UNIVERSITA' DEGLI STUDI DI PARMA

Dottorato di ricerca in Medicina Molecolare

Ciclo XXIX°

Platelet Transcriptome Profile of Acute Myocardial Infarction

Coordinator: Chiar.mo Prof. Luciano Polonelli

Tutor: Chiar.mo Prof. Diego Ardissino

PhD student: Dr. Filippo Pigazzani

to Carla and Alice

Acknowledgements

I would like to express my gratitude to my tutor, Prof. Diego Ardissino, for providing guidance and support throughout this thesis.

I am very grateful to Prof. Marco Vitale and to Prof. Giuliana Gobbi for their costant support and supervision and for their very useful comments and kind advice.

I would particularly like to acknowledge Dr. Cecilia Carubbi, Dr. Silvia Martini and Dr. Guidantonio Tagliazucchi for their invaluable advice, support and their ongoing encouragement.

I am very grateful to the patients and numerous colleagues who kindly volunteered their blood for my experiments.

I extend special thanks to my wife Carla, for her encouragement, great support and cooperation during the writing up of this thesis.

Last but not least, I dedicate this thesis to my little girl Alice who has been patiently waiting for her dad in front of the door, after long days in clinic, ready to give him a big smile and big hugs.

"The most beautiful things in the world cannot be seen or touched, they are felt with the heart."

Antoine de Saint-Exupéry

Summary

Acute myocardial infarction (AMI) is a sudden event commonly attributed to coronary atherosclerotic plaque rupture with subsequent exposure of thrombogenic substances that promote platelet activation/aggregation as well as coagulation activation and, ultimately, intraluminal thrombus formation thus limiting coronary blood flow. Although plaque rupture or fissuring frequently occurs in atherosclerosis, only a small proportion of ruptured plaques develops thromboses. It has been suggested that individual reactivity to plaque rupture may have a causative role in provoking the clinical event of AMI.

Platelets contribute to the genesis and progression of atherosclerosis and to the precipitation of the atherothrombotic event after plaque rupture. Platelets are anucleate cells formed from the cytoplasm of megakaryocytes and circulate in the blood stream for about 7-10 days. Since platelets are without nucleus, they retain megakaryocytes–derived mRNAs that are unique in representing a nearly fixed transcriptome.

The present study was designed to test whether platelets transcriptome may predate the development of a future myocardial infarction.

The abundance of platelets transcripts levels were measured using Human Transcriptome Array 2.0 (Affymetrix). Bioinformatics analyses were conducted to identify the differentially expressed genes (p.value ≤ 0.05 , fold-change $\geq \pm 1.5$) between patients with ST elevation myocardial infarction (STEMI, n=20), stable coronary artery disease (sCAD, n=20) and healthy donors (HD, n=20). REACTOME and DAVID analyses were performed respectively to identify pathways and biological processes associated with lists of differentially expressed genes (DEGs).

A total of 149 DEGs were observed comparing sCAD patients and HD platelet trascriptome. MNF2 and PRKCD were identified as the most up-regulated genes and CXCL8 as the most down-regulated. A number of 76 DEGs were detected in STEMI subjects compared with HD. S100A12 and CLEC4E, in STEMI patients, resulted the highest up-regulated mRNAs while CXCL8 was the most down-regulated followed by SNORD13, SNORD117 and RMRP. The comparison between STEMI and sCAD subjects allowed the identification of 138 de-regulated genes. S100A12 was again the most up-regulated gene in STEMI. From this preliminary analysis, we observed the presence of distinctive gene-expression patterns for sCAD and STEMI. These results suggested the possibility to find a more specific gene-set for STEMI condition. Thus, we focused on the characterization of a gene-signature able to discriminate patients with myocardial infarction and eventually we identified a STEMI signature consisting of 38 genes from these analyses.

In conclusion, our preliminary results show that variations in gene expression profile of megakaryocytes may occur before of an AMI and that platelet transcriptome could act as a fingerprint indicating the development of a future myocardial infarction.

List of Contents

1. Introduction

1.1 Myocardial Infarction	12
1.2 Pathophysiology of acute myocardial Infarction	12
1.3 Platelets	17
1.3.1 Platelets biology	17
1.3.2 Platelets and atherosclerosis	19
1.3.3 Platelet trascriptome	19
1.4 Aim of the research	20

2. Materials and Methods

2.1 Study population	21
2.2 Sample source	22
2.3 Platelet purification and cryopreservation	23
2.4 Microarray gene expression profiling	23
2.5 Bioinformatics Analysis	24
2.5.1 Identification of the gene-signature	24
2.5.2 Identification of biological processes and enriched pathways	25
2.5.3 Identification of the genes known involved in our phenotypes	25
2.5.4 Heatmaps	25
2.5.5 Statistical methods	25

3. Results

3.1 Baseline demographic and clinical characteristics of study population 26			
3.2 Exploratory analysis28			
3.3 Differentially expressed genes between patients with stable coronary artery			
disease (sCAD) and healthy donors (HD) 29			
3.4 Differentially expressed genes between patients with ST elevation			
myocardial infarction (STEMI) and healthy donors (HD) 34			

3.5 Differentially expressed genes between patients with ST elevation	
myocardial infarction (STEMI) and stable coronary disease (sCAD): explore	atory
analysis	38
3.6 The identification of gene-signature of patients with STEMI	44
	50
5. Discussion	50
6. Conclusion	54
7. Supplementary Materials	55
8. References	68

List of Figures

Figure 1 . Atherosclerotic plaque. Stable atherosclerotic plaque in stable angina and unstable plaque with plaque disruption and platelet aggregation in acute coronary syndromes	e 3 e 5
Figure 3. Pathophysiology of acute myocardial infarction. Hypothesis 2: "power of th response".	e 6
Figure 4. Schematic of platelet generation and development.From Machuls KR et al. J Ce Biol. 2013.	 8
Figure 5. Spearman correlation analysis considering all samples	8
Figure 6. Heatmap of the DEGs between sCAD and healthy phenotype	0
Figure 7. Up-regulated genes in sCAD patients vs Healthy Donors	2
Figure 8. Down-regulated genes in sCAD vs Healthy Donors	3
Figure 9. Heatmap of the DEGs between STEMI and healthy phenotype	4
Figure 10. Up-regulated genes in STEMI patients vs Healthy Donors	6
Figure 11. Down-regulated genes in STEMI patients vs Healthy Donors	8
Figure 12. Heatmap of the DEGs between STEMI patients and sCAD patients	9
Figure 13. Up-regulated genes in STEMI patients vs sCAD patients	2
Figure 14. Down-regulated genes in STEMI patients vs sCAD patients	3
Figure 15. Workflow for the identification of a STEMI-signature	4
Figure 16. Heatmap of the DEGs between patients with STEMI and sCAD(fold change of 2, p).
value 0.001)	6
Figure 17. Heatmap of the DEGs between patients with STEMI and sCAD (fold-change of 2	<u>></u> ,
p.value ≤ 0.01)	7
Figure 18. DEGs between patients with STEMI and sCAD (fold-change of 2, p.value ≤ 0.01)4	7
Figure 19. PCA of the DEGs between patients with STEMI and sCAD (fold change of 2	2,
p.value ≤ 0.01)	8
Figure 20. Heatmap of the DEGs between STEMI and sCAD patients and HD, considering	а
fold change of 2 and p.value ≤ 0.01	9

List of Tables

Table 1. Baseline demographic and clinical characteristics of study population; p-values <0.05
were considered statistically significant and are indicated by an asterisk (*)27
Table 2. REACTOME analysis results: up-regulated genes in the comparison between
patients with sCAD and HD
Table 3. REACTOME analysis results: down-regulated genes in the comparison between
patients with sCAD and HD32
Table 4. REACTOME analysis results: up-regulated genes in the comparison between
patients with STEMI and HD
Table 5. REACTOME analysis results: down-regulated genes in the comparison between
patients with STEMI and HD

List of Supplemental Tables

Supplemental Table 1. Differentially expressed genes. Genes up-regulated in patients with
SCAD in the companion between SCAD and Healthy Donors
Supplemental Table 2. Differentially expressed genes. Genes down-regulated in patients with
SCAD III the comparison between SCAD and Healthy Donors
the up regulated gappe in patients with aCAD in the comparison between aCAD and Healthy
Donors
Supplemental Table 4 DAVID analysis: identification of the biological processes related to
down-regulated genes in patients with sCAD in the comparison between sCAD and Healthy
Donors
Supplemental Table 5. Differentially expressed genes. Genes up-regulated in patients with
STEMI in the comparison between STEMI and Healthy Donors
Supplemental Table 6. Differentially expressed genes. Genes down-regulated in patients with
STEMI in the comparison between STEMI and Healthy Donors
Supplemental Table 7. DAVID analysis: identification of the biological process related to up-
regulated genes in the comparison between patients with STEMI and Healthy Donors60
Supplemental Table 8. DAVID analysis: identification of the biological processes related to
down-regulated genes in the comparison between patients with STEMI and Healthy Donors 60
Supplemental Table 9. Differentially expressed genes. Genes up-regulated in patients with
STEMI in the comparison between STEMI and sCAD61
Supplemental Table 10. Differentially expressed genes. Genes down-regulated in patients
with STEMI in the comparison between STEMI and sCAD
Supplemental Table 11. DAVID analysis: identification of the biological processes related to
up-regulated genes in the comparison between patients with STEMI and sCAD
Supplemental Table 12. DAVID analysis: identification of the biological processes related to
down-regulated genes in the comparison between patients with STEMI and sCAD
Supplemental Table 13. Perfomance of classification of each putative-gene signatures using
kNN algoritm64
Supplemental Table 14. List of genes in the comparison between patients with STEMI and
sCAD using a fold change of 2 and a p.value ≤ 0.01
Supplemental Table 15. List of genes in the comparison between patients with STEMI and
sCAD using a fold change of 2 and p.value \leq 0.01 and annotation with Panther
Family/Subfamily65

List of Acronyms

ACS: acute coronary syndrome AMI: acute myocardial infarction BSA: bovine serum albumin CAD: coronary artery disease CVDs: cardiovascular diseases cDNA: complementary DNA DAVID: database for annotation, visualization and integrated discovery DCs: dendritic cells DGEs: differentially expressed genes DNA: deoxyribonucleic acid FCM: flow cytometry HbA1c: haemoglobin A1c HD: healthy donors HDL: high density lipoprotein LDL: low density lipoprotein IncRNA:long non coding RNA LPDs: leukocyte-depleted platelets mAb: monoclonal antibody MI: myocardial infarction miRNA: micro RNA MK: megakaryocyte MKs: megakaryocytes mRNA: messenger RNA oxLDL: oxidized low-density lipoprotein PBS: phosphate buffered saline PRP: platelet-rich plasma qPCR: quantitative polymerase chain reaction RNA: ribonucleic acid **RT**: room temperature sCAD: stable coronary artery disease snRNA: small nuclear RNA SPA: spontaneous platelet aggregation STEMI: ST elevation myocardial infarction TF: tissue factor TPO: thrombopoietin UA: unstable angina

Chapter 1 Introduction

1.1 Acute Myocardial Infarction

Acute myocardial infarction is a sudden event, fatal in approximately one third of patients with about half of deaths occurring within one hour of the event. This "out of the blue" event is commonly attributed to coronary atherosclerotic plaque rupture with subsequent exposure of thrombogenic substances that promote platelet activation/aggregation, as well as coagulation activation and ultimately intraluminal thrombus formation, thus limiting blood flow in one or more coronary arteries. Despite advances in cardiac care, myocardial infarction affects millions of people worldwide each year¹ and still remains an unpredictable event.

1.2 Pathophysiology of Acute Myocardial Infarction

Coronary atherosclerosis is the main underlying condition of acute myocardial infarction. For much of the last century, atherosclerosis was considered to be a cholesterol storage disease, characterized by the accumulation of cholesterol and thrombotic debris in the arterial wall. Nowadays, it is well known that atherosclerosis is a chronic inflammatory process of the vascular wall.² The evolution of atherosclerosis is a slow process, evolving over years and decades. High blood

lipoprotein levels cause LDL particles to accumulate in extracellular matrix in the artery vessel wall. These eventually become targets for oxidative processes and release phospholipids that activate endothelial cells to express leukocyte adhesion molecules and to release chemokines.³ Leukocytes adhere to vessel wall and migrate into the intima. Monocytes differentiate into macrophages that incorporate oxLDL with the help of scavenger receptors and transform into foam cells.⁴ In addition, T-cells migrate into vessel wall, recognise local antigens and secrete pro-inflammatory cytokines, contributing to local inflammation and to the growth of the atherosclerotic plaques. Most of the atherosclerotic plaques remain clinically asymptomatic, some (stable plaques) gradually become thrombosis-prone (vulnerable plaques) and may lead to an acute coronary syndrome (ACS) (FIG. 1).⁵ Acute coronary syndrome is the high-risk manifestation of coronary artery disease ranging from unstable angina (UA), non ST-elevation myocardial infarction (NSTEMI), ST-

Figure 1. Atherosclerotic plaque. Stable atherosclerotic plaque in stable angina and unstable plaque with plaque disruption and platelet aggregation in acute coronary syndromes.

Coronary atherosclerotic-plaque thrombosis is a key event in the pathogenesis of MI. Recent clinical observations have confirmed that vulnerable plaque rupture is the most common cause of coronary thrombosis.⁶ Vulnerable plagues are characterized by specific histopathological features that include a large lipid core, a high macrophage content and a thin fibrous cap. Although plaque rupture is a frequent event in the natural history of atherosclerosis, only a small proportion of them develop superimposed thrombosis. Necroscopy data have shown that between 8.7-16.7% of the people who die suddenly of non-cardiac causes present both thrombosed and non-thrombosed ruptured plaques.⁷ Therefore, it is possible that vulnerable plagues undergo reparative processes after rupture. Given 30 days for plaque repair, it has been calculated that, in each subject, an average of 7.5 plaque ruptures per year occurs in absence of any cardiovascular event.⁸ Thus, plague rupture with local thrombin activation and subsequent healing, might simply represent a mechanism of atherosclerotic disease progression. In fact, 70% of chronic atherosclerotic plaques, determining a high grade coronary stenosis, present, at least, one rupture episode which acts as a stimulus to plaque growth.⁹ However, the reason why some ruptured plaques should develop thrombosis while others do not are still unknown. Two hypotheses are currently proposed.

The first one, called *"the power of the stimulus"*, considers that atherosclerotic plaques are of different types, some having such a strong thrombogenic potential that may overcome local antithrombotic mechanisms (FIG. 2). In subjects with normal blood reactivity, a very powerful thrombogenic stimulus inside the vulnerable plaque is assumed to be the primary element, which triggers and mantains the thrombotic process. Tissue factor (TF), the major initiator of the coagulation cascade,¹⁰ is considered to have a key role in plaque thrombosis. Tissue Factor has been found in

the necrotic cores of atherosclerotic plaques and in the extracellular matrix of arterial walls.¹¹ Studies on coronary atherosclerotic plaques obtained during atherectomy have shown that concentrations of TF antigen and activity were higher in plaques of patients with unstable angina or myocardial infarction compared with those of patients with stable angina.^{12,13} These results suggest that the TF contents in atherosclerotic plaques may determine different thrombotic responses to plaque rupture in human coronary arteries.

Figure 2. Pathophysiology of acute myocardial infarction. Hypothesis 1: "power of the stimulus".

The second hypothesis, called *"the power of the response"*, considers that all plaques have an equal thrombogenic potential and that a particular hypercoagulable state is needed to trigger an acute atherothrombotic event after plaque rupture (FIG. 3). High levels of factors VIIc, VIIIc and fibrinogen were associated with an increase risk of cardiovascular death in a prospective study on haemostatic function.¹⁴ Elevated plasma concentrations of prothrombin fragment 1+2 (F1+2) and fibrinopeptide A - respectively markers of factor Xa–mediated prothrombin activation and thrombin action on fibrinogen - have been related to an early unfavorable outcome during ACS acute phase. However, after an ACS episode, a high proportion

of patients have persistently elevated levels of prothrombin F1+2, but not fibrinopeptide A.¹⁵ It has been demonstrated that this condition of increased hemostatic system activity is associated with an increased risk of adverse events [cardiac death or myocardial (re)infarction].¹⁶ High levels of thrombin generation may overwhelm the endogenous anticoagulant mechanisms and be prothrombotic. This may be even more critical in the setting of an unstable atherosclerotic plaque, which is associated with a loss of the antithrombotic properties of laminar flow and a normally functioning endothelium. Therefore, thrombin is a powerful agonist for platelet activation and aggregation. An icreased platelet aggregability may be another mechanism underlying the exaggerated thrombotic response to plaque disruption. Trip et al. tested spontaneous platelet aggregation (SPA) in a cohort of survivors from MI and found a positive association between platelet hyperreactivity in vitro and both mortality and cardiac events.¹⁷ However, the pathophysiologic mechanism by which platelets contribute to the acute manifestations of coronary artery disease is not fully understood.

Figure 3. Pathophysiology of acute myocardial infarction. Hypothesis 2: "power of the response".

1.3 Platelets

For over 100 years platelets have been recognized as key mediators of hemostasis. At present, it has been established that platelets contribute to additional physiological processes such as angiogenesis, inflammation, innate immunity and can be responsible not only for the genesis, but also for the progression of CVDs.

