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Introduction

1 Preface: current trends in computer vision

Recent years see computer vision growing as never before, with great deal of at-

tention from both research and industrial communities. On one hand, the develop-

ment of deep learning techniques in artificial intelligence has brought great advances

into scene understanding. On the other hand, a lot of efforts have been put into ge-

ometric techniques (projective geometry, computational geometry, photogrammetry)

to recover accurate measurement of scene-related quantities, especially in relation

to model rendering and virtual reality. Low cost availability of easy-to-use, high-

resolution camera systems and off-the-shelf devices with remarkable computational

power lead to ubiquitous, interconnected systems, able to tackle difficult problems,

perceiving the surrounding environment and automatically generating and transform-

ing representations to, e.g., automatically identify people in photos, generate a text

description from a photo and vice-versa, recognizing hand-written text, converting

text to speech and vice-versa, doing automatical translation between different lan-

guages, inspect industrial manifacturing, drive actuation of autonomous vehicles.

A wide range of computer vision algorithms involve mapping functions and quan-

tities depending upon the specific pair camera-lens in use, especially those regarding

geometric measurements and relations between scene and image spaces. Manifactur-

ers provide estimates of some of these quantities, but cameras and lenses are often

sold separated, so better results can be obtained with a calibration procedure. Some

parameters, such as camera positioning with respect to a fixed frame (extrinsic param-
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eters), are often not even available to the manifacturer, depending on single customers

setups and conventions. An accurate calibration procedure provides highly valuable

information for quantitative evaluations in other algorithms (e.g. visual odometry and

3D dense reconstruction) and photogrammetric considerations. Examples of applica-

tions include virtual reality, medical imaging, product quality assessment, vehicles

and robot navigation.

2 Historical point of view

This thesis concerns the problem of geometric camera calibration (or resectioning).

The task consists in finding a set of parameters to describe the camera according

to a predefined reference model1. This is one of the most studied computer vision

problems of all times. Indeed, writing a survey about camera calibration is a difficult

task, needing to gather up a huge base of references, even when the attention is con-

strained to specific aspects [2]. The following paragraph is meant to give the reader

a short overview of the leading aspects of the topic through the years, without the

presumption of being exahustive.

Even before the birth of computer vision itself cameras were employed to mea-

sure the focal length and distortion of lenses. As an example, a quick search on the

topic brings us back to 1937, when precision cameras were adopted to test airplane

lenses [3]. Predating existence of computer vision (ca. 1960), measurements on the

image were done by hand. We have to wait until the 1970s, when computer vision

community investigated the scene-to-image projection and, exploiting projective ge-

ometry, developed the pinhole camera model, together with methods for estimat-

ing its parameters [4]. During the 1980s calibration reached a good accuracy, and

the now-called “classical” calibration algorithms see the light – Tsai [5] being the

most famous among others [6, 7, 8]. At the beginning of the 1990s computer vision

focused on shape understanding: calibration markers position could be accurately

estimated, boosting the precision [9, 10, 11]. Later years see the study of lenses

1Regarding the so-called model-free techniques (e.g. [1]), the task consists in finding the distortion

field induced by displacement of each pixel – we can consider that as the reference model.
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nonlinearities [12, 13, 14] and multistep techniques [15, 16]. Zhang gives birth to

one of the most used calibration techniques [17]. Challenges in the new millenium

involve inter-calibration between cameras and other sensors [18, 19, 20, 21, 22],

such as IMU, LIDARs, GPSs, and great attention is given to camera calibration for

virtual reality applications [23, 24, 25]. Most recent works deal mostly with self-

calibration [26, 27, 28, 29, 30], although achievement of high-accuracy camera cali-

bration is still of some interest [31].

Until now, photogrammetric (marker-based) camera calibration outperforms self-

calibration techniques in terms of reprojection error minimization. There are some

practical, nebulous aspects that lead to difficult procedures: accurate camera calibra-

tion remains a topic for expert, trained users. Even then, common procedures rely on

acquisition of more images than necessary and check both model error and parame-

ters uncertainty to be low; images are replaced or added under unsatisfactory results.

To enhance the reliability of this process the community the use of a GUI to provide

assistence has been introduced [32].

3 Available methods

In this section we want to give an overview of the different aspects involved in the

camera calibration procedure, again without any presumption of being exahustive.

We will limit ourself to photogrammetric (marker-based) calibration of cameras of

the consumer/industrial type, with pinhole or fisheye optics – even if probably the

same or at least similar techniques could be applied to different camera systems. The

procedure consists in showing a known pattern to the camera. Intrinsic parameters

calibration require multiple point of views of the pattern, so the relative position be-

tween the camera and the pattern must be changed, while for extrinsic parameters

a single view of a fixed pattern may suffice. Common intrinsic parameters calibra-

tion techniques involve the estimation of the pose of the pattern, so we will refer to

those in the dissertation, treating extrinsic calibration as a special case with world

reference-positioned pattern(s). This kind of algorithms represents a preprocessing

step for computer vision tasks, aimed to provide an accurate estimation of what can
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be elsewise considered prior knowledge. They can be run offline once, so no strict

timing requirements are involved, even if sometimes collected data grows signifi-

cantly and complexity must be constrained.

One of the main aspects to be considered is the error function for results eval-

uation. Literature papers divide themself in the ones using the vector of model pa-

rameters and the ones evaluating the reprojection error, i.e. the distance between a

detected keypoint and its position after pattern(s) pose estimation, camera parameter

optimization and marker projection on the image. Whilst the former has the advan-

tage of working with non-keypoint features, it is unclear how comparison should

be made (unless all the parameters converge simultaneously) and ground-truth in-

formation is required, moreover comparisons between results with different camera

models are not possible in the general case. The latter is a single number that does

not suffer from these problems but its minimization may not, in general, lead to better

results (i.e. is not a measure of the model trueness).

Regarding the marker type, most works use keypoint-based ones, usually in the

form of checkerboard [33] or circles [9]; with fiducial markers [23, 34] or with those

that Kim et al. [35] call new calibration techniques [36, 37, 38] perspective infor-

mation coded in the marker projection can be exploited; in some cases the whole

marker shape can contribute to the optimization [39, 40]. Examples of marker types

are available in Fig. 1. The aspects involving the reconstruction of marker grids (if

any) given the list of detected markers, taking into account potential obstructions,

receive lower interest with respect to the other topics, despite requiring topological

ad-hoc [41, 42, 43] or graph-based [44] non-trivial techniques to be accomplished.

Taking into account perspective bias on pattern projections [45] or reducing the effect

of noise on pattern fitting [46, 47] represent another huge field of study.

Fisheye lenses introduce nonlinearities into the projection equation, opening pos-

sibilities to work on different camera models: several studies look for a simple, high

accuracy model that can fit most of the fisheye projection mapping functions. Exam-

ples can include radial distortion, model-free calibrations [49, 50] and catadioptric-

adapted models [51, 52] of different complexities [53]. Some of these models reach

enough accuracy to be used for stereo cameras mounting fisheye lenses [54]. Compar-
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isons between pinhole and other models were made [55], besides studies to improve

model convergence [56].

Final parameter estimations use different approximations [5, 57, 58] (often ob-

tained by linearization) to initialize Newton or Levenberg-Marquardt nonlinear op-

timization. As proposed by Zhang [57], the function to be minimized is usually ex-

pressed in terms of the reprojection error, summing up the contribution of all the

observed markers to obtain the maximum accuracy. Tang et al. [59] propose the use

of a calibration harp for better take into account lens distortion, at the expense of

requiring two different calibration patterns.

