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Introduction

Nowadays autonomous robots are used in everyday life more than ever. The idea
that motivate the develop of new autonomous application is to lessen the fatigue of
repetitive works and to make safer the work that are difficult if done by humans alone.
Another goal of autonomous robots is to improve precision and repetitiveness in the
actuation of actions.

Car makers are now showing to consider autonomous driving a ground braking
functionality and one of the most important additions to their assets to maintain a
sustainable competitive edge on the market in the mid-long term. Same scenario is
happening in almost every technological area. To be competitive on the market, com-
panies need to add intelligent feature to their products. For example in drone market
all the top of the line product have autonomous features and companies invest a lot
of effort to improve these features.

Path planning is a crucial part of the creation of autonomous systems. While mo-
tion planning is a difficult task in general, its application to autonomous vehicles and
drone moving in presence of other actor imposes requirements that make it even more
challenging. For example autonomous cars have to deal with other cars, pedestrians,
cyclists, etc.. Moreover road going vehicles obey non-holonomic motion laws that
must be accounted for during planning. Another example are drones that flying in
presence of pedestrian can be a danger if not driven correctly.

Path Planning is a huge field of study. In this dissertation we focus our attention
on those application where the planner has a well target. We provide an architec-
ture and algorithms that allow the build of a general system that allows autonomous



2 Introduction

robot to reach a target. Attention is given in the generation of behaviors that are very
smooth. Moreover is given top priority to the safety of the system.

To test our algorithm we choose an agricultural application, which is an au-
tonomous tractor that reach and collect round hay bale in a field. We also describe an
automotive application such as an autonomous parking feature. Finally we demon-
strate that our algorithm are also suitable for 3D planning with some drone applica-
tions.

The dissertation is structured as follows: chapter 1 provides a broad overview of
the state of the art. Chapter 2 describes Ground Vehicles application, while chapter 3
describes Aerial vehicle one. Chapter 2 is divided in: first section, which describes the
agricultural application, and second section, which describes the parking algorithm.
Chapter 3 describes Aerial Vehicles applications.



Chapter 1

State Of The Art

There is a huge corpus of literature on autonomous robot, collision-free, time-optimal
path planning. One of the first and most influential was [40] back in 1979. For most
of them a high number of Degrees of Freedom (DoF) is required in the experimental
platforms. Classical methods search for the mathematically proven optimal, if it ex-
ists. On the other hand, there are other traditional very widely used heuristic methods
like A* ([18]), D* ([51]), Probabilistic Roadmaps ([53]), Rapidly-exploring Random
Tree (RRT ([36], [37]), potential field ([23]) and also based on Pontryagin’s Mini-
mum Principle ([1], [5], [2]). There are also many examples on Genetic Algorithms,
Neural Networks, Ant Colonies, Simulated Annealing, Particle Swarm Optimization
and other Natural Computing optimization techniques, usually in a multi-objective
fashion.

However, for this dissertation, we will focus specifically on two types of robot.
Firstly we will focus on non-holonomic1 unmanned Ground Vehicles (UGVs) path
planning developments, where DoF are dramatically restricted. In other words, we
will focus on automated car-like vehicles. Secondarily we will focus on aerial drone,
in particular quadrotors. Most of the algorithm described in this section are for ground
robots but with little work they can generalized to 3D path planning. This is also

1vehicles with a restricted DoF, e.g. cars. Holonomic robots are those who are assumed to have all
the 6 DoF.
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possible because, differently from airplane like robots, quadrotors can stay still in
the air. They don’t have wings that need a minimum velocity to generate enough lift
force, but they use four propellers that lift them.

We divided Path planning in two category of algorithms: Explorative Path Plan-
ning and Direct Path Planning. The first one plans from point A to B, to create a close
to time optimal path from origin to destination, avoiding static obstacles. The second
one connects two points, normally without checking obstacles or at most it is possible
to generate multiple trajectory and discard the ones that cause a crash. This class of al-
gorithm allows to control the vehicle when the target is in sight, sending a sequence of
feasible (drivable) control commands, making trajectories smooth and time optimal,
and sometimes even avoiding smaller obstacles, avoiding less traversable patches.

Now we will list the most frequent methodologies used for Explorative Path Plan-
ning and Direct Path Planning.

1.0.1 Explorative Planning

For Explorative Planning, the most frequently used methodologies are as follows:

• A* ([20] [58] [30] [16] [17] [25]) combines the advantages of uniform-cost
and greedy searches using a fitness function ([57]). Its fitness function is ba-
sically composed of two parts, one to calculate the cost from the origin to the
current position, and the second to estimate, through an heuristic, the cost from
the evaluated position to the target position. Obviously, the choice of a good
heuristic is essential to have an efficient and robust method. Usually, just the
linear distance is enough since it never overestimates the cost to the goal posi-
tion and is computationally very efficent.

• D*, standing for Dynamic A* Search, ([50] [27] [15]) is a quite similar to A*
algorithm which is believed to be faster. It expands path nodes from destina-
tion. It is called dynamic because arc costs can change during the algorithm
execution. In comparison to A*, D* has the completeness and optimality prop-
erties. It can also be more efficient. However, according to [59], A* seems to
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be more suited to passive or static environments, like it is in the case of the
present work.

• Dijkstra ([33]) is a good path-finding algorithm to find high-quality paths. It
only considers the cost from origin to each evaluated position. Hence a greedy
search is needed, meaning it has a much higher computational cost than meth-
ods using heuristics and future cost estimations.

• Rapidly-Exploring Random Trees (RRTs) and relatives like RRT*, MARRT,
etc. ([64], [19], [29], [38], [62]) . RRT is a data structure and algorithm that
is designed for efficiently searching non-convex high-dimensional spaces by
building a space-filling tree. Basically, it does a biased search into the largest
Voronoi regions of a graph. It works by creating recurrently collision free
branches of a expanding tree until it gets to the goal position.

There are a few other less common methodologies that can be found used as gen-
eral planning methodologies or in combination with other algorithms like Probabilis-
tic Roadmaps ([35], [49]), Potential Field ([35]), Pontryagin’s Minimum Principle
based methods ([2], [34]) and Natural Computing based methodologies, generally
Genetic Algorithms ([4], [39], [12]) and Particle Swarm Optimization ([42]).

There is also a quite different group of methodologies we could label as Co-
operative or Distributed Path Planning ([47], [65], [56]) where paths are calculated
using information coming from a network of vehicles, distributed sensors, or both.
We have included this category here, even if it approaches the path-planning problem
in a quite different fashion. It starts from the assumption, hardly attainable in real-
world outdoor scenarios, which is that a very populated sensors network is deployed
in the field, so a top view of all the environment can be acquired. In [47] they use a
Potential field approach over a Voronoi skeleton.

1.0.2 Direct Planning

The second step is Direct Planning. The focus is on generating a smooth curve that
can be run by the control system of the vehicle. This curve should connect the vehicle
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with the position of the target given by a detection system. For direct planning there
are traditionally two big categories: Functional Methods and Polynomial Approxi-
mation Methods.

Functional Methods

Functional methods work by combining mathematical functions to express the path.
This first category can also be divided in two, as follows:

Closed-Form Functional Methods These are functional methods whose coordi-
nates have a closed-form expression, like spline based methodologies ([32], [61],
[43], [6], [41]), quintic polynomials ([54]) and Bézier based curves ([60] [22] [63]).

According to [63] the main weaknesses of this group of methodologies are that
there is no efficient way to optimize the path lengths nor the minimum radium to fit
the vehicle mechanical restrictions.

Parametric Functional Methods Functional Methods whose curvature is defined
as a parametric curve, which is a function of their arc length. Some frequent functions
used are:

• Clothoids ([14])

• Cubic spirals ([28])

• Quintic G2-splines ([45] [44])

• Intrinsic splines ([8])

This family of methodologies started with Dubins curves ([10], [46], [24], [13]).
The original 1957’s method is quite limited, since it basically combines only two kind
of functions: lines and circle segments, taking the maximum rate of change of turn
of the specific vehicle. The main drawback of Dubins curves’ based methods is the
discontinuities that may arise between two different circle segments – where a real
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system would need to stop because the linear and angular velocities need to be contin-
uous in real world. There has been a number of efforts to cancel those discontinuities,
e.g. using clothoids instead of circles ([14], [31]) or even spirals ([28]).

Clothoid pairs provide smooth transitions with continuous curvature, meaning
that a non-holonomic vehicle could actually follow them. They can also be optimized
to minimum-length for a given limit on jerk ([41]).

The main two drawbacks of this kind of methodologies are that it is not possi-
ble to theoretically proof completeness (with the exception of [48]) and that having
no closed-form expression for position along the clothoid path means that the ve-
hicle control needs to be built on approximations to that path and/or look-up tables.
Anyway, both limitations should not be a problem with modern equipments and com-
puters.

The methodology proposed in this dissertation in the local path planning of agri-
cultural application is in this group. In particular, we are using the method presented
in [45] because it provide a flexible tool to generate simple trajectories with the pos-
sibility to impose some contraints.

Polynomial Interpolation Methods

Some argue that these methods have limitations regarding providing an optimal path
for a set of random points and serious scalability problems, due to the Runge’s phe-
nomenon ([11]) and its computational cost.

A remarkable work in this category is [21], where a very interesting Quadratic
Polynomial Interpolation is shared.





Chapter 2

Ground Vehicles Path Planning

In this chapter we will describe two applications. The first is an agricultural field
application. An autonomous tractor has to go in a field to pick up round hay bales
and take them to one side of the field. The second application is the self parking for
an autonomous car.

2.1 Hay Bale Picking

In this section we describes the Hay Bale Picking applications. The first part describes
the system setup. The second one describes the detail of the algorithm. In the end,
results and conclusion are presented.

2.1.1 System Description

In this section we will describe the systems that work and interact with the Path
Planning System.

Hardware Setup

The hardware platform is a New Holland T7000 tractor, as shown in figure 2.1. It is
a tractor produced by CNH Industrial N.V. equipped with a drive by wire system that
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allows a PC to control it by means of a CAN bus interface. In mount an hydraulic
fork lifter used to pick up and move round hay bale.

Figure 2.1: New Holland T7000 tractor.

