objects (values),
and they have side effects only on the objects memorized in a store σ . Thus, in par-
ticular, within FJI syntax and semantics, the resulting values and effects of JADE
APIs method calls are not distinguishable from all other method calls. A purpose of
the proposed formalization is to decouple the object-oriented meta-model from the
agent-oriented one, so the identification of JADE features is necessary. After such
an identification, a semantics that takes into account the modifications in agent, be-
haviour, and message values, can be defined. To this extent, three more stores are
defined, namely an agent store, a behaviour store and a message store.

Definition 4 (JADE Stores). An agent store α is an application from the set of vari-
ables to the set of agent values.

α : Var→ Agents

x 7→ a = 〈C,sa,Lb,Le,Q〉

Similarly, a behaviour store β and a message store µ map variables into the set of
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behaviour and message values, respectively.

β : Var→ Behaviours

x 7→ b = 〈C,a,sb〉
µ : Var→Messages

x 7→m = 〈a,R,c, p〉

Given a store, an entity, which is a tuple, can be accessed. Sometimes it is needed
only to know an element of such tuple, e.g., the internal state of a behaviour. For this
reason, the natural projection is defined over each store, indicated with πi where i is
the position of the element to access. As an example, to extrapolate the agent state
from an agent entity the composition is used

π2 ◦α : Var→ SA

x 7→ sa

As a general convention, πi ◦α is called αi. Such notations are the same for each
store.

With the usual Plotkin notation [Plotkin, 2004], an agent, behaviour or message
store, can be updated as in Section 2.2. If the intention is to replace only an element,
the projection notation is allowed in combination with the update notation. For ex-
ample, given a variable a ∈ Var that denotes an agent, changing the state of such an
agent into a new state sa ∈ SA is done as follows.

α2[sa/a](x) =

sa if x = a

α2(x) otherwise.

When modifying an element of the agent entity using the above notation, the other
elements of such an entity remain unchanged.

2.4.1 Semantics of Commands with Events

A coherent semantics to manage the events and the state changes that occur in the life
cycle of an agent is needed. To obtain this, a transition system is defined as follows

〈Γcom,Lcom,→com,∆com〉
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〈α,β 〉 ϖ−→ev 〈α,β 〉
(No-Event)

α(a) = 〈C,sa,Lb,Le,Q〉 L′e = [Le|Ea] s′a = δA(sa,Ea) ∈ SA

〈α,β 〉 Ea−→ev 〈α[〈C,s′a,Lb,L′e,Q〉/a],β 〉
(A-State)

α(a) = 〈C,sa,Lb,Le,Q〉 L′e = [Le|Ea] δA(sa,Ea) 6∈ SA

〈α,β 〉 Ea−→ev 〈α[〈C,suspended,Lb,L′e,Q〉/a],β 〉
(A-Susp)

Ea = Activate(a) α(a) = 〈C,sa,Lb,Le,Q〉 L′e = [Le|Ea]

Le = [. . . |Wait(a),E,Suspend(a)] ∀i ∈ {0, . . . ,n} Ei 6= Wake(a)

〈α,β 〉 Ea−→ev 〈α[〈C,waiting,Lb,L′e,Q〉/a],β 〉
(A-Act1)

Ea = Activate(a) α(a) = 〈C,sa,Lb,Le,Q〉 L′e = [Le|Ea]

Le = [. . . |Wake(a),E,Suspend(a)] ∀i ∈ {0, . . . ,n} Ei 6= Wait(a)

〈α,β 〉 Ea−→ev 〈α[〈C,active,Lb,L′e,Q〉/a],β 〉
(A-Act2)

Ea = Activate(a) α(a) = 〈C,sa,Lb,Le,Q〉 L′e = [Le|Ea]

Le = [Create(a,C),E,Suspend(a)] ∀i ∈ {0, . . . ,n} Ei 6= Wait(a)

〈α,β 〉 Ea−→ev 〈α[〈C,active,Lb,L′e,Q〉/a],β 〉
(A-Act3)

β (b) = 〈C,a,sb〉 s′b = δB(sb,Eb)

〈α,β 〉 Eb−→ev 〈α,β2[s′b/b]〉
(B-State)

Figure 2.14: Event system.
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〈s,σ〉 →jstmt 〈s′,σ ′〉 〈α,β 〉 E−→ev 〈α ′,β ′〉
〈s,σ ,α,β ,µ〉 E−→com 〈s′,σ ′,α ′,β ′,µ〉

(Jstmt)

〈c,σ ,α,β ,µ〉 →stmt 〈ε,σ ′,α ′′,β ′′,µ ′〉 〈α ′′,β ′′〉 E−→ev 〈α ′,β ′〉
〈c,σ ,α,β ,µ〉 E−→com 〈ε,σ ′,α ′,β ′,µ ′〉

(Com)

s = s0 s1 . . . sn 〈s0,σ ,α,β ,µ〉 E−→com 〈ε,σ ′,α ′,β ′,µ ′〉
〈s,σ ,α,β ,µ〉 E−→com 〈s1 . . . sn,σ ′,α ′,β ′,µ ′〉

(Seq)

〈a,σ〉 →FJI 〈C,v〉 C <: Agent α
Wait(a)−−−−→ev α ′′ 〈α ′′,β 〉 E−→ev 〈α ′,β ′〉

〈a.doWait(),σ ,α,β ,µ〉 E−→com 〈ε,σ ,α ′,β ′,µ〉
(E-Wait)

〈b,σ〉 →FJI 〈C,v〉 C <: Behaviour β
Block(b)−−−−−→ev β ′′ 〈α,β ′′〉 E−→ev 〈α ′,β ′〉

〈b.block(),σ ,α,β ,µ〉 E−→com 〈ε,σ ,α ′,β ′,µ〉
(E-Block)

Figure 2.15: Semantics of commands with events.
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where Γcom is the set of configurations, Lcom is a set of labels, and →com⊆ Γcom×
Lcom× (Γcom∪∆com) is a transition function, where ∆com is a set of terminal config-
urations.

A configuration consists in a tuple where the first element is a command or an
event command from Figure 2.13, or else a statement from Figure 2.6. Other elements
of such a configuration are stores, one for each kind of entity. In fact, σ is used
to memorize and update Java objects, α , β and µ to maintain information about
agents, behaviours, and messages, respectively. A correct form for a configuration
according to the above definition is 〈c,σ ,α,β ,µ〉, but for the sake of clarity and
when no ambiguity can arise, all five elements of configurations are not enumerated
in the description of transition rules. Terminal configurations are configurations with
no commands. The symbol ε is used in place of c for such configurations.

During the execution of a command or a statement, an event may cause a state
change in one of the entities stored. For this reason, the set of labels Lcom is defined as
the set of all internal events. Thus, a transition is made by a configuration, an event,
and another configuration or terminal configuration. There are also some execution
steps where no event occurs. These steps are indicated with a special symbol ϖ as
label. In order to correctly update agents and behaviours after an event occurrence,
a transition relation is defined over JADE stores, and it is called→ev. When needed,
such a transition relation is used by the system→com.

Figure 2.14 shows the rules of the event transition system. In detail, when no
event occurs, agent and behaviour stores remains unchanged, as stated by the rule
(No-Event). Rules (A-State) and (B-State) are grounded on the two transition func-
tions δA and δB, and they update properly the agent and behaviour states according to
the returning value of such functions. For clarity, an agent event is indicated with the
name Ea and a behaviour event with Eb. Moreover, the agent list of events is always
updated with the last event Ea occurred. The only exceptions consist in the occur-
rence of the events Suspend(a) and Activate(a). In order to remain coherent with
JADE, there is no distinction between the agent states q3 and q4 of Figure 2.11. So,
as in rule (A-Susp), the agent is provided with the state suspended. If the agent is
re-activated after a suspension, its list of events has to be inspected to find out what
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〈a.addBehaviour(b),σ1,α1,β 1〉

〈b.block(),σ2,α3,β 3〉

〈ε,σ2,α2,β 2〉

〈ε,σ2,α3,β 4 = β 3[〈C,a,blocked〉/b]〉

〈ε,σ2,α3,β 4〉

〈b = new C(a),σ ,α,β 〉

〈ε,σ1 = σ [v/b]〉

v

E1

com

ϖ
com

stmt

E1
ev

Block(b)
ev

ϖev

E0

com

jstmt

FJI

E0
ev

Figure 2.16: Example of computation of the command transition system and sub-
systems.

was its previous state. Such a mechanism is described by rules (A-Act1), (A-Act2),
and (A-Act3). An agent can be in its waiting state only if a Wait(a) occurs, and it re-
mains there until it is waken. Meanwhile, a sequence of suspension and re-activation
may happens. This is showed in detail by the rule (A-Act1). Similarly, rules (A-Act2),
and (A-Act3) describe the situation in case the previous state was active. A better
solution for the problem of re-activation, in terms of simplicity of the proposed tran-
sition rules, could be to maintain two agent states (the actual and the previous) across
the computation. But that solution does not provide meaningful information about the
life cycle of such an agent, and adds an unnecessary field to the definition of agent
values.

In Figure 2.15 the →com transition relation is defined. A generic statement that
can be computed by the jstmt system is indicated with s. This is expressed by the
(Jstmt) rule, which delegates to the jstmt system the execution of s and to the event
system the effects caused by the label E.

The extended syntax in Figure 2.13 provides also commands that produce effects
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on JADE stores α , β and µ . For this reason, a system that computes correctly such
commands is necessary. Such a system has a transition relation, called →stmt, that
is defined and explain in detail later, in Section 2.4.2 and 2.4.3, when the agent life
cycle and the execution of its actions are studied in deep. Rule (Com) delegates to
such a system the semantics of a generic command, indicated with c, and, after that,
it propagates the event E.

A sequence of Java statements and JADE commands is denoted by s in rule (Seq).
Statements are processed in their order, and the event E occurs when computing s0.
Then, other events can take place in the next steps of computation, starting from the
execution of s1.

A particular attention should be dedicated to the last category of the extended
syntax, namely, the statements ev that trigger events, called event commands. In Fig-
ure 2.15 there are two example of transitions that explain the semantics of such com-
mands. The first one, (E-Wait), triggers the event Wait(a) of the agent a that calls the
command doWait(). Such an event occurs before the event E indicated by the label.
Moreover, the expression a has to be checked to ensure that it is actually an agent, by
computing its value with the FJI transition system. Such a check is necessary in order
to update correctly the proper store. In the next, that check is not indicated in the
premise of a rule, but it is left implicit. To recognize the entities involved, from now
on all expressions that compute into an agent are indicated with a, and all expressions
that compute into a behaviour with b.

Similarly, the event command block() triggers the event Block(b) of the be-
haviour b, before the event E. Rule (E-Block) describe this situation. Other rules are
defined for event commands, that trigger agent and behaviour events. But they are not
reported here because they work exactly as the two previous rules.

In Figure 2.16, an example of computation of the command transition system and
sub-systems is shown. Suppose that there is a sequence of three commands, namely,
b = newC(a); a.addBehaviour(b); b.block(). The variable a is a variable that de-
notes an agent, and b is a behaviour of class C. While the first command is executed,
the event E0 occurs, and while the second command is executed, the event E1 occurs.
The semantics of the first command is given by the sub-system jstmt, which updates
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E = Create(a,C)

〈ε,α〉 E−→ 〈a.setup(),α[〈C,active, [], [E], []〉/a]〉
(A-Create)

α1(a) =C mbody(setup,C) = 〈ε,s〉 〈s,σ ,α,β ,µ〉 E−→com 〈ε,σ ′,α ′,β ′,µ ′〉
〈a.setup(),σ ,α,β ,µ〉 E−→ 〈ε,σ ′,α ′,β ′,µ ′〉

(A-Setup)

E = Kill(a) α E−→ev α ′

〈ε,α〉 E−→ 〈a.takeDown(),α ′〉
(A-Kill)

α1(a) =C mbody(takeDown,C) = 〈ε,s〉 〈s,σ ,α,β ,µ〉 E−→com 〈ε,σ ′,α ′,β ′,µ ′〉
〈a.takeDown(),σ ,α,β ,µ〉 E−→ 〈ε,σ ′,α ′[ϖ/a],β ′,µ ′〉

(A-TakeDown)

Figure 2.17: Agent life cycle.

the underlying Java store σ with the new value v. As usual, v is an object, which is the
evaluation of the expression newC(a) obtained by the FJ system. The actual creation
of a location for the behaviour inside the store β is managed by the system com, but
the rule for such an update is given in the next sections. For now, α1 and β 1 denotes
the stores that result from the correct managing of the event E0 and the behaviour cre-
ation. Then, the second command is an agent-oriented one, provided by JADE APIs.
The semantics of such a command is given by the system stmt, which updates cor-
rectly all the stores. After this, the event E1 updates agents and behaviours. Finally,
the third command triggers an event, namely, the event Block(b) of the behaviour b.
Thus, b state is changed into the blocked one by the event system. After that, the
event system have to manage the next event, but there is no one, so all stores remain
unchanged and the computation terminates.
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α1(a) =C β1(b) ∈ behaviours(C) L′b = [α3(a)|b]
〈a.addBehaviour(b),α,β 〉 →stmt 〈ε,α3[L′b/a],β 〉 (A-AddB)

α3(a) = [b0, . . . ,bi,b,bi+1, . . . ,bn] L′b = [b0, . . . ,bi,bi+1, . . . ,bn]

〈a.removeBehaviour(b),α〉 →stmt 〈ε,α3[L′b/a]〉 (A-RmvB)

Figure 2.18: Adding and removing behaviours.

2.4.2 Agent Life Cycle

As for commands and events, an operational semantics is defined by means of a
transition system, in order to describe how the states of entities, namely, agents, be-
haviours, and messages, change in a computation of a JADE MAS. The proposed
transition system is defined as a structure 〈Γ,L,→,Λ〉 where Γ is a finite set of con-
figurations, L is a finite set of labels,→: Γ×L× (Γ∪Λ) is the transition relation, and
Λ is a set of terminal configurations.

As in command transition system, a configuration is in the form 〈C,σ ,α,β ,µ〉,
where C is a command (or statement). Its syntax is the FJ extended one, as defined
in Section 2.2, plus the syntax of commands and event commands defined in Fig-
ure 2.13. There are also terminal configurations, i.e., configurations where the com-
mand C is replaced by a symbol E which indicates the end of the computation. The
symbol ε is used, but not for terminal configurations. In fact, this transition system
allows configurations with no commands. Labels in L are internal or external events.

Such a transition system is a super-system of all others defined in this chapter.
It manages agent life cycles, i.e., initialization of agents and final clean-ups, and
behaviour actions. Agent life cycle starts when an agent a of class C is created.
When such an event happens, the initialization phase starts. Formally, when the event
Create(a,C) occurs, the system make a step from a configuration with no commands
to a setup configuration, where the agent is stored into a new variable a and the setup
method of the agent is called. Rule (A-Create) shows this transition.

The initialization phase consists in the execution of the method setup body, as
in rule (A-Setup). The sub-system of command is used in order to manage a the



2.4. Syntax and Semantics of JADE 55

sequence of statements that compose the body. As a matter of fact, setup body may
contain both Java statements and JADE commands or event commands. Moreover,
the label E is an event that is propagated by the system of commands as shown in
previous sections.

When an event Kill(a) occurs, the final phase of the agent a starts. The agent is
immediately updated by the system of events, i.e., its state became deleted. Then,
its takeDown method is called. The execution of takeDown body uses the commands
sub-system, as illustrated by the rules (A-Kill) and (A-TakeDown).

During the two phases of initialization and take-down, usually the agent man-
ages its list of behaviour, adding and removing tasks. Two commands of JADE APIs
are used, namely, the a.addBehaviour(b) and a.removeBehaviour(b). Their se-
mantics is defined by the transition relation→stmt, which is shown in rules (A-AddB)
and (A-RmvB). In particular, adding a behaviour implies checking if such a behaviour
is available for the agent class C, by means of the lookup function behaviours(C). If
so, the new behaviour is added to the bottom of the agent behaviour list Lb. Removing
a behaviour b is done by simply by removing it from the agent list Lb, no matter what
its position is.

2.4.3 Behaviour Actions

Once the agent finishes its initialization, it is ready to perform actions. A behaviour
from its list is selected, and the actual execution of the action starts. A selector for the
behaviours of an agent is defined, called behaviour scheduler, indicated by S . This
function returns the current behaviour to execute, from the list Lb of an agent a, as
follows.

S : Agents→ Behaviours

a 7→ b ∈ α3(a)

Rules that describe in detail the execution of a behaviour action are listed in
Figure 2.19. Creating a new behaviour b of class C is a command b = newC(e) that
can be launched, e.g., by an agent in its setup. The syntax is the usual Java syntax, thus
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〈b = newC(e),σ〉 →jstmt 〈ε,σ ′〉 C <: Behaviour

β [〈C,e0,initiated〉/b]
Create(a,b,C)−−−−−−−→ev β ′′ 〈α,β ′′〉 E−→ev 〈α ′,β ′〉

〈b = newC(e),σ ,α,β ,µ〉 E−→com 〈ε,σ ′,α ′,β ′,µ〉
(B-Create)

S (a) = b β ′3(b) = active α ′2(a) = active 〈α,β 〉 E−→ev 〈α ′,β ′〉
〈ε,α,β ,µ〉 E−→ 〈b.action(),α ′,β ′,µ〉

(B-Selected)

〈s; a.removeBehaviour(b),σ ,α,β ,µ〉 E−→com 〈ε,σ ′,α ′,β ′,µ ′〉
β (b) = 〈C,a,sb〉 mbody(action,C) = 〈ε,s〉 btype(C) = one−shot

〈b.action(),σ ,α,β ,µ〉 E−→ 〈ε,σ ′,α ′,β ′2[done/b],µ ′〉
(B-OneShot)

〈s,σ ,α,β ,µ〉 E−→com 〈ε,σ ′,α ′,β ′,µ ′〉
β (b) = 〈C,a,sb〉 mbody(action,C) = 〈ε,s〉 btype(C) = cyclic

〈b.action(),σ ,α,β ,µ〉 E−→ 〈ε,σ ′,α ′,β ′,µ ′〉
(B-Cyclic)

Figure 2.19: Behaviour actions.
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〈ε,σ ,α,β 〉

Create(a,C0)

〈a.setup(),σ ,α1 = α[〈C0,active, [],Le, []〉/a],β 〉

E0

〈s,σ ,α1,β 〉

com

Figure 14

〈ε,σ2,α4,β 4〉

〈ε,σ2,α5 = α4[〈C0,active, [b],Le, []〉/a],β 4〉

Restart(b)

〈ε,σ2,α5,β 5 = β 4[〈C,a,active〉/b]〉

S (a) = b

〈b.action(),σ2,α5,β 5〉

ϖ

〈s,σ2,α5,β 5〉

com

ϖ

〈ε,σ f ,α f ,β f 〉

〈ε,σ f ,α f ,β f 〉

Figure 2.20: Agent life cycle example.

the store σ is updated by the jstmt system. Meanwhile, a location b into the store β is
created, with the initial value b= 〈C,e0,initiated〉, where C is the behaviour class,
e0 is the first parameter of the constructor, that represents the agent, and initiated

is its initial state, according to Figure 2.12. Moreover, such a command triggers the
event Create(e0,b,C) of the behaviour, and the store is coherently updated by the
system of events. Then, if there is another event E during the transition, such an
event is considered after the creation of the behaviour. Rule (B-Create) define this
transition. When both a behaviour b and an agent a are active, i.e., they are in the
active state, and b ∈ Lb = α3(a), the behaviour scheduler of the agent a is able to
choose such a behaviour b for the next execution. If it is the case, the action of the
behaviour b starts. As in Rule (B-Selected), this means the actual call of the method
action of the behaviour b.
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A distinguishing features of JADE behaviours is their type, which refers to their
permanence in the list of available actions of an agent. Behaviour can be one-shot or
cyclic, by sub-classing the OneShotBehaviour or the CyclicBehaviour classes,
respectively. The lookup function btype is used to access such a type, as defined
in Figure 2.9. The action of a one-shot behaviour is performed only once, because
such a behaviour is removed from the list of the agent immediately after the first
execution of its action. Conversely, the action of a cyclic behaviour can be performed
repeatedly, since such a behaviour is not removed from the list of the agent after the
execution of its action. Rules (B-OneShot) and (B-Cyclic) formalize this aspect.