4 Main contribution

You might wonder if camera calibration can be considered a closed topic. Answering

this question is not as easy as it seems: from one side, the forementioned global non-

linear optimization approach is optimal in a image-space error measurement sense.

From another side, the effect of image noise cannot be compensated completely and

practical aspects (limited number of markers, difficult to capture nonlinear lens distor-

tion, bias in the distribution of the marker poses), when combined, prevents you from

reaching high-accuracy results. Furthermore it makes sense having the best model

fit not depending on what it will be used for, but when it comes down to apply that

generic model solution in a specific case we would like to reach accuracies as if we

had performed an ad-hoc optimization.

In this thesis we will:

• outline some practical considerations concerning camera calibration

• propose a method for suggesting marker grid poses
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5 Thesis outline

In Chapter 1 we outline practical aspects involved in camera calibration procedures

that may be useful to readers approaching the subject to improve the results, espe-

cially in relation to marker types and camera models.

Chapter 2 introduces the pose suggestion topic, providing a new efficient algo-

rithm for generating pose suggestions together with some test results.

Chapter 3 draws some conclusions on the work and tries to foresee what may be

in the forthcoming developements.





Chapter 1

Notes on camera calibration

procedures

1.1 Introductory clarifications

The aim of this chapter is to provide an insight of practical considerations arising

in developing a camera calibration procedure, studying the state of the art more in-

depth. Instead of focusing on a constrained problem version, we look for an high-

accuracy, easy-to-use, general procedure. With “general” we mean it should not be re-

stricted to specific camera and/or optics types (in the range of the consumer/industrial

type). With “easy-to-use” we mean that, ideally, even untrained users are able to per-

form the procedure. Working in the automotive field, we require a calibration accu-

racy that allows to keep reasonable results even at several meters of distance – as
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an example, calibrating cameras for stereo matching we target no more than 0.1px

reprojection error. In many cases practical aspects are difficult to model, sometimes

leading to mathematical fields beyond our current skill level, making a rigorous theo-

retical treatise infeasible. We provide some empirical evidences of our intuitions, but

we have not implemented the data gathering and comparison for all the different pos-

sibilities. A deep and complete study of the calibration markers would have required

a study of many different marker types available in literature, an implementation of

the detection algorithms and a thorough analysis of the error sources and data reliabil-

ity: this is out of this thesis’ scope. As a consequence claims are not accompanied by

desirable scientific proofs, but by the study of the state of the art and by the opinion

of professionals in the field.

1.2 Marker type

All of the highest-performing calibration techniques share a common fact: they re-

quire the camera to acquire a known pattern. This enables the estimation of the model

parameters, given the marker model (in the 3D world) and its observations (in the 2D

image). The choice of the marker types and methods for detection represents a deeply

studied topic.

1.2.1 Choice of the marker

Most frequently used marker types in literature are: checkerboard, circles, concentric

circles and fiducial markers. Single markers are often replicated into marker grids

for the simultaneous acquisition of multiple data and for exploiting planarity infor-

mation. Our research group had already developed a circles-based marker detector

based on the OpenCV library [60]. With pinhole, 1280×960 images it obtains a re-

projection error as low as 0.05px, but its use on newly taken images from a recent 4K

camera leads to poor results. This could be attributed to perspective bias [45], so we

directed towards bias-free markers. We excluded fiducial ones, because the localiza-

tion errors for the highest-accuracy ones available in literature [61] were more than

one order of magnitude higher than the ones we obtained with circles. Even if we
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think that optimal1 results could be obtained with checkerboard lines under the as-

sumption of certain kinds of distortion and field-of-view ranges (see also par. 1.3.6),

we thought that the use of keypoints in the form of a grid of concentric circles mark-

ers could give us results good enough for our aims. The number of concentric circles

on the same marker in the grid represent a trade-off between the marker compression

(occupied space) and the precision at which you can estimate the point; we thought

two edges would be enough to provide enough precision without significant effects

due to the distance from the linearization point. The resulting marker can be seen in

Figure 1.1. We will use the term ring marker (or simply ring) to refer to this kind of

marker from now on.

1.2.2 Marker accuracy evaluation

The keypoint accuracy performance has been evaluated on a synthetic image se-

quence with 20 different poses of the calibration pattern. Each image, similar to

Figure 1.1(a) has a resolution of 1280×960, 8-bit color depth and a fixed, i.e. not dis-

torted according to the camera model background to stress a bit the marker detector.

The pattern is oversampled for better color accuracy (24x), image noise is simulated

with gaussian blurring (σ = 0.8) and additive noise according to a uniform distribu-

tion U(−4,+4). The points available as an output of the marker detector have been

compared with the ground truth set of points, choosing always the nearest match and

discarding everything with more than 2px of error norm. The average of the absolute

values on each error component is taken as marker location error (Equation 1.1).

INLN =

{

(|x̂− x∗|, |ŷ− y∗|)

∣

∣

∣

∣

(x∗,y∗) = p∗ = argmin
p

‖p̂− p‖2, ‖p∗‖2 ≤ 2

}

ε =
∑m∈INLN m

#INLN
(1.1)

Tipically we want the location error on the two components to be independent

and identically distributed. In that case, the covariance matrix is a multiple of the

identity and the worst-case maximum value ‖ε‖∞ = max(εx,εy) can be computed

picking any of the two vector coordinates.

1in the sense of reprojected model matching
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Figure 1.1: Planar marker made up of several rings (simulator rendering). (a) is the

source image; (b) shows the color-encoded gradient magnitude, together with an in-

termediate result (after partial filtering) of the marker detector (blue ellipses); (c) and

(d) display zoomed views of the bottom-left marker of the grid in (b), to highlight

the position difference of the marker center localization. The black dots represent the

ellipses centers, the red cross is the proposed marker location, the gray triangle is

the ground-truth marker location. The marker location error norm in this example is

approximately 0.0425px. Best viewed in colors, zooming on the screen.
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Using the keypoints reprojection error minimization, the calibration can be found

following Alg. 1, having Ii the set of extracted keypoints in the i-th image.

Algorithm 1 Keypoint calibration using reprojection error

1: function CALIBRATE({Ii}, µ0) ⊲ returns the camera calibration µ̂

{Ii} is the set of images keypoints

µ0 is an initial guess for the calibration

2: for all Ii ∈ {Ii} do

3: p̂i← poseFromNPoints(Ii)

4: Ji← projectModelAtPose(p̂i,µ0)

5: end for

6: µ̂ ← argmin
µ

reprojection_error({Ii},{Ji})

⊲ use µ0 as nonlinear optimization starting point

7: return µ̂

8: end function

1.2.3 Marker detector foundations

For testing purposes we implemented a simple ring marker detector, clustering the

image gradient magnitude and fitting an ellipse on each connected component. Most

of the generated false positives, i.e. ellipses that do not belong to the pattern, can be

then discarded keeping only concentric ellipses. This is a strong feature to be found in

the image: the more the marker has concentric circles, the more is unlikely the same

number of concentric circles will be found elsewhere in the image. More advanced

methods could be employed, but in our simple tests we managed to remove all of

them by appropriate thresholding and parameter tuning.

We were concerned about the error introduced by the lens distortion. Surely the

geometry of pinhole camera maps the circles of the pattern into ellipses, but it is not

so when different mapping functions are involved (as it will be shown in par. 1.3.4).