<u>1.3.1 Platelets biology</u>

Platelets are small anucleate cell fragments with a discoid shape and a range in diameter from 1 to 3 µm. Platelets are formed from cytoplasm of megakarycytes (MKs) which reside in the bone marrow. In a cytoskeleton-driven maturation process, MKs become polyploid by endomitosis, their cytoplasm is packaged into multiple long processes called proplatelets and the nucleus is extruded. A mature MK may extend 10-20 proplatelets, each of which starts as a blunt protusion that over time elongates, thins, and branches repeatedly. Proplatelets migrate through bone marrow endotelial cells of the sinusoidal blood vessel and release preplatelets (formed selectively at the tips of proplatelets) directly into the marrow vascular sinusoidal space [Fig 4]. The terminal platelet formation continues in the blood stream where preplatelets undergo subsequent fission events to generate discoid platelets.¹⁸ A conversion from pre- to proplatelet is also possible and it is driven by microtubule-based forces. Some authors have hypothesized that, as proplatelets extending into the lumen, they could have a monitoring function of circulating levels of proteins, such as TPO, or even platelets numbers. This would allow the MK to receive information and instruct the MK in processes such as protein translation, granule packaging and platelets production. Interestingly, as platelets develop, they receive their granule and organelle content as streams of individual particles transported from the MK cell

body.¹⁹ Platelets retain also a specific set of megakaryocyte-derived RNAs and are capable of *de novo* protein synthesis. The time required for MKs to complete polyploidization, mature, and release platelets is \sim 5 days. Once released into the bloodstream, platelets circulate throughout the body for 7–10 days until clearance by liver and spleen.²⁰

Figure 4. Schematic of platelet generation and development.From Machuls KR et al. J Cell Biol. 2013.

1.3.2 Platelets and atherosclerosis

Platelets are known to contribute to early steps of atherosclerosis (endothelial dysfunction), but also to final events (plaque rupture). Platelets participate in atherogenesis by chemokine release, surface association of oxLDL, direct cell–cell interaction (leukocytes, DCs), release of microparticles, and provision of potent inflammatory mediators that regulate homotypic and heterotypic intercellular aggregation, chemotaxis, angiogenesis, matrix degradation, and signalling events in target cells.²¹ Platelets conceived as immune cells and mediators of vascular/tissue remodeling have a strong impact on atheroprogression. The net effect of platelet-mediated inflammation may be an atheroprotective mechanisms as well.²² Platelets participate in events that immediately precede acute myocardial infarction (AMI) and platelet-dependent thrombus formation is a key event in the pathogenesis of AMI.

<u>1.3.3 Platelet trascriptome</u>

Platelets lack nuclear DNA but retain megakaryocyte-derived RNAs and so the platelet transcriptome could provide a novel window on gene expression preceding acute coronary events.²³ Despite the absence of a nucleus, platelets contain protein synthesis machinery and RNAs, including mRNA, IncRNA, miRNA, accounting for more than 9000 transcripts in healthy human donors.^{24,25} Platelet RNAs primarily derive from MKs, indeed genome-wide expression studies of platelets from MKs derived by culture from CD34+ hematopoietic progenitor cells, have shown that approximately half of the ~ 10000 transcripts present in MKs can also be detected in platelets.^{26,27,28} Moreover, some studies have suggested a biological and pathophysiological role of platelet RNA finding a correlation between specific RNA

profiles with a number of disease and platelet function states. ^{29,30,31,32,33} Gene expression analyses, using micro-array technology, are growing exponentially due to their clinical application with diagnostic and prognostic implications in many pathological conditions, including cardiovascular diseases.³⁴ Specifically, concerning ACS, few studies have identified differentially expressed genes with a potential pathological role in the development and progression of this disease.^{35,36} Nevertheless, some of these studies have been performed in nucleated cells, which are able to modify their transcripts in few hours and so their mRNA expression may be strongly modified by the acute event itself lacking a predictive value. Conversely, platelet RNA is unique in representing a nearly fixed transcriptome. Indeed, they are without transcriptional activity and, although there may be some flux or degradation, the changes may be minimal and a significant turnover in transcript levels is reflected in days compared with hours for nucleated cells. Therefore, since platelets realesed from MKs circulate in the blood stream for about 7-10 days, profiling platelet transcriptome at the time of AMI could identify the up or down-regulation of plateletspecific transcripts that may predict a future coronary acute event. Currently a very limited number of studies examining RNA from platelets have demonstrated the presence of a specific platelet phenotype that is directly associated with atherothrombotic diseases.^{23,37,38}

1.4 Aim of the research

The present study was designed to test whether platelets transcriptome may predate the development of a future myocardial infarction.

Chapter 2 Materials and Methods

2.1 Study population

The subjects eligible for enrolment were:

- 1. <u>Hospitalised patients with ST elevation myocardial infarction (STEMI)</u>. STEMI was defined as chest pain with electrocardiogram documentation of new ST elevation in two contiguous leads [ST elevation at the J point with the cut-points: ≥0.1 mV in all leads other than leads V2–V3 where the cut points apply were: ≥0.2 mV in men ≥40 years; ≥0.25 mV in men <40 years, or ≥0.15 mV in women] or evidence of new left bundle branch block. Blood samples were collected as soon as possible within 12 hours of the onset of chest pain and before any invasive procedures were performed.</p>
- 2. Hospitalised patients with stable coronary artery disease (sCAD).

sCAD was defined as presence of stable angina and/or evidence of inducible ischemia upon usual cardiac stress testing.

3. Healthy donors (HD).

HD were defined as subjects with absence of cardiovascular disorders, chronic inflammatory and hematological disease.

The three groups were matched for age (+/- 3 years) and gender.

A coronary angiography was performed in both STEMI and sCAD patients enrolled,

and only STEMI with confirmed presence of intraluminal thrombus in one or more of the coronary arteries and sCAD subjects with evidence of critical epicardial atherosclerotic lesion, with an indication to revascolarization, were selected for the further protocol analysis.

The inclusion criteria were:

- age > 18 years
- ability to provide informed consent

The exclusion criteria were:

- inability to provide informed consent;
- ongoing treatment with fibrinolytic agents, IIb/IIIa glycoprotein inhibitors, unfractionated/fractionated heparin, oral anticoagulants or anti-platelet drugs [except aspirin];
- known hematological disease;
- severe anemia (hemoglobin levels < 8 g/dL).
- any condition not assuring optimal participation in the study or which was deemed dangerous for the patient after medical evaluation;

2.2 Sample source

Citrate anti-coagulated blood samples (50 mL) were taken from each patient and collected in vacutainers (BD Vacutainer, Becton Dickinson, San Diego, CA) at a final sodium citrate concentration of 3.8%. Blood samples were collected within 12 hours of the onset of chest pain in STEMI patients, before administration of heparin, IIb/IIIa glycoprotein inhibitors, P2Y12 receptor inhibitors and before any invasive procedures were performed. Platetes were isolated within 3-6 hours after blood sample collection.

2.3 Platelet purification and cryopreservation

The 50 mL samples were centrifuged at 160 g for 20 minutes at room temperature (RT) in order to obtain platelet-rich plasma (PRP). Platelets were then purified by negative separation using magnetic beads coated with anti-CD45 monoclonal antibody (mAb) (DynabeadsH, Invitrogen, Carlsbad, CA), to deplete nucleated cells. Briefly, PRP was stained with the magnetic beads-coated mAb anti-CD45 for 20 minutes at RT on a rotator. PRP was placed in a magnetic field and the leukocyte-depleted platelets (LDPs) were collected as the negative fraction. The purified platelets were washed 3 times in PBS/BSA solution, counted, tested for purity by anti-CD41 staining and flow cytometry (FCM) analysis (only samples containing >98% CD41+ were used). Finally aliquots of 1 mL from each of the samples of highly purified platelets were treated with an appropriate amount of TRIzoITM (Invitrogen) for cell lysis and RNA cryopreservation.^{39,40}

2.4 Microarray gene expression profiling

RNA was extracted by TRIzoITM (Invitrogen) in accordance with the manufacturer's protocol. RNA was quantified on a Nanodrop ND-100 spectrophotometer, followed by RNA quality assessment by analysis on an Agilent 2200 TapeStation (Agilent Tehnologies, Palo Alto, CA). Fragmented biotin labeled cDNA (from 10 ng of RNA) was synthesized using the GeneChip WT Pico kit (Affymetrix, Santa Clara, CA). Affymetrix gene chips, Human Transcriptome Array 2.0 (Affymetrix, Santa Clara, CA), were hybridized with 5 µg fragmented and biotin-labeled cDNA in 200 µl of hybridization cocktail. Target denaturation was performed at 99°C for 5 min and then 45°C for 5 min, followed by hybridization with rotation 60 rpm for 16 hour at 45°C.

Affymetrix GeneChip hybridization wash & stain kit. Chips were scanned on an Affymetrix Gene Chip Scanner 3000, using Command Console Software.

2.5 Bioinformatics Analysis

The signals from all samples were converted to expression values by the SST-RMA algorithm implemented in Expression Console (Affymetrix). Quality controls of the gene-expression data were perfomed using Expression Console. Samples with low-quality controls were excluded from the analysis. The remaining samples were normalized using SST-RMA. Differentially Expression Analysis were perfomed using one-way subset between anova (unpaired) impletemeted in Transcriptome Console Analysis. In the comparison between STEMI, sCAD and HD we considered the genes differentially expressed (DEGs) with a p.value \leq 0.05 and a fold change between \leq -1.5 and \geq + 1.5.

2.5.1 Identification of the gene-signature

In order to define a genes-signature able to distinguish STEMI from sCAD patients, we filtered the genes considering different thresholds of fold-change and p.values. We eventually applied a combination of bootstrap and knn to estimate the performances of prediction to classify and stratify the STEMI and sCAD patients. We first, applied bootstrap on our dataset (n=10.000). Secondly, we applied k-nearest neighbor (k=3 with euclidean distance), a common classification algorithm,^{41,42,43,44,45} to study patients using the gene lists generated in the identification of DEGs. All analysis were performed using R-3.31 and CMA⁴⁶ R-package.

2.5.2 Identification of biological processes and enriched pathways.

DAVID⁴⁷ and REACTOME⁴⁸ were used respectively to identify biological processes and pathways associated with lists of differentially expressed genes.

2.5.3 Identification of known genes involved in our phenotypes

To assess whether a gene of the DEGs was already known related with CAD we followed two approaches. First, CADgene database was used to query each gene. Secondly, a manual research of the gene and phenotypes on pubmed was performed.

2.5.4 Heatmaps

Heatmaps were generated using GENE-E (<u>https://software.broadinstitute.org/GENE-</u><u>E/</u>). In detail, hierarchical clustering analysis were perfomed using 1-minus pearson correlation and average linkage. To underline the gene-expression levels, "subtract row mean, divide by row standard deviation" option was applied. The plot of the common genes between all comparisons of STEMI vs sCAD was generated using UpSetR package.

2.5.6 Statistical methods

Continuous variables are presented as mean \pm standard deviation, categorical variables are reported as frequencies and percentages. The comparisons between variables continuous were conducted using the Mann-Whitney-U test. The binary categorical variables were compared using Chi-square test. All hypothesis were perfomed considering a type I error rate of 0.05.

Chapter 3 Results

3.1 Baseline demographic and clinical characteristics of study population

Clinical characteristics of the 20 Healthy Donors, 20 STEMI and 20 sCAD patients, whose samples were used for platelets transcriptome microarray analysis, are described in Table 1. The three groups were matched for age (50-82 years) and gender (15 males vs 5 females). There were significant differences in clinical risk factors between sCAD patients and STEMI patients that included positive history of arterial hypertension (80 vs 50%), current smoking status (10 vs 40%), current drug therapy with aspirin (85 vs 5 %) and current drug therapy with beta blocker (85 vs 20%). In addition, STEMI patients had higher levels of white blood cells than sCAD patients (10.3 \pm 2.6 vs 6.9 \pm 1.7). In constrast sCAD patients had high level of platelets compared to STEMI (268 \pm 90 vs 209 \pm 34).

However, other risk factors such as diabetes, cholesterol levels, family history of CAD did not differ between the two coronary disease groups. These findings indicate that the sCAD and STEMI population were quite homogenous. Healthy donors had a lower Body Mass Index than sCAD subjects but family history and smoking status were similar to that of sCAD population.

Table 1. Baseline demographic and clinical characteristics of study population; p-values <0.05 were considered statistically significant and are indicated by an asterisk (*)

Demographics	Control	sCAD	STEMI	sCAD	STEMI	STEMI
	(n=20)	(n=20)	(n=20)	vs	vs	vs
				Control	Control	Scad
Age (years)	63.3 ± 8.9	64.1 ± 8.1	64 ± 9.4	0.72	0.84	0.96
Gender						
Male	15	15	15			
Female	5	5	5			
Body Mass Index (kg/m ²)	23.9 ± 1.9	27.9 ± 4.3	26.7 ± 3.6	0.001*	0.009*	0.34
Risk factors, n (%)						
Family History of coronary artery	8 (40)	10 (50)	7 (35)	0.52	0.52	0.33
disease						
Hypertension	2 (1)	16 (80)	10 (50)	0.000009*	0.005*	0.046*
Diabetes mellitus	0	9 (45)	4 (20)	0.0006*	0.035*	0.09
Hypercholesterolemia	3 (15)	14 (70)	10 (50)	0.0004*	0.018*	0.20
Previous CAD	0	2 (10)	3 (15)	0.15	0.07	0.63
Currently smoking	3 (15)	2 (10)	8 (40)	0.63	0.07	0.028*
History of smoking	7 (35)	12 (60)	9 (45)	0.11	0.52	0.34
Never smoking	10 (50)	6 (30)	2 (10)	0.20	0.006*	0.113
Medications, n (%)						
Aspirin	-	17 (85)	1 (5)	-	-	≤ 0.0001*
ACE inhibitor	2 (1)	11 (55)	3 (15)	0.0024*	0.63	0.008*
Statin	1	10 (50)	6 (30)	0.0014*	0.0374*	0.20
Beta blocker	2 (1)	17 (85)	4 (20)	0.000002*	0.37	0.000039*
Vital signs						
Systolic blood pression (mmHg)	124 ± 11	131 ± 14.8	133 ± 24	0.12	0.26	0.88
Diastolic blood pression (mmHg)	76 ± 8.4	78.0 ± 9.0	75.7 ± 12	0.68	0.80	0.44
Heart Rate (bpm)	66.2 ±	67.1 ± 9.9	74.3 ±	0.88	0.08	0.12
	7.4		15.0			
Labs						
White blood cells count x 10 ³ mL	-	6.9 ± 1.7	10. 3 ± 2.6	-	-	0.0002*
Red blood cells count x 10 ⁶ mL	-	4.7 ± 0.5	4.6 ± 0.6	-	-	0.54
Hemoglobin (g/dL)	-	13.8 ± 2	13.7 ± 2.4	-	-	0.74
Platelet count x 10 ³ mL	-	268 ± 90	209 ± 34	-	-	0.028*
Total Cholesterol (mg/dL)	-	189 ± 6.7	177 ± 3.6	-	-	0.88
HDL (mg/dL)	-	48.0 ± 13.1	41.7 ± 15	-	-	0.35
LDL (mg/dL)	-	117 ± 56	111± 34.1	-	-	0.65
Triglycerides (mg/dL)	-	129 ± 66	114 ± 71	-	-	0.98
Glucose (mg/dL)	-	122 ± 70	151 ± 47	-	-	0.0035*
HbA1c (mmol/mol)	-	55 ± 7.3	41.1 ± 8.4	-	-	0.0423*

3.2 Exploratory analysis

An exploratory analysis allowed to assess that the platelets transcriptomes of STEMI patients, sCAD patients and Healthy Donors (HD) were highly correlated (average spearman correlation of 0.89, range= 0.79 - 0.89). High level of correlation were also observed considering each group. These results are consistent with other studies which demonstrated that the platelets gene-expression profiles, in different ACS conditions, were highly correlated allowing the identificantion of few differentially expressed genes (DEGs).³⁸ Although we identified similar characteristics in our samples, we performed extensive bioinformatics analysis to discover DEGs and specific genes associated with our CAD phenotypes (FIG.5).

Figure 5. Spearman correlation analysis considering all samples.

3.3 Differentially expressed genes between patients with stable coronary artery disease (sCAD) and healthy donors (HD).

Gene expression data have been firstly analyzed to identify modulated genes between patients with stable coronary artery disease (sCAD) and healthy donors (HD). Applying a one-way between subset anova, considering a p.value of 0.05 and a fold-change of 1.5, a total of 149 differentially expressed genes (DEGs) were observed. A number of 17 and 132 genes were identified respectively up-regulated and down-regulated in sCAD patients (Supplemental Table 1-2). The hierarchical clustering of the DEGs showed that the gene expression patterns between sCAD and healthy subjects were distinct (Fig 6). Using a REACTOME analysis, the 17 upregulated genes in sCAD were found to be enriched for different pathways as innate immune system (p.value ≤ 0.05), hemostasis (p.value \leq 0.01), neutrophil degranulation, platelet activation signaling aggregation (p.value \leq 0.01) and platelet degranulation (Table 2). TGFB1 (Transforming growth factor beta 1), PPIF (Peptidylprolyl Isomerase F), ATP2A3 (ATPase Sarcoplasmatic/Endoplasmatic Reticulum Ca2+ Transporting 3), MFN2 (Mitofusin 2), PRKCD (Protein Kinase C Delta) were identified important for the hemostasis and platelets activation. TGFB1, NF-kappaB and several inflammatory cytokines up-regulate TG2 (Transglutaminase 2), a gene of the transglutaminases family involved in several inflammatory diseases and atherosclerosis.49,50,51 Cyclophilin (Ppif) is a mitochondrial matrix peptyl-prolyl isomerase known to modulate opening of the mitochondrial permeability transition pore (MPTP).52, Mitochondria have been noted to be involved in ATP-controlled thrombotic signalling and platelets apoptosis.⁵³

Figure 6. Heatmap of the DEGs between sCAD and healthy phenotype

 Table 2. REACTOME analysis results: up-regulated genes in the comparison between patients with sCAD and HD

Pathway name	Submitted entities found	p. value
Innate Immune System	MAP2K3;PKM;PRKCD;ITGA2B;COTL1;PPIF;CD68	0.023145
Hemostasis	TGFB1;PRKCD;ITGA2B;PPIF;ATP2A3;MFN2	0.001201
Neutrophil degranulation	PKM;PRKCD;COTL1;PPIF;CD68	0.002773
Platelet activation, signaling and aggregation	TGFB1;PRKCD;ITGA2B;PPIF	0.002514
Platelet degranulation	TGFB1;ITGA2B;PPIF	0.002367
Response to elevated platelet cytosolic Ca2+	TGFB1;ITGA2B;PPIF	0.002637

We also performed the identification of the involved biological processes using gene ontology analysis (DAVID). Biological processes related with cellular calcium ion homeostasis (ATP2A3, TGFB1, VDR p.value \leq 0.01), positive regulation of superoxide anion generation (PRKCD, TGFB1, p.value \leq 0.01) were identified (Supplemental Table 3). Four of the up-regulated genes (MFN2, PRKCD, VDR, TGFB1) were already known related with CAD according to CADgene database⁵⁴ and literature.