As an example, in Figure 2.20, the life cycle of an agent is shown. At the first
step, an agent a of class C0 is created. Thus it starts its initialization by calling the
method setup redefined in the body of C0. Suppose that its setup body contains the
statements illustrated in Figure 2.16. Hence, the sub-system of commands executes
such statements as in the first example, creating a behaviour b of class C and adding
it to the behaviour list of the agent. Then, it is blocked by the command b.block().
Then, an event Restart(b) re-activate such a behaviour, so it is ready to be chosen by
the behaviour scheduler. In fact, the agent behaviours list contains only an element,
and the agent is active. In this very simple example, the scheduler selects the only
behaviour it can select, b. This fact triggers the call of the action method of b,
redefined in class C. Statements that compose the body of the action are computed
by the sub-system of commands, and, finally, the stores are updated into their final
values.

2.5 Syntax and Semantics of Message Passing

Although there are no constraints on the definition of the actions of behaviours, ac-
tions are often used for message passing, i.e., to send and receive messages. Such
communication-related tasks are always implemented using patterns that are well-
known to JADE programmers. In Figure 2.21 rules that concern message creations,
sending, and receptions are shown. First, if an agent intends to send a message, it
allocates a specific behaviour to do it. The code of such a behaviour prepares the
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〈m = new ACLMessage(p),σ〉 →jstmt 〈ε,σ ′〉 〈α,β 〉 E−→ev 〈α ′,β ′〉
〈m = new ACLMessage(p),σ ,α,β ,µ〉 E−→com 〈ε,σ ′,α ′,β ′,µ[〈ε, [],ε, p〉/m]〉

(M-Create)

R′ = [µ2(m)|r]
〈m.addReceiver(r),µ〉 →stmt 〈ε,µ2[R′/m]〉 (M-AddReceiver)

〈m.setContent(c),µ〉 →stmt 〈ε,µ3[c/m]〉 (M-SetContent)

〈ε,α,β ,µ1[a/m]〉 Message(m)−−−−−−→ 〈ε,α ′′,β ′′,µ ′〉 〈α ′′,β ′′〉 E−→ev 〈α ′,β ′〉
〈a.send(m),α,β ,µ〉 E−→com 〈ε,α ′,β ′,µ ′〉

(M-Send)

µ2(m) = R r ∈ R α(r) = 〈C,sa,Lb,Le,Q〉
Q′ = [Q|m] b ∈ Lb (sa = waiting∨ sa = active) E = Message(m)

〈ε,α,β ,µ〉 E−→ 〈ε,α[〈C,active,Lb,Le,Q′〉/r],β3[active/b],µ〉
(M-Event)

α5(a) = [m|Q′] σ(m) = v
〈x = a.receive(),σ ,α,µ〉 →stmt 〈ε,σ [v/x],α5[Q′/a],µ[µ(m)/x]〉 (M-Receive)

α5(a) = []

〈x = a.receive(),σ ,α,µ〉 →stmt 〈ε,σ [null/x],α,µ[ϖ/x]〉 (M-EmptyQueue)

Figure 2.21: Messaging.

message to be sent, and then it delivers the message using the method send of its
agent, provided by JADE APIs. The preparation of a message consists in its creation,
by instantiating an object of class ACLMessage, which constructor takes a performa-
tive as a parameter. Thus, the command m = new ACLMessage(p) is used to create a
new location m into the messages store µ . The value stored is initially empty, except
for the performative p, as shown in rule (M-Create).

Other features of the messages can be set after its creation, by using some meth-
ods of the class ACLMessage. The extended syntax of commands in Figure 2.13 in-
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M : M×T → (Σ→ Bool)

M Jm,xKµ =

> if µ1(m) = x∨µ2(m) = [x]

⊥ otherwise
M Jm,xKµ =

> if µ2(m) = [x]

⊥ otherwise

M Jm,vKµ =

> if µ3(m) = v

⊥ otherwise

M Jm, t1∧ t2Kµ = M Jm, t1Kµ ∧M Jm, t2Kµ

M Jm, t1∨ t2Kµ = M Jm, t1Kµ ∨M Jm, t2Kµ

M Jm,¬tKµ = ¬M Jm, tKµ

α5(a) = [m0, . . . ,mk,m,mk+1, . . . ,mn] Q′ = [m0, . . . ,mk,mk+1, . . . ,mn]

M Jm, tKµ => M Jmi, tKµ =⊥, i = 0, . . . ,k
〈x = a.receive(t),α,µ〉 →stmt 〈ε,α5[Q′/a],µ[µ(m)/x]〉

(M-Template)

Figure 2.22: Match function for message templates.
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cludes the calls at such methods, namely, m.addReceiver(r), and m.setContent(c).
The former adds an agent r as a recipient of the message, and the latter set the con-
tent c of a message. Such a content can be any object. Those calls are handled by the
system stmt, because they only update the store of messages. Rules (M-AddReceiver)
and (M-SetContent) define their semantics.

Finally, the prepared message can be sent. To this extent, the class Agent provides
a method send. The call of such a method is managed by the system of commands.
First, the sender of the message is updated with the reference of the agent who calls
the send instruction. This is shown in rule (M-Send). Moreover, delivering a mes-
sage triggers an external event, Message(m), which purpose is explained in the next
rule (M-Event).

Then, if an agent wants to react at the reception of a message, it has to add a be-
haviour devoted to wait for incoming messages. Such a behaviour waits until it per-
ceives an event and it has to figure out if that event is actually a message. If this is the
case, it reads the incoming message and, eventually, it performs an action in response.
For this reason, when the event Message(m) occurs, all recipients in m receivers list
re-activate all their behaviours, as shown in the conclusion of the rule (M-Event).
All recipients add m at the end of their message queue Q. Moreover, if one of the
recipient agents is in the waiting state, it changes immediately to the active one.

Once the behaviours are active, those who wait for messages has to read it. Read-
ing a message is done by calling the method receive of the agent, which returns
the first message in the agent queue, as in (M-Receive). If the queue is empty, it
returns the value null, as in (M-EmptyQueue). JADE users must be familiar with
such a semantics. In fact, the pattern used for message reception follows a list of
fixed steps, namely, (i) the reception of the message by means of the instruction
m = a.receive(), (ii) an if statement that controls if the resulting value of m is
not null, and (iii) if it is the case, the action, else, (iv) the blocking of the current
behaviour.

Another option is to specify a message template, in order to read only certain
types of messages. The command x = a.receive(t), where t is a template, is used
to filter messages in the agent a message queue. The syntax of a template was shown
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〈b0 = new WaitMsg(a0),σ ,α,β 〉

ϖ

com

FJ
v

jstmt

〈ε,σ1 = σ [v/b0]〉

Create(a0,b0,WaitMsg)ev

〈a0.addBehaviour(b0),σ1,α,β 1 = β [〈WaitMsg,a0,active〉/b0]〉

ϖ

com

stmt

〈ε,σ2,α1 = α3[[b0]/a0],β 1〉

ϖ ev

〈ε,σ2,α1,β 1〉

Figure 2.23: Set-up of the agent a0.

previously in Figure 2.10. A template is a condition over message feaures. If one of
the incoming messages matches the template, the variable x is assigned to the value
of such a message.

To formally define the matching of a message by a message template, a semantic
function M is introduced over variables, templates and stores. Such function takes
values in the set Bool = {>,⊥} of the Boolean domain and with the same symbols
used in the syntax (i.e., ∧, ∨ and ¬) are indicated the logical operation on Bool. In
Figure 2.22, a denotational semantics for such a matching is defined, and the seman-
tics of the command x = a.receive(t) is given as a transition (M-Template) in the
stmt system.

2.6 An Example of Agent Set-Up and Behaviour Actions

As an example, a simple interaction between two agents is considered. The first agent,
a0, starts and waits for an incoming INFORM message. If such a message is received,
a0 do its action. The reception and the action are managed by a behaviour of the
agent, called b0. The second agent, a1, starts and then it activates a behaviour b1,
which sends a ‘ping’ message to a0, with performative INFORM. In the following, the
JADE code for agent a0 set-up is shown.
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〈x = a0.receive(t),σ ,α,β ,µ〉

ϖ

com

α5(a0) = []
stmt

〈ε,σ1 = σ [null/x],µ1 = µ[ϖ/x]〉

ϖev

〈if(!(x == null)){ b0.do()} else{ b0.block()},σ1,α,β ,µ1〉

ϖ

com

BJ!(x == null)K =⊥
jstmt

〈b0.block(),σ1〉

ϖ ev

〈b0.block(),σ1,α,β ,µ1〉

ϖ
com

Block(b0)
ev

〈ε,β 2 = β 1[〈WaitMsg,a0,blocked〉/b0]〉

ϖev

〈ε,σ1,α,β 2,µ1〉

Figure 2.24: Receiving a message with an empty queue.

1 / / Agent a0
2 void s e t u p ( ) {
3 WaitMsg b0 = new WaitMsg ( t h i s ) ;
4 t h i s . addBehav iou r ( b0 ) ;
5 }

In Figure 2.23, the semantics of such a code is illustrated. As an assumption, no
event occur during the initialization of a0, for simplicity. First, the new behaviour
b0 of class WaitMsg is created, and turns its state into active. Then, a0 adds such
a behaviour to its behaviour list. Suppose that the agent a1 initializes in a similar
manner: it creates a new behaviour b1 of class SendMsg and adds it to the behaviour
list. Thus, JADE code and its semantics are analogs to that shown for agent a0.

Classes WaitMsg and SendMsg are coded in JADE as subclasses of the behaviour
classes CyclicBehaviour and OneShotBehaviour, respectively. The implementa-
tion of their action methods is shown below.
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〈x = a0.receive(t),σ ,α,β ,µ〉

ϖ

com

σ(m) = v
∃m ∈ α5(a0) : M Jm, tKµ =>

stmt

〈ε,σ1 = σ [v/x],α1 = α5[Q−{m}/a0],µ1 = µ[µ(m)/x]〉

ϖev

〈if(!(x == null)){ b0.do()} else{ b0.block()},σ1,α1,β ,µ1〉

ϖ

com

BJ!(x == null)K =>
jstmt

〈b0.do(),σ1〉

ϖ ev

〈b0.do(),σ1,α1,β ,µ1〉

ϖ
com

FJI
v′ = 〈WaitMsg,v′〉

jstmt

〈s[v′/this],σ2〉

ϖev

〈s,σ1,α1,β ,µ1〉

com

〈ε,σ f ,α f ,β f ,µ f 〉

Figure 2.25: Receiving the INFORM message and doing the action.
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〈m = new ACLMessage(INFORM),σ ,α,β ,µ〉

ϖ

com

FJ
v

jstmt
〈ε,σ1 = σ [v/m]〉

ϖev

ϖev

〈m.addReceiver(a0),σ1,α,β ,µ1 = µ[〈ε, [],ε, INFORM〉/m]〉

ϖ

com

stmt

〈ε,µ2 = µ1
2 [[a0]/m]〉

ϖ ev

〈m.setContent(‘ping’),σ1,α,β ,µ2〉

ϖ
com

jstmt
〈ε,µ3 = µ2

3 [‘ping’/m]〉

〈a1.send(m),σ1,α,β ,µ3〉

ϖ
com

〈ε,µ4 = µ3
1 [a1/m]〉

Message(m)

〈ε,σ1,α1 = α5[[m]/a0],β 1 = β3[active/b0],µ4〉

Figure 2.26: Sending a ‘ping’ message to a0.



66 Chapter 2. JADE Agents and MASs

1 / / Behav iour WaitMsg
2 void a c t i o n ( ) {
3 / / C r e a t i n g a t e m p l a t e t = INFORM
4 O b j e c t x = t h i s . myAgent . r e c e i v e ( t ) ;
5 i f ( x != n u l l ) {
6 t h i s . do ( ) ;
7 } e l s e {
8 t h i s . b l o c k ( ) ;
9 }

10 }
11
12 void do ( ) {
13 / / . . .
14 }

For a WaitMsg behaviour, the action consists in the creation of a template t, which
is the expected performative, the reception of a message x, and the processing of
such a message, if it exists. In fact, if the agent message queue is empty, the value of
message x is set to null, and the behaviour is blocked.

1 / / Behav iour SendMsg
2 void a c t i o n ( ) {
3 / / P e r f o r m a t i v e p = INFORM
4 ACLMessage m = new ACLMessage ( p ) ;
5 / / a0 i s t h e AID o f t h e r e c e i v e r a g e n t
6 m. a d d R e c e i v e r ( a0 ) ;
7 m. s e t C o n t e n t ( ‘ p ing ’ ) ;
8 t h i s . myAgent . send (m) ;
9 }

For a SendMsg behaviour, the action concerns only the creation and sending of a
message. First, a new ACLMessage is created, with a given performative. Then, the
AID of a0 is added to the list of recipients and the content of the message is set as a
raw string ‘ping’. Finally, the method send of the owner agent is used, by means of
the internal field myAgent.
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In Figures 2.24, 2.25, and 2.26, three computations of the given actions are
shown. No internal event occur during such computations.

The first figure concerns the execution of behaviour b0, when the agent a0 mes-
sage queue is empty. Rule (M-EmptyQueue) states that both message and Java stores
update x with the null value. Then, from the semantics of FJI and jstmt, given in
Figure 2.8, the system com enters the else block of the if construct. As shown in
a previous example, the command block of behaviours triggers an event Block(b0),
which changes the behaviour state from active to blocked.

The second figure shows the actual reception of an INFORM message. This is done
by the system stmt, with the rule (M-Template), which controls the matching of the
template t for all messages in a0 message queue. Then the queue is updated with
a new queue when the matching message is removed. In this case, the value of x
became that of the message extracted from the queue, and the system enters the if

block. Such a block contains a call of a void method do, which is managed by the
systems FJI and jstmt.

The third figure reports the execution of the agent a1 action. It creates a new
ACLMessage, which is an object stored in σ by the jstmt system, and, in particular,
it is a message as defined in Definition 3, so it is stored in µ by the system of JADE
commands. Then, using rules (M-AddReceiver) and (M-SetContent), the fields of
the message are updated. Finally, the call of the method send of the agent triggers an
event Message(m), which updates the message queue of the recipient agent a0 and
re-activate all blocked behaviours, as in rules (M-Send) and (M-Event).

2.7 Interaction Protocols

In this section the interaction protocol transition system is defined. In JADE, interac-
tion protocol roles are modeled as FSMs. FSMs are commonly formalized as 5-tuples
consisting of a set of states, here called S, an initial state q0 ∈ S, a set of labels L, a
transition function δ : S×L→ S and a set of final states F ∈ S. Thus, the formalization
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ip ::= REQUEST | CONTRACT_NET | BROKERING | DUTCH_AUCTION
| ENGLISH_AUCTION | ITERATED_CONTRACT_NET | PROPOSE | QUERY
| RECRUITING | REQUEST_WHEN | SUBSCRIBE | ITERATED_REQUEST

role ::= Initiator | Responder

Figure 2.27: JADE interaction protocols and roles syntaxes.

of a FSMBehaviour is an ordinary FSM, as follows.

FSM = 〈q0,S,L,δ ,F〉 with F ⊂ S, L⊆ p;

δ : S×L→ S;

b = 〈C,a,sb,s〉 with s ∈ S.

It is worth noting that an additional state is added to the behaviour entity, to take
into account FSM state changes. But such a standard representation is not enough to
capture the semantics of JADE protocols. There are some issues to consider when
deal with an interaction protocol in JADE. First of all, for each state of the FSM the
agent can do an action: this means that there is a block of code to perform when the
agent reach a state. On the second hand, it is desirable to take account of all state
changes and updates that may be a result of an action within the behaviour entity that
models the FSM.

The interaction protocols transition system is defined as a labeled transition sys-
tem

〈c0,Γδ ,P,δ ,→δ ,Λδ 〉

where Γδ is a set of configurations of the form 〈c,β 〉, with c ∈ s∪ com∪ ev :=Com,
c0 ∈ Γδ is the initial configuration, P ⊆ p is a set of performatives, used as labels,
δ : S×P→ S is the FSM transition fucntion, Λδ is a set that contains terminal con-
figurations 〈ε,β 〉 and →δ is the interaction protocol transition function, defined as
follows:

→δ ⊆ Γδ ×P×Γδ .
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Moreover, two additional transition functions are defined:

γ : S×B→Com;

ϕ : Com→Com∪Com∗.

Such functions allow to control which statements to execute, by matching a command
with a state of the FSM and then by associating that command with the block of code
needed to perform the requested action. The γ transition function returns such a com-
mand, given the internal state of the current behaviour in B. The ϕ transition function
acts as a bridge to the commands transition system, by specifying the statement or
the block of code to execute, associated with the γ command.

2.7.1 Rule Schema for Protocols

In order to define the semantics of each FIPA interaction protocol using the above
described transition system, the approach of operational semantics [Plotkin, 2004]
is used. Such method is about giving a semantics to programming languages, but it
can be used to define the natural semantics over an arbitrary, labeled or unlabeled,
transition system.

Given a protocol q ∈ ip and an agent role r ∈ role in such a protocol, defined in
Figure 2.27, in JADE API there is only one FSM behaviour that describes the role
r in protocol q. Usually, the name of the protocol and its role are specified in the
class name B of such behaviour. Then, assuming that b ∈ B is the FSM behaviour
associated with the agent a, with β1(b) =C, the rule to apply depends on the chosen
protocol and agent role, and also on the current internal state of b, i.e. β4(b) = s.
Therefore, the expected semantics has to take account of the values q, r and s.

The idea is that from an initial configuration c0 = 〈c,β 〉, the system switches
to another configuration c1 ∈ Γδ , through the performative l of the first message:
c0

l−→δ c1. That is, tuple 〈c0, l,c1〉 belongs to the relation→δ . A notation `b is added
to remind what is the behaviour name (protocol and role) at each step: `b c0

l−→δ c1.

