
Università degli Studi di Parma

Dipartimento di Ingegneria Civile,

dell’Ambiente, del Territorio e Architettura

Dottorato di Ricerca in Ingegneria Civile (XXVIII ciclo)

Curriculum: Protezione Idraulica del Territorio

Susanna Dazzi

Numerical modelling

of unsteady mixed flow

Dissertazione per il conseguimento del titolo di Dottore di Ricerca

Tutor: Dott. Andrea Maranzoni

Co-tutor: Prof. Paolo Mignosa

Coordinatore del Dottorato: Prof. Gianfranco Forlani

Parma, Gennaio 2016





Abstract

This thesis concerns mixed flows (which are characterized by the simultaneous

occurrence of free-surface and pressurized flow in sewers, tunnels, culverts or under

bridges), and contributes to the improvement of the existing numerical tools for

modelling these phenomena. The classic Preissmann slot approach is selected

due to its simplicity and capability of predicting results comparable to those of a

more recent and complex two-equation model, as shown here with reference to

a laboratory test case. In order to enhance the computational efficiency, a local

time stepping strategy is implemented in a shock-capturing Godunov-type finite

volume numerical scheme for the integration of the de Saint-Venant equations. The

results of different numerical tests show that local time stepping reduces run time

significantly (between −29% and −85% CPU time for the test cases considered)

compared to the conventional global time stepping, especially when only a small

region of the flow field is surcharged, while solution accuracy and mass conservation

are not impaired. The second part of this thesis is devoted to the modelling of

the hydraulic effects of potentially pressurized structures, such as bridges and

culverts, inserted in open channel domains. To this aim, a two-dimensional mixed

flow model is developed first. The classic conservative formulation of the 2D

shallow water equations for free-surface flow is adapted by assuming that two

fictitious vertical slots, normally intersecting, are added on the ceiling of each
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integration element. Numerical results show that this schematization is suitable

for the prediction of 2D flooding phenomena in which the pressurization of crossing

structures can be expected. Given that the Preissmann model does not allow for

the possibility of bridge overtopping, a one-dimensional model is also presented in

this thesis to handle this particular condition. The flows below and above the deck

are considered as parallel, and linked to the upstream and downstream reaches of

the channel by introducing suitable internal boundary conditions. The comparison

with experimental data and with the results of HEC-RAS simulations shows that

the proposed model can be a useful and effective tool for predicting overtopping

and backwater effects induced by the presence of bridges and culverts.
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Introduction

Mixed flows are characterized by the simultaneous presence of free-surface and

pressurized flow, and potentially occur in sewers, tunnels, and other pipe systems.

This is the case of storm water systems, where pressurization may occur when

inflow due to intense rainfalls exceeds the pipe capacity. A correct prediction of

surcharging events is of great importance for the design and maintenance of these

hydraulic structures (Politano et al., 2007), given that damages and operational

problems have been reported in some cases (Hamam and McCorquodale, 1982;

Guo and Song, 1990, 1991; Li and McCorquodale, 1999; Zhou et al., 2002). Other

notable situations involving mixed flows are pipe filling in water mains, flood

propagation in culverted watercourses or under bridges, and transients induced

by abrupt operations on hydraulic machineries or gates in pipe networks or in

waste and supply pipes of hydroelectric plants.

The numerical modelling of mixed flows is not trivial. First, the two flow

regimes are usually modelled by means of two different sets of governing equations

(de Saint-Venant equations for free-surface flow, and water hammer equations

for pressurized flow). Second, the celerity at which waves propagate inside each

region of the flow field assumes values which span from a few meters per second

(for free-surface flow) up to hundreds of meters per second (for pressurized flow).

This thesis aims at contributing to the improvement of the existing numerical
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Introduction

tools for mixed flows. Particular attention is devoted to the integration of

potentially pressurized hydraulic structures in open channel domains, but also to

the improvement in model efficiency.

In fact, among the problems related to mixed flow modelling, one which has

never been given full consideration in the literature is the lack of computational

efficiency that a mixed flow model presents if coupled with an explicit numerical

scheme. This is due to the fact that, if the numerical simulations are performed

with realistic pressure wave speeds, a very small computational time step must be

adopted to fulfil the Courant-Friedrichs-Lewy (CFL) stability condition, while the

allowable time step in the free-surface part of the flow field can be some orders of

magnitude greater than the one calculated in the pressurized region. Hence, the

application of a local time stepping strategy to mixed flow modelling is tested in

this work. The performances of the local and global time stepping schemes are

compared in terms of computational efficiency and solution accuracy.

