
UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXVIII Ciclo

An Autonomic Framework for Mobile Cloud Computing

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutor:

Chiar.mo Prof. Francesco Zanichelli

Dottorando: Alessandro Grazioli

Gennaio 2016

To my family,

thanks for everything you give me everyday

Summary

Introduction 1

1 Background 13
1.1 Cloud Computing . 13

1.1.1 Cloudlets . 15
1.1.2 Cloud benefits . 16
1.1.3 Cloud challenges . 17

1.2 Peer-to-peer Computing . 17
1.2.1 Peer-to-peer benefits . 18
1.2.2 Peer-to-peer challenges . 18

1.3 Autonomic Computing . 19
1.3.1 Autonomic computing benefits 20
1.3.2 Autonomic computing challenges 21

2 Related Work 23
2.1 Autonomic Computing approaches 23
2.2 Mobile Cloud Computing approaches 24

2.2.1 Design-time partitioning 25
2.2.2 Runtime partitioning . 25
2.2.3 Hybrid partitioning . 33

3 Networked Autonomic Machine 35
3.1 NAM-based model . 36

ii Summary

3.1.1 NAM computational entities 36
3.2 Mobility actions . 37
3.3 NAM formalization . 40

3.3.1 Control tuples . 42
3.3.2 NAM control . 43
3.3.3 Functional module control 44
3.3.4 Macros . 48

4 NAM4J Middleware 55
4.1 NAM4 architecture . 56
4.2 Mobility support for MCC applications 60
4.3 Context Bus . 66
4.4 DARTSense . 71

4.4.1 Distributed reputation management 74
4.5 Rule engine . 79

5 Analysis and evaluation 85
5.1 MCC quantitative analysis . 85
5.2 P2P/Cloud integration . 96
5.3 Urban participatory sensing . 112

6 Conclusions 121
6.1 Further work . 124

A KLAIM Semantics 127

Bibliography 131

Acknowledgements 143

List of Figures

1 Mobile market trends. 2

2 Mobile Cloud Computing. 5

3 Cloud involvement vs offloading grain for MCC approaches. 9

1.1 Cloud computing general model. 15

1.2 Architecture of a cloudlet-based system. 16

1.3 Autonomic Element architecture. 21

2.1 MAUI architecture. 26

2.2 Serendipity job model. 28

2.3 Serendipity architecture. 29

2.4 CloneCloud system model. 30

2.5 CloneCloud architecture. 30

2.6 ThinkAir framework overview. 32

3.1 Mobility actions. 38

4.1 NAM4J layer stack. 56

4.2 NAM4J UML class diagram before the PhD activity. 57

4.3 NAM4J UML class diagram after the PhD activity. 57

4.4 NAM4J UML mobility class diagram. 58

4.5 Operations of the basic Dispatcher provided by NAM4J. 59

4.6 Context Bus involving three peers. 66

iv List of Figures

4.7 Sequence diagram for network joining, and event publishing, sub-
scribing and unsubscribing in full mesh networks. 68

4.8 Sequence diagram for network joining, and event publishing, sub-
scribing and unsubscribing in partial mesh networks. 69

4.9 Propagation of subscription messages. 70

4.10 Propagation of notification messages. 70

4.11 The sigmoid function used to compute reputation values. 74

4.12 Flow chart of the reputation value updating process, when the number
of received events is greater than nth. 77

4.13 Flow chart of the reputation value updating process, when the updat-
ing has already been performed at least once. 77

4.14 Flow chart implementing reputation values updates when an event is
generated and others of the same type and location had been received
by other participants. 78

4.15 Drools forward chaining execution method. 81

5.1 QN model of the MCC system. 86

5.2 Average cloud execution time for tasks, estimated speedup for tasks
and offloading probability versus time, when the number of devices
is 100. The simulator is compared to the OpenStack-based private
Cloud deployed in our Department. 92

5.3 Average execution time for tasks, versus job rate, in the case of SQF
dispatching and FCFS/SJF scheduling. The whole MCC system is
compared to the Cloud alone. 94

5.4 Average cloud slowdown for tasks, versus job rate, in the case of SQF
dispatching and FCFS/SJF scheduling. 94

5.5 Average execution time for tasks, versus job rate, in the case of SQEDF
dispatching and FCFS scheduling. The whole MCC system is com-
pared to the Cloud alone. 95

5.6 Average cloud slowdown for tasks, versus job rate, in the case of
SQEDF dispatching and FCFS scheduling. 95

List of Figures v

5.7 Average execution time for tasks, versus job rate, in the case of RAN-
DOM dispatching and SJF scheduling. The whole MCC system is
compared to the Cloud alone. 96

5.8 Average cloud slowdown for tasks, versus job rate, in the case of
RANDOM dispatching and SJF scheduling. 96

5.9 The percentage of deadline hits for tasks, considering the three dis-
patching strategies SQF, SQEDF and RANDOM, with FCFS/SJF
scheduling. 97

5.10 The average execution time for jobs over the whole MCC system,
considering the three dispatching strategies SQF, SQEDF and RAN-
DOM, with FCFS/SJF scheduling. 98

5.11 Time variation of the offloading probability and number of active
VMs, considering different N values and q = 0.75, in the case of
SQF dispatching and SJF scheduling. 99

5.12 Service Bus involving two peers and one Cloud. 99

5.13 NAM-based distributed storage. 100

5.14 Evolution over time of the most interesting performance indicators
and mt , for the exponential topology. The measured availability is
A = 1. 108

5.15 Evolution over time of the most interesting performance indicators
and mt , for the BA topology. The measured availability is A = 1. . . 109

5.16 Evolution of performance indicators versus ρ3. The measured avail-
ability is A = 1. 110

5.17 Evolution of performance indicators versus T . The measured avail-
ability is A = 1. 111

5.18 Evolution of performance indicators versus α . The measured avail-
ability is A = 1. 112

5.19 Architecture of the proposed autonomic approach to UPS. 114

5.20 Layered structure of network nodes. 115

vi List of Figures

5.21 Screenshots of the Android application. The user is allowed to pub-
lish information acquired by her/his device. Also, the user can search
for deployed sensors and be notified of updates. 118

5.22 Percentage of detected adversaries versus the total number of pub-
lished events. 120

List of Tables

5.1 Power demand of different mobile devices. 90
5.2 Image Processing Statistics. 91
5.3 File availability values of major interest, with corresponding values

for minimum required peer availability. 105
5.4 Simulation parameters. 106

A.1 KLAIM syntax. 128

Introduction

In recent years, the market of mobile devices – smartphones, tablets, PDAs, Mobile
Internet Devices (MIDs), portable media players (PMPs), netbooks, etc. – has been
relentlessly growing. Nowadays, mobile applications represent an important segment
of the global economy. The ever increasing capabilities of such devices make them
attractive to users, in that they provide a huge amount of applications and services to
be experienced in mobility, with reference to information, business and entertainment
domains. Fig. 11illustrates mobile market trends in the last years. Fig. 1 (a) shows the
estimated number of paid and free apps downloads worldwide from 2012 to 2017.
Fig. 1 (b) shows the estimated shipments trend for traditional PCs and mobile de-
vices until 2017. It can be seen that, while the shipments numbers for both desktop
and portable devices remain approximately constant, both smartphones and tablet
sales consistently grow. Thus, mobile devices are nowadays becoming the common-
est computing platform of choice. One consequence of such a trend is that, as Fig. 1
(c) presents, the mobile data traffic originating from smartphones and tablets will
consistently grow as well. Finally, Fig. 1 (d) illustrates the market fragmentation as
several vendors compete to acquire the highest position, being Samsung, Microsoft
and Apple the most successful ones.

Such trends have been considered for a long time by the Mobile and Ubiquitous
Computing research areas. Specifically, the latter term is generally used to describe
techniques and technologies that enable people to access computing services any-
place, anytime and anywhere.

1Data from http://www.statista.com/.

http://www.statista.com/

2 Introduction

(a) Estimated number of downloaded free
and paid apps from 2012 to 2017 (in billion
units), by year.

(b) Estimated device shipments by form
factor worldwide until 2017 (in million
units), by year.

(c) Global mobile data traffic forecast by
form factor from 2012 to 2017 (in Ter-
abytes), by month.

(d) Vendors’ sales of mobile phone sales to
end users worldwide from 2010 to 2015 (in
million units), by quarter.

Figure 1: Mobile market trends.

Mobile Computing encompasses all the aspects concerning mobile hardware,
software and communication. Regarding the hardware, device capabilities constantly
improve due to market-driven research efforts. Nowadays, smartphones and tablets
are provided with multi-core CPUs, GPUs, Gigabytes of RAM, several network in-
terfaces and a relevant number of sensors such as camera, accelerometer, GPS, micro-
phone and compass. Such improvements and the ubiquitous availability of network
connectivity are changing the applications addressed by mobile devices that are be-
coming sources, aggregators and processors of heterogeneous information.

Introduction 3

Mobile Cloud Computing

If compared to desktop PCs and servers, mobile devices are characterized by lim-
its concerning performance and battery, when they are required to execute intensive
tasks. Cloud Computing (CC) is a way to extend the capabilities of such devices
through the temporary and on-demand ubiquitous access to computing and storage
resources provided by remote cloud infrastructures. Augmented devices are thus able
to perform intensive tasks, extensive computation and store huge amount of data,
beyond their intrinsic capabilities.

Mobile cloud computing (MCC) is an emerging paradigm for transparent elas-
tic augmentation of mobile devices capabilities aiming at increasing the range of
resource-intensive tasks supported by mobile devices, while preserving and extend-
ing their resources. Its main concerns regard the augmentation of energy efficiency,
storage capabilities, processing power and data safety, to improve the experience of
mobile users. The design of MCC systems is a challenging task, in that both the mo-
bile device and the Cloud have to find energy-time tradeoffs and the choices on one
side affect the performance of the other side. The thorough comprehension of critical
factors, such as the current state of local and remote resources and the available band-
width, which strongly influence the augmentation process, is of capital importance.

The Cloud can be considered as a distributed system made of a cluster of comput-
ing nodes accessible as a unified resource based on a Service Level Agreement (SLA)
[1]. The SLA is a formal contract negotiated in advance between service providers
and consumers to assess a level of quality against a fee. The goal of enabling the
seamless provision, acquisition and release of shared computing resources through
the ubiquitous and on-demand network access, pushes researchers to investigate new
solutions for minimizing required management efforts and increasing performance.

Applications that benefit from MCC principles can be organized in the following
categories [2].

• Computing-intensive software, such as natural language processing, augmented
reality and video, image and speech recognition;

• Data-intensive programs, such as enterprise applications;

4 Introduction

• Communication-intensive applications, such as online video streaming.

General model and concept of MCC

In the last decade, the continuous growth in expectations regarding mobile applica-
tions has given rise to the need to enhance the computing power of mobile devices.
Also, the concepts of load sharing and remote execution has risen with the aim of
achieving such an enhancement by migrating computational-intensive tasks to surro-
gates (i.e., high performance computing devices). Such an approach led to interesting
results, but its actual usefulness is hindered by a number of factors such as the fact that
servers can abruptly become unavailable and access and tamper offloaded data [3].
The emergence of the cloud computing paradigm allowed to overcome most of sur-
rogates issues. The vision of the cloud as a model for the ubiquitous and on-demand
network access to a virtually unlimited amount of shared and configurable resources
lured researches’ attention and cloud computing is currently the most promising ap-
proach for mobile devices enhancement.

MCC leverages on different cloud-based computing resources, the most impor-
tant of which are distant clouds and near mobile devices. Distant clouds, such as
Amazon EC22, are extremely powerful infrastructures, located far from users, that
provide virtually unlimited resources whose access is characterized by high WAN la-
tency. On the other hand, near mobile devices can constitute a cluster and share their
resources to provide cloud-like services characterized by lower performance and la-
tency when compared to distant clouds.

Fig. 2 (a) presents the general architecture of a MCC system. User devices are
connected to mobile networks via base stations or satellites that establish and manage
the interfaces. Mobile operators can provide services to users such as authentication,
authorization, and accounting based on subscribers’ data. Transmitted data are then
forwarded to the cloud through the internet. The cloud then processes requests to
provide services [4]. Cloud services are generally classified as a layered stack, as
illustrated by fig. 2 (b).

2Amazon Elastic Compute Cloud: http://aws.amazon.com/it/ec2/

Introduction 5

(a) General structure.

(b) Cloud services.

Figure 2: Mobile Cloud Computing.

Resource heterogeneity is useful to augment the number of supported applica-
tions, however MCC applications present a number of critical questions that need
to be answered before implementing them as MCC systems. For example, when is
MCC actually beneficial and when not? What kind of resources are needed by the
application? Is data confidentiality needed? Is the access to local resources or sensors
required? What are users preferences?

MCC approaches

During the years, several approaches aiming at augmenting mobile devices capabil-
ities have been proposed and studied. Such approaches can be both hardware and
software. The hardware approach concerns the technological evolution of physical
components such as CPU, memory, battery, communication infrastructures, sensors
and storage. The main software approaches include load sharing, remote execution
and cyber foraging. Such approaches imply the migration of the whole task. Opera-

6 Introduction

tions such as the identification of data and code to be migrated, decisions regarding
whether to offload or not and the actual offloading are intensive tasks and consume
mobile device resources. Storing and re-using code on nodes ubiquitously accessible
by every device – such as a cloud infrastructure – reduces such a problem. Abolfa-
zli et al. [2] coined the Cloud-based Augmentation for mobile devices (CMA) term
to include all approaches aiming at extending mobile devices capabilities following
such a perspective.

In the late 90s Othman and Hailes [5] were among the first to propose a software
approach aiming at preserving mobile resources by adopting the distributed systems’
load balancing approach. Load Sharing consists in sharing computational load among
the nodes of a distributed system, without attempting to equalize it. The goal is to im-
prove the use of resources by making sure that no node is idle. A general load sharing
algorithm consists of two policies. A transfer policy decides when jobs should be
transferred based on metrics such as the job size and available bandwidth. A location
policy decides jobs’ destinations (i.e., to which host a job will be transfered). Such
a process can choose a random node or decide based on workload information that
can be obtained by probing nodes or by periodically collecting information. In the
architecture, a mobile device sends the job to a base station responsible for finding a
suitable node, forwards the job to it, receive results and send them back. Receiving
hosts are servers and desktop PCs, so no mobility support is provided. Also, state
migration is not available.

Remote Execution is another approach emerged in the 90s aiming at augment-
ing mobile devices capabilities through execution and data storage on surrogates.
Rudenko et al. [6] investigated such an approach mainly focusing on portable com-
puters power saving. Such devices are in fact also characterized by power manage-
ment issues that hinder their utility in that battery life is not always sufficient. Tasks
whose nature does not require local execution can be offloaded. The authors demon-
strated that if the power needed to remotely send a task, waiting while idle and re-
ceiving results is lower than the one required by local execution, migration can save
a remarkable amount battery life depending on the size of such a task. A drawback of
Rudenko’s approach is the static partitioning. In fact, the latter is a difficult task in that

Introduction 7

it heavily depends on the application and platform. As mobile devices evolve rapidly,
the optimal partitioning changes over time. Also, the environment affects connectiv-
ity and bandwidth. Balan et al. [7] investigated tactics aiming at improving applica-
tions’ partitioning into local and remote components. Flinn et al. [8] designed and
implemented a self-tuning remote execution system for pervasive computing which
addresses the complexities of pervasive computing to improve both performance and
battery life. Although such efforts showed positive results, several issues hinder such
an approach. Firstly, offloading decisions are a difficult task since many factors have
to be considered, such as performance differences between client and server nodes
and the available bandwidth. Secondly, servers are characterized by security and reli-
ability issues in that data can be accessed without authorization, tampered and, in the
absence of a SLA, services are not guaranteed [3].

Cyber Foraging is an approach proposed by Satyanarayanan [9] for which wire-
less mobile devices’ computing resources can augment through the exploitation of
wired hardware infrastructures. A mobile device senses the environment, looks for
potential surrogates and negotiates their use. The author envisions a scenario where
mobile devices and surrogates communicate through short-range wireless peer-to-
peer (P2P) technologies. The surrogate can act as a gateway to the internet and, in
case of intensive computation, the device can send tasks to the surrogate for execu-
tion.

Kovachev and Klamma [10] classified MCC approaches found in the literature in
three categories.

• Augmented execution addresses computation, memory and battery limitations
for mobile devices through execution offloading to a computational infrastruc-
ture (cloud). The latter runs a virtual machine (VM) -based cloned replica of
the smartphone’s software. In this application model, the mobile device hosts
demanding applications. However, some or all tasks can be offloaded to a cloud
where a cloned system image of the device is running. Results are then reinte-
grated upon completion. Such an approach requires loosely synchronized repli-
cas of the device which are instantiated based on policies that take into account

8 Introduction

the performance-cost tradeoff.

• Elastic partitioned applications improve their performance by delegating part
of the computation to a resource-rich cloud infrastructure. A fundamental as-
pect of such an approach is elasticity, that is the ability to acquire and release
resources on demand. The offloading granularity can range from complete
software modules to single methods, and an underlying runtime management
platform hides most of complexity concerning the deployment, execution and
maintenance of such applications.

• An ad-hoc mobile cloud is a system made of a group of connected mobile de-
vices which acts as a cloud. Such devices expose their computing resources
to other mobile devices. This approach becomes more interesting in situations
with no or weak connections to the Internet and large cloud providers. Of-
floading to nearby mobile devices save monetary cost in that data charging is
avoided. Moreover, it fosters the creation of computing communities in which
users can collaboratively execute shared tasks.

The aforementioned approaches can be placed on a planar space to compare the
cloud involvement and offloading grain, as presented by Fig. 3. The augmented exe-
cution approach is characterized by high cloud usage and coarse-grained offloading,
while the other approaches present fine-grained offloading and a different degree of
cloud involvement.

Issues and disadvantages of MCC

MCC can augment devices’ capabilities to make them able to perform intensive tasks,
extensive computation and store amounts of data beyond their intrinsic capabilities.
However, such a technology is characterized by a number of issues, such as the in-
creased complexity in both design and implementation, and the risk of unauthorized
access to data and resources stored on the cloud. Also, MCC systems strongly de-
pend on network infrastructures. Thus, a high performance, robust and reliable com-
munication among cloud infrastructures and mobile devices is required. Currently,

Introduction 9

Figure 3: Cloud involvement vs offloading grain for MCC approaches.

network throughput and ubiquitous connectivity present deficiencies that prevent the
wide spreading of such an approach, due to possible loss of service quality and per-
formance degradation. Another difficult task is the estimation of energy consumption
and processing power required to perform tasks that can be offloaded. Such data are
used by the decision engine, a fundamental part of MCC systems. Moreover, other
challenges such as the execution state migration, the efficient allocation of cloud re-
sources, trust and security, exist. Finally, cloud access is usually paid and not every
user is willing to afford such a price, depending on the application.

Thesis contribution

This Ph.D. thesis3 focuses on the problem of defining a conceptual model for MCC
systems. The lack of an agreed upon model is in fact one of the main hindrances to
the full realization of MCC. Also, we investigate the impact of autonomic policies on
MCC in that, as multiple offloading approaches are possible [10] depending on the
task and context, autonomic computing techniques appear promising to increase the
robustness and flexibility of MCC applications [11].

3This Ph.D fellowship has been partly funded by a grant from Spinner Consortium, titled “Mo-
bilità Urbana Cooperativa in una Città Amichevole”, and partly by the Dipartimento di Ingegneria
dell’Informazione of Parma University.

10 Introduction

The design of MCC systems is a challenging task, because both the mobile de-
vice and the Cloud have to find energy-time tradeoffs and the choices on one side
affect the performance of the other side. Through the analysis of MCC literature, we
noticed that existing models focus on mobile devices, considering the Cloud as a sys-
tem with unlimited resources. Therefore, we study MCC analytical aspects through
the definition of a modeling and testing framework for cloud-based systems. Such a
framework encompasses both cloud and devices components and allows us to better
characterize the cloud behavior. We also implement autonomic policies and analyze
the influence they have on MCC applications. Such policies aim at automatically
determine energy-time tradeoffs and achieve better global performance through auto-
scaling strategies.

We also study the integration of peer-to-peer (P2P) and cloud systems to leverage
the advantages of both approaches. The superior availability of the Cloud makes it a
more appealing environment for firms when compared to the best effort philosophy
of P2P. However, the Cloud alone may be not sufficient to achieve cost-effective and
efficient large scale distributed collaborative environments.

The main contributions of this thesis can be summarized as follows.

• The definition of a novel MCC framework based on Networked Autonomic
Machine (NAM) [12], a general-purpose conceptual tool which describes dis-
tributed autonomic systems and is suitable for MCC systems as well, as it sup-
ports code, execution state and data mobility concepts.

• The extension of the Java implementation of the framework, supporting the de-
ployment of distributed systems whose nodes can migrate computation to each
other. Migration only happens when nodes autonomically decide it is benefi-
cial.

• The definition of a modeling and testing framework for the design and analysis
of cloud-based systems, which allows to study how autonomic policies impact
on MCC applications. To this purpose, we developed a discrete event simulator
for the evaluation of MCC systems.

Introduction 11

• The study of how the integration of P2P principles impacts on MCC systems,
to improve the applications’ cost-effectiveness while maintaining satisfactory
performance.

Thesis outline

The thesis is organized as follows.

• Chapter 1 presents MCC-related computational paradigms such as Cloud, P2P
and Autonomic computing. The features of such paradigms are analyzed to bet-
ter understand the choices we made in designing the NAM-based MCC frame-
work.

• Chapter 2 describes and analyzes the literature of systems related to MCC and
autonomic computing. Among several applications and research projects we
selected the most relevant and innovative approaches to illustrate current state
of the art and motivate the solutions proposed in this thesis.

• Chapter 3 formally describes the NAM-based framework and presents its com-
ponents and mobility actions allowing for code and state migration.

• Chapter 4 presents the Java implementation of the MCC framework.

• Chapter 5 presents our studies on how autonomic policies and the integration
of P2P principles impact on MCC systems. Also, a MCC modeling and testing
framework is presented together with application examples.

• Chapter 6 concludes this thesis and outlines further work.

Chapter 1

Background

This chapter introduces background computational paradigms and presents features,
benefits and issues of each, to better understand the choices we made in designing
the NAM-based MCC framework.

1.1 Cloud Computing

In recent years, commodity services accessed by users based on their needs, regard-
less of where such services reside, are becoming commonplace. Cloud computing
is a computational paradigm that encompasses the design of computing systems and
application development, based on the concept of dynamic provisioning applied to
services, computing and storage capabilities made available through the Internet on
a pay-per-use basis [13]. The paradigm refers to the whole computing stack made of
high-level applications delivered as services and the underlying hardware [14].

Consumers only pay when services are needed and do not have to face con-
figuration and maintenance of complex infrastructures, as the computing system’s
stack is rendered into a collection of services which can be composed together to
deploy the required system, with virtually no maintenance costs. The Cloud com-
puting paradigm is supported by high performance data centers which leverage vir-
tualization technologies to provide everything-as-a-service (XaaS) where the X can

14 Chapter 1. Background

represent software (SaaS), computing resources (PaaS) and infrastructures (IaaS) as
illustrated by Fig. 1.1.

SaaS is a model in which software is centrally hosted and licensed on a sub-
scription basis. Services are typically accessed by users via a web browser. Such a
model has been adopted by a remarkable number of applications, such as customer
relationship management (CRM), office applications, enterprise resource planning
(ERP), video and photo editing, DBMS, CAD, messaging, development tools, ac-
counting, collaborative environments (CE), management information systems (MIS),
social networking and content management (CM) [13]. SaaS architectures generally
follow a multi-tenancy model, for which a single configuration is used by multiple
users. Scalability is provided through horizontal scaling (i.e., the application is de-
ployed on several physical nodes). Also, SaaS applications support customization,
thus allowing users to specify their own preferences and alter the look-and-feel and
functionalities. Since services are centrally hosted and cannot access enterprises’ in-
ternal systems, they are mainly based on WAN protocols such as HTTP, REST and
SOAP. Examples of SaaS providers are Windows Azure, Apple iCloud, Amazon Web
Services and Google Apps.

PaaS is a model which provides scalable and elastic platforms and runtime en-
vironments allowing users to execute applications. A middleware takes care of every
aspect regarding the creation of the abstract environment on which applications get
deployed and executed [13]. PaaS can be used to develop and integrate services such
as database integration, security management and team collaboration with reduced
costs and without the burden of hardware and software configuration, optimization
and maintenance. As for SaaS, the architecture follows a multi-tenancy model and is
based on WAN protocols.

IaaS is a model to provide hardware, storage and networking capabilities on de-
mand. Virtual hardware provides computing in the form of virtual machines which
are set up on demand over provider’s infrastructure [13].

Web 2.0 technologies play a central role through service orientation – which pro-
vides abstraction – and virtualization – which confers customization and flexibility.

1.1. Cloud Computing 15

Many actors (e.g., enterprises, research centers, education institutions, governments,
private users) have started using services following such a paradigm, thus pushing
research efforts which enriched the set of provided services and reduced prices.

Figure 1.1: Cloud computing general model.