Some conditions have to be satisfied to guarantee the transition to be applied. For
example, for FIPA Request protocol, the first incoming message for the participant
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must be a request. These conditions are specific for each step of the chosen protocol,
and have to be tested before allowing a transition of the main system. This leads
to another notation, that helps to synthesize in a single rule schema every rule of the
interaction protocols: B(r,s)

q denotes a formula which contains a condition that depends
on the protocol q, role r and current state s. When B(r,s)

q is true, the rule is applicable.
At each step, as mentioned before, the agent has to perform an action. The com-

mand associated to each state of the FSM behaviour is obtained as the value of the
γ transition function: γ(s,b) = c. Then, the associated action consists of the block
of code ϕ(c), that is assumed to be executable by the subsystem of commands. It is
taken as an assumption that such a transition system performs the statements con-
tained in the obtained block and updates the stores correctly. If it terminates, a new
list of updated stores is given. The generic computation is denoted as follows.

〈ϕ(C),σ ,α,β ,µ〉 →∗com 〈ε,σ ′,α ′,β ′,µ ′〉

where→∗com indicates the Kleene closure of the command transition function.
In summary, the rule schema can be written in the usual operational semantics

notation, as follows.

B(r,s)
q 〈ϕ(c),σ ,α,β ,µ〉 →∗com 〈ε,σ ′,α ′,β ′,µ ′〉 β ′4(b) = s

`b 〈c,β 〉 l−→δ 〈c′,β ′4[δ (s, l)/b]〉
(ProtocolRuleSchema)

where c = γ(s,b), and c′ = γ(δ (s, l),b).

2.8 Achieve Rational Effect Protocols

FIPA provides many interaction protocols that are quite similar to the FIPA Re-
quest protocol. For this reason, the JADE implementations of such protocol roles
are collected together using the classes AchieveREInitiator, for the initiator, and
AchieveREResponder for the participant. In general, such classes are used to imple-
ment all protocols where the first message is sent by the initiator in order to achieve a
Rational Effect (RE), then there is a response and an eventual result notification by the
participant, here called responder. Such protocols are for example FIPA Query, FIPA
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q0 q1

q5

q3

q2

q4

request

inform done

agree

inform done

failure

failure

inform result inform result

refuse

Figure 2.28: Achieve Rational Effect Protocol Initiatior FSM: q0 = send ∈ S is the
initial state, q1 = receive reply ∈ S, q2 = agreed ∈ S, and q3 = success ∈ S,
q4 = refused ∈ S, q5 = failed ∈ SI are final states. The query protocol FSM is
analogous, with the only differences in the labels request and inform–done, which
change respectively in query–if/ref and inform–t/f.

Request-when, FIPA Brokering, etc. Even if FIPA does not specify such a protocol,
it is inherently part of FIPA specifications because the semantics of FIPA communi-
cations, as described in FIPA specifications, is based on agents performing commu-
nicative acts to achieve rational effects.

2.8.1 Achieve Rational Effect Initiator

The initiator class for above described protocols is a behaviour which consists of a
finite number of internal states, a transition function over such states, and a collection
of class methods to handle the action to perform while reaching a particular state.
Hence, it is a FSM behaviour, that can be formalized as discussed in the previous
section.

AchieveREInitiator = 〈c0,Γδ ,P
′,δ ,→δ ,Λδ 〉
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with:

P′ ⊆ p; c0 = 〈send(m),β 〉 ∈ Γδ ;

β (b) = 〈AchieveREInitiator,a,sb,send〉.

According to FIPA specifications of request and query protocols, an achieve ra-
tional effect initiator is a behaviour b ∈ B which implements the FSM in Figure 2.28.

It is worth noting that in JADE, both the performative inform_result and
inform_done are joint together into the performative inform, but this fact does
not change substantially the structure of the FSM. The transition function δ is thus
defined by the Figure 2.28 above, as usual. For example, δ (q0, request) = q1. Note
that there is no performative that moves the behaviour state from success, refused
or failed to another. This is obvious since these states denote final states, but in
the proposed formalization, the transition function has to reach a terminal configu-
ration in order to recognize the achievement of the aforementioned rational effect.
This is formalized by adding an ε-transition to a fake final state q6 = final, i.e.,
a transition with no label. Then, indicating with ε ∈ P′ the ‘empty’ performative:
δ (q3,ε) = δ (q4,ε) = δ (q5,ε) = q6.

If b is an achieve rational effect initiator, then:

γ(q0,b) = send(m) γ(q1,b) = m = receive(t)

γ(q2,b) = handleAgree(m) γ(q3,b) = handleInform(m)

γ(q4,b) = handleRefuse(m) γ(q5,b) = handleFailure(m)

γ(q6,b) = ε

where m, t denote a message and a message template, respectively, and ε is a notation
that describes the absence of a command to execute.

In the following the rules for Request and Query protocols are described, which
are conditions for (ProtocolRuleSchema). In case of r = Initiator and q= REQUEST,
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the rule conditions are as follows:

B(r,q0)
q : M Jm,requestKµ =>

B(r,q1)
q : t = agree∨refuse∨inform∨failure

B(r,q2)
q : M Jm,agreeKµ =>

B(r,q3)
q : M Jm,informKµ =>

B(r,q4)
q : M Jm,refuseKµ =>

B(r,q5)
q : M Jm,failureKµ =>

where m, t are the message and the template specified by γ . These conditions define
six different rules based on the rule schema in Section 2.7.1.

Another achieve rational effect protocol is q= QUERY, whose six rules are defined
below.

B(r,q0)
q : M Jm,(query−if∨query−ref)Kµ =>

B(r,q1)
q : t = (agree∨refuse∨inform∨failure)

B(r,q2)
q : M Jm,agreeKµ =>

B(r,q3)
q : M Jm,informKµ =>

B(r,q4)
q : M Jm,refuseKµ =>

B(r,q5)
q : M Jm,failureKµ =>

where, as above, m, t are the message and the template specified by γ .

2.8.2 Achieve Rational Effect Responder

An achieve rational effect responder is a behaviour b∈ B which implements the FSM
in Figure 2.29. In the proposed formalization, it is defined as follows.

AchieveREResponder = 〈c0,Γδ ,P
′,δ ,→δ ,Λδ 〉
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q0 q1 q2
request

agree

ε

inform

failure

Figure 2.29: Achieve Rational Effect protocol responder FSM: q0 = receive ∈ S
is the initial state, q1 = send reply ∈ S and q2 = agreed ∈ S. The query protocol
FSM is analogous, with the only differences in the label request which change in
query–if/ref.

with:

P′ ⊆ p; c0 = 〈m = receive(t),β 〉 ∈ Γδ ;

β (b) = 〈AchieveREResponder,a,sb,receive〉.

Note that there is no final states: this means that a responder waits indefinitely
for new requests or queries. In JADE, such a behaviour can be stopped by killing the
associated agent with an external event.

If b is an achieve rational effect responder, then the γ transition function is defined
as follows:

γ(q0,b) = m = receive(t) γ(q1,b) = m = handleRequest(req)

γ(q2,b) = m = prepareResultNotification(req,resp)

where m,req,resp denote messages and t denotes a template.

Then, the rules for both Request and Query protocols are specified, which are
conditions for (ProtocolRuleSchema). In case of r = Responder and q = REQUEST,
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the rule conditions are the following.

B(r,q0)
q : t = request

B(r,q1)
q : M Jreq,requestKµ =>

∧M Jresp,(agree∨refuse)Kµ =>
B(r,q2)

q : M Jreq,requestKµ =>
∧M Jresp,(agree∨refuse)Kµ =>
∧M Jm,(inform∨failure)Kµ =>

where m,req,resp, and t are the messages and the template of the γ function. The
above conditions define three rules for the responder role in request protocol.

When r = Responder and q = QUERY, the conditions change in the following.

B(r,q0)
q : t = query−if∨query−ref

B(r,q1)
q : M Jreq,(query−if∨query−ref)Kµ =>

∧M Jresp,(agree∨refuse)Kµ =>
B(r,q2)

q : M Jreq,(query−if∨query−ref)Kµ =>
∧M Jresp,(agree∨refuse)Kµ =>
∧M Jm,(inform∨failure)Kµ =>

where, as usual, m,req,resp and t are the messages and the template defined by γ .

2.9 Contract Net Interaction Protocol

Another example of JADE implementation of interaction protocol is based on FIPA
Contract Net interaction protocol. The implementation consists in two classes called
ContractNetInitiator and ContractNetResponder, both extension of the class
FSMBehaviour.

An intuitive explanation of the protocol is that a number of agents are involved
in a call of proposal (cfp). In fact, the initiator first sends a cfp to m ∈N other agents,
the participants. Only n of the m participants reply to the initiator, and they can refuse
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q0 q1 q2

q3

q4

q5

q6

q7
cfp propose

refuse

accept proposal

reject proposal

failure failure

inform

Figure 2.30: Contract Net protocol initiator FSM: q0 = send cfp ∈ S is the initial
state, q1 = receive reply ∈ S, q2 = proposed ∈ S, q4 = accepted ∈ S, and q3 =

refused ∈ S, q5 = rejected ∈ S, q6 = failure ∈ S, q7 = success ∈ S are final
states.

the call or respond with a proposal. Suppose that i≤ n is the number of the refusing
participants and j = n− i the number of the proposals. Then the initiator examines all
the j replies and choose which to accept. Indicating with k≤ j the number of refused
proposals and with l = j− k the number of those accepted, the l participants start to
perform the action specified in their proposal. Finally, they send to the initiator the
result of their action, which may be a failure or a success.

2.9.1 Contract Net Initiator

The formalization of the Contract Net initiator implementation is given as in the
previous section, using the interaction protocol transition system.

ContractNetInitiator = 〈c0,Γδ ,P
′,δ ,→δ ,Λδ 〉

with:

P′ ⊆ p; c0 = 〈send(m),β 〉 ∈ Γδ ;

β (b) = 〈ContractNetInitiator,a,sb,send cfp〉.
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The δ transition function is defined as in Figure 2.30. Similarly to the Sec-
tion 2.8.1 initiator, there are some final states that are indistinguishable from oth-
ers (all states belong to S), then it is necessary to add a fake final state q8 = final

and some ε-transitions to the function δ , namely δ (q3,ε) = δ (q5,ε) = δ (q6,ε) =
δ (q7,ε) = q8.

If b ∈ B is a contract net initiator, then the γ transition function definition is given
below.

γ(q0,b) = send(m) γ(q1,b) = m = receive(t)

γ(q2,b) = handlePropose(propose,acceptances)

γ(q3,b) = handleRefuse(m) γ(q4,b) = γ(q1,b)

γ(q5,b) = ε γ(q6,b) = handleFailure(m)

γ(q7,b) = handleInform(m) γ(q8,b) = ε

where m, propose denote messages, acceptances denotes a list of messages (the ac-
cepted proposal messages) and t denotes a template.

The eight rules which specialize the (ProtocolRuleSchema) are shown in the fol-
lowing.

B(r,q0)
q : M Jm,cfpKµ =>

B(r,q1)
q : t = (propose∨refuse∨failure)

B(r,q2)
q : M Jpropose,proposeKµ =>

∧M Jacceptance,(accept−proposal∨reject−proposal)Kµ =>

B(r,q3)
q : M Jm,refuseKµ =>

B(r,q4)
q : t = inform∨failure

B(r,q6)
q : M Jm,failureKµ =>

B(r,q7)
q : M Jm,informKµ =>

where m, t, propose,acceptance are defined by γ .



78 Chapter 2. JADE Agents and MASs

q0 q1 q2 q3

q4q5

cfp propose

inform

failure

accept proposal

reject proposalε

Figure 2.31: Contract Net protocol responder FSM: q0 = receive cfp ∈ S is the
initial state, q1 = send reply∈ S, q2 = receive next∈ S, q3 = accepted∈ S, and
q4 = refused ∈ S is a final states.

2.9.2 Contract Net Responder

The Contract Net responder formalization is the interaction protocol transition system
shown in the following.

ContractNetResponder = 〈c0,Γδ ,P
′,δ ,→δ ,Λδ 〉

with:

P′ ⊆ p; c0 = 〈m = receive(t),β 〉 ∈ Γδ ;

β (b) = 〈ContractNetResponder,a,sb,receive cfp〉.

As usual, the FSM transition function δ is defined in Figure 2.31. It is worth
noting that it has two final states, but it also may not terminate its execution. The final
states are handled by adding a transition δ (q4,ε) = δ (q5,ε) = q6 where q6 = final

is a final state.
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If b ∈ B is a contract net responder, then the γ transition function is defined as
follows.

γ(q0,b) = m = receive(t) γ(q1,b) = m = handleCfp(c)

γ(q2,b) = γ(q0,b)

γ(q3,b) = m = handleAcceptProposal(c, p,a)

γ(q4,b) = handleRejectProposal(c, p,r)

γ(q5,b) = γ(q6,b) = ε

where m,c, p,r,a are messages and t a template.
Five interaction protocols rules are specified by putting the following conditions

in (ProtocolRuleSchema).

B(r,q0)
q : t = cfp

B(r,q1)
q : M Jc,cfpKµ =>

∧M Jm,(propose∨refuse∨failure)Kµ =>
B(r,q2)

q : t = accept−proposal∨reject−proposal

B(r,q3)
q : M Jc,cfpKµ =>

∧M Jp,proposeKµ =>
∧M Ja,accept−proposalKµ =>
∧M Jm,(inform∨failure)Kµ =>

B(r,q4)
q : M Jc,cfpKµ =>

∧M Jp,proposeKµ =>
∧M Jr,reject−proposalKµ =>

where m,c, p,r,a, t are the same of the γ function definition.

2.10 System Start-Up and Termination

As defined in Section 2.3.2, there are two external events which denotes the start-up
and termination phase of the whole MAS, namely Start(MAS), and End(MAS).
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A computation of a MAS consists in a sequence of configurations and events,
agent and behaviour creations, managed by the main JADE transition system, as de-
tailed in previous Section 2.4. A JADE ‘program’ is written as a list of classes, and
the transition system does nothing until the MAS starts. In the start-up phase, objects,
agents, behaviours and messages stores are initialized as empty stores. When an event
End(MAS) occur, the MAS terminates. This aspect is formalized in rule (MAS-End).
The final configuration consists in a tuple where the symbol E is used in place of a
command to indicate termination. If there is a command to be computed when the
event End(MAS) occurs, such a command is actually executed. Stores are updated
according to the system com, and no event occurs in this phase.

〈c,σ ,α,β ,µ〉 ϖ−→com 〈ε,σ ′,α ′,β ′,µ ′〉
〈c,σ ,α,β ,µ〉 End(MAS)−−−−−−→ 〈E,σ ′,α ′,β ′,µ ′〉

(MAS-End)

During the execution of the main system, some events may occur at the same
time. This happens, for example, when two agents are active on the same MAS,
and they can be subject of internal events. Moreover, events may occur during the
selection of a behaviour for the next action of the agent. Two events E0 and E1 which
occur at the same time are indicated with the notation E0||E1.

〈c,σ ,α,β ,µ〉 E0−→ 〈c′,σ ′,α ′,β ′,µ ′〉
〈c,σ ,α,β ,µ〉 E0||E1−−−→ 〈c′,σ ′,α ′,β ′,µ ′〉

(E-parallel1)

〈c,σ ,α,β ,µ〉 E1−→ 〈c′,σ ′,α ′,β ′,µ ′〉
〈c,σ ,α,β ,µ〉 E0||E1−−−→ 〈c′,σ ′,α ′,β ′,µ ′〉

(E-parallel2)

The above rules (E-parallel1) and (E-parallel2) describe how parallel events can
be processed. Such rules are symmetric, and they introduce non-determinism in the
computation of a MAS. Moreover, events can be also parallel to a behaviour selection,
e.g. S(a) = b, which occurs when both the agent a and the behaviour b are active.
In such a case, the action selection and the event processing are executed simultane-
ously, following rules similar to those for parallel events. How the system resolves
parallel event occurrences or behaviour selection, i.e., what event is processed as first,



2.11. A Complete Example 81

is unknown. Rules for parallelism reflects such a uncertainty. This is not surprising,
because a JADE MAS is, in fact, a distributed system. Sometimes, parallel events can
have side effects. For example, they can update one or more stores. How stores are
modified depends on what event occurs first, so it is undecidable. If events update
simultaneously different stores, how they are updated is not important. Otherwise, if
two or more events modify the same store, and, in particular, the same location, e.g.,
of an agent a, the final value of such an agent depends on the events order of execu-
tion. As stated before, such an order is uncertain, so the final value of a can not be
predetermined. This non-determinism can not be avoided when deal with distributed
system such as JADE.

2.11 A Complete Example

A complete example of a MAS computation is shown in Figure 2.32. The example
refers to the agents a0 and a1 of Section 2.6, showing in detail their life cycles.

First, the agent a0 of class C0 is created, as a consequence of the Create(a0,C0)

event, and immediately calls its setup method, according to rule (A-Create). The
description of agent set-up was shown in Figure 2.23.

Then, because the behaviour b0 was activated during a0 set-up, and both a0 and b0

are in the active state, the behaviour scheduler is able to choose b0 as current action
for a0. Meanwhile, the event Create(a1,C1) occurs, causing the creation of a second
agent of class C1. Two rules, namely (B-Selected) and (A-Create), are applicable at
the current configuration. The two described transition are parallels, so how stores are
updated is unknown. But they affect different locations, so the order of execution is
not important. In Figure 2.32, such transitions are illustrated. Action of b0 follows the
steps shown in Figure 2.24, blocking the behaviour b0, because a0 message queue is
still empty. At the same time, the agent a1 performs its setup, activating the behaviour
b1.

At the end of b0 action and a1 set-up, the behaviour scheduler choses b1 as the
only possible action for the agent a1, and no action for a0. This is the only possi-
bility, due to the blocked state of b0. Action of b1 is then performed, as shown in
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〈ε,σ ,α,β ,µ〉

Create(a0,C0)

〈a0.setup(),σ ,α1 = α[〈C0,active, [],Le, []〉/a0],β ,µ〉

ϖ

〈s,σ ,α1,β ,µ〉

com

Figure 21

〈ε,σ1,α2,β 1,µ〉
ϖ

ev〈ε,σ1,α2,β 1,µ〉

Create(a1,C1)S (a0) = b0

〈a1.setup(),σ1,α3 = α2[〈C1,active, [],Le, []〉/a1],β 1,µ〉
〈s,σ1,α2,β 1,µ〉

com

〈ε,σ2,α4,β 2,µ〉

〈b0.action(),σ1,α2,β 1,µ〉
〈s,σ1,α2,β 1,µ〉

com
Figure 22

〈ε,σ2,α2,β 2,µ1〉

ϖϖ

〈ε,σ2,α4,β 2,µ1〉

S (a1) = b1

〈b1.action(),σ2,α4,β 2,µ1〉

ϖ

〈s,σ2,α4,β 2,µ1〉

com
Figure 24

〈a1.removeBehaviour(b1),σ3,α5,β 3,µ2〉

com

〈ε,σ3,α6 = α5
3 [[]/a1],β 3,µ2〉〈ε,σ3,α5,β 4 = β 3

2 [done/b1],µ2〉

S (a0) = b0

〈b0.action(),σ3,α6,β 4,µ2〉〈s,σ3,α6,β 4,µ2〉

com
Figure 23

〈ε,σ4,α7,β 5,µ3〉

ϖ

〈ε,σ4,α7,β 5,µ3〉 〈s,σ4,α7,β 5,µ3〉

com
Figure 22

〈ε,σ5,α7,β 6,µ4〉

S (a0) = b0

〈ε,σ5,α7,β 6,µ4〉

End(MAS)

〈E,σ5,α7,β 6,µ4〉

Figure 2.32: A complete example of a JADE MAS.
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Figure 2.26, and a message m is sent, adding it to a0 message queue. Because b1 was
declared as one-shot behaviour, its action is followed by a a1.removeBehaviour(b1)

command, as in rule (B-OneShot), which causes the emptying of the agent a1 be-
haviours list. Then, the state of the behaviour b1 is updated to done.