Although mixed flows mainly occur in closed conduits, for which a one-

dimensional (1D) approximation is suitable, the opportunity of coupling free-

surface and pressurized flow can also be useful for modelling two-dimensional

(2D) flooding phenomena in which the pressurization of bridges, culverts, and

other crossing structures can be expected. In this thesis, the classic conservative

formulation of the 2D shallow water equations for free-surface flows is adapted to

mixed flows by assuming that two fictitious vertical slots, aligned along the two

Cartesian plane directions and normally intersecting, are added on the ceiling of

each integration element. Accordingly, flow regime transitions can be handled in

a natural and straightforward way by using the same set of governing equations.

After the validation, performed by simulating idealized tests with reference solution,

the model is used to simulate the partial pressurization of an arch bridge as an

example of real-field application.

Unfortunately, the proposed approach does not allow for the possibility of
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bridge overtopping, not even if the slot height is limited and the current cell

dimensions are restored above the slot. Indeed, the assumption of a uniform flow

velocity over the cell does not hold in this case, since the pressure flow under the

bridge or culvert may be totally separate from the flow over it. To overcome this

problem, the possibility of integrating the shallow water equations with internal

boundary conditions is considered in this work. However, only the case of 1D flow

is tested at the moment. Numerical simulations of pressurization and overtopping

processes through bridges and culverts are performed in order to test the model’s

reliability.

The thesis is structured as follows. Chapter 1 briefly reviews the current

knowledge about mixed flows and presents the validation and comparison of

two existing 1D mixed flow models. One of these models is also upgraded with

the introduction of a local time stepping strategy, presented in Chapter 2. In

Chapter 3 the 2D mixed flow model is presented and validated. Finally, Chapter 4

proposes a 1D model with internal boundary conditions that allow for bridge or

culvert pressurization and overtopping. The main results and future prospects

are summarized in the Conclusions.
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Chapter 1

1D numerical modelling of

mixed flows in pipes

1.1 Introduction

Over the last few decades, several researchers have shown interest in the

analysis of mixed flows, from both experimental and numerical perspectives.

Section 1.2 is dedicated to a brief literature review about mixed flow numerical

modelling. Two different 1D models are then described in this chapter. Both derive

from previous works, but their effectiveness in simulating a complex mixed flow

phenomenon is here compared on the basis of a common data set. In particular,

the benchmark test case presented by Aureli et al. (2015) is chosen for the models’

validation. Both models are based on finite volume numerical schemes (e.g. Toro,

1999; LeVeque, 2002), often employed in the literature, in both open channel (e.g.

Toro, 2001) and water hammer problems (e.g. Guinot, 2000; Hwang and Chung,

2002; Zhao and Ghidaoui, 2004), due to their shock-capturing property. The
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application of Godunov-type methods is usual also for the simulation of mixed

flows in storm sewers (e.g. Vasconcelos et al., 2006; León et al., 2009).

This chapter is derived in part from Aureli et al. (2015).

1.2 Literature Review

Different configurations may characterize the flow regime transition. In partic-

ular, Cardle et al. (1989) defined “negative” or “retreating” interface the transition

wave that moves towards the pressurized region; in this case, the pipe is undergoing

depressurization. On the other hand, if the transition wave moves towards the

free-surface region, it is defined as a “positive” or “advancing” interface (the pipe

is pressurizing). Moreover, pressurization may be either gradual or occur in the

form of a pipe-filling bore (Wright et al., 2008); these pressurization patterns are

also defined as “smooth” or “abrupt” (Ferreri et al., 2014a). Numerical schemes

must be able to accurately resolve all types of discontinuities.

The numerical modelling of mixed flows is particularly challenging since the

two flow regimes, although governed by the same basic physical principles (mass

and momentum conservation), are traditionally described by two different sets of

governing equations, namely the de Saint-Venant equations for open channel flow

and water-hammer equations for pressurized flow. Hence, in theory, the two sets

of equations must be somehow linked at flow regime interfaces.

Bousso et al. (2013) presented a critical literature review about this topic,

where the models currently available are classified on the basis of the number

of governing equations into single- and two-equation models. The former class

includes methods that extend the effectiveness of the de Saint-Venant equations

to the case of pressurized flow, while the latter comprises models that adopt open

channel flow equations and pressurized flow equations in different portions of the

domain and link them at the transition points.
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1.2. Literature Review

The most widely used method that belongs to the category of single-equation

models is the classic Preissmann slot (PS) approach, originally proposed by Cunge

and Wegner (1964) according to a Preissmann suggestion, and later widely used

in the literature (e.g. García-Navarro et al., 1994; Capart et al., 1997; Trajkovic

et al., 1999; Kerger et al., 2011a) and in commercial software packages (e.g. DHI,

2002; HEC, 2010). This approach hypothesizes the presence of a fictitious narrow

slot above the crown of the conduit. Thanks to this artifice, a surcharged flow is

simulated as an open channel flow with the water surface located into the slot,

and flow pressurization can be modeled on the basis of the open channel flow

equations. In the case of surcharged flow, the slot induces an additional pressure

head and increases the storage capacity of the closed structure, allowing both the

fluid compressibility and the pipe deformability to be taken into account, albeit

approximately. The PS model is described in detail in Section 1.3.