1.1.1 Cloudlets

High latencies represent an obstacle to performance augmentation of mobile devices
in MCC systems, in that they reduce usability. Humans are sensitive to delay and
jitter, thus immersive tasks such as multimedia streaming, online gaming and aug-
mented reality, may become unpleasant. To obtain the benefits of cloud computing
without the limits of WAN latency, augmentation can happen through cloudlets [15].
A cloudlet is a proximate cloud composed of a set of resource-rich devices usually
connected through a low-latency high-bandwidth network. A cloudlet provides its

16 Chapter 1. Background

resources on a local network, thus minimizing transport overhead due to one-hop
connections with mobile clients. Also, as presented by Fig. 1.2, cloudlets can be
connected to a distant cloud to leverage its computing power, if the cloudlet’s perfor-
mance is not enough for remarkably demanding applications. The mobile device acts
as a thin client and most of the computation happens on the cloudlet. If no cloudlet is
available on the local network, the device can switch to the remote cloud or perform
tasks locally. Cloudlets are decentralized, self-managing infrastructure components
whose maintenance only requires power, a network connection and access control for
setup. Such small data centers are thus easy to deploy. Internally, a cloudlet is a clus-
ter of multicore computers, with gigabit internal connectivity and a high-bandwidth
wireless network interface.

Figure 1.2: Architecture of a cloudlet-based system.

1.1.2 Cloud benefits

Cloud computing brings several benefits to both consumers and providers [13]. One
of the main benefits is represented by reduced maintenance and operational costs,
as IT assets become utilities accessed only when necessary. Thus, capital costs (i.e.,
costs associated with assets that need to be paid in advance to start an activity) get

1.2. Peer-to-peer Computing 17

substantially reduced. Another important benefit is the increased flexibility in the
definition of software systems. In fact, the composition of the latter happens with
no constraints on capital costs. Also, the ease of scalability across the entire com-
puting stack is granted by the fact that cloud infrastructures are provided with a huge
amount of resources. Another benefit for end users is the ubiquitous access to data and
computation through web-based, platform-independent interfaces. Finally, the aggre-
gation of existing services through the on-demand provisioning of cloud resources
fosters the birth of new services.

1.1.3 Cloud challenges

As for the benefits, cloud computing is also characterized by a number of issues
which affect both consumers and providers [13]. Aspects such as the deployment and
configuration of cloud systems come along with challenges related to the dynamic
provisioning of resources. Privacy and confidentiality issues emerge since consumers
entrust private data to a 3rd party infrastructure. Providers are required to prove com-
pliance to security standards. However, a malicious provider can easily obtain data
stored on VMs.

1.2 Peer-to-peer Computing

Peer-to-peer (P2P) is a model for which network nodes are able to directly exchange
resources and provide services between each other without the need for centralized
servers [16]. P2P systems are also able to aggregate resources and data from nodes
to perform shared tasks. Tipically, each P2P node hosts metadata describing shared
resources and known peers, thus allowing and facilitating the search on the network.
Resource discovery queries are routed around the network through such metadata to
nodes hosting the required resources. Also, resources can be stored on a single peer
or on a set of peers, each having a part or a full copy. Once the resource parts have
been found, the query node directly communicate with the hosting peers to obtain
them.

18 Chapter 1. Background

P2P applications share most of distributed systems characterizing features, how-
ever they differ in a number of aspects, the most relevant of which are reported in the
following. Each participant node in a P2P network acts as both a client and a server
and is therefore able to share and search for resources. Also, due to the fact that no
centralized server is required to achieve all-to-all communication and coordination,
P2P systems are highly scalable and control is completely distributed. Heterogeneity
is another feature of P2P applications, in that peers can be any kind of computing re-
source that can run the P2P software (e.g., PCs, workstations, mobile devices, boards
such as Raspberry PI and Intel Galileo). Finally, P2P systems are highly dynamic due
to the constant joining and leaving of nodes.

1.2.1 Peer-to-peer benefits

P2P systems leverage computing resources with low costs and effectively dissemi-
nated information. For such reason, they meet the requirements of both individuals
and businesses when dealing with applications concerning resource and data sharing.
Resource sharing applications allow peers to access computing and storage capabil-
ities available in the network. Data sharing applications allow users to access and
modify data among each other. In this way, users become at the same time data pro-
ducers and consumers. A request for a content is passed from peer to peer until it
reaches a node having the required content. Such a peer sends the content to the re-
questor directly or through all peers that forwarded the request. Applications which
benefit from P2P are digital content sharing and computationally demanding tasks.
For example, scientific computation that tipically requires supercomputers can lever-
age the presence of a huge number of connected nodes sharing their resources to
perform tasks. Other applications involve collaborative environments, storage, dis-
tributed databases and gaming.

1.2.2 Peer-to-peer challenges

P2P has a great potential in bringing benefits, but is still affected by a number of
issues related to the aforementioned features. Free-riding (i.e., peers that download

1.3. Autonomic Computing 19

files and do not allow uploading to minimize their own bandwidth utilization) is a
major problem. Also, the dynamism for which nodes constantly join and leave the
network hinders availability in that a resource may be available at some time, but not
at others. Another aspect to be considered is that the same query, in different times,
can be answered in different ways. Routing and resource discovery is another sub-
stantial aspect. For example Gnutella addresses the problem through message flood-
ing which does not require metadata, but such solution is not efficient. On the other
hand, completely relying on metadata poses the problem of defining such metadata
to be sufficiently accurate. The interaction among peers also raises the trust problem,
which can be addressed through reputation management techniques. However, such
techniques require accountability and hinder privacy and anonymity.

1.3 Autonomic Computing

Autonomic Computing (AC) is a concept that brings together many fields of comput-
ing with the purpose of creating self-managing systems aiming at decreasing human
involvement [17]. The term autonomic comes from biology in that, the autonomic
nervous system of living beings takes care of unconscious reflexes (i.e., bodily func-
tions that do not require attention, such as size of the pupil adjustments, digestive
functions, the rate and depth of respiration, and the dilatation or constriction of blood
vessels). Without the autonomic nervous system, we would be constantly busy con-
sciously adapting our body to its needs and the environment. The research community
agrees upon using AC to describe systems in which decision making and resource
management dynamically change to reflect the current environmental context [18].

In a self-managing autonomic system, the human operator does not directly con-
trol the system. Instead, he/she defines general policies and rules to guide the self-
management process. IBM defined the following properties for such a process.

• Self-configuring: the system should dynamically adapt to changes occurring in
the environment.

• Self-healing: the system should discover, diagnose and correct faults.

20 Chapter 1. Background

• Self-optimizing: the system should monitor, control and balance resource use
to ensure the optimal functioning with respect to defined requirements

• Self-protecting: the system should proactively detect and protect from attacks.

Along with the aforementioned properties, autonomic systems must be aware of
their resources (self-awareness) and of the environment they are acting in (context-
awareness), should support multiple platforms (openness) and hide complexity to
end-users [19].

Autonomic systems implement control loops with the purpose of monitoring re-
sources, and autonomously try to keep parameters in a desired range. IBM has sug-
gested a reference model for autonomic control loops named the MAPE- K (Monitor,
Analyze, Plan, Execute, Knowledge) loop [20], used to describe the architectural as-
pects of autonomic systems. As presented by Fig. 1.3 [19], an autonomic system is
composed of autonomic elements (AEs), which can be considered as software agents
composed of two parts: a managed element (ME) and an autonomic manager (AM).
MEs are system resources – software or hardware – monitored by sensors. AMs enact
the MAPE-K loop as described in the following. The monitor function aggregates,
correlates and filters sensed data to find a symptom needing analysis. The analyze
function performs complex analysis, based on knowledge data on symptoms pro-
vided by the monitor function. If the system behavior should change, a request is
passed to the plan function which defines a procedure to enact the desired changes
in the way resources are managed. Such changes are intended to achieve the sys-
tem’s goals. The change plan is then passed to the execute function, which employs
effectors to produce the resource management changes. The shared knowledge base
used to perform data analysis is created by the monitor function and updated by the
execute function.

1.3.1 Autonomic computing benefits

The autonomic computing approach provides several benefits such as improved qual-
ity of service and reduced ownership, deployment and maintenance costs. Moreover,

1.3. Autonomic Computing 21

Figure 1.3: Autonomic Element architecture.

systems self-adapt to changes happening in the environment, support different plat-
forms and are more stable through automation. As less personnel is needed to manage
such systems, the chance of human errors is also reduced.

1.3.2 Autonomic computing challenges

Autonomic computing is characterized by a number of issues such as the imple-
mentation of self-management policies. Traditional systems are administered by IT
experts who manually manage configuration, optimization, protection and healing.
Transferring human knowledge to autonomic systems is a very challenging task. The
definition of a robust learning procedure involves observing such experts and record-
ing their activities’ traces. Another challenge is the definition of the way AEs relate,
interact and coordinate. Finally, since autonomic systems are deeply complex, en-
suring robustness is challenging as each component may represent a single point of
failure hindering the whole system functionality.

Chapter 2

Related Work

This work integrates MCC and AC principles to leverage the advantages of both
paradigms. In fact, we believe autonomic principles should drive MCC systems where
mobile devices monitor themselves and take offloading decisions. In this chapter we
present the most interesting approaches for both computational paradigms.

2.1 Autonomic Computing approaches

Among available implementations of the MAPE-K loop (presented in the Introduc-
tion), the Autonomic Computing Toolkit (ACT) is a collection of self-managing au-
tonomic technologies [21]. The toolkit is based on the dual concepts of Managed
Resources, which represent network nodes or software components, and Autonomic
Managers. Resources monitor the environment and are able to detect and report
events to a manager. Also, resources take administrative actions in response to man-
agers’ requests. Managers oversee resource operations and implement administration
policies and business logic. The ACT defines a data format called Common Base
Event (CBE) used for event communication. At a conceptual level, ACT can be inte-
grated with client/server architectures, in that any network device can be modeled as
a managed resource, and server or gateway nodes can be configured as managers.

The Agent Building and Learning Environment (ABLE) [22] is a Java-based

24 Chapter 2. Related Work

toolkit for developing and deploying hybrid intelligent agent applications. AbleBeans
are standard JavaBeans components connected with each other. ABLE offers auto-
nomic management in the form of a multi-agent architecture, in which the autonomic
manager is an agent (i.e., an AbleBean provided with sensors and effectors to interact
with its environment) or a set of agents.

Kinesthetics eXtreme (KX) [23, 24] is another implementation of the MAPE-K
loop, whose main purpose is the addition of autonomic properties to legacy systems.
KX is the implementation of a framework the authors defined for collecting and inter-
preting application-specific behavioral data at runtime. Such a monitoring framework
can be used with a feedback loop that automatically performs repairs and reconfigu-
rations.

2.2 Mobile Cloud Computing approaches

Mobile augmentation through software approaches differ in the type of leveraged
resources. Cloud resources are more frequently used with respect to distant servers
or nearby surrogates due to issues in security, elasticity and resource availability.
The approaches can be classified into six groups: remote execution, remote storage,
multi-tier programming, live cloud-streaming, resource-aware computing and fidelity
adaptation [2]. Approaches similar to the work of this Thesis belong to the remote
execution category. In this chapter, we present the most interesting ones.

In remote execution approaches, demanding applications are entirely or partly ex-
ecuted on resource-rich remote devices. Slingshot [25] is an architecture for deploy-
ing application replicas on surrogate computers located near hotspots. Scavenger [26]
is also a system allowing the development of highly distributed and parallel cyber-
foraging applications.

While cyber-foraging implies a replica of the whole application, other approaches
only migrate demanding components. In such cases, partitioning is of capital impor-
tance for the offloading process, as it involves the definition of which components
can be partitioned, when partitioning should take place and which parts should be

2.2. Mobile Cloud Computing approaches 25

executed locally or remotely [27]. Partitioning can be addressed at design time, at
runtime or in a hybrid way.

2.2.1 Design-time partitioning

In design-time partitioning approaches, programmers identify which parts of the ap-
plication are computationally intensive and can be remotely offloaded. Such parts get
marked in a way that depends on the programming language and, at runtime, the sys-
tem dynamically decides whether to offload them or not based on policies. Defining
such policies is a demanding and difficult task in that it requires a deep knowledge of
the execution environment to adapt to diverse situations. For this reason, the design-
time partitioning approach saves native resources, but is not optimal.

Spectra [28] is a remote execution system enabling mobile applications to lever-
age the processing power of static servers. The system monitors both application
resource usage and the availability of resources in the environment, and dynamically
determines where to execute application components. Decisions are taken balancing
performance and energy conservation competing goals. The major drawback of Spec-
tra is that application developers must explicitly modify their applications to use it,
thus hindering software maintenance and portability.

Chroma [29] subsumes the functionalities of Spectra and addresses its shortcom-
ings by separating application-level adaptive policies from decision-making and run-
time policy enforcing.

2.2.2 Runtime partitioning

Runtime partitioning approaches rely on algorithms which monitor the application
execution to identify compute-intensive parts and dynamically decide where to exe-
cute them.

Murarasu et al. [27] described the requirements and the design of a context-aware
middleware enabling applications to automatically switch between local and remote

26 Chapter 2. Related Work

services, and present a programming model including service life-cycle and state
migration.

Abebe et al. [30] presented a distributed approach for adaptive offloading. In
the proposed application representation, each device maintains a graph consisting
only of components in its memory space, while maintaining abstraction elements for
components in remote devices. This approach reduces the overhead from storing,
updating and partitioning complete application graphs on each device, which limits
their utility and scalability in resource constrained mobile environments.

March et al. [31] proposed µCloud, a framework which models a rich mobile
application as a graph of components distributed onto mobile devices and a cloud
infrastructure.

Figure 2.1: MAUI architecture.

MAUI is a system that enables fine-grained code offloading to a remote cloud
infrastructure through runtime analysis [32]. In Fig. 2.1, MAUI’s architecture is pre-
sented. Developers are enabled to produce an initial partitioning of applications by
annotating as remoteable those methods and/or classes that the MAUI runtime should
consider for offloading to a MAUI server. The authors suggest that all methods should
be marked as remoteable except the ones implementing the GUI, the ones interacting
with I/O devices and the ones interacting with external components that would be

2.2. Mobile Cloud Computing approaches 27

affected by re-execution. MAUI is currently designed only to support applications
written for the Microsoft .NET Common Language Runtime (CLR). All CLR appli-
cations are compiled to the Common Intermediate Language (CIL) whose executable
is dynamically compiled by the CLR at execution time, thus achieving platform in-
dependence. To identify remoteable methods in the CLI, MAUI uses the custom at-
tributes feature of the CLR. Such attributes are metadata that annotate specific code
elements, such as methods or classes, and are included in the compiled .NET CLR
executables. The developer edits the application’s source code by adding the [Re-
moteable] attribute to each method that can execute remotely. The MAUI runtime
uses the .NET Reflection API to automatically identify which methods have been
marked. At compile time, MAUI generates a wrapper for each marked method. Such
a wrapper follows the original method’s type signature, and adds one additional input
parameter used to transfer the state from the smartphone to the MAUI server, and one
additional return value used to transfer the application state back to the smartphone.
The approach adopted by the authors for state transfer is to serialize all variables
of the current object, the state of static classes and any public static variable using
the .NET built-in support for XML-based serialization. To optimize the overhead of
state transfer, just deltas are shipped rather than the entire state. At compile time,
MAUI generates two proxies, one running on the smartphone and one on the MAUI
server. The role of such proxies is to implement decisions made by the MAUI solver
which decides whether each method should be executed locally or remotely, based
on input from the MAUI profiler. For calls that transfer control to a remote server,
the local proxy performs state serialization before the call and deserialization of the
returned state. When a remoteable method currently executing on the MAUI server
invokes a method which is not remoteable, the server-side proxy performs the nec-
essary serialization and transfers control back to the smartphone. At runtime, before
each method is invoked MAUI determines whether the method should run locally or
remotely based on three factors: the device’s energy consumption characteristics, the
program characteristics (e.g., the running time and resources needed by individual
methods) and network characteristics (e.g., the bandwidth, latency, and packet loss).
The MAUI profiler is the component which performs device profiling by instrument-

28 Chapter 2. Related Work

ing each method to measure its state transfer requirements. The profiler measures the
device characteristics at initialization time, and continuously monitors the program
and network characteristics in that these can often change and force MAUI to make
wrong decisions. However, such a task is challenging in that applications are not de-
terministic. Each subsequent invocation of a method can take a different code path,
leading to a different running duration and energy profile. Thus, MAUI uses past in-
vocations of a method as a predictor of future invocations. The MAUI solver uses data
collected by the profiler as input to an optimization problem that determines where
each remoteable method should execute. Decisions must be globally optimal rather
than locally optimal (i.e., relative to a single method invocation). Consider for ex-
ample a face recognition application composed of a certain number of methods. The
remote execution of each method is more expensive than local execution, however
remote execution can save energy if all methods are remoted.

Figure 2.2: Serendipity job model.

Serendipity [33] enables a mobile user to leverage remote computational re-
sources available on other mobile systems to enhance performance and conserve
energy. The approach relies on the collaboration among mobile devices for task allo-
cation and task progress monitoring functions. The authors designed a job model to
simplify the data flow among tasks for which each job is composed of PNP-blocks.
As illustrated by Fig. 2.2, a block is composed of a pre-processing program which
processes the input data and passes them to the tasks, n parallel task programs and
a post-processing program which processes the output of all tasks. All pre-process

2.2. Mobile Cloud Computing approaches 29

Figure 2.3: Serendipity architecture.

and post-process programs are executed on one initiator device, while parallel tasks
are executed independently on other devices. As presented by Fig. 2.3, a Serendipity
node includes a job engine process, a master process and several worker processes,
whose number can be, for example, the number of cores or processors of the node.
Each node constructs its device profile and shares and maintains the profiles of en-
countered nodes. Such profiles include the execution speed, estimated by running
synthetic benchmarks, and the energy consumption model. When device and execu-
tion profiles are combined, it is possible to estimate the jobs’ execution time and en-
ergy consumption on every node. Such an information is then used for task allocation.
All jobs are represented by a directed acyclic graph (DAG) of PNP-blocks. To sub-
mit a job, a user needs to provide a script specifying the job DAG, the programs and
their execution profiles for all PNP-blocks, and the input data to the job engine. The
script is submitted to the job profiler which performs basic checking and constructs a
complete job profile consisting of tasks’ execution time and energy consumption on
every node. The generated job profile is then used to decide the allocation of its tasks
among mobile devices. The job engine then starts a new job initiator responsible
for the new job. PNP-blocks start by running their pre-process programs on a local
worker and assigning a time-to-live (TTL), a priority and a worker to every task. The
TTL specifies the time before which its results should be returned. If a task misses its
TTL, it should be discarded, while a copy executes locally on the initiator’s mobile
device. Finally, the tasks are sent to the job engine which is primarily responsible for

30 Chapter 2. Related Work

disseminating and scheduling task execution for the local master. When two mobile
nodes encounter, they first exchange metadata including their device profiles, their
residual energy and a summary of carried tasks. Based on such an information, the
job engine decides whether to disseminate a task to the encountered node or to exe-
cute it locally. Upon receiving a task from the job engine, the master starts a worker
for it and, when the task finishes, sends the output back to the job initiator.

The main difficulties when using Serendipity reside in the fact that developers
have to generate DAGs representing jobs and profile devices.

Figure 2.4: CloneCloud system model.

Figure 2.5: CloneCloud architecture.

CloneCloud [34] is a framework which aims at enabling unmodified mobile ap-
plications to offload parts of execution from mobile devices to device clones on a
computational cloud. The system uses static analysis and dynamic profiling to auto-
matically partition applications at a fine granularity. The optimization of execution

2.2. Mobile Cloud Computing approaches 31

time and energy use is based on the computation and communication environment.
At runtime, the application partitioning happens through migrating, at a chosen point,
a thread from the mobile device to the clone in the cloud, executing there for the re-
mainder of the partition, and re-integrating the thread back to the mobile device.
The concept of CloneCloud is that a single-machine execution is transformed into
a distributed execution optimized for the network connection towards the cloud, the
processing capabilities of the device and cloud, and the application’s computing pat-
terns, as presented by Fig. 2.4. The design goal of CloneCloud is to allow flexible
fine-grained partitioning while hiding the partitioning complexity to developers. In
Fig. 2.5 the CloneCloud architecture is presented. The authors implemented a pro-
totype that meets the aforementioned goal by rewriting an unmodified application
executable, so that individual threads migrate from the mobile device to a clone in
the cloud at automatically chosen points. Functionalities that remain on the mobile
device keep executing, but block if they attempt to access migrated state. Migrated
threads eventually return back to the mobile device, along with remotely created state
that merges back into the original process. The choice of where to migrate is made
by a partitioning component, which uses static analysis to discover constraints on
possible migration points, and dynamic profiling to build a cost model for execution
and migration. A mathematical optimizer chooses migration points that optimize the
objective (e.g., total execution time or mobile-device energy consumption), given the
application and the cost model. The output of the optimizer is then used to build
a database of pre-computed partitions of the binary, whose purpose is to determine
which parts should be executed remotely and which locally.

ThinkAir [35] is a framework that tackles MAUI’s and CloneCloud’s limits. It
addresses MAUI’s lack of scalability by creating VMs of a complete smartphone
system on the cloud, and uses an online method-level offloading to remove restric-
tions on applications, inputs and environmental conditions that CloneCloud induces.
Fig. 2.6 presents the framework which consists of three major components: the ex-
ecution environment, the application server and the profilers. ThinkAir provides a
library that, coupled with the compiler support, allows annotating any method to be
considered for offloading with the @Remote tag. The ThinkAir code generator takes

32 Chapter 2. Related Work

Figure 2.6: ThinkAir framework overview.

the source file and generates remoteable method wrappers and utility functions, mak-
ing it ready for use with the framework. Method invocation is done via the execution
controller, which detects if a given method is a candidate for offloading and handles
all the associated profiling, decision making and communication with the applica-
tion server without the developer needing to be aware of the details. The compiler
is a key part of the framework and includes two components: the Remoteable Code
Generator and the Customized Native Development Kit (NDK). The former translates
the annotated code as previously described. The latter provides native code support
addressing the fact that most current mobile platforms are ARM-based, while cloud
infrastructures use x86 nodes. The execution controller drives the execution by de-
ciding whether to offload or continue local execution of each remoteable method.
Such a decision depends on data regarding the current environment as well as data

2.2. Mobile Cloud Computing approaches 33

learnt from past executions. When a method is encountered for the first time, the
decision is based only on environmental parameters and, at the same time, profilers
start collecting data. Therefore, if and when the method is subsequently encountered,
the decision on where to execute it is based on past invocations. The application
server manages the cloud side of offloaded code and consists of three main parts: a
client handler, a cloud infrastructure, and an automatic parallelization component.
The client handler executes the ThinkAir communication protocol to manage client
connections, receive and execute offloaded code, and return results. To manage client
connections, the client handler registers when a new application connects and, if the
latter is unknown to the application server, the client handler retrieves such an appli-
cation from the client and loads required classes and libraries. Then, the server waits
for execution requests from the client. If there is no request for further computational
power, the client handler proceeds as the client would, that is, the remoteable method
is called using Java reflection and the result is sent back. If instead the client asks
for extra computational power, the client handler resumes a more powerful clone and
delegates the task to it. If the client asks for parallel execution on more clones, the
client handler resumes the necessary clones, distributes the task among them, and
collects and sends results back to the client.

2.2.3 Hybrid partitioning

Due to the heterogeneity of execution environments, design-time partitions are not
guaranteed to be the best solution for all possible scenarios. On the other hand, run-
time partitioning allows a system to adapt according to the characteristics of the
current execution environment, but profiling and monitoring introduce a remarkable
overhead. Huerta-Canepa and Lee [36] proposed an hybrid partitioning approach to
perform offloading based on the execution history of applications. When an applica-
tion has to be executed on a resource-constrained device, the system checks whether
previous executions information is available. If such is enough to perform statistical
sampling, and based on current device’s conditions, the approach chooses one of four
possible actions. No action indicates that an application will run normally. Profile

34 Chapter 2. Related Work

Only means that an application gets profiled to update historical data, but no further
action is taken. Static Offloading triggers offloading before the execution of the main
class of an application. Dynamic Offloading profiles an application and triggers of-
floading only if necessary. The process is performed for each resource used by the
application.

Chapter 3

Networked Autonomic Machine

As discussed in the Introduction, while the ever increasing communication capabil-
ities of mobile devices make viable offloading computation and storage to remote
devices and infrastructures, several issues and challenges hinder the full realization
of MCC systems. Among those, significant are the lack of an agreed upon concep-
tual model for MCC systems; the fact that most of current applications are statically
partitioned; the possibility of rapid changes in network conditions and local resource
availability; privacy and security concerns related to storing user data on a remote
cloud [4, 37, 10]. Also, as the task to be performed and the execution context in-
fluence the offloading approach [10], autonomic computing appears as a promising
technique to increase the robustness and flexibility of MCC systems. In particular,
autonomic policies based on continuous resource and connectivity monitoring may
help automate context-aware decisions for computation offloading.

The need for modeling large-scale distributed systems provided with autonomic
mechanisms led to the definition of the Networked Autonomic Machine (NAM) frame-
work [38, 39], which is also suitable for MCC, as it supports code, execution state
and data mobility concepts [40, 41].

36 Chapter 3. Networked Autonomic Machine

3.1 NAM-based model

A system of NAMs is a loosely connected network of hardware/software entities,
which provide or consume services. In a NAM network, each device can host one or
more NAMs. A NAM represents a container of computational entities and data. Com-
putational entities are service threads exploiting functionalities provided by libraries
called functional modules. Both application data and awareness data are considered.
The former is used by applications running on the NAM node, while the latter pro-
vides information about the environment in which the NAM is running (e.g., sensor
information and context events) or about the status of the NAM itself.

