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“Dr. Einstein, why is it that when
the mind of man has stretched so
far as to discover the structure of
the atom we have been unable to
devise the political means to keep
the atom from destroying us?”
“That is simple, my friend. It is
because politics is more difficult
than physics!”

Albert Einstein





ABSTRACT

This work discusses an innovative micromechanically-motivated statistical char-
acterization of the strength of annealed and heat-treated glass, with the aim of
achieving a reliable definition of the mechanical properties of this material for
structural applications also taking into account the effects of natural aging, thus
avoiding either unsafe or redundant design.
The 2-parameter Weibull distribution, based upon the weakest-link-in-the-chain
model, is by far the most common statistics to interpret the glass strength. How-
ever, its universal use has to be questioned, because comparison with the experi-
mental evidence indicates that it cannot accurately interpret the left-hand-side tail
of the population. This has very strong implications for structural design where
the tails play the decisive role, because only very low probabilities of failure are tol-
erated. Starting from the observation that many experimental campaigns recorded
in the technical literature seem to indicate that the measured strength of float glass
cannot fall beyond a certain limit, even when the material is heavily damaged ei-
ther naturally or artificially, we present arguments to support this conjecture. The
lower bound can be attributed to factory production controls for marketed glass,
which tends to discard the material that does not meet severe aesthetic and optical
requirements. Since these are associated with the presence of surface cracks, the
control should indirectly limit their depth and size, thus providing a threshold for
the average strength according to well-established models in fracture mechanics.
How the potential interaction between pre-existing cracks and cracks added by
abrasion may affect the corresponding stress intensity factor is further discussed,
demonstrating that the variation is in any case limited, and, consequently, the
lower bound for the strength may be reduced, but not annihilated, by natural
aging.
For a better interpretation of the aforementioned hypothesis, the connection be-
tween an assumed statistics for the crack-size population and the population of
macroscopic strengths is further established. If one assumes a statistical distri-
bution à la Pareto to interpret the variability of crack depths, the 2-parameter
Weibull distribution is obtained for the strengths. Remarkably, the effect of an
upper-truncation of the population of crack lengths, possibly consequent to factory
production controls, provides a left-truncated Weibull distribution that excellently
fits most of the experimental results for annealed float glass, at least when it is the
air-side under tensile stress in bending. Other generalized Weibull statistics, either
bounded or unbounded, have been considered for the sake of comparison. For each
of them, proper expressions for data re-scaling, to take into account the effects of
size, type of applied stress and subcritical crack propagation, are provided.
Certainly, aging in the form of corrosion or abrasion can produce a variation of
the defectiveness scenario originally present on the glass surface. The established
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correlation between the micro-defects and macroscopic strength allows to predict
how the latter can be affected by variations in the defectiveness scenario. In par-
ticular, corrosion is assumed to be equivalent to the removal of a thin surface layer
of glass, which reduces the depth of the micro-cracks, whereas abrasion consists
in adding new defects to the pre-existing ones. This approach is used to interpret
the difference in strength experimentally-measured at the tin-side with respect to
the air-side, by assuming that the contact with the tin bath and the steel rollers
during manufacturing is equivalent to a mild abrasion process.
This micro-macro approach is also employed to discuss the mechanical proper-
ties of heat-treated glass, where a compressive eigenstress is permanently in-
duced by heating and successive cooling. Several experimental campaigns, recorded
in the technical literature, have demonstrated that the characteristic strength
of heat-treated glass can be much higher than the simple sum of the pristine
material characteristic strength and the characteristic value of the prestress. A
micromechanically-motivated cumulative probability function for the population
of strengths of heat-treated glass is proposed, which accounts for the statistical in-
terference between the mechanical properties of pristine glass and the eigenstress.
The statistical interference is deeply affected by the applied state of stress: the
benefic effect of the heat-treatment is maximum when the applied stress is uniax-
ial, minimum when this is uniform equibiaxial. This model justifies and confirms
the results of experiments recorded in the technical literature. Moreover, an ad hoc
experimental campaign has been conducted, from which it has been observed that
the lower quantiles of the distribution are well interpreted by the statistical model,
whereas the higher the quantile is, the higher is the distance between expected and
observed data. This may be attributed to a further beneficial effect due to crack
healing.
All the previous findings are applied to the calibration of material partial factors
to be used in the semi-probabilistic (level I) method of design, in order to guaran-
tee the target probability of failure established by structural standards. The cal-
ibration is made on paradigmatic case-studies, comparing the results with those
obtainable with full-probabilistic (level III) methods of design. For annealed glass,
the partial material factors calculated from the proposed statistics are much lower
than those obtainable with a 2-parameter Weibull model. Moreover, heat-treated
glass reveals a quite surprising strength capacity, which seems to have been hardly
appreciated before.
The refined statistical models presented here, motivated on the basis of micro-
mechanical considerations, should increase the confidence in the structural appli-
cations of glass, achieving its optimal exploitation and, thus, improving its com-
petitiveness on the market with respect to other construction materials.
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CHAPTER 1

INTRODUCTION

1.1 Glass: an “innovative ancient” material
Many researchers think that the first forms of primitive glass were probably de-
veloped in the Mitannian or Hurrian region of Mesopotamia 5000 years before
Christ, as an extension of the production of glazes [24]. In that era, a new ma-
terial called faience was developed in Egypt, constituted by a glaze layer over
a silica core. Traditionally, the Ancient Mesopotamians are considered the first
producers of glass as an independent material around 3,600 years ago. However,
in the last years, some researchers have questioned about this hypothesis, claim-
ing that Mesopotamians may have created second-rate knock-offs of glass objects
from Egypt. The techniques for making colorless glass were discovered in Syria
and Cyprus, in the 9th century BC. Furthermore, cuneiform tablets discovered in
the library of the Assyrian king Ashurbanipal contain instructions on how to make
glass. The Romans began to use glass for architectural purposes from circa the
year 100 AD, when clear glass, albeit with poor optical quality, were discovered
in Alexandria. Cast glass windows appeared in the most important buildings of
Rome and the most luxurious villas of Herculaneum and Pompeii.
The first glass factory in the United States was built in Jamestown, Virginia in
1608. The process by George Ravenscroft, invented in 1674, made glass easier to
melt and improved its optical properties. In the middle of the XVIII century,
De Nehou’s process of rolling molten glass poured on an iron table led to the
production of very large plates. In the 1851, Joseph Paxton built the Crystal
Palace to house The Great Exhibition, whose illustration is shown in Figure 1.1(a).
This building revolutionized the public use of glass as a material for domestic and
horticultural architecture.
Several processes were patented between the middle of the XIX and the middle of
the XX centuries to advance the automating in glass manufacturing. The revolu-
tionary float glass process was developed by Sir Alastair Pilkington and Kenneth
Bickerstaff of the UK’s Pilkington Brothers between 1954 [15] and 1959 [16]. In
this process, a continuous ribbon of glass is formed using a molten tin bath on
which the glass paste flows, providing uniform thickness and very flat surfaces to
the sheet. The success of this process was mainly due to the balance of the volume



1.1 Glass: an “innovative ancient” material

(a) (b)

Figure 1.1: (a) Illustration of The Great Exhibition of 1851 at the Crystal Palace. (b) Model
factory at the Werkbund exhibition in Cologne (1914) by Walter Gropius and Adolf Meyer.

of glass fed onto the bath, where it was flattened by its own weight. Today, the
90% of marketed glass is still manufactured through the float process.
Since the first decades of the XX century, glass transparency, together with its me-
chanical properties and its durability, gave the green light to a completely novel
approach for thinking and designing civil structures. Glass in architecture appli-
cations allowed to preserve the interior spaces, without inhibiting the view to the
outside. Thus, the design of the interior spaces was strictly related to the outside.
Already in the 1910s, some of the maximum exponents of the European architec-
ture, such as Mies van de Rohe and Walter Gropius, tried to minimize the size of
the structural components so as to make the most of glass transparency. Figure
1.1(b) shows the model factory designed by Walter Gropius and Adolf Meyer for
the Werkbund exhibition in Cologne in the 1914. Through the decades, glass has
increased its appeal upon designers and architects, whose challenge has been to
find new forms of transparency and amazing lighting effects.
The main factor that has limited the structural role of glass is certainly its brittle
nature, together with the possibility of spontaneous breakages due to the presence
of inclusions. In recent years, glass has overcome its traditional role of simple infill-
panels, to acquire a well-defined structural identity. This represents the last step
for glass in architecture, which has given an innovative function to this “ancient”
material, employed nowadays for balustrades, load-bearing beams, floors, roofs,
stairs and frames. Remarkably, the demand for architectural glass, which accounts
for approximately 80% of glass production, has increased by 5% per annum since
2009. The “Nuvola” by Massimiliano Fuksas shown in Figure 1.2(a), designed in
the 1998 and inaugurated in Rome in the 2016, certainly represents a remarkable
and recent example of transparent structure. Another famous buildings whose load-
bearing components are all made of glass is the Apple Store located in Shangai,
shown in Figure 1.2(b), made with glass panels of 12 m in height.
Nowadays, the challenge for designer and architects is to best exploit the optical
and aesthetic properties of this material. Many companies are actively involved in
this challenge and, year by year, larger and larger plates are produced (monolithic
glass of geometry up to 3.51 m × 20 m will be manufactured in the 2018). At the
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(a) (b)

Figure 1.2: (a) Fuksas’ “Nuvola” in Rome, designed in the 1998 and inaugurated in 2016. (b)
Apple store in Shangai.

same time, researchers are engaged in improving the understanding of the struc-
tural glass capacity, in order to meet the requirements prescribed by standards in
terms of safety and serviceability for structural members. Certainly, the reliabil-
ity of any structural design is definitely based upon the capability of determining
the material strength with the appropriate degree of accuracy. The knowledge
about the mechanical and statistical characterization of float glass strength still
has “dark spots”, because of which extremely cautious verification formula and
safety factors are used in the structural design of elements made of glass. Hence,
the correct statistical modeling of glass strength, based on micro-mechanical mo-
tivations, is certainly of paramount importance for the optimization of the use of
the material in the engineering design and, consequently, for the improvement of
its competitiveness on the market.

1.2 Research objectives and scopes
The main scope of the current research project is to improve the statistical model-
ing of glass strength, either annealed or heat-treated or abraded/corroded, so as to
optimize the use of this material in structural design. To this aim, the relationship
between micro-crack lengths and macroscopic material strengths distributions is
analyzed, taking into account the effects of variation in the defectiveness scenario
upon the distribution of glass strengths. More specifically, the principal objectives
and scopes of this research are:

• To establish a reliable statistical model for interpreting glass strength vari-
ability, corroborated by micromechanically-motivated considerations. The
statistical analysis is explicitly focused on the left-hand-side tail of the dis-
tribution of strengths, since only this part of the population substantially
affects the structural design.

• To explain why the distributions of strengths for the air-side and the tin-side
are different-in-kind.

• To present a micro-mechanical approach for studying the variations in the
statistical distribution of the macroscopic strengths distribution as a con-
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sequence of changes in the defectiveness scenarios, induced by abrasion or
corrosion processes.

• To propose a refined statistical model for the distribution of the strengths
of heat treated glass, which accounts for the statistical interference with the
distribution of the heat-induced compression eigenstress. Such a statistical
interference certainly depends upon the type of applied stress (equibiaxial
vs. uniaxial).

• To calibrate on a statistical basis partial material factors for the structural
design of float glass. How the use of different statistical distributions for inter-
preting annealed glass strengths variability affects the values of the resulting
partial factors is investigated. Remarkably, many standards suggest values
that are chosen on basis of technical experience, while only recently par-
tial material factors have been calibrated on a statistical basis by using the
2-parameter Weibull model, but the so-obtained values are extremely high
and, consequently, they are hardly accepted by industries and designers.

• To calibrate on a statistical basis the partial safety factors associated with the
heat-induced surface prestresses in heat-strengthened and toughened glass.

1.3 Outline
This thesis is divided into seven chapters, including the introductive Chapter 1,
and five appendixes. The chapters are organized as follows:
Chapter 2 - The main technological and mechanical aspects of glass for struc-
tural applications, in particular soda-lime float glass, are illustrated. The material
mechanical properties are summarized and the float and the tempering processes
are described.
Chapter 3 - A micro-mechanically motivated model is proposed for interpreting
the annealed glass strength variability, which spells out the connection between
crack size population and the strength statistics. The effect of an upper-truncation
of the population of crack lengths upon the glass strengths distribution, induced
by the factory quality controls, is investigated. Arguments are presented that sup-
port the existence of a lower bound for strength. Various generalized statistical
distributions à la Weibull, either providing or not a lower bound, are compared in
their ability at interpolating experimental data.
Chapter 4 - The statistical interference between the distribution of strengths in
the pristine material and the corresponding distribution for surface compressions,
induced through thermal treatment, is analyzed. A micro-mechanically motivated
model is proposed to study how a deviation from the equibiaxiality in the stress
state affects the failure probability. The results of a properly-designed experimental
campaign performed at the Technical University of Darmstadt are recorded and the
ability of the proposed model at interpolating the experimental data is discussed.
Chapter 5 - A micro-mechanical derivation of the macroscopic strengths statistics
for corroded or abraded float glass is presented. How potential variations in the
defectiveness scenario due to natural corrosion or abrasion phenomena may affect
the statistical distribution of pristine glass strength is discussed. By considering
the tin-side of float glass as a mildly abraded surface, due to the contact with the

4



CHAPTER 1. INTRODUCTION

tin bath and the steel rollers during the production process, the difference in the
strengths distribution between the air-side and the tin-side is interpreted.
Chapter 6 - Partial material factors have been calibrated, in order to guarantee
the target failure probability in glass structures according to the semi-probabilistic
(level I) method of design. Calibration is made by comparison with results obtain-
able with the full-probabilistic approach (level III) on paradigmatic case studies, by
interpreting float glass variability with various generalized Weibull distributions.
The so-obtained partial factors are compared with those previously obtained with
a 2-parameter Weibull model. The partial safety factors associated with the heat-
induced surface prestress in strengthened and tempered glass are also calibrated,
by comparison with fully probabilistic methods in paradigmatic examples.
Chapter 7 - Conclusions from this study are given and the principal findings
are summarized. Contributions and recommendations for further research are
recorded.

Figure 1.3: Organization of the chapters.

The material treated in the Appendixes is the following:
Appendix A - Different unbounded and bounded generalized Weibull distri-
butions, based upon the weakest-link-in-the-chain rationale, are presented. The
physical motivations underlying these distributions are discussed. The graphical
methods for the estimation of the statistical parameters characterizing the various
generalized distributions are illustrated. The Chi-square statistical test for eval-
uating the goodness of fit with the experimental data exhibited by a statistical
model is shortly described.
Appendix B - A deep analysis of the stress state acting within a specimen tested
under Coaxial Double Ring (CDR) configuration is presented, both in the linear
and in the non-linear regime. An analytical expression for the effective area, ac-
cording to the 2-parameter Weibull model, is proposed. An overview of the most
used standardized testing configurations is recalled with particular reference to the
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CDR test, for which a new set-up is proposed.
Appendix C - The probabilistic models for wind loads and snow loads, recorded
in the Eurocode (EN 1991-1-3 and EN 1991-1-4), are recalled.
Appendix D - The main aspects of the normal and of the log-normal distributions
are summarized. Methods for the parameter estimation and for investigating the
deviation from normality (or log-normality) are illustrated.
Appendix E - Tables summarizing all the relevant data corresponding to the
measurement and experimental campaigns described in Chapter 4 are recorded.
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CHAPTER 2

GLASS IN STRUCTURAL APPLICATIONS

2.1 The “float” process
Today, the float process is by far the most used manufacturing process, accounting
for about the 90% of flat glass production worldwide, thanks to its wide applica-
bility, the optical quality of the so-obtained glass panes, the possibility of reliably
producing large panes and the low cost
The production process is divided in different stages, schematically shown in Figure
2.1. The raw materials, strictly controlled for quality, are mixed to make batch
and, then, melted in a furnace at 1500◦C. Several processes take place in the
furnace simultaneously, e.g., melting, refining and homogenizing, which delivers
smooth glass almost free from inclusions and bubbles. The molten glass is then
continuously poured on a bath of molten tin, starting at 1100◦C and leaving the
float bath as a solid ribbon at 600◦C. The tin has always been used since 1950s
thanks to the large temperature range of liquid state and the high specific weight.
In the original process, while floating on the tin bath, glass paste reached an
equilibrium thickness of 6.8 mm, it was gradually cooled and, then, it passed
on steel rollers before entering a long oven (lehr) at 600◦C. Differently from the
process patented in the 1950s, today’s glass plates have thicknesses in the range
of 2 mm to 25 mm. The higher the roller speed is, the lower is the plate thickness
and vice-versa. During the cooling, considerable stresses can develop in the ribbon,
and this is why the annealing lehr cools the glass slowly, while the temperature is
strictly controlled both along and across the lamina. After annealing, automated
machines inspect the products. The parts of glass ribbon with visual defects and
imperfections are removed during cutting, and the waste glass is collected and fed
back into the furnace. Finally, the glass is cut through diamond wheels and, then,
stored. Coatings can be applied before annealing when profound changes in the
optical properties of the material are required.
Since during the production process one external surface is exposed to air, whereas
the other one is in contact with the tin bath and steel rollers, the two faces of glass
sheets present some substantial differences. Different defectiveness scenarios are
present on the two surfaces: this is why the mean value of the mechanical strength
of the tin-side is usually lower than the one of the air-side. At the same time,



2.2 Material properties

Figure 2.1: Schematic of the “float” production process. Image from
https://www.pilkington.com/resources/floatplant.jpg.

the dispersion of tin-side strength distribution is lower than for air-side strength.
Furthermore, some diffusion of tin atoms into the glass surface occurs, which may
affect the bonding with polymeric interlayers during lamination. The tin-side can
be differentiated from the air-side thanks to its bluish fluorescence when exposed
to short-wave ultraviolet radiation (UV-C).
Float glass is often subjected to further processes, which can vary its shape, per-
formance and appearance, so to meet particular requirements. This secondary
processing may include edge working, curving, thermal treatments, heat soaking
(to reduce the potential for nickel-induced breakages in use), laminating, surface
modification processes and insulating glass unit assembly. The mass production
process, together with many post-processing phases refined trough the last 50
years, have made glass cheap enough to make it very attractive for architectural
applications.

2.2 Material properties
Glass behavior does not exhibit a plastic phase, such as metallic materials, and,
furthermore, it is not able to develop the diffused micro-cracks which enable the
anelastic mitigation of stress concentrations, as in quasi-brittle materials like con-
crete. Its mechanical response is almost perfectly linear elastic up to failure and
isotropic. Thus, differently from the most classical structural materials, local stress
concentrations cannot be disregarded.
The theoretical tensile strength of the pristine glass, i.e., without any defect, may
reach 32 GPa [86]. However, the tensile strength exhibited by glass plates under
bending is much lower, and generally it does not exceed 100 MPa. Since glass
does not yield plastically (local stress concentrations are not reduced through
stress redistribution), micro-cracks, which are unavoidably present on the external
surfaces of the glass plates, govern glass fracture. Such micro-cracks are generally
not visible to the naked eye and the nature of their size, shape and distribution
is strongly probabilistic. Flaws open almost exclusively in mode I and, hence,
fracture occurs when the combination of crack depth and tensile stress at right

8



CHAPTER 2. GLASS IN STRUCTURAL APPLICATIONS

angle with crack axis reaches a critical value. Because of the sensitivity to the
underlying flaws, the macroscopic strength is affected not only by the maximum
tensile stress acting within the plate, but also by the size of the specimen and by
the acting state of stress. In fact, the higher is the specimen size, the higher is the
probability of finding a crack in critical conditions. Moreover, the probability of
finding the maximum principle tensile stress at right angle with the crack axis is
100% if the stress state is equibiaxial, whereas it is lower for a generic state of stress
and minimum if the state of stress is uniaxial. Of course, this further source of
uncertainty affects the distribution of the macroscopic strengths. Moreover, flaws
can grow over time even when subjected to tensile stresses much lower than the
critical value, because of a phenomenon referred to as subcritical crack growth or
static fatigue [100]. It is then clear that mechanical strength of glass should be
evaluated in accordance with a model of fracture mechanics and it is strongly non-
deterministic. The compressive strength of glass is obviously not affected by the
presence of surface flaws and, hence, it is much higher than the tensile strength.
Soda lime silica glass (SLG) is by far the most used in construction. However, the
borosilicate glass (BSG), which guarantees optimal hydrolytic and acid resistance
and very high resistance to temperature changes, is preferred for special appli-
cations, such as fire protection glazing and heat resistant glazing. The chemical
compositions of soda lime silica and borosilicate glasses according to the European
Norms EN 572-1 [40] and EN 1748-1-1 [36] are recorded in Table 2.1. It is well-
known that glass micro-structure is amorphous, and, for soda lime silica glass, it
is constituted by an irregular network of silicon and oxygen atoms with alkaline
parts in between. The transition between liquid and solid state takes place over a
certain temperature range and no crystallization takes place.

Table 2.1: Soda lime silica glass and borosilicate
glass. Chemical compositions according to EN 572-1

and EN 1748-1-1.

SLG BSG

Silica Sand SiO2 69-74 % 70-87 %
Lime (calcium oxide) CaO 5-14 % -
Soda Na2O 10-16 % 0-8 %
Boron oxide B2O3 - 7-15 %
Potassium oxide K2O - 0-8 %
Magnesia MgO 0-6 % -
Alumina Al2O3 0-3 % 0-8 %
others 0-5 % 0-8 %

The most relevant physical properties of soda lime silica and borosilicate glass are
recorded in Table 2.2. Some properties of the material change consistently with the
chemical composition, e.g., the melting temperature of a pure silica oxide passes
from about 1700◦C to 1300◦C-1600◦C by adding alkali, and the thermal expansion
coefficient passes from 0.5 10−6K−1 to 9 10−6K−1 by adding soda.
One of the most attractive properties of glass is its excellent chemical resistance to
many aggressive elements, and this is why it is one of the most durable material in
structural works. The most evident optical and aesthetic property of glass is the
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2.3 The tempering process

Table 2.2: Soda lime silica glass and borosilicate glass. Physical properties according
to EN 572-1 and EN 1748-1-1.

SLG BSG

Density ρg kg/m3 2500 2200-2500
Knoop hardness HK0.1/20 GPa 6 4.5-6
Young’s modulus E MPa 70000 60000-70000
Poisson’s ratio ν - 0.23 0.2
Coefficient of thermal expansion ατ 10−6 K−1 9 3.1-6
Specific thermal capacity cp J kg−1 K−1 720 800
Thermal conductivity λ W m−1 K−1 1 1
Average refractive index
within the visible spectrum n - 1.52 1.5
Emissivity ε - 0.837 0.837

very high transparency within the visible range of wavelengths. For what concerns
soda lime silica glass, the reflection of visual light is 8%, but the application of
special coatings can improve its transparency. On the other hand, UV radiations
are mostly absorbed, because of the interaction with O2-ions in glass, and long-
wave infrared radiations are absorbed by Si-O-groups. That is why the interior of
a greenhouse is heated thanks to the visual light, while emitted long-wave thermal
radiations cannot go out. The dynamic viscosity of glass is extremely high, as it
is about 1020 Pas at room temperature.

2.3 The tempering process
The tempering process induces a residual stress field characterized by compressive
stresses acting within the external layers of the glass plate and tensile stresses in
the core part of the pane. This is a very efficient way for strengthening glass. Since
volume cracks are rarely present within the thickness, the core part of a plate offers
a tensile strength very close to the theoretical one. On the other hand surface cracks
can only grow if exposed to opening stresses. Thus, as long as the tensile surface
stress due to external actions is smaller than the residual compressive stress, the
probability of fracture occurrence is null in practice (Figure 2.2).
The thermal process consists of heating the float glass plate up to approximately
100◦C above the transformation temperature (∼= 620 - 675◦C), and then rapidly
cooling through cold air jets. At the beginning of the process, the cooling gives rise
to tensile stresses in the external layers, which solidify more rapidly than the in-
ternal layers, and compressive stresses in the core part. However, the tensile stress
rapidly relax thanks to the viscous nature of glass in this temperature range. The
glass pane solidifies and relaxation stops as soon as the temperature on the glass
surface falls below Tg (approx. 525◦C). Observe that an incorrect starting temper-
ature could cause failure, since relaxation does not turn up and residual tensile
stresses remains within the external surfaces of the pane. At this point, the interior
core is hotter than the external surfaces and the temperature profile is approxi-
mately parabolic through the thickness. When even the interior has cooled, the
characteristic residual eigenstress is such that the surfaces are under compression
and the interior in tension. Residual stresses σR(z) are usually assumed to follow
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Figure 2.2: Stress profiles in annealed and heat-treated glass [49].

a parabolic curve across the thickness [23], in the form

σR(z) = σpc

[
1− 6 z

h
+ 6

( z
h

)2
]
, (2.1)

where σpc is the residual stress acting within the external surfaces, z is the distance
from the external surface of the plate and h is the plate thickness. From equation
(2.1) one can notice that the plate is under compressive stresses on both the
faces down to a depth of approximately 20% of the thickness, which is generally
much larger than the depths of the cracks normally present on the surface1. Two
main types of heat treated glass exist: heat strengthened and toughened. These
are produced by using the same process, but with different cooling rates. The
higher the cooling rate is, the higher the residual stresses are. The typical residual
compressive surface stresses varies between 80 MPa and 150 MPa for toughened
soda lime silica glass and between 40 MPa and 80 MPa for the heat strengthened
glass. The residual stresses on the surface of tempered glass panels may vary
both locally, generally depending upon the distance from the cooling jet, and
globally, since near the edges and corners they are considerably different than in
the middle part of the panels. To mitigate the “point by point” variation, the
industrial practice is to increase the cooling rate and to let the plates oscillate
during cooling [20]. Because of its low thermal expansion coefficient, borosilicate
glass is difficult to temper. On the other hand, the common tempering procedure
for thick plates cannot lead to the expected residual stress field: this is why glass
panes of thickness higher than 12 mm cannot be heat treated using the ordinary
process.

1However, this may not be true for very thin glasses, whose use in architectural applications
has been recently explored [57].
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Since the 1940s, several models have been proposed to characterize glass behavior
during the tempering process. The classical “instant freezing” theory developed
by Bartenev [11] in 1948 is based on the hypothesis that the liquid glass is sud-
denly changed into an elastic glass solid at the transition temperature (Tg). In the
“viscoelastic” theory, Indenbom [50] took into account the relaxation of stresses.
Narayanaswamy [63, 62] developed a model accounting for both the states of the
structure, i.e., the structural relaxation and stress relaxation due to the viscoelas-
tic response. Today, it is possible to numerically model the tempering process with
great accuracy [83, 66]. This is certainly of importance for estimating tempering
eigenstresses when the geometry is complex, such as for boreholes.
The size of the fragments that constitute the fracture pattern of broken heat-
treated glass is a function of the energy originally stored in it. The highest the
residual stress is, the lower is the size of size fragments. The fracture pattern of heat
strengthened glass is more similar to annealed glass, with much bigger fragments
than for toughened glass. When heat-strengthened material is used in laminated
glass elements, this large fracture pattern results in a significant post-breakage
structural capacity.
A tempering process alternative to the thermic one is the chemical tempering, but
more expensive, which is based on the exchange of sodium ions in the glass surface
by potassium ions. As it is evident from Figure 2.3, its residual stress profile is
completely different from that of (2.1), in particular, the compressive stresses affect
a thickness of approximately 0.04 mm. When the crack exceeds the compressive
zone, the strengthening due to the increase in surface compression σpc is subject
to saturation. Moreover, subcritical crack growth occurs without external load for
surface flaws that are deeper than the compression zone, and very deep cracks could
lead to catastrophic failure because of the presence of very high tensile stresses
in layers of the plate that are not far from the external surfaces. Thus, the use
of chemically-tempered glass in structural applications should be considered with
extreme care.

Figure 2.3: Stress profile in chemically-tempered glass [49].

Heat treated glass elements can spontaneously break because of the presence of
nickel sulfide (NiS) inclusions. This presence is not common, but not negligible.
NiS particles are subjected to a phase change under the influence of temperature,
by increasing in volume by about the 4%. When such expansion takes place in
the interior part of a panel, subject to the higher tensile stresses, micro-cracks
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are formed and the collapse may occur instantaneously or after a certain period
because of the subcritical crack growth. International standards and guidelines
provide the heat-soak-test to mitigate the risk of spontaneous fracture due to
inclusions, which consists in slowly heating up the glass and maintaining a certain
temperature for several hours, so as to accelerate the phase change, and to make
glass elements containing dangerous inclusions collapsed during the test.
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CHAPTER 3

THE STRENGTH OF ANNEALED FLOAT GLASS

The statistical interpretation of the strength of brittle materials, and of glass
in particular, has been investigated by many scientists. Most of them concluded
that the 2-parameter Weibull model, described in Section A.2, was not to be
rejected, although its fit with the experimental data is not good. Other researchers
have emphasized the fact that material strength does not seem to fall below a
certain lower limit [30, 56]. Since the strength of glass is governed by randomly
distributed surface flaws that can propagate catastrophically when the applied
stress reaches a critical value, a well-accepted micro-mechanically motivated model
is here recalled, which spells out the connection between crack population and
strength statistics [72]. It will be demonstrated that, through this model, one can
reach a very accurate interpretation of the glass strength population, in particular
for the lowest values.

3.1 Fracture mechanics
The theoretical strength of glass, calculated as the required force to break the
covalent bonds between silicon and oxygen, has been estimated to be around 32
GPa [10], but glass plates generally break for stresses lower than 100 MPa. Such
massive difference between the theoretical and practical failure stress of glass is
due to the unavoidable presence of cracks on the external surfaces of marketed
glass plates.
Glass mechanical behavior is almost perfectly elastic, and this is why the Linear
Elastic Fracture Mechanics (LEFM) is usually considered.
Inglis [51] studied, already in the 1913, the stresses in a plate due to the presence of
cracks and sharp corners. He found the exact solution for determining the stresses
around an elliptic hole. Hence, such a solution applied to the extreme limits of form
which an ellipse can assume, in particular, by making any of the axes very small,
could be used to estimate the stresses due to the existence of a fine straight crack.
He noted that holes and notched could amplify the average applied stress, justi-
fying why a fine scratch made on the surface of brittle materials produces a local
weakness that can be brought about by applied forces that produce insignificant
stresses in the rest of the plate.



3.1 Fracture mechanics

By starting from the work by Inglis [51], Griffith [48] in the 1920s developed an
energy balance theory, according to which the total decrease in potential energy
due to the formation of a crack is equal to the increase in strain energy less the
increase in surface energy.
Irwin, by using the method for solving elastic crack problems developed byWester-
gaard [98], obtained the singularity term in the elastic crack tip stress field series
expansion [52]. The original idea of Irwin was to propose a propagation crite-
rion not expressed in terms of stress state but in terms of the “elastic crack tip
stress intensity factor”. Some years later, Irwin also defined three modes of crack
tip stress fields and the elastic analysis methods to determine the corresponding
Stress Intensity Factors (SIF) KI , KII and KIII , shown in Figure 3.1. In other
words, cracks can propagate due to tensile stresses at the right angle with crack
plane (opening mode - Mode I), or to shear stress parallel to the crack plane and
perpendicular to the crack front (sliding mode - Mode II), or to shear stresses
parallel to both the crack plane and the crack front (tearing mode - Mode III).

Figure 3.1: Fracture modes: opening (mode I); sliding (mode II); tearing (mode III).

Flaws in glass are generally modeled as half-penny shaped (thumbnail) surface
micro-cracks, schematically represented in Figure 3.2, which propagate almost ex-
clusively in mode I [22], since the effects of mode II and mode III are negligible
[18].
Thus, unstable propagation of the critical crack occurs when the opening stress
reaches a critical value. The general formulation of the stress intensity factor KI

in mode I assumes the form

KI = Y σ⊥
√
πδ, (3.1)

where σ⊥ is the tensile stress at the right angle with the crack plane and Y is
a factor which depends upon the shape of the crack. From equations (3.1), by
recalling the Irwin fracture criterion KI ≥ KIc, a crack unboundedly growths if

Y σ⊥
√
πδ ≥ KIc. (3.2)

The quantityKIc is also known as the fracture toughness, as it measures the ability
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Figure 3.2: Schematic of a half-penny-shaped (thumbnail) crack.

of the material to resist fracture. Hence, it represents a characteristic material
parameter (KIc = 0.75 MPa m0.5 is usually assumed for soda lime silica glass
[99]). Thus, the stress σcr, causing failure for a crack of depth δ, and the critical
crack depth δc, corresponding to a failure stress σ⊥, read respectively

σcr = KIc

Y
√
πδ
, δc =

(
KIc

σ⊥Y
√
π

)2
. (3.3)

Notice that the SIF can be derived from the elastic problem of an infinite semi-
space subject to a biaxial force because the size of the micro-cracks is generally
much smaller than the thickness of the plate. The particular flaw that leads to
collapse is generally called “critical”. Note that the fracture origin does not nec-
essarily coincide with the point of maximum stress and neither with the point in
which the larger crack is present. Both the stress σ⊥ and the crack depth δ are
time-dependent, because of the phenomenon generally referred to as subcritical
crack growth or static fatigue [100], recalled in Section 3.2. The stress which leads
to failure when no subcritical crack growth occurs is called inert strength.

Table 3.1: List of shape factors Y for the most common crack
geometries.

Shape Factor - Y Geometry

0.64 Elliptical crack
0.67 Vickers indentation

2.24/π Semi-circular crack
1.12 Surface crack in a semi-infinite specimen
1.20 Quarter-circle corner crack

The factor Y depends upon the stress state, the crack shape and the body ge-
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ometry. However, when the crack is small so that the body can be considered to
be infinite, the shape of the crack is dominant, and Y is usually referred to as
the shape factor. A list of shape factors for the most common crack geometries is
recorded in Table 3.1.
The SIF along the smaller axis is higher than along the larger axis [54]. Con-
sequently, elliptical cracks, initially penny-shaped, develop into circular fracture,
and hence it is assumed a shape factor Y = 2.24/π ∼= 0.71. This is confirmed by
the typical fracture mirror shown in Figure 3.3.

Figure 3.3: Fracture mirror of a plate broken under a four-point bending test [23].

3.2 The subcritical crack growth
Crack growth in glass is governed by the SIF KI in mode I, and instantaneous
collapse occurs when the SIF reaches its critical value KIc.
However, cracks can grow over time even for opening stresses much lower than the
critical limit. Such phenomenon is usually referred to as static fatigue or subcritical
crack propagation [100] and it is mainly controlled by a chemical reaction between
glass and water in the environment: the activation energy for the process is stress-
sensitive. The higher is the stress level, more rapidly the water is expected to react.
Therefore, the fastest reaction is at the crack tip, and this is why the subcritical
crack growth speed is universally assumed to be dependent upon the SIF. For the
case of brittle materials, such a relationship is usually assumed to be a power-law
equation of the type [42]

dδ

dt
= ν0

(
KI

KIC

)n
, (3.4)

where δ is the crack depth, KI is given by equation (3.1), KIc = 0.75 MPa m0.5 for
soda lime silica glass, ν0 and n are the conventional sub-critical value of the crack
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propagation and the crack velocity parameters, respectively, which are dependent
upon the thermo-hygrometric conditions and the type of glass [101]. Chemical
composition of glass has a marked effect on the rate of crack growth. For float
soda-lime glass, n is comprised between 12 and 16, while ν0 varies between 30
µm/s and 0.02 m/s. However, ν0 = 0.0025 m/s and n = 16 are generally assumed
to be on the safe side [75]. Indeed, the relationship is more complicated and of the
type represented in Figure 3.4, but equation (3.4) may be considered valid for an
intermediate asymptotic phase, when K0 < KI < KIc.

Figure 3.4: Speed of crack growth as a function of the stress intensity factor [23].

Thus, subcritical crack growth arises when micro-cracks are subjected to a positive
crack opening stress for values of the SIF comprised between a lower bound KI0,
which depends upon the environmental conditions and below which no propaga-
tion occurs, and KIC . Conventionally, when the stress intensity factor reaches its
critical value, the crack growth rate rapidly passes from 1 mm/s to 1500 m/s. The
lower limit is KI0 = 0.25÷ 0.30 MPa m1/2 [100] for soda lime silica glass. In sum-
mary, failure does not occurs when KI ≤ K0, failure is deferred over time when
K0 < KI < KIc, and failure is instantaneous when KI ≥ KIc. The threshold KI0
is generally neglected to remain on the safe side. However, Overend and Zammit
[106] proposed a computer algorithm able to normalize the effects of subcritical
crack growth upon experimental failure stresses without neglecting KI0.
The evaluation of the characteristic size of initial cracks by microscopic inspection
is almost impossible. This is why an indirect evaluation is generally made through
the crack growth model (3.4), by starting from the results of macroscopic exper-
imental tests. When considering a load history σ⊥ = σ(t) for the crack opening
stress, by integrating between the time t = 0, when the crack length δ = δi, and
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t = tf , when δ = δc, one has

∫ δc

δi

δ−n/2dδ =
∫ tf

0
ν0

(
σ(t)Y

√
π

KIc

)n
dt , (3.5)

where tf represents the time elapsed before failure and δc is the size of the critical
crack at failure. This reads

δc =
(

KIc

Y ftest
√
π

)2
, (3.6)

where ftest is the tensile strength measured at the end of the test. Experimental
tests are, as a rule, controlled at a constant stress rate σ̇test, i.e., σ(t) = σ̇testt. Let
then ftest be the tensile strength measured at the end of the test, the initial crack
size δi can be found integrating equation (3.5) and reads

δi =
[
n− 2

2
ν0

n+ 1

(
Y
√
π

KIc

)n
fn+1
test

σ̇test
+
(
Y ftest

√
π

KIc

)n−2] 2
n−2

. (3.7)

For realistic values of the parameters, it could be easily verified that the second
term inside the square brackets is negligible with respect to the first term. Then,
since δi is a boundary condition, fn+1

test /σ̇test = Φ is approximately constant, what-
ever the stress rate during the test is.
In design practice, actions are usually schematized as loads acting constantly on
the structure for a certain characteristic time, which is representative of their
cumulative effect during the service-life of the structure. By assuming that the
stress στ at the crack tip due to the constant action provokes collapse after a time
τ , integrating equation (3.5), after neglecting a term similar to the second one
inside the square brackets, gives

σnτ τ =
2

n−2

(
δ

2−n
2

i − δ
2−n

2
c

)
ν0

(
Y
√
π

KIc

)n , (3.8)

which provides the domain of the applied stress and the time of application. How-
ever, for τ > 0.01 s, the size of the critical crack at the end of the test can be
assumed to be much higher the the initial size. Thus, from equation (3.8), one can
write

σnτ τ = 2/(n− 2)δ(2−n)/2
i

ν0

(
Y
√
π

KIc

)n = 1
n+ 1Φ . (3.9)

Thus, the stress στ can be obtained for any fixed time τ , e.g., for a time τ = τL

20



CHAPTER 3. THE STRENGTH OF ANNEALED FLOAT GLASS

one has

σL =
(

1
n+ 1

)1/n (τL
Φ

)−1/n
. (3.10)

For design purpose, one introduces the coefficient kmod, which allows to consider
the phenomenon of static fatigue in a more practical way. This is defined as

kmod = στ
fref

= 1
fref

(
1

n+ 1

)1/n ( τ
Φ

)−1/n

=
(

1
n+ 1

)1/n
(Φ)

1
n(n+1) (σ̇ref )

−1
n+1 (τ)−1/n

,

(3.11)

where fref is a reference value related to the bending strength of a glass plate tested
at σ̇ref = 2 MPa/sec. For what concerns float glass, by assuming characteristic
values for the various parameters, one obtains kmod = 0.585 (τ)1/16, where τ is
measured in seconds.

3.3 The statistical population of micro-flaws
Micro-flaws, whose size, shape and distribution are totally random, are unavoid-
ably present on the external surfaces of glass panes. Their size is generally so
small that they cannot be detected with naked eyes, and their shapes can be of
different types, strongly dependent upon the cause of the flaw itself. However, it
is universally accepted to model such flaws as half-penny shaped (or thumbnail)
micro-cracks, whose plane is orthogonal to the external surface of the glass plate.
Developing the ideas of [46] and [12], assume that the surface of the pane is divided
into Representative Area Elements (RAE), say ∆A, whose main property is that it
is assumed they can host only one crack. Hence, the number of cracks present on
the surface of a specimen of area A is A/∆A. If one inspects through a microscope
the surface, the area can be divided in elements ∆A, and the micro-crack lengths
located in each of the elements can be measured, albeit in principle. By increasing
the number of elements ∆A, the statistics tends to a definite probability function,
which is expected to be highly right-skewed. This is because it is reasonable to as-
sume that the lower the crack length is, the higher will be the number of detectable
micro-cracks of such size, whereas a very small number of cracks shall have a size
much higher than the average value. In other words, the bulk of the distribution
occurs for small micro-crack lengths, but the right-hand-side tail is very heavy.
This kind of variability is certainly well-interpreted by a power law distribution.
The most relevant analytical attribute of such statistics is that of scale invariance,
i.e., the shape of the distribution remains unchanged, up to a multiplicative factor,
if the measurements are scaled by a constant. Hence, for a material that could be
considered “pristine” after the production process, the probability density function
of the crack size δ in an area ∆A reads

p∆A,δ (δ) = Υ δ−α , (3.12)
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where Υ is a normalization constant and α is a scaling parameter. A lower bound
δmin must be imposed, since the function (3.12) diverges as δ → 0, which might
be interpreted as the size of cracks that are physiologically present in any glass
pane produced through an industrial process. Note that the power law assumption
(3.12) would be not consistent without the threshold δmin. However, micro-cracks
much larger than this lower bound govern the strength of glass, so that the right
part of the statistical population is the only one really of importance for the case
at hand. Thus, the importance of δmin, which can be considered as a material
parameter, is due to the fact that it affects the statistics of large cracks in the
asymptotic limit δ →∞ in the expression (3.12), because it enters in the constant
Υ of (3.12).
In fact, since the probability of finding a crack of size comprised between δ and
δ + dδ reads p∆A,δ (δ) dδ = Υ δ−α dδ, the constant Υ is obtained by meeting the
normalization requirement that∫ ∞

δmin

p∆A,δ (δ) dδ =
∫ ∞
δmin

Υ δ−α dδ = 1 ⇒ Υ = α− 1
δ1−α
min

. (3.13)

Observe that the values for α must be strictly higher than unity, otherwise the
integral in (3.13) would not converge. Such condition should be naturally assumed
for the case of glass. Consequently, the probability density function takes the form

p∆A,δ (δ) = α− 1
δmin

(
δ

δmin

)−α
. (3.14)

From this, the probability of finding a crack of size equal or higher than δ in the
representative area ∆A reads

P≥∆A,δ (δ) =
∫ ∞
δ

α− 1
δmin

(
δ

δmin

)−α
dδ =

(
δ

δmin

)1−α
. (3.15)

The domain of equation (3.15) is [δmin,∞], whereas for δ < δmin ⇒ P≥∆A,δ = 1.