Anyway even in this case the forementioned algorithm was able to find out the el-

lipses, with a slight loss in precision. Marker location error tests with different camera
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models are summarized in Table 1.3.

Given the points in a connected component, multiple techniques are available

for least squares ellipse fitting. A proper, geometrical fitting of the ellipse requires

a nonlinear least squares fitting. To avoid nonlinearity one could approximate the

distance function using the Sampson one, as proposed by Szpak et al. [62]. Another

simpler approach relies the algebraic distance; methods in this category mainly differ

from each other for the normalization constraint. Given the implicit equation

ax2 +bxy+ cy2 +dx+ ey+ f = 0

we want to find the set of parameters a,b,c,d,e, f that minimize

1

2
∑

i

wi

(

ax2
i +bxiyi + cy2

i +dxi + eyi + f
)2

for a given dataset (xi,yi) and corresponding weighting wi. Using the notation of

perspective geometry and homogeneous coordinates, notation simplifies to the mini-

mization of 1
2 ∑i wi p

⊺

i Cpi =
1
2
χ
⊺

D
⊺

Dχ , where

C =







a b
2

d
2

b
2

c e
2

d
2

e
2

f






, χ =

[

a b c d e f

]⊺

and Di = wi

[

x2
i xiyi y2

i xi yi 1

]

, the last one being the i-th row of the design

matrix D.

The minimization can be solved finding the kernel of the gradiend, D
⊺

Dχ = 0. Ob-

viously there is a multiplicative factor ambiguity in the solution (as one can see also

from the implicit equation), so a normalization constraint has to be chosen. Most

common constraints are ‖c‖ = 1, its dual2 f = 1, or 4ac− b2 = 1; the last one con-

straining the conic to be an ellipse, as originally done by Fitzgibbon et al. [63].

We managed to obtain good results using the improved version proposed by

Halíř [64], paying attention to data preconditioning before fitting. Splitting the conic

2Each of the two constraints represent the other under a duality transformation of the conic



1.2. Marker type 15

parameters column vector a =

(

a1

a2

)

into two blocks, the fitting problem can be

stated as:

Mχ1 = λ χ1

χ
⊺

1C1χ1 = 1

χ2 =−S
-1

3 S
⊺

2χ1

(1.2)

having M =C-1

1 (S1−S2S-1

3 S
⊺

2) the 3×3 reduced scatter matrix, S=
[

S1 S2

S2 S3

]

=D
⊺

D the

full scatter matrix and C1 =
[

0 0 2
0 −1 0
2 0 0

]

the top-left anti-diagonal part of the elsewhere-

zero normalization matrix. This formulation, in addition to being computationally

more efficient, has been proven being numerically more robust [64]. Unfortunately,

unlike stated by Halíř and Flusser [64, end of pag. 4], reduced scatter matrix M may

not have three real eigenvalues: in many practical situations it ends up having two

complex conjugates eigenvalues and one real eigenvalue. But complex eigenvalues

correspond to complex eigenvectors, i.e. complex conics, so in this case we are inter-

ested in the eigenvector corresponding to the only one real eigenvalue.

Despite all the precautions this algorithm leads to numerically unstable results

when provided non-preconditioned data that already represent a good ellipse esti-

mate. Paying attention to the premultiplication by C-1

1 in the computation of M (it

must be done swapping the rows of the right-hand operand, exploiting C1 structure as

stated in the reference paper) is important but not enough. Preconditioning the scatter

matrix is a necessary step to obtain good ellipses estimates.

We could not get improvements with dual ellipses fitting techniques, as proposed

by Tabatabai [65], maybe because we chose a poor gradient estimate (8-bit per coor-

dinate, 3× 3 sobel filter) to have a faster detector. We would have expected to gain

some accuracy by contour points refinement, as proposed by Safaee-Rad et al. [66]

and improved by Heikkila [67], but we did not – we are not sure of the reasons for

this improvement lacking.
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1.2.4 Removing marker perspective bias

A simple approach for extracting the marker keypoint location may be getting the

centroid of the border points or of the filled circle (getting rid of the ellipse fitting),

or taking the center of the ellipse(s). Unfortunately, as known from projective geom-

etry, the projection of the center of a circle does not coincide with the center of the

projection of the same circle, i.e. the center of the ellipse we are fitting. As shown in

Table 1.1, our test reflect this fact: while it does not improve very much the ellipses

center keypoint in terms of marker location absolute mean error, it significantly re-

duces the bias (signed mean error).

Keypoint εx εy |εx| |εy|

Centroid of the two ellipses -0.063 -0.059 0.110 0.104

Average of the two ellipse centers -0.019 0.022 0.045 0.044

Perspective bias corrected 0.001 0.001 0.049 0.039

Table 1.1: Marker location error components with different keypoint extraction meth-

ods (under the same pinhole, Brown-Conrady camera model)

The first who exploited this fact in the topic of camera calibration were Kim

and Kweon [68, 69]. The idea was picked up by others [70, 71, 72], but were again

the original authors to provide stronger foundations to their method into linear alge-

bra [35]. Later Minh et al. [73] extended the idea to multiple concentric circles for

increased accuracy.

Essentially the idea exploits the cross-ratio projective invariant to find out the

projection of the concentric circles center. The method consists in the selection of

four points (we can take Figure 1.2 as a reference) and building up a relation invariant

to the projective transformation.

Even if not very popular in computer vision literature, given four collinear points

A,B,C,D the cross-ratio:

(A,B;C,D) =
AC ·BD

AD ·BC
(1.3)

is indeed a projective invariant value ([74, Theorem II-1]). It is worth noting (corol-
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Φ

C1

C2

E2

F2

E1

F1

X

Figure 1.2: Cross-ratio projected center estimation – reference drawing

lary) that relation holds even involving the point at infinity on the projective line, for

that being the case of harmonic conjugates pairs. Different versions of the method

for finding the center projection X could be developed, differring from each other for

the four points selection.

Original version by Kim and Kweon set up the relations:

(E1,E2;X ,Φ) = 2

(F1,F2;X ,Φ) = 2
(1.4)

on a projective one-dimensional reference system on the line through the two centers

of projections C1C2. They solve the system of two equations in two unknowns, recov-

ering the projected center. Omitting the horizon line information, the system could

be also be reduced to the form:

(E1,F1;X ,F2) = (E2,F2;X ,F1) (1.5)

Expansion of the equation results in a quadratic equation with two real distinct solu-

tions, only one of which belongs to the segment F1F2.
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As they point out in their seminal paper [68, par 2.2a], all the centers of projected

concentric circles should lie on the same line. However noise in the ellipses estima-

tion affects the results, so one may gain some improvement with an iterative solution

as presented in [71].

1.3 Camera models

Dealing with noise is hard, coping with noise and nonlinearities is harder. Here we

will present some the models that have been developed in the years to handle camera

lens distortions.

1.3.1 Pinhole projection and world-to-image mapping pipeline

A lot of different models have been developed to take into account lens distortion,

pinhole camera being the simplest one. Under this model points undergo a linear pro-

jective transformation. Unhomogenizing the coordinates, the projection transforma-

tion from the camera reference system to the normalized image plane can be written

as:
(

x

y

)

=
1

CZ

(

CX

CY

)

(1.6)

To take into account lenses imperfection the Brown-Conrady polynomial model

of distortion [75, 76] is the most used – simply a truncated Maclaurin series expansion

of a nonlinear function from an “undistorted” radius to a “distorted” one.