More formally, a NAM is represented as a tuple nam = 〈nid,R,F ,P〉, where
nid is the NAM identifier, R is a set of physical resources, F = { f1, . . . , fm} is a set
of functional modules, and P is a set of self-management policies. Resources are, for
example, CPU cycles, storage space, network interfaces. Each NAM is allowed to di-
rectly access its own resources. Instead, remote resources (i.e., resources managed by
another NAM) are not directly accessible, as a NAM can only interact with services
exposed by other NAMs. Data are not considered as a resource, and it is assumed
it is always stored within functional modules and moved accordingly. The state of a
NAM consists of sets R, representing available resources, and F , describing func-
tional modules that currently reside on it. Autonomic policies are a crucial means
to support MCC, as they alleviate mobile users from manually starting/stopping ap-
plications, or application modules, when their execution becomes too demanding in
terms of local resources. Specifically, a policy is expressed as an Event-Condition-
Action (ECA) rule in the form (ev,co,act). The occurrence of ev event triggers the
evaluation of the corresponding co condition and, in case of positive evaluation, the
act action is performed.

3.1.1 NAM computational entities

NAM computational entities are functional modules and services. A functional mod-
ule is a specialized module represented as a tuple f = 〈fid,S ,P f ,D ,T 〉, where

3.2. Mobility actions 37

fid is the functional module identifier, S is a set of bindings from service names to
methods of f implementing them, P f is a tuple containing functional policies of the
module (i.e., policies that define module-specific actions to be taken when particular
conditions hold), D is a set of data available to the module, and T is a set of threads
the module is running.

A service is an entry point for a functional module, which has the role of ag-
gregating functions and data to provide computational tasks. More specifically, func-
tions hosted by functional modules are accessed by other (local or remote) functional
modules via services. To this purpose, when a functional module receives a service
request, it identifies the corresponding local or remote method through bindings in
S , and subsequently creates a thread to execute it.

Events represent another form of entry point, but they differ from services in that,
while a service request triggers a thread execution, an event triggers a policy eval-
uation and possibly, a functional or self-management action. In fact, while services
are specifically devised to support client-server communication, events also enable
publish-subscribe interactions. Functional module policies P f = 〈Po,Pl,Pr〉 are
structured in three parts: Po are the on-site policies, active when the module is ex-
ecuting locally on the device, while Pl,Pr are policies activated on the local and
remote NAMs respectively, when the module is offloaded. The existence of local and
remote policies during offloading is motivated by the need of evaluating events both
locally and remotely. An example of a local event is the detection of when the con-
nection quality gets lower than a specified threshold. Such an event may trigger the
reintegration of an offloaded module. Similarly, a remote event can generate when
resources become scarce, thus triggering the decision of sending the module back to
the owner.

3.2 Mobility actions

Mobility is a central aspect of NAM networks, as it allows the dynamic reconfigura-
tion of the system by moving functional modules and services from NAM to NAM.

38 Chapter 3. Networked Autonomic Machine

The framework supports five mobility actions: offload, back, go, migrate, and copy.
Fig. 3.1 [41] presents four scenarios in which such actions can be used.

Figure 3.1: Mobility actions.

In the first scenario, nam1’s resources (such as battery or cpu cycles) become
scarce and therefore, according to its internal policies, nam1 decides to move the
code of functional module f to nam2 through an offload action. Thus, the resource-
consuming elements of f (i.e., data D and running threads T) move to nam2. Such
elements get regulated by specific Pr policies, while Pl policies are activated and
enforced locally on nam1. Therefore, f stops consuming resources of the source and

3.2. Mobility actions 39

starts consuming the ones of the destination. The entry points of f (i.e., the services
specified in S) remain on nam1. Such a choice is motivated by the need for full
offloading transparency, with respect to local and remote modules that use services
of f . The operation requires service bindings in S on nam1 to be modified to redirect
service requests to nam2. If necessary, nam1 can request to terminate the f offloading
by executing a back action, which reintegrates f on nam1 and consistently updates
S and active policies. Finally, in case nam2 decides it cannot provide further hosting
for f (e.g., nam2 is a cloud service and nam1 is running out of credit), it can execute
a go action which reintegrates f on nam1.

The second scenario considers an autonomic functional module f , such as a
crawler. In this case, the whole functional module (including services and service
bindings) can request to be moved to another NAM. Nam1 moves f to nam2 by ex-
ecuting a migrate action, after which no part of f is available on nam1. Clearly, such
an action requires to update the F1 set of functional modules on nam1, as well as the
F2 set of functional modules on nam2.

The third scenario considers operations such as downloading applications or li-
braries. Upon receiving a request from nam2 for module f , nam1 copies it on nam2

through a copy action. As a consequence, nam2 can access the services of f locally,
without relying on nam1. The action modifies the F2 set of functional modules on
nam2.

Finally, the fourth scenario considers operations that move offloaded modules,
for example to perform load-balancing. In Fig. 3.1, nam2 hosts a module offloaded by
nam1 and decides it cannot offer further hosting. Thus, it moves f to nam3 through a
go action which moves all elements of f from nam2 to nam3 and updates S on nam1

(dashed lines in the figure represent such an update).

Note that for back, go, migrate and offload actions, the execution of f module’s
T threads is suspended and recovered on the remote location. Similarly, local data
D of the module is moved to the remote location. On the contrary, in a copy action f
has no track of previous execution on nam1. Therefore, D and T are set as empty on
nam2. Also, a NAM can perform copy, go, migrate and offload mobility actions on a
local functional module only, and back on a remote one only.

40 Chapter 3. Networked Autonomic Machine

3.3 NAM formalization

As part of the PhD research activities, the NAM framework has been provided with a
formalization in terms of a transformational operational semantics in order to fill the
gap between its implementation – NAM4J – and its conceptual definition. We used
the Kernel Language for Agents Interaction and Mobility (KLAIM) [42], which is
a linguistic formalism specifically designed to model distributed systems consisting
of several mobile components. The interaction among components happen through
multiple distributed shared memories, called tuple spaces. KLAIM primitives allow
programs to distribute/retrieve data and processes to/from the nodes of a network,
thus enabling for data and code mobility. For further information on KLAIM check
appendix A. The formalization process clarified and allowed us to refine the NAM
framework with specific focus on MCC features.

Most of AC proposals in the literature concern full-fledged programming lan-
guages rather than foundational models. Some proposed formalisms, as e.g. in [43,
44], are inspired by chemical and biological phenomena. A formalism based on
KLAIM, close to programming languages and following a process calculi approach, is
SCEL [45]. Although SCEL is equipped with constructs for dealing with autonomic-
ity, it mainly provides communication primitives to manage ensembles. The latter are
not relevant for our study and complicate the operational semantics. In fact, SCEL
is not currently equipped with verification tools, which we want to use to analyze
MCC-based applications. Therefore, we selected KLAIM as a basis for the formal-
ization process as it allows for the convenient modeling of autonomic features and
supports strong and weak mobility mechanisms [46]. A combination of both mo-
bility and autonomicity is necessary to properly model MCC scenarios. Moreover,
KLAIM comes with software tools that support various forms of analysis. Intuitively,
the NAM formalization associates a KLAIM term to every NAM construct.

This section discusses how, from an operational point of view, a NAM network
can be defined in terms of a KLAIM network. In particular, the aim of providing
the semantics of the NAM framework in terms of the KLAIM formal language is to
clarify relationships among functional modules, related services and the underlying

3.3. NAM formalization 41

middleware. For the sake of readability, in this section we omit the target self from
KLAIM actions by writing, e.g., in(T) in place of in(T)@self.

A NAM network consisting of a set of nodes {nam1, . . . ,namm} can be rendered
in KLAIM as a net

nid1 ::ρ1 (C
1
T S |C1

P) ‖ . . . ‖ nidm ::ρm (C
m
T S |Cm

P)

where nidi is the identifier of nami and ρi stands for {self 7→ nidi}. Intuitively, each
NAM 〈nid,R,F ,P〉 is modeled as a KLAIM node having tuple space CT S and run-
ning processes CP.

Tuples stored in CT S represent data local to functional modules in F , resources
available in R, messages denoting service requests or events, code of functional mod-
ules in F , and commands to instrument mobility actions supported by the framework.

The first field of each tuple is a tag string indicating the tuple’s role (e.g., tuple
〈srvReq,sid,data,nidSRC〉 denotes a service request containing the identifier of the
requested service, input data and the identifier of the NAM invoking the service).

Processes in CP perform computational tasks and enact NAM self-management
policies. Such processes are defined as a parallel composition

Disp | PMH | F1 | . . . | Fk ,

where:

• Disp is a dispatcher of service requests to appropriate functional modules;

• PMH is the policy and mobility handler in charge of enforcing NAM policies
in P and executing mobility commands;

• Fj includes processes which model the functional module f j in F (i.e., the
service handler (SH) and the policy handler (PH) of the functional module),
whose identifier is fid and has a set (T) of threads, each managing a specific
service request

SHfid | PHfid | T 1
fid | . . . | T h

fid

In the following, details concerning the aforementioned processes are provided.

42 Chapter 3. Networked Autonomic Machine

3.3.1 Control tuples

NAM’s synchronization and mobility actions are associated to a set of control tuples,
described in the following. Services are bound to functional modules through iden-
tifiers and may be located on a local or a remote NAM. A service is implemented
within a functional module by process Proc.

〈srvBinder,sid,fid,nid〉 (a service binder including the functional module’s id and location)
〈srvImplem,sid,fid,Proc〉 (a service implementation in a specific functional module)

Accessing a service happens through a service request which gets dispatched to
a specific functional module fid through a service assignment, if the module is local,
or through a remote service assignment, if the module is remote.

〈srvReq,sid,data,nid〉 (a service request including service name, data, and source NAM)
〈srvAssign,sid,fid,data,nid〉 (a service assignment to a local functional module)
〈remoteSrvAssign,sid,fid,data,nid〉 (a service assignment to a remote functional module).

When a NAM receives an offloaded functional module, it is aware of the sender’s
identity nid, and is therefore able to send the module back to the owner, if needed:

〈offloaderNAM,fid,nid〉 (nid of fid’s offloader)

Mobility actions are initiated by five possible mobility requests, issued by NAM
or functional module policies:

〈backReq,fid,nid〉 〈copyReq,fid,nid〉 〈goReq,fid,nid〉

〈migrateReq,fid,nid〉 〈offloadReq,fid,nid〉

When the mobility handler reacts to mobility requests, it sends appropriate mo-
bility commands to the service handler of the corresponding functional module,

〈backSH,fid,nid〉 〈copySH,fid,nid〉 〈goSH,fid,nid〉

〈migrateSH,fid,nid〉 〈offloadSH,fid,nid〉 〈remoteBackSH,fid〉

and to its policy handler,

3.3. NAM formalization 43

〈backPH,fid,nid〉 〈copyPH,fid,nid〉 〈goPH,fid,nid〉

〈migratePH,fid,nid〉 〈offloadPH,fid,nid〉 〈remoteBackPH,fid,nid〉

Running threads 〈thread,fid, tid〉 are associated to a functional module and
have their own unique identifier tid, used when migrating or offloading the module.
When a migrate or offload action is performed, mobility requests 〈moveThread, tid〉
are issued for each thread. Thread code must be correctly instrumented so that it can
handle mobility requests in a proper manner.

3.3.2 NAM control

The dispatcher, whose main purpose is the selection of an appropriate functional
module upon receiving a service request, is defined as a process

Disp =

in(srvReq,?sid,?data,?nidSRC);

read(srvBinder,sid,?fid,?nidIMP);

if (nidIMP == self)

then{out(srvAssign,sid,fid,data,nidSRC)}

else {out(remoteSrvAssign,sid,fid,data,nidSRC)@nidIMP};

Disp

Such a process cyclically reads and consumes a service request, finds the NAM
which hosts the functional module implementing the service (which can either be the
NAM hosting the dispatcher itself or a remote NAM), and sends a service assignment
to such a NAM. More specifically, service binder tuples 〈srvBinder,sid,fid,nidIMP〉,
stored on NAMs, are used to identify through pattern-matching the NAM nidIMP

which provides the implementation of module fid exposing service sid. Depending
on whether nidIMP is local or remote, either a local service assignment (tagged by
srvAssign) or a remote service assignment (tagged by remoteSrvAssign) is generated.

Mobility commands are managed by the mobility handler MH

MH = CH+MiH+OH+BH+GH

44 Chapter 3. Networked Autonomic Machine

where CH is the copy action handler, MiH is the migrate action handler, OH is
the offload action handler, BH is the back action handler, and GH is the go action
handler.

The following steps allow moving functional module’s threads during offloading
or migration. The identifier of each thread associated to the module is retrieved and
deleted, a moveThread message is sent (thus relying on the thread ability to react to
such requests), and threads are registered on the remote location.

Policies are managed by the policy handler, which is rendered as a choice com-
position of processes modeling event-condition-action rules of P NAM policies. In
particular, the ev event (retrieved by in) triggers the execution of Pact process, which
enacts the act action if co condition is satisfied.

The process that models the policy and mobility handler of a NAM is

PMH = MH + ∑
(ev,co,act)∈Pn

in(event,ev); if (co) then {Pact}; PMH

The PMH component enacts mobility actions or policies in a mutually exclusive
way. Thus, policy and mobility handlers only process one event at a time to avoid in-
terferences among the executions of different mobility actions and policy evaluation.

3.3.3 Functional module control

Every functional module f is provided with a service handler SHfid which reacts
to service assignments by creating a thread that serves the associated request and
changes state accordingly. The following KLAIM code models such a behavior.

3.3. NAM formalization 45

SHfid =

in(srvAssign,?sid,fid,?data,?nidSRC);

START_THREAD(sid,fid,data,nidSRC);

SHfid

+ in(copySH,fid,?nidDST);eval(SHfid)@nidDST ;

SH f id

+ in(migrateSH,fid,?nidDST);eval(SHfid)@nidDST

+ in(offloadSH,fid,?nidDST);eval(RSHfid)@nidDST ;

LSHfid

Upon receiving a service assignment (srvAssign) for fid, the service handler cre-
ates a thread including the sid service identifier, the fid module identifier, data for
the computation and the nidSRC client identifier. In case of a copy request (copySH)
for fid to nidDST destination, the service handler copies itself to nidDST by using the
eval action, and returns to its previous state. In case of a migrate request (migrateSH),
the service handler behaves similarly, however it stops its execution. An offload re-
quest (offloadSH) is instead managed in a different way, in that it starts a remote
service handler RSHfid located on nidDST and then switches to execute a local service
handler LSHfid. The KLAIM code for the aforementioned processes is reported in the
following.

LSHfid =

in(backSH,fid,?nidDST);

out(remoteBackSH,fid)@nidDST ;

SHfid

RSHfid =

in(remoteSrvAssign,?sid,fid,?data,?nidSRC);

START_THREAD(sid,fid,data,nidSRC);

RSHfid

+ in(remoteBackSH,fid)

+ in(goSH,fid,?nidDST);eval(RSHfid)@nidDST

46 Chapter 3. Networked Autonomic Machine

After offloading, Disp dispatcher process forwards service requests to the remote
NAM nidDST . LSHfid reacts to a back request (backSH) by notifying the remote NAM
through a remoteBackSH request, and returns to (normal) SHfid state. The remote ser-
vice handler RSHfid has three possible behaviors. The first one reacts to a remote ser-
vice assignment (remoteSrvAssign) by creating a thread to serve the request and re-
turns to its initial state. The second behavior receives a back request (remoteBackSH)
and terminates the RSHfid process. The last behavior reacts to a go request (goSH)
to nidDST by creating a remote service handler on nidDST and terminates. The last
behavior is activated only if the destination NAM nidDST of the go action is not the
functional module owner (i.e., the offloader), otherwise RSHfid would become SHfid.
Such a check is performed by the process triggering the goSH action, which is the
mobility handler MH. After a go action, service requests are forwarded to the NAM
where the remote service handler is active. Such a redirection requires the update of
service bindings, which is managed by the mobility handler process.

Prior to presenting further details of mobility actions, code illustrating the way
threads are created is reported.

START_THREAD(sid,fid,data,nidSRC) =

read(srvImpl,sid,fid,?Code);

tid := getFreshId();

out(thread,fid, tid);

eval(Code(tid,data,nidSRC,fid))

The implementation (Code) of a service in fid functional module is retrieved from
a tuple tagged as srvImpl by using sid service identifier. Subsequently, a new thread
identifier tid is created and registered as a fid thread – Code(tid,data,nidSRC,fid)
– which is executed locally. The unique thread id registration phase is required to
be able to retrieve and move running threads of a functional module when such a
module is offloaded or migrated. The thread is expected to know the identifier of the
service client (nidSRC), to be able to reply to it, and its own identifier tid, to be able
to unregister upon task completion and react to migrate/offload requests.

PHfid policy handler manages policies by using triples (ev,co,act) in the on-site

3.3. NAM formalization 47

policy Po of fid. Furthermore, it reacts to mobility actions identified by tuples whose
tag is in {backPH, copyPH, goPH, migratePH, offloadPH} set. In particular, in the
case of an offload request, the handler starts a remote policy handler RPHfid, which
executes the functional module remote policy Pr, and switches to execute a local
policy handler LPHfid (which executes the functional module local policy Pl). As
for the service assignment handler, the policy handler presents a normal operation
mode which executes policies in PN on local events and handles mobility actions in a
similar fashion.

PHfid =

∑
(ev,co,act)∈PN

in(event,ev); if (co) then {Pact}; PHfid

+ in(copyPH,fid,?nidDST);eval(PHfid)@nidDST ;

PHfid

+ in(migratePH,fid,?nidDST);eval(PHfid)@nidDST ;

+ in(offloadPH,fid,?nidDST);eval(RPHfid)@nidDST ;

LPHfid

In offloaded mode instead, the policy handler is split into a local and a remote
handler to react to both local and remote events.

LPHfid =

∑
(ev,co,act)∈PL

in(event,ev); if (co) then {Pact}; PHfid

+ in(backPH,fid,?nidDST);

out(remoteBackPH,fid,nidDST)@nidDST ;

PHfid

RPHfid =

∑
(ev,co,act)∈PR

in(event,ev); if (co) then {Pact}; PHfid

+ in(remoteBackPH,fid,_)

+ in(goPH,fid,?nidDST);eval(RPHfid)@nidDST

48 Chapter 3. Networked Autonomic Machine

3.3.4 Macros

Prior to describing the KLAIM code for all actions, macros which facilitate code
reading and handle mobility operations are introduced. Such macros use the while
construct with non-blocking variants of in/read as argument, to ensure that each
tuple of interest is considered at least once. In case the argument is read, the while
semantics ensures that each tuple is considered at most once. Notably, the while loops
in macros certainly terminates, due to a disciplined use of tuples and appropriate
boolean conditions on a number of their fields.

Service binders can be moved, copied and updated.

MOVE_BINDER(fid,nidDST) =

while (inp(srvBinder,?sid,fid,?nidIMP))

{out(srvBinder,sid,fid,nidDST)@nidDST}

COPY_BINDER(fid,nidDST) =

while (readp(srvBinder,?sid,fid,self))

{out(srvBinder,sid,fid,nidDST)@nidDST};

UPDATE_BINDER(fid,nidDST) =

while (inp(srvBinder,?sid,fid,?nidIMP) && nidIMP! = nidDST)

{out(srvBinder,sid,fid,nidDST)}

When a binder moves, it is deleted locally and created on the remote location.
Also, a pointer to the remote implementation is defined. When a binder is copied, the
local binder is not consumed and the implementation location of the copy is updated.
Finally, when the binder is updated, the implementation location is changed by re-
placing binders that still point to the local implementation (it is assumed that nidIMP

and nidDST differ).

Both local and remote service assignments can be moved and translated from lo-
cal to remote and vice-versa.

3.3. NAM formalization 49

MOVE_SRVASSIGN(fid,nidDST) =

while (inp(srvAssign,?sid,fid,?data,?nidSRC))

{out(srvAssign,sid,fid,data,nidSRC)@nidDST}

MOVE_REMOTESRVASSIGN(fid,nidDST) =

while (inp(remoteSrvAssign,?sid,fid,?data,?nidSRC))

{out(remoteSrvAssign,sid,fid,data,nidSRC)@nidDST}

TRANStoREM_SRVASSIGN(fid,nidDST) =

while (inp(srvAssign,?sid,fid,?data,?nidSRC))

{out(remoteSrvAssign,sid,fid,data,nidSRC)@nidDST}

TRANStoLOC_SRVASSIGN(fid,nidDST) =

while (inp(remoteSrvAssign,?sid,fid,?data,?nidSRC))

{out(srvAssign,sid,fid,data,nidSRC)@nidDST}

To prevent losing requests, local to remote translation is necessary to move of-
floading/migration requests which have not yet been served. Similarly, remote to local
translation is used in a back action when offloading terminates. Also, implementa-
tions can be moved or copied.

MOVE_IMPLEMENTATION(fid,nidDST) =

while (inp(srvImplem,?sid,fid,?Proc))

{out(srvImplem,sid,fid,Proc)@nidDST}

COPY_IMPLEMENTATION(fid,nidDST) =

while (readp(srvImplem,?sid,fid,?Proc))

{out(srvImplem,sid,fid,Proc)@nidDST}

50 Chapter 3. Networked Autonomic Machine

Threads can only be moved or started in that forced termination is not allowed.
In the following, threads handling macros are introduced.

MOVE_THREADS(fid,nidDST) =

while (inp(thread,fid,?tid)){

out(moveThread, tid,nidDST);

out(thread,fid, tid)@nidDST}

START_THREAD(sid,fid,data,nidSRC) =

read(srvImpl,sid,fid,?Code);

fresh(tid);

out(thread,fid, tid);

eval(Code(tid,data,nidSRC,fid))

When a copy request is received, the copy action handler copies all binders (by
setting the remote NAM as the fid location) and implementations, and sends copy
requests to the service and policy handler.

CH =

in(copyReq,?fid,?nidDST);

COPY_BINDER(fid,nidDST);

COPY_IMPLEMENTATION(fid,nidDST);

out(copySH,fid,nidDST);

out(copyPH,fid,nidDST);

PMH

Upon the arrival of a migrate request, the migrate action handler moves all binders
(by setting the remote NAM as the fid location), implementations, service assign-
ments and threads, and sends migrate requests to the service and policy handler.

3.3. NAM formalization 51

MiH =

in(migrateReq,?fid,?nidDST);

MOVE_BINDER(f id,nidDST);

MOVE_IMPLEMENTATION(fid,nidDST);

MOVE_SRVASSIGN(fid,nidDST);

MOVE_THREADS(fid,nidDST);

out(migrateSH,fid,nidDST);

out(migratePH,fid,nidDST);

PMH

OH =

in(offloadReq,?fid,?nidDST);

out(offloaderNAM, f id,self)@nidDST ;

UPDATE_BINDER(fid,nidDST);

MOVE_IMPLEMENTATION(fid,nidDST);

TRANStoREM_SRVASSIGN(fid,nidDST);

MOVE_THREADS(fid,nidDST);

out(offloadSH,fid,nidDST);

out(offloadPH,fid,nidDST);

PMH

Upon the arrival of an offload request (offloadReq) the handler adds a tuple tagged
as offloaderNAM to notify the remote NAM nidDST that its owner (self) is the func-
tional module fid’s offloader. Then, it updates the binder for each service in fid to
notify the new location nidDST of the module. Afterwards, the handler moves the im-
plementation of each service (i.e., the code associated with each service in the func-
tional module) to nidDST . Each service assignment which has not been served yet is
translated into a remote request and sent to nidDST . Threads are moved to nidDST by
creating a moveThread tuple for each thread identifier tid. Each thread then accord-
ingly reacts to the mobility request. Offloading requests are locally sent to the service
and policy handler by using offloadSH and offloadPH requests, respectively, and by

52 Chapter 3. Networked Autonomic Machine

indicating the destination NAM nidDST . Section 3.3.3 describes SHfid reactions to re-
quests. Finally, the control returns to PMH where either a policy or a mobility request
is handled.

Upon the arrival of a back request, the BH back action handler sends a go request
with destination self to the remote NAM.

BH =

in(backReq,?fid,?nidDST);

out(goReq,fid,self)@nidDST ;

PMH

The go action handler presents two possible behaviors. The first one is enacted on
the remote NAM and retrieves the identity of the offloader NAM upon the arrival of a
go request. Then, it sends a notification (goNotification) to the offloader NAM with
the new location (NAM2), so that such a NAM updates service bindings accordingly,
and moves implementation and threads to the new location. If the new destination is
the offloader itself, then the action is indeed a back action, which simply sends back
requests to the service and policy handler and translates remote service assignments
to local ones. Otherwise, it performs three sub-steps: (i) it informs NAM2 of the of-
floader identity using the offloaderNAM tuple, (ii) it sends go requests to the service
and policy handler, and (iii) it moves remote (not yet served) service assignments.
The second behavior of GH is enacted on the local NAM and reacts to goNotification

messages by updating service binders to point to the new NAM (possibly, self).

3.3. NAM formalization 53

GH =

in(goReq,?fid,?nidDST);

in(offloaderNAM,fid,?nidOFF);

out(goNotification,self,fid,nidDST)@nidOFF ;

in(goACK,fid);

MOVE_IMPLEMENTATION(fid,nidDST);

MOVE_THREADS(fid,nidDST);

if (nidDST == nidOFF)

then {

out(backSH,fid,nidDST);

out(backPH,fid,nidDST);

TRANStoLOC_SRVASSIGN(fid,nidDST)

} else {

out(offloaderNAM,fid,nidOFF)@nidDST

out(goSH,fid,nidDST);

out(goPH,fid,nidDST);

MOVE_REMOTESRVASSIGN(fid,nidDST);

};

PMH

+ in(goNotification,?nidSRC,?fid,?nidDST);

UPDATE_BINDER(fid,nidDST);

out(goACK,fid)@nidSRC;

PMH

Chapter 4

NAM4J Middleware

This chapter presents the extension of NAM4J, carried out as part of the PhD ac-
tivities. NAM4J is an open source Java middleware which has been specifically de-
veloped to implement NAM-based autonomic systems1. The middleware answers to
the need for a tool integrating context-awareness and location-awareness in Global
Ambient Intelligence (GAmI) applications [38]. Contextual information characterizes
the situational user context and involves spatial, temporal and environmental param-
eters. However, context sources are manifold and acquired data must comply with a
model that enables aggregation and reasoning activities. Also, providing a publish/-
subscribe mechanism that triggers services, based on events, is crucial. The NAM4J
middleware has been developed to cope with all such issues.