3.4 The lower bound of glass strength
Fracture occurrence in glass is assumed to be due to the propagation of a dominant
surface crack, under the hypothesis that the average density of the surface flaws is
such that they do not affect the fracture mechanics of the simple opening defect.
The Weibull statistics [94], which is based upon the weakest link-in-the-chain ra-
tionale, is by far the most widely used model for the probabilistic interpretation
of the variability of the glass strength.
A production quality control, able to detect defects with high precision, would lead
to an upper bound for the crack size, δmax [8]. In fact, any part of the glass ribbon
with a defect exceeding such allowable crack size would be removed during cutting,
and the waste glass would be collected and fed back into the furnace. Actually, the
value for the threshold δmax is not rigorous. However, both the European Norm EN
572-2 [41] and the American standard ASTM C1036 [5] prescribe a methodology
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for detecting visual faults during the factory production control. The smaller crack
lengths detected through these methods are of the order of 400µm÷ 500µm: the
corresponding parts of glass ribbon are discarded. By assuming that the shape of
such defects is generally almost semi-circular, the depth of the crack is one half of
the length measured on the surface, so that it may be assumed, on the safe side,
that the maximum depth δmax is approximately 250µm÷ 300µm.
The existence of a maximum value of the pre-existing flaw size in marketed glass
is corroborated by several works present in the technical literature. Yankelevsky
[103] proposed the value δmax = 200 µm, whereas the maximum flaw size for large
annealed glass panels is δmax = 278 µm according to Nurhuda et al. [69]. Optical
measurements performed by Lindqvist and recorded in [55] detected maximum
sizes of pre-existing cracks that never exceed 120 µm, while Wereszczak et al. [96]
found a maximum crack length ∼= 100 µm.
The maximum allowable crack length δmax, present on glass surfaces after the
production process, leads to a lower bound for the crack opening stress that can
cause failure. According to the LEFM, the intrinsic lower bound for glass strength
reads

σ0 = KIc

Y
√
πδmax

, (3.16)

with the same notation of equation (3.1). The lower bound σ0 of (3.16) is asso-
ciated with the most severe conditions, according to which the dominant crack
is exactly at right angle to the direction of maximal tensile stress. Consequently,
the probability of the instantaneous collapse of elements under a maximum tensile
stress below such limit is null, even though failure could occur in time because
of the subcritical crack growth (see Section 3.2). For example, by assuming the
higher limit for crack size suggested by Nurhuda et al. [69] δmax = 278 µm, from
(3.16) one would obtain σ0 = 35.58 Mpa.
Let P≥0 represents the probability that δ ≥ δmax in a very large sample composed
of N glass plates of unitary reference area. The number of elements will become
N(1− P≥0 ) after the factory quality control, since all the plates that do not meet
the aesthetic and optical requirements are discarded. The relation between the
truncated distribution P≥,T∆A,δ(δ) and the pristine one P≥∆A,δ(δ) can be written in
the form [94]

P≥,T∆A,δ(δ) =

[
P≥∆A,δ(δ)− P

≥
0

]
N(

1− P≥0
)
N

, (3.17)

where P≥0 = (δmax/δmin)1−α and P≥∆A,δ(δmin) = 1. Thus, one obtains the cumu-
lative probability function of the crack sizes for the truncated distribution, which
reads

P≥,T∆A,δ(δ) = δ1−α
max − δ1−α

δ1−α
max − δ1−α

min

. (3.18)
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The same conclusion can be reached through the new normalization requirement

∫ δmax

δmin

pT∆A,δ (δ) dδ =
∫ δmax

δmin

Υ δ−α dδ = 1 ⇒ Υ = α− 1
δ−αmin (δmin − δ1−α

max δαmin)
.

(3.19)

Hence the probability density function assumes the form

pT∆A,δ (δ) = α− 1
δmin − δ1−α

max δαmin

(
δ

δmin

)−α
, (3.20)

and the probability of finding a crack of size equal or higher than δ in ∆A reads

P≥,T∆A,δ(δ) =
∫ δmax

δ

α− 1
δmin − δ1−α

max δαmin

(
δ

δmin

)−α
dδ = δ1−α

max − δ1−α

δ1−α
max − δ1−α

min

. (3.21)

Obviously, equations (3.21) and (3.18), obtained in a different way, coincide.
However, one might wonder if this lower limit persists during the whole life-time
of the structural component made of glass. The pre-existing defectiveness scenario
continuously changes during the service life because of various corrosive and/or
abrasive phenomena. The corrosion process, which is very gradual and dissolves the
external layers of glass panes, leads to the smoothing out of the glass surface, thus
reducing the level of stress concentrations at the cracks, because the crack depth
diminishes. On the other hand, abrasion consists of adding new cracks to the pre-
existing defectiveness scenario. The damaging effects of aging have been studied
by some researchers by testing specimens that had been artificially pre-damaged.
The statistical analysis of the test results obtained by Durchholtz et al. [30], who
tested float glass plates that had been pre-treated by dropping corundum (Al2O3)
on them under the loading condition provided by the EN1288-2 [31] and EN1288-
5 [34], showed that the strongest elements of the distribution shifted to lower
strength values, the dispersion of the data highly reduced, whereas the minimum
strength values remained of the same order as those obtained by analyzing the
pristine float glass. Another very interesting experimental campaign is the one
performed by Madjoubi et al. [56]. With the aim of detecting how sandstorms,
which are very frequent in the Saharian regions, affect the structural glass strength,
the Algerian researchers [56] analyzed the influence of sand particle impacts on
glass strength. Three samples of 50 specimens were tested in a four-point-bending
configuration after different times t of exposure to sand-blasting. The first sample
was tested in the pristine state t = 0, whereas the second and the third ones
were exposed to sandblasting for t = 30 and t = 60 minutes, respectively, before
testing. Figure 3.5 summarizes the experimental outcomes in the Cartesian and the
Weibull planes. All the relevant information about the Weibull model is recorded
in Appendix A.
The two strength distributions, interpreting the variability of damaged glass strength
associated with t = 30 min and t = 60 min of sandblasting exposure time, are not
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CHAPTER 3. THE STRENGTH OF ANNEALED FLOAT GLASS

Figure 3.5: Probability plots, in the cartesian and Weibull planes, of the experimental data of
[56]. Three different conditions: as-received , sand blasted for 30 minutes and for 60 minutes.

so different to one another, but some peculiarities are to be noticed. In fact, glass
strength decreases when the sandblasting time increases for high probability of
failure (high strengths), whereas an increasing of the sandblasting time seems to
have, albeit approximately, a beneficial effect on the material strengths for low
probabilities (low strengths). This finding will be analyzed more in detail in Chap-
ter 6. Other samples were tested in order to confirm the effects of sandblasting on
ultimate strength, and the sandblasting time was increased up to 2 hours. Figure
3.6 summarized the results of the whole experimental campaign in terms of aver-
age values, as well as standard deviation. By observing Figure 3.6, a sharp drop
in strength after 30 min of sandblasting is evident, whereas, as the treatment time
increases, a nearly constant level of strength values is observed, while the standard
deviation decreases.
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Figure 3.6: Variation of the fracture strength vs. sandblasting duration [56].

Furthermore, Madjoubi et al. [56] observed that the maximum length of the flaws
caused by sandblasting was approximately 35÷40 µm, that is much lower than the
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3.5 From the population of flaws to the population of strength

maximum crack length δmax allowed by factory production control. Such finding
was confirmed by Wang et al. [92]. However, even though the size of the maximum
allowable crack did not change because of the abrasive process, a decay of the
lower limit for glass strength [56] is evident from Figures 3.5 and 3.6. In order to
provide a qualitative explanation, the defects induced by impinging particles are
modeled as semi-spherical cavities. It is reasonable to assume that the distribution
of such cavities is uniform, and the higher is the sandblasting time, the higher is the
probability that albeit one cavity intersects a pre-existing thumbnail crack. The
modification of the stress intensification can be quantified by the model problem
shown in Figure 3.7(a,b), with concentric cavity and thumbnail crack. Xiao and
Yan [102] estimated the SIFs for the case shown in Figure 3.7 through the boundary
element software FRANC3D. The SIF KIm normalized with respect to the value
K̄ = σ

√
πR is plotted versus the ratio a = R/r in Figure 3.7(c). The maximum

SIF in mode I KIm is attained at φ = 0. Note that the SIF for a semi-circular
thumbnail crack of radius R with no interacting cavity at φ = 0 is equal to 1.251K̄.
Observe that the maximum stress amplification is obtained when a = a2 = 2.
However, the SIF increment is strongly limited, of the order of 10.5%. For values
of a < 2 and a > 2 the function KIm(a) is monotonically decreasing. It is certainly
of interest to note that the semi-sphere cavity shields the crack when a < a1 =
1.351, i.e. the effect upon glass strength of the presence of semi-sphere cavity is
benefic when the dimensions of the long axes of the cavity and of the critical
crack are comparable. On the other hand, the effect of the surface cavity can be
considered negligible when a ≥ 5.5, at whichKIm = 1.010. The stress amplification
is quantitatively similar when 0 < φ ≤ π/2.
The model problem of Figure 3.7 justifies the decay of the lower bound for glass
strength observed in Figure 3.5 and 3.6, albeit at the qualitative level. In fact,
the left-hand-side tail of the distribution corresponds to the largest critical defect,
whose axis can be assumed of the order of 100 ÷ 150 µm, whose stress intensity
factor is amplified by cavities induced by sandblasting with radius of order of
40 µm. Furthermore, according to the model shown in Figure 3.7(c), one would
obtain a maximum reduction of the strength of the order of 10 % if the dimension
of induced cavities r is one half the dimension of the maximum crack size [8].
In conclusion, a maximum allowable size of existing flaws due to an adequate
factory quality control gives rise to a lower bound for glass strength. Such threshold
stress can be reduced but not annihilated by the effects of aging. A refined study
of the effects of abrasion and corrosion upon the statistical distribution of glass
strength will be the subject of Chapter 6. Obviously, glass can be easily broken if a
sharp groove is produced by a diamond bit, but this type of damage is deliberately
man-made, and cannot be associated with a natural degradation process.

3.5 From the population of flaws to the population of strength
Let the reference unitary surface area, say A0, consist of N0 elements of area
∆A. Denoting with P≤∆A,σ(σcr) the probability of finding a crack of size such
that its critical stress is equal or less than σcr in the element ∆A, the proba-
bility of finding a crack having critical stress between σcr and σcr + dσcr reads
dP∆A,σ = d

dσcr
P≤∆A,σ(σcr) dσcr. Then, denote with Ω(Σ, σcr) the angle containing

the normals to all the potential crack planes for which the applied stress compo-
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Figure 3.7: Schematic of cracks emanating from a surface semi-spherical cavity in infinite elastic
body. (a) total view; (b) the symmetry plane in which the crack surface occurs; variation of

normalized SIFs with the parameter a = R/r.
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3.5 From the population of flaws to the population of strength

nent orthogonal to the crack plane exceeds the critical value σcr, for any generic
uniform state of stress Σ. Obviously, the values reached by this angle are comprised
between 0 and π. Thus, the probability of failure for a tensile surface area ∆A can
be written in the form

dPf (Σ,∆A) = Ω(Σ, σcr)
π

dP≤∆A,σ(σcr)
dσcr

dσcr, (3.22)

which leads to the failure probability that reads

Pf (Σ,∆A) =
∫ ∞

0

Ω(Σ, σcr)
π

dP≤∆A,σ(σcr)
dσcr

dσcr. (3.23)

Considering the unitary area A0, composed by N0 = A0/∆A elements of area ∆A,
the survival probability is equal to the product of the survival probabilities of each
element Ps(Σ,∆A) = 1− Pf (Σ,∆A), that is

Ps(Σ, A0) =
[

1−
∫ ∞

0

Ω(Σ, σcr)
π

dP≤∆A,σ(σcr)
dσcr

dσcr

]A0/∆A

. (3.24)

Firstly, consider an equibiaxial state of stress (Σ = Σeqb, e.g., σ1 = σ2 = σeqb),
which is generally assumed as the reference state for characterizing the bending
strength of glass plates, since in this case the maximum tensile stress is always
at right angle with crack plane. The angle Ω(Σeqb, σcr) = π when σeqb = σcr and
Ω(Σeqb, σcr) = 0 when σeqb < σcr. Since the probability of failure is null when
σcr ≥ σeqb, the upper limit of the integration interval in equation (3.24) is σeqb,
while the probability of failure is null when σcr > σeqb, and the survival probability
of a plate of area A0 becomes

Ps(Σeqb, A0) =
[

1−
∫ σeqb

0

dP≤∆A,σ(σcr)
dσcr

dσcr

]A0/∆A

. (3.25)

The strength distribution of a glass plate of generic area A will be firstly obtained
by assuming a power-law distribution for micro-crack lengths. Then, how the trun-
cation of the distribution of micro-crack lengths affects the population of strengths
will be investigated.
Let the probability of finding a micro-crack of size equal or higher than δ be given
by (3.15), re-written in the more convenient form

P≥∆A,δ(δ) = ∆A
(
δ

ζ0

)−α∗
, ζ0 = δmin

(∆A)1/α∗ = δmin

(A0/N0)1/α∗ , (3.26)

where α∗ = α − 1, so as to emphasize the importance of ∆A. From expression
(3.1) of the SIF for cracks that grow in mode I, when the critical conditions are
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reached (KI = KIc), one has

δ = 1
π

(
KIc

σ⊥Y

)2
. (3.27)

Consequently, the probability of finding a crack having critical stress equal or lower
than σcr assumes the form

P≤∆A,σ(σcr) = ∆A
(
σcr

Y
√
πζ0

KIc

)2α∗

, (3.28)

and the survival probability given by equation (3.25) becomes

Ps(Σeqb, A0) =
{

1−∆A
∫ σeqb

0

d

dσcr

[(
σcr

Y
√
πζ0

KIc

)2α∗]}A0/∆A

⇒ Ps(Σeqb, A0) =
[

1−∆A
(
σeqb
η0,2p

)2α∗
]A0/∆A

,

(3.29)

having set η0,2p = KIc/(Y
√
πζ0). Let 1/ε denotes A0/∆A: hence ε → 0 for very

small values of ∆A. Since limε→0
[
(1 + ε a)1/ε] = exp(a), one can write

lim
ε→0

Ps(Σeqb, A0) = lim
ε→0

[
1− εA0

(
σeqb
η0,2p

)2α∗
]1/ε

= exp
[
−A0

(
σeqb
η0,2p

)2α∗
]
.

(3.30)

Finally, for a generic surface area A, the survival and the failure probability read

Ps(Σeqb, A) = [Ps(Σeqb, A0)]A/A0 ⇒ Pf (Σeqb, A) = 1−exp
[
−A

(
σeqb
η0,2p

)2α∗
]
.

(3.31)

The major result of this calculation is that equation (3.31) represents the well-
known 2-parameter Weibull distribution, now obtained from considerations at the
microstructural level [72].
At this point, going back to equation (3.25), an upper-truncated distribution of
the type (3.18) for crack lengths is assumed. By using again the expression (3.1)
of the stress intensity factor in critical conditions, one has

δ = 1
π

(
KIc

Y σcr

)2
, δmax = 1

π

(
KIc

Y σ0

)2
, δmin = 1

π

(
KIc

Y σk

)2
, (3.32)
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where σ0 and σk represent the critical stresses associated with cracks of size δmax
and δmin, respectively. Consequently, the probability of finding a crack having
critical stress equal or lower than σcr becomes

P≤,T∆A,σ(σcr) = σ2α∗
cr − σ2α∗

0
σ2α∗
k − σ2α∗

0
= ∆Aσ

2α∗
cr − σ2α∗

0
(η0,lt)2α∗ , (3.33)

where it has been set η0,lt =
[
∆A

(
σ2α∗
k − σ2α∗

0
)]1/2α∗ . In this case, the probability

of failure is not null when σ0 ≤ σcr ≤ σeqb, i.e., the lower and the upper limits
of integration interval in equation (3.24) are σ0 and σeqb, respectively, and the
survival probability for a glass pane of reference area A0 subject to equibiaxial
stress state reads

PTs (Σeqb, A0) =
[

1−∆A
∫ σeqb

σ0

d

dσcr

[
σ2α∗
cr − σ2α∗

0
η2α∗

0,lt

]
dσcr

]A0/∆A

. (3.34)

Equation (3.34) can be written in the more convenient form

PTs (Σeqb, A0) =
[

1−∆A
σ2α∗
eqb − σ2α∗

0

η2α∗
0,lt

]A0/∆A

. (3.35)

By assuming again A0/∆A = 1/ε, ε→ 0 for large values of A0, one obtains

lim
ε→0

PTs (Σeqb, A0) = exp
[
−A0

σ2α∗
eqb − σ2α∗

0

η2α∗
0,lt

]
. (3.36)

Finally, by following the same reasoning as above, the survival probability for a
generic surface area A is given by

PTf (Σeqb, A) = 1− exp
[
−A

σ2α∗
eqb − σ2α∗

0

η2α∗
0,lt

]
. (3.37)

Therefore, it is found that an upper truncation of the power-law distribution of
crack lengths gives rise to a left-truncated Weibull distribution for glass strengths
[72].
From here on, the case of a uniaxial state of stress (Σ = Σunx, e.g., σ1 = σunx and
σ2 = 0) is analyzed. This is approximately attained when specimens are tested
under three- and four-point bending. In this case, the stress component at right
angle with crack axis reads

σ⊥ = σunx cos2 ψ ⇒ σcr = σunx cos2 ψcr ⇒ ψcr = arccos
√
σcr/σunx,

(3.38)
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where ψ is the angle between the normal to the crack plane and the maximum
principal stress direction. Figure 3.8 shows the angle Ω(Σunx, σcr) containing the
normals to all the orientations for which σ⊥ ≥ σcr, i.e., the angle within which
the crack must lie for fracture occurrence. Note that Ω(Σunx, σcr) is two times the
angle ψcr. Thus, from (3.38), one obtains

Ω(Σunx, σcr) = 2 ψcr = 2 arccos
[√

σcr
σunx

]
,

⇒ Ω(Σunx, σcr)
π

=
arccos

[√
σcr/σunx

]
π/2 .

(3.39)

When σunx � σcr, the angles ψcr → π/2 and Ω(Σunx, σcr)/π → 1, whereas for
σ → σcr, then ψcr → 0 and Ω(Σunx, σcr)/π → 0. Obviously, the probability of
collapse is null when σunx < σcr.

Figure 3.8: Angle within which the crack must lie for fracture occurrence.

By interpreting the micro-crack lengths variability through a power-law function of
the type (3.15), the cumulative probability function P≤∆A,σ(σcr) for critical stresses
correlated with flaws in elements ∆A is given by equation (3.28). This leads, from
equation (3.24), to the the survival probability in the form

Ps(Σunx, A0) =
[

1−
∫ σunx

0
∆A

arccos
[√

σcr/σunx

]
π/2

d

dσcr

(
σcr

Y
√
πζ0

KIc

)2α∗

dσcr

]A0/∆A

.

(3.40)

31



3.6 Statistical analysis of the experimental data

With some analytical manipulations, equation (3.40) assumes the form

Ps(Σunx, A0) =
[

1−∆A
(
σunx
η0,2p

)2α∗ 1
2α∗

Γ[ 1
2 + 2α∗]

Γ[ 1
2 ] Γ[2α∗]

]A0/∆A

, (3.41)

where η0,2p = KIc

Y
√
πζ0

is the scale factor of the distribution and Γ is the Euler’
Gamma Function. Posing again A0/∆A = 1/ε, so that ε → 0 for A0 � ∆A, one
has

lim
ε→0

[
(1 + ε x)1/ε

]
= exp(x) . (3.42)

Then, one can write

Ps(Σunx, A0) = exp
[
−A0

(
σunx
η0,2p

)2α∗ 1
2α∗

Γ[ 1
2 + 2α∗]

Γ[ 1
2 ]Γ[2α∗]

]
. (3.43)

Finally, from the same arguments used above, the probability of failure for a float
glass plate subjected to an uniaxial stress state on a generic area A takes the form

Pf (Σunx, A) = 1− exp
[
−KunxA

(
σunx
η0,2p

)2α∗
]
, (3.44)

where

Kunx = 1
2α∗

Γ[ 1
2 + 2α∗]

Γ[ 1
2 ]Γ[2α∗]

, (3.45)

is the coefficient that, multiplied by A, gives the effective area Aeff,unx = KunxA.
The effective area synthetically takes into account the effects of the state of stress
and the size of the specimen upon the statistical distribution of the strengths. It
is defined as the area that is statistically equivalent, in term of strength, to an
uniform equibiaxial state of stress. Figure 3.9 shows the values of the coefficient
Kunx as a function of α∗ in the representative range for float glass [72].

3.6 Statistical analysis of the experimental data
Referring to the large-scale experimental campaign of the CEN/TC129/WG8
(Technical Committee 129 - Working Group 8 of the European Committee for
Standardization), various statistical distributions are compared in their ability to
interpolate experimental data [70]. In particular, different generalized Weibull dis-
tributions, both bounded or unbounded, have been analyzed. Refer to Appendix A
for the detailed description of the Weibull distributions considered in the current
section. This experimental campaign is the widest I am aware of, aimed at analyz-
ing the variability of structural glass strengths. Other campaigns have produced
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Figure 3.9: Values of Kunx as a function of α∗.

limited number of data points and, most of the times, the values are not available
in the literature.
The campaign performed by the working group CEN/TC129/WG8 of CEN pro-
vides 741 failure stress measurements, which are recorded in [19]. It consisted
of thirty samples of approximately 25, 6-mm-thick, plate specimens, which were
tested under the load configuration prescribed by the EN1288-2 standard [35]. The
samples were obtained from eleven different European glass manufacturing plants.
Tin-side and air-side surfaces of the float glass panes were tested separately for
each supplier. Since during the float production process one side of the glass paste
is exposed to air (air-side), while the other one is in contact with the molten tin
bath and, subsequently, with steel rollers (tin-side), different defectiveness scenar-
ios are present on the two glass surfaces. This is why the statistical regression of
the 741 values of [19] may provide misleading results if none distinction is made
between the tin- and the air-side.
The EN1288-2 [31] standard prescribes a Coaxial Double Ring (CDR) test configu-
ration, according to which large square specimens of side l = 1000 mm are loaded
by two concentric rings of radii R1 = 300 mm and R2 = 400 mm and by an over-
pressure p∗, which is correlated with the load F ∗ applied by the loading device
during the whole experiment according to a law recorded in the standard. A more
detailed description of this standardized test is given in the Appendix B. Observe
that the aim of this test would be that of inducing an almost equibiaxial stress
state in the area delimited by the inner ring, far from the borders, by compen-
sating nonlinear effects, responsible of the deviation from equi-biaxiality, through
the overpressure. Each value of the failure stress recorded in [19] has been derived
from the force applied by the tensometer producing the rupture of the specimen.
However, the induced state of stress is not equibiaxial, because The correlation
between the overpressure p∗ and the load F ∗ provided by the standard results
to be not accurate. Therefore, the failure stress values recorded in [19] have been
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3.6 Statistical analysis of the experimental data

corrected according to the procedure shown in Appendix B, to take into account
the deviation from equibiaxiality.
Figure 3.10 shows the probability plots in the 2P Weibull plane, distinguished for
the tin- and air-side. It is evident from Figure 3.10 that the approximation given
by the 2PW statistics is not accurate, both for the air- and the tin-side data.
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Figure 3.10: Linear interpolation in the 2P Weibull plane of the failure stress measurements by
CEN/TC129/WG8. Distinction between tin- and air-side measurements.

The plot of the experimental data in the 3-parameter Weibull (3PW) plane, i.e.,
ln ln 1/(1 − Pf ) vs. ln(σ − σ0), is recorded in Figure 3.11, for both the tin- and
air-side data.

0 1 2 3 4 5
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

ln (σmax − σ0) [MPa] - Air side - σ0 =39 MPa

ln
[ ln

(
1

1
−
P

f
,W

3

)]

0 1 2 3 4 5
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

ln (σmax − σ0) [MPa] - Tin side - σ0 =36 MPa

ln
[ ln

(
1

1
−
P

f
,W

3

)]

Figure 3.11: Linear interpolation in the 3P Weibull plane ln ln 1/(1 − Pf ) vs. ln(σ − σ0) of the
failure stress measurements by CEN/TC129/WG8. Distinction between tin- and air-side

measurements.

The excellent linear fit given by the 3PW model for the air side data is evident
from Figure 3.11, but the approximation is not as good for the tin-side data.
The same conclusions can be reached by using a left-truncated Weibull (LTW)
statistics. The Weibull plot of the experimental data for the air- and tin-side sur-
faces in the LTW plane ln[G + ln 1/(1 − Pf )] vs. ln(σ) are shown in Figure 3.12,
with G = Aσm0 /η

m
0,lt introduced in Appendix A (m = 2α∗, from the comparison
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of equations (3.37) and (A.29)). Substantial differences in fitting the experimen-
tal data are not observed between the 3PW and LTW statistics if one compares
Figures 3.11 and 3.12. Both the 3PW and the LTW distributions provide a third
parameter, representing a lower bound for glass strength, but the physical mean-
ing of such parameter is strongly different. For what concerns the 3PW model,
the third parameter represents an absolute lower threshold for glass strength, that
is an intrinsic property of the material. On the other hand, the third parame-
ter provided by the LTW model arises from a selection, when all the data below
a certain value are discarded. In other words, the LTW statistics comes from a
left-truncation of an original 2-parameter Weibull distribution (see Section 3.5).
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Figure 3.12: Linear interpolation in the LT Weibull plane ln[G+ ln 1/(1 − Pf )] vs. ln(σ) of the
failure stress measurements by CEN/TC129/WG8. Distinction between tin- and air-side

measurements.

However, accepting a lower bound for glass strength represents a major step
change, somehow in contrast with the common engineering practice. That is why
several Weibull generalized distributions which do not provide a lower bound have
been investigated for the sake of comparison. The simplest idea, proposed by
Rodichev et al. [79], consists in interpolating the experimental point with a bi-
linear function in the Weibull plane (BLW). On the other hand, if one assumes
that the material has undergone two independent failure mechanisms, each one
governed by a specific 2PW distribution, the strengths variability should follow a
bi-modal Weibull (BMW) function. The plots of the best-fit Weibull probability
plots obtained by using the BLW and BMW approaches, are represented in Figure
3.13, for both tin- and air-side. As it is evident from Figure 3.13, the capability of
fitting the experimental data guaranteed by the bi-linear (BLW) and the bi-modal
Weibull (BMW) distributions is similar, i.e., it is good for the air-side data and
fairly acceptable for tin-side data.
Consider finally the extended Weibull (EXW) distribution, which is obtained by
adding a parameter to the 2PW family of ditributions through the method pro-
posed by Marshall & Olkin [58]. The corresponding plots have been shown in
Figure 3.14. An acceptable goodness fit is observed for the air-side data, whereas
the tin-side data is again not well interpolated.
The parameters of the different generalized distributions, graphically estimated by
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Figure 3.13: Bilinear and Bimodal Weibull probability plots of the failure stress measurements
by CEN/TC129/WG8. Distinction between tin- and air-side measurements.
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Figure 3.14: Extended Weibull probability plot of the failure stress measurements by
CEN/TC129/WG8. Distinction between tin- and air-side measurements.
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CHAPTER 3. THE STRENGTH OF ANNEALED FLOAT GLASS

following the procedures recorded in the Appendix A, are summarized in Tables
3.2, 3.3 and 3.4.

Table 3.2: Weibull parameters for the 2PW, 3PW and LTW statistics, obtained by linear
regression of the experimental data recorded in [19].

Statistics m η0/A
1/m
eff

σ0

[MPa] [MPa]

Air-side

2PW 5.37 94.17 -
3PW 2.55 52.84 39.00
LTW 4.25 58.22 41.21

Tin-side

2PW 6.45 68.38 -
3PW 2.65 31.20 36.00
LTW 4.00 36.51 38.04

Observe from Table 3.2 that the Weibull shape parameterm for the 3PW statistics
turns out to be much smaller than for the other two cases.

Table 3.3: Estimated Weibull parameters for the BLW and the BMW statistics, obtained by
linear regression of the experimental data by CEN/TC129/WG8.

Statistics m1 m2 η0,1/A
1/m1
eff

η0,2/A
1/m2
eff

[Mpa] [Mpa]

Air-side

BLW 11.15 4.85 74.07 94.18
BMW 10.25 4.62 57.50 94.03

Tin-side

BLW 15.83 5.03 57.44 67.84
BMW 11.80 4.80 50.00 69.00

As it is possible to see from Table 3.3, not substantial differences arise between
the estimated parameters for the BLW and BMW models. By comparing the data
recorded in Tables 3.2 and 3.3, one can note that the shape parameter m2 for the
BLW and BMW distributions, which is associated with the right-hand-side tail of
the data, is close to the value obtained for the LTW model. On the other hand,
the values for m1, associated with the left-hand-side-tail are much higher (∼= 10
for the air-side and 12÷ 15 for the tin-side).
Notice that, if the EXW model is used, the shape parameter m is higher than
in the case of 2PW, 3PW and LTW, but much lower than the shape parameters
associated with the left-hand-side-tail of the BLW and BMW distributions.
An estimate of the goodness-of-fit of the various statistical models has been ob-
tained with the Chi-square goodness of fit test, which is considered more objective
than the simple graphical comparison in the various Weibull planes. In particular,
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3.6 Statistical analysis of the experimental data

Table 3.4: Estimated Weibull parameters for the EXW statistics, obtained by linear regression
of the experimental data recorded in [19].

Air/Tin m η0/A
1/m
ef,WE

Θ

[MPa]

Air-side 7.9 139 0.0151
Tin-side 7.9 100 0.012

the p-value represents the probability that the difference between observed and ex-
pected data is due to chance alone (a more detailed description of the chi-square
test is given in the Appendix A). The p-values associated with all the distributions
under consideration are recorded in Table 3.5. It is useful to recall that it is cus-
tomary to accept the “5% rule”, i.e., the null hypothesis H0 is accepted (rejected)
if p ≥ 5% (p < 5%).

Table 3.5: Estimated p-values for the generalized Weibull distributions under consideration.

Statistics p-valueair kair p-valuetin kair

2PW ∼=0 19 ∼=0 16
3PW 0.7332 20 0.0027 16
LTW 0.6676 19 0.003 15
BLW 0.2128 19 0.0235 16
BMW 0.2401 19 0.0041 17
EXW 0.0979 20 ∼=0 15

From Table 3.5, the inability of the 2PW statistics to interpret the statistical
variation of float glass strength is confirmed. Furthermore, the idea of the exis-
tence of a lower bound for the float glass strength is strongly supported. In fact,
at least for the air side data, the bounded statistical distributions (3PW, LTW)
exhibit an excellent goodness-of-fit, i.e., pair,W3 = 0.7332 and pair,WT = 0.6676).
The p-values associated with the BLW and BMW distributions are still very good
(pair,WL = 0.2128 and pair,WM = 0.2401). As it will be shown in Chapter 5, a
bi-modal Weibull distribution for strength is justified by the presence of two micro-
cracks populations. However, to my knowledge, no physical justifications have been
proposed for the BLW model. For pristine material strength, i.e., for the air-side
strength, it is plausible to assume only one crack population. The large gap in
the p-values referring to the LTW model, or the 3PW, and the BMW statistics
corroborates this hypothesis. Furthermore, as it is shown in Section A.4.2, the use
of a BMW distribution leads to significant analytical complication in the definition
of the effective area and, consequently, in the analysis of the experimental data.
Different considerations will be made in the current dissertation when aged glass
is considered. Then, the EXW model provides a less accurate interpretation of
the experimental data for the air-side (pair,WE = 0.0979), even if the approxima-
tion is acceptable according to the “5% rule”. Considering that the EXW model
is analytically simple, it can be considered a valid alternative to the distributions
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which provide a lower bound to be used in the calibration procedure of the par-
tial material factors, as it is shown in Section 6.3. On the other hand, none of
the generalized distributions under consideration is able to definitely represent the
statistical population of the tin-side strength. This surface of glass can be consid-
ered as a “pre-damaged” surface, because of the contact with tin bath and steel
rollers during the production process, and an ad hoc statistical characterization
will be presented in Section 5.3.
In conclusion, I think that the left-truncated Weibull statistics can be considered
the best model for interpreting the strength variability of pristine glass, since it
guarantees an exceptional goodness of fit with the experimental data and, unlike
the 3-parameter Weibull distribution, it has its direct physical justification in the
production quality controls, as discussed in Sections 3.4 and 3.5.
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CHAPTER 4

THE STRENGTH OF HEAT-TREATED GLASS

The ultimate strength of heat-treated glass is due to the contributions given by the
residual surface compressions and the strength of the pristine float glass (before
the heat-treatment). In the design practice, the characteristic strength is gener-
ally obtained by summing up the characteristic values of the pristine strengths
and residual stresses. However, the final strength for heat-treated glass may be
much higher than this simple sum, as it is demonstrated by the results of several
experimental campaigns [105, 90, 89, 91, 67].
Two main different types of heat-treated glass exist, the heat-strengthened and
the toughened. Several methods, destructive or non-destructive, have been used
through the years for measuring residual stresses. Destructive methods, very sel-
dom used nowadays, consist in imposing a local damage, which causes stress re-
laxation and a modification of the geometry, depending upon the residual stresses
after tempering, which are measured. On the other hand, photoelasticity methods
[59, 3], magneto-photoelasticity methods [59, 1, 47], acousto-elasticity methods
[29, 27] and X-ray diffraction techniques [68] are all non-destructive tests. In par-
ticular, the portable scattered light polariscope (SCALP) developed by Aben [2]
has been widely used during last years to measure residual stresses exploiting the
photoelastic properties of glass.
The intensity of residual stresses varies from point to point within the same panel
and from panel to panel: this is why an accurate statistical interpretation of the
prestress state induced by thermal treatments is not trivial. Moreover, data that
can be found in the literature from different experimental campaigns are quite frag-
mented and partial. A properly-designed measurement campaign has been carried
out at the Technical University of Darmstadt, that allows to reach some conclu-
sion, although partial, about the function to be used for interpreting the variability
of heat-induced residual stresses.
A statistical interpretation of the complex interaction between the residual stress
state and the additional state induced by the applied loads is proposed in the
current chapter, using a micro-mechanically motivated analysis of the effects of
prestress and applied bending [73]. The probability of failure is associated with
the probability of finding a sufficiently large crack at right angle to a critical tensile
stress, mutually related to the probability that the prestress is below a certain limit



4.1 The statistical population of surface compressions

at the same point. Hence, the prestress is treated as a beneficial external action.

4.1 The statistical population of surface compressions
Since during the tempering process the cooling of the panels is produced by jets,
the inhomogeneity of the resulting eigenstress may be very significant [4]. Thus, so
as to mitigate such inhomogeneity, the thermal treatment in the industrial practice
is made while oscillating the glass panes. This, together with an increase of the
cooling rate, strongly improves the homogeneity and isotropy of the induced state
of stress [20]. Hence, the residual stress state can be assumed to be homogenous and
equibiaxial, thus neglecting, at least as a first order approximation, the inevitable
point to point variation within a single specimen [90]. This assumption is not valid
for the edges, which are generally much more compressed than the core part [4]. In
particular, it is customary to assume that the stress state is disturbed and deviates
from the equibiaxiality up to a distance of 15 mm from the edges. Modulo this
distinction, it is assumed that the major variations in the state of prestress are
from plate to plate.
Veer et al. [89] tested 1100 × 360 × 10 mm glass plates, of which one third was
toughened, one third was heat strengthened and one third was annealed, under
four-point bending configuration. The prestresses profile through the thickness,
measured with SCALP-laser measuring device, and the surface residual stresses
are recorded in [89]. Arranging the data in ascending order and assigning an empir-
ical probability of failure Pf = i/(N + 1) at the i− th datum, where N represents
the number of data, the capability of the Gaussian and log-normal function at
interpolating the data is graphically investigated in Figure 4.1. Appreciable dif-
ferences between the normal and log-normal distributions do not arise. However,
the limited number of data does not allow to reach definite conclusions. This mo-
tivated a new properly designed measurement campaign, that was performed at
the Technical University of Darmstadt.

4.1.1 Analysis of the residual stress measurements made at the Tech-
nical University of Darmstadt

A wide measurement campaign was performed at the Technical University of
Darmstadt under the supervision of Prof. Dr. Ing. Jens Schneider. The eigenstress
states acting within 50 toughened glass plates of size 400 mm × 400 mm were
investigated. For each specimen, optical measurements of the compressive residual
stresses on the air side were made with the SCALP device along two orthogonal
directions at 5 points, i.e., at the center of the plate and along the two diagonals,
100 mm far from the edges, for a total of 500 measurements. The precision of the
measuring device is ±5%, i.e., the analysis is marginally affected by inaccuracies
in the measurements. However, to minimize such inaccuracies, each one of the
residual stresses has been computed as the mean of ten SCALP measurements.
Firstly, the ratio between the two residual stresses measured at any point was
calculated for verifying the hypothesis of equibiaxiality. The mean value of the
ratio between the minimum and the maximum stresses acting at any point resulted
to be σpc,II/σpc,I = 0.98, while the minimum value attained by such ratio was
σpc,II/σpc,I = 0.92. Hence, it is certainly acceptable to assume that the stress
state is equibiaxial and, consequently, the mean of the measurements taken along
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Figure 4.1: Normal σpc plot for the surface compression recorded in [89] for (a)
heat-strengthened glass and (c) toughened glass. Corresponding log-normal σpc plots in (b) and

(d). Here, Z represents the standardized variable.

the two orthogonal directions at any point may be considered as the equibiaxial
residual stress acting at that point.
The simplest assumption is that the point to point variation of prestress can be
neglected, which is equivalent to say that an almost homogeneous and equibiaxial
stress state acts in the core of the specimen. Thus, in a first instance, only the
plate-by-plate variation was investigated, by statistically analyzing a sample of 50
data. These data were obtained as the mean value of the 10 measurements, taken
at the air side for each plate. The resulting normal and log-normal probability
plots are shown in Figure 4.2.
By observing Figure 4.2, it is not possible again to detect appreciable differences
between the normal and the log-normal distributions. Moreover, the Chi-square
goodness of fit test, described in Section A.5, was made to evaluate the probability
that the difference between observed and expected data, according to the two
considered distributions, is due to chance alone, despite the size of the sample is
quite small. The p-values obtained by grouping the data in 10 bins are 0.33 for the
normal and 0.28 for the log-normal distributions. Hence, the Gaussian model can
be certainly considered acceptable for statistically interpreting the variability of
surface compressions. For this model, the mean value and the standard deviation
are µ = 98.6 MPa and υ = 2.4 MPa, respectively. The use of the log-normal
distribution does not improve the goodness of fit with the experimental data.
With the aim of investigating if it is correct to neglect the point-by-point variation,
the residual stresses acting at the air side of an additional toughened specimen were
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Figure 4.2: (a) Normal σpc plot of the 50 data representing the homogenous and equibiaxial
residual stress acting within the toughened glass plates; (b) log-normal σpc plot of the 50 data
representing the homogenous and equibiaxial residual stress acting within the toughened glass

plates. Here, Z represents the standardized variable.

measured on a 40 mm regularly-spaced grid of sampling points, for a total of 81
measurements. The external sampling points were 40 mm far from the edges of
the plate. How the residual stresses are distributed in the analyzed plate is shown
in Figure 4.3.
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Figure 4.3: Eigenstress state at the air side of a toughened glass specimen. Residual stresses
measured on 40 mm regularly-space grid. The external sampling points were 40 mm far from

the borders.

Deviations in residual stresses are of the order of 10%. Thus, Figure 4.3 makes
evident that the point by point variation of the prestresses may be of some im-
portance and, hence, should be taken into account while analyzing in detail the
variability of heat-treated glass strength. Most likely, the degree of uniformity of
the eigenstress state depends upon the position of the plate in the oven during the
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Figure 4.4: (a) Observed histogram for the 250 equibiaxial residual stresses measured at the
technical University of Darmstadt (23 bins); (b) observed histogram for the 184 residual

stresses recorded in Prof. Schneider’s Ph.D. dissertation [82] (20 bins).

cooling time in the tempering process.
Therefore, a new statistical analysis was performed on a sample of 250 data, con-
stituted by 5 data for each specimen, representing the equibiaxial prestresses at
the center and at four points along the diagonals of each plate. In this way, one
approximately takes into account both the point-to-point and the plate-by-plate
variations, since the data refer to different plates and different points at which mea-
surements are made, although the number of points in the same plate is certainly
limited.
It is of interest to observe from Figure 4.4(a) that a mild bi-modality has been de-
tected in the probability density function of residual stresses. Remarkably, such bi-
modality is observed even by analyzing the residual stress measurements recorded
in Prof. Schneider’s Ph.D. dissertation [82], shown in Figure 4.4(b), referring to an
old measurement campaign and, hence, to a totally different quality of float glass
and tempering process. Notice that a statistical distribution is generally bi-modal
when two different sources generate the data; however, no physical explanations
have been still proposed. In any case, the population of residual stress is certainly
not symmetric and the right tail is heavier than the left one.
The goodness of fit with the experimental data for the normal and log-normal
distributions has been investigated. The normal and log-normal probability plots
referred to the new sample of 250 data are shown in Figure 4.5.
By comparing Figures 4.5 and 4.2, no qualitative differences are observed between
the statistical analyses of the samples of 50 and 250 data. The p-values obtained
from the Chi-square goodness of fit test are 0.06 for the normal and 0.046 for the
log-normal distribution. Observe that the p-values now obtained are certainly more
reliable than the ones that refer to the sample of 50 data, because of the higher
number of points. Recall that it is customary to accept the 5% rule, according to
which a statistical model can be considered reliable for p-value≥ 0.05. The mean
value of the distribution is almost equal to the one obtained from the sample of
50 data (µ = 98.77 MPa vs. µ = 98.60 MPa), whereas the standard deviation is
mildly higher (υ = 2.79 MPa vs. υ = 2.40 MPa).
For the sake of completeness, the surface compressions were measured along two
orthogonal directions for 50 annealed glass plates, but only at the center of the

45



4.2 The statistical interference between residual stresses and pristine material
strength

−3 −2 −1 0 1 2 3
90

92

94

96

98

100

102

104

106

108

|σ
p
c
|[
M
P
a
]

Expected Z
 

 

Measured prestress
Normal distribution

Best fit

(a)

−3 −2 −1 0 1 2 3
4.5

4.52

4.54

4.56

4.58

4.6

4.62

4.64

4.66

4.68

lo
g
|σ

p
c
|[
M
P
a
]

Expected Z
 

 

Measured prestress
Lognormal distribution

Best fit

(b)

Figure 4.5: (a) Normal σpc plot of the 250 data representing the equibiaxial prestress acting in
5 points of any plate; (b) log-normal σpc plot of the 250 data representing the equibiaxial

prestress acting in 5 points of any plate.

specimens. However, no further findings that may be considered of interest were
obtained from the analysis of such data and, hence, they are not recorded here.
In conclusion, among the various options, interpreting the variability of the pre-
stresses with a Gaussian distribution is acceptable, since the p-value is higher
than 5%. This is certainly the simplest approach. Hence, the probability density
function for the prestress state induced through thermal treatment is assumed of
the form

fp(|σpc|) = 1
υ
√

2π
exp

[
− (|σpc| − µ)2

2υ2

]
, (4.1)

where σpc represents the surface pre-compressions, µ is the mean value and υ the
standard deviation.

