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ABSTRACT 

The research is part of a project to study the 𝐼𝐼 − 𝑉𝐼 semi-insulating materials and especially the 

binary compound CdTe and the ternary compound Cd1-xZnxTe(CZT). The great interest about these 

materials lies in their ability to solve high-energy photons from the spectroscopic point of view. With 

a very remarkable stopping power, due to the high atomic number of its components and a high signal 

to noise ratio, due to a resistivity of the order of 1011 Ω⋅ cm, the CZT ranks as one of the best radiation 

detectors at room temperature. Furthermore, the charge collection efficiency is closely related to the 

product between mobility µ and the lifetime τ of the carriers (electrons and holes) and it depends 

strongly on the spatial profile of the electric field.  

The non-uniformity of the electric field within the CZT is confirmed both by numerical simulations 

and by experimental evidence (Pockels effect). The spatial profile of the electric field, that governs 

the transport of the charge carriers, should be investigated. 

The technique used to obtain information about the transport and the electric field inside the material 

is a technique TOF (time of flight) called Laser Excited-Transient Current Technique: (LE-TCT). 

The transient measurements performed on full-area detectors have involved the study and the 

comparison of different samples. 

The analysis of current transients was made using a new model (2τ model) that allows to obtain both 

the transport parameters and the electric field profile within the material. 

Recently, complex geometries such as pixelated detectors and strip detectors have been developed 

with the intention to couple a good spectroscopic performance to a good spatial resolution. In this 

way, a single device can identify the type of X and γ rays source, either to its location. A complex 

geometry, however, entails complications from the point of view of the calculation of the current 

signal.  

A new model (1τ model), developed and proposed in this thesis, allows both to decouple the 

contribution of the weighting (geometrical field) from that due to the electric field (physical field), 

and to obtain the mobility and lifetime of the carriers. 

Finally, a new diffusion model suitable for the study of the thermal spread of the carriers, a 

phenomenon assumed to be negligible in the previous models, is presented. The model allows to 

obtain the diffusion coefficient, directly proportional to the mobility of carriers which then can be 

calculated in two independent ways starting from the current transients. 

 

 



INTRODUCTION 1.1 Radiation Matter Interactions 

1 

 

1 INTRODUCTION 

The first chapter introduces the main mechanisms through matter interacts with radiation (Paragraph 

1.1) and the phenomena that lead to the study of the transport in semiconductors (Paragraph 1.2). 

1.1  RADIATION MATTER INTERACTIONS 

Electromagnetic radiation such as X-rays and γ rays can exchange energy with matter through three 

main mechanisms (Fig 1.1) [1]: 

 Photoelectric effect 

 Compton scattering  

 Pair production  

 

 

 

 

 

 

 

 

 

 

 

PHOTOELECTRIC EFFECT 
In the photoelectric (photon-electron) interaction, a photon transfers all its energy to an electron. 

Photoelectric interactions usually occur with electrons that are firmly bound to the atom, that is, those 

with a relatively high binding energy. Photoelectric interactions are most probable when the electron 

binding energy is only slightly less than the energy of the photon. If the binding energy is higher than 

the energy of the photon, a photoelectric interaction cannot occur. The photoelectric effect dominates 

for high values of the atomic number 𝑍 and for low photon energies 𝐸𝑃𝐻 < 200 keV. 

Photoelectric 

effect is 

predominant 

Compton 

effect is 

predominant 

Pair  

production is 

predominant 

FIGURE 1.1 Main mechanisms of energy exchange between Radiation and Matter 
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In a metal, the conduction electrons are delocalized and they are bound to the metal through the 

metallic bond, an attractive Coulomb force from the metal positive ions: a photon with an energy 

equal or greater to the binding energy can rip away an electron from the metal. 

In a semiconductor instead the electrons of the outer shells are located on the top of the valence band. 

These electrons can still absorb energy by photoelectric effect and they can be promoted into the 

conduction band if the photon energy matches with the energy gap. In the same time, the place left 

by the electron allows the valence electron to move if an electric field is applied. The place left free 

by the electron is described as a positive charge (hole) with its effective mass that depends on the 

interaction between valence electrons and the lattice. Photoelectric effect in a semiconductor can be 

interpreted as a pair production: a free negative charge in the conduction band and a free positive 

charge in the valence band. 

 

 

 

 

 

 

COMPTON SCATTERING 
In the Compton interaction only a portion of the energy of the incident photon is absorbed and a 

photon with lower energy is produced. This latter leaves the site of the interaction in a direction 

different from that of the incident photon. Because of the change in photon direction, this type of 

interaction is classified as a scattering process. In effect, a portion of the incident radiation is scattered 

by the material. This is significant in some situations because inside the material the primary 𝑋-ray 

beam becomes a secondary radiation source. Compton effect predominates for small values of the 

atomic number 𝑍 and for photon energy in the range 200𝑘𝑒𝑉 < 𝐸𝑃𝐻 < 1 𝑀𝑒𝑉. 

 

 

 

 

FIGURE 1.2 Photo-electric 

effect in semiconductors 

FIGURE 1.3 Compton scattering 
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PAIR PRODUCTION 
Pair production is a photon-matter interaction that can occur only with photons with energies higher 

than 𝐸𝑃𝑃 = 1.02 𝑀𝑒𝑉. In a pair-production interaction, the photon interacts with the nucleus in such 

a manner that its energy is converted into matter. The interaction produces a pair of particles, an 

electron and a positron. These two particles have the same mass, equivalent to a rest mass energy of 

0.51 𝑀𝑒𝑉. The phenomenon dominates for high values of the atomic number 𝑍. 

 

 

 

 

 

 

 

 

The photons’ flux 𝛷(𝑥) to a depth 𝑥 inside the material is equal to: 

𝛷(𝑥) = 𝛷(0) 𝑒−𝑢𝑥                                                                                                 (1.1) 

Where 𝑢(𝜖) = 𝜇𝑓 + 𝜇𝑐 + 𝜇𝑝𝑝 is the linear attenuation coefficient and it results from the sum of the 

contributions of the three above-mentioned effects. 

The material used in our research, 𝐶𝑑𝑍𝑛𝑇𝑒 or 𝐶𝑑𝑇𝑒, has average atomic number close to 50. 

Furthermore the incident radiation used in our experiments has an energy of the order of 1 𝑒𝑉 so the 

dominant phenomenon is the photoelectric effect. Moreover, in our case, each absorbed photon 

produces one electron-hole pair. 

  

FIGURE 1.4 Production of an Electron-Positron pair  
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1.2  CHARGE TRANSPORT IN SEMICONDUCTORS 

The first Ohm law describes the passage of the current density 𝐽 ⃗⃗  in a material when it is crossed by 

the electric field 𝐸 ⃗⃗  ⃗: 

𝐽 ⃗⃗ = 𝐽𝑒⃗⃗⃗  + 𝐽ℎ⃗⃗  ⃗ = (𝜎𝑒 + 𝜎ℎ)�⃗� = 𝜎�⃗� =
1

𝜌
�⃗�                                                               (1.2) 

where: 

 𝜎 is the total conductivity, which is generally a tensor, but in condition of homogeneity and 

isotropy of the material it becomes a scalar term; 

 𝜌 is the resistivity of the material; 

 𝜎𝑒 𝑒 𝜎ℎ are respectively the conductivity of electrons and holes, defined in the following way; 

{
 𝜎𝑒 = 𝜇𝑒  𝑛 𝑒
 𝜎ℎ = 𝜇ℎ 𝑝 𝑒

                                                                                                             (1.3) 

 

where: 

 𝑒 = 1.6 10−19 C 

 𝜇𝑒 𝑒 𝜇ℎ are respectively the mobility of electrons and holes; 

The mobility is of great interest because it’s directly proportional to the velocity of the carriers: 

𝑣 ⃗⃗⃗  = 𝜇 𝐸 ⃗⃗  ⃗                                                                                                                     (1.4) 

 

 𝑛, 𝑝 are the electrons density in the conduction band and the hole density in the valence band; 

In a semiconductor at the thermal equilibrium we can get the following relationships: 

 

{
 
 

 
 𝑛(𝑇) = ∫ 𝐷𝑐(𝐸) 𝐹(𝐸, 𝑇) 𝑑𝐸 =

+∞

𝐸𝑐

𝑁𝑐  𝑒
− 
( 𝐸𝑐 − 𝐸𝐹 )

𝑘𝑇

𝑝(𝑇) = ∫ 𝐷𝑣(𝐸) [1 − 𝐹(𝐸, 𝑇)] 𝑑𝐸
𝐸𝑣

−∞

= 𝑁𝑣 𝑒
− 
( 𝐸𝐹 − 𝐸𝑣 )

𝑘𝑇

                                   (1.5) 
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where: 

 𝐷𝑐(𝐸) and 𝐷𝑣(𝐸) are the density of states in the conduction band CB and in the valence band 

VB as a function of the energy; 

 𝐹(𝐸, 𝑇) is the Fermi function describing the occupancy probability of the energy level 𝐸 and at 

the temperature 𝑇; 

 𝑁𝑐  , 𝑁𝑣 are the effective density of states of CB and VB; 

 𝑘 is the Boltzmann constant. (at 𝑇 = 300 °𝐾 the thermal energy is about 26 𝑚𝑉; 

 𝐸𝑣 , 𝐸𝐹 , 𝐸𝑐  are respectively the VB maximum, the Fermi energy and the minimum of the CB 

 

INTRINSIC SEMICONDUCTOR AT THE THERMAL EQUILIBRIUM 
In an intrinsic semiconductor [2] the electron density in the CB and the density of holes in the VB 

must be equal: 

𝑛(𝑇) = 𝑝(𝑇) = √𝑁𝑐  𝑁𝑣 𝑒
− 
( 𝐸𝑐 − 𝐸𝑣 )

𝑘𝑇                                                                      (1.6) 

So the Fermi energy can be obtained using the (1.5): 

𝐸𝐹 𝑖𝑛𝑡𝑟 = 
𝐸𝑐 + 𝐸𝑣 

2
−
𝑘𝑇

2
 𝑙𝑛
𝑁𝐶
𝑁𝑉
= 
𝐸𝑐 + 𝐸𝑣 

2
−
𝑘𝑇

2
ln ( 

𝑚𝑒
∗

𝑚ℎ
∗  )

3
2

                    (1.7) 

Where 𝑚𝑒
∗  and 𝑚ℎ

∗  are the effective masses of electrons and holes. 

FIGURE 1.5. a) Bands’ Diagram  b) Density of states  c) Fermi function   d) Carriers’ density 
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EXTRINSIC SEMICONDUCTOR AT THE THERMAL EQUILIBRIUM 
The electrical properties of an intrinsic 

semiconductor crystal [2] can be 

modified inserting small controlled 

quantities of atoms of other species, thus 

obtaining an extrinsic (or doped) 

semiconductor. These atoms are replaced 

by the same number of atoms into the 

crystal without altering, ideally, the 

crystalline structure, but modifying the 

band structure. The purpose of the 

doping is to produce an excess of electrons (or holes) in the material. To understand how to carry out 

the doping of the n-type we consider the case of silicon (Si). The atoms of Si have four valence 

electrons, each of which is covalently linked to one of four adjacent Si atoms.  

If an atom with five valence electrons, such as the phosphorous, is incorporated in the crystalline 

lattice in place of an atom of Si, then that atom will have four covalent bonds and an electron non-

covalently linked bonds. This extra electron is only weakly bound to the atom and can easily be 

brought into the conduction band. In this case the electrons are the majority charge carriers and holes 

are the minority charge carriers. 

The atoms with five valence electrons have then an electron to “donate”, these atoms are indicated 

with the name of atoms “donor”. In the same way atoms of group III, such as boron, yield holes to 

the valence band and are called “acceptor”. 

In a semiconductor extrinsic relations (1.6, 1.7) are obviously not valid anymore: 

𝑛 + 𝑁𝐴 = 𝑝 + 𝑁𝐷                                                                                                    (1.8) 

where 𝑁𝐴 and 𝑁𝐷 are the concentrations of ionized donors and acceptors. The Fermi energy is affected 

by these concentrations: if we add donors or acceptors to the semiconductor, the crystal will become 

extrinsic doped 𝑛 or 𝑝, respectively, and the Fermi level will approach the CB or VB (figure 1.7) 

FIGURE 1.6 Example of n, p doped silicon 
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THE RESISTIVITY IN CZT 
A good radiation detector must have the minimum concentration of carriers thermally generated 

because these carriers disturb the collection of photo-generated carriers. Anyway when the CZT is 

not illuminated a flow of current through the material is observed. This noise contribution is called 

the dark current and it is due to the presence of unintentional free carriers (into extrinsic materials), 

generated by thermal energy or by cosmic rays.  

However, to have a very low dark current: 

 the energy gap must be high (in the CZT is about 1.57 𝑒𝑉). In this way the thermal promotion into 

the CB is suppressed; 

 the resistivity has to be very high (in CZT 𝜌 is equal to 1010÷11 Ω ⋅ 𝑐𝑚) 

 

The semiconductor resistivity is closely link to the Fermi energy [3] : using the relations (1.2 ; 1.5) 

the resistivity becomes: (with 𝐸𝑣 = 0)  

1

𝜌
= 𝑒(𝜇𝑒  𝑛(𝑇) + 𝜇ℎ 𝑝(𝑇)) = 𝑒(𝜇𝑒  𝑁𝑐  𝑒

− 
( 𝐸𝑐 − 𝐸𝐹 )

𝑘𝑇 + 𝜇ℎ 𝑁𝑣 𝑒
− 
𝐸𝐹  
𝑘𝑇  )           (1.9) 

The value of the Fermi energy for which the resistivity assumes the maximum value is: 

𝐸𝐹 = 
𝐸𝑐  

2
−
𝑘𝑇

2
𝑙𝑛 ( 

𝑚𝑒
∗

𝑚ℎ
∗  )

3
2

− 
𝑘𝑇

2
 𝑙𝑛
𝜇𝑒
𝜇ℎ 
                                                         (1.10) 

And the maximum value of the resistivity results: 

𝜌𝑀𝐴𝑋 =
𝑒+ 

𝐸𝑔𝑎𝑝
𝑘𝑇

2𝑒√𝜇ℎ𝜇𝑒𝑁𝑐  𝑁𝑣
                                                                                       (1.11) 

FIGURE 1.7 Fermi energy position in different types of semiconductors (intrinsic, n-doped 

and p-doped 
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In 𝐶𝑑𝑍𝑛𝑇𝑒 for example: 

{
  
 

 
 
 

 

𝜇𝑒
𝜇ℎ 
~ 10      →  𝑝𝑒𝑟 𝑇 = 300 𝐾     

𝑘𝑇

2
 𝑙𝑛
𝜇𝑒
𝜇ℎ 
~ 0.03 𝑒𝑉 

𝑚𝑒
∗

𝑚ℎ
∗  ~ 0.1  → 𝑝𝑒𝑟 𝑇 = 300 𝐾     

𝑘𝑇

2
𝑙𝑛 ( 

𝑚𝑒
∗

𝑚ℎ
∗  )

3
2

 ~ 0.04 𝑒𝑉

𝐸𝑐 

2
 ~ 0.8 𝑒𝑉

 

  

A well-known result is obtained: the resistivity has a maximum when the Fermi energy is located 

approximately in the middle gap. In Figure 1.8 the profile of the resistivity as a function of the Fermi 

energy, in the case of CZT: 

 

However, as described in Chapter 2, the CZT is not an intrinsic material. The material is a ternary 

alloy and inhomogeneities and an imperfect stoichiometry are responsible for a not intentional 

doping. The CZT grows naturally p-doped because of a non-congruent solidification and the presence 

of Cadmium vacancies. To obtain a high resistivity, the CZT is doped with chlorine and/or indium. 

  

FIGURE 1.8 CZT resistivity as a function of the Fermi Energy. The resistivity shows a 

maximum value when the Fermi energy is located in the mid gap. 
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SEMICONDUCTOR IN THERMAL NON-EQUILIBRIUM  
In the paragraphs discussed before, the concentration of the free carrier concentration is determined 

for semiconductor near the thermal equilibrium and, as a consequence, it depends only on the 

temperature and the doping concentration. 

In semiconductors far from the thermal equilibrium [3], the carrier concentration it is also determined 

by external factors such as the injection of charge, due to injecting contacts or absorption of radiation 

due to the photo-electric effect. 

In the case of CZT the photo-electric effect dominates: the density of the thermal carriers is negligible 

compared to the density of photo-generated carriers. Furthermore, the contacts used in our samples 

are ohmic non-injecting contacts. Since the concentration of majority thermal carriers is negligible 

(due to the high resistivity), in the next chapter the physical quantities n and p will represent the 

densities of photo-generated electrons and holes. 

 

CARRIERS’ PHOTO-GENERATION AND PHOTO-CURRENT 
The photon’s absorption at x0 depth in a semiconductor in which a bias is applied at the contacts in 

𝑥 = 0 𝑒 𝑥 = 𝐿, leads to the generation of a great number of electron-hole pairs. The application of a 

bias 𝑉 leads electrons and holes to move to their respective electrode driven by the electric field �⃗�  at 

different velocities because of their different mobilities.  

In chapter 3 the topics about charge transport and photo-current will be widely explained. 

 

 

 

FIGURE 1.9. Photon’s absorption with the consequent 

creation of electron-hole pairs separated by the electric field. 
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2 THE MATERIAL 

The second chapter introduces the different materials studied for the detection of 𝑋 and 𝛾 rays. In the 

paragraph 2.1 the properties of a great solid-state photodetector are investigated. The study of the 

detectors focused on the Tellurides 𝐶𝑑𝑇𝑒 and 𝐶𝑑1−𝑥𝑍𝑛𝑥𝑇𝑒, proposed as good candidates for the 

detection of high-energy photons at room temperature. The paragraph 2.4 shows the detectors’ 

different configurations depending on the specific use, for example in the imaging systems in which 

the information is spectroscopic and also positional. This section introduces the importance of the 

geometry of the contacts, widely studied in Chapter 3.  

Paragraph 2.5 explains instead the several methods employed in the growth of CdTe and CZT both 

for spectroscopic applications for the growth of substrates.  

Defects and imperfections in 𝐶𝑑𝑍𝑛𝑇𝑒 are examined in section 2.6. The chapter ends with the study 

of complex defects (A center) and auto-compensation process. 

 

2.1  MATERIALS FOR DETECTORS OF 𝑿,𝜸 RAYS 

The last decade has seen a significant improvement in the ability to perform energy dispersive 

spectroscopy, both relatively to the detection of 𝑋 and γ rays than to that of the particles. Many are 

the areas in which these technologies are used, medical diagnostics, astrophysics, monitoring of 

industrial processes, airport security, and environmental and food safety. Of fundamental importance 

in this process of "technology migration" from research laboratories to the most common commercial 

systems is the ability to make these spectroscopic devices operating at room temperature.  

Semiconductors first used as active material in detectors of 𝑋 and γ rays are silicon and germanium. 

Their success lies still in the ability to reduce sufficiently the level of impurities. For the germanium, 

the biggest limitation consists in the need for cooling to 77 𝐾 to reduce leakage currents, which 

otherwise are generated due to the low bandgap of the semiconductor (0.67 𝑒𝑉 at 𝑅𝑇 (𝑡𝑎𝑏𝑙𝑒 2.1)). 

These difficulties are, however, matched by an excellent energy resolution spectroscopy relative to 

high photon energy. Because of its atomic number, the silicon manifests a reduced ability to absorb 

γ rays of about 50 times lower than the germanium; but for this reason it is even today widely used 

in the detectors of 𝑋-rays in low energy ranges, especially in situations in which it should measure 𝑋 

and γ rays simultaneously. These rays in fact would cross the silicon and then potentially be 

subsequently detected by other detectors. Favorable characteristic of silicon is its great bandgap 

(1.12 𝑒𝑉 𝑎𝑡 𝑅𝑇) compared to the germanium, which allows then lower leakage currents. 

If trapping events are reduced, the resolution is better than in germanium.  
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The great popularity of detectors based on Silicon or Germanium is due to their excellent charge 

transport properties, but the need for the continuous maintenance of the low temperature has prompted 

interest into new materials’ research.  

 

 

 

 

 

 

 

 

 

Among these we mention 𝐻𝑔𝐼2 that, with its 2.13 𝑒𝑉 bandgap, allows the use at room temperature. 

Furthermore, this material is attracting attention because of its high average atomic weight, which 

allows to absorb the radiation in the vicinity of the surface and thus significantly reducing the 

problems related to the low mobility of carriers. At present, degradation of surfaces, a certain 

tendency to polarization and a still low mobility of holes, however, limit its applicability [4] 

 

A composite semiconductor which on the contrary is already widely used is the CdTe. It has a good 

average atomic number and a bandgap of 1.52 𝑒𝑉, which allows its use at room temperature with 

reduced leakage currents (even if a cooling to −40 °𝐶 leads to an increase in the energy resolution). 

Just the 𝑍 allows a greater probability of photoelectric absorption 4 − 5 times greater than the 

germanium and 100 times compared to silicon [4]. In view of these excellent characteristics, 

however, it presents the problem of internal polarization. This phenomenon is due to the capture of 

carriers by trapping centres such as impurities, point defects, plastic deformation, that induce an 

internal field to the material, in opposition to that applied. This electric field does not allow neither 

accurate collection nor a good control of the applied potential, leading overall to a significant 

deterioration of the intensity of the signal, of the counting rate and well then of the resolution. The 

major failing of CdTe detectors is finally the poor hole-transport properties. The low hole product 

𝜇ℎ𝜏ℎ = 10
−5 ÷ 10−4𝑐𝑚2/𝑉, compared to the electrons product 𝜇ℎ𝜏ℎ = 10

−4 ÷ 10−3𝑐𝑚2/𝑉, 

increases the probability of recombination and trapping of the holes: only a fraction of the charge 

signal generated within the semiconductor is collected on the detector electrodes. 

FIGURE 2.1         Silicon ingots               Germanium ingot 
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To overcome this drawback, it is possible to study an appropriate geometry of the electrodes which 

reduces the path of holes. It should however be remembered that in the case of highly energetic 

photons, since their interaction occurs in depth, such geometry loses much in effectiveness and 

therefore the reduced mobility of the holes becomes a highly limiting factor of the capacity of the 

detector itself. The evolution of CdTe has led to the synthesis of the cadmium zinc telluride CZT, 

which immediately has shown itself more performant for spectroscopic applications.  

In the 𝐶𝑑1−𝑥 𝑍𝑛𝑥𝑇𝑒 for 𝑋-rays detection the fraction of zinc 𝑥 varies from 0.02 to 0.2 [5]. The CZT 

bandgap has values in the range of 1.5 − 2.2 𝑒𝑉 that provides a leakage current low enough to work 

without the cryogenic systems and to allow portable and compact equipment. The energy gap, 

however, is low enough to permit the generation of a high number of electron-hole pairs by interaction 

with 𝑋 and -rays and then allows to get good statistics. A great difference with the CdTe is the 

absence of polarization effects and therefore the chance to produce detectors with less electrical 

problems and best global efficiencies [6]. Another feature that makes better the use of CZT compared 

to CdTe is that it can easily reach resistivity of the order of 1010 Ω cm. Such resistivity allows the 

application of strong electric potential and thus increases the capacity of the detectors. The main 

objective in the growth of a material capable of detection is to obtain a high resistivity single crystal, 

free of extended defects and inclusions and precipitates that would to degrade the detector's response. 

 

 

 

 

 

 

    

 

 

 

 

FIGURE 2.2.              CZT ingot                              CdTe ingot  
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2.2  RADIATIONS DETECTOR’S PROPERTIES 

A material can be effectively used as a detector for 𝑋 and γ rays if it has the following characteristics 

[7]: 

 

 high atomic number 𝑍 for an efficient interaction with the radiation. The photoelectric absorption 

capture cross section is proportional to 𝑍𝑛, where 4 < 𝑛 < 5. CZT and CdTe have an atomic 

number close to 50; while 𝑍𝑆𝑖 = 12 and 𝑍𝐺𝑒 = 32; 

 

 a bandgap high enough to ensure high resistivity (> 109𝛺 ⋅ 𝑐𝑚) and low dark current to ensure 

low noise in the devices; 

 

 bandgap suitably low to have a small ionization energy for the electron-hole pairs (< 5𝑒𝑉). There 

is no minimum value of the energy gap for this aim. Generally, values greater than 1.5 𝑒𝑉 are 

necessary to ensure the control of currents generated thermally and therefore to limit the loss of 

energy resolution caused by the noise. The number of electron-hole pairs created is therefore 

reasonably high and a good statistic is ensured, which results in a greater signal-to-noise ratio. 

