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Introduction

In recent years, the interest in smart cities has been increasing remarkably. A smart
city is an urban development vision that aims the integration of multiple informa-
tion and communication technology (ICT) and Internet of Things (IoT) solutions in
a secure fashion to manage city assets, such as local departments’ information sys-
tems, schools, libraries, transportation systems, hospitals, power plants, water supply
networks, waste management, law enforcement, and other community services. The
goal of building a smart city is to improve quality of life by using urban informatics
and technology to improve the efficiency of services and meet residents’ needs.

ICT enables the enhancement of quality, performance and interactivity of urban
services, the reduction of costs and resource consumption and the improvement of
contact between citizens and government. Major technological, economic and envi-
ronmental changes have generated interest in smart cities, including climate change,
economic restructuring, the move to online retail and entertainment, ageing popu-
lations, urban population growth and pressures on public finances. For these rea-
sons, the European Union (EU) has devoted constant efforts to devising a strategy for
achieving smart urban growth for its metropolitan city-regions, with the development
of a range of programmes under Europe’s Digital Agenda 1 .

Under the smart city label, a myriad of technologies have been realized. That
makes difficult to distil a precise description of a smart city; for that purpose, Deakin
and Al Waer [2] listed four factors that contribute to its definition:

1Digital Agenda for Europe https://ec.europa.eu/digital-single-market/

https://ec.europa.eu/digital-single-market/
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1. the application of a wide range of electronic and digital technologies to com-
munities and cities;

2. the use of ICT to transform life and working environments within the region;

3. the embedding of ICT in government systems;

4. the territorialisation of practices that brings ICT and people together to enhance
the innovation and knowledge they offer.

According to Deakin, a smart city is a city that not only is provided with ICT
in particular areas, but uses this technology to meet the demands of the market (the
citizens of the city), in a manner that positively impacts the local community. In
particular, a smart city uses information technologies to make more efficient use of
physical infrastructures such as roads, buildings and other physical assets through
artificial intelligence and data analytics. Moreover, ICT can effectively improve the
engagement with citizens in local governance and decision, by use of open innova-
tion processes and e-participation, improving the collective intelligence of the city’s
institutions through e-governance. Furthermore, smart cities can learn, adapt and in-
novate and thereby respond more effectively and promptly to changing circumstances
by improving the intelligence of the city.

One envisioned distinctive feature of smart cities is the interconnection among
mobile users and vehicles, to support the fulfillment of applications based on the ge-
ographical location of users and resources. This is one of the key aspects of smart
cities since it enables anytime, anywhere access for citizens and visitors, promotes
active participation, stimulates local commerce and the delivery of high relevant ser-
vices. Especially, location-based services (LBSs) are information or entertainment
services where the requests, the responses and served contents depend on the physi-
cal position of the requesting device [3].

LBSs include services to identify a location of a person or an object, such as
discovering the nearest ATM, or parcel tracking and vehicle tracking services. Mobile
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commerce, when taking the form of advertising directed at customers based on their
current location, weather services and even location-based games are other examples
of LBSs. Moreover, they can be used in a large variety of contexts, such as health,
entertainment, work, personal life.

Nowadays, existing LBSs mainly rely on centralized architectures, managed by a
few organizations that can afford the high performance computing systems required
for such services, where there is an enormous number of requests that mobile users
ask for, while continuously changing their location very quickly. Besides the fact that
systems with a high degree of centralization hardly scale and servers can become
bottlenecks or even single point of failures, it may not be desirable to relinquish the
control of data over one single organization. Nevertheless, if on the one hand, large
IT companies such as Google and Facebook are pushing more and more their LBSs
without worrying too much about user privacy, on the other hand, researchers are
investigating to provide such services while preserving user privacy [4].

In this context, various peer-to-peer (P2P) solutions have been proposed. These
P2P protocols, in addition to safeguard privacy of users inasmuch the data are not
in the hands of a single possibly untrustworthy company, support the realization of
bottom-up LBSs, not requiring large and expensive infrastructures. Moreover, the
decentralized nature of peer-to-peer networks increases the robustness, because it
removes the single point of failure that can be inherent in a client-server based system
[5], albeit, on the other hand, it increases the architectural complexity of the system
itself, in particular from the perspective of routing and resource discovery. In fact, to
design reliable services that take into account geographical locations while preserving
the privacy of the users and supporting millions of connected devices, can be a very
challenging and demanding task. Despite the many benefits of a P2P approach, often
these solutions have been studied only in simulative environment and truly usable
implementations have never been released.
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Research Problem and Thesis Contribution

This Thesis aims at the definition and realization of a peer-to-peer overlay scheme
where each peer can efficiently retrieve neighbors and resources located near any
chosen geographical position, thus suitable for the fulfillment of location-based ser-
vices. The idea is that the responsibility for maintaining information about position of
active peers, i.e., users participating in the LBS, are properly distributed in the peer-
to-peer network, therefore a change in the set of participants causes only a minimal
amount of disruption without reducing the quality of provided services.

As demonstrated in this Thesis, peer-to-peer is an appealing approach to design
LBSs since, as already demonstrated for several types for distributed applications
such as file sharing, multimedia streaming and content delivery solutions, as well as
the innovative peer-to-peer-based digital cryptocurrencies, it is possible to manage a
relevant number of concurrently active nodes, with a low cost but resilient solution.

In this Thesis, the designed peer-to-peer overlay has been intensively evaluated,
both through simulations in various and different scenarios of mobility, and by means
of field testing performed with the collaboration of several volunteers. In fact, the
peer-to-peer overlay scheme has been effectively implemented as a software frame-
work and used to realize a real peer-to-peer LBS. Furthermore, the problem related
to truthfulness of geographical locations stated by peers has been faced, proposing a
privacy-aware approach inspired by the novel blockchain technology.

The main contributions of this Thesis can be summarized as follows:

• An analysis on existing LBSs, having special consideration for those based on
peer-to-peer overlay schemes. In particular, their main drawbacks have been
identified and novel solutions to overcome them have been studied.

• The Adaptive Distributed Geographic Table (ADGT), a novel peer-to-peer
overlay scheme for the realization of location-based services. The ADGT, in
comparison with other peer-to-peer overlay schemes with similar purposes, ful-
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fills all the requirements that are essential to LBSs, such as geographic broad-
cast or the retrieval of resources near any geographical location.

• A complete web application framework, Adgt.js, that is a truly cross-platform
implementation of ADGT, released online with a free and open source software
license and usable without restrictions to implement real LBSs.

• A novel Java-based simulation platform, which allows to easily simulate inter-
connected devices, by providing an intuitive simulation methodology, which
results in maximal code reuse. The proposed platform provides a general-
purpose simulation engine, which includes specific packages to simulate mo-
bility, networking, and energy consumption models. Moreover, it allows to de-
fine general-purpose devices, which can be characterized by multiple network
interfaces and protocols, as well as different network and energy models. With
this solution, we can easily tackle problems like flexibility, modularity, code
reuse and ease of deployment.

• An intensive evaluation of the ADGT through simulations in various mobility
scenarios, measuring quantitative metrics that show the cost of the ADGT in
terms of transmitted data, and qualitative metrics that show the behavior of the
ADGT from a point of view of the quality of the service.

• The results of an activity of field testing with some volunteers that have col-
laborated evaluating a web application based on the Adgt.js framework. The
realized application, in addition to experiment the versatility of Adgt.js, has
allowed us to extrapolate the same indicators obtained in simulation, in order
to compare the behavior of the system in simulation to the software implemen-
tation, really installed on mobile devices.

• An algorithm for distributed consensus among peers of the network that, with a
novel and innovative mechanism inspired by the well-known blockchain of the
popular Bitcoin protocol, allows to share and validate proofs-of-location, i.e.
certificates that guarantee that the geographic location of a peer is actually true.
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The proposed algorithm has been formally described and evaluated through
simulations.

Thesis Outline

The Thesis is organized as follows:

• Chapter 1. The chapter describes and analyzes the two main approaches for
the realization of LBSs available in literature. Furthermore, the chapter presents
the current state of the art illustrating the most relevant and innovative LBS ap-
plications and research projects.

• Chapter 2. In this chapter, our novel peer-to-peer overlay scheme suitable for
the development of LBSs, namely the Adaptive Distributed Geographic Table
(ADGT), is described. It allows to efficiently retrieve peers or resources, to
broadcast messages within any geographical region, and to be automatically
notified about any type of information around any geographical location, fol-
lowing the publish/subscribe model

• Chapter 3. This chapter describes the implementation of the aforementioned
georeferenced peer-to-peer overlay scheme. The ADGT has been realized ex-
clusively with standard and open web technologies in order to obtain a truly
cross-platform application framework.

• Chapter 4. In this chapter, it is described how the peer-to-peer overlay scheme
has been extensively evaluated with OSMobility, which allows to simulate the
motion of different entities in realistic geographical spaces and, adopting the
software-in-the-loop simulation methodology, allows to test deployment soft-
ware on simulated devices, immersed in simulated environments. The con-
ducted performance analysis shows that the ADGT is cost-effective in terms
of data rate, and therefore highly suited to mobile devices.

• Chapter 5. This chapter presents a concrete LBS example, based on Adgt.js,
that clearly illustrates how straightforward and powerful such a framework is
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and, by means of this, a performance evaluation of the framework in a real
environment is presented.

• Chapter 6. This chapter illustrates a novel approach for producing proofs-of-
location, i.e., digital certificates that attest someone’s presence at a certain ge-
ographic location, at some point in time, whereby LBSs can validate user loca-
tions. In particular, our approach relies on the blockchain — mostly known for
being Bitcoin’s core technology — to design a completely decentralized peer-
to-peer architecture that guarantees location trustworthiness and preserves user
privacy, at the same time. Simulation-based evaluation of the proposed tech-
nique shows an effective and robust behavior even in presence of significant
shares of deceitful peers.

• Chapter 7. Finally, this chapter concludes the Thesis providing a general dis-
cussion and an outline of future work.





Chapter 1

Location-Based Services

Location-based services are gaining more and more importance for a broad range of
applications, such as road/highway monitoring, emergency management, social net-
working and advertising. In this chapter, we analyze the most interesting approaches
and algorithms, distinguishing between centralized and peer-to-peer architectures.

1.1 Centralized Architectures

Traditionally proposed architectures for location-based services are based on a cen-
tralized approach where one or more central servers have the responsibility to manage
all position updates and queries from involved users, related for example to a specific
point-of-interest, neighborhood discovery or path planning. In order to manage a huge
number of active users at the same time, with a high quality of service, usually those
solutions require a relevant computational power on the server side. For this reason,
such services are typically provided by large companies that can afford the neces-
sary powerful and expensive centralized systems, with severe consequences from the
privacy viewpoint, since a large amount of data are controlled by a few organizations.

The Google Maps is a mobile app developed by Google, first released for Android
on September 23, 2008, and later for iOS on December 13, 2012. Such an app is
based on the web mapping service, developed by Google, and provides turn-by-turn
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navigation, street view, public transit information, traffic view, search along routes,
and many more features.

Figure 1.1: Screenshot of Google Maps running on iOS 7.

Google Maps’ location tracking is widely regarded as a threat to user privacy [6].
Data on user life (personal habits and movements) are presumed to be used to make
routing suggestions more precise.

Another example of centralized LBS is Foursquare, a mobile app which pro-
vides a local search-and-discovery service for its users. By taking into account the
places where users go, the things they like, and what their friends advice, Foursquare
provides recommendations of the places to visit in surroundings of users’ current lo-
cation. Differently from Google Maps, Foursquare is mainly oriented to be a local
search and discovery tool, where users can "follow" other users to receive local rec-
ommendations from them. Foursquare provides functionalities to search for places of
interest in surrounding area of users or by entering the name of a remote location, and
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displays personalised recommendations based on the time of day, and on factors that
include the users history, their venue ratings and according to their friends’ reviews.

Figure 1.2: Foursquare showing personalized recommendations of places near the
user’s current location.

Privacy concerns on Foursquare raised when an ethical computer hacker discov-
ered a vulnerability that allowed him to collect around 875000 "check-in" informa-
tion, even if users chose to share these information only with their friends [7]. More-
over, on May 8, 2012 Foursquare developers announced a change to the API in re-
sponse to a number of so-called "stalker" applications which had been making the
locations of e.g. all female users within a specific area available to the public [8].

Pokémon Go is a free-to-play, location-based augmented reality game developed
by Niantic for iOS, Android, and Apple Watch devices. In the game, players use
the mobile device’s GPS capability to locate, capture, battle and train virtual crea-
tures, called Pokémon, who appear on the screen as if they were in the same real-
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world location as the player. It quickly became a global phenomenon and was one
of the most used and profitable mobile apps in 2016, having been downloaded more
than 500 million times worldwide. It was credited with popularizing location-based
and augmented reality gaming, promoting physical activity, along with helping local
businesses grow. However, it attracted controversy for contributing to accidents and
becoming a public nuisance at some locations. Various governments also expressed
concerns over the security of the game, with some countries passing legislation to
regulate its use.

Figure 1.3: In Pokémon Go, players must physically travel to explore the game’s map
and find Pokémons.

If, on the one hand, large IT companies are pushing more and more their LBSs
without worrying too much about user privacy, on the other hand, researchers are
investigating how to provide such services while preserving user privacy. In particu-
lar, various peer-to-peer overlay schemes that enable completely decentralized LBSs
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have been presented, as described in next section. These peer-to-peer protocols, in
addition to safeguard privacy of users inasmuch the data are not in the hands of a
single possibly untrustworthy company, support the realization of bottom-up LBSs,
not requiring large and expensive infrastructures.

1.2 Peer-to-Peer Architectures

Traditional peer-to-peer overlay schemes, such as Kademlia [9] or Chord [10], are
not particularly suitable for location-based services, since they completely ignore
geographic distances between peers of the network. The geographic distance, how-
ever, assumes an aspect of remarkable importance for location-based services, since
they consume and produce geolocated information. For these reasons, the design of
peer-to-peer overlay schemes proper to the development of location-based services
is an extensively discussed issue in literature. Table 1.1 lists the main location-aware
peer-to-peer overlays, sorted chronologically, and compares them based on the main
features that location-based services should have. These peer-to-peer overlays are
shown in next subsections.

1.2.1 GeoPeer

In GeoPeer by Araújo and Rodrigues [11], network peers arrange themselves to form
a Delaunay triangulation, with the addition of long range contacts. GeoPeer is capable
of providing some of the fundamental operations of location-based services, such as
geographical multicast and queries. The main weaknesses of this work stem from the
fact that only stationary peers are taken into account — which is a serious deficiency,
since location-based services have to cope with devices that are mobile by definition.