4.2 The statistical interference between residual stresses and
pristine material strength

In the design practice, heat-treated glass strength σhtg is schematically calculated
as the simple sum of the strength of the pristine annealed glass (before thermal
processing) σann and the surface compression from the residual stresses σpc, i.e.,

σhtg = σann + |σpc|. (4.2)

Since experiments have provided a wealth of evidence that σhtg may be much
higher than this, expression (4.2) is often proposed with an additional coefficient,
i.e., σhtg = σann + ω|σpc|, with ω >1. However, by observing that the terms in
equation (4.2) represent statistical descriptors of peculiar statistical distributions,
like the 5% quantiles, the aforementioned difference with the experimental results
may be simply due to the statistical interference between the two component
distributions while evaluating the characteristic value of σhtg [73].
As discussed in Chapter 3, several statistical models have been proposed through
the years to interpret the strength of glass. However, here reference can be made to
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the most classical two-parameter Weibull (2PW) distribution, which is certainly
the simplest. In fact, for what concerns heat-treated glass, the distribution of
residual stresses mostly governs the left-hand-side tail of the strengths distribution
and, hence, the use of the 2PW model for interpreting pristine strengths variability
certainly provides estimates on the safe side. These are not excessively conservative
as in the case of annealed float glass, because the competition with the surface
prestress renders less important the left-hand-side tails.
Thus, by considering a generic state of stress Σ consequent to the application of
external actions, associated with principal stresses σ1(x) and σ2(x) at the point
x, the failure probability of a glass panel of surface area A assumes the form

Fa(Σ) = 1− exp
[∫

A

(
σeq(x)
η0

)m
dA

]
, (4.3)

where η0 and m are the parameters of the Weibull distribution, σeq(x) is the
equivalent value of the tensile stress at x. This is dependent, in turn, upon σ1(x)
and σ2(x) and upon |σpc|, which represents the prestress. Recall from Section 4.1
that the state of stress induced through thermal treatment can be reasonably
considered equibiaxial. Let ψ be the angle that the direction of the maximum
principle stress σ1 forms with the normal to the dominant crack plane again,
assume isotropic defectiveness, the equivalent stress σeq(x) reads

σeq(x) = 0, when σ1(x) < |σpc| , σ2(x) < |σpc|, (4.4a)

σeq(x) = 2
π

∫ π/2

0
(σ1(x)− |σpc|) cos2 ψ + (σ2(x)− |σpc|) sin2 ψdψ,

when σ1(x) > |σpc| , σ2(x) > |σpc|,
(4.4b)

σeq(x) = 1
π

∫ π/2−β(x)

−π/2+β(x)
(σ1(x)− |σpc|) cos2 ψ + (σ2(x)− |σpc|) sin2 ψdψ,

when σ1(x) > |σpc| , σ2(x) < |σpc|.
(4.4c)

The angle β is defined as the envelope of the angles ψ such that the component
of the tensile stress orthogonal to the crack plane is equal or higher than |σpc|
and reads β(x) = 1/2 arccos [(σ1(x) + σ2(x)− |σpc|)/(σ1(x)− σ2(x))]. The signif-
icance of the angle β is illustrated in the Mohr’ circle representation of Fig. 4.6(b).
In the case of equation (4.4a), both the principal stresses are compressive and,
hence, none of the micro-cracks is subject to opening stress (σeq(x) = 0). The
opposite case is represented by equation (4.4b). In this case, both the princi-
pal stresses are tensile, all the cracks are subject to opening tensile stress and
σeq(x) is defined as the spatial average of the tensile stress at x. In fact the value
[σ1(x)− |σpc|] cos2 ψ− [σ2(x)− |σpc|] sin2 ψ is the stress component orthogonal to
the crack plane. Lastly, in the case of equation (4.4c) only part of the Mohr’ circle
lies in the positive half-plane, since one principal stress is tensile while the other
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one is compressive. In such a case, all the cracks whose plane has an inclination
with respect to the maximum principle direction comprised between −β and β are
compressed. This strongly affects the statistical distribution of strengths, because
it defines the direction that corresponds to potential crack openings. The equiv-
alent stress σeq(x) is still the spatial average of the tensile stress at the point x,
but the intensity of the stress is computed as zero along the directions where the
stress is compressive (the upper and the lower limits of the integral are π/2 − β
and −π/2 + β, respectively).
For a generic experimental campaign, denote with fa(σann) the probability density
function for the pristine annealed glass strength at maximum stress σann and with
fp(|σpc|) the probability density function of the pre-compression stress at |σpc|.
Assuming that the stochastic variables σann and σpc are mutually independent,
referring to a generic and, for simplicity, uniform state of stress Σ consequent
to the application of external loads, the probability density function ft(Σ) is ob-
tained through the statistical convolution of the density functions of the operant
distributions, and reads

ft(Σ) = (fa ∗ fp)(Σ) =
∫ +∞

−∞
fa (σeq(|σpc|)) fp(|σpc|) d|σpc|, (4.5)

from which the cumulative distribution function Ft(Σ) is obtained of the form

Ft(Σ) =
∫ +∞

−∞
Fa (σeq(|σpc|)) fp(|σpc|) d|σpc|, (4.6)

where Fa(·) denotes the cumulative function associated with fa(·). Thus, by as-
suming a 2PW and a Gaussian statistics to represent the variability of pristine
glass strengths and of residual stresses, respectively, equation (4.6) becomes

Ft(Σ) =
∫ +∞

−∞

{
1− exp

[
−A

(
σeq(|σpc|)

η0

)m]}
{

1
υ
√

2π
exp

[
− (|σpc| − µ)2

2υ2

]}
d|σpc|.

(4.7)

Interestingly, observe that it is statistically very unlikely that both the strength
of annealed glass and the residual stresses attain their lowest values simultane-
ously. This is why a statistical descriptor such as the 5% quantile obtained as the
sum of two independent stochastic variables reaches higher values than the simple
analytical sum of the 5% quantiles of the two operant distributions.
From here on, the dependence of the mechanical strength upon the type of applied
stress is discussed, taking into account that cracks open in mode I. Such effect is
certainly well-known for simple annealed glass, but it is not so well investigated
for heat-treated glass. Firstly, consider the case of a plate tested in the coaxial
double ring configuration, which approximately approaches the ideal condition
of uniform equibiaxial stress state (Σ = Σeqb, e.g., σ1 = σ2 = σeqb). In such a
case, the orientation of the dominant crack does not affect glass strength, since
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the probability that maximum tensile stress is orthogonal to the crack plane is
100%. In this case, the Mohr’ circle degenerates into one point (see Figure 4.6),
the equivalent stress is given by equation (4.4b) and, consequently, the convolution
integral (4.7) assumes the form

Ft(Σeqb) =
∫ σeqb

0

{
1− exp

[
−A

(
σeqb − |σpc|

η0

)m]}
{

1
υ
√

2π
exp

[
− (|σpc| − µ)2

2υ2

]}
d|σpc|,

(4.8)

where A is the area under tensile stress. In this case, the sum of the surface
compression and the annealed glass strength is lower than the value obtained from
the compound distribution if one refers to a statistical descriptor lower than the
50% quantile, whereas the opposite is true if one refers to a statistical descriptor
higher than the 50% quantile. Then, the 50% quantile of the compound distribution
is equal to the sum of the 50% quantiles of the primitive functions.
On the other hand, the stress state induced through three- or four-point-bending
(3PB - 4PB) tests can be approximately considered uniaxial (Σ = Σunx, e.g.,
σ1(x) = σunx(x), σ2 = 0). This situation is somehow dual to the equibiaxial state,
since the probability of finding the maximum tensile stress at the right angle with
crack axis is the lowest. Ergo, any other type of stress state is in-between these
ones. Observe that the Mohr’s circle representing the surface stress state for a
heat-treated glass plate under uniaxial bending, shown in Figure 4.6(a), does not
lie entirely in the positive half-plane. This means that a micro-crack is compressed
if its plane has an inclination comprised between −β and β with respect to the
direction of σ1. This has a very strong implication, since a certain number of
flaws cannot cause failure, whatever their size is. This outcome is unattainable for
annealed float glass (Mohr’s circle (b) in Figure 4.6). Observe, by passing from
circle (b) to circle (a) in Figure 4.6, that the prestress state σpc causes a left-shift
of the circle center (C=σunx/2 vs. C=σunx/2− |σpc|) without affecting the radius
(R = σunx/2). Due to this phenomenon, even the 50% quantile of the compound
probability function is higher than the sum of the mean values for the prestress
and the pristine glass strength.
Interestingly, heat-treated glass strength is experimentally evaluated by testing
specimens under four-point-bending (4PB) configuration, leading to the state of
stress illustrated by circle (a) in Figure 4.6. Thus, a certain number of cracks
is not subjected to opening tensile stresses when the specimen is tested, even
though such cracks could lead to failure for stress states closer to equibiaxiality.
Such outcome affects the statistical distribution of heat-treated glass strength
and, hence, neglecting this effect could lead to a misleading interpretation of the
experimental results.
By defining the principal stresses σ1(x) = σunx(x) − |σpc|, the equivalent stress
σeq(x) given by equation (4.4c) becomes

σeq,unx = 1
π

∫ π
2−β

−π
2 +β

(σunx(x)− |σpc|) cos2 ψ − |σpc| sin2 ψdψ, (4.9)
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strength
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Figure 4.6: Mohr’s circle representations. From left to right: (a) pure bending of a heat-treated
glass plate; (b) pure bending of an annealed glass plate; (c) element under biaxial tensile stress;

(d) equibiaxial stress state.

while β(x) = 1/2 arccos [1− 2|σpc|/σunx(x)]. Within a plate under a 4PB loading,
the state of stress is homogeneous in the region Al delimited by the inner loading
points. Restricting the convolution integral to this area, equation (4.7) assumes
the form

Ft(Σunx) =
∫ σunx

0

{
1− exp

[
−
(
σunx − |σpc|

η0

)m
· Al
π

∫ π
2−β

−π2 +β

(
cos2 ψ − |σpc|

σunx − |σpc|
sin2 ψ

)m
dψ

]}
·
{

1
υ
√

2π
exp

[
− (|σpc| − µ)2

2υ2

]}
d|σpc|.

(4.10)

If one considers even those parts of the specimens between the supporting and
loading points, subject to an uniaxial tensile stress linearly varying with the dis-
tance from the supports, attaining its maximum at the loading points and being
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null at the supporting points, the probability of failure becomes

Ft(Σunx) =
∫ σunx

0

{
1− exp

{
−
(
σunx − |σpc|

η0

)m
·
[
Al
π

∫ π
2−β

−π2 +β

(
cos2 ψ − |σpc|

σunx − |σpc|
sin2 ψ

)m
dψ

+ b

π

∫ d

d |σpc|/σunx

∫ π
2−β

−π2 +β

( z
dσunx − |σpc|
σunx − |σpc|

cos2 ψ − |σpc|
σunx − |σpc|

sin2 ψ

)m
dψdz

+ b

π

∫ d (1−|σpc|/σunx)

0

∫ π
2−β

−π2 +β

(
σunx(1− z/d)− |σpc|

σunx − |σpc|
cos2 ψ − |σpc|

σunx − |σpc|
sin2 ψ

)m
dψdz

]}}
·
{

1
υ
√

2π
exp

[
− (|σpc| − µ)2

2υ2

]}
d|σpc| ,

(4.11)

where b is the specimen width and d is the distance between loading and sup-
porting points. By setting Al = 0 in equation in (4.11), one obtains the function
describing the probability of failure for a heat treated glass specimen under a 3PB
configuration.

4.3 Statistical analysis of the experimental data
Firstly, data available in the technical literature have been analyzed for validat-
ing the theoretical model proposed in Section 4.2 [73]. However, such experimen-
tal campaigns were not properly designed to this aim, so that the consequent
conclusions cannot be considered definite. This is the motivation for the ad-hoc
experimental campaign performed at the Technical University of Darmstadt.

4.3.1 Analysis of data available in the technical literature
The first experimental campaign here considered is that by Zaccaria and Overend
[104], who tested ten annealed, ten heat-treated and ten chemically-toughened
glass plates under a coaxial double ring (CDR) configuration, with diameters of the
loading and supporting rings respectively 51 mm and 127 mm. The aim was that
of investigating the mechanical behavior of bi-treated glass. The plate dimensions
were 300 × 300 × 6 mm, tested with the tin side under tension, while the residual
stresses induced through the treatment were measured by SCALP-04 and SCALP-
05 devices. The mean value for the surface residual stresses measured for the
toughened glass plates is 117 MPa, with standard deviation 7 MPa. The mean
value of the failure stresses for heat-treated glass resulting from the experimental
campaign was 288 MPa. Since in [104] only the mean values of strength for pristine
and heat-treated glass are recorded, Weibull statistics for pristine glass, obtained
in other campaigns, have been used and combined with the statistics for prestresses
derived from the measurements of [104].
Figure 4.7 shows the theoretical curves for the probability of failure obtained
through equation (4.8). By following [104], the Gaussian function interpreting
the residual stresses is characterized by mean value µ = 117 MPa and standard
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Figure 4.7: Cumulative probability function of the heat treated glass plates tested in [104] for
different Weibull parameters.

deviation υ = 7 MPa. In particular, in Figure 4.7, the continuous line refers to
the Weibull parameters recorded in [25], i.e., m = 7.3 and η0 = 406 Mpa mm2/m;
otherwise the dashed and the dotted curves are associated with the experimental
data from the campaign by the CEN TC129/WG8 group [19], analyzed in Section
3.6. In particular, the dashed line refers to the Weibull pair estimated graphically
according to the procedure recorded in Section A.2 (m = 6.46 and η0 = 419.6 Mpa
mm2/m), while the dotted one to the Weibull pair estimated analytically through
the Maximum Likelihood Estimation (MLE2) method (m = 5.62 and η0 = 589
Mpa mm2/m).
Even though only the mean strength of toughened glass plates is recorded in [104],
shown by the vertical line in Figure 4.7, it seems that the dashed line obtained with
the MLE pair is the most consistent with the experimental results. Since the state
of stress is almost equibiaxial, the effect of the phenomenon illustrated in Figure 4.6
upon the statistical distribution of heat-treated glass strength is null. This is why
the 50% quantile of the compound probability distribution (278 MPa) draws the
same value as the sum of the 50% quantiles of the pristine annealed glass strength
(161 MPa) and of the prestress (117 MPa) distributions. Focusing the attention
on the 5% quantiles, the compound distribution draws a higher value (217 MPa)
then those obtained by summing the 5% quantiles of the pristine strengths (101
MPa) and of the residual stresses distribution (105.5 MPa). The difference is not
so high, of the order of 5%.
Furthermore, Veer et al. [89] performed a wide experimental campaign on annealed,
heat strengthened and tempered glass plates tested in a 4PB configuration. For
16 heat strengthened plates and 16 toughened plates, the surface residual stresses
were measured through a SCALP laser scanner. The resulting mean value and
standard deviation of the Gaussian distribution for the prestresses acting within

2The likelihood of a set of data is the probability of obtaining that particular set of data,
given the chosen probability distribution model. The value of those parameters that maximize
the sample likelihood are known as the Maximum Likelihood Estimates.
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the toughened glass plates were µ = 103.44 MPa and υ = 6.73, respectively. The
specimens were tested at the air side. The Weibull pair for pristine strength has
been directly estimated by analyzing the data reported in [89] referring to annealed
glass plates. It is of importance to point out that the specimen dimensions were 300
mm × 100 mm × 10 mm, cut from a single sheet and not mechanical worked on the
edges after cutting. Consequently, one can expect that the small tested specimens
had been weakened because of the cutting process. The distance between loading
and supporting points is d = 75 mm, while the area delimited by the loading
points is Al = 9000 mm2, respectively, hence the cumulative probability function
for annealed glass reads

Fa(σann) = 1− exp
{
−
(
σann
η0

)m [
Al

2
π

∫ π/2

0
(cos2 ψ)m dψ+

2b
π

∫ d

0

∫ π/2

0

z

d
cos2 ψ dψ dz + 2b

π

∫ d

0

∫ π/2

0

(
1− z

d

)
cos2 ψ dψ dz

]}
,

(4.12)

where σann is the maximum stress acting within the annealed specimen at failure,
while the terms between square brackets provide the effective area Aeff .
Since the specimens were very small with no edge finishing, the annealed glass spec-
imens presumably failed at the border, whereas the statistical model here proposed
refers to portions far from the edges. Hence, the Weibull parameters have been
depurated from the influence of the edge weakening. As it is suggested by some
standards [23], to pass from the “edge” to the “core” strength, the experimentally-
obtained values for failure stresses have been divided by the coefficient ked = 0.8.
Then, the values of the N data constituting the sample were putted in ascending
order and an experimental value Pi = i

N+1 of the probability of failure was as-
signed to each i-th value. Finally, the parameters m and η0 have been graphically
estimated according to the procedure described in Section A.2.
If one considers the complete tensile area as per (4.11), the effective area is Aeff =
3610 mm2, while the Weibull parameters are m = 3, 47 and η0 = 875.41 MPa
mm2/m, while considering only the conventional tensile area Al comprised between
the loading points, one would obtain quite different values of the effective area and
the scale parameter with the same shape parameter m, i.e., Aeff = 2630 mm2

and η0 = 799.1 MPa mm2/m. However, considering that the residual compressive
stresses acting within a 15 mm wide region around the borders can be considered
to be very high, this region of the specimens should not be considered in the
analysis. Thus, the resulting values would be Aeff = 2527 mm2 and η0 = 789.96
MPa mm2/m for the same value of m again. In consideration of the uncertainty
in the pristine glass strength characterization, all these possibilities have been
compared.
For the loading case under consideration, the approximately uniaxial state of stress
diminishes the failure probability, by increasing the dispersion of the cumulative
density functions. Figure 4.8 illustrates a comparison between the theoretical and
the experimental values for the probability of failure.
The continuous curve in Figure 4.8 is obtained from equation (4.10), which consid-
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Figure 4.8: Toughened glass plates. Comparison between cumulative probability functions
obtained through the convolution integral (4.10) and the experimental points recorded in [89]

(µ = 103.44, υ = 6.73 and various choices of the Weibull parameters).

ers only the conventional area comprised between the loaded points, whereas the
dashed curve is obtained if the complete tensile area is taken into consideration.
Since the two curves are very close one another, the correction does not seem to be
essential for the geometry under consideration. On the other hand, the two lines on
the right-hand-side of Figure 4.8 refer to the Weibull pairs obtained by statistically
analyzing the experimental data of [19] for commercial glasses, as in Section 3.6;
graphically for the dash-dotted curve (m = 5.62 and η0 = 751.41 MPa mm2/m),
through the MLE method for the dotted curve (m = 5.23 and η0 = 867.39 MPa
mm2/m). Furthermore, the line corresponding to the Weibull parameters m = 3.47
and η0 = 789.96 MPa mm2/m, obtained by considering inactive the 15 mm wide
band along the borders, is not plotted, because it is substantially superimposed to
the one corresponding to m = 3.47 and η0 = 875.41 MPa mm2/m. The fact that
experimental points are located in an intermediate position between the aforemen-
tioned curves is not surprising, and proves the importance of the correct estimation
of the Weibull parameters. This is problematic for the case at hand because of the
small-scale of the specimens, the small number of tests and the absence of edge
finishing.
The results of the tests on heat-strengthened glass specimens have been analyzed
in the same manner. The mean value and the standard deviation of the Gaussian
distribution for residual stresses are µ = 42.78 MPa and υ = 5.27, respectively.
In Figure 4.9, the cumulative probability functions obtained through the convolu-
tion integral (4.10), with the same Weibull pairs used for (4.8) are plotted. Again,
the curve referring to the case in which the 15 mm wide band along the borders
is not considered is not plotted because of limited interest.
Observe that, unlike for toughened glass plates, the prestresses are mild even
at the borders of the specimens and, hence, defects of the edges may affect the
strength of heat-strengthened glass plates. This represents a source of uncertainty
for the analysis. By looking at Figure 4.9, one can notice that also in this case,
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Figure 4.9: Heat-strengthened glass plates. Comparison between cumulative probability
functions obtained through the convolution integral (4.10) and the experimental points

recorded in [89] (µ = 42.78, υ = 5.27. Different Weibull pairs.

studying the whole tensile area rather than only the part comprised between the
loading points does not cause a substantial difference. The experimental points, in
particular the central ones, are consistent with the cumulative probability function
obtained by using the Weibull pair characteristic of the strength exhibited by the
annealed glass plates tested in [89].
All the outputs of the statistical analysis are summarized in Table 4.1. Considering
the case of the complete tensile area, the difference between the 5% quantiles of
the compound probability function (147 MPa) for tempered glass and the sum
of the 5% quantiles of the component distributions (127 MPa) is of the order of
the 14%, while the difference between the corresponding 50% quantiles is of the
order of 8% (192 MPa vs. 178 MPa). Such differences, in percent terms, are a
little higher for heat-strengthened glass ('19% for the 5% fractiles and '9% for
the 50% fractiles). In general, the use of the the conventional tensile area in the
calculations leads to slightly lower differences.
Furthermore, by comparing the results of the experimental campaign by Zaccaria
and Overend [104] and by Veer et al. [89], notice that the differences in terms of
the 5% quantiles for 4PB configuration are higher than for the CDR configuration.

4.3.2 The experimental campaign performed at the Technical Univer-
sity of Darmstadt

The mechanical strength of 50 annealed and 51 toughened float glass plates was
evaluated by testing them under the coaxial double ring configuration proposed
in Section B.3. All the samples, which were square of side 400 mm, were provided
by the same supplier. The radii of the inner and of the outer rings are 75 mm
and 150 mm, respectively. All the specimens were exposed to short-wave ultravi-
olet radiations so as to differentiate the air side from the tin side. The air side
strength, which can be considered representative of the pristine material, has been
investigated. The thickness of each plate was estimated as the mean value of 4

55



4.3 Statistical analysis of the experimental data

Table 4.1: Conventional tensile area vs complete tensile area. Comparison of
the 5% and 50% fractiles from the compound probability functions and from

the sum of the fractiles of the annealed glass strength and prestress.

CASE I II III IV

Tensile area Conventional Complete Conventional Complete
µ [MPa] 103.44 103.44 42.78 42.78
υ [MPa] 6.73 6.73 5.27 5.27

m 3.47 3.47 3.47 3.47
η0 [MPa/mm2/m] 799.1 875.41 799.1 875.41

5%ann+5%pc [MPa] 127.3 127.3 68.7 68.7
5%com [MPa] 144.5 147 81.2 85

50%ann+50%pc [MPa] 177.9 177.9 117.3 117.3
50%com [MPa] 188.5 192 122.5 129

measurements taken along the four sides of the plate. Before performing the tests,
adhesive sheets were attached to the tin side of the specimen, so as to block the
glass shards after breakage and hence to detect the points in which the plates
collapsed. Only the data referred to specimens whose breakage started in the core
part of the specimen (delimited by the inner ring) have been considered valid. The
wide measurements campaign for the residual stresses was already mentioned in
Section 4.1.1.
Firstly, the annealed glass plates were tested at a constant load rate of 270 N/sec,
so to obtain a stress rate of approximately 2 MPa/sec. The maximum displace-
ments resulting from the experimental campaign were less than half the thickness
of the plate and, hence, the geometric non-linear effects have been considered neg-
ligible. Consequently, according to the static analysis recorded in Section B.1.1,
the state of stress acting within the core part of the plates can be approximately
considered homogenous and equibiaxial. The collapse of 38 panes started inside
the circumference delimited by the inner ring, hence the results of such tests have
been considered valid. From the fracture loads applied by the tensometer, FEM
analyses have been made, by considering the actual thickness of any plate, so to
evaluate the failure stress values σfail,i for the i-th specimen. Strictly speaking,
different fracture stresses are related to different stress histories and, hence, the
subcritical crack growth diversely affects each specimen. For the sake of compari-
son, all the failure stress values were re-scaled towards the condition of constant
tensile stress acting for a reference time of 60 seconds so as to normalize the static
fatigue effects, i.e., the ramp stress history induced during the experiments was
transformed to an equivalent uniform stress σ60 for a reference time tref = 60 sec
through the equation

∫ tf

0

(
σfailt

tf

)n
dt =

∫ tref

0
σn60dt ⇒ σ60 = σfail

[
tf

tref (n+ 1)

]1/n
, (4.13)

where n is the crack velocity parameter introduced in Section 3.2, here assumed
to be n = 16. Observe that the value of n has not been experimentally evaluated.

56



CHAPTER 4. THE STRENGTH OF HEAT-TREATED GLASS

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1
−4

−3

−2

−1

0

1

2

ln[σ] [N/mm2]

ln
[ ln

(
1

1
−
P

f

)]

(a)

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

ln[σ] [N/mm2] - G=0.08

ln
[ G

−
ln
(

1
1
−
P

f

)]

(b)

Figure 4.10: (a) Weibull probability plot of the equivalent stresses σ60 referring to the annealed
glass plates tested under CDR configuration; (b) left-truncated Weibull probability plot of the
equivalent stresses σ60 referring to the annealed glass plates tested under CDR configuration.

However, different values of n may lead to very slightly changes in the statistical
analysis. The 2-parameter and the left-truncated Weibull probability plots (see
Sections A.2 and A.3.2) of the equivalent stresses σ60 are recorded in Figure 4.10.
As it is evident from Figure 4.10, the left truncated Weibull distribution is able to
interpret the variability of pristine glass strength much better than the 2-parameter
Weibull distribution and, in particular, its left-hand-side-tail. However, such tail for
the heat-treated glass strength population is mostly governed by the distribution of
residual stresses. Hence, it is reasonable to use the 2-parameter Weibull statistics
for interpreting the pristine material strength variability in equation (4.8). The
Weibull parameters resulting from the graphical estimation method described in
section A.2 are m = 6.07 and η0 = 108.14 MPa.
For what concerns the tested full-tempered glass specimens, 35 valid results were
obtained. The maximum displacements were such that membrane strains were of
importance. Thus, according to the analysis recorded in Section B.1.1, the devia-
tion from linearity makes the stress state different from the equibiaxial one. Since
the statistical function (4.8) is well-founded for an almost uniform and equib-
iaxial stress state, whereas significant analytical complications may arise from a
different-in-kind state of stress, the "effective area" defined in Section A.2, equation
(A.11), has been estimated according to the 2-parameter Weibull model for each
plate, and the failure stress values were re-scaled towards the reference condition
of equibiaxial stress state.
The stress state within each plate has been investigated with the procedure pro-
posed in Section B.1.1, i.e., radial and circumferential stresses can be found through
equations (B.15) if the coefficient B0 and C1 are known, where B0 is the value of
S′r, associated with the membrane stress at the center of the plate, while C1 is
proportional to the bending stress at the same point. Indeed, once such coefficients
are known, all the other terms in the expansion (B.15) are obtained in cascade
from (B.16). From simple FEM simulations, the membrane force per unit length
SF = σ′centerh and the bending moment per unit length SM = σ′′centerh

2/6 at the
center of the plate were evaluated for each plate by starting from the fracture load
applied by the tensometer. Then, the coefficient B0 and C1 were obtained from
expressions (B.19). However, the stress state so obtained, i.e., by considering only
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the external loads, is not the one actually present within the specimen because of
the eigenstress induced through thermal treatment. Thus, by assuming a homoge-
nous and equibiaxial compressive state characterized by the mean value of the 10
measurements taken at each plate (see Section 4.1.1), the “actual” stress state was
obtained. Then, assuming that the radial and the circumferential directions are the
principal directions of stress, the ratio ρ between the minimum and the maximum
minimal stresses and, consequently, the equivalent stress σeq, given by equation
(B.21) has been found as a function of the distance from the center of the specimen.
Consequently, the effective area was estimated with equation (B.22) and the data
were re-scaled through the re-scaling law (A.13). Notice that the actual thicknesses
were considered for each plate in the FEM simulations, since even small differences
in plate thickness can lead to not negligible differences in the stress state. Finally,
the surface compressions have been added to the re-scaled stresses so as to obtain
the heat-treated glass strengths referring to an equibiaxial state of stress σht,eqb.
However, from a deep analysis of the data recorded in Appendix E, one can note
that the deviation from the equibiaxiality is mild. Thus, potential inaccuracies of
the aforementioned re-scaling procedure only slightly affect the statistical analysis.
Furthermore, time to failure tf obviously varied from specimen to specimen. Thus,
the effects of the subcritical crack growth must be normalized again, but, when
geometrical non-linearities arise, the experimental stress history is not any more
linear. Figure 4.11 shows the experimental stress history, which was constructed
through FEM analyses. By imposing again a constant load rate of 270 N/sec, the
stress-time σ − τ relation is linear in the first part of the test, whereas it deviates
from the linearity after a certain time.
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Figure 4.11: Experimental stress history for the heat-treated glass specimens under CDR
loading configuration.

The equivalent uniform stress σht,60 for a reference time tref = 60 sec is obtained
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through the equality∫ tf

tpc

(σht,eqb(t)− |σpc|)n dt =
∫ tref

0
(σht,60 − |σpc|)n dt, (4.14)

where σht,eqb(t) is the function plotted in Figure 4.11, n is the crack velocity pa-
rameter (it is assumed n = 16 again), tpc is the experimental time for the decom-
pression of the external surface of the specimen and σpc is the surface compression
at the beginning of the test. Notice that the underlying assumption for expres-
sions (4.14) is that second order effects do not arise before the decompression of
the external surface of the specimen. Such assumption seems to be valid since the
stress history is still linear for values of stress of the same order of the measured
residual stresses (90 MPa ÷ 110 MPa - see Section 4.1.1). Finally, the equivalent
stresses σht,60,i, for the i-th specimen were organized in ascending order, assigning
the experimental value for the probability of failure Pf = i/(N + 1), where N is
the total number of data.
The experimental data have been hence compared with the theoretical function
(4.8). As mentioned above, the 2-parameter Weibull distribution is chosen for
interpreting the pristine glass strength variability, with shape parameter m = 6.07
and scale parameter η0 = 108.14 MPa. On the other hand, a Gaussian function
is used for the residual stress variability, whose parameters (µ = 98.77 MPa and
υ = 2.79 MPa) were obtained from a sample of 250 points, taking into account both
the plate-by-plate and the point-to-point variation. The comparison between the
experimental data and the theoretical function (4.8), derived from the treatment
of the pristine glass strength and of the residual stresses, is shown in Figure 4.12.
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Figure 4.12: Comparison between the experimental data and the theoretical function (4.8).

Interestingly, the lower quantiles of the distribution are well interpreted by the
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statistical model, whereas the higher the considered quantile is, the higher is the
discrepancy between expected and observed data.
Such distance may be attributed, albeit tentatively, to the crack healing due to
the thermal process. It is of interest to note that the effect of crack healing is al-
most null for the lower quantiles, associated with the largest cracks, whereas it is
much more important for the higher quantiles, associated with the smallest cracks.
Hence, the results of the experimental campaign have shown that the benefic con-
tribution to heat-treated glass strength given by the crack healing is not negligible.
The development of a refined mechanical model able to interpret the effects of the
crack healing on the micro-crack lengths distribution should be the main focus of
further research. The design of components made of heat-treated glass could be
optimal only if one can safely take into account this benefic contribution.
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CHAPTER 5

THE EFFECT OF CORROSION AND ABRASION
UPON THE STATISTICAL DISTRIBUTION OF

GLASS STRENGTH

The defectiveness scenario present on the external surfaces of glass panes contin-
uously changes during service life because of several events, that can be generally
ascribed to corrosive or abrasive phenomena. A few experimental campaigns exist
where specimens have been tested after aging, both natural or artificial, whose
results are available in the technical literature. However, to my knowledge, no
micro-mechanically motivated approaches have been proposed to analyze these
data. In the current chapter, a model for interpreting how the macroscopic me-
chanical strength varies with microscopic changes in the flaws population is pro-
posed. The underlying assumption is that the shape and chemistry of the flaw tip
do not change over time, i.e., the changes in strength are attributed to changes in
size of flaws. Since this is not strictly true, changes in length of cracks must be
considered as equivalent values.

5.1 Corrosion
Corrosion phenomena continuously affect the float glass surfaces, because of re-
action with gases in atmosphere. Besides visible degradation of the glass surface,
corrosion leads to whitening, iridescence, loss of transparency and weight, due to
the dissolution of the external layers. For what concerns the defectiveness sce-
nario, corrosion leads to the simultaneous decreasing of micro-cracks length and
the blunting of the crack tip. From a mechanical point of view, the effect of the
crack blunting should be considered by properly modifying the stress intensity
factor. Since the quantification of this effect is not straightforward, the underlying
hypothesis in the proposed model is that corrosion leads to an equivalent constant
length reduction for all the surface flaws constituting the defectiveness scenario.
From here on out, the suffix “1” and “2” will be referred to the glass states before
and after corrosion, respectively. Thus, a generic crack of size δ1 becomes of size
δ2 = δ1 − ε, where ε represents the equivalent constant length reduction. Conse-
quently, even the minimum size of the physiological cracks, introduced in equation



5.1 Corrosion

(3.13), varies, that is δmin,2 = δmin,1 − ε, supposing ε < δmin,1. Under the afore-
mentioned assumptions, the probability of finding a crack of size δ in state “2” is
the same as the probability of finding a crack of size δ + ε in state “1”. Assume
again, as in Section 3.5, that the surface of the pane is divided into Representa-
tive Area Elements (RAE), say ∆A, whose main property is that they can host
only one crack; hence the number of cracks present on the external surface of a
specimen of area A is A/∆A. Assuming that the crack size population of the state
“1” follows a non-truncated power-law function, given by equation (3.15), the new
cumulative probability function for the state “2” reads

P
≥,(2)
∆A,δ (δ) =

(
δ + ε

δmin,1

)−α∗
= ∆A

(
δ + ε

ζ0

)−α∗
, (5.1)

where α∗ = α−1, with α exponent of the power-law function, and ζ0 = δmin∆A−1/α∗ .
From the equation of the critical SIF KIc, one can write

δ = 1
π

(
KIc

Y σcr

)2
, ε = 1

π

(
KIc

Y σε

)2
, (5.2)

where σε represents the critical stress correlated to ε. After some analytical ma-
nipulations, function (5.1) assumes the form

P
≤,(2)
∆A,σ(σcr) = ∆A

(
σcr

η0,2p
√

1 + σ2
cr/σ

2
ε

)2α∗

, (5.3)

where η0,2p has been already introduced in Chapter 3, equation (3.29). For the sake
of simplicity, we refer to an equibiaxial stress state. Recalling equation (3.25),
the survival probability for a corroded glass plate of area A0 under an uniform
equibiaxial stress state (Σ = Σeqb, e.g., σ1 = σ2 = σeqb) becomes

P (2)
s (Σeqb, A0) =

1−∆A
∫ σeqb

0

d

dσcr

(
σcr

η0,2p
√

1 + σ2
cr/σ

2
ε

)2α∗

dσcr

A0/∆A

.

(5.4)

Then, take A0/∆A = 1/ε; for small value of ∆A one has ε → 0 and

lim
ε→0

[
(1 + ε x)1/ε

]
= exp(x) . (5.5)
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Then, one can write

P (2)
s (Σeqb, A0) = exp

−A0

 σeqb

η0,2p

√
1 + σ2

eqb/σ
2
ε

2α∗
 . (5.6)

Therefore, the probability of failure for a generic uniformly loaded area A takes
the form

P
(2)
f (Σeqb, A) = 1− exp

−A
 σeqb

η0,2p

√
1 + σ2

eqb/σ
2
ε

2α∗
 . (5.7)

Since generally ε � δ, hence σε � σeqb and, consequently, σ2
eqb/σ

2
ε � 1, one can

expand in Taylor series 1/
√

1 + σ2
eqb/σ

2
ε = 1 − 1/2

(
σ2
eqb/σ

2
ε

)
+ o

(
σ2
eqb/σ

2
ε

)
, so

that the probability of failure for the state “2” can be approximated as

P
(2)
f (Σeqb, A) = 1− exp

−A
[
σeqb
η0,2p

[
1− 1

2

(
σ2
eqb

σ2
ε

)]]2α∗
 . (5.8)

Assume now that the variation of the crack lengths in the pristine state “1” follows
an upper-truncated power law function of the type (3.18). The probability that a
crack is correlated with a critical stress equal or lower than σcr in the state “2”
becomes

P
≤,T (2)
∆A,σ (σcr) = ∆A

η2α∗
0,lt

( σcr√
1 + σ2

cr/σ
2
ε

)2α∗

− σ2α∗
0

 , (5.9)

where η0,lt has the same meaning of equation (3.34), and σ0 is the minimal
strength, associated with the maximum allowable crack length δmax. By repeating
the same analytical step made above, one obtains

P
T (2)
f (Σeqb, A) = 1−exp

−A
σ2α∗

eqb − σ2α∗
0

η2α∗
0,lt

[
1− 1

2

(
σ2
eqb

σ2
ε

)]2α∗
 . (5.10)

By assuming reference values for the power law function parameters α∗ =2.5 and
η0,2p =1000 MPa mm1/α∗ , for the upper-truncated power law distribution α∗ =2.5,
η0,2p =1000 MPa mm1/α∗ and σ0 =40 MPa, and by imposing an equivalent con-
stant length reduction ε = 10 µm, from which σε =187.62 MPa, the variation of the
statistical distribution of strength by passing from the state “1” to “2” is shown
in Figure 5.1. For the sake of simplicity, an uniform and equibiaxial stress state is
considered again, acting on a unitary area A0 = 1 m2.

63



5.1 Corrosion

0 25 50 75 100 125 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ [MPa]

P
f
(σ

e
q
b
,A

0
)

 

 

State 1 - Pristine 2PW

State 2 - Etched 2PW

(a)

0 25 50 75 100 125 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ [MPa]

P
T f
(σ

e
q
b
,A

0
)

 

 

State 1 - Pristine LTW

State 2 - Etched LTW

(b)

Figure 5.1: (a) Effect of 10 µm-deep surface dissolution upon the 2-parameter Weibull
distribution (ε = 10µm; α∗ =2.5; η0,2p =1000 MPa mm1/α∗ ); (b) Effect of 10 µm surface

dissolution upon the left-truncated Weibull distribution (ε = 10µm; α∗ =2.5; η0,2p =1000 MPa
mm1/α∗ ; σ0 =40 MPa).

Since a 10 µm cracks reduction strongly affects the smallest cracks, whereas it is
almost negligible for largest flaws, the benefic effects of corrosion upon strength
distribution are much more significant for the highest quantiles, associated with
small crack lengths.
Interestingly, artificial corrosion by using hydrofluoric acid (acid etching) is an
efficient way for strengthening glass, since it reduces cracks size and blunt the crack
tips [85, 80]. For the sake of illustration, one can refer to the statistical analysis
of the experimental campaign made by Schula on etched glass plates, recorded
in his Ph.D. thesis [84]. The specimens were firstly scratched and then subject to
acid etching. Different samples, constituted by 10 data, were analyzed for different
exposure to acid etching, while an adding sample of 24 data was constituted by
specimens the had not been etched. Here, the cases of 1 min, 2 min and 5 min of
acid etching exposure time are analyzed. Strictly speaking, the scratching of the
specimens makes the distribution of the critical cracks size almost uniform, with
a narrow dispersion. This is not perfectly interpreted by the LTW distribution,
as it is possible to observe from the black line in Figure 5.2, referred to as the
not-etched specimens.
All the data were arranged in ascending order and an experimental value of the
probability of failure has been assigned as Pf = i/(N + 1) for the i-th datum,
where N is the total number of data. The failure stress values referred to not-etched
specimens were fitted through a LTW cumulative function, while the other samples
through the statistical function (5.10). The theoretical curves shown in Figure 5.2
were obtained by imposing the Weibull parameters graphically obtained from the
not-etched sample (m = 43.063, η0,lt = 61.73 MPa mm2/m and σ0 = 48.02 MPa),
and by varying the value of σε so as to obtain the best fit with the experimental
data. The resulting values of σε and of ε, obtained from (5.2)2 are: σε,1min = 200
MPa, ε1min = 8.88 µm, σε,2min = 180 MPa, ε2min = 10.97 µm, σε,5min = 145 MPa,
ε5min = 16.90 µm. Even though the size of the specimens is very small and the
scratching certainly disturbs the analysis, the model seems to acceptably interpret
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Figure 5.2: Fitting of the experimental data on scratched and etched specimen recorded in [84]
through the statistical function (5.10).

the variation of the statistical distribution of strength with increasing exposure
time to acid etching. In any case, it is confirmed that corrosion affects the higher
quantiles of the distribution much more than the lower ones. Of course, a properly
designed experimental campaign would be desirable, where test specimens are not
pre-scratched before the acid etching.

5.2 Abrasion
The statistical analysis of the data referring to the strength of abraded glass panes
is the subject of several contributions available in the technical literature. In partic-
ular, the results of some experimental campaigns on specimens that have been arti-
ficially scratched in order to reproduce the effect of natural abrasion are recorded
in the technical literature. Durchholz et al. [30] tested float glass panes treated
by dropping corundum (Al2O3) on them according to the set-up standardized by
EN1288-2 [31]. From the statistical analysis of the experimental data through a 2-
parameter Weibull distribution, they observed a left-shift of the distribution (lower
scale parameter) accompanied by a significant rotation (much greater scale expo-
nent), i.e., the highest strengths of the population are lowered, but the dispersion
is reduced. Remarkably, the lower quantiles remained of the same order as those
obtained by analyzing the pristine float glass.
Interested in studying the effects of sandstorms upon the mechanical performance
of glass, Algerian scientists [56] investigated the influence of sandblasting. In par-
ticular, mechanical tests on float glass plates were made after different time of
exposure to sandblasting, and the results are summarized in Figure 3.6. It is ev-
ident that, by increasing the sandblasting duration, glass strength tends to an
asymptotic value. This is most likely due to the effects upon the defectiveness
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scenario of a long-time exposure to the solid particle impacts.
When the hard sharp particle impacts the glass surface, high compressive and
shear stresses arise; consequently, the contact area is plastically deformed and
radial cracks are formed. Furthermore, lateral cracks are induced by large tensile
stresses due to the plastic deformation, causing the material removal. A simplified
view of such a phenomenon is shown in Figure 5.3.