The tractor is equipped with sensors to perceive the environment around it. It
mount a Bumblebee XB3 on the front of the roof, as shown in figure 2.2. It is a 3-
sensor multi-baseline IEEE-1394b (800Mb/s) stereo camera designed for improved
flexibility and accuracy. It features 1.3 mega-pixel sensors and has two baselines
available for stereo processing. The extended baseline and high resolution provide
more precision at longer ranges, while the narrow baseline improves close range
matching and minimum-range limitations. To enable the system to remain outdoor
in any circumstances the camera is protecter with a custom case that impermeabilize
it, making it IP 67 certifiable.

It mount a laser scanner Sick LMS-101 on the front of the tractor, as shown in
figure 2.3. It is an efficient and cost-effective 2D laser scanner for measuring ranges
of up to 20 m. It guarantees outstanding performance whatever the weather, thanks to
multi-echo technology and intelligent algorithms. It is rugged, compact housing with
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Figure 2.2: Bumblebee XB3 with custom case. The case has the purpose of imper-
meabilize the camera.

enclosure rating up to IP 67, integrated heating and a temperature range from ˘40◦C
and +60◦C.

Obstacle Detection system

The Obstacle Detection system has the goal of provide to the planner a point cloud
of the obstacles in front of the vehicle.

As first step, it compute a disparity map using the images from Bumblebee cam-
eras. we can see an example of disparity map in figure 2.4.

After this step, the system convert the disparity map to a point cloud. The Ob-
stacle Detection system run now a terrain estimator. This algorithm works by fitting
a 2D Bspline that approximate the terrain surface. Then Obstacle Detection system
deletes all points that belong to the terrain. An example of a 3D reconstruction of the
obstacles in front of the vehicle is shown in figure 2.5. The object are converted in
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Figure 2.3: Laser scanner Sick LMS-101.

Figure 2.4: Disparity image computed by the obstacle detection system.
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global position using the coordinate of the tractor and given as output of the Obstacle
Detection system.

Figure 2.5: 3D reconstruction of the obstacles in front of the vehicle.

Bale Detection system

The Bale Detection system has the goal of provide to the planner the exact position
and orientation of the hay bale when there is one in front of the tractor.

The point cloud of the Obstacle Detection system is given as input to the system.
Using this point cloud the system divide it in separate objects. For each object, the
system runs a monocular Adaboost classifier on the 2D bounding box on the image
that contain all the object. This first classification steps eliminate the object that are
completely different from hay bale. After this phase it tries to fit a cylinder of dimen-
sion similar to bale on each remaining objects. If the object has a low fitting error, it
is classified as a round bale. To have a precise position and orientation of the bale,
the position and orientation given by the cylinder fitting phase is used together with
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the laser scanner data to have a better measure.

In figure 2.6 is possible to se the point clouds of two object, an hay bale and a
pedestrian. The round bale is correctly classified and shows a segment pointing out
from the center of it representing the model found by the cylinder fitting algorithm.
The pedestrian is correctly classified as non cylinder.

Figure 2.6: 3D reconstruction of the object in front of the vehicle. It is possible to see
that the bale has a segment coming out from its center, and pedestrian don’t. This is
because the system recognize and classify correctly the two object.

In figure 2.7 is shown the displacement in meter and the difference in degrees
respect to the front of the tractor. This measure is computed using both the data from
stereo system and laser scanner data.

2.1.2 Method Overview

In this section we will explain the detail of the algorithm. First part describes the
Global Planning part, used to reach the proximity of the bales and perceive the exact
position of it. Second part describes the Local Planning part, used to compute the
exact maneuver to pick up the bail after seeing it.
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Figure 2.7: Output of the Bale Detection system. It is shown the displacement in
meter and the difference in degrees respect to the front of the tractor. The cross in the
center of the bale with a vector pointing out is the central point and orientation of the
bale detected by using the laser scanner fused with the stereo camera system.

Global Planning

As said before, the global method for planning aims at solving the problem of esti-
mating a trajectory to navigate from the current position of the vehicle to a specific
GPS configuration (position and orientation) of the place of interest, before that its
exact position and orientation is being observed and calculated by the detection sys-
tem.

We based the first part of our work on [9] because A* is one of the most com-
monly used search techniques in motion planning, and the variation proposed by
Dolgov et al. permits to search generating feasible steering actions. This allows to
generate trajectory almost ready to be actuated.

The output of the system is a trajectory that neither collides with any fixed obsta-
cle nor goes outside the working area. It must have a maximum curvature, restricted
by the vehicle’s maximum feasible curvature – taking into consideration the non-
holonomic nature of the vehicle. Furthermore, the trajectory has to be as short as
possible for obvious reasons.

As in the implementation of Dolgov et al. [9], the input of the algorithm is an
obstacle map, that contains all the position of known obstacles. This map is imple-
mented as a grid divided into cells. At first, each cell with a part of an obstacle on it,
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is set as occupied. After all the obstacles have been evaluated, we perform a morpho-
logical dilation, taking into account the space occupied by the vehicle. The dimension
of the vehicle is used to expand the obstacles. After this phase we can consider the
vehicle as a point.

Another input of our algorithm is the configuration that have to be reached. This
data is collected via GPS for the position and with a magnetometer for the orientation.
We must take into consideration that this input may be affected by noise such as drift
for GPS, bias related to temperature, etc., and there may be also noise due to the fact
that the data has been collected from another vehicle or by a human operator with
devices that may have a slightly different calibration from the ones mounted on our
vehicle.

The algorithm is a variant of the Hybrid-state A* Search proposed in the first part
of the work of Dolgov et al. [9]. Each node of our implementation has only three
continuous coordinates (x,y,θ ) which represent position and orientation of the node
in the world. We choose not to take into consideration the direction of the motion
of the vehicle (forward or reverse) for several reasons. One reason is that the system
must be able to respect real-time specifications without neither the use of high speed
processor nor dedicated computer. Through reducing the coordinates from four to
three, we reduced the computational cost of the algorithm. Another very important
reason is that the vehicle has a vision obstacle detector and a laser scanner obstacle
detector that are mounted on the front of the vehicle. For this reason we opt for
limiting the reverse manoeuvres. We go in reverse only when we have recently seen
the area where we have to go through, for example when local planner is running and
we are too close to the goal and we cannot calculate a good trajectory.

For these and some other reasons we also modify the Analytic Expansion part
of the algorithm described by Doglov et al. We decided to use Dubins curves ([10])
instead of the curves based on Reed–Shepp model. These two curves are very similar:
both are segment of circle with maximum curvature and straight line. The difference
is that Reed–Shepp curves contemplate reverse movements (e.g. a Reed–Shepp curve
can be composed by circle to the right, reverse circle to the left and a circle to the right
again, on the other hand Dubins curve are composed only by forward movements).
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Another difference with Doglov’s implementation of Analytic Expansion is that
when the distance between the node and the goal is under a chosen threshold, we
randomly try to connect the node that have to be expanded with the goal by a Dubins
curve. We didn’t pick any of the possible Dubins curves that connect the two posi-
tions. Instead we took out all the curves that pass on a obstacle and we also rejected
the curves with circle parts that exceed π/2 each. This last condition is important,
especially when we are near the goal, because matematically the positions can be
reached anyway but with a long circular path that is uncomfortable and inefficient.

We also changed the non-holonomic-without-obstacles heuristic using the Dubins
curves ([10]). We calculate online the length of the shortest Dubins curve that link
the node with the goal and use that measure as the heuristic. We left unchanged the
holonomic-with-obstacles heuristic.

A required feature of the trajectory is that the last segment has to be straight in
order to give enough space to the local planner to calculate a new smooth trajectory
after the goal is detected. This space allows the vehicle to reach the goal without
going in reverse when the position and orientation error is low. This feature is required
because the detection system is based mainly on a stereo system which sees only on
a visual cone in front of it.

This feature is difficult to be fulfilled in the standard implementation of A* and
in Hybrid-state A*. To fulfil it, our algorithm starts to expand the A* search from the
goal toward the current position of the vehicle. For the first N meters of the tree, a
weight is summed to the costs of each node that is not straight. The weight decreases
as we get away from the first node. With this modification, the search will try to go
straight for N meters and, if it can’t (e.g. to avoid the collision with an obstacle), it
will go straight as much as it can and then turn. This change doesn’t affect the speed
of convergence of the algorithm if the weights are big enough, because it works as a
choice of the best node from where the normal execution starts.

We left unchanged the rule to expand the tree. From each node we can go straight,
turn max curvature to the right or turn max curvature to the left. In fig. 2.8 we can see
an example of computed trajectory.

To follow the generated trajectory we use a Pure Pursuit tracker [7]. We decided
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Figure 2.8: Result of global planning. The background contains the grid, and the grey
cells represent obstacles and perimeter. The triangle represents the vehicle. The tra-
jectory is shown in red while the black dots show the states explored by our algorithm.

to use it because it is easy to understand and simple to implement and moreover it is
robust and reliable. Furthermore its computational complexity is appropriate for real-
time applications. It has proved to be able to follow the trajectory correctly, rejecting
the error caused by position sensor errors and by delays.

As we can see in fig. 2.9, another effect of using a Pure Pursuit tracker is that the
final path has a continuous curvature, even though our trajectory has a discontinuous
curvature. This is a necessary requirement for real system because the curvature is
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directly proportional to the steering angle which can not change instantaneously.

In this implementation, when the vehicle finds a dynamic or unexpected obstacle,
it stops and it waits that the path is freed.

Figure 2.9: Simulation of the tracking system. In yellow the simulated path and in
blue a measure of the simulated curvature setpoint. The thickness is proportional to
the curvature.

Local Planning

The local method for planning aims at solving the problem of estimating a feasible
trajectory to navigate from the current position of the vehicle and the position and
orientation of the target place observed and calculated by the detection system.
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We based the second part of our work on [45] because we need a motion planning
primitive with overall second-order geometric (G2) continuity. Piazzi et al. present a
method that permits the generation of trajectories that satisfy all the conditions and
restrictions of our problem.

The detection system gives the relative coordinates of the goal respect to its cen-
ter. The rototraslation that converts from the coordinate system centered in the de-
tection system to the GPS system is known. First, we convert the point in GPS coor-
dinates in order to consistently store data even if the detection system misses some
frames or to cope with the navigation system working at a different frequency, which
is expected. If everything works perfectly we should have a not moving point in GPS
coordinates because the area detected is not moving. Obviously, this is not a realistic
situation because the measure given by the detection system is subject to errors due
to miscalculations or approximations. The GPS position and the orientation are also
affected by the noise coming from the GPS and the magnetometer.