MFN2 was the most up-regulated gene (FIG. 7). MFN2 is a gene that codifies for a protein that promotes the mitochondrial fusion. Recent evidence suggest that the fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca2+ signaling, mitochondrial functions and cell death. The impairment of this circuit causes cardiomyocyte dysfunction and death leading to heart injury and hearth failure.⁵⁵

PRKCD was the second gene highly expressed in sCAD patients (FIG. 7). Previous studies on protein kinases family have reported their involvement in the regulation of myocardial contraction, hyperthropy and pathological cardiac remodelling.⁵⁶ Protein kinase D (PKD) was demonstrated to be highly expressed in platelets by receptors coupled to heterotrimeric G-proteins.⁵⁷

Figure 7. Up-regulated genes in sCAD patients vs Healthy Donors

Analysis of the 132 down-regulated genes with REACTOME allowed to identify enriched pathways related with translocation of zap-70 to immunological synapse (p.value \leq 0.01), phosphorylation of CD3 and TCR zeta chains (p.value \leq 0.01) and PD-1 signalling (p.value \leq 0.01). Three of the down-regulated genes (PLAUR, NAMPT, PTGS2) were already known related with CAD according to CADgene database⁵⁴ and literature. DAVID analysis of the down-regulated genes showed biological processes related with immune response, inflammatory response and cellular response to cytokine stimulus (see Supplemental Table 4 for details).

Table 3. REACTOME analysis results: down-regulated genes in the comparison between patients with sCAD and HD

Pathway name	Submitted entities found	p. value
Translocation of ZAP-70 to Immunological synapse	HLA-DRB4;HLA-DQA1	0.006739
Phosphorylation of CD3 and TCR zeta chains	HLA-DRB4;HLA-DQA1	0.008129
PD-1 signaling	HLA-DRB4;HLA-DQA1	0.008129
Generation of second messenger molecules	HLA-DRB4;HLA-DQA1	0.016002

CXCL8 (Interleukin-8) was the most down-regulated gene (Fig. 8). The plasmatic levels of IL8 have been shown to be predictive for future cardiac events, however its role is still unclear. In fact, a recent review describes that serum levels of CXCL8 in CAD patients can be lower than in health patients.⁵⁸

Several miRNAs were also identified as highly down-regulated in sCAD patients: mir548AI, mir548I4, mir548AJ2. These results suggest that differences in geneexpression patterns exist between sCAD and Healthy patients. In general, we observed that patients with sCAD had a consistent down-regulation of the geneexpression levels. Only a few groups of genes were identified as up-regulated in patients with sCAD. Of these, MFN2, TGF1B and other genes were identified relevant in pathways analysis and according to literature.

Figure 8. Down-regulated genes in sCAD vs Healthy Donors

3.4 Differentially expressed genes between patients with ST-elevation myocardial infarction (STEMI) and healthy donors (HD).

The analysis of DEGs was performed to assess the transcriptomic differences between patients with STEMI and HD. A number of 76 gene, 41 up-regulated and 35 down-regulated were identified in STEMI group (Supplemental Table 5-6). The hierarchical clustering of the DEGs showed that the gene expression patterns between STEMI subjects and HD were distinct (Fig. 10).

Figure 9. Heatmap of the DEGs between STEMI and healthy phenotype

REACTOME analysis of the up-regulated genes allowed us to detect pathways related to the neutrophil degranulation (p.value \leq 0.01), innate immune system (p.value \leq 0.01) and Toll-Like Receptor cascades (p.value \leq 0.01) (Table 4). The genes in our list associated with neutrophil degranulation were TNFAIP6, ARG1, MMP1, RAB18, S100A12, MNDA, S100P, MCEMP1, S100A9, GLA, S100A8 and the genes identified associated with innate immune-system were TNFAIP6, ARG1, MMP1, IRAK3, IRS2, MCEMP1, TXN, RAB18, S100A12, S100P, MNDA, CLEC4E, S100A9, GLA, S100A8. Considering the list of the up-regulated genes, 14 of these were already known to be correlated with myocardial infarction (CLEC4E, S100A9, S100P, MMP1, S100A8, H19, FKBP5, ARG1, EPAS1, IRS2, NAT8B, MIR675, IRAK3, RAB18).

Table 4. REACTOME analysis results: up-regulated genes in the comparison between

 patients with STEMI and HD

Pathway name	Submitted entities found	p. value
Neutrophil degranulation	TNFAIP6;ARG1;MMP1;RAB18;S100A12;	6.77E-07
	MNDA;S100P;MCEMP1;S100A9;GLA;S100A8	
Innate Immune System	TNFAIP6;ARG1;MMP1;IRAK3;IRS2;MCEMP1;	4.01E-05
	TXN;RAB18;S100A12;S100P;MNDA;CLEC4E;S100A9;GLA;S1	
	00A8	
Toll-Like Receptors Cascades	S100A12;IRAK3;S100P;S100A9;S100A8	4.43E-04
Immune System	TNFAIP6;ARG1;MMP1;IRAK3;IRS2;MCEMP1;	0.003086
	TXN;IFI27;RAB18;S100A12;S100P;MNDA;CLEC4E;S100A9;GL	
	A;S100A8	
MyD88:Mal cascade initiated on plasma membrane	S100A12;IRAK3;S100P;S100A9	0.006479
Toll Like Receptor TLR6:TLR2	S100A12;IRAK3;S100P;S100A9	0.006479
Cascade		
Toll Like Receptor TLR1:TLR2	S100A12;IRAK3;S100P;S100A9	0.006988
Cascade		
Toll Like Receptor 2 (TLR2) Cascade	S100A12;IRAK3;S100P;S100A9	0.006988
Activated TLR4 signalling	S100A12;IRAK3;S100P;S100A9	0.010537
Toll Like Receptor 4 (TLR4) Cascade	S100A12;IRAK3;S100P;S100A9	0.013903

Interestingly, S100A12 and CLEC4E were the most up-regulated genes in STEMI patients (Fig. 10).

S100A12 is a calgranulin family protein and member of S100 genes which are known to be involved in chronic inflammatory diseases. S100A8 and S100A9 were previously described as the strongest predictors of ST elevation myocardial infarction.59 Recently, S100A12 is emerging as biomarker for human atherosclerosis.⁶⁰ SAMSN1, SPARCL1 and MNDA were other genes expressed at high level but their roles in cardiovascular disease is not clear. The gene ontology analysis of the up-regulated genes showed biological processes associated with positive regulation of inflammatory response (p.value ≤ 0.01) and cytokine production (p.value \leq 0.01), (Supplemental Table 7). The analysis of our data supports that also S100A12 could be a marker of STEMI in platelets. CLEC4E, the second most upregulated gene, is another putative marker of acute MI.

Figure 10. Up-regulated genes in STEMI patients vs Healthy Donors
Of the 35 down-regulated genes detected from the comparison between STEMI and HD, 5 genes (TGFBR3, EGR1, HLA-DRB4, ZNF667-AS1, CXCL8) were already known to be involved in the biology of cardiovascular disease. REACTOME analysis identified that the down-regulated genes were enriched for MCH class II antigen presentation (p.value \leq 0.01) and are associated with negative regulation of killer cell chemotaxis (p.value \leq 0.01), signal transduction, adaptive immune response (p.value \leq 0.01) and biological processes terms (Table 5). For DAVID analysis see Supplemental Table 8.

Table 5. REACTOME analysis results: down-regulated genes in the comparison between

 patients with STEMI and HD

Pathway name	Submitted entities found	p. value
MHC class II antigen presentation	CD74;HLA-DRB4	0.041571

CXCL8 was the most down-regulated genes followed by SNORD13, SNORD117 and RMRP (Fig.11).

In conclusion, our results suggest that days before a MI there is in platelets an activation of genes related to inflammation. Moreover, we identified several genes already known to be involved in CVD and MI and 3 highly expressed genes (SAMSN1, SPARCL1, MNDA) for which the function in MI is unknown.

Down regulated genes STEMI versus HEALTH

Figure 11. Down-regulated genes in STEMI patients vs Healthy Donors

3.5 Differentially expressed genes between patients with ST elevation myocardial infarction (STEMI) and stable coronary disease (sCAD): exploratory analysis.

The characterization of the transcriptome between patients with STEMI and sCAD is important to define the molecular differences at the base of these two conditions. To this aim, the identification of the DEGs was performed as described in "Material and Methods". A number of 138 genes were found demodulated comparing STEMI and sCAD platelet transcriptome. In detail 114 and 24 genes were identified respectively up and down-regulated in STEMI subjects (Supplemental Table 9-10). The hierarchical clustering allowed us to underline the presence of two gene expression patterns specific for STEMI and sCAD patients (Fig. 12).

Figure 12. Heatmap of the DEGs between STEMI patients and sCAD patients.

REACTOME analysis of the up-regulated genes allowed the identification of a prevalence of pathways associated with immune system and inflammation. The complete lists of pathways and associated genes are reported in Table 6.

Pathway name	Submitted entities found	Entities pValue
Immune System	CDA;SERPINA1;NCF1;TNFAIP6;NCF2;NCF4;	2.96E-14
	UBE2D1;IRS2;TREM1;FCAR;FCGR3A;	
	FCGR3B;IL18RAP;ADGRE3;AMICA1;PGLYRP1;CR1;	
	MME;ARG1;IL1R2;RNASE6;IRAK3;MMP9;CLEC4D;	
	PELI1;PADI2;TXNIP;CLEC4E;S100A9;TLR4;S100A8;	
	C5AR1;FPR1;LY96;TXN;IQGAP1;FPR2;MEFV;PAK1;	
	CXCR1;ALOX5;CXCR2;S100A12;S100A11;MGAM;	
	GCA;EIF2AK2;CPPED1;NFKBIA;SELL;AGO4;QPCT;	
	RAB18;S100P;MNDA	
Innate Immune System	CDA;SERPINA1;TNFAIP6;C5AR1;FPR1;UBE2D1;LY96;	1.11E-16
	IRS2;TXN;IQGAP1;FPR2;MEFV;TREM1;FCAR;FCGR3A;	
	PAK1;FCGR3B;CXCR1;ALOX5;ADGRE3;CXCR2;S100A12;	
	PGLYRP1;S100A11;MGAM;CR1;MME;GCA;ARG1;	
	RNASE6;IRAK3;MMP9;CPPED1;NFKBIA;CLEC4D;	
	SELL;AGO4;QPCT;RAB18;PELI1;PADI2;TXNIP;	
	S100P;MNDA;CLEC4E;S100A9;TLR4;S100A8	
Neutrophil degranulation	CDA;SERPINA1;TNFAIP6;C5AR1;FPR1;IQGAP1;FPR2;	1.11E-16
	FCAR;FCGR3A;FCGR3B;CXCR1;ALOX5;ADGRE3;	
	CXCR2;S100A12;PGLYRP1;S100A11;MGAM;CR1;	
Toll-Like Recentors Cascades	NEKBIA-PELI1-LIBE2D1-S100A12-LV96-IRAK3-S100P-S100A9-TLR/-S100A8	1 24E-06
Activated TI R4 signalling	NEKRIA:PELI1:UBE2D1:S100A12:U96:IRAK3:S100P:TLR4:S100A9	3.76E-06
Toll Like Recentor 4 (TLR4) Cascade	NEKBIA:PELI1:UBE2D1:S100A12:UY96:UBAK3:S100P:TLR4:S100A9	8 59E-06
MvD88:Mal cascade initiated on plasma membrane	NFKBIA:PELI1:S100A12:LY96:IRAK3:S100P:TLR4:S100A9	8.55E-06
Toll Like Receptor TLR6:TLR2 Cascade	NFKBIA:PELI1:S100A12:LY96:IRAK3:S100P:TLR4:S100A9	8.55E-06
Toll Like Receptor TLR1:TLR2 Cascade	NFKBIA:PELI1:S100A12:LY96:IRAK3:S100P:TLR4:S100A9	1.04E-05
Toll Like Receptor 2 (TLR2) Cascade	NFKBIA;PELI1;S100A12;LY96;IRAK3;S100P;TLR4;S100A9	1.04E-05
Peptide ligand-binding receptors	CXCR1;C5AR1;CXCR2;FPR1;FPR2	0.002226
MyD88-independent TLR3/TLR4 cascade	NFKBIA;UBE2D1;S100A12;LY96;S100P;TLR4;S100A9	5.72E-04
Toll Like Receptor 3 (TLR3) Cascade	NFKBIA;UBE2D1;S100A12;LY96;S100P;TLR4;S100A9	5.72E-04
TRIF-mediated TLR3/TLR4 signaling	NFKBIA;UBE2D1;S100A12;LY96;S100P;TLR4;S100A9	5.72E-04
MyD88 cascade initiated on plasma membrane	NFKBIA;PELI1;S100A12;S100P;S100A9	0.001738
Toll Like Receptor 10 (TLR10) Cascade	NFKBIA;PELI1;S100A12;S100P;S100A9	0.001738
Toll Like Receptor 5 (TLR5) Cascade	NFKBIA;PELI1;S100A12;S100P;S100A9	0.001738
TRAF6 mediated induction of NFkB and MAP kinases	NFKBIA;PELI1;S100A12;S100P;S100A9	0.00191
upon TLR7/8 or 9 activation		
MyD88 dependent cascade initiated on endosome	NFKBIA;PELI1;S100A12;S100P;S100A9	0.002093
Toll Like Receptor 7/8 (TLR7/8) Cascade	NFKBIA;PELI1;S100A12;S100P;S100A9	0.002093
Toll Like Receptor 9 (TLR9) Cascade	NFKBIA;PELI1;S100A12;S100P;S100A9	0.002392
Regulation of LLR by endogenous ligand	LY96;1LR4;S100A9;S100A8	2.24E-04
Interleukin-1 signaling		0.001138
RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways	NFKBIA;UBE2D1;S100A12;S100P;S100A9	0.009307
Cross-presentation of particulate exogenous antigens	NCF1:NCF2:NCF4	2.67E-04
(phagosomes)		
The NLRP3 inflammasome	TXNIP;TXN;MEFV	8.00E-04
RHO GTPases Activate NADPH Oxidases	NCF1;NCF2;NCF4	0.00175
IKK complex recruitment mediated by RIP1	UBE2D1;LY96;TLR4	0.001956
RIP-mediated NFkB activation via ZBP1	NFKBIA;S100A12;S100P;S100A9	0.00241
Inflammasomes	TXNIP;TXN;MEFV	0.002659
TRAF6 mediated NF-kB activation	NFKBIA;S100A12;S100P;S100A9	0.002924
ZBP1(DAI) mediated induction of type I IFNs	NFKBIA;S100A12;S100P;S100A9	0.003814
Diseases of Immune System	NFKBIA;LY96;TLR4	0.00449
Diseases associated with the TLR signaling cascade	NFKBIA;LY96;TLR4	0.00449

 Table 6. REACTOME analysis results: up-regulated genes in the comparison between patients with STEMI and sCAD

Using DAVID analysis, S100A8, S100A9, S100A12 were identified associated with "inflammatory response pathway" (see Supplemental Table 11 for the complete list of genes). Moreover, analysis of the up-regulated genes revealed a "positive regulation of NF-kappaB transcription factor activity" (NFKB1A; S100A12; S100A8; S100A9; EIF2AK2; IRAK3; TLRK4). NF-kB is important to cardiac responses to ischemia and reperfusion. It is activated by pro-inflammatory cytokines and endogenous ligands for TLRs that are generated in response to ischemia. It is known that after myocardial ischaemia there is an activation of NF-kB in several cell types of myocardium, which induces pro-inflammatory proteins.⁶¹ In the same way, it is possible that platelets can express high level of NF-kB before a STEMI. This is consistent with previous results in which it was demonstrated that patients with unstable angina, who are at risk of plaque rupture, have high levels of activated NF-kB in their white blood cells. Considering the list of the up-regulated genes, 51 of these were already known involved in myocardial infarction.

S100A12 was again the most up-regulated gene (Fig.13). This evidence suggests that high expression of S100A12 is specific of patients with STEMI in comparison with sCAD and healthy subjects.

RGS2 was another highly up-regulated gene. This is well known to play an important role in cardiovascular diseases. RGS2 is a potent and selective regulator of Gq/11 signaling.⁶² Gq/11-mediated signaling transduction is well recognized for its role in regulating both vascular tone and cardiac remodeling.⁶³ The deregulation of RGS2 was demonstrated to promote chronic constriction of peripheral vasculature leading to hypertension. The ablation of RGS2 renders the heart more vulnerable and results in premature death.⁶⁴ The expression of RGS2 in our patients could suggest a protective mechanism in STEMI phenotype.