Moreover, the sending of the message m reactivates all blocked behaviour, due to
the event Message(m), as stated by the rules (M-Send) and (M-Event). In this case,
only the behaviour b0 is reactivated. This means that the behaviour scheduler is able
to choose it for the next action of a0. Now, its action follows the steps reported in
Figure 2.25, extracting the message from the queue of a0 and processing it. At the
end of such an action, behaviour b0 and agent a0 are still both in their active states,
so the scheduler selects again b0 for the next action. The last action found an empty
message queue, and it blocks the behaviour b0. Finally, an event End(MAS) occurs,
causing the system to proceed into a terminal configuration.

2.12 Purposes and Future Directions of the Formalization

In this chapter, the JADE platform was analyzed and its main feature were formalized
using LTS. The formalization focuses on a set of selected methods of JADE APIs,
thus highlighting the core features that the platform provides. The formalization has
the purpose of delineating a precise direction in the development of JADEL as agent-
based language built on top of the JADE platform. As a matter of fact, JADEL is
meant to be a Domain-Specific Language (DSL) that translates directly into JADE
code. Hence, the JADEL semantics relies heavily on the JADE one. In the next Chap-
ter, JADEL syntax categories are defined, and rules that specify the formal semantics
of JADEL are shown in the same fashion of the JADE formalization.





Chapter 3

The JADEL Programming
Language

Third Law. A robot must protect its own existence as long as
such protection does not conflict with the First or Second Laws.

– Isaac Asimov

In this chapter, the main design decisions and the technical details behind the
development of the JADE Language (JADEL) are discussed. In particular, JADEL
must be a Domain-Specific Language (DSL) designed to provide the developer with
agent-oriented abstractions and to reduce the complexity of using the Java Agent DE-
velopment Framework (JADE) by means of a lighter and dedicated syntax. The effort
in developing a DSL for JADE agents aims at facilitating code readability and drop-
ping many implementation details, in favor of a lighter syntax that focuses on agent-
oriented abstractions only, thus improving its compliance with the Agent-Oriented
Programming (AOP) paradigm.

The choice of describing JADEL as a DSL for agents and Multi-Agent Systems
(MASs), and the fact that the current implementation of its tools include an optimizing
compiler and a rich text editor for the Eclipse IDE (Integrated Development Environ-
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ment), emphasize the fact that JADEL targets real-world applications in the scope of
Model-Driven Engineering (MDE).

A description of the initial version of JADEL can be found in [Bergenti, 2014],
where its main abstractions are described and the overall motivations of the work are
explained. The paper [Bergenti, 2014] also outlines the translation of a JADEL source
code to a semantically equivalent Java source code that uses JADE. The language
described in this dissertation is a new version of JADEL, first presented in [Bergenti
et al., 2017a]. This version enhances the original work by gathering the results of
preliminary works [Bergenti et al., 2016a,d,c] in terms of syntax improvements, new
features, and a better integration with Java.

3.1 An Agent-Oriented Domain-Specific Language

JADEL is meant to be a DSL for AOP capable of finding widespread applicability
in the scope of real-world Model-Driven Development (MDD). This is the reason
why JADEL is designed around the features of Xtext1, a framework which provides
effective support for the development of DSLs [Eysholdt and Behrens, 2010; Bettini,
2013]. The use of Xtext facilitates the design of a DSL because it eases the main steps
involved in such a task, e.g., the creation of the grammar and the implementation
of the compiler. This section first introduces Xtext and summarizes some its main
features, then it shows how such features are used in the design of JADEL.

3.1.1 Xtext and Xtend

Xtext is a software framework intended to support language developers, and it is
meant to help the definition of DSLs that adhere to the following criteria [Eysholdt
and Behrens, 2010; Bettini, 2013]:

1. Programming in a DSL must be efficient for its users, because they probably
have to spend much time in doing it;

1www.eclipse.org/Xtext

www.eclipse.org/Xtext
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2. The gap between user skills and language abstractions must be reduced as
much as possible, facilitating the understanding of language concepts by pro-
grammers;

3. The interaction among sources written from different developers must be trans-
parent, thus reducing the chance of misunderstanding and faulty code;

4. Tools to read, browse, search, and compare source codes are needed;

5. The code must be easy to maintain in order to remain for long time in produc-
tion without requiring too much effort by developers to fix it when a change
happens.

The features of Xtext cover many aspects of language design and implementa-
tion. First, Xtext provides a DSL to express Extended Backus-Naur Form (EBNF)
grammars, from which a parser can be easily obtained with the use of the well-
known parser generator ANTLR (ANother Tool for Language Recognition)2. More-
over, Xtext provides a base grammar, called Xbase grammar [Efftinge et al., 2012],
which is highly extensible and it is used to implement the basic features of the Xtend
language3, such as expressions, and type references. Xtend is a dialect of Java, and
this means that its syntax and semantics rely on those of Java, but specific syntactic
facilities are provided to make it lighter and simpler. An important feature of Xtend
is its complete interoperability with Java source code, due to the fact that there is
an explicit one-to-one mapping between an Xtend source code and a semantically
equivalent Java source code. In particular, the use of Xtext and Xtend to create the
grammar of JADEL turned out to be appropriate for the intended scope: domain-
specific agent-oriented elements are easily added to a solid base of rules that defines
Xtend core features, ensuring a tight integration with Java, and therefore a tight in-
tegration with JADE. As a matter of fact, JADEL relies on Xtend expressions rather
than introducing a new syntax. This choice has the advantage of grounding JADEL
on a solid grammar for expressions whose primary goal is to support the construction

2www.antlr.org
3www.eclipse.org/xtend

www.antlr.org
www.eclipse.org/xtend
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of procedural languages. Moreover, it greatly simplifies the construction of tools like
compilers.

Second, Xtext framework comes together with the latest versions of the Eclipse
IDE, thus providing a complete integration with such an important tool. In fact, Xtext
offers editing support for Eclipse by allowing the customization of the outline view,
of the behaviour of content proposals, of quick fixes, and, above all, by providing a
language editor with DSL-based syntax highlighting. JADEL was meant to be im-
plemented with Xtext also because of this last feature, which is necessary for JADE
programmers who are used to work with professional tools.

Finally, since Xtext uses the Eclipse Modeling Framework (EMF), the managed
abstract syntax trees are all EMF models. This fact ensures easy integration with
Eclipse modeling tools, and provides a solid support for MDD. Actually Xtext offers
specific APIs to generate Java code from generated EMF models. The use of such
APIs ensures that all JADEL entities are easily mapped into Java classes, methods,
and fields, while it guarantees that JADEL specific constructs and expressions are
readily compiled into Java snippets.

3.2 JADEL Core Abstractions

As discussed in the previous chapter, JADE provides a number of abstractions, and
related Java classes, for the construction of MASs. JADEL selects only a few primary
abstractions among them in order to offer to the developer a clear view of agents
and MASs. More precisely, only four main abstractions that JADE implements were
chosen:

1. Agents;

2. Behaviours;

3. Communication ontologies; and

4. Interaction Protocols.
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The selection of such abstractions is a design choice for JADEL, even though the
selected abstractions do not represent a comprehensive list of what JADE offers. The
following considerations are the basis for such a selection.

1. JADEL surely need an agent abstraction which allows the description of JADE
agent classes because agents are fundamental atoms in all JADE systems;

2. The behaviour becomes the second abstraction, because JADE uses behaviours
to handle actions and tasks of the agent; and

3. JADE provides the FIPA (Foundation for Intelligent Physical Agents)4 com-
pliancy by providing support to agent communication and, in particular, to in-
teraction protocols. For this reason, communication ontologies and interaction
protocols become JADEL abstractions.

Agents must have features to permit the programmer to correctly manage the
three phases of the life cycle of an agent: initialization, control loop and take-down.
During the initialization phase the agent usually activates its behaviours, and it exe-
cutes their actions in the control loop until the take-down phase is possibly entered.
Finally, actions must handle events and communications, with the aid of ontologies
and specific interaction patterns provided by interaction protocols. The four chosen
abstractions are presented in details in the rest of this section.

3.2.1 Agents

Agents in JADEL are the main entities. They use ontologies and behaviours, and
they take roles in interaction protocols. As a matter of fact, the declaration of an
agent uses some JADEL expressions especially defined to ease common tasks, such
as behaviours activation and deactivation, messages creation and sending, and so on.
The definition of such domain-specific expressions relies on the Xbase grammar,
which uses Xtend expressions. In Figure 3.1, the JADEL grammar that extends Xtend
expression is shown, using the EBNF language, where

4www.fipa.org

www.fipa.org
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expr ::= xexpr | actb | dactb | extr | send | creat |role
actb ::= activate behaviour x as? b(expr∗)
dactb ::= deactivate behaviour x as? b(expr∗)
role ::= take role x as? r(expr∗)

extr ::= extract x as t from y
?

creat ::= create msg
send ::= send msg
msg ::= message m? { msgexpr∗ }
msgexpr ::= pexpr | oexpr | cexpr | rexpr
oexpr ::= ontology is o
cexpr ::= content is x
rexpr ::= receivers are l
pexpr ::= performative is INFORM | REQUEST | . . .

Figure 3.1: JADEL grammar for extended Xtend expressions. xexpr refers to standard
Xtend expressions, metavariables x, y denote JADEL variables, b denotes a behaviour,
t denotes the name of a type, m denotes a message, o denotes an ontology, and l
denotes a list of recipient of a message.

1. X
∗

stands for the repetition of X zero or more times;

2. X
+

stands for the repetition of X one or more times; and

3. X
?

stands for optional, namely the occurrence of zero or one X .

A syntax category is defined for each new expression, while Xtend expressions are
denoted as xexpr and not further detailed. As previously mentioned, an expression
can be an xexpr or it can be one of the following:

1. A behaviour activation, where a variable name x could be specified for the
behaviour and b is actually the class name of the behaviour;

2. A behaviour deactivation;
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adecl ::= agent a (t x∗) onto?
extends abase

?

{ f ield
∗

method
∗

aevent+ }
onto ::= uses ontology o
aevent ::= on event { expr∗ }
event ::= create | destroy
f ield ::= (var | val) t? f = expr?

method ::= t m(t mpar∗) { expr∗ }

Figure 3.2: JADEL grammar for agents. Metavariables a, abase denote agents, o de-
notes an ontology name, t denotes a type name, x denotes a variable, f denotes the
name of a field, m denotes the name of a method, mpar denotes the name of a param-
eter, while expr are extended expression defined in Figure 3.1.

3. A content extraction, where x is the name of the variable for containing the
object of type t, extracted from the message y;

4. A message sending expression, where msg is a specific construct for defining
a message in-line;

5. A message creation expression, that also uses the msg construct; and

6. A role activation, that operates exactly as a behaviour activation but r is the
class name of a role in an interaction protocol.

The syntax category msg defines a first construct, useful for defining a message as a
data structure. Such a data structure is composed of an ontology, a content, a recip-
ients list, and a performative. Such components are defined using the oexpr, cexpr,
rexpr and pexpr syntaxes, respectively.

Given the syntax of expressions, JADEL provides a grammar for agents, shown
in Figure 3.2. JADEL aims at making the declarations of agents clearer than seman-
tically equivalent declarations made with JADE by means of a lighter syntax, and
at highlighting clearly the connections of the agent with other entities. As a mat-
ter of fact, an ontology could be specified in the agent definition by means of the
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agent A1(t x∗) extends A2{F
∗

M
∗

aevent+}
A1 <: A2 <: Agent

(A-JADE)

agent A1(t x∗) extends A2{F
∗

M
∗

aevent+} f ields(A2) = G
∗

f ields(A1) = t x∗ F
∗

G
∗ (A-Fields)

agent A1(t x∗) uses ontology O1 extends A2{F
∗

M
∗

aevent+}
ontologies(A2) = O

∗

ontologies(A1) = O1 O
∗ (A-Onto)

agent A . . . {F∗ M
∗

aevent+} on create {expr∗} ∈ aevent+

mtype(setup,A) = ε → ε mbody(setup,A) = 〈ε,expr∗〉 (A-Setup)

agent A . . . {F∗ M
∗

aevent+} on destroy {expr∗} ∈ aevent+

mtype(takeDown,A) = ε → ε mbody(takeDown,A) = 〈ε,expr∗〉
(A-TakeDown)

Figure 3.3: Rules that specify the operational semantics of JADEL agents.

syntax category onto. The declaration of an agent is allowed to extend the declara-
tion of another agent, with the usual semantics of inheritance. Two event handlers
are provided to support initialization and take-down phases, namely the on create

and on destroy constructs. Moreover, fields, methods and event handlers rely on the
expr syntax category. As a result, behaviours and roles can be activated in such ini-
tialization and take-down phases, but they can also be activated inside agent methods,
since activation is an expression which was part of extended expressions.

The semantics of JADEL is formally defined by means of operational rules and
auxiliary lookup functions [Bergenti et al., 2017c]. The three lookup functions from
the operational semantics of Featherweight Java (FJ) [Igarashi et al., 2001], namely
f ields, mtype and mbody, are used to connect the semantics of the agent-oriented
features of JADEL with the semantics of the host language, Xtend, because it is a syn-
tactic dialect of Java. Actually, the agent abstraction that JADEL provides is mapped
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into a Java class that derives from Agent, as stated by the rule (A-JADE). Such a
class is provided by JADE in its API and, obviously, it has fields and methods. In
detail, in the operational semantics of FJ, the f ields lookup function associates each
class name with its own fields plus inherited fields. For JADEL agents, f ields works
exactly as in FJ, as shown by rule (A-Fields) in Figure 3.3, but it adds to the fields
also the agent parameters. Such parameters are then filled with the arguments passed
at agent instantiation. There are other differences between FJ classes and JADEL
agents. For example, the two agent event handlers on create and on destroy im-
plicitly provide two methods, as shown by the rules (A-Setup) and (A-TakeDown) in
Figure 3.3, which are not part of FJ.

Methods are identified by means of the two functions mtype and mbody. The
first function takes the name of the method and the name of the class, and returns a
mapping between the parameter types and the return type of the method. When the
return type is void, or there are no parameters, ε is conventionally used. The second
function, mbody, also takes the name of the method and the name of the class, and it
returns a pair, whose first element is a list of parameters, and whose second element
is the actual body of the method. The definition of mtype and mbody for JADEL
agents is the same that of FJ. An additional auxiliary lookup function is defined for
ontologies. The function ontologies takes an agent and it returns a list of ontologies,
as in rule (A-Onto), when an ontology is specified by the declaration uses ontology.

3.2.2 Behaviours

On the basis of the syntax for extended expressions shown in Figure 3.1, JADEL
provides the specific syntax for behaviours shown in Figure 3.4. Two types of be-
haviours are allowed, namely cyclic and oneshot. Notably, the semantics of such
types of behaviour is same with JADE cyclic and one-shot behaviours, respectively.
A behaviour can be specific to a group of agents, i.e., it can take advantage of the
common characteristics of such agents in the definition of its action, by means of the
domain-specific syntax for a, where a denotes the name of a declared agent. Also,
a behaviour can refer to a specific communication ontology, with the aid of the onto
declaration. The body of a behaviour contains a set of fields, a set of methods and a
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bdecl ::= btype behaviour b (t x∗) for a
?

onto?

extends bbase
?

{ f ield
∗

method
∗

bevent
+}

btype ::= cyclic | oneshot
bevent ::= on message m? when wexpr

?
do { expr∗}

| do { expr∗}
wexpr ::= wexpr or wexpr | wexpr and wexpr |

| not wexpr | pexpr | oexpr | cexpr

Figure 3.4: JADEL grammar for behaviours. Metavariables b, bbase denote be-
haviours, t denotes a type, x denotes a variable, a denotes an agent type, o denotes
an ontology, m denotes a message, while expr, cexpr, pexpr, and oexpr are extended
expressions in shown Figure 3.1.

non-empty set of event handlers. In fact, at least one event handler must be present in
order to define the action of the behaviour. Behaviours can extend other behaviours,
with the usual semantics of sub-classing, and all event handlers of the base behaviour
are added to the resulting derived behaviour.

Event handlers offer a way to perform an action upon the activation of a behaviour
by means of the keyword do, or they can manage incoming message by using the
construct on when do. The name of the message to be processed can be specified after
the on message keywords, and a message template can be constructed by combining
the when expressions defined by the syntax category wexpr.

The operational semantics of JADEL behaviours is shown in Figure 3.5, in Fig-
ure 3.6 and in Figure 3.7. The behaviour abstraction of JADEL is mapped into a
Java class that derives from OneShotBehaviour or CyclicBehaviour, depending
on the specified type of behaviour, as shown in rules (B-OneShot) and (B-Cyclic).
Behaviour fields, instead, are obtained not only by the user declared fields, but also
by behaviour parameters, and there is an implicitly declared field theAgent, which
identifies the agent that is currently using a behaviour, as shown in rules (B-Fields)
and (B-FieldsA) of the Figure 3.5. An additional auxiliary lookup function is defined
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oneshot behaviour B1(t x∗) extends B2{F
∗

M
∗

bevent
+}

B1 <: B2 <: OneShotBehaviour
(B-OneShot)

cyclic behaviour B1(t x∗) extends B2{F
∗

M
∗

bevent
+}

B1 <: B2 <: CyclicBehaviour
(B-Cyclic)

BT behaviour B1(t x∗) extends B2{F
∗

M
∗

bevent
+} f ields(B2) = G

∗

f ields(B1) = t x∗ F
∗

G
∗

(B-Fields)

BT behaviour B1(t x∗) forA extends B2{F
∗

M
∗

bevent
+} f ields(B2) = G

∗

f ields(B1) = t x∗ F
∗

G
∗

a

where a is the field A theAgent= (A) myAgent; (B-FieldsA)

BT behaviour B1 extends B2{. . .bevent
+} events(B2) = bevent2

+

events(B1) = bevent
+

bevent2
+ (B-Events)

Figure 3.5: Rules that specify the operational semantics of JADEL behaviours.

for events. The function events maps the name of a behaviour with its list of declared
events. It is worth noting that the list of events is not limited to the event handlers
that are specified in the behaviour, but it also contains inherited events, as shown in
rule (B-Events). The management of events also requires the definition of such in-
herited events, even if they are not JADEL abstractions, at least explicitly. In fact,
in JADEL, event handlers are translated into inner classes of the host behaviour, and
they are composed of specific fields and methods, which collectively define the actual
action of the behaviour.