Taking into account these problems we implemented an algorithm that is focused
on robustness, reliability and noise tolerance. Moreover, the algorithm should provide
a smooth navigation through the goal.

The input of the algorithm is the GPS position of the vehicle, the current curvature
and the GPS position of the goal. The system tries to compute a correct trajectory each
time the vehicle moves or the goal position is updated.

The algorithm is composed by two parts: the first calculates a trajectory to the
goal and the second part follows this trajectory and implements a controller to reject
errors.

The first part calculates a quintic spline trajectory defined as follows:{
x = a∗u5 +b∗u4 + c∗u3 +d ∗u2 + e∗u+ f
y = g∗u5 +h∗u4 + i∗u3 + l ∗u2 +m∗u+n

As we can see, we have a maximum of twelve constraints to be applied because
the number of constrains is equal to the number of free variables in the system.

The main constraints are:

• Start position equal to current vehicle position (two constraints)
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• Start orientation equal to current vehicle orientation (one constraint)

• End position equal to detected goal position (two constrains)

• End orientation equal to detected goal orientation (one constraint)

• Start curvature equal to current curvature (two constraints)

• End curvature equal to zero (two constraints)

The formula of the curvature is:

K =
x′ ∗ y′′− y′ ∗ x′′

(x′2 + y′2)
3
2

To set the curvature in the beginning and in the end, we calculate the first deriva-
tives. Then we set one of the two second derivatives to zero. In this way, after having
reversed the equation, we have the formula to set the curvature.

The first six constraints make the trajectory go from current position to goal con-
sidering the orientation. We forced the starting curvature to be equal to the current
one to avoid any curvature discontinuity. The path must be curvature continue, in
order to provide a smoother and more comfortable control. Otherwise, the vehicle
should have to stop to maintain angular and linear momentum.

The curvature at the end of the trajectory is forced to zero because we want that
the vehicle completes the bend before reaching the goal. In this way the curvature,
as well as the angle of the turning wheels, changes continuously, reaching zero in the
end.

With this configuration we have ten constraints and twelve free parameters, allow-
ing us to vary the last two parameters to generate many feasible trajectories.Between
these trajectories, we choose the one that has the best combination of these features:

• The maximum curvature less then or equal to the maximum curvature feasible
by the vehicle

• It must not touch any obstacles
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• Minimize the trajectory length

• Minimize the maximum derivative of the curvature

The first two features are mandatory. We reject immediately any trajectory that
breaks one of these two constraints without checking the other two. Out of the surviv-
ing trajectories, we choose the one that minimizes both the length and the maximum
derivative of the curvature. In fig. 2.10 it is possible to see an example of output.

Figure 2.10: Result of local planning. In black the trajectory and in blue a measure of
the curvature. The thickness is proportional to the curvature. The arrow represents the
output of the detection system. The trajectory ends in front of the goal point because
we have to reach the goal with the front of the vehicle.

Path following Once provided the trajectory calculated at the previous step and a
GPS position and orientation, we developed an algorithm that has as output a set-
point of curvature that permits the vehicle to navigate on the trajectory or, in case the
vehicle deviate from it, to get close to the trajectory.

Unfortunately, it is not possible to stay perfectly on the trajectory for multiple
reasons: wheel slips, delay in the actuators, delay in the communication modules.
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Another source of errors is the detection system, because during the path its output
may change both in position and orientation. This can be caused by bad interpretation
of the object seen, or because the measure is imprecise in the distance and when the
vehicle get close the measure change because it becomes more accurate.

These errors can be grouped in two effects to be corrected:

• The vehicle is not on the planned trajectory, so we want to bring it back on it

• The end of the trajectory is not on the detected point, so if we continue on it
we miss the target

We calculate the combination of these errors and correct them simultaneously.
The basic idea is that if the errors are both zero we can reach the goal by applying
as output the curvature of the trajectory in the point where we are. We simulate the
path that we will follow if we don’t use any corrections. Starting from the current
position, the simulator moves the vehicle by applying the curvature of the nearest
point of the trajectory to the simulated position. When the nearest position is the
end of the trajectory, we assume that the simulator has reached the position that the
vehicle will reach without correction. We use the euclidean distance between the
points just calculated and the last point given by the detection system as the error of
the tracking system.

The output curvature of the path follower is the result of the combination of: the
curvature of the nearest point of the trajectory as feed-forward component and the
output of a PID controller that takes as input the calculated error.

2.1.3 Results

In this section we present some qualitative results.

Figure 2.8 and figure 2.9 show that the planner is able to plan a trajectory in com-
plex environments. Moreover, it is able to follow this trajectory generating a smooth
sequence of curvature set-points. During the experiments the system successfully
reached the goal avoiding the fixed obstacles.



24 Chapter 2. Ground Vehicles Path Planning

The local planner has proven to be able to reach the target with high precision. We
obtained good results regarding both position and orientation. We tested a scenario
where the vehicle had to reach a box shaped target with the front of the vehicle. In
this way when the vehicle leans against the goal, it is possible to measure the errors.
During the experiment we obtained a mean error of approximately ten centimeters in
regards to position and ten degrees in regards to orientation.

Figure 2.11: Flowchart of the planning system.

As shown in figure 2.11, the switching between the two systems is done when the
detection system provides a stable measure. When the information about the goal is
provided for some consecutive cycles, the local planner try to calculate a trajectory.
When the trajectory is ready, the control system seamlessly switches between global
and local planner. That switching is jerk free. There are no curvature discontinuities
because the starting curvature of the local planner trajectory is set equal to the last
curvature actuated.

In table 2.1 are shown the average computational time of each module described
before on a pc with a i7-4800MQ. For global pianification we considered only non-
trivial configuration for the time measurement.

Tests have been made also during night using the headlamps of the tractor, as
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Table 2.1: Average omputational times of each module.

Task Average computational time

Global Pianification 532ms
Pure pursuit tracker 89µs
Local Pianification 14ms
PID tracker 77µs

shown in figure 2.12.

Figure 2.12: Tests done during night time.

2.1.4 Conclusion And Future Works

This chapter describes a new secure method to approach a target and reach it with
high precision using the information provided by a detection system composed by a
stereo vision system and a laser system. The chapter firstly presents a global planning
algorithm to go near the target and then it describes a local planning method that takes
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control of the vehicle when the target is detected.

Through experiments on real application, we can see that the combination algo-
rithms proposed in this chapter satisfies the requirement of real-time navigation. Fur-
thermore it generates a G2 control sequence. This feature becomes crucial in trans-
porting people or dangerous goods providing high comfort and safety.

A new scenario where this algorithm will be applied is the path planning for
the vehicle shown in figure 2.13. This is an electric vehicle equipped with sensors
and actuators, already used for autonomous driving tasks. We will use the system
proposed in this chapter to add some interesting tasks:

• Reaching a platform to let people get inside the vehicle. For example to trans-
port old people or people with disability.

• Reaching an autonomous battery chargeing station, where the vehicle can go
and charge its batteries or replace them if needed.

• Driving the vehicle in a parking lot after being utilised. After the passengers
get off the autonomous vehicle, the vehicle will autonomously park itself, if no
one else need it.

2.2 Parking

In this section we describes the Parking applications. The first part describes the
system setup. The second one describes the detail of the algorithm. In the end, results
and conclusion are presented.

2.2.1 System Description

In this section we will describe the hardware systems on which the Path Planning
System works. Images and descriptions are from [3].

The platform car used is a 2013 Audi A4 2.0T FWD multitronic which is depicted
in figure 2.14.
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Figure 2.13: Autonomous Piaggio Porter. It mounts several stereo vision systems,
with different baselines, that look in different directions. It also has four laser scanner
that cover the area all around the vehicle

Figure 2.14: Deeva autonomous vehicle.

The car already has off-the-shelf actuators, however, since CAN specifications
are proprietary, an AEVIT RPV driving control system has been installed. AEVIT
RPV is derived from equipment for impaired people, and already used during the
DARPA challenges; it uses the same control points of human drivers. This control
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module has its own CAN bus where the Autonomous Driving System must provides
messages for primary actuators (i.e.: acceleration/brake and steering) and optionally
for secondary actuators (such as wipers and indicators). Also the engine status, and
the shifter can be controlled through the control system using secondary actuators.
The system integrates safety features and is redundant. Mainly the control module
must receive primary messages from the driving system every 30 ms; if this does not
happen the control module triggers a user-defined emergency maneuver. The control
system cannot be overridden but is connected to an emergency button called Inhabited
Take Over (ITO) which is positioned in the middle of the central tunnel and allows
the driver to force back to manual control. A remote control is connected to the XBW
system to trigger the emergency maneuver.

Sensors are installed all around the car. There are three main sets of sensors:
cameras, laserscanners, GPS/IMU.

Cameras: Cameras are the main perception sensor. There are 13 stereo pairs on-
board covering all the 360 o surrounding the car, at different distances. The cameras
used are UI-5242LE from IDS-imaging, all color version except four near infrared
for the far rearview mirrors. They are divided in the following two systems:

• Near: used during maneuvers. It is made of four stereo systems located in the
front grille (focal length is 2.5 mm, horizontal field of view is 117.5◦ ), in the
upper part of the trunk coverage (same specifications) and under each rear-view
mirrors respectively. The stereo pairs in the rear-view mirrors belonging to this
subsystem feature two fisheye lenses with the aim of covering the whole side of
the car. In this way with 8 cameras all the surroundings of the car are covered
with 3D reconstruction.

• Far: used during normal driving. Fields of view are longer in the driving direc-
tion, shorter but wider on the sides. This subsystem counts nine stereo pairs.
Four of them are located behind the front windshield. One mounting a 16 mm
telephoto lenses, and offering an horizontal field of view of 24.93◦ , and a
baseline of 0.5 m, is used for detection in far forward looking direction; other
three, each featuring 8.0 mm lenses, a 0.3 m baseline, and looking straight, and
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22.5◦ left and right provides a comprehensive 90◦ field of view, result of the
overlapping of the three stereo pairs.