      The energy gap in CZT results as a function of the 𝑥 fraction of Zinc and the temperature T: 

 

𝐸𝑔(𝑒𝑉) = 1.606 + 0.38 x + 0.463 x
2 − 4.5 ⋅ 10−4 ⋅

T2

264 + T
                   (2.1) 

The 𝐶𝑑0.9𝑍𝑛0.1𝑇𝑒 at 𝑅𝑇 has an energy gap equal to 1.57 𝑒𝑉. 

 

  

Figure 2.3. The energy gap in CZT as a 

function of 𝑥 fraction of Zinc and 

temperature T. Energy gap increases at 

low values of the temperature and high 

values of the 𝑥 fraction 
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 high product value 𝜇𝜏. The mean free path of carriers is given by the 𝜇𝜏𝐸 product [8], where 𝜇 is 

the mobility of the carriers, 𝜏 the lifetime, and 𝐸 the applied electric field. The charge collection is 

determined by the fraction of photogenerated electrons and holes that can cross the detector thickness, 

in the interval of time in which the charge is collected. In the ideal case, the mean free path of the 

carriers must be much greater than the thickness of the detector, so as to ensure the complete 

collection of the charge.  

In many materials, including the CZT, this condition is generally satisfied for the electrons, while it 

is more difficult that this happens for the holes. Consequently, one of the problems related to the 

development of the devices is an incomplete holes’ collection, which results in a lower total charge 

collection and a reduced current pulse. The spectrum that emerges is therefore less solved, especially 

for low currents, and the photopeak is widened. 

 

 the material must be highly pure, homogeneous and, if possible, free of defects. The device must 

also have sufficiently large area and thickness: ideally an area of about 1 𝑐𝑚2 and 2 − 10 𝑚𝑚 of 

thickness. The demand of a large volume of the detector is associated with better efficiency and 

sensitivity. The greatest possible number of incident photons must have the possibility to be collected 

by the device so that it is required the detector material has high density. In the case of solid state 

detectors this request is always satisfied, when compared for example with gas detectors. The 

homogeneity and the low concentration of defects are used to ensure good charge transport 

characteristics and low leakage currents. In many cases it is required that the detector is entirely 

composed of monocrystalline material, in order to avoid the negative effects on transport related to 

the presence of grain boundaries or other extended defects. 

 

 electrodes that favor a good charge collection. The contacts must ensure that the field inside the 

device is as uniform as possible and free from polarization effects. Some processes, such as the 

formation of the charge drained areas, make the electric field locally non-uniform thus making 

variable the characteristics of the device. The best contacts, in this case, are those ohmic, because 

they are used for materials where the resistivity reaches 1011Ω ⋅ 𝑐𝑚 and also their use prevents the 

formation of space charge and thus the distortion of the electric field inside the CZT. 
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 the material must have a high surface resistivity to ensure a low surface conduction, i.e. low surface 

leakage current. They must also remain stable over time so that the leakage current of the device is 

limited for a long time. It is also important that the electric field lines do not terminate on the free 

surface of the detector (far from the electrodes), so to avoid the formation of surface free charges. 

The 𝜇𝜏 product still remains one of the parameters indicative of the quality of the material and 

therefore of the detector itself. However, for the realization of a good detector they are not sufficient 

the characteristics of the active material; great care should be devoted to the further processing of the 

grown material. Cutting, polishing, preparation of contacts and their geometry, and global electronics 

are fundamental. 

 

 

 

 

 

 

 

Table 2.1 [9] 

 

                         Table of the properties of the main solid-state photo detectors  

𝑨𝒕𝒐𝒎𝒊𝒄 𝑵𝒖𝒎𝒃𝒆𝒓 𝒁 

 𝑴𝒆𝒂𝒏 𝑨𝒕𝒐𝒎𝒊𝒄 
 𝑵𝒖𝒎𝒃𝒆𝒓  

 
 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 𝒂𝒕 𝟑𝟎𝟎 °𝑲  

(𝒈/𝒄𝒎𝟑) 
 
𝑩𝒂𝒏𝒅𝒈𝒂𝒑 𝒂𝒕 𝟑𝟎𝟎 °𝑲  

(𝒆𝑽) 
 

𝑰𝒐𝒏𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒆𝒏𝒆𝒓𝒈𝒚  
(𝒆𝑽) 

 
𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒅𝒊𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄 

 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝝐𝒓 
 
𝑹𝒆𝒔𝒊𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 (𝛀 ⋅ 𝒄𝒎) 
 

𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍 

(𝝁𝝉)𝑬𝑳 (𝒄𝒎
𝟐/𝑽) 

 
(𝝁𝝉)𝑯𝑶 (𝒄𝒎

𝟐/𝑽) 
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2.3  CRYSTALLINE STRUCTURE OF THE CZT 

𝐶𝑑1−𝑥 𝑍𝑛𝑥𝑇𝑒 is a complete substitutional solid solution. CZT results a substitutional material 

because the Zinc atoms are casually replaced to Cadmium in a fraction equal to 𝑥, while it is said 

complete because the CZT solid phase can be produced in the entire interval 0 < 𝑥 < 1. Both end-

members (binary compounds), CdTe (𝑥 = 0) and ZnTe (𝑥 = 1) show zinc-blende structure. The 

different distance of CdTe and ZnTe show that such substitutions lead to a change of the size of the 

average unit cell. 

 

 

 

 

 

2.4  DEVICES  

The detector for 𝑋 and γ rays operating at room temperature can be used in different configurations 

depending on the specific use. The main used geometries are schematically shown in figure 2.5: 

(a) simple planar device 

(b) co-planar grids 

(c) pixelated detector 

Each of them can be used for applications [5] in which particular parameters must be optimized; for 

example, the geometries (a) and (b) are usually used for large single detector element. Simple planar 

geometries can be easily implemented in terms of the associated electronics, while the geometry with 

grids provides a higher spectral resolution (especially in the case of energy of γ rays, that is, above 

200 𝑘𝑒𝑉).  

 

 

FIGURE 2.4 The unit cell of CdTe. The 

atomic structure is the Zinc-Blende 

structure. In CZT a 𝑥 fraction of Cd is 

replaced by atoms of Zinc. 
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As regards the geometry (c), in which each pixel provides an own signal, it is used in imaging systems 

in which it needs spectroscopic performance and positional resolution. The metal electrodes are 

applied to the semiconductor crystal through suitable lithographic processes which allow to obtain 

the required geometry.  

The choice of the type of metal and the control of the deposition method greatly affect the overall 

quality of the detector. Under operating conditions, a very high voltage is applied between the device 

electrodes to reach an electric field of a few 𝑘𝑉𝑜𝑙𝑡𝑠/𝑐𝑚. 

 

The photons 𝑋 or γ absorbed by the device originate electron-hole pairs which induce a current in the 

external circuit. Through this electrical circuit the current is integrated over time by providing a signal 

proportional to the total charge produced which in turn is proportional to the energy of the incident 

photon. The geometry of the electrodes and the electronic readout determine the performance of the 

device; therefore, a material that has a low spectral response in a given geometric configuration with 

a given external circuit could be a detector if used in a different geometry or making use of more 

sophisticated electronics. 

 

 

 

 

 

 

  

FIGURE 2.5 Device’s geometries: simple planar (a), co-planar (b) and pixelated detector (c)  
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2.5  GROWTH OF CZT CRYSTALS 

Several methods are currently employed with success in the growth of CdTe and CZT, both for 

spectroscopic applications and for substrates. For applications in 𝑋 and  rays detection the methods 

of growth that have found the best results are the Bridgman (with the respective variants) and the 

THM (traveling heater method). From the industrial point of view, the technique that has gained more 

support is the HPB method (high pressure Bridgman). Our detectors have been grown using the HPB 

method. 

 

2.5.1  THE BRIDGMAN METHODS 
Bridgman techniques start from the melt that reaches solidification at the solid-liquid interface by 

diffusion of latent heat. In general, the synthesis of the compound can be carried out “in situ” or “ex 

situ”. It is possible to insert the individual elements in the bulb of growth precursors and to enter in 

the bulb the compound synthesized previously. 

 

VERTICAL BRIDGMAN METHOD 
A sealed ampoule containing the compound already 

synthesized is normally used. [10] This ampoule moves 

longitudinally in a furnace in which a special 

temperature profile is set (figure 2.6). To avoid 

interfacial instability, the heating rate must be 

sufficiently high in the vicinity of the melting 

temperature. Alternatively, it is possible to hold the 

ampoule and to move the oven. There are both the 

vertical configuration that the horizontal one. Inside the 

ampoule the material is contained in a specially shaped 

crucible to favor only one initial nucleation of solid 

phase and then the growth of a single crystal [12]. A further variation of the Bridgman technique is 

represented by the Vertical Gradient Freeze, where the thermal profile is electronically modified so 

that the transition is without mechanical movements of the crucible and the furnace [12] 

 

 

Melting point 

FIGURE 2.6. Vertical Bridgman 

method [11] 
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HIGH PRESSURE BRIDGMAN 
The HPB method does not use a sealed ampoule, so to inhibit the decomposition of the components 

it is applied an overpressure of an inert gas, generally argon, the pressure of which varies commonly 

between 10 and 150 atmospheres [13]. The high pressure of the gas does not completely prevent 

leakage of material from the ampoule, but it slows down the process by decreasing the diffusion 

coefficient of Cd and Te vapours. At the melting temperature the evaporation is highly incongruent, 

so that the vapours are constituted for the most part by cadmium and in the crystal is then observes 

overabundance of tellurium.  

The fundamental components of a HPB plant 

(figure 2.7) are:  

  Steel container inside which pressure is 

applied 

  Heating elements for the control of the 

thermal gradient (typically graphite [11]) 

  Crucible and the mechanism which allows 

movement.  

The choice of the crucible is a rather delicate process, since it may be contaminated, as happens for 

example in the case of quartz that releases oxygen at high temperature [13].  

Quartz covered with graphite or graphite crucibles directly turn out to be excellent materials. The size 

can be up to eight inches in diameter. As regards the individual elements (Cd, Zn and Te), they are 

introduced already in the bulb in stoichiometric proportions and chosen with high purity levels. 

Before the beginning of growth, the charge is heated according to a precise temperature ramp up to 

about 1100 °𝐶. During this process the synthesis of the compound occurs. The ampoule containing 

the melt is then subjected to a suitable vertical temperature gradient.  

The crystallization of the material begins on the ampoule bottom and may be favoured by the addition 

of a crystalline seed. The speed of growth varies typically in the range 0.1 ÷ 1 𝑚𝑚/ℎ. At the end of 

the process the crystal is then gradually brought to room temperature and pressure with a speed of a 

few °𝐶/ℎ [5]. The entire growth process therefore has an average duration of about three or four 

weeks. With the HPB method it results very hard to obtain a single crystal and there are often grain 

boundaries, inclusions, precipitates of tellurium, and cracks. 

FIGURE 2.7: High Pressure Bridgman 

Method [8] 
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LOW PRESSURE BRIDGMAN  
In LPB growth occurs within the quartz ampoule in which the vacuum has been made and which is 

subsequently sealed. Even in this case, the oven can be both vertical and horizontal, but in LPB 

technique the vertical alignment is preferred [12]. In this case the speed of growth is about 1 𝑚𝑚/ℎ 

[14]. The glass may also be coated by a thin layer of graphite to limit the contamination; however, 

the graphite cannot be sealed and the coating must therefore be limited to the lower part of the 

ampoule. The stoichiometry is much more assured than in HPB as the ampoule is sealed. However, 

a stoichiometric deviation in the crystal is always found, caused by poor control of the composition 

of the vapour phase in the ampoule. 

 The CdTe, as well as the CZT, has not congruent evaporation to the melting temperature, and then 

in the vapours is established a different stoichiometry with respect to the molten material, the vapours 

are rich in cadmium and consequently in the crystal an excess of Te is found that gives rise to 

inclusions and precipitates. For this reason, it is preferable the modified LPB in which it is a reserve 

of cadmium at one extremity. 

MODIFIED LPB  
This technique, as already mentioned, exploits a reserve of 

cadmium within the ampoule which is specially shaped 

(figure 2.8) so as to keep the Cd in an area of the thermal 

profile at a lower temperature than that of the growth. By 

acting on this temperature, it is possible to control the 

partial cadmium pressure in the vapors, which represents 

an additional degree of freedom in controlling the 

composition of the individual elements in the compound 

during growth. This possibility of management of the 

single crystal stoichiometry distinguishes itself from the 

classical technique. The extremity with the cadmium is typically maintained at a temperature of 

825°𝐶 (to maintain the pressure of Cd of around 2 bar). The whole system is then brought above the 

melting point and finally the growth can start.  

The Cd excess condenses separately and crystallizes in the coldest part of ampoule. To reduce stress 

and achieve a higher quality, the crystal is often subjected to an annealing treatment at 600°𝐶. A CZT 

compound of high stoichiometric quality can be obtained. The stoichiometry of the grown crystal is 

not only more accurate, but also more uniform [16]. The dislocation density in LPB is less of an order 

of magnitude than the traditional one due to its minor stoichiometric deviations during growth. 

FIGURE 2.8 Method modified 

low pressure Bridgman [15]  



THE MATERIAL 2.5 Growth of CZT crystals 

21 

 

TRAVELLING HEATER METHOD  
The Bridgman techniques involve inherent drawbacks such as high temperatures (with relative 

increase in contamination), the risk of explosion due to the pressure of Cd and possible accumulations 

of Cd itself. For this reason, industry research is moving towards other methods such as the travelling 

heater method (THM). The components of the charge, already synthesized, are placed inside an open 

ampoule in which Te is added in excess.  

The ampoule is then placed within a furnace in which the thermal gradient can be set and modified. 

Once heated, the tellurium in considerable excess liquefies, bringing in solution the CZT 

polycrystalline at temperatures of about 800 °𝐶, smaller than those needed in fusion. The subsequent 

handling of such liquid zone (using the thermal gradient) involves the dissolution of the charge in the 

upper part and the crystal deposition in the lower part of the area [17].  

THM is therefore a method of growth from solution. The latent heat is easily disposed of but there 

are several problems in the diffusion of the various elements within the solution to achieve the growth 

interface. The THM growth is slow and thus the growth rate amounted to about 1 − 2 𝑚𝑚/𝑑𝑎𝑦. Also 

the growth of Te from solution highly facilitates the formation of inclusions and precipitates of 

tellurium in the crystal. 

 

THE ZINC’S SEGREGATION 
Among the most important aspects in the growth of CZT ingots, the main purpose is to maintain the 

desired stoichiometry uniformly throughout the crystal. This aspect is made difficult because of the 

progressive variation of Zinc concentration along the growth axis, generated by its segregation 

coefficient K. The latter is defined as the ratio between the concentration in solid phase 𝐶𝑆 compared 

to that in the liquid phase 𝐶𝐿. 

𝐾 =
𝐶𝑆
𝐶𝐿
                                                                                                                      (2.2) 

Zinc has a segregation coefficient value 𝐾𝑍𝑛 = 1.35, which means a higher concentration in solid 

phase compared to the molten material : this aspect causes a continuous variation of the concentration 

of Zinc within the part of growing ingot. This problem is intrinsic in all melt-growth techniques and 

therefore it cannot be eliminated.  

The control of the amount of zinc is very important: the local variation of the fraction of Zinc change 

the bandgap of the material and worsens the spectroscopic properties of the CZT. In the main growth’s 

techniques, a strict control over the partial pressures of Cd and Zn is made, such as the HPB technique. 

[18] 
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2.6  DEFECTS AND IMPERFECTIONS IN CDZNTE 

Impurities hold a key role in charge transport: they operate both as scattering centers, by changing its 

mobility and generating shallow and deep levels, and capture centers by reducing its lifetime.  

In a perfect crystal, the only charge carriers present are the electrons and holes that belong to the 

crystal atoms. The electrons and holes determine the occupation of the energy levels, but does not 

introduce new levels. 

Additional energy levels are associated with the presence of structural crystal defects such as 

vacancies, interstitial defects, atoms in antisite position and dislocations. Wherever the periodicity of 

the perfect crystal’s structure is disturbed, it becomes possible for an electron to take energies that 

are prohibited in the perfect crystal. The presence of a structural defect may introduce one or more 

additional energy levels in the energy gap between the valence and the conduction bands. Unlike the 

bands that extend through the entire crystal, such additional energy levels are localized to the defect 

site. 

A classification of imperfections in the crystals was given by Seitz [19] and includes nine different 

types of imperfections. We limit here considering only those imperfections that are relevant for 

understanding the electrical properties and their relationship with the defect of stoichiometry. 

  

Such imperfections are: 

 

 Point defects such as vacancies, interstitial defects, Te antisites and their associates; 

 

 Dopant atoms different from the crystal’s constituents; 

 

 Associations between impurities and point defects; 

 

 Dislocations 
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POINT DEFECTS 
The main point defects in the undoped material are Frenkel defects, consisting of vacancies and 

Cadmium interstitial atoms: 

 

• ionized cadmium vacancies 𝑉𝐶𝐷 can generate two different acceptor centers 𝑉𝐶𝑑
−  and 𝑉𝐶𝑑

2−, with 

localized energy levels in the forbidden energy gap. The largest concentration of these defects makes 

the CZT material p-doped; 

 

• similarly, Cadmium interstitial atoms form two donor levels 𝐶𝑑+ and 𝐶𝑑2+; 

 

• another very important defect for the electrical properties is 𝑇𝑒𝐶𝑑: the Tellurium atoms occupy sites 

of the sub-lattice of Cadmium. This kind of defect introduce a level approximately located in the 

midgap that acts as a trap level. 

 

DOPANTS 
These impurities, like the structural defects, introduce localized levels in the forbidden gap: 

 

• chlorine (Group VII) can replace tellurium (Group VI) creating the donor level 𝐶𝑙𝑇𝑒 that if ionized, 

can donate an electron according to the reaction 𝐶𝑙𝑇𝑒 → 𝑒
− + 𝐶𝑙𝑇𝑒

+ ; 

 

• indium (Group III) replaces Cadmium generating the donor level 𝐼𝑛𝐶𝑑; 

 

• sodium (Group I) replaces the Cadmium generating the acceptor level 𝑁𝑎𝐶𝑑 that can take an electron 

according to the reaction: 𝑁𝑎𝐶𝑑 + 𝑒
− → 𝑁𝑎𝐶𝑑

− ; 
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ASSOCIATIONS BETWEEN POINT DEFECTS AND DOPANTS 
A third way to generate localized levels is finally given by associations of structural defects between 

them or with impurities. Complexes are of fundamental importance as regards the electrical properties 

of the material and the good quality of a radiation detector: the dark currents must be the lowest 

possible and then material’s resistivity request must be greater than 109 𝛺 ⋅ 𝑐𝑚.  

𝐶𝑑𝑍𝑛𝑇𝑒 with resistivity of the order of 1010 𝛺 ⋅ 𝑐𝑚 can be obtained through the doping with suitable 

elements such as chlorine and Indium [20], through the self-compensation mechanism. 

 

DISLOCATIONS 
The dislocations act as a pole of attraction of the point defects. In this way the action of the 

dislocations is deleterious for the material. Furthermore, the presence of a system of dislocations 

running through the whole thickness can create percolation paths that may short-circuit the two 

electrodes. Figure 2.9 shows a measure of etch pit density (EPD) made on oriented 𝐶𝑑𝑍𝑛𝑇𝑒 (111) 

using the method of Nakagawa [21], using 𝐻𝐹,𝐻2𝑂2, 𝑎𝑛𝑑 𝐻2𝑂.  

This method allows to reveal dislocations after etching (white dots in the figure 2.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

FIGURE 2.9. Dislocations in CZT.  

Image’s height: = 1𝑚𝑚. 

Etch pit density = 1.5 ⋅ 10−3 𝑐𝑚−2 
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Impurities in CZT and their relationships with the transport properties are of great interest and they 

have been studied in detail. The largest contribution comes from Aluminum which acts as a dopant, 

followed by Iron. The other elements have lower concentrations of one part in a million (Table 2.2) 

The aluminum in the undoped materials appears in concentrations close to one part in a million [5] 

   

The point defects in CZT caused by many impurities are shallow levels. The CZT constituents belong 

to II and VI groups. Then the elements of I, III, IV, V and VII groups can act as dopants (Table 2.3). 

The elements of the V group act as acceptors. The elements of Group III and VII are instead donor. 

The elements of group I are amphoteric: act as donors if they are located in the interstitial sites, and 

as acceptors if they replace the cation. [5]  

TABLE 2.2 Impurities in CZT in 𝑝𝑝𝑚𝑤 

 

TABLE 2.3 Acceptors and donors in CZT 
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The transition metals can act both as donor and as acceptor. (Table 2.4) The importance of the 3d 

transition metals, with the shell partially filled 3d lies in the fact that these atoms can create deep 

energy levels increasing the resistivity of CZT (improving the radiation detector’s quality). A recent 

study showed that the doping of CZT with concentrations 1018 − 1019 𝑐𝑚−3 of Vanadium brings the 

CZT resistivity to 109 − 1010 𝛺 ⋅ 𝑐𝑚 [5] 

 

 

Also the native defects in CZT can be donor and acceptor. (Table 2.5). Cadmium and Tellurium 

vacancies are found in concentrations less than 1016 𝑐𝑚−3. [5] 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2.4 Transition metals in CZT 

TABLE 2.5 Native Defects in CZT 
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Figure 2.10 shows the levels’ pattern in the band-gap presented in the Szeles’ work [22] 

 

 

2.7  AUTO-COMPENSATION PROCESS & A CENTER 

The introduction of impurities in the crystal leads to the formation of defects electrically active and 

centers that contribute to the compensation of the material. The main dopants used for the CdTe and 

CZT are Indium and halogens such as Chlorine. 

The auto-compensation model proposes, for the formation of semi-insulating CdTe and CZT, the 

following mechanism: the concentration of the impurity ionized 𝑋+ must be equal to that of cadmium 

vacancy ionized 𝑉𝐶𝑑
−  and of the complex formed by a cadmium vacancy doubly ionized and the 

ionized donor: (𝑉𝐶𝑑
2−, 𝑋+)−. 

This complex is named “A center”. This equality is very difficult to obtain: the concentrations should 

differ by less than one part in 1011, taking into account that the free carriers are about 105 and an 

average dopant concentration level is 1016. This model can work only if a deep level that pins the 

Fermi level to mid-gap, is present. 

 

 

 

 

 

 

FIGURE 2.10. Energy levels in the band-gap due to defects (native, impurities and centers) 
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THE TELLURIUM’S DEEP LEVEL 
From the auto-compensation model it is obtained that, by varying the dopant concentration in any 

case, an excess of acceptor levels is present. This excess can be compensated only by a deep donor 

level, which has the same concentration of the acceptor. 

The origin of this level can be attributed to the intrinsic defects. Being sure the Tellurium excess, 

candidates to form the deep level are the interstitial (𝑇𝑒𝑖) and Tellurium antisite 𝑇𝑒𝐶𝑑. In the crystal, 

the presence of tellurium in the precipitates’ form is often observed, which would suggest that the 

interstitial Te have the time to join in the precipitates [23-24]. The deep level can be attributed to 

𝑇𝑒𝐶𝑑. [25] 

 

TELLURIUM INCLUSIONS AND PRECIPITATES 
The excess of Te within the CZT crystals has another consequence: Tellurium inclusions and 

precipitates originated by condensation of intrinsic point defects such as interstitial Cd and Te are 

always present. Their size may be less than one micrometer, but they can reach 100 𝜇𝑚 size with 

important consequences on device performance [26]. They operate as traps for charge carriers and 

deform the ideal crystalline lattice in their proximity degrading the local transport properties of the 

detector. 

