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Introduction

Multifunctional molecular materials are highly promising for innovative ap-

plications in a large variety of fields, from telecommunications to electronics

and spintronics, from photonics to biomedicine.[1, 2, 3, 4, 5] Molecular ma-

terials are in general constituted of cheap and abundant elements, show low

environmental toxicity and good biocompatibility. They are lightweight,

flexible and easy to process. Moreover a precise control of their structure

is possible, down to the atomic level, and the powerful techniques of the

molecular and supramolecular chemistry allow accessing a practically infi-

nite series of systems. This same large number of possible structures points

to the need of a precise understanding of the material properties and the

definition of reliable structure-properties relationships as to be able to guide

the synthesis towards specific materials with predefined behaviour and prop-

erties.

Multifunctional behaviour implies large and non-linear responses of the

system to different external stimuli, including for example pressure, temper-

ature, light, etc.[6, 7, 8] Multifunctional behaviour is generally observed in

systems with a large electron delocalization and/or with low-lying charge-

transfer (CT) degrees of freedom.[9, 10] Two different families of multifunc-

tional molecular materials have been traditionally addressed in the host

laboratory: CT dyes and their aggregates with main applications in non-

linear optics, [11, 12, 13, 14, 15] and CT crystals, [16, 17, 18] a family of

low-dimensional materials among which insulators, metals [19] and super-

conductors [20] materials are found and that are actively investigated for

their ferroelectric [21] and multiferroic [22, 23] properties as well as for their

exotic phase transitions.[24, 25, 26, 27]

Parametric Hamiltonians have been proposed and widely adopted in the
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host laboratory to study the two classes of materials and have been validated

against optical spectroscopy data.[11, 14, 28, 29, 30, 31] Essential-state mod-

els (ESMs) are the models of choice for CT dyes and their aggregates. In-

tramolecular CT dominates the low-energy physics of these systems whose

electronic structure is described in terms of a reduced number of electronic

states, usually corresponding to the main resonating structures.[11, 14, 28]

Selected vibrational modes, coupled to CT degrees of freedom, [12] are in-

troduced leading to a coupled electron-vibration Hamiltonian that is diag-

onalized in a truly non-adiabatic approach.[32, 33, 34] The interaction of

intramolecular CT with the environment is introduced in terms of electro-

static interactions with the surrounding, either the solvent (treated in the

reaction-field approach) [11] or nearby molecules in an approach to molecu-

lar aggregates that goes beyond the exciton model approximations.[35, 36,

37, 38, 39, 40, 41]

Models of choice for CT crystals are based on the famous Hubbard model

that accounts for the strongly correlated nature of delocalized electrons in

these systems.[42, 43, 44, 45] The intermolecular CT that governs the physics

of these systems is described by the Hubbard model that has to be specialized

for each system at hand to account for different on-site energies (modified

Hubbard model) and/or intermolecular electrostatic interactions (extended

Hubbard model).[26, 46] The coupling with molecular vibrations (Holstein

coupling) and lattice modes (Peierls coupling) [30, 47] has to be introduced

to account for structural and/or electronic instabilities [48] as well as for

spectral properties.[49, 31]

In this Thesis, we considerably extend the portfolio of models, methods

and numerical approaches available in the host laboratory, moving along

two different, yet not unrelated, directions:

1. defining the properties and the behaviour of materials where both

intramolecular and intermolecular CT degrees of freedom play a role;

2. defining models and approaches to deal with energy relaxation in open

quantum systems.

Low-dimensional systems combining inter and intramolecular CT are

discussed in Chapter 2. Relevant model Hamiltonians are derived and diag-

onalized numerically on finite size systems, in a computationally demanding
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effort, to demonstrate a rich phase diagram with large stability regions for

ferroelectric behaviour and a small, but sizeable, region of multiferroic be-

haviour. Optical spectra of specific systems are also discussed, showing

intriguing properties.

Energy dissipation is central to describe optical spectra and while em-

pirical band-broadening approaches are adequate and sufficiently reliable to

describe steady-state spectra, a proper treatment of the relaxation of the

quantum system due to the interaction with the environment (the so-called

bath) is needed to describe more refined time-resolved spectra, including for

example pump-probe [50, 51] and 2D-optical spectra.[52] This brings us in

the fascinating field of open quantum systems, a hot research field that was

introduced to the host laboratory by this Thesis work.

In Chapter 1, we start discussing relaxation in the simplest system: a

photoexcited CT dye described in terms of ESMs. We critically discuss two

different strategies to account for the coupling of molecular and environmen-

tal degrees of freedom. In the first approach, a chain of classical anharmonic

oscillators is attached to the dye in such a way that energy is finally trans-

ferred towards a heat reservoir.[53, 54] The coupled quantum-classical hy-

brid system is then propagated in time in a sequential way using fourth-order

Runge-Kutta integration for the quantum system and Verlet algorithm for

the classical system. In the second approach, a bath of quantum harmonic

oscillators exchanges vibrational quanta with the molecular system, leading

to Redfield equation of motion for the reduced density matrix.[55] We use

the Short-Iterative-Arnoldi (SIAM) algorithm to numerically integrate the

equation. Both approaches lead to similar results and their merits and lim-

itations are critically addressed. Both approaches are finally applied to the

experimentally relevant system of resonance energy transfer. We considered

two interacting dyes, an energy donor and an energy acceptor, both dyes

being coupled to the dissipative bath. Using the two strategies described

above, we were able to follow in real time the energy transfer from the

excited energy donor molecule towards the energy acceptor.

In Chapter 3, relaxation is introduced in models for CT crystals as

needed to address a recent series of ultrafast pump-probe experiments.[56,

57] These experiments use an ultrafast pump in the mid-infrared spectral

region, following the time evolution of CT absorption spectra in the near-
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infrared region. This work is developed along several lines. After the defi-

nition and DFT-parametrization of the model Hamiltonian, we defined and

numerically solved the coupled quantum-classical hybrid dynamics of the

relevant quantum system coupled to a classical chain of dissipative anhar-

monic oscillators in turn coupled to a thermostat. Along these lines, we

were able to reproduce the experimental spectra and, having gained confi-

dence with the approach, we proposed a novel pump-probe experiment on

a related system.





Chapter 1

Intermolecular resonance

energy transfer

Intermolecular energy transfer describes a process where an excited molecule,

called the energy donor, transfers its excess energy to a nearby molecule,

called the energy acceptor, in a process that can be schematized as:

D∗ +A → D +A∗, (1.1)

where D and A are the energy donor and acceptor, respectively, and the

star is used to mark excited species. The most trivial mechanism for energy

transfer corresponds to a radiative process, where the energy is transferred

via a photon that, emitted by D∗, is absorbed by A in a two-step process:

D∗ → D + ~ωD,

A+ ~ωD → A∗, (1.2)

where ~ is the Planck constant divided by 2π and ωD is the frequency of

the exchanged photon. Radiative energy transfer may occur when the dis-

tance between D and A is larger than the photon wavelength (i.e, typically

larger than 300 nm). Specific DA interactions are not needed for radia-

tive energy transfer, a process that only depends on the spectral overlap

between donor emission and acceptor absorption bands and on the sample

concentration.[58]

At shorter distances, energy transfer may occur through a single-step

non-radiative process. At very short distances, when the intermolecular
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distance is smaller than the sum of the van der Waals radii (typically 3-

4 Å) energy transfer may occur via a concerted electron-transfer process,

in a mechanism known as Dexter energy transfer.[59, 60] For larger inter-

molecular distances, the intermolecular overlap of the orbitals is too weak to

allow for a Dexter mechanism. Only electrostatic interactions survive, thus

leading to the Resonance Energy Transfer (RET) phenomenon that can be

described as the exchange of a virtual photon.[61]

RET plays a key role in photosynthesis, where solar energy absorbed

by some chromophores (or aggregates of chromophores) is transferred in an

extremely efficient way towards the reaction center. RET is also used by

some jellyfish to change the color of the light emitted through biolumines-

cence. RET has many technological applications: it is exploited in biology

to measure the distance between nano-objects (the molecular ruler applica-

tion) [62] and it is used to design highly-efficient fluorescence sensors.[63]

Energy storage and energy transport technologies rely on RET [64] and it is

clear that a better understanding of the physics governing RET would lead

to important improvements in both the fields of solar cells and light-emitting

devices.

Figure 1.1: Simplified Jablonski diagram describing RET phenomenon.

The first theoretical description of RET dates back to 1948 with Förster

groundbreaking work [65, 66, 67]. Förster theory of RET is based on the as-

sumption that the vibrational relaxation of the excited donor is much faster
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than energy transfer towards the acceptor so that, as shown in the simplified

Jablonsky diagram in Fig.1.1, the energy transfer occurs from the relaxed

excited state of D. The second hypothesis is that electrostatic interactions

between the two molecules are weak if compared with intramolecular ener-

gies, making them amenable to a perturbative treatment. Accordingly, the

zero order Hamiltonian is the sum of the two molecular Hamiltonians and

the unperturbed states can be written as the direct product of the states

describing the single molecules:

|ψ∗DψA〉 = |ψ∗D〉 ⊗ |ψA〉,

|ψDψ∗A〉 = |ψD〉 ⊗ |ψ∗A〉, (1.3)

where starred wave functions are used for molecular excited states. The

RET rate can be calculated using the Fermi Golden Rule as:

kRET =
2π

~
|VD∗A,DA∗ |2δ(ωD − ωA)

=
2π

~
|〈ψ∗DψA|V̂ |ψDψ∗A〉|2δ(ωD − ωA), (1.4)

where ~ is the reduced Planck constant, V̂ is the quantum operator describ-

ing donor-acceptor interaction and δ(ωD − ωA) is the Dirac δ distribution

that guarantees energy conservation.

The interaction energy entering Eq.1.4 can be explicitly written as (SI

units):

VD∗A,DA∗ =
e2

4πε0n2

〈
ψ∗DψA

∣∣∣∣∣ 1

~̂rDA

∣∣∣∣∣ψDψ∗A
〉
, (1.5)

where e is the electron charge, ε0 is the vacuum permittivity and n is the

medium refractive index. Assuming |~rDA| larger than both donor and ac-

ceptor molecular sizes, Eq.1.5 can be rewritten in the dipolar approximation

as:

VD∗A,DA∗ =
e2

4πε0n2

[
~µtD~µ

t
A − 3(~µtD~uDA)(~µtA~uDA)

|~rDA|3

]
, (1.6)

where ~µtD(A)=〈ψ
∗
D(A)|~̂µD(A)|ψD(A)〉 is D(A) transition dipole moment as as-

sociated with the emission (absorption) process and ~uDA = ~rDA/|~rDA| is the
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unit vector associated with the center-to-center DA direction. Using Eq.1.6,

the Fermi Golden Rule in Eq.1.4 can be recast as:

kRET =
κ2

16π2ε2
0~2n4

|~µtD|2|~µtA|2

|~rDA|6
δ(ωD − ωA), (1.7)

where the factor κ2 depends on the relative DA orientation and is defined

as:

κ = cosϑT − 3cosϑDcosϑA, (1.8)

where the angles ϑD, ϑA and ϑT are defined in Fig.1.2. In general, κ2 can

assume values going from 0 (perpendicular transition dipole moments) to 4

(ϑD = ϑA = ϑT =0); however, in non-viscous solutions, D and A transition

dipole moments are assumed to span all possible spatial orientations before

D∗ deactivation happens; consequently, κ2 can be replaced by its average

value, 〈κ2〉 =2/3. On the other hand, in viscous matrices (as well as solids),

the randomization by rotational diffusion during D∗ lifetime is hampered

and the square of the average value of κ is used, κ2 = 〈κ〉2 =0.476.

Figure 1.2: Sketch of DA transition dipole moments and relevant angles

entering Eq.1.8.

As originally noticed by Förster [65], the rate in Eq.1.7 can be related

to experimentally accessible quantities; more precisely, the transition dipole

moment of D can be obtained from its fluorescence quantum yield, ΦD, and

life-time, τD, while the transition dipole moment of A can be obtained from

the integrated absorption. Eq.1.7 can then be rewritten as:

kRET =
9000 ln(10)κ2

128π5n4NA

ΦD
τD

J

|~rDA|6
, (1.9)
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where NA is the Avogadro’s number and J is the so-called overlap integral

defined as:

J =

∫ ∞
0

dν
FD(ν)εA(ν)

ν4
, (1.10)

where FD(ν) is the area-normalized D fluorescence spectrum, while εA(ν) is

the A absorption molar extinction coefficient in units of M−1cm−1 and the

integration is done over the wave number axis. From Eq.1.10 it is clear that

J is connected to the overlap between the donor emission and the acceptor

absorption spectral bands, ensuring energy conservation and thus playing a

role similar to that of the Dirac δ distribution in Eqs.1.4 and 1.7.

Förster theory successfully describes RET, allowing the estimate of the

energy transfer rate from quantities that can be estimated experimentally.[65,

66, 67] However, the theory gives no information about the dynamics of RET

process. Indeed, fully dynamical models of RET are needed to address time-

resolved spectra. Developing dynamical RET models is made non trivial

by the need to describe dissipative phenomena competing with RET, thus

bringing us in the realm of open quantum systems, i.e. of quantum systems

interacting and exchanging energy with the environment. In the rest of the

Chapter, we will present two fully dynamical approaches for RET.

The following Section introduces the reader to open quantum systems

and to the two approaches we have investigated to study their dissipative

dynamics, namely the quantum-classical hybrid approach (Subsection 1.1.1)

and Redfield equation for the system reduced density matrix (Subsection

1.1.2). Section 1.2 presents the molecular model adopted in this work for

both the energy donor and the energy acceptor. The dissipative dynamics of

a coherently excited organic dye is discussed in Section 1.3, whereas Section

1.4 is fully devoted to the real time simulation of RET between two dif-

ferent organic chromophores. Preliminary results on the influence of polar

solvation on RET dynamics are presented in Section 1.5, while concluding

remarks are reported in Section 1.6.

1.1 Open quantum systems

A molecular system, S, can not be considered a closed system since the

interaction with the surrounding environment, B, affects its state. Large
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effects on the system dynamics can be expected depending on the nature

of the environment as well as on the strength of the interaction with the

system. If B is macroscopically large and the SB coupling strength has a

finite value, the energy given to S (for example by means of an externally

applied electric field) will be transferred to B and, if the environment is in

thermal equilibrium, then S will reach the relevant canonical equilibrium

state as well, with the reservoir acting as a heat bath, in a process known

as dissipation. However, if B is small in size, the energy is likely to flow

back from B to S in what is called Poincaré recurrence.[68, 69] Here we are

interested in dissipative phenomena.

In either case, the vector space of the total SB system can be defined

as the direct product of the Hilbert space associated with the system, HS ,

times the Hilbert space associated with the environment, HB:

HSB = HS ⊗HB. (1.11)

The total SB Hamiltonian can be written as:

ĤSB = ĤS + ĤB + ĤI , (1.12)

where ĤS is the relevant open system Hamiltonian, ĤB is the environment

Hamiltonian, while ĤI is the system-environment interaction Hamiltonian.

Indeed, the study of the SB dynamics is a challenging task due to the

enormous number of variables describing the reservoir (or heat bath). Sev-

eral approximation schemes must be adopted in order to attack the problem

of dissipative dynamics.

1.1.1 A quantum-classical hybrid approach to open quantum

system dynamics

Studying open quantum systems, one possible approach is to use a classical

description of the environment, while still keeping a fully quantum treat-

ment of the system of interest in what is called a quantum-classical hybrid

approach. We define ~q(t) = {qi(t)} and ~p(t) = {pi(t)} as the environment

time-dependent coordinates and momenta, respectively, so that a reservoir

state is represented by a point (~q(t), ~p(t)) in its classical phase space. Assum-

ing that the system-environment interaction Hamiltonian is only described
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by the environment coordinates, ĤI(~q(t)), the quantum part of the cou-

pled quantum-classical dynamics can be described through a Schrödinger

equation:

i~
∂Ψ(t)

∂t
=

[
ĤS + ĤI(~q(t))

]
Ψ(t). (1.13)

The classical dynamics of the isolated classical system obeys the equations

of motion:
dqi(t)

dt
=
∂HB(~q, ~p)

∂pi
,
dpi(t)

dt
= −∂HB(~q, ~p)

∂qi
, (1.14)

where HB is a scalar function. In the presence of SB interaction Hamiltonian

an additional potential is felt by the environment and must be accounted

for while writing Hamilton’s equations of motion; adopting a mean-field

approach, the additional force acting on the i-th reservoir coordinate reads:

Fi = − ∂

∂qi
〈ĤI(~q(t))〉. (1.15)

The coupled quantum-classical dynamics is calculated solving Eq.1.13 to-

gether with Eq.1.14 modified in order to account for Eq.1.15. In this way,

contributions from the classical reservoir dynamics contaminate the quan-

tum time-evolution and viceversa, thus accounting for the reciprocal SB
feedback. Moreover, in the thermodynamic limit for the reservoir, the en-

vironment will affect the system in a non-trivial and almost random way,

thus making a Langevin description of the classical dynamics preferable to

the canonical equations.

Langevin equation of motion in the Markovian (i.e. non-memory) limit

reads:[70, 71]

d2qi
dt2

= Fi − γ
dqi
dt

+R(t), (1.16)

where Fi = −∂HB/∂qi is the external force acting on qi, γ is the static

friction coefficient and R(t) is a time-dependent random force. Crucially,

Eq.1.16 replaces a large number of B degrees of freedom by means of the

friction coefficient, γ, and the random force, R(t), thus drastically reducing

the computational effort required to simulate a reservoir.

The stochastic force, R(t), is modelled in terms of a Gaussian random

variable:

〈R(t)〉 = 0, 〈Ri(t)Ri′(t′)〉 = Cδi,i′δ(t− t′), (1.17)
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where C is a positive constant, δi,i′ ensures short-range correlation and δ(t−
t′) underlines the Markovian nature of R(t). The nature of the random force

is completely defined by its first two momenta:〈
dqi(t)

dt

〉
= 0,

〈(
dqi(t)

dt

)2〉
=

C

2γ
, (1.18)

easily obtained by Fourier transforming (forward and backward) Eq.1.16.

Furthermore, using the equipartition theorem, the C constant reads:

C = 2γkbT, (1.19)

where kb is the Boltzmann constant and T is the reservoir temperature.

Using Eq.1.19, the random force correlation function becomes:

〈Ri(t)Ri′(t′)〉 = 2γkbTδi,i′δ(t− t′), (1.20)

that is the fluctuation-dissipation theorem, the variance of the random fluc-

tuating force being proportional to the friction coefficient.[72] The Langevin

equation of motion can be conveniently rewritten as:

d2qi
dt2

= Fi − γ
dqi
dt

+
√

2γkbTy(t), (1.21)

where 〈y(t)y(t′)〉 = δ(t − t′). Although neither R(t) nor y(t) are differen-

tiable, a Wiener process, w(t), can be introduced as:

y(t) =
dw(t)

dt
. (1.22)

Moreover, assuming a sufficiently small ∆t time-step, a Wiener process

evolves in time according to the equation:

w(t+ ∆t) = w(t) +
√

∆tζ, (1.23)

where ζ is a Gaussian random variable of unit width and zero mean; using

these results, Eq.1.21 becomes:

d2qi
dt2

= Fi − γ
dqi
dt

+

√
2γkbT

∆t
ζ, (1.24)

that can be numerically solved (for example using Verlet algorithm).
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Summing up, the quantum-classical hybrid approach to the dynamics of

open quantum systems explicitly treats both the system and the environ-

ment degrees of freedom. The quantum system is treated in a fully quantum-

mechanical way (through time-dependent Schrödinger equation), while the

classical system is attacked exploiting either canonical Hamilton’s equations

or Langevin dynamics. The expectation value of the time-dependent SB
interaction Hamiltonian is used to couple the quantum and the classical

dynamics.

1.1.2 A reduced approach to open quantum system dynam-

ics

In this Subsection, we will attack the problem of the dynamics of open

quantum system by exploiting the powerful approach of the reduced density

matrix. The total density matrix for the coupled SB system reads:

ρ̂(t) =
∑
k

Pk|φk(t)〉〈φk(t)|, (1.25)

where |φk(t)〉 are the quantum states available to the SB system, each popu-

lated with probability Pk. Diagonal and off-diagonal elements of ρ̂ are called

populations and coherences, respectively. The expectation value of a generic

quantum mechanical operator, Ô, defined in the total Hilbert space, HSB,

can be calculated as:

〈Ô(t)〉 =
∑
k

Pk〈φk(t)|Ô|φk(t)〉 = Tr{ρ̂(t)Ô}. (1.26)

The total density operator, ρ̂(t), evolves in time according to the Liouville-

von Neumann equation of motion:

∂ρ̂(t)

∂t
=

1

i~
[ĤSB, ρ̂(t)] =

−i
~
LSBρ̂(t), (1.27)

where LSB = [ĤSB, ...] is the Liouvillian super-operator. In analogy with

Eq.1.12, a partitioning of the total Liouvillian is possible, thus getting LSB =

LS + LB + LI .
The reduced density matrix, σ̂(t), is defined by taking the trace of the

total density operator, ρ̂(t), over the environment degrees of freedom:

σ̂(t) = Trb{ρ̂(t)}. (1.28)
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The average value of an operator, Ô′, defined in the system Hilbert space,

HS , is calculated as:

〈Ô′(t)〉 = Tr{σ̂(t)Ô′}. (1.29)

This equation tells us that the knowledge of the reduced density matrix is

enough as long as we are only interested in the system properties.

In order to derive the exact equation of motion for σ̂(t), Zwanzig pro-

jection super-operator, P, and its complementary version, Q, are typically

introduced:[73, 74]

P = ρ̂b ⊗ Trb{...}, (1.30)

Q = 1− P, (1.31)

where ρ̂b is the environment reduced density matrix, representing a station-

ary reference state of B.

Tracing out the environment degrees of freedom, P projects the total

SB density operator, ρ̂(t), on S states:

P ρ̂(t) = ρ̂b ⊗ Trb{ρ̂(t)} = ρ̂b ⊗ σ̂(t), (1.32)

whereas Q projects ρ̂(t) on B states.

Zwanzig projection super-operator satisfies the following relations:

[LS ,P] = 0, LBP = PLB = 0. (1.33)

Moreover, assuming Trb{ĤI ρ̂b}=0 and using Eq.1.30, we get:

PLIP = 0. (1.34)

Multiplying both sides of Eq.1.27 from the left by either P or Q and

integrating, the equation of motion associated with P ρ̂(t) is obtained:[75]

d

dt
P ρ̂(t) = − i

~
PLSBP(P ρ̂(t)) (1.35)

+

(
i

~

)2 ∫ t

0
dτPLSBQe−

i
~QLSBQτQLSBP(P ρ̂(t− τ)).

Using Eqs.1.31, 1.33 and 1.34, the equation can be recast as:

d

dt
P ρ̂(t) = − i

~
LSP ρ̂(t)

+

(
i

~

)2 ∫ t

0
dτPLIe−

i
~QLSBQτLIP ρ̂(t− τ), (1.36)



1. Intermolecular resonance energy transfer 21

where we used the idempotency of Zwanzig projection super-operator, P2 =

P, and it is assumed Qρ̂(0) = 0.

Looking at the right-hand side of Eq.1.36, the first line describes the

system dynamics in the absence of the environment, while the second line

contains the relaxation super-operator. Eq.1.36 is known as Nakajima-

Zwanzig equation, [74] it is exact, but it is difficult to solve; however, as-

suming weak SB interactions, the Born approximation can be used, setting

LSB ' LS +LB. Consequently, the relaxation super-operator can be rewrit-

ten as:

PLIe−
i
~QLSBQτLI ' PLIe−

i
~Q(LS+LB)QτLI

' PLIe−
i
~ (LS+LB)τLI , (1.37)

where the second line is demonstrated in Appendix A.

Plugging Eq.1.37 into Eq.1.36 and using P projection super-operator

(Eq.1.32), Nakajima-Zwanzig equation becomes:

d

dt
σ̂(t) = − i

~
LS σ̂(t)

+

(
i

~

)2 ∫ t

0
dτ
〈
LIe−

i
~ (LS+LB)τLI

〉
b
σ̂(t− τ), (1.38)

where 〈...〉b ≡ Trb{(...)ρ̂b}.
Remembering the interaction representation of a generic SB operator,

Ô:

Ô(−τ) = e−
i
~ (ĤS+ĤB)τ Ôe

i
~ (ĤS+ĤB)τ , (1.39)

the relaxation super-operator is rewritten as:〈
LIe−

i
~ (LS+LB)τLI

〉
b

=
〈
LILI(−τ)e−

i
~ (LS+LB)τ

〉
b
. (1.40)

Furthermore, adopting the (Markov) approximation, σ̂(t−τ) ' exp[iLSτ/~]σ̂(t)

and remembering that ρ̂b is a bath time non-dependent reference state,

Eq.1.38 becomes:

d

dt
σ̂(t) = − i

~
LS σ̂(t)

+

(
i

~

)2 ∫ ∞
0

dτ
〈
LI(0)LI(−τ)

〉
b
σ̂(t), (1.41)
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where the upper limit of the integral is sent to infinity, having assumed the

integrand decays to zero after a short time (stationary relaxation tensor

approximation [76, 77]). Expanding the Liouvillians, Eq.1.41 becomes:

d

dt
σ̂(t) = − i

~
[ĤS , σ̂(t)]

+

(
i

~

)2 ∫ ∞
0

dτ Trb

{[
ĤI(0), [ĤI(−τ), ρ̂b ⊗ σ̂(t)]

]}
,(1.42)

which is Redfield equation.[55] Crucially, the second line represents the Red-

field relaxation super-operator, R, and describes the dissipative effect of the

environment on the system dynamics.

Rewriting the Redfield equation with respect to ĤS eigenstates results:

d

dt
σab(t) = −iωabσab(t) +

∑
c,d

Rab,cdσcd(t), ∀ a, b = 1, ..., N, (1.43)

where σab(t) = 〈a|σ̂(t)|b〉 is the generic matrix element of the system reduced

density matrix, ωab = (Ea − Eb)/~ is the relevant transition frequency and

N is the ĤS dimension. The relaxation super-operator element, Rab,cd, is

conveniently rewritten as:

Rab,cd = −δb,d
∑
e

Γ+
ae,ec − δa,c

∑
e

Γ−de,eb + Γ+
db,ac + Γ−db,ac, (1.44)

where δb,d and δa,c are Kronecker delta symbols acting on ĤS eigenstates

and where the Fourier-Laplace transforms of the B correlation functions are

introduced:[78]

Γ+
db,ac =

1

~2

∫ ∞
0

dτe−iωacτ 〈ĤI
db(0)ĤI

ac(−τ)〉b,

Γ−db,ac =
1

~2

∫ ∞
0

dτe−iωdbτ 〈ĤI
db(−τ)ĤI

ac(0)〉b, (1.45)

where ĤI
db is the ĤI matrix element between |d〉 and |b〉 eigenstates.

When a = b ∧ c = d ∧ a 6= c, Eq.1.44 describes population transfer

between the system states; on the other hand, decoherence phenomena are

described by the components Rab,ab, where a 6= b. Moreover, Rab,cd terms,

where a 6= b 6= c 6= d, describe coherence transfer between different cou-

ples of states; Raa,cd, where a 6= c 6= d, describes population to coherence

transformation, while Rab,cc, where a 6= b 6= c, describes the coherence to
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population conversion. Consequently, while solving Eq.1.43, many different

σ̂(t) elements are mixed by the relaxation super-operator.