The front bar still maintain the ability to slightly orient the stereo pair sepa-
rately; locking screws have been placed in order to avoid unwanted movements
due to vibrations. Another stereo pair, featuring 6.0 mm lenses and an horizon-
tal field of view of 59.00◦ is used for detection in the far back area; with a
baseline of 0.4 m can detect obstacles in the medium range.

One stereo pair is located, in addition to the one for the near system, in each
rear-view mirror. Every rear-view mirror contains therefore four cameras; the
integration has been done by removing the interior OEM devices, cutting the
internal metal frame and the plastic shell, creating a new modified, 3D printed,
shell part capable of containing the four cameras and the wires. Two stereo
pairs are finally located in the mudguard and oriented vertically. They features
2.5 mm lenses and a 0.3 m baseline allowing to detect obstacles from 3.0 to
30.0 m with an horizontal aperture of 104.0◦ . For this system each of the two
cameras is rolled by 90◦ in order to take advantage from they wider horizontal
aperture.

In image 2.15 are shown where the camera are positioned and their field of view.

Figure 2.15: Deeva autonomous vehicle cameras. Image (a) represent the near system
and image (b) represent the far system.

Laserscanners: An additional perception system based on laserscanner technol-
ogy has been installed. This system is used to capture ground truth data and as
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safety/backup system. One eight-layer Lux 8L unit is integrated in the middle of
the front bumpers. Other two, four-layer, Lux HD are integrated one at each side
of the front bumper and another one behind the middle of the back bumper. These
units allow to cover almost all the 360◦ around the car (with the exception of two
small areas at the back side of the car). The bumpers have been modified with cus-
tom, handcrafted, finished with fiberglass, and repainted windows. The system also
includes a fusion unit taking as input the raw laserscanners data, some car inertial
data, such as the speed and the yaw rate, and GPS NMEA information and PPS. The
output produced by the fusion unit is a list of tracked obstacles that may be recorded
and used by the higher level software layers. the fusion unit output is provided both
through Ethernet and CAN. A gateway has been placed between the fusion unit and
the Comfort CAN bus of the car to filters outgoing IBEO messages to avoid flooding
the this car bus.

GPS/IMU: An Oxford Technical solutions RT-3040 has been installed under the
central tunnel inside the cabin. A Novatel GNSS+L-Band high performance antenna
is integrated in the car roof, providing the GPS signal to the RT-3040 and to the Grand
Master Clock. The open roof is still fully operational. The RT-3040 is used as backup
and ground truth check unit, since the main sensor for odometry will be vision.

2.2.2 Method Overview

In this section we will describe the algorithm used to compute the trajectory that
allows the car to park itself.

The proposed algorithm is a variation of the one described in section 2.1.2.
It implements a Continuous state A*, but differently from the version described

before it doesn’t use a grid to approximate obstacles. Each obstacle vertex is stored
as a 2D coordinate. To take into account that the car is not a point, while before we
did a cell expansion, now we approximate the car with three circles, as shown in
figure 2.16. Now we don’t do anymore cell expansion for two reasons. the first one
is that we decided to not using a grid anymore. The second one is the same reason
we choose to not use a grid. The reason is that the passage in which we want to
park the car are very narrow, and the discretization introduced by a grid can close
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them. Also if padding has to be done it has to take into account the orientation of the
car, and this will introduce more noise than benefits. Using three circumference for
collision check is easy and fast. We compute the minimum distance from the center
of each circle to every obstacles. This distance minus the radius of the circumference
represent the distance between the car and any obstacles. If this value is negative,
obviously the car state in exam is colliding with an obstacle and has to be discarded.

To improve performance, we insert this distance inside the node during A* search.
At each search step, when a collision check has to be done, we will recompute the dis-
tance value only if the stored distance is negative. Every time the car state is moved by
a certain space, the stored distance value will be decrease by the same quantity. The
stored value represent a lower bound of the exact distance from obstacles. Geomet-
rically, after the computaion of the distance, it represent the distance from obstacle
as if the car is always going toward the nearest obstacle. The reason expressed with
other words, is that if car is at a certain distance from the obstacles, it has to travel at
least that distance to collide with them. This trick allows to save a lot of time.

Figure 2.16: Space occupied by the car is approximated with three circles.
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In this application the exploration nodes that are used by A* during the search
contain the last direction of the motion, forward or backward. We choose to gener-
ate maneuvers that contains only one change of direction because almost in every
situation is possible to park two maneuvers. This is not a critical constrain, as the
algorithm accepts a parameter to specify the number of direction change. We set it to
one anyway because the computational time improve a lot and the advantage of using
three maneuvers are limited only in narrow parallel parking.

Two version of tree exploration have been tested:

• The first one is the same as the one described before, which from each state
it evolves with a straight line, a circular segment to left or a circular segment
to right. The circular segments have radius equal to the maximum curvature
radius of the car. The olny difference is that the segment are shorter to enables
more precise maneuvers.

• The second one add in the state of the nodes the curvature. Evolving the state,
the possible next state are obtained maintaining the same curvature, decreasing
it or increasing it. The resulting trajectory is the composition of straight lines,
circle segments with various radius less or equal to the maximum curvature ra-
dius of the car and clothoid arcs to change from a circle segments with different
radius.

The second approach has the advantage of using clothoids to have very smooth
curvature transition. A clothoid is a curve whose curvature changes linearly with its
curve length. An object traveling on a circular path experiences a centripetal acceler-
ation. When a vehicle traveling on a straight path suddenly transitions to a tangential
circular path, it experiences a sudden centripetal acceleration starting at the tangent
point; and this centripetal force acts instantly causing much discomfort (causing jerk
spike). The use of a clothoid arc permit to variate the centripetal force continuously
creating jerk steps which amplitude is proportional to the derivative of curvature cho-
sen for the clothoid. On the other side using to a too low derivative of curvature causes
to spend more time in the transitions.
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The continuity of the curvature guaranteed by the second approach allows the
control to stay exactly on the trajectory. This is possible because the trajectory is a
second-order geometric (G2) continuity curve.

This feature and the improved comfort created by it make us decide to use the
second approach. Another reason to switch to the second approach is that its problem
of being computationally more intensive is less important because the parking path
planner can work at a lower frequency than other real time automotive systems. The
reason is that the parking case studio has not very dynamic obstacles and if one moves
on the trajectory is not too much annoyance to stop the car.

A modification to add clothoids in the A* search regards the heuristic used. For
the approach without clothoids we used Dubin’s curve length as heuristic. In that case
the heuristic approximates very well the final trajectory not taking into account only
the obstacles and the discretization of the space between a change of curvature and
the other. In the new version Dubin’s curve length is still an admissible heuristic, but
it doesn’t take in account the clothoids neither. We choose to use the length of another
class of functions as new heuristic. The functions implemented are the Continuous
Curvature Paths proposed by Fraichard et al. [55]. Continuous Curvature Paths are a
generalization of Dubin’s curves. Similar to Dubin’s curves they are composed by two
Continuous Curvature Turn connected by a straight line. Each Continuous Curvature
Turn is composed by a Clothoid arc followed by a circle segment with radius equal
to max curvature radius, followed by another Clothoid arc. The curvature profile is
shown in figure 2.17.

To follow the trajectory generated a variation of the Pure Pursuit algorithm is
used. The modification regards mainly the management of the changes of direction.
As first step the nearest point to the car on the trajectory is found. In the second step,
when we have to find a point looking ahead on the trajectory two case are possible. If
the look ahead point is on a segment of the trajectory with the same direction of the
nearest point, we follow it normally. Else we find the change of direction and from
that point, we extend the trajectory with a straight line. The look ahead point is taken
on that line. When the nearest point is a change direction point the previous part of
the trajectory is ignored in the next control steps. This avoid to fall on point already



34 Chapter 2. Ground Vehicles Path Planning

Figure 2.17: Curvature profile of a Dubin’s curve on left and the one of Continuous
Curvature Path on the right.

visited by the control.

2.2.3 Results

In this section we present some qualitative results.

The car successfully park itself. In figures 2.18, 2.20, 2.19 and 2.21 are shown
some example of parking maneuvers. In figures 2.18 and 2.20 are shown a perpendic-
ular park and a parallel park respectively with emphasized the intermediate positions
that the car will assume during the maneuver. In figures 2.19 and 2.21 are shown a
perpendicular park and a parallel park respectively with highlighted the space occu-
pied by the car during the maneuver.

Extensive simulation have been done and the system has been integrated into the
car. Initial batch of test is completed and has been successful. Those tests are been
made using a GPS position taken manually as goal because the system that has the
purpose of find the parking slot is not ready yet. Further test will be made to test
the interaction between those system, given the difference of a fake point selected
manually with the output of a parking slot detection system, which is affected by
noise, delays, etc..
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Figure 2.18: Simulation of an L park. The intermediate car position are shown.

Figure 2.19: Simulation of an L park. The space occupied during the maneuver is
shown.

2.2.4 Conclusion And Future Works

This section proposes a novel method to generate trajectories that allow a car to park
itself. The proposed method is suitable for real-time automobile systems since it has
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Figure 2.20: Simulation of an parallel park. The intermediate car position are shown.

Figure 2.21: Simulation of an parallel park. The space occupied during the maneuver
is shown.

low computational time. We succeeded in creating a system that is able to park itself
using only the initial car position and the goal position, without the use of any prior
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knowledge of how the maneuvers should be.
The developed system described has proven to be able to generate behaviors that

are very smooth. Through experiments on real application, it has proven to satisfy the
safety measures that we impose to be run on a car in a real environment. The attention
paid in the creation of comfortable behaviors, without brusque movements, have the
user feel trust toward the system.

As already mentioned, next works will concern the integration of the Path Plan-
ning system with a Parking slot detection. An example of the input expected by the
path planner is shown in figure 2.22. For example, the parking slot detector developed
by Suhr et al. [52] gives the position of each parking slot in the surrounding of the
vehicle. Fusing this result with the data given by the obstacle detector is possible to
find all the free slot around the car. After an algorithm will select the best one using
some politics, and then our algorithm will park the car.



38 Chapter 2. Ground Vehicles Path Planning

Figure 2.22: Parking Slot Detection algorithm output. in red are shown the slots. The
image is taken the paper of Suhr et al. [52].