1.2.2 Globase.KOM

A second notable solution is Globase.KOM by Kovačević, Liebau and Steinmetz
[12]. This solution adopts a superpeer-based overlay, where each superpeer manages
one of the rectangular zones that constitute the hierarchical layers in which the ge-
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GeoPeer 3 3

Globase.KOM 3

DGT 3 3

Geodemlia 3 3

Overdrive 3 3 3 3

ADGT 3 3 3 3 3 3

Table 1.1: Comparison of location-aware peer-to-peer overlay schemes.

ographic space is partitioned. Clearly, making use of a not completely distributed
architecture implies a great effort in terms of complexity and a significantly poor
scalability. Moreover, similarly to GeoPeer, this solution considers only stationary
peers. Thus, it completely ignores the drastic increase of the maintenance overhead
that would result by applying this protocol to mobile nodes.

1.2.3 DGT

Picone et al. describe a structured overlay scheme where each participant can ef-
ficiently retrieve peers or resources located near any chosen geographical location
[13]. In such a system, called Distributed Geographic Table (DGT), the main pro-
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vided service is to route requests to find available peers in a specific area. The DGT
has been designed with primary emphasis on peers’ mobility: each peer maintains a
set of logic concentric circles, around its own geographical location, and keeps them
constantly updated, in order to have the latest neighbors’ location. Although the DGT
takes into account the mobility of peers, it does not consider speed and direction of
the motion. In effect, the mechanism by which each peer of this overlay scheme
maintains updated its neighborhood completely ignores the different ways a peer can
move.

1.2.4 Geodemlia

Geodemlia, by Gross et al., is a peer-to-peer overlay that allows users to search for
location-based information around specific geographic locations [14]. The Geodem-
lia overlay scheme is inspired by Kademlia [9] and provides geographical methods
for search and store. Also, like the DGT, it uses concentric circles to divide the geo-
graphical space. However, this overlay completely overlooks peers that change their
geographical location.

1.2.5 Overdrive

Heep et al. developed Overdrive, a peer-to-peer overlay very similar to the DGT, but
considering also speed and direction of peers even if, actually, it uses information of
speed and direction only to reduce the number of sent messages and not to enhance
the overlay itself [15]. Differently from the DGT, Overdrive adopts a recursive ap-
proach for routing instead of the iterative one inspired by Kademlia that the DGT
adopts.

Examining these works in literature, we have noticed that none of them really
adapt the topology of the network based on peers’ movements. We consider it an
essential feature proper to a location-based service. For these reasons, we have ex-
tended the DGT peer-to-peer overlay in order to readjust itself considering the speed
and direction of the peers. Moreover, we have adopted a recursive algorithm for mes-
sage routing. Finally, we have provided a publish/subscribe mechanism by which
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each peer can be automatically notified about any type of information around any
geographical location, by simply exhibiting interest. All these features characterize
our peer-to-peer overlay scheme for location-based services: the Adaptive Distributed
Geographic Table (ADGT).



Chapter 2

Adaptive Distributed Geographic
Table

With the objective to fulfill all the requirements of a location-aware peer-to-peer over-
lay scheme, we have redesigned and improved the DGT, thus obtaining the Adaptive
Distributed Geographic Table (ADGT) [16]. In particular, to make the ADGT take
fully into account peer mobility, we have formalized a new data structure for neigh-
borhood management, different from all those available in literature. Such a new data
structure is based on the idea that a peer should directly connect to those peers from
which it is most likely to obtain satisfactory contents. In this way, an adaptive topol-
ogy that reacts to peers’ movements is obtained. Furthermore, we have switched from
the traditional Kademlia-like iterative routing algorithm to a more efficient recursive
one. To achieve this objective, we have changed the operations of discovery of other
peers in the network. Finally, we have introduced the mechanism of subscription to
any type of information around any geographical location, making the ADGT a com-
plete peer-to-peer overlay scheme for LBSs.
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2.1 General Principles

Let us denote the set of peers as P , the space of the identifiers as I and the space
of geographic coordinates as W . Every peer is unambiguously described by a unique
identifier id ∈ I and an ordered pair w = 〈latitude, longitude〉 ∈ W representing
a geographic location. More precisely, a generic peer p ∈P is associated to the
〈idp,wp〉 pair, where idp ∈I and wp ∈W .

To set the distance between any two peers, the great-circle distance is adopted.
Such a metric is the shortest distance between two points on the surface of a sphere,
measured along the surface of the sphere itself: d : W ×W → R. In the ADGT
context, the sphere is the approximation of the Earth surface.

Given a geographical location, its neighborhood is defined as the set of peers
that are geographically close to that location. More precisely, the neighborhood is
the set of peers that are located inside a given region that surrounds the location of
interest. Let us define A as the set of geographic regions delimited by a closed curve
and GBw ∈ A as a region centered in the geographic location w. Then, we define
the neighborhood of w as Nw = {p ∈P|wp ⊆ GBw}, where wp is the geographical
location of peer p ∈P .

2.2 GeoBucket Data Structures

Typically, in LBS-oriented peer-to-peer networks, neighborhood is maintained within
circular regions whose center is each peer’s geographical location. Thus, any direc-
tion equally matters. Such an approach is meaningful if we consider static or slowly
moving peers. For example, a vehicle moving in the streets of the city center has
to maintain its neighborhood within a circular region as interesting information may
come from any direction. However, when a vehicle travels on the highway or any
long road allowing for high speed, the interesting information is located along the
travel direction. Thus, in such a scenario, a neighborhood bound within a circular
region is useless. It is better to extend the region of interest forward and backward,
with respect to the vehicle, rather than laterally.
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Based on this principles, ADGT peers adapt their neighborhood regions by taking
into account their own mobility, i.e., their direction and speed. Given a location w, let
us define a GeoBucket as a list of peers whose distance from w lies within a given
interval. The GeoBucket is sorted by the distance from w. Every peer may maintain
several concentric GeoBuckets, all of them being centered in the peer’s location or
in any location of interests. Nothing prevents one peer to maintain several sets of
concentric GeoBuckets, each set having a different center. For example, one set of
GeoBuckets may be centered in the peer’s own location, while other GeoBuckets
may be centered in locations of interest for the peer.

GeoBuckets are periodically updated, in order to maintain consistent information
about neighbors’ locations. As illustrated in Figure 2.1, the shape of the GeoBuck-
ets boundaries is adaptively elliptical, rather than statically circular. More precisely,
every GeoBucket has elliptical lower and upper bounds, where both semi-axes of the
ellipses are computed according to the direction and speed of the target (which is the
center of the ellipses). The set of GeoBuckets centered in a given location is defined
by a group of K concentric ellipses. Every ellipse has a semi-major axis ai and a
semi-minor axis bi, with i integer ∈ [1,K]:

ai = i · ti · (1+S · v
Vmax

)

bi = i · ti ·
Vmax

Vmax +S · v
where v is the current speed of the target, Vmax is the maximum allowed speed, ti is the
thickness of each GeoBucket and S relates the shape of the GeoBucket to the current
speed of the target. In particular, the higher the speed, the higher the eccentricity of
the ellipses. Moreover, the direction of the semi-major axis coincides with the moving
direction of the target. Conversely, when the target is stationary (v = 0), the ellipses
reduce to circles.

Using the formal notation introduced in the previous subsection, the region cov-
ered by the GeoBucket structure centered in w is

GBw = {w′ ∈W |d(w′, f1)+d(w′, f2)≤ 2 ·a}
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Figure 2.1: The ADGT adaptive elliptical neighbourhood.

where f1 and f2 are the two foci and a is the semi-major axis of the external ellipse
centered in w.

2.3 Routing Strategies

The original DGT implementation used an iterative algorithm, very similar to the one
adopted by Kademlia, during the discovery process of new peers. To improve the ef-
ficiency of the routing procedure [17], we have moved to a recursive implementation.

In particular, we have defined a discovery message characterized by a geographic
location around which to search for new neighbors, as reported in Listing 2.1. When
a peer wants to discover new neighbors, it chooses the closest peer among those
it knows and sends it a discovery message specifying the geographical location of
interest. If a peer receives a discovery message, it replies to the requester with a set
containing the β closest peers to the specified geographical location, and forwards the
discovery request to the closest peer to the specified geographical location it knows.
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If the peer that receives the discovery message is the closest peer to the specified geo-
graphical location among its neighbors, the recursive discovery stops and the request
is not forwarded.

1 f u n c t i o n on ( discoveryRequest ) {

2
3 var p o s i t i o n = discoveryRequest . p o s i t i o n ;

4 var sender = discoveryRequest . sender ;

5
6 / / Ret r ieve a t most " beta " peers from the GeoBucket , d i f f e r e n t from the sender o f the d iscovery request

7 var neighbors = geobucket . f i n d ( pos i t i on , beta , sender ) ;

8
9 i f ( neighbors . leng th > 0) {

10 var discoveryResponse = new DiscoveryResponse ( ) ;

11 discoveryResponse . set ( neighbors ) ;

12
13 sender . send ( discoveryResponse ) ;

14
15 var nearest = neighbors [ 0 ] ;

16
17 / / I f there i s a c lose r neighbor , the d iscovery request i s forwarded

18 i f ( d is tance ( th is . pos i t i on , p o s i t i o n ) >= d is tance ( nearest . pos i t i on , p o s i t i o n ) ) {

19 nearest . send ( discoveryRequest ) ;

20 }

21 }

22 } ;

Listing 2.1: Recursive algorithm for peers discovery.

2.4 Publish/Subscribe Mechanism

One of the most important features that a location-based service must provide is the
possibility to notify the user about something of his/her interest near any geographi-
cal location. For example, the service must be able to notify the presence of friends
nearby the user, or the presence of traffic jams along the route that the user is trav-
eling. Nevertheless, all previous works have made the assumption that a peer has to
know only its geographical neighborhood, i.e., those peers whose geographical loca-
tion is not too far from that of the peer itself. This means that the peer can be notified
about any type of information only if it is located in its vicinity. Therefore, a user
could not be able to monitor traffic conditions along a particular city thoroughfare,
without necessarily being close to it.

In the ADGT, we have introduced a publish/subscribe mechanism through which
peers can be notified about any information they are interested in around any geo-
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graphic location [18]. Our significant improvement is apparently simple: while in the
original DGT every peer had a unique GeoBucket structure, now it can have multiple
GeoBucket structures, associated with different locations. In this way, it is possible,
for example, to place a GeoBucket structure on a particular road junction to be auto-
matically notified about any related warning.

Obviously, this brings out changes in the maintenance strategies of the neighbor-
hood. Previously, it was possible to state that if peer B belongs to the neighborhood
of peer A, then peer A must be in the neighborhood of B, that is, if a peer A adds B to
its GeoBucket structure, then B must also do the same. However, with the introduc-
tion of the possibility of being able to keep more GeoBucket structures for each peer,
such an assumption is no longer possible. It is thus required a mechanism to allow a
peer to inform another peer about the interest in receiving location updates.

To do this, every peer maintains a limited set of references to the last peers which
have expressed interest in receiving location updates. Periodically, each peer iter-
ates over its set and transmits location update messages to interested peers. If a peer
receives a location update message from another peer about which it is no longer
interested in, all it has to do is to inform the sender, that will remove it from its set.

Having multiple GeoBucket structures allows the peers to become aware of other
peers near any geographical location, and so to query those peers about anything
or to inform them about particular information they want to know, following the
publish/subscribe model.

Actually, multiple GeoBucket structures make geographical broadcast possible.
All that is needed is a GeoBucket structure that covers the area interested by the
broadcast and disseminates messages to all the peers contained in the GeoBucket
structure.
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Adgt.js Web Framework

As described in previous chapter, in recent years researchers have investigated to
provide location-based services in a privacy-aware manner, presenting various peer-
to-peer (P2P) overlay schemes that enable completely decentralized LBSs. Despite
the many benefits of a P2P approach, often these solutions have been studied only in
simulative environment and truly usable implementations have never been released.

In this chapter is presented a working implementation of the ADGT overlay
scheme. The objective behind the development is the software interoperability be-
tween all possible and heterogeneous devices, to make sure that the adoption is high.
For this reason, we turned to real cross-platform technologies, such as WebRTC,
WebSocket and JavaScript to build a framework that supports the development of
P2P-based LBSs. To the best of our knowledge, this implementation is the first of its
kind in the area of P2P protocols for LBSs.

3.1 Open Web Platform Technologies

As the main idea behind our implementation is the complete interoperability among
devices as much as possible different – both from the hardware point of view, and
in terms of installed software – we have turned to those technologies that constitute
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the Open Web Platform (OWP)1. The OWP is a collection of open royalty-free Web
technologies, such as HTML5 and JavaScript, developed by the World Wide Web
Consortium (W3C) and other Web standardization bodies such as the Unicode Con-
sortium, the Internet Engineering Task Force (IETF), and ECMA International, with
the objective to obtain a platform that works on all browsers, operating systems and
devices, without requiring any approvals or waiving license fees.

Although the OWP standards have different maturity levels, and the development
of most standards is still in progress, the web browser has become the main access
interface to the Internet and has actually become synonymous with the Internet itself
for a large portion of Internet users. While initially web browsers were designed only
to display information provided by web servers, thanks to this standardization pro-
cess, they are becoming the real cross-platform technology, being able to truly realize
the “write once, run everywhere” unfulfilled promise of Java related technologies.

Among the many technologies that are encompassed under the umbrella of Open
Web Platform, one of the most interesting definitions the W3C has worked on is
the Web Real-Time Communication (WebRTC)2, a free and open API that supports
browser-to-browser applications for voice calling, video chat, and peer-to-peer data
sharing without the need of either internal or external plugins. Its aim is to enable
rich, high quality, real-time applications to be developed for browsers, mobile plat-
forms, and IoT devices, allowing them to communicate via a common set of proto-
cols. WebRTC, WebSocket API3, Geolocation API4 and ECMAScript5 are the OWP
technologies we have embraced to implement the ADGT protocols.

3.1.1 WebRTC

Nowadays, the Internet is no more a stranger to audio and video communication.
Talking to someone over a voice/video call has become a simple task for an everyday

1Open Web Platform https://www.w3.org/standards/
2WebRTC http://www.w3.org/TR/webrtc/
3WebSocket API http://www.w3.org/TR/websockets/
4Geolocation API http://www.w3.org/TR/geolocation-API/
5ECMAScript http://www.ecmascript.org/

https://www.w3.org/standards/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/geolocation-API/
http://www.ecmascript.org/
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user, thanks to common programs such as Apple FaceTime, Google Hangouts and
Skype. Together with these applications, a wide range of techniques and solutions to
problems have been developed and engineered, such as packet loss, recovering from
disconnections, and reacting to changes in network, to ensure high quality communi-
cations.

The purpose of WebRTC is to bring all of this technology into the browser. Dif-
ferently from those solutions that require the installation of plugins which can be
difficult to deploy, test and maintain, and may necessitate licensing fees from devel-
opers, WebRTC brings high-quality audio and video to the open Web.