A layered stack, showing the role of NAM4J in a networked system, is presented
by Fig. 4.1 [41]. NAM4J runs on top of the operating system on a physical or virtual
device, and exploits an appropriate Java Virtual Machine (JVM). It also efficiently
runs on Android devices, thus allowing for the implementation of MCC systems
which involve both stationary and mobile devices.

1https://github.com/dsg-unipr/nam4j

https://github.com/dsg-unipr/nam4j

56 Chapter 4. NAM4J Middleware

Figure 4.1: NAM4J layer stack.

4.1 NAM4 architecture

Before this PhD activity, NAM4J only included a reduced set of core classes which al-
lowed to implement NAM entities with limited capabilities, as illustrated by Fig. 4.2.
As part of the PhD activity, the code of such classes has been implemented and the
middleware has been enriched with several components with the purpose of manag-
ing large scale autonomic distributed environments. Fig. 4.3 presents the class dia-
gram of the current NAM4J version. In particular, the NamPeer class (together with
related classes) allows for the implementation of P2P networks of NAM nodes. Also,
the context bus and the rule engine functional modules have been added to provide,
respectively, publish/subscribe capabilities and autonomic policies management, as
described in sections 4.3 and 4.5. Moreover, NAM mobility actions have been imple-
mented to enable the migration of code and execution state (Fig. 4.4). The offloading
process involves the decomposition in chunks of items to be migrated (i.e., func-
tional modules, services, dependencies, execution state and resources) and follows
the protocol described in section 4.2 (for the sake of readability, the full NAM4J
class diagram has been split in figures 4.3 and 4.4 joined by the MccNamPeer class).

The development of NAM4J-based applications requires the extension of the Net-

workedAutonomicMachine class. Each NAM node has an instance of such a class,

4.1. NAM4 architecture 57

Figure 4.2: NAM4J UML class diagram before the PhD activity.

Figure 4.3: NAM4J UML class diagram after the PhD activity.

which provides data structures and methods to manage activities characterizing the
NAM (e.g., loading specific functional modules and performing mobility actions).
Functional modules are defined through the extension of the FunctionalModule class.
Such modules are then linked to the main class of the system through the addFunc-

tionalModule(FunctionalModule) method, provided by the NetworkedAutonomicMa-

chine class. Services exposed by functional modules are defined through the ex-
tension of the Service class. Similarly to functional modules, which are linked to a
class extending NetworkedAutonomicMachine, services are linked to functional mod-

58 Chapter 4. NAM4J Middleware

Figure 4.4: NAM4J UML mobility class diagram.

ules through the addConsumableService(Service) and addProvidedService(Service)

methods provided by the FunctionalModule class. The latter class also provides the
ServiceHandler nested class, which allows for the interaction between a functional
module and its services. It is worth noting that each NAM can only access its own
resources, while the interaction with resources of other NAMs happens through ser-
vices, as described by Section 3.1.

For example, a NAM executing on a node provided with a number of sensors
measuring different physical quantities may expose a service for each sensor. Ser-
vices that provide data related to the same environment (e.g., temperature, humidity,
pressure) may be grouped by a single functional module, whose purpose is to de-
scribe the overall state of the environment. Interested nodes can access each sensor
through the associated service.

To provide service interaction, we have included in NAM4J the IDispatcher inter-
face, which must be implemented by classes characterized by different dispatching
algorithms (according to the Strategy pattern [47]). We have implemented the dis-
patcher described in Section 3.3 (Dispatcher class), provided with a queue that han-
dles incoming service requests, an algorithm that assigns service requests to local or
remote functional modules, and a threadpool that handles incoming messages from
remote NAMs. Fig. 4.5 [41] illustrates how service requests are managed.

4.1. NAM4 architecture 59

Figure 4.5: Operations of the basic Dispatcher provided by NAM4J.

It is assumed that a discovery module is able to find NAMs that can serve a re-
quest — either the local one, or remote ones. The discovery module selects a NAM
among the ones that offer a functional module capable of dealing with the service re-
quest and inserts such a request in the queue associated to its dispatcher. Two cases of
service request assignments are possible. In the first case (Fig. 4.5, step 5.1), the des-
tination functional module is local. Thus, the Dispatcher calls the srvAssign() method
on the ServiceHandler of the chosen functional module. The ServiceHandler then
calls the execute() method on the destination functional module, passing the descrip-
tion of the requested service. The destination functional module has a threadpool to
handle incoming execution requests. When a requested execution completes, a reply
is sent to the interested functional module (i.e., the one that initially sent the service
request to the Dispatcher). In the second case (Fig. 4.5, step 5.2), the destination
functional module has been previously offloaded to a remote NAM. Thus, the service
request is sent to a remote ServiceHandler, which calls the execute() method on the
destination functional module and includes the description of the requested service.
As for the first case, when the requested execution completes, a reply is sent to the
interested functional module.

60 Chapter 4. NAM4J Middleware

4.2 Mobility support for MCC applications

This section describes the implementation of NAM mobility actions in NAM4J. As
illustrated by Fig. 4.4, all classes implementing code mobility features are grouped
into the it.unipr.ce.dsg.nam4j.impl.mobility package.

In a NAM network, peers have a list of utils.ConversationItem objects, each repre-
senting a mobility action occurring between peers. Such an object includes a unique
random key and is used to store data regarding the action, such as its type (COPY,
MIGRATE, OFFLOAD, GO or BACK string), the id of the item to be transferred and
the contact address and platform of the partner peer. Such an object is necessary in
that each action is composed of asynchronous messages exchanged based on a pro-
tocol that allows nodes to request all missing dependencies for the migrated item, the
item itself and possibly its state. Thus, each peer can hold multiple conversations (i.e.,
manage multiple mobility actions) with different peers in parallel. In the following,
code examples related to COPY and MIGRATE mobility actions are reported.

In order for migration to work properly, each functional module and service is
described by a JSON file whose name is the identifier of the item itself. Such a file
presents the structure illustrated by listing 4.1.

Listing 4.1: Example of a JSON item descriptor.

1 {

2 "lib": {

3 "info": {

4 "id": "TestService",

5 "version": "1.0",

6 "type": "SERVICE",

7 "main": "it.unipr.ce.dsg.examples.migration.TestService"

8 },

9 "functional_module": {

10 "functional_module_version": "1.0",

11 "functional_module_id": "TestFunctionalModule"

12 },

13 "dependencies": [

14 {

15 "dependency_type": "LIB",

4.2. Mobility support for MCC applications 61

16 "dependency_version": "1.7.1",

17 "dependency_id": "gson"

18 },

19 {

20 "dependency_type": "FM",

21 "dependency_version": "1.0",

22 "dependency_id": "FunctionalModuleDependance"

23 }

24],

25 "files": [

26 { "file_id": "file.txt" }

27],

28 "requirements": {

29 "cores": "2",

30 "clock": "1024",

31 "ram": "1024",

32 "storage": "1",

33 "network": "false",

34 "location": "false",

35 "camera": "false"

36 }

37 }

38 }

The JSON root element is lib, including the following attributes.

• info contains general information regarding the item:

– id represents the unique identifier of the item, and must be equal to the
names of the item itself and of the JSON descriptor file (e.g., the binary
for an item having id TestService must be named TestService.jar, and its
JSON descriptor file must be named TestService.json);

– version is the version of the item (peers can request a specific one);

– type is either FM or SERVICE; it is used by the library to manage the re-
ceived item (i.e., a service is bound to a functional module, so the system
tries to perform such a binding before the service execution starts);

– main is the name of the item’s main class, and the client calls its construc-
tor when receives the item.

62 Chapter 4. NAM4J Middleware

• functional_module attribute is only required for JSON files describing Services.
Such an element describes the version and identifier of the functional module
to which the Service is bound.

• dependencies attribute lists items necessary for the execution of the migrated
item. In the example of listing 4.1, TestService requires Gson version 1.7.1 or
newer, and FunctionalModuleDependance version 1.0 or newer. If the client
does not have such items, related files are sent before the item itself. Upon
receiving files, the client adds each to the class path, if the item is a functional
module or a library. The item type is specified by the dependency_type element
which takes one of the following values: INFO, RESOURCE, LIB, FM. NAM
services do not depend on other services, therefore the associated type is not
defined. If a dependency is a functional module, it is not necessary to specify
its associated JSON descriptor file as another dependency, in that the system
handles it when the type is specified as FM.

• files is a list of files required for the execution.

• requirements is the list of system specifications required for the execution.

– cores is the minimum number of processing units;

– clock is the minimum processor clock (Hertz);

– ram is the minimum amount of RAM (Megabytes);

– storage is the minimum storage space (Megabytes);

– network is set to true if the item requires network access, false otherwise;

– location is set to true if the item requires location information (i.e., it
requires the availability of a location sensor), false otherwise;

– camera is set to true if the item requires the availability of a camera, false

otherwise.

Developers can add custom requirements and edit jsonparser.JSONHandler class,
which parses the JSON file, and decideWhetherToAcceptMobilityRequest() method of
utils.MobilityUtils class, which checks for minimum requirements availability.

4.2. Mobility support for MCC applications 63

NAM4J supports state migration through serialization. We added an abstract
Runnable class to FunctionalModule and Service classes, respectively named Func-

tionalModuleRunnable and ServiceRunnable, whose code is executed by the item and
whose state can be migrated. As Java threads cannot be serialized, state migration
requires serializing such a runnable, migrating it, deserializing it, and creating a new
thread to execute its code. The provided runnables include four methods to manage
the described cycle (start, stop, suspend and resume) and two methods the program-
mer overrides (if necessary) to save and retrieve non-serializable Java objects (saveS-

tate and restoreState). When a peer wants to start the execution of a service, the start

method is called. When the peer wants instead to migrate the execution to another
peer, saveState and suspend methods are called to send all required items as well as
the execution state, as illustrated by listing 4.2.

Listing 4.2: Starting and suspending the execution of a service.

1 Service s = new MyService();

2

3 // Functional module to which the service has to be bound

4 MyFunctionalModule fm = new MyFunctionalModule(myNam);

5

6 s.setFunctionalModule(fm);

7 s.getServiceRunnable().start();

8

9 // The service executes on it own thread

10

11 s.getServiceRunnable().saveState();

12 s.getServiceRunnable().suspend();

The receiving peer adds all items to the class path, binds the service to the proper
functional module and calls ServiceRunnable’s restoreState and resume methods.
Such methods manage state deserialization, create a new thread and recover the ex-
ecution. When the execution is resumed, the runnable’s run method starts from the
beginning, thus state recovery is successful only if developers keep outside of the run

method the definitions of all variables whose state has to be saved. Also, developers
can properly override the runnable’s restoreState method to set variables’ values, as

64 Chapter 4. NAM4J Middleware

illustrated by listing 4.3.

Listing 4.3: Resuming a service execution.

1 Service s = (Service) deserializedState;

2 JSONHandler infoFmHandler = MobilityUtils.parseJSONFile(functionalModuleId,

this.nam);

3 String fmCompleteMainClassName =

infoFmHandler.getLibraryInformation().getMainClass();

4

5 FunctionalModule fm = MobilityUtils.addServiceToFm(s, functionalModuleId,

this.nam, fmCompleteMainClassName);

6 s.setFunctionalModule(fm);

7

8 // Resuming the service execution

9 s.getServiceRunnable().restoreState();

10 s.getServiceRunnable().resume();

The copy action happens when a peer (client) asks for an item (a functional mod-
ule or a service) to another peer in the network (server). No state is transferred and the
server keeps migrated items. The communication between two peers is based on mes-
sages (classes in it.unipr.ce.dsg.nam4j.impl.messages package) exchanged through
the Sip2Peer middleware2. The client generates a random key, creates a new Con-

versationItem object and stores it in its conversations list. Then, it sends a Request-

CopyMessage message, which includes the key, to the server. The latter creates a
corresponding ConversationItem object, sets the received key as the conversation
identifier and stores the object in its conversations list. Therefore, both peers use
the same key to identify the conversation they are having. The server checks for the
availability of the requested item and, if it is not available, it answers with an ItemNo-

tAvailableMessage message, otherwise it sends a RequestItemAnswerMessage mes-
sage which includes the list of dependencies for the item. Dependencies are libraries,
files and minimum system specification required for the execution. The server sets
the RequestItemAnswerMessage message content by parsing the JSON descriptor
file associated to the requested item. When the client receives an answer message,
it checks for missing dependencies and, if any is needed, it sends a RequestDepen-

denciesMessage message including a list to the server. Otherwise, it checks for the

4.2. Mobility support for MCC applications 65

availability of the JSON descriptor file for the item. If such a file is not available, the
client answers with an AllDependenciesAreAvailableMessage message, otherwise it
sends an InfoFileIsAvailableMessage message to the server.

When the server receives a RequestDependenciesMessage message, it sends all
requested items to the client. Each file is divided in chunks, and each chunk is sent
as a DependencyChunk message. When the client has received all parts for a cer-
tain file, chunks get ordered, the file is rebuilt from them and is added to the class
path at runtime. When all dependencies have been received, the client checks for the
availability of the JSON file describing the item. If it is not available, the client an-
swers with an AllDependenciesAreAvailableMessage message, otherwise it sends an
InfoFileIsAvailableMessage message to the server.

When the server receives an AllDependenciesAreAvailableMessage message, it
sends the item descriptor file as a set of InfoFileChunk messages. When the client
has received such a file, it answers with an InfoFileIsAvailableMessage message. Fi-
nally, when the server receives such a message, it sends the requested item as a set
of ItemChunk messages. When all chunks have been received, the client builds the
file, adds it to the class path, retrieves its type from the descriptor file and answers
with an ItemIsAvailableMessage message to notify the end of the conversation. Both
peers then remove the associated ConversationItem from the list of ongoing conver-
sations and store the identifiers of the item and the partner in a proper list, which is
an attribute of NetworkedAutonomicMachine class. Such a list allows keeping track
of every received and sent item and of the associated partners. If the item is a service,
the name of the functional module to which it has to be bound is retrieved from the
descriptor file, and such a module’s execution starts. Then the service is added to the
class path, bound to the functional module and started as well. If instead the item is a
functional module, its execution starts after it has been added to the class path.

The migrate mobility action happens when a NAM is executing the code of a
functional module or a service, and decides to suspend it and delegate another node
in the network for it. The message exchange is the same of the copy action, but when
the receiving peer has obtained the item, it waits for the state so that the execution re-

2https://github.com/dsg-unipr/sip2peer

66 Chapter 4. NAM4J Middleware

sumes from where it was suspended. The sender provides the state as the serialization
of the related runnable when it receives an ItemIsAvailableMessage message. As for
every other exchanged entity, the state is divided in chunks sent through StateChunk

messages.

The offload, go and back mobility actions are managed in a similar fashion to the
described copy and migrate. Actions rely on the fact that all NAMs keep track of every
peer from which an item was received, and to which an item was sent. Therefore,
when an item is moved, it is possible to update bindings and redirect requests to the
new responsible for it.

4.3 Context Bus

We developed a specific functional module, described by the ContextBus abstract
class, which is particularly useful in collaborative applications in that, if replicated
on each peer as illustrated by Fig. 4.6 [48], it instantiates a virtual shared channel
allowing nodes to notify and get notified about context events. Such events may rep-
resent changes that happen in the environment and may influence the behavior of the
distributed system. To provide a highly scalable publish/subscribe mechanism, the
context bus is based on Sip2Peer middleware3and allows for three operations: pub-
lish an event occurrence, subscribe to get notified when a certain event occurs and
unsubscribe from a previous subscription.

Figure 4.6: Context Bus involving three peers.

In collaborative applications that benefit from the context bus presence, nodes
are distributed in a P2P network whose topology is managed by proper functional

3https://github.com/dsg-unipr/sip2peer

4.3. Context Bus 67

modules.We have developed modules which allow the deployment of Chord [49],
Kademlia [50], full mesh and random graph topologies. To join the network, a new
node contacts a bootstrap peer, supposed to be known, which replies with a list of
active nodes, according to the network architecture. Every node in a NAM4J-based
network can be the bootstrap and, therefore, the seamless replacement of nodes that
play such a role is possible in case of failures or if problems occur.

In a full mesh topology, the bootstrap communicates to new nodes the list of
all connected peers. Thus, each node has a full knowledge of the network. Since
all possible pairs of nodes are connected, full mesh networks are characterized by
high-rate connection. Moreover, such networks are extremely robust in that, since
the number of links in a N-peers network is N(N−1)/2, until a node is not isolated,
there exist at least one path connecting it to every other node in the network. However,
the square law hinders scalability, thus, such a topology is advisable only for small
networks. Fig. 4.7 represents the sequence diagram for network joining, and event
publishing, subscribing and unsubscribing in full mesh networks.

The scalability issue is solved by partial mesh networks where each node has a
partial knowledge of the network itself, whose topology depends on the used network
manager functional module. The number of links in such a topology is between N−1
and N(N− 1)/2. The robustness of partial mesh networks decreases proportionally
to the number of links. However, such a topology is more advisable for large-scale
networks. In NAM4J-based partial mesh networks, the initial peer list of a new node
only includes peers communicated by the bootstrap. Since such a number is greatly
smaller than the whole number of peers, the system forwards requests for a prede-
termined number of hops. The forwarding process causes continuous updates to peer
lists in that, when a node receives a subscription request, it adds the subscriber to
its peer list. Fig. 4.8 illustrates the sequence diagram for network joining and event
publishing, subscribing and unsubscribing, in partial mesh networks.

When peers become interested in a certain type of event, they notify every active
peer they know through the context bus. Figure 4.9 illustrates such a behavior in a
partial mesh network. Every node that receives a subscription request stores it and
forwards it to its peer list. Such a behavior is reiterated until the request reaches

68 Chapter 4. NAM4J Middleware

Figure 4.7: Sequence diagram for network joining, and event publishing, subscribing
and unsubscribing in full mesh networks.

a predetermined number of hops from the subscriber. Then, when a node detects
an event occurrence, the context event is notified to all active peers that previously
subscribed to such type of event, as presented by Figure 4.10 [41]. In the example,
nodes N4 and N6 generate an event and notify N3 which forwards the information
to N2. To increase anonymity, when a node receives a subscription request, it stores
the requestor id and forwards it using its own id. For example, in Figure 4.9 [41], N2

4.3. Context Bus 69

Figure 4.8: Sequence diagram for network joining, and event publishing, subscribing
and unsubscribing in partial mesh networks.

sends a subscription request to N1, subscription(N2, e), which is forwarded to N6 as
subscription(N1, e). Therefore, when a node receives a request, it is not aware of the

70 Chapter 4. NAM4J Middleware

Figure 4.9: Propagation of subscription messages.

Figure 4.10: Propagation of notification messages.

original node. Thus, when events occur, each node notifies the peer from which the
request was received, until the notification reaches the actual origin.

4.4. DARTSense 71

4.4 DARTSense

NAM4J includes trust and reputation management mechanisms to make the middle-
ware suitable for applications in which such aspects are of great interest. An example
is represented by collaborative applications, such as participatory sensing, where pri-
vacy is one of the main concerns. Tagging sensed data with location and time can
involuntarily reveal personal information. On the other hand, users need to trust re-
ceived information, and a completely anonymous system can hinder data reliability.
To cope with both aspects, among existing solutions to address privacy and trust
issues, Anonymous Reputation and Trust Sensing (ARTSense) [51] is the most ad-
vanced in that it provides trust and reputation management while maintaining user
anonymity.

ARTSense is a sound framework, introducing an innovative mechanism for peer
reputation updating. The reputation level of every participant is determined con-
sidering only her/his behavior. Participants do not have control over the process,
can provide their level without revealing their identity and cannot lie. The ART-
Sense framework addresses the privacy-reliability tradeoff by means of a centralized,
server-based architecture and adds the concepts of trust and reputation to participa-
tory sensing applications. Given a sensing report r, trust T (r) is the probability that
such a report is correct when is received by the server. Also, given a participant Pi,
reputation R(Pi) is the probability that past reports produced by Pi are correct. The
server also generates and updates a reputation estimate for each participant, denoted
as reputation level R̂(Pi).

Sensing reports consist of two parts, namely the payload and the provenance.
While the former represents sensing data, the latter details the origin of the report
and is divided in user-provenance, to describe the user while preserving anonymity,
and contextual-provenance, to depict the sensing environment. In addition, reports in-
clude a Reputation Certificate (RC) signed and granted by the server, which contains
the sender’s reputation level. The server uses the RC to assess the trust of received
reports.

Trust is computed considering the location, time, sensing mode and means of

72 Chapter 4. NAM4J Middleware

transportation, in that such parameters influence the quality of acquired information.
The quality of a report regarding location Lt , produced in location Ls, gets more
accurate as distance |Ls− Lt | decreases. Location concealing techniques obfuscate
the actual position such that the contextual-provenance includes an area centered in
Ls and having diameter Dc in which the user is approximately located. Such an area
allows for computing the location distance factor as:

Θ = eDc·α ·
(

1− e−|Ls−Lt |·α
)

(4.1)

where α represents the influence of such a factor on trust. Time is another critical
factor in that the validity of reports decreases over time. The validity of a report
produced at time Tt , evaluated at time Ts is higher if the difference |Ts−Tt | is small
(i.e., the report is recent). If Sc is the duration of the time interval used for concealing,
the time gap factor is defined as:

Ω = e−Sc·β ·
(

1− e−|Ts−Tt |·β
)

(4.2)

where β represents the influence of such a factor on trust. The base trust of a
sensing report can be computed as:

Tb (r) = R̂(Pi) · (1−Θr) · (1−Ωr) ·λr ·µr (4.3)

where λ and µ are milieu factor weights, respectively for report generation and
exchange, developers define based on the application. The base trust represents an
important factor related to a single report for a task. However, for many applications a
node receives more reports related to the same task. Such reports can agree or contrast
and their similarity value S (r,r′) takes values in set [−1,+1] where −1 indicates
complete conflict and +1 complete agreement. When all similarity values for each
report pairs in a C set have been computed, it is possible to compute the similarity
factor as:

∆r =
∑r,r′∈Cr,r 6=r′ S (r,r

′)

|Cr|−1
· e−

1
|Cr | · γ (4.4)

4.4. DARTSense 73

where |Cr| is the number of reports for a given task and γ represents the influence
of such a factor on trust. Negative values of ∆r indicate that a given task has more
conflictual reports than complying ones, and vice-versa. Tb (r) and ∆r are used to
compute the final trust value as:

Tf (r) = Tb (r) · (1+∆r) (4.5)

The ARTSense architecture is centralized in that a server hosts a database to store
reputation levels. Participants willing to execute a task register on the server by send-
ing a task registration request which includes the participant id and the task id (TID).
The server stores the information in its database, gets the participant’s reputation
value based on the most recent R(Pi) value and creates and sign the RC certificates
pair. The latter includes the reputation R̂(Pi) and the TID. Certificate RC0 is added to
the user-provenance and RCi is used by the node to compute a blinded id as:

BID = RCi ·be (modN) (4.6)

where b is a random number different for each report. After the report has been
generated, it is sent to the server which computes a reputation feedback level fr and
a reputation feedback coupon (RFC) for the sender as:

RFC = [BID]Kspriv

∣∣∣[(f r)Kspub

∣∣∣RC0

]
Kspriv

(4.7)

In the RFC, fr is encrypted with the server public key so that a participant re-
ceiving the coupon does not know if the feedback is positive or negative. The only
action it enacts, is the replacement of the first part (i.e., the BID) with RCi certificate
encrypted with its private key to get the Unblinded RFC (URFC). When the server
receives a URFC validates it, extracts Pi and fr, and updates the corresponding repu-
tation value in its database.

The centralized approach has well-known drawbacks, such as the presence of
a single point of failure and scalability issues. To deal with such problems, we have
designed and implemented a distributed version of the framework, denoted as DART-
Sense, where no central server is required, as reputation values are stored and updated

74 Chapter 4. NAM4J Middleware

by participants in a subjective fashion (i.e., every participant has its own view of other
participants and does not need to share it).

4.4.1 Distributed reputation management

Every participant computes the reputation of information providers based on the dif-
ference N between the sum of positive matchings n+ and the sum of negative match-
ings n− (Eq. 4.8), when comparing received events which concern the same task and
location. N is used to compute reputation values using the sigmoid function (Eq. 4.8),
illustrated by Fig. 4.11, which takes values in]0,1[and is characterized by a trend
which is particularly suitable for our purposes, in that it makes it difficult to reach
very low and very high levels of reputation.

Figure 4.11: The sigmoid function used to compute reputation values.

N = ∑n+−∑n− (4.8)

Rep(N) =
1

1+ e−N (4.9)

Every peer keeps trace of the identifiers of good and bad peers (i.e., peers that re-
spectively provide true and false information). Such sets are identified by a threshold
Rth, whose value must be lower than default reputation for the i-th peer Ri. More-
over, reputation values and related timestamps are also stored by every peer. If a peer

4.4. DARTSense 75

sends a subscription request, and is not in any list yet, it is added to the good peers
one, with initial reputation Ri. If a peer notifies a context event, its identifier is conse-
quently added to one of the lists, based on the reputation update process described in
the following. Every participant also has the Valid Context Events (VCE) set, to store
all context events that are still valid. Such a set is essential for the reputation update
process, in that N is computed by taking into account only valid events. The reputa-
tion is updated when a context event is received, and the VCE set includes a number
of events greater than a specified threshold nth, or when a context event is generated,
and the VCE set includes at least one event received from another participant.