It is assumed that the occurrence of inclusions is attributable to the morphological instability present 

at the interface of solid-liquid growth. During the growth, tellurium droplets from the molten Cd-Te 

(Te-rich) are formed at the interface. These Te micro drops tend to move in the crystal and, once the 

crystal cooled, the drops combine with each other creating the Te inclusions [27].  

Therefore, the mechanism that generates the presence of such inclusions is closely correlated with 

the speed of growth and with the temperature gradient at the solid-liquid interface. 

Through a systematic study carried out on samples of CdTe and CZT grown by the Bridgman THM, 

it was discovered that the dominant contribution to the distribution of inclusions (≥  95%) is given 

by inclusions with diameters between 1 and 4 microns with a maximum around the 2.5 𝜇𝑚.  

They are distributed homogeneously in the space [28]. 

 

 

 

 

 

  

FIGURE 2.11 Tellurium 

inclusions in CZT [29] 
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3 MODELING 

In this chapter, the modelling of the transport processes in bulk semiconductors is presented. Two 

different new models, suitable to determine the transport parameters of both charge carriers together 

with the spatial profile of the electric field, and a new model for the diffusion process are introduced. 

All the models are based on the analysis of current transients induced by laser-beam, as in the well-

known time-of-flight experiment. 

As both electrons and holes contribute to the electric currents, it needs to separate the two 

contributions with an appropriate experimental setup. In a sandwich configuration with the electrodes 

deposited on two opposite faces of a parallelepiped, if the collecting electrode is set at zero voltage 

(ground), the illuminated electrode is set at a positive voltage to study the transport of holes while it 

is set to a negative voltage to study the electronic transport. Moreover, a laser-beam with a wavelength 

equal to 532 nm is used, which corresponds to a photon energy equal to 2.33 eV and then higher than 

the energy gap of 𝐶𝑑𝑍𝑛𝑇𝑒 𝑎𝑛𝑑 𝐶𝑑𝑇𝑒. This value of energy allows the creation of only one electron-

hole pair for each photon and the radiation is absorbed within a few micrometers of material under 

the illuminated electrode. In this way, we can easy decouple the electronic signal from the lacunar 

contribution. 

If we set a negative bias on the illuminated electrode, a number N0 of electron-hole pairs in proximity 

of the same electrode is generated. The charges of opposite sign move in opposite directions as effect 

of the presence of the electric field. The electrons will travel towards the illuminated electrode (at a 

positive voltage) covering a distance ideally equal to zero, while the holes will have to run right across 

the whole sample's thickness up to the collecting electrode, using a time equal to the flight time. In 

summary, the application of a positive or negative voltage on the electrode illuminated allows the 

analysis of contribution of holes or of electrons, respectively. 

Assuming that the sample be uniform and isotropic, the study of charge's transport can take place for 

all models with a one-dimensional approach, along the 𝑥 direction joining the two electrodes. 

. 
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3.1  GENERAL PHENOMENOLOGY  

PHYSICAL QUANTITIES: 

 𝑄0   Initial Charge photo-generated  [𝐶] 

 𝜌(𝑟 , 𝑡)  Free charge density   [𝐶/𝑐𝑚3] 

 𝜌𝑇  (𝑟 , 𝑡)  Trapped charge density  [𝐶/𝑐𝑚3] 

 𝜏𝐷   Detrapping time   [𝑠] 

 𝜏   Trapping time (carriers lifetime) [𝑠] 

 𝜇   Mobility    [𝑐𝑚2/(𝑉𝑠)] 

 𝐷   Diffusion coefficient   [𝑐𝑚2/𝑠] 

 𝑠   1 for holes, -1 for electrons 

During the flight time the charges experience different physical phenomena: 

 Photo-generation 

 Electric drift 

 Diffusion drift 

 Trapping 

 Detrapping 

 Recombination 

 

CHARGE PHOTO-GENERATION 
The internal photoelectric effect, as a consequence of the absorption of an optical photon, leads to the 

creation of a free electron-hole pair. The rate of generation 𝐺 for the free charges induced by the laser-

beam at time 𝑡 = 0 in the point (0,0,0) immediately underneath the illuminated electrode, is equal to: 

𝐺𝑃𝐻 = 𝑄0 𝛿(𝑡) 𝛿(𝑥) 𝛿(𝑦) 𝛿(𝑧)                                                                             (3.1)  
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ELECTRIC DRIFT   
The charges drift towards the collecting electrode with a velocity proportional to the electric field and 

to the mobility: 

 𝑣 ⃗⃗⃗⃗ 𝐷𝑅𝐼𝐹𝑇 =
𝑑𝑥 

𝑑𝑡
= 𝑠 𝜇 �⃗�                                                                                             (3.2) 

The value of 𝑠 justifies the fact that the electrons move in the opposite direction to the electric field, 

while holes move in the same direction. 

The direction of the electric field is however different in the two different setups, because the electric 

field is directed always toward the electrode at lower potential. In summary: 

 𝐸 ⃗⃗ ⃗⃗ = 𝑠 𝐸 �̂�                                                                                                                  (3.3) 

 𝑠 = 1 for holes and 𝑠 = −1 for electrons 

 𝐸 = |�⃗� | is the magnitude of the electric field 

 

 

 

 

 

                     ONLY ELECTRONS                          ONLY HOLES 

                                𝑠 = −1                         𝑠 = 1 

 
FIGURE 3.1 The radiation in the visible range is absorbed in a few micrometers. The application 

of a negative potential (left) on the illuminated electrode pushes the electrons to the collection 

electrode, fixed at zero voltage, instead a positive potential (right) leads the holes to travel along 

the sample always toward the electrode of collection 
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DIFFUSION DRIFT 
The carriers diffuse thermally decreasing the gradient of the concentration of the free charge density. 

The diffusion velocity is then proportional to this gradient and to the diffusion coefficient 𝐷: 

 𝑣 ⃗⃗⃗⃗ 𝐷𝐼𝐹𝐹 = − 𝐷
 ∇ ⃗⃗⃗⃗ 𝜌

𝜌
 

In this case both electrons that holes move in the same direction with the same form of the free charge 

density: if the charge density is increasing in a certain direction, and then the gradient is positive, the 

carriers will move in the opposite direction, because the diffusion tends to flatten spatially the charge 

density profile. 

 

 

 

 

 

 

 

 

 

FIGURE 3.2 Charge density spatially profile. The green point indicates the barycenter 

position, the unique point that is not affected by diffusion. Instead to the left (red) and to the 

right(blue) of the barycenter the charges move away from it at a velocity proportional to the 

gradient of the free charge 
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CHARGE DESTRUCTION (TRAPPING)  
The charges are trapped during the flight with a rate of entrapment: 

𝑈𝜏 =
𝜌

𝜏
                                                                                                                        (3.4) 

This phenomenon is due to the presence of traps within the material. The probability of entrapment 

is in fact proportional to this traps density. The term U is a destruction rate because it cuts down the 

number of charge carriers in time. 

 

DETRAPPING 
The trapped charge can escape from the trap and return to drift to the electrode collection. The 

detrapping rate is in effect a generation rate of free charges: 

𝐺𝐷 =
𝜌𝑇
𝜏𝐷
                                                                                                                      (3.5) 

Detrapping rate is proportional to trapped charge density. Detrapping time depends on temperature 

and density traps. In fact, carrier must overcome thermally an energy barrier to be able to escape from 

the trap. 

 

RECOMBINATION 
Electrons and holes, during the flight, could recombine with the creation of a photon, just as happens 

for example in a LED. This phenomenon is however inhibited in this experiment because electrons 

and holes are "separated at their birth" by the electric field and they move in opposite directions 

during their flight. 
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3.2  THE CONTINUITY EQUATION 

Both the free density than that trapped must obey the equation of continuity, relating to the 

conservation of the total charge itself: 

𝜕𝜌 

𝜕𝑡
+ �⃗� ⋅ ( 𝜌 𝑣 𝑇𝑂𝑇  ) = 𝐺𝑇𝑂𝑇 − 𝑈𝑇𝑂𝑇                                                                   (3.6) 

where: 

 𝜌 represents the charge density (free or trapped); 

  𝑣 𝑇𝑂𝑇  is the velocity of the charge density; 

 𝐺𝑇𝑂𝑇 is the sum of all the generation contributions; 

 𝑈𝑇𝑂𝑇 is the sum of all the destruction contributions; 

Taking into account all the physical phenomena described above, the two continuity equations 

become: 

 

{
 
 

 
  
𝜕𝜌 

𝜕𝑡
+ ∇⃗⃗ ⋅ ( 𝜌 𝑣 ⃗⃗⃗  TOT) = 𝐺𝑃𝐻 +

𝜌𝑇
𝜏𝐷
− 
𝜌

𝜏
    

𝜕𝜌𝑇  

𝜕𝑡
= −

𝜌𝑇
𝜏𝐷
+
𝜌

𝜏

                                                (3.7) 

 

 

where: 

 𝑣 ⃗⃗⃗  TOT is the velocity of free charge because the velocity of the trapped charge is obviously 

equal to zero. The velocity is the sum of drift velocity, due to electric field and to diffusive 

velocity.  

𝑣 𝑇𝑂𝑇 = 𝑣 𝐷𝑅𝐼𝐹𝑇 + 𝑣 𝐷𝐼𝐹𝐹 = 𝑠𝜇�⃗� − 𝐷
�⃗� 𝜌

𝜌
                                                            (3.8) 
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 ∇⃗⃗ ⋅ ( 𝜌 𝑣 ⃗⃗⃗  TOT) takes into account the spatial variation of the free charge density due to the 

electrical movement and diffusion of carriers (3.3; 3.8) 

�⃗� ⋅ (𝜌𝑣 𝑇𝑂𝑇) = �⃗� ⋅ (𝑠𝜇𝜌�⃗� − 𝐷𝜌
�⃗� 𝜌

𝜌
) = �⃗� ⋅ (𝑠2𝜇𝜌𝐸𝑥 − 𝐷�⃗� 𝜌) = 

= 
𝑑

𝑑𝑥
( 𝜇 𝜌 𝐸 ) − 𝐷 2𝜌                                                                                       (3.9) 

 

The scalar term 2𝜌 is the Laplacian of the free charge density, the term 𝑠 disappears because 𝑠2 is 

equal to one. In this way the partial differential equations takes into account generation of charge, 

entrapment, detrapping, diffusion and electric drift for both free charges both for the trapped charges: 

 

{
 
 

 
   
𝜕𝜌 

𝜕𝑡
= 𝐺𝑃𝐻 −

𝑑

𝑑𝑥
( 𝜇 𝜌 𝐸 ) + 𝐷 2𝜌 +

𝜌𝑇
𝜏𝐷
−
𝜌

𝜏
 

𝜕𝜌𝑇  

𝜕𝑡
= − 

𝜌𝑇
𝜏𝐷
+
𝜌

𝜏

                                    (3.10) 

 

THE TOTAL CHARGE  
An important quantity for the subsequent results is the total charge density 𝜌𝑇𝑂𝑇: 

𝜌𝑇𝑂𝑇(𝑟 , 𝑡) = 𝜌𝑇(𝑟 , 𝑡) + 𝜌(𝑟 , 𝑡)                                                                    (3.11) 

That remains constant in time: 

𝑑

𝑑𝑡
( 𝜌𝑇𝑂𝑇(𝑟 , 𝑡)) = 0                                                                                        (3.12) 

The integral of total charge density over the whole volume is the total charge: 

∫𝜌𝑇𝑂𝑇  (𝑟 , 𝑡) 𝑑𝑟 = 𝑄0                                                                                  (3.13) 

The term 𝑄0 takes into account also of the carriers thermally generated, that could create a current 

which contributes to an increase in noise. Anyway the high resistivity of CZT inhibits the presence 

of this charge thermally promoted. 
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3.3  THE CURRENT SIGNAL 

The solution of the equations of continuity system described just above allows to obtain the current 

profile in the time induced on the collection electrode, which in effect is the electrical signal acquired 

experimentally. 

The Ramo–Shockley theorem [30, 31] (Section 3.6.1) states that the induced charge 𝑄(𝑡) is in fact 

the integral over the whole volume of the total charge density 

𝑄(𝑡) =∭𝜌𝑇𝑂𝑇  (𝑟 , 𝑡) 𝑉𝑤(𝑟 ) 𝑑𝑟                                                                        (3.14) 

Where 𝑉𝑤(𝑟 ) is the weighting potential in the material. The weighting field �⃗⃗⃗� (𝑟 ) is defined as the 

negative gradient of the weighting potential:  

�⃗⃗⃗� (𝑟 ) = −�⃗⃗�  𝑉𝑊(𝑟 )                                                                                               (3.15) 

The current signal 𝐼(𝑡) obtained experimentally is the change in time of induced charge (using 3.12, 

3.14 and 3.15) 

𝐼(𝑡) =
𝑑

𝑑𝑡
 𝑄(𝑡) = −

𝑑

𝑑𝑡
 ∭𝜌𝑇𝑂𝑇  (𝑟 , 𝑡) 𝑉𝑤(𝑟 ) 𝑑𝑟 = 

= −∭
𝑑

𝑑𝑡
(𝜌𝑇𝑂𝑇(𝑟 , 𝑡) 𝑉𝑤(𝑟 ))𝑑𝑟 = −∭𝜌𝑇𝑂𝑇(𝑟 , 𝑡)

𝑑

𝑑𝑡
(𝑉𝑤(𝑟 ))𝑑𝑟 = 

= −∭𝜌𝑇𝑂𝑇(𝑟 , 𝑡) 
𝑑𝑟 

𝑑𝑡
⋅ �⃗⃗�  (𝑉𝑤(𝑟 ))𝑑𝑟 = 

=∭𝜌𝑇𝑂𝑇(𝑟 , 𝑡) 𝑣 𝑇𝑂𝑇(𝑟 ) ⋅ �⃗⃗⃗� (𝑟 ) 𝑑𝑟                                                                  (3.16) 

The weighting potential and the weighting field come from the Ramo-Shockley theorem and depend 

only on the contact geometry. These geometric quantities are largely explained by the mathematical 

point of view even with simulations in section 4.3. The current depends on only free charge because 

the charge trapped has no velocity and does not contribute to the electric current. The current results 

the coupling between velocity, proportional to electric field and weighting field. This coupling is then 

weighed by free charge density and integrated over the entire volume. 
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3.4  THE MODELS 

The general analytical solution of the equations of continuity does not exist for every electric field 

profile. Different simplifications with suitable assumptions are used to study the photocurrent 

transient profile [32, 33]. In this thesis three different models are presented, by which it becomes 

possible to obtain information about transport properties of the material: 

MODEL 𝑇𝑟𝑎𝑝𝑝𝑖𝑛𝑔 𝐷𝑒𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝐹𝑖𝑒𝑙𝑑 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝐹𝑖𝑒𝑙𝑑 

2 𝜏 YES NO NO UNIFORM ANY 

1 𝜏 YES NO NO ANY ANY 

𝐷𝐼𝐹𝐹𝑈𝑆𝐼𝑉𝐸 YES NO YES ANY UNIFORM, 

LINEAR 

3.4.1 THE 1-2𝝉 MODELS : THE SAME DENSITY SOLUTION 
The 1τ model concerns the presence of a non-uniform field weighting, while the 2τ model takes into 

account of a uniform spatially profile of the weighting field. 

The analytical form of the charge density in the 1τ and 2τ models is the same. In this two models the 

diffusion and detrapping phenomena are assumed as negligible.  

 

Under these assumptions, the charge is subject to: 

 generation in the proximity of the illuminated electrode. 

 drift toward the collecting contact with a speed proportional to the electric field: 𝑣 (𝑥) = 𝜇 𝐸(𝑥). 

 trapping with a rate proportional to the inverse of the lifetime τ of carriers. 

The two continuity equations are also decoupled because of the absence of detrapping: the carriers, 

once trapped, cannot return to give contributions to the free charge density. 

{
 
 

 
    
𝜕𝜌 

𝜕𝑡
= 𝐺𝑃𝐻 −

𝑑

𝑑𝑥
(𝜇 𝜌 𝐸) −

𝜌

𝜏

𝜕𝜌𝑇  

𝜕𝑡
=
𝜌

𝜏

                                                                         (3.17) 

 

 

Table 3.1 Transport models and the assumptions made to obtain transport parameters and electric 

field 
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The solutions of the two differential equations are: 

𝜌(𝑟 , 𝑡) = 𝑄0 𝑒
− 
𝑡
𝜏 𝛿(𝑥 − 𝑥(𝑡)) 𝛿(𝑦) 𝛿(𝑧)                                                         (3.18) 

𝜌𝑇(𝑟 , 𝑡) =
1

𝜏
∫𝜌(𝑟 , 𝑡′)𝑑𝑡′
𝑡

0

=
1

𝜏
∫𝑄0 𝑒

− 
𝑡′

𝜏  𝛿(𝑥 − 𝑥(𝑡′)) 𝛿(𝑦)𝛿(𝑧) 𝑑𝑡′ =

𝑡

0

 

𝑄0𝛿(𝑦)𝛿(𝑧)

𝜏
∫𝑒− 

𝑡′

𝜏
𝑑𝑡(𝑥)

𝑑𝑥
𝛿(𝑡′ − 𝑡(𝑥))

𝑡

0

=
𝑄0𝛿(𝑦)𝛿(𝑧)

𝜏 𝑣(𝑥)
∫𝑒− 

𝑡′

𝜏 𝛿(𝑡′ − 𝑡(𝑥))𝑑𝑡′

𝑡

0

 

𝑄0
𝜇𝐸(𝑥)

𝑒− 
𝑡(𝑥)
𝜏  𝐻(𝑡 − 𝑡(𝑥)) 𝛿(𝑦) 𝛿(𝑧)                                                                (3.19) 

The shape of the charge density (3.18) is obviously a Dirac delta of space-time 𝛿(𝑥 − 𝑥 (𝑡)): the free 

charge density is created as a Dirac delta and travels compact toward the collecting electrode. This 

density is not subject to those phenomena like diffusion and detrapping which could spatially enlarge 

the free charge density. The number of the carriers, at 𝑡 = 0, is equal to the photo-charge generated 

initial 𝑄0. Then the carriers’ number decreases over time with an exponential law with a characteristic 

time equal to the carriers’ lifetime τ.  

Carriers travel through the material with a law of motion 𝑥(𝑡) imposed by the electric field. Since the 

electric field is directed only along the 𝑥 direction, also the charges drift in this direction. 

The trapped charge density instead has a spatiotemporal Heaviside profile. The Heaviside function in 

(3.19) states that the charge density is equal to zero for times lower than the term 𝑡(𝑥) (3.21). In the 

next section this term will be shown as essential to the clarity of the whole thesis. The meaning of the 

Heaviside function is clear: at the time 𝑡 the free charge density is located in the position 𝑥 = 𝑥(𝑡), 

the trapping has had effect only in 0 ≤  𝑥 ≤ 𝑥(𝑡) 

FIGURE 3.3 The free carriers (blue) follow the law of motion 𝑥(𝑡). Trapped 

charges (red) are distributed in all positions less than the free charges position.  
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3.4.2  THE CURRENT SIGNAL IN 1-2𝝉 MODELS 
From the space-time profile of the free charge density (3.18) the induced current signal (3.16) on the 

electrode collection becomes: 

𝐼(𝑡) = 𝑄0 𝑒
− 
𝑡
𝜏 𝑊(𝑥(𝑡)) 𝜇𝐸(𝑥(𝑡))                                                                 (3.20) 

The current signal results proportional to the product between electric and weighting fields and to the 

decreasing exponential term due to trapping. 

 

THE 𝒙(𝒕) AND 𝒕(𝒙) TERMS 
The carriers move within the material following a precise law of motion. The charge movement is 

only due to the electric field because in this two models the diffusion phenomenon is neglected. 

The charge travels towards the collection electrode with a non-uniform velocity proportional to the 

electric field and to the mobility (3.2) 

The differential equation has the following integral solution: 

𝑡(𝑥) = ∫
𝑑𝑥′

𝜇𝐸(𝑥)

𝑥

0

                                                                                                   (3.21) 

The function 𝑡(𝑥) indicates how long the charge takes to reach the position 𝑥. The term 𝑇𝑅 , equal to 

the time taken to cross the entire sample of thickness 𝐿 correspond to the flight time: 

𝑇𝑅 = 𝑡(𝐿) = ∫
𝑑𝑥

𝜇𝐸(𝑥)

𝐿

0

                                                                                        (3.22) 

So the flight time can be calculated knowing the electric field spatial profile and the mobility. 

The law of motion 𝑥(𝑡), which indicates the charge’s position at the time 𝑡, now can be calculated by 

the function 𝑡(𝑥): 

𝑥(𝑡) = 𝑡−1(𝑥)                                                                                                       (3.23) 
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THE 𝑬(𝒙(𝒕)) AND 𝑾(𝒙(𝒕)) TERMS 
The current signal (3.20) is proportional to the terms 𝐸(𝑥(𝑡)) and 𝑊(𝑥(𝑡)): the law of motion of the 

carriers becomes an important quantity to find transport information. 

The charge, after having traveled for a time 𝑡 inside of the material, will be in position 𝑥 = 𝑥(𝑡).  

Here the electric and weighting fields are equal to: 

 At the time 𝑡 → {
  𝐸 = 𝐸(𝑥 = 𝑥(𝑡)) 

   𝑊 = 𝑊(𝑥 = 𝑥(𝑡))
 

These two fields are not directly functions of time. In fact, in a fixed position, the 𝐸 and 𝑊 values do 

not change in time and their partial derivative in time is zero: 

𝜕𝐸

𝜕𝑡
=
𝜕𝑊

𝜕𝑡
= 0                                                                                                       (3.24) 

Indeed, the physical quantity that changes in time is the position of the charge.  

Carriers, during flight, experience different field values because they change position; then the term 

𝐸(𝑥(𝑡)) indicates the electric field value probed by the carrier in the position 𝑥(𝑡) after travelling for 

the time t. Since the signal is proportional to the velocity, and then to the electric field, the charge 

carrier acts as probe of electric field during their flight. In this way the electric spatial profile can be 

reconstructed. The functions 𝐸(𝑥(𝑡)) and 𝑊(𝑥(𝑡)) can be calculated once mobility and field spatial 

profile are known: 

  

FIGURE 3.4. Calculation of the electric field 𝐸(𝑥(𝑡)) probed in time by carriers 

starting from the knowledge of the spatial electric field. 
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Starting from the value of the spatial electric field is in fact possible to obtain the term 𝑡(𝑥) (3.21) 

and then the law of motion 𝑥(𝑡). Now we have to correlate each position with the relative value of 

electric field 𝐸(𝑥) and time 𝑡(𝑥). In this way it becomes possible to link a value of time with the 

relative value of the electric field, generating the function 𝐸(𝑥(𝑡)). For example, in figure 3.4, in 

position 𝑥 = 0.08 cm the electric field is equal to 88 𝑉/𝑐𝑚. Now, starting from the law of motion, 

the time at which the carriers are in position 𝑥 = 0.88 cm has to be calculated. This time results         

𝑡 = 600 𝑛𝑠. Then, after a flight of 600 𝑛𝑠 the electric field probed by carriers is equal to 88 𝑉/𝑐𝑚. 

The spatial and temporal profile of the field can be a different form: for example, a spatial linear 

profile becomes a temporal exponential profile. In fact, since the electric field is proportional to the 

velocity, the link between 𝐸(𝑥) and 𝐸(𝑥(𝑡)) passes through the solution of a differential equation 

(3.2) and a function’s inversion (3.23) 

3.4.3  CURRENT WITH UNIFORM/LINEAR ELECTRIC FIELD 
In this section the analytical results are shown. This chapter explains how the time of flight, the law 

of motion and the electric field, probed in time by carriers, depend only on the electric field and not 

on the weighting field profile. 

 The spatial profiles of the electric field chosen for an analytical approach are: 

1) Uniform profile: 𝐸 = 𝐸0 

2) Linear profile:  𝐸 = 𝐸0 − 𝑎𝑥 

The uniform field (in literature [35], [36]) results as a special case of the linear field with the slope 

term 𝑎 = 0. 