Moreover, WebRTC supports data transfer: since a high-quality data connection
is needed between two clients for audio and video, it also makes sense to use this con-
nection to transfer arbitrary data. Indeed, WebRTC enables data streaming between
browser clients without the need to install plugins or third-party software, implying
a strong integration between the content presented by the browser and the real-time
content. With WebRTC, web browsers become peers of a real peer-to-peer network,
being capable to exchange data in an unmediated fashion.

To acquire and communicate streaming data, WebRTC implements the following
APIs:

• MediaStream, which represents synchronized streams of media such as us-
er’s camera and microphone;

• RTCPeerConnection, which handles stable and efficient communication
of streaming data between peers, with facilities for encryption and bandwidth
management;

• RTCDataChannel, which enables peer-to-peer exchange of arbitrary data,
with low latency and high throughput.

The MediaStream interface represents a stream of data of audio and/or video.
A MediaStream may be extended to represent a stream that either comes from or
is sent to a remote node, and not just the local camera. This API will not be detailed
further here because it is not strictly relevant to the presented work.
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The RTCPeerConnection interface models a WebRTC connection between
the local computer and a remote peer. It is used to handle efficient data streaming
between the two peers.

Unlike most web applications that choose the Transmission Control Protocol
(TCP), WebRTC relies on User Datagram Protocol (UDP) as the default transport
protocol. In fact, if on the one hand TCP guarantees delivery of data in the exact
order and without duplication, on the other hand in streaming applications most data
quickly become obsolete and, if any data were to be ensured in the reception, this
would result into a bottleneck in case of data loss. Since a completely reliable con-
nection is not a requirement for audio, video and data streaming transmissions, while
a very fast connection between the two browsers is highly desirable, UDP has been
chosen as the default transport protocol in WebRTC. In particular, WebRTC trans-
ports audio and video streams using the Secure Real-Time Transport (SRTP) proto-
col, which is real-time, and provides encryption, message authentication and integrity
to transmitted data. RTCPeerConnection hides all the complexities of WebRTC
to web developers. WebRTC uses codecs and protocols to make real-time communi-
cation possible, even over unreliable networks, adopting techniques for packet loss
concealment and noise reduction and suppression, in a completely transparent man-
ner to developers.

Another feature that RTCPeerConnection offers to web developers is the In-
teractive Connectivity Establishment (ICE), a technique developed by the Internet
Engineering Task Force [19] to overcome the complexities of real-world network-
ing, where most devices live behind one or more NAT layers, some have anti-virus
software that blocks certain ports and protocols, and many are behind proxies and
corporate firewalls. First, ICE tries to make a connection using the host address ob-
tained from the operating system and the network card. In case of failure, ICE uses
the Session Traversal Utilities for NAT (STUN) [20] protocol to discover the pub-
lic address of the device and then pass that on. If also this attempt fails and a direct
communication between peers over UDP cannot be established, ICE falls back on
Traversal Using Relays around NAT (TURN) [21], rerouting the traffic via a TURN
relay server using TCP.
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TCP UDP SCTP
Reliability reliable unreliable configurable

Delivery ordered unordered configurable

Transmission byte-oriented message-oriented message-oriented

Flow control yes no yes

Congestion control yes no yes

Table 3.1: SCTP is a transport protocol, similar to TCP and UDP, which can run
directly on top of the IP protocol. However, in the case of WebRTC, SCTP is tunneled
over a secure DTLS tunnel, which itself runs on top of UDP [1].

The RTCDataChannel interface allows us to transfer arbitrary data directly
from one peer to another. It works with the RTCPeerConnection API, which
enables peer-to-peer connectivity with lower latency, and uses Stream Control Trans-
mission Protocol (SCTP), allowing configurable delivery semantics: out-of-order de-
livery and retransmit configuration.

SCTP is a transport-layer protocol, serving in a similar role to the popular pro-
tocols TCP and UDP that provides some of the same service features of both: it is
message-oriented like UDP and ensures reliable, in-sequence transport of messages
with congestion control like TCP.

RTCDataChannel can work in either reliable mode (analogous to TCP) or un-
reliable mode (analogous to UDP). The first guarantees the transmission of messages
and also the order in which they are delivered. This takes extra overhead, thus poten-
tially making this mode slower. The latter does not guarantee every message will get
to the other side nor what order they get there. This removes the overhead, allowing
this mode to work much faster.

Furthermore, in the case of WebRTC, SCTP sits on top of the Datagram Transport
Layer Security (DTLS) protocol, which is derivative of SSL, and provides communi-
cation security for datagram protocols. In particular, using DTLS, WebRTC guaran-
tees that every peer connection is automatically encrypted and, in particular:
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Figure 3.1: WebRTC and WebSocket protocol stack.

• messages are not readable if they are stolen while in transit between peers;

• a third party cannot publish messages within the ADGT overlay network;

• messages can not be altered while in transit;

• the encryption algorithm is fast enough to support the highest possible band-
width between peers.

3.1.2 WebSocket

The Web has been traditionally tied to the request/response paradigm of HTTP. Nev-
ertheless, with the need to have a more and more dynamic web, technologies such as
AJAX have emerged. However, all of these technologies are not well suited for low
latency applications, because of the HTTP overhead.

The WebSocket specification defines an API establishing an interactive commu-
nication session between a web browser and a server. With this API, the client and
the server can make a persistent full-duplex connection between them and send data
to each other at any time. The main advantage is that the client can send messages
to a server and receive event-driven responses without having to poll the server for a
reply.
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3.1.3 Geolocation

The Geolocation API defines a high-level interface to location information associated
with the device. The API itself is agnostic of the underlying location information
sources: location can be indiscriminately obtained from a Global Positioning System
(GPS), inferred from network signals such as IP address, RFID, Wi-Fi and Bluetooth
MAC addresses, and GSM/CDMA cell IDs, as well as user input.

The API provides the location information represented by latitude and longitude
coordinates. The API is designed to enable both “one-shot” position requests and re-
peated position updates, as well as the ability to explicitly query the cached positions.

3.1.4 ECMAScript

ECMAScript is a scripting language specification standardized by ECMA Interna-
tional. JavaScript is one of the most known implementation of the language.

The current version of the ECMAScript Language Specification standard is EC-
MAScript 2015 (6th Edition) and introduces language support for classes, construc-
tors, and the extend keyword for inheritance. Moreover, it provides a way to load
and manage module dependencies, new Map and Set objects, Promise objects and
many other features.

3.2 Implementation

We have implemented the ADGT protocol using OWP technologies only [22]. The
resulting ECMAScript 6 framework, denoted as Adgt.js, can be freely used for the
realization of peer-to-peer LBSs, where it is important to discovery geographic neigh-
bors and exchange messages with them using a technology that guarantees security
and data encryption. Being a framework, Adgt.js gives a way to flexibly organize the
code of location-based applications, and it is not simply a set of useful predefined
functions.

In particular, we have defined a JavaScript Peer class that represents the ADGT
peer. This class is characterized by a Descriptor, i.e., a composition of an unique
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identifier of the peer in the network and its geographic location. This latter imple-
ments the Position interface defined in the Geolocation API and represents the
position of the peer at a given time, but also its altitude and its speed.

Furthermore, the Peer class contains a reference to a GeoBucket object that,
as the name says, implements the peculiar routing table of the ADGT protocol. Our
GeoBucket implementation consists of a wrapper of the new ECMAScript 6 Set

class, whose elements are nodes of the network. The GeoBucket class, in addition
to being a collection of nodes, presents functionalities for the management of geo-
graphic neighborhood, therefore to add and remove nodes that approach and move
away from the peer, and to update the information about the geographic locations of
the neighbors.

In Adgt.js, neighbors are represented by the RemoteNode class, which actually
realizes the peer-to-peer connection with other peers, through WebRTC technologies.
More specifically, this class allows to connect to another peer of the ADGT overlay
network using the RTCPeerConnection interface, and to directly send a message
to it with the DataChannel interface. In this way, all data exchanges between net-
work nodes — such as position updates as well as peer discovery messages — are
realized using WebRTC.

DataChannels are also used as signaling channels. In fact, signaling meth-
ods and protocols, i.e., the mechanisms required to coordinate communication and
to send control messages, are not specified by WebRTC. WebRTC assumes the exis-
tence of a communication coordination process, allowing clients to exchange session
control messages (outlined by the JavaScript Session Establishment Protocol [23]),
error messages, media metadata such as codecs and codec settings, bandwidth and
media types, key data, used to establish secure connections, and network data, such
as a IP address and port, without placing constraints on the signaling technology.

Although a signaling service consumes relatively little bandwidth and CPU per
client, signaling servers for a popular application may have to handle a lot of mes-
sages, from different locations, with high levels of concurrency. For this reason, we
have decided to decentralize the responsibility to act as signaling servers among all
the peers of the network, using DataChannels. In particular, the peer discovery
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operation has been realized in a way that when a peer receives the list of neighbors
from the peer that has contacted, the latter acts also as a signaling server between the
first and the possible peers which have to be contacted.

Figure 3.2: Using ICE to cope with
NATs and firewalls.

Figure 3.3: Peers of the network act as
signaling servers in our implementa-
tion.

A direct connection between two peers can be achieved by means of a signaling
server that coordinates the communication. Actually, a signaling server by itself is
not sufficient to overcome the complexities of real-world networking, whereas it can
be solved with the use of ICE technology, as shown in Figure 3.2.

To increase system scalability, Adgt.js has been designed to be architecturally
different from what depicted in Figure 3.2, since the operations of signaling between
two peers that are attempting to establish a connection are provided by an intermedi-
ary peer rather than from a centralized server. Figure 3.3 represents the architecture
of our implementation.

In particular, the peer designed to act as a signaler between two other peers is
the one that allowed the other two to get to know each other, at the end of the dis-
covery process. Figure 3.4 shows the sequence of messages exchanged during a dis-
covery operation, in the event that peer A wants to start a conversation with peer B,
just discovered by means of peer C. After peers A and C have exchanged discov-
ery messages, where A asks for a specific geographic location and C returns a list
of known peers near the location indicated including B, if peer A wants to add peer
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Figure 3.4: Messages exchanged during discovery operation.

B to its GeoBucket, peer C will be the signaler among them. The first message that
A has to send to B through C is an Offer message, which is a serialized session
description message, followed by an ICE message with the information about net-
work interfaces and ports. On the other side, when B receives the Offer message, it
replies to A through C with an Answer message containing its session description,
therefore with an ICE message. Finally, at the end of this initialization, A and B can
directly exchange ADGT or application-specific messages, such as updates on their
geographic location. Despite the complexity of the architecture, the implementation
hides all these aspects to users, which do not have to worry how the connections are
established.

Since it is not always possible to use another peer as a signaling server, e.g.,
when the peer joins the peer-to-peer network, each peer has a reference to a Boot-
strappingNode that is able to operate as a signaling server for those peers that
log on to the network for the first time (Bootstrapping and other peer-to-peer patterns
are illustrated in a recent work by Amoretti and Zanichelli [24]). We have built this
type of signaling server using the Node.js framework6 and the WebSocket protocol.
The choice of adopting Node.js, which is an open source runtime environment based
on Google’s V8 JavaScript engine, has allowed to reuse most of the code written
for the ADGT implementation. Furthermore, the WebSocket protocol allowed us to

6Node.js https://nodejs.org

https://nodejs.org
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encrypt the signaling and negotiation communication like the standard HTTPS pro-
tocol works, ensuring that no one can intercept messages sent to the server to figure
out which peers are talking to whom.

Figure 3.5: Class Diagram of the Adgt.js framework.

Figure 3.5 describes the structure of the system by showing the classes, their
attributes, operations (or methods), and the relationships among objects of the Adgt.js
framework.
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Adgt.js has been released online7 with a free and open source software license
and can be used as a web application framework without restrictions.

3.2.1 Algorithm for GeoBucket Collision Detection

In order to identify two geographically close peers, i.e., neighbors in the peer-to-peer
overlay network, we have devised an efficient algorithm for verifying the collision of
elliptical GeoBuckets. In particular, the algorithm checks if two ellipses represented
in the geographic coordinate system overlap.

To obtain this, we have developed a simple method that approximates each el-
lipse in a polygon inscribed in the ellipse itself. In particular, this method starts from
the rhombus that connects the four vertices of the ellipse and iteratively calculates
geographical coordinates of points that are on the perimeter of the ellipse itself. Once
these points, whose number depends on the number of iterations (i.e., on the level of
accuracy one wants to achieve), have been determined, the method draws the polygon
that connects them and that actually is projected on the spherical surface of Earth.

Figure 3.6: Step 1: initial
polygon (rhombus) em-
bedded in the ellipse.

Figure 3.7: Step 2: calcu-
lation of the vertex of the
new polygon.

Figure 3.8: Step 3: the
new polygon embedded
in the ellipse.

7Adgt.js https://github.com/brambilla/adgt.js

https://github.com/brambilla/adgt.js
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Figures 3.6, 3.7 and 3.8 show the sequence of operations performed by the algo-
rithm in order to obtain a polygon embedded in the ellipse of GeoBucket.

The algorithm proceeds by checking if there is any overlap between the two poly-
gons that approximate the ellipses of the GeoBuckets.





Chapter 4

Evaluation through Simulation

It is an established fact that in the immediate future there will be billions of objects
with the capability to communicate and sense or interact with their internal states or
the external environment [25]. These pervasive systems and applications, due to their
complexity, need careful analysis and test, before being deployed to target environ-
ments. Consider, for example, smart city applications [26], requiring the coordination
of a huge number of networked software entities, interfaced with sensors, actuators,
computational and storage facilities.

In this chapter, we describe our cost-effective software-in-the-loop simulation
methodology and present the Java-based simulation platform we have realized, which
allows to simulate interconnected devices easily by providing an intuitive simulation
methodology, which results in maximal code reuse. The proposed platform provides
a general-purpose simulation engine, which includes specific packages to simulate
mobility, networking, and energy consumption models. Furthermore, the proposed
methodology allows to define general-purpose devices, which can be characterized
by multiple network interfaces and protocols, as well as different network and energy
models. With this solution, we can easily tackle problems like flexibility, modularity,
code reuse and ease of deployment.

Thanks to the simulation environment we have realized, it has been possible to
deeply evaluate the ADGT in different scenarios of mobility, obtaining very promis-
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ing results presented in Section 4.3 of this chapter.

4.1 Related Work

The Internet of Things (IoT) mainly refers to the interconnection of a multitude
of constrained devices with limited computational and memory capacity, typically
battery-powered. As a consequence, energy efficient technologies must be adopted.
Moreover, these devices usually operate in constrained networks, which often have
high packet error rates and a throughput of tens of kbit/s. IoT applications require a
huge number of networked devices, equipped with sensors, actuators, computational
and storage facilities, to cooperate and be coordinated. Due to their complexity, such
applications need careful analysis and testing, before being deployed to target envi-
ronments. However, testing them in a controlled environment, such as a laboratory,
may not be sufficient to understand and evaluate the possible properties/issues of such
complex systems and, in particular, emergent ones, i.e., those that cannot be inferred
from the analysis of single components, and appear when components interact. More-
over, the simulation of large-scale systems is usually based on approximated models
and simulation-specific code, which are not representative of all system details.