Peers add received events to the VCE set and, when its size is at least nth and a
new event is received, the system iterates through all VCE events. For each event, the
system checks if the provider is already in either the good or the bad peers list. We
defined three system behaviors to deal with all possible situations. In any of them,
n+ and n− are increased by a different value (∆n < ∆n′ < ∆n′′) according to the
importance of the current situation.

When the VCE size is at least nth, the node browses the set, gets the provider’s
id of each event and checks if it is already in the good or bad peers list. If not, the
provider’s reputation is initialized to Ri and the event is compared to other events
in VCE of the same type and related to the same location. If events agree, n+ is
incremented by ∆n, otherwise n− is. Such a process is repeated for each event in
VCE and, in the end, reputation values are computed by using the sigmoid function.
Such values, and the current time, are then added to the good or bad peers list based
on Rth threshold.

When the system chooses an event from VCE whose provider is already in the
good or bad peers list, it retrieves the provider’s current reputation value and the time
it was last updated. If the event is later than the provider’s last reputation update time,
it is compared to all valid events of the same type and related to the same location.
In case of an agreement, n+ is incremented by ∆n′, otherwise n− is. When the event
has been compared to all events in VCE, the reputation value of the participant is
updated, as well as the last update time.

When an event is received from a participant which previously provided an event

76 Chapter 4. NAM4J Middleware

in VCE, such a set must be updated. The new event is added to the set, while the pre-
vious one provided by the same participant is removed. Let be t the time it had been
generated. For every event in VCE, t is compared to the time ti in which the i-th event
had been generated. If t > ti, the system behavior is described by Fig. 4.12, otherwise
the event is skipped. Then, the validity of all events in VCE is checked. To do so, the
time ∆T passed since their generation is compared to the timestamp specified when
they were generated. If ∆T ≥ timestamp, the event is no more valid and is therefore
removed from VCE. Fig. 4.13 describes the behavior of the system concerning events
which are still valid. When all events have been checked, the reputation of the partic-
ipant that provided the last received event, as well as the reputation of all valid events
providers, is updated and stored in good or bad peer list, based on Rth threshold.

4.4. DARTSense 77

Figure 4.12: Flow chart of the reputation
value updating process, when the number
of received events is greater than nth.

Figure 4.13: Flow chart of the reputation
value updating process, when the updating
has already been performed at least once.

78 Chapter 4. NAM4J Middleware

When a participant subscribes to a certain
event type, it starts receiving related event
notifications. If the participant also senses
the environment by itself, to publish in
the network events of the same type, it is
able to assess the validity of previously
received events by comparing them to its
own sensed data. In fact, since the partici-
pant knows the latter is correct, it is able
to update the reputation of participants
which provided related events. In case of
an agreement, n+ is increased by ∆n′′, oth-
erwise n− is. In the end, the reputation of
all related event providers is updated and
stored in good or bad peers list, based on
Rth threshold. In the described situation
the increment is higher than in the other
cases since the node knows for certain (un-
less its sensors do not perform well) if pre-
viously received events are valid or not.
Fig. 4.14 illustrates such a system behav-
ior.

Figure 4.14: Flow chart implement-
ing reputation values updates when an
event is generated and others of the
same type and location had been re-
ceived by other participants.

4.5. Rule engine 79

4.5 Rule engine

Autonomic MCC requires the definition of policies allowing the system to deter-
mine when offloading is convenient. To this purpose, we provided NAM4J with a
rule engine which uses ECA rules. Inference engines are systems which use rules to
produce results or to change the system state. The inclusion of a rule engine brings
several benefits.

• The separation between data and rule sets simplifies the implementation, main-
tenance and update process of an application. Since the whole decisional logic
resides in rules, changes do not affect it.

• Traditional rules management based on if ... then statement makes the applica-
tion evaluate conditions even when there is no actual need. Thus, using a rule
engine improves performance and scalability.

• Using a rule set allows the definition of a knowledge base which represents a
single-point-of-truth for management policies.

• A rule engine allows the simple representation of solutions to complex prob-
lems and is generally more easily understandable with respect to traditional
code.

NAM4J’s rule engine is a functional module defined by the RuleEngine abstract
class, and is based on JBoss Drools4 component, a software allowing the design, im-
plementation and maintenance of customizable rule sets. Drools is a business rule
management system (BRMS) integrating a rule engine based on forward and back-
ward chaining inference. Such a production rule system uses an enhanced implemen-
tation of the Rete algorithm [52], supports JSR-94 standard for the construction and
maintenance of business policies, and includes the following components.

• Guvnor is a centralized repository for Drools knowledge bases, allowing the
management of rules, functions and processes (rules related to a specific knowl-

4http://www.drools.org/

80 Chapter 4. NAM4J Middleware

edge base can be easily configured and extended through a web-based inter-
face).

• Expert is the API core implementing the rule engine which performs reasoning.
It allows the management of rules groups and supports decision tables based
on Excel (XLS) and CSV files.

• Fusion provides for complex event processing (CEP) in which the identifica-
tion of an event in the cloud (i.e., the amount of information concerning all
events in the knowledge base) depends on complex patterns such as abstrac-
tion, correlation, belonging and hierarchy relationships, and processes related
to events.

• Flow allows the management of the business workflow through the rule engine,
by grouping rules into flows.

• Planner allows the optimization of automated planning.

The implementation of NAM4J’s rule engine is based on the Expert component
and runs also on Android devices.

Drools has a rule language, which supports natural and domain specific lan-
guages via expanders which allow its adaptation to specific problem domains. A rule
file (DRL) is typically a file with a .drl extension which can contain multiple rules,
queries and functions, as well as resource declarations like imports, globals and at-
tributes assigned to or used by rules and queries.

Drools is composed of two parts: Authoring and Runtime. The Authoring is the
process of defining a DRL file including all rules which are fed to a parser. The role of
the parser is to check the syntax correctness and produce a structure which describes
rules in a proper manner. Such a structure is used by a package builder which gen-
erates the necessary code. The Runtime component is able to instantiate one or more
working memories at each time instant. The working memory is a core component
of Drools in that it is the space hosting facts, which represent data used by the rule

4.5. Rule engine 81

engine. Facts are implemented as JavaBean classes (i.e., serializable classes that en-
capsulate several objects into a single object, have a zero-argument constructor and
allow to access properties using getter and setter methods) asserted into the work-
ing memory, where they can be modified or removed. When facts are asserted, one
or more rules are true and scheduled for execution. The described method is named
forward chaining and is illustrated by Fig. 4.155.

Figure 4.15: Drools forward chaining execution method.

In the following, two simple rules related to device energy are described. One of
the conditions used by such rules is based on the energy balance formula proposed
by Kumar et al. [53], which expresses the offloading energy cost (Eq. 4.10).

c(B,C,F) =
C
M
× (Wm−

Wi

F
)−Wo f f ×

D
B

(4.10)

being C the job size in terms of number of instructions, M the job execution rate
(instructions per second) on the mobile device, Wm the average power consumed to

5http://www.mastertheboss.com/jboss-jbpm/drools/

jboss-drools-tutorial.

http://www.mastertheboss.com/jboss-jbpm/drools/jboss-drools-tutorial
http://www.mastertheboss.com/jboss-jbpm/drools/jboss-drools-tutorial

82 Chapter 4. NAM4J Middleware

execute jobs on the mobile device, Wi the average power consumed by the mobile
device when idle, F the (nominal or estimated at runtime) speedup of the Cloud,
Wo f f the average power consumed by the job transfer (i.e., moving data between
the mobile device and the Cloud, mostly), D the amount of transferred data, B the
bandwidth that is available to the mobile device. If c(B,C,F)> 0, the energy cost of
local execution is higher than the offloading one.

The first sample rule – Cloud – enacts the execution migration to a remote cloud
and is activated when at least one of the following conditions is satisfied.

• The battery level is greater than a specified threshold corresponding to the 30%
of the full charge.

• The device is recharging.

• The energy balance formula (Eq. 4.10) result is positive.

The first and second conditions ensure that the device has enough battery to per-
form the offloading and receive results, while the third assesses the offloading conve-
nience. Vice versa, the second sample rule – Local – which enacts local execution, is
activated when none of the previous conditions is satisfied.

Data checked by the rule engine to perform inference can be included in a class
defined as presented by listing 4.4. Methods of the class are then referenced in the
DRL file which includes the two described rules. Listing 4.5 presents the content of
such a file.

Listing 4.4: Example of a Java class holding data used to perform inference.

1 public static class Decision {

2 public static final int MIN_LEVEL = 30;

3 public static final int CHARGING = 0;

4 private int batteryLevel;

5 private int batteryStatus;

6 private double energyBalanceFormulaResult;

7

8 public int getBatteryLevel () {

4.5. Rule engine 83

9 return this.batteryLevel;

10 }

11

12 public void setBatteryLevel(int batteryLevel) {

13 this.batteryLevel = batteryLevel;

14 }

15

16 public int getBatteryStatus() {

17 return this.batteryStatus;

18 }

19

20 public void setBatteryStatus(int batteryStatus) {

21 this.batteryStatus = batteryStatus;

22 }

23

24 public double getEnergyBalanceFormulaResult() {

25 return this.energyBalanceFormulaResult;

26 }

27

28 public void setEnergyBalanceFormulaResult(double

energyBalanceFormulaResult) {

29 this.energyBalanceFormulaResult = energyBalanceFormulaResult;

30 }

31 }

Listing 4.5: DRL file example.

1 rule "Local"

2 when

3 Decision(getBatteryLevel() < Decision.MIN_LEVEL && getBatteryStatus()

!= Decision.CHARGING && getEnergyBalanceFormulaResult() < 0)

4 then

5 // Perform local execution

6 end

7

8 rule "Cloud"

9 when

10 Decision(getBatteryLevel() >= Decision.MIN_LEVEL || getBatteryStatus()

== Decision.CHARGING || getEnergyBalanceFormulaResult() > 0)

11 then

12 // Perform cloud execution

13 end

84 Chapter 4. NAM4J Middleware

Listing 4.6 presents the code used to pass rules to the engine. The get() and
getKieClasspathContainer() methods of KieContainer class load the knowledge base,
while newKieSession method of KieSession class creates a new session to feed rules
to the engine and execute them. The parameter of the method is the object of the class
which contains data to be analyzed, and fireAllRules() method starts the execution.

Listing 4.6: Code to pass rules to the engine as well as data to perform reasoning.

1 KieServices kieServices = KieServices.Factory.get();

2 KieContainer kieContainer = kieServices.getKieClasspathContainer();

3 KieSession kieSession = kieContainer.newKieSession("ksession-rules");

4 kieSession.insert(decision);

5 kieSession.fireAllRules();

Chapter 5 presents applications built on NAM4J with the purpose of evaluating
the context bus, the reputation management mechanism, the rule engine, and to study
the impact of autonomic policies on MCC scenarios.

Chapter 5

Analysis and evaluation

The purpose and the contribution of this chapter are twofold. On one hand, the first
part introduces a modeling and simulation framework for the design and analysis
of MCC systems provided with autonomic policies, in the context of MCC-oriented
NAM extensions reported in Chapter 3. To this purpose, we developed a discrete
event simulator for the evaluation of MCC systems. On the other hand, the second
part of this chapter presents the application of NAM to two different scenarios. Firstly,
we apply NAM principles to define a hybrid P2P/cloud approach where components
and protocols are autonomically configured according to specific target goals, such
as cost-effectiveness, reliability and availability. As an example, we show how the
approach can be used to design robust collaborative storage systems based on an
autonomic policy to decide how to distribute data chunks among peers and Cloud,
according to cost minimization and data availability goals. Secondly, we define an
autonomic architecture for urban participatory sensing (UPS) which bridges sensor
networks and mobile systems to improve effectiveness and efficiency.

5.1 MCC quantitative analysis

The design of MCC systems is a challenging task, in that both the mobile device and
the Cloud have to find energy-time tradeoffs, and the decisions taken by parts affect

86 Chapter 5. Analysis and evaluation

each other. The analysis of Abolfazli et al. [2], regarding the entire history of MCC,
points out that all MCC models focus on mobile devices, and consider the Cloud as
a system with unlimited resources [53, 54]. To contribute in filling this gap, we have
proposed a modeling and simulation framework for the design and analysis of MCC
systems, encompassing both their sides [55].

The MCC system is depicted as a Queueing Network (QN) [56] which includes
two sub-networks: one for the Cloud and one for the mobile devices, as illustrated by
Fig. 5.1. The Cloud model consists of a task Dispatcher, followed by a cluster of k
VMs. The mobile device model includes a Local Engine (for local job execution) and
an Offloader (for remote job migration). A generic mobile device is characterized by
a job request rate λ , representing the rate at which the mobile user generates jobs for
the device itself. A job j is defined by a set of independent tasks, whose size N(j)

t is
a random variable (assumed to be uniform, for simplicity). Given a job, the mobile
device executes its tasks either sequentially or in parallel, while the Cloud always
executes them in parallel.

Figure 5.1: QN model of the MCC system.

5.1. MCC quantitative analysis 87

We define the offloading probability as

po f f = P

{⋃
i

condi

}
(5.1)

where condi is the i-th offloading condition expressed by Eq. 4.10. If c(B,C,F)>

0, the energy cost of local execution is higher than the offloading one. In the follow-
ing, for simplicity, we assume that every instruction requires one clock cycle. Thus,
in Eq. 4.10, M is approximated with the clock frequency of the mobile device.

The average job execution time can be predicted by using Eq. 5.1:

∆te = po f f (∆tec +∆to f f)+(1− po f f)∆tm (5.2)

where ∆tec is the average job execution time on the Cloud, ∆to f f is the average
time required by the offloading process, ∆tm is the average job execution time on the
mobile device (po f f may depend, among others, on a constraint on the job execution
time).

Once offloading has been decided, the tasks of the job are sent to the First-Come
First-Served (FCFS) queue of the Offloader, to be moved to the Cloud. The job exe-
cution time on the Cloud ∆tec is defined as the time interval between the arrival and
the departure of the job in the Cloud. The job service time on the Cloud ∆tsc, instead,
is defined as the time interval required by the Cloud to actually execute the job. The
ratio Sc = ∆tec/∆tsc is called cloud slowdown.

The QN representing the Cloud is inspired by the model proposed by Moschakis
and Karatza [57], where the Dispatcher assigns tasks to VMs using one of the fol-
lowing algorithms:

• RANDOM: assign the task to a randomly selected VM;

• Shortest Queue First (SQF): assign the task to the VM with the shortest queue;

• Shortest Queue + Earliest Deadline First (SQEDF): find the VMs which guar-
antee to meet the job’s deadline; among them, select the one which allows to
meet the deadline earlier.

88 Chapter 5. Analysis and evaluation

Each VM of the dynamic cluster uses one of the following job scheduling poli-
cies:

• First-Come First-Served (FCFS): tasks are served in the order they arrive into
the queue of the VM;

• Shortest Job First (SJF): the waiting task with the smallest service time is se-
lected to be processed next.

The model allows for the definitions of adaptive loops between the generic mobile
device and the Cloud, in order to improve their interaction, including the offloading
decision. For example, the mobile device periodically obtains updated speedup F
and bandwidth B estimations, which are used to compute the energy cost tradeoff
c(B,C,F) and the job execution time on the Cloud ∆te, to decide whether to offload
or not the job itself. Meanwhile, the Cloud computes workload statistics, which are
used to optimize the number of active VMs k = kopt and to provide refined speedup
predictions.

As F strongly depends on the workload of the Cloud, each job offloading decision
of the mobile device is based on an estimated — job-specific —F , explicitly provided
by the Cloud. The mobile device computes the expected time to complete the jobs in
its queue and adds it to the estimated local execution time of the target job. The
resulting ∆tm is sent to the Cloud, together with a descriptor of the target job (i.e.,
number of independent tasks, clock cycles of each task, etc.) and the Cloud estimates
the time ∆tec it would require to execute the target job. The estimated speedup is
then computed as F = ∆tm/∆tec and returned to the mobile device, to be used in the
computation of c, by means of Eq. 4.10.

As the number of mobile devices N may randomly increase or decrease over
time, the Cloud should be able to adapt the number of VMs k in order to preserve the
already defined SLAs, and to provide the same offer to new clients. The number of
active VMs may vary between the kmin and kmax values, and the Cloud periodically
computes the updated value k(t) at time t, by taking into account k(t − 1) and the
ratio φtc between the average maximum time task waiting time and the maximum task

5.1. MCC quantitative analysis 89

execution time (i.e., waiting time plus service time). The fraction fct of the number
of completed tasks versus the number of arrived tasks is used to compute the k value:

k(t)=


kmin if dk(t−1)+ δ

fct
(dφtce− s)e< kkmin

kmax if fct = 0 or dk(t−1)+ δ

fct
(dφtce− s)e> kkmax

dk(t−1)+ δ

fct
(dφtce− s)e else

where s is the setpoint and δ is a system parameter affecting the swing amplitude
of k(t) before the system reaches a stable configuration (ideally, the one where φtc =

s).
We have implemented a simulator of the MCC model based on the DEUS [58]

general-purpose discrete event simulation environment. The simulator is highly mod-
ular and reusable in that it is possible to define different mobile device classes (each
characterized by specific features), and the Offloader can be configured with the most
appropriate characterization of the communication channel between the mobile de-
vice and the Cloud. It is possible to define any kind of policy for the Cloud’s Dis-
patcher and the VMs, as well as the adaptive policy that updates the number of active
VMs.

In the simulations, mobile devices are characterized by 1, 2 or 4 CPU cores (with
distribution 30%, 60% and 10%, respectively) and the following parameters:

• battery capacity = 4500 mWh;

• Wm = 0.6÷0.9 W (0.5 W being the power consumed by the operating system
and other processes executed in background with respect to the considered
app);

• Wi = 0.25 W;

• Wo f f = 0.7 W;

• M = 800 or 1400 MHz (equally distributed);

• available RAM = 1 GB.

90 Chapter 5. Analysis and evaluation

Table 5.1: Power demand of different mobile devices.

Model WiFi transmission [W] CPU-intensive [W] Idle standby [W]
Openmoko Neo Freerunner [59] 0.7 0.67 0.25
T-Mobile G1 [60] 0.6÷1.3 n.a. 0.1÷0.5
HTC Magic [60] 0.6÷1.3 n.a. 0.1÷0.5
HTC Nexus One [61] 0.35 0.55 0.1
HTC Galaxy i7500 [62] 0.628 0.606 n.a.
HTC Nexus S [62] 0.455 0.886 n.a.
HTC HD2 [63] 0.817 n.a. n.a.
HTC EVO [64] n.a. 1.005 n.a.
Motorola ATRIX 4G [64] n.a. 0.918 n.a.
Motorola Droid [64] n.a. 0.944 n.a.

These values have been chosen by taking into account real devices (see Table 5.1).

We set the simulated Cloud parameters based on the OpenStack deployment in
our Department, whose VMs are provided with a virtual processor Intel Core i7 9xx
with 2 GHz clock. The nominal bandwidth between mobile device and Cloud is B =

10 MB/s and the initial number of VMs is 10; kmin = 5, while kmax = 120.

Every mobile device generates jobs characterized by Nt = 8 as maximum de-
gree of parallelism. Consider, for example, image processing jobs (face detection,
license plate recognition), where each task corresponds to the processing of a picture
acquired by the mobile device. Like Moschakis and Karatza [57], we consider Low-
Parallelism Jobs (made of up to 4 tasks), with probability q, and High-Parallelism
Jobs, (made of 4 to 8 tasks), with probability 1−q, where q can assume values 0.25,
0.5 or 0.75. Every task is characterized by:

• number of instructions: C/Nt =U(4 ·108,2 ·109)

• required RAM space: R =U(1,5) MB

• input data size: D =U(1,3) MB

• allowed completion time: 40 s

5.1. MCC quantitative analysis 91

Table 5.2: Image Processing Statistics.

Width [Px] Height [Px] Size [KB] # Faces # Mobile Proc. Time [s] Cloud Proc. Time [s]
1920 1080 50 3 + 1/2 4.02 2.93
1920 1080 188 3 4.7 2.78
1200 800 559 5 5.22 1.37
2048 1356 851 5 5.22 3.79
3504 2336 1900 3 19.48 11.55

The C range corresponds to 4 to 20 seconds of image processing, on the consid-
ered mobile devices and reflects the values we measured on a real device, illustrated
in Table 5.2. The completion time for a job is given by the number of tasks that
compose the job, multiplied by the allowed task completion time. Jobs are generated
according to a Poisson process with rate λ , such that the inter-arrival time between
jobs is 1280 s, on the average. This time period is the ideal worst-case service time
for a job, obtained by multiplying Nt and the allowed completion time of every task.

Each job is assigned either to the Local Engine or to the Offloader of the mobile
device. A job may also be dropped, if the mobile device estimates that the deadline of
the job cannot be met neither locally nor remotely. c(B,C,F) is computed using the
estimated speedup of the Cloud. Thus, c(B,C,F) may vary over time, even if the job
statistics do not change. Also, every 300 [s] the Cloud computes the optimal k value
and updates the number of active VMs.

To evaluate the performance of the MCC system, we measured the following
indicators:

• offloading probability;

• % of completed jobs;

• average execution time for jobs ∆te;

• % of completed tasks;

• % of deadline hits for tasks;

92 Chapter 5. Analysis and evaluation

• average execution time for tasks ∆t ′e;

• average cloud service time for tasks ∆t ′sc;

• average cloud execution time for tasks ∆t ′ec;

• average cloud slowdown for tasks S′c;

versus N. We considered four N values, namely {100,200,300,400}. Moreover, we
measured the time variation of the number of active VMs and the time variation of
the offloading probability, to analyze how they quickly converge in an interdependent
way.

To validate the proposed model, we compared simulation results with experi-
mental results obtained with the OpenStack-based private Cloud of our Department,
using simulated client devices in both cases. On such a system, we deployed a REST-
ful web service, which accepts images as input and sends them to the VMs, where
they are processed by an OpenCV–based face recognition program. We developed all
components of the model (including a module that autonomically resizes the Cloud,
in terms of active VMs, by means of the OpenStack API) and tuned parameters to
match the simulator’s workload. Mobile devices are simulated by threads which gen-
erate requests. Figure 5.2 reports validation results for the case of 100 simulated
mobile devices.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000

C
lo

u
d

 E
x
e

c
u

ti
o

n
 T

im
e

 [
s
e

c
]

Time [sec]

OpenStack-based Cloud
Simulator

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 0 2000 4000 6000 8000 10000

S
p

e
e

d
u

p

Time [sec]

OpenStack-based Cloud
Simulator

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

O
ff
lo

a
d

in
g

 P
ro

b
a
b

ili
ty

Time [sec]

OpenStack-based Cloud
Simulator

Figure 5.2: Average cloud execution time for tasks, estimated speedup for tasks and
offloading probability versus time, when the number of devices is 100. The simulator
is compared to the OpenStack-based private Cloud deployed in our Department.

Considering the SQF, SQEDF and RANDOM dispatching strategies, the average
execution time for tasks is shown in Fig. 5.3, 5.5 and 5.7, respectively, for increasing

5.1. MCC quantitative analysis 93

number of mobile devices and different q values. Focusing on the Cloud only (graphs
on the right), we observe that performance does not deteriorate when the total job
rate increases and large jobs become the majority (q = 0.75).

Observing the SQF-related results, it appears that the SJF scheduling strategy
does not outperform FCFS. This is due to the fact that tasks are quite homogeneous,
as a consequence of the offloading policy adopted by mobile devices. For this reason,
we report only the SJF results, for what concerns the RANDOM dispatching strategy.
Instead, for the SQEDF strategy, we show only the FCFS results, as SQEDF assumes
FCFS only.

The average cloud slowdown for tasks S′c is illustrated in Figures 5.4, 5.6 and 5.8.
With 100 devices, RANDOM appears to be the best dispatching strategy. However,
when the number of devices increases, SQF becomes the best dispatching strategy.
Again, we observe that SJF does not outperform FCFS, as a scheduling strategy.

Fig. 5.9 illustrates the percentage of deadline hits for tasks, considering the four
dispatching and scheduling configurations described so far. These results confirm
that SQF is the best dispatching strategy. Once more, we observe that SJF does not
outperform FCFS, as a scheduling strategy. Moreover, we observe that SQEDF and
SQF have the same performance. Thus, as SQF is more simple, it should be preferred.

Figure 5.10 illustrates the average execution time for jobs over the whole MCC
system, considering the configurations of dispatching and scheduling described above.
The SQF+FCFS, SQF+SJF and SQEDF+FCFS strategies are the best ones. The
SQF+FCFS and SQF+SJF strategies are the best ones. Their worst-case value, which
corresponds to q = 0.25 and N = 400 devices, is less than 60 s. The graphs show that
such a value is lower than those of every other configuration.

The analysis of the simulation results shows that the best performance is obtained
through the use of the SQF dispatching policy, in the Cloud. Figure 5.11 shows
the time evolution of the number of active VMs and offloading probability for the
SQF+SJF configuration, with N = 100 and N = 200 mobile devices and q = 0.75.
When the initial number of VMs is k(0) = 2, the offloading probability decreases
almost immediately. Thus, the Cloud has no reason to grow k. Also when k(0) = 6,
with N = 100, we observe that k(t) does not change. Setting k(0) = 10 does not im-

94 Chapter 5. Analysis and evaluation

Whole MCC system: SQF+FCFS Cloud: SQF+FCFS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

E
x
e
c
u
ti
o
n
 T

im
e
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

C
lo

u
d
 E

x
e
c
u
ti
o
n
 T

im
e
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

Whole MCC system: SQF+SJF Cloud: SQF+SJF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

E
x
e
c
u
ti
o
n
 T

im
e
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

C
lo

u
d
 E

x
e
c
u
ti
o
n
 T

im
e
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

Figure 5.3: Average execution time for tasks, versus job rate, in the case of SQF
dispatching and FCFS/SJF scheduling. The whole MCC system is compared to the
Cloud alone.