Indeed, this picture can be simplified in a significant way by adopting

the secular approximation that amounts to neglect all the rapidly oscillating

(i.e. non-secular) Rab,cd components.[55, 79] In this approximation only

Raa,cc and Rab,ab terms survive together with the special Rab,cd elements

that satisfy the resonance condition |ωab−ωcd| = 0. Crucially, if only Raa,cc

and Rab,ab components are kept, the Redfield equation boils down to the

Bloch model. The Bloch model leads to a decoupling of populations and

coherences, the former evolving according to Pauli master equation:

d

dt
σaa(t) =

∑
c

Raa,ccσcc(t), ∀a = 1, ..., N, (1.46)

the latter according to:

σab(t) = σab(0)e(Rab,ab−iωab)t. (1.47)

However, when several non-secular terms enter the system-bath dynamics,

the secular approximation and consequently the Bloch model should not be

used. This typically happens in systems with multiple vibrational coordi-

nates (sometimes called multicomponent systems), where several states can

be close in energy without being degenerate.[80] In these cases, a pseudo

non-secular algorithm can be used;[81] setting a threshold, α, one can keep

the most important Rab,cd non-secular terms, i.e. those satisfying the rela-

tion |ωab − ωcd| ≤ α.

In conclusion, introducing Zwanzig projection super-operator, P, (Eq.1.30)

it was possible to derive the exact equation of motion for the system re-

duced density matrix, namely Nakajima-Zwanzig equation (Eq.1.36). Fur-

thermore, assuming the weak-coupling limit for the SB interactions (i.e.

Born approximation) and adopting Markov approximation, Redfield equa-

tion was derived (Eq.1.42). Both Nakajima-Zwanzig equation and Redfield

equation were obtained with no explicit treatment of the environment dy-

namics, but just focusing on its effect on the system.
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Figure 1.3: CT dipolar chromophores. Left panel: sketch of the two-state

model used for a D-π-A dye. Right panel: molecular structures of two

different dipolar dyes, namely p,p’-dimethylaminonitrostilbene (DANS) and

9-diethylamino-5-benzo[α]phenoxazinone (Nile Red).

1.2 Essential-state models

Charge-transfer (CT) chromophores are π-conjugated molecules decorated

with electron-donor (D) and electron-acceptor (A) moieties (not to be con-

fused with energy donor, D, and energy acceptor, A), to give polar (D-π-A),

[11, 12, 13, 82] quadrupolar (D-π-A-π-D or A-π-D-π-A) [14, 82, 83, 84] or

octupolar (A(-π-D)3 or D(-π-A)3) [28, 85, 86] molecular species. Low-energy

optical spectra of CT chromophores are governed by charge resonance be-

tween D and A groups and have been successfully described using essential-

state models (ESMs). ESMs account for CT degrees of freedom in terms of a

minimal set of electronic states, corresponding to the main resonating struc-

tures of the CT chromophore at hand. In particular, two electronic states

are used to describe dipolar dyes since they resonate between two main

structures, D-π-A and D+-π-A− (Fig.1.3, left panel);[11, 12, 13] three and

four electronic states are used to model quadrupolar [87, 88] and octupolar

[28, 87] CT dyes, respectively. Coupling between electrons and nuclei [12]

as well as polar solvation effects [11] can be introduced straightforwardly in

order to describe linear and non-linear optical spectra in solution. Moreover

and crucially for RET, ESMs can be extended in order to treat interacting

chromophores (Sect.1.4).[35, 37, 38, 39, 40, 41]
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1.2.1 Essential two-state model for dipolar dyes

Polar (D-π-A) chromophores resonate between a neutral structure, D-π-A,

and a zwitterionic structure, D+-π-A−. Accordingly, the relevant ESM is

defined by two electronic states, |N〉 and |Z〉 (Fig.1.3, left panel).[11, 12]

The two basis states are separated by 2z energy and mutually mixed by the

CT integral, −τ , leading to the following electronic Hamiltonian:

Ĥel =

(
0 −τ
−τ 2z

)
= −τ σ̂ + 2zρ̂, (1.48)

where σ̂ = |N〉〈Z|+ |Z〉〈N | and ρ̂ = |Z〉〈Z| are the hopping and the ionicity

operators, respectively. Ĥel can be easily diagonalized, thus leading to the

eigenvalues EG = z −
√
z2 + τ2 and EE = z +

√
z2 + τ2 and eigenstates:

|G〉 =
√

1− ρ|N〉+
√
ρ|Z〉,

|E〉 = −√ρ|N〉+
√

1− ρ|Z〉, (1.49)

where ρ = 〈G|ρ̂|G〉 and 1 − ρ = 〈E|ρ̂|E〉 measure the degree of CT in the

ground state and in the excited state, respectively, and ρ is fully defined by

the model parameters as:

ρ =
1

2

(
1− z√

z2 + τ2

)
. (1.50)

In terms of ρ, the CT transition energy is:

∆ECT =
τ√

ρ(1− ρ)
. (1.51)

In order to study optical properties, an electric dipole moment operator

must be defined and, following Mulliken, [89] it can be written as:

µ̂ =

(
0 0

0 µ0

)
= µ0ρ̂, (1.52)

where µ0 is the dipole moment associated with |Z〉, assumed to be much

bigger than all the other matrix elements of µ̂. As a consequence, µ0ρ is

the chromophore permanent dipole moment, whereas µ0(1−ρ) is the dipole

moment in |E〉; the CT transition dipole moment is µCT = 〈G|µ̂|E〉 =

µ0

√
ρ(1− ρ).
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Figure 1.4: Potential energy curves associated with the diabatic (left panel)

and adiabatic (right panel) states of DANS (model parameters in Tab.1.1,

first line). Vibrational relaxation energy, εv, and potential energy curves

minima displacement, ∆, are highlighted in the left panel.

To describe the shape of optical spectra of CT chromophores, electron-

vibration coupling must be taken into account and to this end, a dimension-

less effective molecular coordinate, Q̂, and its conjugated momentum, P̂ ,

are introduced.[11, 12, 90, 41] We assume harmonic potential energy curves

for the diabatic N and Z states (Fig.1.4, left panel). The electron-nuclear

total Hamiltonian written on the diabatic basis reads:

Ĥ = −τ σ̂ +
(

2z −
√

~ωvεvQ̂
)
ρ̂+

~ωv
4

(P̂ 2 + Q̂2), (1.53)

where ωv is the vibrational frequency associated with Q̂ and εv is the relevant

vibrational relaxation energy:

εv =
~ωv

4
∆2, (1.54)

where ∆ is defined in Fig.1.4, left panel.

In the adiabatic approximation the nuclear kinetic energy is neglected.

The resulting adiabatic Hamiltonian, Ĥ(Q), can be analytically diagonalized

for different Q values, thus leading to the adiabatic states |G(Q)〉 and |E(Q)〉
shown in Figure 1.4, right panel.

In a non-adiabatic approach, electrons and nuclei are treated on the same

footing and both Q̂ and P̂ are treated as quantum operators:[91, 92, 93, 41]

Q̂ = (â† + â), (1.55)
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P̂ = i(â† − â), (1.56)

where â† and â are the bosonic creation and annihilation operators, respec-

tively, and i is the imaginary unit. The Hamiltonian in Eq.1.53 is rewritten

as:

Ĥ = −τ σ̂ + 2zρ̂−
√
~ωvεv(â† + â)ρ̂+ ~ωv

(
â†â +

1

2

)
. (1.57)

The non-adiabatic vector space, VNA, is defined as the direct product of the

two-dimensional electronic Hilbert space, Hel, spanned by the two electronic

states (|N〉 and |Z〉) times the ∞-dimensional Fock space, F , spanned by

the eigenstates of the harmonic oscillator associated with Q̂:

VNA = Hel ⊗F

= Hel ⊗

( ∞⊕
n=0

Fn
)
. (1.58)

The Hamiltonian matrix in Eq.1.57 is written on the basis set spanning VNA
vector space; however, in order to make the problem numerically tractable,

F space is truncated to the m lowest vibrational excitations, thus leading to

a 2m×2m sparse Hamiltonian matrix that can be numerically diagonalized.

Of course, m is chosen large enough as to reach convergence on relevant

properties (typically, results for m∼15-16 are shown in this Chapter).

The non-adiabatic eigenstates, |φk〉, are neither electronic nor vibrational

in nature, but are rather vibronic states, describing the coupled nuclear-

electronic motion. Non-adiabatic steady-state absorption spectra can be

calculated from |〈φ1|µ̂|φk〉|2, for k=2,...,2m, where µ̂ is the dipole moment

operator defined in Eq.1.52 and projected on the basis spanning VNA vec-

tor space. Calculated absorption and fluorescence spectra for the two CT

dipolar chromophores shown in Fig.1.3, right panel, namely DANS and Nile

Red, are reported in Fig.1.5. Relevant model parameters are listed in Table

1.1. The non-adiabatic fluorescence spectra are calculated similarly, once the

fluorescent state is properly singled out. To this aim, we look at the tran-

sition dipole moments from the ground state (indeed electronic transitions

are more intense than vibrational ones) [88, 94, 93] or rather do some dissi-

pative non-adiabatic dynamics for the optically excited system as it will be

described below and recognize the fluorescent state as the quasi-stationary

state.
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Figure 1.5: Calculated optical absorption (color filled area) and emission

(dashed curve) spectra of DANS (left panel) and Nile Red (right panel)

accounting for 15 vibrational states and neglecting polar solvation. A Gaus-

sian bandshape, with half width at half maximum (HWHM) equal to 0.09

eV is assigned to each vibronic transition; values of the relevant molecular

parameters are reported in Tab.1.1.

2z τ εv ωv

DANS 2.64 0.72 0.3 0.17

Nile Red 1.76 0.95 0.33 0.14

Table 1.1: Essential-state parameters for the two dipolar dyes shown in

Fig.1.3, right panel, namely DANS [41] and Nile Red [13]. All the quantities

are in eV.

The model in Eq.1.57 can be naturally extended to account for solvation

effects.[11, 90, 88, 93] The CT chromophore is assumed to fill a cavity in-

side the solvent, with the solvent being described as a dielectric continuum

medium. The solvent will react to the presence of the polar solute through

a reaction field, Fr.[95, 96] In the linear response limit, Fr is proportional to

the solute electric dipole moment. The reaction field is described in terms

of an electronic and an orientational component, Fr = Fel + For. At the

equilibrium, the reaction field can thus be written as:

Fr = rel〈µ̂〉+ ror〈µ̂〉, (1.59)

where 〈µ̂〉 is the expectation value of the electric dipole operator defined in
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Eq.1.52, while rel and ror are parameters defined by the solvent properties

(mainly the dielectric constant and the refractive index) as well as by the

geometry of the cavity filled by the solute.

The electronic component of the reaction field, the only effective con-

tribution in non-polar solvents, is induced by the distortion of the solvent

molecules electron density and consequently is a function of the solvent re-

fractive index.[11] Fel corresponds to fast degrees of freedom, with typical

frequencies falling in the UV region.[11, 97] In the antiadiabatic limit, [98]

its effect is limited to a renormalization of the molecular parameters, τ

and 2z.[11] Because of the minor variability of the refractive index among

common organic solvents, these renormalized parameters are assumed to be

solvent-independent.[90]

In polar solvents the orientational component of the reaction field For

comes into play due to the reorientation of the polar solvent molecules

around the solute.[11] For is associated with slow degrees of freedom, with

typical frequencies in the far-IR or microwave regions and can be treated in

the adiabatic approximation.[11]

Describing the solvent as a continuum elastic medium, the solvation

Hamiltonian can be written as:

Ĥsolv = −µ̂For + kF 2
or, (1.60)

where the quadratic term accounts for the energy spent to create the reaction

field and k is a force constant. Using the Hellmann-Feynman theorem, the

elastic constant is found by imposing the equilibrium condition:〈
∂Ĥsolv

∂For

〉
eq

= −〈µ̂〉+ 2kFor = 0, (1.61)

where remembering that For = 〈µ̂〉ror, the elastic constant results k =

1/(2ror). Consequently, Eq.1.60 can be recast as:[11, 90]

Ĥsolv = −µ̂For +
1

2ror
F 2
or. (1.62)

According to the solvation model in Eq.1.62, the orientational component of

the reaction field is treated as an additional vibrational classical coordinate,

whose frequency, ωor, is much lower than the frequency of the molecular
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internal modes. The solvent vibrational relaxation energy is defined as:[11,

97]

εor =
µ2

0ror
2

. (1.63)

Non-polar solvents have εor=0, whereas polar solvents have finite values of

εor. Using Eq.1.63 and collapsing µ0 into For, Eq.1.62 becomes:[92]

Ĥsolv = −ρ̂For +
1

4εor
F 2
or, (1.64)

where the orientational component of the reaction field has the dimensions

of an energy.

For a molecule in a polar solvent the total Hamiltonian is the sum of

the Hamiltonian in Eq.1.64 plus the molecular Hamiltonian in Eq.1.57. The

total Hamiltonian is diagonalized for different values of For, thus defining

the potential energy curves with respect to the orientational component

of the reaction field (Fig.1.6, left panel).[92, 93] In polar solvents, ther-

mal disorder creates a distribution of For values; as a consequence, the

whole solute-solvent system can be described in terms of a canonical Boltz-

mann distribution of chromophores in equilibrium with the surrounding sol-

vent local configuration (Fig.1.6, left panel).[90, 88] Relevant quantities, like

optical spectra (Fig.1.6, right panel), are calculated as ensemble averages,

summing on different For values and weigthing for the relevant Boltzmann

distribution.[88, 94, 92] Indeed, the Boltzmann distribution used for absorp-

tion and fluorescence spectra is different. Absorption spectra are calculated

using the ground state potential energy, while emission spectra are calcu-

lated mediating over the For-dependent energy of the fluorescent state.[93]

The model Hamiltonian in Eq.1.57 can be used for both the energy

donor and the energy acceptor, but before facing RET and its dynamics, the

dissipative dynamics of a single coherently excited chromophore is discussed.

1.3 Relaxation processes for one molecule

We consider a dipolar chromophore, impulsively excited from the ground

state to a coherent state, |Ψ∗〉. The chromophore is described by the non-

adiabatic Hamiltonian in Eq.1.57 and, in the dipole (long wavelength) ap-
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Figure 1.6: Modeling polar solvation. Left panel: potential energy curves as

a function of the solvation coordinate calculated for the non-adiabatic DANS

fluorescent state (blue curve) and Nile Red ground state (red curve); relevant

Boltzmann distributions are superimposed as color filled areas. Calculation

done for 5 vibrational states. Right panel: calculated DANS fluorescence

(blue line) and Nile Red absorption (red line) optical spectra, accounting

for polar solvation. Calculation done for 15 vibrational states. A Gaussian

lineshape, with HWHM equal to 0.09 eV is assigned to each vibronic band.

Essential-state model parameters are reported in Tab.1.1. Solvent polarity

is defined by εor=0.7 eV. Temperature is set equal to 298 K.
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proximation, the light-matter interaction term, V̂LM (t), reads:

V̂LM (t) = −µ̂ ~E(t), (1.65)

where µ̂ is the electric dipole operator defined in Eq.1.52. The impulsive

excitation is described by an electric field: ~E(t) = ~E · δ(0), where δ(0) is the

Dirac-δ distribution. We assume that only the molecular ground state |φ1〉
is populated at the equilibrium and use the time-dependent perturbation

theory to calculate the state after the perturbation as:

|Ψ∗(t = 0)〉 ∝
N∑
k=2

|φk〉〈φk|µ̂|φ1〉, (1.66)

where the sum runs over all the excited non-adiabatic eigenstates of the

system.

For an isolated molecule, not interacting with the environment (i.e.,

ĤI = 0), the time evolution of the excited coherent state reads:

|Ψ∗(t)〉 = e−
i
~ Ĥt|Ψ∗(0)〉 ∝

N∑
k=2

µk1|φk〉e−
i
~Ekt, (1.67)

where Ĥ is the non-adiabatic Hamiltonian defined in Eq.1.57, Ek is the k-

th eigenvalue, while µk1 = 〈φk|µ̂|φ1〉 is the transition dipole moment. Of

course, the total energy of the coherent state is conserved:

E∗ ∝
N∑
k=2

|µk1|2Ek. (1.68)

When the coupling with the environment is switched on (i.e., ĤI 6= 0),

the dye becomes an open quantum system and its dynamics is more complex

since it can exchange energy with the surrounding. The time-evolution of

the system will be calculated in the next two Subsections using either the

quantum-classical hybrid approach discussed in Subsect.1.1.1 or Redfield

equation introduced in Subsect.1.1.2.

1.3.1 Single molecule dynamics within the quantum-classical

hybrid approach

Resuming the theory discussed in Subsect.1.1.1, in a quantum-classical hy-

brid approach the system of interest follows Schrödinger equation (Eq.1.13),
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while the environment follows either Hamilton’s canonical (Eq.1.14) or Langevin

stochastic (Eq.1.24) classical equations of motion; moreover, the environ-

ment feels the quantum average of the interaction energy in a self-consistent

SB feedback process.

Here the system is a coherently excited dipolar dye, as described above,

coupled to a bath described in terms of a chain of 20 classical particles

connected by anharmonic springs.[53, 99] The anharmonicity is required to

favour the cross-talk among classical degrees of freedom. Specifically, the

potential of the classical system reads:

VB =
~ωb
4

20∑
i=1

(
ξi(t)− ξi+1(t)

)2
+ V0χ

4
20∑
i=1

(
ξi(t)− ξi+1(t)

)4
,(1.69)

where ξi is the dimensionless coordinate associated with the i-th classical

oscillator, ωb is the bath frequency, V0 has the dimensions of an energy and

χ is the anharmonicity constant. Moreover, we set ξi(t = 0)=0, ∀ i=1,..., 20.

The first oscillator of the chain interacts with the CT chromophore through

a bilinear interaction term:

ĤI(t) = −βQ̂ξ1(t), (1.70)

where β is the SB coupling strength, Q̂ is the dimensionless molecular vi-

brational coordinate and ξ1(t) is the coordinate associated with the chain

oscillator number 1. We adopt fixed boundary conditions, introducing a

fixed extra coordinate, ξ21(t)=0. Finally the last mobile particle (number

20) is connected to a thermostat (Fig.1.7).

Figure 1.7: Sketch of a CT dipolar chromophore connected to a chain of 20

classical oscillators; the 20-th oscillator is in contact with a thermostat.

Following Eq.1.24, the coordinate associated with the i-th chain oscilla-
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tor, ξi(t), evolves in time according to the equation:

~
2ωb

d2ξi
dt2

= −∂VB
∂ξi

+ β〈Q̂〉δi,1

+
~

2ωb

(
− γ dξi

dt
+ 2ζ

√
γkbTωb
~∆t

)
δi,20, (1.71)

where the Kronecker delta, δi,1, guarantees that only the first oscillator

of the chain feels the quantum mechanically averaged force generated by

the quantum-classical interaction term (Eq.1.15); moreover, the second line

introduces thermal fluctuations and dissipation à la Langevin on the last

oscillator of the chain, the one located at the maximum distance from the

quantum system, to avoid energy flowing back to S (i.e., to avoid Poincaré

recurrence).[53]

We use a time step of 0.06 fs. For each time step, Eq.1.71 is solved for

each classical particle using Verlet method.[100, 101] Time-incremented co-

ordinate, ξ1(t + ∆t), is introduced into the SB interaction term in Eq.1.70

and a fourth-order Runge-Kutta algorithm [102] is used to propagate in

time the wave function of the quantum system. Iterating these two steps,

the mixed quantum-classical trajectory is calculated. Results obtained along

these lines are shown in Figs.1.8 and 1.9 as magenta curves (black curves are

the corresponding Redfield results discussed in the next Subsection). Specif-

ically, the results are relevant to a dye described by molecular parameters

in the first row of Table 1.1, and setting bath parameters as: ωb=60 cm−1,

V0=1 eV, χ=19. Dissipation and thermal fluctuations are defined by setting

γ=1 ps−1 and T=298 K, while SB coupling strength is set to β=0.11 eV.

Indeed, all parameters entering Eq.1.71 as well as the length of the chain

must be chosen carefully in order to ensure a fast energy flow away from the

quantum system.

Looking at panels a, d and e of Fig.1.8, the relaxation dynamics can

be divided into two main phases. Initially, a fast internal conversion is

observed towards the first vibrational state of the excited electronic state

corresponding to the long-lived fluorescent state. Then, a slower relaxation

is observed towards the ground state. Coherent oscillations are observed in

the early dynamics, as clearly shown in panel b. The Fourier transform of

〈Q̂(t)〉 has a peak at 0.174 eV, corresponding to a slightly higher frequency

than the bare vibrational frequency, ωv (Tab.1.1), in line with the vibrational
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Figure 1.8: Decoherence and energy dissipation in a coherently excited CT

dipolar chromophore. Results from quantum-classical hybrid dynamics (av-

eraging 40 trajectories) and Redfield theory are shown as magenta and black

curves, respectively. (a-b) Time-evolution of the average value of the molec-

ular coordinate; (c) Fourier transform of the signal in panel b; (d) system en-

ergy evolution as a function of the average value of the molecular coordinate;

the blue point highlights the evolution starting point. Adiabatic excited

state potential energy curve is shown as a green line; (e) Time-dependence

of the system energy. Calculations done for the molecular parameters re-

ported in the first line of Table 1.1, as relevant to DANS molecule, and

accounting for 15 vibrational states. All the other parameters are defined in

the main text.
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Figure 1.9: Relaxation towards the ground state of a coherently excited

CT dipolar chromophore. System energy against the expectation value of

the molecular coordinate; blue and yellow points highlight initial and final

evolution points, respectively. Dynamics is ∼ 7 ns long. Both results from

quantum-classical hybrid dynamics (averaging 40 trajectories) and Redfield

theory are shown as magenta and black curves, respectively. Same parame-

ters as in Fig.1.8.

hardening expected for the electronic excited state.

As time proceeds, SB correlations develop and after ∼ 1 ps the coherent

motion is almost totally washed out, with the system entering an incoherent

regime (panels a, b and d); the energy flow towards the bath slows down

(panel e) and the system slowly starts relaxing towards the ground state

(Fig.1.9).

1.3.2 Single molecule dynamics using Redfield equation

Here, we use the Redfield equation to describe the dynamics of a coherently

excited CT dipolar chromophore as influenced by a quantum reservoir. The

system is described by the non-adiabatic Hamiltonian in Eq.1.57 and at

time zero the reduced density matrix is σ̂(0) = |Ψ∗〉〈Ψ∗|, where |Ψ∗〉 is the

coherent state defined in Eq.1.66. The bath is described as a collection of
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quantum mechanical harmonic oscillators, the relevant Hamiltonian being:

ĤB =
∑
i

~ωi

(
b̂†i b̂i +

1

2

)
, (1.72)

where b̂†i and b̂i are the creation and destruction bosonic operators associated

with the i-th bath oscillator, with frequency ωi.

In analogy with Eq.1.70, the system-bath interaction Hamiltonian is bi-

linear in the molecular and bath coordinates:

ĤI = Q̂
∑
i

giξ̂i

=
∑
i

(gib̂
†
i â+ g∗i b̂iâ

†), (1.73)

where g∗i is the complex conjugate of the coupling strength between the

system and the i-th bath mode, the system bosonic operators â and â†

being introduced in Eq.1.55.

To describe the dissipative dynamics of the reduced density matrix, we

construct Redfield relaxation super-operator as in Eq.1.44. To this end,

we evaluate the Fourier-Laplace transforms entering Eq.1.45. Rewriting the

integrand in the first line of Eq.1.45 as:

〈ĤI
db(0)ĤI

ac(−τ)〉b =
∑
i,i′

(
gig
∗
i′〈d|â|b〉〈a|â†|c〉〈b̂

†
i b̂i′(−τ)〉b

)
+

+
∑
i,i′

(
g∗i gi′〈d|â†|b〉〈a|â|c〉〈b̂ib̂

†
i′(−τ)〉b

)
(1.74)

and plugging this result into the Fourier-Laplace transform, we get:

Γ+
db,ac =

〈d|â|b〉〈a|â†|c〉
~2

∫ ∞
0

dτe−iωacτ
∑
i,i′

(
gig
∗
i′〈b̂
†
i (τ)b̂i′〉b

)
+

+
〈d|â†|b〉〈a|â|c〉

~2

∫ ∞
0

dτe−iωacτ
∑
i,i′

(
g∗i gi′〈b̂i(τ)b̂†i′〉b

)
,(1.75)

where all terms involving the creation (or destruction) of two vibrational

excitations are neglected and where the equalities 〈b̂†i b̂i′(−τ)〉b = 〈b̂†i (τ)b̂i′〉b
and 〈b̂ib̂

†
i′(−τ)〉b = 〈b̂i(τ)b̂†i′〉b follow from the smoothness in time of the bath

correlation functions;[103] indeed, as mentioned in Subsect.1.1.2, the state

of the bath is time-non dependent, that is [ĤB, ρ̂b] = 0.
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After some algebra, the double summation at the first line of Eq.1.75

results: ∑
i,i′

gig
∗
i′〈b̂
†
i (τ)b̂i′〉b =

∑
i,i′

gig
∗
i′Trb{e

i
~ ĤBτ b̂†ie

− i
~ ĤBτ b̂i′ ρ̂b}

=
∑
i

|gi|2eiωiτ 〈n̂(ωi)〉b, (1.76)

where the bosonic number operator associated with the i-th bath mode,

n̂i = b̂†i b̂i, is introduced.

Analogously, for the double summation at the second line of Eq.1.75 one

gets: ∑
i,i′

g∗i gi′〈b̂i(τ)b̂†i′〉b =
∑
i

|gi|2e−iωiτ 〈n̂(ωi) + 1〉b. (1.77)

Introducing a simple form for the bath spectral density, J (ω) =
∑

i |gi|2δ(ω−
ωi), and using Eqs.1.76 and 1.77, Eq.1.75 can be further manipulated:

Γ+
db,ac =

〈d|â|b〉〈a|â†|c〉
~2

∫ ∞
0

dτe−iωacτ
∫ ∞

0
dωJ (ω)eiωτ 〈n̂(ω)〉b

+
〈d|â†|b〉〈a|â|c〉

~2

∫ ∞
0

dτe−iωacτ
∫ ∞

0
dωJ (ω)e−iωτ 〈n̂(ω) + 1〉b

=
〈d|â|b〉〈a|â†|c〉

~2

∫ ∞
0

dωJ (ω)〈n̂(ω)〉b
∫ ∞

0
dτe−i(ωac−ω)τ

+
〈d|â†|b〉〈a|â|c〉

~2

∫ ∞
0

dωJ (ω)〈n̂(ω) + 1〉b
∫ ∞

0
dτe−i(ω−ωca)τ

=
〈d|â|b〉〈a|â†|c〉

~2

∫ ∞
0

dωJ (ω)〈n̂(ω)〉b

[
πδ(ωac − ω)− i

ω − ωac

]
(1.78)

+
〈d|â†|b〉〈a|â|c〉

~2

∫ ∞
0

dωJ (ω)〈n̂(ω) + 1〉b

[
πδ(ω − ωca)−

i

ω − ωca

]
,

showing that the only surviving terms are those with the bath frequency in

resonance with the system.

Neglecting the imaginary part of the equation [104] and calculating the

frequency domain integrals, one gets:

Γ+
db,ac =

〈d|â|b〉〈a|â†|c〉
~2

πJ (ωac)〈n̂(ωac)〉b +

+
〈d|â†|b〉〈a|â|c〉

~2
πJ (ωca)〈n̂(ωca) + 1〉b, (1.79)
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where 〈n̂(ωac)〉b = (exp[β~ωac]−1)−1 is the Bose-Einstein distribution func-

tion.