In Figure 3.6, rules (E-Inner0) and (E-Inner) define the innerclasses lookup func-
tion, which takes the name of a behaviour and a list of events, and it returns a pair
whose first element is the definition of the current inner class plus the already de-
fined inner classes, and whose second element is the number of the processed events.
Finally, the action method of the behaviour runs in sequence all behaviour event
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bevent
∗
= /0

innerclasses(B,bevent
∗
) = 〈ε,0〉

(E-Inner0)

beventn ∈ events(B) innerclasses(B,bevent
∗
) = 〈E,n〉

innerclasses(B,beventn bevent
∗
) = 〈private class Eventn{F∗ M

∗} E,n+1〉
where F

∗
and M

∗
depend on beventn (E-Inner)

events(B) = bevent0 . . .beventN
mbody(action,B) = 〈ε,super.action(); Event0.run(); . . . EventN.run();〉

mtype(action,B) = ε → ε
(E-Action)

Figure 3.6: Rules that specify the operational semantics of behaviour events.

handlers, which would typically check their condition and return immediately. It is
worth noting that if there is more than one event handler with the same receiving
conditions (i.e., when expression), and a message matching the conditions arrives,
the order in which behaviours are triggered is not fixed. In fact, the receive method
searches for such a message in the agent message queue, and extract it from the queue
if it is found. Then, it processes the message, and it returns in the list of behaviours
of the agent when finished. Meanwhile, if another behaviour tries the same receive,
it does not find the message and it blocks. A blocked behaviour is reactivated at the
reception of a new message. If such a new message matches again the conditions,
there is no way to decide which behaviour should process the message. They could
be again in the agent list, but they are managed by the agent internal scheduler and
the developer has no control over it. Thus, it is important to state correctly the when
conditions, and JADEL simple syntax helps in avoiding such mistakes.

Each inner class Eventn has a list of fields and methods, which are identified
by looking at the definition of the event handler. As shown in rule (E-Fields), if the
event handler is in the form of the on when do construct, two fields are implicitly
defined, namely, an ACLMessage field and a MessageTemplate field. Three meth-
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beventn : on message m when{wexpr}do{expr∗}
f ields(Eventn) = ACLMessage m; MessageTemplate mt = wexpr;

(E-Fields)

beventn : on message m when{wexpr}do{expr∗}
mbody(receive,Eventn) = 〈ε,m = theAgent.receive(mt);〉

mtype(receive,Eventn) = ε → ε

(E-Receive)

beventn : on message m when{wexpr}do{expr∗}
mbody(doBody,Eventn) = 〈ε,expr∗〉

mtype(doBody,Eventn) = ε → ε

(E-Do)

beventn : on message m when{wexpr}do{expr∗}
mbody(run,Eventn) = 〈ε,runexpr∗〉

mtype(run,Eventn) = ε → ε

(E-Run)

Figure 3.7: Rules for defining fields and methods of behaviour events.

ods of Eventn are also defined, namely the receive, doBody and run. Those are
all void methods without parameters. Rule (E-Receive) shows the definition of the
receive method. The doBody method contains the Java translation of the expres-
sions contained in the do block, as stated by the rule (E-Do). The run method con-
tains the usual pattern for message reception, as documented in virtually all teaching
material on JADE (see, e.g., [Bellifemine et al., 2007]), and it is reported in the fol-
lowing listing.

1 m = r e c e i v e ( ) ;
2 i f (m != n u l l ) {
3 doBody ( ) ;
4 } e l s e {
5 b l o c k ( ) ;
6 }

Such a sequence of Java statements is denoted by runexpr∗ and used in the rule (E-Run),
in Figure 3.7.
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odecl ::= ontology o extends obase
? { propdecl

∗
cdecl

∗
pdecl

∗ }
propdecl ::= proposition prop

cdecl ::= concept c ( cpar∗ ) extends cbase
?

pdecl ::= predicate p ( cpar∗ ) extends pbase
?

cpar ::= many? c x | many? cbasic x
cbasic ::= aid | bool | byte_sequence | content_element_list

| date | float | integer | string

Figure 3.8: JADEL grammar for ontologies. Metavariables o, obase denote ontologies,
prop denotes a proposition, c, cbase denote concepts, p, pbase denote predicates and x
denotes a generic variable.

3.2.3 Communication Ontologies

The third JADEL abstraction is the ontology. A communication ontology consists of
a set of propositions, a set of predicates, and a set of concepts, which can be basic or
composite. Propositions are first-order logics well-formed formulas. Predicates are
first-order logics predicates with an arity, and their arguments are terms formed using
concepts. Basic (or atomic) concepts are simple terms that are provided by JADE.
They can be composed to create other (composite) concepts, which can be used to
express complex terms. Composite concepts can be seen as function symbols in first-
order logics. As a matter of fact, they are terms with arguments, and such arguments
are terms themselves. Predicates are used to state relations among concepts, while
concepts are used to to describe entities of the domain. Both concepts and predicates
can be derived from other base concepts and predicates, respectively. Also an entire
ontology can be derived from another ontology, and this means that the resulting set
of propositions, set of concepts, and set of predicates is the union of the respective
sets of the two ontologies.

JADE programmers tend to agree that the implementation of communication on-
tologies is an error-prone task because of the large amount of implementation details
and repetitive idioms in ontology class definitions that shift the focus on technical
parts rather than on the semantics of involved ontology elements. Therefore, a con-
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rdecl ::= role r (t x∗) for a
?
as protocol : rname

{ f ield
∗

method
∗

revent+}
revent ::= on P m { expr∗}
protocol ::= FIPA_REQUEST | FIPA_QUERY | FIPA_REQUEST_WHEN

| FIPA_CONTRACT_NET | FIPA_PROPOSE | . . .
rname ::= Initiator | Responder

Figure 3.9: JADEL grammar for roles in FIPA interaction protocols. Metavariables t,
x, a, P and m denote type references, variables, agents, performatives and messages,
respectively.

cise syntax is needed to permit the automation of many repetitive tasks, e.g., the
registration of schemas, and to drop all details that do not directly concern with the
ideas behind the creation of an ontology.

The syntax that JADEL adopts for communication ontologies is shown in Fig-
ure 3.8. The defined syntax follows precisely the intended meaning of propositions,
predicates and concepts in JADE, and the keyword extends explicits derivation
among concepts and predicates, as well as derivation among ontologies. Notably,
the semantics of the declaration of a communication ontology can be obtained by
the simple translation into the corresponding JADE classes, Ontology for the ontol-
ogy itself, Predicate for propositions and predicates, and Concept for composite
concepts. Such a semantics is not detailed here because it would require an in-depth
description of the whole JADEL compiler, which is briefly outlined in [Bergenti,
2014].

3.2.4 Message Passing and Interaction Protocols

Extended expressions introduced in Figure 3.1, besides providing constructs to ac-
tivate and deactivate behaviours, provide specific features for the creation of mes-
sages, the sending of messages and the extraction of the content of messages. JADEL
models messages as data structures made of a number of fixed properties: the perfor-
mative, the list of recipients, the ontology and the content. The performative denotes
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expr : activate behaviour x as b(xexpr∗) expr ∈C <: Agent
b x = new b(xexpr∗); this.addBehaviour(x);

(Expr-Act)

expr : activate behaviour x as b(xexpr∗) expr ∈C <: Behaviour
b x = new b(xexpr∗); theAgent.addBehaviour(x);

(Expr-ActB)

expr : performative is P expr ∈ wexpr
MessageTemplate.matchPerformative(P);

(Expr-Perf)

w1 or w2 ∈ wexpr
MessageTemplate.or(w1,w2);

w1 and w2 ∈ wexpr
MessageTemplate.and(w1,w2);

not w ∈ wexpr
MessageTemplate.not(w);

(Expr-MT)

Figure 3.10: Rules that specify the operational semantics of relevant expressions.

the type of the message, according to FIPA standards, and exactly one performative
must be specified in order to create a new message. The list of recipients specifies the
AIDs of all agents that are intended to receive the message. Ontologies are identified
by their names, and they must be declared as described previously in this section.
Finally, the content of the message can be either a proposition, a concept, a predicate,
a string of characters or a sequence of bytes.

In JADEL, a specific construct on when do is used to handle the reception of a
message. Such construct, shown in Figure 3.4, captures the event corresponding to
an incoming message, and which can express conditions on it by means of a message
template defined in the when block. Message templates refer to the properties of a
message, and they can be combined using logic connectives. The closing block do

contains the intended action, i.e., the code which is executed when the behaviour is
chosen by the behaviour scheduler of the agent.

Agents can send and receive messages to and from other agents by means of
ordinary behaviours using the constructs mentioned above, but they can also take a
role in a FIPA interaction protocol. The adoption of interaction protocols enhance
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interoperability among agents, and FIPA explicitly suggests the use of interaction
protocols. A role in JADEL is identified by its name, the protocol it refers to, and the
actual role of the agent in such a protocol, namely initiator or responder. It consists of
a set of event handlers that filter incoming messages using their performatives, as in
FIPA specifications. The grammar that JADEL adopts for roles is shown in Figure 3.9.
In order to separate ordinary behaviours from roles in interaction protocols, JADEL
provides the specific expression take role, which can be used to create and activate
a behaviour in the scope of an interaction protocol. Such an expression is part of the
grammar of extended expressions, as shown in Figure 3.1.

In Figure 3.10, the semantics of some interesting expressions is shown. Expres-
sions are directly translated into Java code that uses the API of JADE. For example,
the activate behaviour construct declares a new object x of type b, and it adds
the object to the list of behaviours of the agent by means of addBehaviour, which
is a method of class Agent. Rules (Expr-Act) and (Expr-ActB) show the activation
of a behaviour in two cases, i.e., the activation inside an agent and inside another be-
haviour. Rules (Expr-Perf) and (Expr-MT) show the translation of a when expression
into a MessageTemplate.

3.3 JADEL Programmer’s Guide

In this section, a detailed description of how a MAS can be build using JADEL is
provided. The guide is divided in four main steps, namely the creation of the ontol-
ogy, the design and implementations of behaviours, the declaration of agents, and
the introduction of interaction protocols. Each step shows how deal with JADEL ab-
stractions and helps the reader in writing the source code, by means of a well-known
example. As a matter of fact, in order to show the actual use of JADEL, this section
describes the JADEL implementation of one of the examples available in the JADE
distribution, namely the book trading example, which is one of the examples that are
most often used to learn JADE APIs. The example is useful to illustrate the specific
JADEL syntax.
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3.3.1 Problem Statement

Suppose that an agent would like to buy a book. It would search for sellers and it
would ask each of them for the price of the desired book. Then, it would choose the
seller with the best offer, and it would send a purchase order to it. In this problem, an
agent must act as a buyer, searching for other agents that own and sell some books,
which are called the seller agents.

Communication is managed with an ontology, and with a number of specific
behaviours. Following the design of the original JADE example, five different be-
haviours are used. Three of such behaviours are provided to implement the tasks of
the buyer agent:

1. One behaviour to send a call for proposals to all sellers, specifying what item
the agent wants to buy;

2. One behaviour to wait for all proposals; and

3. One behaviour to accept the best proposal and effectively place the order.

Seller agents wait for requests and propose their prices. If a proposal is accepted,
the seller agent actually sells the item to the buyer. Hence, two behaviours managing
those two steps are needed:

1. One behaviour to wait for requests and propose a price when a request arrives;
and

2. One behaviour to process all orders and inform the buyer agent the result of
the operation.

The ontology must handle all the types of message content involved, adding to
the communication a semantics that permits buyer and seller agents to understand
each other.

3.3.2 First Step: the Ontology Definition

The exemplified ontology permits a seller agent to communicate with its customers.
In particular, the seller agent is an agent that can sell CDs and books. CDs and books



3.3. JADEL Programmer’s Guide 103

are items with a serial number and a price. A book is characterized by its title. A CD
is characterized by its title and by a list of tracks. Tracks have a title and a duration,
but they are not items. Only items can be sold or bought by an agent.

Declaring a JADEL ontology simply means using the keyword ontology fol-
lowed by the ontology name:

1 o n t o lo g y MusicShopOntology {

In this particular ontology, the generic Item is a concept composed of two atomic
concepts, namely the id, which is an integer and represents the serial number of
the item, and the price, also an integer in this example, for simplicity. Such a
concept is coded in JADEL as follows.

2 concept I t em ( i n t e g e r id , i n t e g e r p r i c e )

Also a CD and a Book are concepts, which extends the Item definition. CDs are
composed of Tracks, that are composite concepts themselves. A Track is declared
as a concept with two atomic concepts that describe its title and duration. The
fact that a CD could have one or more tracks is modeled by composing the CD concept
with the Track concept, using the keyword many.

3 concept Track ( s t r i n g t i t l e , i n t e g e r d u r a t i o n )
4 concept CD( s t r i n g t i t l e , many Track t r a c k s ) ex tends I t em
5 concept Book ( s t r i n g t i t l e ) ex tends I t em

The relations between agents and the items that they own or that they want to buy
are modeled as Owns and Sells predicates, respectively.

6 p r e d i c a t e Owns ( aid owner , I t em i t em )
7 p r e d i c a t e S e l l s ( a id buyer , I t em i t em )

The following listing summarizes all the previous considerations and shows the
complete implementation of the ontology.

1 o n t o lo g y MusicShopOntology {
2 concept I t em ( i n t e g e r id , i n t e g e r p r i c e )
3 concept Track ( s t r i n g t i t l e , i n t e g e r d u r a t i o n )
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Figure 3.11: Music Shop Ontology in JADEL

4 concept CD( s t r i n g t i t l e , many Track t r a c k s ) ex tends I t em
5 concept Book ( s t r i n g t i t l e ) ex tends I t em
6
7 p r e d i c a t e Owns ( aid owner , I t em i t em )
8 p r e d i c a t e S e l l s ( aid buyer , I t em i t em )
9 }

In Figure 3.11, a screen-shot of the JADEL editor shows the discussed ontology
MusicShopOntology, with the syntax highlight and the integration with Eclipse.

3.3.3 Second Step: Designing and Implementing Behaviours

As a preliminary example, assume that an agent owns a single CD, and that is waiting
for another agent that require such a CD. The following listing defines a behaviour
that uses the previously declared MusicShopOntology for managing communica-
tion, and that waits for a request message.

1 c y c l i c behaviour S e l l (CD ownedCD )
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2 uses on t o l o g y MusicShopOntology {

In order to wait for messages, the behaviour must be a cyclic behaviour, and the
construct on when do must be used to filter incoming messages.

3 on message msg
4 when {
5 per format ive i s REQUEST and
6 o n t o l og y i s MusicShopOntology
7 }

A message msg is waited, and the stated conditions in the when clause require its
performative to be REQUEST and its ontology to be MusicShopOntology.

8 do {
9 e x t r a c t msgContent as S t r i n g

10
11 i f ( ownedCD . name == msgContent ) {
12 send message {
13 per format ive i s INFORM
14 o n t o l og y i s MusicShopOntology
15 r e c e i v e r s are #[ msg . s e n d e r ]
16 c o n t e n t i s S e l l s ( msg . s ende r , ownedCD )
17 }
18 }
19 }
20 }

When the conditions are met, the content of the message is extracted as a string
of characters and, after a check, a response message is sent. The response message
consists in the predicate Sells, where the buyer AID is filled with the sender of the
received message.

As another example, consider a simple behaviour that also uses the ontology
MusicShopOntology, as exemplified in the original JADE tutorial about ontologies.
Such a behaviour permits to agents which activate it to send a request message for
an item to buy. Hence, it must be one-shot and its action must be triggered when the
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behaviour is first activated. All the arguments of the message are passed as parameters
to the behaviour, as they are available to the agent.

1 oneshot behaviour Buy ( I tem r e q u e s t e d I t e m , L i s t <AID> s e l l e r s )
2 uses on t o l o g y MusicShopOntology {

The JADEL source code of the action is shown in the following. Since there are no
conditions for triggering such an action, only the keyword do is used. The construct
send message is used to define the structure of the message and to sending it to a list
of sellers, which is a parameter of the behaviour.

3 do {
4 send message {
5 per format ive i s REQUEST
6 r e c e i v e r s are s e l l e r s
7 c o n t e n t i s r e q u e s t e d I t e m
8 }
9 }

10 }

Clearly, the two behaviour Sell and Buy shown above are not suitable for obtain-
ing a precise solution of the proposed problem. As a matter of fact, there must be more
than a seller agent, and prior to the selling of the item there is the proposal processing
by the buyer, which search for the best price. To this extent, a correct way to send a
request to the seller agent is to use the CFP performative, and keep waiting for propos-
als. A behaviour to do this is shown in the following. It is a one-shot behaviour, i.e.,
it is removed from the list of active behaviours of the agent when its action is com-
pletely performed. The only task of such a behaviour is to send the call of proposals
to all seller agents, which are found in the multi-agent system using the directory
service of the platform. Two JADEL constructs are used to send call for proposals,
namely, the do construct to perform an auto-triggered action, and the send message
expression. The use of the for keyword in the behaviour declaration specifies the
agent class associated with the behaviour. The behaviour is meant to work with in-
stances of the BuyerAgent class only, so that it can take advantage of properties and
methods of such a class. Just like JADE, JADEL provides all behaviours with the
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field theAgent, which is a reference to the agent usable by the behaviour. Such a
field ensures that behaviours can have a direct access to the agent that uses them,
and it is normally used to let behaviours manipulate the internal state of their agents.
Suppose that a buyer agent knows the list of available sellers and that it saves the
item it wants to buy. Furthermore, assume that the agent stores the list of available
sellers in a field sellers and the item in a field item. Those fields can be easily
accessed within the behaviour by means of the expressions theAgent.sellers and
theAgent.item, respectively.

1 oneshot behaviour SendReques t s f o r BuyerAgent {
2 do {
3 send message {
4 per format ive i s CFP
5 r e c e i v e r s are t h e A g e n t . s e l l e r s
6 c o n t e n t i s t h e A g e n t . i t em
7 o n t o lo g y i s MusicShopOntology
8 }
9 }

10 }

Once all call for proposals are sent, the buyer agent needs only to wait for actual
proposals to decide where to buy the desired item. The WaitResponses cyclic be-
haviour provided for the BuyerAgent class is used to wait for proposals. The act of
waiting for a proposal is implemented by means of the JADEL construct on when do.
The fields of the behaviour are defined with the keyword var, which means that
they are mutable fields. The keyword val, instead, declares an immutable field.
This is coherent with Xtend syntax, which is used also in the body of the do block.
WaitResponses processes incoming messages with performative PROPOSE.

1 c y c l i c behaviour Wai tResponses f o r BuyerAgent {
2 var i n t messageCoun te r = 0
3 var AID b e s t S e l l e r
4 var i n t b e s t P r i c e
5
6 on message msg
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7 when { per format ive i s PROPOSE }

The action of such a behaviour extract the content of the message as an integer
value, price, that is compared with the current best price. The behaviour maintains
a counter to track the number of sellers that have already replied to the call for pro-
posals. When such a counter matches the total number of sellers, a new behaviour
SendOrder is activated. The selection of the best price is made by extracting the con-
tent of the received message. The AID of the corresponding seller agent is obtained
by inspecting the sender field of the message, with the expression msg.sender.