This section will be accompanied with a simulation to introduce the physical quantities that will be 

presented. In this simulation the parameters for the calculation are: 

 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠  𝐿 = 0.1 𝑐𝑚 

 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑠    𝑉 = 10, 30, 50, 70, 90 𝑉𝑜𝑙𝑡𝑠 

 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦     𝜇 = 1000 𝑐𝑚2/(𝑉 ⋅ 𝑠) 

 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒    𝜏 = 1 𝜇𝑠 

 Uniform Weighting field 𝑊 = 1/𝐿 

 𝑆𝑙𝑜𝑝𝑒           𝛼 = 5000 𝑐𝑚2/𝑉 (in case of linear electric field profile) 
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UNIFORM ELECTRIC FIELD PROFILE 
The application of a potential difference 𝑉 across the two electrodes, imagined as two flat and parallel 

planes, in which the edge effects are ignored and where the absence of localised charge within the 

material is assumed, leads to a uniform electric field profile equal to: 

𝐸(𝑥) = 𝐸0 =
𝑉

𝐿
                                                                                                      (3.25) 

 

 

 

 

 

 

 

 

The term 𝑡(𝑥), that is the time used by the carriers to reach the 𝑥 position, corresponds to: 

𝑡(𝑥) =
𝑥

𝜇𝐸𝑜
=
𝑥𝐿

𝜇𝑉
                                                                                                  (3.26) 

FIGURE 3.5 Spatial electric field profiles for different voltage values 

FIGURE 3.6 Time 𝑡(𝑥) used by the carrier to reach the 𝑥 position  



MODELING 3.4 The Models 

43 

 

The flight time 𝑇𝑅 becomes: 

𝑇𝑅 = 𝑡(𝐿) =
𝐿2

𝜇𝑉
                                                                                                     (3.27) 

 

 

 

 

 

 

 

 

The law of motion 𝑥(𝑡) is obtained by the inversion of 𝑥(𝑡) 

𝑥(𝑡) = 𝜇 
𝑉

𝐿
 𝑡                                                                                                           (3.28) 

Carriers, travelling in a uniform field, experience a constant velocity. The law of motion represents a 

uniform linear motion. 

FIGURE 3.7 Flight times as a function of the applied bias V  

FIGURE 3.8 Law of motion as a function of time  
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The electric field probed in time by the carrier doesn’t change because of its spatially uniformity: 

𝐸(𝑥(𝑡)) = 𝐸0 =
𝑉

𝐿
        0 < 𝑡 < 𝑇𝑅                                                                    (3.29) 

The Current signal becomes: 

𝐼(𝑡) =  
𝜇𝑉

𝐿
𝑄0 𝑒

− 
𝑡
𝜏 𝑊𝑥 (𝑥(𝑡))          0 < 𝑡 < 𝑇𝑅                                                (3.30) 

Under uniform weigthing field assumption the transient results: 

𝐼(𝑡) =  
𝜇𝑉

𝐿2
 𝑄0 𝑒

− 
𝑡
𝜏                             0 < 𝑡 < 𝑇𝑅                                                (3.31) 

FIGURE 3.9 Electric field 𝐸(𝑥(𝑡)) probed in time by the charge carrier  

FIGURE 3.10 Current transient signals. The signal’s decay in time is due only to 

trapping  
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SPATIAL LINEAR ELECTRIC FIELD PROFILE 
The presence of a fixed localised charge density 𝜌 within the material changes the spatial profile of 

the electric field: the first Maxwell equation explains how charge density causes distortion of the 

electric field from the uniform profile: 

 𝛻 ⃗⃗⃗⃗ ⋅ �⃗�  =
𝜌

𝜖
                                                                                                              (3.32) 

where 𝜖 is the absolute dielectric constant of the material. 

A uniform spatial charge distribution leads to a linear profile of the electric field: 

𝜌(𝑥) = 𝜌0 →  𝐸(𝑥) = 𝐸0 − 𝛼𝑥     𝑤𝑖𝑡ℎ 𝛼 = −
𝜌0
𝜖
                                         (3.33) 

Electric field can drop to zero inside the material for voltages 

 𝑉 ≤
1

2
 𝛼𝐿2 = 𝑉𝑇                                                                                                      (3.34) 

The term 𝐸0 = 𝐸(0) represents the value of electric field in proximity of illuminated electrode: 

𝐸0 = {
√2𝛼𝑉             𝑉 ≤

1

2
 𝛼𝐿2

𝑉

𝐿
+
𝛼𝐿

2
         𝑉 >

1

2
𝛼𝐿2

                                                                         (3.35) 

  

FIGURE 3.11 Linear Electric fields as a function of the detector’s depth.     



MODELING 3.4 The Models 

46 

 

The time 𝑡(𝑥) required to reach the general position 𝑥 results: 

𝑡(𝑥) =
1

𝜇𝛼
ln |1 −

𝛼

𝐸0
𝑥|                                                                                        (3.36) 

If the voltage is less than the threshold voltage 𝑉𝑇, the electric field vanishes inside the material. In 

this case the carriers probe a zero field while they are approaching in the 𝑥𝑛 position: charges employ 

an infinite time to arrive in 𝑥𝑛 position. 

The flight time 𝑇𝑅 = 𝑡(𝐿) becomes: 

𝑇𝑅 =
1

𝜇𝛼
ln | 

𝑉 −
𝛼𝐿2

2

𝑉 +
𝛼𝐿2

2

 |                                                                                         (3.37) 

 

 

 

 

 

FIGURE 3.12 Time 𝑡(𝑥) request to reach the 𝑥 position. For the value of voltage equal to 10 

Volt, lower than the threshold voltage value (𝑉𝑇 = 25 𝑉), carriers can’t reach the collecting 

electrode. 
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The flight time in the presence of decreasing linear field can therefore diverge if the voltage reaches 

the threshold value 𝑉𝑇 : 

lim
𝑉→𝑉𝑇

+ 
𝑇𝑅 = +∞            𝑖𝑓 𝑉 ≤

𝛼𝐿2

2
 

 

From an experimental point of view, this means that the induced current on the collecting contact 

continues to give signal for a very long time, despite no charge can never arrive at the electrode.          

In this case, measurements are not of interest since it is impossible to establish a flight-time because 

the hypothesis that carriers travel for a space equal to the sample thickness falls. 

This condition is more general than the single case of linear field and it occurs whenever that the 

electric field collapses to zero in a point inside the material.  

In these cases an infinite flight time is observed and the carriers come closer indefinitely to 𝑥𝑛 position 

for which 𝐸(𝑥𝑛) = 0. The mathematical explanation is provided by the relation (3.22) 

The presence of points in which the electric field vanishes, causes the divergence of the time of flight. 

 

 

  

FIGURE 3.13 Flight times as a function of the applied voltages in the case of linear electric 

fields (grey) compared to the flight times in presence of uniform fields (orange).                      

The discrepancy between them becomes evident near the threshold voltage.  
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The inversion of the function 𝑡(𝑥) leads to the writing of the law of motion 𝑥(𝑡): 

𝑥(𝑡) =
𝐸0
𝛼
(1 − 𝑒−𝜇𝛼𝑡 )                                                                                         (3.38) 

 

In the case when the voltage 𝑉 is less than threshold value 𝑉𝑛, carriers come close to 𝑥𝑛 and the charge 

will not reach the collecting electrode. 

𝑥𝑛 =
𝐸0
𝛼
                                                                                                                    (3.39) 

The electric field probed in time by the charge carriers is a function of time with an exponential law: 

𝐸(𝑥 = 𝑥(𝑡)) = 𝐸0 𝑒
−𝜇𝛼𝑡                                                                                      (3.40) 

 

FIGURE 3.14 Laws of motion as a function of the time.  

FIGURE 3.15. Electric field probed in time. The decay is due to the fact that the carrier’s 

velocity is changing during the flight  
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The temporal profile of the current signal in the presence of an electric field which spatially linear 

profile can be obtained: 

𝐼(𝑡) = 𝑄0 𝜇𝐸0 𝑒
− 𝑡(𝜇𝛼+

1
𝜏
 )
 𝑊𝑥 (𝑥(𝑡))          0 < 𝑡 < 𝑇𝑅                                   (3.41) 

In presence of a uniform field weighting the signal becomes [37]: 

𝐼(𝑡) = 𝑄0
𝜇𝐸0
𝐿
𝑒
− 𝑡(𝜇𝛼+

1
𝜏
 )
                               0 < 𝑡 < 𝑇𝑅                                  (3.42) 

 

 

The current transients show a temporal decay due to the trapping, to the mobility but also to the 

electric field slope. In fact, the effective characteristic time of decay is: 

1

𝜏𝐸𝐹𝐹
= 𝜇𝛼 +

1

𝜏
                                                                                                       (3.43) 

For voltages lower that the threshold voltage the transient exhibit a signal with no finite flight time.  

 

 

 

 

 

 

FIGURE 3.16 Current transient signals with linear electric field profile  
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3.4.4 ANALYSIS OF CURRENT SIGNALS  
The analysis of the current transients allows to get information about the transport properties of the 

studied sample. In the past works, it was possible to obtain these values by selecting the electric field 

profile, uniform [36] or linear [32]. In fact, knowing the electric field profile (analytical function or 

experimental behavior) becomes possible to obtain the law of motion, the time of flight as a function 

of the applied voltage, and the value of the electric field probed in time 𝐸(𝑥(𝑡)) and then the time 

profile of the current 𝐼(𝑡). 

UNIFORM ELECTRIC FIELD  
In the case of uniform electric field’s assumption [35, 36] it becomes very simple to derive the lifetime 

and the mobility, in fact: 

 

1. The value of the life time is obtained from the slope of the fitted straight line of the logarithm 

of current signal as a function of time: 

ln(𝐼(𝑡)) = ln ( 
𝜇𝑉𝑄0
𝐿2

 ) − 𝑡/𝜏 

 

2. The value of mobility is obtained instead from the slope of the straight line interpolating the 

different flight times as a function of the inverse of the applied voltages: 

𝑇𝑅  (𝑉) =
𝐿2

𝜇𝑉
 

Once the mobility is known also the value of 𝑄0 can be found by the first term of the logarithm of the 

signal 𝐼(𝑡). 
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LINEAR ELECTRIC FIELD HYPOTHESIS 
In the presence of a linear field [32, 33] is still possible to obtain the values of the mobility, the life 

time and the slope of the field, assuming that this value does not change at different voltages. 

1. From the logarithm of the current signal the characteristic time 𝜏𝑓 = (𝜇𝛼 +
1

𝜏
)
− 1

with which 

the signal decreases exponentially in time is obtained. 

 

2. From the relation (3.36) instead the values of μα and α are found. Since in this case the field 

may drop to zero within the material, measurements at voltages higher than the threshold 

voltage have to be done. This value, however, is unknown at the beginning as it depends on 

the α field slope. The measures are valid until, lowering the voltage, it is possible to observe 

the time of flight. 

 

Combining all these experimental results, the lifetime, the mobility, the slope of the electric field, 

and the value of the photo-generated charge can be obtained. 

 

PROBLEMS REGARDING THE ELECTRIC FIELD PROFILE 
In the previous paragraphs, it has been shown that the electric field spatial profile modifies the profile 

and the duration of the current signal. For this reason, the hypothesis of a certain electric field profile 

can lead to a disastrous consequence about the right calculation of mobility and lifetime values. For 

example, for both uniform and linear electric fields, the profile of the current follows a decreasing 

exponential function of time. If we assume a uniform electric field profile, we obtain directly carrier 

lifetime, while in the case of a linear profile hypothesis we find an artificial lifetime that depends on 

the lifetime, mobility, and field bending. In addition, the approach with a linear electric field 

hypothesis implies that the bending of the electric field does not depend on the voltage applied. The 

question is: if the electric field profile is different from a linear or a uniform trend? 

Under a wrong hypothesis about the electric field spatial profile, we could obtain erroneous mobility 

and lifetime values, obtained by forcing the carriers to follow an electric field profile different from 

that they really probe in that position. One of the greatest novelty of this work is that the electric field 

spatial profile is not selected at the beginning, indeed it is obtained as an output function of the model. 
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3.5  𝟐𝝉 MODEL 

A general model [34] has been developed in the first instance assuming a uniform weighting field 

with which it becomes possible to obtain information on both the material transport properties and 

the shape of the electric field. 

3.5.1 ASSUMPTIONS IN 𝟐𝝉 MODEL 
2𝜏 model’s assumptions are: 

 The transport properties do not change with the applied voltage. 

The relationship between the carrier saturation velocity and the electric field is the carrier 

mobility, normally assumed as independent on the applied electric field. This relation loses 

validity for a saturation velocity higher than 𝑣𝑠 = 1.5 ⋅ 10
7 𝑐𝑚/𝑠.  

This condition of nonlinearity between field and velocity is reached when the field becomes 

greater than 𝐸𝑠 = 1 𝐾𝑣/𝑚𝑚. 

 

 The carriers are generated under the illuminated contact 

A high energy incident radiation is absorbed as a result of the photoelectric effect inside the 

material and creates a lot of electron-hole pairs that give an electrical signal. In this way the 

carriers cover a distance shorter than the thickness of the material so that the information 

regarding electrons and holes are mixed and it is impossible to evaluate the transport properties 

for each kind of charge carrier. Furthermore, the radiation must have a photon energy at least 

equal to the energy necessary to create the electron-hole pair. The visible radiation has been 

chosen as the best candidate for the current transient experiment: the visible photon is absorbed 

near the surface, within a few wavelengths (𝜇𝑚). The photon has an energy ranging from 1.75 

to 3.1 𝑒𝑉 for red and violet radiation, respectively. In particular, our experiment was carried 

out using a pulsed laser that shoots photons of 𝜆 = 532 𝑛𝑚 and energy 𝐸 = 2.33 𝑒𝑉. 

 

 The electric field does not vanish inside the material 

This assumption is critical for the use of the model. The current signal can be taken even at low 

voltages, but until the signal collapses to zero.  
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 Diffusion phenomena and detrapping are neglected 

The diffusion has the direct consequence of a broadening of the charge density. This leads to a 

drastic change, from an analytical point of view, in the mathematical analysis of the current 

signal. Despite the diffusion is a phenomenon always present, it is neglected here, as well as 

for analytical reasons, also because the final spatial spread of the charge package is much less 

of the thickness of the sample. For example, the application of 100 V on a sample with thickness 

equal to 1mm would lead to a spatial spread of the charge density equal to about 15 

micrometers. We can therefore establish, with good approximation, that the charge density 

package travels inside the material as a space-time Dirac delta function. Furthermore, the 

detrapping phenomena are negligible since the characteristic times are greater than 100 𝜇𝑠 ÷

1𝑚𝑠,values 100 ÷ 1000 times greater than typical times of flight in our experiments, so only 

an infinitesimal fraction of carriers trapped becomes able to escape from the traps and to take 

part in the signal. 

 

 The weighting field is uniform (valid for full-area samples) 

The weighting field depends only from the contact geometry. Paragraph (3.6) shows how to get 

the weighting field profile in according to the electrode geometry. If contacts are approximated 

as two equal parallel planes deposited on the opposite sides of a parallelepiped and having 

negligible edge effects, the density of the electric field lines is uniform and hence the weighting 

field is equal to the inverse of the thickness of sample: 

𝑊(𝑥) =
1

𝐿
 

While the 2𝜏 model is valid for those full area contacts of the samples in which the weighting 

field is nearly uniform, 1𝜏 model has a more general applicability when the weighting field can 

be calculated starting from any geometry of the contacts. 

 

 The initial charge photo-generated is independent of the applied voltage. 

The number of generated carriers does not depend on the voltage if the laser intensity has a 

good stability in time and if the set of measurements at different voltages can be carried out at 

a fixed beam energy. If at low voltages the intensity is increased to obtain a better signal-to-

noise ratio, the laser energy for subsequent acquisitions cannot be changed. 
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In a classic experiment of current transients, the photo-generated charge and the voltage application 

generate a current signal. Furthermore, different current profiles for N voltage values are acquired. 

The physical quantities known before experiment are: 

 The sample thickness L 

 N values of the applied voltage 𝑉𝑖  𝑖 = 1:𝑁  

 Uniform profile of weighting field 𝑊(𝑥) = 1/𝐿 

At first, after the acquisition of the temporal profiles of the current transients, it’s possible to measure: 

 N time profiles of the current transients 𝐼𝑖(𝑡) 

 N flight time values (the choice of the flight times is explained in Section 3.7.4) 

The quantities that remains unknown are: 

 Mobility 𝜇 

 Life-time 𝜏 

 Photo-generated charge 𝑄0 

 Spatial profile of the electric field 𝐸𝑖(𝑥) 

A semi-analytical model has been developed able to obtain all this information. 

The charge generation in a few micrometers below the illuminated electrode has two important 

consequences:  

 only a kind of carrier (electron or hole) produces signal; for example, if an electron is 

immediately collected by the anode, it does not travel and the time of flight is zero, whole the 

hole travels along the thickness of sample in a time equal to the time of time and it is collected 

by the cathode [40] 

 as a consequence, only a kind of carrier crosses the entire thickness of the sample to reach the 

collecting electrode and gives an electric signal. 
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THE CONSTRAINTS IN 𝟐𝝉 MODEL 
Choosing the charge sign according to the sign of the voltage Vi applied to the illuminated electrode 

(the collecting electrode is at ground as convention), the charge covers the sample’s thickness in a 

time of flight so that: 

𝐿 = ∫ 𝑣(𝑥𝑖(𝑡)) 𝑑𝑡                                                                                                (3.44)

𝑇𝑅𝑖

0

 

Furthermore, whatever the form of the electric field in the sample, its integral over space must be 

equal to the applied voltage 𝑉𝑖: 

𝑉𝑖 = ∫𝐸𝑖(𝑥) 𝑑𝑥 = ∫ 𝐸𝑖(𝑥(𝑡)) 𝑣(𝑥𝑖(𝑡))𝑑𝑡 = 𝜇∫ 𝐸𝑖(𝑥(𝑡))
2
𝑑𝑡

𝑇𝑅𝑖

0

             (3.45)

𝑇𝑅𝑖

0

𝐿

0

 

Recalling the formula (3.20) of the current transient 𝐼(𝑡), the two constraints (3.44) (3.45), written as 

integrals over time, become 

{
  
 

  
 

𝑄0 = ∫ 𝐼𝑖(𝑡) 𝑒
+ 
𝑡
𝜏 

𝑇𝑅𝑖

0

𝑑𝑡

𝜇𝑄0
2 =

𝐿2

𝑉𝑖
∫ (𝐼𝑖(𝑡) 𝑒

+ 
𝑡
𝜏)
2

𝑑𝑡

𝑇𝑅𝑖

0

                                                                           (3.46) 

Although it seems that the number of the unknown quantities (𝑄0, 𝜇, 𝜏 and the 𝐸𝑖(𝑥) functions) is 

excessive compared to the constraints number, with the last form of the two constraints it is possible 

to observe that: 

 quantities on the left (𝑄0 𝑎𝑛𝑑 𝜇𝑄0
2), although they are unknowns, are constants because they 

not depend on the voltage applied. 

 on the right the only unknown quantity is the life-time τ 

The quantity on the left are not indexed, unlike those on the right. Then, for the right value of the life-

time also the right sides of the equation should not depend from the index and should converge 

simultaneously at the same value. The question is: how is it possible to find the right value of the 

lifetime? Varying the lifetime, spanning a wide appropriate range of values (from 10 𝑛𝑠 𝑡𝑜 100 𝜇𝑠) 

we can calculate 𝑄0(𝜏) and 𝜇𝑄0
2(𝜏). If exists a certain value of 𝜏 = 𝜏𝐵𝐸𝑆𝑇, the quantities 

𝑄0𝑖(𝜏𝐵𝐸𝑆𝑇) converge to the same value and 𝐵𝐸𝑆𝑇 becomes the correct value of lifetime. The same 

procedure can be used for the quantity 𝜇𝑄0
2(𝜏).  
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THE PROCEDURE IN 𝟐𝝉 MODEL 
The 2τ model process consist of two phases: 

1. Determination of the transport parameters and the photo-generated charge 

2. Reconstruction of the electric field spatial profile 

Current transients can be simulated to clarify the steps of the algorithm used. The physical quantities 

chosen for this example represent plausible values of our experiment: 

 Linear electric field   𝐸(𝑥) =  𝐸0  − 𝛼𝑥 

 Sample’s thickness  𝐿 =  0.257 𝑐𝑚 

 Mobility    𝜇 =  1100 cm2/(𝑉 𝑠)  

 Lifetime    𝜏 = 400 𝑛𝑠 

 Photo-generated   𝑄0  =  1 𝑝𝐶 

 Electric field’s slope  𝛼 = 500 𝑉/𝑐𝑚2 

 Voltages   𝑉 =  𝑓𝑟𝑜𝑚 30 𝑉 𝑡𝑜 90𝑉 𝑤𝑖𝑡ℎ 𝑠𝑡𝑒𝑝 𝑜𝑓 10𝑉  

The model, starting from the knowledge of thickness of sample, applied voltages and measured 

current profiles, allows to find all of the remaining amount, i.e. the transport parameters and the 

electric field profile. The simulated transients present the following profiles: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The current transients show an exponential drop with a characteristic time which depends both on the 

life time both from bending α of the electric field (3.43). Signals collapse to zero after a time equal 

to the flight time of the carriers. 

FIGURE 3.17 Simulated transients for model’s explanation 
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TRANSPORT PARAMETERS AND PHOTO-GENERATED CHARGE 
First, the algorithm allows to derive the values of mobility, lifetime, and photo-generated charge. The 

first quantity calculated is the collected charge. 

The integral of the current transient represents the charge induced on the electrode, equal to the charge 

amount that actually has covered the entire sample’s thickness. The low-voltage measurements show 

obviously a greater time of flight, as the charge crosses the sample with a low velocity. Therefore, 

the carriers have a higher probability to be trapped, especially when the time of flight increases so 

much to reach the carriers’ lifetime. During high voltage measurements, charges travel very fast and 

only a few charges are trapped: the collected charge becomes comparable to the total photo-generated 

charge 𝑄0. 

𝑄𝑖𝑐𝑜𝑙𝑙(𝑉) =  ∫ 𝐼𝑖(𝑡)

𝑇𝑅𝑖

0

𝑑𝑡                                                                                        (3.47) 

The next figure shows the charge collection for the different voltage values, starting from transient 

simulated in the previous figure 3.17. 

The collected charges are obviously a fraction of the photo-generated charge 𝑄0. The measurements 

at lowest and highest voltage respectively show a partial collection of charge equal to 25.3% and 

50.5%. The reason for which at low voltages the charge collection is low is due to charge trapping.  

 

Figure 3.18 Collected charge as a function of voltage 
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If we take into account the trapping, we can write the first model’s constraint 

𝑄0𝑖(𝜏) = ∫ 𝐼𝑖(𝑡) 𝑒
+ 
𝑡
𝜏 

𝑇𝑅𝑖

0

𝑑𝑡                                                                                     (3.48) 

The product between the current signal and the 𝑒 
𝑡

𝜏𝐶 factor, with the correct value of lifetime 𝜏𝐶 , 

produces an artificial rise of the number of carriers whenever they are trapped so that, for each 

voltage, the integral of the current coincides with the total charge 𝑄0.  

𝑄0𝑖(𝜏𝐶) = 𝑄0  ∀𝑖                                                                                                    (3.49) 

A possible way to find the correct lifetime is to create a fairly wide range of possible lifetime values,  

including 𝜏𝐶, for which the previous relation results valid. 

Obviously, since in our case the transients are simulated, we know beforehand that the value of 𝜏𝐶 is 

equal to 400 𝑛𝑠, as it has been previously set. This example is useful to show how the algorithm 

works and how we can re-extract the correct lifetime value. 

The 𝜏𝐶 value can be found by trying a set of possible candidates: 

 𝜏 = ∞       An infinite lifetime corresponds to a value of the term 𝑒+ 
𝑡

𝜏 equal to one. 