In this context, standardization organisms, such as the Internet Engineering Task
Force (IETF) and IPSO Alliance, have been working on standard and interoperable
communication mechanisms, in order to interconnect these devices. In particular, the
Internet Protocol version 6 (IPv6) [27] has been identified as the main candidate, and
several working groups have been set in order to address the issues related to IoT de-
vices communication. For example, the IETF IPv6 over Low power WPAN (6LoW-
PAN) Working Group [28] is defining encapsulation and other adaptation mecha-
nisms in order to send and receive IPv6 packets over Low power Wireless Personal
Area Networks, such as those based on IEEE 802.15.4. From the point of view of
the application layer, the IETF Constrained RESTful Environments (CoRE) Work-
ing Group1 is currently defining a Constrained Application Protocol (CoAP) [29], a
software protocol designed to easily translate to HTTP for simplified integration with

1Constrained RESTful Environments Working Group https://tools.ietf.org/wg/core/

https://tools.ietf.org/wg/core/
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the web, while also meeting specialized requirements such as multicast support, very
low overhead, and simplicity, intended to be used in resource-constrained Internet
devices, such as wireless sensor network nodes.

Accurate simulation of sensors taking part in wireless sensor networks is often
coupled with the operating system running on top of the sensor. Most of the special-
ized IoT operating systems typically provide simulation environments for developers:
for instance, Cooja [30] and TOSSIM [31] are the simulation platforms for testing ap-
plications running on Contiki OS [32] and TinyOS2, respectively. The approaches of
both simulators totally differ from generic simulation frameworks like OMNeT++
[33] or ns-33, since they simulate the entire behavior of the node, from hardware and
communication to the whole software stack running on the operating system, which
precludes the possibility to simulate a high number of deployed nodes.

These platforms are targeted at evaluating specific aspects (e.g., link- or applica-
tion-layer protocols and energy consumption), other frameworks, such as ns-3, pro-
vide a much wider variety of network and communication protocols and Internet
system representations. However, the entire domain of wireless sensor networks has
been affected by the increasing importance of the Internet of Things and related tech-
nologies, such as 6LowPAN [28]. As standardization efforts are being carried out,
resulting in the design of standard communication protocols on top of IP, developers
are starting to out the ever-increasing need for simulation platforms, which can be
used to test large-scale systems comprising a high number of nodes, without taking
into account low-level issues (i.e., hardware platforms and operating systems), but fo-
cusing on application-specific issues. Weingärtner et al. in [34] report the need for an
accurate IoT simulator and discuss different approaches to overcome the limitations
of available simulators. Among all the approaches, a hybrid simulation environment,
based on a combination of available generic frameworks and system-level simula-
tors together, might reduce the gap between research and practical deployments and
strengthen the option of simulative studies for the IoT area.

In [35], the author highlights the need for interconnection between the two differ-

2TinyOS http://www.tinyos.net
3ns-3 - Discrete Event Network Simulator http://www.nsnam.org

http://www.tinyos.net
http://www.nsnam.org
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ent types of network simulators and suggests the integration of an accurate operating
system simulator into a generic simulation environment with a correct representation
of protocols from the different layers of the used network stacks. The MAMMoTH
project aims at building an emulation platform that can support nodes in the order of
tens of millions [36], but it has not been recently updated.

In this context, various programming frameworks have been proposed to support
the development of pervasive computing applications [37, 38, 39]. However, they
require fully-equipped pervasive computing environments.

The development of software modules to be installed on resource-constrained de-
vices, such as nodes of wireless sensor networks, is often supported by device emula-
tors [32]. When the testing phase is completed, the application code can be installed
on real devices as is, and its logic does not require further debugging. Unfortunately,
the number of nodes that can be emulated at the same time is usually very limited.
Thus, testing in the large requires simulation.

Figure 4.1: Layered representation of the proposed software-in-the-loop simulation
methodology, compared with traditional simulation and on-field testing.

Bruneau and Consel have recently proposed the DiaSim simulator [40], which
targets applications based on sensors and actuators, deployed in physical environ-
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ments, involving users. DiaSim enables the simulation of the application logic of
such applications, but does not simulate the other components of a pervasive com-
puting environment. E.g., it does not provide any support to estimate physical aspects
of an environment (such as the thermal modeling of a room), to simulate the net-
work traffic between application components, or to model the behavior of application
users. DiaSim is parameterized with respect to a high-level description of the target
pervasive computing environment.

PerSim is an event-driven, interactive simulator, which allows to design a per-
vasive space and fit it with the desired sensors relevant to a specific scenario or ap-
plication [41]. The simulator provides a web-based interface to enable incremental
(long-live sessions) and collaborative design of pervasive space simulation projects.
Researchers can design the space in terms of sensors, actuators, activities, and effec-
tively generate data by changing and fine tuning simulation parameters. The authors
have proposed an XML-based standard for Sensory Dataset Description Language
(SDDL), alternative to the more common Resource Description Framework (RDF).

With respect to these solutions, our approach focuses on

1. seamless integration of deployment code over simulated devices and environ-
ments;

2. high modularity, as specific simulation packages can be plugged/unplugged
over a general-purpose simulation engine;

3. scalability, as the number of replicated devices can be deterministically or
stochastically defined and increased/decreased by the simulation engine, ac-
cording to high-level system specifications.

4.2 Proposed Methodology

The software-in-the-loop simulation methodology we propose allows to test deploy-
ment software on simulated devices, immersed in simulated environments. On top of
the computing host, a general-purpose simulation engine is installed. More specific
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simulation packages are installed, and integrated with deployment software for perva-
sive applications. The only effort that is required, for each different test scenario, is to
develop lightweight adapters to integrate deployment code with simulation packages.

Figure 4.1 compares the proposed software-in-the-loop simulation methodology
(illustrated by the layered diagram on the left) with on-field testing (shown by the di-
agram in middle) and traditional simulation (presented by the diagram on the right).
The main advantage of software-in-the-loop simulation is that it requires just one de-
ployment of the software to be tested, as the simulation engine generates and manages
N virtual nodes, providing the illusion of multiple replications [42]. On-field testing,
conversely, requires N deployments of the code to be tested. Traditional simulation,
instead, provides N virtual nodes with virtual code, i.e., a simplified version of the
deployment code. Usually, traditional simulation is convenient in terms of execution
time, with respect to software-in-the-loop. However, its reliability is much lower.

For example, consider a point-to-point message transmission, requiring the exe-
cution of a send(msg) function provided by a specific socket-based API, such as
Sip2Peer4. In this case, the adapter should expose the same function signature, but the
related implementation would not be a socket-based message transmission. Instead,
it should be an event scheduling on the simulation engine, with a timestamp in the
future, computed according to a realistic delay model.

The proposed methodology is based on the concept of IoT Node, which represents
a generic smart object endowed with a mobility model, one or more network models,
and an energy model, which can interact and provide feedback among themselves to
better characterize the behavior of simulated nodes. The mobility model defines the
movement of the IoT Node, and how its location, velocity, and acceleration change
over time. Network models describe network capabilities of each interface the IoT
Node is equipped with. For example, these models define delays and failure rates in
the delivery of data in the network. Finally, the energy model describes the behavior
of the IoT Node from an energy consumption point of view and can also take into
account duty-cycling.

A visual model of the IoT Node is shown in Figure 4.2. Network models are

4Sip2Peer https://github.com/dsg-unipr/sip2peer

https://github.com/dsg-unipr/sip2peer
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Figure 4.2: Visual model of an IoT Node.

linked to the energy model, since the use of network interfaces affects energy con-
sumption, which varies depending on the type of access network technology.

An IoT Node is also characterized by

1. different network interfaces (e.g., IEEE 802.15.4, IEEE 802.11, IEEE 802.3,
or Bluetooth);

2. various communication application-layer protocols (either standard, such as
CoAP [29], HTTP [43] or MQTT-SN [44], or user-defined, such as CoSIP
[45]);

3. resources, which may be identified by their Uniform Resource Identifier (URI).
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Through such a definition of IoT Node, our simulation platform reveals a high
flexibility: it is possible to simulate different applications which make use of IoT
devices characterized by any mobility, network and energy models. Furthermore, be-
ing composed of models with a loose coupling, our IoT Node has a high modularity
and allows the reuse of most of the code. The replacement of the energy model does
not require to modify the others, for example. Moreover, by adopting the required
interfaces, it is possible to directly deploy the source code on real devices.

4.2.1 Architecture

Starting from the concept of IoT Node, the main class of our simulation platform:
the IoTNode class has been defined. By extending this class, developers can im-
plement and simulate IoT applications. The extension of generic IoT Nodes allows
to isolate the application layer from the underlying layers and brings the advantage
to focus on application-specific aspects and, reuse the entire application logic (and
implementation, where applicable).

Figure 4.3: Layered representation of the proposed methodology.

The architecture of the proposed simulation platform is shown in Figure 4.3. The
architecture is modular and based on several technologies. The top layer of the ar-
chitecture, depicted in Figure 4.3, represents the application to be tested, whereas
the underlying layer (denoted as Adaptation Layer) is intended as the coordination
of the IoTNodes. The remainder of the architecture and the main features of core
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components of our simulation framework are detailed next.

4.2.2 DEUS

Since the objective is the simulation of a high number of IoT Nodes, we searched for
a generic simulation engine and the choice fell on DEUS [46] for its high scalability
and versatility. DEUS is a general-purpose discrete event simulation environment. It
is a free software project developed in Java. Moreover, DEUS supports parallel (mul-
ticore and/or distributed) simulations [47]. Its APIs allow developers to implement
(by sub-classing) (i) nodes, i.e., the entities which interact in a complex systems,
leading to emergent behaviors; (ii) events, e.g., node births and deaths, interactions
among nodes, interactions with the environment, logs and so on; and (iii) processes,
either stochastic or deterministic ones, constraining the timeliness of events.

Furthermore, it exists an extension of DEUS dedicated to the modeling of mo-
bile nodes that maintains its characteristics of generality and abstraction. Such an
extension, called OSMobility, allows to easily realize and model the aspects related
to mobility of IoT Nodes [48].

4.2.3 OSMobility Package

OSMobility5 is a simulation environment which allows to simulate the motion of
different entities, such as pedestrians and vehicles, in realistic geographical spaces.
Being based on DEUS, OSMobility inherits all the features that make it versatile and
generic.

The main class of OSMobility is GeoNode, which is a generic element of a
simulation, and is characterized by a geographical location.

It is extended by StationaryNode and MobileNode, which represent a
static node (e.g., a traffic light, roadside sensor) and a mobile node, respectively.
OSMobility is integrated with OpenStreetMap (OSM)6, an open database which pro-
vides geographical data, such as road maps, for free, and uses such data to compute

5OSMobility https://github.com/brambilla/osmobility
6OpenStreetMap https://www.openstreetmap.org/

https://github.com/brambilla/osmobility
https://www.openstreetmap.org/
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node trajectories, with a resolution degree which ranges from millimetres to kilome-
tres, also taking into account speed limits and points of interest. Thus, OSMobility
allows to simulate vehicles running on highways or urban roads, pedestrian walking
within Limited Traffic Zones, bicycles moving on cycling lanes, etc.

Thus, OSMobility allows to simulate vehicles running on highways or urban
roads, pedestrians walking within Limited Traffic Zones, bicycles moving on cycling
lanes, etc. The huge amount of information provided by OpenStreetMap allows also
to take into account speed limits and to know where points of interest are placed,
which is useful to create realistically located traffic jams. OSMobility uses Post-
greSQL7 with PostGIS8 extension to store OpenStreetMap data, and pgRouting9 to
generate routes. In practice, the OSMobility user has only to set endpoints, and routes
are automatically generated. OSMObility’s Router class, which provides an ab-
stract method generateRoute(), has been specialized to DijkstraRouter,
which uses Dijkstra’s algorithm to compute the shortest route between two OSM-

Nodes. In general, the best route may be defined according to any criteria.
One of the main features of OSMobility is the ability to define any mobility

model, using the abstract class MobilityModel as a common base. We have spe-
cialized such a class to implement the Fluid Traffic Model (FTM) [49], where speed is
a monotonic decreasing function of vehicle density. The FTM is used to compute the
next position of a vehicle, given its current position, speed, direction, and the density
of surrounding vehicles. Such a computation is performed by the MoveNodeEvent
— whose instances are continuously generated and inserted in the event queue of the
simulation engine, for every MobileNode that is moving (as illustrated in Figure
4.4).

The main advantage of using OSMobility is that it supports a wide range of mo-
bility models, including both traditional ones (such as FTM) and custom, user-defined
ones. Compared to SUMO10 a well-known microscopic traffic simulator, OSMobil-
ity provides dynamic vehicle routing. SUMO does not natively include such a fea-

7PostgreSQL https://www.postgresql.org/
8PostGIS http://postgis.net/
9pgRouting http://pgrouting.org/

10SUMO - Simulation of Urban MObility http://sumo-sim.org/

https://www.postgresql.org/
http://postgis.net/
http://pgrouting.org/
http://sumo-sim.org/


4.2. Proposed Methodology 47

ture, as routes have to be statically defined before the simulation is performed. Such
a constraint can lead to unavoidable long trip times, or even to traffic blocks, for
the low-priority roads which intersect high-priority ones. A number of frameworks
exist to join SUMO and network simulators. Two notable examples are Veins11 and
TraNS12 which respectively employ the OMNet++ and ns-2 network simulators. Both
are based on the TraCI interface, which uses a TCP-based client/server architecture
to allow the interaction with SUMO. Thereby, SUMO acts as a server and receives
control messages to alter the simulator behavior at runtime.

Figure 4.4: Sequence of MoveNodeEvents in the event queue of the simulation
engine.

By adopting the Adapter pattern [50], we have designed our IoTNode as a wrap-
per of OSMobility’s GeoNode. Thus, it is a node of the simulation and provided with
a geographical location. It can be whether a stationary node or a mobile node. In the
latter case, it can adopt any mobility model, keeping the high flexibility of OSMobil-

11Veins - Vehicles in Network Simulation http://veins.car2x.org/
12TraNS http://www.isi.edu/nsnam/ns/

http://veins.car2x.org/
http://www.isi.edu/nsnam/ns/
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ity.

4.2.4 Communication and Energy Packages

An IoTNode, in addition to a mobility model, has a network model and an energy
model, represented by the generic classes NetworkModel and EnergyModel,
respectively. By extending the NetworkModel class, it is possible to describe the
capabilities of the node with regard to the network interfaces and protocols of com-
munication. Indeed, developers can customize an IoTNode in order that it represents
the required IoT device, with any network interface and protocol of communication.
The NetworkModel has the task to calculate delays or even failures in the delivery
procedure.