Figure 5.3: Schematic representation of cracks formation due to a single solid impact [95].

Thus, a heavy erosion process leads to the dissolution of the external layers of
the specimen, which becomes thinner and, hence, to the extinction of the pre-
existing micro-cracks population. Consequently, the radial crack lengths govern
the mechanical strength of glass.
For the better understanding of such phenomenon, it is of interest to observe Fig-
ures 5.4(a) and 5.4(b), referring to an experimental campaign performed by Jilbert
and Field [53], who studied the combined effect of liquid impact followed by solid
impact on brittle plates, although the tested material was the zinc sulphide (ZnS)
and not the glass. Firstly, the specimens were damaged through liquid impact,
whose effect consists in forming an undamaged area in the central region, over
which the high compressive stresses develop, surrounded by short circumferential
cracks. Then, sand-blasting erosion was made for different sand impact velocities,
causing elastic-plastic deformation, i.e., a plastically deformed region is formed
from which radial and lateral cracks grow as it is clear from Figure 5.4(a). Figure
5.4(b) shows how the defectiveness scenario on the external surface of the specimen
varies with the exposure time to sand erosion for the case of impact velocity 20
m s−1, while the piece of pie chart detached from the rest shows the defectiveness
scenario of a specimen subjected to sandblasting but not to liquid impact. No dif-
ferences are noticeable between the specimens with harder erosion processes, with
and without exposure to liquid impact. This means that the initial defectiveness
scenario is completely annihilated and a new single micro-cracks population, whose
dispersion in terms of length is very low, is present on the external surface of the
specimen.
On the other hand, in the early erosion stages two different micro-crack populations
can be distinguished. From this outcome, one question arises: what is the worst
condition for a glass pane? One could superficially answer that a heavier abrasion
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(a) (b)

Figure 5.4: (a) Selected view from a ZnS specimen impacted 100 times in a random array over
14 mm diameter by 0.8 mm jets and sand eroded at 30 ms−1 for 10 s at 0.15 kgm−2s−1 with

C25/52 sand; (b) FLIR ZnS previously liquid impacted by 0.8 mm jets at 185 ms−1 (100
impact random array over 14 mm diameter circle) followed by sand erosion at 0.15 kgm−2s−1

at 10 ms−1 by C25/52 sand [53].

process leads to a weaker glass element, but this is not always true. Referring
again to the experimental campaign performed by the Algerian scientists [56], the
results of the mechanical tests for pristine material and for 30 min and 60 min
of exposure time to sandblasting have been presented in Figure 3.5. An increase
of the sandblasting time reduces the strength at high probabilities of failure, but
the opposite is true for low probabilities, i.e., the lowest quantiles of the strength
distribution do not reach their lowest values for the harder erosion processes.
Interestingly, it was observed that the maximum crack length due to exposition to
sandblasting was approximately 35 µm.
Considering that the length of the largest cracks in the pristine material, just af-
ter the industrial production, can be assumed of the order of 200 - 300 µm, it
can be argued that the flaws due to the extreme condition of abrasion are much
smaller than the original ones. Hence, the residual cracks, whose lengths distribu-
tion is almost uniform, are smaller than the largest preexisting cracks, by causing
an increase of the lower quantiles of the strengths distribution, accompanied by a
decreasing of the mean value of the distribution. However, “strengthening by abra-
sion” for the lower quantiles may be considered limited to heavy environments or
aggressive abrasion in the lab, otherwise the effects of very small cracks upon the
large cracks associated to the lower quantiles is negligible. In fact, it will be shown
in Section 5.3 that the contact with tin bath and steel rollers during float process
slightly affects the left part of the population of strengths.
Thus, it is not sure that, during the erosion process, a condition of the exter-
nal surface is reached that leads to the lowest values for all the quantiles of the
strengths distribution. However, the length of the cracks induced through abra-
sion is strongly dependent upon several factor, among which the geometry and
the composition of the particles used to erode the specimens [26]. Thus, different
results in terms of strength variation could be reached by using different elements
to impact with the glass plates.
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The effects of a mild abrasion process upon the defectiveness scenario can be
schematically considered as the addiction of new cracks to the pre-existing ones.
We can assume the super-position of two different surface cracks populations, the
pre-existing one and the one induced by abrasion. Firstly, consider that both the
distributions are interpreted by power-law distributions of the same type of (3.14),
i.e.,

ppre∆A,δ(δ) = α1 − 1
δmin,1

(
δ

δmin,1

)−α1

, pabr∆A,δ(δ) = α2 − 1
δmin,2

(
δ

δmin,2

)−α2

. (5.11)

By defining α∗1 = α1 − 1 and α∗2 = α2 − 1, the probabilities of finding a crack of
size equal or higher than δ in the representative area element ∆A assume the form

P≥,pre∆A,δ (δ) =
(

δ

δmin,1

)−α∗1
, P≥,abr∆A,δ (δ) =

(
δ

δmin,2

)−α∗2
, (5.12)

while the probability of finding a crack lower than δ, given by the super-position
of the two effects, becomes

P≤∆A,δ(δ) =
[

1−
(

δ

δmin,1

)−α∗1][
1−

(
δ

δmin,2

)−α∗2]
, (5.13)

which leads to the probability of finding a crack of size higher than δ of the form

P≥∆A,δ(δ) = 1−P≤∆A,δ(δ) =
[(

δ

δmin,1

)−α∗1
+
(

δ

δmin,2

)−α∗2]
− δ−(α∗1+α∗2)

δ
−α∗1
min,1 δ

−α∗2
min,2

.

(5.14)

Strictly speaking, the numbers of pre-existing, N0,1, and induced by abrasion,
N0,2, cracks or, equivalently, the representative surface elements ∆A1 and ∆A2
are different. This makes a derivation similar to that obtained through equation
(3.25) in Chapter 3 not straightforward. However, we may approximately consider
an average value of the representative surface element ∆Am = (∆A1 + ∆A2)/2 so
as to obtain

P≥∆A,δ(δ) = ∆Am

[(
δ

ζ0,1m

)−α∗1
+
(

δ

ζ0,2m

)−α∗2
−
(

δ

ζ0,3m

)−(α∗1+α∗2)
]
, (5.15)

68



CHAPTER 5. THE EFFECT OF CORROSION AND ABRASION UPON
THE STATISTICAL DISTRIBUTION OF GLASS STRENGTH

where

ζ0,1m = δmin,1

(∆Am)1/α∗1
, ζ0,2m = δmin,2

(∆Am)1/α∗2
,

ζ0,3m = (δmin,1)α∗1/(α∗1+α∗2) (δmin,2)α∗2/(α∗1+α∗2)

(∆Am)1/(α∗1+α∗2) .

(5.16)

Assuming for simplicity a homogeneous and equibiaxial stress state Σ = Σeqb,
e.g., σ1 = σ2 = σeqb, the same argument of Chapter 3, Section 3.5, can now be
repeated.

Substituting expression (5.15) into the equation for the survival probability of a
plate of area A0 (3.25), the cumulative probability function, obtained by perform-
ing again the limit as per (5.5), reads

Pf (Σeqb, A) = 1− exp
{
−A

[(
σeqb

η0,2p,1m

)2α∗1
+
(

σeqb
η0,2p,2m

)2α∗2

−
(

σeqb
η0,2p,3m

)2(α∗1+α∗2)
]}

,

(5.17)

where

η0,2p,1m = KIc

Y
√
πζ0,1m

, η0,2p,2m = KIc

Y
√
πζ0,2m

, η0,2p,3m = KIc

Y
√
πζ0,3m

. (5.18)

The resulting statistical function (5.17) represents a new generalized Weibull dis-
tribution, evidently much more complex than the classical 2-parameter one.

Assuming now an upper-truncated power law distribution for interpreting the
variability of the crack lengths population in the pristine glass, the two probability
functions hence read

pT,pre∆A,δ (δ) = α1 − 1
δmin,1 − δ1−α1

max δ
α1
min,1

(
δ

δmin,1

)−α1

, pabr∆A,δ(δ) = α2 − 1
δmin,2

(
δ

δmin,2

)−α2

.

(5.19)

From the expression for the critical SIF and from σ0 and σk introduced in Section
3.5, equations (3.32), after some analytical steps, one finds that the probability
of finding a crack correlated to critical stress equal or lower than σcr assumes the
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form

P≤∆A,σ(σcr) = ∆Am
(

σcr
η0,2p,2m

)2α∗2
when σcr ≤ σ0,

P≤∆A,σ(σcr) = ∆Am

[
σ

2α∗1
cr − σ2α∗1

0

η
2α∗1
0,lt,1m

+
(

σcr
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)2α∗2

− σ
2α∗1
0 σ

2α∗2
cr − σ2(α∗1+α∗2)

cr

η
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0,lt,3m

]
when σcr ≥ σ0,

(5.20)

where

η0,lt,1m =
[
∆Am

(
σ

2α∗1
k,1 − σ

2α∗1
0

)]1/2α∗1
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σ
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)
σ

2α∗2
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] 1
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.

(5.21)

From the same rationale, the cumulative probability of failure is obtained. This
reads

Pf (Σeqb, A) = 1− exp
[
−A

(
σ

η0,2p,2m

)2α∗2
]

when σ ≤ σ0,

Pf (Σeqb, A) = 1− exp
{
−A

[
σ
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eqb − σ
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0
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η
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0,lt,2m

−
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0
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2α∗2
0
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+
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σ

2(α∗1+α∗2)
eqb − σ2(α∗1+α∗2)

0

]
(η0,lt,3m)2(α∗1+α∗2)

]}
when σ ≥ σ0.

(5.22)

It is evident that the resulting cumulative statistical distribution is much more
complex than the left-truncated Weibull one.
Furthermore, there are cases in which abrasive phenomena precedes the post-
processing acceptance phase, as it is the case for the surface of glass plates in
contact with the tin bath and the steel rollers during the production process, on
which I will focus in Section 5.3. In this case, both statistics should be interpreted
by upper-truncated power law functions of the type

pT,pre∆A,δ (δ) = α1 − 1
δmin,1 − δ1−α1

max δ
α1
min,1

(
δ

δmin,1

)−α1

,

pT,abr∆A,δ (δ) = α2 − 1
δmin,2 − δ1−α2

max δ
α2
min,2

(
δ

δmin,2

)−α2

.

(5.23)

The same upper bound δmax of the crack lengths for both the distributions is here
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assumed, which is equivalent to impose the same truncation to both the statistical
populations. By using the same arguments as above, the probability of finding a
crack with length equal or larger than δ becomes

P≥∆A,δ(δ) =
[
δ
−α∗1
max − δ−α

∗
1

δ
−α∗1
max − δ

−α∗1
min,1

+ δ
−α∗2
max − δ−α

∗
2

δ
−α∗2
max − δ

−α∗2
min,2

]
− δ

−α∗1
max − δ−α

∗
1

δ
−α∗1
max − δ

−α∗1
min,1

δ
−α∗2
max − δ−α

∗
2

δ
−α∗2
max − δ

−α∗2
min,2

,

(5.24)

which leads to a probability of failure of the form

Pf (Σeqb, A) = 1− exp
{
−A

[
σ2α∗1 − σ2α∗1

0
(η0,lt,1m)2α∗1

+ σ2α∗2 − σ2α∗2
0

(η0,lt,2m)2α∗2

−

(
σ2(α∗1+α∗2) − σ2(α∗1+α∗2)

0

)
− σ2α∗1

0

(
σ2α∗2 − σ2α∗2

0

)
− σ2α∗2

0

(
σ2α∗1 − σ2α∗1

0

)
(η0,tt,3m)2(α∗1+α∗2)

]}
,

(5.25)

where η0,lt,1m and η0,lt,2m are given by (5.21) and η0,tt,3m reads

η0,tt,3m = η0,lt,1m η0,lt,2m

∆Am
=
[
∆Am

(
σ

2α∗1
0 − σ2α∗1

k,1

)(
σ

2α∗2
0 − σ2α∗2

k,2

)] 1
2(α∗1 +α∗2 )

.

(5.26)

Remarkably, observe that all the expressions for the probability of failure recorded
in the current section have been derived by assuming that the same geometric
coefficient Y (expression for the critical SIF (3.1)) characterizes the two micro-
cracks populations, i.e., it has been supposed that the pre-existing cracks and the
cracks due to abrasion have the same shape. One may consider the case in which the
probability of failure is still obtained by assuming that the flaws distributions are
interpreted by the functions (5.23), i.e. both the distributions are truncated, but
referring to cracks populations of different shapes. By supposing Y1 < Y2 = Yef ,
one obtains

Pf (Σeqb, A) = 1− exp
{
−A

[
(Yefσ)2α∗1 − (Y1σ0,1)2α∗1

∆Am[(Y1σk,1)2α∗1 − (Y1σ0,1)2α∗1 ]
+

σ2α∗2 − σ2α∗2
0,2

(η0,lt,2m)2α∗2

− (Yeffσ)2α∗1 − (Y1σ0,1)2α∗1

∆Am[(Y1σk,1)2α∗1 − (Y1σ0,1)2α∗1 ]
σ2α∗2 − σ2α∗2

0,2

(η0,lt,2m)2α∗2

]}
,

(5.27)

where η0,lt,2m is again given by (5.21). Hence, assumption of different shapes for
micro-cracks populations, associated respectively with Y1 and Y2, would lead to
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more complicated expressions.
Another potential approach for interpreting the variability of abraded glass strengths
is based upon the Change of Variable Theorem (CVT) [17, 87]. In this approach,
it is supposed that the defectiveness scenario observed on a surface subject to
abrasion is related to a single distribution of crack lengths resulting from the
distortion induced through abrasion phenomena of the pre-existing population of
cracks. This concept is statistically interpreted through the CVT, which is based
upon a generating density function, representative of the pristine material, and on
a transforming function, modeling the effects of the event that has distorted the
statistical distribution3. The choice of the correct forms for the generating and
transforming functions for the case of abraded glass strength will be the subject
of further research.

5.3 The statistical population of “tin-side” strength
It is well known that the statistical distributions interpreting the strengths variabil-
ity of the air- and tin-side surfaces are different. As discussed at length in Chapter
3 while elaborating the data from the experimental campaign by TC129/WG8 of
CEN [19], a left-truncated Weibull distribution of the type considered in Section
A.3.2 can very well reproduce the statistics of strength when the air-side is under
tensile stress, whereas the same is not true for the tin-side. Indeed, as it is shown
in Section 3.6, no types of generalized Weibull distribution can acceptably fit the
experimental data associated with the tin-side strength.
Here, we consider the contact with the tin bath and the steel rollers as a mild
abrasive process, because of which two different micro-cracks population coexist
in the defectiveness scenario, i.e., one referred to the air-side, as that for a pristine
material, and the other one induced during the production phase as a consequence
of abrasion. By assuming the same notation of equation (5.23), one has the prob-
ability density function pair = pT,pre∆A,δ (δ) for the air side, and pfloat = pT,abr∆A,δ (δ)
for the defects induced during the float process. For the sake of simplicity, it is
reasonable to assume, albeit at a first order approximation, that the crack shape is
the same for both populations, i.e., Y1 = Y2 = Y . Thus, the cumulative probability
of failure for the tin-side strength is given by expression (5.25).
The results of the experimental campaign by TC129/WG8 of CEN [19] are used
again, in order to verify the theoretical prediction. It has been shown in Chapter 3,
Section 3.6, that the air-side data are very well interpolated with a left-truncated
Weibull distribution. Recall that the specimens have been tested under the coax-
ial double ring configuration provided by the standard EN 1288-2 [31]. In the
Appendix A it is shown that the state of stress in the area delimited by the in-
ner ring is not equibiaxial, and a method to rescale the data towards the standard
conditions of equibiaxial stress state and unitary area A0 = 1 m2 is presented. The
statistical analysis of the corrected and rescaled data referred to air-side strengths
is recorded in Chapter 3. For α∗1 = 2.125, η0,lt,1 = 1462.85 MPa mm2/m and
σ0,1 = 40.2 MPa, one obtains the excellent fitting graphically represented in the
LTW plane of Figure 3.12.

3The most popular example of the CVT theorem is constituted by the log-normal distribu-
tion, described in Appendix D, which arises from a Gaussian generating density function whose
deformation is described by an exponential function.
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Thus, the statistics for the air-side is known, and now the attempt consists in
fitting the tin-side data with the generalized Weibull distribution defined by ex-
pression (5.25). The function is simplified by neglecting the third term in square
brackets, since η0,tt,3m = (η0,lt,1mη0,lt,2m)/∆Am is very large for the case consid-
ered here. Consequently, the distribution (5.25) turns into a bi-modal truncated
Weibull distribution of the type

Pf (Σ, A) = 1− exp
{
−Aeff

[
σ

2α∗1
f − σ2α∗1

0,1

η
2α∗1
0,lt,1m

+
σ

2α∗2
f − σ2α∗2

0,2

η
2α∗2
0,lt,2m

]}
, (5.28)

where Σ is the generic state of stress and σf the failure stress. Observe that the
bi-modal function (5.28) is different from the one introduced in Appendix A, since
it arises from two truncated populations of cracks and, hence, it provides the two
lower bounds σ0,1 and σ0,2.
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Figure 5.5: Plot in the Weibull plane of the tin-side failure stresses (experiments from [19]).
Interpolation with the statistical distribution of equation (5.25) (α∗

1 = 2.1; η0,lt,2m = 1462.85
MPa mm2/m; σ0 = 40.2 MPa; α∗

2 = 2; η0,lt,2m = 1276 MPa mm2/m; A=127170 mm2).

The rigorous evaluation of the effective area for such a statistical distribution
is analytically difficult. Hence, as a first order approximation, one may estimate
the effective area Aeff as for the 2PW model, i.e., Aeff is given by equation
(A.11). Remarkably, this depends upon the shape parameter m and the equivalent
stress σeq,W2, which, in turn, depends upon the principal values of stress. Since
geometric non-linearities arise during the coaxial double ring test according EN
1288-2 [31], the ratio between the principle stresses varies with the load level and,
consequently, the effective area is not constant. However, its deviations in the
range of the failure stress values can be considered small. Hence, an approximated
value Aeff = KA = 0.45π(300)2 mm2 is assumed. Moreover, the function (5.25)
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has been slightly generalized, by assuming that the lower bound for glass strength
for the pre-existing defects (σ0,1) may be different from the one due to the defects
induced by abrasion (σ0,2).
Finally, setting η0,lt,1m, α∗1 and σ0,1 equal to the corresponding values for the
air-side mentioned above, the best fitting of the experimental data for the tin-
side is obtained with α∗2 = 2, η0,lt,2m = 1276 MPa mm2/m and σ0,2 = 46 MPa.
Interestingly, σ0,2 is slightly higher than σ0,1, which means that the maximum
size of the cracks induced through abrasion on the tin-side is smaller than the
maximum size of pre-existing cracks. Figure 5.5 shows the Weibull probability
plot in the plane ln ln [1/(1− Pf )] vs. ln σ for the tin side data, which points out
the optimal goodness of fit.
Remarkably, the effects of abrasion are significant for the higher quantiles of the
distribution, whereas they become almost negligible for the lower quantiles. In
particular, since σ0,1 < σ0,2, the statistics matches the one of the air side in the
interval σ0,1 ≤ σ ≤ σ0,2.
The chi-square test, described in the Appendix A.5, has been used for a quan-
titative verification of the goodness of fit. For this analysis, one obtains p-value
' 0.06 (6%). Since it is customary to accept the 5% rule, it is possible to claim
that the proposed statistical model, derived from micromechanical considerations,
is acceptable, especially when compared with the generalized Weibull or other
more classical statistical distributions.
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CHAPTER 6

THE DESIGN OF STRUCTURAL GLASS
COMPONENTS

6.1 Expected performances of glass structures
Structures must guarantee a certain level of safety against failure. This is why
nowadays structural design is based upon probabilistic considerations, i.e., the
probability of collapse reputed acceptable is a function of the consequence of the
collapse itself. In Europe, the principles and requirements for the structural safety
of buildings and other civil works are established by the Eurocode EN 1990 “Basis
of structural design” [37], which serves as a guide for the other nine standards EN
1991-1999. However, the approach to be followed for the design of load-bearing
glass components is not prescribed. According to the EN 1990, three classes of
consequences, namely CC1, CC2 and CC3, characterize the required safety level,
by considering the consequences of their failure or malfunction in economic, social,
and environmental terms. For example, grandstands and public buildings belong
to the class CC3, residential and office buildings to CC2 and agricultural buildings
and greenhouses to CC1.
However, some considerations have to be made for structural glass. First, the
cost of a glass structure can only be afforded in luxury constructions, so that it
would be rare, if not impossible, to find an expensive glass floor in an agricultural
building. Furthermore, glass is very often employed to make isolated parts of the
construction, such as facades, floors or stairs, whose failure is not accompanied by
the collapse of the whole building. Hence, there is no need for assigning to all the
glass elements present into a civil building the same class of the building itself,
but it is necessary to make a classification on the basis of the single element. This
approach has been followed by the Italian guide lines for structural glass [23]. For
the sake of illustration, Table 6.1 shows the schematic proposed by the Italian
CNR-DT 210 [23], including also the class CC0 referring to clearly-non-structural
elements (for example, a glass pane for a small window).
The Eurocode EN 1990 [37] establishes the reference life time required for different
types of civil structures, which is defined as the period during which the perfor-
mances of the buildings shall not be impaired by external actions and, hence, only
ordinary maintenance is required. The probabilities of collapse considered accept-



6.2 The probabilistic and semi-probabilistic approach

Table 6.1: Classes of consequence for glass elements indicate by CNR-DT210 [23].

Class Definition

CC0 Specifically non-structural elements. Following failure, negligible economic, social end
environmental consequences and practically null risk of loss of human life.

CC1 Following failure, low risk of loss of human life and modest or negligible economic, social
and environmental consequences. Glass structural elements whose failure involves
scarce consequences fall into this category.

CC2 Following failure, moderate risk of loss of human life, considerable economic, social and
environmental consequences. Glass structural elements whose failure involves medium-level
consequences belong to this category.

CC3 High risk of loss of human life, serious economic, social and environmental consequences:
for instance, the structures of public buildings, stages and covered galleries, where the
consequences of failure can be catastrophic (concert halls, crowded commercial
centers, etc.). Glass structural elements whose failure involves high-level consequences
fall into this category.

able are assigned on basis of the reference life time. The probabilities of failure
for a reference life time of 50 years, given for two different values of the return
period TR of the applied actions, i.e., 1 year and 50 years, are recorded in Table
6.2, consistently with the EN 1990. Of course, by passing from the first to the
third class of consequence, the probability of failure reputed acceptable decreases.

Table 6.2: Probability of collapse as a function of the different classes of structural
elements according to EN 1990 [37].

Class β [TR = 50 years] Pf [TR = 50 years] β [TR = 1 year] Pf [TR = 1 year]

CC1 3.3 4.83 10−4 4.2 1.335 10−5

CC2 3.8 7.235 10−5 4.7 1.305 10−6

CC3 4.3 8.54 10−6 5.2 9.96 10−8

6.2 The probabilistic and semi-probabilistic approach
According to the semi-probabilistic method (level I), design values need to be as-
signed to all the basic variables. A structural component is accepted if the design
resistances are higher than the design actions, i.e., Rd > Ed, which in practice
means that the probability of failure is equal or lower than a target value. Thus,
partial reduction factors for the strength and partial amplifying factors for the
actions are defined, so as to guarantee the required performance level in terms of
probability of failure. The values for partial factors can be obtained by perform-
ing calibration procedures based on experience and building traditions and/or
based on the statistical evaluation of experimental data and field observations.
The probabilistic calibration procedures for partial factors are generally obtained
by comparison with more sophisticated methods divided into two main classes, the
full probabilistic methods (level III) and first order reliability methods (Level II).
Following the level III methods, the probability of failure is directly evaluated from
the statistical distributions interpreting the action and the resistance variabilities.
Assuming that actions and resistances are mutually independent variables, let <
be the domain of the resistances and fr the statistical distribution of the values
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r ∈ <. Moreover, denote with S the domain for actions and with fs the statis-
tical distribution of the values s ∈ S. Then, the probability of failure Pf can be
evaluated from the convolution

Pf = P [<− S ≤ 0] =
∫ +∞

−∞

∫ s≥r

−∞
f<(r) fS(s) dr ds. (6.1)

Considering the case that the domains of resistance and action coincide, i.e., r =
s = x, x ∈ X. Expression (6.1) thus becomes

Pf = P [<− S ≤ 0] =
∫ +∞

−∞
F<(x) fS(x) dx , (6.2)

where F<(x) is the probability that the strength is less than x (cumulative distri-
bution of strength). Indeed, the level III methods are the most rigorous and are
considered the most accurate.
The procedure for the calibration of the partial safety factors recorded in the fol-
lowing (see Section 6.3) is based upon the comparison between the results of the
structural design on paradigmatic case studies, obtained by using the full prob-
abilistic approach of level III and the semi-probabilistic approach of level I. The
optimal design is made by achieving the target probability of failure established in
Table 6.2 through level III method. Then, the value of the material partial safety
factor γm is obtained so to attain the same optimal design via level I method, with
the partial coefficients for actions γf given by the relevant standards.
On the other hand, according to the level II methods, the estimation of the proba-
bility of collapse is simplified by some hypothesis, so that this can be more directly
measured from the reliability index β. However, it is relevant to observe that an
underlying assumption of these methods is that the material strength is interpreted
by a Gaussian distribution, which is not the case of the glass. For the sake of com-
pleteness, the values of the reliability index β corresponding to the target values
of the probability of failure for the three consequence classes are also recorded in
Table 6.2, but they are not used here.
The partial safety factors provided by standards generally refer to the probability
of failure associated with class CC2, whereas a further coefficient is furnished to
pass from CC2 to CC1 or CC3. According to the Eurocode EN 1990 [37], the
partial coefficient of the actions γf must be multiplied by a correction factor KFI ,
which is KFI < 1 when passing from CC2 to CC1, while KFI > 1 from CC2
to CC3. Otherwise, it is here proposed to follow the approach indicated in the
CNR-DT 210 [23], according to which one introduces a correction coefficient RM
of the material partial safety factor, so that RM < 1 when passing from CC2 to
CC1 and vice-versa from CC2 to CC3. Remarkably, there is no difference between
decreasing the actions or increasing the resistances when the mechanical response
of the structure is linear elastic, but it is important when geometric non-linearities
are significant. Hence, to not underestimate the non-linear effects induced by the
actions, it is more appropriate to increase the resistances through the coefficient
RM .
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6.3 The calibration of partial material factors for annealed
float glass

The paradigmatic case study considered here is that of a 8mm-thick square glass
plate of side 3000 mm, simply supported at the edges under a uniformly distributed
out-of-plane load, representative of the effects of wind on a façade panel, or of the
effects of snow on a roof panel. For the case of wind actions, two different conditions
are considered, one associated with characteristic wind pressures averaged over the
times t = 10 min and the other with wing gust of t = 3 s. Observe that the load
referred to the case t = 10 min is lower than the one associated to t = 3 s, but its
effects could be more severe than in the second case, since its duration is higher and
therefore the phenomenon of static fatigue is more relevant. Furthermore, the snow
load will be considered applied for a time equal to one month, according to the
recommendations given by the CNR-DT210 [23]. The process for the calibration
of partial factors is schematically summarized in the flow chart of Fig. 6.1.
The calibration of the partial factors will be performed twice, by interpreting the
glass strength variability with both the left-truncated (LTW) and the extended
Weibull (EXW) functions [9]. Results will be then compared with those from the
2PW distribution obtained by Badalassi et al. [7].

6.3.1 Calibration procedure based upon the left-truncated Weibull
(LTW) statistics

The Weibull parameters characterizing the strength distribution for the LTW
model have been estimated from the results of the experimental campaign per-
formed by the technical group TC129/WG8 of CEN [19].
Recall from Appendix A that the failure stress values recorded in [19] must be “cor-
rected” to be representative of the actual maximum tensile stress acting within the
specimens at the end of the tests. Then, the corrected data need to be re-scaled
according to the effective area KWTA, whose form is recorded in the Appendix
A, equation (A.30). Recall that KWTA is stress-dependent if one takes into ac-
count geometric non-linearities. However, the higher the loads are, the higher are
the geometric non-linearities and the lower is KWT (conservative). The values of
KWT,air = 0.54 and KWT,tin = 0.55 have been assumed that correspond to a
maximum stress of 100 MPa, which is approximately equal to the maximum stress
measured during the experimental campaign.
Recall that cracks in glass can grow in time when subject to opening stresses that
are far below the critical limit [100] because of the phenomenon of static fatigue
or subcritical crack growth (Section 3.2). Since applied actions are schematized by
loads assumed to remain constant for a certain characteristic time, so to take into
account the effects of static fatigue, the failure stress values have been re-scaled
through the coefficient kmod, given by equation (3.11). A new population is hence
obtained, representing the strength variability of the specimens when the external
loads are maintained constant during a characteristic time τ . These data can thus
be interpolated again with a new statistical distribution, to obtain the values
σ0,τ and η0,τ of the location and scale parameters, respectively. In this process
the shape parameter m is assumed to remain uneffected. The obtained statistical
distributions for the strengths thus depends upon the characteristic time τ .
It is also important to consider the effects of aging. Referring to the model schema-
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Figure 6.1: Methodology for the calibration of partial factors.
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tized in Figure 3.7, i.e., a semi-sphere cavity induced through abrasion with the
same center of a pre-existing thumbnail crack, two major conclusions were drawn
in Section 3.4: i) abrasion can increase the stress intensity factor associated with a
dominant crack, but ii) there is an upper bound for this increment. Furthermore,
little defects may produce beneficial shielding (reduction in SIF) of the dominant
flaw. Hence, since the location parameter σ0 is associated with the maximum size
of the micro-cracks, one can expect that the lower bound is at most reduced but
not annihilated by natural abrasion phenomena. Hence, on the safe side, a further
reduction of the location parameter is here operated according to the expression

σ∗0,τ = σ0,τ

ω
, (6.3)

where ω > 1. Observe that the precise evaluation of σ0 is central for the calibration
of partial safety factors, and even small changes in its value can lead to significant
differences in the left-hand-side tail of the distribution. Of course, all the quantiles
of the strengths distribution, and not only the lower bound σ0,τ , may be affected
by abrasion. Hence, the parameter η0 has been analogously reduced according to

η∗0,τ = η0,τ

ω
. (6.4)

The rigorous evaluation of ω is not straightforward and would require an accurate
experimental investigation, considering various possible damaging actions. Refer-
ring again to the case represented in Figure 3.7, one can expect a reduction in
strength of the order of 10÷ 20% due to sandblasting, which certainly represents
a very severe damaging action. However, a rather conservative value ω = 1.5 has
been chosen here. Figure 6.2 shows the effects of the reduction of the scale param-
eter η0,τ and of the location parameter σ0,τ according to (6.3) and (6.4), which are
equivalent to a leftward shift and an increase in the slope of the curve representing
the cumulative probability function, i.e., a reduction of the material strength and
of the data dispersion.
The parameters characterizing the statistics for glass strengths, for either the air
or the tin side, graphically estimated according to the procedure recorded in the
Appendix A, are recorded in Table 6.3.
Since glass plates are randomly installed into civil structures, following [7], the
probability that the air-side is under maximum tensile stress is assumed equal
to the probability of having the tin-side in the same condition. The cumulative
probability function of material strengths is hence given by the arithmetic mean
of the functions representing the strength of the two surfaces, which reads

F
(air+tin)/2
A,τ,WT (σ) = 1− 1

2

tin∑
sd=air

exp
[
−
Ksd
WTσ

msd − σ∗msd0,τ,sd

η∗msd0,τ,sd
A

]
, (6.5)

where “sd = air” or “sd = air” represent the side “sd” of glass. Let fσ,τ (σ) be the
density function of the maximum stress σ within the pane occurring in one year.
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Figure 6.2: Cumulative probability distribution of the material strength modified for taking
into account the effects of aging, corresponding to failure for a load applied for 10 minutes.

Table 6.3: Graphically estimated parameters characterizing
the left-truncated Weibull distribution for wind (two values)
and snow loads. For the test configuration of EN 1288-2 [31]:
KWT,air = 0.54; KWT,tin = 0.55; Gair = 0.065; Gtin =

0.24; A = 0.2826 m2. Various characteristic load durations.

Case study m η0,τ σ0,τ η∗0,τ σ∗0,τ

[MPa] [MPa] [MPa] [MPa]

AIR SIDE
Wind, 10 min 4.0025 40.12 27.27 26.75 18.53
Wind, 3 s 4.0025 55.51 38.45 37.00 25.63
Snow, 1 m 4.0025 24.39 16.89 16.26 11.26

TIN SIDE
Wind, 10 min 3.7678 26.41 25.29 19.56 18.73
Wind, 3 s 3.7678 36.53 34.98 27.06 25.91
Snow, 1 m 3.7678 16.05 15.37 11.89 11.38

Then, the convolution integral (6.2) becomes

Pf,1y,WT =
∫ +∞

−∞
F

(air+tin)/2
A,τ,WT (σ)fσ,τ (σ)dσ , (6.6)

which represents the probability of failure in one year. The parameters defining the
actions are made to vary so as to achieve the target values of failure probability
recorded in Table 6.2 for CC2 elements. Once the design action Q is defined, one
can obtain the maximum stress acting in the glass σmax,τ induced through action
Q of characteristic duration time τ multiplied by the partial safety factor γf , which
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is evaluated via FEM simulation, i.e,

σmax,τ = S(γfQ) . (6.7)

At this point, the stress σmax,τ is used to reproduce the same optimal design via
semi-probabilistic approach of level I, whose verification formula is assumed of the
form

σmax,τ − σ0,d ≤
KmodλA,τ,WT (fg,k − σ∗0,k)

RMγm
, (6.8)

where γm is the partial safety factor for the material, RM provides the correlation
with the various classes of consequence (RM = 1 for CC2), fg,k = 45 MPa is the
usually accepted characteristic value for glass strength as established by product
standards, σ∗0,k represents the reference characteristic value of the lower bound for
glass strength and λA,τ,WT accounts for the effects of size and type of stress. The
design value σ0,d of the location parameter is assumed in the convenient form

σ0,d =
KmodλA,τ,WT σ

∗
0,k

RMγm
, (6.9)

so to have a remarkable simplification in the verification formula, i.e.,

σmax,τ ≤
KmodλA,τ,WT fg,k

RMγm
. (6.10)

The assumption (6.9) is well-founded, since it is reasonable to assume that the
influence of the static fatigue, of the size and of the stress state upon the lower
bound of the distribution is the same as for the other quantities. Observe that
fg,k = 45 MPa can be assumed to be representative of the 5% quantile of the
equibiaxial glass strength distribution referred to the air-side. From a principle
of equal failure probability between one plate subject to a generic stress state Σ
acting on the area A, where σmax is the maximum tensile stress, and the other one
under an equibiaxial stress-state acting on the unit area (A0 = 1 m2), one obtains

1− 1
2

tin∑
sd=air

exp
[
−
fmsdg,k − σ

∗msd
0,τ,sd

η∗msd0,τ,sd
A0

]

= 1− 1
2

tin∑
sd=air

exp
[
−
KWT,sdσ

msd
max − σ

∗msd
0,τ,sd

η∗msd0,τ,sd
A

]
.

(6.11)

Since the arguments of the exponential functions in the equality (6.11) can be
assumed to be infinitesimal of the first order, the Taylor’s expansion ex = 1 + x+
o(x) can be made. Hence, after making the substitution σmax → λA,τ,WT fg,k, one

82



CHAPTER 6. THE DESIGN OF STRUCTURAL GLASS COMPONENTS

has

tin∑
sd=air

Ksd
WT (λA,τ,WT fg,k)msd − σ∗msd0,τ,sd

η∗msd0,τ,sd
A =

tin∑
sd=air

fmsdg,k − σ
∗msd
0,τ,sd

η∗msd0,τ,sd
A0 . (6.12)

If one separately evaluates the fracture probability for sd = air and sd = tin,
the approximate solution reads

Ksd
WT

(
λsdA,τ,WT fg,k

)msd − σ∗msd0,τ,sd

η∗msd0,τ,sd
A =

fmsdg,k − σ
∗msd
0,τ,sd

η∗msd0,τ,sd
A0, (6.13)

which gives

λsdA,τ,WT = 1
fg,k

[
fmsdg,k A0 + σ∗0,τ,sd(A−A0)

Ksd
WTA

]1/msd

, sd = air, tin . (6.14)

Finally, the coefficient λA,τ,WT is obtained as the mean value of λairA,τ,WT and
λtinA,τ,WT , i.e.,

λA,τ,WT = λ
(air+tin)/2
A,τ,WT = 1

2
[
λairA,τ,WT + λtinA,τ,WT

]
, (6.15)

through which the effects of size and state of stress are taken into consideration.

6.3.2 Calibration procedure based on the extended Weibull (EXW)
statistics

The parameters characterizing the extendedWeibull distribution for glass strength,
whose form is described in Appendix A, have been estimated from the results of
the experimental campaign recalled in Section 3.6 again. From the same arguments
used in Subsection 6.3.1, it has been assumed that the effective area is the one asso-
ciated with a value of the maximum tensile stress equal to 100 MPa. Moreover, the
strength data has been re-scaled so as to account for the subcritical crack growth
induced by loads constantly applied for the characteristic time τ . Then, the three
parameters characterizing the air and the tin side have been estimated through the
graphical method proposed by Zhang and Xie [107], described in Section A.4.3,
whose results are recorded in Table 6.4.
Assuming again to have the same probability that the tin side or the air side are
under tension, the cumulative probability function for strengths becomes

F
(air+tin)/2
A,τ,WE (σ) = 1− 1

2

tin∑
sd=air

 Θτ,sd exp
[
−Ksd

WE

(
σ

η0,τ,sd

)msd]
1− (1−Θτ,sd) exp

[
−Ksd

WE

(
σ

η0,τ,sd

)msd]
 ,

(6.16)
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Table 6.4: Estimated parameters for
the extended Weibull distribution for
the wind (two values) and the snow

loads. For the test configuration of EN
1288-2 [31]: Kair

WE = 0.3, Ktin
WE = 0.17.

Different values of the characteristic
time of load duration.

Case study m η0,τ 3τ
[MPa]

AIR SIDE
Wind, 10 min 7.9 120 0.003
Wind, 3 s 7.9 180 0.001
Snow, 1 m 7.9 75 0.002

TIN SIDE
Wind, 10 min 12 74 0.001
Wind, 3 s 12 100 0.002
Snow, 1 m 12 45 0.001

which leads to the probability of failure in one year of the form

Pf,1y,WE =
∫ +∞

−∞
F

(air+tin)/2
A,τ,WE (σ)fσ,τ (σ)dσ . (6.17)

The target values of collapse probability are again reached by varying the pa-
rameters defining the action and, consequently, the maximum stress induced by
the resulting action Q of characteristic duration time τ multiplied by the corre-
sponding partial safety factor γf . Since the EXW distribution is not bounded, the
verification formula assumes the simple form

σmax,τ ≤
KmodλA,τ,WEfg,k

RMγm
, (6.18)

where the terms are the same as in equation (6.8). The coefficient λA,τ,WE is
obtained again from the assumption of equal failure probability between a plate
of area A subject to a generic state of stress Σ and a plate in reference conditions
(unitary area under uniformly distributed loads), i.e.,

1− 1
2

tin∑
sd=air

 Θτ,sd exp
[
−Ksd

WEA
(
λA,τ,WEfg,k

η0,τ,sd

)msd]
1− (1−Θτ,sd) exp

[
−Ksd

WEA
(
λA,τ,WEfg,k

η0,τ,sd

)msd]


= 1− 1
2

tin∑
sd=air

 Θτ,sd exp
[
−A0

(
fg,k
η0,τ,sd

)msd]
1− (1−Θτ,sd) exp

[
−A0

(
fg,k
η0,τ,sd

)msd]
 ,

(6.19)

where λA,τ,WEfg,k = σmax. The fracture probability of the air (sd = air) and tin
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(sd = tin) sides are again separately analyzed, so as to obtain an approximate
solution for equation (6.19) of the form

Θτ,sd exp
[
−Ksd

WEA

(
λsdA,τ,WEfg,k

η0,τ,sd

)msd]
1− (1−Θτ,sd) exp

[
−Ksd

WEA

(
λsd
A,τ,WE

fg,k

η0,τ,sd

)msd]

=
Θτ,sd exp

[
−A0

(
fg,k
η0,τ,sd

)msd]
1− (1−Θτ,sd) exp

[
−A0

(
fg,k
η0,τ,sd

)msd] ,
(6.20)

which leads to the expression

exp
[
−Ksd

WEA

(
λsdA,τ,WEfg,k

η0,τ,sd

)msd]
= exp

[
−A0

(
fg,k
η0,τ,sd

)msd]
. (6.21)

Hence, one con write

λairA,τ,WE =
(

A0

Kair
WEA

)1/mair
, λtinA,τ,WE =

(
A0

Ktin
WEA

)1/mtin
. (6.22)

Again, the coefficient λA,τ,WE is obtained as

λA,τ,WE = λ
(air+tin)/2
A,τ,WE = 1

2
[
λairA,τ,WE + λtinA,τ,WE

]
(6.23)

accounting for the effects of size and state of stress.

6.3.3 Wind load
A simply supported rectangular plate, 3× 3 m2 and 8 mm thick, under the effects
of a uniform wind pressure pw is considered. The probabilistic model for the wind
pressure is reported in the Annex C, which is the one mentioned in the Eurocode
EN 1991 [39]. As indicated above, characteristic values for the wind pressure pw are
averaged on t = 10 min and on t = 3 s. Via simple FEM simulations, the correlation
between the wind pressure and the maximum tensile stress acting within the plate
pw = Sp(σ) has been found. Consequently, one can pass from equation (C.5) to
the cumulative distribution function of the maximum stress in the plate consequent
to the maximum annual wind pressure, which reads

Fpr,t(σ) = exp
[
− exp

(
1

0.2 −
2Sp(σ)

ρair ce,t cp cd 0.2 0.752 v2
b,50

)]
, (6.24)

where the meaning of the various terms is given in Annex C. Observe that the
distinction between the two cases, i.e., t = 10 min and t = 3 s, is made by the
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exposure factor ce,t, given by equations (C.4). Then, deriving (6.24) with respect
to σ, the probability density function fpr,t reads

fpr,t(σ) = Fpr,t(σ) exp
(

1
0.2 −

2Sp(σ)
ρair ce,t cp cd 0.2 0.752 v2

b,50

)
2

ρair ce,t cp cd 0.2 0.752 v2
b,50

d

dx
Sp(σ).