FCAR mRNA levels were also high in STEMI. FCAR is a member of the immunoglobulin gene superfamily and encodes a receptor for the Fc region of IgA. This receptor is a transmembrane glycoprotein present on the surface of myeloid lineage cells such as neutrophils, monocytes, macrophages, and eosinophils, where it mediates immunologic responses to pathogens. However, it was demonstrated that human platelets also express the IgA receptor which is capable of mediating platelet activation.⁶⁵ Therefore, it was established an association between FCAR gene polymorphism and myocardial infarction.⁶⁶

Other 4 genes (MNDA, NCF1B, KCNJ5, SAMSN1) were highly expressed in the platelets of STEMI patients but their role in infarction is not well described.

Figure 13. Up-regulated genes in STEMI patients vs sCAD patients

The REACTOME analysis of the down-regulated genes showed their involvement in hemostatis (p.value \leq 0.01), metabolism of carbohydrates (p.value \leq 0.05) and

extracellular matrix organization (p.value ≤ 0.05) (Table 7). See Supplemental Table

12 per DAVID analysis.

Table 7. REACTOME analysis results: down-regulated genes in the comparison between patients with STEMI and sCAD

Pathway name	Submitted entities found	Entities pValue
Signaling by NOTCH	ATP2A3;FURIN;ARRB1	0.002884
Hemostasis	CD74;TGFB1;BSG;ATP2A3;ARRB1;PRKACB	0.003724
Metabolism of carbohydrates	PKM;TAL1;PRKACB	0.006751
Deubiquitination	TGFB1;FKBP8;ARRB1	0.03471
Extracellular matrix organization	TGFB1;BSG;FURIN	0.039238
Developmental Biology	TGFB1;MYH9;KRTAP6-1;FURIN;ARRB1;PRKACB	0.04978

RNU6ATAC was the most down-regulated gene (Fig.14). It is a small nuclear RNA

and is not clear as its de-regulation is involved in cardiovascular diseases.

Figure 14. Down-regulated genes in STEMI patients vs sCAD patients

These results suggest that platetes have distinctive gene-expression patterns in STEMI and sCAD patients. In platetes of STEMI subjects we identified highly

expressed inflammatory genes and, interestingly, we also detected a positive regulation of NFKB1A. According to previous results, it is possible that NFKB1A plays a pathogenitic role in the stages before an acute myocardial infarction.

3.6 The identification of gene-signature of STEMI patients

The exploratory analysis between STEMI and sCAD showed two distinct geneexpression patterns specific for the two phenotypes of patients. However, the identification of specific genes able to distinguish STEMI and sCAD patients is relevant to further characterize STEMI condition. For this aim, we applied a custom pipeline for the identification of a gene-signature of AMI (Fig. 15). As described in section "Material and Methods", different thresholds of fold-change and p.values were considered for the identification of DEGs between patients with sCAD and STEMI.

Figure 15. Workflow for the identification of a STEMI-signature

Fifteen genes were identified in common in all these comparison (Table 8). For each gene-list boostraping and k-nearest neighbor models (kNN) were applied to estimate the performance of classification of each gene-list. Supplementale Table 13 contains the performance of prediction in terms of specificity and sensitivity. The list that provided the best results in terms of specificity (0.865) and sensitivity (0.884) was then obtained considering a fold-change of 2 and a p.value of 0.001 but with 26 DEGs (Fig. 16). However, this threshold was more conservative and excluded important genes related to CVDs.

Gene ID	Gene Name/Gene-symbol	Panther Protein Class
		cell adhesion
	C-type lectin domain family 4 member	molecule(PC00069);immunoglobulin
CLEC4E	E;CLEC4E;ortholog	receptor superfamily(PC00090)
		calmodulin(PC00060);signaling
S100A9	Protein S100-A9;S100A9;ortholog	molecule(PC00131)
AQP9	Aquaporin-7;AQP7;ortholog	transporter (PC00227)
		calmodulin(PC00060);signaling
S100A12	Protein S100-A12;S100A12;ortholog	molecule(PC00131)
		immunoglobulin receptor
	Immunoglobulin alpha Fc	superfamily(PC00090);membrane-
FCAR	receptor;FCAR;ortholog	bound signaling molecule(PC00124)
	Myeloid cell nuclear differentiation	
MNDA	antigen;MNDA;ortholog	transcription factor(PC00218)
	Low affinity immunoglobulin gamma Fc	
FCGR3B	region receptor III-B;FCGR3B;ortholog	cell adhesion molecule(PC00069)
6400D		calmodulin(PC00060);signaling
2100P	Protein S100-P;S100P;ortholog	molecule(PC00131)
CANACNIA	SAW domain-containing protein SAWISN-	
SAIVISINI	I;SAMISNI;Ortholog	
	18:NCE18:ortholog	
NCFID	Putativo noutrophil outocol factor	
NCE1C	1C:NCE1C:ortholog	
NCF1	Neutrophil outosol factor 1:NCE1:ortholog	
Neri	Nicotinamide	
ΝΔΜΡΤ	nhosnhorihosyltransferase·NAMPT·ortholog	cytokine(PC00207)
	Long-chain-fatty-acidCoA ligase	
ACSL1	1:ACSI 1:ortholog	ligase(PC00142)
	Regulator of G-protein signaling	
RGS2	2;RGS2;ortholog	G-protein modulator(PC00095)

Table 8. List of the common genes of all comparisons between patients with STEMI and sCAD

Figure 16. Heatmap of the DEGs between patients with STEMI and sCAD(fold change of 2, p. value 0.001)

Therefore, we selected the gene-list that provided the second best results in terms of specificity and sensitivity. This list of 38 genes was obtained considering a foldchange of 2 and a p.value of 0.01 (Fig. 17; Fig. 18). The specificity and sensitivity of this gene list in classification of our classes were respectively of 0.88 and 0.78. (Supplemental Table 14). Therefore, the performance of classification was conserved (Fig.19). In order to capture the ability of gene-signature (fold change of 2, p.value ≤0.01) to discriminate STEMI from sCAD patients, principal component analysis (PCA) was performed on this gene-list. PCA showed a good discrimination of our phenotypes. In fact, separation along the first principal component (PC1) divided STEMI (red) from sCAD (orange) samples. The heatmap in Figure 19 was generated ordering the samples by the PC1.

Figure 17. Heatmap of the DEGs between patients with STEMI and sCAD (fold-change of 2, p.value ≤ 0.01)

Figure 18. DEGs between patients with STEMI and sCAD (foldchange of 2, p.value ≤ 0.01)

Figure 19. PCA of the DEGs between patients with STEMI and sCAD (fold change of 2, p.value \leq 0.01).

Following this approach we recovered 12 genes not present in the first gene-list. Of these, 6 (CXCR1⁶⁷, TREM1⁶⁸, VNN3⁶⁹, ALOX5AP⁷⁰, C5AR1⁷¹, FPR1⁷²) were already known related to myocardial infarction and CVDs. This second gene-signature contains about 15 genes already known related with MI. The remaining 23 genes are not described to be involved in CVDs. Between the top 10 DEGs without a function related with CVDs there were: MNDA and NCF1B. **MNDA** is a gene that codifies for the myeloid cell nuclear differentation antigen, a member of interferon-inducible of

p200. MNDA expression is correlated with granulocyte and monocyte differentation, however its role in platelets and cardiovascular diseases is not well described. **NCF1** is a component of the nicotinamide adenine dinucleotide phospate (NADPH) oxidase complex. The role of NCF1 in platelets and infarction is not clear. However, recent evidences suggests that NCF1 and its pseudogenes (NCF1B, NCF1C) were linked with the Williams Syndrome. Therefore, our data suggests that these pseudogenes could be expressed by megakaryocytes and shared with the platelets before of an acute myocardial infarction. Finally, we used this list of genes to perform a clustering analysis considering also the healthy patients. Also in this case, we observed that our gene signature was able to distinguish STEMI subjects from sCAD and HD (Figure 20).

Figure 20. Heatmap of the DEGs between STEMI and sCAD patients and HD, considering a fold change of 2 and p.value ≤ 0.01

Chapter 4 Discussion

Genomic technologies have provided new opportunities to identify gene expression profiles related to cardiovascular disease ^{73,74}, including acute coronary syndromes (ACS) and acute myocardial infarction (AMI).⁷⁵ However, many microarray geneexpression studies in ACS and AMI were performed on white blood cells transcriptome and those performed on platelets showed high leukocytes contamination, thus their findings could reflect either triggering events or downstream consequences of the acute event since nucleated cells are able to modify their transcripts in few hours. Platelets, both anuclear and without transcriptional activity, show the unique feature that the acute event itself can not lead to new gene transcription. Therefore, transcriptional profile of platelets is virtually stable and, being the general lifespan of platelets about 7-10 days, the identification of changes in platelets mRNA transcripts of subjects with AMI may provide information on gene expression that precedes the acute event. Platelet transcriptome profiling could consequently offer an earlier diagnosis, many hours before myocardial injury. Currently, a very limited number of studies examining RNA from platelets have demonstrated that there is a specific platelet phenotype that is directly associated with atherothrombotic diseases.^{23,37,38} Using a similar strategy based on platelet transcriptome analysis, we have found that strong differences in platelets gene

expression exist between patients affected by ST elevation MI (STEMI) and subjects with stable coronary artery disease (sCAD) or healthy donors (HD). Many of the differentially expressed genes (DEGs) are associated with disease pathways that strictly correlate with ACS and AMI. In fact, platelets of STEMI patients show an increased expression in genes involved in immune response and inflammation. mRNA levels of S100A12 (the highest up-regulated gene, with a fold change > 13) show increased expression in STEMI patients both in the comparison with sCAD and HD. It is known that S100/calgranulin family members (S100A8, S100A9 and S100A12) bind to RAGE (receptor for advance-glycation end products) and trigger vascular inflammation and prothrobotic response. Serum S100A12 has recently been shown to predict future cardiovascular events in a longitudinal population study and it is emerging as a biomarker for human atherosclerosis.^{60,76} Therefore, importantly, S100A12 and the RAGE axis can be modified pharmacologically and they might soon become a therapeutic target for atherosclerosis. In our study, we have also observed that STEMI patients show a significant augmentation in the expression of CLEC4E (C-type lectin receptor 4e). This gene encodes a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cellcell signalling, glycoprotein turnover, and roles in inflammation and immune response. The activation of CLEC4E signaling is causally involved in atherogenesis. Recently, CLEC4E was demonstrated to coordinate biological pathways involved in the progression of advance atherosclerotic plagues.⁷⁷ Futhermore, among the downregulated genes, CXCL8 (C-X-C motif chemokine ligand 8) has been detected as the less expressed mRNA in platelets of STEMI and sCAD patients in the comparison with HD (fold change rispectively of ~10 and 14). It is well known that chemokines

are inflammatory cytokines characterized by their ability to cause directed migration of leukocytes into inflamed tissue, and raised levels are found in atherosclerosis, both systemically and within the atherosclerotic plaques. Chemochine CXCL8 (IL-8) plays a key role in neutrophils activation and transmigration. Through activation of the transcriptional factor, nuclear factor kB, hypoxia and oxidative stress are potent inducers of CXCL8. In various animal models, IL-8 promotes cardiomyocyte apoptosis and impaired cardiomyocyte contractility.⁷⁸ Therefore, serum levels of interleukin-8/CXCL8 are increased during MI and in some studies it was shown to be predictive for future cardiac events although its role as clinical biomarkers is still unclear.⁵⁸ At any rate the reason why the signal for this specific mRNA on microarrays analysis is in the negative range needs to be investigated.

In short, the preliminary analysis on the DEGs supports evidence linking inflammation in the pathogenesis of AMI and suggests that days before an AMI there is a strong demodulation of inflammation related genes in platelets. Futhermore, our data show the presence of distinctive gene-expression patterns for STEMI and sCAD condition. Therefore, looking for a more specific gene-set for STEMI patients, we have characterized a gene-signature able to discriminate the STEMI phenotype. The signature consists of 38 genes: S100A12, S100A9, S100A8, CLEC4E, RGS2, VNN2, AQP9, MNDA, NCF1B, FCAR, VNN2, NCF1B; NCF1, NAMPT, NCF1C, SAMSN1, S100P, ALOX5AP, FCGR3B, ACSL1, TREM1, FPR1, C5AR1, GCA, NCF4, IL1R2, MAP1B, VNN3, SMAP2, MGAM, FPR2, LRRK2, LINC01506, CXCR1, VNN3, RASSF2, MME, TLR4. This gene-signature was obtained considering a fold change of 2 and a p.value of 0.01 and it is able to distinguish STEMI subjects from sCAD and HD with a good specifity (0.78) and sensibility (0.88). However, this biosignature has to be confirmed and validated in a large population. Moreover, the most differentially

expressed genes must be validated with qPCR analysis while protein expression has to be tested by Western Blot.

In conclusion, our microarrays preliminary data suggest that platelet transcriptome could be predictive of an AMI. The identification of a "genes signature" specific for acute MI could have a putative clinical implication as a tool to predate the onset of an acute event in patients with cardiovascular risk. Thus, transcriptional profiling may provide a novel window on platelets contribution to MI onset, development and prognosis. Therefore, combining genomic information and clinical data may lead to:

1) <u>detection of predictive biosignatures</u> with significant predictive power that may be useful to identify MI predisposed subjects

 <u>classification/redefinition of cardiovascular diseases on a molecular basi</u>s in order to improve diagnostic and prognostic precision

3) <u>detection of new molecular targets</u> useful to optimize treatment options in AMI patients.

This research has been giving us the possibility to identify and characterise genes and related pathways, that could enhance the prediction of AMI risk and improve prevention, treatment, and quality of care in individual patients. However, longitudinal studies assessing the incremental value of genetic factors over traditional risk factors in predicting AMI and its recurrence are necessary to allow genetic information to be incorporated into clinical practice. Cardiovascular medicine may soon have new means of predicting and treating cardiovascular diseases more effectively, but the challenge is still to translate these results into practical knowledge that will help clinicians to deliver this benefit to patients.

Chapter 5 Conclusion

Great efforts in the fields of molecular biology and omics sciences have been done to investigate the precise molecular events immediately preceding an acute MI. However, these mechanisms remain yet uncertain.

The present study suggests that variations in gene expression profile of megakaryocytes may occur before of an acute myocardial infarction and the platelets transcriptome could act as powerful fingerprint indicating the development of a future myocardial infarction. The clinical implication of these important findings are obvious, but their validation in external populations must still be accomplished before reaching a definitive conclusion.

This study is the result of a strong collaboration between the Cardiology Division of University Hospital of Parma and the Human Anatomy Unit of Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.) of University of Parma.

Chapter 6

Supplementary Materials

Supplemental Tables

Supplemental Table 1. Differentially expressed genes. Genes up-regulated in patients with sCAD in the comparison between sCAD and Healthy Donors

Transcript Cluster ID	Gene Symbol	Description	Fold Change (linear) (C vs. H)	ANOVA p-value (C vs. H)
Transcript Cluster	MFN2	mitofusin 2	2.89	0.003759
Transcript Cluster	PRKCD	protein kinase C, delta	1.95	0.034974
Transcript Cluster	PADI4	peptidyl arginine deiminase, type IV	1.79	0.024266
Transcript Cluster	VDR	vitamin D (1,25- dihydroxyvitamin D3) receptor	1.73	0.037694
Transcript Cluster	PKM	pyruvate kinase, muscle	1.71	0.011072
Transcript Cluster	CD68	CD68 molecule	1.7	0.006386
Transcript Cluster	ATP2A3	ATPase, Ca++ transporting, ubiquitous	1.67	0.042952
Transcript Cluster	MAP2K3	mitogen-activated protein kinase kinase 3	1.66	0.031603
Transcript Cluster	COTL1	coactosin-like F-actin binding protein 1	1.65	0.011656
Transcript Cluster	ST3GAL6-AS1	ST3GAL6 antisense RNA 1	1.61	0.008627
Transcript Cluster	PPIF	peptidylprolyl isomerase F	1.55	0.028174
Transcript Cluster	ITGA2B	integrin alpha 2b	1.55	0.047477
Transcript Cluster	G6PD	glucose-6-phosphate dehydrogenase	1.54	0.012275
Transcript Cluster	XPNPEP1	X-prolyl aminopeptidase (aminopeptidase P) 1,	1.54	0.032637
Transcript Cluster	KRTAP6-1	keratin associated protein 6-1	1.53	0.011181
Transcript Cluster	TGFB1	transforming growth factor beta 1	1.52	0.027832
Transcript Cluster	MEMO1P1	mediator of cell motility 1 pseudogene 1	1.51	0.035633
Transcript Cluster	CFAP161	cilia and flagella associated protein 161	1.5	0.019745

Supplemental Table 2. Differentially expressed genes. Genes down-regulated in patients with sCAD in the comparison between sCAD and Healthy Donors.