8 do {
9 e x t r a c t m s g c o n t e n t as S t r i n g

10 var p r i c e = I n t e g e r . p a r s e I n t ( m s g c o n t e n t )
11 messageCoun te r ++
12
13 i f ( b e s t S e l l e r == n u l l | | b e s t P r i c e > p r i c e ) {
14 b e s t S e l l e r = msg . s e n d e r
15 b e s t P r i c e = p r i c e
16 }
17
18 i f ( messageCoun te r == t h e A g e n t . s e l l e r s . s i z e ) {
19 messageCoun te r = 0
20
21 a c t i v a t e behaviour
22 SendOrder ( theAgent , b e s t S e l l e r )
23 }
24 }
25 }

The complete listing of the WaitResponses behaviour is also shown in Figure 3.12.

Finally, the last behaviour of the buyer agent can be defined. Similarly to the
SendRequests behaviour, the only purpose of the behaviour SendOrder is to send
a message.
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Figure 3.12: Example of cyclic behaviour

1 oneshot behaviour SendOrder ( AID s e l l e r ) f o r BuyerAgent {

SendOrder is activated by the WaitResponses behaviour, that pass the AID of the
best seller to it as an argument. The message to be sent is an acceptance message
to the seller agent that offered the best proposal. Thus, ACCEPT_PPROPOSAL is its
performative and its recipient is the seller agent chosen previously. The content of
the message is, again, the item that the agent wants to buy, accessed by the notation
theAgent.item. For creating the recipients list, the construct #[], that denotes a
generic list, is borrowed from Xtend syntax.

2 do {
3 send message {
4 per format ive i s ACCEPT_PROPOSAL
5 r e c e i v e r s are #[ s e l l e r ]
6 c o n t e n t i s t h e A g e n t . i t em
7 o n t o lo g y i s MusicShopOntology
8 }
9 }
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10 }

The two behaviours that are needed for the seller agent are explained in the fol-
lowing. The first behaviour contains an event handler to receive call for proposals
from buyer agents. Such a behaviour extracts the message content as a generic item
and it searches the internal catalogue of the agent for the requested item. In fact, each
seller agent owns a list of items that it can sell. Then, if the desired item is found,
the seller agent sends a proposal to the message sender, i.e., the buyer agent. On the
contrary, it notifies the buyer agent with a failure message.

1 c y c l i c behaviour W a i t F o r R e q u e s t s f o r S e l l e r A g e n t {
2 on message msg
3 when {
4 per format ive i s CFP and
5 o n t o l og y i s MusicShopOntology and
6 c o n t e n t i s I t em
7 } do {
8 e x t r a c t i t em as I t em
9

10 var i n t p r i c e = t h e A g e n t . c a t a l o g u e . g e t ( i t em )
11
12 i f ( p r i c e != n u l l ) {
13 send message {
14 per format ive i s PROPOSE
15 o n t o lo g y i s MusicShopOntology
16 r e c e i v e r s are #[ msg . s e n d e r ]
17 c o n t e n t i s p r i c e
18 }
19 } e l s e {
20 send message {
21 per format ive i s REFUSE
22 r e c e i v e r s are #[ msg . s e n d e r ]
23 c o n t e n t i s " n o t a v a i l a b l e "
24 }
25 }



3.3. JADEL Programmer’s Guide 111

26 }
27 }

Also the second behaviour waits for an incoming message, but it processes only
acceptance messages. Such a behaviour extracts the content of the message as an
item and it removes such an item from the catalogue. Finally, it notifies the buyer
agent that the transaction is positively closed. A check is added to manage the case
of multiple orders for the same item. Such a situation is possible when more than one
buyer request for the same item and, in addition, two or more of them concurrently
receive the proposal of the seller, and the same seller agent becomes the best seller
for all such buyers. In such cases, the order message which arrives first is positively
closed, while the others fail.

1 c y c l i c behaviour P r o c e s s O r d e r s f o r S e l l e r A g e n t {
2 on message msg
3 when {
4 per format ive i s ACCEPT_PROPOSAL and
5 o n t o l og y i s MusicShopOntology
6 } do {
7 e x t r a c t i t em as I t em
8
9 var i n t p r i c e = t h e A g e n t . c a t a l o g u e . remove ( i t em )

10
11 i f ( p r i c e != n u l l ) {
12 send message {
13 per format ive i s INFORM
14 r e c e i v e r s are #[ msg . s e n d e r ]
15 c o n t e n t i s S e l l s ( msg . s ende r , i t em )
16 }
17 } e l s e {
18 send message {
19 per format ive i s FAILURE
20 r e c e i v e r s are #[ msg . s e n d e r ]
21 c o n t e n t i s " n o t a v a i l a b l e "
22 }
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23 }
24 }
25 }
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3.3.4 Third Step: the Agent Declaration

As in the presentation of behaviour, a preliminary example of agent is shown. The
Customer agent activates the Buy behaviour, passing to it its arguments, namely,
a Book, which is a concept in the MusicShopOntology, and a list of AID. For
doing this, the construct on create is used, in order to manage initialization. The
on destroy simply logs a goodbye message.

1 agent Customer uses on t o l o g y MusicShopOntology {
2 var AID s e l l e r A I D = new AID ( " s e l l e r _ a g e n t " )
3 var Book book = new Book ( )
4
5 on c r e a t e {
6 book . t i t l e = " T i t l e o f t h e book "
7
8 a c t i v a t e behaviour Buy ( t h i s , book , # [ s e l l e r A I D ] )
9 }

10
11 on d e s t r o y {
12 l o g ( " Goodbye " )
13 }
14 }

In detail, two fields are declared to store the AID of the seller agent and the desired
item. In the initialization phase, the agent sets the title of the book it wants to buy and
then it adds the Buy behaviour to its list of active behaviours. During the life cycle
of the agent, the action of such a behaviour is performed as soon as the behaviour
is actually selected by the internal scheduler of the agent. In fact, as soon as the
initialization phase is complete, the internal scheduler of the agent selects the active
behaviour, and the request to buy the book is immediately sent to the seller. In this
example, the agent does nothing until it is killed and, during its take-down phase, it
simply writes a log message.

Finally, the JADEL source code of seller agents and of buyer agents is shown
in Figure 3.13 and Figure 3.14, respectively. Seller agents declare a catalogue field,
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1 agent S e l l e r A g e n t ( L i s t <Item > c a t a l o g u e ) uses on t o l o g y
MusicShopOntology {

2 on c r e a t e {
3 a c t i v a t e behaviour W a i t F o r R e q u e s t s ( t h i s )
4 a c t i v a t e behaviour P r o c e s s O r d e r s ( t h i s )
5 }
6 }

Figure 3.13: Source code for the seller agent.

1 agent BuyerAgent ( I tem item , AID . . . s e l l e r s ) uses o n t o l o g y
MusicShopOntology {

2 on c r e a t e {
3 a c t i v a t e behaviour SendReques t s ( t h i s )
4 a c t i v a t e behaviour Wai tResponses ( t h i s )
5 }
6 }

Figure 3.14: Source code for the buyer agent.

while buyer agents declare an item field and a list of AID. Each field declaration
automatically generates two public methods, a getter and a setter, for such a field.
This is the reason why the agent fields are reachable within a behaviour associated
with that agent. In the initialization phase of the agent, the command line arguments
passed to seller agents are used to populate their catalogues. Behaviours are simply
activated inside the agent set-up, and how actions are performed is decided by the
internal scheduler of the agent.

The proposed implementation of the book trading example follows precisely the
structure of the corresponding JADE example available from the JADE official Web
site, but the implementation details are very different. As a matter of fact, JADE
implementation does not make use of ontologies, and it provides seller agents with a
GUI. Moreover, buyer agents share a single behaviour class, and the action method
of such a class is modeled as a Finite State Machine (FSM). Such an implementation
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is very similar to an instance of the FIPA contract net interaction protocol, but it does
not implement it explicitly.

Notably, the proposed JADEL implementation presents some weaknesses. For
example, it assumes that all seller agents would eventually respond, and failures of
seller agents are not handled by buyer agents. Taking into account all such cases
would grow the example over the desired complexity, and the example is intentionally
kept simple to become a reference to learn the basis of JADEL programming.

3.3.5 Optional Step: the Use of Interaction Protocols

In order to improve the example in terms of the used features of JADEL, interac-
tion protocols and roles can be used for seller and buyer agents. In Figure 3.15,
a sketch of the role for buyer agents is shown. It follows the specification of the
FIPA contract net initiator. Some event handlers are defined, and the body of the
reception of a PROPOSE message is similar to the previous implementation. Managing
the sending and the reception of messages is not needed, as they are handled by the
underlying JADE runtime.

In Figure 3.16, the necessary changes are shown in the code of BuyerAgent

declaration. The seller agent can be viewed as a responder in a contract net interaction
protocol. Implementations of seller agent declaration and its role are omitted for the
sake of brevity, but they are similar to the buyer ones.
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1 r o l e Buyer ( ACLMessage cfpMsg ) f o r BuyerAgent
2 as FIPA_CONTRACT_NET : I n i t i a t o r {
3 var b e s t P r i c e
4 var b e s t S e l l e r
5
6 on PROPOSE msg {
7 e x t r a c t p r i c e as I n t e g e r
8
9 i f ( b e s t S e l l e r == n u l l | | b e s t P r i c e > p r i c e ) {

10 b e s t S e l l e r = msg . s e n d e r
11 b e s t P r i c e = p r i c e
12 }
13
14 i f ( cfpMsg . r ep lyByDa te < System . c u r r e n t T i m e M i l l i s ( ) )

{
15 message r e p l y {
16 per format ive i s ACCEPT_PROPOSAL
17 r e c e i v e r s are #[ b e s t S e l l e r ]
18 c o n t e n t i s t h e A g e n t . i t em
19 o n t o lo g y i s MusicShopOntology
20 }
21 }
22 }
23
24 on INFORM msg {
25 / / . . . h a n d l e s INFORM messages . . .
26 }
27 on REFUSE msg {
28 / / . . . h a n d l e s REFUSE messages . . .
29 }
30 on FAILURE msg {
31 / / . . . h a n d l e s FAILURE messages . . .
32 }
33 }

Figure 3.15: Initiator role for a buyer agent using the contract net protocol.
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1 agent BuyerAgent ( I tem item , AID . . . s e l l e r s )
2 uses on t o l o g y MusicShopOntology {
3 on c r e a t e {
4 c r e a t e message cfpMsg {
5 per format ive i s CFP
6 o n t o lo g y i s MusicShopOntology
7 r e c e i v e r s are s e l l e r s
8 c o n t e n t i s i t em
9 }

10
11 cfpMsg . r ep lyByDa te = System . c u r r e n t T i m e M i l l i s ( ) +

TIMEOUT
12
13 take r o l e Buyer ( t h i s , cfpMsg )
14 }
15 }

Figure 3.16: New implementation of the buyer agent with interaction protocols.





Chapter 4

JADEL Examples and
Benchmarks

I’ve seen things you people wouldn’t believe.

– Roy Batty

This chapter shows some other examples of JADEL source code, and an evalua-
tion of the JADEL capabilities by means of some metrics, such as the Lines of Code
(LOCs) one. The first example is the implementation of a well-known agent-oriented
algorithm, namely the Asynchronous BackTracking (ABT) [Yokoo et al., 1998]. Then,
a comparison between JADEL and actor-oriented languages and patterns is provided,
by implementing some relevant benchmarks found in the Savina suite [Imam and
Sarkar, 2014b]. As a last example, a particular concurrency problem is also tested.
For all of the examples, a summary of the main results in terms of readability, agent-
oriented features rate, and amount of code concludes the language assessment.
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4.1 Implementation of the ABT Algorithm

The ABT algorithm is a well-known algorithm to solve Distributed Constraint Sat-
isfaction Problems (DCSPs) [Yokoo et al., 1998]. DCSPs are distributed variants of
constraint satisfaction problems and, as such, a DCSP consists in a finite set of vari-
ables and a finite set of constraints over such variables. As in [Yokoo et al., 1998],
variables are denoted as x1,x2, . . . ,xn. Each variable xi takes values in a domain, called
Di. Constraints are subsets of D1× ·· ·×Dn, and a DCSP is solved if and only if a
value is assigned to each variable, and each assignment satisfies all constraints. In a
DCSP constraints and variables are distributed among agents. Such agents manage
a number of variables and they know the constraints over managed variables. Com-
monly, each agent is associated with just one variable, and it finds an assignment of its
variable, i.e., a pair (xi,d) where d ∈Di, that satisfies involved constraints. The inter-
actions in the Multi-Agent System (MAS) allows each agent to obtain the assignments
of other agents, and to check if constraints are really satisfied. Informally, a DCSP is
solved if each agent finds a local solution that is consistent with the local solutions
of other agents. In [Yokoo and Hirayama, 2000], a survey of the main algorithms for
solving DCSPs is given. In particular, pseudocode and examples are shown for the
ABT, the asynchronous weak-commitment search, the distributed breakout, and the
distributed consistency algorithms.

The ABT algorithm solves DCSPs under three assumptions: each agent owns
exactly one variable, all constraints are in the form of binary predicates, and each
agent knows only the constraints that involve its variable. Because it is not necessar-
ily true that all agents in a MAS know each other, they can communicate only if there
is a connection between the sender and the receiver of a message. For each agent,
the agents who are directly connected with it are called its neighbors. In ABT, each
agent maintains an agent view, which is the agent local view of its neighbors assign-
ments. Communication is addressed by using two types of messages, OK and No-
Good, which work as tools to exchange knowledge on assignments and constraints.
More precisely, OK messages are used to communicate the current value of the sender
agent variable, and NoGood messages provide the recipient with a new constraint.
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Agents are associated with a priority order, which can be, e.g., the alphabetical order
of their names. OK messages flow from top to bottom of the priority list of agents, and
NoGood messages, instead, go up from lowest priority agents to highest ones. The
core of the algorithm is the check agent view procedure, which controls if the current
known assignments are consistent with the agent value. If not, procedure backtrack
is used to send NoGood constraints to neighbors. The rest of the algorithm is given
in terms of event handling constructs which react at other agents messages.

The ABT algorithm was originally described using a pseudocode [Yokoo and Hi-
rayama, 2000]. The proposed implementation in JADEL follows precisely the orig-
inal pseudocode. The presentation of the JADEL source code is structured into the
presentation of the ontology, of the agents, of support procedures and of event han-
dlers, as follows.

Ontology

From ABT pseudocode, messages are divided into different categories, but there is
no specification or definition of an ontology. JADEL takes advantages from a light
syntax for defining communication means which describes how agents could interop-
erate in a given application. The ontology for ABT algorithm includes propositions,
concepts, and predicates, as shown in the JADEL code below.

1 o n t o lo g y ABTOntology {
2 concept Assignment ( a id index , i n t e g e r v a l u e )
3 p r e d i c a t e OK( Ass ignment a s s i g n m e n t )
4 p r e d i c a t e NoGood ( many Assignment a s s i g n m e n t L i s t )
5 p r o p o s i t i o n N o S o l u t i o n
6 p r o p o s i t i o n Neighbor
7 p r e d i c a t e S o l u t i o n ( many Assignment a s s i g n m e n t L i s t )
8 }

The assignment is a central concept in ABT algorithm. Its implementation consists
in the definition of an ontology term which is composed of an agent identifier, i.e.,
xi, and the value of its variable, i.e. di, called index and value, respectively. The
two predicates used in the main part of the algorithm, namely, the OK and the NoGood
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predicates, are defined on the basis of the definition of the Assigment. In fact, an
OK message is the current assignment of the agent, while the NoGood message is
a sequence of forbidden assignments. Also a predicate Solution is defined, which
is used to communicate to other agents the solution of the problem, when found.
NoSolution and Neighbor are simply propositions, that agents can exchange to
indicate the algorithm termination with no solutions, and the neighbor request, re-
spectively.

Agents

ABT pseudocode describes event handlers and main procedures, but it does not il-
lustrate how agents should be written. In JADEL, an agent must be defined. Such an
agent is called ABTAgent. It consists of some properties, among which there are the
agent view and the set of neighbors. The initialization of an ABTAgent is done by
filling the set of neighbors with the identifiers of connected agents, and by setting
the priority of the each agent. Moreover, ABTAgent provides two important meth-
ods, namely, checkConstraints and assignVariable. The first checks if all con-
straints are satisfied by current assignments in agent view, while the second selects a
value which is consistent with agent view and assigns it to the variable owned by the
agent. Both methods return true if the operation was successful and false if it is
was not.

Procedures

The core procedure of the ABT algorithm is the check agent view procedure, which
controls if the current value my_value ∈Di of the agent xi is consistent with its agent
view. A value d ∈ Di is called consistent with the agent view if for each value in
agent view, all constraints that involve such value and d are satisfied. If this is not the
case, the agent has to search for another value. At the end, if none of the values in Di

satisfies the constraints, another procedure is called, namely, the backtrack procedure.
Otherwise, an OK message is sent to the agent neighbors, which contains the new
assignment. The pseudocode of the check agent view procedure is shown in Figure 1.
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Algorithm 1 Procedure check agent view.
1: Procedure check agent view
2: while agent_view and my_value are inconsistent do
3: if no value in Di is consistent with agent_view then
4: backtrack
5: else
6: select d ∈ Di where agent_view and d are consistent
7: my_value← d
8: send(OK, (xi,d)) to neighbors
9: end if

10: end while

In the JADEL implementation of the ABT algorithm, the check agent view procedure
becomes a one-shot behaviour. In fact, its action has to be performed only once, when
the behaviour activates, as follows.

1 oneshot behaviour CheckAgentView f o r ABTAgent {

The keyword for denotes which agents are allowed to activate such a behaviour.
In this case, such agents are instances of the ABTAgent class. Inside the behaviour,
methods and public fields of the agent can be called by using the field theAgent,
which is implicitly initialized with an instance of the agent specified. If no agent is
specified with the for keyword, theAgent refers to a generic agent. The behaviour
CheckAgentView does not need to wait for messages, or events, so the keyword do

is used, as follows.

2 do {
3 i f ( ! t h e A g e n t . c h e c k C o n s t r a i n t s ( ) ) {
4 i f ( ! t h e A g e n t . a s s i g n V a r i a b l e ( ) ) {
5 a c t i v a t e behaviour B a c k t r a c k ( t h e A g e n t )
6 } e l s e {
7 a c t i v a t e behaviour SendOK ( t h e A g e n t )
8 }
9 }
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Algorithm 2 Procedure backtrack.
1: Procedure backtrack
2: generate a nogood V
3: while V is an empty nogood do
4: broadcast to other agents that there is no solution
5: terminate this algorithm
6: end while
7: select (x j,d j) where x j has the lowest priority in a nogood
8: send(nogood, (xi,V )) to x j

9: remove (x j,d j) from agent_view
10: check agent view

10 }

The procedure backtrack is meant to locally correct inconsistencies. First, a new con-
straint NoGood has to be generated. Generating a NoGood is done by checking all
assignments that are present into the agent agent view. If one of these is removed, and
then the agent succeeds in choosing a new value for its variable, it means that such
an assignment is wrong. Hence, that assignment is added to the NoGood constraint.
After this phase, the new generated NoGood can be empty. If no assignment appears
within that new constraint, then there is no solution for the DCSP. Otherwise, a No-
Good message has to be sent to the lowest priority agent, and then its assignment
has to be removed from agent view. Then, a final check of the agent view is done.
JADEL implementation of such a procedure is another one-shot behaviour, whose
code follows precisely the original pseudocode of the algorithm.