(6.25)

With the aim of estimating the effective area to be used in equations (6.5) and
(6.16) for the cumulative functions obtained through the LTW and the EXW
models, respectively, the plate has been divided into conventional four-nodes Finite
Shell Elements with reduced integration of area ∆Ai = 50×50 mm2. The principal
stresses σ1 and σ2 for each element have been computed as the mean values of the
stress at the four vertexes of each Finite Element, obtained via numerical analyses.
When the left truncated model is used to interpret the strengths variability, for
both the cases sd = air and sd = tin, the equivalent stress σeq,WT,sd,i in the i−th
element is computed through equation (A.32), and then the effective area Ksd

WT A
is evaluated as

Ksd
WT A =

∑N
i=1 σ

msd
eq,WT,sd,i∆Ai
σmsdmax

. (6.26)

For what concerns the extended Weibull statistics, an analogous formula as (6.26)
for the effective area Ksd

WE A is obtained, as it is shown in Section A.4.3.

Recall that the assumption of negligible non-linear effects leads to noteworthy
simplifications, since the effective area is not dependent upon the amount of loading
in this case. Even though this assumption is generally quite accurate, the values
for the effective area have been computed for a maximum stress of the same order
of that used in the calibration procedure, by taking into account non linear effects,
and are Kair

WT = 0.095, Ktin
WT = 0.1, Kair

WE = 0.01 and Ktin
WE = 0.003.

The optimal design for the plate under consideration is obtained from the convo-
lution integrals (6.6) and (6.17) for the LTW and the EXW model, respectively.
This is achieved by modifying the wind pressure pw, introduced in the equations
(C.3), through an artificial changing of the location where the structure is set, i.e.,
of the design height above ground zd for both the cases t = 10 min and t = 3 s,
so to modify exposure coefficient ce,t in (6.25). The chosen design heights are the
ones which lead to the target probability of failure of Table 6.2 for elements in
class CC2.

Then, the design stress to be used in the verification formulas of the semi-probabilistic
method is obtained as σmax,τ = S(γqpw,τ ) with FEM simulations, where γf = 1.5
is the partial coefficient for the actions. Finally, the partial material factors are
obtained from the requirement of the equality in the verification formulae (6.10),
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for the LTW, and (6.18), for the EXW distributions, which leads to

γm =
Kmod,τλ

(air+tin)/2
A,τ,mw fg,k

σmax,τ,dRM
, with mw = LTW or mw = EXW, (6.27)

where, from (3.11), kmod = 0.6652 for τ = 10 min and kmod = 0.9203 for τ = 3
s. The values of λ(air+tin)/2

A,τ,mw are estimated through (6.14) when the LTW model
is used; through (6.22) for the EXW distribution. Since the variation of the loca-
tion parameter due to static fatigue only marginally affects λ(air+tin)/2

A,τ,mw , the same
value of such coefficient for both τ = 10 min and τ = 3 s is assumed, which is
λ

(air+tin)/2
A,τ,WT ' 1.034, while λ(air+tin)/2

A,τ,WE ' 1.3538. The coefficient RM is unitary
for CC2 elements by definition. Hence, the value of γm is calibrated for the CC2
probability of Table 6.2, with RM = 1, whereas, for the other cases of CC1 and
CC3, γm is assumed constant in (6.27), and the values of RM are determined which
lead to the target failure probabilities, by repeating the calibration process above
described.
The results of the calibration process are summarized in Table 6.5. The LTW
model provides much lower values for γm than the EXW distribution, despite the
fact that for the LTW the effects of the natural material degradation have been
considered through the coefficient ω, as explained in Section 6.3.1, whereas this
has not been considered in the calibration procedure according to the EXW model.

6.3.4 Snow load
The reference plate is now subject to an uniformly distributed snow load qs. The
relationship qs = Sq(σ) is found again via FEM simulation and the cumulative
distribution of the maximum stress in the plate for the snow loads in one year is
obtained from (C.9), and reads

Fqs,t(σ) = exp
[
− exp

[(
1− Sq(σ)

qskµiCECt
(1 + 2.5923V )

)
π

V
√

6
− 0.57722

]]
.

(6.28)

Differentiating with respect to σ, the probability density function is found in the
form

fqs,t(σ) = Fqs,t(σ) exp
[(

1− Sq(σ)
qskµiCECt

(1 + 2.5923V )
)

π

V
√

6

− 0.57722
]

π

V
√

6
1 + 2.5923V
qskµiCECt

d

dx
Sq(σ) ,

(6.29)

where all the coefficients have been introduced in Appendix C. Of course, the
relationship Sq(σ) between the uniform pressure induced by snow and the maxi-
mum tensile stress acting within the plate is the same as in the case of wind load,
described in Section 6.3.3. The optimal design with the probabilistic approach is
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achieved by varying the height a.s.l. so as to reach the target failure probabilities
(see Table 6.2) in the convolution integrals (6.6) and (6.17), leading to the design
loads qs,τ , given by equation (C.8). The coefficient of variation of snow loads has
been assumed to be V = 0.2 to be on the safe side, since it has been demon-
strated in [7] that this leads to the highest values for the material factors. The
maximum stress σmax,τ = S(γfqs,τ ), with γf = 1.5 is obtained through a deter-
ministic FEM calculation, and then the partial material factors are computed from
equation (6.27). From (3.11), the value of Kmod,τ for τ = 1 month is 0.4044, while
λ

(air+tin)/2
A,τ,WT and λ

(air+tin)/2
A,τ,WE attain the same values as for the case of wind load.

Table 6.5 records the results. The qualitative findings are the same as the ones
obtained for the wind load, i.e., the LTW gives less restrictive coefficients than the
EXW approach, although the effects of natural ageing of glass are considered only
for the first case.

Table 6.5: Values of the product γmRM (RM = 1 for CC2),
calibrated according to the left-truncated (LTW) and the

extended (EXW) Weibull models.

Load case Wind [10 min] Wind [3 s] Snow [1 mon]
γm RM γm RM γm RM

CC1 (LTW) 1.62 1.61 1.59
CC1 (EXW) 1.71 1.77 1.80
CC2 (LTW) 1.82 1.81 1.78
CC2 (EXW) 2.30 2.39 2.40
CC3 (LTW) 2.04 2.04 1.98
CC3 (EXW) 3.20 3.36 3.25

6.3.5 Comparison with previous studies
A thorough analysis of the calibration process of the material partial safety factors
for glass has been proposed by Badalassi et al. [7]. The main difference with respect
to the present derivation consists in the considered statistics, i.e., a two-parameter
Weibull (2PW) distribution instead of the left-truncated or the extended ones.
The effects of natural aging are not taken into account by Badalassi et al. [7] and
the parameters m and η0 of the 2PW statistics were derived from a particular
experimental campaign performed by the Italian Stazione Sperimentale del Vetro
[25], conducted with a different test set-up and much more limited than the one
used for the current calibration, described in Section 3.6. Furthermore, the phe-
nomenon of static fatigue on the reference time τ was not considered by re-scaling
the data as in the current dissertation, but according to the expressions

mτ = n

n+ 1 m , η0,τ = η
n+1
n

0

(
1

(n+ 1) σ̇ τ

)1/n
, (6.30)

where n is the crack velocity coefficient of the power law introduced in (3.4) and
σ̇ is the experimental stress rate, which is constant at σ̇ = 2 MPa/s. The Weibull
pairs used for the calibration procedure of [7] are summarized in Table 6.6.
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Table 6.6: Weibull parameters used for the
calibration of the material partial safety factors

according to the 2-parameter Weibull distribution
[7].

Load Case Surface mτ η0,τ

[MPa mm2/m]

Test Air 5.4 1096
Tin 7.3 406

Wind, 3 s Air 5.1 1220
Tin 6.9 425

Wind, 10 min Air 5.1 876
Tin 6.9 305

Snow, 1 m Air 5.1 541
Tin 6.9 188

It is of importance to point out that the paradigmatic case study chosen by
Badalassi et al. [7] for the calibration consisted of a 6 mm thick, 1× 1 m2, simply
supported square plate. The product γM RM obtained by using the 2PW model
for the different classes of consequence and load cases are recorded in Table 6.7.
Observe that the values for the coefficients RM to pass from class CC2 to CC3
are not indicated in [7]. However, for the sake of completeness, they have been
calculated here by following the procedure used in [7] and reported in Table 6.7.

Table 6.7: Values of the product γM RM (RM = 1
for CC2) calibrated according to the 2PW model.

Load case CC1 CC2 CC3

Wind [10 min] - γM RM 1.65 2.42 3.84
Wind [3 s] - γM RM 1.78 2.51 3.90
Snow [1 mon] - γM RM 1.60 2.41 3.86

Comparing the values recorded in Tables 6.7 and 6.5, the difference between the
partial safety factors obtained through the 2PW distribution and the ones obtained
through the LTW model is quite striking. This is mostly due to the assumption
of null location parameter (unbounded glass strength distribution), which leads
to extremely conservative estimates. By comparing the results obtained through
LTW and 2PW models, for elements in class CC1 the values of Tables 6.5 and 6.7
are still comparable, whereas the gap tends to increase for CC2 and even more so
for CC3. Hence, the results obtained by using the 2PW statistics are excessively
conservative for the design of elements that require very low failure probabilities
of failure [9]. The safety factors for CC1 and CC2 elements obtained through the
EXW are very close to those calibrated according to the 2PW, while they are
slightly lower for CC3. However, it is of importance to notice that the reference
plate chosen by Badalassi et al. [7] is smaller than the one used in the present
study. The use of a larger reference plate for calibrating partial factors according
to the 2PW model would have led to higher safety factors.
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Table 6.8: Values of RM evaluated according
to the 2-parameter (2PW), the extended
(EXW) and the left-truncated (LTW)

Weibull distributions.

2PW EXW LTW

Wind, 10 min
RM (CC1) 0.68 0.74 0.89
RM (CC3) 1.58 1.39 1.12
Wind, 3 s
RM (CC1) 0.71 0.74 0.89
RM (CC3) 1.55 1.41 1.13

Snow, 1 month
RM (CC1) 0.67 0.75 0.89
RM (CC3) 1.60 1.35 1.11

Table 6.8 shows for all the considered cases the obtained values of the coefficient
RM . Interestingly, the Eurocode EN 1990 [37] provides the multiplicative coef-
ficient KFI for the actions to pass from CC2 to CC1 (KFI = 0.9) or to CC3
(KFI = 1.1), i.e., the difference between two consecutive classes in terms of coef-
ficient KFI is of the order of 10%. Recall that such coefficient has the same effect
of RM for structure which remain in the linear elastic regime. From Table 6.8,
one can note that the left truncated Weibull distribution leads to values of RM
extremely close to the ones suggested by the Eurocode, making this theoretical
derivation consistent with the values used for other materials [9].

6.4 The calibration of the partial factors for prestressed
glass

Three reference plates are here considered, representative of the most common
applications for glass panels. Figure 6.3 schematically shows the considered cases:
Figure 6.3(a) a quadrilateral 6-mm-thick plate of side 3000 mm simply supported
along the whole borders; Figure 6.3(b) a rectangular 10 mm-thick plate (3000 mm
× 1000 mm) simply supported along the smaller sides; Figure 6.3(c) a quadrilateral
10 mm-thick plate of side 3000 mm simply supported on four points, which are
located 50 mm away from the edges.
The differences in the resulting values of the partial safety factors for the three
considered examples is due to the diverse effective areas associated with the corre-
sponding states of stress. One should notice, however, that modeling the support-
ing points for the case shown in Figure 6.3(c) as simple supports is not strictly
accurate. Indeed, holes in the panes are needed for the application of the metallic
frames supporting the plates (see Figure 6.44), which cause stress concentrations
dependent upon the hole size and the mechanical properties of glass, steel and of
the gasket that is interposed between glass and steel [83]. How to optimize the
support conditions has been studied in [65, 14]. However, since high stresses act
within a quite large area in the core part of the plate, whereas stress concentrations

4Photo from https://www.pinterest.com/pin/540713498985573407/.
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(a) (b)

(c)

Figure 6.3: Schematic of the considered case. (a) 3000 mm × 3000 mm × 6 mm monolithic
glass plate simply supported along the edges; (b) 3000 mm × 1000 mm × 10 mm plate simply
supported along the smaller sides; (c) 3000 mm × 3000 mm × 10 mm monolithic glass plate

simply supported on four points 50 mm away from the edges.

affect narrow areas, it is reasonable to expect that the effective area introduced
in equation (A.11) is only partially affected by the stress concentrations around
the holes, even though their effects is not rigorously negligible. For the sake of
simplicity, such effects are not taken into consideration here, at least as a first
order approximation.

6.4.1 The effects of wind
The probability density function fpr,t of the maximum stress within the plate
consequent to the maximum annual wind pressure is given by equation (6.25),
where the stresses induced by wind pressure Sp(σ) have been evaluated via FEM
simulations, in the geometric non-linear regime. On the other hand, the heat-
treated-glass strength variability is interpreted through the function resulting from
the statistical convolution of the distributions of pristine float glass strength and
thermal prestresses, introduced in Section 4.2, equation (4.7). Recall from Section

91



6.4 The calibration of the partial factors for prestressed glass

Figure 6.4: Detail of the supporting points.

4.2 that, for the case of prestressed glass, the variability of the pristine glass
strengths can be suitably interpreted by a 2PW distribution. In fact, in this case,
the effects of left-hand-side tail are mitigated by the distribution of prestresses.
Assuming an equal probability of finding the air- or the tin-sides under tensile
stresses, expression (4.7) assumes the form

Ft(Σ) =
∫ σmax

0

{
1− 0.5

[
− exp

[∫
A

(σeq(x, |σpc|))mair
ηmair0,air

dA

]

+ exp
[∫

A

(σeq(x, |σpc|))mtin
ηmtin0,tin

dA

]]}
·
{

1
υ
√

2π
exp

[
− (|σpc| − µ)2

2υ2

]}
d|σpc| ,

(6.31)

where the form of σeq(x, |σpc|) is still given by equations (4.4). Observe that the
probability function (6.31) is the arithmetic average of the ones referring to the
two external surfaces of the specimens. On the safe side, the further contribution
to heat-treated glass strength given by the crack healing during heat-treatment
(see Section 4.3.2 and [83, 105]) is not taken into account. The Weibull pairs have
been estimated from the results of the experimental campaign by TC129/WG8 of
CEN [19], whose statistical analysis is described in Section 3.6.
Recall that the failure stress values given by CEN/TC129/WG8 [19] were re-scaled
towards the reference conditions of equibiaxial strength on a unitary area (A0 = 1
m2). Furthermore, the subcritical crack growth effects of the wind action, con-
stantly applied for a characteristic time t = 3 s, has been taken into consideration
by re-scaling all the data through the coefficient kmod = 0.91 given by expression
(3.11), by assuming the crack velocity parameter n = 16 again. The estimation of
the Weibull parameters, whose values are recorded in Table 6.9, has been hence
performed graphically, according to the procedure described in Section A.2.
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Table 6.9: Weibull parameters obtained from the rescaling of
experimental data recorded in [19] (kmod = 0.91 - fref = 45

MPa, σ̇ = 2 MPa/s, n=16, t = 3 s).

Surface m η0

[MPa/mm2/m]

Air-side 5.624 684.64
Tin-side 6.462 382.12

The integrals in equation (6.31) are approximated by the Reimann sums, i.e.,{
1− 0.5

[
exp

[∑
i σ

mair
eq,i ∆A
ηmair0,air

]
+ exp

[∑
i σ

mtin
eq,i ∆A
ηmtin0,tin

]]}
, (6.32)

where 25 mm × 25 mm linear quadrilateral Finite Shell Elements were used to
mesh the reference plates of Figure 6.3. The Finite Elements can be under different
stressing conditions, hence the values of σmeq,i are evaluated as follows

i) σ1,i < |σpc|, σ2,i < |σpc| ⇒ σeq,i = 0.

ii) σ1,i > |σpc|, σ2,i > |σpc|
⇒ σeq,i = 2

π

∫ π/2
0 (σ1,i − |σpc|) cos2 ψ + (σ2,i − |σpc|) sin2 ψdψ.

iii) σ1,i > |σpc|, σ2,i < |σpc|
⇒ σeq,i = 1

π

∫ π
2−β
−π/2+β(σ1,i − |σpc|) cos2 ψ + (σ2,i − |σpc|) sin2 ψdψ.

where σ1,i and σ2,i are the principal stresses acting within the i-th element, mea-
sured as the mean value of the stresses at the vertexes of each Finite Element,
from the FEM simulations. The cumulative probability function for the resistance
Fr(x) is evaluated numerically, since the type of stress state in each of the Finite
Elements can change with the wind pressure intensity and, consequently, to find a
closed form expression for Fr(x) is impossible. The displacements at the support-
ing lines or points are assumed to be negligible, even though the deformation of
the supports can mildly affect the stress state acting within the plate.
By making reference to the verification formula

Ed ≤ Rd, σq,d(γq) ≤
σpc,k
γp

+ kmod
fg,k
γm

, (6.33)

the equation of the partial factor for prestress reads

γp = σpc,k

σq,d(γq)− kmod fg,kγm

, (6.34)

where fg,k and σpc,k are the characteristic values of float glass strength and pre-
stress (compression positive), respectively, kmod = 0.91, γq = 1.5 and γm are the
partial factors for actions and for the material, respectively.

93



6.4 The calibration of the partial factors for prestressed glass

By varying the height above ground z, the value of the exposure coefficient ce(z) in
(C.4) is obtained that makes the convolution integral (4.7) equal to the target fail-
ure probability for CC2 class elements (see Table 6.2). The design stress σq,d(γq),
to be used in the verification formula of level I, is hence evaluated through FEM
analysis from the design peak pressure pw,3s,d, once deterministically calculated
the peak pressure through equation (C.3) multiplied by the factor γq. Moreover,
σpc,k is taken equal to the 5% fractile of the statistical distribution of prestresses.
For what concerns the residual stress distribution to be used in expression (6.31),
reference is made to the results of the wide measurement campaign performed by
Schula [84] at the Technical University of Darmstadt, that optically measured the
surface compressions in the center of 255 annealed, 255 heat-strengthened and 255
toughened glass plates of size 250 mm × 250 mm and thickness 6 mm. The mean
value and the standard deviation for heat strengthened glass are µ = 59.27 MPa
and υ = 4.58 MPa, respectively, while the 5% fractile σpc,5% = 51.51 MPa. The
resulting Gaussian function is shown in Figure 6.5(a).
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Figure 6.5: Gaussian probability density function interpreting the surface compression stress
variability for (a) heat-strengthened glass and (b) toughened glass analyzed by Schula for 6 mm

thick specimens [84].

The resulting cumulative probability functions describing the variability of the
strengths in prestressed glass are plotted in Figure 6.6 for the three paradigmatic
cases under consideration. Such functions are obtained by using the expression
(6.31) and its approximation through (6.32).
Hence, without loosing generality, the height above ground is made to vary un-
til the convolution integral (6.2) reaches the target failure probability (Pf,1y =
1.305 10−6) for the three considered cases, after setting vb,50 = 25m/s, cd = 1,
cp = 1, ct = 1, Kr = 0.19, z0 = 0.5 m and zmin = 4 m. Then, the design wind
pressure is obtained through the level I equation (C.3)2. The design wind pressure
is then multiplied by the partial factor for the action γq = 1.5 and the design
stress σq,d(γq) is obtained by inverting the correlation Sp(σ) between σmax and
pw, constructed through points via FEM analysis.
Finally, the values of the safety factors for prestress were evaluated through equa-
tion (6.34). The 5% fractile of the probability distribution represented in Figure
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Figure 6.6: Heat-strengthened glass. Cumulative probability functions for the three different
cases here considered. (a) 3000 mm × 3000 mm × 6 mm monolithic glass plate simply

supported along the edges; (b) 3000 mm × 1000 mm × 10 mm monolithic glass plate simply
supported along the smaller sides; (c) 3000 mm × 3000 mm × 10 mm monolithic glass plate

simply supported on four points.
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6.4 The calibration of the partial factors for prestressed glass

6.5(a) is considered as the characteristic value for surface compression (σpc,k =
σpc,5% = 51.51 MPa). Apart from any considerations about the best statistical
model for interpreting the variability of pristine glass strength, using the partial
material coefficient for glass obtained by using the LTW model leads to the high-
est values for γp. In fact, since the LTW model leads to the lower value for the
partial material factor, at the same time, the higher value of the partial factor for
prestress is attained. Table 6.10 records the resulting factors, which turns out to
be lower than unity, and all the relevant data.
Observe that, apart from the fact that it is unlikely that both the distributions
of pristine glass strengths and prestresses reach their lower values simultaneously,
since the state of stress is far from the equibiaxiality, a certain number of cracks
is not subject to opening tensile stress, thanks to the presence of the compressive
stress state induced through the thermal treatment (see circle b of Figure 4.6).
Therefore, it is not surprising that for the case at hand the risk of collapse is very
small. This is the reason why one obtains γp < 1.

Table 6.10: Heat-strengthened glass. Values of partial factors for prestress γp for elements in
Consequence Class 2. Different cases.

CASE pw pw γq σq,d γp

[kN/m2] [kN/m2] [N/mm2]

3000 mm x 3000 mm x 6 mm monolithic glass plate 1.804 2.706 83.37 0.85
simply supported along the edges

3000 mm x 1000 mm x 10 mm monolithic glass plate 0.779 1.169 80.92 0.88
simply supported along the smaller sides

3000 mm x 3000 mm x 10 mm monolithic glass plate 0.898 1.347 83.32 0.85
simply supported on four points 5 cm away from the edges

For the sake of brevity, the case of snow or wind of characteristic duration t = 10
min are not recorded here, since values for γp result to be less than those just
obtained. Such finding is again due to the benefic effect due to the statistical
interference between pristine material strength and surface prestress.
The same arguments are used for calibrating the partial factors for prestress in the
case of toughened glass. Making reference again to the experimental campaign by
Schula [84], the mean value and the standard deviation for the surface compressions
are µ = 107.21 MPa and υ = 4.95 MPa, respectively, while the 5% fractile is
σpc,5% = 98.65 MPa. Figure 6.7 shows the cumulative probability functions for the
strengths of the reference plates of Figure 6.3, while Table 6.11 records the design
wind pressures, design stresses and the calibrated factors.
The partial factors for prestress in the case of toughened glass reach slightly higher
values than those obtained for heat-strengthened glass, as it is clear by comparing
Tables 6.10 and 6.11. However, they are less than unity again. Interestingly, a single
factor γm = 1.5 as a partial safety factor for heat-treated glass is provided by the
German standard DIN 18008 [28]. Observe, in passing, that multiplying the factor
γm = 1.8 by the values for γp, shown in Tables 6.10 and 6.11, one obtains values
between 1.53 and 1.67, which are in good agreement with the German regulations
[28].
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Figure 6.7: Toughened glass. Cumulative probability functions for the three considered cases.
(a)3000 mm x 3000 mm x 6 mm monolithic glass plate simply supported along the edges; (b)
3000 mm x 1000 mm x 10 mm monolithic glass plate simply supported along the smaller sides;
(c) 3000 mm x 3000 mm x 10 mm monolithic glass plate simply supported on four points 5 cm

away from the edges.
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Table 6.11: Toughened glass. Values of partial factors for prestress γp for elements in Consequence
Class 2. Different cases.

CASE pw pw γq σq,d γp

[kN/m2] [kN/m2] [N/mm2]

3000mm x 3000mm x 6mm monolithic glass plate 3.065 4.598 136.12 0.87
simply supported along the edges

3000mm x 1000mm x 10mm monolithic glass plate 1.338 2.007 128.26 0.93
simply supported along the smaller sides

3000mm x 3000mm x 10mm monolithic glass plate 1.088 1.632 129.12 0.93
simply supported on four points 5 cm away from the edges

6.5 Calibration of γp by assuming “nominal” distributions
for residual stresses

The fact that the obtained factors γp are less than one poses serious questions
about which are the values that should be considered in the structural design. Fur-
thermore, a verification formula more refined than (6.33), taking into consideration
the statistical interference between pristine glass strengths and prestresses, could
optimize the use of the material. As a further analysis, the calibration procedure
is here repeated by referring to “nominal” distributions for residual prestresses,
in agreement with the reference values suggested by product standards. These are
assumed to be representative of the 5% quantiles of the inherent statistical popu-
lations, although these could be considered excessively conservative for the today’s
tempering processes. Hence, a “nominal” statistics is obtained by imposing that its
5% quantile is equal to the characteristic value proposed by standards, while the
standard deviation coincides with the one experimentally found in [84]. The char-
acteristic values for prestress here assumed are 25 MPa for heat-strengthened glass
and 75 MPa for toughened glass, which are suggested by several standards and
guide lines, included the project of European norm prEN 16612 [77]. The resulting
probability density functions, characterized by µ = 32.54 MPa and υ = 4.58 MPa
for heat-strengthened glass, and µ = 83.15 MPa and υ = 4.95 MPa for toughened
glass, are plotted in Figure 6.8. Observe that the mean values are lower than for
the cases of Figure 6.5, while the coefficients of variation (CV = υ/µ) are higher.
Hence, it is more likely that surface prestresses reach very low values.
For the case of wind and snow loads, the cumulative probability functions for heat-
treated and toughened glass strengths have been constructed through equations
(6.31) and (6.32), for the three cases of Figure 6.3.

6.5.1 Wind action
Using the same arguments used in Section 6.4.1, the design wind pressures, design
stresses and the calibrated partial factors are obtained and recorded in Table 6.12.
As expected, comparing Tables 6.12, 6.10 and 6.11, partial factors obtained by
using “nominal” distributions for prestress are higher than for the case of Section
6.4.1, although γp is higher then unity (1.03) only for the case of the 3000 mm
× 1000 mm × 10 mm monolithic heat-strengthened glass plate simply supported
along the smaller sides. Observe that this value for γp becomes 1.14 if one assumes
kmod = 1 instead of kmod = 0.91, to be on the safe side.
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Figure 6.8: “Nominal” Gaussian probability density function for surface prestress obtained from
values suggested by standards. (a) Heat-strengthened glass and (b) toughened glass.

Table 6.12: Values of partial factors for prestress γp for elements in Consequence Class 2 by using
“nominal” distributions for surface prestresses.

CASE pw pw γq σq,d γp

[kN/m2] [kN/m2] [N/mm2]

Heat-strengthened Glass

3000 mm × 3000 mm × 6 mm monolithic glass plate 1.151 1.727 54.78 0.77
simply supported along the edges

3000 mm × 1000 mm × 10 mm monolithic glass plate 0.489 0.734 46.85 1.03
simply supported along the smaller sides

3000 mm × 3000 mm × 10 mm monolithic glass plate 0.459 0.689 49.46 0.93
simply supported on four points 5 cm away from the edges

Toughened Glass

3000 mm × 3000 mm × 6 mm monolithic glass plate 2.503 3.755 112.87 0.83
simply supported along the edges

3000 mm × 1000 mm × 10 mm monolithic glass plate 0.906 1.359 106.43 0.89
simply supported along the smaller sides

3000 mm × 3000 mm × 10 mm monolithic glass plate 1.036 1.554 103.23 0.93
simply supported on four points 5 cm away from the edges

6.5.2 Snow load
The Weibull pairs related to pristine glass strength to be used in the expres-
sions (6.31) and (6.32), interpreting heat-treated glass strength variability, were
estimated from the experimental campaign [19], whose results, corrected and re-
scaled according to the procedure described in Section B.2, have been multiplied
by the coefficient kmod = 0.4, given by equation (3.11), to account for the phe-
nomenon of static fatigue. The Weibull parameters was graphically estimated, as
indicated in Section A.2, obtaining for the air- and the tin-side: mair = 5.62 and
η0,air = 291.35 MPa mm2/m; mtin = 6.46 and η0,tin = 162.61 MPa mm2/m. The
correlation qs = Sq(σmax) between the uniformly distributed snow load qs and
the maximum tensile stress acting within the plate for the three cases of Figure
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6.3 is again obtained via FEM simulation.
Of course, snow load must be considered due to a deposit on a roof. Thus, the
simultaneous effect of the self-weight must be taken into consideration. The max-
imum stress due to self-weight acting inside the three configurations of Figure 6.3
has been evaluated via FEM analysis, obtaining σmax,dl = 6.1 MPa for the case
of Figure 4.1(a), σmax,dl = 10.8 MPa for Figure 4.1(b) and σmax,dl = 9.4 MPa for
Figure 4.1(c).
The probability density function for the effects of the actions is given by the
distribution of the maximum stress in the plate for the snow loads in one year
(6.29), right-shifted of a quantity equal to the maximum stress due to self-weight
σmax,dl. Thus, the statistical interaction between snow load and dead load has
been neglected and the maximum stress induced by self-weight is considered as a
deterministic value. This assumption seems reasonable, since the variability of self-
weight is certainly much lower than the one due to snow. It is assumed, without
losing generality, that Ct = 1, CE = 0.9 and µ = 0.5 , while qsk = 0.51[1 +
(Asl/481)2], where Asl is the altitude above sea-level. According to the EN1991-
1-3 [38], the variation coefficient of the series of maximum annual snow loads V
varies between 0.2 and 0.6. Firstly, it is assumed V = 0.2. Then, the effect of
different values for the variation coefficient V upon the resulting partial factors is
analyzed.
Consider the convolution integral (6.2), in the level III approach, the altitude above
sea level Asl is varied until the target value of the failure probability in Table 6.2
is achieved. Thus, the characteristic value of the snow load qs is obtained through
equation (C.8). From this, multiplied by the partial coefficient γq = 1.5, the design
stress σs,d due to snow loads is found by using a simple FEM model. On the other
hand, the design value for the stress σdl,d induced by self-weight is obtained by
multiplying the maximum stress σmax,dl by the partial coefficient γg = 1.3. Let
fg,k and σpc,k be the characteristic values of the annealed glass strength and of
the prestress, respectively, and denote with n = 16 the crack velocity parameter.
The verification formula theoretically derived in [45] is used, accounting for the
effects of load histories of an arbitrary number of concurrent actions with different
characteristic duration. This reads

N∑
j=1


{[
〈(
∑j
i=1 σi)− σpc,k/γp〉+

]n
−
[
〈(
∑j−1
i=1 σi)− σpc,k/γp〉+

]n}
(kmod,j fg,k/γm)n

1/n

≤ 1 ,

(6.35)

where 〈·〉+ is defined as 〈x〉+ = x when x > 0 and 〈x〉+ = 0 when x ≤ 0, while
σi is the stress increment due to the i-th action, when the actions #1,..., #(i− 1)
are already applied. Thus, for the case at hand, equation (6.35) can be re-written
in the form

〈σdl,d − σpc,k/γp〉+

kmod,dl fg,k/γm
+
[

(〈σdl,d + σs,d − σpc,k/γp〉+)n − (〈σdl,d − σpc,k/γp〉+)n

(kmod,s fg,k/γm)n

]1/n

≤ 1 ,
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(6.36)

but, for the paradigmatic cases under consideration, 〈σdl,d − σpc,k/γp〉+ = 0, and,
consequently,

σdl,d + σs,d − σpc,k/γp
kmod,s fg,k/γm

≤ 1, (6.37)

where γm = 1.8. By considering a snow load applied for a nominal duration t = 1
month, one obtains the value of kmod,s = 0.4044 from (3.11). Moreover, recall that
σpc,k = 25 MPa for heat-strengthened glass and σpc,k = 75 MPa for toughened
glass. The resulting γp for heat-strengthened glass are: γp = 0.87 for the case of
Figure 6.3(a), γp = 1.09 for Figure 6.3(b) and γp = 1.20 for Figure 6.3(c), i.e.,
the point-supported square plate turns out to represent the most severe case. On
the other hand, the coefficients γp for toughened glass are lower than the unity
(γp = 0.49 for the case of Figure 6.3(a), γp = 0.63 for Figure 6.3(b) and γp=0.69
for Figure 6.3(c)).
The fact that the maximum tensile stress within a glass plate due to snow and
dead loads unlikely reaches very high values partially justifies the large discrep-
ancy between heat-strengthened and toughened glass. Infact, the high values of
the residual surface compressions lead to a large number of cracks that are not
subjected to opening tensile stresses. Furthermore, it is thus not surprising, by
comparing Tables 6.12 and 6.13, that this effect is not so evident for plates sub-
jected to wind load. Indeed, the mean value of the pristine glass strength in the
case of wind action is much higher than in the case of snow action, since the effects
of static fatigue are almost null (kmod = 0.91 for wind gust whereas kmod = 0.4
for snow action). Consider the circle (a) of Figure 4.6, the higher the pristine glass
strength is, the lower is the angle β and, hence, the lower is the number of “in-
active” cracks. This explains the different sensitivity upon such phenomenon for
snow and wind loads. Table 6.13 summarizes all the relevant data resulting from
the calibration procedure.
By assuming the same reference 50% quantile, i.e., σ50% = 30 MPa, the probability
density functions of the maximum tensile stress in the plate of Figure 4.1(b) for
snow and wind loads, given by equations (6.29) and (6.25), are plotted in Figure
6.9.
Since the coefficient of variation for the action of snow is considerably lower than
for wind, it is unlikely that the maximum tensile stress due to snow loads reaches
very high values with respect to gust wind and, consequently, lower values of γp
for toughened glass plates are obtained.
The values of γp factors obtained by assuming variation coefficients V = 0.4 and
V = 0.6 are shown in Table 6.14. An increase in the value for V leads to a
higher dispersion and, at the same time, to a lower mean value of the snow load
distribution. Thus, quite different values of the partial factors γp than in the case
of V = 0.2 are reached, as it is clear by comparing Tables 6.13 and 6.14. It is
of interest to note that the higher the value of the coefficient V , the lower is the
spread of the partial factors around the unit value, i.e., the values higher than
unity decrease and the values lower than unity increase.
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Table 6.13: Values of partial factors for prestress γp for elements in Consequence Class 2 by using
“nominal” distributions for residual prestresses. Snow load in different cases.

CASE qsγq σs,d σmax,dl γp

[N/m2] [N/mm2] [N/mm2]

Heat-strengthened Glass

3000 mm × 3000 mm × 6 mm monolithic glass plate 1616.95 30.94 7.93 0.87
simply supported along the edges

3000 mm × 1000 mm × 10 mm monolithic glass plate 920.83 18.85 10.8 1.09
simply supported along the smaller sides

3000 mm × 3000 mm × 10 mm monolithic glass plate 906.38 18.59 12.22 1.20
simply supported on four points 5 cm away from the edges

Toughened Glass

3000 mm × 3000 mm × 6 mm monolithic glass plate 7875.24 153.58 7.93 0.49
simply supported along the edges

3000 mm × 1000 mm × 10 mm monolithic glass plate 6049.22 114.42 10.8 0.63
simply supported along the smaller sides

3000 mm × 3000 mm × 10 mm monolithic glass plate 5692.65 105.83 12.22 0.69
simply supported on four points 5 cm away from the edges
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Figure 6.9: Comparison between probability density functions for maximum tensile stress in the
plate of Figure 4.1(b) for snow and wind loads, normalized by the same 50% fractile σ50% = 30
MPa. Assumed coefficients: V = 0.2, Ct = 1, CE = 0.9, µ = 0.5 and qsk = 5.47 kN/m2 (snow
loads) and cp = 1, cd = 1, ρair = 1.25 kg/m3, ce,t = 1.78 and vb,50 = 25 m/s (wind load).

Notice that dead loads were not taken into account in the calibration of the partial
factors for float glass, as described in Section 6.3. In that case, consideration of
the simultaneous action of snow and dead loads would lead to partial factors lower
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Table 6.14: Values of partial factors for prestress γp for elements in Consequence Class 2
by using “nominal” distributions for residual prestresses. Snow load in different cases and

different coefficients of variation (V=0.4 and V=0.6).

CASE γp (V = 0.4) γp (V = 0.6)

Heat-strengthened Glass

3000 mm × 3000 mm × 6 mm monolithic glass plate 0.90 0.97
simply supported along the edges

3000 mm × 1000 mm × 10 mm monolithic glass plate 1.07 1.06
simply supported along the smaller sides

3000 mm × 3000 mm × 10 mm monolithic glass plate 1.16 1.15
simply supported on four points 5 cm away from the edges

Toughened Glass

3000 mm × 3000 mm × 6 mm monolithic glass plate 0.54 0.58
simply supported along the edges

3000 mm × 1000 mm × 10 mm monolithic glass plate 0.74 0.81
simply supported along the smaller sides

3000 mm × 3000 mm × 10 mm monolithic glass plate 0.77 0.82
simply supported on four points 5 cm away from the edges

than those recorded in Table 6.5. In fact, since dead load can be considered as
a quasi-deterministic action (the thickness of marketed glass has to respect strict
tolerances), in the statistic competition between the various actions the self-weight
indeed provides a benefic effect. This is why, on the safe side, it has been neglected.
On the other hand, when high values of the resistances and, consequently, of the
actions are considered, as in the case of prestressed heat-treated glass, accounting
for the contribution of dead load allows to get higher values of the factors γp
obtained from equation (6.37). However, it is certainly of importance to remark
that many researchers are questioning about the reliability of the statistical model
suggested by the Eurocode [38] for interpreting the variability of the snow action.
This raises a lot of eyebrows about the reliability of the values recorded in Tables
6.13 and 6.14. Certainly, different models for describing snow loads variability
could lead to different partial factors.
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CHAPTER 7