Transcript	Gene	Description	Fold Change	ANOVA
Cluster ID	Symbol		(linear) (C vs. H)	p-value (C vs. H)
TC04002067.hg.1	CXCL8	chemokine (C-X-C motif) ligand 8	-13.91	0.001478
TC07001990.hg.1	MIR548I4	microRNA 548i-4	-4.82	0.018506
TC14000999.hg.1	MIR548AI	microRNA 548ai	-4.77	0.040134
TC04001081.hg.1	MIR548AJ2	microRNA 548aj-2	-4.43	0.045434
TC08001104.hg.1	MIR54802	microRNA 5480-2	-4.33	0.017361
TC07003113.hg.1	DOCK4	dedicator of cytokinesis 4	-3.99	0.002371
TC01003634.hg.1	MIR548F1	microRNA 548f-1	-3.95	0.036114
TC03001607.hg.1	MIR548G	microRNA 548g	-3.87	0.04061
TC01001624.hg.1	RGS2	regulator of G-protein signaling 2	-3.75	0.027401
TC09001442.hg.1	MIR548Q	microRNA 548q	-3.67	0.048397
TC09001222.hg.1	MIR548H3	microRNA 548h-3	-3.62	0.039796
TC03000824.hg.1	MIR548H2	microRNA 548h-2	-3.6	0.036762
TC04001473.hg.1	MIR297	microRNA 297	-3.45	0.001136
TC10001393.hg.1	MIR1256	microRNA 1256	-3.42	0.008049
TC01003638.hg.1	PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)	-2.97	0.015317
TC20000823.hg.1	FKSG49	FKSG49	-2.97	0.037314

TC07001738.hg.1	NAMPT	nicotinamide phosphoribosyltransferase	-2.92	0.015823
TC06001958.hg.1	MIR548H3	microRNA 548h-3	-2.78	0.030603
TC11002916.hg.1	SORL1	sortilin-related receptor, L(DLR class) A repeats containing	-2.77	0.037463
TC03000403.hg.1	MIR548A2	microRNA 548a-2	-2.76	0.02871
TC05000257.hg.1	FKSG52		-2.76	0.043443
TC07000964.hg.1	MIR548F3	microRNA 548f-3	-2.6	0.038505
TC0X000613.hg.1	LOC101928495	uncharacterized LOC101928495	-2.6	0.027222
TC12002007.hg.1	MIR4472-2	microRNA 4472-2	-2.57	0.017964
TC06001717.hg.1	TRFM1	triggering receptor expressed on	-2 51	0 022709
TC01006308.bg.1	ECGR3B	myeloid cells 1	-2 45	0.032461
recipcoscongi	realise	receptor (CD16b)	2.45	0.052401
TC20000383 bg 1	EKSG/19	FKSG/9	-2.44	0.0/881
TC06000267 hg 1	EKSG49	EKSCAD	-2.27	0.017105
TC10000576 ha 1	CEAD1	r KS045	-2.37	0.01/105
TC11002720 be 1		meteoresis esseciated lung	-2.32	0.019767
1011002730.hg.1	MALATI	adenocarcinoma transcript 1 (non- protein coding)	-2.31	0.0+3032
TC09001166.hg.1	MIR1299	microRNA 1299	-2.24	0.02029
TC05001142.hg.1	MIR4454	microRNA 4454	-2.21	0.029769
TC12001453.hg.1	SNORA2C;	small nucleolar RNA, H/ACA box 2C;	-2.21	0.015334
	MIR1291	microRNA 1291		
TC11000580.hg.1	RNU6-45P	RNA, U6 small nuclear 45, pseudogene	-2.14	0.029608
TC06001523.hg.1	HCG27	HLA complex group 27 (non-protein	-2.1	0.031983
		coding)		
TC19001241.hg.1	ADGRE3	adhesion G protein-coupled receptor E3	-2.08	0.035566
TC02004133.hg.1	BRE-AS1	BRE antisense RNA 1	-2.06	0.008833
TC17001816.hg.1	MIR548AA2:	microRNA 548aa-2: microRNA 548d-2	-2.05	0.007886
TC04000400 b = 1	MIR548D2	shamahina (C.Y. Caratif) lianad Q	2.02	0.000140
TC04000408.hg.1	CXCL8	chemokine (C-X-C motif) ligand 8	-2.03	0.006148
TC0X001246.hg.1	MIR1256	microRNA 1256	-2.03	0.016472
TC21000008.hg.1		LOC644450	-1.99	0.002804
TC10000148.hg.1	RNU6-15P	RNA, U6 small nuclear 15, pseudogene	-1.92	0.034177
TC19001593.hg.1	PLAUR	plasminogen activator, urokinase receptor	-1.89	0.040199
TC0X000518.hg.1	MIR548AN	microRNA 548an	-1.88	0.034094
TC12002520.hg.1	PLXNC1	plexin C1	-1.88	0.02177
TC19002254.hg.1	ZNF667-AS1	ZNF667 antisense RNA 1 (head to head)	-1.88	0.015025
TC02002378.hg.1	CXCR4	chemokine (C-X-C motif) receptor 4	-1.87	0.049627
TC11002177.hg.1	RNU6-16P	RNA, U6 small nuclear 16, pseudogene	-1.86	0.030795
TC01002292.hg.1	MIR1290	microRNA 1290	-1.85	0.009923
TC02002145.hg.1	RNF149;	ring finger protein 149; small nucleolar	-1.85	0.033307
	SNORD89	RNA, C/D box 89		
TC08001341.hg.1	CASC9	cancer susceptibility candidate 9 (non- protein coding)	-1.85	0.010669
TC12001178.hg.1	CLEC4E	C-type lectin domain family 4, member E	-1.85	0.021048
TC22001185.hg.1	RPL23AP82	ribosomal protein L23a pseudogene 82	-1.85	0.03749
TC20000241.hg.1	MIR644A	microRNA 644a	-1.84	0.049003
TC04001810.hg.1	SLED1	proteoglycan 3 pseudogene	-1.83	0.013868
TC11000256.hg.1	HTATIP2	HIV-1 Tat interactive protein 2	-1.83	0.032995
TC19002237.hg.1	FCAR	Fc fragment of IgA receptor	-1.8	0.013077
TC02000623.hg.1	IL18RAP	interleukin 18 receptor accessory protein	-1.77	0.014738
TC05002066.hg.1	DUSP1	dual specificity phosphatase 1	-1.77	0.036255
TC07001356.hg.1	RNU7-76P	RNA, U7 small nuclear 76 pseudogene	-1.74	0.031048
TC11003160.hg.1	OR7E5P	olfactory receptor, family 7, subfamily E, member 5 pseudogene	-1.74	0.012324
TC0X000953.hg.1	MIR548AJ2	microRNA 548aj-2	-1.73	0.015494
TC10000099.hg.1	RNU6-1; RNU6- 2	RNA, U6 small nuclear 1; RNA, U6 small nuclear 2	-1.73	0.047964
TC16000868.hg.1	MIR548H2	microRNA 548h-2	-1.73	0.017595
TC02003396.hg.1	IGKC	immunoglobulin kappa constant	-1.72	0.012839
TC07000899.hg.1	MGAM	maltase-glucoamylase	-1.72	0.031213
TC08001077.hg.1	MIR548H4	microRNA 548h-4	-1.72	0.016988
TC11000910.hg.1	SCARNA9;	small Cajal body-specific RNA 9; small	-1.72	0.030177
	SCARNA9L	Cajal body-specific RNA 9-like		
TC12001788.hg.1	MIR548AL	microRNA 548al	-1.72	0.022696
TC19000924.hg.1	ZNF667-AS1	ZNF667 antisense RNA 1 (head to head)	-1.72	0.01814
TC01004998 bg 1	6052	G0/G1 switch ?	-1 71	0.0161/19
TC12001215 hg 1	CLEC7A	C-type lectin domain family 7 member	-1.71	0.010145
		A	-1./1	0.030404
TC14000471.hg.1	FOS	FBJ murine osteosarcoma viral	-1.71	0.01646

		oncogene homolog		
TC01006307.hg.1	FCGR3A	Fc fragment of IgG, low affinity IIIa.	-1.7	0.034029
, and the second s		recentor (CD16a)		
TC000002E2 bg 1			1.60	0.019115
1009000232.hg.1		RF11-32/122.4	-1.09	0.018115
TC17000361.hg.1	LOC400590	uncharacterized LOC400590	-1.68	0.013534
TC05000487.hg.1	POM121L9P	POM121 transmembrane nucleoporin-	-1.67	0.006349
		like 9, pseudogene		
TC15000084.hg.1	SNORD115-11;	small nucleolar RNA, C/D box 115-11;	-1.67	0.027045
_	SNORD115-36:	small nucleolar RNA. C/D box 115-36:		
	SNORD115-43	small nucleolar RNA_C/D box 115-43		
	SNOPD115-20	small nucleolar RNA_C/D box 115-29		
TC1500000 h = 1	SNORD115-23	sinal nucleolar RNA, C/D box 115-25	1.67	0.027045
1C15000099.ng.1	SNORD115-43;	small nucleolar RNA, C/D box 115-43;	-1.67	0.027045
	SNORD115-29;	small nucleolar RNA, C/D box 115-29;		
	SNORD115-11	small nucleolar RNA, C/D box 115-11		
TC15000105.hg.1	SNORD115-43;	small nucleolar RNA, C/D box 115-43;	-1.67	0.027045
	SNORD115-36;	small nucleolar RNA, C/D box 115-36;		
	SNORD115-11:	small nucleolar RNA. C/D box 115-11:		
	SNORD115-29	small nucleolar BNA_C/D box 115-29		
TC15000112 bg 1	SNOPD115-20-	small nucleolar RNA_C/D box 115-29:	-1.67	0.027045
TCI5000112.hg.1	SNORD115-23,	small nucleolar RNA, C/D box 115 25,	1.07	0.027045
	SNURDI15-45;	small nucleolar RNA, C/D box 115-45;		
	SNORD115-11	small nucleolar RNA, C/D box 115-11		
TC03001939.hg.1	CCNL1	cyclin L1	-1.66	0.034228
TC12000730.hg.1	PLXNC1	plexin C1	-1.65	0.0331
TC05002451.hg.1	HEXB	hexosaminidase B (beta polypeptide)	-1.64	0.016663
TC09001372.hg.1	HSD17B3	hvdroxysteroid (17-heta)	-1.64	0.022903
		debydrogenase 3	2.04	0.022900
TC07002775 bg 1	DNE216	ring finger protein 216	-1.62	0.041409
T00002//5.lg.1	KINF210		-1.05	0.041498
1C09001296.hg.1	LOC440173	uncharacterized LOC440173	-1.63	0.019197
TC11001418.hg.1	SNORD97	small nucleolar RNA, C/D box 97	-1.62	0.028443
TC12000309.hg.1	LRRK2	leucine-rich repeat kinase 2	-1.61	0.03125
TC06001121.hg.1	MIR548U	microRNA 548u	-1.59	0.025573
TC08002406.hg.1	REXO112P	REX1, RNA exonuclease 1 homolog-like	-1.59	0.010887
		2 nseudogene	1.55	0.01000/
T000001565 b = 1	CNIODDOO	z, pseudogene	1.50	0.047002
1C09001565.ng.1	SNURD90	small nucleolar RNA, C/D box 90	-1.59	0.047882
TC12000573.hg.1	MIR548C;	microRNA 548c; microRNA 548z	-1.59	0.005221
	MIR548Z			
TC15001719.hg.1	BCL2A1	BCL2-related protein A1	-1.58	0.029697
TC04002881.hg.1	SLED1	proteoglycan 3 pseudogene	-1.57	0.01769
TC05000309.hg.1	POM12119P	POM121 transmembrane nucleoporin-	-1 57	0.009648
10000000000000000000000000000000000000	1 OMILIES		1.57	0.005040
7005000004 4	0004424100	nke 9, pseudogene	4.57	0.0000.40
1C05000321.ng.1	POMIZIL9P	POM121 transmembrane nucleoporin-	-1.57	0.009648
		like 9, pseudogene		
TC06000218.hg.1	POM121L9P	POM121 transmembrane nucleoporin-	-1.57	0.009648
		like 9, pseudogene		
TC06000691.hg.1	POM121L9P	POM121 transmembrane nucleoporin-	-1.57	0.009648
-		like 9. pseudogene		
TC06002162 bg 1	GV0W2	GVOW motif containing 2	-1 57	0.008933
TC0C0022102.hg.1	000002	olfastany recenter family 2 subfamily	1.57	0.000555
1C06002555.ng.1	UKZJZ	onactory receptor, family 2, subfamily	-1.57	0.039287
		J, member 2		
TC0X000818.hg.1	LOC101928201	uncharacterized LOC101928201	-1.57	0.024142
TC13000163.hg.1	SMIM2-AS1	SMIM2 antisense RNA 1	-1.57	0.024371
TC15000094.hg.1	SNORD115-22	small nucleolar RNA, C/D box 115-22	-1.57	0.049048
TC10002856.hg.1	CACUL1	CDK2-associated, cullin domain 1	-1.56	0.045483
TC18000455.hg 1	INOROC	INO80 complex subunit C	-1 56	0.016053
		major histocompatibility complete	1 55	0.010000
100_mami_nap4000161.ng.1	DDD4; HLA-	alass II DD bats	-1.55	0.018221
	DKBI	ciass II, DK Deta 4; major		
		histocompatibility complex, class II, DR		
		Deta 1		
TC01002853.hg.1		KP11-302M6.2	-1.54	0.038456
TC07001599.hg.1	MIR1285-1	microRNA 1285-1	-1.54	0.025538
TC10002134.hg.1	LOC101929165	uncharacterized LOC101929165	-1.54	0.014295
TC16000322.hg.1	NPIPB3	nuclear pore complex interacting	-1.54	0.002469
		protein family, member B3		
TC16001238.hg 1	RNU6-23P	RNA U6 small nuclear 23 nseudogene	-1 54	0.025801
TC01003065 bg 1	10010006020	uncharacterized LOC100006020	_1 52	0.023001
	PD11 42202 5		-1.55	0.007025
	RP11-42302.5		1.55	0.00=
TC03000105.hg.1	RNU7-10P	RNA, U7 small nuclear 10 pseudogene	-1.53	0.00734
TC04000007.hg.1	MIR571	microRNA 571	-1.53	0.00153
TC02004978.hg.1	IGKV2D-28	immunoglobulin kappa variable 2D-28	-1.52	0.014153
TC20000678.hg.1	LINC00837	long intergenic non-protein coding	-1.52	0.030538
5		RNA 837		
TC01004068 bg 1	MIR3016	microRNA 3916	_1 51	0.020188
TC08000497 bg 1	1.000	lumphosite antigen 06	1 51	0.025100
TC12000776 h = 1	L190		-1.51	0.023057
1C13000776.ng.1		KP11-/SN0.2	-1.51	0.012/95
1C02000547.hg.1	ANKRD36BP2	ankyrin repeat domain 36B	-1.5	0.033393
		pseudogene 2		
TC06000359.hg.1	POU5F1	pseudogene 2 POU class 5 homeobox 1	-1.5	0.005592
TC06000359.hg.1 TC06002502.hg.1	POU5F1 HLA-DQA1	pseudogene 2 POU class 5 homeobox 1 major histocompatibility complex,	-1.5 -1.5	0.005592 0.002078

		class II, DQ alpha 1		
TC12001914.hg.1	KCCAT198	renal clear cell carcinoma-associated	-1.5	0.003992
		transcript 198		
TC15000092.hg.1	SNORD115-15;	small nucleolar RNA, C/D box 115-15;	-1.5	0.029038
	SNORD115-20;	small nucleolar RNA, C/D box 115-20;		
	SNORD115-21;	small nucleolar RNA, C/D box 115-21;		
	SNORD115-34	small nucleolar RNA, C/D box 115-34		
TC17001150.hg.1	MIR548H3	microRNA 548h-3	-1.5	0.018221
TC6_cox_hap2000056.hg.1	POU5F1	POU class 5 homeobox 1	-1.5	0.005592
TC6_dbb_hap3000049.hg.1	POU5F1	POU class 5 homeobox 1	-1.5	0.005592
TC6_mann_hap4000050.hg.1	POU5F1	POU class 5 homeobox 1	-1.5	0.005592
TC6_mcf_hap5000043.hg.1	POU5F1	POU class 5 homeobox 1	-1.5	0.005592
TC6_qbl_hap6000049.hg.1	POU5F1	POU class 5 homeobox 1	-1.5	0.005592
TC6_ssto_hap7000043.hg.1	POU5F1	POU class 5 homeobox 1	-1.5	0.005592

Supplemental Table 3. DAVID analysis: identification of the biological processes related to the upregulated genes in patients with sCAD in the comparison between sCAD and Healthy Donors

Term	Genes in the category	P-Value	Benjamini
cellular calcium ion homeostasis	ATP2A3; TGF1B; VDR	2,4E-3	9,7E-1
positive regulation of superoxide anion generation	PRKCD; TGFB1	6,9E-3	9,6E-1
positive regulation of protein import into nucleus	PRKCD; TGFB1	1,2E-2	9,1E-1
positive regulation of protein import into nucleus	PRKCD; TGFB1	1,6E-2	8,9E-1
ATP biosynthetic process	PKM; TFGB1	2,2E-2	9,0E-1
cellular response to hydrogen peroxide	PPIF; PRKCD	4,8E-2	8,7E-1
organ regeneration	PKM; TFGB1	5,0E-2	9,2E-1

Supplemental Table 4. DAVID analysis: identification of the biological processes related to down-regulated genes in patients with sCAD in the comparison between sCAD and Healthy Donors

Term	Genes in the category	P-Value	Benjamini
immune response	CXCL8; FCAR; FCGR3A ; FCGR3B; C5AR1;	2,9E-8	1,3E-5
	IGKC; IL18RAP; HLA-DQA1; HLA-DRB1; HLA- DRB4; SLED1		
inflammatory response	CXCL8; CXCR4; CLEC7A; FOS; C5AR1; IL18RAP; LY96; PTGS2	2,5E-5	5,7E-3
antigen processing and presentation of peptide or polysaccharide	HLA-DQA1; HLA-DRB1; HLA-DRB4	1,1E-3	1,5E-1
antigen via MHC class II			
chemotaxis	CXCL8; CXCR4; C5AR1; PLAUR	2,9E-3	2,8E-1
negative regulation of MAP kinase activity	DUSP1; RGS2; SORL1	3,5E-3	2,7E-1
calcium-mediated signaling	CXCL8; CXCR4; LRRK2	6,5E-3	3,9E-1
response to lipopolysaccharide	FOS; C5AR1; LY96; PTGS2	9,0E-3	4,5E-1

Supplemental Table 5. Differentially expressed genes. Genes up-regulated in patients with STEMI in the comparison between STEMI and Healthy Donors