Since calibration of these parameters often assume the introduced distortion to

be small, better modelling of fisheye lenses is performed through nonlinear map-

ping functions. A complete image projection mapping pipeline is shown in Fig. 1.3,

having fp the non-linear mapping as explained in sec. 1.3.4 and K the intrinsics ho-

mogeneous affinity with matrix:

K =







ku s u0

0 kv v0

0 0 1






(1.7)
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On-the-plane
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camera pose

Figure 1.3: Complete image projection mapping pipeline.

On-the-plane distortion is usually omitted when

projection function fp is different from pinhole

where ku,kv are the focal lengths, s is the skew parameter and (u0,v0) the principal

point. Surely the boundary between fp and on-the-plane (Brown-Conrady) distortion

is ill-posed, they are drawn separately in the diagram only referencing the pinhole

case, where fp is linear in a projective space. Indeed some of the functions fp may

be seen as non-linear distortions on a projective plane through the change of variable

θ = arctan(r), as it will be clear in sec. 1.3.4, but this kind of modeling looses validity

when nonlinear projections can handle fields of view greater than 180°. So, even

if a single nonlinear projection R3 → R
2 would suffice, for treatise simplicity and

historical reasons makes sense to separate it into two components.

1.3.2 Brown-Conrady distortion

The Brown-Conrady model of lens distortion composes different distortion effects

as polynomial terms of the projection image point. A full model comprises radial

distortion, decentering distortion and thin-prism distortion.

All of them express the point with respect to the transformation fixed point, the

so-called center of distortion (xd ,yd). A common approximation have this point co-

incident with the principal point (ud ,vd) = (u0,v0), i.e. (ũd , ṽd) = (xd ,yd) = (0,0).
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Having (x̃, ỹ) = (x,y)− (xd ,yd) and r = ‖(x̃, ỹ)‖, the contributions δr (radial), δd

(decentering) and δp (thin-prism) can be written as, respectively (Eq. 1.8–10):

δr =

(

x̃

ỹ

)(

1+
nr

∑
i=1

kir
2i

)

(1.8)

δd =

(

p1(r
2 +2x̃2)+2p2x̃ỹ

p2(r
2 +2ỹ2)+2p1x̃ỹ

)






1+

nd

∑
i=3

j=i−2

pir
2 j






(1.9)

δp =
np

∑
i=1

((

s2i−1

s2i

)

r2i

)

(1.10)

and the final distorted point on the normalized image plane as:

(ũ, ṽ) = (x,y)+δr +δd +δp (1.11)

1.3.3 Division and rational models

Claus and Fitzgibbon propose the rational model [77] for generic cameras, predated

by the division model [78] by Fitzgibbon himself. The two models deal with radial

distortion, acting on the radii with a multiplicative factor expressed by Eq. 1.12 and

Eq. 1.13, respectively:

1+
nn

∑
i=1

air
2i

1+
nd

∑
i=1

bir2i

(1.12)

1

1+λ r
(1.13)

having λ , a1, . . . ,ann
,b1, . . . ,bnd

scalar parameters. Despite being convenient to treat

mathematically there is more risk of overfitting, caused by the doubled number of

parameters with respect to a same-order Maclaurin polynomial.
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1.3.4 Classical fisheye mapping functions

Fisheye lenses are divided in different categories, depending on the mapping func-

tion the lens maker takes as a reference – these are called projection functions. Each

function maps the angle with the optical axis, θ , to the radius of the point on the

normalized image plane, r, as depicted in Fig. 1.4. In this context Brown-Conrady

distortion is usually omitted, so the projection image plane (x,y) and the normalized

image plane (ũ, ṽ) coincide.

x
y

z ũ

ṽ

P

ϕ

θ

r = f (θ)

uv

Figure 1.4: Lens distortion model representation

In this context pinhole projection is referred to as gnomonical. Most common

mappings are listed in Table 1.2 and plotted in Figure 1.5.

Usually these equations are equivalently indicated multiplied by the focal param-

eter: we chose to separate this information, incorporating the focal into matrix K.

Being fr : θ 7→ r one of these radial mappings, we can write the projection function

fp as per Eq. 1.14:

(

x

y

)

=

(

CX

CY

)

fr

(

atan2
(∥

∥

∥

CX
CY

∥

∥

∥ ,CZ
))

∥

∥

∥

∥

CX
CY
CZ

∥

∥

∥

∥

(1.14)

Special care may be needed in the computation of the right-hand-side radii ratio to

avoid numerical instability.
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Projection type Mapping function

gnomonical r = tan(θ)

equidistant r = θ

stereographic r = 2tan
(

1
2
θ
)

equisolid r = 2sin
(

1
2
θ
)

ortographic r = sin(θ)

 0

 1

 2

 3

π/2 0  1  2

ρ 
=

 (
u

2
+

v
2
)1

/2

θ (rad)

gnomonical

stereographical

equidistant

equisolid

orthographic

Table 1.2: Mapping functions under

different projection types

Figure 1.5: Mapping functions

plotted in different colors

While gnomonical projection, as well as stereographic and ortographic, maps cir-

cles into ellipses, this is not true for the other ones: circles become quartic curves un-

der equisolid projection, while for equidistant the result is even non-polynomial [79].

Table 1.3 shows the rings marker detector performance under different camera map-

pings. The test outlines how marker location accuracy does not degrade very much

with stronger nonlinearities. The removal of image distortion and noise leaves a mean

absolute error of (0.029,0.023) on the marker location that we attribute to ellipses

border quantization.

These models often do not take into account lenses imperfections, as done by

the Brown-Conrady model. An exception is made in the model by Kanatani [39], ex-

pressed in Eq. 1.15, introducing a polynomial expansion around the already-exisiting
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Camera model |εx| |εy|

Pinhole (without distortion nor noise) 0.029 0.023

Pinhole (Brown-Conrady) 0.049 0.039

Fisheye (equidistant) 0.057 0.062

Fisheye (equisolid) 0.061 0.067

Table 1.3: Marker location error components with different camera models (using

aforementioned method)

nonlinearity fr taken from Table 1.2.

∑
i

ki (r/γ0)
2i+1 =

1

γ0

fr(θ) (1.15)

In our field most common mappings act from the three-dimensional world space

to the image space, so in a similar fashion, omitting the normalizer γ0 and with dif-

ferent meaning and values for parameters ki, we could write Eq. 1.16 to replace poly-

nomial root finding with evaluation and gain some computation speedup.

r = ∑
i

ki ( fr(θ))
2i+1

(1.16)

1.3.5 Kannala-Brandt model

Attempts have been tried to provide a unique model, alternative to the mapping func-

tion fp, for both the pinhole and one or more fisheye projections. The proposal of

Kannala and Brandt [80] is based on the expression of the function by expansion in

Maclaurin series:

r(θ) =
nr f

∑
h=1

khθ 2h−1 (1.17)

This is similar to the radial distortion treatise by Brown-Conrady seen in 1.3.2, but

applied to a function of θ instead of the undistorted radius r (viz tan(θ) in the pin-

hole case). To take into account nonradial lens distortions they propose, instead of

modelling all physical phenomena, to add two distortion terms δr and δt , respectively
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in the radial and tangential directions, separable functions of θ and ϕ .