CONCLUSIONS

7.1 Review and contributions
This study aims at improving the statistical characterization of the strength of
annealed and heat-treated glass, possibly taking into account the effects of aging,
in order to achieve a safe but not redundant structural design in agreement with
the performance required by national and international codes. Since the accepted
probabilities of failure are very low, ranging in the order of 10−4 ÷ 10−6 in one
year of service life, the attention has been focused on the left-hand-side tails of
the cumulative distributions Pf of the population of strengths σ, which are the
parts that govern the structural design. Starting from the experimental campaign
of [19], the widest ever made to my knowledge, one clearly notices that the rep-
resentative points deviate from linearity in the left-hand-side tail when plotted
in the Weibull plane ln[− ln(1 − Pf )] vs. ln(σ). This is why the expectations of
strengths referring to the lower quantiles ontained from the two-parameter-Weibull
distribution (2PW), which is by far the most used statistics for brittle materials,
are much lower than what the experimental evidence would suggest.
My analysis starts from the assumption, conjectural at the beginning but demon-
strated in the sequel, that glass strength cannot fall below a certain limit. There-
fore, the experimental measurements have been interpolated with generalized statis-
tics à la Weibull, which present a third location parameter that can be associated
with the aforementioned lower bound. The ability of such statistics to interpolate
the experimental data has been evaluated by using the chi-square-goodness-of-
fit test, whose associated p−value represents the probability that the measured
discrepancy between observed and expected frequencies is due to chance alone.
The three-parameter Weibull (3PW) distribution and the left-truncated Weibull
(LTW) distributions both provide excellent results for the air-side of the glass
surface, which may be considered representative of the pristine material because
not corrupted by the contact with the tin bath. Moreover, since the existence of a
lower bound for strength somehow goes again the common engineering sense ac-
cording to which no state of stress can be considered 100% safe, other generalized
but unbounded distributions, such as the bi-linear (BLW), the bi-modal (BMW)
and the extended Weibull (EXW) distributions, have been tested.
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The statistical analysis confirms that the bounded statistics, in particular the LTW
statistics, are the ones that provide the best fitting for the air-side. From a technical
point of view, the observed lower bound can be attributed to the severe factory
production controls in the float manufacturing process, the aim of which is to
guarantee certain aesthetic and optical requirements by rejecting those panes with
defects above a certain limit. Elementary considerations of linear elastic fracture
mechanics indicate that the lower limit for macroscopic strength derives from the
maximum size of flaws that is tolerated by the control, in agreement with the
prescriptions of product standards for float glass. The LTW distribution clearly
fits with this scenario, because it is derived by rejecting in a pristine population,
which originally obeys to the 2PW model, those objects that fall below a certain
limit. On the other hand, in the 3PW distribution, the lower bound for glass
strength would be associated with an absolute material property, which is hard to
justify on a micro-mechanical basis. In any case, it is important to observe that
none of the considered Weibull statistics provides a remarkable goodness-of-fit for
the tin-side of glass. This may indicates that the tin-side represents an example of
“artificially damaged” surface, due to the contact with the tin bath and the steel
rollers during the float manufacturing process.
To further investigate the effects of surface damage, a micromechanically-motivated
model, where the statistical distributions of surface micro-cracks in glass is corre-
lated with the experimentally-measured macroscopic strengths, has been consid-
ered. The defectiveness scenario at the microscopic level is interpreted by a power
law distribution of crack lengths, i.e., a highly right-skewed distribution. This as-
sumption leads to a 2PW statistics for macroscopic glass strength, which depends
upon the size of the specimens and the state of stress (uniaxial vs. biaxial). Factory
production controls can produce a right-hand-side truncation of the population of
surface flaws, whose effect is to provide a LTW distribution for the macroscopic
strength.
The effects of corrosion and abrasion due to artificial treatments or natural aging
are thus interpreted by a modification of the population of micro-defects, which
influences accordingly the expected macroscopic strength, eventually suggesting
new forms of generalized Weibull statistics. The process of corrosion, schematized
as a uniform dissolution of a thin surface layer, mostly affects the highest quan-
tiles, associated with the smallest crack lengths. Furthermore, in “mild” abrasive
phenomena new cracks are added, so that one has to consider their superposition
to the defectiveness scenario already present in the pristine material. In particu-
lar, this approach is used to justify the difference in the experimentally-measured
population of float-glass strengths when it is either the air- or the tin-side under
tensile stress: it is the abrasion due to the contact with the tin bath and rollers
that produces the damaging action. For this specific case, it is shown that the
tin-side statistical population of strengths can be interpreted by a bi-modal trun-
cated Weibull distribution, which provides results in very good agreement with
the experimental findings. On the other hand, “heavy” abrasion processes lead to
the complete dissolution of the original population of micro-cracks and the forma-
tion of a new scenario. In the case of particle impacts like in artificial or natural
sandblasting, lateral cracks induced by large tensile stresses cause the material
removal, while the formation of radial cracks governs the strength of the material.
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The maximum length of the radial cracks depends upon various parameters but,
remarkably, experiments show it remains limited in any case. This implies that
the lower bound for glass strength can be reduced, but not annihilated, whatever
heavy is the abrasion treatment.
All the aforementioned conclusions have been used for the calibration of partial
material factors to be used in the structural design of glass with methods of level
I (semiprobabilistic approach). This calibration has been obtained from the com-
parison of the results obtainable with methods of level III (full probabilistic) in
paradigmatic case studies. Statistical models for the effects of wind and snow ac-
tions have been considered consistently with what indicated in the EN 1991-1-3
and EN 1991-1-4. The performance of the structure is defined by the maximum al-
lowed probability of failure, established by the Eurocode EN 1990 for three classes
of consequences, referred to as CC1, CC2 and CC3 in ascending order of required
performance.
In order to model the strength of annealed glass, both the (bounded) LTW and
the (unbounded) EXW statistics have been considered. Proper re-scaling of the
glass strengths are proposed to account for static fatigue due to subcritical crack
propagation and for the effects of size and type of stress. From such a re-scaling,
even the assumed lower limit for glass strength is reduced, since this is associated
with the opening of the largest cracks that can be found in glass, which is also
affected by subcritical crack propagation. Furthermore, the lower limit and the
scale parameter were reduced to account for the possible effects of natural aging,
here modelled as a mild abrasion. The partial material factors so calculated have
been compared to those obtained in a previous study, in which the glass strength
was interpreted by a 2PW distribution. Indeed, the difference is quite striking: the
partial factors from the 2PW may be as much as twice those derived from the
LTW, the difference being more evident at the lowest probabilities of failure (class
of consequence CC3). The EXW distribution provides values that are intermediate
between the 2PW and the LTW cases.
In my opinion, on the one hand the LTW distribution is the most accurate statis-
tics to interpret the data corresponding to the lowest probabilities, and the cor-
responding estimates for the partial material factors are the ones that should be
considered for structural design; on the other hand, the values of partial material
factors obtainable by using a 2PW model are overly-redundant. One can argue
that the 2PW statistics is on the safe side, but its overly conservative nature re-
duces the competitiveness of glass in the construction sector, which instead asks
for reliable and safe works that at the same time comply with the issues of cost-
effectiveness, energy savings and reduction of pollutant emission (recall that the
embodied energy per kg of glass is comparable with that of steel, and about 15
times greater than that of concrete).
It should also be mentioned that the Eurocode EN 1990 provides the coefficient
KFI , multiplicative of the applied actions, to pass from verifications in class of
consequence CC2 to CC3 or CC1. Here, this passage of class is proposed through
the coefficient RM that multiplies not the actions, but the material strengths. This
is because of the slenderness of glass structures, for which geometric non linearities
may be so important to render preferable maintaining the actions unaltered. In
any case, the effects of KFI or RM are completely equivalent if the structure is
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linear elastic. What should be observed is that the variation associated with KFI ,
as suggested in EN 1990, is approximately 10 %, and such a value squares very
well with the results from the LTW statistics. Higher differences are obtained for
the EXW, and even more so with the 2PW distributions. Although the importance
of the comparison is not absolute, since the coefficients KFI have been calibrated
in EN 1990 on the basis of different-in-type statistics, this finding confirms the
opportunity offered by the LTW statistics to comply with general principles of
structural design, commonly adopted for all types of materials.
Passing to the case of heat-treated glass, where the treatment induces a permanent
compressive eigenstress on the glass surfaces, it should be mentioned that the
approach most commonly used in structural design consists in assuming that the
macroscopic strength is the sum of the pristine material strength and of the surface
prestress (in absolute value). However, such an approach should be criticized on
a theoretical basis because, by treating the mechanical properties as stochastic
variables, the 5% fractile of the resulting distribution of strengths is higher than the
sum of the 5% fractiles of the pristine material strength and of the residual surface
compression induced by the heat-treatment. In fact, pure statistical interference
implies that, if low quantiles are considered, the stochastic variable obtained as
the sum of two independent stochastic variables is in general more “advantageous”
than its deterministic counterpart. In rough terms, it is very unlikely that at a
certain point the pristine material strength and the thermally-induced prestress
simultaneously reach their lowest values.
Relying upon experimental data, the heat-induced residual prestress state can be
considered approximately equibiaxial, and its variation from specimen to speci-
men and from point to point can be acceptably described with a simple Gaus-
sian distribution. The probability density function associated with the failure of a
heat-treated glass specimen is obtained through the statistical convolution of the
density functions of the operant distributions (pristine annealed glass strength and
prestress). In this calculation, the population of pristine glass strength has been
interpreted through the most classical 2PW distribution: this certainly facilitates
the analytical derivations and, most of all, its use for this case is not excessively
conservative, as for annealed float glass, because the statistical competition with
the surface prestress lowers the importance of a very precise definition of the left-
hand-side tails. Remarkably, the benefic effect of surface prestress strongly depends
upon the type of applied stress. In fact, since glass strength is governed by the
opening in mode I of surface cracks, when the stress state induced by the external
loads is uniaxial, there is a number of cracks that will remain always inactive,
whatever the level of the applied loads is. Only when the applied stress state is
uniform equibiaxial, all the cracks are in the same potential conditions. Accord-
ingly, comparisons with experiments has confirmed that the test set-up (three- or
four-point bending vs. ring-on-ring tests) has a prominent role in the mechanical
response of the heat-treated elements.
A properly-design experimental campaign has been conducted at the University of
Darmstadt, in order to validate the proposed statistical approach for interpreting
the variability of heat-treated glass strengths. From the optical measurements
of the surface compressions induced through the thermal process, the Gaussian
distribution for the description of the residual stress variability has been defined.
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The results obtained from these measurements have been compared with those
derived from other experimental campaigns, finding comparable conclusions. Then,
50 annealed glass plates were tested under a coaxial double ring configuration, so
to obtain the statistical distribution of pristine material strengths. Finally, 51 heat-
treated specimens were tested under the same loading configuration. Interestingly,
the lower quantiles of the distribution are well interpreted by the statistical model,
whereas the higher the considered quantile is, the higher is the discrepancy between
expected and observed data. Such a distance may be attributed, albeit tentatively,
to the crack healing due to the thermal process. Quite interestingly, the effect of
crack healing should be almost null for the lower quantiles, associated with the
largest cracks, whereas it should be much more important for the higher quantiles,
associated with the smallest cracks. Proper modelling of this effect, not investigated
in detail here, will be the subject of further work.
The calibration of partial material factors γp to be used for the surface prestress in
heat-treated glass has been again obtained by comparing the results for paradig-
matic case studies with both the full probabilistic methods of level III and the
semiprobabilistic approach of level I, making reference again to the target values
for the maximum allowable probability of failure established in the Eurocode EN
1990 for the various classes of consequences.
The resulting values of γp under wind action are less than unity for both heat-
strengthened and toughened glass. This can be attributed to the statistical inter-
ference between pristine glass strength and surface prestress, but the measured
prestress was much higher than the values usually indicated in product standards.
Therefore, the calibration was repeated by using “nominal” Gaussian distributions,
such that the 5% fractiles equal the values of prestress proposed by standards. Now,
a difference arises between the coefficients γp for heat-strengthened and toughened
glass under wind and snow loads. Partial factors higher than the unity have been
obtained for heat-strengthened glass (γp=1.04 for wind actions and γp=1.20 for
snow loads), while for toughened glass they are always lower than unity (γp=0.93
for wind and γp=0.69 for snow). Such difference is attributed to the fact that the
higher the absolute value of the residual compression, the higher is the number of
cracks that are inactive. This effect is not so evident for plates under wind load,
because the mean value of the pristine glass strength is much higher for wind than
for snow actions due to the effects of static fatigue and the different characteristic
time of load duration. Indeed, the higher the pristine glass strength is, the lower is
the number of cracks that, in extreme conditions, remain “inactive”. It is also im-
portant to remark that there is a further beneficial effect due to crack healing, but
this has not been considered here on the safe side. Moreover, the use of other sta-
tistical distributions for pristine-glass strength, such as the LTW statistics, may
provide even lower values for γp. This analysis demonstrates that the standard
practice may lead to redundant design in most cases, and that prestressed glass
has many potentialities, yet to be fully explored and appreciated.

7.2 Further developments and future research
The precise statistical characterization for the strength of aged glasses is certainly
of paramount importance for structural applications, but it has become a mat-
ter of debate in the scientific community only in recent years. The strength of
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aged glass depends on a very large number of factors, associated with various
sources of damage that have been only schematically considered in this study.
Therefore, the conclusions reached here about this topic can be considered valid
only at the qualitative level and, most of all, should be confirmed by appositely
designed experimental campaigns. However, the approach and methods used here
are of general value and definitely represent a first step towards the definition of
a reliable statistical model, able to interpret how the macroscopic strength statis-
tics may vary during the whole service life of a structural component. To this
aim, it should also be recalled that another potential approach for interpreting
the variability of corroded/abraded glass-strength can be based upon the Change
of Variable Theorem (CVT) [17, 87], according to which it can be supposed that
the defectiveness scenario observed on a damaged element is related with a single
distribution of crack lengths resulting from the “distortion” of the pre-existing
population of crack. This theorem is based upon a generating density function,
representative of the pristine material, and on a transforming function, modeling
the effects of the event causing the distortion. The search for the correct forms
of the generating and the transforming functions in this alternative approach can
certainly be the subject of further research.
Moreover, further experiments on heat-treated glass specimens under 3- or 4-point-
bending configurations would be desirable. In such a loading condition, the stress
state can be approximately considered uniaxial and, consequently, a number of
cracks remains compressed whatever the level of the applied load is. In this way, one
could test the capability of the proposed model at interpreting heat-treated glass
strength as a function of the type of applied loading. Moreover, the development
of a refined mechanical model able to take into account the effects of crack healing
at the microstructural level should certainly be considered in further work. Indeed,
the design of components made of heat-treated glass could be considered optimal
if and only if this benefic contribution is taken into account.
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APPENDIX A

THE WEAKEST LINK IN THE CHAIN CONCEPT:
WEIBULL GENERALIZED DISTRIBUTIONS

A.1 The weakest link in the chain rationale
Weibull [94] in the 1939 developed a statistical theory that is capable of interpret-
ing the variability of the strength exhibited by many materials. His weakest-link-
in-the-chain based theory relies upon the assumptions that failure occurs from the
failure of one elementary material element (one link), whose mechanical behavior
is not dependent upon the response of the other “links” constituting the “chain”.
Assume that there are several weak places in the volume so that the theoretical
strength is diminished; furthermore, assume that all these weak places are of such
nature that they give rise to rupture as soon as they fall within a volume subjected
to the stress σ. Thus, supposing that N(σ) weak places are present in the unitary
volume and that the stress σ acts within the small volume dV , the collapse proba-
bility is dPf = N(σ) · dV . Then, considering the case in which one has p elements
dV and the rupture probability is denoted with Pf , the probability that collapse
does not occur is

1−Pf = (1−dPf )p = (1−N(σ) dV )p ⇒ Pf = 1− (1−N(σ) dV )p. (A.1)

Since the total volume subjected to stress is p · dV = V , one can write

Pf = 1−
(

1− N(σ)V
p

)p
= 1−

(
1− N(σ)V

p

) p
N(σ)V N(σ)V

. (A.2)

For high values of p, one obtains

Pf = 1− lim
p

N(σ)V =∞

(
1− N(σ)V

p

) p
N(σ)V N(σ)V

= 1− e−N(σ)V . (A.3)

Denote now with B =
∫
n(σ) dV = N(σ)V , which represents the risk of rup-
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ture; the function n(σ) is a material parameter, which must be a monotonously
increasing function of the variable σ. Remarkably, the material function n(σ) for
anisotropic materials is dependent upon the magnitude and direction of the stress,
and can vary throughout the volume, whereas it is a function only of the stress
intensity and the coordinates for isotropic materials. Of course, the general deriva-
tion of Weibull is based on volume elements, but, in the case of glass, it should be
assumed that only surface cracks cause failure.

A.2 2-parameter Weibull distribution

The two-parameter Weibull distribution [94] is by far the most used statistical
model for interpreting the glass strength variability [42], by reason of its simple
analytical form. Firstly, assume an uniform equibiaxial state of stress, so that the
maximum tensile stress is always at right angle with the dominant crack plane
(opening mode - see Section 3.1). The material function n(σ) is taken of the form

n(σ) =
(
σ

η0

)m
, (A.4)

where η0 and m are the scale and the shape parameters of the distribution, re-
spectively. Thus, the probability of collapse for a specimen of area A [61] is given
by

Pf,W2 = 1− exp
[
−
∫
A

(
σ

η0

)m
dA

]
. (A.5)

Note that m is a measure of the data dispersion.
Then, consider a stress state different from the equibiaxial one. The component
of stress σ⊥ orthogonal to the crack plane must be found, since it is the only one
that leads to failure. Let σ1 and σ2 ≤ σ1 be the principal stresses and denote with
ψ the angle that the direction of σ1 forms with the normal to the dominant crack
plane, the component of stress σ⊥ reads

σ⊥ =
[
σ1 cos2 ψ + σ2 sin2 ψ

]
. (A.6)

Assume an isotropic and homogeneous defectiveness [44]. Such assumption is gen-
erally accepted since it is reasonable to expect that there are no preferred orienta-
tions for the crack axes and that the probability of finding a crack does not change
point by point. Following [13], the equivalent stress for the 2PW distribution may
be defined as

σeq,W2 = 2/π
∫ π/2

0

(
σ1 cos2 ψ + σ2 sin2 ψ

)m
dψ, (A.7)

112



APPENDIX A. THE WEAKEST LINK IN THE CHAIN CONCEPT:
WEIBULL GENERALIZED DISTRIBUTIONS

and the failure probability (A.5) assumes the form

Pf,W2 = 1− exp
[
−
∫
A

(
σeq,W2

η0

)m
dA

]
. (A.8)

The failure probability can be written in a more convenient form, emphasizing the
importance of the maximum tensile stress in the area A, named σmax, in the form

Pf,W2 = 1− exp
[
−KW2A

(
σmax
η0

)m]
, (A.9)

where the “effective area” Aef,W2 = KW2A synthetically takes into account the
effect of the size and the stress state upon the population of strengths [21]. It is
defined through the equality

1− exp
[
−
∫
A

(
σeq,W2

η0

)m
dA

]
= 1− exp

[
−KW2A

(
σmax
η0

)m]
, (A.10)

so that

Aef,W2 = KW2A =
∫
A

(σeq,W2)m dA
(σmax)m

. (A.11)

In general KW2 < 1. Observe, from (A.11), that KW2 = 1 when the state of stress
is equibiaxial (σ1 = σ2 = σmax,eqb ⇒ σeq,W2 = σmax,eqb). Thus, the probability
of failure reaches its maximum value for an equibiaxial state. This is why this ideal
condition is universally accepted as the reference state for the characterization of
the material strength.
The population of failure stresses obtained from a particular test configuration
can be re-scaled towards the condition of uniformly distributed equibiaxial stress
(σeqb,A0,W2) acting on a unitary area A0. By using an equal failure probability
criterion, i.e., for specimens with identical defectiveness, from (A.10) one has[

−A0

(
σeqb,A0,W2

η0

)m]
=
[
−KW2A

(
σmax
η0

)m]
, (A.12)

which leads to re-scaling law of the form

σeqb,A0,W2 = σmax

(
KW2A

A0

)1/m
. (A.13)

The procedure for the estimation of the Weibull parameters through a graphically-
based regression of the experimental data is now described.
The failure stress values σi are ranked in ascending order and an experimental
failure probability Pi is assigned to each of them. The most commonly used prob-
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ability estimators are

Pi = i

N + 1 , Pi = i− 0.5
N

or Pi = i− 0.3
N + 0.4 , (A.14)

where N is the total number of data. Here, the first estimator of (A.14) is selected,
since it provides the most conservative results for the 2PW modulus and it is
therefore the most frequently used for design purposes. From the equation for the
probability of failure (A.10), one can thus write

Pf,W2 = 1− exp
[
−

(
σmax

η0/A
1/m
ef,W2

)m]

⇒ ln
[
ln
(

1
1− Pf,W2

)]
= m ln(σmax)−m ln(η0/A

1/m
ef,W2).

(A.15)

As it is evident from (A.11), the quantityAef,W2 depends upon the state of stress in
the specimen. However, a linear correspondence between σeq,W2 and σmax arises
when a linear elastic model is used. Thus, in this case the effective area is not
dependent upon the level of load, but only upon the type of load and the boundary
conditions. On the other hand, if testing procedures involving nonlinear geometric
effects are used, such as the one standardized by EN 1288-2 [31], the effective area
Aef,W2 varies with the load level. When this effect can be neglected, at least as
a first order approximation, the experimental data plotted in the Weibull plane,
with axes ln ln 1/(1− Pf ) and ln σ, should be aligned if the strength variability is
well interpreted by the 2-parameter Weibull model. In the Weibull plane, equation
(A.15) describes the line associated to the experimental data, whose slope is equal
to the shape parameter m and the constant term, named T , is associated with the
scale parameter η0, which thus reads

η0 = −A1/m
ef,W2 exp

(
T

m

)
, (A.16)

and it is measured in MPa mm2/m.

A.3 Bounded Weibull distributions. 3-parameter and left-
truncated distributions

The Weibull generalized distributions which provide a lower bound for the strength
population are the three-parameter (3PW) and the left-truncated (LTW) ones.
The substantial difference between such distributions consists of the physical mean-
ing of the lower limit σ0. It is an intrinsic absolute value, characteristic of the
material, for the 3PW statistics, whereas, for what concerns the LTW model, it
comes from a selection, i.e., all the data below the value σ0 are discarded. In other
words, whereas in 3PW model σ0 is an intrinsic material property, in the LTW one
it is associated with a particular control that rejects the specimens that are con-
sidered “bad”. However, for both cases, the value of σ0 may be associated with the
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maximum size of the pre-existing defects that can be found in the glass specimen.

A.3.1 3-parameter Weibull distribution
Considering a material with an intrinsic lower bound for strength σ0, the material
function proposed by Weibull [94] assumes the form

n(σ) =
(
σ − σ0

η0

)m
, (A.17)

whose domain is [σ0,∞] and where, again, η0 and m are the scale and the shape
parameters of the distribution, respectively, while σ0 is the “location parameter”.
Thus, the probability of failure Pf becomes

Pf,W3 = 1− exp
[
−
∫
A

(
σ − σ0

η0

)m
dA

]
. (A.18)

An equivalent stress σeq,W3 similar to (A.7) is defined for the generic stress state.
Denoting with σ1 and σ2 the principal stresses, with σ1 ≥ σ2 and with ψ the
angle that the normal to the crack plane forms with the principal direction of σ1,
the crack opening stress in mode I is again given by (A.6). Assuming that glass
is sensitive only to the tensile stresses that exceed σ0, i.e., Pf = 0 if and only
if σ1 ≤ σ0 and σ2 ≤ σ0, denoting with |.|+ the positive part of the quantity in
brackets, one can write

σeq,W3−σ0 = 2
π

∫ π/2

0

(
| σ1 − σ0 |+ cos2 ψ+ | σ2 − σ0 |+ sin2 ψ

)
dψ . (A.19)

Thus, the probability of failure of a specimen assumes the form

Pf,W3 = 1− exp
[
−
∫
A

(
σeq,W3 − σ0

η0

)m
dA

]
. (A.20)

The effective area Aef,W3 = KW3A is introduced again, so as to obtain the simpler
expression

Pf,W3 = 1− exp
[
−Aef,W3

(
σmax − σ0

η0

)m]
, (A.21)

where

Aef,W3 = KW3A =
∫
A

(σeq,W3 − σ0)mdA
(σmax − σ0)m

. (A.22)

Here KW3 ≤ 1 and KW3 = 1 if and only if the stress state is uniformly equibiaxial
and the stress intensity is higher than σ0.
With the aim of finding a law for re-scaling the experimental data towards the
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standard condition of equibiaxial stress state and unitary area, from a principle of
equal failure probability, one can write

1− exp
[
−A0

(
σeqb,A0,W3 − σ0

η0

)m]
= 1− exp

[
−Aef,W3

(
σmax − σ0

η0

)m]
,

(A.23)

so to obtain the equation for the equivalent uniform equibiaxial stress (σeqb,A0,W3)
acting on the unitary area (A0 = 1) in the form

σeqb,A0,W3 = σmax

(
Aef,W3

A0

)1/m
− σ0

[(
Aef,W3

A0

)1/m
− 1
]
. (A.24)

Observe that the lower bound for glass strength is associated with the worst possi-
ble condition in terms of defect location and state of stress, i.e., maximum tensile
stress at right angle with the deepest allowable crack, and hence does not depend
upon the size of the specimen. Indeed, it attains the same value for specimens
of any geometry. On the other hand, observe that the minimum strength σ0 is
associated with a defect whose size is the maximum that can be found on the
glass surface. Thus, the phenomenon of static fatigue affects the value of σ0. In
other words, the value of the location parameter σ0 obtained from the regression
of experimental data has an intrinsic dependence upon the time that is necessary
to provoke rupture.
For what concerns the graphical estimation of the three parameters, from equation
(A.21) one can write

Pf,W3 = 1− exp
[
−

(
σmax − σ0

η0/A
1/m
ef,W3

)m]

⇒ ln
[
ln
(

1
1− Pf,W3

)]
= m ln(σmax − σ0)− ln(ηm0 /Aef,W3) .

(A.25)

The axes of the Weibull plane become y = ln ln 1/(1−Pf ) and x = ln(σ−σ0). The
location parameter σ0 is chosen by requiring that the data in the 3PW plane are
as much as possible aligned. Then, from comparison with (A.25), one can obtain
the shape m and the scale η0 parameters from the interpolating line y = mx+ T ,
with T = − ln(ηm0 /Aef,W3).
Notice that, even if second-order effects are neglected, the correspondence between
(σeq,W3 − σ0) and (σmax − σ0) is not linear, i.e., Aef,W3 depends upon σmax.
Thus, an exact estimation procedure should require an iterative procedure, where
the shape parameter m is tentatively chosen, Aef,W3 is calculated according to
(A.22), then the location parameter σ0 is obtained from the best alignment of the
data, and finally η0 from linear interpolation. The procedure must be repeated up
to convergence. However, since the effective area Aef,W3 is elevated to the 1/m
power in (A.25) and m is in general of the order of 5÷7, even if Aef,W3 is doubled
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its power increases of only 10 ÷ 15 %. Therefore, in most practical cases, such a
dependence can be neglected.

A.3.2 Left-truncated Weibull distribution
The lower limit σ0 provided by the LTW distribution is the result of a truncation
of the population of experimental data, whose variability is originally interpreted
by a 2-parameter Weibull distribution. Following [94], Pf (σ) is the probability of
failure at stress σ and B(σ) = − log(1− Pf ) is the corresponding risk of failure.
It is assumed that all the test specimens whose ultimate strength is less than σ0
are discarded due to a factory quality control.
Let σ0 correspond to the probability P0 andN be the original number of specimens.
Then, the remaining specimens after the selection will be N(1 − P0). Hence, the
(truncated) probability of failure for the remaining population of specimens PTf (σ)
can be written in the form

PTf (σ) = [Pf (σ)− P0]N
(1− P0)N = 1− 1

1− P0
exp (−B(σ)) , forσ > σ0 . (A.26)

Considering that PTf (σ0) = 0 ⇒ 1− P0 = exp (−B(σ0)), from (A.27) one has

PTf (σ) = 1− exp [− (B(σ)−B(σ0))] , forσ > σ0 . (A.27)

Recall that the original distribution of glass strengths is the 2PW one. Then (A.4)
holds, and from (A.27) the probability of failure for an equibiaxial state of stress
reads

Pf,WT = 1− exp
[
−
∫
A

(σm − σm0 ) dA
ηm0

]
. (A.28)

Considering a generic stress state, the equivalent stress σeq,WT takes a form iden-
tical to (A.7) and, consequently, the probability of failure becomes

Pf,WT = 1− exp
[
−
∫
A

(
σmeq,WT − σm0

)
dA

ηm0

]
= 1− exp

[
−KWTσ

m
max − σm0
ηm0

A

]
,

(A.29)

where KWT is the correction coefficient for the effective area of the left-truncated
distribution, which has the same form as KW2 of equation (A.11) and reads

KWT =
∫
A
σmeq,WT dA

Aσmmax
. (A.30)

From a principle of equal failure probability again, the re-scaling law towards the
reference conditions of homogenous equibiaxial stress σeqb,A0,WT on a unitary area
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A0 is obtained from

1− exp
[
−KWTσ

m
max − σm0
ηm0

A

]
= 1− exp

[
−
σmeqb,A0,WT − σm0

ηm0
A0

]
, (A.31)

which leads to

σeqb,A0,WT =
(
KWTAσ

m
max

A0
− σm0

(A−A0)
A0

)1/m
. (A.32)

For what concerns the parameters estimation, the expression for the probability
of collapse (A.29) leads to

Pf,WT = 1− exp
[
−KWTσ

m
max − σm0
ηm0

A

]
⇒ ln

[
A
σm0
ηm0

+ ln
(

1
1− Pf,WT

)]
= m ln(σmax) + ln

(
Aef,WT

ηm0

)
.

(A.33)

where Aef,WT is given by (A.30). Since the equivalent stress σeq,WT takes the
same form as for the 2PW case, the same conclusions can be reached about
the effective area Aef,WT . Thus, Aef,WT varies with the stress intensity when
second order geometric effects are of importance, but it can be considered con-
stant, at least as a first order approximation. Then, by setting G = Aσm0 /η

m
0 ,

T = ln[Aef,WT /η
m
0 ], y = ln [G+ ln 1/(1− Pf,WT )] and x = ln σmax, equation

(A.33) becomes y = mx+ T . Hence, under the hypothesis that the effective area
is constant (Aef,WT =const), the value of G must be found such that, in the LTW
plane ln[G + ln 1/(1 − Pf )] vs. ln(σ), the best alignment of the the experimental
points is obtained. From such a linear interpolation of the data, the optimal value
of m and T are reached. Thus, the other parameters are obtained as

η0 = A
1/m
ef,WT (exp(−T ))1/m ; σ0 = η0

(
G

A

)1/m
= (KWT exp(−T )G)1/m

.

(A.34)

The convenience of using the LTW model is also due to the significant analytical
simplifications as compared with the 3PW model. Specifically, the definition of
the equivalent stress (A.19) for the 3PW case makes the relationship between
the effective area and the acting stress strongly non-linear. Thus, the effective
area Aef,W3 of (A.22) must be calculated for all the stress conditions. On the
other hand, the definition of the equivalent stress σeq,WT for the LTW model,
which is analogous to (A.7), leads to a linear dependence upon the stress state.
Consequently, if one consider a test where the load is homogeneously increased,
providing negligible geometric second order effects, the correction coefficient KWT

of (A.30) would be independent of σmax.
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A.4 Unbounded generalized Weibull distributions
Since the existence of a lower bound for glass strength is somehow against the
common engineering sense, other unbounded distributions have been proposed to
fit the experimental results.

A.4.1 Bi-linear Weibull (BLW) distribution
The bi-linear distribution comes from the simplest idea of interpolating the experi-
mental points with a piecewise linear function in the Weibull plane [79]. Therefore,
one assumes a bi-linear function for the Weibull distribution (BLW). Defining the
equivalent stress σeq,WL through an expression identical to that of (A.7) for the
2PW distribution, one has

Pf,WL =


1− exp

[
−
∫
A

(
σeq,WL

η0,1

)m1
dA
]
, for 0 < σmax ≤ σ∗ ,

1− exp
[
−
∫
A

(
σeq,WL

η0,2

)m2
dA
]
, for σmax > σ∗ ,

(A.35)

where σmax is the maximum stress acting within the plate under consideration,
while (η0,1,m1) and (η0,2,m2) are the 2PW pairs corresponding to the left-hand-
side and right-hand-side branches, respectively. However, by considering that the
stress state is not in general uniformly equibiaxial, the approach is not without
ambiguity.
It is of importance to notice that the choice of the Weibull coefficients depends
upon the stress σ∗, whereas another approach would be to consider the distribution

P̂f,WL = 1− exp
[
−
∫
A

(
σeq,WL

η0(σeq,WL)

)m(σeq,WL)
dA

]
, (A.36)

where

[η0(σeq,WL),m(σeq,WL)] =

 (η0,1,m1) for 0 < σeq,WL ≤ σ∗ ,

(η0,2,m2) for σeq,WL > σ∗ .
(A.37)

Such a procedure leads to serious complications, since the Weibull parameters are
changed for the same material.
By using the approach of (A.35), the effective area Aef,WL = KWLA can be
written in the form

Aef,WL = KWLA =


∫
A

(σeq,WL)m1 dA

(σmax)m1 for 0 < σmax ≤ σ∗ ,∫
A

(σeq,WL)m2 dA

(σmax)m2 for σmax > σ∗ .

(A.38)

On the other hand, under the hypothesis that (A.36) holds, a much more compli-
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cated expression is reached, i.e.,

Âef,WL = K̂WLA =


(
η0,1
σmax

)m1 ∫
A

(
σeq,WL

η0(σeq,WL)

)m(σeq,WL)
dA, for 0 < σmax ≤ σ∗,

(
η0,2
σmax

)m2 ∫
A

(
σeq,WL

η0(σeq,WL)

)m(σeq,WL)
dA , for σmax > σ∗ ,

(A.39)

where m(σeq,WL) and η0(σeq,WL) are given by (A.37).

The rescaling of the experimental data towards standard conditions turns out to be
not straightforward, since one of the pairs (η0,1,m1) or (η0,2,m2) must be selected
according to the values of σeqb,A0,WL, but such choice is quite arbitrary.

For what concerns the parameters estimation, since a model of the type (A.36)
would be very hard to treat, it is convenient to use the statistical distribution
given by (A.35), which can be re-written in the form

Pf,WL =


1− exp

[
−
(
σmax
η0,1

)m1
Aef,WL,1

]
, for 0 < σmax ≤ σ∗ ,

1− exp
[
−
(
σmax
η0,2

)m2
Aef,WL,2

]
, for σmax > σ∗ ,

(A.40)

where Aef,WL,1 and Aef,WL,2 are the effective areas on the branches σmax ≤ σ∗

and σmax > σ∗, respectively, according to the definition of (A.38). Neglecting
again the geometric non linear effects, such values are constant for any value of
σmax, apart from the jump that they exhibit in the point σmax = σ∗. The plane
useful to perform the linear regression of the data is obviously the same used for
the 2PW statistics, with axes ln ln 1/(1 − Pf ) and ln σ. Once the data are split
into two series delimited by the value of σ∗, the two Weibull pairs characterizing
the BLW statistics are estimated by linear regression of the data contained in
each of the two domains. The criterium for the choice of σ∗ is the maximization
of the goodness of fit with the experimental data. Obviously, the piecewise-linear
distribution becomes even more complicated if more than two Weibull pairs are
chosen to fit the experimental data.

A.4.2 Bi-modal Weibull (BMW) distribution

The bi-modal Weibull distribution may interpret the strength variability of mate-
rials that undergone two distinguished and independent failure mechanisms, each
one governed by a specific Weibull distribution of the type (A.8), with Weibull
pairs (η0,1,m1) and (η0,2,m2). This means that there are two types of rings in the
chain, as schematically shown in Figure A.1(a). The equivalent stress σeq,WM is
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defined as per (A.7), hence the probability of failure reads

P̌f,WM = 1− exp
[
−
∫
A

(
σeq,WM

η0,1

)m1

dA

]
exp

[
−
∫
A

(
σeq,WM

η0,2

)m2

dA

]
= 1− exp

{∫
A

−
[(

σeq,WM

η0,1

)m1

+
(
σeq,WM

η0,2

)m2]
dA

}
.

(A.41)

This is the product of the probability of survival of the two constituent types of
chain rings. However, observe that according to equation (A.41), the slope of the
interpolating line is higher on the right-hand-side tail than on the left-hand-side
tail; this is the contrary of what one generally finds from the experimental cam-
paigns. With the aim of obtaining the desired form for the interpolating function,
a cumulative probability of failure resulting from the product of the cumulative
probabilities of failures for each independent failure mechanisms may be assumed.
This leads to

P̂f,WM =
{

1− exp
[
−
∫
A

(
σeq,WM

η0,1

)m1

dA

]}{
1− exp

[
−
∫
A

(
σeq,WM

η0,2

)m2

dA

]}
= 1− exp

[
−
∫
A

(
σeq,WM

η0,1

)m1

dA

]
− exp

[
−
∫
A

(
σeq,WM

η0,2

)m2

dA

]
+ exp

{∫
A

−
[(

σeq,WM

η0,1

)m1

+
(
σeq,WM

η0,2

)m2]
dA

}
.

(A.42)

A physical justification for (A.42) is schematically shown in Figure A.1(b), where
one of the chains is taut while the other is loose. For the collapse occurrence, by
pulling apart the lateral supports, the first chain fails before the second one be-
comes engaged and, in turn, breaks. Thus, for a certain stress level the probability
of failure of the whole system is equivalent to the probability that both chains
break, one after the other, at the assigned stress.
Consider the case of Figure A.1(a), interpreted by equation (A.41). One can define
the effective area Ǎef,WM = ǨWMA following the condition

Ǎef,WM

[(
σmax
η0,1

)m1

+
(
σmax
η0,2

)m2]
=
∫
A

[(
σeq,WM

η0,1

)m1

+
(
σeq,WM

η0,2

)m2]
dA.

(A.43)

On the other hand, if one uses equation (A.42), an analogous complicated ex-
pression is obtained for Âef,WM = K̂WMA. Finding a re-scaling law, towards the
experimental condition of uniformly equibiaxial state of stress σeqb,A0,WM acting
on the unitary area (A0), is extremely complex again.
Referring to the parameters estimation, the best fit with the experimental data in
the 2-parameter Weibull plane [ln ln 1/(1− Pf ) vs ln σ] is obtained by varying the
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(a)

(b)

Figure A.1: (a) A “bimodal” chain, formed by two types of rings; (b) the
consecutive-loss-of-strength chain concept.

four parameters of the distribution, provided that one can neglect the dependence
of the effective area upon the stress level.

A.4.3 Extended Weibull (EXW) distribution

Since the presence of two Weibull exponents in the BLW and BMW models makes
any re-scaling extremely complex, many authors have attempted to define more
flexible distributions, but retaining only one Weibull exponent. In particular, Mar-
shall and Olkin [58] proposed a method for adding a parameter to a family of
distributions, whose application for the Weibull families leads to a probability of
failure of the type

Pf,WE = 1− Θ P̃s

1− (1−Θ)P̃s
, (A.44)

where

P̃ = exp
[
−
∫
A

(
σeq,WE

η0

)m
dA

]
, (A.45)

with the equivalent stress σeq,WE of the same form as (A.7). The effective area
Aef,WE = KWEA is obtained by using a principle of equal failure probability, i.e.,

1−
Θ exp

[
−KWEA

(
σmax
η0

)m]
1− (1−Θ) exp

[
−KWEA

(
σmax
η0

)m] = 1−
Θ exp

[∫
A

(
σeq,WE

η0

)m
dA
]

1− (1−Θ) exp
[∫
A

(
σeq,WE

η0

)m
dA
] ,

(A.46)

from which one obtains the same expressions for Aef,WE = Aef,W2 and KWE =
KW2 as per (A.11). Analogously, the rescaling equation for the experimental data
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towards the reference conditions is obtained by setting

1−
Θ exp

[
−A0

(
σeqb,A0,WE

η0

)m]
1− (1−Θ) exp

[
−A0

(
σeqb,A0,WE

η0

)m] = 1−
Θ exp

[
−KWEA

(
σmax
η0

)m]
1− (1−Θ) exp

[
−KWEA

(
σmax
η0

)m] ,
(A.47)

which leads to

σeqb,A0,WE = σeq,A0,W2 = σmax

(
KWEA

A0

)m
. (A.48)

The rescaling law, hence, is exactly the same as the one of the two-parameter
Weibull model of (A.13). This is probably the most important advantage of the
EXW model.
Assuming y = ln [ln 1/(1− Pf )] and x = ln σmax, from the equivalence (A.46), the
probability plot is the smooth curve [107] of equation

y = ln
{
−
{

ln(Θ)− ln
[
exp

(
exp(x)/(η0/A

1/m
ef,WE)

)m
− (1−Θ)

]}}
. (A.49)

The three parameters of the EXW statistics can be estimated through the graphical
procedure proposed by Zhang and Xie [107]. By taking the limit of y with x→∞,
equation (A.49) becomes

y = m
[
x− ln

(
η0/A

1/m
ef,WE

)]
, (A.50)

which is a straight line, say L, in the Weibull plane ln[σ] vs. ln [− ln (1− Pf )] with
slope m. A peculiar aspect of the extended Weibull distribution consists of the
fact that the left-hand-side and right-hand-side tails present the same slope in the
Weibull plane. Indeed, it is possible to demonstrate [107] that for very small value
of Pf equation (A.49) becomes

y = m
[
x− ln

(
η0/A

1/m
ef,WE

)]
− ln(Θ), (A.51)

which is another straight line, say La, parallel to the line of (A.50). Denote with
Xx the intercept with the y-axis of La; for y = 0 one can write

(
η0/A

1/m
ef,WE

)m
= exp [mXx]

Θ . (A.52)

Let X0 be the intercept of the smooth curve (A.49) with the x-axis, from which,
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when y = 0, one has

exp

 eX0(
η0/A

1/m
ef,WE

)
m = 1 + Θ(e− 1). (A.53)

The data from a generic experimental campaign are arranged in ascending order
and an experimental probability of failure Pf = i/(N + 1) is assigned to each i-th
datum, where N is the total number of data. Once plotted the data in the Weibull
plane, the parameter m is obtained by fitting a straight line to the left-hand-side
of the fitting plot. Then, the intercept X0 and Xx are read from the fitting curves
(A.49) and (A.51), respectively. Finally, the parameters η0 and Θ are obtained by
solving the simple system constituted by equations (A.52) and (A.53).

A.5 The chi-square goodness of fit test
The chi-square goodness of fit test aims at verifying that the difference between
the expected values according to a certain statistical distribution and the observed
data is due to chance alone [64]. To perform the test when continuous functions
are under analysis, the interval between the minimum and the maximum observed
values is divided into k classes (C1, C2, ..., Ck). Let (N1, N2, ..., Nk) be the observed
frequencies for each i-th class. It is common practice to group the data into intervals
of equal probabilities and in such a way that the expected count in each interval is
at least 5. By denoting with p1, p2, ..., pk the probability that a stochastic variable
(X) assumes a value inside one of the classes according to the statistical model
under analysis, the expected absolute frequencies are (Npi, i = 1, 2, ...k), where
N is the total number of observed data. The function X2

g gives a measure of the
discrepancy between the observed and the expected frequencies, and it reads

X2
g =

k∑
i=1

(Ni −N pi)2

N pi
. (A.54)

The form (A.54) of X2
g was proposed by Pearson [74] in the early 1900s. Of course,

X2
g assumes very low values if the assumed model is correct.

The rationale of the test is that the null hypothesis5 H0 is verified if the observed
and expected values are likely to be close one another. The test statistic, i.e., the
distribution of the X2

g under the hypothesis that H0 is true, approximately follows
a chi-square distribution χ2

g of the type

f(X2) = 1
2g/2Γ(g/2)

e−X
2/2(X2)(g/2)−1, (A.55)

where g is the number of degree of freedom. Let Npar be the number of parameters

5The null hypothesis is defined as the statement being tested in a test of statistical signifi-
cance. The test of significance is designed to assess the strength of the evidence against the null
hypothesis [60].
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characterizing the statistical distribution under analysis; then g = k − 1 − Npar.
Figure A.2 shows the relationship between f(X2) and X2 for three values of g.

g = 10

g = 4

g = 2

5 10 15 20 25
X 2

0.05

0.10

0.15

0.20

f IX 2M

Figure A.2: The Chi-square distribution for: g = 2, 4, 10.

The mean value of the distribution f(X2) is equal to g, while the variance is 2g.
It is evident from Figure A.2 that the distribution is strongly right-skewed for
small values of g, while it becomes almost symmetric for high values of g. A single
measured value of X2 will have a probability p of being grater than X2

g given by∫ ∞
X2
g

f(X2)dX2 = p, (A.56)

where f(X2)dX2 is the probability that a particular value of X2 falls between X2

and X2 + dX2. It is customary to accept the “5% rule”, i.e., the H0 hypothesis
is accepted (rejected) if the difference between the expected values according to
a certain statistical distribution and the observed data, named p− value, is such
that p ≥ 5% (p < 5%).
Observe that this test is sensitive to the chosen number of classes k and to their
distribution, but there is not an universally recognized optimal choice for the
number and the width of the bins. For the chi-square tests whose results are
recorded here, 20 bins of equal width have been used. However, for some of the
analyzed distributions, the bins in the tails have been joined with the aim of
obtaining at least five expected frequencies for each bin, so as to guarantee a good
chi-square approximation. Once X2

c is evaluated trough equation (A.54) and the
number of degrees of freedom g is fixed, the corresponding p-value can be obtained
from the χ2

g distribution using a simple computer algorithm, tables or graphs. The
comparison of the p-values obtained by using the different statistical models gives
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an objective indication of their goodness of fit, since the higher the p-value, the
higher is the probability that any deviation from expected results is duo to chance
only.
However, different aspects must be taken into account to select the statistical
model for interpreting a data population, such as the consistency of the physical
interpretation of the estimated parameters, the ability of the statistics to interpret
the variability of the observations, and the statistical significance of the param-
eters, i.e., parameters that unremarkably affect the statistical distribution have
little significance.
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APPENDIX B

TESTING METHODS FOR EVALUATING GLASS
STRENGTH

B.1 The coaxial double ring (CDR) test
When the effects of geometric non-linearity are negligible, a circular plate loaded
by radial couples uniformly distributed along the border achieves an uniform equib-
iaxial stress state. This certainly represents the most severe condition for glass,
since there is 100% probability of finding the maximum tensile stress direction at
right angle with the crack axis. However, it is almost impossible to reproduce in
practice such loading configuration. The Coaxial Double Ring (CDR) test could be
considered an approximation of the aforementioned “optimal” set-up for achieving
an almost uniform equibiaxial stress state in the core part of a plate. The test set-
up provides that the surface loads are applied on the plate through two concentric
rings sufficiently far from the borders.

B.1.1 Analysis of the stress state
Firstly, consider a circular Kirchhoff-Love plate [88] of moderate constant thickness
h. Let E and ν be the Young’s modulus and Poisson’s ratio, respectively, so that
D = Eh3/[12(1− ν2)] is the bending stiffness of the plate. Assume the circular
coordinates (r, θ) of a polar reference system, centered in the origin, and let ζ rep-
resent the vertical displacement. Since loading and constraints are axisymmetric,
ζ = ζ(r) and the shear stress in circumferential direction is null.
Denoting the shear stress in radial direction with tr, which can be easily calculated
from statics because of the symmetry, by defining

ϕ(r) = − d

dr
ζ(r), (B.1)

the classical fourth-order differential field-equation in ζ can be integrated and reads
[88]

d2ϕ

dr2 + 1
r

dϕ

dr
− ϕ

r2 = − tr
D
. (B.2)
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The radial moment mr and the circumferential moment mθ are

mr = − Eh3

12(1− ν2)

(
dϕ

dr
+ ν

ϕ

r

)
, mθ = − Eh3

12(1− ν2)

(
ϕ

r
+ ν

dϕ

dr

)
, (B.3)

while the radial σr and circumferential σθ bending stresses read

σr = − E

1− ν2

(
− z d

2ζ

dr2 − νz
ϕ

r

)
= − 6

h2 mr,

σθ = − E

1− ν2

(
− zϕ

r
− νz d

2ζ

dr2

)
= − 6

h2 mt.