Transcript Cluster ID	Gene Symbol	Description	Fold Change (linear) (M vs. H)	ANOVA p-value (M vs. H)
TC01003260.hg.1	S100A12	S100 calcium binding protein A12	11.81	0.000006
TC12001178.hg.1	CLEC4E	C-type lectin domain family 4, member E	4.38	0.001147
TC21001069.hg.1	SAMSN1	SAM domain, SH3 domain and nuclear localization signals 1	2.8	0.001317
TC04002623.hg.1	SPARCL1	SPARC like 1	2.51	0.002273
TC01001346.hg.1	MNDA	myeloid cell nuclear differentiation antigen	2.5	0.036961

TC01001254.hg.1	S100A9	S100 calcium binding protein A9	2.48	0.001128
TC04000072.hg.1	S100P	S100 calcium binding protein P	2.38	0.000398
TC07000438.hg.1	NCF1B; NCF1	neutrophil cytosolic factor 1B pseudogene; neutrophil cytosolic factor 1	2.26	0.014863
TC07002399.hg.1	NCF1B	neutrophil cytosolic factor 1B pseudogene	2.22	0.007207
TC11002234.hg.1	MMP1	matrix metallopeptidase 1	2.14	0.01652
TC07003026.hg.1	NCF1C	neutrophil cytosolic factor 1C pseudogene	2.12	0.014792
TC07001516.hg.1	NCF1C	neutrophil cytosolic factor 1C pseudogene	2.03	0.014457
TC11003256.hg.1	LOC101928813	uncharacterized LOC101928813	2.02	0.025376
TC01003261.hg.1	\$100A8	S100 calcium binding protein A8	1.96	0.002686
TC11003000.hg.1	H19	H19, imprinted maternally expressed transcript (non- protein coding)	1.86	0.00429
TC19000134.hg.1	MCEMP1	mast cell-expressed membrane protein 1	1.86	0.002984
TC01000510.hg.1	SMAP2	small ArfGAP2	1.84	0.00085
TC06004150.hg.1	FKBP5	FK506 binding protein 5	1.8	9.53E-07
TC11001833.hg.1	FABP5P7	fatty acid binding protein 5 pseudogene 7	1.79	0.004465
TC13000729.hg.1	FABP5P1	fatty acid binding protein 5 pseudogene 1	1.77	0.012524
TC08001365.hg.1	FABP4	fatty acid binding protein 4, adipocyte	1.75	0.001489
TC12001187.hg.1	A2M	alpha-2-macroglobulin	1.71	0.000088
TC01002736.hg.1	CFL1P3	cofilin 1 (non-muscle) pseudogene 3	1.7	0.02866
TC06000983.hg.1	ARG1	arginase 1	1.68	0.000108
TC04001267.hg.1	SULT1B1	sulfotransferase family 1B member 1	1.65	0.01606
TC04002645.hg.1	EMCN	endomucin	1.64	0.003133
TC04001366.hg.1	SPARCL1	SPARC like 1	1.63	0.000102
TC06003665.hg.1	CLIC5	chloride intracellular channel 5	1.62	0.03235
TC02000281.hg.1	EPAS1	endothelial PAS domain protein 1	1.59	0.002765
TC13000871.hg.1	IRS2	insulin receptor substrate 2	1.59	0.000514
TC02001986.hg.1	NAT8B	N-acetyltransferase 8B (GCN5- related, putative, gene/pseudogene)	1.58	0.01733
TC02000937.hg.1	TNFAIP6	tumor necrosis factor, alpha- induced protein 6	1.55	0.022854
TC11001273.hg.1	H19; MIR675	H19, imprinted maternally expressed transcript (non- protein coding); microRNA 675	1.54	0.007294
TC14000584.hg.1	IFI27	interferon, alpha-inducible protein 27	1.54	0.022195
TC09001473.hg.1	TXN	thioredoxin	1.52	0.014182
TC12002425.hg.1	IRAK3	interleukin 1 receptor associated kinase 3	1.52	0.000262
TC15002424.hg.1	NBEAP1	neurobeachin pseudogene 1	1.52	0.0484
TC0X001219.hg.1	GLA	galactosidase, alpha	1.51	0.003366
TC01000124.hg.1	RBP7	retinol binding protein 7, cellular	1.5	0.002233
TC03000630.hg.1	CSTA	cystatin A (stefin A)	1.5	0.011715
TC10001958.hg.1	RAB18	RAB18, member RAS oncogene family	1.5	0.046265

Supplemental Table 6. Differentially expressed genes. Genes down-regulated in patients with STEMI in the comparison between STEMI and Healthy Donors

Transcript Cluster ID	Gene Symbol	Description	Fold Change (linear) (M vs. H)	ANOVA p-value (M vs. H)
TC04002067.hg.1	CXCL8	chemokine (C-X-C motif) ligand 8	-9.74	0.033571

TC08000259.hg.1	SNORD13	small nucleolar RNA, C/D box 13	-4.64	0.037686
TC06001529.hg.1	SNORD117	small nucleolar RNA, C/D box 117	-3.61	0.032143
TC6_apd_hap1000080.hg.1	SNORD117	small nucleolar RNA, C/D box 117	-3.61	0.032143
TC6_cox_hap2000158.hg.1	SNORD117	small nucleolar RNA, C/D box 117	-3.61	0.032143
TC6_dbb_hap3000147.hg.1	SNORD117	small nucleolar RNA, C/D box 117	-3.61	0.032143
TC6_mann_hap4000135.hg.1	SNORD117	small nucleolar RNA, C/D box 117	-3.61	0.032143
TC6_mcf_hap5000135.hg.1	SNORD117	small nucleolar RNA, C/D box 117	-3.61	0.032143
TC6_qbl_hap6000150.hg.1	SNORD117	small nucleolar RNA, C/D box 117	-3.61	0.032143
TC6_ssto_hap7000130.hg.1	SNORD117	small nucleolar RNA, C/D box 117	-3.61	0.032143
TC10001589.hg.1	SNORA12	small nucleolar RNA, H/ACA box 12	-3.06	0.042686
TC03003185.hg.1	SCARNA7	small Cajal body-specific RNA 7	-2.8	0.024278
TC03001957.hg.1	SCARNA7	small Cajal body-specific RNA 7	-2.75	0.024879
TC09001056.hg.1	RMRP	RNA component of mitochondrial	-2.59	0.032926
		RNA processing endoribonuclease		
TC05000231.hg.1	GZMA	granzyme A	-2.52	0.049644
TC16000936.hg.1	LOC100190986	uncharacterized LOC100190986	-2.37	0.036757
TC07001470.hg.1	POLR2J4	polymerase (RNA) II (DNA directed)	-1.99	0.036326
		polypeptide J4, pseudogene		
TC12001222.hg.1	KLRC4-KLRK1; KLRK1; KLRC4	KLRC4-KLRK1 readthrough; killer	-1.92	0.043814
		member 1: killer cell lectin-like		
		receptor subfamily C, member 4		
TC20000241.hg.1	MIR644A	microRNA 644a	-1.86	0.045943
TC12001453.hg.1	SNORA2C; MIR1291	small nucleolar RNA, H/ACA box 2C;	-1.85	0.026501
_		microRNA 1291		
TC02001189.hg.1	SNORD70	small nucleolar RNA, C/D box 70	-1.84	0.019385
TC11000910.hg.1	SCARNA9; SCARNA9L	small Cajal body-specific RNA 9;	-1.79	0.041497
		small Cajal body-specific RNA 9-like		
TC19002254.hg.1	ZNF667-AS1	ZNF667 antisense RNA 1 (head to	-1.73	0.032692
TC6 mann ban/000159 bg 1		maior histocompatibility complex	-1.68	0.008239
reo_mann_nap+000155.ng.1		class II. DR beta 4	1.00	0.000235
TC17000327.hg.1	SNORD42A	small nucleolar RNA, C/D box 42A	-1.66	0.003801
TC01004068.hg.1	MIR3916	microRNA 3916	-1.64	0.028194
TC02001191.hg.1	SNORD11	small nucleolar RNA, C/D box 11	-1.62	0.005834
TC06003604.hg.1	TAP2	transporter 2, ATP-binding	-1.58	0.037581
		cassette, sub-family B (MDR/TAP)		
TC02003892.hg.1	SCARNA5	small Cajal body-specific RNA 5	-1.56	0.021234
TC02001416.hg.1	SCARNA5	small Cajal body-specific RNA 5	-1.52	0.042713
TC05003305.hg.1	CD74	CD74 molecule, major	-1.51	0.019564
		histocompatibility complex, class II		
TC01005621 ba 1	тогора	invariant chain	1 5	0.0405.60
1C01005031.ng.1	IGFBR3	receptor III	-1.5	0.040569
TC05000701.bg.1	FGR1	early growth response 1	-15	0.045454
TC09001390.bg.1	ANKRD18CP	ankyrin repeat domain 180	-15	0.024815
		pseudogene	1.5	0.02-015

Supplemental Table 7. DAVID analysis: identification of the biological process related to upregulated genes in the comparison between patients with STEMI and Healthy Donors

Term	Genes in the category	P-Value	Benjamini
respiratory burst	NCF1; NCF1B; NCF1C	2,8E-4	6,8E-2
positive regulation of inflammatory response	S100A12; S100A8; S100A9; FABP4	3,2E-4	4,0E-2
superoxide metabolic process	NCF1; NCF1B; NCF1C	5,7E-4	4,8E-2
cytokine production	S100A8; S100A9; FABP4	9,0E-4	5,6E-2
defense response to fungus	S100A12; S100A8; S100A9	1,1E-3	5,2E-2
positive regulation of NF-kappaB transcription factor activity	S100A12; S100A8; S100A9; IRAK3	1,7E-3	7,0E-2
defense response to bacterium	CLEC4E; S100A12; S100A8; S100A9	2,3E-3	8,1E-2
chemokine production	S100A8; S100A9	3,6E-3	1,1E-1
neutrophil aggregation	S100A8; S100A9	3,6E-3	1,1E-1
neutrophil chemotaxis	S100A12; S100A8; S100A9	6,2E-3	1,6E-1
innate immune response	CLEC4E; S10012; S100A8; S100A9; NCF1	7,0E-3	1,6E-1
positive regulation of peptide secretion	S100A8; S100A9	7,1E-3	1,5E-1
sequestering of zinc ion	S100A8; S100A9	7,1E-3	1,5E-1
positive regulation of catalytic activity	NCF1; NCF1B; NCF1C	9,2E-3	1,8E-1

Supplemental Table 8. DAVID analysis: identification of the biological processes related to down-

regulated genes in the comparison between patients with STEMI and Healthy Donors

Term	Genes in the category	P-Value	Benjamini
immune response	CXCL8; CD74; GZMA; HLA-DRB4; TGFBR3	4,4E-5	7,6E-3
T cell costimulation	KLRC4-KLRK1; KLRK1; HLA-DRB4	7,5E-4	6,3E-2
positive regulation of myeloid dendritic cell activation	KLRC4;KLRK1	1,6E-3	8,9E-2
negative regulation of natural killer cell chemotaxis	KLRC4;KLRK1	1,6E-3	8,9E-2
cellular response to lipopolysaccharide	CXCL8; KLRC4-KLRK1	2,0E-3	8,4E-2
signal transduction	CXCL8; CD74; KLRC4-KLRK1; KLRK1; HLA-DRB4	2,2E-3	7,3E-2
adaptive immune response	KLRC4-KLRK1; KLRK1; TAP2	2,6E-3	7,2E-2

Supplemental Table 9. Differentially expressed genes. Genes up-regulated in patients with STEMI in the comparison between STEMI and sCAD.

Transcript	Gene	Description	Fold Change	ANOVA p-value
Cluster ID	Symbol		(linear) (M vs. C)	(M vs. C)
TC01003260.hg.1	S100A12	S100 calcium binding protein A12	13.45	1.36E-07
TC12001178.hg.1	CLEC4E	C-type lectin domain family 4, member E	8.12	2.23E-07
TC01001624.hg.1	RGS2	regulator of G-protein signaling 2	5.69	0.000838
TC06003855.hg.1	VNN2	vanin 2	5.58	0.003255
TC15000441.hg.1	AQP9	aquaporin 9	5.17	0.00097
TC01001346.hg.1	MNDA	myeloid cell nuclear differentiation antigen	4.41	0.000166
TC07002399.hg.1	NCF1B	neutrophil cytosolic factor 1B pseudogene	3.62	0.000116
TC19002237.hg.1	FCAR	Fc fragment of IgA receptor	3.5	0.000117
TC06002121.hg.1	VNN2	vanin 2	3.49	0.003983
TC07000438.hg.1	NCF1B; NCF1	neutrophil cytosolic factor 1B pseudogene; neutrophil cytosolic factor 1	3.4	0.000126
TC07001738.hg.1	NAMPT	nicotinamide phosphoribosyltransferase	3.32	0.000972
TC01001254.hg.1	S100A9	S100 calcium binding protein A9	3.24	5.28E-07
TC21000717.hg.1	KCNJ15	potassium channel, inwardly rectifying subfamily J, member 15	3.23	0.015868
TC07003026.hg.1	NCF1C	neutrophil cytosolic factor 1C pseudogene	3.14	0.000376
TC21001069.hg.1	SAMSN1	SAM domain, SH3 domain and nuclear localization signals 1	3.1	0.000003
TC04000072.hg.1	S100P	S100 calcium binding protein P	3.06	0.000005
TC13000100.hg.1	ALOX5AP	arachidonate 5-lipoxygenase-activating protein	2.81	0.002409
TC07001516.hg.1	NCF1C	neutrophil cytosolic factor 1C pseudogene	2.79	0.000364
TC01006308.hg.1	FCGR3B	Fc fragment of IgG, low affinity IIIb, receptor (CD16b)	2.77	0.000761
TC04001809.hg.1	ACSL1	acyl-CoA synthetase long-chain family member 1	2.72	0.000147
TC06001717.hg.1	TREM1	triggering receptor expressed on myeloid cells 1	2.72	0.008102
TC19001787.hg.1	FPR1	formyl peptide receptor 1	2.65	0.005323
TC19000676.hg.1	C5AR1	complement component 5a receptor 1	2.51	0.001633
TC01003261.hg.1	S100A8	S100 calcium binding protein A8	2.38	0.00008
TC02000978.hg.1	GCA	grancalcin, EF-hand calcium binding protein	2.36	0.000039
TC22000270.hg.1	NCF4	neutrophil cytosolic factor 4	2.36	0.000456
TC02000619.hg.1	IL1R2	interleukin 1 receptor, type II	2.33	0.000349
TC05002434.hg.1	MAP1B	microtubule associated protein 1B	2.33	0.001008
TC06003854.hg.1	VNN3	vanin 3	2.29	0.006736
TC01000510.hg.1	SMAP2	small ArfGAP2	2.28	0.000043
TC07000899.hg.1	MGAM	maltase-glucoamylase	2.21	0.007902
TC19000788.hg.1	FPR2	formyl peptide receptor 2	2.2	0.001012
TC12000309.hg.1	LRRK2	leucine-rich repeat kinase 2	2.19	0.00012
TC11002916.hg.1	SORL1	sortilin-related receptor, L(DLR class) A repeats containing	2.17	0.04713
TC09001187.hg.1	LINC01506	long intergenic non-protein coding RNA 1506	2.15	0.000086
TC04002623.hg.1	SPARCL1	SPARC like 1	2.13	0.021328
TC14002135.hg.1	SERPINA1	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1	2.12	0.044958
TC01005928.hg.1	SELL	selectin L	2.06	0.01508
TC02002767.hg.1	CXCR1	chemokine (C-X-C motif) receptor 1	2.05	0.007321
TC06002120.hg.1	VNN3	vanin 3	2.05	0.005486
TC20000587.hg.1	RASSF2	Ras association (RalGDS/AF-6) domain family member 2	2.05	0.000091
TC03000846.hg.1	MME	membrane metallo-endopeptidase	2.03	0.000075
TC09000601.hg.1	TLR4	toll-like receptor 4	2.03	0.000035
TC12000295.hg.1	KIAA1551	KIAA1551	1.96	0.005074
TC16000983.hg.1	XPO6	exportin 6	1.96	0.003886