Chapter 3

Aerial Vehicles Path Planning

In this chapter we will describe the applications for the drone. The first one is a target
tracking feature. The goal of the application is to enable the drone to follow a generic
target selected on a image. The second one is the shape in the sky feature. The goal,
similarly to target tracking application is to enable the drone to circle around a generic
target selected on a image. The last application is Enhanced Radio Control. This
application allows the drone operator to control the drone using a joystick avoiding
obstacles.

The first section describes all the systems that work and interact with the Path
Planning System and are common in all the application. The second one describes
the Control system developed. The third, fourth and fifth sections describe target
tracking, shape in the sky and enhanced RC algorithms respectively. Finally the last
two sections collect results and conclusions.

3.1 System Description

In this section we will describe the systems that work and interact with the Path
Planning System.
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3.1.1 Hardware Setup

The hardware platform is a DJI Matrice 100. As shown in figure 3.1, this drone is a
quadcopter from DJI (Dà-Jiāng Innovations Science and Technology Co. Ltd) a chi-
nese technology company headquartered in Shenzhen, Guangdong. The quadcopter
specification are shown in table 3.1. DJI provides an SDK to send commands to and
receive data from the drone. To control the drone multiple mode are available. It can
be controlled setting GPS position, speeds or directly pitch and roll. The control sys-
tem presented in this dissertation uses the latter. From the drone, the sdk send GPS
position, velocity, orientation and other information about the state of the drone, like
if the drone is on the ground etc..

Figure 3.1: DJI Matrice 100 drone.

The drone is equipped with a gimbal, which is shown in figure 3.2. The Purpose
of the gimbal is to keep the gimbal camera during flight maneouvers, even when the
drone is moving avay from a target and it has to look in the opposite direction. The
reason is that, as we will explain better in the next paragraph, the Obstacle detection
System doesn’t cover all the 360◦ around the drone. For this construction constraint,
the drone has to look, with some tolerance, in direction of its own movement. Another
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Table 3.1: Hardware specification of DJI Matrice 100 Drone.

Weight 2355g
Max Takeoff Weight 3400g
Max Tilt Angle 30◦

Ascendent Speed 5m/s
Max Wind Resistance 10m/s
Max Speed Atti 22m/s
Hovering Time (No payload) 22min
Hovering Time (500g payload) 17min
Hovering Time (1Kg payload) 13min

Figure 3.2: DJI Zenmuse Z3 gimbal system.

important reason why we use a gimbal, is that the cameras used for obstacle detection
have a lower quality, and cannot look straight toward the target. This problem is
caused by the fact the camera for obstacle detection are fixed with the frame of of
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the drone. So, if we hypothetically want to keep the target in the center of the image,
the drone cannot change its own pitch and roll to move. The gimbal system gives
the addictional dregrees of freedom, required to follow a generic target and record an
high quality video.

To receive the images from the gimbal camera we use a DJI Manifold, shown in
figure 3.3. Right now we use this device only as an interface to resend the images,
but in future we plan to move the elaboration of target tracking system on this board.
The specification of the DJI Manifold are shown in table 3.2.

Figure 3.3: DJI Manifold system.

Mounted on the drone, there is a Pico-ITX motherboard. This is the board that do
all the processing from Path Planning system to perception tasks. It run an LUbuntu
14.04 (Trusty Tahr). The board is shown in figure 3.4 and its specification are listed
in table 3.3. This board is very fitted for our task because it provides excellent CPU,
graphics, media performance, flexibility, and enhanced security. Furthermore it has a
very small factor and low weight, that, combined with low consuption power, make
this board perfect for drone application where battery duration is critical.
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Table 3.2: Hardware specification of DJI Manifold.

Weight 197 g

Dimension 110 mm×110 mm×26 mm

Processors Quad-core, 4-Plus-1 ARM Cortex-A15 MPcore Processor
Low-power NVIDIA Kepler-based GeForce graphics processor
Image-signal processor
Ultra low-power audio processor

Memory 2GB DDR3L system RAM
16 GB eMMC 4.51 storage

Network 10/100/1000BASE-T Ethernet

Audio Combo audio jack(mic/headphone)

USB USB 3.0 Type-A Host connector×2
USB 2.0 Type-A Host connector×2
Micro-B USB connector (host/slave mode)
Extended USB connector with DJI M-series Multicopter×2

I/O Mini-HDMI connector
Half mini-PCIe expansion slot
UART port(3.3V)×2
Micro SD card connector
I/O expansion headers (26pins)

Input Voltage 14 V 26 V

Operating Temperature -10 °C 45 °C

Power Consumption 5 w 15 w
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Figure 3.4: Pico-ITX motherboard.

3.1.2 Obstacle Detection System

In this section we will describe the Obstacle Detection System, one of most important
system that interact with Path Planning System.

The goal of the Obstacle Detection System is to create a 3D occupancy map of
the environment around the drone. This map will be used by the Path Planner to plan
a safe trajectory. The Obstacle Detection System continuously update the map with
sensors information.

The eyes that see the surrounding of the drone are Vislab 3DV-E intelligent cam-
eras. As shown in image 3.5 they are mounted on a custom mount. After testing vari-
ous configuration we choose to have a stereo camera pointing downward and another
one looking in front of the drone pitched thirty degrees. In this configuration is possi-
ble to see the ground under the drone and the obstacle in front of it. In this way safety
is guaranteed. It is possible to navigate seeing obstacles even when the quadrirotor is
pitching to accelerate and to stop. Looking downward permits to compute the altitude
with better precision than GPS, because GPS altitude in pretty inaccurate and don’t
take into account slope of the terrain. It also permits to compute a valid landing point
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Table 3.3: Hardware specification of Pico-ITX motherboard.

CPU Intel® Broadwell I7 5650U Core™ U-series Processor
Memory One DDR3L (support 1.35V) 1333/1600 SO-DIMM up to 8GB
Integrated Graphics Intel® 5th/4th Gen integrated HD Graphics
LVDS interface Onboard 24-bit dual channel LVDS connector with +3.3V / +5V supply
Serial ATA Support 1 x SATA3 with 600MB/s (6Gb/s) transfer rate
Audio Realtek ALC888 HD Audio
LAN Interface Intel® I218-LM Gigabit LAN
Extended interface One PCIE mini card socket or mSATA.
Internal I/O 1 x SATA3, 1 x DVI-D, 1 x LVDS, 1 x LCD inverter, 1 x PS/2,

2 x RS232, 1 x LPC, 1 x SMBUS, 1 x Audio, 2 x USB2.0, 1 x DC Out
Rear I/O 1 x Display Port, 1 x RJ45, 2 x USB 3.0
Power 9-24V input or DC 12V(Optional)

whether with an artificial landing platform or simply to validate if the ground under
the drone is a flat surface.

Figure 3.5: 3DV-E system with custom mount.

Each 3DV-E system have two camera. On board it mounts an FPGA that pro-
cesses a disparity image. An example of a disparity image is shown in image 3.6. A
disparity image or disparity map is a representation of the world where each pixel



46 Chapter 3. Aerial Vehicles Path Planning

of the image has a value equal to its displacement between right and left images.
From this value is possible to compute the distance from the camera. Therefore from
the disparity image given by each 3DV-E it is possible to calculate a slice of the
surrounding world.

Figure 3.6: Example of disparity image.

Each disparity map is converted in a grid representation. A spherical coordinate
system is chosen as shown in the left part of figure 3.7. The advantage of the use of a
spherical representation in a stereo camera system are:

• “True” world representation: the coordinates system reflects how data are ac-
quired from the physical device.

• Better definition of occluded zones, precision and uncertainty.

• A column in image coordinates has a unique azimuth angle, and a row a unique
elevation. For this reasons, a lot of operations can be done (and parallelized)
easily in image coordinates.
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The 3d point cloud is stored in a discretized spherical map, as shown on right in
figure 3.7. This representation has few advantage. Managing the discretization step on
θ and ϕ is possible choose a optimal trade off between precision and computational
complexity, with consequent control over the quantity of memory usage. The output
in this phase is a Lidar-like representation of the world, with one distance per beam.
Each beam is identified by a discrete θ and a discrete ϕ . Each beam or cell in the
spherical map correspond to rectangle in image coordinate.

Figure 3.7: On left spherical coordinate system, r represent radial distance, θ zenith
angle (elevation), ϕ azimuth angle. On right a discrete version of a full 3D spherical
map.

Each local obstacle detection system take as input a disparity image 12.5 times
per second and create a discretized 3d spherical map, and then send it to the Data
Fusion module. An example of this output is shown in figure 3.8.

The Data Fusion module takes in input various spherical grids from different
points of view and use them to update a global map. Internally Data Fusion module
has a global map that describe all the surroundings that are already been explored.
This global map is a cartesian 3d map. It is georeferenced, with abscissa that point
toward Nord and ordinate that point toward West. Each cell of the map contain a
probability of being part of an obstacle. Data Fusion module uses information from
spherical grids to update such probability. The steps for updating the global map
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Figure 3.8: Example of discretized 3d spherical map.

when a new spherical grid is given are:

• Compute segment from the center of the spherical grid to each occupied cell.

• For each segment, lower the probability of being occupied of each cell in the
global map that touch that segment.

• For each segment, raise the probability of being occupied of each cell in the
global map that are at the end of the segment.

• For each non occupied cell of the spherical grid, lower the probability of being
occupied of each cell in the global map that touch a segment that start from the
center of the spherical grid and it is cast with length equal to the depth of field
of view of the sensor.

Data Fusion module send an occupational grid to Path Planner at a rate of 10Hz.
This grid is a portion of the global grid centered on the drone. Each cell of the occu-
pational grid is set to free or occupied applying a threshold to the probability of the
correspondent cell in the global grid. In figures 3.9 and 3.10 is possible to see two
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examples of the resulting occupational grid, seen from the perspective of the drone
and from above.

Figure 3.9: Example of Data Fusion Module Output (FPV perspective). The red cross
in the center represent the drone.

3.2 Control System

In this section we will describe the control system that permits the drone to fly fol-
lowing a trajectory and to stay still in air.

The main feature that is required by the control is to generate smooth control
commands, that prefer to move the drone softy respect to exact positioning. The main
reason is that the application taken into account in this dissertation always put the
quadrotor in close contact with human operators so it is mandatory to transmit a
strong sense of confidence avoiding sudden direction changes. Another constraint of
the control system is to have low computational requirement. The target platform
where the control will run is an low power ARM CPU, with very low computational
power. For this reason, we choose to implement simple and efficient control method.