δr(θ ,ϕ) =

(

nrθ

∑
h=1

lhθ 2h−1

)(

nrϕ

∑
h=1

i2h−1 cos(hϕ)+ i2h sin(hϕ)

)

(1.18)

δt(θ ,ϕ) =

(

ntθ

∑
h=1

mhθ 2h−1

)(

ntϕ

∑
h=1

j2h−1 cos(hϕ)+ j2h sin(hϕ)

)

(1.19)

Having ur and ut the radial and tangential components of (x,y) around the distor-

tion center (xd ,yd), the distorted point (ũ, ṽ) can be written as:

(ũ, ṽ) = (r(θ)+δr(θ ,ϕ))ur +δt(θ ,ϕ)ut (1.20)

1.3.6 Catadioptric-fisheye unified model

In the same aim of trying to provide a unique model, Ying and Hu [81] proposed

to use the models of catadioptric cameras. Mei provided a calibration procedure for

this kind of model [51]. The model is similar to the undistorted pinhole one, with

the addition of a nonlinear translation term ξ‖P‖ez before the perspective projection,

having P =

(

CX
CY
CZ

)

the point in camera coordinates, ξ a parameter and ez the third

canonical basis versor. In other words the mapping equation 1.6 becomes:

(

ũ

ṽ

)

=
1

CZ +ξ

∥

∥

∥

∥

CX
CY
CZ

∥

∥

∥

∥

(

CX

CY

)

(1.21)

The effect of this transformation is depicted in Fig. 1.6.

Besides the trivial case ξ = 0 corresponding to a pinhole mapping, one can

show that Eq. 1.21 can express exactly the stereographic (ξ = 1) as well as ortho-

graphic (ξ = +∞) projections.

While the latter does not allow θ ≥ π
2

(field of view greater than 180°), the former

does, but the proof of equivalence involves the trigonometric identity

tan
(

θ
2

)

=
tan(θ)

1+
√

1+ tan2(θ)
(1.22)
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(a)
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Figure 1.6: Catadioptric/fisheye model.

(a) From the outer to the inner one, the circles on the image plane correspond to the

pinhole case (ξ = 0) and fisheye case with 0 < ξ < 1, respectively.

(b) The model can handle points behind the camera (θ > π
2

)
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which is valid only in
(

−π
2
, π

2

)

. Outside the interval the model does not take into

account the change of sign of cos(θ) and nothing is but an approximation of the

mapping function.

Proof of the equivalence of the models. In the stereographic case it is enough to write

the expression of tan(θ):

tan(θ) =
‖

CX
CY
‖

CZ
(1.23)

put it into Eq. 1.22 and factor up 1
CZ

:

rstereographic = 2tan(θ
2
) = 2

1
CZ

∥

∥

∥

∥

∥

CX

CY

∥

∥

∥

∥

∥

1+

√

√

√

√

√

1
CZ2




CZ2 +

∥

∥

∥

∥

∥

CX

CY

∥

∥

∥

∥

∥

2




CZ>0
= 2

1
CZ

∥

∥

∥

∥

∥

CX

CY

∥

∥

∥

∥

∥

1
CZ







CZ +1 ·

∥

∥

∥

∥

∥

∥

∥

CX

CY

CZ

∥

∥

∥

∥

∥

∥

∥







∝

∥

∥

∥

∥

∥

x

y

∥

∥

∥

∥

∥

ξ=1

where the proportionality factor can be absorbed in the focal lengths.

As for the orthographic case, we shall start from the catadioptric-fisheye model

and work in homogeneous coordinates to project the point
(

CXP
CYP

CZP +ξ‖CP‖
)

(1.24)

on the plane CZ = ξ +1, so that we obtain the 2D point coordinates:

(

x y

)

ξ
=
(

CXP
ξ+1

CZP+ξ‖P‖
CYP

ξ+1
CZP+ξ‖P‖

)

ξ→+∞
−−−−→

(

CX CY

)

/‖P‖ (1.25)

that is the same of an ortographic projection, being
∥

∥

∥x y

∥

∥

∥

ξ=+∞
=
∥

∥

∥

CX CY

∥

∥

∥/‖P‖= sin(θ)
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1.4 Calibration pattern distance

Another question arising in camera calibration is: what should be the optimal distance

of the target from the camera? It is well known [17] that multiple grid orientations are

needed for a correct calibration. Apart from that, there is no easy answer, especially if

we abstract away the camera model. Common practice is to take multiple images, at

different orientations and different distances. While it is difficult to properly handle

noise, something can be said, at least intuitively, on why taking grids at multiples

distances may improve calibration accuracy.

We can safely assume the accuracy of the printed grid does not change with dis-

tance. Taking as a reference the pinhole projection for simplicity, it is easy to see that

the farther the grid, the lesser the uncertainty effect on the image plane. Unfortunately

we also have quantization effects in the image plane, preventing arbitrary increase in

accuracy. Furthermore some parameters, like translation component of relative ex-

trinsics in pinhole stereo cameras, show opposite behaviour, increasing the accuracy

as distance decreases: we attribute this to the reduction of quantization effects over

disparity values.





Chapter 2

Planar pattern pose suggestion

2.1 Motivation

Estabilished a calibration procedure with a certain planar pattern, under zero-mean

σ -covariance gaussian marker location noise, we expect convergence (asymptotic,

excluded overfitting effects) of the model parameters values towards the real ones,

of the average (signed) error towards zero and of the absolute error towards a half-

gaussian distribution, having mean σ
√

2
π .

Common practice consists in the use of more images than needed for the calibra-

tion, together with a test set for results validation. Taking a test set can be difficult

and not exempt from bias. Moreover, after some thousands of marker observations,

optimization running times slow down. You can either select the frames manually,

but this will limit their number and requires a user who must be trained to recognize

bad frames from better ones, or take a whole sequence of images, letting the detec-

tor discard frames. With a significant number of points contributing to the objective

function optimization can require days.
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In general, this is not a problem: accurate intrinsics parameters calibration is done

only once, offline, and extrinsics parameters calibration can be done after that with

a reduced number of points. Unfortunately, things may go wrong: the detector may

fail and produce misplaced points, illumination may not be the best one (producing

artifacts on the grid), motion of the grid may cause image blurring, the image poses

may bias the result towards certain values. In all this cases you don’t want to wait for

days to discover that you have to start again from the beginning.

Some help could be found with active markers, i.e. markers that are not printed

but instead generated on a display shown to the camera. This does not solve all the

problems: computing the accuracy of the marker to provide second order moment

information may be trickier and you may still need to change the camera-display

relative position.

Some years ago another idea came up to help users in the calibration procedure.

Instead of acquiring a lot of images from different poses you want to take only a few

of them, with the requirement they have to be good ones, i.e. they must provide a

reliable and accurate camera calibration. An augmented reality display shows where

to put the calibration grid to the user, making the entrire calibration approach interac-

tive. This is the idea developed some years ago by Richardson et al. with the creation

of the AprilCal library [32]: a Java piece of software for assisted camera calibration

based on their own fiducial markers (AprilTags [48]).

This chapter has been heavily influenced by the aforementioned work. In the next

section we will outline the general idea and identify a possible improvement.

2.2 Pose goodness evaluation

Finding out a pose to be suggested to the user can be modeled essentially as a function

optimization problem. Given a utility function fs : M×Ω →R we want to provide as

a suggestion the pose p∗ ∈ Ω ⊂ SE(3) with maximum utility, given current camera

model parameters estimate µ̂ ∈M:

p∗ = argmax
p∈Ω

fs(µ̂, p) (2.1)
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The camera calibration algorithm can thus be expressed iteratively (Alg. 2).