TC15001719.hg.1	BCL2A1	BCL2-related protein A1	1.95	0.000364
TC01006030.hg.1	ZNF281	zinc finger protein 281	1.93	0.000161
TC11002344.hg.1	AMICA1	adhesion molecule, interacts with CXADR antigen 1	1.93	0.039132
TC02000623.hg.1	IL18RAP	interleukin 18 receptor accessory protein	1.92	0.001899
TC04001267.hg.1	SULT1B1	sulfotransferase family 1B member 1	1.91	0.00008
TC16001773.hg.1	LITAF	lipopolysaccharide-induced TNF factor	1.89	0.000134
TC12001185.hg.1	RPL23AP82	ribosomal protein L23a pseudogene 82	1.89	0.040122
TC12002425.hg.1		tumor pecrosis factor, alpha induced protein 6	1.00	0.000058
TC06004150 bg 1	EKBD2	EK506 hinding protein 5	1.87	5.97E-07
TC01001090 hg 1	TXNIP	thioredoxin interacting protein	1.85	0.003333
TC07000459.hg.1	NCF1	neutrophil cytosolic factor 1	1.85	0.000187
TC12002520.hg.1	PLXNC1	plexin C1	1.85	0.025561
TC01000124.hg.1	RBP7	retinol binding protein 7, cellular	1.84	0.000047
TC06000983.hg.1	ARG1	arginase 1	1.84	0.000016
TC06002863.hg.1	OGFRL1	opioid growth factor receptor-like 1	1.84	0.007888
TC11002123.hg.1	PAK1	p21 protein (Cdc42/Rac)-activated kinase 1	1.84	0.002744
TC15000864.hg.1	IQGAP1	IQ motif containing GTPase activating protein 1	1.84	0.012224
TC02001292.hg.1	CXCR2	chemokine (C-X-C motif) receptor 2	1.81	0.000105
TC02004161.hg.1	EIF2AK2	eukaryotic translation initiation factor 2-alpha kinase 2	1.8	0.001449
TC01000462.hg.1	AGO4	argonaute RISC catalytic component 4	1.78	0.004653
TC16000870.hg.1	LITAF	lipopolysaccharide-induced TNF factor	1.78	0.000316
TC01002287.hg.1	PADI2	peptidyl arginine deiminase, type II	1.77	0.000015
TC10000333 h = 1	SELL	Selectifi L	1.//	0.012469
TC12000871 be 1	KNA5SP316	KINA, 55 ribosomai pseudogene 316	1./3	0.005/12
TC150008/1.hg.1		msum receptor substrate 2	1./3	0.000107
TC01000261 bg 1	CDA	cutiding deaminase	1.75	0.000031
TC1000201.hg.1	ALOX5	arachidonate 5-linovygenase	1.72	0.000002
TC11001833.hg.1	FABP5P7	fatty acid binding protein 5 pseudogene 7	1.72	0.038894
TC13000642.hg.1	LCP1	lymphocyte cytosolic protein 1 (L-plastin)	1.71	0.005125
TC03000630.hg.1	CSTA	cystatin A (stefin A)	1.7	0.00088
TC19001180.hg.1	HSPC102	uncharacterized LOC105372274	1.7	0.007931
TC05000336.hg.1	MAP1B	microtubule associated protein 1B	1.69	0.001559
TC21000167.hg.1	KCNJ15	potassium channel, inwardly rectifying subfamily J,	1.69	0.008323
		member 15		
TC01006192.hg.1	EGLN1	egl-9 family hypoxia-inducible factor 1	1.68	0.0031
TC02004970.hg.1	MXD1	MAX dimerization protein 1	1.68	0.001508
TC01003240.ng.1	SIUUAII NCE2	S100 calcium binding protein A11	1.67	0.00049
TC08000402 hg 1	LIBXN2B	IIBX domain protein 2B	1.67	0.00054
TC12001269.hg.1	PI BD1	phospholipase B domain containing 1	1.67	0.00783
TC07002222.hg.1	CREB5	cAMP responsive element binding protein 5	1.66	0.016183
TC12000130.hg.1	CLEC4D	C-type lectin domain family 4, member D	1.66	0.000837
TC19001241.hg.1	ADGRE3	adhesion G protein-coupled receptor E3	1.65	0.018173
TC02002637.hg.1	STK17B	serine/threonine kinase 17b	1.62	0.001018
TC19000885.hg.1	FCAR	Fc fragment of IgA receptor	1.62	0.000478
TC02000237.hg.1	QPCT	glutaminyl-peptide cyclotransferase	1.6	0.000079
TC08000487.hg.1	LY96	lymphocyte antigen 96	1.6	0.001759
TC12000730.hg.1	PLXNC1	plexin C1	1.6	0.02873
TC01006307.hg.1	FCGR3A	Fc tragment of IgG, Iow attinity Illa, receptor (CD16a)	1.59	0.004299
TC10001058 bg 1		PAR18 member RAS oncorons family	1.30	0.000055
TC14001036 hg 1	NEKRIA	nuclear factor of kanna light polypentide gono	1.57	0.004632
1014001050.lig.1	NINDIA	enhancer in B-cells inhibitor, alpha	1.50	0.025057
TC19001640.hg.1	PGLYRP1	peptidoglycan recognition protein 1	1.56	0.000068
TC01001738.hg.1	CR1	complement component (3b/4b) receptor 1 (Knops	1.55	0.031704
_		blood group)		
TC04000856.hg.1	SAP30	Sin3A associated protein 30kDa	1.55	0.000312
TC12001368.hg.1	H3F3C	H3 histone, family 3C	1.55	0.000386
TC12001187.hg.1	A2M	alpha-2-macroglobulin	1.54	0.003505
TC02000432.hg.1	DYSF	dysterlin	1.53	0.000451
TC09001473.hg.1	TXN	thioredoxin	1.53	0.001651
TC12001027.hg.1	GLT1D1	glycosyltransterase 1 domain containing 1	1.53	0.003599
TC12001842.hg.1	HAL	nistidine ammonia-lyase	1.53	0.001073
TC10000360 bg 1	SPARCLI	SPARE IKE 1	1.51	0.000725
TC17001341 hg 1	FVI2R	ecotropic viral integration site 2B	1.51	0.000725
TC02001911.hg.1	PELI1	pellino E3 ubiguitin protein ligase 1	1.51	0.008062
TC14000070.hg.1	RNASE6	ribonuclease, RNase A family. k6	1.5	0.040643
TC16000812.hg.1	MEFV	Mediterranean fever	1.5	0.011693
TC16000879.hg.1	CPPED1	calcineurin-like phosphoesterase domain containing 1	1.5	0.028903

Supplemental Table 10. Differentially expressed genes. Genes down-regulated in patients with STEMI in the comparison between STEMI and sCAD.

Transcript	Gene	Description	Fold Change	ANOVA
Cluster ID	Symbol		(linear) (M vs. C)	p-value (M vs. C)
TC09001698.hg.1	RNU6ATAC	RNA, U6atac small nuclear (U12- dependent splicing)	-3.09	0.038323
TC15002175.hg.1	KRTAP6-1	keratin associated protein 6-1	-2.08	0.014975
TC17001015.hg.1	ATP2A3	ATPase, Ca++ transporting, ubiquitous	-1.96	0.046252
TC09001056.hg.1	RMRP	RNA component of mitochondrial RNA processing endoribonuclease	-1.94	0.043824
TC01005458.hg.1	TAL1	T-cell acute lymphocytic leukemia 1	-1.91	0.021614
TC15000870.hg.1	FURIN	furin (paired basic amino acid cleaving enzyme)	-1.82	0.016446
TC17002123.hg.1	MAP2K3	mitogen-activated protein kinase kinase 3	-1.79	0.011628
TC17001885.hg.1	UNC13D	unc-13 homolog D (C. elegans)	-1.66	0.036061
TC05003305.hg.1	CD74	CD74 molecule, major histocompatibility complex, class Il invariant chain	-1.65	0.005547
TC22001326.hg.1	МҮН9	myosin, heavy chain 9, non- muscle	-1.65	0.040705
TC11002092.hg.1	ARRB1	arrestin, beta 1	-1.64	0.0468
TC11000374.hg.1	CD82	CD82 molecule	-1.63	0.002587
TC15002610.hg.1	РКМ	pyruvate kinase, muscle	-1.63	0.016613
TC19000009.hg.1	BSG	basigin (Ok blood group)	-1.63	0.03403
TC01004503.hg.1	PRKACB	protein kinase, cAMP-dependent, catalytic, beta	-1.62	0.011993
TC02001303.hg.1	VIL1	villin 1	-1.61	0.005089
TC19000029.hg.1	HMHA1	histocompatibility (minor) HA-1	-1.61	0.023424
TC15002368.hg.1	FURIN	furin (paired basic amino acid cleaving enzyme)	-1.59	0.015616
TC19001553.hg.1	TGFB1	transforming growth factor beta 1	-1.56	0.036929
TC19001291.hg.1	FKBP8	FK506 binding protein 8	-1.54	0.032919
TC17000297.hg.1	MAP2K3	mitogen-activated protein kinase kinase 3	-1.53	0.013912
TC08002364.hg.1	MYBL1	v-myb avian myeloblastosis viral oncogene homolog-like 1	-1.52	0.022026
TC15000872.hg.1	MAN2A2	mannosidase, alpha, class 2A, member 2	-1.52	0.024624
TC19000373.hg.1	GATAD2A	GATA zinc finger domain containing 2A	-1.51	0.0131

Supplemental Table 11. DAVID analysis: identification of the biological processes related to upregulated genes in the comparison between patients with STEMI and sCAD

Term	Genes in the category	P-Value	Benjamini
innate immune response	CLEC4D; CLEC4E; S100A12; S100A8; S100A9; CR1; EIF2AK2; LY96; MSRB1; NCF1C; NCF2; PGLYRP1; TLR4; TREM1	6,6E-7	4,8E-4
inflammatory response	CXCR1; CXCR2; MEFV; S100A12; S100A8; S100A9; TNFAIP6; C5AR1; FPR1; FPR2; IL18RAP; LY96; TLR4	1,2E-6	4,3E-4
cellular defense response	CXCR2; C5AR1; LY96; MNDA; NCF1; NCF2	2,1E-5	5,1E-3
neutrophil chemotaxis	CXCR2; S100A12; S100A8; S100A9; C5AR1; TREM1	3,0E-5	5,6E-3
respiratory burst	NCF1; NCF1B; NCF1C; NCF2	5,6E-5	8,1E-3
positive regulation of NF-kappaB transcription factor activity	NFKB1A; S100A12; S100A8; S100A9; EIF2AK2; IRAK3; TLRK4	9,4E-5	1,1E-2
superoxide metabolic process	NCF1; NCF1B; NCF1C; NCF2	1,7E-4	1,8E-2
immune response	FCAR; FCGR3A; FCGRB; AQP9; C5AR1; IL1R2; IL18RAP; NCF4; PGLYRP1; TLR4	4,9E-4	4,4E-2

response to lipopolysaccharide	S100A8; C5AR1; EIF2AK2; IRAK3; LY96; PELI1; TLR4	5,4E-4	4,3E-2
leukocyte migration	C5AR1; FPR1; FPR2; MMP9; SELL; TREM1	5,8E-4	4,1E-2

Supplemental Table 12. DAVID analysis: identification of the biological processes related to down-regulated genes in the comparison between patients with STEMI and sCAD.

Term	Genes in the category	P-Value	Benjamini
activation of MAPK activity	CD74; ARRB1; MAP2K3	5,0E-3	8,7E-1
leukocyte migration	CD74; BSG; MYH9	6,7E-3	7,4E-1
positive regulation of transcription, DNA-templated	MYBL1; TAL1; MAP2K3: TGFB1	1,4E-2	8,5E-1
positive regulation of ERK1 and ERK2 cascade	CD74; ARRB1; TGFB1	1,4E-2	7,6E-1
positive regulation of cell migration	FURIN; TGFB1; VIL1	1,5E-2	7,1E-1
platelet formation	TAL1; MYH9	1,8E-2	7,0E-1
positive regulation of histone acetylation	ARRB1; TGFB1	1,9E-2	6,7E-1
positive regulation of protein complex assembly	TAL1; TGFB1	2,0E-2	6,4E-1
ATP biosynthetic process	PKM; TGFB1	2,9E-2	7,3E-1
positive regulation of cell division	TAL1; TGFB1	4,7E-2	8,5E-1

Supplemental Table 13. Perfomance of classification of each putative-gene signatures using kNN algoritm

Genes	#gene	#missclassification	Sensitivity	Specificity
F.C.2 p0001	26	0.15	0.862	0.831
F.C.2 p001	38	0.15	0.885	0.786
F.C. 2 p005	46	0.179	0.875	0.751
F.C. 2.5 p0001	16	0.144	0.872	0.834
F.C. 2.5 p001	22	0.183	0.85	0.775
F.C. 2.5 p005	24	0.199	0.849	0.736
F.C 1.5 p005	138	0.177	0.846	0.792

Supplemental Table 14. List of genes in the comparison between patients with STEMI and sCAD using a fold change of 2 and a p.value ≤ 0.01

Transcript	Gene
Cluster ID	Symbol
TC01003260.hg.1	S100A12
TC12001178.hg.1	CLEC4E
TC01001624.hg.1	RGS2
TC06003855.hg.1	VNN2
TC15000441.hg.1	AQP9
TC01001346.hg.1	MNDA
TC07002399.hg.1	NCF1B
TC19002237.hg.1	FCAR
TC06002121.hg.1	VNN2
TC07000438.hg.1	NCF1B;

	NCF1
TC07001738.hg.1	NAMPT
TC01001254.hg.1	S100A9
TC07003026.hg.1	NCF1C
TC21001069.hg.1	SAMSN1
TC04000072.hg.1	S100P
TC13000100.hg.1	ALOX5AP
TC07001516.hg.1	NCF1C
TC01006308.hg.1	FCGR3B
TC04001809.hg.1	ACSL1
TC06001717.hg.1	TREM1
TC19001787.hg.1	FPR1
TC19000676.hg.1	C5AR1
TC01003261.hg.1	S100A8
TC02000978.hg.1	GCA
TC22000270.hg.1	NCF4
TC02000619.hg.1	IL1R2
TC05002434.hg.1	MAP1B
TC06003854.hg.1	VNN3
TC01000510.hg.1	SMAP2
TC07000899.hg.1	MGAM
TC19000788.hg.1	FPR2
TC12000309.hg.1	LRRK2
TC09001187.hg.1	LINC01506
TC02002767.hg.1	CXCR1
TC06002120.hg.1	VNN3
TC20000587.hg.1	RASSF2
TC03000846.hg.1	MME
TC09000601.hg.1	TLR4

Supplemental Table 15. List of genes in the comparison between patients with STEMI and sCAD using a fold change of 2 and p.value ≤ 0.01 and annotation with Panther Family/Subfamily

Gene ID	Gene Name/ Gene Symbol	Panther Family/ Subfamily
CLEC4E	C-type lectin domain family 4 member E;CLEC4E;ortholog	C-TYPE LECTIN DOMAIN FAMILY 4 MEMBER E (PTHR22802:SF274)
S100A9	Protein S100-A9;S100A9;ortholog	PROTEIN \$100-A9 (PTHR11639:SF110)
AQP9	Aquaporin-7;AQP7;ortholog	AQUAPORIN-7 (PTHR43829:SF15)
S100A12	Protein S100-A12;S100A12;ortholog	PROTEIN \$100-A12 (PTHR11639:SF104)
TREM1	Triggering receptor expressed on myeloid cells 1;TREM1;ortholog	TRIGGERING RECEPTOR EXPRESSED ON MYELOID CELLS 1 (PTHR19357:SF4)

FCAR	Immunoglobulin alpha Fc receptor;FCAR;ortholog	IMMUNOGLOBULIN ALPHA FC
EDD2	N formul poptido recentor 2:EDP2:ortholog	RECEPTOR (PTHR11738:SF125)
FPRZ	N-1011191 peptide receptor 2,FPR2,0111010g	(PTHR24225:SF39)
MME	Macrophage metalloelastase;MMP12;ortholog	MACROPHAGE METALLOELASTASE (PTHR10201:SF207)
ALOX5AP	Arachidonate 5-lipoxygenase-activating	ARACHIDONATE 5-LIPOXYGENASE-
	protein;ALOX5AP;ortholog	ACTIVATING PROTEIN
TIDA		(PTHR10250:SF25)
TLK4	Toll-like receptor 4;TLR4;ortholog	(PTHR24365:SF494)
MNDA	Myeloid cell nuclear differentiation	MYELOID CELL NUCLEAR
	antigen;MNDA;ortholog	DIFFERENTIATION ANTIGEN
CMAD2	Promodomain containing protoin SuPPDS ortholog	
SIVIAPZ	Bromodomain-containing protein 8;BRD8;ortholog	PROTEIN & (PTHR15398-SE8)
NCF4	Neutrophil cytosol factor 4·NCF4·ortholog	NEUTROPHIL CYTOSOL FACTOR 4
		(PTHR10663:SF249)
VNN2	Vascular non-inflammatory molecule	VASCULAR NON-INFLAMMATORY
	2;VNN2;ortholog	MOLECULE 2 (PTHR10609:SF22)
S100A8	Protein S100-A8;S100A8;ortholog	PROTEIN S100-A8
100/0		(PTHR11639:SF111)
LRRK2	Leucine-rich repeat serine/threonine-protein kinase	
		2 (PTHR23257·SE669)
FCGR3B	Low affinity immunoglobulin gamma Fc region	LOW AFFINITY IMMUNOGLOBULIN
	receptor III-B;FCGR3B;ortholog	GAMMA FC REGION RECEPTOR III-A-
		RELATED (PTHR11481:SF78)
FPR1	fMet-Leu-Phe receptor;FPR1;ortholog	FMET-LEU-PHE RECEPTOR
NANAE	NonribuintMMEtortholog	(PTHR24225:SF41)
MGAM	Maltace duceamulace intestinal:MGAM:ortholog	
IVIGAIVI	Martase-glucoamylase, intestinai, MGAW, ortholog	INTESTINAL (PTHR22762:SF95)
VNN3	Vascular non-inflammatory molecule	VASCULAR NON-INFLAMMATORY
	3;VNN3;ortholog	MOLECULE 3 (PTHR10609:SF20)
MAP1B	Microtubule-associated protein 1B;MAP1B;ortholog	MICROTUBULE-ASSOCIATED PROTEIN
C100D		1B (PTHR13843:SF15)
5100P	Protein S100-P;S100P;ortholog	
	Aquaporni-9, AQP9, ortholog	
RAJJEZ	2.BASSE2.ortholog	CONTAINING PROTEIN 2
	2,0000 2,000000	(PTHR22738:SF16)
CXCR1	C-X-C chemokine receptor type 1;CXCR1;ortholog	C-X-C CHEMOKINE RECEPTOR TYPE 1-
		RELATED (PTHR10489:SF858)
GCA	Grancalcin;GCA;ortholog	GRANCALCIN (PTHR10183:SF356)
SMAP2	Stromal membrane-associated protein	STROMAL MEMBRANE-ASSOCIATED
CARGONI	2;SMAP2;ortholog	PROTEIN 2 (PTHR23180:SF355)
SAIVISN1	SAIVI domain-containing protein SAMSN- 1:SAMSN1:ortholog	SAM DOMAIN-CONTAINING PROTEIN SAMSN-1 (PTHR12301:SF13)
IL1R2	Interleukin-1 receptor type 2;IL1R2;ortholog	INTERLEUKIN-1 RECEPTOR TYPE 2

		(PTHR11890:SF39)
NCF1B	Putative neutrophil cytosol factor	NEUTROPHIL CYTOSOL FACTOR 1-
	1B;NCF1B;ortholog	RELATED (PTHR15706:SF14)
C5AR1	C5a anaphylatoxin chemotactic receptor	C5A ANAPHYLATOXIN CHEMOTACTIC
	1;C5AR1;ortholog	RECEPTOR 1 (PTHR24225:SF31)
NCF1C	Putative neutrophil cytosol factor	NEUTROPHIL CYTOSOL FACTOR 1-
	1C;NCF1C;ortholog	RELATED (PTHR15706:SF14)
NCF1	Neutrophil cytosol factor 1;NCF1;ortholog	NEUTROPHIL CYTOSOL FACTOR 1-
		RELATED (PTHR15706:SF14)
NAMPT	Nicotinamide	NICOTINAMIDE
	phosphoribosyltransferase;NAMPT;ortholog	PHOSPHORIBOSYLTRANSFERASE
		(PTHR43816:SF1)
ACSL1	Long-chain-fatty-acidCoA ligase 1;ACSL1;ortholog	LONG-CHAIN-FATTY-ACIDCOA
		LIGASE 1 (PTHR43272:SF3)
RGS2	Regulator of G-protein signaling 2;RGS2;ortholog	REGULATOR OF G-PROTEIN
		SIGNALING 2 (PTHR10845:SF218)
LINC01506		

References

¹ Global Burden of Disease Study 2013, Collaborators (22 August 2015). "Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013."Lancet (London, England). 386 (9995): 743–800.

² Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2045-51.

³ Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, Boren J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002;417(6890):750-754.

⁴ Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol. 2008;28(11):1897-1908.

⁵ Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists' view. Eur Heart J. 2013 Mar;34(10):719-28.

⁶ Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, Tanimoto T, Matsuo Y, Masho T, Kitabata H, Tsuda K, Tomobuchi Y, Akasaka T. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 2007;50:933-939.

⁷ Davies MJ, Bland JM, Hangartner JR, Angelini A, Thomas AC. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J 1989;10:203-208.

⁸ Davies MJ. Thrombosis in acute myocardial infarction and sudden death. Cardiovasc Clin. 1987;18(1):151-9. Review.

⁹ Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999 Sep;82(3):265-8.

¹⁰ Camerer E, Kolstø AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb Res. 1996 Jan 1;81(1):1-41. Review.

¹¹ Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2839-43.

¹² Ardissino D, Merlini PA, Ariëns R, Coppola R, Bramucci E, Mannucci PM. Tissue-factor antigen and activity in human coronary atherosclerotic plaques. Lancet. 1997 Mar 15;349(9054):769-71. Erratum in: Lancet 1997 Jul 26;350(9073):298.

¹³ Annex BH, Denning SM, Channon KM, Sketch MH Jr, Stack RS, Morrissey JH, Peters KG. Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation. 1995 Feb 1;91(3):619-22.

¹⁴ Meade TW, North WR, Chakrabarti R, Stirling Y, Haines AP, Thompson SG, Brozovié M. Haemostatic function and cardiovascular death: early results of a prospective study. Lancet. 1980 May 17;1(8177):1050-4.

¹⁵ Ardissino D, Merlini PA, Gamba G, et al. Thrombin activity and early outcome in unstable angina pectoris. Circulation. 1996;93: 1634-1639.

¹⁶ Ardissino D, Merlini PA, Bauer KA, Galvani M, Ottani F, Franchi F, Bertocchi F, Rosenberg RD, Mannucci PM. Coagulation activation and long-term outcome inacute coronary syndromes. Blood. 2003 Oct 15;102(8):2731-5.

¹⁷ Trip MD, Cats VM, van Capelle FJ, Vreeken J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med. 1990 May 31;322(22):1549-54.

¹⁸ Machlus KR, Italiano JE Jr. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol. 2013 Jun 10;201(6):785-96.

¹⁹ Italiano JE Jr. Unraveling mechanisms that control platelet production. Semin Thromb Hemost. 2013 Feb;39(1):15-24.

²⁰ Michelson AD. Platelets. London, Waltham, MA: Academic Press, 2013.

²¹ Lindemann S, Kramer B, Seizer P, Gawaz M.Platelets, inflammation and atherosclerosis. J Thromb Haemost 2007;5(suppl 1):203-11.

²² Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol. 2015 Mar 6;6:98.

²³ Healy AM, Pickard MD, Pradhan AD, Wang Y, Chen Z, Croce K, Sakuma M, Shi C, Zago AC, Garasic J, Damokosh AI, Dowie TL, Poisson L, Lillie J, Libby P, Ridker PM, Simon DI. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation. 2006 May 16;113(19):2278-84.

²⁴ Edelstein LC, Bray PF. MicroRNAs in platelet production and activation. Blood.2011 May 19;117(20):5289-96. ²⁵ Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda KJ, Fratto CM, Tolley E, Kraiss LW, McIntyre TM, Zimmerman GA, Weyrich AS. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005 Aug 12;122(3):379-91.

²⁶ Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood. 2003 Mar 15;101(6):2285-93.

²⁷ Bugert P, Dugrillon A, Günaydin A, Eichler H, Klüter H. Messenger RNA profiling of human platelets by microarray hybridization. Thromb Haemost. 2003 Oct;90(4):738-48.

²⁸ Burns P, Gusnanto A, Macaulay IC, Rankin A, Tom B, Langford CF, Dudbridge F, Ouwehand WH, Watkins NA; Bloodomics Consortium. Identification of variation in the platelet transcriptome associated with glycoprotein 6 haplotype. Platelets. 2008 Jun;19(4):258-67.

²⁹ Gnatenko DV, Zhu W, Xu X, Samuel ET, Monaghan M, Zarrabi MH, Kim C, Dhundale A, Bahou WF. Class prediction models of thrombocytosis using genetic biomarkers. Blood. 2010 Jan 7;115(1):7-14.

³⁰ Edelstein LC, Bray PF. MicroRNAs in platelet production and activation. Blood. 2011 May 19;117(20):5289-96.

³¹ Lood C, Amisten S, Gullstrand B, Jönsen A, Allhorn M, Truedsson L, Sturfelt G, Erlinge D, Bengtsson AA. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood. 2010 Sep 16;116(11):1951-7.

³² Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, Chen J, McKnight GS, López JA, Yang L, Jin Y, Bray MS, Leal SM, Dong JF, Bray PF. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood. 2011 May 12;117(19):5189-97.

³³ Freedman JE, Larson MG, Tanriverdi K, O'Donnell CJ, Morin K, Hakanson AS, Vasan RS, Johnson AD, Iafrati MD, Benjamin EJ. Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation. 2010 Jul 13;122(2):119-29.

³⁴ Nanni L, Romualdi C, Maseri A, Lanfranchi G. Differential gene expression profiling in genetic and multifactorial cardiovascular diseases. J Mol Cell Cardiol. 2006 Dec;41(6):934-48. Review. ³⁵ Silbiger VN, Luchessi AD, Hirata RD, Lima-Neto LG, Cavichioli D, Carracedo A, Brión M, Dopazo J, García-García F, dos Santos ES, Ramos RF, Sampaio MF, Armaganijan D, Sousa AG, Hirata MH. Novel genes detected by transcriptional profiling from whole-blood cells in patients with early onset of acute coronary syndrome. Clin Chim Acta. 2013 Jun 5;421:184-90.

³⁶ Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014 Sep 12;115(7):668-77.

³⁷ Colombo G, Gertow K, Marenzi G, Brambilla M, De Metrio M,Tremoli E, Camera M. Gene expression profiling reveals multiple differences in platelets from patients with stable angina or non-ST elevation acute coronary syndrome. Thromb Res. 2011 Aug;128(2):161-8.

³⁸ Eicher JD, Wakabayashi Y, Vitseva O, Esa N, Yang Y, Zhu J, Freedman JE, McManus DD, Johnson AD. Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction. Platelets. 2016;27(3):230-9.

³⁹ Carubbi C, Mirandola P, Mattioli M, Galli D, Marziliano N, Merlini PA, Lina D, Notarangelo F, Cozzi MR, Gesi M, Ardissino D, De Marco L, Vitale M, Gobbi G. Protein kinase C ϵ expression in platelets from patients with acute myocardial infarction. PLoS One. 2012;7(10):e46409.

⁴⁰ Carubbi C, Masselli E, Gesi M, Galli D, Mirandola P, Vitale M, Gobbi G. Cytofluorimetric platelet analysis. Semin Thromb Hemost. 2014 Feb;40(1):88-98.

⁴¹ Parry RM, Jones W, Stokes TH, Phan JH, Moffitt RA, Fang H, Shi L, Oberthuer A,Fischer M, Tong W, Wang MD. k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. Pharmacogenomics J. 2010 Aug;10(4):292-309.

⁴² Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005 Jun 9;435(7043):834-8.

⁴³ Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben-Ari A, Gilad S, Sion-Vardy N, Tobar A, Feinmesser M, Kharenko O, Nativ O, Nass D, Perelman M, Yosepovich A, Shalmon B, Polak-Charcon S, Fridman E, Avniel A, Bentwich I, Bentwich Z, Cohen D, Chajut A, Barshack I. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008 Apr;26(4):462-9.

⁴⁴ Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET, Bergh J. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13550-5. Erratum in: Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17882.

⁴⁵ Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, Mehra R, Montie JE, Pienta KJ, Sanda MG, Kantoff PW, Rubin MA, Wei JT, Ghosh D, Chinnaiyan AM. Autoantibody signatures in prostate cancer. N Engl J Med. 2005 Sep 22;353(12):1224-35.

⁴⁶ Slawski M, Daumer M, Boulesteix A-L. CMA: a comprehensive Bioconductor package for supervised classification with high dimensional data. BMC Bioinformatics. 2008;9:439.

⁴⁷ Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13.

⁴⁸ Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P,Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D'Eustachio P. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014 Jan;42(Database issue):D472-7.

⁴⁹ Sane DC, Kontos JL, Greenberg CS. Roles of transglutaminases in cardiac and vascular diseases. Front Biosci J Virtual Libr. 2007;12: 2530-2545.

⁵⁰ Haroon ZA, Wannenburg T, Gupta M, Greenberg CS, Wallin R, Sane DC. Localization of tissue transglutaminase in human carotid and coronary artery atherosclerosis: implications for plaque stability and progression. Lab Investig J Tech Methods Pathol. 2001;81(1):83-93.

⁵¹ Sumi Y, Inoue N, Azumi H, Seno T, Okuda M, Hirata K, Kawashima S, Hayashi Y, Itoh H, Yokoyama M. Expression of tissue transglutaminase and elafin in human coronary artery: implication for plaque instability. Atherosclerosis. 2002 Jan;160(1):31-9.

⁵² Elrod JW, Wong R, Mishra S, et al. Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest. 2010;120(10):3680-3687.

⁵³ Jobe SM, Wilson KM, Leo L, Raimondi A, Molkentin JD, Lentz SR, Di Paola J. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood. 2008 Feb 1;111(3):1257-65.
⁵⁴ Liu H, Liu W, Liao Y, Cheng L, Liu Q, Ren X, Shi L, Tu X, Wang QK, Guo AY. CADgene: a comprehensive database for coronary artery disease genes. Nucleic Acids Res. 2011 Jan;39(Database issue):D991-6.

⁵⁵ Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol. 2014;92(7):583-591.

⁵⁶ Sin YY, Baillie GS. Protein kinase D in the hypertrophy pathway. Biochem Soc Trans. 2012 Feb;40(1):287-9.

⁵⁷ Stafford MJ, Watson SP, Pears CJ. PKD: a new protein kinase C-dependent pathway in platelets. Blood. 2003;101(4):1392-1399.

⁵⁸ Aukrust P, Halvorsen B, Yndestad A, Ueland T, Øie E, Otterdal K, Gullestad L, Damås JK. Chemokines and cardiovascular risk. Arterioscler Thromb Vasc Biol. 2008 Nov;28(11):1909-19.

⁵⁹ Wang Y, Fang C, Gao H, Bilodeau ML, Zhang Z, Croce K, Liu S, Morooka T, Sakuma M, Nakajima K, Yoneda S, Shi C, Zidar D, Andre P, Stephens G, Silverstein RL, Hogg N, Schmaier AH, Simon DI. Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis. J Clin Invest. 2014 May;124(5):2160-71.

⁶⁰ Oesterle A, Bowman MA. S100A12 and the S100/Calgranulins: Emerging Biomarkers for Atherosclerosis and Possibly Therapeutic Targets. Arterioscler Thromb Vasc Biol. 2015 Dec;35(12):2496-507.

⁶¹ Van der Heiden K, Cuhlmann S, Luong LA, Zakkar M, Evans PC. Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci Lond Engl 1979. 2010;118(10):593-605.

⁶² Zhang P, Mende U. Functional role, mechanisms of regulation, and therapeutic potential of regulator of G protein signaling 2 in the heart. Trends Cardiovasc Med. 2014;24(2):85-93.

⁶³ Takimoto E, Koitabashi N, Hsu S, Ketner EA, Zhang M, Nagayama T, Bedja D,Gabrielson KL, Blanton R, Siderovski DP, Mendelsohn ME, Kass DA. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Invest. 2009 Feb;119(2):408-20.

⁶⁴ Tsang S, Woo AY-H, Zhu W, Xiao R-P. Deregulation of RGS2 in cardiovascular diseases. Front Biosci Sch Ed. 2010;2:547-557.

73

⁶⁵ Qian K, Xie F, Gibson AW, Edberg JC, Kimberly RP, Wu J. Functional expression of IgA receptor FcalphaRI on human platelets. J Leukoc Biol. 2008 Dec;84(6):1492-500.

⁶⁶ Iakoubova OA, Tong CH, Chokkalingam AP, Rowland CM, Kirchgessner TG, Louie JZ, Ploughman LM, Sabatine MS, Campos H, Catanese JJ, Leong DU, Young BA, Lew D, Tsuchihashi Z, Luke MM, Packard CJ, Zerba KE, Shaw PM, Shepherd J, Devlin JJ, Sacks FM. Asp92Asn polymorphism in the myeloid IgA Fc receptor is associated with myocardial infarction in two disparate populations: CARE and WOSCOPS. Arterioscler Thromb Vasc Biol. 2006 Dec;26(12):2763-8.

⁶⁷ Ghasemzadeh M, Kaplan ZS, Alwis I, Schoenwaelder SM, Ashworth KJ, Westein E, Hosseini E, Salem HH, Slattery R, McColl SR, Hickey MJ, Ruggeri ZM, Yuan Y, Jackson SP. The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. Blood. 2013 May 30;121(22):4555-66.

⁶⁸ Boufenzer A, Lemarié J, Simon T, Derive M, Bouazza Y, Tran N, Maskali F, Groubatch F, Bonnin P, Bastien C, Bruneval P, Marie PY, Cohen R, Danchin N, Silvestre JS, Ait-Oufella H, Gibot S. TREM-1 Mediates Inflammatory Injury and Cardiac Remodeling Following Myocardial Infarction. Circ Res. 2015 May 22;116(11):1772-82.

⁶⁹ Park HJ, Noh JH, Eun JW, Koh YS, Seo SM, Park WS, Lee JY, Chang K, Seung KB, Kim PJ, Nam SW. Assessment and diagnostic relevance of novel serum biomarkers for early decision of ST-elevation myocardial infarction. Oncotarget. 2015 May 30;6(15):12970-83.

⁷⁰ Huang H, Zeng Z, Li J, Zhang L, Chen Y. Variants of arachidonate 5-lipoxygenaseactivating protein (ALOX5AP) gene and risk of coronary heart disease: A meta-analysis. Arch Med Res. 2010;41(8):634-641.

⁷¹ Patzelt J, Mueller KA, Breuning S, Karathanos A, Schleicher R, Seizer P, Gawaz M, Langer HF, Geisler T. Expression of anaphylatoxin receptors on platelets in patients with coronary heart disease. Atherosclerosis. 2015 Feb;238(2):289-95.

⁷² Gavins FN. Are formyl peptide receptors novel targets for therapeutic intervention in ischaemia-reperfusion injury? Trends Pharmacol Sci. 2010 Jun;31(6):266-76.

⁷³ Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew CC. Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol. 2002 Jun;160(6):2035-43.

⁷⁴ Lassner D, Kühl U, Siegismund CS, Rohde M, Elezkurtaj S, Escher F, Tschöpe C, Gross UM, Poller W, Schultheiss HP. Improved diagnosis of idiopathic giant cell myocarditis and

cardiac sarcoidosis by myocardial gene expression profiling. Eur Heart J. 2014 Aug 21;35(32):2186-95.

⁷⁵ Suresh R, Li X, Chiriac A, Goel K, Terzic A, Perez-Terzic C, Nelson TJ. Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction. J Mol Cell Cardiol. 2014 Sep;74:13-21.

⁷⁶ Abbas A, Aukrust P, Dahl TB, Bjerkeli V, Sagen EB, Michelsen A, Russell D, Krohg-Sørensen K, Holm S, Skjelland M,Halvorsen B. High levels of S100A12 are associated with recent plaque symptomatology in patients with carotid atherosclerosis. Stroke. 2012 May;43(5):1347-53.

⁷⁷ Clément M, Basatemur G, Masters L, Baker L, Bruneval P, Iwawaki T, Kneilling M, Yamasaki S, Goodall J, Mallat Z. Necrotic Cell Sensor Clec4e Promotes a Proatherogenic Macrophage Phenotype Through Activation of the Unfolded Protein Response. Circulation. 2016 Oct 4;134(14):1039-1051.

⁷⁸ Akasaka Y, Morimoto N, Ishikawa Y, Fujita K, Ito K, Kimura-Matsumoto M, Ishiguro S, Morita H, Kobayashi Y, Ishii T. Myocardial apoptosis associated with the expression of proinflammatory cytokines during the course of myocardial infarction. Mod Pathol. 2006 Apr;19(4):588-98.