Assuming that the bath spectral density varies much slower than the

Bose-Einstein distribution function, J (ω) is put equal to the constant term

~2γ/π, where γ becomes an effective system-bath coupling strength. In this

way, Eq.1.79 becomes:

Γ+
db,ac = γ

(
〈d|â|b〉〈a|â†|c〉〈n̂(ωac)〉b + 〈d|â†|b〉〈a|â|c〉〈n̂(ωca) + 1〉b

)
. (1.80)

Working in a similar way, the second line of Eq.1.45 can be written as:

Γ−db,ac = γ

(
〈d|â|b〉〈a|â†|c〉〈n̂(ωbd)〉b + 〈d|â†|b〉〈a|â|c〉〈n̂(ωdb) + 1〉b

)
. (1.81)

The derived expressions for Γ+
db,ac and Γ−db,ac describe an exchange of vibra-

tional quanta between the system and the bath; more precisely, the reservoir

can either absorb or emit one phonon from/to the system as long as the en-

ergy is conserved (Fig.1.10). To this end, the correct ordering of the indices

entering Eqs.1.80 and 1.81 is fundamental, since a wrong order would lead to

a violation of the detailed balance condition with the system not approach-

ing the correct canonical equilibrium state.

Figure 1.10: Sketch of the two processes described by Γ+
db,ac in Eq.1.80; on

the left, the reservoir emits one vibrational quantum that is absorbed by the

system and viceversa on the right. System and bath are coupled by the γ

constant (see main text).

Redfield relaxation super-operator is a four-index tensor with N4 ele-

ments, where N is the dimension of the system Hamiltonian; consequently,

one can use Eqs.1.80 and 1.81 to calculate on the fly all Rab,cd elements

entering Eq.1.43, with no need to store the whole relaxation super-operator
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in the computer memory, but only the system bosonic creation and de-

struction operators. Furthermore, the O(N4) multiplications required for a

super-operator acting on a matrix are reduced to O(N3) operations as re-

quired for a matrix-matrix multiplication.[78] In this work, we solve Redfield

equation using the Short-Iterative-Arnoldi algorithm (see Appendix B).

Results reported in Figs.1.8 and 1.9 as black curves are obtained solving

Redfield equation (with ∆t=1 fs as time step) for the coherently excited CT

chromophore interacting with the harmonic quantum bath at 298 K. The

system-bath coupling strength, γ, is set equal to 1 ps−1, while the relevant

molecular parameters are reported in Tab.1.1, first line.

The first (qualitative) difference with respect to the quantum-classical

hybrid results shown as magenta lines in Figs.1.8 and 1.9 is that the time

trajectory obtained using Redfield dynamics does not present random noise,

having no stochastic term entering it. Indeed, the quantum-classical re-

sults were obtained by averaging over several (typically 40) Langevin dif-

ferent trajectories in order to reduce the noise, while a single trajectory is

enough for the Redfield approach. Apart from this qualitative difference, the

quantitative details of the calculated dynamics strongly depend on the spe-

cific adopted sets of parameters. As already mentioned in Subsect.1.3.1, in

the quantum-classical hybrid approach the classical bath frequency, anhar-

monicity, thermal fluctuations and dimension (i.e., the number of classical

oscillators) as well as the SB coupling, have to be carefully tuned in order

to describe truly dissipative phenomena, with no energy flowing back to the

quantum system. In the Redfield equation, the single parameter model-

ing dissipation, i.e. the effective SB coupling strength γ, was set in order to

match quantum-classical hybrid results. In particular, the two different time

regimes already observed within the quantum-classical hybrid approach are

well reproduced; exchanging vibrational quanta with the bath, the system

rapidly reaches the first vibrational state of the electronic excited state (pan-

els d and e) and then starts its slow path towards the electronic ground state

(Fig.1.9). The early-stage coherent motion (panel b) is analyzed through its

Fourier transform (panel c) which shows a single peak centered at 0.174

eV, thus reproducing the quantum-classical hybrid result. The system-bath

correlations wash the coherent motion out within the first ∼2-3 ps (panel

a). Having reproduced with the Redfield approach the main results of the



1. Intermolecular resonance energy transfer 41

quantum-classical dynamical calculation, we have not attempted further fine

tuning of the hybrid approach parameters for a more detailed match.

Solving Redfield equation of motion can be rather time consuming. In-

deed, the O(N3) scalar multiplications required by Eq.1.43 can be easily

parallelized on modern multi-core memory-shared machines (for example, by

means of the OpenMP routines); moreover, the secular approximation dis-

cussed at the end of Subsect.1.1.2 is typically assumed in order to drastically

reduce the number of relevant Rab,cd relaxation components entering calcula-

tions. In this sense, the Bloch model can be even more attractive, since only

the populations require numerical evaluation of Eq.1.46 (see Appendix C).

However, if several non-secular terms enter the dynamics, the Bloch model

as well as the secular approximation may lead to wrong results.[78, 80, 81]

Results obtained within Redfield equation and the Bloch model are re-

ported in Fig.1.11; the system is the coherently excited dipolar chromophore

already studied in Figs.1.8 and 1.9. By removing all non-secular terms

and keeping the Raa,cc and Rab,ab relaxation tensor components only, the

Bloch model only describes population transfer and coherence relaxation

phenomena. Consequently, the faster decay of the excited state coherence

observed in panel a for the Bloch model respect to the Redfield approach

is hardly surprising; indeed, Redfield equation can count on other processes

that can make coherence stronger, namely populations changing into coher-

ences (Raa,cd) as well as coherence transfer (Rab,cd). Moreover, the early-time

oscillations superimposed to the time-evolution of the system energy and of

some populations (panels b and d) are completely lost using the Bloch model

(panels c and e), this being a clear signature of the population-coherence cou-

pling. Once the coherences are relaxed, the effect of population-coherence

coupling becomes negligible and the long-term dynamics is properly de-

scribed by both Bloch model and Redfield equation of motion.

Having become familiar with the quantum-classical hybrid approach and

with Redfield equation on a single molecule, the following Section is devoted

to the real-time simulation of the RET phenomenon between two interacting

CT dipolar chromophores.
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Figure 1.11: Signatures of population-coherence coupling. (a) Time-

dependence of the average value of the molecular coordinate calculated in the

Redfield approach (black curve) and the Bloch model (green curve). (b-c)

Time-evolution of the system energy using Redfield equation and the Bloch

model, respectively. (d-e) σ16,16(t) (red curve), σ17,17(t) (dark-green curve),

σ18,18(t) (blue curve), as relevant to the initially mainly populated states,

using Redfield equation and the Bloch model, respectively. Calculations

done considering 15 vibrational states. Same parameters as in Fig.1.8.



1. Intermolecular resonance energy transfer 43

Figure 1.12: Setting the stage for RET. Left panel: sketch of the four-states

model used to describe two interacting D-π-A molecules. Right panel: non-

adiabatic DANS emission (blue filled curve) and Nile Red absorption (red

filled curve) spectra; calculation done on the two isolated molecules account-

ing for 15 vibrational states and neglecting the effect of polar solvation. A

Gaussian bandshape, with half width at half maximum (HWHM) equal to

0.09 eV is assigned to each vibronic transition. Relevant molecular param-

eters are reported in Tab.1.1.

1.4 RET: a non-adiabatic dynamical perspective

We now consider RET between an energy donor, D, and an energy acceptor,

A, both described as polar dyes, using the two-state model in Eq.1.48.

The diabatic basis states for the RET pair are the direct product of the

basis states of the isolated dyes:

|NDNA〉 = |N〉D ⊗ |N〉A,

|ZDNA〉 = |Z〉D ⊗ |N〉A,

|NDZA〉 = |N〉D ⊗ |Z〉A,

|ZDZA〉 = |Z〉D ⊗ |Z〉A, (1.82)

where |N〉D(A) is the neutral state of the energy donor (energy acceptor),

while |Z〉D(A) is the relevant zwitterionic state. The electronic Hamiltonian

can be written as the sum of the two single-molecule Hamiltonians plus a

small coupling term, accounting for the electrostatic interaction between the
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two molecules in the zwitterionic state (V ):

ĤDAel =


0 −τD −τA 0

−τD 2zD 0 −τA
−τA 0 2zA −τD

0 −τA −τD 2zD + 2zA + V

 , (1.83)

where 2zD and 2zA are the energies associated with the energy donor and

energy acceptor zwitterionic states, respectively, while τD and τA are the

relevant CT integrals (Fig.1.12, left panel). In this work the energy donor-

energy acceptor interaction energy is set equal to 0.08 eV. Numerical di-

agonalization of ĤDAel leads to the perturbed states |DA〉, |DA∗〉, |D∗A〉,
|D∗A∗〉, where the star is used for the excited species (Fig.1.12, left panel).

A dimensionless coordinate and its conjugated momentum can be as-

sociated with both the energy donor and the energy acceptor in order to

linearly modulate their excitation energy. Neglecting nuclear motion (i.e.

adopting the adiabatic approximation), the electronic problem is diagonal-

ized for different molecular geometries, thus getting the Potential Energy

Surfaces, PES (Fig.1.13).

However, in order to treat the electronic and nuclear degrees of free-

dom on the same footing, quantum coordinate, Q̂D(A) = (â†D(A) + âD(A))

and its conjugated momentum, P̂D(A) = i(â†D(A) − âD(A)) are introduced;

consequently, the donor-acceptor non-adiabatic Hamiltonian can be written

as:

ĤDA = ĤDAel +

−
√

~ωDv εD(â†D + âD)|ZDNA〉〈ZDNA|+

−
√
~ωAv εA(â†A + âA)|NDZA〉〈NDZA|+

−
√
~ωDv εD(â†D + âD)|ZDZA〉〈ZDZA|+

−
√

~ωAv εA(â†A + âA)|ZDZA〉〈ZDZA|+

+~ωDv

(
â†DâD +

1

2

)
+ ~ωAv

(
â†AâA +

1

2

)
, (1.84)

where ωDv and ωAv are the vibrational frequencies associated with Q̂D and

Q̂A, respectively, whereas εD and εA are the relevant vibrational relaxation

energies. Adopting the strategy discussed in Sect.1.2.1, Eq.1.84 is written
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Figure 1.13: Adiabatic Potential Energy Surfaces (PES) calculated for the

energy donor-energy acceptor system (V=0.08 eV). Parameters used are

reported in Tab.1.1.
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on the non-adiabatic vector space defined as the direct product of DA 4-fold

Hilbert space, HDA, times the two Fock spaces, F and F ’, associated with

the molecular coordinates:

VDANA = HDA ⊗F ⊗F ′

= HDA ⊗

( ∞⊕
i=0

F i
)
⊗

( ∞⊕
i=0

F i
)′
. (1.85)

In order to make the problem numerically tractable and to reach convergence

on properties of interest, the two Fock spaces are truncated in order to

have 16 vibrational excitations at the most. As a result, the non-adiabatic

Hamiltonian is a 544×544 sparse matrix.

All parameters entering Eq.1.84 are reported in Tab.1.1, with DANS

molecule acting as the energy donor towards Nile Red, the energy acceptor.

The spectral overlap between DANS emission and Nile Red absorption is

shown in Fig.1.12, right panel.

A coherent excitation drives DANS out of equilibrium; therefore, in or-

der to describe the transfer of the excitation energy from DANS to Nile Red,

relaxation phenomena must be accounted for and to this end, the coupling

of the system to the environment is required. In the following two Sub-

sections, DANS-Nile Red coupled dissipative dynamics is studied using the

quantum-classical hybrid approach (Subsect.1.4.1) and Redfield equation for

the system reduced density matrix (Subsect.1.4.2).

1.4.1 RET: quantum-classical hybrid approach

Following the quantum-classical hybrid approach adopted for a single molecule

in Subsect.1.3.1, the energy donor and the energy acceptor are coupled to a

reservoir described as a chain of classical anharmonic oscillators; more pre-

cisely, 10 classical particles connected through anharmonic springs are used

for the energy-donor, whereas 20 particles are linked to the energy acceptor.

The longer chain used for the energy acceptor is instrumental in avoiding

recurrence. The relevant reservoir potential functions are defined as:

V BD =
~ωb
4

10∑
i=1

(
ξi(t)− ξi+1(t)

)2
+ V0χ

4
10∑
i=1

(
ξi(t)− ξi+1(t)

)4
,

V BA =
~ω′b
4

20∑
i=1

(
ξ′i(t)− ξ′i+1(t)

)2
+ V ′0χ

′4
20∑
i=1

(
ξ′i(t)− ξ′i+1(t)

)4
,(1.86)
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where ξi is the dimensionless coordinate associated with the i-th classi-

cal oscillator, ωb is the relevant vibrational frequency, while V0χ
4 defines

the anharmonicity strength; unprimed quantities refer to the energy donor,

whereas primed ones are used for the energy acceptor. We set ξi(t = 0)=0,

∀ i=1,..., 10 and ξ′i(t = 0)=0, ∀ i=1,..., 20. Fixed boundary conditions are

adopted linking the last oscillator of both chains to a static extracoordinate,

namely ξ11(t)=0 and ξ′21(t)=0.

In analogy to Eq.1.70, the coupling between each reservoir and the rele-

vant quantum system is modeled as a term bilinear in the quantum and the

classical coordinates; the interaction Hamiltonian thus reads:

ĤI(t) = −βQ̂Dξ1(t)− β′Q̂Aξ′1(t), (1.87)

where β and β′ are the system-bath interaction strengths, while ξ1(t) and

ξ′1(t) are the coordinates of the first oscillator of each chain. As sketched in

Fig.1.14, the last oscillator of both chains is connected to a thermostat.

Figure 1.14: Sketch of the energy donor-energy acceptor system connected

to two different classical oscillator chains. The last oscillator of each chain

is in contact with a thermostat. The RET partners are described in terms

of two CT dipolar chromophores, interacting with the interaction energy, V .

The classical bath coordinates evolve in time according to the equations:

~
2ωb

d2ξi
dt2

= −
∂V BD
∂ξi

+ β〈Q̂D〉δi,1

+
~

2ωb

(
− γ dξi

dt
+ 2ζ

√
γkbTωb
~∆t

)
δi,10, (1.88)
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~
2ω′b

d2ξ′i
dt2

= −
∂V BA
∂ξ′i

+ β′〈Q̂A〉δi,1

+
~

2ω′b

(
− γ′dξ

′
i

dt
+ 2ζ ′

√
γ′kbTω

′
b

~∆t

)
δi,20, (1.89)

where the first and the second equations are related to the classical chain

of the energy donor and of the energy acceptor, respectively. In order to

describe energy dissipation and thermal fluctuations, the relevant static fric-

tion coefficients, γ and γ’, are introduced together with two uncorrelated

Gaussian random numbers (with zero mean and unit width), ζ and ζ’.

At each time-step, Verlet algorithm is used to evolve all the classical

coordinates; newly obtained ξ1(t+ ∆t) and ξ′1(t+ ∆t) are put into Eq.1.87

and fourth-order Runge-Kutta algorithm is used to propagate in time the

energy donor-energy acceptor total wave function. The same time-step,

∆t=0.09 fs, is used for both classical and quantum dynamics.

In Fig.1.15, quantum-classical hybrid results for the energy donor-energy

acceptor couple are shown as magenta curves (black curves represent Red-

field results and they will be discussed in the next Subsection) and are ob-

tained for ωb=ω
′
b=60 cm−1, V0=V ′0=1 eV, χ=32, χ′=4, β=0.28 eV, β′=0.1

eV, γ=γ’=5 fs−1, averaging 40 different Langevin trajectories.

At time zero, a coherent state is created on the energy donor; conse-

quently, the system starts evolving, the average value of the donor coordi-

nate, 〈Q̂D〉, clearly showing coherent oscillations (panel c and its inset). The

relevant Fourier transform peaks at 0.173 eV (panel d), being the vibrational

energy relevant to the |D∗A〉 potential energy surface. On the contrary, no

early-stage dynamics is observed looking at the expectation value of the

acceptor coordinate, 〈Q̂A〉 (inset in panel e).

The interaction with the environment rapidly destroys the coherence

(panel c), while the system relaxes to the lowest vibrational state of the

donor electronic excited state (panels a and b). After ∼1 ps, the energy

starts flowing to the energy acceptor, the average value of Q̂A showing an

overall displacement together with very weak oscillations (panel e); the rel-

evant Fourier transform (panel f) peaks at ∼0.14 eV, being the vibrational

energy associated with the energy acceptor excited PES.

This view is further confirmed looking at the time evolution of state

populations in Fig.1.16, left panel; initially, the excitation is mainly localized
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Figure 1.15: Energy transfer between CT dipolar chromophores. Results

from the quantum-classical hybrid approach and Redfield equation are

shown as magenta and black curves, respectively. (a) System energy evolu-

tion as a function of energy donor and energy acceptor coordinates; the blue

dot marks the starting point of the time-evolution. Adiabatic PES’s rele-

vant to |D∗A〉 and |DA∗〉 are also shown; (b) System energy as a function

of time; (c) Expectation value of the energy donor coordinate as a function

of time. The inset shows an enlargement of the early-stage dynamics. (d)

Fourier transform of the signal in panel c; (e) Average value of the energy

acceptor coordinate as a function of time. The inset is an enlargement of the

early-time dynamics; (f) Fourier transform of the signal in panel e. Calcula-

tions done for the molecular parameters shown in Tab.1.1, where DANS is

the energy donor and Nile Red the energy acceptor. The maximum number

of vibrational excitations is set to 16. Other parameters are defined in the

main text.
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on the energy donor and after ∼ 1 ps, population slowly starts flowing

towards the excited energy acceptor; after ∼ 27.5 ps, the excitation is mainly

localized on the energy acceptor.

Figure 1.16: Energy transfer between CT dipolar chromophores. Left panel:

time evolution of the populations of the two states mostly involved in the

RET process, namely state number 143 (red lines) and state number 130

(blue lines) using the quantum-classical hybrid approach (continuous lines)

and the full Redfield equation (dashed lines). Right panel: time dependency

of purity (black line), linear entropy (orange line) and coherence (dark-

green line) using full Redfield equation; the inset is an enlargement of the

early-stage time-dependency of coherence. Calculations done imposing a

maximum number of 16 vibrational excitations. Same model parameters

used in Fig.1.15.

1.4.2 RET: Redfield equation

Following the approach adopted for a single molecule in Subsect.1.3.2, a bath

of quantum harmonic oscillators is coupled to the system; the classical bath

coordinates introduced in the previous Subsection now become quantum

operators:

ξi, ξ
′
i → ξ̂i = (b̂†i + b̂i), (1.90)

where, unlike the previous Subsection, both the energy donor and the energy

acceptor are assumed to interact with the same environment.
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The interaction Hamiltonian is written as:

ĤI = (Q̂D + Q̂A)
∑
i

giξ̂i

=
∑
i

[
gib̂
†
i (âD + âA) + g∗i b̂i(â

†
D + â†A)

]
, (1.91)

where g∗i is the complex conjugate of the system-bath interaction strength.

Following the steps discussed in Sect.1.3.2, Redfield relaxation tensor

component is obtained:

Γ+
db,ac = γ

[
〈d|âD|b〉〈a|â

†
D|c〉〈n̂(ωac)〉b + 〈d|â†D|b〉〈a|âD|c〉〈n̂(ωca) + 1〉b

+ 〈d|âA|b〉〈a|â
†
A|c〉〈n̂(ωac)〉b + 〈d|â†A|b〉〈a|âA|c〉〈n̂(ωca) + 1〉b

+ 〈d|âD|b〉〈a|â
†
A|c〉〈n̂(ωac)〉b + 〈d|â†D|b〉〈a|âA|c〉〈n̂(ωca) + 1〉b

+ 〈d|âA|b〉〈a|â
†
D|c〉〈n̂(ωac)〉b + 〈d|â†A|b〉〈a|âD|c〉〈n̂(ωca) + 1〉b

]
,

where the system creation and annihilation operators are written on ĤDA

non-adiabatic eigenstates. For the sake of simplicity, the system-bath cou-

pling strength, γ, is assumed to be the same for both the energy donor

and the energy acceptor. All terms containing 〈n̂(ωca) + 1〉b, i.e. the Bose-

Einstein distribution increased by one, describe system emission of one vi-

brational quantum that is absorbed by the bath. All other terms describe the

system absorption of one phonon that is emitted by the reservoir (Fig.1.17).

Furthermore, the complementary component, Γ−db,ac, reads:

Γ−db,ac = γ
[
〈d|âD|b〉〈a|â

†
D|c〉〈n̂(ωbd)〉b + 〈d|â†D|b〉〈a|âD|c〉〈n̂(ωdb) + 1〉b

+ 〈d|âA|b〉〈a|â
†
A|c〉〈n̂(ωbd)〉b + 〈d|â†A|b〉〈a|âA|c〉〈n̂(ωdb) + 1〉b

+ 〈d|âD|b〉〈a|â
†
A|c〉〈n̂(ωbd)〉b + 〈d|â†D|b〉〈a|âA|c〉〈n̂(ωdb) + 1〉b

+ 〈d|âA|b〉〈a|â
†
D|c〉〈n̂(ωbd)〉b + 〈d|â†A|b〉〈a|âD|c〉〈n̂(ωdb) + 1〉b

]
.

Plugging these expressions into Eq.1.44, Redfield dissipative dynamics can

be calculated for the RET pair. Results obtained with a time step ∆t=1.5

fs and a system-bath coupling constant γ=5 ps−1, are shown in Fig.1.15 as

black curves.

In order to help the discussion, some auxiliary quantities can be defined,

namely the purity, the linear entropy and the coherence.[81] The purity of

a quantum state is defined as:

p(t) = Tr{σ̂2(t)}, (1.92)
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Figure 1.17: Sketch of two possible processes described by Γ+
db,ac. Blue

halo is used for the energy donor, red halo is used for the energy acceptor,

orange halo is used for the environment. On the left, a vibrational quantum

is emitted by the reservoir and it is absorbed by the energy donor; on the

right, the reservoir absorbs one phonon emitted by the energy acceptor.

where p ∈ [ 1
N , 1], with p = 1/N for a completely mixed state and p = 1 for a

pure state. Linear entropy, Sl(t), represents another measure of the purity

of a quantum state, being defined as:

Sl(t) = Tr{σ̂(t)− σ̂2(t)} = 1− Tr{σ̂2(t)} = 1− p(t), (1.93)

where Sl ∈ [0, 1− 1
N ]; consequently, Sl=0 for a pure quantum state. Finally,

the coherence of the quantum state can be defined as:

C(t) = p(t)−
∑
i

σ2
ii(t). (1.94)

In Fig.1.16, right panel, time-dependency of these three quantities is shown

as relevant to the energy donor-energy acceptor dynamics shown in Fig.1.15.

The coherent perturbation prepares the energy donor in a pure state,

with no entropy and coherence equal to ∼0.72. As time proceeds, the energy

donor starts being entangled with the environment, the coherence oscillating

behaviour (with vibrational energy equal to 0.173 eV) rapidly goes to zero

(see the inset in the right panel in Fig.1.16) and the linear entropy increases;



1. Intermolecular resonance energy transfer 53

the system is relaxing towards the first vibrational state of the |D∗A〉 Po-

tential Energy Surface. After ∼33 ps, purity reaches a minimum and then

starts growing again; the excitation energy is now mainly localized on the

energy acceptor and relaxation of the system towards the first vibrational

state of the |DA∗〉 Potential Energy Surface starts. This analysis is further

confirmed by the time-evolution of the relevant populations in Fig.1.16, left

panel.

One last note concerning the numerical implementation is in order. As

mentioned at the end of Sect.1.4, the dimension of the two Fock spaces asso-

ciated with the two molecular coordinates is truncated in order to describe

16 vibrational excitations at the most; this ensures convergence of prop-

erties of interest and makes the dimension of the system as large as 544;

consequently, solving Redfield equation (Eq.1.43) requires O(5443) scalar

multiplications for each time step. However, some approximations can be

adopted in order to speed the calculations up.

At time zero the reduced density matrix is prepared in a coherent state

and, as time proceeds, the system relaxes. As a consequence, those states

that are too high in energy respect to the coherent state will never see their

population growing and can be safely neglected.

As already observed in Fig.1.11, the secular approximation and the Bloch

model are expected to fail in describing the early-stage dynamics of the

coherent state, where population-coherence as well as coherence-coherence

transfer phenomena are of great importance. Moreover, the presence of two

vibrational modes in the model in Eq.1.84 leads to several quasi-degenerate

states and to several non-secular components. Consequently, neither the

Bloch model nor the secular approximation can be used. In these conditions,

the computationally expensive full Redfield equation is approximated by

the pseudo non-secular algorithm [81] described at the end of Subsect.1.1.2,

keeping only those Rab,cd non-secular terms that satisfy the condition |ωab−
ωcd| ≤ α, where α is a fixed threshold.

In Fig.1.18, results obtained for the energy donor-energy acceptor sys-

tem using full Redfield equation, the pseudo non-secular algorithm (with

α=0.01 eV) and the Bloch model are shown. In the upper panel, the co-

herent oscillations of the molecular coordinate obtained within the Bloch

model damp faster than those calculated using full Redfield equation and
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ruinously diverge after ∼200 fs. Indeed, the divergence is fixed account-

ing for the most important non-secular terms; using the pseudo non-secular

algorithm with α=0.01 eV, thus accounting for the 0.006% of the total relax-

ation super-operator, results well match those obtained using full Redfield

equation; moreover, moving to α=0.2 eV, thus accounting for the 0.12% of

the full relaxation tensor, the early-time oscillations of the system energy

(lower panel) are also perfectly reproduced (results for α=0.2 eV completely

overlap full Redfield results and are not shown). Being a good compromise

between physical accuracy and computational efficiency, the pseudo non-

secular approach with α=0.01 eV was used to obtain Redfield results shown

in Fig.1.15.

Figure 1.18: The prominent role of non-secular terms in the multicomponent

energy donor-energy acceptor system. Early-stage dynamics of 〈Q̂D〉 (upper

panel) and of the system energy (lower panel). Continuous black curve:

results from full Redfield equation; dashed red curve: results from the pseudo

non-secular algorithm with α=0.01 eV; continuous green curve: results from

the Bloch model. Calculations done accounting for 16 vibrational excitations

at the most. Same model parameters used in Fig.1.15.
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1.5 The effect of polar solvent

Once the coherent state on the energy donor has been created, internal con-

version leads to vibrational relaxation within few hundreds of femtoseconds.

In polar solvents, the solvent relaxation dynamics is typically much slower

and starts once the vibrational degrees of freedom are fully relaxed. The

solvent reaches the excited-state distribution after a few picoseconds and,

depending on the relative velocity of the processes, the energy transfer to the

acceptor may occur after the solvent relaxation (slow RET) or during the

solvent relaxation (fast RET).[105, 106] In order to fully describe solvent

effects on RET, a dynamical calculation accounting for both system and

solvent degrees of freedom is required. Leaving this to a future work, the

present discussion is focused on just two limits, namely the limit of frozen

solvent and that of fast solvent.

If the solvent relaxation time, τs, is introduced, then the limit of frozen

solvent corresponds to τRET � τs. Within this limit, RET occurs with

a rate that reflects the average ground state solvent distribution. Conse-

quently, this limit is successfully described within Förster model. On the

contrary, if the solvent relaxation is fast (i.e., τs →0), then the solvation de-

grees of freedom rapidly rearrange in response to the fields generated by the

excited state dipole of the donor and the ground state dipole of the accep-

tor; consequently, the solvent distribution is calculated on the donor excited

state and the acceptor ground state potential energy curves in Fig.1.6, left

panel. In this limit, the fastest channels dominate the RET process, Förster

theory breaks down and a theoretical description based on density matrix

(like Redfield equation) can be used.

In a RET system, two reaction fields must be introduced, as relevant to

the energy donor and to the energy acceptor, as follows:

ĤDAsolv = −ρ̂DFDor − ρ̂AFAor +
1

4εor

(
FDor

)2
+

1

4εor

(
FAor

)2
, (1.95)

where ρ̂D(A) is the ionicity operator associated with the energy donor (energy

acceptor), while εor is the solvent orientational relaxation energy, that is

set equal for the two species for the sake of simplicity. Summing Eq.1.95

to the non-adiabatic Hamiltonian in Eq.1.84, the solute-solvent interaction

is described in terms of a F
D(A)
or -linearly dependent electronic energy 2z,
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that is 2z
(
F
D(A)
or

)
= 2zD(A) − F

D(A)
or . Consequently, both the degree of

CT, ρD(A), in Eq.1.50, and the CT transition energy, ∆ED(A)
CT , in Eq.1.51,

become F
D(A)
or -dependent functions.