(B.4)

Consider the case of a circular plate of radius R1 bent by distributed couples m0
uniformly applied along the border as in Figure B.1(a). The shear stress in the
radial direction is clearly null (tr = 0) in (B.2). From the geometric and natural
boundary conditions at r = R1 and the symmetry condition at r = 0, i.e.,

ζ(R1) = 0 , mr(R1) = m0 , ϕ(0) = 0 , (B.5)

one obtains ϕ(r) = 1
2 X1 r. Since d

dr ϕ = ϕ/r, the corresponding solution is mr =
mt = m0 and σr = σt = 6m0/h

2, i.e., the stress state is uniform and rigorously
equibiaxial in the whole specimen.

Figure B.1: a) Circular elastic plate bent by couples at the border. b) Configuration of a
Coaxial Double Ring (CDR) test.
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As mentioned before, it is almost impossible in practice to apply bending moments
uniformly distributed at the circular border. From this, the necessity to look for an
approximation of this ideal loading configuration arises. In figure B.1(b), supposing
that friction is negligible, the reactions transmitted by two rings, coaxial with the
center of the specimen, in contact with the two opposite sides of the plate and
pushed one against the other by a tensometer, are shown. Let R1, R2 and R3 be
the radius of the inner ring, of the outer ring, and of the circular specimen. The
reactions hence read p1 = F/(2πR1) and p2 = F/(2πR2), where F is the force
transmitted by the tensometer. By considering the symmetry of the problem, the
radial shear tr in (B.2) is

tr(r) = 0 for 0 ≤ r < R1 , tr(r) = F

2πr for R1 < r < R2,

tr(r) = 0 for R2 < r ≤ R3 ,
(B.6)

while the matching conditions at the inner radius r = R1 and the boundary
conditions at the outer radius r = R2 are

ϕ(0) = 0 , ζ(R−1 ) = ζ(R+
1 ) , ϕ(R−1 ) = ϕ(R+

1 ) , mr(R−1 ) = mr(R+
1 ) ,

ζ(R−2 ) = ζ(R+
2 ) = 0 , ϕ(R−2 ) = ϕ(R+

2 ) , mr(R−2 ) = mr(R+
2 ) , mr(R3) = 0.

(B.7)

The solution of equation (B.2) for the particular case tr = F
2π r reads

ϕ(r) = − F r

4πD
[

log(r)− 1/2
]
− X1 r

2 − X2

r

⇒ ζ = −F r
2

8πD
[

log(r)− 1
]
− X1 r

2

4 −X2 log r +X3 ,

(B.8)

where X1, X2 and X3 are determined from the boundary and matching conditions.
The resulting stress state is constant and equibiaxial in the core part of the plate
delimited by the inner ring 0 ≤ r < R1, whose intensity is given by the equation

σr = σθ = 3F
4π h2

[
(1− ν)

(
1− R2

1
R2

2

)
R2

2
R2

3
+ 2(1 + ν) log R2

R1

]
. (B.9)

Observe that, considering the case R3 = R2, by expanding in Taylor series expres-
sion (B.9) in the variable R2/R1 around the point R2/R1 = 1, and neglecting the
terms of higher order than the first, the stress state is given by

σr = σθ '
6m∗0
h2 , with m∗0 = F

2πR1
(R2 −R1) , (B.10)

which is equal to the stress acting within a circular plate of radius R1 bent by
distributed couples m∗0 at the border, where m∗0 is equal to the product of the
ring-constraint reaction F

2πR1
' F

2πR2
and the level arm (R2 −R1). It is of impor-
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tance to remark that such approximation is acceptable only when R3 = R2 → R1.
By contrast, the border R2 < r < R3 as well as the distance R2−R1 can generally
play a significant role. The trend of σr = σθ as a function of m∗0 = F

2πR1
(R2 −R1)

for various ratios between the radii is shown in Figure B.2. Sometimes expression
(B.10) is used for estimating the stress state in the core part of a plate loaded ac-
cording to the coaxial double ring configuration. Even though such approximation
is certainly on the safe side (the approximation corresponds to the highest graph),
it could lead to stress intensities much higher than the actual value.

200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

σ
r
=

σ
θ
[N

/
m
m

2
]

m∗
0 = F

2πR1
(R2 −R1) [N mm/mm]

 

 

R2 = R3, R1 → R2

R3/R1 = 1.13, R2/R1 = 1.07

R3/R1 = 1.33, R2/R1 = 1.07

R3/R1 = 2, R2/R1 = 1.07

R3/R1 = 2.67, R2/R1 = 1.07

R3/R1 = 2.67, R2/R1 = 1.33

R3/R1 = 2.67, R2/R1 = 1.66

R3/R1 = 2.67, R2/R1 = 2

Figure B.2: Relationship between the equibiaxial stress state in the core 0 < r < R1 and the
moment per unit length m∗

0 = F
2πR1

(R2 −R1) for different geometries.

Even though the geometry R3 = R2 → R1 would appear optimal, the ratios R3/R2
and R2/R1 cannot go below certain limits, otherwise dangerous stress concentra-
tions could arise, causing localized rupture.
However, in several cases, geometric non linear effects may be of importance, i.e.,
surface strains of the middle plane must be taken into account when deflections
are not small in comparison with plate thickness, generally larger than half the
thickness. Following the Föppl-von Kármán theory [78], the curvature of a meridian
is equal to d2

dr2 ζ and the straight lines normal to the middle surface remain straight
and normal in the deformed configuration.
Since it is very complex to find a closed form solution, an approximate solution of
the non-linear problem can be obtained by using the method proposed in [93]. De-
note with σ′r and σ′θ the radial and the circumferential components, respectively,
of the membrane stress in the plate and ϕ = d

dr ζ again. From symmetry consider-
ations, the field equations [88] governing the non-linear problem of a circular plate
of moderate constant thickness h under a uniformly distributed load per unit area
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p, and the bending and membrane equilibrium in radial direction read

D
d

dr

(
1
r

d

dr
(rϕ)

)
= p

r

2 + hσ′r ϕ,
d

dr
(r σ′r)− σ′θ = 0 . (B.11)

Let ξ be the radial displacement and z the distance from the middle surface of the
plate. The radial ε′r and circumferential ε′θ strains of the middle surface (membrane
strains), and the additional strains, ε′′r and ε′′θ , associated with bending, are

ε′r = dξ

dr
+ ϕ2

2 , ε′θ = ξ

r
, ε′′r = −z d

2ζ

dr2 , ε′′θ = −zϕ
r
. (B.12)

Consequently, from the constitutive equations, the membrane stresses, σ′r and σ′θ,
and the stresses due to bending, σ′′r and σ′′θ , assume the form

σ′r = E

1− ν2

(
dξ

dr
+ ϕ2

2 + ν
ξ

r

)
, σ′θ = E

1− ν2

(
ξ

r
+ ν

dξ

dr
+ ν

ϕ2

2

)
,

σ′′r = E

1− ν2

(
− z d

2ζ

dr2 − ν z
ϕ

r

)
, σ′′θ = E

1− ν2

(
− z ϕ

r
− ν z d

2ζ

dr2

)
.

(B.13)

The radial and circumferential moments per unit length, mr and mθ, are obtained
by integrating the stresses in the thickness and read

mr = Eh3

12(1− ν2)

(
dϕ

dr
+ ν

ϕ

r

)
, mθ = Eh3

12(1− ν2)

(
ϕ

r
+ ν

dϕ

dr

)
. (B.14)

By expanding the displacements, the strains and the stresses in series of positive
powers of the non-dimensional radial distance u = r

h , Way [93] introduced a general
solution for the nonlinear problem, whose relevant expressions are

S′r := σ′r
E

= B0 +B2 u
2 +B4 u

4 + ... , S′θ := σ′θ
E

= B0 + 3B2 u
2 + 5B4 u

4 + ... ,

ϕ =
√

8
(
C1 u+ C3 u

3 + C5 u
5 + ...

)
,

dϕ

du
=
√

8
(
C1 u+ 3C3 u

3 + 5C5 u
5 + ...

)
,

ζ

h
=
√

8
(
C1

u2

2 + C3
u4

4 + C5
u6

6 + ...

)
,

S′′r := σ′′r
E

= mr h

2D(1− ν2) , S′′θ := σ′′θ
E

= mθ h

2D(1− ν2) ,

(B.15)

where mr and mθ are given by equations (B.14). The correlations between the
constants Bk and Ck are obtained by equilibrium considerations (B.11), leading
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to

Bk = −
∑k−1
m=1,3,5... Cm Ck−m

k
2
(
k
2 + 1

) , k = 2, 4, 6..., C3 =
3
(

1− ν2
)(

q

2
√

8 +B0 C1

)
2 ,

Ck = 3(1− ν2)
∑k−3
m=0,2,4...Bm Ck−2−m

k2−1
4

k = 5, 7, 9....

(B.16)

Remarkably, B0 is the value of S′r, associated with the membrane stress at the
center of the plate, while C1 is proportional to the bending stress at the same
point. The values of the coefficients B0 and C1 vary with the boundary conditions
for the problem. Once such coefficients are known, all the other terms in the
expansion (B.15) are obtained in cascade from (B.16).
Firstly, the case of a circular plate loaded by uniformly distributed bending couples
m0 at the border schematized in Figure B.1(a) is analyzed. An approximation of
the value for C1 can be found by assuming that the stress due to bending at the
center is the same as the one predicted by linear theory, which implies a condition
on the derivative of ϕ with respect to u = r

h at the center u = 0 of the type

dϕ

du
= 12m0 (1− ν)

E h2 =
√

8C1 . (B.17)

From this, the coefficient C1 is easily found, while B2 = −C
2
1

2 is obtained from
(B.16)1. Starting from the consideration that the radial membrane stress σ′r and
consequently S′r are null at the edge u = R1/h, an approximation for the expression
ofB0 can be found by neglecting terms of higher order than u2 in (B.15)1, obtaining

B0 +B2 u
2|r=R1 = 0⇒ B0 = −B2

R2
1

h2 . (B.18)

A comparison is made between the numerically determined state of stress and the
one obtained with the aforementioned approximate method, consisting in assuming
that the flexural stress at the center is equal to the one obtained from the linear
elastic solution and in neglecting all the terms after the seconds in the expansions
of (B.15). The case of a circular plate bent by radial couples, illustrated in Figure
B.1(a), with R1 = 75 mm, h = 6 mm andm0 = 398 N mm/mm, is considered. The
results of the comparison are shown in Figure B.3, i.e., the membrane components,
σ′r and σ′θ, and the bending components, σ′′r and σ′′θ , are plotted as a function of the
radial abscissa r. The results are good, but the accuracy decreases with increasing
stress or with decreasing the plate thickness.
On the other hand, the static equivalence given by (B.10) neglects the effects of
the hoop stress and, hence, it is not precise when the ratios R3/R2 and R2/R1 are
far from unity (see Figure B.2). Consequently, the proposed approximate solution
is certainly reliable for the case of the plate bent by couples, whereas it may give
not accurate results for the geometry of the Coaxial Double Ring configuration of
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Figure B.3: Comparison between analytic solution and numerical analysis. Circular plate
loaded by distributed couples. Case m0 = 398 N mm/mm, R1 = 75 mm, h = 6 mm.

Figure B.1(b). Thus, for this loading configuration, a better estimate of B0 and
C1 could be made by using an experimental or a numerical approach. Thus, the
coefficients B0 and C1 for the case of the Coaxial Double Ring (CDR) configuration
are derived from the membrane and flexural stresses at the center of the plate
obtained via FEM analysis. The analytic solution is hence obtained, since all the
other terms in the expansion (B.15) are obtained in cascade from (B.16). The
comparison for the case R1 = 75mm, R2/R1 = 2, R3/R1 = 2, 67 and F = 5 kN
is shown in Figure B.4. The value of the force applied by the tensometer F = 5
kN is such that the stress state is of the same order of that in Figure B.3 for the
plates bent by couples m0 = 398 N mm/mm. Remarkably, m0 6= F

2πR1
(R2 − R1),

as per (B.10), since R2 6= R1 and the effects of the geometric non-linearity are not
negligible. The first two terms of the various expansions of (B.15) have been taken
into account, since the accuracy of results for just two terms is very good.
Notice that B0 is always positive for the CDR configuration and, consequently, C1
is always negative, implying that also B2 and C3 are always negative. This makes
the membrane radial stress be a decreasing function of r, while the bending radial
stress increases with r.
Denoting with σ′center and with σ′′center the maximum stresses at the plate cen-
ter associated with the membrane and flexural response, respectively, and with
SF = σ′centerh and SM = σ′′centerh

2/6 the membrane force per unit width and the
bending moment per unit width at the center of the plate, respectively, one has

B0 = SF

E h
, C1 =

√
8

8
h

D(1 + ν)SM ,

S′r = B0 +B2 u
2 , S′′r = −

√
8

2
C1

1− ν −
√

8
2

3 + ν

1− ν2 C3 u
2 .

(B.19)
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Figure B.4: Comparison between analytic solution and numerical analysis. Circular plate loaded
in the CDR configuration. Case R1 = 75 mm, R2/R1 = 2, R3/R1 = 8

3 , h = 6 mm, F = 5 kN.

Finally, the maximum stress is at the center (border) if

σ′center
σ′′center

< (>) 1− ν
6(3 + ν) . (B.20)

Equation (B.20) has very important implications, since stress concentrations in
the neighborhood of edges or constraints should be avoided while performing me-
chanical tests on glass.
The comparison between the analytic non-linear solution for a circular specimen
in the CDR configuration (R1 = 75 mm, R2/R1 = 2, R3/R1 = 8

3 , l = 2R3, h = 6
mm, F = 5 kN) and the numerical FEM results for a square plate (l = 2R3) under
the same type of loading is shown in Figure B.5. The results are very similar,
i.e., the proposed approximated solution can be used even for square plate of side
l = 2R3 loaded by the rings r = R1 and r = R2, which means that the effect of
the four overhanging pieces in the square specimens upon the flexural response of
the whole plate is marginal. This outcome is certainly of importance, since circular
plates are more expensive than the square ones, due to cost of manufacturing, and
hence they are rarely chosen for the experimental campaigns.

B.1.2 Analytic expressions for the effective area
As deeply discussed in Appendix A, since glass failure occurs when a micro-crack
reaches its critical conditions, the weakest-link-in-the-chain concept associated
with Weibull statistics [94] is commonly used to interpret the material strength
variability. According to this model, a synthetical view of the influence of the size
and of the state of stress upon the failure probability is given by the effective area
Aeff = KA, given by equation (A.11) when reference is made to the 2-parameter
Weibull distribution. However, introducing the parameter ρ, defined as the ratio
between the minimum and the maximum principal tensile stresses, a more conve-
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Figure B.5: Comparison between the analytic solution of a circular plate in the CDR
configuration, and the numerical FEM analysis for a square plate under the same loading. Case

R1 = 75 mm, R2/R1 = 2, R3/R1 = 8
3 , l = 2R3, h = 6 mm, F = 5 kN.

nient form for the effective area can be found. Thus, by defining the equivalent
stress in the form

σeq = σ1
[
cos2 ψ + ρ sin2 ψ

]
, (B.21)

where ψ is again the angle that the maximum principle stress σ1 forms with the
normal at the crack axis, the effective area becomes

Aeff = KA =
∫
A

(Wσ1)mdA
(σmax)m , (B.22)

where the correction coefficient W =
[

2
π

∫ π/2
0

(
cos2 ψ + ρ sin2 ψ

)m]1/m and m is
the Weibull shape parameter. The effective area allows to find the stress σeqbiax,A0

that corresponds to an equal probability of failure for another specimen, made of
the same material, but of unitary area A0 and subject to an equibiaxial state of
stress, through equation (A.13).

Thus, the correction coefficient K of (B.22) depends upon the ratio ρ = σ2/σ1. By
analyzing the core area 0 ≤ r < R1 for the circular plate in the CDR configuration
of Figure B.1(b) and by setting σ1 = σ1(r) = σr(r) and σ2 = σ2(r) = σθ(r),
the expressions (B.15) are used to calculate σr(r) = σ′r(r) + σ′′r (r) and σθ(r) =
σ′θ(r) + σ′′θ (r). In the expansions, all the terms after the seconds are neglected,
i.e., the solution depends upon the coefficients B0, B2, C1 and C3. Thus, from the
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condition σr(0) = σθ(0) = σcenter, one obtains

ρ(r) = σθ(0) + [σθ(r)− σθ(0)]
σr(0) + [σr(r)− σr(0)] =

1 +
[
σθ(r)−σθ(0)
σcenter

]
1 +

[
σr(r)−σr(0)
σcenter

] =
1 +

[
E
(

3B2−
√

8
2

1+3ν
1−ν2 C3

)
σcenter

]
r2

h2

1 +
[
E
(
B2−

√
8

2
3+ν

1−ν2 C3

)
σcenter

]
r2

h2

,

(B.23)

where σcenter = E(B0 −
√

8
2

C1
1−ν ) is the stress acting at the center of the plate.

Recalling that one has σr(r) = σθ(r) for 0 ≤ r < R1 in the linear elastic solution,
it is clear that the terms in square brackets of (B.23) give a measure of the deviation
from equibiaxiality due to second order effects. When these are much smaller than
1, expanding (B.23) in Taylor’s series up to terms of the second order, one has

ρ(r) = 1 +
(

2B2 +
√

8C3

1 + ν

)
E

σcenter

r2

h2

+ 2
[
−B2 +

√
8B2 C3

1
1 + ν

− C2
3
ν2 + 2 ν − 3

(1− ν2)2

]
E2

σ2
center

r4

h4 .

(B.24)

Analogously, the expression for Wm given by (B.22) can be expanded up to terms
of the second order in the neighborhood of ρ(r) = 1. Then, (B.24) is inserted in
the expanded Wm and, keeping only the second-order terms again, one has

(W (r))m = 1− 1− ρ(r)
2 m+ 3

8 (m− 1)m [ρ(r)− 1]2

= 1 + ϑ
r2

h2 + κ
r4

h4
m

2 + 3
8(m− 1)m

(
ϑ2 r

4

h4

)
,

(B.25)

where

ϑ =
(

2B2+
√

8C3

1 + ν

)
E

σcenter
, κ = 4

[
−B2

2+
√

8B2 C3

1 + ν
+C2

3 (3− 2 ν − ν2)
(1 + ν2)2

]
E2

σ2
center

.

(B.26)

Moreover,

(
σr(r)

)m =
(
σcenter

)m[1 + E

σcenter

(
B2 −

√
8

2
3 + ν

1− ν2C3

)
r2

h2

]m
, (B.27)

136



APPENDIX B. TESTING METHODS FOR EVALUATING GLASS
STRENGTH

and, expanding in Taylor’s series up to the second order again, one can write

(
σr(r)

)m =
(
σcenter

)m[1 +$m
r2

h2 + m (m− 1)
2 $2 r

4

h4

]
, (B.28)

where

$ =
(
B2 −

√
8

2
3 + ν

1− ν2 C3

) E

σcenter
. (B.29)

Thus, an analytic expression for the correction coefficient K of (B.22) valid for
the central portion 0 ≤ r < R1 is obtained, which reads

K σmmax = σmcenter

[
1 + ϑm

4
R2

1
h2 + κm

6
R4

1
h4 + (m− 1)mϑ2

8
R4

1
h4 + $m

2
R2

1
h2

+ ϑ$m2

6
R4

1
h4 + m (m− 1)$2

6
R4

1
h4

]
.

(B.30)

Recalling that the maximum stress σmax acts along the radial direction at the
center σcenter or at the edge σedge, these read

σcenter = E

(
B0 −

√
8

2
C1

1− ν

)
,

σedge = E

(
B0 +B2

R2
1

h2 −
√

8
2

C1

1− ν − C3

√
8

2
1 + 3ν
1− ν2

R2
1

h2

)
.

(B.31)

The proposed method for the evaluation of the correction factor K has been
validated through numerical nonlinear analyses. The coefficients B0, C1 are ob-
tained from equations (B.17) and (B.18), respectively, and then B2 and C3 from
(B.16). Hence, the coefficient K has been analytically calculated through expres-
sion (B.30). The analytic estimate of K as a function of σcenter for a circular plate
of radius R1 = 75 mm and thickness h = 6 mm or h = 10 mm, bent by radial cou-
ples uniformly distributed along the border shown in Figure B.1(a) is recorded in
Figure B.6, assuming either m = 5.4 or m = 7.3. Even tough the estimation of the
coefficients B0 and C1 is here made from the linear elastic solution, as suggested in
Section B.1.1, the analytical expression gives accurate results, as it is evident from
the comparison with the results of the FEM simulation. Obviously, the higher are
the loads and the lower is the thickness, the worst the approximation is, since the
effects of geometric non-linearity become of relevance.
On the other hand, Figure B.7 is the counterpart of Figure B.6 for the case of a
CDR configuration with R1 = 75 mm, R2/R1 = 2, R3/R1 = 8

3 . The coefficients
B0 and C1 are now calculated using a FEM simulation as described in Section
B.1.1. The agreement with the numerical experiments is optimal, regardless of the
plate thickness and the stress level.
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Figure B.6: Correlation between the correction coefficient K and σcenter for a circular plate of
radius 75 mm under distributed radial couples. Comparisons of results from FEM and from the

proposed analytic model. Cases h = 6 mm, h = 10 mm, m = 5.4 and m = 7.3.
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Finally, an estimate of the coefficient K for a square plate of side l = 2R3 under
CDR loading has been made by using again the analytic expression (B.30). In
this case, the coefficients B0 and C1 result from the stress at the center of the
plate σcenter calculated from a numerical simulation, referred to the case of square
plate. As it is evident from Figure B.8, and even more so from the comparison
with Figure B.7, results of the analytic and numerical evaluation of the coefficient
K are in excellent agreement, confirming again that the contribution to bending
of the overhanging parts comprised between the external ring and the perimeter
of the specimen is negligible.

0 25 50 75 100 125 150
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K
-
m
=
7
,3

σcenter [N/mm2]

 

 

FEM - 6 mm

Model - 6 mm

FEM - 10 mm

Model - 10 mm

0 25 50 75 100 125 150
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K
-
m
=
5
,4

σcenter [N/mm2]

 

 

FEM - 6 mm

Model - 6 mm

FEM - 10 mm

Model - 10 mm

Figure B.8: Values of K as a function of σcenter. Comparison between results either from the
analytic model for a circular specimen under the CDR configuration (R1 = 75mm, R2/R1 = 2,
R3/R1 = 8

3 ), or from a FEM analysis for a square specimen (side l = 2R3). Cases h = 6 mm,
h = 10 mm, m = 5.4 and m = 7.3.

Three different geometries have been analyzed in order to verify the ability of the
analytic solutions to interpret the mechanical response of plates under the CDR
configuration:

Case I: R1 = 75 mm, R2 = 150 mm, R3 = 200 mm,

Case II: R1 = 75 mm, R2 = 125 mm, R3 = 200 mm,

Case III: R1 = 75 mm, R2 = 125 mm, R3 = 175 mm.

For the three geometries under consideration, the analytic and the numerical eval-
uations are compared in Figure B.9, which shows the value of K as a function of
σcenter for h = 6 mm and m = 7.3.
Recalling that the maximum stress can be either at the center of the specimen or
at the inner ring r = R1, according to the condition (B.20) and, hence, depending
upon the ratio σ′center/σ′′center, the value of such ratio as a function of σcenter for
the case of a circular plate of radius R1 = 75 mm and thickness h = 6 mm, bent by
radial couples at the border of Figure B.1(a), is shown in Figure B.10. Assuming
ν = 0.24 and comparing the resulting graph with the limit 1−ν

6(3+ν) , it is possible to
notice that the maximum stress acts at the center of the specimen for stress values
below the expected average strength of annealed float glass, considered of the
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Figure B.9: Value of K as a function of σcenter. Comparison between three different geometries.
FEM evaluation and analytic estimates from the model. Case h = 6 mm and m = 7.3.

order of 60÷ 70 MPa. Obviously, the same conclusion holds for thicker specimens,
whereas it may not be true for very thin plates.
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as function of σcenter for a circular plate of radius
R1 = 75 mm and thickness h = 6 mm, bent by radial couples at the border. Comparison with

the limit 1−ν
6(3+ν) for ν = 0.24.

The results of the same analysis for the case of CDR configuration of Figure B.1(a)
are shown in Figure B.11 for the three aforementioned geometries. Two different
thicknesses, i.e., h = 6 mm and h = 10 mm, are considered. For h = 6 mm, the
stress below the ring R1 overcomes the stress at the center already for values of
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the order of 25− 30 MPa, whereas the transition stress is of the order of 70− 80
MPa for h = 10 mm.
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Table B.1 records a more precise comparison between the numerical (FEM) and
analytic (MOD) models for the estimate of the location of the maximum stress,
in the three geometries at hand and for ν = 0.24. According to the analytic
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model, the maximum stress σmax should be at the center C when the quantity
σ′center
σ′′center

6(3+ν)
1−ν is less than the unity, otherwise at the ring R1. The proposed model

is in agreement with the numerical simulations, except that in just two cases,
which however correspond to borderline cases, for which a practical distinction is
arduous to make and the state of stress is almost equibiaxial.

Table B.1: Comparison between numerical (FEM) and analytic (MOD) estimates for the location of
the dominant stress (at center C or at ring R1).

Case h F σmax,FEM σmax,FEM
σ′
center
σ′′
center

6(3+ν)
1−ν σmax,MOD σmax,MOD

[mm] [N ] [N/mm2] location C/R1 FEM [N/mm2] location C/R1

I 6 2500 34.45 R1 1.37 34.48 R1

I 6 3750 51.62 R1 2.00 51.69 R1

I 6 5000 68.33 R1 2.60 68.47 R1

I 6 10000 128.22 R1 4.60 129.59 R1

I 6 12500 154.56 R1 5.43 156.72 R1

II 6 2500 24.7 C 0.90 24.7 C

II 6 5000 49.49 R1 1.75 49.68 R1

II 6 10000 96.48 R1 3.25 97.88 R1

II 6 15000 138.74 R1 4.50 142.24 R1

III 6 2500 25.66 C 0.83 25.66 C

III 6 5000 51.48 R1 1.64 51.67 R1

III 6 10000 100.91 R1 3.07 102.43 R1

III 6 15000 145.76 R1 4.28 149.64 R1

I 10 5000 24.66 C 0.36 24.66 C

I 10 10000 49.68 C 0.72 49.68 C

I 10 15000 74.73 C 1.08 74.76 R1

I 10 20000 99.76 R1 1.42 99.92 R1

I 10 25000 124.6 R1 1.76 124.93 R1

I 10 30000 149 R1 2.08 149.65 R1

II 10 5000 17.55 C 0.24 17.55 C

II 10 15000 52.23 C 0.70 52.23 C

II 10 25000 89.04 R1 1.16 89.13 R1

II 10 35000 124.8 R1 1.63 126.75 R1

II 10 45000 160.1 R1 2.03 160.85 R1

III 10 5000 18.24 C 0.22 18.24 C

III 10 15000 55.3 C 0.65 55.3 C

III 10 25000 92.53 C 1.08 92.58 R1

III 10 35000 129.7 R1 1.49 130.1 R1

III 10 45000 166.6 R1 1.89 167.44 R1

B.2 An overview of the most used standardized testing con-
figurations

Four different types of tests are proposed by the standard EN 1288 [35] in Europe,
for characterizing the bending strength of glass plates. The parts EN1288-2 [31]
and EN 1288-5 [34] standardize two different Coaxial Double Ring (CDR) config-
urations, with and without overpressure, respectively. As indicated in the previous
section, the linear elastic solution of a coaxial double ring configuration provides
an uniform equibiaxial state of stress in the core part of the plate delimited by
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the inner ring, but geometric non-linearities, which are the higher the thinner the
specimen is with respect to its area, may lead to a deviation from this ideal condi-
tion. EN 1288-5 [34] indicates a very small diameter for the inner ring, of the order
of a few millimiters, so to obtain just negligible second-order effects. However, the
tested area may be considered too small to be representative of practical case, i.e.,
the resulting failure stress values could be too much higher and not reliable for
structural applications. This is because the smaller the loaded area is, the lower is
the probability of finding a crack in critical conditions.
On the other hand, the standard EN 1288-2 [31] indicates to test large square
plates of area A = 1 m2. It prescribes an overpressure to act simultaneously with
the loading ring, so to compensate for the effects of the geometric non-linearity
and, hence, to generate an almost equibiaxial state of stress in the area delimited
by the inner ring. This is certainly the most sophisticated type of test, and has been
for long time considered the best for characterizing glass strength, even though
just a few laboratories are able to perform it, because special equipment is needed.
The classical four point bending (4PB) tests are standardized for glass by the
parts EN 1288-3 [32] and EN 1288-4 [33]. However, in this configuration the plate
edges, where the defectiveness is different from the core because of the additional
defects induced by the cutting process, is subject to the maximum tensile stresses.
The characterization of the edge strength for glass needs a proper analysis, which
however is not considered here. In any case, if one looks for the mechanical charac-
terization of structural elements made of glass that are not stressed at the edges,
the additional source of uncertainty due to the cutting process should be avoided.
This means that the 4PB configuration is not suitable for pursuing this goal.
With the aim of limiting the deflection, so as to achieve an equibiaxial stress state
far from the borders, the standard ASTM C1499-09 [6], originally conceived for
advanced ceramics, prescribes a Coaxial Double Ring test configuration with vari-
able geometry, according to the plate thickness. The higher is the plate thickness,
the larger are the rings and the specimen.
Let me focus on the tests proposed by the European Norm EN 1288-2 [31] and the
American standard ASTM C1499 [6]. According to the EN 1288-2 [31] standard,
the correlation shown in Figure B.13 between the overpressure p∗ and the load F ∗
applied by the tensometer must be met during the whole test. However, since the
control system of the overpressure is available in just a few research institutes, this
test is rarely used.
The specimens to be tested consist of large square plates of side l = 1000 mm,
supported on a ring of radius R2 = 400 mm and loaded through another ring
coaxial to the supporting one of radius R1 = 300 mm. Despite of complexity and
the difficulty for performing the proposed test, numerical analyses have shown that,
by following the curve of Figure B.13, the stress state sensibly deviates from the
equibiaxiality condition. The plot of the correction coefficient K for the effective
area, given by equation (B.22), as a function of the stress acting at the center of
the plate σcenter is recorded in Figure B.14. Recall that the underlying assumption
of equation (B.22) for the effective area is that strength variability follows a 2-
parameter Weibull distribution. The dots indicate the values of K corresponding
to the configuration with overpressure, following the graph of Figure B.13 by EN
1288-2, whereas the lines represent the case without overpressure, calculated via
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Figure B.13: Relationship between the induced radial tensile stress σ∗
r , the nominal gas

pressure p∗ and the piston force F ∗, in a non-dimensional representation as recorded in EN
1288-2 standard.

FEM analysis. The thickness (h = 6, 8, 10, 12 mm) and the Weibull exponent
(m = 5.4 and m = 7.3) are used as parameters of comparison. As it is evident
from Figure B.14, the value of the coefficient K increases with the overpressure,
but it remains quite far from the unity, corresponding to the ideal condition of
uniform equibiaxial stress state. The thinner the plate is, the higher is the distance
from equibiaxiality. This means that non linear effects are noteworthy for so large
specimens, and the overpressure is not able to totally compensate them, i.e., the
stress state is different from the desired one [71].
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Figure B.14: Values of the correction coefficient K for the effective area as function of σcenter,
deduced from a FEM analysis, for the same geometry of EN 1288-2 [31] but with no

overpressure. Comparison with the values obtained with the overpressure prescribed by
EN1288-2. Different values of thickness and Weibull exponent.

In conclusion, the proposed procedure may be considered unnecessarily compli-
cated, especially because its results could be misleading if one assumes that they
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correspond to the case K = 1.
A method for the correct interpretation of the experimental data is here proposed.
The relationship proposed in [31] between the maximum tensile stress σ∗r and the
piston force F ∗ applied by the tensometer, shown in Figure B.13, is not accurate.
The graph juxtaposed in Figure B.15 has been obtained via FEM analysis, cor-
relating F ∗ with the real maximum radial tensile stress σmax, when the history
of the applied overpressure coincides with that prescribed by Figure B.13. Thus,
one can correct the failure stress values obtained following the indications of the
standard EN 1288-2 [31] by deriving the value of F ∗ associated with the failure
stress σ∗r and, from this, obtain the actual value σmax.
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Figure B.15: Correlation between the piston force F ∗ and i) the radial stress σ∗
r at the specimen

center indicated by [31] and ii) the maximum stress σmax calculated with FEM analyses.

Conventional four-nodes shell elements with reduced integration have been used
to model the loaded specimen. In particular, the surface bounded by the inner
ring has been divided into 30 10-mm-thick annulus areas and 6600 shell elements
have been distributed symmetrically with respect to the plate center. For several
values of the force F ∗ applied by the tensometer, non-linear simulations have been
performed, so to obtain the coefficient W2,i, calculated from (A.27), for each i-
th finite element of area ∆Ai. By approximating the integral of (B.22) with the
Riemann sum, the effective area correction coefficient has been calculated through
the expression

K = .

∑N
i=1 (W2,iσ1,i)m ∆Ai

A (σmax)m
, (B.32)

where N is the total number of finite elements. The so-obtained values for K as a
function of the maximum tensile stress σmax are shown in Figure B.16.
Hence, it is confirmed that the state of stress is not equibiaxial because, if this
was the case, one should have found K ' 1. However, the failure stress values can
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Figure B.16: Relationship between the maximum stress σmax and the effective area correction
coefficient K for the CDR configuration with overpressure [31].

be rescaled towards the condition of equibiaxial stress state through the rescaling
law (A.13) [71].
Concerning the test according to the standard ASTM C1499 [6], no overpressure
is required, but the geometry is variable in order to limit deflections and thus
mitigate the geometric nonlinear effects [81]. The aim is again to obtain an almost
uniform equibiaxial stress state in the part of the specimen delimited by the inner
ring. The side of the square specimen and the radii of the support rings varies
with the plate thickness. Furthermore, ASTM C1499 [6] proposes an equivalence
between the response of the square specimen and the response of an effective
circular plate, whose external radius R3 has been calibrated via FEM analysis
from a criterion of equal maximum stress. The ratio between the diameters of the
supporting and loading rings must be inside the interval [0.2, 0.5]. In particular, for
materials with a low elastic modulus, a low value of this ratio (' 0, 2) should be
chosen and vice-versa. The cross-section of the rings is specifically indicated from
the standard so to mitigate the contact stresses, and a limit for the maximum
thickness of the tested plate is imposed, since the contact stress could lead to
undesirable failure for very thick specimens [76]. Furthermore, limits are proposed
even for the overhang. In particular, if this is too large, the state of stress can
considerably vary from equibiaxiality [76], whereas if it is too small, a premature
spall may lead from the contact with the ring. Moreover, a function for the effective
size of the specimen is proposed in an appendix of the standard, which is based
upon the theoretical analysis of a thick-plate, by considering shear effects between
the load and the support rings and the effects of friction at the contacts [43].
Remarkably, the standard ASTM C1499-09 introduces the notion of “effective
volume”, besides that of “effective area”, since the “volume-flaw hypothesis” is
made in the theoretical derivations, i.e. fracture occurrence can take place in any
point of the specimen and not only on the tensile surface. Both the effective area
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and the effective volume are evaluated by assuming an uniform equibiaxial stress
state inside the inner ring and without neglecting the part of specimen delimited by
the outer radius, in which the stress state is linearly decreasing. Thus, the ASTM
standard proposes a well refined analysis for the CDR test, but varying the test
configuration according to the plate thickness could be considered not practical
and requires a further investigations about possible size effects. Moreover, for thin
plates the suggested diameter of the loading rings are very small, by causing similar
problems to the ones already mentioned for the EN 1288-5 [34] set-up.

B.3 A proposal for a new CDR test
In the recent Italian code for the structural use of glass [23], a Coaxial Double
Ring test configuration has been proposed without overpressure, according to the
configuration shown in Figure B.17. The test specimen is a square plate of side
length l = 400 mm, loaded by rings R1 = 75 mm and R2 = 150 mm. According
to the study recorded in [97], the area delimited by the inner ring, wider than 100
mm2, is large enough to incorporate enough cracks of significant size. A square
shape of the specimen is proposed because it is easier to cut and, consequently,
cheaper than the circular one. Moreover, it has been shown in Section B.1.1 that
there is not a substantial difference in terms of stress, since the effect of the four
overhanging pieces on the bending response of the plate is almost negligible. The
chosen geometry represents a compromise between reducing second order effects
and achieving a representative tested area, avoiding stress concentrations at the
rings.
Recall that the only geometries associated with an almost equibiaxial stress state
inside the central ring, would correspond to a very small-scale specimen, so to
limit the effects of geometric non-linearities. Furthermore, the condition l/2 '
R2 ' R1 should be met, so as to render the loading configuration similar to
the one referring to circular plates under couples uniformly distributed along the
border of Figure B.1(a). However, such configuration cannot be achieved without
producing undesired stress concentrations. Therefore, the idea is to accept a state
of stress that does not have to be equibiaxial, and to re-arrange the measured
data taking into account the correction coefficient K for the effective area, which
can be analytically evaluated when the deviation from the equibiaxiality is mild
[71]. In fact, if such deviation is large, the hypothesis underlying equation (B.24)
is no more valid. The test results are hence rescaled towards the ideal reference
configuration of equibiaxial stress state acting on a unitary area [44].
The determination of the bending strength of glass plates consists of a few simple
steps. The force applied by the tensometer at the collapse F of the specimen is the
only required datum to be measured. Then, the membrane and bending stresses at
the specimen center, respectively σ′center and σ′′center, must be calculated through a
simple FEM simulation and, from these values, the coefficient B0 and C1 are given
by equations (B.15). Figure B.18 summarizes the values reached by B0 and C1 for
a wide range of loads for the most common commercial thicknesses. It allows to
directly evaluate B0 and C1 as a function of the force F for the various thicknesses,
without the need of a FEM model.
Then, using the coefficients indicated in (B.16), (B.26), (B.29), the value ofK(σmax)m
is calculated as per (B.30). Notice that B0 and C1 are independent of the Weibull
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Figure B.17: Proposed CDR test configuration with no overpressure (l = 400 mm, R1 = 75 mm
and R2 = 150 mm).
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modulus m, whereas this appears in the analytic expression for K(σmax)m. The
rough data from the tests should be interpolated to derive the best-fit Weibull
coefficient m. Once m has been determined, the values of K(σmax)m can be cal-
culated.
Observe that, in this way, only the central area delimited by the inner radius is
considered, although the stress state in the area between the two rings is such
that the probability of collapse is small but not null. Thus, only the failure stress
values referred to specimens which collapse in their core parts are considered valid.
Finally, the valid test data must be re-scaled towards the reference conditions,
according to a rescaling law given by expressions (B.31), which reads

σeqb,UA =
(
K(σmax)m A

A0

)1/m
. (B.33)

The re-scaled data can be used as the data associated with the reference configu-
ration, in order to define the characteristic value of glass strength. The proposed
testing configuration was used to characterize the strength of 50 annealed and 50
toughened glass plates of thickness 8 mm. A detailed description of the experi-
mental campaign and of its results is recorded in Section 4.3.1.
Observe that the underlying hypothesis of equation (B.33) is that the 2-parameter
Weibull model is accurate for the statistical interpretation of glass strength vari-
ability. If this is not the case, one may use the re-scaling laws introduced in Ap-
pendix A for the various generalized Weibull models, even tough such laws lead
to expression much more complicated than equation (B.33).
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APPENDIX C

PROBABILISTIC MODELS FOR WIND LOADS AND
SNOW LOADS

In the design practice, pressure induced through wind action is assumed to be
uniformly distributed. Various probabilistic models can be found in the techni-
cal literature for wind pressure. Reference is made here to that recorded in the
Eurocode EN1991-1-4 [39], according to which the reference wind velocity corre-
sponding to a return period TR is

vb(TR) = αRvb,50 , αR = 0.75

√
1− 0.2 ln

[
− ln

(
1− 1

TR

)]
, (C.1)

where vb,50 is the characteristic wind velocity at 10 m above ground averaged over
10 minutes, determined for field exposure category II and for a return period of 50
years. The probability that the maximum averaged wind velocity over 10 minutes
vb is not exceeded in one year (cumulative probability function) is obtained from
expression (C.1) and reads

F (vb) = exp
[
− exp

(
1

0.2 −
v2
b

0.2 0.752 v2
b,50

)]
. (C.2)

The peak pressures, corresponding to the averages over time t = 10 min and t = 3
sec, are introduced by the EN1991-1-4 [39] in the form

pw,10min = 1
2 ρair v

2
b ce1(z) cp cd, pw,3s = 1

2 ρair v
2
b ce(z) cp cd , (C.3)

where ρair = 1.25 Kg/m3 is the air density, z represents the height above ground,
cd is the dynamic factor, cp is the pressure coefficient. The terms ce1(z) and ce(z)
denote the exposure factors, through which the distinction between the peak pres-
sures corresponding to the averaged time t = 10 min or t = 3 s is marked, and



read

ce1(z) =
[
ln
(
z

z0

)]2
k2
r c

2
t with z = zmin for z ≤ zmin,

ce(z) = k2
r ct(z) ln

(
z

z0

)[
ln
(
z

z0

)
ct(z) + 7

]
with z = zmin for z ≤ zmin,

(C.4)

where kr is a coefficient that depends upon the field exposure category and ct(z) is
the orographic coefficient, while z0 and zmin represent reference heights. Finally,
the cumulative distribution function for the peak pressure F (pw,t) can be written
in the form

F (pw,t) = exp
[
− exp

(
1

0.2 −
2 pw,t

ρair ce,t cp cd 0.2 0.752 v2
b,50

)]
, (C.5)

with ce,t = ce when t=3 s and ce,t = ce1 when t=10 min.
For what concerns snow actions, one can refer to the case of the snow deposit on
a roof, which can be considered un-drifted for uniform flat surfaces. For a return
period of n years, the standard EN 1991-1-3 [38] provides the expression for the
snow load (qsn), which reads

qsn = qsk

[
1− V

√
6/π[ln(− ln(Pn)) + 0.57722]

1 + 2.5923V

]
, (C.6)

where Pn is the annual probability of exceedance, qsk represents the characteristic
snow load value on the ground for a 50 year return period and V is the variation
coefficient of the series of maximum annual snow loads, which varies from 0.2 to
0.6 according to the Eurocode. The value for qsk are recorded in the EN 1991-
1-3 [38] as a function of the climate zone and the altitude above sea level. The
annual probability of non-exceedance, i.e., the cumulative distribution function of
the ground snow loads for a reference period of 1 years, is obtained form equation
(C.6) and reads

Fqsn(x) = exp
{
− exp

[(
1− x

qsk
(1 + 2.5923V )

)
π

V
√

6
− 0.57722

]}
. (C.7)

The expression for the snow load on the roof provided by the regulations reads

qs = µiqskCECt , (C.8)

where CE is the exposure coefficient, Ct the thermal coefficient and µi is the
roof shape coefficient. Finally, from equations (C.8) and (C.7), the cumulative
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distribution function of undrifted snow loads on roofs is obtained of the form

Fqs(x) = exp
[
− exp

[(
1− x

qskµiCECt
(1 + 2.5923V )

)
π

V
√

6
− 0.57722

]]
.