SQF+FCFS SQF+SJF

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 200 300 400

C
lo

u
d
 S

lo
w

d
o
w

n
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 200 300 400

C
lo

u
d
 S

lo
w

d
o
w

n
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

Figure 5.4: Average cloud slowdown for tasks, versus job rate, in the case of SQF
dispatching and FCFS/SJF scheduling.

proves the performance of the Cloud. Indeed, the number of activated VMs slowly
decreases towards the limit values (which is almost 6). To speed up the convergence,

5.1. MCC quantitative analysis 95

Whole MCC system: SQEDF+FCFS Cloud: SQEDF+FCFS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

E
x
e
c
u
ti
o
n
 T

im
e
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

C
lo

u
d
 E

x
e
c
u
ti
o
n
 T

im
e
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

Figure 5.5: Average execution time for tasks, versus job rate, in the case of SQEDF
dispatching and FCFS scheduling. The whole MCC system is compared to the Cloud
alone.

SQEDF+FCFS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 200 300 400

C
lo

u
d
 S

lo
w

d
o
w

n
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

Figure 5.6: Average cloud slowdown for tasks, versus job rate, in the case of SQEDF
dispatching and FCFS scheduling.

it would be necessary to use a larger δ value, but this would require a reduced VM
(de)activation frequency. With N = 200, it is more evident that 6 VMs are not suf-
ficient and 10 are too many. Finally, when the number of mobile devices increases
from 100 to 200, with k(0) = 6 or higher, the reaction of the Cloud is sufficiently
quick to maintain a stable offloading probability value.

96 Chapter 5. Analysis and evaluation

Whole MCC system: RANDOM+SJF Cloud: RANDOM+SJF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

E
x
e
c
u
ti
o
n
 T

im
e
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

C
lo

u
d
 E

x
e
c
u
ti
o
n
 T

im
e
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

Figure 5.7: Average execution time for tasks, versus job rate, in the case of RANDOM
dispatching and SJF scheduling. The whole MCC system is compared to the Cloud
alone.

RANDOM+SJF

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 200 300 400

C
lo

u
d
 S

lo
w

d
o
w

n
 f
o
r

T
a
s
k
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

Figure 5.8: Average cloud slowdown for tasks, versus job rate, in the case of RAN-
DOM dispatching and SJF scheduling.

5.2 P2P/Cloud integration

Efficient and cost-effective large scale distributed collaborative environments can-
not be achieved by leveraging upon the Cloud alone, even if its superior availability
makes it more appealing for web businesses, compared, for example, to the best effort
philosophy of P2P [65, 48]. Cloud and P2P approaches are widely different in that,
while the former is based on completely decentralized protocols, the latter follows the
client/server paradigm to leverage on the presence of high performance data centers.
Another difference is that P2P services are usually free and do no guarantee reliability
nor high performance, while cloud services are usually fee-based and performance is

5.2. P2P/Cloud integration 97

SQF+FCFS SQF+SJF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

M
e
t
D

e
a
d
lin

e
s
 f
o
r

T
a
s
k
s
 [
%

]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

M
e
t
D

e
a
d
lin

e
s
 f
o
r

T
a
s
k
s
 [
%

]

Devices

q = 0.25
q = 0.5

q = 0.75

SQEDF+FCFS RANDOM+SJF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

M
e
t
D

e
a
d
lin

e
s
 f
o
r

T
a
s
k
s
 [
%

]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

M
e
t
D

e
a
d
lin

e
s
 f
o
r

T
a
s
k
s
 [
%

]

Devices

q = 0.25
q = 0.5

q = 0.75

Figure 5.9: The percentage of deadline hits for tasks, considering the three dispatch-
ing strategies SQF, SQEDF and RANDOM, with FCFS/SJF scheduling.

contracted. However, a cloud infrastructure can benefit from the presence of a P2P
network, as the responsibility of provided services can be shared among peers [66].
On the other hand, a P2P system can be augmented by the presence of clouds satis-
fying requirements beyond the reach of a P2P network [67]. Merging the Cloud and
P2P paradigms brings together the advantages of both: high availability, provided by
the Cloud presence, and low cost, by exploiting inexpensive peers resources.

During the PhD activity, we have defined a NAM-based hybrid P2P/Cloud ap-
proach where components and protocols are autonomically configured aiming to im-
prove cost-effectiveness, reliability and availability [48]. The autonomic approach
dynamically moves tasks from the Cloud to the P2P network, and vice versa, to
meet both user-specific and collective goals. The P2P system is characterized as a
set of heterogeneous peers having different capabilities and behaviors. To use a ser-
vice provided by the Cloud, peers pay a fee, whose amount depends on how long

98 Chapter 5. Analysis and evaluation

SQF+FCFS SQF+SJF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

E
x
e
c
u
ti
o
n
 T

im
e
 f
o
r

J
o
b
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

E
x
e
c
u
ti
o
n
 T

im
e
 f
o
r

J
o
b
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

SQEDF+FCFS RANDOM+SJF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

E
x
e
c
u
ti
o
n
 T

im
e
 f
o
r

J
o
b
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400

E
x
e
c
u
ti
o
n
 T

im
e
 f
o
r

J
o
b
s
 [
s
]

Devices

q = 0.25
q = 0.5

q = 0.75

Figure 5.10: The average execution time for jobs over the whole MCC system, con-
sidering the three dispatching strategies SQF, SQEDF and RANDOM, with FCF-
S/SJF scheduling.

the service is used and on the contracted Quality of Service (QoS). Each peer has a
limited knowledge of other peers and the P2P overlay network can be a structured
or an unstructured mesh. In general, every NAM is provided with a functional mod-
ule which manages connectivity and communication, denoted as fNM. The context
bus functional module, which operates on top of fNM, is denoted as fCB. As de-
scribed in Section 4.3, the context bus allows peers to publish and consume context
events. Moreover, the P2P/Cloud system allows to advertise and search for services.
To improve scalability and fault-tolerance, it is possible to use a decentralized service
bus, implemented as a functional module denoted as fSB , which decouples service
providers from service consumers (Fig. 5.12 [48]).

Peers are provided with autonomic policies that update the local perception of
the P2P network, based on context events. Every peer builds and maintains its own

5.2. P2P/Cloud integration 99

Offloading probability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

O
ff

lo
a

d
in

g
 P

ro
b

a
b

ili
ty

Time [s]

init # VM = 2

init # VM = 6

init # VM = 10

(a) N = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

O
ff

lo
a

d
in

g
 P

ro
b

a
b

ili
ty

Time [s]

init # VM = 2

init # VM = 6

init # VM = 10

(b) N = 200

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

O
ff

lo
a

d
in

g
 P

ro
b

a
b

ili
ty

Time [s]

100 devices 200 devices

init # VM = 2
init # VM = 6

init # VM = 10

(c) N = 100 to 200

Number of active VMs

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 0 2000 4000 6000 8000 10000

#
 A

c
ti
v
a

te
d
 V

M
s

Time [s]

init # VM = 2

init # VM = 6

init # VM = 10

(d) N = 100

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 0 2000 4000 6000 8000 10000

#
 A

c
ti
v
a

te
d
 V

M
s

Time [s]

init # VM = 2

init # VM = 6

init # VM = 10

(e) N = 200

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 0 2000 4000 6000 8000 10000

#
 A

c
ti
v
a

te
d
 V

M
s

Time [s]

100 devices 200 devices

init # VM = 2
init # VM = 6

init # VM = 10

(f) N = 100 to 200

Figure 5.11: Time variation of the offloading probability and number of active VMs,
considering different N values and q = 0.75, in the case of SQF dispatching and SJF
scheduling.

Figure 5.12: Service Bus involving two peers and one Cloud.

reputation ranking of other peers by considering the upload to download ratio and
the average response time of the considered peer. Also, peers estimate the churn rate,
i.e., the frequency of node departures and arrivals. The local perception of the P2P

100 Chapter 5. Analysis and evaluation

network supports the peer in deciding whether to trust other peers or, instead, to
exploit the Cloud, for the correct and efficient execution of its functional policies.

The defined approach has been applied to the design of a distributed collabora-
tive storage system whose architecture is presented by Fig. 5.13 [48]. Every peer is
provided with a Data Manager fDM, which uses fSB to store and retrieve data into
the P2P/Cloud system, and fCB to publish heartbeat information. fDM maintains two
tables: Table1 to index known peers, which are characterized by a reputation value, a
reciprocity value and a presence flag, and Table2, to keep trace of where stored data
are (either into the Cloud or into other peers). Periodically, the peers and the Cloud
publish a heartbeat message to fCB, to notify their presence to other interested peers,
according to the context bus publish/subscribe scheme.

Figure 5.13: NAM-based distributed storage.

We assume that stored files are encoded by means of efficient maximum distance
separable (MDS) erasure codes, e.g., Reed-Solomon codes, parity-array codes, and
low-density parity-check (LDPC) codes [68, 69]. With MDS coding, a k symbols
information message is encoded into a message with n > k symbols (thus, the coding
rate is k/n). Later, users can retrieve the information by downloading a proper k-size
subset of the encoded data chunks.

When peer px wants to store a file, and mx highly reputed peers, among its neigh-
bors (i.e., the peers that px knows), are currently online. To save money, px can use
them to store data chunks. The basic strategy is to uniformly distribute data chunks
among highly reputed neighbors. Another approach is to order highly reputed neigh-

5.2. P2P/Cloud integration 101

bors by reputation and send ni data chunks to the i-th ranked peer, where ni is pro-
portional to the reputation rix that px assigns to that peer.

The reputation is a subjective value, and, given two peers px and py, their re-
ciprocal reputation values rxy and ryx depends on the percentage of fulfilled data
chunk retrieval requests r1 = n f r/nr (dimensionless), and on the ratio between the
average response time of the Cloud and the average response time of the peer r2 =

min{1,rtc/rtp} (dimensionless). Both r1 and r2 are in [0,1] and, in general, we set
r ∈ [0,1]. For example, r could be a linear combination of r1 and r2 (r = w1r1+w2r2,
where w1 and w2 are tunable weights). High reputation means that r is above a given
threshold rt . However, reputation is not the only means to categorize peers. Another
parameter is reciprocity, defined as follows:

σ
.
=

1
1+ e−(Sp−Sr)

(5.3)

where Sp and Sr characterize a neighbor in terms of the total amount of provided
and requested storage space, respectively. Like reputation, reciprocity is in [0,1] and
dimensionless. Peers can then decide the order by which serving incoming requests
by ranking known peers according to reciprocity.

The Cloud is involved when available peers have low reputation or do not guar-
antee a minimum specific performance, and when the number of stored data chunks
falls below a threshold nt (such that k < nt < n), because of neighbors departures, and
no highly reputed peers are available. Every peer should be able to set its own rt and
nt thresholds, according to its specific goals.

The collaborative distributed storage application enacts four functional policies.

The storeDataChunks policy is executed when a peer wants to store a new file,
or to refresh an old one, by means of newly generated data chunks. The peer defines
a list of suitable neighbors (according to one of the optimization strategies discussed
later in this section) and tries to send ni chunks to each of them. Also, the peer up-
dates Table2 accordingly, once a chunk has been sent. After asking all highly reputed
neighbors, remaining chunks are stored into the Cloud.

102 Chapter 5. Analysis and evaluation

The retrieveStoredDataChunks policy is executed when a whole file has to be
retrieved. The peer retrieves the list of neighbors storing data chunks of the file of
interest from its Table2, and requests them. If the number of retrieved data chunks is
less than k, the Cloud is asked to provide missing chunks.

The system provides two alternative approaches to refresh a stored file, one being
reactive, the other being proactive [70]. Reactive maintenance requires the periodic
execution of the monitorStoredFile policy , which may trigger a refreshStoredFile.
The peer retrieves the list of neighbors storing chunks of the file of interest from
its Table2, and requests them the chunks indexes. Such are compared to the ones in
Table2 and, if different, the table is updated accordingly. After interrogating all neigh-
bors, the peer checks if the total number of data chunks is lower than nt and, if so,
it generates new data chunks and executes the refreshStoredFile policy. Conversely,
proactive maintenance consists in executing the refreshStoredFile policy after each
retrieveStoredFile. If d data chunks are available (with k ≤ d < nt < n), the refresh-

StoredFile policy generates n−d new data chunks which are stored by means of the
storeNewFile policy. A file is unavailable if less than k data chunks can be retrieved.
Unavailability is temporary when unavailable data chunks are hosted by peers that
are currently offline, but will come back later. Otherwise, if unavailable data chunks
have been deleted by their hosts, or if such hosts have left the network forever, data
chunks are definitively lost.

The collaborative distributed storage application enacts two autonomic policies.

The updateReputation policy is described by Algorithm 1 and is executed after
each store, retrieve or refresh interaction with a peer. Table1 stores r1, r2 and r. The
updated reputation r is computed as a linear combination of r1 and r2, based on two
application-specific weights.

The updateReciprocity policy is described by Algorithm 2 and is executed when a
peer requests, or is requested, for storage space. Thus, the policy allows to keep trace
in Table1 of the total amount of provided storage space Sp, and of the total amount of
requested storage space Sr, for every known peer. Such values are used to compute
the reciprocity, by means of eq. (5.3).

Every peer tries to minimize the economical cost of storing files in the system,

5.2. P2P/Cloud integration 103

Algorithm 1 updateReputation
1: nr = table1.getNumRequestsTo(peer);
2: n f r = table1.getNumFulfilledRequestsBy(peer);
3: rtp = table1.getExpectedResponseTime(peer);
4: rtc = table1.getExpectedResponseTime(cloud);
5: r1 = n f r/nr;
6: r2 = min{1,rtc/rtp};
7: w1 = this.getRequestWeight();
8: w2 = this.getResponseTimeWeight();
9: r = (w1 * r1 + w2 * r2) / 2;

10: table1.updateReputation(peer, r);

Algorithm 2 updateReciprocity
1: Sp = table1.getProvidedSpace(peer);
2: Sr = table1.getRequestedSpace(peer);
3: σ = 1 / (1 + pow(e, (Sr - Sp)));
4: table1.updateReciprocity(peer, σ);

subject to two constraints. First, the file availability must be at least Amin.1 Second,
the response time for file retrieval RT must not exceed RTmax given threshold. To meet
such objectives, every peer relies on autonomic policies to sporadically update repu-
tations and periodically optimize thresholds. If a centralized entity had, at any time,
a comprehensive knowledge of the whole system, the following global optimization
problem should be solved:

minimize
nc

C = ncuc

subject to max{rtcnc, max
j=0,..,mi

{rtT
j n j}} ≤ RTmax

Ac(n′c)+AT
p (1−n′c)≥ Amin

where nc is a vector whose i-th element represents the number of data chunks the
i-th peer has to store in the Cloud, for a given file (0 ≤ nc ≤ n); uc is the economic
cost required to store one data chunk in the Cloud; rtc is the average response time
the Cloud takes to store a data chunk; max j{rtT

j n j} is a vector whose i-th element
represents the average response time the i-th peer takes to store data chunks into

1A typical value for Amin is 99.99% (https://aws.amazon.com/s3/details/).

104 Chapter 5. Analysis and evaluation

its neighbors (assuming they are heterogeneous); Ac is the availability of the Cloud
(ideally we can assume Ac = 1); Ap is a matrix whose i-th diagonal element represents
the average availability of the i-th peer’s neighbors; 1 is a vector of 1s; n is a vector
whose i-th element represents the number of data chunks the i-th peer has to publish;
n′c is a vector whose i-th element is the ratio between nc and n of the i-th peer. The
two constraints are independent.

Each peer has to solve the following local version of the problem:

minimize
nc

C = ncuc

subject to max{rtcnc, max
j=0,..,m

{rt jn j}} ≤ RTmax

nc ≥ (nAmin−Ap)/(Ac−Ap)

If peers are only interested in not exceeding a given Cmax budget, a possible adap-
tive heuristic strategy consists of using constraints on C and rt to compute and update
the minimum number of high-reputation peers mt over which no data chunks are sent
to the Cloud. If the measured file availability A is below Amin, the computed mt is ad-
justed by adding k(Amin−A), where k has to be set to find a tradeoff between increas-
ing settling time and decreasing overshoot. If the actual number of high-reputation
neighbors m is less than mt , the peer computes the fraction of data chunks that should
be stored into the Cloud as

µc =
nc

n
= 1− m

mt

Suppose there are m high-reputation peers (i.e., peers whose reputation is r≥ rt).
rt is interpreted as the ideal availability of the considered peer (i.e., the minimum
availability required to all peers to guarantee the desired file availability [70]). Table
5.3 reports the most interesting values.

At startup, new peers should be provided with a set of contacts of peers they can
trust and should try to use them as storage providers. Also, the peer may ask them
for contacts of highly reputed peers. By comparing received lists, the peer should be
able to find a set of candidates to be used as storage providers.

5.2. P2P/Cloud integration 105

File availability Peer availability

0,99 0,64
0,999 0,69

0,9999 0,72
0,99999 0,75

Table 5.3: File availability values of major interest, with corresponding values for
minimum required peer availability.

With reference to the adaptive strategy, the probability δc that less than mt highly
reputed known peers are online (i.e., δc is the probability to use the Cloud) can be
expressed as follows [48].

δc ≤ ψ

[
1−

+∞

∑
j=mt+1

fD(j)
(

e−(mt−1)H(mt−1
j ,φ)−φ

j
)]

.
= δ

∗
c (5.4)

where D random variable denotes the number of known online peers (from the
point of view of a generic peer), φ = P{R> rt}= 1−FR(rt) is the probability that the
reputation is higher than rt threshold (R is a continuous random variable representing
the peers’ reputation), and ψ = P{D > mt}.

To evaluate the proposed NAM-based approach, we simulated the distributed
storage system and compared the case of adaptive thresholds with those in which
thresholds are fixed. To this purpose, we have used the DEUS general-purpose dis-
crete event simulation environment.

The simulated cloud system is assumed to be always available and is character-
ized by prices per PUT/GET operations, respectively denoted as cPUT and cGET , and
by an exponentially distributed response time with mean value rtc. Such assumptions
are in line with related work on P2P/Cloud systems [66, 71]. We have deployed in
our Department a cloud prototype based on OpenStack and augmented with a dis-
patcher, a monitor and an autonomic auto-scaling module. The latter has the purpose
of adapting the number of active virtual machines to the current workload.

Together with the simulated cloud, there are N nodes connected in a P2P network.
We considered two models for its topology. The first one is based on non-preferential

106 Chapter 5. Analysis and evaluation

growth (i.e., every new node connects to α randomly selected nodes), whose resulting
node degree distribution is P(k) = e(1− e−1/α)e−k/α , ∀k > α (exponential), and the
mean node degree is 〈k〉 = e(1−1/α)/(1− e−1/α). The second topology model is the
one proposed by Barabási and Albert (BA model) [72], which is based on growth
and preferential attachment to construct scale-free networks, and whose node degree
distribution is P(k)' 2α2k−3, ∀k ≥ α , and the mean node degree is 〈k〉= 2α .

Every simulated day, all N peers stay online for a random time period, and only
the ρ3 fraction stays online for more than 3 hours. Sporadically (with inter-arrival
time following an exponential distribution with mean value), a randomly selected
peer stores a new file in the system by enacting the previously illustrated policies.
Every stored file is periodically maintained (with period T). File retrieving is simu-
lated with the same storing inter-arrival statistics. The reputation r of peers changes
with time, based on the previously described rules.

Param Description Value
N Total number of peers 1000

α Peers’ initial node degree {5,10,15}
Amin Threshold to consider file availability as high 0.9999

rt Threshold to consider a reputation value as high 0.72

mt Threshold for the number of high reputation neighbors {5,10,15,adaptive}
k Number of symbols of an information message 30

n Number of symbols of an encoded information message 60

nt Threshold for the number of stored data fragments 45

β Data chunk size 105 [Byte]

T Maintenance period {100,300,600,1800} [s]

rtp Average peer response time for 1 data chunk 1 [s]

rtc Average cloud response time for 1 data chunk 3 [s]

cPUT Cost per PUT operation in the Cloud $0.00001

cGET Cost per GET operation in the Cloud $0.000001

ρ3 Fraction of peers that every day stay online at least 3 hours {0.2,0.5,0.8}
w1 Weight given to satisfied requests for reputation update random ∈ [1.2,2]

w2 Weight given to response time for reputation update random ∈ [0,1.2]

λ Publication rate {5,10}[s−1]

Table 5.4: Simulation parameters.

5.2. P2P/Cloud integration 107

Table 5.4 lists all simulator’s parameters. By using such values, the numerical
solution of equation (5.4), which represents the cloud use probability upper bound, is
δ ∗c = 0.64, in case of non-preferential topology, and δ ∗c = 0.55, in case of preferential
topology.

The performance of the adaptive strategy, with mt evolving over time, has been
compared to the case where a fixed mt is used. For the former, mt is initialized to 10.
For the latter, instead, mt ∈ {5,10,15}. Fig. 5.14 and 5.15 [48] present the evolution
over time of dC/dt (average cost variation for each peer), of mt with three different
initialization values (only for the adaptive strategy), of the cloud use probability δc

and of the average peer reputation r, for the non-preferential and preferential topolo-
gies, respectively. The considered scenario is characterized by λ = 10, T = 1800 [s],
ρ3 = 0.2 and α = 10. The measured availability A always resulted to be 1 and is
therefore not plotted. With the adaptive strategy, the cloud use probability δc tends
to a value that is much lower than 1, thus respecting the upper bound provided by
equation (5.4). Also, mt converges to the same value, regardless of its initialization
value.

108 Chapter 5. Analysis and evaluation

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 1.2e-08

 0 1 2 3 4 5 6 7 8 9 10

d
c
/d

t
[$

/s
]

Time [days]

mt = 5
mt = 10
mt = 15

adaptive mt

(a) Average cost variation for each peer

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10

m
t

Time [days]

initial m
t
 = 5

initial m
t
 = 10

initial m
t
 = 15

(b) Adaptive threshold mt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

δ
c

Time [days]

Upper bound = 0.64

mt = 5
mt = 10
mt = 15

adaptive mt

(c) Cloud use probability δc

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

r

Time [days]

mt = 5
mt = 10
mt = 15

adaptive mt

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92

 0 1 2 3 4 5 6 7 8 9 10

(d) Average peer reputation r

Figure 5.14: Evolution over time of the most interesting performance indicators and
mt , for the exponential topology. The measured availability is A = 1.

5.2. P2P/Cloud integration 109

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 1.2e-08

 0 1 2 3 4 5 6 7 8 9 10

d
c
/d

t
[$

/s
]

Time [days]

mt = 5
mt = 10
mt = 15

adaptive mt

(a) Average cost variation for each peer

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10

m
t

Time [days]

initial m
t
 = 5

initial m
t
 = 10

initial m
t
 = 15

(b) Adaptive threshold mt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

δ
c

Time [days]

Upper bound = 0.55

mt = 5
mt = 10
mt = 15

adaptive mt

(c) Cloud use probability δc

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

r

Time [days]

mt = 5
mt = 10
mt = 15

adaptive mt

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92

 0 1 2 3 4 5 6 7 8 9 10

(d) Average peer reputation r

Figure 5.15: Evolution over time of the most interesting performance indicators and
mt , for the BA topology. The measured availability is A = 1.

Fig. 5.16 [48] presents the evolution of performance indicators and mt for dif-
ferent ρ3 values. It can be noted that all increase with ρ3. The reason is that, if the
fraction ρ3 of peers that every day stay online more than 3 hours increases, the over-
all stability of the P2P network increases as well, and is then reasonable to be more
selective with neighbors. Therefore, the autonomic approach makes the threshold for
the number of high reputation neighbors grow. The possibility to use better peers im-
proves performance indicators. Interestingly, with the preferential topology, the cloud
use probability δc and the response time are lower than with the non-preferential one.
The reason is that the preferential topology is characterized by few highly connected
peers, which therefore have a lot of options for storing data, while most peers have a
limited amount of neighbors.

110 Chapter 5. Analysis and evaluation

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 3.5e-08

 4e-08

 0 20 40 60 80 100

d
c
/d

t
[$

/s
]

ρ3

Exp, T = 1800, α = 10
BA, T = 1800, α = 10

(a) Average cost variation for each peer

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20 40 60 80 100

rt
 [
s
]

ρ3

Exp, T = 1800, α = 10
BA, T = 1800, α = 10

(b) Average peer response time rt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

δ
c

ρ
3

Exp, T = 1800, α = 10
BA, T = 1800, α = 10

(c) δc

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

m
t

ρ
3

Exp, T = 1800, α = 10
BA, T = 1800, α = 10

(d) Adaptive threshold mt

Figure 5.16: Evolution of performance indicators versus ρ3. The measured availabil-
ity is A = 1.

5.2. P2P/Cloud integration 111

Fig. 5.17 [48] presents the evolution of performance indicators and mt for differ-
ent values of the maintenance period T . Values less than 1800 (the one used in the
performance analysis) do not provide any particular advantage.