1 oneshot behaviour B a c k t r a c k f o r ABTAgent {

As a matter of fact, a NoGood constraint is created, by copying the agent agent view
and removing the agent AID.

2 do {
3 var V = new HashMap<AID , I n t e g e r >( t h e A g e n t . a g e n t v i e w )
4 var s o r t e d V a r i a b l e s L i s t = V. k ey Se t . s o r t
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5 V. remove ( t h e A g e n t . AID )

Then, removing one by one the assignment in the agent view, the behaviour checks if
the agent is able to select a variable.

6 f o r ( v : s o r t e d V a r i a b l e s L i s t ) {
7 var removed = V. remove ( v )
8 i f ( t h e A g e n t . a s s i g n V a r i a b l e (V) ) {
9 V. p u t ( v , removed )

10 }
11 }

Finally, the behaviour checks the newly created NoGood. If it is empty, a behaviour
SendNoSolution activates. Otherwise, the NoGood is sent and the agent view is
checked.

12 i f (V. isEmpty ) {
13 a c t i v a t e behaviour SendNoSolu t ion ( t h e A g e n t )
14 } e l s e {
15 a c t i v a t e behaviour SendNoGood ( theAgent , V)
16 t h e A g e n t . a g e n t v i e w . remove (V. ke ySe t . max )
17 a c t i v a t e behaviour CheckAgentView ( t h e A g e n t )
18 }
19 }
20 }

Event handlers

Others procedures specified in the original ABT pseudocode concern the reception
of messages. When the agent receives an OK message, it has to update its agent view
with that new information, then it must check if the new assignment is consistent with
others in agent view as in Figure 3. The reception of a message requires a cyclic be-
haviour, which waits cyclically for an event and checks if such an event is a message.

1 c y c l i c behaviour ReceiveOK f o r ABTAgent {
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Algorithm 3 Reception of an OK message.
1: while received (OK, (x j,d j)) do
2: revise agent view
3: check agent view
4: end while

To ensure that such a message is the correct one, namely, an OK message, some con-
ditions have to be specified. JADEL provides the construct on-when-do to handle
this situation. The clause on identifies the type of event and eventually gives to it a
name. If the event is a message, the clause when contains an expression that filters
incoming messages, as follows.

2 on message msg
3 when {
4 o n t o lo g y i s ABTOntology and
5 per format ive i s INFORM and
6 c o n t e n t i s OK
7 }

Conditions in when clause can be connected by logical connectives and, or, and
they can be preceded by a not. They refer to the fields of the message, namely,
ontology, performative, and content. Fields that are not relevant can be omitted,
and multiple choices can be specified. For example a behaviour can accept REQUEST
or QUERY messages with performative is REQUEST or performative is QUERY.
The clause do is mandatory and contains the code of the action.

8 do {
9 e x t r a c t receivedOK as OK

10 v a l a = receivedOK . a s s i g n m e n t
11
12 t h e A g e n t . a g e n t v i e w . r e p l a c e ( a . index , a . v a l u e )
13 a c t i v a t e behaviour CheckAgentView ( t h e A g e n t )
14 }

The content of the message is obtained by means of the JADEL expression extract,



4.1. Implementation of the ABT Algorithm 127

Algorithm 4 NoGood message reception.
1: while received (nogood, (x j,V )) do
2: record V as a new constraint
3: while V contains an agent xk that is not its neighbor do
4: request xk to add xi as a neighbor
5: add xk to its neighbor
6: end while
7: old_value← current_value
8: check agent view
9: while old_value = current_value do

10: send(OK, (xi,current_value)) to x j

11: end while
12: end while

which manages all the needed implementation details and gives a name and a type to
the content. Once the content of type OK of the message is obtained, its assignment is
used to revise the agent view. Then, the behaviour CheckAgentView is activated.

Finally, the pseudocode of the procedure that manages the reception of a NoGood
message is a cyclic behaviour for ABTAgent. In JADEL, such a procedure is a cyclic
behaviour for ABTAgent.

1 c y c l i c behaviour ReceiveNoGood f o r ABTAgent {

Checking if the event is a message, and then, if the message is actually a NoGood
message, is done similarly to the OK reception, by using the clauses on and when, as
shown in the following code.

2 on message msg
3 when {
4 o n t o lo g y i s ABTOntology and
5 per format ive i s INFORM and
6 c o n t e n t i s NoGood
7 }
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Inside the do body, the message content is extracted as a NoGood and it is recorded
as a new constraint. As an assumption, the agent holds a set of constraints within the
field constraint which is accessed by the agent instance theAgent.

8 do {
9 e x t r a c t receivedNoGood as NoGood

10 v a l n e w C o n s t r a i n t s = receivedNoGood . a s s i g n m e n t L i s t
11 t h e A g e n t . c o n s t r a i n t s . p u t A l l ( n e w C o n s t r a i n t s )

Then, if some constraints involve an agent which is not in the agent neighborhood, a
request is sent to such an agent, in order to create a new link.

12 f o r ( x : n e w C o n s t r a i n t s . k eyS e t ) {
13 i f ( ! t h e A g e n t . n e i g h b o r s . c o n t a i n s ( x ) ) {
14 a c t i v a t e behaviour SendReques t ( theAgent , x )
15
16 t h e A g e n t . n e i g h b o r s . add ( x )
17 }
18 }

Finally, the agent view must be checked, and if the previous value of the agent vari-
able xi remains unchanged, an OK message is sent.

19 var o l d V a l u e = t h e A g e n t . a g e n t v i e w . g e t ( t h e A g e n t . AID )
20
21 a c t i v a t e behaviour CheckAgentView ( t h e A g e n t )
22
23 i f ( o l d V a l u e == t h e A g e n t . a g e n t v i e w . g e t ( t h e A g e n t . AID ) ) {
24 a c t i v a t e behaviour SendOK ( t h e A g e n t )
25 }

4.2 Implementation of Savina Benchmarks

Other evaluations on JADEL are made by comparing it using the Savina bench-
marks [Imam and Sarkar, 2014b]. Savina is a benchmark suite to test actor libraries
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performances1. For each benchmark, Savina provides an implementation by using
the actor features of Akka [Wyatt, 2013], Functional-Java2, GPars3, Habanero-Java
library [Imam and Sarkar, 2014a], Jetlang4, Jumi5, Lift6, Scala [Haller and Odersky,
2009], and Scalaz7. The benchmarks that Savina provides are divided into classic
micro-benchmarks, concurrency benchmarks and parallelism benchmarks.

Micro-benchmarks are simple benchmarks which test specific features of an actor
library. For example, the classic PingPong benchmark measures the message passing
overhead, while the Counting benchmark tests message delivery overhead. Concur-
rent benchmarks focus on classic concurrency problems, such as the dining philoso-
phers, and they represent more realistic tests than micro-benchmarks. Finally, par-
allelism benchmarks exploit pipeline parallelism, phased computations, divide-and-
conquer style parallelism, master-worker parallelism, and graph and tree navigation.
In [Imam and Sarkar, 2014b], the scope and the characteristics of each benchmark
are discussed, and some experimental results are shown. It is worth noting that Savina
is a suite that helps testing actor-oriented solutions, and it does not consider agent-
oriented features. Nevertheless, Savina benchmarks are also suitable to analyze some
features of agent programming languages, such as concurrency and message pass-
ing. For this reason, in this dissertation a few benchmarks are taken from those pro-
posed by Savina, and re-implemented in JADEL. Savina does not yet contains inter-
languages comparisons. As a matter of fact, sources are written in Java and Scala, and
all benchmarks shows almost the same code: the differences among them are due to
the various actor implementations. Additional language comparisons could be useful
to evaluate the elegance, the readability and the simplicity of a given solution, beside
its performances. Only a few Savina micro benchmarks are considered here, namely,
PingPong, ThreadRing, Counting, Big, and Chameneos benchmarks.

1The source code of the thirty benchmarks can be found at github.com/shamsimam/savina.
2www.functionaljava.org
3www.gpars.org
4github.com/jetlang
5jumi.fi/actors.html
6liftweb.net/api/26/api/#net.liftweb.actor.LiftActor
7github.com/scalaz

github.com/shamsimam/savina
www.functionaljava.org
www.gpars.org
github.com/jetlang
jumi.fi/actors.html
liftweb.net/api/26/api/#net.liftweb.actor.LiftActor
github.com/scalaz
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It is worth noting that Savina benchmarks are thought for actor-based systems,
and thus are heavily based on message passing. JADEL ontologies help in managing
such task effectively. In the JADEL source code below, the simple ontology used
for implementing the PingPong example is shown. The commented parts are the
identifiers of the message objects which Savina implementation defines and uses for
messages.

1 o n t o lo g y PingPongOnto logy {
2 p r o p o s i t i o n S t a r t / / P ingPongConf ig . S t a r t M e s s a g e
3 p r o p o s i t i o n Ping / / P ingPongConf ig . SendPingMessage
4 p r o p o s i t i o n Pong / / P ingPongConf ig . SendPongMessage
5 p r o p o s i t i o n Stop / / P ingPongConf ig . S topMessage
6 }

The PingPong classic example consists in the definition of two agents which uses
such an ontology, exchanging N Ping and Pong messages, alternatively. In the fol-
lowing listing, the source code of the ping agent, i.e., the initiator agent, is shown.

1 agent PingAgent ( AID pongAgent )
2 uses on t o l o g y PingPongOnto logy {
3 on c r e a t e {
4 a c t i v a t e behaviour
5 W a i t F o r S t a r t O r P o n g ( t h i s , P ingPongConf ig .N)
6 }
7 }

Then, the pong agent, i.e., the responder agent has the following source code in
JADEL.

1 agent PongAgent ( AID pingAgen t )
2 uses on t o l o g y PingPongOnto logy {
3 on c r e a t e {
4 a c t i v a t e behaviour Wai tForP ingOrS top ( t h i s , 0 )
5
6 a c t i v a t e behaviour
7 SendInformMsg ( t h i s , # [ p ingAgen t ] , new S t a r t )
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8 }
9 }

Similarly, ThreadRing agents are defined. In this benchmark, N agents exchange
R Ping messages, and they are limited to communicate only with the next agent in
the ring. As for the PingPong benchmark, an ontology which follows precisely the
Savina structure of message object is defined. In this example, message content are
predicates rather than propositions, because they need to carry information between
involved agents.

1 o n t o lo g y ThreadRingOnto logy {
2 p r e d i c a t e Ping ( i n t e g e r l e f t )
3 / / ThreadRingCon f ig . PingMessage
4 p r e d i c a t e Data ( aid n e x t )
5 / / ThreadRingCon f ig . DataMessage
6 p r e d i c a t e E x i t ( i n t e g e r l e f t )
7 / / ThreadRingCon f ig . Ex i tMessage
8 }

The JADEL source code for agent definition is listed below.

1 agent ThreadRingAgent ( AID nextAgent , i n t i d )
2 ex tends J a d e l B a s e A g e n t
3 uses on t o l o g y ThreadRingOnto logy {
4 on c r e a t e {
5 a c t i v a t e behaviour WaitForMsg ( t h i s )
6
7 i f ( i d == ThreadRingConf ig .N − 1) {
8 a c t i v a t e behaviour
9 SendInformMsg ( t h i s , # [ nex tAgen t ] ,

10 new Ping ( ThreadRingConf ig . R) )
11 }
12 }
13 }

As an example of cyclic behaviour, the following code shows the reception of an
increment message in the Counting example. In this example, a Producer agent
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sends N increment messages to a Counter one, which counts the number of arrived
messages. When the counter agent received all messages, it must inform the other
agent of the resulting value of its count. The behaviour WaitForMsg is a cyclic

behaviour, as in ABT event handlers, because it must wait for a message and repeat
its action each time a message arrives. For this scope, the construct on when do is
used, as follows.

1 c y c l i c behaviour WaitForMsg f o r Coun te r {
2 on message msg
3 when {
4 c o n t e n t i s I n c r e m e n t
5 } do {
6 t h e A g e n t . c o u n t = t h e A g e n t . c o u n t + 1
7
8 i f ( t h e A g e n t . c o u n t >= C o u n t i n g C o n f i g .N) {
9 a c t i v a t e behaviour

10 SendInformMsg ( theAgent ,
11 # [ t h e A g e n t . p r o d u c e r A g e n t ] ,
12 new R e s u l t i n g V a l u e ( t h e A g e n t . c o u n t ) )
13
14 a c t i v a t e behaviour D e l e t e ( t h e A g e n t )
15 }
16 }
17 }

Other micro benchmarks are implemented in the same fashion, with

1. A definition for each different kind of agent involved, which activates needed
behaviours in the start up phase of its life cycle by means of the on create

handler;

2. The definition of a number of cyclic behaviour whose purpose is to intercept
messages and process the correct ones; and

3. The definition of an ontology which terms are equivalent to the Savina ones.
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Hence, the methodology used in [Bergenti et al., 2017b] for implementing the ABT
algorithm is the common way to creating agents and MASs with JADEL, whether the
example is a very simple one (e.g., the PingPong), or a more complex algorithm as
ABT.

4.3 The Santa Claus Coordination Problem Example

JADEL was tested on the Santa Claus problem, as described in [Iotti et al., 2018],
which is a classic coordination problem first introduced in [Trono, 1994]. In its sim-
plest form, the problem is expressed as follows. Santa Claus disposes of nine reindeer
and ten elves. He sleeps awaiting a group formed of all of his reindeer or three of his
elves. When three elves are ready and awaken Santa Claus, he must work with them
at discussing toys R&D. Similarly, when the group of reindeer is ready and awakes
Santa Claus, they work together to deliver toys. Santa Claus gives priority to the
group of reindeer, when both groups are ready at the same time. This simple problem
is a classic exercise that exploit concurrency and parallelism, and a number of dif-
ferent solutions are available. The difficulty resides in the expression of the various
groups and of the communication patterns. Moreover, the problem could be extended
by incrementing the number of Santa Claus, elves and reindeer, thus opening a wide
variety of other problems: for example, reindeer and elves must help one Santa at a
time, and Santas cannot wait too long for a group, releasing reindeer and elves when
their group is not ready in time. This requires a correct sentencing of messages, and
the addition of timing constraints. Thus, it is important that the given solution provide
scalable constructs and re-usable expressions, in order to deal with more complex
problems.

In JADEL, the Santa Claus problem is addressed by the individuation of three
types of agents, namely the Santa, Reindeer, and Elf agents. These three defi-
nitions are sufficient for the underlying JADE platform to distinguish among agent
roles in the problem. Such agents can exchange messages. The core of the agent
communication is the ontology.

1 o n t o lo g y San taOnto {
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2 p r e d i c a t e El fMessage ( aid i d )
3 p r e d i c a t e Reindee rMessage ( a id i d )
4 p r o p o s i t i o n OK
5 }

The ontology SantaOnto defines two similar predicates, which relate an AID to the
type of sender agent, elf or reindeer. The AID of an agent in JADE is unique for each
agent in the platform and consists of its name (chosen when the agent starts) and its
address (the name of the machine where the agent lives). A reindeer or an elf must
send to Santa this type of message when it is ready. The proposition OK is used by
Santa Claus when one of the groups is ready, to inform the group members the work
is about to start.

In the proposed solution, the ready message is sent by the behaviour below.

1 oneshot behaviour Ready ( AID [ ] s a n t a s , P r e d i c a t e p red ) {
2 do {
3 var Random rand = new Random ( )
4 var s a n t a = s a n t a s . g e t ( r and . n e x t I n t ( s a n t a s . l e n g t h ) )
5
6 send message {
7 per format ive i s INFORM
8 c o n t e n t i s p red
9 r e c e i v e r s are #[ s a n t a ]

10 o n t o lo g y i s San taOnto
11 }
12 }
13 }

The behaviour is declared as oneshot behaviour. Such kind of behaviours contain an
action, defined inside the curly brackets of the construct do. When an agent activates
a behaviour, it adds such a behaviour into its personal list of tasks, and, during its
life-cycle, the agent tries to execute all tasks. Clearly, if a behaviour must wait for
a message, and no messages are present in the agent mailbox, that behaviour cannot
run its action. But oneshot actions can be performed without any trigger, and, after
their executions, they are removed from the agent list. In this case, the behaviour
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Ready has two parameters, namely, a list of AID and a predicate. It randomly select
a Santa Claus from its list of Santa’s identifiers and send to him an inform message.
This behaviour can be used by both a reindeer and an elf, because they can specify
the predicate to be sent.

A Santa agent must receive such a message and reply correctly. The following
behaviour shows the reception of a ReindeerMessage.

1 c y c l i c behaviour WaitForMessages
2 f o r S a n t a {
3 on message m
4 when {
5 c o n t e n t i s Reindee rMessage
6 } do {
7 e x t r a c t r e i n d e e r as Reindee rMessage
8 t h e A g e n t . r e i n d e e r . add ( r e i n d e e r . i d )
9

10 i f ( t h e A g e n t . r e i n d e e r . s i z e == 9) {
11 send message {
12 per format ive i s INFORM
13 r e c e i v e r s are
14 t h e A g e n t . r e i n d e e r . t o L i s t
15 c o n t e n t i s new OK
16 o n t o lo g y i s San taOnto
17 }
18
19 a c t i v a t e behaviour
20 D e l i v e r T o y s ( t h e A g e n t )
21
22 t h e A g e n t . r e i n d e e r . c l e a r
23 }
24 }
25 }

Handling a message reception requires a cyclic behaviour, i.e., a behaviour which
remains in the agent list waiting for messages, also after the execution of its action.
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With the keyword for, the behaviour specifies a type of agent. It is useful, for exam-
ple, when the behaviour have to access some fields of the agent, or referring to it in
any way. The special field theAgent is used inside the action for accessing the speci-
fied agent. The construct on when do handles the message. The keyword on specifies
the type of event, a message, the keyword when contains a boolean condition over
such a message, to filter incoming messages, and the keyword do contains the actual
action. The expression extract creates a reference for the content of the message,
which can be now accessed. When the agent receives nine of those messages, it sends
an OK message to all the reindeer involved, and then it activates a behaviour to deliver
toys.

An almost identical construct on when do can be added after the previously shown
one, in the same behaviour, to manage ElfMessages. The combination of these con-
structs ensures the priority of the reindeer with respect to the elves. As a matter of
fact, the JADE translation of the behaviour creates two different event handlers, but
they are activated in sequence, as follows.

1 p u b l i c vo id a c t i o n ( ) {
2 super . a c t i o n ( ) ;
3 _ e v e n t 0 . run ( ) ;
4 _ e v e n t 1 . run ( ) ;
5 }

When a reindeer or an elf receives an OK message, the following behaviour acti-
vates.