Algorithm 2 Assisted camera calibration algorithm

1: I1, . . . , Ik← take a few images for algorithm initialization, extract keypoints

2: µ̂ ← calibrate({I1, . . . , Ik},µ0)

3: for i from k+1 to n do

4: ε ← average_reprojection_error (µ̂,{I1, . . . , Ii−1})

5: if ‖ε‖ ≤ threshold then break; end if

6: p∗← argmax
p∈Ω

fs(µ̂, p)

7: Ii← take image near p∗, extract keypoints

8: µ̂ ← calibrate({I1, . . . , Ii}, µ̂)

9: end for

Even if calibration (calibrate as from Alg. 1) is required at each iteration,

the choice of the pose will enable the reaching of the required accuracy with a small

number of images. Furthermore the nonlinear optimization can start from the previ-

ous parameters guess, allowing faster convergence. The difficulty lies in choosing the

function fs, or the update of p∗, to be representative of poses that can reliably provide

accurate camera calibrations.

Fiducial markers represent a unique 3D orientation. However we see how there

is no need to disambiguate pattern symmetries: traditional calibration patterns such

as checkerboards or circles grids do not need such information during calibration,

neither does this approach. Replacing fiducial markers with other marker types, such

as the ring markers introduced in sec. 1.2, allows to start from lower marker location

errors.

We are then going to show some ideas for defining such function, together with

some test results.
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2.2.1 Sampled expected reprojection error maximization

In developing AprilCal, Richardson et al. point out that usage of the mean reprojec-

tion error or mean squared error as indicators of calibration quality is problematic:

even when low, calibration quality can result poor. Their proposal consists in min-

imizing the maximum expected reprojection error, computed by sampling from the

posterior distribution over the model parameters.

The update of the best pose, performed over a quantized version of the domain

Ω ⊂ SE(3), proceeds as follows. For each candidate pose we want to find a value, i.e.

define the function fs. This is done with a Monte Carlo method: for each candidate

pose, samples are generated by perturbation of the target extrinsics. For each sample

calibration is performed and reprojection error is computed by averaging the target

points mean errors over perturbations of the newly-found camera parameters. The

estimate of the marginal posterior covariance of the model parameters P(µ|I0, . . . , In)

is computed by marginalization of the target extrinsics poses p0, . . . , pn (Eq. 2.2).

P(µ|I0, . . . , In) =

ˆ

· · ·

ˆ

p0,...,pn∈Ω n

P(µ, p0, . . . , pn|I0, . . . , In)d p0 · · ·d pn (2.2)

The best pose is the one with the maximum expected reprojection error. In order to

initialize properly the distribution estimates a bootstrapping of 3 images is taken: the

first one frontal to the camera and the other two suggested through the calibration of

a reduced model.

Calibration is done with an iterative gradient descendt:

J
⊺

Σ
-1

z J∆x = J
⊺

Σ
-1

z r (2.3)

xi+1 = xi +∆x (2.4)

The higher the iterations number is the harder the algorithm will try to reach the

required accuracy of the solution at the expense of computational time. Moreover

high computational costs limit the discretization of the suggestions search space: the

cost of a single residual computation has to be multiplied by the number of points per

grid times the number of grids in the search space (bruteforce search). In the original

paper a 5× 5 grid is used, with a grid of approximatively 1000 grids in the pose
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space Ω . While 1000 poses may seem a lot to sample from, having the pose space 6

degrees of freedom only few possibilities per degree of freedom are available, thus

greatly limiting the selection and making the grid “coarse”, as outlined by AprilCal

authors themselves.

We investigated whether some speed could be gained by changing the utility func-

tion, trying to keep the accuracy and speed and to refine the grid in the pose space;

equivalently, one could keep the same pose space size and have shorter computational

times.

2.2.2 Efficient estimation optimality criteria

The evaluation of the calibration suggestion performance, as for camera calibration

itself, is done with statistical methods. Maximizing the uncertainty of the observa-

tions indeed gives the grid with the maximal information content. Another approach

could be looking for the grid that allows us to be as sure as possible of the to-be-

found camera parameters, i.e. minimizing the uncertainty of the parameters. Surely

we would like the camera parameters cross-correlation matrix Σµ to be small, but its

coefficients may not decrease with the same speed: it is not easy to find a solution.

One option could be minimize a functional of its elements, e.g. one of its element-

wise norms, like the Frobenius one. Instead of taking arbitrary functions, we tried to

exploit a statistical interpretation: in statistics the minimization of a covariance matrix

in order to maximize the Fisher information of the estimator is a well-known prob-

lem. Traditionally a solution was searched among functionals of the eigenvalues of

the information matrix (or, equivalently, of the covariance matrix Σµ ). However, few

of the common criteria suited our context. Variables in the parameters vector µ have

different dimensionalities and so have their variances: this removes physical mean-

ing from certain operations. As an example, we liked E-optimality (maximization of

minimum eigenvalue, i.e. minimization of inverse’s spectral radius) as a worst-case

optimization, but the difference in dimensionalities prevents the comparison. The

same argumentation was applied for A-optimality (maximization of covariance ma-

trix trace tr(Σ-1

µ )) and, equivalently, T-optimality (minimization of information matrix

trace). C-optimality minimizes the variance using a predefined linear combination of
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the eigenvalues. This surely works with an appropriate weighting, but we considered

its definition too much application-specific: it depends on which parameters you want

to optimize more aggressively, while we are looking for criteria that do not depend

on downstream processing.

2.2.3 Parameters uncertainty minimization

It is possible to optimize the eigenvalues of Σµ as a whole minimizing their product.

This is known as the D-optimality, being the product of the eigenvalues the deter-

minant of the matrix, and it is a popular solving criterion for statistic information

maximization.

The covariance matrix can be computed from Σ-1

µ = J
⊺

Σ-1

z J. To avoid the matrix

inversion, one can exploit the fact that eigenvalues of the inverse are the eigenvalues

inverses:

mindetΣµ = max
(

detΣµ

)-1
= maxdetΣ

-1

µ

= maxdetJ
⊺

Σ
-1

z J ≈maxdetJ
⊺

J
(2.5)

having in the last step the approximation of the inverse covariance matrix with the

design matrix J
⊺

J.

2.2.4 Maximum predicted residuals variance minimization

A popular statistical criterion is G-optimality: it consists in minimizing the maximum

entry in the diagonal of the system’s projection matrix. It has the effect of minimizing

the maximum variance of the predicted values. Given a linear system observation

affected by additive gaussian noise ν :

z = Hx+ν (2.6)

the projection matrix (sometimes called influence matrix or hat matrix) P allows to

map response values z into fitted values ẑ:

Pz = ẑ = Hx̂ (2.7)
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When the observation weights are identical and the errors uncorrelated we have

Eq. 2.8 and we can trivially find an expression of P from H, as per Eq. 2.9.

H
⊺

Hx̂ = H
⊺

z (2.8)

P = H
(

H
⊺

H
)-1

H
⊺

(2.9)

In our specific case the roles of the observation vector z and of the observation

matrix H are played respectively by the residuals vector r and the jacobian matrix J.

2.2.5 Maximum likelyhood reprojection error minimization

Sticking to an idea more similar to the one of AprilCal paper, we can compute a

maximum likelyhood estimate of the reprojection error through P(z0, . . . ,zn|µ), thus

avoiding the perturbation of the pose parameters and the expensive sample-wise re-

calibration. As for the maximum a posteriori, both the mean or the maximum of

the single reprojection errors could be taken: we have, respectively, the maximum

likelyhood mean reprojection error minimization and maximum likelyhood maximum

reprojection error minimization approaches.