Here, using full Redfield equation (Eq.1.43), RET process is studied

in the limit of fast solvent. As observed in Fig.1.15, panel e, the energy

acceptor vibrational coordinate shows no appreciable displacement and the

relevant vibrational relaxation energy, εA, can be safely set equal to zero;

consequently, the electronic parameter 2zA is renormalized to 0.88 eV in

order to have proper spectral overlap between the energy donor emission

and energy acceptor absorption spectral bands.

It is useful to define the acceptor population operator, Â, as:[76, 77]

Â = |A∗〉〈A∗|, (1.96)

where, remembering Eq.1.49, the energy acceptor excited state reads:

|A∗〉 = −
√
ρ(FAor)|N〉A +

√
1− ρ(FAor)|Z〉A. (1.97)

Consequently, Eq.1.96 can be rewritten in matrix form as:

Â =


ρ(FAor) 0 u 0

0 ρ(FAor) 0 u

u 0 1− ρ(FAor) 0

0 u 0 1− ρ(FAor)

 , (1.98)

where u = −
√
ρ(FAor)(1− ρ(FAor)) and ρ(FAor) = ρ(2z(FAor)). The time-

dependent population probability of the state |A∗〉 is further defined as:

PA∗(t) = Tr{σ̂(t)Â}. (1.99)

We follow the RET progress by monitoring the evolution of PA∗(t).

Figure 1.19, right panel, shows the population dynamics of the acceptor

excited state calculated for five different points in the FD
∗

or , FAor reaction field

grid (left panel). The complementary quantity relevant to the energy donor,

PD∗(t), is obtained as 1− PA∗(t) and is not shown.

The velocity as well as the nature of RET drastically change in the

different points in the grid. For example, setting FD
∗

or =0.87 eV and FAor=0.49

eV, as relevant to the magenta dot in the reaction field grid, the energy is
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Figure 1.19: Polar solvation influencing RET dynamics. Left panel: FD
∗

or ,

FAor reaction field grid together with the relevant Boltzmann distributions

(see Fig.1.6, left panel); Right panel: time dependence of PA∗ calculated

using full Redfield equation for five different points in the FD
∗

or , FAor grid.

The line color matches the relevant dot color in the grid. The inset shows

an enlargement of the first 1 ps dynamics. Calculation done accounting

for 15 vibrational states, setting εA=0 and 2zA=0.88 eV. Other molecular

parameters are reported in Tab.1.1, while γ=10 ps−1, εor=0.7 eV and T=298

K. Integration time step, ∆t=1 fs.
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completely transferred to the acceptor after ∼2 ps. However, the electronic

coherences, clearly visible as PA∗ low-frequency oscillations superimposed

to high-frequency (vibrational) ones, [77] show how the excitation energy is

initially bouncing more than three times (see the enlargement in the right

panel) between the energy donor and the energy acceptor. The frequency

of the electronic oscillations is ∼0.023 eV and is connected to the energy

donor-energy acceptor interaction energy, V ;[77] high-frequency oscillations

are induced by the energy donor vibrational coordinate and peaks at 0.174

eV. Increasing the FD
∗

or to 1.17 eV, while keeping FAor=0.49 eV (orange dot

in the grid), makes RET slower, with the acceptor population ∼0.1 after

5 ps. Furthermore, PA∗ motion is electronically incoherent, low-frequency

oscillations being almost completely washed out (see also the enlargement

in the right panel).

1.6 Conclusions

In this Chapter, two fully dynamical approaches to Resonance Energy Trans-

fer were presented. In Sect.1.3, a coherently excited CT dipolar chromophore

was coupled to the environment. The relevant dissipative dynamics was at-

tacked both through a quantum-classical hybrid approach in Subsect.1.3.1

and using Redfield equation in Subsect.1.3.2, obtaining comparable results

(see Figs.1.8 and 1.9). Within the hybrid approach, the driven non-adiabatic

system was coupled to a bath of classical anharmonic oscillators connected to

a thermostat and a numerical integration of the coupled quantum-classical

equations of motion defined hybrid dissipative trajectories. On the other

hand, using the reduced density matrix formalism and connecting the sys-

tem to a quantum environment, Redfield equation described the system

dissipative dynamics with no explicit treatment of the bath degrees of free-

dom.

In Sect.1.4, two interacting CT dipolar chromophores coupled to the en-

vironment were used to simulate RET in the time-domain. The initially

coherent motion of the driven energy donor was rapidly washed out by the

growing system-environment correlations and excitation energy was inco-

herently transferred to the energy acceptor. Results obtained within the

quantum-classical hybrid approach well compared with those obtained us-
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ing Redfield equation (Fig.1.15).

Preliminary results on the effect of polar solvation on RET dynamics

are presented in Sect.1.5. Considering the limit of fast solvation and using

Redfield equation, the polar solvent influenced the velocity as well as the

vibronic coherent nature of the RET process. In the future, this work will be

extended to properly discuss the coupled solute-solvent dissipative dynamics

and its effects on RET.



Appendix A

Proof of Eq.1.37

Here we want to verify the relation reported in Eq.1.37:

PLIe−
i
~Q(LS+LB)QτLI = PLIe−

i
~ (LS+LB)τLI . (A.1)

Using Eqs.1.31 and 1.33, the following equalities can be written:

QLSQ = QLS , QLBQ = QLB. (A.2)

Consequently, the left-hand side of Eq.A.1 can be recast as:

PLIe−
i
~Q(LS+LB)QτLI = PLIe−

i
~Q(LS+LB)τLI . (A.3)

Defining L0 = LS + LB and taking the exponential power series expansion

of the right-hand side of Eq.A.3, we get:

PLIe−
i
~QL0τLI = PLI

[
1− i

~
QL0τ +

1

2

(
i

~

)2

QL2
0τ

2 + ...

]
LI ,(A.4)

where we used the idempotency of the projection super-operator, Q2 = Q.

Using Q = 1 − P (Eq.1.31) and remembering that PLIP=0 (Eq.1.34),

Eq.A.4 becomes:

PLIe−
i
~QL0τLI = PLI

[
1− i

~
L0τ +

1

2

(
i

~

)2

L2
0τ

2 + ...

]
LI

= PLIe−
i
~L0τLI . (A.5)



Appendix B

Short-Iterative-Arnoldi

algorithm

The σ̂(t) time-evolution is obtained through integration of Eq.1.43. If N is

the dimension of the relevant basis, one has to solve a system of N2 coupled

linear differential equations. To this end, it is useful to move to Liouville

space, where conventional matrices become N2-long vectors (to do this,

matrices can be row-wise turned into a single vector) and super-operators

become N2 × N2 matrices. Along these lines, Eq.1.43 can be rewritten in

the Liouville space as:

d

dt
|σ(t)〉〉 = L̂ |σ(t)〉〉, (B.1)

where the Liouvillian generic matrix element reads:[78]

Li,j = −iωi,jδi,j +Ri,j , ∀ i, j = 1, ..., N2 (B.2)

and δi,j is Kronecker delta symbol defined in Liouville space.

Working in the Liouville space, we use the Dirac-type double-bracket

notation for conventional matrices and we put the hat on conventional super-

operators. As a result, Eq.B.1 is isomorphous with the time-dependent

Schrödinger equation and all the numerical techniques commonly used to

integrate the latter can be used to solve the former.

The formal solution of Eq.B.1 is:

|σ(t)〉〉 = eL̂t|σ(0)〉〉. (B.3)



62

Diagonalizing the Liouvillian, Eq. B.3 can be recast as:

|σ(t)〉〉 = ÛeΛ̂tÛ−1|σ(0)〉〉, (B.4)

where Λ̂ is the diagonalized Liouvillian and Û is the eigenvector matrix.

Full diagonalization of the Liouvillian N2×N2 matrix can be avoided us-

ing the Short-Iterative-Arnoldi (SIA) method, a generalization of the Lanc-

zos algorithm for the case of asymmetric matrices. In the SIA method, a n-

dimensional Krylov space, spanned by the orthonormal basis {|σ〉〉, L̂|σ〉〉, ...,
L̂n−1|σ〉〉}, is built in order to evaluate |σ(t + ∆t)〉〉 ' exp(L̂∆t)|σ(t)〉〉. In

this work, a fresh Krylov space is built at each time step (its typical dimen-

sion being 20).

The building-up process of Krylov space {|ρj〉〉; j = 0, ..., n − 1} starts

normalizing |σ(t)〉〉:

|ρ0〉〉 ≡
|σ(t)〉〉√
〈〈σ(t)|σ(t)〉〉

, (B.5)

where
√
〈〈σ(t)|σ(t)〉〉 ≡

√
Tr(σ̂(t)†σ̂(t)) is the Frobenius norm of the sys-

tem reduced density matrix, || |σ(t)〉〉 ||F . Then the following steps are

recursively repeated n− 1 times:[78, 107]

|ρ′j〉〉 = L̂|ρj〉〉;

hi,j = 〈〈ρi|ρ′j〉〉, i = 0, ..., j;

|ρ′′j 〉〉 = |ρ′j〉〉 −
j∑
i=0

hi,j |ρi〉〉;

hj+1,j =
√
〈〈ρ′′j |ρ′′j 〉〉;

|ρj+1〉〉 =
|ρ′′j 〉〉
hj+1,j

,

where ĥ = V̂ †L̂V̂ (V̂ contains in its columns Krylov basis vectors, |ρj〉〉)
is an upper Hessenberg matrix, thus making easier solving the eigenvalue

problem ĥŴ = Ŵ Λ̂.

Finally, the time-evolved |σ(t)〉〉 is calculated as:

|σ(t+ ∆t)〉〉 ' V̂ eĥ∆tV̂ †|ρ0〉〉

' V̂ (ŴeΛ̂∆tŴ−1)(V̂ †|ρ0〉〉)

'
n−1∑
i=0

|ρi〉〉ci(t), (B.6)
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where

ci(t) ≡
√
〈〈σ(t)|σ(t)〉〉(ŴeΛ̂∆tŴ−1)〈〈ρi|ρ0〉〉. (B.7)



Appendix C

Solving the Pauli master

equation

Within the Bloch model, populations dynamics is totally decoupled from the

coherences dynamics and only the former needs to be numerically evaluated.

The equation of motion governing populations dynamics is the Pauli master

equation (Eq.1.46). The Pauli master equation can be rewritten in a simple

vector-matrix form:

d

dt
pa(t) =

∑
c

ra,cpc(t), (C.1)

where a shorthand notation for the reduced density matrix populations,

pa = σaa, and for the relaxation super-operator elements, ra,c = Raa,cc, are

introduced. Consequently, Eq.C.1 is an ordinary differential equation:

d

dt
~p(t) = r ~p(t), (C.2)

where ~p(t) is the N -dimensional vector containing the reduced density ma-

trix populations and r is the N ×N matrix containing the relaxation super-

operator terms governing the transfer of populations.

The solution of Eq.C.2 is of the form:

~p(t) =

N∑
i=1

(
ci~vie

λit
)
, (C.3)

where ci is a constant and λi is the eigenvalue associated with the i-th r

matrix eigenvector, ~vi. As a result, if r is time non-dependent, within the
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Bloch model populations can be propagated in time diagonalizing just once

the r matrix and calculating the ci constants on the basis of the initial

conditions.





Chapter 2

Electron transfer and

emergent phenomena

In this Chapter, a new family of molecular materials is proposed, based on

the interplay of intra- and intermolecular electron transfers. Charge Trans-

fer (CT) governs the physics of the so-called CT crystals, where strongly

correlated electrons are delocalized on soft lattices.[108, 109, 48, 31] These

materials show a huge variety of phenomena ranging from multistability

and phase transitions [110] to structural and electronic instabilities, [111] to

charge-ordering, [112] etc. As far as conductivity properties are concerned,

CT crystals span the whole range of possibilities, going from insulators and

semiconductors to metals and superconductors.[19, 20] Ferroelectricity has

been proved and it is largely studied in different families of insulating CT

crystals.[113, 21, 114]

On the other hand, Intramolecular Electron Transfer (IET) [11, 12, 13,

88, 28, 14, 115] is of crucial importance for different families of chromophores

(Sect.1.2) and conjugated polymers used within organic light emitting diodes

(OLED), organic and hybrid solar cells as well as in biomedical imaging,

nanofabrication, etc.[116, 117, 118, 119, 120, 121, 122] The huge sensitivity of

these systems to external stimuli (mainly light and temperature) and to the

surrounding medium (like the solvent polarity) reflects their large non-linear

response and can be used in order to induce the intriguing phenomenon of

multistability.[123, 124, 125, 126]

A careful molecular and supramolecular design of molecular materials
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showing both CT and IET degrees of freedom is fundamental in order to

reach new functionalities and applications. Recently, [125, 126, 127] a new

CT chromophore was synthesized, with the electron donor group (D) be-

ing TTF (tetrathiafulvalene) and the electron acceptor group (A) being

the PTM (polychlorotriphenylmethyl) radical (R•); the two moieties are

connected through a vinylene π-bridge, thus leading to a D-π-R• molec-

ular structure (Fig.2.1). The conjugation offered by the π-bridge is poor

Figure 2.1: Molecular structure of the tetrathiafulvalene-

polychlorotriphenylmethyl radical, TTF-PTM, CT dipolar chromophore

and sketch of its two main resonance structures. Dot represents an unpaired

electron, whereas cross stands for the double occupation.

and the system shows bistability already at the molecular level; in low-

polarity solvents the molecule is in the neutral state, TTF-PTM•, while

in highly polar solvents it turns into a zwitterionic state, TTF+•-PTM−

(Fig.2.1).[125, 126, 127] Interestingly, in highly polar solvents (like DMF),

thanks to the well-known tendency of TTF+• to dimerize, (TTF+•-PTM−)2

dimers are observed. This dimer is the first example of a system showing

both CT and IET degrees of freedom and it was described combining the

essential-state model for CT dipolar chromophores together with the Hub-

bard model, typically used to attack (TTF+•)2 dimers.[128]

TTF takes part in both segregated and mixed stack CT crystals.[129]
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The prototype of mixed stack CT crystals is TTF-CA, with CA standing

for chloranil, where the electron donor (TTF) alternates with the electron

acceptor (CA) in a ...DADADA... motif. The overlap between D and A

adjacent frontier orbitals causes a partial CT and consequently electron

delocalization along the molecular stack, thus leading to fractional charges,

...Dρ+Aρ−Dρ+Aρ−Dρ+Aρ−... .

TTF-CA presents a typical phase transition, the Neutral-Ionic Transi-

tion (NIT), where the average charge on D and A molecular sites, ρ, grows

from ∼0.2 (neutral phase) to ∼0.7 (ionic phase).[24, 25, 130, 108] NIT can

be induced either lowering temperature or increasing the external pressure

or using light. This phase transition is always accompanied by a struc-

tural instability that leads to lattice dimerization [108, 26] and finally causes

ferroelectricity.[27]

Here, we propose a new kind of mixed stack CT crystal where D-π-R•

molecules alternate with A units to define a ...DADADA... supramolecular

motif, where each D is decorated with an organic radical, R•, as sketched in

Fig.2.2.

Figure 2.2: Sketch of an hypothetical structure of the decorated D(-π-R•)A

mixed stack CT crystal.

In segregated-stack CT crystals, whose prototype is TTF-TCNQ (TCNQ

= tetracyanoquinodimethane), electrons are delocalized along D stacks and

A stacks, both kinds of stacks being partly filled because of a partial CT

from D to A molecular units. TTF-TCNQ is the prototypical synthetic
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metal, where the partial CT between the two molecular stacks creates par-

tially filled electronic bands and finally leads to metallic behaviour.[19,

131] More recently, starting from the MPTTF-PTM dyad (Fig.2.3, panel

a), a novel single-component segregated stack CT crystal was synthesized

(Fig.2.3, panel b).[132] Showing a monodimensional stacking of MPTTF

units (electron donor), each of them being decorated with a segregating

PTM organic radical (electron acceptor), this crystal combines for the first

time IET with CT in the solid state, thus becoming a good candidate for

future organic electronics. Moreover, magnetism as induced by the unpaired

spins on radical moieties can make decorated segregated stacks attractive

for spintronics too.[133]

Figure 2.3: The MPTTF-PTM (monopyrrolotetrathiafulvalene-

polychlorotriphenylmethyl radical) CT dyad. (a) Sketch of the molecular

structure of MPTTF-PTM. (b) Ball-and-stick crystallographic structure of

MPTTF-PTM crystal showing its monodimensional herringbone structure

(atom color legend: sulfur in orange, carbon in grey, chlorine in green,

nitrogen in blue). (c) Experimental polarized absorption spectra of the

MPTTF-PTM crystal in panel b. Adapted from Ref.[132].

Putting IET and CT degrees of freedom together, both the decorated

mixed stack in Fig.2.2 and the segregated stack MPTTF-PTM in Fig.2.3,
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panel b, show new emergent phenomena with intrinsic multifunctionality.

More precisely, the mixed stack structure sketched in Fig.2.2 could be the

springboard to get innovative molecular multiferroics. In fact, in the ionic

phase, ...D+•A−•D+•A−•D+•A−•..., mixed stack CT crystals show antifer-

romagnetic arrangement of neighboring spins. The same kind of magnetic

correlations is observed within each D+•-π-R• unit. As a result, if the main

stack is in the ionic phase, a ferrimagnetic ordering of the spins is expected,

one spin out of three per cell being unpaired, thus resulting in a finite macro-

scopic magnetization. Furthermore, the magnetic ordering is expected to

coexist with the ferroelectric order as induced by the stack distortion, thus

leading to a multiferroic organic material.

The neutral radicals MPTTF-PTM• constituting the segregated stack

CT crystal in Fig.2.3, panel b, can turn into a zwitterionic, MPTTF+•-

PTM−, state thanks to intramolecular electron transfer, thus leading to

a reduction of the on-site electron-electron repulsion and to a potentially

metallic phase along the MPTTF stack. Indeed, analyzing the experimental

absorption spectra polarized along the MPTTF-PTM stacking direction and

normally to it (Fig.2.3, panel c), the bands at ∼ 10000 cm−1 could be

signatures of a weak intermolecular interaction.

In the first part of the Chapter, the theoretical modeling of the decorated

mixed stack CT crystal is presented. In Section 2.1.1, the model Hamiltonian

used to describe the novel decorated mixed stack CT crystal is presented;

in Section 2.1.2 the numerical techniques used to attack the problem are

discussed. Sections 2.1.3 and 2.1.4 are devoted to discuss results obtained for

regular and dimerized chains, respectively. The second part of the Chapter is

fully devoted to the theoretical description of the decorated segregated stack

and its spectroscopic properties. The model Hamiltonian is introduced in

Section 2.2.1, whereas calculated polarized electronic absorption spectra are

reported in Section 2.2.2.

2.1 Decorated mixed stack

2.1.1 The model Hamiltonian

The D-π-R• molecular unit is a CT dipolar (“push-pull”) chromophore,

where the electron donor group (D) is connected to the electron acceptor
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group (R•) through a conjugated π-bridge.[11, 12, 13, 123, 125, 127] The

dyad can be described in terms of the essential two-state model overviewed

in Sect.1.2.1. Summarizing the theory behind this model, CT dipolar dyes

resonate between two main resonance structures, a neutral one and a zwit-

terionic one. An essential two-state model describes the chromophore elec-

tronic degrees of freedom in terms of just two electronic states, a neutral one,

|D-π-R•〉, and a charge-separated one, |D+•-π-R−〉. On this basis set, the

Hamiltonian matrix is the 2×2 matrix in Eq.1.48, defined by two parame-

ters, 2z, the energy difference between |D-π-R•〉 and |D+•-π-R−〉 states, and

τ , the (opposite of) the mixing matrix element.

In a mixed stack CT crystal the electrons are delocalized along the stack

thus creating a quasi monodimensional system, where the inter-stack elec-

trostatic interactions can be treated at the mean-field level.[30] The model

typically used to describe the electrons along the stack is the Hubbard

model modified in order to account for the different nature of molecular

sites.[26, 46, 31, 47] The minimal Hamiltonian reads:

Ĥ = ∆
∑
i

(−1)in̂i

+U
∑
i

n̂i,↑n̂i,↓

−t
∑
i,σ

(ĉ†i,σ ĉi+1,σ +H.c.), (2.1)

where the sums run on the stack molecular sites, with odd (even) i values

used for electron donor (acceptor) molecular units, and on the two electronic

spin polarizations. The operators ĉi,σ, ĉ†i,σ are the annihilation and creation

fermionic operators, i.e. they destroy and create, respectively, one electron

with spin σ on the i-th molecular site. The fermionic number operator,

n̂i = n̂i,↑+n̂i,↓ =
∑

σ ĉ
†
i,σ ĉi,σ, counts the total number of electrons on the i-th

site. 2∆ is the energy difference between the site orbitals on D and A, the

Hubbard U measures the on-site electron-electron electrostatic repulsion,

assumed to be the same for both D and A. Finally, the third line of the

equation represents electron delocalization along the stack with t being the

electronic hopping integral.

In order to reduce the total number of parameters entering Eq.2.1 as

well as the basis dimension, the reduced basis approximation is introduced,
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neglecting all the states having doubly charged molecular sites, namely D2+

and A2−. This corresponds to impose the large correlation limit, U,∆→∞
with a finite energy difference 2Γ=2∆-U .[134, 108, 30, 47]

The model Hamiltonian for the D(-π-R•)A decorated mixed stack CT

crystal combines the essential two-state model for CT dipolar chromophores

with the Hubbard model for mixed stack CT crystals in Eq.2.1. The deco-

rated Hubbard model reads:

Ĥ =
∑
i

(εAn̂i,A + εDn̂i,D + εRn̂i,R)

+
∑
i

(UAn̂i,A,↑n̂i,A,↓ + UDn̂i,D,↑n̂i,D,↓ + URn̂i,R,↑n̂i,R,↓)

−t(1 + δ)
∑
i,σ

(ĉ†i,A,σ ĉi,D,σ +H.c.)

−t(1− δ)
∑
i,σ

(ĉ†i,D,σ ĉi+1,A,σ +H.c.)

−τ
∑
i,σ

(ĉ†i,D,σ ĉi,R,σ +H.c.) +Nct
2 δ

2

2εd
, (2.2)

where i runs over the Nc unit cells, whereas σ on spin polarizations; the

first line accounts for on-site energies; the second line accounts for the re-

pulsion between two electrons on the same molecular site. The subsequent

two lines describe the hopping of electrons between adjacent sites along the

stack with alternating, t(1 + δ) and t(1 − δ), hopping integrals describing

dimerization. In the last line of the equation, the τ -term accounts for D-

π-R• intramolecular electron transfer, whereas the last term describes the

lattice distortion elastic energy, with εd being the relevant lattice relaxation

energy.[26, 46, 31, 47]

Long-range intra and interchain electrostatic interactions are important

in conventional mixed stack CT crystals and they are usually treated at the

mean-field level.[135, 30, 47] Indeed, results obtained using the decorated

Hamiltonian in Eq.2.2, neglect long-range Coulomb interactions, but rep-

resent the starting point for a mean-field treatment. However, we did not

extend our study to this point, the relevant parameter space being already

very complex.

Two auxiliary quantities are introduced, namely 2Γ=εA−εD−UD, being

the energy required for the DA→D+•A−• process, and 2z=εR−εD−UD+UR,
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being the energetic cost for the intramolecular process D-π-R• →D+•-π-R−.

2.1.2 Numerical approach

The unit cell of the decorated mixed stack counts three site orbitals and

three electrons and if Nc is the number of unit cells, the problem describes

N=3Nc electrons on N sites.

Weakly interacting electrons (i.e., U/t�1) can be treated within the mo-

noelectronic approximation as an ensemble of independent particles, using

the Hartree-Fock approximation. The system Hamiltonian can be written

as the sum of N single-particle Hamiltonians, whereas the system total wave

function can be approximated as an antisymmetrized product of N mono-

electronic wave functions each of them obtained diagonalizing the relevant

single-particle Hamiltonian. As a consequence, the problem reduces to the

diagonalization of the monoelectronic Hamiltonian with dimension N ×N .

When dealing with crystals, the translational symmetry reduces the problem

to the diagonalization of NC Hamiltonians with dimension N/NC .

For strongly correlated electrons (i.e., U/t�1), the monoelectronic ap-

proximation breaks down and the single-particle picture discussed above

must be extended in order to account for electron-electron interactions, ide-

ally by means of a full configuration interaction (full-CI) calculation. Using

a full-CI, all the possible configurations obtained by distributing N electrons

among N crystal orbitals are allowed to interact. The resulting full-CI basis

dimension makes the calculation unfeasible for large-size systems.

A different approach to strongly correlated electronic systems is possi-

ble, namely the exact diagonalization of the Hamiltonian written on the

real-space basis (RS-ED). Within the RS-ED approach the Hamiltonian

matrix is written on the Hilbert space spanned by the complete set of

Slater determinants obtained by distributing N electrons among N site-

orbitals. Four electronic states are possible for each molecular site, namely

|↑↓〉, |↑〉, |↓〉, |0〉, corresponding to the doubly occupied, singly occupied

(with up and down spin) and empty site, respectively. Increasing the chain

length, the basis dimension exponentially increases according to the expres-

sion 2N(2N − 1)...(2N −N + 1)/N !, thus reaching the same dimension of a

full-CI calculation. However, the RS-ED approach has two main advantages

over the full-CI. First of all, within the real-space basis, site energies and
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on-site Coulomb repulsions enter the Hamiltonian diagonal part, whereas

electronic kinetic energy contributes to the off-diagonal terms;[136] the re-

sulting Hamiltonian is a sparse matrix, with off-diagonal terms smaller in

magnitude (large correlation limit) than diagonal ones, and efficient diag-

onalization routines can be used. Secondly, a reduced basis can be easily

defined neglecting all those electronic configurations that are too high in en-

ergy. Specifically, states including either A2− or R+ are expected to poorly

contribute to the ground state because of their high energy and can be easily

neglected.

A further reduction of the problem dimension can be achieved by ex-

ploiting the spin symmetry;[137] to this end, two auxiliary operators can

be introduced, namely Ŝ2 and Ŝz, in order to define the square modulus

and the z-component, respectively, of the total spin. Ŝ2 eigenstates are de-

fined by the quantum number S=0, 0.5, 1, 1.5,... and for each S value,

2S + 1 eigenvalues of Ŝz are defined, namely Sz=−S, −(S − 1),..., S − 1,

S. The Hamiltonian in Eq.2.2 commutes with both Ŝ2 and Ŝz, thus hav-

ing a common set of eigenstates. Real-space basis functions are eigenstates

of Ŝz and through the Diagrammatic Valence Bond (DVB) approach, they

are combined to become Ŝ2 eigenstates as well.[136, 138] Because of the

non-orthogonal nature of the Valence Bond basis as well as the rather com-

plicated treatment of S 6= 0 spin spaces within the DVB approach, real-space

functions are used in this study, thus working in different Sz spin spaces.

2.1.2.1 Bit representation

Each real-space basis function can be represented as an integer number,

exploiting its binary (bit) representation.[136] Indeed, the information on

the occupation of each molecular site can be stored in a compact way using

two bits (Fig.2.4). Specifically, 00 and 11 represent an empty and a doubly

occupied site, respectively, while 01 (10) represent a molecular site with a

spin up (down). Numbering different sites, each real-space basis function,

|k〉, is fully described by the integer k that corresponds to the binary number

with 2N digits, where bits number 2p − 2 and 2p − 1 are associated with

site p = 1, ..., N .

The real-space basis functions are built by checking all the integers up to

22N and keeping only those that represent a correct state in the relevant Sz
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Figure 2.4: Bit representation of a 9-membered chain fragment of the deco-

rated mixed stack discussed in this Section. Cross marks a doubly occupied

molecular site, whereas triangle up (down) marks a site with a spin up

(down).

spin space; to this end, the number of electrons must be equal to N , while

the difference between the number of spins up and spins down must be equal

to 2Sz. By sorting the resulting integers in ascending order, efficient search

algorithms, like the binary search, can be used.