 𝜏 > 𝜏𝑐  In the case of a finite lifetime higher than the correct value (for example in this  

case 𝜏 = 500 𝑛𝑠) the term 𝑒+ 
𝑡

𝜏 has the effect to downsize the trapping effect and 

thus the value of the “artificial” collected charge increases. 

 𝜏 = 𝜏𝑐 The correct life time course allows the exact reconstruction of the photo-generated  

charge since the "artificial" charges go close to the same value, which coincides 

with 𝑄0 = 1 𝑝𝐶 

 𝜏 < 𝜏𝑐 With a shorter time than 𝜏𝑐 the term 𝑒+ 
𝑡

𝜏 becomes very huge : at very low voltages,  

where the time of flight is very high, the effect of the integration of the current 

creates a huge artificial collected charge, even greater than those collected. This 

phenomenon is physically impossible. 
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The main problem is to get good measurements of transient (good signal-to-noise ratio) at low 

voltage, where the flight times becomes at least comparable to the carrier lifetime. In fact, if the 

measurements are carried out only at high voltages, where the flight time is a small fraction of the 

lifetime, the measure becomes insensitive to the trapping phenomenon and the 𝜏𝐶 value cannot be 

obtained, finding only the lowest possible value for lifetime, equal to the time of flight of the lower 

voltage. 

The figure 3.19 shows a way to find the correct lifetime, but this method is unsuitable due to the huge 

number of lifetime values that must be tried before obtaining the correct value. 

Instead, it is preferred to calculate at fixed voltage 𝑉𝑗 the values of the charges 𝑄0𝑗(𝜏) as a function 

of the lifetime. A number of curves N, equal to the number of the measurements as a function of 

voltage, are obtained. Each curve represents the "artificial" charge collection at a fixed voltage as a 

function of 𝜏. 

  

Figure 3.19 Collected charge as a function of voltage for different 𝜏 candidates. For the correct 

value of 𝜏 (400 𝑛𝑠) the total charge does not depend on the voltage 
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Figure 3.20 shows the results for the seven transient simulated above: 

 

Spanning the lifetime in a range between 200 ÷ 1500 𝑛𝑠, the correct lifetime and the photogenerated 

charge are obtained as the crossing of the curves at different voltages. Despite the clarity of the figure, 

we have not yet reached the correct way to find the lifetime in a real experiment. Unlike a simulated 

experiment in fact, the N different curves will never meet exactly in a single point, but they will cross 

each other in a cloud of points very close together, indicating a convergence towards a value of 𝑄0. 

The quantity that measures the relative deviation between the N curves for each value of the lifetime 

is the variance of 𝑄0𝑖(𝜏): 

𝑉𝑎𝑟(𝑄0)(𝜏) = log [
1

𝑁
∑(𝑄0𝑖(𝜏) − 𝑄0𝑖(𝜏))

2
𝑁

𝑖=1

]                                               (3.50) 

where 𝑄0𝑖(𝜏) is the mean value calculated over all voltages at fixed 𝜏. 

𝑄0𝑖(𝜏) =
1

𝑁
 ∑𝑄0𝑖(𝜏)

𝑁

𝑖=1

                                                                                        (3.51) 

The quantity of interest is, however, the logarithm of the variance because of the different order of 

magnitude caused by the term 𝑒
𝑡

 𝜏 . 

Figure 3.20 Collected charge as a function of the 𝜏 candidates for different values of the 

applied voltage 
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In an equivalent way, the quantity 𝜇𝑄0
2 introduced by the second constraint allows to obtain another 

value of the lifetime. In fact, even in this constraint the only variable factor in the second member is 

again the lifetime. The same procedure used for the first constraint is applied: the variance of the 

quantities 𝜇𝑄0
2
𝑖
 must be calculated for each voltage: 

𝑉𝑎𝑟(𝜇𝑄02)(𝜏) = 𝑙𝑜𝑔 [
1

𝑁
∑(𝜇𝑄0𝑖

2(𝜏) − 𝜇𝑄0𝑖
2(𝜏))

2

 

𝑁

𝑖=1

]                                    (3.52) 

The two variances can be drawn as a function of 𝜏. In figure 3.21 the two minimum of the two 

variances is equal to 𝜏𝑐 = 400 𝑛𝑠. 

The quantities present in the first members of the following equations can be evaluated: 

𝑄0𝑖(𝜏) = ∫ 𝐼𝑖(𝑡) 𝑒
+ 
𝑡
𝜏

𝑇𝑅𝑖

0

𝑑𝑡                                                                                      (3.53) 

𝜇𝑄0𝑖
2 =

𝐿2

𝑉𝑖
 ∫ (𝐼𝑖(𝑡) 𝑒

+ 
𝑡
𝜏)
2

𝑑𝑡                                                                            (3.54)

𝑇𝑅𝑖

0

 

The 𝑄0 and 𝜇𝑄0
2 values, that in reality do not depend on the applied voltage, are obtained as mean 

value over all the voltages: at this point it becomes possible to calculate the mobility. 

Figure 3.21 Variance curves of the term 𝑄0 and 𝜇𝑄0
2 for the determination of the lifetime 
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ELECTRIC FIELD RECONSTRUCTION 
The knowledge of transport parameters and photo-generated allows, starting from the relation 3.20 to 

obtain the quantity 𝐸𝑖(𝑥(𝑡)), so the electric field for each voltage 𝑉𝑖 probed in time by the carriers 

during their flight is: 

𝐸(𝑥𝑖(𝑡)) =
𝐿

𝜇𝑄0
 𝐼𝑖(𝑡) 𝑒

 + 
𝑡
𝜏                                                                                  (3.55) 

The laws of motion can be calculated: 

𝑥𝑖(𝑡) = ∫𝑣𝑖(𝑡′) 𝑑𝑡′

𝑡

0

= 𝜇∫𝐸(𝑥𝑖(𝑡′)) 𝑑𝑡′ 

𝑡

0

                                                       (3.56) 

For each instant 𝑡 the terms 𝐸 (𝑥𝑖(𝑡)) and the law of motion 𝑥𝑖(𝑡) are calculated; in this way it is 

possible to correlate each position with its relative value of the electric field and then to reconstruct 

the electric field 𝐸(𝑥) 

 

In synthesis, this method allows to obtain the transport parameters, the photo-generated charge and 

the spatial electric field profile, with the assumption of uniform weighting field. The lifetime can be 

found only if the voltages are low enough to have flight time comparable to the lifetime itself. 

 

FIGURE 3.22 Electric field spatial profile reconstruction 
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3.6  𝟏𝝉 MODEL 

The previous model can successfully get mobility values, life time and electric field with the 

hypothesis that the contacts deposited on the samples are both full contact area.  

Recently, complex geometries such as pixelated detectors and strip detectors [38,39] have focused 

attention to couple a good spectroscopic performance to a good spatial resolution. In this way, a single 

device can identify the photon interaction position together with its energy. 

 

3.6.1 THE RAMO-SHOCKLEY THEOREM 
A different geometry, however, entails complications from the point of view of the calculation of the 

current signal. The Ramo-Shockley theorem [40] explains how the charge motion in a semiconductor 

creates instantaneously (at the speed of light) an induced signal at the collecting electrode (CE).  

For example, a charge 𝑞 in the position 𝑟𝑞⃗⃗⃗   at the time 𝑡, that moves with a velocity 𝑣 (𝑟 𝑞); induces the 

movement of a 𝑄𝐼𝑁𝐷 image charge through the collecting electrode CE equal to: 

 𝑄𝐼𝑁𝐷 = −𝑞𝑉𝑊(𝑟𝑞⃗⃗⃗  )                                                                                              (3.57) 

 

Where 𝑉𝑊(𝑟 ) is the weighting potential, a geometric scalar quantity that is obtained: 

 Removing the charge q 

 Fixing the CE potential equal to one ( 𝑉𝑊𝐶𝐸 = 1) 

 Fixing all others electrodes at zero voltage. ( 𝑉𝑊𝑁𝑂𝐶𝐸
= 0) 

 Solving the Laplace equation , Δ(𝑉𝑊 (𝑟  )) = 0 with the correct boundary conditions.  

Starting from this assumption, it is possible to obtain the weighting potential 𝑉𝑊(𝑟 ). Furhermore, the 

negative gradient of 𝑉𝑊 results the geometrical vector quantity called “weighting field” �⃗⃗⃗� ( 𝑟  ). 

 

The weighting field is then subject to the constraint: 

∫ �⃗⃗⃗� (𝑟 ) ⋅ 𝑑𝑟  

𝑃𝐼𝑋𝐸𝐿

𝑁𝑂−𝐶𝐸

= 𝑉𝑊(𝑃𝐼𝑋𝐸𝐿) = 1                                                            (3.58) 

Where NO-CE stands for a point of one of the no collecting electrodes. 
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Then in case of uniformity of the weighting field (full area electrodes) it results equal to the inverse 

of the thickness, along the x direction: 

 𝑊𝑈𝑁𝐼𝐹 = 1/𝐿  �̂�                                                                                                   (3.59) 

 

The weighting potential is different from the electric potential due to the assumption of the R.S. 

theorem: other electrodes, different from the collecting electrode, are at weighting potential equal to 

zero. 

For example, in a pixelated detector the electric field could remain uniform with the application of 

the same bias between the guard ring (no collecting electrode) and the pixel (collecting electrode). In 

this way, in absence of fixed charge and neglecting the small gap between the guard ring and the 

pixel, generally a small fraction of the pixel size (100 𝜇𝑚), the uniformity of the electric field is 

insured. The weighting field instead does not show a uniform profile because, for the weighting 

potential calculation, the guard ring potential is set to zero, since it is not a collecting electrode. 

GUARD       PIXEL       GUARD 

ILLUMINATED ELECTRODE 

PIXEL (CE) 

WEIGHTING FIELD 

CONFIGURATION 

FIGURE 3.23 For the calculation of the weighting potential the illuminated electrode and the 

guard ring (non collecting electrodes) are set at zero weighting potential, while the pixel is set 

at one. Illuminated electrode and guard have the same weighting potential. 

 

GUARD       PIXEL       GUARD 

ILLUMINATED ELECTRODE 

BIAS 

APPLICATION  
PIXEL (CE) 

FIGURE 3.24 The application of the same voltage on guard ring and pixel guaranties the ideal 

uniformity of the electric field. Pixel and guard ring have the same electric potential. 
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While the electric field determines the charge trajectory and velocity, the weighting field depends 

only on geometry and determines how charge motion couples to a specific electrode.  

Only in 2-electrode configurations, i.e. planar configuration, the electric field and the weighting field 

have the same form. 

 

The figure 3.25 shows how the motion of a positive charge towards the lower potential electrode 

leads the creation of an induced negative charge (3.57) that is responsible for the current transient 

signal. The time derivative of the induced charge, the induced current, is proportional to the coupling 

between the velocity, and then to the electric field, and the weighting field: 

𝑑

𝑑𝑡
𝑄𝐼𝑁𝐷  = 𝐼𝐼𝑁𝐷 = 𝑞 𝑣 (𝑟 ) ⋅ �⃗⃗⃗� (𝑟 ) =  𝑞 𝜇�⃗� (𝑟 ) ⋅ �⃗⃗⃗� (𝑟 )                                (3.60)  

The planar geometry and the assumption of uniformity inside the material lead the creation of an 

electric field along the only 𝑥 direction. The current signal becomes: 

𝐼𝐼𝑁𝐷 =  𝑞 𝜇𝐸 𝑊𝑥                                                                                                   (3.61) 

Then, starting from the electrodes’ geometry it is possible to obtain the weighting potential, the 

weighting field and its 𝑊𝑥 component.  

  

FIGURE 3.25 Generation of the induced charge 𝑄𝐼𝑁𝐷 at the collecting electrode (PIXEL) 

due to the movement of the charge q in the material. 
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The presence of pixels is responsible for the non-uniformity of weighting field along the electric field 

direction. The weighting potential lines are indeed concentrated near the pixel, so on the collecting 

electrode the weighting field results to be higher than that on the illuminated one (figure 3.26) 

 

The profile of the weighting field modifies the temporal profile of the transient current : this field in 

fact is so-named because it weighs differently the induced charge 𝑄𝐼𝑁𝐷 (and induced current) based 

on the position of the charge 𝑞 inside the material.  

The component of the weighting field required for the calculation procedure is the component parallel 

to the direction of motion of the charges, that is, the direction of the electric field. (x direction) 

Weighting field is not uniform, however, for the sections along planes parallel to the directions 

perpendicular to the motion (y and z directions).  

Then a diffuse illumination of the entire electrode leads the carriers to probe very different weighting 

fields. There are also areas where the weighting field should be antiparallel to the electric field, 

leading to a reversal of the sign of the current. Lighting should be conducted within a minimum space 

and at the exact center of the contact, so that all carriers probe the same weighting field and also they 

reach the collecting pixels, not the guard ring. Then, observing the figure 3.26, the useful component 

of the weighting field 𝑊𝑥 is the one along 𝑥 direction at 𝑦 = 0 

 

Figure 3.26. Sample (5 x 5 x 2) 𝑚𝑚3. The pixel size is equal to 1.5 mm. On the left the 

distribution of the weighting potential and weighting field. On the right the component along 

the electric field direction of the weighting field as a function of the distance from the 

illuminated electrode (x direction). 
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3.6.2  THE PIXEL EFFECT 
Then current in a pixelated detector differs from that in a full-area detector, even if the transport 

parameters, the thickness, the voltage, and the electric field profile are exactly the same. In presence 

of a pixel as collecting electrode, the current shows the “pixel effect”, a final spike due to the 

weighting fields increase. This effect increases with decreasing the size of pixel. 

FIGURE 3.27 Simulated current transient on full-area electrodes detector (blue line), and 

pixelated detector (green line).Values: 𝑄0 = 500 𝑓𝐶; 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 2𝑚𝑚, 𝜇 = 10
3 𝑐𝑚

2

𝑉𝑠
, 𝜏 = 1𝜇𝑠,

𝑉 = 100 𝑉, 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝐸 , 𝐿𝐼𝐿𝐿−𝐸𝐿 = 5 𝑚𝑚 , 𝐿𝑃𝐼𝑋𝐸𝐿 = 1.5 𝑚𝑚 

 

The pixel effect increases the temporal 

final part of the current because, at the 

end of the flight, the no-trapped carriers 

are located at points where the weighting 

field is very high. In this case anyway the 

charge collection result lower then that 

with full area contacts: the signal current 

decreases at the beginning more than 

increases at the end. In other words, the 

induced charge in the pixelated detector 

results lower than the total charge that 

crosses the pixel at the flight time. 

FIGURE 3.28 Collected charge in pixel (green line) 

and in full-area detectors (blue line). This curves 

represent the integral over time of the currents 

showed in figure 3.27 
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3.6.3  THE PROCEDURE IN 𝟏𝝉 MODEL 
The 1𝜏 model proposes a method to find the transport parameters and the spatial electric field profile 

taking into account a non-uniform weighting field. The transient current depends strongly on this 

geometrical field: 

𝐼(𝑡) = 𝑄0 𝜇𝐸(𝑥(𝑡)) 𝑊(𝑥(𝑡)) 𝑒
−
𝑡
𝜏                                                                     (3.62) 

Then the current profile is subject to change in time because the carriers: 

 Probe a different electric field during the flight 

 Probe a different weighting field  

 Decrease due to trapping 

 

The difficulty lies in the fact that the term 𝑊(𝑥(𝑡)) is unknown at the beginning as the law of motion 

𝑥(𝑡). The low of motion, in fact, depends on the electric field profile, that it is initially unknown.  

The model’s assumptions are the same as those presented in the previous section (3.5.1) for the 2𝜏 

model, with the only difference that here the weighting field is not assumed as uniform, because of 

the different geometry of the electrodes. In the previous paragraph it’s widely explained as the 

presence of a pixel as collection electrode modifies this weighting field. 

 

The model consists of three main steps:  

1. Geometric  

2. Experimental  

3. Analytical  

 

GEOMETRIC STEP 
Starting from the contacts’ geometry (thickness 𝐿, size of the illuminated electrode and pixel) the 

spatial weighting field 𝑊(𝑥) is calculated using the Laplace equation. (using Matlab or Comsol) 

(figure 3.26).  
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EXPERIMENTAL STEP 
The acquisition of the current transient signals 𝐼𝑖(𝑡) is performed for 𝑁 different voltages 𝑉𝑖. 

Afterwards the flight times 𝑇𝑅𝑖 are measured for each transient. The experimental setup is shown in 

section 4.1. 

 

ANALYTICAL STEP 
After the geometric and the experimental acquisition of data it is possible to obtain in order: 

a. The lifetime 𝜏 and the photo-generated charge 𝑄0 

b. The laws of motion 𝑥𝑖(𝑡) 

c. The mobility 𝜇  

d. The spatial electric fields 𝐸𝑖(𝑥) 

 

a. The weighting field must respect the constraint: 

∫𝑊(𝑥) 𝑑𝑥 = 1                                                                                                      (3.63)

𝐿

0

 

Using the current’s definition (3.20), this constraint becomes: 

𝑄0 = ∫ 𝐼𝑖(𝑡) 𝑒
+ 
𝑡
𝝉 𝑑𝑡

𝑇𝑅𝑖

0

                                                                                            (3.64) 

It can be observed that this relation is exactly the same found for the 2𝜏 𝑚𝑜𝑑𝑒𝑙, that allowed through 

a minimization procedure, to find just 𝜏 and 𝑄0, assuming that the latter and the transport parameters 

do not depend on the applied voltage. 

FIGURE 3.29 Laser beam through the optical fiber, comes exactly at the contact center. 

The knowledge of the position of the generated charge is essential for the success of the 

procedure of the 1𝜏 model.  
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b. The law of motion 𝑥𝑖(𝑡) is the indefinite integral over time of the velocity 𝑣𝑖(𝑡) : 

𝑥𝑖(𝑡) = ∫𝑣𝑖(𝑡) 𝑑𝑡 =

𝑡

0

∫𝜇𝐸𝑖(𝑥(𝑡)) 𝑑𝑡

𝑡

0

                                                              (3.65) 

Then using the (3.62), this relation becomes: 

 

𝑥𝑖(𝑡) = ∫
𝐼𝑖(𝑡) 𝑒

+
𝑡
𝜏

𝑄0 𝑊(𝑥𝑖(𝑡))
𝑑𝑡

𝑡

0

                                                                                  (3.66) 

 

The only unknown quantity is the law of motion, present in the first member and also in the second 

one as argument of the weighting field. It is impossible then to obtain it with an analytical process.  

The only way is to perform a self-consistent iterative process: 

 

𝑥𝑁𝐸𝑊(𝑡) = ∫
𝐼𝑖(𝑡) 𝑒

+
𝑡
𝜏

𝑄0 𝑊(𝑥𝑃𝑅𝐸𝑉(𝑡))
𝑑𝑡                                                                     (3.67)

𝑡

0

 

 

Initially the unknown electric field profile is assumed as uniform. Then the initial law of motion is: 

𝑥𝑃𝑅𝐸𝑉(𝑡) = 𝑣 ⋅ 𝑡 = 𝜇𝐸𝑖𝑡 =
𝜇 𝑉 𝑡

𝐿
                                                                       (3.68) 

Now the quantity 𝑊(𝑥 = 𝑥𝑃𝑅𝐸𝑉(𝑡)) can be calculated, as the entire second member of the equation 

(3.67), that results equal to the recalculated law of motion 𝑥𝑁𝐸𝑊(𝑡).  

If the two law of motions are significantly different, the uniform electric field assumption was not 

adhering to the physical reality, and the law 𝑥𝑃𝑅𝐸𝑉(𝑡) becomes the new one 𝑥𝑃𝑅𝐸𝑉(𝑡), which will 

generate a new motion’s law and so on, until reaching a convergence.  

When the two motions’ law differ less than a tolerance, the correct time law 𝑥𝑖(𝑡), unless the same 

tolerance, is found. This procedure must be performed for each transient 𝐼𝑖(𝑡) at different voltages, 

obtaining 𝑁 different laws of motion. 
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c. The knowledge of the law of motion allows to obtain the velocity as a function of the time: 

𝑣𝑖(𝑡) = 𝜇𝐸(𝑥(𝑡)) =  
𝑑𝑥𝑖(𝑡)

𝑑𝑡
 

 

Now, starting from the same integral, it is possible to obtain two different result: 

 

∫𝑣(𝑥) 𝑑𝑥 =      

{
  
 

  
 

  

∫𝜇𝐸𝑖(𝑥) 𝑑𝑥

𝐿

0

= 𝜇𝑉𝑖           𝑢𝑠𝑖𝑛𝑔∫𝐸𝑖(𝑥) = 𝑉𝑖

𝐿

0

      ∫ [𝑣(𝑥(𝑡))]
2
𝑑𝑡

𝑇𝑅𝑖

0

              𝑢𝑠𝑖𝑛𝑔 𝑑𝑥 = 𝑣(𝑥(𝑡))𝑑𝑡

 (3.69)

𝐿

0

 

 

Then the mobility can be finally obtained: 

𝜇𝑖 =
1

𝑉𝑖
 ∫ [𝑣(𝑥𝑖(𝑡))]

2
𝑑𝑡

𝑇𝑅𝑖

0

 

The value of mobility, as for hypothesis does not depend on the applied voltage, it is obtained by 

averaging the 𝑁 values obtained. 

 

d. The electric field probe in time can be now calculated: 

𝐸𝑖(𝑥(𝑡)) =
1

𝜇
 𝑣𝑖(𝑥(𝑡)) 

 

Then the spatial electric field profile can be reconstructed in the same way as presented for 2𝜏 𝑚𝑜𝑑𝑒𝑙. 

(section 3.5) 
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3.7  THE DIFFUSION MODEL 

The current transients contain a lot of information about the transport properties of the sample. We 

have shown previously as the mobility and lifetime of charge carriers can be found and furthermore 

as the profile of electric field can be reconstructed, as long as detrapping and diffusion phenomena 

are neglected in the transport model. 

This assumption is reasonable since the detrapping time (100𝜇𝑠 − 10𝑚𝑠 in these materials) is in fact 

much greater than the typical times of flight and then the probability that a carrier, once trapped, 

manage to escape from the trap is very low. 

The thermal diffusion is usually neglected since its only effect is to spread the spatial carrier 

distribution during the flight. As will be seen later, the barycenter of carriers’ cloud follows the law 

of motion while carriers move away from it with a thermic velocity proportional to the diffusion 

coefficient. This phenomenon does not change the acquisition of the times of flight times and, as a 

consequence, it does not modify the procedure used to deduce the mobility and lifetime values.  

Diffusion instead affects heavily the electric field reconstruction because the final part of the signal 

is affected by the current due to those carriers that are collected after the arrival of the barycenter due 

to the spread of charge. This effect can alter the electric field reconstruction. In this paragraph, it is 

proposed a new method to evaluate the diffusion coefficient from the current transients and jointly to 

obtain a different way to find the value of carriers’ mobility. The Einstein–Smoluchwoski relation 

[46] shows as the diffusion coefficient D depends on the mobility of carrier: 

 

𝐷 = 𝜇 
𝐾𝐵𝑇

𝑒
= 𝜇 𝑉𝑇𝐻                                                                                           (3.70) 

 

Where 𝑉𝑇𝐻 is the thermal voltage equal to 26 mV at room temperature. For example, for a mobility 

value of electrons in CZT equal to 1000 cm2/(𝑉𝑠) , the coefficient diffusion results 𝐷 = 26 cm2/𝑠. 
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3.7.1  THE CHARGE DENSITY WITH DIFFUSION 
The transient signal is due to the motion of the charge carriers. Electrons or holes are drifted by the 

potential gradient towards the collecting electrode traveling across the entire detector following the 

law of motion imposed by the electric field.  