There are two main mode in which the drone can be:

• Hovering: the drone will remain still in the air.
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Figure 3.10: Example of Data Fusion Module Output (Bird eye view perspective).
The red cross in the center represent the drone.

• Trajectory Following: the drone will follow a trajectory computed by the Path
Planner System.

Hovering is required during initialization when the Path Planner System is not
ready to provide valid trajectory. Other times, the drone has to be stable in the air, like
during Target Tracking Feature when target is not moving. In figure 3.11 is shown the
diagram of the control system. It takes in input the position setpoint, that can be the
first position of the drone when the control is turned on or the static position provided
by the Path Planner. Then it uses the current position of the drone as feedback to
compute a positional error. The control is decoupled and controls separately along
x and y. Two PID controller are used to compute a speed setpoint from the position
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error.

Figure 3.11: Diagram of the longitudinal position control during hovering.

During Trajectory Following mode, the input of the controller is a trajectory. In
figure 3.12 is shown the principle of operation of the controller. First the closest point
of the trajectory to the drone is found. From this point another point ahead on the
trajectory is chosen. The distance between the closest point and the Look-ahead point
depends on the speed of the drone. The faster the drone is, the farther the controller
will look on the trajectory. The vector that connect the actual drone position with the
Look-ahead point determines the direction of the speed setpoint outputted. The norm
of the speed is given by the Path Planner as additional information in each point of
the trajectory. This type of controller works in the same mode of Pure Pursuit Tracker
used on cars. It doesn’t use integrative control to reach a stable configuration, but
ensure smooth output that stabilize the drone on the trajectory.

When the drone reach the end of the trajectory, the controller switch to Hovering
mode using the end of the trajectory as the position goal. This switch permits to take
advantage of the PID controllers to stabilize the drone and reject possible disturbance,
like wind.

The Speed setpoints computed by the previous passages are given as input to
the Speed Controller. It converts them from global coordinate to a local coordinate
system oriented as the drone. This change of coordinate permits to simplify the next
step of speed control. This simplification occur because in local coordinate the x axis
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Figure 3.12: Diagram of the longitudinal position control when following a trajectory.

is the direction where the pitching action act, and the y is the one for rolling. At this
point the controller uses the current speed of the drone as feedback to compute a
speed error. The x and y components of speed error are given to two PID controller
that compute directly the pitch and roll directly.

Diagrams of altitude control are shown in figures 3.14 and 3.15. For the control
of the altitude, we read the altitude setpoint from the nearest point on the trajectory
or we take the requested altitude from the hovering position. Afterwards the altitude
error is calculate from this setpoint and current altitude. We choose to use a PID
controller to compute vertical speed setpoint.

Using the current vertical speed, we calculate a vertical speed error and with
a PID controller we obtain a vertical acceleration setpoint. To this acceleration is
added gravity acceleration to take in account that when we want to have no accel-
eration, there is gravitational force acting on the drone that we should compensate.
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Figure 3.13: Diagram of the longitudinal speed control.

Figure 3.14: Diagram of the altitude position control.

Another element taken into account and compensated is a additive effect propor-
tional to the battery level. When battery is fully charged the drone motors have more
responsiveness than when the battery level is low. The acceleration obtained is then
multiplied by the mass of the drone to convert it to the force setpoint. Finally the force
is multiplied by 1

cos(Pitch)∗cos(Roll) . This multiplicative component takes into account
the rotation of the drone respect to the vertical axis. If the drone is perfectly horizon-
tal all the force generated by the rotors is used to maintain its height. However, when
the drone has pitch and roll different from zero for moving or correcting its position,
part of the force partially point laterally and this need to be taken into account. After
this last correction the thrust is ready to be sent to the flight controller.

Lastly a simple heading controller has been implemented as shown in figure 3.16.
This controller is useful in some application like Target tracking to follow the target
with the heading of the drone when it is at the right distance from it or to follow the
trajectory when moving. When following a trajectory the drone will point its headind
to look ahead position described in longitudinal control. Whether with a target or with
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Figure 3.15: Diagram of the altitude speed control.

trajectory, after an heading setpoint is chosen heading error is calculated using current
heading. This error is reduced to zero using PID controller, that gives as output the
yaw rate requested by the flight controller.

Figure 3.16: Diagram of the heading control.

3.3 Target Tracking Planner

Target tracking system has the goal of following a target. The target can be a pedes-
trian, a bike, a car, a boat, or anything that can be seen by a camera. During the
movements done to follow the target the drone has to avoid obstacles on his path.

The architecture of the system is shown in figure 3.17.

Target Detection System takes in input the image of the gimbal system. As first
step the human operator selects the target. After the target is correctly selected, the
Gimbal Control System will point the camera toward the target in order to maintain
it in the center of the image. The Gimbal Control System continuously controls the
position of the gimbal taking into account the position, the velocity and the angular
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Figure 3.17: Architecture of Target Tracking System.

velocity to provide a stable image centered on the target. It uses the movements and
rotations of the drone as feedforward action, to maintain the camera focused on the
target when the drone is moving, rotating the gimbal in the opposite direction. It
controls with two PI controller the pitch and the yaw of the camera. The vertical and
horizontal displacement in pixels is given as input of the controllers.

Obstacles Detection System is described in section 3.1.2.
The algorithm used to compute the trajectory is a multy-goal A*. As classic A*

it explore over the grid taken from the perception using an heuristic that measure the
distance from the goal. In this A* variation, there is not only one goal but a set of
goals, as shown in green in figure 3.18.

In this application we choose to use circles but the algorithm works with any
shapes, for example is possible to use ellipses placing one focus point on the target
and the other one in the direction of the movement of the target with a focal distance
proportional to the speed of the target.

To allow the algorithm to converge over multiple goals we modify the heuristic
as follows:

H(n,goal[]) = min
i

{
H(n,goal[i])

}
Where H(state,goal[]) is the heuristic of state n to set of goals, H(n,goal[i]) is the

heuristic of state n to the i-th goal. The new heuristic, H(n,goal[i]) , is admissible so
it never overestimates the cost of reaching the goal, if the basic heuristic is admissible.
Following the proof:
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Figure 3.18: Example of Target Tracking algorithm. Obstacles are shown in blue.
Cyan dot is the drone position. Empty cyan dot represent target position. Green x
are the point of the circumference around the target that are the goals for the A*
algorithm. Red line is the computed trajectory.

if H(n,goal[i])≤ Real_cost(n) then

H(n,goal[]) = min
i

{
H(n,goal[i])

}
≤min

i

{
Real_cost(n)

}
≤ Real_cost(n)

Another modification introduced to switch to multiple goal is that for each node
selected from the open state space, which are the nodes selected to be possible solu-
tion nodes, as neighbor of already visited nodes, but yet to be visited by A* search,
we should control if it correspond with any goal of the set.
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This two modification slightly increase the computational proportionally to num-
ber of goals. To maintain the performance adequate, we introduce some modification
to improve computational time.

One modification is that we use a bounded relaxation of the heuristic admissibility
criterion. An admissible heuristic guarantees an optimal solution path, but it forces
A* to examine all equally meritorious paths to find the optimal path. It is possible
to speed up the search at the expense of optimality by relaxing the admissibility
criterion. Oftentimes we want to bound this relaxation, so that we can guarantee
that the solution path is no worse than ε times the optimal solution path. This new
guarantee is referred to as ε-admissible. We choose to use a Static Weighting method.
If H(n) is an admissible heuristic function, in the weighted version of the A* search
one uses Hweighted(n) = ε ∗H(n),ε > as the heuristic function, and perform the A*
search as usual. The path hence found by the search algorithm can have a cost of
at most ε times that of the least cost path in the graph. However the exploration
will be faster than using H(n) since fewer nodes are expanded. In our tests we used
ε = 1.5, which is a good compromise between goodness of trajectories and acceptable
computational times. Raising ε too much cause the search algorithm to become to
much "greedy" and expanding only nodes near the goals never evaluating the early
part of the exploration. In figure 3.19 it is possible to se an example of the effect
of weighting the heuristic. Classic A* search expand a lot more nodes before reach
the goal, but with weighted heuristic the path goes straight and do a 90 degrees turn,
which is obviously non optimal. Most of this non optimal point of the trajectory are
solved by the Ray Casting algorithm that will be explained later in this section.

Another modification to improve performance involve the moment when the
check if new node are already in the open set is done. In classic implementation,
when the best node in the open set is evaluated, if it doesn’t collide with any obstacle,
each node in its neighborhood is inserted in the open set if not already present. We
choose to eliminate this control and, instead to add a control during the extraction of
the best node from open set. If the best node is already in the closed set, it is discarded
immediately. From the point of view of the logic of the algorithm, this modification
doesn’t change anything. Computationally as two effect:
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Figure 3.19: Example of problem introduced by weighting the heuristic. On the left
the solution found by classic A*. On right solution found with ε = 5. The empty
circles represent the nodes in the open set, those that remain to be explored, and the
filled ones are in the closed set.

• In classic A*, it is checked if new nodes are in open set. In our implementation
best nodes of open set is checked if present in closed set. In most cases open
set is much larger than closed set, so the first check is much slower.

• In classic A*, neighbor nodes are not inserted in open set if already in there,
in our implementation yes. Therefore in our implementation open set grows
bigger that classic A*.

For our system, computational time is a more important bottle neck than memory
usage so we choose to apply this change.

Another change in classic A*, is the shape in the neighborhood as shown in figure
3.20. This change permits to find better solution because it distinguish the action
of going straight and than 45 degrees diagonal form going directly in the cell 26
degrees diagonally, even if its the same cell. Moving to this cell cost 1+

√
2' 2.414

in classic solution but only
√

12 +22 =
√

5 ' 2,236. This difference can let discern
the algorithm from different path that otherwise will have the same cost.
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Figure 3.20: Neighborhood shapes. On the left the classic cube with 26 neighbors (27
cells minus the central one). On the right the modified cube with 26 neighbors plus 8
diagonal neighbors.