2.1.2.2 Reduced basis

Using the real-space basis, the problem can be simplified by adopting a

reduced basis. Within mixed stack CT crystals, states containing doubly

charged sites, D2+ and A2−, are usually neglected.[134, 108, 30, 47] In this

work, A2− states are neglected, while D2+ states are maintained accessible

in order to properly describe antiferromagnetic correlations within the D+•-

π-R• dyad. Moreover, being R• an electron acceptor, states having R+

sites are neglected being too high in energy. The resulting reduced basis

corresponds to the UR, UA → ∞ limit, while keeping finite 2Γ and 2z. As

far as UD is concerned, the UD/t� 1 limit is considered. Table 2.1 reports

the number of states entering the complete as well as reduced basis within

different spin spaces and for different chain lengths.
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number of sites complete reduced

(number of cells, Nc) Sz basis basis

6(2) 0 400 144

1 225 90

2 36 20

3 1 1

9(3) 0.5 15876 3276

1.5 7056 1689

2.5 1296 420

3.5 81 42

4.5 1 1

12(4) 0 853776 97320

1 627264 75672

2 245025 35082

3 48400 9256

4 4356 1260

5 144 72

6 1 1

15(5) 0.5 41409225 2686310

1.5 25050025 1781880

2.5 9018009 772156

3.5 1863225 211310

4.5 207025 34345

5.5 11025 2970

6.5 225 110

7.5 1 1

18(6) 0 2363904400 85287420

1 1914762564 71806956

2 1012766976 42666936

3 344622096 17644761

4 73410624 4950036

5 9363600 903240

6 665856 100136

7 23409 6006

8 324 156

9 1 1

Table 2.1: Dimension of the relevant spin spaces for different lengths of the

decorated mixed stack. Dimension of the reduced basis is also shown.
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2.1.2.3 Writing the Hamiltonian matrix

We calculate, for each spin subspace, the (real and symmetric) Hamiltonian

matrix. Calculation of the relevant matrix elements starts from writing each

real-space state, |k〉, in the Fock space as:

|k〉 =
2N∏
i=1

ĉ†i |0〉, (2.3)

where i runs on the 2N spin-orbitals of a N sites chain and |0〉 is the state

with no electrons present. The configuration reported in Fig.2.4 can be

written as:

| 01︸︷︷︸
1

00︸︷︷︸
2

11︸︷︷︸
3

10︸︷︷︸
4

01︸︷︷︸
5

01︸︷︷︸
6

00︸︷︷︸
7

10︸︷︷︸
8

11︸︷︷︸
9

〉 = ĉ†1,β ĉ
†
3,αĉ

†
3,β ĉ

†
4,αĉ

†
5,β ĉ

†
6,β ĉ

†
8,αĉ

†
9,αĉ

†
9,β|0〉.

(2.4)

Terms entering the first two lines of Eq.2.2, namely site energy and on-

site electronic repulsion, are diagonal within the real-space basis and are

calculated simply counting the number of electrons along the N molecular

sites. Using the binary representation, this corresponds with counting the

number of digits “1” entering the relevant binary number.

The remaining off-diagonal terms entering Eq.2.2 describe inter and in-

tramolecular electron transfer, thus mixing different basis functions within

the same spin space. We illustrate the process for some of the transfer terms

operating on the configuration in Eq.2.4. Starting from the term that trans-

fers an electron from site number five to site number four (D-A intra cell

hopping):

tĉ†4,β ĉ5,β|010011 10︸︷︷︸
4

01︸︷︷︸
5

01001011〉 = t|010011 11︸︷︷︸
4

00︸︷︷︸
5

01001011〉. (2.5)

Analogously, the electron can hop between two different cells:

tĉ†7,β ĉ5,β|01001110 01︸︷︷︸
5

01 00︸︷︷︸
7

1011〉 = −t|01001110 00︸︷︷︸
5

01 01︸︷︷︸
7

1011〉,

(2.6)

where the electron is transferred from site number five to site number seven.

Crucially, the different sign entering the two matrix elements calculated

above reflects the fermionic anticommutation rules:

{ĉi, ĉj} = 0,
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{ĉ†i , ĉ
†
j} = 0,

{ĉi, ĉ
†
j} = δi,j , (2.7)

where in the third line δi,j is the Kronecker delta. When the electron is

moved along the chain, an even (odd) number of electrons between the

starting and the final positions makes the relevant matrix element posi-

tive (negative). Using the Born-von Kàrmàn periodic boundary conditions

(PBC), the following equalities can be written as well:

tĉ†8,β ĉ1,β| 01︸︷︷︸
1

001110010100 10︸︷︷︸
8

11〉 = t| 00︸︷︷︸
1

001110010100 11︸︷︷︸
8

11〉,

tĉ†1,β ĉ8,β| 01︸︷︷︸
1

001110010100 10︸︷︷︸
8

11〉 = 0, (2.8)

where in the first line the electron moves between last unit cell D site and

first unit cell A site, whereas the second line follows from the ĉi|0〉 = 0, ∀ i.

The Hamiltonian matrix is sparse: having imposed the PBC, N sites

form N nearest neighbor bonds and the electron transfer creates either 0 or

1 or 2 new configurations for each bond. As a consequence, it is convenient to

store in the computer memory only the non-zero elements of either the upper

or lower triangle of the matrix. Different recipes can be used to this aim,

being all based on the main idea to collect the non-zero elements within

an array and using some auxiliary arrays in order to keep track of their

position within the original matrix. The simplest, but not highly efficient,

format is the so-called coordinate format where the non-zero elements and

the relevant row/column indexes are stored in three different arrays. In

this work, the compressed sparse row (CSR) format in the 3-array variation

is used.[139] Using this format, non-zero elements are located by checking

one row at a time and are stored within the value array, while the relevant

column indexes are stored within the column array. The third array, row,

keeps track of the index the first non-zero element of each row has within

the value array. Actually, because the matrix is symmetric, we only store

its upper triangle, so that the array row contains the indexes the originally

diagonal terms have within the value array. Moreover, row last term is

equal to the number of non-zero elements increased by one. For the sake of

clarity, the CSR format in the 3-array variation for the symmetric matrix,
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A, reads:

A =



3 0 1 0 3 0

0 7 0 6 0 0

1 0 0 2 0 0

0 6 2 7 0 0

3 0 0 0 9 0

0 0 0 0 0 1


,

value =
(

3 1 3 7 6 0 2 7 9 1
)
,

column =
(

1 3 5 2 4 3 4 4 5 6
)
,

row =
(

1 4 6 8 9 10 11
)
.

In the matrix dense format, the A matrix requires the storage of 36 double

precision numbers. Moving to the coordinate format, three different arrays,

each with 10 elements (10 is the number of non-zero elements in the upper

triangle of A, where a zero on the diagonal is considered as a non-zero

element), are used. Using the CSR format in the 3-array variation, the

row array contains just 7 integers. The small advantage highlighted here

dramatically increases when moving to larger sparse matrixes.

Calculation of the off-diagonal terms entering Eq.2.2 becomes lengthy for

systems with Nc > 3. Consequently, in order not to repeat the calculations

for different sets of parameters, the off-diagonal terms of the Hamiltonian

are divided into four parts that are calculated separately:

1. D-A intra cell hopping, that is the third line in Eq.2.2;

2. D-A inter cell hopping, expressed by the fourth line in Eq.2.2;

3. D-A hopping due to the PBC, i.e. −t(1− δ)
∑

σ(ĉ†Nc,D,σ ĉ1,A,σ +H.c.);

4. D-π-R• intramolecular hopping, that is the fifth line in Eq.2.2.

The Hamiltonian elements entering these four parts are calculated just once

for different Nc and Sz values and consequently stored in the computer

memory. The total off-diagonal Hamiltonian is finally obtained summing

the four different parts with the relevant t, δ and τ values.
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2.1.2.4 Diagonalization

Diagonalization of large matrixes requires a huge amount of machine mem-

ory. Using the matrix dense format, the calculation of eigenvalues and eigen-

vectors requires at least two matrixes as big as the matrix to diagonalize and

an additional working area whose dimension depends on the algorithm. A

reduction of the required computer memory can be achieved when looking

only for a subset of eigenvalues and relevant eigenvectors. Anyhow, storing

the matrix in the dense format needs a large amount of memory. To be spe-

cific, 2·109 double precision real numbers can be stored within the 16GBytes

memory of a good workstation. This means that the biggest matrix that can

be stored in the computer memory is as large as 44721×44721. As a result,

diagonalization of the Hamiltonian matrix for Nc > 3 would be impossible

(see Tab.2.1).

Fortunately, larger size systems can be attacked using very efficient diag-

onalization routines for sparse matrixes from ARPACK library.[140] Using

the Reverse Communication Interface, ARPACK routines never directly op-

erate on the target matrix, turning the control to the calling program when-

ever a matrix operation (like a matrix-vector multiplication) is required.

Consequently, ARPACK routines can deal with any matrix storage format.

The algorithm used is the Implicitly Restarted Arnoldi Method (IRAM)

that boils down to the Lanczos algorithm (IRLM) for the hermitian matrix

in Eq.2.2. Both algorithms are based on the construction of a Krylov space,

{|v〉, Ĥ|v〉, ..., Ĥn−1|v〉}, where |v〉 is a random array and n is typically set to

14-32 (see Appendix B). The Hamiltonian is further written on the Krylov

space and is diagonalized to get Ritz eigenvalues. For large enough n values,

the resulting n Ritz eigenvalues approximate the extreme Ĥ eigenvalues.

2.1.2.5 Symmetrized basis

Adopting Born-von Kàrmàn PBC, crystal translational symmetry maps into

rotational symmetry, with a CNc symmetry axis. For the sake of clarity, the

action of a C2 axis on the electronic configuration reported in Fig.2.5 can

be studied. Using the second quantization formalism previously introduced,

the electronic configuration on the left reads:

|110010001110〉 = ĉ†1,αĉ
†
1,β ĉ

†
3,αĉ

†
5,αĉ

†
5,β ĉ

†
6,α|0〉 (2.9)
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Figure 2.5: Periodic boundary conditions in the decorated mixed stack CT

crystal. Sketch of a two-cell long chain closed into a ring together with its

symmetrical one respect to a C2 axis normal to the ring plane. Cross marks

a doubly occupied molecular site, while triangle up marks a site with a spin

up.

and using a C2 axis operator on it, results:

Ĉ2|110010001110〉 = ĉ†5,αĉ
†
5,β ĉ

†
6,αĉ

†
1,αĉ

†
1,β ĉ

†
3,α|0〉

= −ĉ†1,αĉ
†
1,β ĉ

†
3,αĉ

†
5,αĉ

†
5,β ĉ

†
6,α|0〉

= −|110010001110〉. (2.10)

Consequently, the relevant totally symmetric real-space basis function reads:

SA =
1√
2

(
|110010001110〉 − |110010001110〉

)
= 0, (2.11)

where the index A refers to the totally symmetric irreducible representation

within the C2 point group. On the other hand, the real-space basis function

projected on the totally antisymmetric space, B, reads:

SB = |110010001110〉. (2.12)

Summing up, adopting the PBC, if a diagram rotates, the i-th unit cell

becomes the (i + 1)-th cell and the last one becomes the first one. Con-

sequently, the fermionic operators relevant to the electrons in the last unit

cell have to jump over all the others. For an odd number of unit cells, the
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number of electrons, N = 3Nc, is odd as well and the phase of the fermionic

wave function is always preserved, |~k| = 0 being the only relevant wave vec-

tor sector. On the contrary, if Nc is even, the wave function phase changes

when an odd number of electrons are contained within the last unit cell (see

Eq.2.10) and different |~k| values must be considered (see Eqs.2.11 and 2.12).

2.1.3 Regular decorated mixed stack

In this Section, adopting the reduced basis presented in Sect.2.1.2.2 and

setting UD=10 eV, results obtained in a large region of the (2Γ, 2z) plane

are discussed. Moreover, the intermolecular D-A hopping integral, t, is set

to the characteristic TTF-CA value, 0.21 eV, [141, 142] whereas the D-π-R•

intramolecular hopping integral, τ , is set to 0.4 eV. However, results for

different UD, t and τ values will be discussed as well.

The (2Γ, 2z) plane can be divided into three different regions (marked

as N, Z and I in Fig.2.6) according to the charge distribution in the lowest

energy configuration (accounting for t=τ=0):

Figure 2.6: The phase diagram of the decorated mixed stack CT crystal.

Sketch of the relevant electronic configurations is overlapped. Cross marks

a doubly occupied molecular site, while triangle up (down) marks a site with

a spin up (down).
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N. For positive 2Γ and 2z values, the decorated mixed stack is governed

by neutral D, A and R• molecular sites. The unpaired spins on R• can

not communicate, thus leading to a paramagnetic phase;

Z. For 2z < 0 ∧ 2Γ > 2z, the system is dominated by D-π-R• →D+•-π-

R− intramolecular electron transfer, with A sites staying empty. No

communication is present between the unpaired spins on D sites and

the phase is paramagnetic;

I. For 2z>2Γ ∧ 2Γ<0, intermolecular electron transfer, D(-π-R•)A→D+•(-

π-R•)A−•, is favoured, every molecular site presenting an unpaired

electron.

The N-I, N-Z, I-Z phase boundaries are expected at 2Γ=0 , 2z=0 , 2z=2Γ,

respectively, in agreement with Fig.2.6.

The I phase is the fundamental one for the work presented in this Section,

in fact the antiferromagnetic arrangement of neighboring spins along the D-

A stack potentially induces an overall ferrimagnetic order, with a resulting

ferromagnetic locking of the unpaired spins on R• sites. The I phase only

survives in the strong correlation limit, which is not captured in the Hartree-

Fock treatment of electronic correlations.[46] Therefore, we use the RS-ED

approach discussed in Sect.2.1.2 to calculate fully correlated eigenstates of

the single-chain Hamiltonian in Eq.2.2 for finite size rings with an even

number of cells, up to Nc=6.

2.1.3.1 Magnetic order

To verify the presence of ferrimagnetic correlations within the I phase, we

calculate the energies of the states with different spin multiplicity. Figure

2.7 shows the energy gap, ∆ES.−F., between the lowest singlet state (S=0)

and the lowest state with S=Nc/2, as a function of both 2Γ and 2z. In a

large region of the I phase, the state with S=Nc/2 is considerably lower in

energy than the lowest singlet state and, as a result, ∆ES.−F. is large and

positive (energy difference is reported in Kelvin). Consequently, within this

region the decorated mixed stack can present ferrimagnetic ordering up to

ambient temperature. On the contrary, ∆ES.−F. completely vanishes in the

N and Z phases, denoting the paramagnetic nature of the stack within these
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two phases, with unpaired spins on either R• (N phase) or D+• (Z phase)

units not communicating.

Figure 2.7: ∆ES.−F. in the (2Γ,2z) plane for the decorated non-dimerized

chain with Nc=4, that is the energy difference (in Kelvin) between the low-

est singlet state and the lowest quintet state (S=2). The phase diagram

from Fig.2.6 is overlapped together with a sketch of the dominant electronic

configuration within the I phase.

The calculation of the map in Fig.2.7 becomes extremely time-consuming

for large Nc values. Consequently, in order to compare ∆ES.−F. for increas-

ing Nc values, we show sections of the map for fixed 2Γ and 2z values. Figure

2.8 shows, for decorated stacks with Nc=4, 6, different sections of the energy

gap between the lowest singlet state and the relevant lowest state with high

spin multiplicity (i.e., S=2, 3 for Nc=4, 6, respectively). Left panel shows

∆ES.−F. sections as a function of the intermolecular ionization energy, 2Γ,

for two different values of 2z, whereas the right panel presents ∆ES.−F. as

a function of the intramolecular D-π-R• →D+•-π-R− energy, 2z, for two

different values of 2Γ. These results confirm the existence of the ferrimag-

netic phase for increasing chain lengths within a large region of the I phase.

Moreover, Figure 2.9 shows sizeable nearest-neighbor R• spin correlation

function:

CRR =
1

Nc
Tr

{
ρ̂

Nc∑
i=1

Ŝz,R,iŜz,R,i+1

}
, (2.13)

where Ŝz,R,i measures the z-component of the R• spin in the i-th unit cell,
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Figure 2.8: Finite size effects on ∆ES.−F.. The energy difference ∆ES.−F.

is reported as a function of 2Γ (left) and of 2z (right) for Nc=4 (dashed

lines) and 6 (continuous lines). Different sections are calculated for 2z equal

to -0.5 eV (green curve), 0.5 eV (blue curve) and for 2Γ equal to -2 eV

(black curve), -1.4 eV (red curve). Results obtained for τ=0.4 eV, t=0.21

eV, UD=10 eV.

whereas ρ̂ is the quantum Boltzmann distribution:

ρ̂ =
e−βĤ

Tr
{
e−βĤ

} , (2.14)

where the trace operations in both Eqs.2.13 and 2.14 are over the complete

set of eigenstates of the Hamiltonian in Eq.2.2. Indeed, results shown in

Fig.2.9 at 10 K, 50 K, 80 K, are obtained truncating the trace to the first

few eigenstates, higher ones being not appreciably populated at relevant

temperatures.

Large and finite ∆ES.−F. values in the I phase are accompanied by fer-

romagnetic correlations between unpaired spins on adjacent R• units, CRR

amounting to a significant fraction of the limiting value, CRR=0.25.

Applying an external magnetic field, B, the following interaction term

enters the Hamiltonian in Eq.2.2:

Ĥz = −BNcM̂z, (2.15)

where M̂z=(
∑Nc

i=1 Ŝz,R,i)/Nc is the z-component of the magnetization op-

erator, ~̂M . In Figure 2.10, on the left, the expectation value of the mag-

netization along z, Mz=Tr{ρ̂M̂z}, is shown against the magnetic field for
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Figure 2.9: Nearest-neighbor R• spin correlation functions as a function of

2Γ, setting 2z=0.5 eV (left panel) and as a function of 2z, setting 2Γ=-2

eV (right panel) for a ring with Nc=4; different colors (black, green, blue)

refer to different temperatures. Relevant ∆ES.−F. is also shown as a colored

dotted line. Calculations done for the same parameters used in Fig.2.8.

three different temperatures, namely 10 K, 50 K and 80 K. As soon as B is

switched on, Mz becomes finite, with the steep slope observed at B=0 at 10

K gradually reducing while going up in temperature.

Inside the decorated mixed stack CT crystal, three-dimensional inter-

chain interactions can be written as:

Ĥα = −1

2

∑
i,j

αi,jŜz,R,iŜz,R,j , (2.16)

where the indexes i and j run over all the R• units in the crystal, αi,j being

the relevant coupling strengths. Eq.2.16 drastically simplifies when limiting

the interaction to nearest neighbor R• spins:

Ĥα = −α
2

∑
〈i,j〉

Ŝz,R,iŜz,R,j , (2.17)

where α > 0 is assumed to be the same for all R• sites. Introducing the sta-

tistical fluctuation of the z-component of R• spin, δŜz,R,i = Ŝz,R,i−〈Ŝz,R,i〉,
and neglecting the product of the two fluctuation terms (i.e., adopting the

mean-field approximation), Eq.2.17 becomes:

Ĥα ' −α
2

∑
〈i,j〉

〈Ŝz,R,i〉〈Ŝz,R,j〉 − αNcMz

∑
i

δŜz,R,i

' α

2
N2
cM

2
z − αNcMz

∑
i

Ŝz,R,i. (2.18)
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Figure 2.10: Magnetization as a function of an externally applied magnetic

field (in Tesla) for three different temperatures, for a ring with Nc=4. Cal-

culations done by setting 2Γ=-2 eV and 2z=0.5 eV, for the same parameters

used in Fig.2.8. On the right, relevant hysteresis loops obtained accounting

for interchain interactions at the mean-field level, by setting α=5 meV.

Combining Eq.2.15 with Eq.2.18, one gets:

Ĥz + Ĥα ' −B′
∑
i

Ŝz,R,i +
α

2
N2
cM

2
z , (2.19)

where B′ = B + αNcMz is the effective magnetic field felt by the i-th R•

spin.[143] As a result, magnetic hysteresis loops in Fig.2.10 appear by intro-

ducing the mean-field correction to the magnetic field, that is substituting B

in Eq.2.15 with B′ − αNcMz. For a small mean-field interchain interaction,

α=5 meV, a large loop is obtained at 10 K and disappears while approaching

80 K.

Finally, the three panels in Fig.2.11 show the effect of varying t, τ and

UD on ∆ES.−F.. The dashed blue line already shown in Fig.2.8, left panel,

is reported here in order to compare previous results with those obtained for

different t, τ and UD values. In particular, the maximum value of ∆ES.−F.

dramatically increases when reducing the on-site D repulsion, whereas an

increment of UD determines a reduction of the stabilization of the ferrimag-

netic phase, with the maximum of ∆ES.−F. moving deep into the I phase.
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Figure 2.11: ∆ES.−F. dependence on model parameters for a decorated

mixed stack with Nc=4. (a) Energy difference between the lowest singlet

state and the lowest quintet state as a function of 2Γ, setting 2z=0.5 eV,

τ=0.4 eV, UD=10 eV and varying t. (b) ∆ES.−F. vs 2Γ, setting 2z=0.5 eV,

t=0.21 eV, UD=10 eV, for different τ values. (c) ∆ES.−F. as a function of

2Γ, setting 2z=0.5 eV, t=0.21 eV, τ=0.4 eV and varying UD.

Similarly, the τ hopping value plays a fundamental role in stabilizing the

ferrimagnetic correlations along the decorated stack, with modest τ values

largely reducing ∆ES.−F.. As a consequence, it is important to design D-π-

R• dyads where the D and the R• moieties are strongly conjugated. Indeed,

the actual estimate of the τ hopping integral for the TTF-PTM• dyad, in-

troduced at the beginning of the Chapter, is ∼0.1 eV, [125, 127] too small

for achieving ferrimagnetic order, ∆ES.−F. reducing to ∼1 K. Finally, in-

creasing the intermolecular t hopping one moves the maximum of ∆ES.−F.

away from the N-I phase boundary, deep into the I phase. On the contrary,

a smaller t value reduces ∆ES.−F. to a sharp peak close to the N-I interface
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together with an overall reduction of the ferrimagnetic stability region in

the (2Γ,2z) plane.

2.1.3.2 Wave function delocalization

Because of strong correlations (i.e., U/t�1), electrons are strongly bound to

the molecular sites in large portions of the phase diagram shown in Fig.2.6.

However, a partial electronic delocalization can be expected at the phase

boundaries. To check this hypothesis, we calculate the modulus of the fol-

lowing complex quantity:[144, 145]

Z = Tr{ρ̂ei
2π
Nc
µ̂}, (2.20)

where i is the imaginary unity and µ̂ is the component of the electric dipole

moment operator along a regular open-boundary chain:

µ̂ =

Nc∑
j=1

[
(2j − 1)(ρ̂R + ρ̂D) + 2jρ̂A

]
, (2.21)

where ρ̂i,R = 1 − n̂i,R, ρ̂i,D = 2 − n̂i,D, ρ̂i,A = −n̂i,A, are the ionicity

operators relevant to the i-th unit cell that measure the net charges on R•,

D and A molecular sites, respectively. The operator in Eq.2.21 is expressed

in e · a=1 units, a being the D-A distance, and the representative matrix is

diagonal on the real-space basis, showing integer eigenvalues. It is important

to notice that µ̂ in Eq.2.21 depends on the chosen reference system, whereas

the complex quantity Z is fully independent of it, being defined modulo

2π. As it will be discussed in Sect.2.1.4, the imaginary part of the natural

logarithm of Z gives the electronic polarization of a many-body quantum

system with PBC.[49, 108, 142]

The modulus of Z is typically non-zero, its reciprocal being proportional

to the delocalization of the wave function. As a consequence, |Z| is ex-

pected to go to zero in systems having delocalized electrons. In Fig.2.12,

|Z| behavior at the three phase boundaries is shown. At the N-I interface

(panel b), the system shows a metallic behavior. Similarly, a delocalized

electronic state is observed while crossing the I-Z phase boundary (panel

c), demonstrating that the electron transfer between A and R units induces

an electron delocalization along the whole chain. On the other hand, the

D-π-R• →D+•-π-R− intramolecular electron transfer takes place with no
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Figure 2.12: Wave function delocalization in a ring with Nc=4 (12 sites).

(a) Phase diagram from Fig.2.6. (b) Modulus of Z against 2Γ for 2z=0.5 eV.

(c) |Z| as a function of 2z for 2Γ=-5 eV. (d) 2z-dependence of |Z| having

set 2Γ=5 eV. Double-head arrows in panel a highlight the energy ranges

spanned within panels b, c and d (the same color is used for the arrow and

the relevant |Z| curve). Calculations done at 10 K, for the same parameters

used in Fig.2.8.

wave function delocalization, |Z| being finite across the whole N-Z interface

(panel d).

2.1.4 Soft lattices

Strongly correlated electronic systems show complex phase diagrams with

several electronic instabilities governed by competitive interactions.[146] These

instabilities come with lattice deformations governed by the electron-vibration

coupling. Within monodimensional metallic systems (i.e., setting Hubbard

U=0), Peierls transition is the fundamental electron-lattice instability, the

electron-vibration coupling being at the origin of the spontaneous lattice

distorsion. On the other hand, strongly correlated systems (i.e., the U →∞
limit) boil down to Heisenberg antiferromagnets and undergo spin-Peierls

transition occurring at lower temperatures.

Mixed stack CT crystals face the so-called generalized-Peierls transition.[108,
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47, 26, 31, 142] Systems with a strongly ionic ground state turn into a spin

chain, showing spin-Peierls transition with very low critical temperatures.

Approaching the Neutral-Ionic phase boundary, charge degrees of freedom

come into action together with increasing transition temperatures. At the

Neutral-Ionic interface (if the phase transition is a continuous one) the sys-

tem becomes metallic, thus showing a classical Peierls transition with transi-

tion temperatures that can be higher than the ambient temperature. Mixed

stack dimerization has several practical consequences. In particular, regular

mixed stack presents an inversion center on each molecular site that is lost

in dimerized systems [108, 26] making them potentially ferroelectric.[108]

Indeed, the actual crystal ferroelectricity depends on the relative orien-

tation of different stacks. Anyhow, ferroelectric behaviour was confirmed

in several mixed stack CT crystals, thus leading to molecular ferroelectric

materials.[27, 113, 110, 21, 114]

The N and I phases of the decorated mixed stack (see Fig.2.6) correspond

to the typical neutral and ionic phases of the mixed stack CT crystals.

Therefore, the I phase is expected to show a lattice instability that, together

with the ferrimagnetic correlations discussed in Sect.2.1.3, would lead to a

multiferroic phase.