To simulate a distributed system with DEUS, it is necessary to write the classes
that represent a message delivery from one node to another. In particular, it is neces-
sary to define the sender, the destination and to schedule a delivered message event
in the future (in terms of virtual time of the simulation). The scheduling time of such
an event must be set using a suitable process, selected among those that are provided
by the DEUS API, or defined by the user, possibly. The communication package pro-
vides several delay models which can be used to simulate message transmission be-
tween network nodes. The most simple model generates an exponential delay, whose
expected value is computed from the message size and the nominal channel band-
width. If the purpose of the simulation is to measure the average delay of propagating
multi-hop messages within a network of nodes, the value of each link’s delay must be
realistic, taking into account the underlying networking infrastructure. In particular,
if the communication is wireless, estimating the delay of point-to-point communi-
cation is a challenging task. Fortunately, this is not necessary, thanks to possibility
to use dedicated simulation tools, such as Cooja and ns-3, to fully characterize the
communication delay and packet losses.

Furthermore, the developer can implement the desired energy model, extending
the EnergyModel class, so that it is possible to model in a highly sophisticated
way, the battery consumption of the device. For example, it is possible to model the
rate of the duty cycle for each IoTNode. Also in this case, Cooja can be used to
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obtain a very detailed modeling of the energy consumption.

Cooja and ns-3

Cooja is a network simulator included in the Contiki system, which is an open source
operating system for networked, memory-constrained systems with a particular focus
on low-power wireless IoT devices. Contiki is often used in street lighting systems,
sound monitoring for smart cities, radiation monitoring systems, and alarm systems.
Cooja simulates networks of Contiki nodes, which may belong to either of three
classes: emulated nodes, where the entire hardware of each node is emulated, Cooja
nodes, where the Contiki code for the node is compiled for and executed on the sim-
ulation host, or Java nodes, where the behavior of the node must be reimplemented
as a Java class.

Ns-3 is a discrete event network simulator for Internet systems. It is a free soft-
ware project publicly available under the GNU GPLv2 license for research, develop-
ment, and use. The ns-3 project is committed to building a solid simulation core that
is well documented, easy to use and debug, and that caters to the needs of the entire
simulation workflow, from simulation configuration to trace collection and analysis.
Furthermore, the ns-3 software infrastructure encourages the development of simu-
lation models which are sufficiently realistic to allow ns-3 to be used as a real-time
network emulator, interconnected with the real world and which allows many exist-
ing real-world protocol implementations to be reused within ns-3. The ns-3 simu-
lation core supports research on both IP and non-IP based networks. However, the
large majority of its users focuses on wireless/IP simulations which involve models
for Wi-Fi, WiMAX, or LTE for layers 1 and 2, and a variety of static or dynamic
routing protocols such as Optimized Link State Routing Protocol (OLSR) and Ad
hoc On-Demand Distance Vector (AODV) for IP-based applications.

Model Refinement

The direct integration of DEUS with Cooja and ns-3, with the first that “calls” the
others to compute a delay value every time a node must send a message to another
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node and the energy consumption, taking into account current surrounding condi-
tions, is unpractical and would highly increase the simulation time. Instead, a more
effective and efficient solution includes the following steps:

1. identify the main sub-system types, each one being characterized by specific
networking features;

2. with Cooja or ns-3: create detailed simulation models of the sub-systems (i.e.,
sub-models), and measure their characteristic transmission delays and the power
profiling;

3. with DEUS: simulate the whole distributed system, with refined scheduling
of communication events, taking into account the transmission delays and the
realistic power consumption computed at step 2.

Amoretti et al. in [51] give a detailed explanation of the model refinement process
from ns-3. A similar approach can be also adopted for Cooja.

4.2.5 Log Package

Deployment code running on a virtual node produces raw data (e.g., received re-
quest rate, service rate, success rate), which are placed in the shared memory or in
a database. Scheduled by the simulation engine, the logging package picks such raw
data and produces aggregated logs in machine-readable format — ready to be ana-
lyzed and used to generate graphs. The logging package is highly generic, providing
basic primitives for storing and retrieving data in shared memory / database. Its spe-
cialized use is defined by the adapter that must be developed, in order to integrate
logging package and deployment code.

4.2.6 Performances of the Simulation Platform

To evaluate our simulation platform and, in particular, its scalability, we have decided
to define several simulation scenarios and, for each of them, we have calculated the
required time to complete the simulation.
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Figure 4.5: Sample IoT (smart-parking) scenario for the simulations.

The scenarios we have decided to simulate belong to a typical application case of
the Internet of Things in urban environments: a smart parking infrastructure where
in each parking lot a sensor node is deployed to detect the presence or absence of a
vehicle [52]. Moreover, there are gateways that take charge of collecting data from
the sensor network, and vehicles that move around the city and contact the gateways,
searching for an available parking lot.

In particular, we have defined that vehicle requests to gateways are scheduled by
a Homogeneous Poisson Process with interarrival time being an exponentially dis-
tributed random variable whose mean interarrival time is equal to 5 minutes. When
a vehicle makes a request, it communicates with the geographically nearest gateway.
The number of vehicles looking for a parking lot is chosen so that, at the end of the
simulation, 10% of the traveling vehicles have issued a parking request to the gate-
ways. Next, the gateway contacts the parking sensors under its own responsibility and
waits for their response. Thereafter, it communicates a response to the vehicle. All
this happens for a lifetime of the simulation equals to 4 hours. Figure 4.5 shows our
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simulation scenario, where some vehicles travel around a generic city, send messages
with gateways using LTE communication standard and also presents wireless sensors
networks which transmit their data to the gateways.

All the participants of the simulation are implemented by subclassing our imple-
mentation of the IoTNode class. In particular, they are described by the Vehicle-
Node, HubNode and SensorNode classes. In addition, they adopt the interface of
mjCoAP13, a well-known open source Java implementation of the CoAP protocol. In
this way, code portability is even higher and the implementation can easily be trans-
ferred on real devices, such as, for example, those equipped with the new Java ME 8
platform [53].

In order to assess the scalability of our simulation platform, the number of nodes
of the simulation has been varied, as reported in Table 4.1, and the required compu-
tation time has been measured. Simulations have been executed on a server with 2
GHz Xeon CPU, 16 GB RAM, Ubuntu GNU/Linux operating system.

# SensorNode # HubNode # VehicleNode

A 4000 8 500

B 8000 16 1000

C 20000 40 2500

D 40000 80 5000

E 100000 200 12500

F 200000 400 25000

Table 4.1: Number of nodes of each simulation scenario.

Since the complexity of a simulation in a discrete-event simulation framework de-
pends mostly on the number of events, rather than the number of nodes, for each sim-
ulation scenario, the number of scheduled events has been calculated, and reported in
Table 4.2. It also presents also the percentage of mobility and communication events
with respect to the total number of scheduled events. In particular, in our simulations

13mjCoAP http://mjcoap.org

http://mjcoap.org


4.3. Simulating the ADGT 53

we have adopted a very accurate mobility model and this entails the prevalence of
mobility events rather than communication or birth events.

# events % mobility % communication

A 2.7×106 98.5 1.4

B 5.6×106 98.5 1.3

C 1.4×107 98.5 1.3

D 2.7×107 98.4 1.4

E 6.3×107 98.3 1.5

F 1.2×108 98.2 1.6

Table 4.2: Number of events of each simulation scenario.

Figure 4.6 shows the results of simulations in terms of execution time. As the
reader can see, the presented simulation platform can easily manage a very high
number of nodes and the associated events. Considering that the SmartSantander
testbed14, which is one of the most famous real IoT platforms in urban environment, is
composed of about 3000 IEEE 802.15.4 devices, 200 GPRS modules and 2000 joint
RFID tag/QR code labels deployed both at static locations (streetlights, facades, bus
stops) as well as on-board of mobile vehicles (buses, taxis), we can state that our sim-
ulation platform allows to easily simulate realistic scenarios in short time (scenarios
B and C). Moreover, even with the enormous number of nodes we have considered in
scenario F, the computation time is still acceptable, making the simulation platform
particularly suitable for urban environment scenarios, where the number of nodes is
often considerable.

4.3 Simulating the ADGT

The methodology described in previous section can be applied to the evaluation of
different pervasive applications. Indeed, we illustrate the testing of a decentralized

14SmartSantander http://www.smartsantander.eu/

http://www.smartsantander.eu/
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Figure 4.6: Execution time with respect to the number of events, for the six considered
scenarios.

information sharing service based on ADGT, in the context of smart mobility. The
related software can be installed on mobile devices, and used to produce, share and
consume traffic information (such as accidents, traffic jams, detours). This is partic-
ularly useful for drivers, allowing to setup vehicular networks whose software is not
embedded into vehicles — instead, it is portable from one vehicle to another, by the
same user.

The software-in-the-loop simulation stack is illustrated in Figure 4.7. On top
of DEUS, we have set the OSMobility, communication and logging packages. To
integrate them with the mobile application, we have developed three lightweight
adapters:

• the first one allows the mobile app to access position, way, route of the simu-
lated node, generated by the OSMobility package;
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Figure 4.7: Layered representation of the testbed.

• the second one allows the mobile app to send/receive messages, by wrap-
ping the communication package into a class which exposes the interface of
a ADGT peer;

• the third one allows to pass mobile app state information (e.g., number of sent
messages) to the logging package.

Long-term statistics are periodically logged to file. For live monitoring, OSMobility
provides a visualization module (a related screenshot is shown in Figure 4.8).

To simulate a network with 1000 vehicles, with high message rate (1.5 messages
per second, each message being 200 B large) and high mobility resolution (1 simula-
tion event corresponds to a 20 m displacement), a single node — 2 GHz Xeon CPU,
16 GB RAM — of our cluster is sufficient. The duration of such a detailed simulation
takes 10 hours, on the average. Most of the time is devoted to the simulation of the
message exchange between nodes. With the aforementioned hardware configuration,
it is possible to simulate up to 4000 vehicles, in a reasonable time interval. For larger
scenarios, there are two options: either using a more powerful server, or adopting a
parallel approach [47].

Furthermore, the communication package exposes a Sip2Peer-like API, and frees
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Figure 4.8: OSMobility visualization of networked vehicles.

developers from dealing with low-level communication issues, so that they can focus
on the application-level functional requirements of the system of interest.

4.3.1 Mobility Model

The capability to define different models of mobility offered by OSMobility, allowed
us to simulate the behavior of ADGT in three completely different LBS scenarios,
where peers are vehicles that exchange messages:

1. vehicles moving within our university campus in the rush hour (Figure 4.91);

2. vehicles moving within our city (Parma), during ordinary traffic hours (Figure
4.92);

3. vehicles moving along the highways of our administrative region, i.e., Emilia-
Romagna (Figure 4.93).
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(1) University campus (2) Parma (3) Highways in Emilia-
Romagna

Figure 4.9: Scenarios adopted during simulations.

These scenarios differ not only in the number of peers, but also in the way they
move. For example, within our university campus, in the rush hour vehicle speed is
very low due to recurring traffic-jams. On the other hand, vehicles moving in Parma
may run faster and travel along many different paths. Finally, most vehicles that travel
along the highways do it around the speed limit and their direction is stable.

In all these scenarios, we have tried to choose configurations as much realistic
as possible. In particular, in the simulations within our university campus, each peer
randomly chooses two points of interest among the ones we have defined (such as the
entrances or the sport center), and then follows the shortest path calculated between
them. Also the number of vehicles is not randomly chosen, but is based on realistic
assumptions. With regard to the simulations within Parma, vehicles randomly select
two geographical locations and move along the fastest path that joins them. In the
third scenario, peers move along the highways between two toll booths, still randomly
chosen. Vehicles are simulated so that the traffic density is comparable to the actual
one, as reported by the web portal about mobility of Emilia-Romagna15.

In addition, every vehicle adopts the Fluid Traffic Model as mobility model, a
realistic traffic model where the speed of vehicles is a monotonic decreasing function
of the vehicle density [49].

15E-R Mobilità http://mobilita.regione.emilia-romagna.it

http://mobilita.regione.emilia-romagna.it
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4.3.2 Communication Model

Since the main application of the ADGT we have conceived is based on the use
of mobile devices like smartphones, the modeling of communication delays plays a
fundamental role. For this reason, to better characterize the communication among
the ADGT peers in the urban environment, we have adopted the model illustrated
by Amoretti et al. [51], using ns-3 with the Lena LTE-EPC package16. The latter
provides the E-UTRA part of the Long Term Evolution (LTE) technology, dealing
with PRY, MAC and Scheduler functionalities, and support for the LTE RLC and
PDCP protocol, together with EPC data plane features, such as the S1-U interface
and the SGW and PGW entities. Shortly, such an ns-3 package supports the detailed
simulation of end-to-end IP connectivity over LTE-EPC.

4.3.3 Configuration Parameters

In order to evaluate the behavior and the performance of the ADGT overlay scheme
throughout the simulations, we have identified the main configuration parameters that
characterize it. In particular, they are

• β : maximum number of peers returned by a discovery response;

• ε: minimum distance (dimension: [km]) that must be travelled by a peer, before
it notifies its neighbors about its change of location;

• K: the number of GeoBuckets that constitute each GeoBucket structure;

• t: the thickness (dimension: [km]) of each GeoBucket;

• L: the maximum number of peers contained in a GeoBucket;

• S: the value which relates the speed of the peer to the shape of the GeoBucket.

16LENA - LTE-EPC Network Simulator http://networks.cttc.es/mobile-networks/
software-tools/lena/

http://networks.cttc.es/mobile-networks/software-tools/lena/
http://networks.cttc.es/mobile-networks/software-tools/lena/
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4.3.4 Evaluation Metrics

Both quantitative and qualitative performance evaluation metrics have been taken
into account. Quantitative metrics show the cost of the ADGT in terms of transmit-
ted data — this is an important aspect, since typically smartphones, and in general
mobile devices, have traffic tariffs based on transmitted data amount. On the other
hand, qualitative metrics show the behavior of the ADGT from a point of view of the
quality of the service. So, they represent capabilities of the overlay scheme such as
the warning responsiveness or the service accessibility.

In particular, we have defined

• Data Rate (DR), calculated as the average number of bits that are transmitted
per unit of time by each peer (dimension: [kbit/s/peer]);

• Coverage Percentage (CP), calculated as the number of peers that have actually
received a specific warning message, over those that should have received it;

• Distance From Events (DFE), calculated as the average distance between the
geographical location of peers which have not received yet a warning message
and the geographical location of the associated event.

In order to compute CP and DFE values, a randomly chosen peer periodically
produces a warning message related to its geographical location and disseminates it
among its neighbors.

4.4 Results

Taking into account our past experiments with the DGT, we have decided to set β =

20, ε = 1, K = 5, t = 0.4, L = 20. Since the most characteristic parameter of the
ADGT is S, we have defined five different configurations, denoted by the letters A,
B, C, D and E, corresponding to increasing S values (as listed in Table 4.3).