The statistics (mean and variance) of the distribution of perturbed intrinsic param-

eters have been obtained with the Unscented Transform instead of the Monte Carlo

approach, reducing in this way the number of samples. Furthermore the sigma-points

have been precomputed for additional speedup.

f

Figure 2.1: Unscented transform

Individual points (sigma-points) are transformed according to the nonlinearity f and

used to reconstruct the statistics of the transformed distribution
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2.3 Results

We performed some qualitative tests, based on plotting the parameters trend with

increasing number of poses, on the convergence of the algorithm towards the model

parameters values under different suggestion optimizations. The algorithm was run

with the camera parameters from Table 2.1, where two sets of camera parameters are

available:

• “Real” camera parameters were used only as a ground truth and for generating

the noiseless keypoints. To ensure plausibility they were obtained calibrating a

real camera with a preexisting algorithm.

• “Starting point” camera parameters were used to initialize the nonlinear opti-

mization algorithm: a manual setup was created to avoid a good result by the

linear optimizer that is usually employed for a first guess, we expect a perfor-

mance increase when having a starting point obtained from linear optimization.

Real camera parameters Starting point camera parameters

Intrinsics: Intrinsics:

• ku = kv = 535.17539043 • ku = kv = 1000

• u0 = 635.87852568 • u0 = 640

• v0 = 488.40054881 • v0 = 480

Brown-Conrady: Brown-Conrady:

• k1 =−0.23554278 • k1 = 0

• k2 = 0.05994505 • k2 = 0

• k3 =−0.00973610 • k3 = 0

• k4 = 0.00090471 • k4 = 0

• k5 =−0.00004364 • k5 = 0

• k6 = 0.00000084 • k6 = 0

Table 2.1: Assisted camera calibration algorithm test parameters, having a pinhole

camera with radial Brown-Conrady distortion as reference model
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No ground truth (“real”) parameters would have been available in a real use-case,

so the experiments were performed by simulation, generating synthetic data resem-

bling the real one through the addition of noise. A marker location noise variance of

0.05px was considered.

A pinhole camera model with Brown-Conrady radial distortion having a degree

11 polynomial was taken as a reference. Levenberg-Marquardt algorithm iterations

limit was set to 100 and function value tolerance (relative minimal cost step) to 10−12,

so that the most common reason of algorithm termination in experimental evidence

results the reach of parameter accuracy tolerance value (fixed at 10−8). The simulated

image sequence has been generated to depict grids consisting in 10×8 ring markers,

with inter-marker step of 0.1cm, both horizontally and vertically. The plotted data

display one hundred of added poses, even if fewer are needed and would be added in

a real system, to outline the estimated parameters trend. With more poses the solution

may present an improvement due to the information increase, as well as a worsening

due to the noise.

With the criteria proposed in paragraphs 2.2.3–2.2.5 we were able to conduct tests

in the order of few minutes on an Intel® Core™ i7-4790 processor, even if we brought

the number of poses in the search space Ω from approximatively 1000 to 196000 and

no special care was taken in optimizing the code. The camera-model relative pose

space has been defined from the Tait-Bryan rotations and cartesian translations. Each

cartesian translational component tx, ty, tz has been quantized in 10 equidistributed

steps, with tx ∈ [−0.7,0.7], ty ∈ [−0.7,0.7] and tz ∈ [1.5,3.5]; both yaw and pitch

angles have been quantized in 14 equidistributed steps in [−30°,30°] while the roll

angle was held constant and null. The pose space parameters were chosen such that no

calibration grid point could be placed behind the camera: such condition is necessary

to ensure convergence of the optimizer in the pinhole case and will always be satisfied

in a real scenario.

Some results are plotted in Fig. 2.2, depicting focal lengths and absolute errors as

functions of number of added grids, with variable number of starting random grids for

initialization. The results for the first five poses are omitted from the graphs to avoid

out-of-scale numbers. All the simulations stopped after the insertion of 100 grids,
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whose poses were chosen either randomly or suggested by the proposed criteria. The

plot trends show how the criteria are roughly equivalent and generally better than a

full-random selection (purple lines in the figure). The small difference between the

obtained error at convergence and the reference value, being the former slightly lower

than the latter, has been attributed to model overfitting.
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Figure 2.2: Grid pose suggestion performance.

Each pair of lines represents a test having a different number of initialization

random poses (3, 5, 10, 20 and 100 initialization poses were used).

(a-c) represent the values of the optimized focals, “gt” is the ground-truth value.

(d-f) show the reprojection errors, where “ref” represents the mean of the

half-gaussian noise distribution σ
√

2/π

maxIntrCov: maximization of camera intrinsics parameters

covariance inverse matrix.

maxHatCov: minimization of predicted residuals maximal variance.

maxReprErrAvg: minimization of maximum likelyhood

maximum reprojection error





Chapter 3

Conclusions and future work

Finally, we would like to sum up this thesis work and draw some conclusions. We

will also exploit the gained knowledge to try to forsee what the next role of camera

calibration and advances in the topic will be.

3.1 What has been done

The camera resectioning problem has been analyzed. It has been introduced as a prob-

lem that can be considered solved for most applications, but for the higher-demanding

ones (big scale factors) and in the presence of strong nonlinear distortions more ac-

curacy would be desirable.

Literature solutions have been explored, paying specific attention to the high-

est accuracy ones. The problem of incongruity between accuracy and trueness has

been outlined: achieving accurate values might not be a clue of physical soundness

of the model. The principal ideas behind nonlinear lens distortion modelling have

been extensively described, going through polynomial distortions, well-known map-

ping projection functions and the mixed catadioptric-fisheye model. General camera

calibration issues bound to the procedure itself have been pointed out, such as the

distance of the calibration pattern from the camera and the number of images to be

taken.



44 Chapter 3. Conclusions and future work

We spotlighted assisted calibration pose suggestion and looked for faster alterna-

tives to the algorithms available in literature. Estimators optimality criteria and matrix

operations properties have been exploited to obtain computationally cheap ways to

evaluate poses, allowing to have a denser pose space. In detail, the determinant of the

design matrix has been maximized to obtain minimal variance parameters; the max-

imum predicted residuals variance has been minimized through the computation of

the influence matrix of the system; finally, sigma-points maximum likelyhood repro-

jection error has been maximized. With every method you should be able to obtain

computational times similar to those of the a-posteriori reprojection error maximiza-

tion original approach, even having a pose space of increased size. As a future work,

being the approach driven by experimental evidence, surely more testing needs to be

done to strengthen the obtained results.

3.2 What may be done

The major cause of accuracy loss in marker detection has been attributed to image

spatial quantization. Although the results will surely benefit from the currently in-

creasing camera resolution trend, it would be interesting to know if we can push the

accuracy further. Even if difficult, it may be worth spending some time in insert-

ing the quantization error into the model. Trying to provide a ground truth for the

camera-pattern relative poses (if possible), so that only the camera parameters would

remain as problem variables, could help in distinguishing the errors sources. We ex-

pect the research community to meld the aspects of machine-learned detection and

world scene from image measuring, with mixed techniques that take the best from

both worlds, making camera-based computer vision systems more accurate and au-

tonomous.
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Computer Vision - ECCV 2004: 8th European Conference on Computer Vision, Prague,

Czech Republic, May 11-14, 2004. Proceedings, Part I, pages 190–202. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2004. doi:10.1007/978-3-540-24670-1_

15.