After a trajectory is found by the algorithm, two step smoothing is applied. The
first smoothing algorithm is named Ray Casting. An example of the action of this
phase is shown in figure 3.21. The main goal of this phase is to eliminate the unnatural
path generated by A*. As we can see in the example, which represent a simplified
environment, A* create a 45 degrees path followed by a straight line. This is caused
by the fact that A* can move the exploration on the grid only on 8 direction (in
our implementation we have more direction, but the problem remains). Ray Casting
algorithm resolve this problem removing cell of the solution that are not essential, that
are the ones that if they are deleted and the remaining cells are connected with lines,
those lines don’t collide any obstacles. The algorithm iteratively select couple of non
consecutive solution cells and if the line connecting the two cells doesn’t collide with
any obstacle, all the solution cells in between are deleted. As mentioned before this
smoothing step allows to improve the solution even when the solution is not optimal
(see weighted heuristic above), allowing movement not feasible while moving on a
grid.

The second smoothing step is the application of a spline fitting algorithm. This
step allows to eliminate sudden changes in the direction of the trajectory. Before this
step the trajectory is sequence of lines, whereas after the trajectory become a curve
with continuous direction and piecewise continuous curvature. The trajectory is fitted
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Figure 3.21: Example of Ray Casting algorithm on simplified 2D grid. Green square
is starting position and cyan is the goal. In red is shown the input trajectory. Black
square are the output of Ray Casting algorithm.

with Bspline with degrees 3. In addition of having smoother trajectory this step allow
the trajectory to have a curvature different from zero as before spline fitting. This
will be used to compute lateral acceleration, that will be used in computing the speed
setpoint.

After the smoothing steps, the speed profile is computed. This speed setpoint will
be used by the Control to have a speed to reach. In some configuration, when the
drone has to look where is moving, every control cicle the control will slow down the
drone when the drone in not looking in the direction of the speed.

Following the passage to determine the speed of each point of the trajectory.

speed[i] = min
{

max_speed ,

√
max_lateral_acceleration

curvature[i]

}
For each point, speed is initialized to the minimum between the maximum speed

read from configuration and the square root of maximum lateral acceleration read
from configuration divided by the curvature in the point.

speed[0] = min
{

speed[0] , current_speed
}
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speed[i] = min
{

speed[i] ,
√

speed[i+1]2 +2∗acceleration∗ step
}

First point speed is set to current drone speed. For each other point, starting from
second point, speed is propagated forward using the acceleration chosen in the con-
figuration options. Both this settings are done only if new speed is lower than the one
already calculated.

speed[end] = min
{

speed[end] , target_speed
}

speed[i] = min
{

speed[i] ,
√

speed[i+1]2 +2∗acceleration∗ step
}

End of trajectory point speed is set to current target speed. For each other point,
starting from second to last point, speed is propagated backward using the decelera-
tion chosen in the configuration options. Both this settings are done only if new speed
is lower than the one already calculated.

In figure 3.22 is shown an example of speed profile. The acceleration ramp and
the deceleration ramp are section of parabola because on the abscissa there is the
space traveled, if it is converted in a time version the parabola sections will become
straight lines.

Figure 3.22: Example of speed profile. On abscissa is represented the space on tra-
jectory and on ordinate the speed in meter per second.
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The algorithm described is always used when the drone has to approach the cir-
cumference. When the drone is on the circumference, small movements of the target
cause the drone to apply little correction to remain exatly on the circumference. To
provide behaviors less shaky, an hysteresis feature is added. when the drone is at the
exact distance from the target, the drone change to holding position control mode. To
exit from this condition and start to follow again the target, the drone has to exit from
an annulus centered on the target.

Another improvement used to enhance the smoothness of the drone movement,
helping the control system, is the choose of the starting point. There are two different
case that are treated different. The first case is when the drone is still or moving
slowly under a threshold. In this case, if is first run of the algorithm all the planning
start from the current position. Else if the drone is sufficiently near the trajectory,
the planning will start from the nearest point on the trajectory else it will start from
current position. This choice allow to maintain the trajectory more stable. Without
this modification when the drone has a trajectory following error caused by wind,
control errors, etc., the planned trajectory will move causing even more error that
will not be compensated by the control system. The second case is when the drone
is moving fast. In this case, if the planning start from current drone position, the
planner can calculate a trajectory that start with a direction different from the speed
of the drone itself. If this happens, it is impossible for the control system to stay on
the trajectory but it will at least overshoots causing the drone to go in an unplanned
position. To eliminate this problem, planning will start from a future position of the
drone, that is the current position translated using the current speed multiplied by a
time constant. In our experimentation we choose as prediction time one second.

3.4 Shape In The Sky Planner

Another application developed for the drone is the Shape in the sky Planner. Its goal
is to compute a path that permits the drone to do shapes around the target. I can be
seen as a variation of Target Tracking Planner but with few differences. It has the
same interaction with Target Tracking System and Obstacles Detection System, so
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for further information see section 3.3. For what it concerns the functionality of the
system the main difference is that in Target Tracking application the drone stop when
it is at the right distance from the target, while in Shape in the sky mode it start to
move around it. As in Target Tracking, the shape that the drone will "draw" in the air
is generic, but in our experimentation we choose to circle around the target. in figure
3.23 is shown an example of the output of the algorithm.

The implementation works with a multiple step approach. Firstly a multy goal A*
is executed. Its working principles are described in Target Tracking Planner (3.3) so
we will skip them here. After this phase the algorithm has knowledge of the nearest
goal taking into account all obstacles and the best path to reach it. To that path starts
the procedure to circle around the target. Starting from the nearest goal, we compute
the path from a goal to the next on the circumference. Every path is computed using
the A* algorithm described before but with only one goal. Then it connect each path
to each other. The Ray Casting algorithm is applied with the modification of don’t
delete goals point on the trajectory.

At this point of the algorithm we have a trajectory that circles around the target
but its not guaranteed that its the best one. For example if the algorithm output this
trajectory, it can happen that the drone is on the circumference and the nearest goal
in the opposite direction of the one we want to circle. The trajectory will be going in
one direction until it reach the first goal and than change direction to circle around
the target. This is obviously very uncomfortable. Another problem occurs when the
drone is outside the circumference. With the hypothesis of field without obstacles,
the resulting trajectory will be a straight line toward the target and, when reaching
the circumference, a 90 degrees turn to start circling around the target. Again this is
obviously very uncomfortable.

To solve this problems, we compute more trajectory and choose the best. The
other trajectory with which we compare the one already computed, will be the ones
that anticipate the circles around the target. So the ones that are not pointing to the
nearest goal but look ahead on the circumference. To compute the first one, a path
to connect the current drone position to the goal x meters ahead the nearest goal is
calculated. This path is then connected with the path to next goal and so on. Next
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Figure 3.23: Example of Shape In The Sky Planner algorithm. Obstacles are shown in
blue. Cyan dot is the drone position. Empty cyan dot represent target position. Green
x are the point of the circumference around the target that are the goals for the A*
algorithm. Red line is the computed trajectory.

trajectory is computed in the same way choosing as first goal the one 2 ∗ x meters
ahead the nearest goal is calculated, and so on for the other trajectory. In our experi-
mentation we choose to use x equal to 1 meter.

To choose the best trajectory, a cost function is created. This function has to take
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into account the length of the trajectory and its smoothness. The choose function is
the time needed to travel along the trajectory. The function is as follows:

Cost = ∑
f or each point i

{
tra jectory_step

min
{

max_speed,
√

max_lateral_acceleration
curvature[i]

} }

This is a very good function to be used. It doesn’t need the tuning of any param-
eters, its easy to understand and easy to implement.

Using this cost function, the trajectory with lower cost is chosen.

Another difference with Target Tracking Path Planning is the use of two differ-
ent speed limit. One is for the drone when is approaching the circumference, and the
other is for when the drone is already circling on the trajectory. The final speed profile
will have an acceleration ramp to reach speed limit outside the circumference, a de-
celeration ramp to reach the speed limit on the circumference, and a constant circling
speed.

3.5 Enhanced RC Planner

Enhanced RC Planner is an application developed for the quadrirotor that has the
goal to enable an human operator to control the drone with a radio controller in a safe
mode. With safe mode, we mean that the operator con give any command but he will
not be able to have the drone collide with any obstacle, even if he want and try to do
it.

In figure 3.24 it is shown the architecture of Enhanced Radio Control System.
The architecture is similare to the one shown for Target Tracking Planner. It takes in
input an occupancy grid from Obstacle Detection system. For further information on
Obstacle Detection system see 3.1.2. Another input is the state of the Radio Control
Joystick. From the DJI SDK we take as input four values. One for yaw rate, one for
altitude change, one for X speed and one for Y speed. Those four values are the state
of the left and right lever of the joystick. Those values vary from -100 to 100. The
output of the planner is a trajectory and is given in input to control system.
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Figure 3.24: Architecture of Enhanced Radio Control System.

The value for yaw rate is send directly to the control because it is not possible to
crash the drone by only rotating it.

The other three values are used to compute a requested speed. This speed is a
3d vector that has a and a maximum vertical speed. The abscissa and ordinate of the
speed is normalized so that when both values are at 100 the planar speed has norm
equal to the maximum planar speed chosen in the configuration. Also vertical speed
is normalized so that value 100 corresponds to maximum vertical speed. To improve
control of the drone the change of value near zero influence less the change in speed.
This feature is implemented using a non linear normalization. Near zero, when non
normalize speed norm is less than 20%, we use a smaller normalization factor. Other-
wise we use a bigger normalization factor and an additive offset to maintain continu-
ity in the speed. This feature improve a lot the maneuverability of the drone, avoiding
error in the commands caused by over sensibility of the radio control commands.

The Radio control planning system can be in two state, as shown in figure 3.25.
The two state are Hovering and Navigation.

During Hovering mode the drone will stay still maintaining the last goal com-
puted by navigation. When the Enhanced Radio Control System is turned on, it take
the first drone position as first goal. The system remains in Hovering mode until the
Requested speed become greater than a configuration threshold.

During Navigation mode the drone will follow a trajectory that represent the re-
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sult of elaboration that has as input the Requested speed. The Enhanced Radio Con-
trol System will compute this trajectory using not only the Requested speed but also
the current drone speed. In the next paragraph we will explain more detail about this
method. When the requested speed and the current speed are lower that a threshold,
the Radio Control System change back to Hovering mode. The goal for hovering is
computed as follows:

Hovering_goal = current_position+
current_speed2

2∗deceleration

The term current_speed2

2∗deceleration represents the distance traveled by the drone that is stop-
ping with constant deceleration. This allows to have a very smooth transition form
Navigation to Hovering because the control has to decelerate constantly to reach the
Hovering goal.