2.1.4.1 Electron-phonon coupling

Stack dimerization is governed by a zone-center lattice mode, corresponding

to the in-phase displacement of all electron donor molecules against the fixed

acceptor molecules (of course, what really matters is the relative displace-

ment of the two sublattices). The dimerization mode induces an asymmetric

modulation of the inter and intra-cell t hopping integrals. Assuming the Su-

Schrieffer-Heeger linear dependence of t on the lattice displacement, [147]

dimerization enters the Hamiltonian through a slow variable, namely the

dimerization amplitude, δ, as already expressed by the third and fourth

lines in Eq.2.2.[49, 31, 47, 142]

The energetic cost for the lattice distortion is expressed using an elastic

term (last term in Eq.2.2), that summed to the electronic energy, Eel, gives

the system total energy, Etot:

Etot = Eel +Nct
2 δ

2

2εd
. (2.22)
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Systems with strong electron-phonon coupling have large εd values, thus

describing soft lattices that can be easily deformed, whereas stiff lattices

are described in terms of small εd values. Results shown in this Section are

obtained by setting εd=0.04 eV, in line with typical values for mixed stack

CT crystals.[26, 31, 47]

In the N phase (ρ <0.5) as well as in the ρ→1 limit, the regular stack is

stable, while close to the N-I interface the stack becomes unstable towards

dimerization, the inversion symmetry is lost and a double minimum appears

in the ground state total energy. This is shown in Fig.2.13, panel a, where

Etot is reported against δ for 2Γ=-0.368 eV ∧ 2z=0.5 eV. The two equivalent

minima determine the equilibrium dimerization amplitude, δeq, whereas the

barrier heigth gives an estimate of the dimerization stability temperature,

Td.[26, 142] In Fig.2.13, panel b, the equilibrium dimerization amplitude, δeq,

calculated for the ground state of rings with N=12, 18 is shown as a function

of 2Γ, having set 2z=0.5 eV, and further confirms the scenario mentioned

above: a non-zero δeq is obtained near to the N-I interface, with δeq reaching

values as large as '0.18, while δeq=0 is observed for both 2Γ>0∧2Γ�0. The

2Γ-dependence of the dimerization temperature, Td, for a ring with Nc=6 is

reported in Fig.2.13, panel c, as a blue filled curve (relevant results for a ring

with Nc=4 are also shown as a blue dotted curve). In the same panel, the

orange area marks the stability region of the ferrimagnetic correlations; more

precisely, results calculated with and without the electron-phonon coupling

are shown as continuous and dashed orange curves, respectively (results for

a ring with Nc=4 are reported as dotted and dash-dotted orange curves,

respectively). The small, but not negligible lattice dimerization (Fig.2.13,

panel b) is not strong enough to completely break the ferrimagnetic order

down. Indeed, even if ∆ES.−F. calculated for the equilibrium dimerization

amplitude is reduced with respect to that relevant to the regular stack, a

region with a ferrimagnetic dimerized stack survives (green area in panel c),

thus pointing to a potentially multiferroic phase showing both ferrimagnetic

and ferroelectric orders.

To demonstrate ferroelectric behavior, we calculate the polarization, P .

The electric polarization within a system with PBC is defined in terms of

the Berry phase. More precisely, using the complex quantity Z defined in
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Figure 2.13: The effect of the electron-phonon coupling. (a) Ground state

total energy, Etot, in Kelvin as a function of the dimerization amplitude,

δ, for a ring with Nc=6, setting 2Γ=-0.368 eV ∧ 2z=0.5 eV. (b) Equilib-

rium dimerization amplitude against 2Γ, having set 2z=0.5 eV, for rings

with Nc=4 (black curve) and 6 (red curve). (c) Dimerization temperature

against 2Γ for a ring with Nc=6 (blue filled curve) and 4 (blue dotted curve),

together with ∆ES.−F. for a ring with Nc=6 (orange continuous and dashed

curves, for soft and stiff lattices, respectively) and 4 (orange dotted and

dash-dotted curves, for soft and stiff lattices, respectively). Calculations

done for the same parameters used in Fig.2.8.

Eq.2.20, P reads:[49, 108, 142]

P =
1

2π
Tr
{
ρ̂
(
Im[log(Z)]

)}
, (2.23)

where ρ̂ was defined in Eq.2.14, while the modulus of Z as a function of 2Γ for

a dimerized stack is shown in Fig.2.14, left panel. The electric dipole moment

in Eq.2.21 can be redefined in order to account for the finite dimerization

amplitude:[49]

µ̂ =

Nc∑
j=1

[(
2j − 1 +

δeq
2α̃

)
(ρ̂R + ρ̂D) +

(
2j − δeq

2α̃

)
ρ̂A

]
, (2.24)

where α̃ = a
√
Kεd/t, with K being the dimerization mode force constant,

while all the other quantities were defined in Subsect.2.1.3.2. Results at 10
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K shown in Fig.2.14 are obtained setting α̃=5, as relevant to CT crystal

TTF-CA.[49]

Experimentally, it is not possible to measure the absolute value of the

electric polarization, but rather its variations. This is consistent with the

definition of P given in Eq.2.23 as the imaginary part of the natural log-

arithm of the complex quantity Z, that is a periodic function with period

equal to one. Within Fortran programming language the principal value

logarithm of a complex number is used; more precisely, if c ∈ C, then

log(c) = log|c| + i arg(c), where −π < arg(c) ≤ π. Consequently, from

Eq.2.23 follows P ∈ ]-0.5, 0.5] as also shown in Fig.2.14, right panel. As

expected, for 2Γ < -1 eV ∨ 2Γ > 0, no electric response is observed, the

stack being regular (δeq=0) and with a trivial Berry phase (i.e., equal to 0

or π). On the other hand, close to the N-I crossover, the stack dimerizes

(δeq 6=0) and the inversion symmetry is lost. As a result, the geometrical

phase gets non-trivial values and a finite P appears. The maximum P value

(i.e., ±0.5) is reached close to the N-I phase boundary, corresponding to a

dimensional value of ∼ 14 µC/cm2, that is more than one order of magni-

tude larger than the experimentally observed value for CT crystal TTF-BA

(BA=bromanil).[23]

2.2 Decorated segregated stack

2.2.1 The model

The MPTTF-PTM molecule (Fig.2.3, panel a) is a prototypical CT dipolar

chromophore, with the D group (MPTTF) connected through a π-conjugated

bridge to the electron acceptor, R•, group (PTM).[132] Consequently, MPTTF-

PTM physics is well captured within an essential two-state model (Sect.1.2.1),

simply accounting for HOMO on D and LUMO on R• sites. Indeed, hav-

ing 3 valence electrons, the dyad can assume two states, and the relevant

Hamiltonian matrix reads:

ĥ = εDn̂D + εRn̂R

+UDn̂D,↑n̂D,↓ + URn̂R,↑n̂R,↓

−τ
∑
σ

(ĉ†D,σ ĉR,σ +H.c.), (2.25)
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Figure 2.14: Electron delocalization and electric polarization in a dimerized

stack. Left panel: 2Γ-dependence of the modulus of the complex quantity

Z defined in Eq.2.20 for a dimerized stack (continuous black curve) and for

a regular chain (dashed black curve). Right panel: Electric polarization, P ,

(red filled dots) and equilibrium dimerization amplitude, δeq, (black curve)

as a function of 2Γ. Calculations performed at 10 K for a ring with Nc=4,

setting 2z=0.5 eV. Same parameters used in Fig.2.8.

where εD and εR are the D and R• site energies, respectively, while UD

and UR are the relevant on-site Coulomb repulsion energies. The electron

delocalization determined by the IET process is described by the third line

of the expression. It is useful to introduce the auxiliary quantity 2z=εR −
εD − UD + UR, measuring the energy involved in the IET process, D-π-

R• →D+•-π-R−. The MPTTF-PTM segregated stack crystal in Fig.2.3,

panel b, combines IET with CT.[132] Focusing on the D and R• frontier

orbitals of a N -membered single stack, the problem consists in distributing

3N electrons on 2N sites. The stack is described in terms of a modified

Hubbard model, thus accounting for different site energies, and reads:

Ĥstack =
∑
i

ĥi − t
∑
i,σ

(ĉ†i,D,σ ĉi+1,D,σ +H.c.), (2.26)

where i runs over the N molecules constituting the stack, ĥi being the i-th

single dyad Hamiltonian introduced in Eq.2.25, whereas σ runs on the two

possible spin polarizations. The t hopping term accounts for the electron de-

localization along the monodimensional stack. Periodic boundary conditions

are adopted.



2. Electron transfer and emergent phenomena 97

Following the numerical approach discussed in Sect.2.1.2, the stack Hamil-

tonian is written on the real-space basis set, each basis function being an

electronic configuration written in the bit representation. Because of CT de-

grees of freedom, several electronic configurations are possible, thus leading

to a huge number of basis states. Working in the (εD − εR, UR)→∞ limit,

in analogy to Sect.2.1.2.2, the number of relevant states can be reduced

neglecting all those configurations with R+ sites.

Exploiting spin symmetry, the Hamiltonian can be diagonalized within

different Sz spin sectors. Working with an even number of dyads (typically,

N=4, 6), Sz=0 is the only significant spin space, its reduced dimension

dramatically increasing from 594 to 31730, while moving from N=4 to 6.

Adopting the CSR format in the 3-array variation, very efficient diagonal-

ization routines from ARPACK library can be used to attack the problem.

Figure 2.15: Sketch of the decorated segregated stack. Both the intermolec-

ular, b, and intramolecular, a, effective distances are set equal to 3.7 Å as

relevant to MPTTF-PTM crystal reported in Fig.2.3, panel b.[132]

The Hamiltonian eigenvalues and eigenvectors can be used to calculate

the electronic spectra for D-π-R• chains with N=4, 6, accounting for an

electric field polarized along z and x axes (Fig.2.15), considering both ionic

(2z<0) and neutral (2z>0) stacks. The x-component of the electric dipole

operator, µ̂x, is not affected by periodic boundary conditions and reads:

µ̂x = a
∑
j

(−1)j ρ̂j,R, (2.27)
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where the sum runs over the N dyads, ρ̂j,R = 1−n̂j,R is R• ionicity operator,

while a is set equal to 3.7 Å as relevant to MPTTF-PTM effective bond

length (Fig.2.15).[132] The alternating sign in the expression accounts for

the radical relative orientation along the stack, where x axis origin is put on

MPTTF fragment.

The z-component of the electric dipole operator, µ̂z, can be defined only

for an open chain and reads:

µ̂z = b
∑
j

j
(
ρ̂j,R + ρ̂j,D

)
, (2.28)

where ρ̂j,D = 2− n̂j,D measures the charge on the D site, whereas b=3.7 Å is

the intermolecular effective distance (Fig.2.15).[132] Both µ̂x and µ̂z are

diagonal on the real-space basis and once rotated on Ĥstack eigenvectors,

can be used to calculate the polarized oscillator strength.

For the generic |f〉 ← |i〉 transition, where both |i〉 and |f〉 are Ĥstack

eigenvectors, the oscillator strength is the following (dimensionless) quantity:

f
x(z)
f←i =

2me

e2~
ωfi

∣∣∣µx(z)
fi

∣∣∣2, (2.29)

where me is the electron mass, ωfi = (Ef −Ei)/~ is the transition frequency

and µ
x(z)
fi = 〈f |µ̂x(z)|i〉 is the relevant transition dipole moment.

Dealing with a chain closed into a ring, Eq.2.28 is no more valid be-

ing incompatible with the system rotational symmetry. Consequently, the

velocity dipole operator is introduced:[148, 141, 149]

v̂ =
i

~
[Ĥstack, µ̂z]

= −ietb
~
∑
j,σ

(
ĉ†j,D,σ ĉj+1,D,σ −H.c.

)
, (2.30)

where j runs over the N dyads and σ over the two spin polarizations. The v̂

operator is not diagonal on the real-space basis and once written on Ĥstack

eigenvectors, it can be used to calculate the oscillator strength along the

ring:[148]

fzf←i =
2me

e3

t2b2

~2

|vfi|2

~ωfi
, (2.31)

where vfi=〈f |v̂|i〉. In the following, for practical reasons, a Gaussian shape

with FWHM=0.06 eV will be assigned to each transition.
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2.2.2 Calculated spectra

We start with an isolated D-π-R• molecule, as described in Eq.2.25. Results

are independent of UD, but are strongly dependent on 2z. For negative

2z, zwitterionic D+•-π-R− molecules are expected, while for positive 2z, we

expect neutral dyes. If τ is not too large (we set τ=0.1 eV in line with the

current estimate for TTF-PTM dyad [125, 127]), in either case an optical

absorption is expected at energy ∼ |2z|, associated with IET degrees of

freedom (Fig.2.16, left panel).

Results obtained for stacks containing 4 to 6 dyads, assuming periodic

boundary conditions (rings), are discussed in the following. Different 2z

values are used in order to study stacks with either neutral (2z>0) or ionic

(2z<0) character. Moreover, the on-site Coulomb repulsion, UD, is typically

set to 1.29 eV, [125] being the relevant value within TTF+• chains, whereas

t=0.05 eV is estimated from ZINDO calculations on a (MPTTF-PTM)2

dimer in its crystallographic geometry.[132]

Figure 2.16: Results for an isolated D-π-R• dyad and for an half-filled Hub-

bard chain. Left panel: Oscillator strength against transition energy (in

eV) along the x (molecular) axis, for a single dyad for two different values

of the IET energy, namely |2z|=0.8 eV (black curve) and |2z|=1.2 eV (red

curve). Intramolecular hopping integral τ=0.1eV and N=4. Right panel:

Oscillator strength vs transition energy (in eV) along the z (stack) axis, for

D+• chain (i.e., τ=0 in Eq.2.26) for rings with N=4 (dashed curves) and 6

(continuous curves), for UD=1.29 eV (blue curves) and 2 eV (orange curves).

Intermolecular hopping integral t=0.05 eV.
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2.2.2.1 Ionic MPTTF-PTM chains

The discussion can start from the half-filled Hubbard D+• chain as ob-

tained by switching off the τ hopping integral in Eq.2.26. The oscillator

strength along the stack axis of rings with N=4, 6 is calculated using Eq.2.31

(Fig.2.16, right panel). The expected single peak at ∼ UD, signature of the

D+•-D+• → D2+-D process, [150] is split into a doublet centered at UD

(results for UD=1.29 eV and 2 eV are shown as blue and orange curves,

respectively). However, calculations performed on rings with N=4 (dashed

curves) and 6 (continuous curves) suggest this being a finite size effect, the

splitting appreciably reducing while increasing N .

Figure 2.17: Intra and intermolecular charge transfer effects on the oscillator

strength in the D+•-π-R− stack. Oscillator strength vs transition energy (in

eV) along x axis (upper panels) and z axis (lower panels) for rings with N=4

(panels a and c) and 6 (panels b and d). Black and red curves are obtained

for 2z=-0.8 eV and -1.2 eV, respectively. Other parameters: t=0.05 eV,

τ=0.1 eV, UD=1.29 eV.

Switching on the D-π-R• intramolecular interaction (τ=0.1 eV), the en-
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ergy dependence of the oscillator strength calculated for two different 2z

values and along two different polarizations (z and x axes) is reported in

Fig.2.17 for rings with N=4 (left panels) and 6 (right panels). In this pa-

rameter regime, absorption spectra become more complex, with signatures

coming from both intra and intermolecular charge transfer degrees of free-

dom.

Focusing on the multiplets shown in panels c and d for two different 2z

values, the Hubbard exciton (D2+-D) signal is visible as a doublet at ∼ UD.

At energy ∼ |2z|, another band, split into two peaks, can be associated to

the intramolecular charge transfer process as also suggested by the spectra

calculated using an electric field polarized along the molecular bond (panels

a and b).

Figure 2.18: The effect of an increasing t hopping integral on the intramolec-

ular charge transfer signal in an ionic ring withN=4. In particular, oscillator

strength vs energy in eV, along the x axis (left panel) and the z axis (right

panel) calculated for three different values of t. Parameters used: 2z=-1.2

eV, τ=0.1 eV. In the left panel, UD=1.29 eV. In the right panel, UD=0.

In Fig.2.18, the effect of increasing the t hopping integral on the in-

tramolecular charge transfer signal is shown. Normally to the stack axis (left

panel), slight changes in the intermolecular hopping probability strongly af-

fect the band shape and for t=0.03 eV (green curve) the IET peak is split

into a doublet. A further increment in the electronic kinetic energy along

the stack, t=0.05 eV (red curve), brings back to the complex signal reported

as a red curve in Fig.2.17, panel a. On the other hand, looking along the
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stack (right panel) and putting to zero UD, the weak IET peak intensity

gradually increases while increasing t. Switching on UD, the red curve gains

intensity and becomes that reported in Fig.2.17, panel c.

Figure 2.19: The effect of UD on the polarized oscillator strength within an

ionic ring with N=4. Results for UD=1.29 eV (dashed line) and UD=2 eV

(continuous line) along the x axis (left panel) and the z axis (right panel).

Same other parameters as in Fig.2.17.

Finally, the complex spectrum reported for 2z=-1.2 eV in Fig.2.17, panel

c, can be made more clear by changing the UD value, in order to avoid all the

bands falling in the same spectral region; for example, setting UD=2 eV, the

Hubbard exciton signal is moved to a different energy region respect to the

IET, whose intensity is strongly decreased respect to the case with a lower

UD value (Fig.2.19, right panel). Moreover, looking along the dyad bond

direction, changing UD causes a slight change in the band shape (Fig.2.19,

left panel).

2.2.2.2 Neutral MPTTF-PTM chains

In analogy with the ionic chain, making several (4 or 6) neutral D-π-R•

molecules mutually interacting (i.e., setting t=0.05 eV), a neutral stack is

obtained. Setting τ=0 and UD=1.29 eV, the oscillator strength along the

stack axis is zero, being all the D sites completely filled, with no possibility

of intermolecular hopping. Switching on the intramolecular hopping (i.e.,

τ 6= 0), the situation along x and z axes completely changes.

If t is small compared to 2z, the problem can be treated perturbatively.
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Figure 2.20: Sketch of the basis functions relevant to the neutral D-π-R•

ring with N=4 (spin degeneracy is neglected). Black dot: one electron;

cross: two electrons.

The neutral stack electronic ground-state is mainly represented by a config-

uration where all the donor sites are doubly occupied and all the acceptor

sites are singly occupied. This neutral configuration is called |N〉 in Fig.2.20.

Because of τ hopping integral, |N〉 is perturbed by partially ionic configu-

rations, generated through both intra and intermolecular charge transfer

processes; for a ring with N=4, there are four possible partially ionic degen-

erate configurations, namely |Zi〉, for i=1,..., 4, (and, of course, for each of

them, their translational equivalent version), that are mixed by t (Fig.2.20).

The stack Hamiltonian in Eq.2.26 written on the reduced 5-fold Hilbert

space thus reads:

ĤN=4
2z>0 =



0 −
√

2τ 0 0 0

−
√

2τ 2z −t 0 −t
0 −t 2z −t 0

0 0 −t 2z −t
0 −t 0 −t 2z


. (2.32)
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Diagonalizing the highlighted 4×4 block spanned by |Zi〉 functions, the

Hamiltonian becomes:

Ĥ ′N=4
2z>0 =



0 −τ/
√

2 −τ/
√

2 −τ/
√

2 −τ/
√

2

−τ/
√

2 2z − 2t 0 0 0

−τ/
√

2 0 2z 0 0

−τ/
√

2 0 0 2z 0

−τ/
√

2 0 0 0 2z + 2t


. (2.33)

Expanding the basis functions spanning Eq.2.33 up to the first order in τ ,

transition dipole moments along x and z directions can be estimated. In

particular, transitions towards the two degenerate states at ∼2z are allowed

along both x and z directions, whereas states at ∼ 2z ± 2t have a finite

oscillator strength only along the x axis. Consequently, in a ring with N=4,

a triplet, with ∼ 2t peak separation, should be visible along the D-π-R•

bond, while a single band should appear using an electric field polarized

along the stack. Indeed, this is exactly the situation found in Figure 2.21,

left panels, where, along the x axis, the band at 2z is splitted into three

peaks separated by an energy ∼ 2t (panel a), whereas, looking along the

stacking direction, a single peak is centered at 2z energy (panel c).

Analogously, for a ring with N=6, a reduced 7-fold Hilbert space can be

defined, with the stack Hamiltonian reading:

ĤN=6
2z>0 =



0 −
√

3τ 0 0 0 0 0

−
√

3τ 2z −t 0 0 0 −t
0 −t 2z −t 0 0 0

0 0 −t 2z −t 0 0

0 0 0 −t 2z −t 0

0 0 0 0 −t 2z −t
0 −t 0 0 0 −t 2z


. (2.34)

Diagonalization of the highlighted 6×6 block spanned by |Zi〉, for i=1,..., 6,
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Figure 2.21: Neutral D-π-R• ring with N=4 (left panels) and 6 (right pan-

els). Oscillator strength vs transition energy (in eV) calculated along x

(panels a and b) and z axes (panels c and d), for 2z=0.4 eV (black curve)

and 1.2 eV (red curve). Other parameters are those used in Fig.2.17.

leads to the following Hamiltonian:

Ĥ ′N=6
2z>0 =



0 −τ/
√

2 τ
√

3/2 −τ/2 −τ
√

3/2 −τ/2 −τ/
√

2

−τ/
√

2 2z−2t 0 0 0 0 0

τ
√

3/2 0 2z−t 0 0 0 0

−τ/2 0 0 2z−t 0 0 0

−τ
√

3/2 0 0 0 2z+t 0 0

−τ/2 0 0 0 0 2z+t 0

−τ/
√

2 0 0 0 0 0 2z+2t


.

The doublet in Fig.2.21, panel b, is a doublet of doublets (indeed, a shoulder

for both peaks can be perceived) and is mainly due to the transition towards

the two couples of doubly degenerate states (at energies ∼ 2z ± t) as well

as towards the two states at ∼ 2z ± 2t energies. On the other hand, the

two peaks separated by ∼2t energy in panel d, correspond to the transitions
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towards the two couples of degenerate states. Of course, if t becomes too big

with respect to 2z, the perturbative treatment breaks down and the spectra

become more complex.

2.2.2.3 The effect of long-range electrostatic interactions

The stack model Hamiltonian in Eq.2.26 can be extended in order to account

for long-range Coulomb interactions:[30, 47]

Ĥ(V ) = Ĥstack + V
∑
i

ρ̂i,Dρ̂i,R, (2.35)

where V is the interaction strength, the sum runs over the N stack molecules

and only interactions between D and R sites residing on the same dyad are

accounted for (see sketch in Fig.2.22, panel a).

For the sake of simplicity and being MPTTF-PTM segregated stack

(Fig.2.3, panel b) a neutral CT crystal, [132] the effect of electrostatic in-

teractions on the polarized oscillator strength will be addressed only within

neutral (2z >0) stacks.

Looking at Eq.2.35, it is clear that function |Z1〉 in Fig.2.20 is indeed

lower in energy respect to the other three partially ionic diagrams; as a

result, Eq.2.32 can be rewritten as:

ĤN=4
2z>0(V ) =



0 −
√

2τ 0 0 0

−
√

2τ 2z − V −t 0 −t
0 −t 2z −t 0

0 0 −t 2z −t
0 −t 0 −t 2z


. (2.36)

Mixing the degenerate partially ionic basis functions spanning the 3×3 high-

lighted block, the matrix becomes:

Ĥ ′N=4
2z>0 (V ) =



0 −
√

2τ 0 0 0

−
√

2τ 2z − V −t 0 t

0 −t 2z − t
√

2 0 0

0 0 0 2z 0

0 t 0 0 2z + t
√

2


. (2.37)

If off-diagonal terms in Eq.2.37 are small with respect to the diagonal ones,

using a perturbative approach, the basis states can be expanded up to the
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Figure 2.22: Intra and intermolecular electrostatic interactions affecting the

oscillator strength in a D-π-R• neutral ring with N=4. (a) Polarized os-

cillator strength calculated for an intramolecular electrostatic interaction

V=0.5 eV (see sketch on the left), for 2z=0.4 eV (black curve) and 1.2 eV

(red curve). (b) Effect of two different long-range electrostatic interactions,

V and V ′ (see sketch on the left), on the polarized oscillator strength. Re-

sults shown for 2z=1.2 eV and V=0.5 eV, setting V ′=0.6 eV (red curve)

and 0.75 eV (black curve). In both panels a and b, 2z is rescaled to 2z+V .

Other parameters: t=0.05 eV, τ=0.1 eV, UD=1.29 eV.

first order in t and τ and the relevant transition dipole moments along x

and z axes can be calculated.

Calculated polarized oscillator strengths are shown in Fig.2.22, panel a.

Because of V , the x-polarized triplet centered at 2z reported in Fig.2.21,

panel a, is now reduced to a single peak corresponding to a localized IET

process. This is also confirmed by the oscillator strength calculated along

the stack, where a very weak signal is observed at ∼ 2z + V . In order

to make the exciton more delocalized along the chain, one can introduce a

further interaction term, V ′
∑

i ρ̂i,Rρ̂i+1,D, between R and D units belonging

to adjacent dyads as reported in the sketch in Fig.2.22, panel b. In the same

panel, polarized oscillator strengths are shown for two different values of
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Figure 2.23: Long-range Coulomb interactions using DFT electrostatic po-

tential (ESP) charges and comparison with the experimental data from

Ref.[132]. (MPTTF-PTM)2 dimer in the crystallographic geometry (panel

a), together with D (panel b) and R (panel c) fragments used to estimate

long-range electrostatic interactions (atom color legend: sulfur in yellow,

carbon in grey, chlorine in green, nitrogen in blue). Calculated oscilla-

tor strength (black curve) together with experimental polarized absorption

spectra (red curve) in panels d and e. Notice the logarithmic wave number

scale. Calculation done for a MPTTF-PTM ring with N=4, using long-

range electrostatic interactions in Tab.2.2. Other parameters: t=0.05 eV,

τ=0.1 eV, UD=1.29eV, 2z=1.3 eV. UD is rescaled to UD + VDj,Dj+1.

V ′, while keeping fixed V and 2z values. The strong peak associated with

the localized exciton is still visible along the x direction, together with a

lower energy weaker band that gets intensity along the stack axis too and

that can be associated with the delocalized excitation. Indeed, the modulus

of the complex quantity Z in Eq.2.20 estimated on the stack ground state

moves from ∼0.72 (V ′=0) to ∼0.4 (V ′=0.6 eV), the electrons becoming more

delocalized along the chain.

Furthermore, using electrostatic potential (ESP) charges calculated at

DFT level ((U)CAM-B3LYP/6-31G* using GAUSSIAN09 package [151]) for

a zwitterionic (MPTTF+•-PTM−)2 dimer in the crystallographic geometry

(Fig.2.23, panel a), it was possible to give a reliable estimate to long-range
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VDj,Dj+1 VDj,Rj+1 VRj,Dj+1 VRj,Rj+1 VDj,Rj VDj+1,Rj+1

1.544 -1.256 -1.223 0.414 -0.782 -0.777

Table 2.2: Long-range electrostatic interaction energies between D and R

units, as defined in Fig.2.23, panels b and c. Calculation done using ESP

charges obtained at DFT level (functional (U)CAM-B3LYP, basis set 6-

31G*) for the dimer crystallographic geometry. All the values are in eV.

electrostatic interactions acting along the stack. To this end, each dyad

was divided into two parts, D and R, and the relevant electrostatic inter-

actions between the resulting four pieces forming the aforementioned dimer

were calculated. Results are reported in Table 2.2, while a sketch of D and

R parts entering the calculation is shown in Fig.2.23, panels b and c. In

order to get the oscillator strengths shown in Figure 2.23, panels d and e,

each long-range electrostatic interaction in Table 2.2 was divided by the di-

electric constant due to core electrons (∼ 2 for CT crystals [111]). Results

are superimposed onto the relevant experimental absorption spectra from

Ref.[132]. We approximately match the experimental spectra, the peaks ob-

served along the two polarizations being due to a complex interplay between

both intra and intermolecular charge transfer degrees of freedom. However,

additional experimental work is required in order to draw some definitive

conclusion.

2.3 Conclusions

The interplay between intra and intermolecular charge transfer processes of-

fers an unprecedented opportunity to further extend the already wide range

of properties of functional molecular materials, thus paving the way for

multifunctional systems whose structure can be carefully controlled through

modern synthetic procedures.

The first part of the Chapter was fully dedicated to the theoretical mod-

eling of a novel mixed stack CT crystal. Crucially, the system consists in
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the quasi monodimensional ...DADADA... mixed stack motif, each D site

being decorated, through a conjugated π-bridge, with an organic radical, R•.

Consequently, CT degrees of freedom create delocalized electrons along one

dimension, thus recovering the usual mixed stack physics. In particular, N

and I phases in Fig.2.6 are those typically observed within mixed stack CT

crystals, the I phase being unstable towards dimerization (Fig.2.13, panel

b) and leading to ferroelectric behavior (Fig.2.14, right panel).