The first simulation scenario has been defined to test the response of the ADGT
in a situation of sudden high traffic density. We have modeled what typically happens
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A B C D E

S 0 1.5 2.5 5 10

Table 4.3: Configuration parameters of the simulations.

in our university campus at the end of the day, i.e., a significant number of vehicles
leave the parking areas and move towards the points of interest.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  2  4  6  8  10  12  14

V
E

H
IC

L
E

S

TIME [min]

Vehicles’ life expectancy: 1.087 min
A
B
C
D
E

(a) Number of Vehicles

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  2  4  6  8  10  12  14

D
R

 [
k
b

it
/s

/p
e

e
r]

TIME [min]

A
B
C
D
E

(b) Data Rate

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

C
P

TIME [min]

A
B
C
D
E

(c) Coverage Percentage

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  2  4  6  8  10  12  14

D
F

E
 [

k
m

]

TIME [min]

A
B
C
D
E

(d) Distance From Events

Figure 4.10: Simulation results of the scenario inside the university campus.

Simulation results presented in Figure 4.10 show that a too large value of S badly
affects the qualitative performance (CP and DFE values) of the ADGT, because of
the very small area of the university campus. The best S value, among those con-
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sidered, is the one related to configuration D. Figure 4.10a shows the trend of the
number of vehicles during the simulation. The warning message has been generated
from a single randomly chosen peer, after 6 minutes from the beginning of the simu-
lation. Figure 4.10b shows the DR of each peer. As the reader can see, the DR grows
very slowly with the progress of the simulation, which is a very good result since it
confirms the possibility to employ the ADGT on real mobile devices. Figure 4.10c
shows the CP of the generated warning message, which grows from a very low value
(when the warning message has been generated) to a high value, after a few minutes.
Finally, one of the most interesting results is shown in Figure 4.10d, where the av-
erage of the DFE starts from a value of 0.2 km and rapidly arrives at the value of
0.4 km, which is the distance within the warning message has validity. In summary,
the most noticeable result of this simulation is that a good quality of service can be
guaranteed, despite the impossibility to set up a stable network topology, because of
the very short routes the vehicles cover in the university campus.

On the other hand, the second scenario allows to evaluate the behavior of the
ADGT in a situation of normal traffic condition. In particular, vehicles move on the
roads of Parma, covering a period of five hours. During the first simulated hour, a
vehicle is generated every 0.9 seconds. Every vehicle is removed, once it reaches its
destination, and substituted by a new vehicle, placed at a randomly chosen location.
In this way, after the first hour of simulation, there are constantly 4000 traveling ve-
hicles. In addition, starting from the first hour and with a period of 30 minutes, a
randomly chosen vehicle generates a warning message associated to the vehicle’s ge-
ographical location, with a validity distance equals to 1.5 km. Figure 4.11 illustrates
the simulation results of this second scenario. In particular, in Figure 4.11a the reader
can see the number of vehicles. Figure 4.11b shows that also in this simulation the DR
is very low. Compared with the evaluation of the DGT in a similar urban scenario,
the data rate is reduced by one order of magnitude [13]. This remarkable result is
mainly due to the recursive routing algorithm used by the ADGT. Figure 4.11c shows
that the ADGT is highly responsive, considering that, if the generation of a new event
implies a natural decrease of the CP value, this is quickly followed by a fast growth.
In this case it is possible to observe another important result: the gap between the CP
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Figure 4.11: Simulation results of the scenario inside the city of Parma.

values of simulation A (where S = 0) and the others. This demonstrates that an adap-
tive overlay, i.e., with S > 0, is much more efficient than a static overlay. Also the
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Figure 4.12: Simulation results of the scenario along the highways.

DFE trend in Figure 4.11d, confirms this feature, since, after each warning message
generation, it remains almost constant. Figures 4.11e and 4.11f show more clearly
that the performance quality increases from configuration A to configuration D. In
particular, with respect to configuration A, configuration D provides a CP increment
of about 27 percentage points. There is no clear advantage in using configuration E
instead of D.

Finally, the last simulated scenario allows to evaluate the ADGT in a highly struc-
tured environment, where the direction of the peers does not change frequently. In
particular, we have considered the highway segments that connect three cities in
the Emilia-Romagna region, namely Piacenza, Parma and Reggio nell’Emilia. The
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simulation spans 12 hours and adopts an arrival period of the vehicles at the toll
booths equals to 0.74 seconds. When a vehicle is generated, it travels towards an-
other randomly chosen toll booth. Once the destination has been reached, the vehicle
is removed from the simulation and not replaced. Furthermore, every hour a random
vehicle generates a warning message with a range of validity equals to 5 km.

The results of this simulation are shown in Figure 4.12. In Figure 4.12a, the reader
can see that the simulation ends before a constant number of vehicles is reached, due
to the (realistic) mobility model parameters we have used. The Data Rate is presented
in Figure 4.12b. Again, it is very low, compared with the current traffic data rates
available to mobile devices. Finally, Figure 4.12c and Figure 4.12d show that, also in
this scenario, the ADGT demonstrates a very good efficiency in the transmission of
information.
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Evaluation through Field Testing

In this chapter, a concrete LBS example based on Adgt.js is presented, in order to
illustrate how straightforward and powerful such a framework is. Furthermore, by
means of this, we conducted field testing in real environment with the aim of obtain-
ing a performance evaluation of the framework. At the end of the chapter, results of
the test are reported and compared to those obtained in simulations.

5.1 Implementing LBSs with Adgt.js

Designing and implementing LBSs with Adgt.js is straightforward, being not too dif-
ferent from realizing a modern web page. Moreover, being Adgt.js an implementation
of a peer-to-peer protocol, it is practically affordable by whoever, as it may run over
any type of device, given it is not particularly demanding in terms of computing and
memory resources.

In order to use the Adgt.js framework, it is sufficient to include the JavaScript file
in the HTML page using the src attribute in the <script> tag. Once the Adgt.js is
included, it is already possible to create a new ADGT peer, as shown in Listing 5.1.

1 var peer = new Peer ( op t ions ) ;

2 peer . connect ( ) ;

Listing 5.1: Creating a new ADGT peer.
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Only two statements are required for adding a new peer to the overlay: the first
one actually creates an instance of the Peer class, while the second one starts the
connection to the ADGT overlay network. During the creation of the peer, it is possi-
ble to specify some options, such as the address of the bootstrapping node, the STUN
and TURN servers, as well as some parameters of the ADGT protocol.

Adgt.js has been developed with an event-driven approach, thus allowing the def-
inition of functions that are executed upon the occurrence of certain events, such as
the reception of a message from another peer, or a change in the neighborhood.

In Listing 5.2, it is reported how to set listener functions for two kinds of events:
neighbors and data. The first event occurs when the neighborhood of the peer
changes, while the second one fires when the peer receives any type of data from near
peers. The callback functions allow us to manage the set of neighbor descriptors
and received data, respectively.

1 peer . on ( ’ neighbors ’ , f u n c t i o n ( d e s c r i p t o r s ) {

2 . . .

3 } ) ;

4 peer . on ( ’ data ’ , f u n c t i o n ( desc r i p to r , data ) {

5 . . .

6 } ) ;

Listing 5.2: Setting listeners for peer events.

To geocast data to the geographic neighbors of the peer, it is sufficient to invoke
the geocast method, whereas to directly transmit data to a specific neighbor, one
can use the send method, as in Listing 5.3.

1 peer . send ( data , d e s c r i p t o r ) ;

2 . . .

3 peer . geocast ( data ) ;

Listing 5.3: Sending data to neighbors.

In case the geographic location of the peer changes, it is sufficient to use the
move method to automatically trigger the position update process, that involves the
transmission of a message to the neighbors and the removal of those peers no longer
to be included in the GeoBucket (Listing 5.4).
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1 peer . move( p o s i t i o n ) ;

Listing 5.4: Updating peer’s position.

We have implemented and published online1 a LBS that illustrates the ease of use
of Adgt.js and represents a building block for more sophisticated applications. The
LBS is a peer-to-peer instant messaging application that allows a peer to exchange
georeferenced messages among its neighbors. In particular, the application shows two
tabs that allow to switch from two different views:

1. a map that displays the peers connected to the network, i.e., visitors of the web
page, that are at a maximum distance of 40 km;

2. a chat with the georeferenced messages received from neighbors.

Figure 5.1: The LBS developed with Adgt.js, running on Firefox for Android.

1LBS https://brambilla.github.io/chat/index.html

https://brambilla.github.io/chat/index.html
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In the LBS, neighbor discovery and connection establishment is entrusted to
Adgt.js. Regarding the map, we have adopted Leaflet2, a widely used open source
JavaScript library used to build web mapping applications.

Figure 5.1 is a screenshot taken from an Android smartphone running the LBS
on Firefox for mobile, where a red marker represents the geographical position of
the peer in execution on the Android smartphone, and blue markers stand for geo-
graphical neighbors. Moreover, there are some envelope-shape icons that indicated
georeferenced messaged created by the peers of the ADGT overlay network. To read
the messages, the user can tap these icons or, alternatively, can switch to the tab spe-
cific for the chat.

This LBS only requires to update the geographic location of the peer and change
the marker on the map with the position of the browser obtained with the Geolocation
API, as shown in Listing 5.5.

1 nav iga to r . geo loca t ion . watchPos i t ion ( f u n c t i o n ( p o s i t i o n ) {

2 peer . move( p o s i t i o n ) ;

3 var la tLng = L . la tLng ( p o s i t i o n . coords . l a t i t u d e , p o s i t i o n . coords . l ong i t ude ) ;

4 marker . setLatLng ( la tLng ) ;

5 i f ( p o s i t i o n . coords . speed > 0) {

6 marker . se t Icon ( icon_heading ) ;

7 }

8 marker . se tRota t ionAngle ( p o s i t i o n . coords . heading ) ;

9 map. panTo ( la tLng ) ;

10 } ) ;

Listing 5.5: Managing current position of the device.

In addition, when a change in the neighborhood happens, all the markers on the
map representing neighbors are updated as in Listing 5.6.

2Leaflet http://leafletjs.com

http://leafletjs.com
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1 peer . on ( " neighbors " , f u n c t i o n ( d e s c r i p t o r s ) {

2 markers . c learLayers ( ) ;

3 for ( var index i n d e s c r i p t o r s ) {

4 var p o s i t i o n = d e s c r i p t o r s [ index ] . p o s i t i o n ;

5 var la tLng = L . la tLng ( p o s i t i o n . coords . l a t i t u d e , p o s i t i o n . coords . l ong i t ude ) ;

6 var ro ta t i onAng le = p o s i t i o n . coords . heading ;

7 i f ( p o s i t i o n . coords . speed > 0) {

8 markers . addLayer ( L . marker ( la tLng , { ro ta t i onAng le : ro ta t ionAng le , icon : icon_heading } ) ) ;

9 } else {

10 markers . addLayer ( L . marker ( la tLng , { ro ta t i onAng le : ro ta t ionAng le , icon : icon } ) ) ;

11 }

12 }

13 } ) ;

Listing 5.6: Managing changes of neighborhood.

5.2 Field Experiments

Starting from results obtained through simulations, we have arranged a series of field
tests on the Adgt.js implementation, thanks to the kind cooperation of two groups of
students that have evaluated the implemented LBS described above, using their own
smartphones connected to Internet through cellular connectivity. In particular, these
students have used the LBS to exchange messages while they were moving around
inside our university campus. Due to the way in which such students, i.e. the peers,
moved and to the largeness of the area available to moving peers, this experiment
loosely recalls the second simulated scenario, i.e., the one where peers were vehicles
moving through ordinary traffic in Parma.

The first group consisted of about 15 students. Figure 5.2 shows the evolution
of connected peers, while Figure 5.3 shows the number of georeferenced messages
exchanged by them. As shown in Figure 5.2, after about 10 minutes from the start
of the evaluation, the majority of the users are connected and, from that moment, the
number of georeferenced messages rises steeply (Figure 5.3).

To effectively evaluate the performances of the Adgt.js, comparing it with the
ADGT overlay scheme tested in simulations, we decided to extract the same infor-
mation of the simulations and, in particular, we have obtained the same indicators:
CP and DFE. In order to do this, we have added a tracking mechanism to the LBS
so that, using the Websocket protocol, communicates to a server all the significant
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exchanged by peers (first experiment).

events, i.e. messages received, neighbors known, connection and disconnection from
the network, and so on. In this way, once the experimentation was completed, we
have analyzed the information acquired from the server and calculated the CP and
DFE indicators.

In particular, Figure 5.4 shows the CP of messages transmitted by users to their
geographical neighbors during the experimentation. As illustrated in Figure 5.4, the
evolution of CP in the experiment with the Adgt.js implementation is not particularly
different from that in the simulations, despite the behavior of peers in the former is
not as well structured as in the latter, since in simulations the peers join regularly to
the network and practically without haphazardness. Moreover, in the experimentation
with Adgt.js, where real users are involved, the exchange of messages starts even if
the network is not completely and fully connected differently from the simulations
and this entails a greater difficulty in spreading messages. Furthermore, it is important
to take into account the fact that in the simulations there are not potential connectiv-
ity issues nor heterogeneity in the adopted mobile telecommunications technology,
therefore messages are always transmitted in the same way. Instead, the field testing
has been carried out with the personal smartphones of students and, consequently,
with different mobile network operators, operating systems, hardware features and
ultimately different capabilities that affect the entire peer-to-peer network. Neverthe-
less, Figure 5.4 shows that the value of CP remains high enough to ensure proper
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operation of the ADGT overlay network.

Figure 5.5 depicts the trend of DFE of messages exchanged by users of the LBS
implemented with the Adgt.js framework. Also in this case results are quite satis-
fying since, despite the area of interest is larger than that of simulations having the
messages a validity distance equals 4 km, the minimum value of DFE is high enough
to allow the peers to receive in advance the messages.

Results presented in Figure 5.4 and Figure 5.5 show that the behavior of Adgt.js
is consistent with what we obtained with simulations. Therefore, field experiments
and simulations validate reciprocally.
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Figure 5.4: The Coverage Percentage
of messages exchanged by peers (first
experiment).
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Figure 5.5: The Distance from Events
of messages exchanged by peers (first
experiment).

Later, we organized another test session involving a larger group of students
(about 50). In this case, owing to the number of peers with respect to the size of
the area in which they moved, and due to the sudden boost of peers connected to the
peer-to-peer network, this experiment somehow recalls the first simulated scenario,
the one in which vehicles move during rush hour.