The main shortcoming of this method lies in its inability to handle sub-

atmospheric pressures. This problem was addressed by Kerger et al. (2011a),

through the adoption of a “negative” slot, i.e. the slot is exteded below the pipe

crown when negative pressures need to be simulated. Moreover, the model is

unable to handle air-water interactions and air pocket entrapment, thus it can

only be used to perform one-phase simulations and is unsuitable if ventilated

conditions are not assured and air pressurization effects cannot be neglected.

However, in spite of its limitations, the Preissmann slot model is widely accepted

for unsteady mixed flow modelling due to its overall intrinsic simplicity, and is

often assumed as a reference model to assess the predicting capabilities of new

mixed flow solvers (e.g. Vasconcelos and Wright, 2007).

Another model belonging to this class is the Two-component Pressure Approach

(TPA) by Vasconcelos et al. (2006), which decouples hydrostatic pressure from

surcharged pressure when the pipe is full. The fluid is assumed incompressible,

but the pipe is allowed to expand or shrink under pressurized conditions; in
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this way, sub-atmospheric pressures can be handled automatically, provided that

ventilation conditions are specified. The original model was also modified to take

into account the influence of the free-gas content on the estimate of acoustic wave

speed (Vasconcelos and Marwell, 2011). Moreover, subsequent developments of the

model include the entrapment of a single air pocket during transients (Vasconcelos

and Wright, 2009; Trindade and Vasconcelos, 2013; Vasconcelos et al., 2015).

Both PS and TPA models, coupled with shock-capturing schemes, suffer from

spurious post-shock oscillations which arise at pipe-filling bore fronts, due to

the sudden jump in wave celerity. The stability of the numerical simulation

may be compromised. The origin of this behaviour was analyzed by Vasconcelos

et al. (2009), and different strategies were proposed to overcome this limitation,

including numerical filtering and using a hybrid flux scheme. Other authors

assume low pressure wave celerity values (e.g. Capart et al., 1997; Trajkovic

et al., 1999), or gradual transitions between the pipe and the slot (León et al.,

2009). More recently, Malekpour and Karney (2015) further investigated the

origin of the numerical oscillations for the PS approach, and proposed a strategy

to suppress them by enhancing the numerical viscosity in the vicinity of the flow

regime transition.

Pressurized flow can also be treated without the approximations introduced

for single-equation models, for example by employing shock-fitting techniques.

Wiggert (1972) solved the free-surface flow by applying the Method of Charac-

teristics (MOC), while treating the pressurized flow as plug flow; moreover, the

two regimes were connected by means of mass and momentum equations, and the

interface position was explicitely tracked. The model was validated by comparison

with laboratory data and applied to simulate flow in a tail-race tunnel. Song

et al. (1983) extended Wiggert’s model, using the MOC for both flow regimes and

making a distinction between the treatment of negative and positive surge fronts,

and applied it for the simulation of a storm sewer system (Guo and Song, 1990).
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1.2. Literature Review

Other notable works on interface tracking models include those of Fuamba (2002)

and Politano et al. (2007). In particular, the latter introduced a special treatment

to model gradual regime transitions, which are otherwise poorly described by

shock-fitting models. All these models do not consider the air phase and become

complex when several interfaces need to be tracked.

Noto and Tucciarelli (2001) introduced a methodology to handle the transition

between free-surface and pressurized flows in the DORA solver. This model

neglects the inertial terms in the momentum equation, and is based on the

decoupling of the solution into kinematic and diffusive components.

The rigid column theory can also be used to model mixed flow pressure

transients (Li and McCorquodale, 1999). In this case, the entrapment and motion

of a single air pocket undergoing compression and expansion can be taken into

account.

Finally, Bourdarias and Gerbi (2007) recently introduced a novel dual model,

which employs the finite volume method to solve the mass and momentum

equations, written in conservative form, for both flow regimes. Due to its shock-

capturing properties, the model automatically detects the wavefront position. A

detailed description of this approach is presented in Section 1.4. A similar model

was presented in León et al. (2010), where the entrapment and release of air

pockets was also considered.