Because of IET, a third new phase emerges (Z in Fig.2.6), presenting

singly occupied D sites together with doubly occupied R sites, while leaving

A sites empty. Combining IET and CT degrees of freedom, the ground

state of the I phase is ferrimagnetic in nature. Using realistic parameters,

the ferrimagnetic order is stable up to ambient temperature in a wide region

of the I phase. Lattice dimerization weakens the magnetic order, without

fully destroying it. As a result, ferrimagnetic and ferroelectric orders coexist

in a finite region of the phase diagram (green area in Fig.2.13, panel c), thus

making the decorated mixed stack studied in this work the first (potentially)

multifferoic organic material.

The second part of the Chapter was fully devoted to the calculation of

optical spectra within a decorated segregated stack CT crystal. In particu-

lar, stimulated by some recent experimental data on the MPTTF-PTM CT

crystal, [132] a model to describe a stack of D-π-R• molecules was presented

and polarized optical spectra were calculated.

Quite surprisingly, weak intermolecular interactions (t is as small as 50

meV in MPTTF-PTM segregated CT crystal) are able to induce remark-

able effects on the electronic spectra along both CT and IET directions.

More precisely, for neutral stacks (2z>0) large effects are observed in the

IET region (i.e., for energies ∼ 2z) for both polarizations (Fig.2.21). The

apparently complex physics is well understood in terms of N+1 essential

states, with N being the number of D-π-R• dyads forming the chain. On

the other hand, considering ionic chains (2z<0), the IET band at ∼ |2z|
comes with the signature of the Hubbard exciton at ∼UD (Fig.2.17). Here,

IET and CT states are strongly intertwined with Hubbard excitonic states,

thus making a description in terms of a few essential states difficult. Long-

range electrostatic interactions were introduced in the model, their effect

being investigated within neutral chains (Fig.2.22). In particular, using
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ESP charges obtained at DFT level, calculated spectra reasonably matching

MPTTF-PTM experimental ones were obtained (Fig.2.23).





Chapter 3

Ultrafast modulation of

electronic spectra

The recent development of multiple ultrafast pulse techniques paved the way

for the artificial modulation of material properties, thus leading to a direct

control of spin, charge, orbital and lattice degrees of freedom.[50, 51] Exotic

metastable phases were created upon ultrafast photoexcitation in both in-

organic and organic strongly correlated systems and the resulting dynamics

was followed in real time. Finely tuned pulses in the mid-infrared (mid-IR)

and terahertz (THz) frequency regions [152, 153, 154, 155] were used to selec-

tively excite molecular and lattice modes, affecting fundamental interactions

as well as material macroscopic properties. Along these lines, using ultra-

fast strong THz pulses, a percolative metallicity was induced in VO2 Mott

insulator, [156, 157] whereas a rearrangement of the magnetic structure was

observed in TbMnO3 [158] and TmFeO3 [159] perovskites. On the organic

side, the dynamics of the photoinduced neutral-ionic transition (PINIT) in

TTF-CA mixed stack CT crystal, as induced by an optical pump pulse with

a photon energy equal to ∼0.6 eV, was detected with a time-resolution of

∼20 fs.[160] Moreover, ultrafast control of the electric polarization in TTF-

CA ionic phase [161] as well as a paraelectric-to-ferroelectric transition [162]

were achieved by THz modulation of the dimerization (Peierls) mode. In this

context, both electron-vibration (e-mv) and electron-lattice (e-l) couplings

play a prominent role in driving photoinduced phase transitions. Ultra-

fast spectroscopic techniques provide an unprecedented opportunity to test
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model Hamiltonians traditionally used to describe coupled electron-nuclear

physics within strongly correlated electronic systems.

Recently, Kaiser and coworkers [56, 57] carried out ultrafast mid-infrared

pump near-infrared probe experiments on the CT crystal ET-F2TCNQ (bis

(ethylenedithio) tetrathiafulvalene 2,5-difluorotetracyanoquinodimethane).

Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, shortly ET) is an or-

ganic electron donor, D, mainly known as the fundamental constituent of

the so-called “quasi-two-dimensional (2-D) organic superconductors”, a fam-

ily of CT salts typically with composition ET2X, where X is a monovalent

electron acceptor (A) anion. In 1978, Mizuno and coworkers first prepared

Figure 3.1: (a) Sketch of the molecular structure of ET molecule; labels

along the axes refer to relevant irreducible representations in the D2 point

group.[163] (b) Crystallographic structure of ET-F2TCNQ segregated stack

CT crystal along a crystallographic axis (sulfur yellow, carbon grey, fluorine

green, nitrogen blue). (c) Sketch of the ET+• monodimensional stack inter-

acting with the mid-IR pump pulse used in Refs.[56, 57]. Red arrows mark

ET+• ring deformation as induced by the pump pulse.

the ET-TCNQ salt, performing conductivity measurements on compressed

pellets of the compound [164]. In 1986, Mori and Inokuchi found two poly-

morphs: a segregated-stack, highly conducting form [165] and a low conduct-

ing, mixed stack form [166]. In 1997, Hasegawa and coworkers reported the
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crystal structure of the segregated-stack ET-F2TCNQ [167]. In this system

ET is the electron donor, D (Fig.3.1, panel a), while F2TCNQ is the electron

acceptor, A, and the D-to-A CT is complete, thus leading to a segregated

stack of fully charged ET+• molecules (Fig.3.1, panel b). Even if F2TCNQ

favors monodimensional (1-D) stacking, Peierls and spin-Peierls instabilities

are removed by ET tendency to form side-by-side interactions in a 2-D pat-

tern. Indeed, this leads to the formation of a uniform 1-D Mott ET+• chain

surrounded by strongly localized unpaired spins on A units. An intrastack

CT absorption band, related to intermolecular electron hopping is observed

at ∼5500 cm−1 for an electric vector parallel to a crystallographic stacking

axis [167]. In Refs.[56, 57], an ultrashort mid-IR pump pulse (in the 900-

Figure 3.2: (a) Experimental time-evolution of the frequency integrated

reflectivity signal for the ET-F2TCNQ CT crystal at a pump fluence of

0.9 mJ/cm2 at 298 K (continuous green curve). Double exponential fit is

overlapped (dashed black curve). Probe pulse deconvolved signal is also

shown (continuous grey curve). Relevant Fourier transform is reported in

the inset, peaking at ∼2390 cm−1. (b) Two-dimensional map showing the

experimental reflectivity signal as a function of both time and frequency.

(c) Time-dependence of the Hubbard U/t term as obtained from fit. Data

adapted from Ref.[57].
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1100 cm−1 frequency range) polarized normally to the ET+• chains, is used

to selectively drive a non-totally symmetric (non-ts) ET+• ring-deformation

(Fig.3.1, panel c). While the molecules are still vibrating, a second weaker

ultrafast pulse (probe pulse), polarized along the stack axis, interrogates

the system in the near-IR (4000-7000 cm−1) spectral region. As a result,

a transient change of the intrastack CT band is observed, with ultrafast

(coherent) oscillations at twice the frequency of the driven molecular mode

(Fig.3.2, panels a and b).

In the first part of this Chapter, a theoretical description of the pump-

probe experiment reported in Refs.[56, 57] is presented. Using quantum

cell models parametrized against quantum chemical calculations, the cou-

pled electron-nuclear dynamics of the system, as driven by the mid-IR

pump pulse, is attacked by numerical integration of the time-dependent

Schrödinger equation. The model Hamiltonian for ET-F2TCNQ CT crystal

is described and validated against quantum chemical calculations in Sect.3.1.

Considering the smallest possible system fragment, i.e. an (ET+•)2 dimer,

the problem is attacked in Sect.3.2 in a fully non-adiabatic way and adiabat-

ically in Sect.3.3. The relevance of a dimer model in describing ET-F2TCNQ

physics is discussed in Sect.3.4. Having validated the model, in the second

part of the Chapter (Sect.3.5), we propose a novel two-phonon pump-probe

experiment on TTF-CA CT crystal and preliminary results are presented.

3.1 The model

In ET-F2TCNQ crystal, the ET+• molecules form a 1-D strongly correlated

electronic system, whose physics is described in terms of a 1-D Hubbard

model extended to account for nearest-neighbor (n-n) electrostatic interac-

tions:

Ĥel = −t
∑
i,σ

(ĉ†i,σ ĉi+1,σ +H.c.) + U
∑
i

n̂i,↑n̂i,↓ + V
∑
i

ρ̂iρ̂i+1, (3.1)

where ĉ
(†)
i,σ is the fermionic operator that annihilates (creates) an electron

on the i-th ET molecular site with spin σ, while n̂i,↑(↓) is the fermionic

number operator counting the number of electrons with spin up (down)

on the i-th chain site. Moreover, ρ̂i = 2 − n̂i is the ET ionicity operator.
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Looking at the right-hand side of Eq.3.1, the first term describes the electron

delocalization along the stack, whereas the second term accounts for on-site

electron-electron repulsion, U . Intermolecular electrostatic interactions are

described by the third term, V . Focusing on the ET frontier orbital of a

stack with N sites, the problem amounts to distributing N electrons on N

sites, thus leading to a half filled Hubbard chain.

Estimates of model parameters entering Eq.3.1 were already reported in

the literature.[56, 57, 168] The accepted estimate for the hopping integral,

t=0.04 eV, agrees with what we obtain at the ZINDO level, using the “energy

splitting in the dimer” model on the (ET+•)2 dimer in the crystallographic

geometry [169].

The Hubbard U can be estimated as the difference between the ionization

potential and the electronic affinity of ET+• molecule, making use of the

molecular total energies obtained from quantum chemistry methods. Indeed,

Hubbard U is the energy relevant to the intrastack CT process, that is the

Coulomb repulsive energy felt by two electrons both staying in the highest

occupied molecular orbital (i.e., the HOMO) [170]:

U = E(ET )− 2E(ET+•) + E(ET 2+), (3.2)

where E is the ground state ET total energy in the different oxidation

states. In particular, E(ET+•)=-97174.78329 eV was obtained after geom-

etry optimization of ET+• in gas phase at DFT level ((U)B3LYP/6-31G*,

using GAUSSIAN09 package [151]). Starting from this optimized geometry,

E(ET )=-97180.47697 eV and E(ET 2+)=-97165.02945 eV were obtained by

adding and removing one electron, respectively, thus leading to U=4.06 eV,

in good agreement with the literature [170, 171].

In Eq.3.1, all non-local electrostatic interactions are collapsed into the

effective nearest-neighbor V interaction. Therefore, we cannot obtain a re-

liable estimate of V from quantum chemical calculations and fix V in order

to best fit the experimental data. Since for the (ET+•)2 dimer, discussed

in the following, only U − V enters the Hamiltonian, U − V=0.666 eV is

used in order to correctly reproduce the experimentally observed frequency

of the CT band, ∼0.68 eV.

In the pump-probe experiment reported in Refs.[56, 57], the pump pulse,

polarized normally to the a crystallographic axis, covers the 900-1100 cm−1
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mode ωv η2 ∂2U
∂Q2

∂2∆
∂Q2

∂2V
∂Q2 Tb Tc

(symmetry) cm−1 (D/Å)2amu−1 (meV) (meV) (meV)

40 (b2) 902 0.2281 5.4 7.3 0.1 0.28 0.07

41 (b3) 918 0.1611 -0.5 1.7 0.0 0.72 0.01

42 (b2) 927 0.0173 1.0 2.6 0.0 0.28 0.07

43 (b1) 958 0.2974 -0.6 0.7 0.1 0.0 0.90

45 (b1) 1028 0.1634 0.2 -0.5 0.0 0.0 0.90

47 (b3) 1028 0.0017 -2.2 9.5 0.0 0.72 0.01

48 (b2) 1031 0.7663 -3.0 10.3 0.2 0.28 0.07

49 (b3) 1063 0.0060 4.1 6.3 0.0 0.72 0.01

Table 3.1: Selected results for ET+• vibrational modes as obtained from

DFT calculations ((U)B3LYP/6-31G*) in gas phase. Only IR-active modes

in the 900-1100 cm−1 pump pulse spectral range are shown. For each nor-

mal mode (symmetry label in parenthesis), it is shown scaled vibrational

frequency, ωv, squared molecular dipole moment derivative with respect

to the vibrational coordinate, η2, and relevant electron-molecular vibration

quadratic coupling constants. Moreover, squared director cosines relevant

to b and c crystallographic axes are reported in the last two columns.

spectral range. The pump beam excites non-totally symmetric molecular

vibrations (modes transforming as b1, b2 or b3 irreducible representations in

the D2 molecular symmetry [163]) and specifically, it excites the in-phase

motion of all molecules (zone-center vibrational modes). Accordingly, we

will only consider quadratic modulations of the energies, since linear modu-

lations are allowed only for symmetric modes.

Quantum chemistry methods (DFT) are used to estimate the relevant

electron-molecular vibration coupling strengths. Starting from ET+• gas

phase optimized geometry ((U)B3LYP/6-31G*), a vibrational frequency cal-

culation is performed to obtain molecular normal modes. A selected series of

results is shown in Tab.3.1, whereas the complete set is shown in Appendix

D. Vibrational frequencies, ωv, are rescaled using scaling factors 0.9679 and

1.01 for frequencies above and below 1300 cm−1, respectively [163]. As far
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as Hubbard U is concerned, the coupling constant reads:

βα =
∂2U

∂Q2
α

∣∣∣∣∣
0

=
U(Qα) + U(−Qα)− 2U(0)

Q2
α

, (3.3)

where Qα is the dimensionless normal coordinate associated with the α-th

molecular mode, while U(Qα) is obtained using Eq.3.2 for the deformed

geometry. Results are reported in Tab.3.1.

Since all ET+• molecules vibrate in-phase, the modulation of the on-site

energy is irrelevant (the total number of electrons being constant). How-

ever, for the sake of completeness, we have calculated the relevant coupling

constants by calculating the modulation of the on-site energy, ∂2∆/∂Q2
α,

where on-site energy is estimated from DFT calculations as:

∆ = E(ET+•)− E(ET 2+). (3.4)

Results are shown in Tab.3.1.

A rough estimate of the modulation of V can be obtained from the calcu-

lated IR intensities. Indeed, in the dipolar approximation the intermolecular

interaction is proportional to the product of the molecular dipole moments,

whose modulation with the vibrational modes is related to the IR intensity.

We obtain:

∂2V

∂Q2
α

=
1

4πε0r3

~
2ωα

η2
α, (3.5)

where r=3.59Å is the intrastack ET-ET distance [167], while ηα is ET

ground state electric dipole moment derivative with respect to the α-th

normal mode, its squared value being proportional to the IR intensity of

the vibrational mode (third column in Tab.3.1). Results shown in Tab.3.1

correspond to small values, suggesting a negligible role of V modulation.

In the following, in agreement with Refs.[56, 57], we will only account

for the quadratic U modulation and we will introduce a single coupled mode

per molecule, so that the model Hamiltonian reads:

Ĥ = Ĥel +
~ωv

4

∑
i

(P̂ 2
i + Q̂2

i ) + β
∑
i

Q̂2
i n̂i,↑n̂i,↓, (3.6)

where Q̂i = (â†i + âi) and P̂i = i(â†i − âi) are the dimensionless vibrational

coordinate and conjugated momentum relevant to the i-th molecular site.
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To calculate optical spectra, we need explicit expressions for the rele-

vant components of the dipole operator. Intrastack CT excitation, polarized

along the a stack axis, is described by the dipole operator:

µ̂a =
∑
i

in̂i, (3.7)

where both the electronic charge and the lattice constant are set to one.

The pump beam, polarized perpendicular to the a axis, excites localized

molecular vibrations, the relevant component of the dipole moment being:

µ̂IR = η
∑
i

Q̂i, (3.8)

where squared η values are reported in Tab.3.1.

The director cosine matrix, T, reads:

T =


ax ay az

bx by bz

cx cy cz

 =


0.528 0.81 0.21

0.846 0.532 0.0

0.1 0.256 0.95

 , (3.9)

where molecular axes x, y, z and crystallographic directions a, b, c were de-

fined in Fig.3.1, panels a and b, respectively. For the sake of clarity, cz is

the cosine of the angle between the c crystallographic axis and z ET direc-

tion. Squared cz value gives the fraction of ET+• molecules excited along z

molecular direction, having pumped along c crystallographic axis. Looking

at the relative IR intensities in Tab.3.1, third column, and at the squared

director cosines shown in the seventh and eighth columns, the pump beam

will mostly excite mode number 48. Consequently, in the following, we will

use ωv=1031 cm−1 and β=-3 meV, as relevant to mode 48.

3.2 Non-adiabatic results

The very large U/t ratio that characterizes ET+• stacks in ET-F2TCNQ

crystals, suggests a strongly localized nature of the electronic structure. As

it will be validated below, in this hypothesis a dimer (ET+•)2 model is

expected to reliably describe relevant excitations. With this choice, we are

able to present fully non-adiabatic calculations of optical spectra.

Three singlet basis states are enough to describe optical spectra of a

(ET+•)2 dimer: |_〉, |x0〉, |0x〉, where x and 0 mark a doubly occupied ET
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site and an empty ET2+ site, respectively, whereas |_〉 = 2−1/2(ĉ†1,↑ĉ
†
2,↓ −

ĉ†1,↓ĉ
†
2,↑)|00〉 is the singlet valence bond (VB) state. Introducing in-phase

and out-of-phase vibrational coordinates, Q̂± = 2−1/2(Q̂1 ± Q̂2), and their

conjugated momenta, P̂±, Eq.3.6 can be rewritten for the (ET+•)2 dimer as:

Ĥdim = −t
∑
σ

(ĉ†1,σ ĉ2,σ +H.c.) + Ueff (n̂1,↑n̂1,↓ + n̂2,↑n̂2,↓)

+
~ωv

4
(P̂ 2

+ + P̂ 2
− + Q̂2

+ + Q̂2
−)

+β
Q̂2

+ + Q̂2
−

2
(n̂1,↑n̂1,↓ + n̂2,↑n̂2,↓)

+βQ̂+Q̂−(n̂1,↑n̂1,↓ − n̂2,↑n̂2,↓), (3.10)

where Ueff = U − V and σ runs over spin polarizations. Actually, only the

in-phase motion, Q̂+, is driven by the pump beam, whereas the out-of-phase

combination, Q̂−, starts moving because of the coupling to Q̂+ through the

electronic system, as described by the last term in Eq.3.10.

Following Chapter 1, in order to treat on an equal footing both electrons

and nuclei, a fully non-adiabatic approach to the (ET+•)2 dimer Hamiltonian

in Eq.3.10 is adopted. More precisely, the non-adiabatic approach writes the

system Hamiltonian on the vector space spanned by the direct product of

the three electronic states times the eigenstates of Q̂+ and Q̂− harmonic

oscillators. The harmonic oscillators basis, being infinite, are truncated to

m states, with m large enough in order to reach convergence on quantities

of interest (typically, m=10 is set for both Q̂+ and Q̂−, thus reaching a total

dimension of 300). The exact diagonalization of the Hamiltonian gives the

numerically exact non-adiabatic (i.e. vibronic) eigenstates describing the

coupled electron-nuclear motion.

3.2.1 Static and dynamic properties

We start the discussion with a preliminary analysis of the effect of the mid-

IR pump beam on the absorption spectrum. The pump pulse is expected to

populate the first few vibrational eigenstates of Q̂+. In order to identify the

first vibrational eigenstate, |v1〉, among the vibronic eigenstates obtained

from the diagonalization of the non-adiabatic Hamiltonian, we search for

the excited state, |E〉, with the largest transition dipole moment from the
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ground state, |〈G|µ̂IR|E〉|2. The second vibrational eigenstate, |v2〉, is found

looking for the state |E′〉 with the largest |〈v1|µ̂IR|E′〉|2 and so on.

Figure 3.3: Optical CT spectra calculated for a (ET+•)2 dimer with ωv=1031

cm−1 and β=-3 meV (left panels) and -27 meV (right panels). Spectra

calculated from the ground state, |G〉, and from |v1〉 and |v2〉 are shown in

upper, middle and bottom panels, respectively. The dashed lines show the

same spectra calculated for β=0 (i.e., for no electron-vibration coupling).

In Fig.3.3, we show the absoprtion spectra calculated for the (ET+•)2

dimer starting from the ground state (|G〉), from the first and second vi-

brationally excited states (|v1〉 and |v2〉, respectively). Results obtained in

the absence of e-mv coupling (β=0) are compared with those obtained for

a realistic value of the coupling (β=-3 meV) and for an unphysically large

coupling (β=-27 meV).

In the hypothesis that the mid-IR pulse populates |v1〉 and |v2〉, it is

clear that (as expected) the pump-pulse will not affect CT spectra of the

system with no e-mv coupling. On the other hand, a progressive red-shift

of the band is observed upon populating |v1〉 and |v2〉, the effect increasing

with the strength of the coupling. For positive β values a blue-shift of the

band is observed (results not shown). The experimentally observed transient

∼70 cm−1 red-shift of the absorption band [57] is reproduced in Fig.3.3, left
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panels, where parameters relevant to ET normal mode number 48 were

used, accounting for realistic excitations up to |v2〉. We observe that the

satellite peaks reported in Ref.[56] in the 3000-4000 cm−1 spectral range

are not reproduced by our calculations unless unrealistically large |β| values

are adopted, at least one order of magnitude larger than those estimated

through DFT calculations (Fig.3.3, right panels).

Having discussed the effect of the population of vibrational states on

optical spectra, we now turn attention to the simulation of the pump-probe

experiment. To this aim, the time-dependent pump pulse electric field is

explicitly introduced into Eq.3.10:

Ĥ(t) = Ĥdim − µ̂IRF (t), (3.11)

where F (t) is the time-dependent electric field associated with the pump

pulse. In particular, in order to reproduce the experimental pump beam,

F (t) is defined by a cosine with frequency ωIR=1010 cm−1 convolved with a

Gaussian profile having zero mean and standard deviation σ=100 fs (Fig.3.4,

panels a and b). Consequently, Eq.3.11 can be rewritten as:

Ĥ(t) = Ĥdim −
√

2ηF0cos(ωIRt)e
− t2

σ2 Q̂+, (3.12)

where F0 is the amplitude of the pump pulse electric field.

The time-dependent Schrödinger equation for the electron-nuclear cou-

pled problem is numerically integrated through a fourth-order Runge-Kutta

algorithm, with time step equal to 0.1 fs.[102] The calculated expectation

value of Q̂2
+ in time is reported in Fig.3.4. It shows oscillations at twice

the pump frequency, as shown by the relevant Fourier transform in panel

d (blue filled area). The out-of-phase vibrational motion, Q̂−, being cou-

pled to the pump field only through Q̂+, oscillates at the same frequency,

but with an amplitude four orders of magnitude smaller than that observed

for Q̂2
+ (Fig.3.4, insets in panels c and d), confirming that only zone-center

modes are spectroscopically relevant.

Damped oscillations in the experimental spectra (Fig.3.2, panels a and

b) can be reproduced accounting for some source of energy dissipation.

To this end, following the quantum-classical hybrid approach discussed in

Subsect.1.3.1, a bath of 20 classical particles connected through anharmonic

springs is coupled to the (ET+•)2 dimer. The reservoir potential function
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Figure 3.4: Mid-IR pump pulse driven quantum dynamics of the coupled

electron-vibrational (ET+•)2 system. (a-b) Temporal evolution of the pump

beam electric field and its Fourier transform, respectively. (c-d) Temporal

evolution of 〈Q̂2
+〉 calculated for a non-dissipative (blue line) and a dissi-

pative (red line) driven system, and their Fourier transforms, respectively.

Green curves in the insets in panels c and d show the relevant results for the

out-of-phase mode, 〈Q̂2
−〉, with no friction. (e-f) Time-dependence of 〈Q̂2

+〉
calculated for a driven dissipative system, accounting for the finite tempo-

ral resolution of the probe pulse (FWHM=10 fs) and its Fourier transform,

respectively. Same model parameters as used in Fig.3.3, left panels.

reads:[53]

VB =
~ωb
4

20∑
i=1

(
qi(t)− qi+1(t)

)2
+ V0χ

4
20∑
i=1

(
qi(t)− qi+1(t)

)4
, (3.13)

where qi is the dimensionless coordinate relevant to the i-th classical os-

cillator, its reference vibrational frequency, ωb, set to 60 cm−1. We set

qi(t = 0)=0, ∀i=1,..., 20. Moreover, χ=4.4 is the anharmonicity constant,

whereas V0 is set to 1 eV. Fixed boundary conditions are adopted by intro-

ducing a fixed extra coordinate, q21(t)=0.

The first classical oscillator of the chain is directly connected to the

(ET+•)2 dimer with a coupling strength α=0.16 eV. In particular, the SB
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interaction term reads:

ĤI = −αQ̂+q1(t), (3.14)

where q1(t) is the coordinate of the first classical oscillator. On the other

hand, the five classical oscillators most distant from the quantum system

(i.e., i=16-20) are linked to five different uncorrelated thermostats, their

temperatures being all set equal to 298 K.

Following Eq.1.24, the equation of motion for the i-th classical particle

reads:

~
2ωb

d2qi
dt2

= −∂VB
∂qi

+ α〈Q̂+〉δi,1

+
~

2ωb

(
− γ dqi

dt
+ 2ζ

√
γkbTωb
~∆t

)
δi,j , (3.15)

where the Kronecker delta δi,1 ensures that only the first oscillator of the

chain is directly connected to the (ET+•)2 dimer, thus feeling the average

quantum back reaction. Terms entering the second line of the equation

account for dissipation and Langevin-type thermal fluctuations for oscilla-

tors number j=16-20. In particular, the static friction coefficient, γ, is set

equal to 1015 s−1, while ζ is a Gaussian random variable with unit standard

deviation and zero mean.

As already discussed in Subsect.1.3.1, at each temporal step, Eq.3.15 is

numerically solved for each classical coordinate, qi, using Verlet algorithm.[100,

101] The newly calculated q1(t+∆t) is plugged into Eq.3.14 and fourth-order

Runge-Kutta algorithm is used to propagate in time the (ET+•)2 dimer wave

function.[102] Moreover, the same time step is used for both quantum and

classical dynamics, ∆t=0.1 fs. Relevant results are obtained averaging sev-

eral Langevin trajectories, 741 being the typical number.

The parameters entering the dissipation model were selected to repro-

duce the experimentally observed fast decay of the ultrafast reflectivity os-

cillations (Fig.3.2, panels a and b). Indeed, a careful balance has to be found

between the classical chain anharmonicity, χ, and the system-bath coupling

strength, α, in order to guarantee a fast flow of the pumped energy away

from the quantum system. Moreover, a proper γ value must be chosen in

order to reach the correct canonical equilibrium state.[53]
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The red curve in Fig.3.4, panel c, well reproduces the experimentally

observed coherent reflectivity oscillations in Fig.3.2, panel a. A closer agree-

ment with the experiment is obtained by convolving the red curve with a

Gaussian signal having FWHM=10 fs, thus accounting for the experimental

probe pulse finite temporal resolution.

Figure 3.5: Time evolution of the optical CT spectrum obtained for a dissi-

pative dimer with ωv=1031 cm−1 and β=-3 meV, using a probe pulse with

FWHM=10 fs. Bottom panel: section at 5500 cm−1 (the black line superim-

posed on the color map marks this value) together with its Fourier transform

(shown in the inset). Results obtained averaging 741 Langevin trajectories

for the same model parameters used in Fig.3.3, left panels.