As a matter of fact, about a 22% of the students was connected for less than 1
minute, while another 26% was connected for more than 1 minute and less than 2
minutes. Moreover, about a 38% of the students was connected to the ADGT over-
lay network for more than 2 minutes and less than 5 minutes, while the remaining
students were connected for more than 5 minutes.
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With these test conditions, results are highly positive, as illustrated in Figures 5.6,
5.7, 5.8 and 5.9.
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Figure 5.6: The number of peers con-
nected to the LBS (second experi-
ment).
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Figure 5.7: The number of messages
exchanged by peers (second experi-
ment).
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ond experiment).
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Chapter 6

Blockchain for Proof-of-Location

In recent years, an increasing number of location-based services have been released,
mostly because of the rapid expansion of the mobile device market. LBSs take advan-
tage of geographic location to provide users with accurate and targeted information
for locating friends on a map, discovering nearby social events, crowdsensing appli-
cations such as generating alerts about traffic jams along a route, and more.

To ensure that such services work properly, it is necessary that geographic lo-
cations claimed by users are factual. For example, LBSs with location-based access
control that allow users to obtain a discount coupon, require that users cannot cheat
on their position, to avoid delivering coupons to those who really did not deserve
them. Similarly, social networks that enable users to discover where their friends are,
work correctly only if geographic locations are certified.

In this chapter, it is presented a novel approach for guaranteeing location trust-
worthiness and preserving user privacy, at the same time. In particular, we have re-
alized a completely decentralized mechanism for the validation of the geographical
position, suitable for location-based peer-to-peer overlay schemes, such as the ADGT
[54].
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6.1 Related Work

The term proof-of-location refers to a method by which a system can confirm the
geographic locations of users, i.e., a digital certificate that attests someone’s presence
at a certain geographic location, at some point in time, whereby LBSs can validate
user locations. In literature, different approaches to this topic have been investigated
and proposed. Lenders et al. [55] presented a trusted computing module that ensures
GPS data generated and transmitted by mobile devices. This solution is not accept-
able inasmuch the trusted computer module would be expensive and difficult to adopt.
Saroiu and Wolman [56] proposed a solution where users prove their geographic lo-
cations through a Wi-Fi infrastructure. Not even this approach is affordable, as it
relies on a complex PKI infrastructure that needs to be deployed and maintained.
SMILE [57] utilizes wireless techniques to prove if a physical encounter occurred.
However, this service does not reveal the actual location information to the service
provider thus can only provide location proofs between two users who have actually
encountered. Another solution introduced by Zhu and Cao [58] envisages a network
infrastructure that provides proof-of-location of mobile devices equipped with Blue-
tooth. Although this solution appears effective and robust, its centralized architecture
eases tracking of pseudonym-identified users by malicious administrators, whereas it
might hinder the deployment of user-created location-based services.

Starting from the ideas of Zhu and Cao, we have designed a completely dis-
tributed protocol that provides proof-of-location, while preserving privacy of users.
Indeed, the decentralized nature of peer-to-peer systems guarantees higher privacy
levels, as it removes the central authority knowing both the geographic location of
users and the information they exchange. To endow location-based peer-to-peer over-
lay schemes with proof-of-location, while preserving the decentralized approach, we
based our protocol on the blockchain, which is mostly known for being Bitcoin’s core
technology [59].

In the following, peer-to-peer network, overlay network, peer-to-peer overlay and
network are equivalent expressions we use with reference to the same concept.
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Figure 6.1: Proofs-of-location recorded in blocks of a blockchain. Every block con-
tains a hash of the previous block.

6.2 Blockchain Approach for Proof-of-Location

The blockchain technology is a novel peer-to-peer approach, which allows to main-
tain a continuously-growing list of data records, linked in a way that makes them
immutable. In general, a block is a set of one or more data records, prefaced by a
block header and protected by a proof of some type. The initial and most widely
known application of this technology is Bitcoin’s public transaction ledger, a digital
asset and a payment system invented by Satoshi Nakamoto [59].

The main feature that differentiates the blockchain from all other distributed
databases is its completely decentralized nature, which escapes the presence of a
trusted central authority. Indeed, blockchain maintenance is performed by a network
of communicating nodes, which store their own copy of the blockchain, validate
transactions, add them to their copy of the blockchain, and then broadcast block addi-
tions to other nodes. All these operations are performed in such a way that consensus
emerges among network nodes, about the information stored in the blockchain.

A blockchain database consists of two kinds of records: transactions and blocks.
Transactions are authenticated by mass collaboration powered by collective self-
interests. The result is a robust workflow where participants’ uncertainty regarding
data security is marginal. Blocks hold batches of valid transactions that are hashed
and encoded into a Merkle tree. Each block includes the hash of the prior block in the
blockchain, linking the two. The linked blocks form a chain. This iterative process
confirms the integrity of the previous block, all the way back to the original genesis
block.
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We have adopted the blockchain technology to endow networked nodes with the
capability to verify and store geographic locations, not requiring a centralized super-
node that oversees sensitive data of other nodes. In our approach, recent valid proofs-
of-location are recorded into blocks, which are then added to the end of the chain
and, once confirmed by consensus, they cannot be changed, as shown in Figure 6.1.

In particular, each peer i of the network is described by a unique id K pu
i , which is

also its public key. Moreover, every peer i is able to digitally sign messages with the
private key K pr

i associated with its id.

6.2.1 Blockchain Construction

Similarly to the solution proposed by Zhu and Cao [58], peers can communicate with
near nodes through any short-range communication technology, such as Bluetooth,
Bluetooth SMART or ZigBee, and they periodically use these interfaces to broadcast
proof-of-location requests and responses to their neighbors.

Supposing next block to be confirmed is Blockt , a proof-of-location request from
peer i to peer j contains the identifier of peer i (i.e., K pu

i ), the geographic location of
peer i, and a hash of the preceding block in the blockchain h(Blockt−1). The request
is signed with the requester’s private key, so that anyone can verify that it has not
been tampered with, as depicted in Figure 6.2.

Reqi→ j :


K pu

i

〈latitude, longitude〉i
h(Blockt−1)

timestamp


K pr

i

Figure 6.2: A proof-of-location request produced and signed by the peer i for the peer
j.

The peer that receives the proof-of-location request (i.e., peer j) verifies its valid-
ity, according to the following rules:
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1. the request has to come from a peer that, beyond being in touch through the
short-range communication technology, is a known contact in the location-
based peer-to-peer overlay scheme;

2. the request is digitally signed by the peer that produced it;

3. the request contains an admissible geographic location, i.e., not further than
the adopted maximum distance reachable with the short-range communication
technology;

4. the request refers to the end block of the blockchain.

Once all checks have been fulfilled, a proof-of-location response is produced.
The responding peer wraps the received request in a new message, together with its
geographic location and identifier (i.e., its public key K pu

j ). The proof-of-location
response is also signed with the private key of the responding peer, as illustrated in
Figure 6.3.

Res j→i :


Reqi→ j

K pu
j

〈latitude, longitude〉 j

timestamp


K pr

j

Figure 6.3: A proof-of-location response produced and signed by peer j for peer i.

The response is verified in a similar way to the request:

1. the response comes from one of the peers to whom the request was sent;

2. the response is digitally signed by the peer that produced it;

3. the response contains an admissible geographic location, i.e., not further than
the maximum distance that is reachable with the adopted short-range commu-
nication technology.
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In case the response is correctly verified, it corresponds to a proof-of-location,
attesting that two peers are geographically close to each other and specifying their
geographic locations. Proofs-of-location are then broadcast to the network, which
records them in the public record of all proofs-of-location, namely the blockchain,
after validating them. When a peer receives proofs-of-location related to peers that
should be located nearby, it checks for their presence in the list of contacts pro-
vided by the peer-to-peer overlay. It is expected that geographic locations specified in
proofs-of-location are reasonably close to each other, within the limits of the adopted
short-range communication technology. If these constraints are not fulfilled, proofs-
of-location are discarded and not disseminated within the network.

Every peer in the network puts all known valid unacknowledged proofs-of-location
into a block, together with a reference to the previous valid block known to that peer.
In addition to proofs-of-location and the reference to its predecessor, the block con-
tains the identifier of the peer that generated it. Moreover, the block is signed with
the private key of the peer that generated it, as shown in Figure 6.4.

Blockt :



Res j→i

Res j→k
...

Resk→i

K pu
i

h(Blockt−1)


K pr

i

Figure 6.4: t-th block, produced and signed by the peer i.

Afterwards, the newly created block is broadcast to the peers of the network,
which decide whether to add the block to the end of the blockchain or not. If the
majority of peers adds the block to the blockchain then consensus is achieved, there-
fore proofs-of-location are made persistent. Otherwise, the block is discarded and not
attached to the blockchain.
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Whereupon, it is verified that the hash of the referenced block matches the end
block in the chain, otherwise a fork in the blockchain occurs.

Which one branch will become part of the main blockchain depends on the dis-
tributed consensus algorithm explained below. Afterwards, the peer makes sure that
proofs-of-location specified in the block are not already present in previous blocks of
the blockchain. In case a proof-of-location concerns the geographic location of the
peer itself, it is checked that signatory peers of the proof-of-location are known (i.e.,
they belong to the contact list provided by the peer-to-peer overlay). If these condi-
tions are not respected, the block is discarded, instead of being propagated into the
network.

6.2.2 Distributed Consensus

Unlike Bitcoin, where distributed consensus is achieved by means of a proof-of-work
technique, in our approach, a proof-of-stake mechanism is adopted, whereby next
valid block in the blockchain is the one produced (mined) by the peer that owns the
majority of proofs-of-location in the latest T blocks of the blockchain. In Bitcoin,
peers are encouraged by the reward they earn to repeatedly run hashing algorithms
to validate transactions. Conversely, our protocol does not require such an extremely
time-consuming work, thus there is no reward for mined blocks, albeit it can be pro-
vided at the application layer. Therefore, in case a peer receives more than one valid
block from its neighbors, it will add to the end of its blockchain the one produced
by the peer that has received the largest number of proofs-of-location, in the latest T
blocks. Moreover, to prevent the monopoly problem, i.e., a peer that keeps out proofs-
of-location that concern other peers from the block it produces with the purpose to
remain the peer that owns the majority of proofs-of-location and, therefore, that takes
control of the blockchain, the protocol prevents that the same peer generates more
than one block in the latest T blocks of the chain. This way of defining the next valid
block in the blockchain is inspired by Peercoin’s proof-of-stake system [60] that is
based on the concept of coin age, a number derived from the product of the number
of coins times the number of days the coins have been held.

Remarkably, as distributed consensus is obtained according to information con-
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Figure 6.5: Valid proofs-of-location are persisted in the main blockchain (white
blocks). Proofs-of-location in the latest 2T blocks are no longer significant. Grey
blocks compose a fork competing to become the main blockchain. Dashed blocks are
part of a past fork that has become invalid and not used for anything.

tained in the latest T blocks of the chain (2T to handle forks of the blockchain), it is
not necessary that every peer of the network handle all blocks of the blockchain. The
protocol works properly even if peers do not consider proofs-of-location contained
in the blocks that precede the latest 2T , but only the identifier of the peer that has
produced it and the reference to the previous block, as depicted in Figure 6.5.

The value of T depends on the application layer. When it is important to store
many past geographic locations, such as in applications for tracking and monitor
vehicle fleets, T has a higher value, compared to applications that localize nearby
friends. Forensic applications may be interested to store the whole blockchain, in
order to provide effective and trusted alibis for people under investigation. On the
other hand, the lower is the value of T , the smaller is also the space occupied in
memory. Therefore, the protocol is independent from the application layer and even
versatile for the realization of different LBS types.

6.3 Protocol Analysis

We have analyzed the behavior of the proposed protocol, in case it is exposed to at-
tacks that affect proof-of-location mechanisms, thus resulting to be particularly dan-
gerous for LBSs [61].

1. Cheating on own geographic location. A peer could attempt to counterfeit
its geographic location, specified in a proof-of-location request or response, in
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order to obtain a proof-of-location attesting that its geographic location is dif-
ferent from the actual one. Our protocol prevents this kind of attack, since each
peer that receives a proof location request or response, verifies that the spec-
ified geographic location is not further than the maximum distance reachable
with the adopted short-range communication technology.

2. Cheating on another peer’s geographic location. Another possible attack
could hail from a peer that produces false claims about other peers’ geographic
locations. The protocol precludes such an attack, thanks to the asymmetric
cryptography mechanism, whereby all the declarations concerning geographic
locations stated by peers are digitally signed with their private keys and easily
verifiable using their public keys that correspond to their identifiers.

3. Replaying proofs-of-location. Proofs-of-location could be rebroadcast in the
network by a malicious peer, with the purpose to forge its geographic location
or that of other peers. Since every peer of the network checks that the proof-
of-location is not already contained inside the blockchain before retransmitting
it, it is not possible to successfully complete this attack. Moreover, inasmuch
every proof-of-location contains a reference to a block of the blockchain, it is
immediately discarded in case the referenced block is older that the latest T
blocks of the blockchain.

4. Colluding with other peers. Another threat exists when two or more peers
collude with each other to generate counterfeit proofs-of-location. In literature,
this kind of attack is denoted as Sybil attack and it happens when a malicious
peer tries to prove itself in a geographic location that is not the actual one,
with the help of another peer. Indeed, two peers could agree upon producing
a proof-of-location attesting that their geographic locations are different from
real ones, and broadcast it in the network.

Since our protocol relies on a location-based peer-to-peer protocol where peers
expect to be directly connected, in the overlay network, with their geographic
neighbors, colluding peers can be easily identified by means of the short-
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range communication technology. Moreover, it is unlikely that the whole list
of neighbors provided by the peer-to-peer protocol is made of colluding peers.
For the sake of precision, there are four possible situations:

(a) Proof-of-location and location declared in the peer-to-peer overlay
are equal and both counterfeit. If a peer receives a proof-of-location
concerning two other peers that claim to be close to it, it verifies that at
least one of the two peers can be contacted with the short-range commu-
nication technology; if not, the proof-of-location is discarded.

(b) Proof-of-location and location declared in the peer-to-peer overlay
are different and both counterfeit. If a peer receives from another peer
a proof-of-location concerning the latter peer and related to a geographic
location that is different from the one provided by the peer-to-peer over-
lay, such a proof-of-location is immediately discarded.

(c) Proof-of-location is counterfeit; the location declared in the peer-to-
peer overlay is real. This situation is addressed in the same way of the
previous one.

(d) Proof-of-location is real; the location declared in the peer-to-peer
overlay is counterfeit. Also this case, which is probably the most in-
tuitive, is resolved like the second one.

Hence, collusion is hindered by information provided by peers belonging to
the location-based peer-to-peer overlay.

5. Determining real identity of peers. An attacker could attempt to determine
the real identity of peers through full observation of proofs-of-location in the
blockchain. Actually, in our protocol there is no limit on the number of iden-
tifiers: in the same way as Bitcoin protocol allows the use of more than one
receiving address, users of our protocol can freely decide to change their peer
identifiers. As proved by Zhu and Cao [58], if a peer has the possibility to
periodically change its identifier according to a Poisson distribution, it gains
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unobservability and an attacker cannot determine the real identity of the peer
by observing location proof records.

Thus, our protocol is shown to be robust against all major LBS-related attacks.