1 c y c l i c behaviour WaitForOK {
2 on message msg
3 when {
4 c o n t e n t i s OK
5 } do {
6 i f ( t h e A g e n t i n s t a n c e o f R e i n d e e r ) {
7 a c t i v a t e behaviour D e l i v e r T o y s ( t h e A g e n t )
8 } e l s e {
9 a c t i v a t e behaviour DiscussToysRD ( t h e A g e n t )

10 }
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11 }
12 }

Finally, Reindeer, Elf, and Santa agent types can be defined. For reindeer and
elves, the declaration are very similar. They take as parameters the list of Santa avail-
able, and they uses the SantaOnto ontology for sending messages. In their initializa-
tion phase, they activate the two behaviours above, filling the Ready parameters with
the correct predicate.

1 agent R e i n d e e r ( AID . . . s a n t a s )
2 uses on t o l o g y San taOnto {
3 on c r e a t e {
4 a c t i v a t e behaviour
5 WaitForOK ( t h i s )
6
7 a c t i v a t e behaviour
8 Ready ( t h i s , s a n t a s , new Reindee rMessage ( t h i s . AID ) )
9 }

10 }

The agent Santa is even simpler in its definition. As a matter of fact, it only has to
sleep waiting for groups of reindeer or elves.

1 agent S a n t a uses on t o l o g y San taOnto {
2 var Set <AID> r e i n d e e r s = newHashSet
3 var Set <AID> e l v e s = newHashSet
4
5 on c r e a t e {
6 a c t i v a t e behaviour
7 Wai tForMessages ( t h i s )
8 }
9 }
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4.4 Experimental Results

Methods to evaluate DSLs can be found in, e.g., [Challenger et al., 2016a], which
focuses on MASs. Other surveys, such as [Mernik et al., 2005] and [Oliveira et al.,
2009], highlight the main advantages of the use of DSLs.

The comparison between the ABT pseudocode and its JADEL implementation
is done by defining some metrics, which help to get an idea of JADEL advantages
and disadvantages. Then, JADEL code is compared with an equivalent JADE code,
measuring the amount of code written, and the percentage of agent-oriented features
of such a code. Nevertheless, comparing a pseudocode with an actual implementation
is a difficult task, due to the informal nature of the pseudocode, and the implicit
technical details that it hides. Moreover, pseudocodes from different authors may
look different, depending on their syntax choices and their purposes. There are not
standard methods for evaluating the closeness of a source code to a pseudocode, and
its actual effectiveness in expressing the described algorithm. Hence, the evaluation
is limited to the use case of JADEL shown previously: the ABT example.

The first consideration that is made in evaluating the JADEL implementation of
ABT is that ABT pseudocode is presented by means of procedures and event han-
dlers, with the aid of the keywords when and if. As a second consideration, the
notation used inside the ABT pseudocode is the same of the DCSP formalization.
As a matter of fact, there are agentview and neighbors sets, and assignments are de-
noted as (xi,di), where xi is the variable associated with the i-th agent, and di ∈ Di.
A message is identified according to its type and its content, i.e., (OK,(xi,di)) for an
OK message, or (nogood,(xi,V )) for a NoGood. Such characteristics of ABT pseu-
docode allow to talk about similarity between it and the JADEL source code. In fact,
in JADEL, both procedures and event handlers are represented as behaviours of the
agent. In particular, procedures are one-shot behaviours that define an auto-triggering
actions, while event handlers are cyclic behaviours, each of them waits for the given
event and then performs its action. Hence, each behaviour can be associated with a
procedure or an event handler, and analyze each of them separately. Moreover, calls
to procedures in ABT pseudocode translate into the activation of the corresponding
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behaviour in JADEL. Also, the sending of a message is done by activating a specific
JADEL behaviour. Hence, each send instruction in ABT pseudocode is associated
to that activation. The DCSP notation is used also in JADEL, by means of the two
maps, theAgent.agentview and theAgent.neighbors, and by defining some ontology
terms. As a matter of fact, terms OK and NoGood are predicates in a JADEL on-
tology, and they contain an assignment, and a list of assignments, respectively. Each
assignment consists in a index and a value, i.e., xi and di, respectively. The domain
Di of a variable is defined once in the start-up phase of the agent and it is never
modified during the execution of its actions. ABT pseudocode notations are associ-
ated with the respective JADEL notation described above. Finally, the reception of
a message is done by using the construct on when do, which is the corresponding
of ABT pseudocode construct when received(. . .) do. In summary, (i) ABT proce-
dures are associated with JADEL oneshot behaviours, (ii) ABT event handlers are
associated with JADEL cyclic behaviours, (iii) procedure calls and send instructions
are associated with the correct behaviour activation, (iv) references to agentview or
agent neighborhood are associated with the respective JADEL agent fields, and (v)
receptions of messages are associated with JADEL constructs and expressions that
concern reception and content extraction from a message.

In the following, it is said that a line of ABT pseudocode corresponds to a line (or,
a set of lines) of JADEL implementation, if it falls in one of the previous cases. Then,
for each line of ABT pseudocode, the number of the corresponding Lines Of Code
(LOC) of JADEL implementation is counted. The absolute value of the difference
between ABT lines and corresponding JADEL LOC is used as a first, rough, distance.
For example, in the reception of an OK message, the first line of the pseudocode
corresponds to the on when do constructs to capture the correct event, and filter other
messages that are not complied with the expected structure, as follows.

1 on message msg
2 when {
3 o n t o lo g y i s ABTOnto and
4 per format ive i s INFORM and
5 c o n t e n t i s OK
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6 }

Moreover, the extract expression is used to obtain the message content.

1 e x t r a c t receivedOK as OK

Hence, in this case there are six LOCs instead of one line of the pseudocode. Thus,
the distance is of five LOCs. Such a distance gives an idea of the amount of code
which is necessary to translate pseudocode into JADEL, in case of ABT example.
A summary is shown in Table 4.1, where a count of nested blocks also presented.
ABT pseudocode and JADEL implementation do not differ significantly in terms of
nested blocks, and JADEL code often requires one more level (the do block), but its
structure is usually very similar to ABT pseudocode.

Then, it is desirable to obtain a quantification of the complexity of the source
code. In fact, JADEL code sounds similar to ABT pseudocode also because of its
structure. The depth of each block of code is used as a measure.

The count of nested blocks makes more sense when JADEL code is compared
to the equivalent JADE one. Such an equivalent implementation is obtained directly
from the available JADEL compiler [Bergenti, 2014], which translates JADEL code
into Java and uses JADE APIs. In fact, JADEL entities translate into classes which
can extend JADE Agent, CyclicBehaviour, OneShotBehaviour, and Ontology

base classes, while JADEL event handlers translate into the correct methods of JADE
APIs, in order to obtain the desired result. JADE code is automatically generated from
the JADEL one, and this means that the final code may introduce some redundancy
or overhead. For this reason, a JADE code that implements ABT algorithm directly
was also wrote. Nevertheless, this alternative implementation is as complex as JADE
generated code, because of some implementation details that JADE requires.

A comparison between JADEL and JADE implementation is made in terms of
amount of code, i.e., by counting the number of non-comment and non-blank LOCs
of each entity, namely, the ABTAgent, the ABTOntology, and all the behaviours. Re-
sults are shown in Table 4.2. In order to emphasize the advantage in using JADEL
instead of JADE, the percentage of lines which contains agent-oriented features over
the total number of LOCs is also shown in Table 4.2. Agent-oriented features are each
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Table 4.1: The number of LOCs of the JADEL implementation against that of the
ABT pseudocode. ∆l is the number of LOCs of the JADEL implementation minus
the number of LOCs of the pseudocode, for each event handler. ∆d is the count of
nested blocks in the JADEL implementation minus the count of nested blocks in the
pseudocode, for each event handler.

Event handler ∆l [LOCs] ∆d [levels]

Check agentview 2 1

Backtrack 6 2

Received OK 6 0

Received nogood 7 1

Table 4.2: Number of LOCs of the JADEL implementation of the ABT pseudocode
against the number of LOCs of the corresponding JADE implementation, designed
to exactly match the JADEL implementation.

Classes JADEL [LOCs] JADE [LOCs]

ABTAgent 57 149

ABTOntology 7 113

Behaviours 138 380

reference to the agent world. For example, keywords agent, behaviour, ontology
are agent-oriented features, but are also special expressions. In JADE, agent-oriented
features are simply the calls to the API. Table 4.2 shows that the JADEL imple-
mentation is far lighter than the JADE one, and that it is more dense in terms of
agent-oriented features. Such measures can be viewed as an indication of simplicity
of JADEL code with respect to JADE.

The comparison between the chosen Savina benchmarks and their JADEL imple-
mentation is done by using the metrics of LOCs, with some restrictions. As in the
ABT case, JADEL code is also compared with an equivalent JADE code, in terms
of amount of code written. The main problem here is the different structure of a
JADEL implementation, developed by using the JADEL approach, and the structure
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Table 4.3: Number of LOCs, for Scala, JADEL and JADE implementation of selected
examples from Savina benchmark suite.

Benchmark JADEL Scala JADE (generated source)

Base 55 68 197

PingPong 62 73 295

ThreadRing 46 53 239

Counting 72 40 308

Big 90 76 407

Chameneos 121 112 574

Philosopher 108 64 503

of a benchmark in Savina. Savina and JADEL projects are analyzed in terms of file
written, utilities, and base classes, and only relevant parts of the benchmarks are
evaluated (for example, configuration files are not counted). For a deeper evaluation,
JADEL ontologies and Savina message objects are treated separately.

Savina benchmarks are structured as follows. There is a Java-written file of con-
figurations, where parameters are initialized and managed (e.g. the number of pings N
for the PingPong example), and objects for message passing are implemented. There
is also a Scala source code that contains the implementations of actors, a class which
implements the benchmark, i.e., a class that manages the iteration and the cleanup
phases of each test, and an entry point for the benchmark. Similarly, JADEL bench-
marks are structured as follows. The configuration file is the same as Savina. There is
a Java file that implements the benchmark and the entry point. The most important,
there is a JADEL file which contains the agents that are used in such a benchmark,
their behaviours and an ontology for agent communications. It is worth noting that
ontology predicates, concepts and propositions completely substitute that objects in
the configuration file which are used in Savina for message passing. So, the JADEL
implementation uses only a part of such a file, for getting parameter values, and does
not take advantage of message objects.

Then, all benchmarks share a common base of methods and utilities. In Savina,
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Table 4.4: Number of LOCs, for Scala, JADEL and JADE implementation of ontolo-
gies and messages.

Benchmark JADEL Ontology Scala Message Objects JADE Ontology

Base 4 0 37

PingPong 6 29 57

ThreadRing 5 30 94

Counting 5 3 62

Big 5 21 47

Chameneos 7 32 141

Philosopher 7 6 97

for each considered actor framework, an actor base class is implemented. In JADEL,
a base agent with two behaviours is implemented. Finally, Scala, JADEL and JADE
LOCs are calculated using the following rules:

1. Blank lines or comments are not counted;

2. Prints for debugging are not counted;

3. Regarding Savina benchmarks, actors implementations are counted and also
the definition and implementation of Message objects;

4. Regarding JADEL, the agent, behaviour and ontology implementations are
counted; and

5. Regarding JADE, all generated files are counted.

Each measurement of the Savina suite is done by considering the Scala actor
implementation of the benchmark. In Table 4.3, LOCs of some examples are shown,
namely, the PingPong, ThreadRing, Counting, Big, Chameneos and Philosopher
benchmarks. Table 4.4 emphasize the fact that JADEL syntax for ontologies is very
light and the number of LOCs for ontologies remains little for each example, as op-
posed to Savina message objects or JADE ontologies.
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Table 4.5: Number of LOCs and percentage of Agent-Oriented (AO) features over
the total number of LOCs, for JADEL and JADE implementation of the Santa Claus
example.

Classes JADEL [LOCs] JADEL [AO] JADE [LOCs] JADE [AO]

Agents 19 57.89 54 33.34

SantaOnto 5 80.00 64 17.19

Behaviours 68 61.76 237 29.54

Regarding the Santa Claus example, as a first notable problem, reindeer and elves
codes easily overlap, because JADEL does not have a pattern-matching engine at that
level. As a matter of fact, agent types translates into Java classes, and, when an agent
starts, it can be recognized only by its AID. Thus, two different predicates are used
in order to distinguish a reindeer from an elf, duplicating the code for managing
messages.

Another problem can be the lack of transparency of event handling in behaviours.
The priority is stated by the order of the on when do constructs, which translates into
a JADE action that maintains such an order. This is ultimately a technical implemen-
tation details, that is not clear.

Despite these problems, the JADEL implementation presents some important ad-
vantages. As a matter of fact, the target domain of the language is the JADE domain,
and its purpose is to ease the construction of JADE MASs. In terms of LOCs, the
scope has been achieved, as illustrated in Table 4.5. The table also show another mea-
sure, namely the rate of agent-oriented features per LOCs. The gain in using JADEL
instead of JADE is evident from this type of analysis, in terms of simplicity, ease-
of-use, and development time. Moreover, comparing JADE and JADEL performance
shows a negligible overhead, because JADEL heavily relies on JADE architecture,
and JADEL agents run on the JADE platform. As another result, the proposed imple-
mentation of the Santa Claus problem is easily scalable for large number of reindeer,
elves and Santas. In fact, each agent is a thread, and behaviours are tasks that can
be executed in parallel. The order of the on when do constructs in the Santa agent
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behaviour ensures the correct order of priority, and the developer does not have to
take account of these technical issues when building its own MAS.

In summary, JADEL was meant for providing a lighter syntax for JADE features,
and thus simplifying the use of the framework. The effort made in selecting appro-
priate expressions and cutting tedious and repetitive implementation details was suc-
cessful, especially for the development of ontologies. Hence, the language is suitable
for developing agent-based systems, and implementing agent-oriented algorithms. In
this last example its adaptability to other types of problems, in particular, coordination
problems, is evaluated. Such problems are studied mainly for actor-based technolo-
gies, where concurrency and synchronization are central issues. Nevertheless, agent
frameworks could add intelligent behaviours to the simpler actor model, and agents
can behave like actors in certain situations, when requested. JADEL shows a good
adaptability, and confirms the advantage compared to the JADE approach.





Conclusions

This thesis presented the JADE Language (JADEL), a novel agent-oriented Domain-
Specific Language (DSL). A fragment of the variety of architectures and different
targets of Agent-Oriented Programming (AOP) was shown in the first chapter, in or-
der to make an almost complete view of the context that JADEL aims at joining.
First, Agent-Oriented Software Engineering (AOSE) was defined, and the major ex-
isting approaches to AOSE and agent-oriented Model-Driven Development (MDD)
were described. Some of them concern meta-models, others provide tools for mod-
eling agents and Multi-Agent Systems (MASs), but most of them are methodologies
that discipline the developments from early design phases to the actual implementa-
tion. Then, some of the most popular agent-oriented frameworks and Agent Platforms
(APs) were illustrated, pointing out the importance of AOP in real-life applications.
Finally, Agent Programming Languages (APLs) were presented as a class of pro-
gramming languages, which spaces from abstract to general-purpose ones, and that
are very different for purpose and usage. The high number of different agent-oriented
proposals, from agent-oriented methodologies to platforms, frameworks, and lan-
guages, confirms the relevance of AOP as a mature programming paradigm.

The second chapter is devoted to a formalization of the platform taken as basis
for JADEL: the Java Agent DEvelopment Framework (JADE). One of the major goals
of the proposed formalization was to decouple JADE agents and MASs from imple-
mentation details and from the Java meta-model. Therefore, the main abstractions that
compose a JADE MAS were identified and precisely defined, for describing them for-
mally. Another major goal of the proposed formalization is to clarify the intended se-
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mantics of JADE APIs by means of clear and consistent operational-semantics rules
which closely follow the execution model of JADE agents. This helped addressing
the key aspects of the life cycle of agents and it contributes to avoid possible mis-
understandings about its semantics. The formalization focused, as expected, only the
main entities of the MAS, thus offering a complete view of the whole system in the
clear terms of well-defined stores. Examples of computations were obtained from
simple JADE agents and behaviours, and explain how the proposed transition system
operates on the life cycle of those agents and of their behaviours. A complete anal-
ysis of a complex agent with several behaviours, some of them dynamically added
and/or removed, leads to a significant growth of the involved transition systems. As
a future development, the implementation of automatic tools capable of reasoning
on agents and MASs will be addressed, to target real-world applications of the pro-
posed formalization. Nevertheless, the proposed formalization brings two important
results. The first is that the main transition system strictly follows the intended se-
mantics of JADE APIs, and this fact permits to focus only notable elements of JADE
agents and behaviours, decoupling their respective semantics from the semantics of
Java statements. The second is the capability of the transition system to separately
and concisely describe the whole MAS, using stores which allow the access to the
currently instantiated agents and behaviours.

In the third chapter, the details of the JADEL programming language were ex-
plained, together with the main motivations that lead to its core decisions. In par-
ticular, the use of Xtext and Xtend and the consequent integration with the Eclipse
IDE provide a natural approach to MDD for developing real-world complex appli-
cations and ensuring the interoperability with Java. Then, JADEL abstractions were
presented, and their syntax was illustrated. The definition of JADEL semantics is
quite straightforward, given the basis of JADE semantics and thanks to the light syn-
tax of JADEL. Moreover, a step-by-step programmer’s guide for JADEL is provided.
Given a well-known JADE example, the JADEL implementation was obtained. Start-
ing from the definition of the ontology, to behaviours implementation, to agent dec-
larations, and, finally, interaction protocols, the example exploited all JADEL fea-
tures and expressions. Future developments of JADEL regard the actual release of
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the language as an open-source project, and the production of appropriate guides and
documentation for current JADE users.

Finally, the fourth chapter presented further examples of JADEL implementation
of diverse problems and algorithms. A final discussion of such examples and bench-
marks was provided. A quantitative assessment of JADEL was obtained by using the
metrics of Lines of Code (LOCs) and the percentage of Agent-Oriented (AO) features
in the code. Those indicators are useful in a first approximation to enlighten some
JADEL advantages, namely, its lighter syntax and the conciseness in the definition
of ontologies. Nevertheless, other aspects are difficult to be precisely evaluated, due
to their qualitative nature. For instance, some constructs and expressions are meant
to reduce the complexity of the framework and to improve readability rather than
to reduce the amount of code written. As illustrative examples, the on when do and
the extract are specifically designed to clarify message reception, while the cor-
responding JADE patterns are repetitive and full of implementation details. JADEL
was shown to be sufficiently expressive to fully reproduce the chosen examples and
the best results with respect to JADE are obtained in the ontology implementation.
Also roles and behaviours are shorter and clearer, due to the frequent use of domain-
specific constructs, especially for message passing. As previously said, numbers of
LOCs and the percentage of AO-LOCs are not sufficient to measure the actual ad-
vantage in the use of JADEL. For this reason, future works will address the problems
of language evaluation and testing. Such an evaluation could be done by scheduling
the development of an application by a team of several users. Users could have dif-
ferent experiences in the use of JADE, from beginners to experts. Moreover, making
an application that deals with a real-world problem is a good strategy for testing.
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