Time-dependence of optical CT spectrum is reported as a color map

in Fig.3.5. In particular, the 3-fold electronic dimer Hamiltonian is diag-

onalized for each 〈Q̂+(t)〉 value and the absorption spectrum is calculated

adopting a Gaussian band shape with HWHM=0.09 eV. Ultrafast oscilla-

tions of the CT band are clearly visible both in the color map and in the

section at 5500 cm−1 (bottom panel) at twice the pump frequency (Fourier

transform of the time-section is shown in the inset). These results nicely
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Figure 3.6: The adiabatic (ET+•)2 dimer. CT transition frequency, squared

transition dipole moment (top panel) and ground state energy (bottom

panel) vs Q+.

match the experimental data in Fig.3.2, panels a and b, without impos-

ing any ad-hoc Hubbard U time-dependence as it was done in Ref.[57] (see

Fig.3.2, panel c).

3.3 Adiabatic results

The fully non-adiabatic approach discussed in the previous Section is com-

putationally intensive and makes the adiabatic ansatz quite appealing. The

dimer Hamiltonian in the adiabatic approximation reads:

Ĥdim(Q+) = Ĥel +
~ωv

4
Q2

+ + β
Q2

+

2
(n̂1,↑n̂1,↓ + n̂2,↑n̂2,↓), (3.16)

where the effect of the out-of-phase nuclear motion, Q−, on the electronic

degrees of freedom was safely neglected and the nuclear kinetic energy was

disregarded in line with the adiabatic approximation. Written on the 3-fold

Hilbert space, Hdim = span{|_〉, |x0〉, |0x〉}, Eq.3.16 reads:

Ĥdim(Q+) =


0 −

√
2t −

√
2t

−
√

2t Ueff (Q+) 0

−
√

2t 0 Ueff (Q+)

+
~ωv

4
Q2

+, (3.17)
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Figure 3.7: Classical Q+ dynamics as induced by the mid-IR pump pulse

(upper left panel) on the ground state potential energy curve, EG, of the

(ET+•)2 dimer. Q2
+(t), convolved with the probe pulse profile (FWHM=10

fs), is shown in the bottom left panel. Corresponding Fourier transforms are

shown in the right panels.

where Ueff (Q+) = U − V + βQ2
+/2. Introducing the two symmetrized CT

states, |±〉 = 2−1/2(|x0〉 ± |0x〉), Eq.3.17 becomes:

Ĥ ′dim(Q+) =


0 −2t 0

−2t Ueff (Q+) 0

0 0 Ueff (Q+)

+
~ωv

4
Q2

+. (3.18)

Diagonalizing the highlighted block, one gets the adiabatic ground state

energy:

EG(Q+) =
1

2

(
Ueff (Q+)−

√
U2
eff (Q+) + 16t2

)
+

~ωv
4
Q2

+. (3.19)

The analytical expressions for the excitation energy, ωCT , and for the squared

transition dipole moment, µ2
CT , read:

ωCT (Q+) =
1

2

(
Ueff (Q+) +

√
U2
eff (Q+) + 16t2

)
, (3.20)

µ2
CT (Q+) =

1

2

(
1−

Ueff (Q+)√
U2
eff (Q+) + 16t2

)
, (3.21)

where the dimensionless transition dipole moment is expressed in e · a=1

units. The three quantities are shown in Fig.3.6 as a function of Q+.
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The Q+-dependent ground state energy in Fig.3.6, bottom panel, rep-

resents the potential energy for Q+ motion. Accordingly, the classical

Q+ dynamics is calculated through numerical integration (Verlet algorithm

[100, 101]) of the differential equation:

d2Q+

dt2
=

ωv
~

(
−
∂EG
∂Q+

+ F (t)

)
− γ

dQ+

dt
, (3.22)

where Q+(t = 0) = 0 and the static friction coefficient γ=1015 s−1 accounts

for the finite lifetime of the vibrational excitation.

Figure 3.8: Time evolution of the optical CT spectrum at 0K, calculated in

the adiabatic limit for the same model parameters as in Fig.3.3, left panels,

and γ=1015 s−1. A section of the map at ω=5500 cm−1 (the black line

superimposed on the color map marks this value) is reported in the bottom

panel, with the relevant Fourier transform shown in the inset. A Gaussian

band shape with HWHM=0.09 eV is assigned to CT transition.

Results from classical dynamics are reported in Fig.3.7 and compare well

with the non-adiabatic ones in Fig.3.4, thus confirming the validity of the

adiabatic approximation. Same conclusions can be drawn while looking at

the time-evolution of the optical CT spectrum in Fig.3.8, being very similar

to the non-adiabatic result (Fig.3.5).
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3.4 Larger ET+• clusters: the wave function local-

ization

Having proved the reliability of the adiabatic approximation, we could treat

larger systems, up to 14 ET+• sites. However, the dimer model is sufficient to

describe the pump-probe experiment reported in Refs.[56, 57] because of the

extremely localized nature of the ET-F2TCNQ system, having Ueff > 16t.

In order to prove this view, the Hamiltonian in Eq.3.1 is written, for U=0.666

Figure 3.9: Ground state wave function delocalization for the model in

Eq.3.1, with U=0.666 eV and V=0. Top panels: wave function delocal-

ization length, λ. Bottom panels: inverse modulus of the complex quantity

Z, as defined in Eq.2.20. All quantities are reported against the inverse

number of chain sites. Left panels show results for t=0.04 eV, as relevant to

ET-F2TCNQ crystal. Right panels show results for a system with a much

larger t=1.1 eV. In the right panels, large finite size effects are seen in terms

of a large difference between N = 4n and N = 4n+ 2 systems.

eV and V=0, on the real-space basis, distributing N electrons on N site

orbitals. Since each ET site can be empty, singly or doubly occupied, the

basis dimension moves from more than 63000 electronic states for Sz=0 and

N=10, to more than 850000 for Sz=0 and N=12.

Due to its extremely sparse nature, the Hamiltonian matrix is stored

in machine memory using the CSR format in the 3-array variation [139]

(see Subsect.2.1.2.3) and diagonalization routines from the ARPACK library

[140] are used to get the fully correlated electronic ground state. Periodic
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boundary conditions are adopted in order to reduce finite size effects. Both

spin and translational (i.e., rotational) symmetries are exploited by working

in the Sz=0 and |~k|=0 sectors.

To study the system wave function delocalization, the complex quan-

tity, Z, defined in Eq.2.20 can be used.[144, 145] In particular, for localized

systems, 1/|Z| → 1 for N → ∞. This is clearly shown in Fig.3.9, lower

left panel, for t=0.04 eV as relevant to ET-F2TCNQ crystal. On the other

hand, results obtained for t=1.1 eV (lower right panel) are not converged,

finite size effects being too large. Along the same lines, the dimensionless

delocalization length defined as λ =
√
−N log |Z|2/(2πn0), with n0 being

the electron average site density, [144, 145] corresponds to a small fraction of

the crystal unit cell, further validating an analysis based on a dimer model.

3.5 2-phonon excitation in TTF-CA

Recently, ultrashort (few picoseconds) THz light pulses were used to drive

out-of-equilibrium a lattice mode in the CT mixed-stack crystal TTF-CA

(Fig.3.10, panel a) [161, 162], observing an ultrafast (coherent) modulation

of the reflectivity signal at twice the pump pulse frequency. In this Section,

we do not discuss these results, rather we design a new experiment.

The physics of TTF-CA crystal is well captured by the modified Hubbard

model in Eq.2.1 extended in order to account for long-range electrostatic

interactions and adiabatically coupled to lattice dimerization (Peierls) mode,

δ, and molecular mode, q.[30, 49, 47] The high correlation limit is typically

adopted, thus sending to infinity both Hubbard U and site energy, ∆, while

keeping finite the difference 2Γ = 2∆-U .[134, 108, 30, 47]

Treating Coulomb long-range interactions at the mean-field level, the

Hamiltonian for a N -sites TTF-CA stack reads:[30]

ĤMF =

(
Γ− V

2
+ q − εcρ

)∑
i

(−1)in̂i

−
∑
i

[1 + (−1)iδ](ĉ†i,σ ĉi+1,σ +H.c.)

+
N

2
εcρ

2 −Nεcρ+N
q2

2εv
+N

δ2

2εd
, (3.23)

where the first line describes site energy modulation as induced by the
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Figure 3.10: Two-phonon excitation in TTF-CA. (a) Molecular structures

of TTF and CA. (b) Ground state potential energy, EGS , as a function of q

and δ, for a neutral (V=2.26) TTF-CA ring with N=8 (contour lines at the

bottom of the plot clearly show the PES having a single minimum, as rele-

vant to the neutral regular stack). Other model parameters: α=1.4, εv=1.8,

εd=0.28, where t hopping integral is taken as the energy unit. (c) Sketch of

the novel pump-probe experiment discussed in this Section. Pumped lattice

dimerization mode (red arrows) puts molecular totally symmetric modes in

motion (light blue arrows).

totally-symmetric molecular coordinate, q, and the electrostatic interac-

tions. Indeed, V is the intrachain nearest-neighbor Coulomb interaction

and εcρ = V (α − 1)ρ, α being the crystal Madelung constant and ρ the

average on-site ionicity. The second line of the Hamiltonian describes the

electron delocalization along the stack, being modulated by the lattice dis-

tortion coordinate, δ. Nuclear as well as electrostatic potential energies

enter the third line of the equation, with εv and εd being the molecular

and the lattice relaxation energies, respectively. The nuclear kinetic energy

is neglected in line with the adiabatic approximation. Model in Eq.3.23
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proved successful in describing ground state as well as excited state TTF-

CA properties.[172, 30, 48, 31, 142, 47]

In this Section, we design the modulation of the CT spectral band in

neutral TTF-CA crystal via ultrafast pumping of the combination bands

observed in the infrared (IR) spectra of TTF-CA.[109] More precisely, an

ultrashort pump beam tuned in the mid-IR frequency region and polarized

along the TTF-CA stack axis is used to drive the lattice dimerization mode,

δ (Fig.3.10, panel c). Indeed, the frequency of the lattice mode falls in the

far-IR spectral region (∼20-50 cm−1 [109, 111]) and it is not in resonance

with the mid-IR pump pulse. Consequently, as soon as the pump pulse

is switched off, the lattice mode equilibrates (off-resonance driven motion).

However, while pumping, because of the strong anharmonicity inherent in

the system, energy starts flowing from δ to the totally symmetric q molecular

coordinate that, being resonant with the pump pulse, is actually put in

motion. Accordingly, a site energy modulation is triggered, leading to a

coherent modulation of the CT band at the frequency of the combination

band. In the following, some preliminary results seem to confirm this idea.

The Hamiltonian in Eq.3.23 is written on the real-space basis for finite

size rings (typically, N=8). In order to reduce the problem size, calculations

are carried out within the Sz=0 spin space, further limiting to the center of

the Brillouin zone. Using the Lanczos algorithm, the Hamiltonian matrix is

diagonalized (typically, asking for the first 20 eigenvalues and eigenvectors)

for different (Γeff , δ) points, where Γeff = Γ− V
2 +q−εcρ. The expectation

value of the ionicity, ρ, is then used to self-consistently get the relevant

potential energy surfaces (PES). The PES in Fig.3.10, panel b, is the ground

state for a neutral (V=2.26) TTF-CA stack, having set α=1.4, εv=1.8,

εd=0.28, with t hopping integral taken as the energy unit [30, 47] (however,

when energy absolute values are nedeed, t is set equal to 0.21 eV, as relevant

to TTF-CA crystal [141, 142]).

Now, let’s focus on the effect of an externally applied electric field. In

Sects.3.2 and 3.3, the driving pump-pulse was polarized normally to the ET

ring plane. Here, on the contrary, we want to apply an electric field polarized

along the TTF-CA ring in order to drive out-of-equilibrium the dimerization

lattice mode, δ. The definition of an electric field parallel to the stack axis

and of the relevant dipole moment operator is a tricky affair for systems
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Figure 3.11: TTF-CA classical nuclear dynamics as induced by a mid-IR

pump pulse polarized along the stack. (a) Time-dependency of the pump

pulse used in the calculations. (c-e) Lattice, δ, and molecular, q, driven

motions, respectively. (b-d-f) Relevant Fourier transforms. Results shown

for a neutral (V=2.26) TTF-CA ring with N=8 at 298 K. Other model

parameters: α=1.4, εv=1.8, εd=0.28, where t hopping integral is taken as

the energy unit.

with periodic boundary conditions [148, 141, 149]. However here, much as

done in Sect.3.3, we just introduce the electric field to drive the lattice mode.

Accordingly, the equations of motion for the classical dynamics of δ and q

coordinates on the ground state PES, EGS(δ, q), read:

d2δ

dt2
=

εd
N
ω2
d

(
−
∂EGS
∂δ

+ F (t)

)
− 1

τd

dδ

dt
, (3.24)

d2q

dt2
= −εv

N
ω2
v

∂EGS
∂q

− 1

τv

dq

dt
, (3.25)

where the oscillator frequencies are set to ωv=1200 cm−1 and ωd=66 cm−1.

We set relevant decay times based on the experimental data reported in

Ref.[160] as τv=650 fs and τd=5.25 ps. The pump pulse profile used in the

simulations, F (t), is shown in Fig.3.11, panel a, together with its Fourier

transform peaking at 950 cm−1 in panel b. In order to calculate partial
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derivatives ∂EGS/∂δ and ∂EGS/∂q, the ground-state PES is first interpo-

lated (bilinear interpolation algorithm) and five-point stencil method is used.

Eqs.3.24 and 3.25 are solved using Verlet algorithm, with time-step ∆t=0.1

fs.

We start from a neutral regular stack, i.e. δ(t = 0) = 0 ∧ δ̇(t = 0) = 0.

Moreover, since the PES minimum (Fig.3.10) is rather flat along q axis, a

thermal (Boltzmann) distribution of q(t = 0) values is considered. As a con-

sequence, several trajectories (typically, 70) starting from slightly different

q values are considered, while we always set q̇(t = 0) = 0. Time-dependent

properties are obtained averaging over the 70 Boltzmann-weighted different

trajectories.

Because of its symmetry, the pulsed electric field, F (t), is coupled to

the dimerization (Peierls) lattice mode, δ, and not to the totally symmetric

molecular vibration, q. Looking at Fig.3.11, panels a and c, we see that

switching on the pump pulse immediately starts δ oscillations at the pump

frequency (the relevant Fourier transforms being shown in panels b and d).

The δ oscillations stop as soon as F (t) is switched off and well before its rel-

evant decay time, τd. Indeed, because of the non-resonance condition (pump

pulse frequency much larger than ωd) there is no energy transfer from the

electric field to the dimerization mode and the switching off of the δ oscil-

lations has nothing to do with the relaxation time τd. However, because of

the anharmonicity inherent in TTF-CA ground-state PES, when the Peierls

phonon is driven, we also perturb the totally symmetric molecular vibration,

q (panel e), that after some time (∼100 fs according to the simulation) starts

oscillating at the pump frequency (panel f) in a truly δ-mediated process.

Unlike δ, the molecular mode resonates with the electric pulse, a true en-

ergy absorption takes place and q oscillations dampen on a longer time as

determined by the decay time, τv. Indeed, this is the real-time picture of

the combination bands that are observed in the infrared spectra of TTF-CA

[109], with energy being absorbed at ωv ± ωd.

Resorting to the velocity dipole formalism (see Eq.2.30), it is possible to

calculate optical spectra for an electric field polarized along the ring.[148,

141, 149] Accounting for the stack dimerization, the velocity dipole operator
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Figure 3.12: Time evolution of neutral TTF-CA optical CT spectrum ob-

tained for TTF-CA ring with N=8 as driven by the mid-IR pump pulse in

Fig.3.11, panel a. Bottom panel: time-section at ω=2101 cm−1 (the black

line superimposed on the color map marks this value). The relevant Fourier

transform is reported in the inset. Same model parameters used in Fig.3.11.

reads:

v̂ =
i

~
[ĤMF , µ̂a]

= −ieta
~
∑
j,σ

[1 + (−1)jδ](ĉ†j,σ ĉj+1,σ −H.c.), (3.26)

where µ̂a =
∑

j [j+(−1)jδ]ρ̂j is the electric dipole moment operator relevant

to the open-boundary TTF-CA chain, with j and σ indexes running over

the N molecular sites and the two possible spin polarizations, respectively.

The TTF-to-CA distance is a=3.7 Å [172] and t=0.21 eV is used.

Consequently, the oscillator strength along the stack for the |i〉 to |f〉
transition reads:

faf←i =
2me

e3

t2a2

~2

|vfi|2

~ωfi
, (3.27)

where vfi = 〈f |v̂|i〉 is the relevant velocity dipole matrix element. The oscil-

lator strength is initially calculated on a grid of (q, δ) points from the ground
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state towards all the higher excited states, thus obtaining faf←GS(δ, q). After

its interpolation, the oscillator strength is used to calculate absorption spec-

tra at each time-step, adopting a Gaussian band shape with HWHM=0.09

eV. In Fig.3.12, the time-dependent spectrum of a neutral TTF-CA ring

with N=8 is reported as a color map, showing a modulation of the CT band

at the pump pulse frequency, as better shown by the time-section in the

lower panel and by its Fourier transform in the inset.

3.6 Conclusions

Spectroscopic techniques relying on multiple ultrashort mid-IR and THz

light pulses have become an invaluable tool for exploring the very compli-

cated phase space of strongly correlated electronic systems, with the pos-

sibility to create transient out of equilibrium configurations and to follow

their vibronic dynamics in real time.[50, 51]

In this Chapter, an exhaustive theoretical analysis of a recent pump-

probe experiment on ET-F2TCNQ crystal is presented. The experiment can

be described in terms of a quadratic modulation of Hubbard U by ET+•

non-totally symmetric vibrations as originally suggested in Refs.[56, 57].

However, in the original works, optical spectra were reproduced by imposing

a rather peculiar U/t time-dependence (Fig.3.2, panel c).

In Sect.3.1, the model Hamiltonian proposed in Refs.[56, 57] was fully

validated against quantum chemical calculations. Moreover, accounting for

a (ET+•)2 dimer, a fully non-adiabatic approach to the ET-F2TCNQ pump-

probe experiment was presented in Sect.3.2, where a rigorous calculation of

the system quantum dynamics as induced by a mid-IR pulse was performed.

To accurately reproduce the experimental data, the model was extended in

order to account for energy dissipation through a quantum-classical hybrid

approach. Actually, an adiabatic approach to the (ET+•)2 dimer model

proved to be enough in studying the pump-probe experiment, as discussed

in Sect.3.3, with no need to go to larger ET+• clusters as shown in Sect.3.4.

Finally, some preliminary simulations of a novel pump-probe experiment

on the neutral mixed stack CT crystal TTF-CA were presented in Sect.3.5.

Using a mid-IR pump pulse polarized along the stack axis, an off-resonance

driven motion of the lattice dimerization (Peierls) mode is induced. Because
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of the strong anharmonicity of the system, the motion is transferred from

the driven phonon to the totally symmetric molecular vibrations, leading to

a strong modulation of the CT band as shown in the color map in Fig.3.12.



Appendix D

Complete set of quadratic

coupling constants

Complete set of results for ET+• vibrational modes as obtained from DFT

calculations ((U)B3LYP/6-31G*) in gas phase.

Table D.1: For each normal mode (symmetry label in paren-

thesis) it is shown scaled vibrational frequency, ωv, squared

molecular dipole moment derivative with respect to the vi-

brational coordinate, η2, and relevant electron-molecular vi-

bration quadratic coupling constants.

mode ωv η2 ∂2U
∂Q2

∂2∆
∂Q2

∂2V
∂Q2

(symmetry) cm−1 (D/Å)2amu−1 meV meV meV

1 (b3) 24 0.0029 14.0 21.4 0.0

2 (b3) 34 0.2242 -0.3 -6.6 1.5

3 (b2) 34 0.0003 0.7 -7.7 0.0

4 (a) 35 0.0000 0.6 2.7 0.0

5 (b2) 54 0.0081 -1.9 -5.0 0.0

6 (b2) 68 0.0006 -9.1 -16.0 0.0

7 (a) 98 0.0000 -6.9 3.2 0.0
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Table D.1 – (Continued)

mode ωv η2 ∂2U
∂Q2

∂2∆
∂Q2

∂2V
∂Q2

(symmetry) cm−1 (D/Å)2amu−1 meV meV meV

8 (b1) 102 0.0013 -8.7 -5.6 0.0

9 (a) 162 0.0000 -0.3 -2.7 0.0

10 (b3) 178 0.0001 2.6 -1.1 0.0

11 (b3) 259 0.0005 0.1 -5.1 0.0

12 (b1) 265 0.1949 -0.4 -0.4 0.2

13 (b2) 271 0.0730 0.5 -10.8 0.1

14 (b2) 274 0.0103 0.7 -10.8 0.0

15 (a) 274 0.0000 -0.7 0.2 0.0

16 (b3) 299 0.0580 -7.1 -13.3 0.0

17 (b1) 305 0.0924 0.5 -1.5 0.1

18 (a) 322 0.0000 0.6 -4.1 0.0

19 (b3) 354 0.0000 4.0 5.0 0.0

20 (b3) 360 0.0003 -0.9 5.9 0.0

21 (b2) 365 0.0003 -1.5 7.1 0.0

22 (b1) 409 0.4831 3.5 -2.0 0.3

23 (a) 459 0.0000 1.3 0.6 0.0

24 (b2) 477 0.0046 -0.9 0.6 0.0

25 (b3) 479 0.0027 -0.5 1.9 0.0

26 (b1) 490 1.6106 1.5 -3.4 0.8

27 (b2) 512 0.0010 0.4 0.0 0.0

28 (a) 516 0.0000 -0.3 1.5 0.0

29 (a) 525 0.0000 -0.1 -0.9 0.0

30 (b1) 527 0.0842 -0.4 -1.0 0.0

31 (b1) 647 0.4055 -1.2 3.8 0.1

32 (a) 647 0.0000 -1.3 3.8 0.0

33 (b2) 685 0.0831 -2.0 3.8 0.0

34 (b3) 685 0.0042 -2.0 3.9 0.0

35 (b3) 794 0.0090 0.6 0.3 0.0

36 (b2) 798 0.0915 0.1 -0.0 0.0
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Table D.1 – (Continued)

mode ωv η2 ∂2U
∂Q2

∂2∆
∂Q2

∂2V
∂Q2

(symmetry) cm−1 (D/Å)2amu−1 meV meV meV

37 (b1) 817 0.3323 0.5 -0.0 0.1

38 (b1) 895 0.1992 3.9 4.9 0.1

39 (a) 896 0.0000 0.6 7.8 0.0

40 (b2) 902 0.2281 5.4 7.3 0.1

41 (b3) 918 0.1611 -0.5 1.7 0.0

42 (b2) 927 0.0173 1.0 2.6 0.0

43 (b1) 958 0.2974 -0.6 0.7 0.1

44 (a) 958 0.0000 -0.6 0.8 0.0

45 (b1) 1028 0.1634 0.2 -0.5 0.0

46 (a) 1028 0.0000 0.2 -0.4 0.0

47 (b3) 1028 0.0017 -2.2 9.5 0.0

48 (b2) 1031 0.7663 -3.0 10.3 0.2

49 (b3) 1063 0.0060 4.1 6.3 0.0

50 (b2) 1178 0.0178 -0.6 0.0 0.0

51 (b3) 1179 0.0506 -0.6 0.0 0.0

52 (b1) 1238 0.0053 -0.1 -0.8 0.0

53 (a) 1238 0.0000 -0.1 -0.8 0.0

54 (b2) 1279 0.0000 -0.2 -0.4 0.0

55 (b3) 1279 0.1160 -0.2 -0.4 0.0

56 (b1) 1304 9.1920 -0.1 -0.4 1.6

57 (a) 1306 0.0000 -0.4 -0.6 0.0

58 (b1) 1405 67.2127 18.3 2.8 10.9

59 (a) 1407 0.0000 3.6 1.8 0.0

60 (b2) 1441 0.0965 -0.6 0.7 0.0

61 (b3) 1441 0.5795 -0.6 0.7 0.1

62 (a) 1445 0.0000 -0.6 0.9 0.0

63 (b1) 1445 0.4177 -0.6 0.9 0.1

64 (a) 1459 0.0000 4.2 0.4 0.0

65 (b3) 2993 0.0646 -0.3 -0.9 0.0
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Table D.1 – (Continued)

mode ωv η2 ∂2U
∂Q2

∂2∆
∂Q2

∂2V
∂Q2

(symmetry) cm−1 (D/Å)2amu−1 meV meV meV

66 (b2) 2993 0.0092 -0.3 -0.9 0.0

67 (b1) 2997 0.0691 -0.2 -0.7 0.0

68 (a) 2997 0.0000 -0.2 -0.7 0.0

69 (b1) 3048 0.0089 -0.2 -1.0 0.0

70 (a) 3048 0.0000 -0.2 -1.0 0.0

71 (b2) 3059 0.0005 -0.2 -0.9 0.0

72 (b3) 3059 0.0133 -0.2 -0.9 0.0





Conclusions and future

outlook

In this Thesis work, we have developed and applied new models, methods

and computational approaches to considerably extend the potential of the

host laboratory to describe and understand the behavior of complex systems.

Studying materials where both intramolecular and intermolecular charge-

transfer degrees of freedom play a role (Chapter 2), we have investigated a

new family of multifunctional materials whose complex phase diagram shows

large regions of stability for ferroelectric states as well as sizeable regions of

multiferroic behavior. This work must be extended in the first place via a

tight connection with experimentalists, to experimentally validate the mod-

els. The adopted real-space diagonalization techniques must be extended

to describe optical spectra, a first attempt in this direction being already

present in this work (Sect.2.2). Extending the calculations to larger systems

is also important. In this respect, during a four-months stay in India, in col-

laboration with Prof. Swapan Pati and Dr. Bradraj Pandey, I set up a suite

of fermionic time-dependent DMRG (tDMRG) codes using the time-step

targeting method (TST) developed by Feiguin and White.[173] Preliminary

tDMRG results for chains with 8, 10 and 12 sites match well results obtained

through exact diagonalization techniques. However, calculations for larger-

size systems become time-consuming, and code parallelization is needed. To

this aim, I started to implement MPI routines.

The fate of photoexcited states, i.e. the relaxation of a quantum sys-

tem, is a central issue in spectroscopy with enormous implications in our

understanding of open quantum systems. Different approaches and compu-

tational strategies have been explored in this work, applied to simple model
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systems for energy transfer. Very interesting fundamental results have been

obtained about the advantages and limitations of different approaches. Pre-

liminary results on solvation effects on energy transfer processes are ex-

tremely promising and definitely suggest the need to develop original strate-

gies to jointly describe the dynamics of the energy donor-acceptor pair and

the solvent dynamics using a combined Redfield/Fokker-Planck approach.

Relaxation phenomena are crucial to describe state of the art spectro-

scopic experiments and here we investigated in great detail a recent pump-

probe experiment, where an ultrafast pump in the mid-IR region modulates

the charge-transfer absorption spectrum, probed by a probe beam in the

near-IR region. These experiments offer a solid basis to validate theoretical

models for CT crystals and specifically to obtain reliable information about

the electron-vibration coupling that governs the phase diagrams and the

physics of these strongly-correlated electronic materials. Having developed

reliable and portable strategies to model these experiments, we are now in

the position to open tight collaborations with experimentalists designing

new experiments to obtain crucial information on specific systems.

In conclusion, this Thesis, devoted to theoretical work, opens new per-

spectives to study the behaviour of multifunctional molecular materials, fac-

ing the complexity offered by delocalized and strongly correlated electrons,

their interaction with nuclear degrees of freedom and with external electric

fields. Relaxation phenomena, crucial to energy transfer processes and to

understand advanced spectroscopic experiments, represent another source of

complexity, bringing us into the fascinating realm of open quantum systems.
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[117] S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated Polymer-

Based Organic Solar Cells,” Chemical Reviews, vol. 107, no. 4,

pp. 1324–1338, 2007.

[118] M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,”

Accounts of Chemical Research, vol. 42, no. 11, pp. 1788–1798, 2009.

[119] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic

appliances on plastic,” Nature, vol. 428, pp. 911–918, 2004.
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