6.4 Protocol Evaluation

Thanks to the versatility of OSMobility, it has been possible to simulate the behavior
of peers of a network based on our blockchain-based protocol for proof-of-location,
and evaluate the algorithm that lead to the consensus among peers.

In particular, we have conducted different simulations with 400 peers within an
area comparable to the surface of our university campus. The simulated time interval
is one hour. During this period, peers generate and exchange proof-of-location every
15 minutes.

We have supposed that peers are connected using the ADGT protocol, where
GeoBuckets have a radius of 2 km (see Section 2.2 of Chapter 2) and the Coverage
Percentage is 75%, which is in line with all that described in Section 4.4 of Chapter
4. Moreover, the radius of the simulated short-range communication technology is
set to 150 m.

The simulations we have carried out differ in the value of two parameters: the per-
centage of peers that generate proofs-of-location (P1), and the percentage of cheater
peers (P2). To be more precise, the former is a parameter that specifies the number
of peers that generate and broadcast a proof-of-location with the information of their
geographical location and the location of another peer randomly chosen among peers
within the radius of the short-range communication; the latter represents the number
of peers of the network that cheat, i.e., do not communicate their real geographi-
cal location but a counterfeit one. To simulate the Sybil attack, we have ensured that
cheater peers always manage to collude with another peer, therefore they always gen-
erate a proof-of-location with a counterfeit geographical location. In Table 6.1, all the
combinations of the P1 and P2 values are illustrated.

In Figures 6.6 to 6.17 four measured quantities are reported for all the considered
configurations:
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A B C D
P1 (%) 2.5 2.5 2.5 2.5

P2 (%) 0 25 50 100

E F G H
P1 (%) 5 5 5 5

P2 (%) 0 25 50 100

I L M N
P1 (%) 10 10 10 10

P2 (%) 0 25 50 100

Table 6.1: Configuration parameters of the simulations.

1. True PoL, the number of real (true) proofs-of-location generated by peers;

2. False PoL, the number of counterfeit (false) proofs-of-location generated by
cheater peers;

3. Accepted True PoL, the number of real (true) proofs-of-location that, by con-
sensus, are mined in the blockchain;

4. Accepted False PoL, the number of counterfeit (false) proofs-of-location that,
by consensus, are mined in the blockchain.

In particular, plotted results come from 5 executions of each simulation, using differ-
ent random seeds. In this way, the confidence interval is satisfactory since for all these
quantities on average the standard deviation is not higher than 1 proof-of-location.

All plots clearly show that the algorithm of distributed consensus gives excellent
results with respect to real proofs-of-location, since almost all of them are accepted
by the peers, therefore mined in the blockchain. Indeed, the evolutions of True PoL
and Accepted True PoL are overlapping for the most part.

Regarding the counterfeit proofs-of-location, results are still good, inasmuch most
of them are discarded by peers. Moreover, as shown by the figures, the capability to
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Figure 6.6: Results in A configuration
(P1 = 2.5%,P2 = 0%).
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Figure 6.7: Results in B configuration
(P1 = 2.5%,P2 = 25%).
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Figure 6.8: Results in C configuration
(P1 = 2.5%,P2 = 50%).
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Figure 6.9: Results in D configuration
(P1 = 2.5%,P2 = 100%).

distinguish between false and true proofs-of-location is not affected by the number of
cheater peers: increasing the number of false proofs-of-location, it does not involve
an increase in the number of the accepted false proofs-of-location.

Furthermore, the algorithm that determined the distributed consensus works well
even if the percentage of generated proofs-of-location grows exponentially.

To better represent the good behavior of the algorithm, we have calculated the
average accuracy in each simulation. The accuracy has been calculated using the
formula

Accuracy =
∑True positive+∑True negative

Total population

where

∑True positive = Accepted True PoL

∑True negative = False PoL−Accepted False PoL
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Figure 6.10: Results in E configura-
tion (P1 = 5%,P2 = 0%).

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

N
u

m
b

e
r 

o
f 

P
ro

o
fs

-o
f-

lo
c
a

ti
o

n

TIME [min]

Accepted True PoL
Accepted False PoL

True PoL
False PoL

Figure 6.11: Results in F configura-
tion (P1 = 5%,P2 = 25%).
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Figure 6.12: Results in G configura-
tion (P1 = 5%,P2 = 50%).
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Figure 6.13: Results in H configura-
tion (P1 = 5%,P2 = 100%).

Total population = True PoL+False PoL

.

As shown in Figure 6.18, the increase of cheater peers minimally conditions the
value of accuracy, that remains always on high values. In particular, the histogram de-
picted in Figure 6.18 shows that the number of peers that generate proofs-of-location
barely affects the average accuracy; indeed, the tendency of the histogram is essen-
tially the same, in the three groups of simulations identified with the three different
values of parameter P1 (P1 = 2.5%, P1 = 5% and P1 = 10%).

These simulation results confirm plainly that the algorithm works correctly, es-
pecially considering that the scenarios taken into account are extremely pessimistic,
as it is unlikely that half of peers is cheater.

In order to try out the algorithm in even more critical conditions, we decided to
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Figure 6.14: Results in I configuration
(P1 = 10%,P2 = 0%).
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Figure 6.15: Results in L configura-
tion (P1 = 10%,P2 = 25%).
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Figure 6.16: Results in M configura-
tion (P1 = 10%,P2 = 50%).
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Figure 6.17: Results in N configura-
tion (P1 = 10%,P2 = 100%).

repeat all the previous simulations, in an geographical area comparable to the sur-
face of Parma and with a thousand peers. By doing so, the density of peers per unit
area changes from about 226 peers/km2 to 12 peers/km2, therefore the peer-to-peer
overlay has fewer interconnections among its peers.
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Figure 6.18: Mean accuracy in all simulations.

In Figures 6.19 to 6.30 are reported the four measured quantities for the simula-
tions with less density of peers, with all the same configurations as before.
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Figure 6.19: Results in A configura-
tion with low density of peers (P1 =

2.5%,P2 = 0%).
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Figure 6.20: Results in B configura-
tion with low density of peers (P1 =

2.5%,P2 = 25%).
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Figure 6.21: Results in C configura-
tion with low density of peers (P1 =

2.5%,P2 = 50%).
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Figure 6.22: Results in D configura-
tion with low density of peers (P1 =

2.5%,P2 = 100%).

Figures 6.19 to 6.30 show that the algorithm of distributed consensus continues
to give excellent results with respect to real proofs-of-location. As regards the coun-
terfeit proofs-of-location, the results are certainly worse than previous simulations,
but this depends exclusively on the fact that the peer density is very low. Indeed, in
these simulations peers are so scattered and distant that it is difficult to reject false
proofs-of-location. On the other hand, the greater is the density of peers, the higher
is the probability that a false proof-of-location is recognized as such by peers in the
immediate vicinity.
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Figure 6.23: Results in E configura-
tion with low density of peers (P1 =

5%,P2 = 0%).
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Figure 6.24: Results in F configura-
tion with low density of peers (P1 =

5%,P2 = 25%).
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Figure 6.25: Results in G configura-
tion with low density of peers (P1 =

5%,P2 = 50%).
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Figure 6.26: Results in H configura-
tion with low density of peers (P1 =

5%,P2 = 100%).

Figure 6.31 shows the average of accuracy of the algorithm in each simulation.
Although, as mentioned, the performance deteriorates, the behavior maintains the
same positive trend.
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Figure 6.27: Results in I configura-
tion with low density of peers (P1 =

10%,P2 = 0%).
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Figure 6.28: Results in L configura-
tion with low density of peers (P1 =

10%,P2 = 25%).
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Figure 6.29: Results in M configura-
tion with low density of peers (P1 =

10%,P2 = 50%).
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Figure 6.30: Results in N configura-
tion with low density of peers (P1 =

10%,P2 = 100%).

Finally, we repeated the first simulations with 400 peers, changing the stochastic
process that describes the model with which peers generate proofs-of-location. In
particular, we switched from a periodic process with a period of 15 minutes to a
Poisson process with an interrarrival (interoccurence times) of 15 minutes. In this
way, we obtained more realistic scenarios of simulations.
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Figure 6.31: Mean accuracy in all simulations with low density of peers.

In Figures 6.32 to 6.43 are reported the four measured quantities for these simu-
lations, with all the same configurations as before.
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Figure 6.32: Results in A config-
uration with a realistic generation
model of proofs-of-location (P1 =

2.5%,P2 = 0%).
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Figure 6.33: Results in B config-
uration with a realistic generation
model of proofs-of-location (P1 =

2.5%,P2 = 25%).

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50  60

N
u

m
b

e
r 

o
f 

P
ro

o
fs

-o
f-

lo
c
a

ti
o

n

TIME [min]

Accepted True PoL
Accepted False PoL

True PoL
False PoL

Figure 6.34: Results in C config-
uration with a realistic generation
model of proofs-of-location (P1 =

2.5%,P2 = 50%).
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Figure 6.35: Results in D config-
uration with a realistic generation
model of proofs-of-location (P1 =

2.5%,P2 = 100%).

Figure 6.44 shows that the average of accuracy of the algorithm in each simula-
tion with a realistic generation model of proofs-of-location maintains very positive
values.
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Figure 6.36: Results in E configura-
tion with a realistic generation model
of proofs-of-location (P1 = 5%,P2 =

0%).
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Figure 6.37: Results in F configura-
tion with a realistic generation model
of proofs-of-location (P1 = 5%,P2 =

25%).
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Figure 6.38: Results in G configura-
tion with a realistic generation model
of proofs-of-location (P1 = 5%,P2 =

50%).
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Figure 6.39: Results in H configura-
tion with a realistic generation model
of proofs-of-location (P1 = 5%,P2 =

100%).
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Figure 6.40: Results in I configuration
with a realistic generation model of
proofs-of-location (P1 = 10%,P2 =

0%).
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Figure 6.41: Results in L config-
uration with a realistic generation
model of proofs-of-location (P1 =

10%,P2 = 25%).
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Figure 6.42: Results in M config-
uration with a realistic generation
model of proofs-of-location (P1 =

10%,P2 = 50%).
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Figure 6.43: Results in N config-
uration with a realistic generation
model of proofs-of-location (P1 =

10%,P2 = 100%).
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Figure 6.44: Mean accuracy in all simulations with a realistic generation model of
proofs-of-location.



Chapter 7

Conclusions

In this Thesis, we have presented the Adaptive Distributed Geographic Table (ADGT)
a novel adaptive peer-to-peer overlay scheme that allows the realization of location-
based services for mobile peers, such as georeferenced information subscription and
retrieval, as well as location-specific message broadcasting.

To the best of our knowledge, the ADGT is the first peer-to-peer overlay scheme
that effectively takes into account the speed and direction of the peers to adapt its
topology. Moreover, with respect to the state of the art, the ADGT provides much
more location-based functionalities, such as a publish/subscribe mechanism through
which peers can be notified about any information they are interested in around any
geographical location, as well as geocasting functionalities.

Before the ADGT was introduced, peer-to-peer overlay schemes for location-
based services existed, but none of them really considered the mobility of peers to
enhance the overlay itself and to make more efficient the interconnections among
peers of the network. During this Ph.D. activity, starting from general principles of
one of the existing peer-to-peer protocols, we have defined a new mechanism for
peers discovery and an innovative network topology that is able to adapt to peers’
movements.

Furthermore, differently from other solutions that have been studied only in sim-
ulative environments, we have realized a truly usable implementations of the afore-
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mentioned peer-to-peer overlay scheme. Indeed, the Adgt.js is a web application
framework that enables the realization of completely decentralized LBSs, being a
cross-platform implementation of the ADGT georeferenced P2P overlay scheme.
Adgt.js has been accurately implemented adopting standard and open technologies,
it has been released online with a free and open source software license and can be
used as a web application framework without restrictions.

As part of the Ph.D. activity, the designed peer-to-peer overlay has been inten-
sively evaluated, both through simulations in various and different scenarios of mobil-
ity, and by means of field tests performed with the collaboration of several volunteers.

Regarding the simulations, it has been defined a cost-effective approach to software-
in-the-loop simulation of pervasive systems and applications. Starting from this sim-
ulation methodology, a Java-based simulation platform, which allows to simulate
interconnected devices easily, has been realized. The proposed platform provides
a general-purpose simulation engine, which includes specific packages to simulate
mobility, networking, and energy consumption models. It allows to define general-
purpose devices, which can be characterized by multiple network interfaces and pro-
tocols, as well as different network and energy models. Hence, with this solution, it
has been possible to deeply evaluate the behavior of the ADGT protocol in different
scenarios.

With respect to field testing, it has been developed a location-based service for
georeferenced instant messaging using the Adgt.js framework. In addition to experi-
ment the versatility of Adgt.js, it has allowed to extrapolate and measure the bahavior
of the ADGT peer-to-peer overlay scheme in a real environment.

Both these activities of evaluation have returned positive and comparable results,
confirming the fact that ADGT works correctly and that it can be really adopted to
realize peer-to-peer LBSs.

Finally, a novel approach for producing proofs-of-location, i.e., digital certifi-
cates that attest someone’s presence at a certain geographic location, at some point
in time whereby LBSs can validate user locations, has been presented. In particular,
the approach relies on the blockchain to design a completely decentralized peer-to-
peer architecture that guarantees location trustworthiness and preserves user privacy,
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at the same time. In fact, to ensure that LBSs work properly, it is necessary that ge-
ographic locations claimed by users are factual to prevent, for example, users from
accessing georeferenced information to which they are not allowed. With the objec-
tive of achieving a system that, at the same time, provides verification of geographic
location of its users and ensures a high level of privacy to them, it has been designed
a completely decentralized proof-of-location mechanism for location-based peer-to-
peer overlay schemes, such as the ADGT.

The consensus mechanism has been evaluated using the aforementioned simula-
tion methodology, obtaining very promising results.

7.1 Future Work

Several research opportunities emerge from the work presented in this Thesis. This
section illustrates the most promising directions.

The first direction concerns the extension of the ADGT peer-to-peer overlay
scheme, in order to obtain a network topology even more adaptive with respect to
peers’ mobility. For example, we could consider to modify the neighborhood on the
basis of the peer typology (a pedestrian, a vehicle, etc.) and on information related to
its itinerary (the destination, the points of interest, etc.).

The second direction regards the exploration of other modern ECMAScript tech-
nologies, such as Web Workers and Promises, or the new ORTC (Object Real-Time
Communications) W3C specification. Moreover, the performance of the implemented
framework, with respect to technological aspects such as battery drain of mobile de-
vices, also compared with previous results obtained in simulation could be investi-
gated.

Finally, the third direction has the purpose to strengthen and deepen the proof-
of-location algorithm based on blockchain technology. We plan to investigate other
approaches for block mining, also taking into account a mixed Proof-of-Work and
Proof-of-Stake solution. Furthermore, it would be interesting to integrate the proof-
of-location mechanism into the Adgt.js framework.
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