The total current is the sum of a drift motion, due to the electric field �⃗� , and a diffusive contribution, 

due to a possible concentration gradient ∇⃗⃗ 𝜌: 

 

𝐽 = 𝐽 𝐷𝑅𝐼𝐹𝑇 + 𝐽 𝐷𝐼𝐹𝐹𝑈𝑆𝐼𝑂𝑁 = 𝑠𝜇�⃗� 𝜌 − 𝐷 ∇⃗⃗ 𝜌                                                      (3.71) 

where: 

 𝐽  is the current density [𝐶/(𝑠 ⋅ 𝑐𝑚2)] 

 𝜇 is the carrier mobility [𝑐𝑚2/(𝑉 ⋅ 𝑠)] 

 𝐷 is the diffusion coefficient [𝑐𝑚2/𝑠] 

 𝜌(𝑥, 𝑡) is the charge density [𝐶/𝑐𝑚3] 

 𝑠 = 1 for holes and 𝑠 = −1 for electrons 

 �⃗� = 𝑠|�⃗� |�̂� is the stationary electric field 

If we rewrite the equation (3.71) we obtain: 

𝐽 =  (𝑠𝜇�⃗� − 𝐷
∇⃗⃗ 𝜌

𝜌
)𝜌                                                                                          (3.72) 

𝑣 = (𝑠𝜇�⃗� − 𝐷
∇⃗⃗ 𝜌

𝜌
)                                                                                               (3.73) 

We can observe that the carriers experience a drift and a diffusive velocity: 

𝑣 𝐷𝑅𝐼𝐹𝑇 = s𝑢�⃗�             𝑣 𝐷𝐼𝐹𝐹 = −𝐷 �⃗� 𝜌/𝜌 

The maximum number of carriers is localized in the charge barycenter and this is the only point where 

𝑣𝐷𝐼𝐹𝐹 = 0 because �⃗� 𝜌 = 0. The barycenter is the unique point that moves following only the law of 

motion imposed by the electric field. All other carriers depart instead relatively to the barycenter 

during flight, leading to a continuous enlargement of the package carriers. 
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3.7.2 THE CONTINUITY EQUATION 
The charge density is the solution of differential equation of continuity: 

{
  
 

  
 

  

𝜕𝜌

𝜕𝑡
= − ∇⃗⃗ ⋅ 𝐽 + 𝐺 − 𝑈 = −�⃗� ( s𝜇�⃗� 𝜌 ) + 𝐷 Δρ + 𝐺 − 𝑈

𝐺(𝑥, 𝑡) = 𝑄0 𝛿(𝑟 )𝛿(𝑡)

𝑈(𝑥, 𝑡) =
𝜌

𝜏

                        (3.74) 

The term 𝐺 is the generation rate: at (𝑥 = 0, 𝑡 = 0) the initial charge 𝑄0 is the photogenerated charge.  

The term 𝑈 is the destruction rate due to the trapping. Lifetimes of electrons and holes are in general 

different values with relation to the presence of traps (defects) within the detector. The value of 

lifetime has a great importance in 𝑋-𝛾 ray detectors: the carriers with a small lifetime, once trapped, 

do not give contribution to the electrical signal and causes the detection of an outwardly lower energy 

of the incident photon. 

The bias application in the 𝑥 direction leads to the creation of an electric field in the same direction. 

The uniformity within the material suggests that the electric field �⃗�  can be written: 

 

�⃗� (𝑥, 𝑦, 𝑧) = 𝑠 𝐸 𝑥                 𝐸(𝑥) = |�⃗� | 

 

The 𝑥 direction of the electric field leads the differential equation to assume this form: 

 

{
 
 

 
 𝜕𝜌

𝜕𝑡
= −

𝜕

𝜕𝑥
( 𝜇𝐸𝜌) + 𝐷 ( 

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
 ) 𝜌 −

𝜌

𝜏

𝜌 (𝑟 , 𝑡 = 0 ) = 𝑄0 𝛿(𝑟 ) 𝛿(𝑡)

                                 (3.75) 
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The general solution can be factored and written as the product of three functions respectively                  

of 𝑥, 𝑦 and 𝑧: 

𝜌( 𝑟  , 𝑡 ) = 𝑄0 𝑒
−𝑡/𝜏𝜌𝑥(𝑥, 𝑡) ⋅ 𝜌𝑦(𝑦, 𝑡) ⋅ 𝜌𝑧(𝑧, 𝑡)                                           (3.76) 

Along the y and z directions there is there is no voltage gradient: charges can’t be drifted towards this 

direction by electric field. Electrons and holes can move along y and z because of the diffusion. 

The densities 𝜌𝑦(𝑦, 𝑡) , 𝜌𝑧(𝑧, 𝑡) are solutions of a typical diffusion differential equation: 

 

𝜕𝜌

𝜕𝑡
= 𝐷

∂2

∂y2
𝜌         𝜌 = 𝜌 (𝑦, 𝑡)                                                                         (3.77) 

 

The charge density undergoes a change in time due to a diffusive term. The solution of this equation 

is a space-time Gaussian: 

𝜌( 𝑦, 𝑡 ) = 𝐺𝑦[ �̅�(𝑡); 𝜎
2 (𝑡)] =

1

√2 𝜋 𝜎2
 𝑒𝑥𝑝 [

(𝑦 − �̅�)2

2 𝜎2
]                           (3.78) 

 

The charge generation (at 𝑡 = 0) lies at 𝑦 = 0.  

The term �̅� represents the mean value of 𝑦. This value can change in time if a force is applied along 

the same direction. In our case, the charge movement is due only to the diffusion and to the spread of 

the charge density along the 𝑦 direction around the initial position: 𝑦 ̅remains equal to zero during 

the flight of charge. The charge spreads into the sample and its spatial distribution increases over 

time. The variance 𝜎2 is proportional to the diffusion coefficient D and increases linearly with the 

time through the following relation:  

 

𝜎2 = 2𝐷𝑡                                                                                                               (3.79) 

 

The charge densities along y and z directions can be therefore written as: 

 

𝜌𝑦,𝑧 = 𝐺𝑦,𝑧 [ 0;  4𝐷𝑡 ]                                                                                          (3.80) 
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Along the 𝑥 direction instead the differential equation is generally impossible to solve for a generic 

spatial profile of the electric field, but it admits solution in a few cases. 

The electric field term causes the charge drift in the 𝑥 direction. The mean value of 𝑥 position of the 

charge depends on the law of motion 𝑥(𝑡) imposed by electric field . 

The partial differential equation has solution if the electric shows a linear profile:  

 

𝐸(𝑥) = 𝐸0 − 𝛼𝑥 = (
𝑉

𝐿
+
𝛼𝐿

2
) − 𝛼𝑥                                                                (3.81) 

The uniform profile is a particular linear profile with electric slope 𝛼 equal to zero. 

It is noteworthy that in a time of flight measurement the electric field must not vanish: if the electric 

field becomes equal to zero the carrier experiences a velocity that drop to zero, while the time of 

flight diverges. The 𝛼 value, which represents the bending of the field, must therefore be smaller than 

the maximum value 𝛼𝑀𝐴𝑋: 

 

𝛼𝑀𝐴𝑋 =
2𝑉

𝐿2
                                                                                                           (3.82) 

 

Under these assumptions, it becomes possible to solve the equation and obtain the charge density: 

 

𝜌(𝑥, 𝑡) = 𝐺𝑥 [𝑥(𝑡); 𝜎𝑥
2(t)] exp(−𝜇𝛼𝑡)                                                           (3.83) 

The charge density shows a Gaussian shape, depending on the spatial coordinate and on the time, 

which decays in time due to the bending 𝛼 of the electric field. The law of motion x(t) is the solution 

of the differential equation (3.2) and represents the barycenter position as a function of time, starting 

from the generation time t = 0. 

 

𝑥(𝑡) =
𝐸0
α
 (1 − exp(−𝜇𝛼𝑡)) 

𝛼=0
→   𝜇𝐸0𝑡                                                         (3.84) 

In the case of a uniform electric field, the law of motion is a linear function of the time. 

 

 



MODELING 3.7 The Diffusion Model 

77 

 

The variance of the charge density increases in time as in a typical diffusion process. In the case of a 

uniform electric field, the well-known result, in which the standard deviation is proportional to the 

diffusion coefficient and the time, is obtained. [46] 

 

𝜎𝑥
2(𝑡) =

𝐷(1 − 𝑒𝑥𝑝(−2𝜇𝛼𝑡))

𝜇𝛼
  
𝛼=0
→   2𝐷𝑡                                                       (3.85) 

In the linear case the variance increases more slowly: with increasing time the variance converges to 

the value  

lim
𝑡→∞

𝜎𝑥
2(𝑡) =

𝐷

𝜇𝛼
                                                                                                    (3.86) 

 

The solution of the general differential equation of drift-diffusion with an electric field along 𝑥 

direction with a linear profile is a space-time 3D charge density written as the product of three 

Gaussian curves: 

 

𝜌(𝑟 , 𝑡) = 𝑄0 𝑒
−𝑡/𝜏 ⋅ 𝐺𝑥[𝑥(𝑡); 𝜎𝑥

2] ⋅ 𝐺𝑦 [0;  2𝐷𝑡] ⋅ 𝐺𝑧[0;  2𝐷𝑡]                   (3.87) 
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3.7.3 THE DIFFUSION SIMULATION 
The charge density is obtained by using a simulation with the typical physical values of our 

experiments. Simulation values: 

𝑉 = 10 𝑉𝑜𝑙𝑡 𝐿 = 0.1 𝑐𝑚  𝑄0 = 1 pC   𝜇 = 103 cm2/(V ⋅ s) 

𝜏 = 1 𝜇𝑠  𝐷 = 26 cm2/𝑠 𝛼𝑀𝐴𝑋 = 2000 V/cm
2 

 

FIGURE 3.30 Electric field profiles at the same voltage 𝑉 = 10 with different slope 

α = 0, 100 ,500 ,1000 ,1500 V/cm2 

 

FIGURE 3.31 Standard deviations along electric field direction as a function of 

time for different values of the electric slope 𝛼 = 0, 100 ,500 ,1000 ,1500 𝑉/𝑐𝑚2 
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Electric field with a linear profile cause instead the flight time increase, for the same voltage. From 

the figure we can observe that the carriers, despite traveling inside the detector for a longer time, 

show a lower standard deviation and then a lower diffusion. In fact the variance converges to the 

𝐷/(𝜇𝛼) value.  

In the case the field falls to zero within the material in position 𝑥0 the charge density come close 

indefinitely to this position using an infinite time to reach it. Despite the flow of time the variance 

would stand on a steady value. The charge density therefore would not move and does not spread 

more, but would continue to decrease because of trapping. 

 

THE CHARGE DENSITY IN 4D 
The charge density is a 4D quantity, as it evolves in space and time. Since the charge density fills 

completely the space, 3D isosurfaces are represented at different time values. The values for the 

parameters used in the simulation are the same as presented in the previous section. The values of the 

slope of the electric and the relative time of flight are: 

𝛼 = 950
𝑉

𝑐𝑚2
                      𝑇𝑅 = 1 𝜇𝑠 

Figure 3.32 shows the charge density for the following times: 𝑡 = (0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1) 𝜇𝑠 

In this way the charge density is shown from the time of generation to the collecting time through 

seven different snapshots 

The density evolves in time widening as a spheroid, where the semi-axes (equals along 𝑦 and 𝑧) 

represent the standard deviation of the respective densities 𝐺𝑥, 𝐺𝑦 and 𝐺𝑧. 

FIGURE 3.32 Isosurfaces at 1𝜎 of the charge density for different times 

 



MODELING 3.7 The Diffusion Model 

80 

 

THE CHARGE COLLECTION ALONG Y AND Z DIRECTIONS. 
The expansion along the y and z directions, as we shall see, has no effect on the current profile, if the 

weighting field is assumed uniform. In this way a charge that moves along a direction orthogonal to 

the 𝑥 axis, brings no contribution to the current signal because this purely diffusive current has zero 

coupling with the weighting field. Anyway, the standard deviations of these Gaussians must therefore 

be much smaller than the size of the contact itself. For example, in this simulations the value of the 

standard deviations at the flight time is equal to 100 𝜇𝑚, while the contact side is usually equal to 5 

mm. Then the free charge that moves along directions perpendicular to the electric field direction is 

totally collected and does not change the current profile. 

 

∬𝐺𝑦 𝐺𝑧 𝑑𝑦 𝑑𝑧 = 1    ∀𝑡                                                                                    (3.88) 

The contact collects, instant by instant, the current density over the whole volume. Some charge takes 

a shorter time to the flight time to traverse the entire thickness because it is pushed forward by both 

the electric field (which defines the time of flight value) and by the diffusion phenomenon. (figure 

3.2). All charges on the right of the barycenter is pushed forward, while all charges on the left are 

pushed back, and braked by diffusion. Essentially only the charges that are located in the barycenter 

take a time equal to the time of flight to cross the sample. At the instant in which the barycenter passes 

through the contact, (figure 3.32) half of the charge is still inside the material, so the contact is able 

to integrate only half of the total current. 

0 ≤ ∫𝐺𝑥 𝑑𝑥

𝐿

0

≤ 1                                                                                                 (3.89) 

The importance of this model is in fact twofold: on the one hand it is able to get the value of the 

diffusion coefficient, on the other hand it allows to find a way to measure the time of flight correctly, 

understanding form the current profile at what time the barycenter crosses the collecting electrodes. 
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3.7.4  THE CURRENT SIGNAL WITH DIFFUSION 
The induced current signal depends essentially on the spatial integral of the coupling between the 

weighting field and current density, where the latter is the product between the carriers’ velocity and 

the charge density. 

The charge density 𝜌(𝑟 , 𝑡) (3.87),with the constraint (3.88), that moves with a drift-diffusive velocity 

(3.8), induces on the collecting electrode a current signal (3.16).  

If we assume a uniform weighting (3.59) (planar full area detector) and a linear electric field along 𝑥 

direction with 𝛼 slope (3.33), the current transient becomes: 

 

𝐼(𝑡) =∭𝑣 𝑇𝑂𝑇(𝑟 ) ⋅ �⃗⃗⃗� (𝑟 ) 𝜌(𝑟 , 𝑡) 𝑑𝑉 

=
1

𝐿
(𝜇∭𝐸(𝑥) 𝜌(𝑟 , 𝑡) 𝑑𝑉 − 𝐷∭

𝜕𝜌(𝑟 , 𝑡)

𝜕𝑥
 𝑑𝑉) = 

=
𝑄0 𝑒

−𝑡/𝜏

𝐿
[ 𝜇 (∫(𝐸0 − 𝛼𝑥)𝐺𝑥(𝑥, 𝑡) 𝑑𝑥

𝐿

0

) −  𝐷(𝐺𝑥(𝐿, 𝑡) − 𝐺𝑥(0, 𝑡))] 

=
𝑄0
𝐿
 e−𝑡/𝜏 [𝜇𝐸0𝑒

−𝜇𝛼𝑡 ∆1(𝑡) − 𝐷𝑒
−2𝜇𝛼𝑡∆2(𝑡)]                                           (3.90) 

where:  

 the term ∆1 takes into account of the charge broadening and it’s equal to the Heaviside 

function if 𝐷 = 0, and change the current profile substantially in the proximity of the contacts 

(at 𝑥 = 0 and 𝑥 = 𝐿) 

∆1(𝑡) =
1

2
[erf (

𝐿 − 𝑥(𝑡)

√2𝜎𝑥(𝑡)
) + erf (

𝑥(𝑡)

√2𝜎𝑥(𝑡)
)]                                              (3.91) 

lim
𝐷→0
 ∆1= {

   1        0 ≤ 𝑥(𝑡) ≤ 𝐿
   0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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 the term ∆2 instead represents two Gaussian function centered always in the proximity of the 

contacts and in diffusion absence ∆2 represents two Delta-Dirac. 

 

∆2(𝑡) =
1

√2𝜋σx(t)
{exp [−(

𝐿 − 𝑥(𝑡)

√2𝜎𝑥(𝑡)
)

2

] − exp [−(
𝑥(𝑡)

√2𝜎𝑥(𝑡)
)

2

]}       (3.92) 

lim
𝐷→0
 ∆2= 𝛿[𝑥(𝑡)] + 𝛿[𝐿 − 𝑥(𝑡)] 

While the first current term 𝜇𝐸(𝑥(𝑡)) ∆1(𝑡) results a zero-order diffusion process, the second term 

𝐷𝑒−2𝜇𝛼𝑡∆2(𝑡) is a first-order diffusion process. Then, if the diffusion phenomenon is negligible 

compared to the charge drift, the second term would become negligible.  

 

We can compare the mean drift velocity to the mean diffusion velocity: 

 The mean drift velocity is equal to the ratio between the thickness and the time of flight. 

�̅�𝐷𝑅𝐼𝐹𝑇 =
𝐿

𝑇𝑅
=
𝜇𝑉

𝐿
 

 The mean diffusion velocity is the ratio between the broadening of the charge at the end of 

flight and the time of flight: 

�̅�𝐷𝐼𝐹𝐹 =
𝜎𝑋(𝑇𝑅)

𝑇𝑅
=
√( 2 𝐷 𝑇𝑅  ) 

𝐿
= √

2𝐷

𝜇𝑉
                                                          (3.93) 

The coefficient diffusion D is connected to the mobility from the relation (3.70) 

The ratio between drift and diffusion velocities becomes: 

�̅�𝐷𝐼𝐹𝐹
�̅�𝐷𝑅𝐼𝐹𝑇

= √
2𝑉𝑇𝐻
𝑉
                                                                                                  (3.94) 

The diffusive term is then negligible until the applied bias results much higher than the thermal 

voltage. The main effect of the diffusion is visible in the current signal close to the time of flight. 

Without diffusion, all the free charges are collected at the same time, while the diffusion broadens 

the charge distribution: the density becomes more broadened as the diffusion coefficient increases. 

Diffusion phenomenon causes two consequences: the current profiles are distorted by the diffusion 

and it is more complicated to obtain the time of flight. 
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3.7.5  THE TIME DERIVATIVE OF THE CURRENT SIGNALS 
Any transients with different coefficient diffusion have a common point: the final flex point (Figure 

3.34). This point represents the arrival of barycenter of charge at the collecting electrode and it is the 

correct point to evaluate the time of flight.  

The time at which the barycenter crosses the electrode is independent of diffusion because the 

barycenter is the only point which travels according to the law of motion and is subject only to the 

electric drift.  

The signal is proportional to the term 𝛥1, (3.91), giving when derived a temporal Gaussian centered 

at time in which the barycenter reaches the L spatial coordinate, that is exactly the time of flight. 

FIGURE 3.34 Current profiles for different values of coefficient diffusion  

𝐷 = 0.1 ;  1 ; 10 ; 26 ; 100 𝑐𝑚2/𝑠 

 

FIGURE 3.35 The figure shows the time derivatives of the current transients shown in 

Figure 3.34. The curves represent the temporal Gaussian curves centered on the time of 

flight with a width increasing with increasing diffusion coefficient. 
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The time derivative of the Δ1 term actually has a more complicated shape: in the derivation process, 

we have to take into account that even the law of motion and the standard deviation are time-

dependent. Furthermore the derivative of the current transient also implies the derivation of the term 

of trapping and of the drift term 𝐸(𝑥(𝑡)). As a consequence, the current gradient is not exactly a 

Gaussian, as can be seen from the next figure.  

The purpose of this model is not in fact to get the exact analytical form of the derivative of the 

transient, but rather to find a relation between the Gaussian width and the diffusion coefficient. 

This approximation remains valid until the time variations of the other quantities (trapping and 

electric field) are negligible during the passage of the charge density across the contact. 

 

How much time does the charge density take to cross the contact? 

The quantity of interest is the temporal full width at half maximum, 𝐹𝑊𝐻𝑀𝑇. It is equal to 

2√2ln (2) 𝜎 ≈ 2.335 𝜎 and represents the time required for a 76% of the charge amount around the 

barycenter to cross the contact. The 𝐹𝑊𝐻𝑀𝑇  can be calculated easily from its definition. 

 

In figure 3.36 the green point represents the time 𝑇𝑅
− = 𝑇𝑅 −

𝐹𝑊𝐻𝑀𝑇

2
 at which the charge that is 

located to the right of barycenter at a distance equal to half the spatial 𝐹𝑊𝐻𝑀𝑥 crosses the contact. 

This charge portion employs a time shorter than the time of flight to reach the electrode as it has been 

accelerated by diffusion. At this time the 88% of the charge is still in the sample.  

FIGURE 3.36 Current derivative in time, green and red point determine the 𝐹𝑊𝐻𝑀𝑇.  

The purple point represents the time at which the barycenter reaches the contact 
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The purple point represents instead the contact crossing by the barycenter. This point is not affected 

by the diffusion and then takes a time equal to the time of flight to reach the contact. The 50% of the 

charge is still in the sample. 

The red point represent instead the charge located to the left of barycenter at a distance equal to half 

the spatial FWHM. This charge takes a longer time than flight time 𝑇𝑅
+ = 𝑇𝑅 +

𝐹𝑊𝐻𝑀𝑇

2
 because it is 

slowed down by the diffusion. Only 12% of the charge is still in the sample. 

The relation between 𝐹𝑊𝐻𝑀𝑋 and 𝐹𝑊𝐻𝑀𝑇 is very simple. The charge density, as it passes through 

the contact has a speed of drift (much greater than diffusion velocity) proportional to the electric field 

close to the contact. The charge portion which is within the 𝐹𝑊𝐻𝑀𝑋 then employs a time equal to 

𝐹𝑊𝐻𝑀𝑇 to cross the contact, as a pure translational effect of the charge density. 

 

 (𝐹𝑊𝐻𝑀)𝑇 =
 (𝐹𝑊𝐻𝑀)𝑋
𝑣(𝑥 = 𝐿)

=
2√(2 𝑙𝑛(2)) 𝜎𝑥(𝑡 = 𝑇𝑅)

𝜇𝐸(𝐿)
                             (3.95) 

For example, in presence of a uniform electric field (or for a weak linear profile) the 𝐹𝑊𝐻𝑀𝑇 

becomes: 

(𝐹𝑊𝐻𝑀)𝑇 = √
16 ln(2)𝐷𝑇𝑅

3

𝐿2
                                                                          (3.96) 

 

 

FIGURE 3.37 Three different frames of the charge density at times 𝑇𝑅
− , 𝑇𝑅 , 𝑇𝑅

+. 

Charge is going through the contact (𝑥 = 𝐿 = 0.1 𝑐𝑚) (see figure 3.36) 
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During the data acquisition from the derivative in time of the signal we can obtain: 

 the correct flight time 𝑇𝑅 from the maximum of the derivative (the derivative in a downward 

inflection becomes a minimum); 

 the quantity 𝐹𝑊𝐻𝑀𝑇 taking the points at half height of the same Gaussian. 

Finally, the diffusion coefficient D can be obtained by linear interpolation by applying the logarithm 

to both sides of the equation (3.97): 

𝑙𝑛 (𝐹𝑊𝐻𝑀𝑇) = 0.5 𝑙𝑛 (
16𝑙𝑛(2)𝐷

𝐿2
) + 1.5 𝑙𝑛 (𝑇𝑅)                                     (3.97) 

The measurements carried out at different voltages 𝑉𝑖 allow the acquisition of different times of flight 

𝑇𝑅𝑖  and different values of 𝐹𝑊𝐻𝑀𝑇𝑖. Linear interpolation allows to determine: 

 the effectiveness of the model from the slope. In fact, the model predicts (for the uniform 

electric field) a slope equal to 1.5; 

 the coefficient diffusion from the y-intercept. From the 𝐷 values becomes possible to calculate 

the carrier mobility. 

 

From further simulations, it has been observed that the validity of this approach is good for weak 

slopes of a linear field. In fact, for a slope equal to 10% of the maximum slope 𝛼𝑀𝐴𝑋 (3.82) the 

relative error with which the diffusion coefficient is determined is equal to the one per cent. It must 

be remembered that this model is valid only for full planar detector area, where the weighting field is 

uniform. 

 

 

 

 

 

 

 

 



MODELING 3.8 Charge collection efficiency 

87 

 

3.8  CHARGE COLLECTION EFFICIENCY 

The Charge Collection Efficiency (𝐶𝐶𝐸) measurement is an alternative technique to obtain 

information about transport properties. In this case the photon excitation is continuous (𝐷𝐶) and it is 

conducted with a 250 𝑊 lamp that emits white light. A monochromator is used to set the radiation’s 

wavelength. 