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 1.2e-08

 1.4e-08

 0 300 600 900 1200 1500 1800 2100

d
c
/d

t
[$

/s
]

T [s]

Exp, ρ3 = 20, α = 10
BA, ρ3 = 20, α = 10

(a) Average cost variation for each peer

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 300 600 900 1200 1500 1800 2100

rt
 [
s
]

T [s]

Exp, T = 1800, α = 10
BA, T = 1800, α = 10

(b) Average peer response time rt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 300 600 900 1200 1500 1800 2100

δ
c

T [s]

Exp, ρ3 = 20, α = 10
BA, ρ3 = 20, α = 10

(c) δc

 0

 1

 2

 3

 4

 5

 6

 0 300 600 900 1200 1500 1800 2100

m
t

T [s]

Exp, ρ3 = 20, α = 10
BA, ρ3 = 20, α = 10

(d) Adaptive threshold mt

Figure 5.17: Evolution of performance indicators versus T . The measured availability
is A = 1.

112 Chapter 5. Analysis and evaluation

Finally, Fig. 5.18 [48] presents the evolution of performance indicators and mt

for different values of the initial node degree of each peer α . It can be noted that mt

and all performance indicators increase with α . The reason is the same that justifies
the behavior of the system facing the ρ3 increase, in that more available neighbors
allows peers to be more selective. As a consequence, the average performance of the
system increases.

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 0 5 10 15 20 25

d
c
/d

t
[$

/s
]

α

Exp, T = 1800, ρ3 = 20
BA, T = 1800, ρ3 = 20

(a) Average cost variation for each peer

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 5 10 15 20 25

rt
 [
s
]

α

Exp, T = 1800, ρ3 = 20
BA, T = 1800, ρ3 = 20

(b) Average peer response time rt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

δ
c

α

Exp, T = 1800, ρ3 = 20
BA, T = 1800, ρ3 = 20

(c) δc

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25

m
t

α

Exp, T = 1800, α = 10
BA, T = 1800, α = 10

(d) Adaptive threshold mt

Figure 5.18: Evolution of performance indicators versus α . The measured availability
is A = 1.

5.3 Urban participatory sensing

Participatory Sensing is the process whereby context data and information are ac-
quired by users and shared or analyzed within the community to produce knowledge
and services. Participatory Sensing applications benefit from the wide diffusion of
mobile phones which are not only communication means and powerful multimedia

5.3. Urban participatory sensing 113

devices, as they also include a large variety of sensors such as GPS receiver, mi-
crophone, temperature, light detector and accelerometer. The application of Partici-
patory Sensing to urban areas, namely Urban Participatory Sensing (UPS), provides
advantages over traditional sensor networks. Primarily, since users are usually (and
irregularly) distributed over a city, UPS applications can cover most parts of the urban
space with a minimum expense due to the fact they leverage the presence of existing
mobile devices (smartphones and tablets) and communication infrastructures (cellu-
lar or Wi-Fi).

Typical Participatory Sensing applications present a centralized architecture in
which volunteer users collect data and send it to a central server for processing. Data
collection can be autonomous or triggered by the user, and based on either context or
temporization. The central server usually analyzes and processes received data and
provides useful services or information to interested users and systems.

In a decentralized UPS architecture instead, sensed data is made available to ev-
eryone and no central server is strictly required, although a remote cloud can be
used to perform computationally-intense processing. Fig. 5.19 presents the actors and
functions in the proposed autonomic approach, where network nodes can play the
role of information consumers and/or providers. Collected data get aggregated and
processed by users or by a remote cloud. The resulting information is then presented
to interested peers. For example, public health applications, aiming at analyzing the
effects of the environment on health issues, can take advantage of a remote cloud to
aggregate remarkable amounts of data and processing. On the other hand, there exist
classes of applications, such as public transportation monitoring, which require less
aggregation and processing and therefore do not need the computational performance
provided by a remote cloud. A publish/subscribe mechanism can be used to let users
show interest in events, such as the current location of a bus and delay estimate while
currently traveling users provide related information.

Since users continuously join and leave the network, autonomic self-management
policies, handled by NAM4J rules engine, allow the developed application to detect
if the number of providers is below an application-specific threshold and react to
preserve the quality of the service by performing recruitments among active peers.

114 Chapter 5. Analysis and evaluation

Figure 5.19: Architecture of the proposed autonomic approach to UPS.

This happens by checking if a certain device satisfies minimum requirements to be a
provider (i.e. available sensors and computational capabilities specified in the JSON
item descriptor presented in Section 4.2) and the user agrees to assume such a role.
If requirements are met, but the device lacks necessary code, a peer sends it using
NAM4J mobility features. In fact, the copy mobility action, which allows the migra-
tion of functional modules and services between peers, can be used to autonomically
modify the behavior of nodes at runtime. It is also used to send to new users the func-
tional module which implements networking management, thus allowing the node to
join the network.

The developed application allows users to retrieve and publish different types of
sensed information. Fig. 5.20 presents the structure of the nodes.

Each node in the network is provided with the following functional modules.

• A network manager functional module (fN) - it allows the NAM to participate
in a P2P network, with publish and lookup services (sp and sl , respectively).
We have developed functional modules which allow the deployment of Chord,

5.3. Urban participatory sensing 115

Figure 5.20: Layered structure of network nodes.

Kademlia, full mesh and random graph topologies;

• SensorFunctionalModule (fS) - it uses the publish service of fN to share context
events related to sensed information;

• ReasonerFunctionalModule (fR) - it uses the lookup service of fN to get context
events of interest. To allow fN to behave in a proactive way, fR exposes a notify
service (sn) that is called by fN when relevant context events are produced
either by fS or by remote NAMs.

Among such functional modules, fR is the most demanding in terms of CPU cy-
cles, fN is mostly bandwidth-consuming and fS is a thin software layer that consumes
the battery of the mobile device as long as it uses local sensors. To reduce the energy
consumption, the best candidate for being offloaded or migrated is fR, as fN must
stay on the mobile device for connectivity reasons, and fS can reduce its operation
rate. Instead, fR is always active to provide aggregated sensing information to the
user, but it is not mandatory for it to run on the mobile device. It is worth noting that
copying fN to other NAMs allows them to join the overlay network thus increasing
its size, which may be useful to balance the communication and information storage
workload.

We can consider an augmented execution scenario in which a mobile device host-

116 Chapter 5. Analysis and evaluation

ing a NAM runs short of a certain resource (e.g., battery power or CPU cycles),
while fR is performing its demanding task. In general, an autonomic MCC applica-
tion should react accordingly to the situation, so that a task is completed successfully,
even when local resources become insufficient, and without requiring user interven-
tion. In our scenario, possible decisions are to offload fR for execution on the cloud
or on another mobile node.

It is crucial to identify effects of such decisions, mechanisms to enact them,
as well as the responsibility of related mobility operations (e.g., the back action).
Regarding the offloading decision, a reasonable solution is to rely on NAM self-
management policies. These are designated of monitoring events related to the de-
vice state, in order to preserve a given quality of service or safety conditions. In the
following, the role of fR policies for our specific example is analyzed.

The fR policies are the following ones.

Po = {(cpuLoadUpdate, load > 70%,offload(fid)),

(batteryChargeUpdate,charge≤ 30%,offload(fid))}

Pl = {(wifiConnectionReport,quality < 4,back(fid))}

Pr = {(serviceQualityReport,quality < 7,go(fid))}

fid is the identifier of fR. On-site policies Po monitor the availability of CPU and
battery resources and, if necessary, trigger the offloading action to reduce resource
consumption. When the offloading completes, the policy handler is split into a local
and a remote handler (executing, respectively, Pl and Pr). The former monitors the
quality of the wireless connection and decides when it is necessary to request the
module back from the cloud service because the connection has become unreliable
while not loosing the computation performed so far. The latter resides on the cloud
service NAM and monitors the quality of the computation. If such is not satisfactory,
offloading may become a disadvantage and the module may decide to go to another
NAM, possibly the original one.

The behavior of the remote cloud service, which provides elastic resources to
registered users having a positive credit balance, is analyzed in the following. Such a

5.3. Urban participatory sensing 117

service provides the users with one or more virtual machines running a cloned sys-
tem image. The mobile device can offload fR to a cloned replica for remote execution,
thus saving battery and time as the cloud speeds up the computation. The offloading
process starts on the mobile device when enacted by fR policies. NAMs hosted on vir-
tual machines are instead characterized by policies which perform other monitoring
tasks, such as the ones described by the following rules.

P = {(cpuLoadUpdate, load > 80%,LoadBalance),

(accountCreditReport_fid,credit = 0,go(fid))}

The CPU load is monitored so that, when it gets too high, a balancing action is
executed by moving a functional module to another virtual machine. Furthermore, the
user credit is monitored so that, when it gets insufficient, hosted functional modules
are sent back to the owner.

Regarding on-site fN policies, the following ones regulate the module replication
on other NAMs.

(networkWorkloadUpdate,workload > 70%,copy(fid′)),

(networkReq, true,copy(fid′))

fid′ is the identifier of fN . The first policy monitors the workload of the network-
ing module and, when it becomes overloaded, executes a copy action to activate a
new network node on another NAM. The second policy performs the same action
when a copy of the networking module is explicitly requested by another NAM that
desires to be part of the network.

To enable the interaction between NAM and sensor layers, fS has been designed
to aggregate services with the purpose of providing values collected by physical sen-
sors. Leveraging on NAM modular approach, we implemented a specific service for
each sensor type. For our experimental setup we have deployed NAM nodes on mo-
bile and desktop devices, Raspberry Pi and Intel Galileo boards. We have also de-
veloped an Android app, presented by Fig. 5.21 [41], to allow users to publish and

118 Chapter 5. Analysis and evaluation

retrieve sensed data. The architecture provides code reuse since the functional mod-
ule employed on all nodes is the same. However, services are different, in that related
code is platform-dependent.

Figure 5.21: Screenshots of the Android application. The user is allowed to publish
information acquired by her/his device. Also, the user can search for deployed sensors
and be notified of updates.

As illustrated by Fig. 5.20, fS uses the context bus, described in section 4.3, to
publish information about events, and the context bus uses fN to send related mes-
sages to other peers. Also, each NAM manages the reputation of known peers using
DARTSense, presented in section 4.4.

The autonomic policy used to recruit new information providers, which is illus-
trated by Algorithm 3, strongly relies on the publish/subscribe mechanism enabled by
the distributed context bus. When a node is interested in receiving event notifications,

5.3. Urban participatory sensing 119

it saves the current time, then subscribes to the upsEvent (e.g., CO2 level updates) in
a specific area (represented by the georefArea parameter) and starts a timer. The on-

TimeUp function is executed when the specified time interval MAX_TIME has passed
and no notification for the upsEvent has been received. The lastEventReceivedTime

variable represents the timestamp of the last received event notification. The on-

TimeUp function checks if the number of known providers for the area of interest is
below a specified threshold and, if it is, it subscribes the node to the availabilityEvent.
Such event notifies the availability of peers willing to become information providers
in a specified area. When an event notification is received, function onReceivedEvent

is executed. First, it checks whether the node subscribed to the related event and, if
so, it checks if the event type is availabilityEvent. If this is the case, the node checks
whether the available peer has enough resources to run required sensing functional
modules and services. If it is, the node sends such items to the peer and updates the
number of known providers for the specified area. If the received notification is in-
stead related to another type of event (e.g., sensed data), the node properly handles it.
In either case, the timer is reset. Finally, the node checks if other peers subscribed to
the event and notifies them.

We have performed several experiments on the PlanetLab2 platform, to test and
evaluate the DARTSense reputation update algorithm. We have deployed 100 peers,
90 of them being set as participants (i.e., peers that always provide right informa-
tion), and 10 as adversaries (i.e., peers that provide right information with probability
p and wrong information with probability 1− p). The purpose of the experiments was
to check whether and in how much time peers detect malicious participants and as-
sign them a low reputation, for different values of p and network topology (full mesh
and random graph). We have performed tests for different p values, being p = 0.2
and p = 0.8 the most interesting cases. When a full mesh topology is used, we ob-
served that the earliest generated events have more influence on the time required to
classify peers as good or bad. Fig. 5.22 (a) and 5.22 (b) show that the percentage of
detected adversaries increases with the total number of produced events. Apparently,
the random graph topology performs better. The reason is the fact that, in full mesh

2https://www.planet-lab.org/

120 Chapter 5. Analysis and evaluation

Algorithm 3 Autonomic recruitment policy
1: while interestedInReceivingNotifications(upsEvent)) do
2: lastEventReceivedTime← getCurrentTime();
3: subscribe(upsEvent, georefArea);
4: setTimer(lastEventReceivedTime + MAX_TIME, onTimeUp(upsEvent, georefArea));

5: function ONTIMEUP(upsEvent, georefArea)
6: if getProvidersNumber(georefArea) ≤ THRESHOLD then
7: subscribe(upsAvailabilityEvent, georefArea);

8: function ONRECEIVEDEVENT(event)
9: if eventSubscribed(event) then

10: if event == ’upsAvailabilityEvent’ then
11: if checkSpecs(event.publisher, requirements) then
12: sendFMAndServicesTo(event.publisher);
13: updatesProvidersNumber(georefArea);

14: lastEventReceivedTime← getCurrentTime();
15: setTimer(lastEventReceivedTime + MAX_TIME, onTimeUp(upsEvent, georefArea));
16: // Event management

17: notifySubscribers(event);

networks, all adversaries interact with all nodes while, in random graphs, not all the
adversaries receive a subscribe message. Therefore, peers in a full mesh try to de-
tect all adversaries, while peers in a random graph only a subset (i.e., 20% on the
average).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

D
e

te
c
te

d
 a

d
v
e

rs
a

ri
e

s
 [

%
]

Events

Full-mesh
Random-graph

(a) p = 0.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

D
e

te
c
te

d
 a

d
v
e

rs
a

ri
e

s
 [

%
]

Events

Full-mesh
Random-graph

(b) p = 0.8

Figure 5.22: Percentage of detected adversaries versus the total number of published
events.

Chapter 6

Conclusions

In this thesis, we have presented the formal definition of a novel Mobile Cloud
Computing (MCC) framework based on Networked Autonomic Machine (NAM),
a general-purpose conceptual tool which describes large-scale distributed autonomic
systems and is suitable for MCC applications as well, as it supports code, data and
execution state mobility concepts. The definition of the framework aims at address-
ing the major issues and challenges that hinder the full realization of MCC systems,
namely: the lack of an agreed upon conceptual model for MCC systems; the fact that
most of current applications are statically partitioned; the possibility of rapid changes
in network conditions and local resource availability; privacy and security concerns.
The introduction of autonomic policies in the MCC paradigm proved to be a promis-
ing technique to increase the robustness and flexibility of MCC systems. In particular,
autonomic policies based on continuous resource and connectivity monitoring help
automate context-aware decisions for computation offloading.

Before the PhD activity, a Java implementation of the NAM framework (NAM4J)
existed, and only included a reduced set of core classes which allowed to implement
NAM entities with limited capabilities. During the activity we have provided NAM
with a formalization in terms of a transformational operational semantics in order
to fill the gap between its implementation and its conceptual definition. The activ-
ity has been carried out in collaboration with a research team of the IMT Institute

122 Chapter 6. Conclusions

for Advanced Studies Lucca. The formalization process clarified several aspects and
allowed us to refine the NAM framework with specific focus on MCC features. In
general, NAM provides functionalities as pluggable components, defined as func-
tional modules and services, whose code, execution state and data can be migrated
among network nodes.

Moreover, we have extended and enriched NAM4J by adding several components
with the purpose of managing large scale autonomic distributed environments. In par-
ticular, the middleware allows for the implementation of peer-to-peer (P2P) networks
of NAM nodes. Moreover, NAM mobility actions have been implemented to enable
the migration of code, execution state and data.

Within NAM4J, we have designed and developed a component, denoted as con-
text bus, which is particularly useful in collaborative applications in that, if replicated
on each peer, it instantiates a virtual shared channel allowing nodes to notify and get
notified about context events. Such events may represent changes that happen in the
environment and may influence the behavior of the distributed system.

Regarding the autonomic policies management, we have provided NAM4J with
a rule engine, based on JBoss Drools, whose purpose is to allow a system to au-
tonomously determine when offloading is convenient.

We have also provided NAM4J with trust and reputation management mecha-
nisms to make the middleware suitable for applications in which such aspects are of
great interest. An example is represented by collaborative applications, such as par-
ticipatory sensing, where privacy is one of the main concerns. Tagging sensed data
with location and time can involuntarily reveal personal information. On the other
hand, users need to trust received information, and a completely anonymous system
can hinder data reliability. NAM4J’s trust and reputation management mechanisms
are based on the Anonymous Reputation and Trust Sensing (ARTSense) framework,
available in the literature. While the ARTSense architecture is centralized (i.e., a
server hosts a database to store reputation levels) and, therefore, has well-known
drawbacks, such as the presence of a single point of failure and scalability issues, we
have designed and implemented a distributed version of the framework, denoted as
DARTSense, where no central server is required, as reputation values are stored and

6.0. Conclusions 123

updated by participants in a subjective fashion.

As part of the PhD activity, we have investigated the literature regarding MCC
systems. The design of such systems is a challenging task, in that both the mobile
device and the Cloud have to find energy-time tradeoffs, and the decisions taken by
one part affect the other part. The analysis pointed out that all MCC models focus
on mobile devices, and consider the Cloud as a system with unlimited resources. To
contribute in filling this gap, we defined a modeling and simulation framework for
the design and analysis of MCC systems, encompassing both their sides. We have
also implemented a simulator of the model which allows the simulation of large scale
MCC systems provided with autonomic policies. The simulator is highly modular
and reusable in that it is possible to define different mobile device classes (each char-
acterized by specific features), to configure the most appropriate characterization of
the communication channel between the mobile device and the Cloud, to define any
kind of policy the Cloud enacts to distribute tasks among its virtual machines (VMs),
to define any kind of policy VMs enact to extract tasks from their queues, and to
set an adaptive policy that updates the number of active VMs with the purpose of
balancing performance and cost.

We have applied the NAM principles to two different application scenarios.
First, we have defined a hybrid P2P/cloud approach where components and pro-

tocols are autonomically configured according to specific target goals, such as cost-
effectiveness, reliability and availability. The superior availability of the Cloud makes
it a more appealing environment for firms when compared to the best effort philoso-
phy of P2P. However, the Cloud alone may be not sufficient to achieve cost-effective
and efficient large scale distributed collaborative environments. Cloud and P2P ap-
proaches are widely different in that, while the former is based on completely de-
centralized protocols, the latter follows the client/server paradigm to leverage on the
presence of high performance data centers. Also, P2P services are usually free and do
no guarantee reliability nor high performance, while cloud services are usually fee-
based and performance is contracted. Merging the two paradigms brings together the
advantages of both: high availability, provided by the Cloud presence, and low cost,
by exploiting inexpensive peers resources. As an example, we have shown how the

124 Chapter 6. Conclusions

proposed approach can be used to design NAM-based collaborative storage systems
based on an autonomic policy to decide how to distribute data chunks among peers
and Cloud, according to cost minimization and data availability goals.

As a second application, we have defined an autonomic architecture for decen-
tralized urban participatory sensing (UPS) which bridges sensor networks and mobile
systems to improve effectiveness and efficiency. The developed application allows
users to retrieve and publish different types of sensed information by using the fea-
tures provided by NAM4J’s context bus. Trust and reputation is managed through the
application of DARTSense mechanisms. Also, the application includes an autonomic
policy that detects areas characterized by few contributors, and tries to recruit new
providers by migrating code necessary to sensing, through NAM mobility actions.
The design of the application has been guided by the need to avoid that a central
node could potentially become a bottleneck or a single point of failure for the whole
system, because of its responsibility on a large subset of the network. Also, we wanted
to reduce the risk of misleading information dissemination, while preserving users’
privacy.

6.1 Further work

Several research opportunities emerge from the work presented in this thesis. This
section introduces the most promising directions.

The first direction concerns the extension of the language for expressing auto-
nomic policies. Although the Drools rule engine is a well-known and largely adopted
approach, it has some limitations, mainly concerning policy composition. Thus, we
could consider languages designed to express more structured and sophisticated forms
of policies, such as XACML and FACPL.

The second direction regards the exploration of alternative solutions to the ex-
ecution state migration problem. NAM4J is based on Java serialization, whose im-
plementation is straightforward. However, as described in Chapter 4, serialization
presents a number of drawbacks which hinder its application to the full range of pos-

6.1. Further work 125

sible MCC scenarios.

The third direction has the purpose of extending the proposed MCC model by fur-
ther developing the concept of adaptive loop presented in Chapter 5. In fact, feedback
interactions between mobile devices and the Cloud can be further improved, with the
purpose to enforce adaptive behavior on both sides. In particular, as the statistics of
the workload may change over time, Cloud policies enabling the adaptation of the
number of VMs are important in order to satisfy the service level agreements (SLAs)
with the clients, while reducing costs. We plan to investigate auto-scaling approaches
based on control theory and global optimization strategies. Also, we plan to study
the impact of communicating VMs and three-tiers applications where cloudlets are
placed between mobile devices and remote clouds.

Appendix A

KLAIM Semantics

This appendix summarizes the key features of KLAIM formal language, which has
been specifically designed to provide programmers with primitives to handle physi-
cal distribution, scoping and mobility of processes. Although KLAIM is based on pro-
cess algebras, it makes use of Linda-like asynchronous communication and models
distribution via multiple shared tuple spaces. Linda [73] is a coordination paradigm
rather than a language, as it only provides a set of coordination primitives. It relies on
the so-called generative communication paradigm, which decouples communicating
processes both in space and time. Communication is achieved by sharing a common
tuple space, where processes insert, read and withdraw tuples. The data retrieval
mechanism uses pattern-matching to find the required data in the tuple space.

KLAIM, whose syntax1 is presented by Table A.1, enriches Linda primitives with
explicit information about the location where processes and tuples are allocated.

Nets N are finite collections of nodes composed by means of the parallel operator
N1 ‖ N2. It is possible to restrict the scope of a name s by using the operator (νs)N.
In the N1 ‖ (νs)N2 net, the effect of such an operator is to make s invisible within N1.

Nodes s ::ρ C have a unique location name s (i.e., their network address) and an

1During the NAM formal definition process, we used a version of KLAIM enriched with high-level
features, such as assignments, standard control flow constructs and non-blocking retrieval actions, that
simplify the modeling task. Such constructs are directly supported by KLAIM related tools such as, e.g.,
the Stochastic Analyser for Mobility (SAM) tool (http://rap.dsi.unifi.it/SAM/).

128 Appendix A. KLAIM Semantics

Table A.1: KLAIM syntax.

(Nets)

N ::= s ::ρ C
∣∣ N1 ‖ N2

∣∣ (νs)N

(Components)

C ::= P
∣∣ 〈t〉 ∣∣ C1 |C2

(Processes)

P ::= a
∣∣ X

∣∣ A(p1, . . . , pn)∣∣ P1 ;P2
∣∣ P1 |P2

∣∣ P1 +P2∣∣ if (e) then {P1} else {P2}∣∣ while (e) {P}

(Actions)

a ::= in(T)@`
∣∣ read(T)@`

∣∣ out(t)@`∣∣ inp(T)@`
∣∣ readp(T)@`

∣∣ eval(P)@`∣∣ newloc(s)
∣∣ x := e

(Tuples)

t ::= e
∣∣ `

∣∣ P
∣∣ t1, t2

(Templates)

T ::= e
∣∣ `

∣∣ ?x
∣∣ ?l

∣∣ ?X
∣∣ T1,T2

129

allocation environment ρ , and host a set of components C. The allocation environ-
ment provides a name resolution mechanism by mapping location variables l (i.e.,
aliases for addresses), found in processes hosted by the corresponding node, into lo-
cations s. The distinguished location variable self is used by processes to refer to the
address of their current hosting node. Components C are finite plain collections of
processes P and evaluated tuples 〈t〉, which are composed by means of the parallel
operator C1 |C2.

Processes P are the KLAIM active computational units, which can be concurrently
executed either at the same location or at different locations. They are built up from
basic actions a, process variables X , and process calls A(p1, . . . , pn), by means of
sequential composition P1;P2, parallel composition P1 |P2, non-deterministic choice
P1 +P2, conditional choice if (e) then {P1} else {P2}, iteration while (e) {P}, and
(possibly recursive) process definition A(f1, . . . , fm), P, where A denotes a process
identifier, while fi and p j denote formal and actual parameters, respectively. Here-
after, we do not explicitly represent process definitions and assume that they are
available at any location of a net. Notably, e ranges over expressions, which con-
tain basic types (boolean, integer, string, float, etc.) and values x, and are formed by
using standard operators on basic values, and the non-blocking retrieval actions inp
and readp (described in the following). In the remainder of this section, we use the
notation ` to range over location names s and location variables l.

During their execution, processes perform basic actions, such as in(T)@` and
read(T)@`, which represent retrieval actions and allow to withdraw/read data tu-
ples from the tuple space hosted at a (possibly remote) location `. Such actions ex-
ploit templates as patterns to select tuples in shared tuple spaces. Templates are se-
quences of actual and formal fields, where the latter are denoted as ?x, ?l or ?X and
are used to bind variables to values, location names or processes, respectively. Ac-
tions inp(T)@` and readp(T)@` are non-blocking versions of the retrieval actions.
Indeed, if a matching tuple is found, inp and readp act similarly to in and read, and
additionally return the true value. Otherwise, the actions return the false value, and
the executing process does not block. inp(T)@` and readp(T)@` can be used where
either a boolean expression or an action is expected (in the latter case, the returned

130 Appendix A. KLAIM Semantics

value is ignored). Action out(t)@` adds the tuple resulting from the evaluation of t
to the tuple space of the target node identified by `, while action eval(P)@` sends
the process P for execution to the (possibly remote) node identified by `. Both out
and eval are non-blocking actions. Finally, action newloc creates new network nodes,
while action x := e assigns the value of e to x. Differently from all other actions,
these are not provided with an address since they always act locally.