Moreover, to improve the smoothness of the movements and to permit safe ma-
neuvers during the stopping phases, the switch to Hovering state happens only when
the drone has already reduced its speed under a certain threshold. Until that moment,
when the Requested speed is under the threshold, the Radio Control planner use as
goal speed direction the current drone speed. In this way if an obstacle is seen after
the control levers are released, the drone can gently stop avoiding it decreasing its
speed slowly.

After a requested speed is computed during Navigation state, two mode of estab-
lishing the goal for the planner have been tested.

• Variable distance: in this case the goal is projected from current drone position
using requested speed multiplied by a maneuver time. The goal represent the
position of the drone maneuver time second in the future if it moves at the
requested speed.

• Fixed distance: in this case the goal is projected by a fixed distance chosen
in the configuration in the direction of the requested speed. The goal has no
relation with time but represent only the desired direction by the operator.
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Figure 3.25: State diagram of Enhanced Radio Control System.

The variable distance speed is the first method we tried but has some disadvantage
that made us change to fixed distance. The biggest problem is that when the operator
want to go very slow the goal is very near to the drone position so the planned trajec-
tory is very short. This fact is a problem because if the operator point in the direction
of an obstacle the drone will go slowly toward the obstacle and at the last moment it
avoid it. This is a problem because it is not comfortable because, from the point of
view of the operator that don’t see at the obstacle map, it seems that the drone is not
seeing the obstacles. In Fixed distance mode the drone has always a long trajectory
that is followed at requested speed, both if it is low or if it is high. In this case if the
operator point an obstacle the drone start to avoid it at the distance of goal projection,
generating a smooth trajectory that avoid the obstacles gently.

As mentioned in Target Tracking planning system, the beginning of the planning
don’t always start from drone position. For further information see the end of section
3.3.
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3.6 Results

In this section we present some qualitative results.
The drone successfully complete all the tasks given. Starting from Target Track-

ing, the drone correctly follows the target with a very smooth behavior. The designed
system allows the drone to automatically follows the target in any circumstances, with
almost any kind of obstacles. As shown in figure 3.26, the Target Tracking platform
has been tested extensively following pedestrian. In the figure is shown a difficult
scenario because there are a lot of tree, there are a lot of marked shadows, horizontal
branches and so on. A difficulty for Target Detection system is that the target change
its appearance a lot when passing from a dark area to one with direct sun. Even with
this complex environment, the system has been able to follow correctly the target
avoiding obstacles.

Figure 3.26: Example of result of Target Tracking Algorithm. In this case the drone
is following a pedestrian in a wood.

The system has been also tested in the following of cyclists as shown in figure
3.27. For the Path Planning system, the main difference with pedestrians is that bi-
cycles go faster but with a more predictable path. In the image is shown a bike that
travel on a road. In the chosen frame the bike is correctly passing between a truck and
a wall. In this test the bike has reached a maximum velocity of 30 kilometers per hour.
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The drone has been able to follow correctly the bike avoiding obstacles maintaining
an high speed.

Figure 3.27: Example of result of Target Tracking Algorithm. In this case the drone
is following a cyclist on a road with some cars.

The system has been also tested in the following of vehicles as shown in figure
3.28. As with the transition from pedestrians to cyclists, the main difference from
bicycles is that vehicles go even faster but with a even more predictable path. In
the chosen frame is possible to see one of the biggest and unresolved problem of
the system that are nets. In this case, the obstacle detection system con partially see
the net because we are almost tangent to it, but when facing it straight the net is
almost invisible. This is a big problem that has be investigated in the future works.
Apart from the higher velocity, the tests with vehicles are working good because the
vehicles don’t change direction of movement as fast as pedestrians and bicycles so
the planning part is a little bit easier.

As mentioned before one of the main constrains of the planning system is to be
computationally very efficient. In table 3.4 is shown the computational time of the
developed multy goal A*. Obviously the time depends on various factors:

• The distance from the target: the further the target is, the more time will be
required for the computation.
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Figure 3.28: Example of result of Target Tracking Algorithm. In this case the drone
is following a vehicle on an untarmacked road.

• The complexity of the environment: the more complex the environment is, the
more curvy the solution will be and the more time will be required for the
computation.

• The imprecision factor: the higher the imprecision factor is, the less time will
be required for the computation at the cost of having a trajectory that will be at
max one plus the imprecision factor longer than the optimal trajectory.

In the table is possible to see the computational time calculated on a desktop PC
that has almost the same computational power of the board on the drone. We also
compared this results with the computational time calculated on an low power ARM
CPU that has fewer computational power. In both cases there is a configuration that
allows the path planner to run in real time at at least 20 Hz.

In our experimentation, usually, the drone is pretty near to the circumference. We
used a imprecision factor of 0.2.

For further tests on the ARM CPU we will use a imprecision factor of 0.5.
In tables 3.5 and 3.6 are shown the computational time of Ray Casting algorithm

and BSpline smoothing algorithm. Compared to A* search time, this two computa-
tional times are much shorter. They depend only on the length of the path, the longer
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Table 3.4: Multy-goal A* computational time table. Times are represented in mil-
liseconds. First column shows the path length and corresponding test number as
shown in figure 3.29. Other columns contains the computational times divided by
imprecision factor. The imprecision factor is the value used to weight the heuristic.
The weighted heuristic is equal to the admissible heuristic multiplied by one plus the
imprecision factor. For each value of the imprecision factor are shown computational
time on a desktop PC with CPU Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, and
on a single core of a low power ARM processor.

Path length impr. = 0.0 impr. = 0.1 impr. = 0.2 impr. = 0.5

10.3 m (1) 2.5 15 0.75 4.6 0.45 3.1 0.45 3.1
19.8 m (2) 44.5 305 2 14.1 0.9 6.2 0.9 6.2
26.8 m (3) 142.5 1020 3.5 24.8 2.2 14.2 2.1 10.5
41.7 m (4) 665 4550 98.5 730 80.3 584 65.2 465

the slower the two algorithms are. As before, for each case both computational time
on desktop PC CPU and on ARM CPU are shown.

In table 3.7 are shown the maximum memory required during the A* search. The
memory and the number of nodes grow together with the length of the path and with
the complexity of the environment because if the algorithm has to try more routes to
reach the goal, it has to maintain memory of multiple possibilities during exploration.

3.7 Conclusion And Future Works

The developed system described in this chapter has proven to be able to generate be-
haviors that are very smooth. Through experiments on real application, it has proven
to satisfy the safety measures that we impose to enable the use of the system to in-
expert users. The attention paid in the creation of comfortable behaviors, without
brusque movements, have the user feel trust toward the system.

The whole system architecture has proven to be flexible and adequate to the ap-
plication developed. The architecture has high modularity, as each system that com-
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Table 3.5: Ray Casting smoothing time table. Times are represented in milliseconds.
First column shows the path length and corresponding test number as shown in figure
3.29. Second column contain the computational times on a desktop PC with CPU
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, and third column on a single core of a
low power ARM processor.

Path length Desktop PC CPU ARM processor

10.3m (1) 0.02ms 0.10ms
19.8m (2) 0.09ms 0.66ms
26.8m (3) 0.20ms 1.50ms
41.7m (4) 0.45ms 3.90ms

Table 3.6: BSpline smoothing time table. Times are represented in milliseconds. First
column shows the path length and corresponding test number as shown in figure 3.29.
Second column contain the computational times on a desktop PC with CPU Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz, and third column on a single core of a low
power ARM processor.

Path length Desktop PC CPU ARM processor

10.3m (1) 0.17ms 1.47ms
19.8m (2) 0.22ms 2.50ms
26.8m (3) 0.31ms 3.61ms
41.7m (4) 0.47ms 5.45ms
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Table 3.7: Multy-goal A* maximum memory usage table. First column shows the
path length and corresponding test number as shown in figure 3.29. Second column
contain the maximum memory occupied during computation, and third column the
max number of nodes in the open set.

Path length max memory max number of nodes

10.3 m (1) 3768 Byte 314 nodes
19.8 m (2) 8k2 Byte 684 nodes
26.8 m (3) 16k5 Byte 1377 nodes
41.7 m (4) 390k Byte 32488 nodes

Figure 3.29: Test fields used for compute computational performances. From left to
right and from up to down the are named (1)(2)(3)(4). The obstacles are shown in
blue, the target is the empty square, the goal circumference is shown in green, the
drone is the cyan square and the trajectory is the red line.

pose it are independent, interchangeable modules, such that each contains everything
necessary to execute only one aspect of the desired functionality. For this reason de-
veloping new applications and behaviors is simple and of fast deployment.
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More improvement will be done in the obstacle detection system, focusing on
improve the performance in the detection of "difficult" obstacles. These kind of ob-
stacle are small branches and object that can be seen through, like nets. To improve
the detection, the perception system, the 3DV-E, will be substitute with a better one.
The 3DV-E has relatively low resolution so we plan to mount a 4k stereo system that
look forward to improve the precision of the detection. Another improvement, is to
add sonar sensors to add redundancy to the detection. The sonar system work good
with nets and will give additional info that will be fused with stereo images.

A new application that will be developed for this flying platform is autonomous
landing. The goal of this feature is to recognize a landing point and land on it. This
landing point can be a photo of the place from which we took off. For example, the
drone take off, do some video of the location around it and the user can call back the
drone and it land in the same starting point. Another possibility is to make the drone
on some kind of target board, like an ArUco marker board as shown in figures 3.30
and .

Figure 3.30: Example of ArUco marker board.
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Figure 3.31: Example of drone landing on a mobile board. Reference to [26].

An example of the use of this application are numerous. One of them is to ship
packages for online shopping site. The costumer can order a something online and
give the shopping site a GPS position. The shopping site will send a unique landing
marker to print and to be put outside where the drone can land. The drone will be able
to reach the GPS position given, find the marker, land, release the package and finally
go home. Another example of application for the autonomous landing on marker is
to put a marker on the roof of a car. When the car will reach a parking lot, the drone
can take off to find free parking slots, and communicate the free positions to the car
to reach them. It will then come back to the car and land on top of it. As reference for
the algorithm that will be implemented we used the survey written by Jin et al. [26].
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