 

The signal is the voltage drop on a load resistance R (Figure 3.38), reading by a lock-in amplifier. 

The reference signal of the lock-in is provided by an optical chopper that works at 220 𝐻𝑧. Despite 

the light arrives on the sample intermittently, the frequency is so low to consider the excitation as 

continuous compared to the time characteristic of the material response. The measurement is 

performed for different voltages applied to the sample.  

If the applied bias is low, the carriers’ time of flight results high and then the charge collection will 

be modest, while for high voltages the photo-generated charge will be collected almost completely.  

The charge collection efficiency is defined as the ratio between the collected charge at the electrodes 

and the photo-generated charge 𝑄0: 

𝜂(𝑉) =
𝑄𝐶𝑂𝐿𝐿(𝑉)

𝑄0
=
1

𝑄0
∫ 𝐼𝑉(𝑡) 𝑑𝑡

𝑇𝑅(𝑉)

0

                                                            (3.98) 
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FIGURE 3.38 CCE Experimental setup 
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After a few steps, using the formula (3.20) of the current signal, the efficiency (3.98) can be written 

as: 

𝜂(𝑉) = ∫ 𝑄0𝑒
− 
𝑡
𝜏 𝑊(𝑥(𝑡)) 𝜇𝐸𝑉(𝑥(𝑡))𝑑𝑡 =

𝑇𝑅(𝑉)

0

 

= ∫ e− 
t(x)
τ  𝜇𝐸𝑉(𝑥)𝑊(𝑥)

𝑑𝑥

𝑣(𝑥)
= ∫ e− 

t(x)
τ  𝑊(𝑥) 𝑑𝑥

min( 𝐿,𝑥𝑛)

0

 

min( 𝐿,𝑥𝑛)

0

  

= ∫ 𝑊(𝑥)

min( 𝐿,𝑥𝑛)

0

𝑒
 − ∫

𝑑𝑥′
 𝜇𝜏𝐸 (𝑥′)
𝑥

0  𝑑𝑥                                                                        (3.99) 

where 𝑥𝑛 is the position in which the electric field could vanish within the sample. 

This relation shows that: 

 from the knowledge of the electric field profile the efficiency 𝜂(𝑉) can be obtained; 

 it is impossible to separate the mobility to the lifetime for anyway electric field profile. Then 

in a CCE measurement it is possible to obtain only the 𝜇𝜏 product. 

 

The experimental 𝜂(𝑉) curves are analysed using theoretical models. Assuming uniform both electric 

and weighting fields, Hecht [41] and Many [42], provide two analytical curves that allow to fit the 

experimental curves and to find the 𝜇𝜏 value.  

 

𝜂𝐻𝑒𝑐ℎ𝑡(𝑉) =  
𝜇𝜏𝑉

𝐿2
 (1 − 𝑒

− 
𝐿2

𝜇𝜏𝑉)                                                                   (3.100) 

𝜂𝑀𝑎𝑛𝑦(𝑉) =  
𝜇𝜏𝑉

𝐿2
 (1 − 𝑒

− 
𝐿2

𝜇𝜏𝑉) (1 +
𝑠𝐿

𝜇𝑉
)
−1

                                            (3.101) 

where the term 𝑠 is the surface recombination velocity. 
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The collection efficiency in the case of linear field profile with a 𝛼 slope becomes: (ModHecht and 

ModMany models [37]),with a uniform weighting field: 

𝜂𝑀𝐻 = 

{
 
 
 

 
 
 
                                   √

2𝑉

𝛼𝐿2
( 

𝜇𝛼𝜏

𝜇𝛼𝜏 + 1
)                             |V| ≤

|𝛼|𝐿2

2

(
𝑉

𝛼𝐿2
+
1

2
) ( 

𝜇𝛼𝜏

𝜇𝛼𝜏 + 1
) 

[
 
 
 
 

1 − ( 1 − 
1

𝑉
𝛼𝐿2

+
1
2

 )

𝜇𝛼𝜏+1
𝜇𝛼𝜏

]
 
 
 
 

 |V| >
|𝛼|𝐿2

2

   (3.102) 

𝜂𝑀𝑀 = (1 +
𝑠𝐿

𝜇𝑉
)
−1
𝜂𝑀𝐻                                                                                                 (3.103)                                                                                            

 

The figure 3.39 shows several collection charge efficiencies a functions of voltage for different values 

of the product 𝜇𝜏 in the case of uniform field. The CCE increase at fixed voltage with increasing 𝜇𝜏 

product and at fixed 𝜇𝜏 value the efficiency increase with increasing the voltage because charge has 

less probability to be trapped. 

 

 

 

 

FIGURE 3.39 Charge collection efficiency in the case of a uniform electric field for different 

values of 𝜇𝜏.  
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In figure 3.40 the efficiencies in the case of a linear electric field result lower than that calculated 

with a uniform electric field if the voltages are lower than the threshold voltage, with the same 

transport parameters. In the case the electric field drops to zero, no one carrier reaches the electrode 

and the collected charge becomes very low: i.e. the blue line in the figure above represents a low CCE 

due to the high electric field slope.  
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FIGURE 3.40 Charge collection efficiency in presence of linear electric field profile [37] 
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4 MEASUREMENTS 

Measurements are carried out on solid-state detectors based on 𝐶𝑑𝑇𝑒 𝑎𝑛𝑑 𝐶𝑑𝑍𝑛𝑇𝑒. Analysis of 

experimental results by means of suitable transport models allows to obtain a carefully 

characterization of the charge collection processes.  

 

The samples studied differ for: 

 Type of material    (𝐶𝑑𝑇𝑒;  𝐶𝑑𝑍𝑛𝑇𝑒) 

 Growth technique and provider  (𝑅𝐸𝐷𝐿𝐸𝑁;  𝐼𝑀𝐸𝑀) 

 Geometry of metal contacts   (𝐹𝑈𝐿𝐿 − 𝐴𝑅𝐸𝐴;  𝑃𝐼𝑋𝐸𝐿) 

 Thickness    (𝑓𝑟𝑜𝑚 500 𝜇𝑚 𝑡𝑜 4 𝑚𝑚) 

 Metal for the electrodes    (𝐺𝑜𝑙𝑑;  𝑃𝑙𝑎𝑡𝑖𝑛𝑢𝑚) 

 

Measurement on full area detectors have been analysed by using the 2𝜏 model whereas the 1𝜏 model 

has been applied to pixelated detectors. The technique developed in order to obtain information about 

the transport properties and the electric field inside the material called Laser Excited-Transient 

Current Technique: (LE-TCT) [43] 

4.1  EXPERIMENTAL SETUP 

The laser used in the experiment is the 

𝑃𝑜𝑙𝑎𝑟𝑖𝑠 𝐼𝐼 𝑁𝑑: 𝑌𝑎𝑔. The wavelength of the 

first harmonic is 𝜆 = 1064 𝑛𝑚, in the infrared 

region. Since the energy gap of the CZT is 

about 1.57 𝑒𝑉, corresponding to the energy of a 

photon with 𝜆 = 800 𝑛𝑚, the 2° harmonic at 

𝜆 = 532 𝑛𝑚 is able to promote electrons from 

the valence to the conduction band. The laser 

pulse has a maximum energy equal to 30 𝑚𝐽 for 

pulse, a beam diameter 𝑑 = 2.75 𝑚𝑚 and a 

time pulse duration Δ𝑡 = 10 ÷ 20𝑛𝑠. The pulse 

energy and voltage of the flash-lamp (PFN) can 

be modified by the user to change the laser 

beam intensity. 

AMPLIFIER OSCILLOSCOPE 

0            𝐿 

𝑉 �⃗�  

PC 

LASER 

PHOTODIODE 

FIGURE 4.1 Transient Current Technique 

Experimental setup  
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The time profile of the laser is acquired by a photodiode 

and sent to the oscilloscope to be used as signal’s trigger. 

The Current Transient signal crosses a low-pass filter 

(figure 4.2) composed of two operational amplifiers. The 

signal is then read from the oscilloscope and sent to the 

computer. A Matlab program acquires for each voltage 

approximately 104 signals to obtain an averaged signal 

to reduce the random noise by the further factor of 100. 

 

4.2  FULL AREA DETECTORS 

Current transient measurements on full area detector allowed to obtain information about the transport 

properties of both electrons and holes, about the electric field profile, and to check the validity of the 

models presented in the thesis. 

The measurements of full-area samples are divided into 3 groups: 

 

1. CZT IMEM with Au contacts samples of different thickness  
 

2. CZT REDLEN with Pt contacts (results on electrons and holes) 
 

3. CdTe ACRORAD with Pt contacts  

 

4.2.1  CZT IMEM SAMPLES [ELECTRONS] 
Measurements have involved four samples of different thickness: [44] 

 

𝑆𝑎𝑚𝑝𝑙𝑒 1   𝐿 = 270 𝜇𝑚          𝑆𝑎𝑚𝑝𝑙𝑒 2   𝐿 = 500 𝜇𝑚 

𝑆𝑎𝑚𝑝𝑙𝑒 3   𝐿 = 2.5 𝑚𝑚          𝑆𝑎𝑚𝑝𝑙𝑒 4    𝐿 =  4  𝑚𝑚 

 

Both measurements by Transient Current Technique (TCT) and Collected Charge Efficiency (CCE) 

are carried out to verify the agreement between results from two different experimental approaches. 

TCT measurements allow to obtain separately mobility and lifetime of the carriers and the profile of 

electric field; the measure of CCE leads to obtain only the 𝜇𝜏 product, assuming a starting electric 

field profile (uniform or linear). 

 

FIGURE 4.2 Amplifier’s scheme 
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SAMPLE 1 CZT IMEM 𝑳 = 𝟐𝟕𝟎 𝝁𝒎 [ELECTRONS] 
In Figure 4.3 the transients show the typical initial spike due to the charge photo-generation with the 

laser, then a drift zone with the time decay due to trapping and the final part related to the arrival of 

electrons at the collecting electrode.  

Starting from the flight times’ acquisition for each transient it’s possible, using the 2𝜏 model, to find 

the lifetime, the mobility and, as shown in figure 4.4, the spatial electric field profiles: 

The analysis of a thin sample entails the use of very low voltages to be able to obtain times of flight 

at least comparable to the lifetime of carriers. Anyway the reconstructed electric fields show a uniform 

profile for all voltages. 

FIGURE 4.3 Electrons’ Current signal at different voltages in CZT IMEM sample with 

270 𝜇𝑚 thickness 

FIGURE 4.4 Electric fields at different voltages in CZT IMEM sample with 270 𝜇𝑚 

thickness 
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The mobility of electrons and lifetime result: 

µ = (1040 ± 40)
𝑐𝑚2

𝑉𝑠
          𝜏 = (410 ± 30) 𝑛𝑠 

In figure 4.5 the collected charge measured as a function of the applied voltage: 

 

The “best-fit” curve that describe better the experimental data is the Hecht curve, that assumes a 

uniform profile, just like the one obtained with the transient measurements.  

The value of the 𝜇𝜏 product obtained with TCT and CCE technique are in good agreement: 

 

 

 

 

 

 

Table 4.1 Values of 𝜇𝜏 product and electric field profile obtained with TCT and CCE techniques 

in CZT IMEM sample with 270 𝜇𝑚 thickness. 

 

TECHNIQUE 

 

𝝁𝝉 (𝒄𝒎𝟐/𝑽) 
 

Electric Field profile 

 

TCT 

 

(4.3 ± 0.4) 10−4 
Uniform 

(Experimental result) 

 

CCE 

 

(5.1 ± 0.6) 10−4 
Uniform 

(Hecht model) 

FIGURE 4.5 Collected charge as a function of applied voltages in CZT IMEM sample with 

270 𝜇𝑚 thickness 
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SAMPLE 2 CZT IMEM 𝑳 = 𝟓𝟎𝟎 𝝁𝒎 [ELECTRONS] 
In figure 4.6 current signals show time uniform profiles during the drift region, probably due to the 

fact that the electric field probed in time increases as the number of carriers decreases.  

In figure 4.7 the electric fields in fact show an increasing linear profile.  

The mean slope of the electric field can also be calculated as: 

𝛼 = Δ𝐸/Δ𝑥 

For example the field reconstructed from the transient at 1 volt (figure 4.7) show a variation of about 

30 𝑉/𝑐𝑚 in the entire thickness 𝐿 = 0.05 𝑐𝑚, then the electric field slope results 𝛼 = 600 𝑉/𝑐𝑚2. 

  

FIGURE 4.6 Electrons’ signals at different voltages in CZT IMEM sample with 500 𝜇𝑚 thickness 

FIGURE 4.7 Spatial Electric field profiles at different voltages in CZT IMEM sample with 

500 𝜇𝑚 thickness 
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The mobility and the lifetime calculated resulting from the application of the 2𝜏 model: 

µ = (1170 ± 60) 
𝑐𝑚2

𝑉 𝑠
          𝜏 = (510 ± 40) 𝑛𝑠  

In figure 4.8 the “best-fit” curve that describe better the experimental data is the ModHecht curve, 

that assumes a linear (increasing or decreasing profile), as obtained from the transient measurements. 

The value of the 𝜇𝜏 product and the slope obtained with TCT and CCE technique are in good 

agreement: 

 

Table 4.2 Values of 𝜇𝜏 product and electric field profile obtained with TCT and CCE techniques 

in CZT IMEM sample with 500 𝜇𝑚 thickness. 

 

 

TECHNIQUE 

 

𝝁𝝉 (𝒄𝒎𝟐/𝑽) 
Electric Field profile 

𝒔𝒍𝒐𝒑𝒆 𝜶 ( 
𝑽

𝒄𝒎𝟐
) 

 

TCT 

 

(6.0 ± 0.5) 10−4 
Increasing linear  

600 ± 50 

 

CCE 

 

(6.5 ± 0.5) 10−4 
Increasing linear 

(ModHecht) 

700 ± 100 

FIGURE 4.8 Collected charge as a function of applied voltages in CZT IMEM sample with 

500 𝜇𝑚 thickness 
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SAMPLE 3 CZT IMEM 𝑳 = 𝟐. 𝟓 𝒎𝒎  [ELECTRONS] 
The current signals in sample CZT with 2.5 mm (figure 4.9) show decay profiles probably due to the 

electrons’ trapping.  

The application of the 2𝜏 model show in figure 4.10 a reconstructed electric field with uniform profile 

in almost the whole sample.  

In this case carriers, probing the same electric field during the flight, move into the sample with a 

constant velocity proportional to the applied voltage and the current signal decay is only due to the 

trapping term. 

 

 

FIGURE 4.9 Electrons’ Current signals at different voltages in CZT IMEM sample with 

2.5 𝑚𝑚 thickness 

FIGURE 4.10 Electric fields at different voltages in CZT IMEM sample with 2.5 𝑚𝑚 thickness 
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The transport parameters calculated from the 2𝜏 model result: 

µ = (1020 ± 40) 
𝑐𝑚2

𝑉 𝑠
          𝜏 = (980 ± 30) 𝑛𝑠 

The CCE technique allow to compare the 𝜇𝜏 product with that measured with TCT technique.               

From the analysis of the collected charge as a function of the applied voltage (figure 4.11) it turns out 

that the curve that better describes better the experimental data is the Hecht curve, under the 

assumption of a uniform electric field profile.  

The value of the 𝜇𝜏 product is shown on the table 4.3: 

 

Table 4.3 Values of 𝜇𝜏 product and electric field profile obtained with TCT and CCE techniques 

in CZT IMEM sample with 2.5 𝑚𝑚 thickness. 

 

 

 

TECHNIQUE 

 

𝝁𝝉 (𝒄𝒎𝟐/𝑽) 
 

Electric Field profile 

 

 

TCT 

 

(1.0 ± 0.1) 10−3 
 

Uniform 

 

 

CCE 

 

(1.1 ± 0.3) 10−3 

 

Uniform (Hecht) 

 

FIGURE 4.11 Collected charge as a function of applied voltages in CZT IMEM sample with 

2.5 𝑚𝑚 thickness 
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SAMPLE 4 CZT IMEM 𝑳 = 𝟒 𝒎𝒎 [ELECTRONS] 
The figure 4.12 shows the transient current profiles measured for voltages between 180 V and 320 V. 

 

The electric fields profiles (figure 4.13) are reconstructed applying the 2𝜏 model. The electric fields 

show a uniform profile in almost the whole sample, except in the proximity of the illuminate sample 

until depth of about 200 𝜇𝑚, where the electric field decreases. 

 

 

FIGURE 4.12 Electrons’ Current signals at different voltages in CZT IMEM sample with 

4 𝑚𝑚 thickness 

FIGURE 4.13 Electric fields at different voltages in CZT IMEM sample with 4 𝑚𝑚 thickness 
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The transport parameters for electrons result: 

µ = (1050 ± 30)
𝑐𝑚2

𝑉𝑠
          𝜏 = (960 ± 40) 𝑛𝑠 

Finally, the results can be compared to those obtained with the measurement of the collected charge 

efficiency. The best interpolating curve result the Hecht curve, assuming a uniform electric field 

profile.  

The 𝜇𝜏 product is in good agreement with that calculated with TCT technique. 

 

Table 4.4 Values of 𝜇𝜏 product and electric field profile obtained with TCT and CCE techniques 

in CZT IMEM sample with 4 𝑚𝑚 thickness. 

 

 

 

TECHNIQUE 

 

𝝁𝝉 (𝒄𝒎𝟐/𝑽) 
 

Electric Field profile 

 

 

TCT 

 

(1.0 ± 0.1) 10−3 
 

Uniform  

 

CCE 

 

(0.9 ± 0.1) 10−3 
 

Uniform (Hecht) 

 

FIGURE 4.14 Collected charge as a function of applied voltages in CZT IMEM sample with 

4 𝑚𝑚 thickness 
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4.2.2  CZT REDLEN [ELECTRONS AND HOLES] 
 

1. ELECTRONS  

 

In figure 4.15 the current signals increase in time very quickly, probably due to the fact that the 

electric field probed in time is predominant compared to the trapping decay. An exponential increase 

of the term (𝐸(𝑥(𝑡)) indicates the presence of a linear increasing electric field. 

 

In figure 4.16 the electric fields show an increasing spatial profile, just as predicted from the current 

transients. 

FIGURE 4.16 Electric fields at different voltages in CZT REDLEN sample with 2 𝑚𝑚 

thickness obtained from electrons’ measurements 

FIGURE 4.15 Electrons’ current signals at different voltages in CZT REDLEN sample with 

2 𝑚𝑚 thickness 
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2. HOLES 

The application of a voltage of opposite sign leads to the measure of the hole current transients. 

Actually the holes’ signal is much lower that the electronic current due to the lower mobility of the 

holes. At the same voltage, the signal will thus be about 30 times less and, at the same time, 30 times 

more extended in time compared to the electrons’ signal.  

 

 

FIGURE 4.17 Holes’ current signals at different voltages in CZT REDLEN sample with 

2 𝑚𝑚 thickness 

FIGURE 4.18 Electric fields at different voltages in CZT REDLEN sample with 2 𝑚𝑚 

thickness obtained from holes’ measurements 
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The intermediate region of transients, in which holes drift, show a uniform profile in time. (figure 

4.17). Times of flight result much greater than the electronic ones at the same voltage. For example, 

at 160 Volts the electronic and the hole transients show times of flight approximately equal to 0.35 

and 9 microseconds, respectively, indicating a ratio between the mobility of electrons and holes equal 

to about 25. The mobility and the lifetime of electrons and holes are: 

𝜇𝐸𝐿 = (1150 ± 50) 
𝑐𝑚2

𝑉𝑠
          𝜏𝐸𝐿 = (1.1 ± 0.1) 𝜇𝑠  

𝜇𝐻𝑂 = (47± 3) 
𝑐𝑚2

𝑉𝑠
          𝜏𝐻𝑂 = (5.8 ± 0.4) 𝜇𝑠  

 

The ratio 𝜇𝐸𝐿 /𝜇𝐻𝑂 results close to 25, as 

calculated before by means of the times of 

flight. The lifetime of holes has been 

calculated with the minimization 

procedure of the 2𝜏 model. The Figure 

4.19 shows two minimum of the two 

variances (5.5 𝜇𝑠 𝑎𝑛𝑑 6.1 𝜇𝑠) used for the 

determination of the lifetime of the holes. 

(Figure 3.21)  

Starting from the times of flight acquisition is becomes possible to reconstruct the electric field 

profiles. The measurements of current transients for holes, performed at the same voltages used for 

electrons, allow a direct comparison between the reconstructed electric fields. They should be 

theoretically equal to each other. 

The electric fields obtained for electrons and holes show an increasing linear profile with different 

mean slopes: 

𝛼𝐸𝐿~5500 𝑉/𝑐𝑚
2           𝛼𝐻𝑂~4000 𝑉/𝑐𝑚

2 

  

The difference between slopes can be probably due to the different trapping of the electrons and holes: 

also the free charge, once trapped, can change the electric field profile. The holes’ lifetime results 5.3 

times greater than the electrons’ lifetime, then the trapping of the holes results low, just like the 

bending of the electric field. 

 

 

𝜏 (𝜇𝑠)  

𝑉
𝑎
𝑟𝑖
𝑎
𝑛
𝑐𝑒

 

FIGURE 4.19 The minimum of the variances 

indicate the lifetime of the holes. 
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4.2.3  CDTE ACRORAD [ELECTRONS] 
In figure 4.20 the signals obtained with the TCT technique in CdTe sample show a decreasing profile 

different from the typical exponential decay (trapping), due to the concave and decreasing shape of 

the electric field (figure 4.21) 

 

The application of the 2𝜏 model allow also to obtain the electrons’ transport parameters:  

𝜇𝐸𝐿 = (1050 ± 20)
𝑐𝑚2

𝑉𝑠
          𝜏𝐸𝐿 = (950 ± 30) 𝑛𝑠 
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FIGURE 4.20 Electrons’ signals in CdTe sample with Pt contacts and 1 𝑚𝑚 thickness 
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FIGURE 4.21 Electric field profiles in CdTe sample with Pt contacts and 1𝑚𝑚 thickness  
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APPLICATION OF THE DIFFUSION MODEL 
In the section 3.7.4 it was demonstrated how, starting from the current signals, it becomes possible to 

obtain information about the diffusion phenomenon. The procedure starts from the study of the time 

derivative of transients. 

The time derivative (figure 4.22) in fact represent a “temporal photo” of the charge density. The final 

part of each transient shows a Gaussian profile, the width of which indicates the time needed to charge 

density, which is enlarged during the flight, to cross the collecting electrode. This crossing time is 

simply the ratio between the spatial spread of the charge density at the time of flight and the velocity 

of carriers.  

The temporal spread of the final part of the transient increases with the decrease of the applied voltage, 

because the diffusion can work for a longer time (high flight times for low voltages).  

Looking at the final parts of the transients, from the highest to the lowest voltage, the spread of the 

carriers at different time instants can be drawn. The initial part of the curves shows that the temporal 

width of the time derivative is the same for all voltages and it represents the time duration of the laser 

pulse, equal to about 15 𝑛𝑠. 
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FIGURE 4.22 Time derivative of the transients (shown in figure 4.20) in CdTe sample  

𝑭𝑾𝑯𝑴 
Final part of the time 

derivative of the 

transient at 200 V 
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The Full Widths at Half Maximum of the Gaussian in the final part of the time derivatives are related 

to the flight times of the same transient: the crossing time of the charge density through the collecting 

electrode depends on the flight time 𝑇𝑅: 

𝑙𝑛(𝐹𝑊𝐻M) = 0.5 𝑙𝑛 (
16𝑙𝑛(2)𝐷

𝐿2
) + 1.5 𝑙𝑛 (𝑇𝑅) 

The graph of the logarithm of the FWHMs as a function of the logarithm of times of flight and the 

relative linear interpolation allows to: 

 Verify the validity of the model if a slope near to the theoretical value of 1.5 results from the 

interpolation 

 Obtain the diffusion coefficient 𝐷 from the y-intercept 

 Obtain the mobility of the carriers, in a different way, by using the relation among the 

diffusion coefficient, the mobility and the thermic voltage (26 𝑚𝑉 at RT) from the 

Smoluchwoski-Einstein relation 𝐷 = 𝜇 𝑉𝑡ℎ 

The slope obtained from the linear interpolation (figure 4.23) agrees with the ideal value equal to 1.5. 