[37] Xiaoqiao Meng and Zhanyi Hu. A new easy camera calibration technique based on

circular points. Pattern Recognition, 36(5):1155 – 1164, 2003. doi:10.1016/

S0031-3203(02)00225-X.

[38] Fengmei Sun. Planar conic based camera calibration. In Proceedings of the Interna-

tional Conference on Pattern Recognition - Volume 1, ICPR ’00, pages 1555–, Wash-

ington, DC, USA, 2000. IEEE Computer Society. URL: http://dl.acm.org/

citation.cfm?id=876866.877409.

[39] K. Kanatani. Calibration of ultrawide fisheye lens cameras by eigenvalue minimization.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4):813–822, April

2013. doi:10.1109/TPAMI.2012.146.

[40] Mi Zhang, Jian Yao, Menghan Xia, Kai Li, Yi Zhang, and Yaping Liu. Line-based

multi-label energy optimization for fisheye image rectification and calibration. In 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4137–

4145, June 2015. doi:10.1109/CVPR.2015.7299041.

[41] L. Alvarez, A. Salgado, and J. Sánchez. Robust detection and ordering of ellipses on

a calibration pattern. Pattern Recognition and Image Analysis, 17(4):508–522, 2007.

doi:10.1134/S1054661807040098.

[42] Chang Shu, Alan Brunton, and Mark Fiala. A topological approach to finding grids

in calibration patterns. Machine Vision and Applications, 21(6):949–957, 2010. doi:

10.1007/s00138-009-0202-2.

[43] A. Bevilacqua, A. Gherardi, and L. Carozza. Automatic perspective camera calibration

based on an incomplete set of chessboard markers. In Computer Vision, Graphics Image



50 Bibliography

Processing, 2008. ICVGIP ’08. Sixth Indian Conference on, pages 126–133, Dec 2008.

doi:10.1109/ICVGIP.2008.10.

[44] Jiewei Sun, Yisong Chen, and Guoping Wang. Computable relation graph based cali-

bration pattern extraction algorithm on multiple calibration boards. In Proceedings of

the 27th Conference on Image and Vision Computing New Zealand, IVCNZ ’12, pages

227–231, New York, NY, USA, 2012. ACM. doi:10.1145/2425836.2425883.

[45] John Mallon and Paul F. Whelan. Which pattern? biasing aspects of planar calibra-

tion patterns and detection methods. Pattern Recogn. Lett., 28(8):921–930, June 2007.

doi:10.1016/j.patrec.2006.12.008.

[46] Yves Nievergelt. Perturbation analysis for circles, spheres, and generalized hyper-

spheres fitted to data by geometric total least-squares. Mathematics of Computation,

73(245):169–180, 2004. URL: http://www.jstor.org/stable/4099863.

[47] Yves Nievergelt. Fitting conics of specific types to data. Linear Algebra and its Appli-

cations, 378:1 – 30, 2004. doi:10.1016/j.laa.2003.08.022.

[48] Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), pages 3400–

3407. IEEE, May 2011. doi:10.1109/ICRA.2011.5979561.

[49] Carlos Ricolfe-Viala and Antonio-José Sánchez-Salmerón. Correcting non-linear lens

distortion in cameras without using a model. Optics & Laser Technology, 42(4):628 –

639, 2010. doi:10.1016/j.optlastec.2009.11.002.

[50] R. I. Hartley and Sing Bing Kang. Parameter-free radial distortion correction with centre

of distortion estimation. In Tenth IEEE International Conference on Computer Vision

(ICCV’05) Volume 1, volume 2, pages 1834–1841 Vol. 2, Oct 2005. doi:10.1109/

ICCV.2005.184.

[51] Christopher Mei and Patrick Rives. Single View Point Omnidirectional Camera Cal-

ibration from Planar Grids. In IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 3945–3950, Rome, Italy, April 2007. IEEE. URL: https:

//hal.inria.fr/hal-00767674, doi:10.1109/ROBOT.2007.364084.

[52] Luis Puig, J. Bermúdez, Peter Sturm, and J.J. Guerrero. Calibration of omnidirectional

cameras in practice: A comparison of methods. Computer Vision and Image Under-

standing, 116(1):120 – 137, 2012. Virtual Representations and Modeling of Large-scale

Environments (VRML). doi:10.1016/j.cviu.2011.08.003.



Bibliography 51

[53] B. Khomutenko, G. Garcia, and P. Martinet. An enhanced unified camera model. IEEE

Robotics and Automation Letters, 1(1):137–144, Jan 2016. doi:10.1109/LRA.

2015.2502921.

[54] Weijia Feng, Juha Röning, Juho Kannala, Xiaoning Zong, and Baofeng Zhang. A gen-

eral model and calibration method for spherical stereoscopic vision. In Proc. SPIE

8301, Intelligent Robots and Computer Vision XXIX: Algorithms and Techniques, vol-

ume 8301, pages 830107–830107–8, 2012. doi:10.1117/12.907071.

[55] K. Wang, L. Zhao, and R. Li. Fisheye omnidirectional camera calibration – pinhole or

spherical model? In Robotics and Biomimetics (ROBIO), 2014 IEEE International Con-

ference on, pages 873–877, Dec 2014. doi:10.1109/ROBIO.2014.7090442.

[56] Ying, Xianghua and Mei, Xiang and Yang, Sen and Wang, Ganwen and Rong, Jiang-

peng and Zha, Hongbin. Imposing differential constraints on radial distortion correc-

tion. In Daniel Cremers, Ian Reid, Hideo Saito, and Ming-Hsuan Yang, editors, Com-

puter Vision – ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, Sin-

gapore, November 1-5, 2014, Revised Selected Papers, Part I, pages 384–398. Springer

International Publishing, Cham, 2015. doi:10.1007/978-3-319-16865-4_

25.

[57] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, Nov 2000. doi:

10.1109/34.888718.

[58] Fuyu Huang, Yongzhong Wang, Xueju Shen, Chao Lin, and Yudan Chen. Method

for calibrating the fisheye distortion center. Appl. Opt., 51(34):8169–8176, Dec 2012.

URL: http://ao.osa.org/abstract.cfm?URI=ao-51-34-8169, doi:

10.1364/AO.51.008169.

[59] R. G. von Gioi, P. Monasse, J. M. Morel, and Z. Tang. Lens distortion correction with

a calibration harp. In 2011 18th IEEE International Conference on Image Processing,

pages 617–620, Sept 2011. doi:10.1109/ICIP.2011.6116626.

[60] G. Bradski. OpenCV – Open Computer Vision Library. Dr. Dobb’s Journal of Software

Tools, 2000.

[61] Bradley Atcheson, Felix Heide, and Wolfgang Heidrich. CALTag: High precision fidu-

cial markers for camera calibration. In 15th International Workshop on Vision, Modeling

and Visualization, Siegen, Germany, November 2010.



52 Bibliography

[62] Zygmunt L Szpak, Wojciech Chojnacki, and Anton Van Den Hengel. Guaranteed ellipse

fitting with the sampson distance. In European Conference on Computer Vision, pages

87–100. Springer, 2012.

[63] Andrew Fitzgibbon, Maurizio Pilu, and Robert B. Fisher. Direct least square fitting of

ellipses. IEEE Trans. Pattern Anal. Mach. Intell., 21(5):476–480, May 1999. doi:

10.1109/34.765658.
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