(C.9)

The values of the various coefficients are not recorded here, but they can be found
in the EN 1991-1-3 [38].
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APPENDIX D

THE NORMAL AND THE LOG-NORMAL
DISTRIBUTIONS

The Normal statistical distribution is present in a considerable number of appli-
cations and, hence, it is perhaps the most popular. A Log-Normal distribution is
a continuous probability distribution of a variable whose logarithm is normally
distributed. The density function of a Normal (or Gauss) stochastic variable is
characterized by the mean value µ and the variance υ2; it is defined on the whole
real axis and reads

f(x) = 1√
2πυ2

exp
[
−1

2
(x− µ)2

υ2

]
, −∞ < x < +∞, (D.1)

where µ can assume any value, while υ2 is non-negative. The Normal density
function has the well-known bell shape, it is symmetrical with respect to the mean
value (x = µ) and it has two flex points equidistant from x = µ in correspondence
of the abscissas x = µ ± υ. Variations in the mean value µ cause translations of
the density function, while the higher the value of the standard deviation υ2 is,
the higher is the dispersion of data. The ratio between the standard deviation υ
and the mean value µ is referred to as coefficient of variation (CV ), which is a
non-dimensional measure of the dispersion of the distribution.
According to the Method of Moments, the absolute moments of the distribution
coincide with the respective sample moments. Since the statistic moments are
particular mean values of a stochastic variable, it is assumed that the estimator of
µ is the sample mean and the estimator of υ2 is the second order relative sample
moment

(
υ2 = 1/N

∑N
i=1 (x1 − µ)2

)
where N is the sample dimension and i is

the i-th datum. These estimators are considered the most efficient to derive the
two parameters of the Normal Distribution. Indeed, they are the same that one can
find by using the Maximum Likelihood Estimation (MLE) method. The likelihood
of a set of data is the probability of obtaining that particular set of data, given
the chosen probability distribution model. The value of those parameters that
maximize the sample likelihood are known as the Maximum Likelihood Estimates.



A random variable x is standardized by subtracting the mean of the distribu-
tion from the value being standardized, and then dividing this difference by the
standard deviation of the distribution, i.e.,

Z = x− µ
υ

. (D.2)

Once standardized, a normally distributed random variable has µ = 0 and υ = 1.
The normal probability plot is a graphical technique for assessing whether or not
experimental data are normally distributed, representing the most simple way
to identify departures from normality. According to this technique, experimental
data are organized in ascending order and an experimental probability of failure is
assigned to each i-th datum through an estimator. In the current dissertation, the
first estimator introduced in (A.14) is used, i.e., Pi = i/(N + 1), where N is the
sample size. Then, from the experimental probability of failure, the expected values
of the standardized variable Z are obtained. Finally, data arranged in ascending
order are plotted against the expected values for the standardized variable Z (µ =
0, υ2 = 1) in such a way that the points should approximately form a straight
line.
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APPENDIX E

RESULTS OF THE MEASUREMENT AND
EXPERIMENTAL CAMPAIGNS PERFORMED AT

THE TECHNICAL UNIVERSITY OF DARMSTADT

Table E.1: Annealed glass (ANN) specimens. Measured thicknesses
(measurements taken along the four sides of the plates and mean
value hm). Residual stresses measured along two orthogonal direc-
tions at the center of the plates and mean values σpc,m.

Specimen Measurements Measurements
h1 h2 h3 h4 hm σpc,I σpc,II σpc,m

[mm] [mm] [mm] [mm] [mm] [MPa] [MPa] [MPa]

ANN-1a 7.884 7.913 7.890 7.861 7.887 4.4 4.6 4.50
ANN-2a 7.858 7.858 7.861 7.823 7.850 5.1 3.9 4.50
ANN-3a 7.801 7.799 7.818 7.808 7.806 4.6 4.0 4.30
ANN-4a 7.810 7.852 7.823 7.803 7.822 5.1 4.7 4.90
ANN-5a 7.877 7.977 7.971 7.983 7.952 5 3.9 4.45
ANN-6a 7.981 7.865 7.967 7.975 7.847 5 4.6 4.80
ANN-7a 7.873 7.902 7.878 7.853 7.876 4.0 4.0 4.0
ANN-8a 7.934 7.902 7.925 7.967 7.932 4.3 4.2 4.25
ANN-9a 7.891 7.858 7.876 7.905 7.882 4.7 4.1 4.40
ANN-10a 7.886 7.926 7.904 7.876 7.898 4.6 4.4 4.50
ANN-11a 7.906 7.895 7.860 7.876 7.884 4.9 4.7 4.80
ANN-12a 7.867 7.829 7.866 7.869 7.858 4.6 4.5 4.55
ANN-13a 7.814 7.809 7.808 7.825 7.814 4.8 4.6 4.70
ANN-14a 7.935 7.907 7.926 7.970 7.934 5.4 5.4 5.40
ANN-15a 7.855 7.873 7.903 7.879 7.877 5.1 4.3 4.70
ANN-16a 7.855 7.823 7.805 7.817 7.825 4.9 4.2 4.55
ANN-17a 7.803 7.804 7.821 7.808 7.809 4.9 4.3 4.60
ANN-18a 7.826 7.849 7.863 7.862 7.850 4.7 4.5 4.60



ANN-19a 7.870 7.976 7.971 7.977 7.948 4.9 4.7 4.80
ANN-20a 7.861 7.877 7.912 7.894 7.886 4.7 4.3 4.50
ANN-21a 7.870 7.866 7.833 7.866 7.859 5.3 4.0 4.65
ANN-22a 7.892 7.856 7.879 7.904 7.883 5.0 4.2 4.60
ANN-23a 7.908 7.877 7.857 7.874 7.879 5.3 4.6 4.95
ANN-24a 7.888 7.857 7.882 7.906 7.883 5.1 4.1 4.60
ANN-25a 7.957 7.976 7.978 7.877 7.947 5.0 4.5 4.75
ANN-26a 7.985 7.882 7.970 7.978 7.954 5.1 4.3 4.70
ANN-27a 7.950 7.908 7.932 7.969 7.940 5.2 4.8 5.00
ANN-28a 7.830 7.866 7.870 7.869 7.859 4.4 4.2 4.30
ANN-29a 7.970 7.976 7.881 7.976 7.951 4.9 3.9 4.40
ANN-30a 7.867 7.830 7.868 7.871 7.859 4.9 4.0 4.45
ANN-31a 7.975 7.984 7.878 7.973 7.952 5.1 4.2 4.65
ANN-32a 7.964 7.975 7.892 7.873 7.926 5.1 4.1 4.60
ANN-33a 7.813 7.805 7.805 7.824 7.812 4.7 3.9 4.30
ANN-34a 7.864 7.869 7.827 7.855 7.854 4.7 4.4 4.55
ANN-35a 7.899 7.868 7.883 7.919 7.892 4.7 4.2 4.45
ANN-36a 7.932 7.910 7.932 7.970 7.936 5.1 4.2 4.65
ANN-37a 7.907 7.925 7.972 7.943 7.937 5.4 4.5 4.95
ANN-38a 7.911 7.923 7.971 7.944 7.937 5.0 4.2 4.60
ANN-39a 7.868 7.868 7.864 7.825 7.856 4.9 4.0 4.45
ANN-40a 7.901 7.868 7.876 7.919 7.891 5.3 4.8 5.05
ANN-41a 7.972 7.984 7.881 7.966 7.951 5.0 4.5 4.75
ANN-42a 7.972 7.944 7.905 7.922 7.936 5.0 4.3 4.65
ANN-43a 7.873 7.904 7.888 7.857 7.880 4.8 4.0 4.40
ANN-44a 7.826 7.804 7.814 7.853 7.824 4.5 4.4 4.45
ANN-45a 7.864 7.870 7.868 7.830 7.858 4.7 4.2 4.45
ANN-46a 7.868 7.950 7.972 7.979 7.942 5.1 4.1 4.60
ANN-47a 7.933 7.971 7.943 7.906 7.938 4.8 4.4 4.60
ANN-48a 7.854 7.871 7.905 7.884 7.878 4.7 4.5 4.60
ANN-49a 7.805 7.814 7.847 7.822 7.822 5.0 4.2 4.60
ANN-50a 7.804 7.804 7.824 7.813 7.811 4.6 4.4 4.50

Table E.2: Annealed glass (ANN) specimens. Test results: maxi-
mum displacement ζmax; fracture load F ; time to failure tf ; maxi-
mum stress at failure σfail; equivalent uniform stress that leads to
failure in 60 s σ60.

Specimen Test outputs Fracture Location Results
ζmax F tf Valid/Not Valid σfail σ60
[mm] [N] [s] [MPa] [MPa]

ANN-1a 2.48 15278.02 58.94 Valid 117.30 98.15
ANN-2a 2.29 13812.68 53.77 Valid 107.40 89.35
ANN-3a 2.79 16961.56 64.17 Valid 131.70 111.07
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ANN-4a 1.94 9817.42 37.59 Not valid
ANN-5a 2.54 15280.20 59.44 Not valid
ANN-6a 2.95 18030.52 67.97 Not valid
ANN-7a 3.09 19049.74 72.92 Not valid
ANN-8a 2.71 16591.21 63.91 Valid 125.50 105.55
ANN-9a 1.86 10545.63 40.27 Not valid
ANN-10a 3.01 19909.49 74.97 Not valid
ANN-11a 3.27 20613.94 77.53 Not valid
ANN-12a 2.95 18621.11 70.09 Valid 142.00 120.11
ANN-13a 2.14 12424.35 48.56 Valid 97.83 81.26
ANN-14a 2.63 16586.37 62.57 Valid 125.40 105.32
ANN-15a 2.73 16696.77 63.02 Valid 127.80 107.21
ANN-16a 2.34 14544.03 55.07 Valid 113.50 93.12
ANN-17a 3.14 19143.59 74.18 Not valid
ANN-18a 2.75 17634.00 67.30 Valid 135.30 113.83
ANN-19a 2.55 15417.64 58.26 Not valid
ANN-20a 2.03 11828.99 46.25 Valid 91.67 75.55
ANN-21a 3.08 17861.89 68.96 Valid 136.60 114.21
ANN-22a 3.22 21456.68 80.62 Valid 160.80 137.21
ANN-23a 2.40 14633.13 55.33 Valid 112.80 94.01
ANN-24a 3.25 20762.01 78.00 Valid 156.00 132.84
ANN-25a 2.21 12685.32 48.18 Valid 96.71 78.39
ANN-26a 1.83 10447.62 39.91 Valid 79.82 65.18
ANN-27a 2.10 12614.92 49.15 Not valid
ANN-28a 2.46 14831.46 56.22 Valid 115.30 96.19
ANN-29a 2.85 17994.73 68.21 Valid 134.80 114.16
ANN-30a 2.29 12670.31 48.26 Valid 98.64 79.91
ANN-31a 2.80 17377.64 65.88 Valid 130.50 110.79
ANN-32a 1.87 9478.15 36.35 Not valid
ANN-33a 2.38 12063.83 47.94 Valid 95.13 80.87
ANN-34a 2.62 15964.62 63.16 Valid 123.20 103.53
ANN-35a 2.31 14417.61 55.26 Valid 110.80 92.34
ANN-36a 2.82 17496.13 66.01 Valid 131.80 109.96
ANN-37a 2.80 16899.30 63.78 Valid 127.50 107.38
ANN-38a 2.35 14679.96 56.34 Valid 111.60 94.57
ANN-39a 2.19 11561.23 45.89 Valid 90.29 74.38
ANN-40a 3.15 19876.93 76.51 Valid 149.70 127.32
ANN-41a 2.13 12462.91 47.39 Valid 94.97 78.58
ANN-42a 2.83 18517.59 70.31 Valid 138.90 119.88
ANN-43a 2.13 11681.23 44.50 Valid 90.67 74.55
ANN-44a 2.91 18456.02 69.48 Valid 141.90 117.51
ANN-45a 2.29 12598.40 49.98 Valid 98.12 81.51
ANN-46a 2.33 13630.74 54.07 Valid 103.80 86.39
ANN-47a 2.81 18004.21 67.85 Valid 135.30 115.43
ANN-48a 2.75 17511.33 66.50 Valid 133.60 112.64
ANN-49a 2.96 18426.45 70.27 Valid 141.70 119.96
ANN-50a 1.36 7001.82 28.27 Not valid
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Table E.3: Heat-treated glass (HTG) specimens. Measured thick-
nesses (measurements taken along the four sides of the plates and
mean values hm).

Specimen Measurements
h1 h2 h3 h4 hm

[mm] [mm] [mm] [mm] [mm]

HTG-1b6 7.939 7.931 7.940 7.960 7.942
HTG-2b 7.965 7.943 7.929 7.936 7.943
HTG-3b 7.979 7.967 7.980 7.925 7.962
HTG-4b 7.977 7.918 7.980 7.961 7.959
HTG-5b 7.923 7.969 7.963 7.980 7.958
HTG-6b 7.962 7.973 7.922 7.978 7.958
HTG-7b 7.983 7.964 7.981 7.922 7.962
HTG-8a 7.839 7.822 7.831 7.876 7.842
HTG-9a 7.843 7.814 7.827 7.866 7.837
HTG-10a 7.898 7.938 7.911 7.883 7.907
HTG-11a 7.899 7.942 7.906 7.888 7.908
HTG-12a 7.900 7.940 7.911 7.886 7.909
HTG-13a 7.823 7.840 7.823 7.820 7.826
HTG-14a 7.883 7.895 7.939 7.914 7.907
HTG-15a 7.942 7.986 7.955 7.922 7.951
HTG-16a 7.880 7.881 7.844 7.882 7.871
HTG-17a 7.842 7.815 7.818 7.823 7.824
HTG-18a 7.840 7.827 7.816 7.817 7.825
HTG-19a 7.878 7.843 7.877 7.884 7.870
HTG-20a 7.873 7.883 7.879 7.842 7.869
HTG-21a 7.844 7.821 7.831 7.867 7.840
HTG-22a 7.864 7.848 7.825 7.836 7.843
HTG-23a 7.861 7.848 7.819 7.830 7.839
HTG-24a 7.818 7.843 7.825 7.823 7.827
HTG-25a 7.904 7.944 7.928 7.898 7.918
HTG-26a 7.897 7.942 7.916 7.885 7.910
HTG-27a 7.937 7.988 7.950 7.924 7.949
HTG-28a 7.821 7.820 7.841 7.828 7.827
HTG-29a 7.845 7.823 7.833 7.866 7.841
HTG-30a 7.923 7.943 7.986 7.948 7.950
HTG-31a 7.821 7.844 7.828 7.816 7.827
HTG-32a 7.823 7.840 7.828 7.821 7.828
HTG-33a 7.920 7.941 7.988 7.952 7.950
HTG-34a 7.890 7.920 7.902 7.871 7.895
HTG-35a 7.889 7.922 7.906 7.869 7.896
HTG-36a 7.873 7.833 7.872 7.875 7.863

6Sample delivered on a different date
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HTG-37a 7.885 7.917 7.889 7.866 7.889
HTG-38a 7.819 7.828 7.867 7.843 7.839
HTG-39a 7.872 7.887 7.919 7.899 7.894
HTG-40a 7.839 7.876 7.886 7.878 7.869
HTG-41a 7.894 7.942 7.915 7.885 7.909
HTG-42a 7.890 7.937 7.914 7.882 7.905
HTG-43a 7.990 7.998 7.897 7.982 7.966
HTG-44a 7.827 7.863 7.841 7.818 7.837
HTG-45a 7.996 7.889 7.979 7.987 7.962
HTG-46a 7.923 7.935 7.986 7.955 7.949
HTG-47a 7.840 7.822 7.819 7.817 7.824
HTG-48a 7.870 7.891 7.922 7.901 7.896
HTG-49a 7.846 7.817 7.828 7.864 7.838
HTG-50a 7.820 7.817 7.816 7.831 7.821
HTG-51a 7.905 7.874 7.890 7.927 7.899
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Table E.4: Heat-treated glass (HTG) specimens. Residual stresses
measured along two orthogonal directions at the center of the plates
and at four points on the two diagonals, 100 mm far from the edges.

Specimen Measurements
σcpc,I σcpc,II σ1

pc,I σ1
pc,II σ2

pc,I σ2
pc,II σ3

pc,I σ3
pc,II σ4

pc,I σ4
pc,II

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

HTG-1b 98.6 94.2 102.4 96.7 100.2 96.5 96.4 95.8 99.6 97.0
HTG-2b 95.1 93.7 93.7 93.5 97.4 97.1 97.4 97.1 96.2 95.0
HTG-3b 93.3 92.1 97.2 93.7 96.5 93.2 96.1 92.7 95.6 95.5
HTG-4b 98.9 94.7 99.3 97.7 97.6 96.7 95.9 94.0 98.6 96.5
HTG-5b 95.5 94.1 97.4 95.1 96.2 95.6 96.6 95.3 98.1 96.8
HTG-6b 98.8 93.2 101.4 97.5 97.2 95.0 96.3 92.9 97.8 95.4
HTG-7b 94.0 90.8 93.6 92.5 94.5 92.5 96.0 93.3 97.8 92.7
HTG-8a 100.4 97.6 102.2 102.2 102.6 101.1 104.1 104.0 105.7 104.7
HTG-9a 100.3 96.1 101.0 99.7 97.0 96.4 95.6 95.4 102 100.0
HTG-10a 100.8 97.4 101.1 99.0 99.3 97.1 100.0 97.8 101.2 100.5
HTG-11a 100.4 96.0 103.2 100.6 102.1 100.2 101.0 100.5 102.8 99.4
HTG-12a 102.3 98.9 100.1 99.4 100.9 100.3 102.5 99.0 99.7 98.7
HTG-13a 104.5 103.0 105.8 104.9 103.6 102.4 102.9 102.9 105.2 104.4
HTG-14a 98.4 96.8 101.3 96.7 100.1 96.8 101.5 101.4 101.8 101.3
HTG-15a 102.0 97.7 100.3 100.0 102.8 101.4 99.9 98.3 100.9 97.7
HTG-16a 105.4 102.3 103.4 103.0 104.4 102.6 104.9 102.3 105.3 104.9
HTG-17a 98.9 98.0 97.4 97.0 98.3 96.3 101.6 98.7 99.8 99.3
HTG-18a 99.5 99.2 98.3 96.4 98.8 97.9 100.0 99.9 101.0 100.2
HTG-19a 98.4 94.5 101.1 100.7 99.3 94.0 94.7 94.4 100.5 100.3
HTG-20a 98.6 91.4 95.3 94.0 95.3 93.2 97.1 95.1 98.2 95.8
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HTG-21a 97.6 90.1 97.9 96.8 98.9 97.3 96.8 96.2 98.7 96.7
HTG-22a 100.6 95.6 99.3 97.6 98.1 98.0 100.2 98.5 100.1 99.5
HTG-23a 98.7 93.1 98.6 98.3 101.6 97.6 102.8 100.2 98.7 98.5
HTG-24a 100.4 92.6 99.9 98.2 97.8 97.6 100.0 97.9 99.0 97.7
HTG-25a 105.0 102.1 104.1 103.8 103.1 102.0 104.4 101.9 104.8 102.9
HTG-26a 99.7 96.3 101.6 101.0 98.1 96.4 96.8 95.1 99.9 98.2
HTG-27a 100.5 94.7 99.5 98.2 104.4 99.9 102.3 99.8 99.8 99.6
HTG-28a 98.9 95.6 103.5 98.8 101.9 99.1 100.8 98.5 103.5 95.1
HTG-29a 100.9 95.9 97.3 96.8 99.4 97.6 100.6 98.8 98.5 98.0
HTG-30a 104.6 101.5 105.6 104.5 103.6 102.9 105.7 101.2 105.7 105.6
HTG-31a 100.3 97.0 100.5 98.2 99.5 96.7 97.8 97.1 99.2 99.2
HTG-32a 99.6 95.8 99.2 98.7 101.7 98.6 99.3 99.2 102.0 98.8
HTG-33a 99.2 95.4 95.2 95.1 99.7 97.8 98.0 98.0 96.8 94.7
HTG-34a 99.4 95.3 100.9 99.2 99.0 98.5 100.9 98.1 99.9 99.8
HTG-35a 99.5 97.0 99.3 98.9 97.7 95.4 96.1 95.6 99.3 98.9
HTG-36a 99.6 95.1 95.9 95.4 95.8 94.0 98.1 97.7 95.8 95.4
HTG-37a 105.5 101.9 105.7 104.5 104.5 103.9 104.9 103.6 104.1 103.8
HTG-38a 99.7 95.8 99.8 99.3 96.8 93.0 94.9 93.7 99.7 97.9
HTG-39a 97.7 94.2 96.7 94.9 96.3 96.1 95.6 95.1 98.2 97.2
HTG-40a 103.2 101.4 102.5 102.0 105.0 102.2 103.1 102.0 104.5 102.7
HTG-41a 98.1 95.8 99.2 97.9 99.8 97.7 95.9 94.8 96.5 96.2
HTG-42a 99.6 97.0 100.7 100.3 100.1 97.1 100.4 99.0 101.5 98.7
HTG-43a 104.0 100.3 104.9 103.3 103.5 101.7 100.9 100.8 102.3 102.1
HTG-44a 100.0 95.6 98.4 98.2 99.1 98.0 96.4 96.2 98.6 97.4
HTG-45a 98.0 94.9 100.7 97.8 99.4 98.2 98.6 97.7 96.4 96.3
HTG-46a 97.1 92.0 97.3 96.0 99.5 97.9 98.3 98.1 98.4 97.7
HTG-47a 98.1 93.8 95.9 95.9 101.2 97.7 98.3 98.2 98.0 97.4
HTG-48a 98.9 92.9 101.2 99.2 101.2 99.4 99.6 97.4 99.3 98.5
HTG-49a 98.0 92.7 100.5 97.9 102.8 98.3 99.4 99.3 98.4 96.5163



HTG-50a 99.9 93.2 99.1 95.0 97.0 95.1 98.6 97.2 98.2 96.4

Table E.5: Heat-treated glass (HTG) specimens. Ratio between the
minimum and the maximum residual stresses measured along two
orthogonal directions at the center of the plate and at four points
on the two diagonals, 100 mm far from the edges. Mean values
of the measurements taken along two orthogonal directions at any
point. Mean values of the 10 measurements taken at the air side
σpc,m for each plate.

Specimen σcpc,II
σc
pc,I

σ1
pc,II

σ1
pc,I

σ2
pc,II

σ2
pc,I

σ3
pc,II

σ3
pc,I

σ4
pc,II

σ4
pc,I

Mean Values

σcpc,m σ1
pc,m σ2

pc,m σ3
pc,m σ4

pc,m σpc,m
[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

HTG-1b 0.95 0.94 0.96 0.99 0.97 96.40 99.55 98.35 96.10 98.30 97.74
HTG-2b 0.98 0.99 0.99 0.99 0.98 94.40 93.60 97.25 97.25 95.60 95.62
HTG-3b 0.98 0.96 0.96 0.96 0.99 92.70 95.45 94.85 94.40 95.55 94.59
HTG-4b 0.95 0.98 0.99 0.98 0.97 96.80 98.50 97.15 94.95 97.55 96.99
HTG-5b 0.98 0.97 0.99 0.98 0.98 94.80 96.25 95.90 95.95 97.45 96.07
HTG-6b 0.94 0.96 0.97 0.96 0.97 96.00 99.45 96.10 94.60 96.60 96.55
HTG-7b 0.96 0.98 0.97 0.97 0.94 92.40 93.05 93.50 94.65 95.25 93.77
HTG-8a 0.97 1.00 0.98 0.99 0.99 99.00 102.20 101.85 104.05 105.20 102.46
HTG-9a 0.95 0.98 0.99 0.99 0.98 98.20 100.35 96.70 95.50 101.00 98.35
HTG-10a 0.96 0.97 0.97 0.97 0.99 99.10 100.05 98.20 98.90 100.85 99.42
HTG-11a 0.95 0.97 0.98 0.99 0.96 98.20 101.90 101.15 100.75 101.10 100.62
HTG-12a 0.96 0.99 0.99 0.96 0.98 100.60 99.75 100.60 100.75 99.20 100.18
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HTG-13a 0.98 0.99 0.98 1.00 0.99 103.75 105.35 103.00 102.90 104.80 103.96
HTG-14a 0.98 0.95 0.96 0.99 0.99 97.60 99.00 98.45 101.45 101.55 99.61
HTG-15a 0.95 0.99 0.98 0.98 0.96 99.85 100.15 102.10 99.10 99.30 100.10
HTG-16a 0.97 0.99 0.98 0.97 0.99 103.85 103.20 103.50 103.60 105.10 103.85
HTG-17a 0.99 0.99 0.97 0.97 0.99 98.45 97.20 97.30 100.15 99.55 98.53
HTG-18a 0.99 0.98 0.99 0.99 0.99 99.35 97.35 98.35 99.95 100.60 99.12
HTG-19a 0.96 0.99 0.94 0.99 0.99 96.45 100.90 96.65 94.55 100.40 97.79
HTG-20a 0.92 0.98 0.97 0.97 0.97 95.00 94.65 94.25 96.10 97.00 95.40
HTG-21a 0.92 0.98 0.98 0.99 0.97 93.85 97.35 98.10 96.50 97.70 96.70
HTG-22a 0.95 0.98 0.99 0.98 0.99 98.10 98.45 98.05 99.35 99.80 98.75
HTG-23a 0.94 0.99 0.96 0.97 0.99 95.90 98.45 99.60 101.50 98.60 98.81
HTG-24a 0.92 0.98 0.99 0.97 0.98 96.50 99.05 97.70 98.95 98.35 98.11
HTG-25a 0.97 0.99 0.98 0.97 0.98 103.55 103.95 102.55 103.15 103.85 103.41
HTG-26a 0.96 0.99 0.98 0.98 0.98 98.00 101.3 0 97.25 95.95 99.05 98.31
HTG-27a 0.94 0.98 0.95 0.97 0.99 97.60 98.85 102.15 101.05 99.70 99.87
HTG-28a 0.96 0.95 0.97 0.97 0.91 97.25 101.15 100.50 99.65 99.30 99.57
HTG-29a 0.95 0.99 0.98 0.98 0.99 98.40 97.05 98.50 99.70 98.25 98.38
HTG-30a 0.97 0.98 0.99 0.95 0.99 103.05 105.05 103.25 103.45 105.65 104.09
HTG-31a 0.96 0.97 0.97 0.99 1.00 98.65 99.35 98.10 97.45 99.20 98.55
HTG-32a 0.96 0.99 0.96 0.99 0.96 97.70 98.95 100.15 99.25 100.40 99.29
HTG-33a 0.96 0.99 0.98 1.00 0.97 97.30 95.15 98.75 98.00 95.75 96.99
HTG-34a 0.95 0.98 0.99 0.97 0.99 97.35 100.05 98.75 99.50 99.85 99.10
HTG-35a 0.97 0.99 0.97 0.99 0.99 98.25 99.10 96.55 95.85 99.10 97.77
HTG-36a 0.95 0.99 0.98 0.99 0.99 97.35 95.65 94.90 97.90 95.60 96.28
HTG-37a 0.96 0.98 0.99 0.98 0.99 103.70 105.10 104.20 104.25 103.95 104.24
HTG-38a 0.96 0.99 0.96 0.98 0.98 97.75 99.55 94.90 94.30 98.80 97.06
HTG-39a 0.96 0.98 0.99 0.99 0.98 95.95 95.80 96.20 95.35 97.70 96.20
HTG-40a 0.98 0.99 0.97 0.98 0.98 102.30 102.25 103.60 102.55 103.60 102.86
HTG-41a 0.97 0.98 0.97 0.98 0.99 96.95 98.55 98.75 95.35 96.35 97.19165



HTG-42a 0.97 0.99 0.97 0.98 0.97 98.30 100.50 98.60 99.70 100.10 99.44
HTG-43a 0.96 0.98 0.98 0.99 0.99 102.15 104.10 102.60 100.85 102.20 102.38
HTG-44a 0.95 0.99 0.98 0.99 0.98 97.80 98.30 98.55 96.30 98.00 97.79
HTG-45a 0.96 0.97 0.98 0.99 0.99 96.45 99.25 98.80 98.15 96.35 97.80
HTG-46a 0.94 0.98 0.98 0.99 0.99 94.55 96.65 98.70 98.20 98.05 97.23
HTG-47a 0.95 1.00 0.96 0.99 0.99 95.95 95.90 99.45 98.25 97.70 97.45
HTG-48a 0.93 0.98 0.98 0.97 0.99 95.90 100.20 100.30 98.50 98.90 98.76
HTG-49a 0.94 0.97 0.95 0.99 0.98 95.35 99.20 100.55 99.35 97.45 98.38
HTG-50a 0.93 0.95 0.98 0.98 0.98 96.55 97.05 96.05 97.90 97.30 96.97

Table E.6: Heat-treated glass (HTG) specimens. Test results: max-
imum displacement ζmax; fracture load F ; time to failure tf ; max-
imum stress at failure σfail; equivalent equibiaxial strength σeqb;
equivalent uniform stress that leads to failure in 60 s σ60.

Specimen Test outputs Fracture Location Results
ζmax F tf Valid/Not Valid σfail σeqb σ60
[mm] [N] [s] [MPa] [MPa] [MPa]

HTG-1b 3.44 23002.14 86.34 Valid 167.10 159.59 148.96
HTG-2b 4.07 29126.79 109.04 Valid 205.80 192.72 180.21
HTG-3b 4.77 34735.19 131.55 Valid 239.20 219.44 207.34
HTG-4b 3.93 27213.86 102.85 Not valid
HTG-5b 4.90 38408.56 143.29 Not valid
HTG-6b 3.82 26489.79 99.17 Not valid
HTG-7b 4.40 33295.85 124.39 Valid 230.80 214.37 200.44
HTG-8a 4.41 30677.93 119.51 Valid 215.30 202.35 188.60
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HTG-9a 4.18 29227.15 111.45 Valid 206.50 193.85 181.00
HTG-10a 4.01 28634.53 107.13 Not valid
HTG-11a 4.18 30350.31 113.56 Valid 213.30 199.73 186.81
HTG-12a 5.63 43614.85 170.70 Valid 288.00 260.69 246.99
HTG-13a 4.87 33168.93 130.21 Valid 230.10 212.23 200.78
HTG-14a 4.94 36830.80 141.41 Valid 251.00 232.71 217.45
HTG-15a 4.29 32149.70 120.18 Not valid
HTG-16a 5.60 44313.12 165.21 Not valid
HTG-17a 4.13 27246.26 106.75 Not valid
HTG-18a 4.81 34176.08 133.65 Valid 235.90 217.90 205.10
HTG-19a 4.19 29823.70 111.60 Valid 210.10 198.15 183.91
HTG-20a 5.68 44961.48 172.58 Valid 295.10 267.36 252.21
HTG-21a 5.36 39890.49 152.71 Valid 268.00 244.52 230.90
HTG-22a 4.61 33471.26 125.00 Valid 231.80 215.41 201.73
HTG-23a 4.47 31178.71 121.19 Valid 218.30 203.86 190.68
HTG-24a 5.17 39632.83 148.45 Not valid
HTG-25a 5.70 45004.16 171.32 Valid 295.40 269.86 252.87
HTG-26a 4.79 35556.82 132.76 Not valid
HTG-27a 4.54 34620.24 129.23 Valid 238.50 222.39 207.26
HTG-28a 4.43 32269.10 120.62 Valid 224.70 208.93 196.05
HTG-29a 5.51 43376.58 161.68 Valid 286.80 262.91 245.89
HTG-30a 5.38 43309.42 161.41 Valid 286.40 259.49 245.98
HTG-31a 4.05 25142.23 98.70 Valid 181.00 172.64 160.25
HTG-32a 3.91 27032.20 102.78 Valid 192.90 182.81 170.04
HTG-33a 4.50 33668.54 125.91 Not valid
HTG-34a 5.12 39232.06 147.76 Valid 264.30 241.45 228.18
HTG-35a 5.42 42509.72 158.60 Valid 282.10 257.13 242.23
HTG-36a 4.22 30613.51 114.47 Not valid
HTG-37a 4.68 34788.30 132.18 Valid 239.50 223.18 208.43167



HTG-38a 5.49 42857.57 160.59 Valid 284.00 260.17 243.64
HTG-39a 5.76 47102.26 175.50 Valid 306.30 275.07 260.80
HTG-40a 5.44 41532.44 162.45 Valid 276.90 252.88 238.43
HTG-41a 4.75 35530.16 132.67 Valid 243.80 226.89 211.27
HTG-42a 5.65 45613.75 172.07 Valid 299.50 272.00 255.08
HTG-43a 5.54 46514.94 173.41 Not valid
HTG-44a 3.46 22417.68 85.96 Not valid
HTG-45a 5.34 42263.55 164.67 Valid 280.80 254.90 241.19
HTG-46a 4.81 37150.70 141.55 Not valid
HTG-47a 4.75 34660.25 134.41 Valid 238.80 222.53 207.23
HTG-48a 4.55 34616.56 129.26 Valid 238.50 220.72 207.14
HTG-49a 5.30 42049.00 156.81 Not valid
HTG-50a 4.52 32382.07 123.86 Not valid
HTG-51a 3.22 20972.53 80.77 Valid 153.70 147.69 137.94
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Γ Euler Gamma function
∆A Representative area
Θ Third term of the Extended Weibull distribution
Υ Normalization constant
Σ Generic state of stress
Φ fn+1

test /σ̇test =constant
Ω Angle containing the normals to all the potential crack planes

for which the component of stress orthogonal to the crack
plane exceeds σcr

α Scaling parameter of the power law distribution
α∗ α− 1
αR Coefficient dependent upon TR (wind action - see equation

(C.1))
β Reliability index (level II method) or angle shown in Figure

4.6
γf Partial factor for the actions
γm Partial factor for the material
γp Partial factor for prestress
δ Depth of a micro-crack
δc Critical crack depth
δi Initial crack depth
δmin Lower bound of the power law distribution
δmax Maximum crack depth
ε Etch depth
ε′θ Circumferential membrane strain
ε′′θ Circumferential bending strain (non-linear regime)
ε′r Radial membrane strain
ε′′r Radial bending strain (non-linear regime)
ζ Vertical displacement of the plate
ζ0 δmin/∆A1/α∗

ζ0,3m See equation (5.16)



η0 Scale parameter of the Weibull distribution
η0,2p Scale parameter of the two-parameter Weibull distribution
η0,2p,3m See equation (5.18)
η0,lt Scale parameter of the left-truncated Weibull distribution
η0,lt,3m See equation (5.21)
η0,tt,3m See equation (5.26)
ϑ, κ, $ See Equations (B.26) and (B.29)
λ Parameter accounting for the influence of size and stress state

in the verification formula of level I methods
µ Mean value
µi Roof shape coefficient (snow action)
ν Poisson’s ration
ν0 Conventional sub-critical value of the crack propagation
ξ Radial displacement of the plate
ρ Ratio between the principal stresses
ρair Air density
ρg Glass density
% Radius of curvature
σ0 Lower bound of the glass strength
σ1 Maximum principle stress
σ2 Minimum principle stress
σ60 Equivalent uniform stress that leads to failure in 60 seconds
σ⊥ Tensile stress at right angle with crack axis
σε Critical stress associated to cracks of depth ε
σθ Circumferential bending stress (linear regime)
σ′θ Circumferential membrane stress
σ′′θ Circumferential bending stress (non-linear regime)
σ% Stress at the crack tip
στ Stress causing failure after time τ
σR(z) Residual stress across the thickness
σann Annealed glass strength
σcenter Equibiaxial stress at the center of the plate
σ′center Equibiaxial membrane stress at the center of the plate
σ′′center Equibiaxial bending stress at the center of the plate
σcr Critical Stress
σedge Radial stress at the edge of the plate
σeq Equivalent stress
σeqb Equibiaxial stress
σfail Stress that leads to failure for a ramp stress history
σhtg Heat treated glass strength
σk Critical stress associated to cracks of depth δmin
σmax Maximum stress acting within the plate when failure occurs
σpc Surface residual stress
σr Radial bending stress (linear regime)
σ′r Radial membrane stress
σ′′r Radial bending stress (non-linear regime)
σunx Uniaxial stress
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σ̇test Stress rate of a test
υ Standard deviation
φ Angle shown in Figure 3.7(a)
ϕ − d

dr ζ(r)
ψ Angle between the maximum principle stress direction and the

normal to the crack plane
χ2
g Chi-square distribution
ω Coefficient major than unity
A Generic surface area
A0 Reference unitary surface area
Aeff orAef K ·A Effective area
Al Surface area delimited by the inner loading points in the 4PB

configuration
Asl Altitude above sea level
B Risk of failure
B0, B2, C1, C3 Constants of the expansions in Taylor’ series
C Center of the Mohr’ circle or center of the plate
CE Exposure coefficient (snow action)
CT Thermal coefficient (snow action)
D Bending stiffness of the plate
E Young’s modulus
Ed Design action
F Force applied by the tensometer during a generic test
F ∗ Force applied by the tensometer during the test according to

the standard EN 1288-2
Fa(σann) Probability cumulative function for the pristine annealed glass

strength
Fp(σpc) Probability cumulative function for the surface pre-

compressions
Ft(σmax) Probability cumulative function associated with the failure of

a heat-treated specimen at σmax
G Coefficient for the graphical estimation of the LTW parame-

ters
H0 Null hypothesis (Chi-square goodness of fit test)
K Constant lower than unity that, multiplied by A, gives the

effective area
K0 Value of the SIF below which no propagation occurs
KFI Multiplicative coefficient KFI < 1(> 1) for the action to pass

from CC2 to CC1 (CC3)
KI , KII , KIII SIF in mode I, mode II and mode III
KIc Critical SIF in mode I
KIm SIF normalized with respect to the value K̄= σ

√
πR

Kr Coefficient depending upon the field exposure category (wind
pressure)

Kunx Value of K for an uniaxial state of stress
N Number of elements
N0 Number of the elements ∆A in the area A0
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Npar Number of parameters
P0 Probability of failure corresponding to the stress σ0 in the

original 2-parameter Weibull distribution
Pf Probability of failure
Pn Annual probability of exceedance for snow loads
Ps Probability of survival
Q Design action of characteristic duration
< Domain of the resistances
R1 Radius of the inner ring (CDR test)
R2 Radius of the outer ring (CDR test)
R3 Radius of the circular plate
Rd Design resistance
RM Multiplicative coefficient RM < 1(> 1) for the resistances to

pass from CC2 to CC1 (CC3)
S Domain of the actions
S(γfQ) Maximum stress acting within the plate, induced by action Q

multiplied by γf
S′θ σ′θ/E
S′′θ σ′′θ /E
Sp(σ) Correlation between the maximum stress acting within the

plate and the wind pressure pw
S′r σ′r/E
S′′r σ′′r /E
T Generic constant
TR Return period of the applied actions
V Variation coefficient of the series of maximum annual snow

loads
W Correction coefficient for the effective area
X0 Intercept with the x-axis
X2
g Measure of the discrepancy between the observed and the ex-

pected frequencies (Chi-square goodness of fit test)
Xx Intercept with the y-axis
Y Shape factor for the stress concentration at the crack tip
Z Standardized normal variable
a R/r, see Figure 3.7
b Specimen width in the 4PB configuration
cd Dynamic factor (wind action)
ce(z), ce1(z) Exposure coefficient (wind action)
cp Pressure coefficient (wind action)
ct Orographic coefficient (wind pressure)
d Distance between loading and supporting points in the 4PB

configuration
fa(σann) Probability density function for the pristine annealed glass

strength
fg Strength of glass
fp(σpc) Probability density function for the surface pre-comressions
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ft(σmax) Probability density function associated with the failure of a
heat-treated specimen at σmax

ftest Tensile stress measured at the end of the test
g Number of degrees of freedom (Chi-square goodness of fit test)
h Plate thickness
k Number of classes (Chi-square test)
kmod Factor accounting for the static fatigue
l Side length of a square plate
m Shape parameter of the Weibull distribution
mθ Circumferential moment
mr Radial moment
n Crack velocity parameter
n(σ) Material function accounting for the strength properties
p∗ Overpressure according to the standard EN 1288-2
pw,3sec Wind peak pressure corresponding to the average over time 3

s
pw,10min Wind peak pressure corresponding to the average over time

10 min
qsk Characteristic snow load value on the ground for a 50 years

return period
qsn Snow load
t or τ Time
tf Time to failure
tr Shear stress in the radial direction
u Non-dimensional radial distance (u = r/h)
vb(TR) Wind velocity corresponding to TR
vb,50 Characteristic wind velocity at 10 m above ground averaged

over 10 minutes
z0, zmin Reference heights (wind pressure)
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2PW Two-Parameter Weibull distribution
3PB Three Points Bending
3PW Three-Parameter Weibull distribution
4PB Four Points Bending
ASTM American Society for Testing and Materials
BLW Bi-Linear Weibull distribution
BMW Bi-Modal Weibull distribution
BSG BoroSilicate Glass
CEN European Committee for Standardization
CC Class of Consequence
CDR Coaxial Double Ring
CNR National Research Council (IT)
CV Coefficient of Variation
CVT Change of Variable Theorem
DIN German Institute for Standardization (DE)
DT Technical Document (IT)
EN European Norm
EXW EXtended Weibull distribution
FEM Finite Element Method
LEFM Linear Elastic Fracture Mechanics
LTW Left-Truncated Weibull distribution
MLE Maximum Likelihood Estimation
MOD Model
RAE Representative Area Element
SCALP SCAttered Light Polariscope
SF Section Force for unit width
SIF Stress Intensity Factor
SLG Soda Lime silica Glass
SM Section Moment for unit width
TC Technical Committee
WG Working Group
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