The y-intercept value allows to obtain the diffusion coefficient D and the mobility: 

𝐷𝐸𝐿 = (27.1 ± 0.3)
𝑐𝑚2

𝑠
         𝜇𝐸𝐿 =

𝐷

𝑉𝑡ℎ
= (1040 ± 10)

𝑐𝑚2

𝑉𝑠
 

The values of the electrons’ mobility, calculated in two different ways, result in good agreement 

within the experimental error. 

𝑦 = (1.47 ± 0.05)𝑥 + (2.96 ± 0.03) 

𝑙𝑛(𝑇𝑅) 

 l
n
(𝐹
𝑊
𝐻
𝑀

) 

FIGURE 4.23 Full Width Half Maximum of the final part of the time derivatives of 

transients as a function of the flight times. The linear interpolation of the logarithm of the 

two quantities allow to obtain the value of the diffusion coefficient 𝐷 
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THE CHOICE OF THE CORRECT FLIGHT TIME 

The time derivative of the current signals in important not only for the study of the diffusion. The 

correct time of flight anyway does not depend on the diffusion coefficient because it depends only on 

the law of motion and then on the electric field profile. The barycentre is the only point in charge 

cloud not affected by the diffusion. 

The information about the departure of the barycenter from the illuminated electrode (START) and 

about its arrival at the collecting electrode (STOP) is found starting from the analysis of the time 

derivative of the transient current (figure 4.24). The initial and the final inflection points of the 

transient curves become a local maximum and minimum, respectively, in the time derivative and 

indicates the START and the STOP of the flight of the barycentre. Then the time of flight is the 

difference between the STOP and the START instants. This procedure was performed for all 

transients examined in the thesis. 

 

FIGURE 4.24 Transient at 75 V and its Time derivative (CdTe sample) 

START 

STOP 

FLIGHT TIME 
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4.3  PIXELATED DETECTORS  

The samples analysed in this section have a non-

symmetrical geometry of the contacts. While the 

illuminated electrode is full-area (𝑆 𝑥 𝑆), the 

collection electrode, named pixel in the following, has 

a smaller and variable size (𝑃 𝑥 𝑃) for different 

samples. The samples can differ for the thickness L, 

equal to the distance covered by carriers, generated 

near the illuminated electrode, to reach the pixel. 

The pixelated samples studied are divided into 3 groups: 

a. three CZT REDLEN samples, with Au contacts, with the same thickness and the same size of 

the illuminated contact, but with different pixel’s size 

b. CZT REDLEN sample with Pt contacts in which it has been possible to observe the holes’ 

current  

c. CZT IMEM sample with Au contacts  

 

4.3.1 REDLEN CZT: DIFFERENT PIXEL SIZE [ELECTRONS] 
 

The three REDLEN samples are characterized by: 

 Au contacts 

 Thickness 𝐿 = 2 𝑚𝑚 

 Size of illuminated electrode 𝑆 = 5.4 𝑚𝑚 

 Different pixel’s size 𝑃 = (4 ;  1.5 ;  0.5) 𝑚𝑚 

FIGURE 4.25  

Geometry of a Pixelated detector 

FIGURE 4.26 Different pixel’s size for 

the three REDLEN samples 

FIGURE 4.27 Spatial Weighting field profiles along Electric Field direction for 

samples with different pixel’s size 
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WEIGHTING POTENTIAL AND WEIGHTING FIELD  
The relative size of the pixel changes drastically the form of the lines of the weighting potential and 

the magnitude and the direction of the weighing field. In figure 5.3 this effect can be easily observed: 

if the pixel’s size decreases, the lines of the weighting potential are more concentrated at the pixel, 

and in this region the weighting field increases considerably. 

 

𝑃 = 4 𝑚𝑚 

 𝑆 = 5.4 𝑚𝑚  

𝐿 = 2 𝑚𝑚 

 

𝑃 = 1.5 𝑚𝑚 

𝑆 = 5.4 𝑚𝑚  

𝐿 = 2 𝑚𝑚 

 

𝑃 =  500 𝜇𝑚 

𝑆 = 5.4 𝑚𝑚  

𝐿 = 2 𝑚𝑚 

FIGURE 4.28 Weighting potential lines and weighting field for the three samples of different 

pixel size  
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CURRENT SIGNALS OF REDLEN CZT SAMPLES 
The current measurements on the CZT REDLEN samples have allowed to obtain the value of mobility 

and lifetimes of electrons. The electric fields were finally reconstructed starting from the same current 

signal. The applied voltages start at 10 Volts to 100 Volts with a step of 10 Volts.  

These sample belong to the same ingot but they differ for the pixel’s size. It is reasonable to expect 

that the carriers’ mobility, the lifetime and the electric field profile do not change dramatically with 

the geometry of the contacts. On the contrary, the time profile of the current can be different because 

of the “pixel effect” even if they should present the same time of flight at fixed voltage: the time of 

flight depends on the mobility and the spatial electric field profile, while it does not depend on the 

weighting field spatial profile.  

1. CZT REDLEN with pixel’s size 𝑃 = 4 𝑚𝑚 [ELECTRONS] 

The current signals have the typical form of a transient signal: 

 An initial spike (at 𝑡 = 0) due the charge generation with the laser beam; 

 A drift region due to the flight of carriers; 

 A signal’s fall due to the pixel’s crossing by the electrons; 

 At high voltages the carrier velocity increase and then the current, while the time of flight 

decrease. 

 

FIGURE 4.29 Current signals for different voltages (𝑓𝑟𝑜𝑚 10 𝑉 𝑡𝑜 100 𝑉 𝑤𝑖𝑡ℎ 10 𝑉 step)  

in CZT REDLEN sample with thickness 𝐿 = 2 𝑚𝑚 and pixel’s size 𝑃 = 4 𝑚𝑚 

(10 𝑉 ÷ 100 𝑉) 
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After the acquisition of the signals, the carrier lifetime can be calculated by the minimization 

procedure (figure 4.30) described in section 3.6.3. The minimum of the variance of the calculated 𝑄0𝑖 

represents the lifetime of the carriers. In this case the electrons’ lifetime is about 𝜏 = 1.4 𝜇𝑠. 

 

 

 

 

 

 

 

 

The electric fields are reconstructed (figure 4.31) after the calculation of mobility and laws of motion: 

In figure 4.31 the electric field show uniform spatial profiles at low voltages while on increasing the 

voltage, the electric field show a decreasing linear profile near the collecting pixel. 

The lifetime and mobility of electrons result: 

 

 

FIGURE 4.30 The lifetime of electrons is found with a minimization procedure. The figure 

shows the logarithm of the variance as a function of the 𝜏 candidates. 

FIGURE 4.31 Electric fields for different voltages (𝑓𝑟𝑜𝑚 10 𝑉 𝑡𝑜 100 𝑉 𝑤𝑖𝑡ℎ 10 𝑉 𝑠𝑡𝑒𝑝) in 

CZT REDLEN sample 

with thickness 𝐿 = 2 𝑚𝑚  

(10 𝑉 ÷ 100𝑉)  

𝜏 = (1.35 ± 0.05) 𝜇𝑠           𝜇 =  (970 ± 40) 𝑐𝑚2/(𝑉𝑠) 

  

𝜇𝜏 = 1.3 10−3 𝑐𝑚2/𝑉 

ln
(Q
0
v
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n
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) 



MEASUREMENTS 4.3 Pixelated Detectors 

112 

 

2. CZT REDLEN with pixel’s size 𝑃 = 1.5 𝑚𝑚 [ELECTRONS] 

The measurements of the current transient in the CZT sample with a pixel’s size 𝑆 = 1.5 𝑚𝑚 are 

shown in figure (Figure 4.32): 

The transients show the typical “pixel effect”: the current increases while carriers travel towards the 

pixel. The term that increases in time is the 𝑊(𝑥(𝑡)) quantity: the weighting field probed in time by 

the carriers increases approaching to the pixel. This effect is only a geometric effect. 

The calculation of the flight times, the procedure of minimization and the self-consistent approach 

described in the section 3.6.3 allow to obtain the transport parameters and the spatial electric field 

profile: 

FIGURE 4.32 Current signals for different voltages (𝑓𝑟𝑜𝑚 10 𝑉 𝑡𝑜 100 𝑉 𝑤𝑖𝑡ℎ 10 𝑉 𝑠𝑡𝑒𝑝) 

in CZT REDLEN sample with thickness 𝐿 = 2 𝑚𝑚 and pixel’s size 𝑃 = 1.5 𝑚𝑚 

 

(10 𝑉 ÷ 100 𝑉) 

FIGURE 4.33 Electric fields for different voltages (𝑓𝑟𝑜𝑚 10 𝑉 𝑡𝑜 100 𝑉 𝑤𝑖𝑡ℎ 10 𝑉 𝑠𝑡𝑒𝑝) in 

CZT REDLEN sample with thickness 𝐿 = 2 𝑚𝑚 and pixel’s size 𝑃 = 1.5 𝑚𝑚 

(10 𝑉 ÷ 100 𝑉)  
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In figure 4.33, reconstructed electric fields show, as for sample with a 4 mm pixel, a uniform profile 

at low voltages, while the downward trend at high voltages is more pronounced. The decrease of the 

electric field is probably due to the presence of a positive fixed charge in the proximity of the 

collecting pixel.  

The transport parameters result: 

 

 

 

3. CZT REDLEN with pixel’s size 𝑃 = 0.5 𝑚𝑚 [ELECTRONS] 

In figure 4.34 the signals present a rapid increase due to the approach of the carriers to the pixel, 

where the weighting field is much greater than that probed at the beginning of the flight: the “pixel 

effect” is now widely clear. 

 

 

 

 

 

𝜏 = (0.98 ± 0.07) 𝜇𝑠                𝜇 =  (990 ± 30) 𝑐𝑚2/(𝑉𝑠) 
 

𝜇𝜏 = 0.97 10−3 𝑐𝑚2/𝑉 

(10 𝑉 ÷ 100 𝑉)  

FIGURE 4.34 Current signals for different voltages  (𝑓𝑟𝑜𝑚 10 𝑉 𝑡𝑜 100 𝑉 𝑤𝑖𝑡ℎ 10 𝑉) in CZT 

REDLEN sample with thickness 𝐿 = 2 𝑚𝑚 and pixel’s size 𝑃 = 0.5 𝑚𝑚 
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The 1𝜏 model’s application allows to obtain the transport parameters and to reconstruct the electric 

fields: 

 

The figure 4.35 shows the electric fields at high voltages, where the polarization effect near the pixel 

is greater. Instead, for lower voltages, as it happens on the other two samples, the electric fields show 

a nearly uniform profile.  

The mobility and the lifetime of the electrons are equal to: 

 

 

 

 

 

 

(60 ÷ 100 𝑉)  

(10 𝑉 ÷ 50 𝑉)  

FIGURE 4.35 Electric fields for different voltages (𝑓𝑟𝑜𝑚 10 𝑉 𝑡𝑜 100 𝑉 𝑤𝑖𝑡ℎ 10 𝑉 𝑠𝑡𝑒𝑝) in 

CZT REDLEN sample  

with thickness 𝐿 = 2 𝑚𝑚  

𝜏 = (1.4 ± 0.05) 𝜇𝑠              𝜇 = (980 ± 50) 𝑐𝑚2/(𝑉𝑠) 

  
𝜇𝜏 = 1.37 10−3 𝑐𝑚2/𝑉 
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Measurements of current transient on three samples of the same ingot, where ideally the only 

difference lies in pixel size, showed that: 

 the mobilities calculated for all three samples are in good agreement within experimental errors; 

 the electric fields show a nearly uniform spatially profile at low voltages (from 10 to 50 Volts) 

while the electric fields show a descending profile in the proximity of the pixel for high voltages; 

  the lifetime of electrons are very similar, about 1.3 −

1.4 𝜇𝑠, in samples with 4 and 0.5 mm pixel’s size, while in the 

second sample the electron lifetime results 1 𝜇𝑠. We observe 

that also the slope of the electric field in the second sample is 

higher than in the others. The lifetime and the slope of the 

electric field could depend indeed on the presence of positive 

fixed charge. The fixed charge could bend the electric field and 

further it could increase the carriers’ trapping, decreasing the 

lifetime. The application of 1𝜏 model allows then to take into 

account of the contribution of the weighting field to the 

current. It is interesting to ask what would happen if we applied 

mistakenly the 2𝜏 model, which assumes a uniform weighting 

profile, to the current transients. In this case, the choice of the 

model leads to a serious consequence on the electric field 

spatial profile. The assumption of a uniform weighting field 

induces the model to correlate the increase of the current to the 

increase of the electric field, even if the real increasing 

quantity is the weighting field. The transport parameters 

resulting from this mistaken assumption are wrong. It turns out 

that the lifetime does not change considerably using 1𝜏 − 2𝜏 

model, because it’s calculated starting from the same 

constraint (3.64) in both model. Instead the mobility changes 

significantly and it increases artificially with the decrease of the pixel size (Table 4.1) 

 

 

 

 

  

PIXEL SIZE 

( mm ) 

𝝁 [CORRECT] 

(𝟏𝝉 𝒎𝒐𝒅𝒆𝒍) 

𝝁 [WRONG] 

(𝟐𝝉 𝒎𝒐𝒅𝒆𝒍) 

4 970 987 

1.5 990 1070 

0.5 980 1200 

FIGURE 4.36 Electric field 

reconstructed using wrongly the 

2𝜏 model, for signals in pixelated 

detector. 

 

TABLE 4.1 Mobility values of the 

three sample with different pixel 

size obtained using the 1𝜏 model 

(taking into account the non-

uniform weighting field) and the 

2𝜏 model. 
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4.3.2  REDLEN CZT WITH PT CONTACTS [ELECTRONS] 
It was observed before that the platinum electrodes enable the measure of signals from holes, in 

addition to electronic ones. The different work function between platinum and CZT is lower than that 

obtained with the junction Au-CZT. [45] This difference decreases the barrier for the escape of holes 

allowing to induce the current signal at the pixel.  

The holes’ mobility, 20-50 time less than electronic one, gives low induced signals nearly comparable 

to the thermal noise. For this reason, it is essential to use higher voltages than those used to obtain 

the electronic signals. In this sample, information related to the charge transport were obtained for 

both electrons that for holes, using two different ranges of voltages. Then the electric fields probed 

by carriers cannot be directly compared. 

The CZT REDLEN sample with Pt contacts has: 

 Thickness     𝐿 =  1.1 𝑚𝑚 

 Size of the illuminated electrode  𝑆 =  5.5 𝑚𝑚 

 Size of the pixel    𝑃 =  4 𝑚𝑚 

In this case (figure 4.37) the weighting field does not differ significantly from the uniform profile, 

(being the relative difference of the weighting field between the two contacts is within 2%) because 

the sizes of the illuminated and pixel electrode are similar. A uniform weighting field, for a sample 

with a thickness equal to 𝐿 = 1.1 𝑚𝑚 should have a magnitude equal to 𝑊 = 1/𝐿 = 9 𝑐𝑚−1.  

Obviously the weighting field 

probed by electrons and holes 

are exactly the same.  

The unique difference is the 

different sign of the applied 

voltage, while the geometry of 

the sample does not change. 

Distance from illuminated electrode (cm) 

FIGURE 4.37 Weighting field for CZT REDLEN 

with 𝐿 = 1.1 𝑚𝑚, 𝑃 = 5.5 𝑚𝑚 𝑎𝑛𝑑 𝑆 = 4𝑚𝑚. 
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SIGNALS ON CZT REDLEN WITH PT CONTACTS [ELECTRONS] 

 

With the application of the 1𝜏 model, the electric fields (figure 4.39) for this range of voltages are 

obtained:  

The electric field show a uniform profile, proving that for low voltages the sample is not affected by 

the polarization phenomenon.  

The transport parameters are equal to: 

 

(5 𝑉 ÷ 50 𝑉) 

FIGURE 4.38 Signals of electrons for different voltages (𝑓𝑟𝑜𝑚 5 𝑉 𝑡𝑜 50 𝑉 𝑤𝑖𝑡ℎ 5 𝑉 𝑠𝑡𝑒𝑝) in 

CZT REDLEN sample with Pt contacts with thickness 𝐿 = 1.1 𝑚𝑚 and pixel’s size 𝑃 = 4 𝑚𝑚 

 

(5 𝑉 ÷ 50 𝑉) 

FIGURE 4.39 Electric fields for different voltages (𝑓𝑟𝑜𝑚 5 𝑉 𝑡𝑜 50 𝑉 𝑤𝑖𝑡ℎ 5 𝑉 𝑠𝑡𝑒𝑝) in CZT 

REDLEN sample with Pt contacts with thickness 𝐿 = 1.1 𝑚𝑚 and pixel’s size 𝑃 = 4 𝑚𝑚 

 

𝜏 = (0.60 ± 0.08) 𝜇𝑠                             𝜇=(1030±60) 𝑐𝑚2/(𝑉𝑠) 

  
𝜇𝜏 = 0.7 10−3 𝑐𝑚2/𝑉 
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SIGNALS ON CZT REDLEN WITH PT CONTACTS [HOLES] 

In figure 4.40 the currents show a time increasing profile, despite that the weighting filed does not 

increase so drastically in the vicinity of the pixel. The current should also decrease because of carriers’ 

trapping. As a consequence, the unique quantity that can increase is the electric field probed by 

carriers during their flight. 

 

 

(100 𝑉 ÷ 240 𝑉)  

FIGURE 4.40  Signals of holes for different voltages (𝑓𝑟𝑜𝑚 100 𝑉 𝑡𝑜 240 𝑉 𝑤𝑖𝑡ℎ 20 𝑉 𝑠𝑡𝑒𝑝) in 

CZT REDLEN sample with Pt contacts with thickness 𝐿 = 1.1 𝑚𝑚 and pixel’s size 𝑃 = 4 𝑚𝑚 

 

FIGURE 4.41 Electric fields for different voltages (𝑓𝑟𝑜𝑚 100 𝑉 𝑡𝑜 240 𝑉 𝑤𝑖𝑡ℎ 20 𝑉 𝑠𝑡𝑒𝑝) in 

CZT REDLEN sample with Pt contacts with thickness 𝐿 = 1.1 𝑚𝑚 and pixel’s size 𝑃 = 4 𝑚𝑚 

 

(100 𝑉 ÷ 240 𝑉) 
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The hypothesis of an increasing electric field is confirmed. Near the illuminated cathode, the electric 

field shows a decreasing profile, due probably to the holes trapped near this electrode. At distance 

higher than about 0.1 𝑚𝑚 from the illuminated electrode, the fixed charge changes in sign and 

electric field begins to increase.  

In this case, the model was unable to give the lifetime of holes: the times of flight for the used voltages 

are much more short than the holes’ lifetime. The only way to get the holes’ lifetime would further 

lower the voltage to be able to fly the carriers for a longer time comparable to the lifetime. With our 

experimental setup, it is very difficult to measure transients because, for voltages lower than 100 

volts, the signal becomes comparable with the noise and it is not possible to estimate the correct time 

of flight and the model results inapplicable. We can only assume that the lifetime is greater than the 

highest time of flight in our current signals. The holes’ mobility instead results 35 times lower than 

electrons’ mobility: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜏 > 5 𝜇𝑠                                        𝜇 = (28 ± 2) 𝑐𝑚2/(𝑉𝑠) 
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4.3.3  CZT 43-IMEM [ELECTRONS] 
The last pixelated detector studied in this thesis is a CZT IMEM detector with Au contacts. 

The sizes of the sample are: 

 Thickness     𝐿 =  2.8 𝑚𝑚 

 Size of the illuminated electrode  𝑆 =  5.5 𝑚𝑚 

 Size of the pixel    𝑃 =  3 𝑚𝑚 

The current measurements show the pixel effect, while for low voltages the signal begins to decrease 

in time. Despite the increase of the weighting field, for low voltages the flight time becomes 

comparable with the lifetime of the carriers, and then the current begins to decrease because of the 

low number of electrons that arrives at the collecting pixel. 

FIGURE 4.42 Current signals of electrons for two different ranges of voltages (HIGH 

VOLTAGE from 120 𝑉 𝑡𝑜 280 𝑉 𝑤𝑖𝑡ℎ 20 𝑉 step and LOW VOLTAGES from 30 𝑉 to 100 𝑉 

with 10 𝑉 𝑠𝑡𝑒𝑝) in CZT IMEM sample with Au contacts with thickness 𝐿 = 2.8 𝑚𝑚 and pixel’s 

size 𝑃 = 3 𝑚𝑚 

 

𝐿𝑂𝑊 𝑉𝑂𝐿𝑇𝐴𝐺𝐸𝑆 

(30 𝑉 ÷ 100 𝑉) 

𝐻𝐼𝐺𝐻 𝑉𝑂𝐿𝑇𝐴𝐺𝐸𝑆 

(120 𝑉 ÷ 280 𝑉) 
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The profiles of the electric field reconstructed are shown in figure 4.43 for all range of voltages (HIGH 

VOLTAGE from 120 𝑉 𝑡𝑜 280 𝑉 𝑤𝑖𝑡ℎ 20 𝑉 step and LOW VOLTAGES from 30 𝑉 to 100 𝑉 with 

10 𝑉 𝑠𝑡𝑒𝑝). 

The transport parameters result: 

 

 

  

 

 

 

 

 

 

 

 

FIGURE 4.43 Electric field for different voltages (from 30 to 280 Volts) in CZT IMEM 

sample with Au contacts with thickness 𝐿 = 2.8 𝑚𝑚 and pixel’s size 𝑃 = 3 𝑚𝑚 

 

𝜏 = (2.7 ± 0.1)𝜇𝑠          𝜇 = (1050 ± 30) 𝑐𝑚2/(𝑉𝑠 

 

𝜇𝜏 = 2.8 10−3 𝑐𝑚2/𝑉 

(30 𝑉 ÷ 280 𝑉) 
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5 CONCLUSIONS 

In this thesis work we have proposed some transport models for the analysis of transient signal which 

have proved to be suitable for the study of the transport properties and the electric field in solid state 

𝑋, 𝛾 rays photo-detectors. The thesis has involved the study of samples of different material (𝐶𝑑𝑇𝑒 

and 𝐶𝑑1−𝑥𝑍𝑛𝑥𝑇𝑒), thickness (form 250 𝜇𝑚 to 4 𝑚𝑚), type of contact (Platinum and Gold) and 

electrodes’ geometry (full-area and pixel contact). All the models are based on the analysis of current 

transients induced by laser-beam, with the Laser Excited-Transient Current Technique (LE-TCT).  

The application of 2τ model has allowed to obtain the transport properties of both electrons and holes 

and the spatial profile of the electric field in sample with full-area contacts. Furthermore, the 

measurements of Charge Collection Efficiency (CCE technique) allowed to compare successfully the 

µτ product obtained with the two different techniques, also with a good agreement regarding the 

electric field profile .  

The pixelated detectors instead needed a preliminary study from a geometrical point of view, as the 

signal depends strongly on the weighting field, a vector field which depends only on the geometry of 

illuminated and collecting electrodes. 

The 1τ model proposed a self-consistent procedure and minimization, enabling the possibility to 

measure µ, τ, and E directly on single devices. This method has been demonstrated useful for 

measuring both electrons and holes. The method has been validated on devices having different 

weighting field. The different geometric component leads to the so-called "pixel effect”, an increase 

of the induced current in the proximity of the final part of the transients.  

When the weighting field correction is not taken into account, a wrong value of µ and a wrong E 

profile is obtained.  

A new method has been developed to study the spread of the charge cloud during the drift of carriers  

The diffusion coefficient has been deduced and a correct evaluation of the time of flight has been 

obtained through the study of the time derivative of the current transients.  

Finally, this models could be used to obtain the transport properties and the electric field profiles of 

samples of different material such as 𝐺𝑎𝐴𝑠 and 𝐺𝑎2𝑂3. 
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