In the following, an example providing further details concerning the commu-
nication between KLAIM nodes, is presented. Let us consider the following KLAIM

net:

s1 ::{self 7→s1} out(foo,5)@s2; P1

‖ s2 ::{self 7→s2} in(foo,?x)@self; P2

Since the process on s2 node is blocked (due to the blocking semantics of the
retrieval action in), the only possible evolution of the net is as follows:

s1 ::{self 7→s1} P1

‖ s2 ::{self 7→s2} (〈foo,5〉 | in(foo,?x)@self; P2)

The out action is performed and, as a result, the 〈foo,5〉 tuple is inserted in the
tuple space of the target node s2. The presence of such a tuple triggers the execution
of the in action:

s1 ::{self 7→s1} P1 ‖ s2 ::{self 7→s2} P2[5/x]

In fact, the (foo,?x) template, which is the argument of the in action, matches the
〈foo,5〉 tuple, thus binding value 5 to the variable x in the continuation process P2.

Bibliography

[1] Rajkumar Buyya, James Broberg, and Andrzej M Goscinski. Cloud computing:
principles and paradigms, volume 87. John Wiley & Sons, 2010.

[2] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya. Cloud-based aug-
mentation for mobile devices: Motivation, taxonomies, and open challenges.
Communications Surveys Tutorials, IEEE, 16(1):337–368, First 2014. doi:

10.1109/SURV.2013.070813.00285.

[3] Mohsen Sharifi, Somayeh Kafaie, and Omid Kashefi. A survey and taxon-
omy of cyber foraging of mobile devices. Communications Surveys Tutori-
als, IEEE, 14(4):1232–1243, Fourth 2012. doi:10.1109/SURV.2011.

111411.00016.

[4] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile
cloud computing: architecture, applications, and approaches. Wireless Com-
munications and Mobile Computing, 13(18):1587–1611, 2013. URL: http:
//dx.doi.org/10.1002/wcm.1203, doi:10.1002/wcm.1203.

[5] Mazliza Othman and Stephen Hailes. Power conservation strategy for mo-
bile computers using load sharing. SIGMOBILE Mob. Comput. Commun.
Rev., 2(1):44–51, January 1998. URL: http://doi.acm.org/10.1145/
584007.584011, doi:10.1145/584007.584011.

[6] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuen-
ning. Saving portable computer battery power through remote process execu-

http://dx.doi.org/10.1109/SURV.2013.070813.00285
http://dx.doi.org/10.1109/SURV.2013.070813.00285
http://dx.doi.org/10.1109/SURV.2011.111411.00016
http://dx.doi.org/10.1109/SURV.2011.111411.00016
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://doi.acm.org/10.1145/584007.584011
http://doi.acm.org/10.1145/584007.584011
http://dx.doi.org/10.1145/584007.584011

132 Bibliography

tion. SIGMOBILE Mob. Comput. Commun. Rev., 2(1):19–26, January 1998.
URL: http://doi.acm.org/10.1145/584007.584008, doi:10.
1145/584007.584008.

[7] Rajesh Krishna Balan, Mahadev Satyanarayanan, So Young Park, and Tadashi
Okoshi. Tactics-based remote execution for mobile computing. In Pro-
ceedings of the 1st International Conference on Mobile Systems, Applica-
tions and Services, MobiSys ’03, pages 273–286, New York, NY, USA, 2003.
ACM. URL: http://doi.acm.org/10.1145/1066116.1066125,
doi:10.1145/1066116.1066125.

[8] Jason Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned remote exe-
cution for pervasive computing. In Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on, pages 61–66, May 2001. doi:

10.1109/HOTOS.2001.990062.

[9] M. Satyanarayanan. Pervasive computing: vision and challenges. Per-
sonal Communications, IEEE, 8(4):10–17, Aug 2001. doi:10.1109/98.

943998.

[10] D. Kovachev and R. Klamma. Beyond the client-server architectures: A survey
of mobile cloud techniques. In Communications in China Workshops (ICCC),
2012 1st IEEE International Conference on, pages 20–25, Aug 2012. doi:

10.1109/ICCCW.2012.6316468.

[11] D. Da Silva. Opportunities for autonomic behavior in mobile
cloud computing. In Proceedings of the 27th Annual ACM Sympo-
sium on Applied Computing, Keynote talk at ICACÕ13. Available at
https://www.usenix.org/conference/icac13/title-tba-0.

[12] Michele Amoretti, Alessandro Grazioli, Valerio Senni, Francesco Tiezzi, and
Francesco Zanichelli. A formalized framework for mobile cloud comput-
ing. Service Oriented Computing and Applications, 9(3-4):229–248, 2015.

http://doi.acm.org/10.1145/584007.584008
http://dx.doi.org/10.1145/584007.584008
http://dx.doi.org/10.1145/584007.584008
http://doi.acm.org/10.1145/1066116.1066125
http://dx.doi.org/10.1145/1066116.1066125
http://dx.doi.org/10.1109/HOTOS.2001.990062
http://dx.doi.org/10.1109/HOTOS.2001.990062
http://dx.doi.org/10.1109/98.943998
http://dx.doi.org/10.1109/98.943998
http://dx.doi.org/10.1109/ICCCW.2012.6316468
http://dx.doi.org/10.1109/ICCCW.2012.6316468

Bibliography 133

URL: http://dx.doi.org/10.1007/s11761-014-0169-3, doi:
10.1007/s11761-014-0169-3.

[13] Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. Mastering Cloud
Computing: Foundations and Applications Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2013.

[14] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–
58, April 2010. URL: http://doi.acm.org/10.1145/1721654.
1721672, doi:10.1145/1721654.1721672.

[15] Mahadev Satyanarayanan, P. Bahl, R Caceres, and N. Davies. The case for vm-
based cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4):14–23,
Oct 2009. doi:10.1109/MPRV.2009.82.

[16] Quang Hieu Vu, Mihai Lupu, and Beng Chin Ooi. Peer-to-peer computing:
Principles and applications. Springer Science & Business Media, 2009.

[17] IBM Corporation. An architectural blueprint for autonomic computing. White
Paper, June 2006.

[18] M. Amoretti, F. Zanichelli, and G. Conte. Qualitative and quantitative modeling
of policy-based autonomic systems, 2011.

[19] Mohammad Reza Nami and Mohsen Sharifi. A survey of autonomic computing
systems. In Intelligent Information Processing III, pages 101–110. Springer,
2007.

[20] Markus C. Huebscher and Julie A. McCann. A survey of autonomic comput-
ing—degrees, models, and applications. ACM Comput. Surv., 40(3):7:1–
7:28, August 2008. URL: http://doi.acm.org/10.1145/1380584.
1380585, doi:10.1145/1380584.1380585.

http://dx.doi.org/10.1007/s11761-014-0169-3
http://dx.doi.org/10.1007/s11761-014-0169-3
http://dx.doi.org/10.1007/s11761-014-0169-3
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/MPRV.2009.82
http://doi.acm.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/1380584.1380585

134 Bibliography

[21] Brian Melcher and Bradley Mitchell. Towards an autonomic framework: Self-
configuring network services and developing autonomic applications. Intel
Technology Journal, 8(4), 2004.

[22] Joseph P. Bigus, Don A. Schlosnagle, Jeff R. Pilgrim, W Nathaniel Mills III,
and Yixin Diao. Able: A toolkit for building multiagent autonomic systems.
IBM Systems Journal, 41(3):350–371, 2002.

[23] Gail Kaiser, Janak Parekh, Philip Gross, and Giuseppe Valetto. Kinesthetics
extreme: An external infrastructure for monitoring distributed legacy systems.
In Autonomic Computing Workshop. 2003. Proceedings of the, pages 22–30.
IEEE, 2003.

[24] Janak Parekh, Gail Kaiser, Philip Gross, and Giuseppe Valetto. Retrofitting
autonomic capabilities onto legacy systems. Cluster Computing, 9(2):141–159,
2006.

[25] Ya-Yunn Su and Jason Flinn. Slingshot: Deploying stateful services in wireless
hotspots. In Proceedings of the 3rd International Conference on Mobile Sys-
tems, Applications, and Services, MobiSys ’05, pages 79–92, New York, NY,
USA, 2005. ACM. URL: http://doi.acm.org/10.1145/1067170.
1067180, doi:10.1145/1067170.1067180.

[26] M.D. Kristensen. Scavenger: Transparent development of efficient cyber for-
aging applications. In Pervasive Computing and Communications (PerCom),
2010 IEEE International Conference on, pages 217–226, March 2010. doi:
10.1109/PERCOM.2010.5466972.

[27] A.F. Murarasu and T. Magedanz. Mobile middleware solution for automatic
reconfiguration of applications. In Information Technology: New Generations,
2009. ITNG ’09. Sixth International Conference on, pages 1049–1055, April
2009. doi:10.1109/ITNG.2009.194.

[28] Jason Flinn, SoYoung Park, and M. Satyanarayanan. Balancing performance,
energy, and quality in pervasive computing. In Distributed Computing Systems,

http://doi.acm.org/10.1145/1067170.1067180
http://doi.acm.org/10.1145/1067170.1067180
http://dx.doi.org/10.1145/1067170.1067180
http://dx.doi.org/10.1109/PERCOM.2010.5466972
http://dx.doi.org/10.1109/PERCOM.2010.5466972
http://dx.doi.org/10.1109/ITNG.2009.194

Bibliography 135

2002. Proceedings. 22nd International Conference on, pages 217–226, 2002.
doi:10.1109/ICDCS.2002.1022259.

[29] Rajesh Krishna Balan, Darren Gergle, Mahadev Satyanarayanan, and James
Herbsleb. Simplifying cyber foraging for mobile devices. In Proceedings of
the 5th international conference on Mobile systems, applications and services,
pages 272–285. ACM, 2007.

[30] Ermyas Abebe and Caspar Ryan. Adaptive application offload-
ing using distributed abstract class graphs in mobile environments.
Journal of Systems and Software, 85(12):2755–2769, 2012. URL:
http://www.sciencedirect.com/science/article/pii/

S0164121212001653, doi:http://dx.doi.org/10.1016/j.

jss.2012.05.091.

[31] Verdi March, Yan Gu, Erwin Leonardi, George Goh, Markus Kirchberg, and
Bu Sung Lee. µcloud: Towards a new paradigm of rich mobile applica-
tions. Procedia Computer Science, 5:618 – 624, 2011. The 2nd International
Conference on Ambient Systems, Networks and Technologies (ANT-2011) /
The 8th International Conference on Mobile Web Information Systems (Mo-
biWIS 2011). URL: http://www.sciencedirect.com/science/
article/pii/S1877050911004054, doi:http://dx.doi.org/

10.1016/j.procs.2011.07.080.

[32] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: Making smartphones last
longer with code offload. In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, pages 49–62, New
York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/
1814433.1814441, doi:10.1145/1814433.1814441.

[33] Cong Shi, Vasileios Lakafosis, Mostafa H. Ammar, and Ellen W. Zegura.
Serendipity: Enabling remote computing among intermittently connected mo-
bile devices. In Proceedings of the Thirteenth ACM International Symposium

http://dx.doi.org/10.1109/ICDCS.2002.1022259
http://www.sciencedirect.com/science/article/pii/S0164121212001653
http://www.sciencedirect.com/science/article/pii/S0164121212001653
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2012.05.091
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2012.05.091
http://www.sciencedirect.com/science/article/pii/S1877050911004054
http://www.sciencedirect.com/science/article/pii/S1877050911004054
http://dx.doi.org/http://dx.doi.org/10.1016/j.procs.2011.07.080
http://dx.doi.org/http://dx.doi.org/10.1016/j.procs.2011.07.080
http://doi.acm.org/10.1145/1814433.1814441
http://doi.acm.org/10.1145/1814433.1814441
http://dx.doi.org/10.1145/1814433.1814441

136 Bibliography

on Mobile Ad Hoc Networking and Computing, MobiHoc ’12, pages 145–154,
New York, NY, USA, 2012. ACM. URL: http://doi.acm.org/10.
1145/2248371.2248394, doi:10.1145/2248371.2248394.

[34] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. Clonecloud: elastic execution between mobile device and cloud. In Pro-
ceedings of the sixth conference on Computer systems, pages 301–314. ACM,
2011.

[35] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.
Thinkair: Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In INFOCOM, 2012 Proceedings IEEE, pages 945–
953. IEEE, 2012.

[36] Gonzalo Huerta-Canepa and Dongman Lee. An adaptable application offload-
ing scheme based on application behavior. In Advanced Information Network-
ing and Applications-Workshops, 2008. AINAW 2008. 22nd International Con-
ference on, pages 387–392. IEEE, 2008.

[37] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile
cloud computing: architecture, applications, and approaches. Wireless Com-
munications and Mobile Computing, 13(18):1587–1611, 2013. URL: http:
//dx.doi.org/10.1002/wcm.1203, doi:10.1002/wcm.1203.

[38] M. Amoretti, M. Picone, and F. Zanichelli. Global ambient intelligence: An
autonomic approach. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International Conference on, pages 842–
847, March 2012. doi:10.1109/PerComW.2012.6197629.

[39] A. Grazioli, M. Picone, F. Zanichelli, and M. Amoretti. Code migration in mo-
bile clouds with the nam4j middleware. In Mobile Data Management (MDM),
2013 IEEE 14th International Conference on, volume 2, pages 194–199, June
2013. doi:10.1109/MDM.2013.93.

http://doi.acm.org/10.1145/2248371.2248394
http://doi.acm.org/10.1145/2248371.2248394
http://dx.doi.org/10.1145/2248371.2248394
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/PerComW.2012.6197629
http://dx.doi.org/10.1109/MDM.2013.93

Bibliography 137

[40] Michele Amoretti, Alessandro Grazioli, Francesco Zanichelli, Valerio Senni,
and Francesco Tiezzi. Towards a formal approach to mobile cloud comput-
ing. In Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd
Euromicro International Conference on, pages 743–750. IEEE, 2014.

[41] M. Amoretti, A. Grazioli, V. Senni, F. Tiezzi, and F. Zanichelli. A formalized
framework for mobile cloud computing. Service Oriented Computing and Ap-
plications, 2014. doi:10.1007/s11761-014-0169-3.

[42] R. De Nicola, G.L. Ferrari, and R. Pugliese. Klaim: a kernel language for
agents interaction and mobility. Software Engineering, IEEE Transactions on,
24(5):315–330, May 1998. doi:10.1109/32.685256.

[43] Oana Andrei and Hélene Kirchner. A higher-order graph calculus for autonomic
computing. In Graph theory, computational intelligence and thought, pages 15–
26. Springer, 2009.

[44] Mirko Viroli, Danilo Pianini, Sara Montagna, and Graeme Stevenson. Pervasive
ecosystems: a coordination model based on semantic chemistry. In Proceedings
of the 27th Annual ACM Symposium on Applied Computing, pages 295–302.
ACM, 2012.

[45] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A
formal approach to autonomic systems programming: The scel language. ACM
Trans. Auton. Adapt. Syst., 9(2):7:1–7:29, July 2014. URL: http://doi.
acm.org/10.1145/2619998, doi:10.1145/2619998.

[46] Edmond Gjondrekaj, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi.
Modeling adaptation with a tuple-based coordination language. In Proceedings
of the 27th Annual ACM Symposium on Applied Computing, pages 1522–1527.
ACM, 2012.

[47] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Pearson Education, 1994.

http://dx.doi.org/10.1007/s11761-014-0169-3
http://dx.doi.org/10.1109/32.685256
http://doi.acm.org/10.1145/2619998
http://doi.acm.org/10.1145/2619998
http://dx.doi.org/10.1145/2619998

138 Bibliography

[48] M. Amoretti, A. Grazioli, and F. Zanichelli. An autonomic approach for
p2p/cloud collaborative environments. Peer-to-Peer Networking and Ap-
plications, pages 1–16, 2015. URL: http://dx.doi.org/10.1007/
s12083-015-0367-6, doi:10.1007/s12083-015-0367-6.

[49] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet appli-
cations. SIGCOMM Comput. Commun. Rev., 31(4):149–160, August 2001.
URL: http://doi.acm.org/10.1145/964723.383071, doi:10.
1145/964723.383071.

[50] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer informa-
tion system based on the xor metric. In Peter Druschel, Frans Kaashoek,
and Antony Rowstron, editors, Peer-to-Peer Systems, volume 2429 of Lec-
ture Notes in Computer Science, pages 53–65. Springer Berlin Heidelberg,
2002. URL: http://dx.doi.org/10.1007/3-540-45748-8_5,
doi:10.1007/3-540-45748-8_5.

[51] Xinlei Wang, Wei Cheng, P. Mohapatra, and T. Abdelzaher. Enabling reputation
and trust in privacy-preserving mobile sensing. Mobile Computing, IEEE Trans-
actions on, 13(12):2777–2790, Dec 2014. doi:10.1109/TMC.2013.150.

[52] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many ob-
ject pattern match problem. Artificial Intelligence, 19(1):17 – 37, 1982.
URL: http://www.sciencedirect.com/science/article/

pii/0004370282900200, doi:http://dx.doi.org/10.1016/

0004-3702(82)90020-0.

[53] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile
users: Can offloading computation save energy? Computer, 43(4):51–56,
2010. doi:http://doi.ieeecomputersociety.org/10.1109/

MC.2010.98.

http://dx.doi.org/10.1007/s12083-015-0367-6
http://dx.doi.org/10.1007/s12083-015-0367-6
http://dx.doi.org/10.1007/s12083-015-0367-6
http://doi.acm.org/10.1145/964723.383071
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1109/TMC.2013.150
http://www.sciencedirect.com/science/article/pii/0004370282900200
http://www.sciencedirect.com/science/article/pii/0004370282900200
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2010.98
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2010.98

Bibliography 139

[54] Huaming Wu, Qiushi Wang, and Katinka Wolter. Tradeoff between perfor-
mance improvement and energy saving in mobile cloud offloading systems. In
Communications Workshops (ICC), 2013 IEEE International Conference on,
pages 728–732. IEEE, 2013.

[55] M. Amoretti, A. Grazioli, and F. Zanichelli. A modeling and simulation
framework for mobile cloud computing. Simulation Modelling Practice and
Theory, 2015. URL: http://www.sciencedirect.com/science/
article/pii/S1569190X15000799, doi:http://dx.doi.org/

10.1016/j.simpat.2015.05.004.

[56] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S Trivedi. Queue-
ing networks and Markov chains: modeling and performance evaluation with
computer science applications. John Wiley & Sons, 2006.

[57] Ioannis Moschakis, Helen D Karatza, et al. Performance and cost evaluation of
gang scheduling in a cloud computing system with job migrations and starvation
handling. In Computers and Communications (ISCC), 2011 IEEE Symposium
on, pages 418–423. IEEE, 2011.

[58] Michele Amoretti, Marco Picone, Francesco Zanichelli, and Giorgio Ferrari.
Simulating mobile and distributed systems with deus and ns-3. In High Perfor-
mance Computing and Simulation (HPCS), 2013 International Conference on,
pages 107–114. IEEE, 2013.

[59] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-
phone. In USENIX annual technical conference, volume 14, 2010.

[60] Andrew Rice and Simon Hay. Decomposing power measurements for mobile
devices. In Pervasive Computing and Communications (PerCom), 2010 IEEE
International Conference on, pages 70–78. IEEE, 2010.

[61] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung
Cha. Appscope: Application energy metering framework for android smart-

http://www.sciencedirect.com/science/article/pii/S1569190X15000799
http://www.sciencedirect.com/science/article/pii/S1569190X15000799
http://dx.doi.org/http://dx.doi.org/10.1016/j.simpat.2015.05.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.simpat.2015.05.004

140 Bibliography

phone using kernel activity monitoring. In USENIX Annual Technical Confer-
ence, pages 387–400, 2012.

[62] Luca Ardito, Giuseppe Procaccianti, Marco Torchiano, and Giuseppe Migliore.
Profiling power consumption on mobile devices. In Smart Grids, Green Com-
munications and IT Energy-aware Technologies (ENERGY), 2013 3rd Interna-
tional Conference on, pages 101–106. IARIA, 2013.

[63] Luis Corral, Anton B Georgiev, Alberto Sillitti, and Giancarlo Succi. A method
for characterizing energy consumption in android smartphones. In Green and
Sustainable Software (GREENS), 2013 2nd International Workshop on, pages
38–45. IEEE, 2013.

[64] Xiaohan Ma, Zhigang Deng, Mian Dong, and Lin Zhong. Characterizing the
performance and power consumption of 3d mobile games. Computer, 46(4):76–
82, 2013.

[65] Michele Amoretti. A survey of peer-to-peer overlay schemes: effectiveness,
efficiency and security. Recent Patents on Computer Science, 2(3):195–213,
2009.

[66] A. Montresor and L. Abeni. Cloudy weather for p2p, with a chance of gossip. In
Peer-to-Peer Computing (P2P), 2011 IEEE International Conference on, pages
250–259, Aug 2011. doi:10.1109/P2P.2011.6038743.

[67] Raymond Sweha, Vatche Ishakian, and Azer Bestavros. Angelcast: Cloud-
based peer-assisted live streaming using optimized multi-tree construction. In
Proceedings of the 3rd Multimedia Systems Conference, MMSys ’12, pages
191–202, New York, NY, USA, 2012. ACM. URL: http://doi.acm.org/
10.1145/2155555.2155587, doi:10.1145/2155555.2155587.

[68] James S Plank. T1: erasure codes for storage applications. In Proc. of the 4th
USENIX Conference on File and Storage Technologies, pages 1–74, 2005.

[69] Rodrigo Rodrigues and Barbara Liskov. High availability in dhts: Erasure cod-
ing vs. replication. In Peer-to-Peer Systems IV, pages 226–239. Springer, 2005.

http://dx.doi.org/10.1109/P2P.2011.6038743
http://doi.acm.org/10.1145/2155555.2155587
http://doi.acm.org/10.1145/2155555.2155587
http://dx.doi.org/10.1145/2155555.2155587

Bibliography 141

[70] Marco Martalò, Michele Amoretti, Marco Picone, and Gianluigi Ferrari. Spo-
radic decentralized resource maintenance for p2p distributed storage networks.
Journal of Parallel and Distributed Computing, 74(2):2029–2038, 2014.

[71] Hanna Kavalionak, Emanuele Carlini, Laura Ricci, Alberto Montresor, and
Massimo Coppola. Integrating peer-to-peer and cloud computing for massively
multiuser online games. Peer-to-Peer Networking and Applications, 8(2):301–
319, 2013.

[72] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Mean-field theory
for scale-free random networks. Physica A: Statistical Mechanics and its Ap-
plications, 272(1):173–187, 1999.

[73] David Gelernter. Generative communication in linda. ACM Transactions on
Programming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

Acknowledgements

As I am finally writing the final page of this thesis, I remember the most important
facts that occurred during the last three years. It has been a great experience which
allowed me to learn a lot and meet amazing people who influenced the way I see
things, and opened my mind about the research and the progress of humanity.

First of all, I want to thank my supervisor, Prof. Francesco Zanichelli and Prof.
Michele Amoretti, for supporting me during this long experience by providing sug-
gestions, interesting ideas, and allowing me to go to a couple of good conferences. I
hope we will continue to collaborate in the future, write more great papers and imple-
ment interesting projects. Also, I want to thank Dr. Marco Picone, Dr. Simone Cirani
and Prof. Gianluigi Ferrari for our collaborations and the work opportunities they
found for me. I also want to thank everybody who helped me with my research ac-
tivity: Luca Barili, Giada Cilloni, Andrea Giannetti, Federico Magliani, Marco Mag-
nani, Manuel Sequino. A big thanks also goes to the guys at DNAPhone S.r.l. and
Your App For S.r.l. for the working opportunities they gave me. Thanks to my PhD
colleagues for the suggestions and chats we had: Laura Belli, Andrea Gorrieri, Fabio
Oleari, Antonio Prioletti.

Of course, a huge thanks goes to my whole family, but most of all, to my parents
and grandparents. I know that supporting the decision of pursuing a PhD was not
easy, but I am really grateful for having let me do it (with only a quite acceptable
amount of complaints). A big thanks goes to Sónia, for everything she gives me
everyday, to Kevin, for his suggestions as an ex-PhD student, to Marta and Elsa for
the laughs, and to Huaming Wu and Marie-Paule Uwase for our interesting chats

144 Bibliography

about how the research is in different countries. Finally, I want to thank my colleague
Giacomo Brambilla, who turned out to be a priceless friend and gave me countless
ideas, suggestions and laughs, both during the work and break times. Who would say
that I would meet a classic point & click adventure games fan in a research lab?

Thanks everyone!
Alessandro

	Introduction
	Background
	Cloud Computing
	Cloudlets
	Cloud benefits
	Cloud challenges

	Peer-to-peer Computing
	Peer-to-peer benefits
	Peer-to-peer challenges

	Autonomic Computing
	Autonomic computing benefits
	Autonomic computing challenges

	Related Work
	Autonomic Computing approaches
	Mobile Cloud Computing approaches
	Design-time partitioning
	Runtime partitioning
	Hybrid partitioning

	Networked Autonomic Machine
	NAM-based model
	NAM computational entities

	Mobility actions
	NAM formalization
	Control tuples
	NAM control
	Functional module control
	Macros

	NAM4J Middleware
	NAM4 architecture
	Mobility support for MCC applications
	Context Bus
	DARTSense
	Distributed reputation management

	Rule engine

	Analysis and evaluation
	MCC quantitative analysis
	P2P/Cloud integration
	Urban participatory sensing

	Conclusions
	Further work

	Klaim Semantics
	Bibliography
	Acknowledgements