Numerical models are usually validated by comparison with reference solutions

in order to assess their predictive capabilities. In the context of mixed flows,

analytical solutions are available only for some simple theoretical test cases

(see, for example, the exact solutions of the Riemann problem presented by

Kerger et al., 2011b for the PS approach). Although valuable, these tests concern

idealized situations characterized by frictionless horizontal conduits and elementary

boundary conditions. The simulation of experimental cases represents a more

realistic test. Laboratory studies of mixed flows have been conducted since the

9



Chapter 1. 1D numerical modelling of mixed flows in pipes

early 1960s to provide data for the validation of numerical models (Wiggert, 1972;

Trajkovic et al., 1999; Vasconcelos and Wright, 2005; Erpicum et al., 2009), as

well as to improve the understanding of the physics of the transition phenomenon

(e.g. Cardle et al., 1989; Ferreri et al., 2014b). Field data are particularly valuable

for validation purposes but unfortunately they are seldom available. Some data

concerning real events are reported in Guo and Song (1991), and in Trindade and

Vasconcelos (2013).

The laboratory study of Wiggert (1972) is the basis of a benchmark test

case that is still widely used in the literature. Experiments were performed in a

rectangular flume whose central portion was provided with a roof in order to create

a tunnel, and the opening of an upstream gate induced a transient pressurized flow

in the culvert. Other authors equipped their laboratory devices with upstream

and downstream sluice gates or weirs in order to generate hydraulic transients in

circular pipes (e.g. Cardle et al., 1989; Li and McCorquodale, 1999; Capart et al.,

1997; Trajkovic et al., 1999). The flow condition most frequently reproduced is

generated by the sudden closure of a downstream gate (usually starting from

steady conditions), which triggers a pipe filling bore; interface reversals were

observed after the subsequent gate re-opening. Transients were also created by

rapidly opening the downstream gate starting from pressurized conditions in the

pipe (Cardle et al., 1989). In this case a negative interface appears. Other sets

of experiments involve a rapid increase in the inflow discharge (Capart et al.,

1997). Typically, pressure time series are acquired at instrumented sections while

velocities are measured in few experimental studies only (e.g. Vasconcelos and

Wright, 2005).

Reference test cases are generally a simplification of actual phenomena oc-

curring in closed conduits, such as pump failures or start-ups and pipe filling

due to intense rainfalls. Nevertheless, they are often considerably affected by

the conditions imposed at the boundaries. In the Wiggert (1972) test case, for
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1.2. Literature Review

example, depth measurements in the upstream and downstream reservoirs must

be assumed as boundary conditions in numerical simulations. In other cases,

gate manoeuvres must be somehow simulated (e.g. Trajkovic et al., 1999). The

specification of correct information at the boundaries (such as inflow or outflow

hydrographs, fixed-level reservoirs, and so on) is obviously crucial for accurate

modelling of flow characteristics. A laboratory study which does not involve

boundary conditions was presented by Aureli et al. (2015). The experimental

set-up consisted of a V-shaped Plexiglas conduit whose upstream and downstream

branches were characterized by positive and adverse slopes, respectively. A series

of transitions from free-surface to pressurized flow and vice versa was observed in

the device as a consequence of the water release caused by the sudden opening of

a sluice gate placed along the upstream branch. In this way, mixed flow could be

induced without imposing specific conditions at the pipe ends. This test case is

used as a benchmark for model validation in this work.

A final brief remark must be dedicated to the fact that, in the experimental

test case of Aureli et al. (2015), air inflow and outflow were allowed at the pipe

ends in order to avoid entrapment of air pockets and air pressurization. The

literature review confirms that many factors have a significant influence on the

amplitude of the transient pressure pulses, first of all air entrapment (Cardle et al.,

1989). In fact, the effect of the air phase cannot be neglected in rapidly filling

tunnels unless adequate venting conditions are provided (Vasconcelos and Wright,

2005), and remarkable pressure oscillations may arise (Zhou et al., 2002). In many

experimental works (e.g. Trajkovic et al., 1999; Vasconcelos et al., 2006) air–water

interactions were not the subject of the investigation, and the interference of

the air phase was then limited by installing suitable vents. Conversely, other

works focused on the influence of air pocket entrapment and poor ventilation on

hydraulic transients in rapidly filling pipes (e.g. Hamam and McCorquodale, 1982;

Li and McCorquodale, 1999; Vasconcelos and Wright, 2009; Chosie et al., 2014);

11



Chapter 1. 1D numerical modelling of mixed flows in pipes

the related experimental data were used for the validation of numerical models

able to simulate the interaction between air and water (e.g. Zhou et al., 2002;

Kerger et al., 2012; Trindade and Vasconcelos, 2013). In this work, however, only

single-phase models are considered.

1.3 Preissmann slot model

1.3.1 The de Saint-Venant equations

Unsteady open channel flows are traditionally described by mass and momen-

tum conservation laws, under the following assumptions (Cunge et al., 1980):

• the fluid is incompressible;

• the velocity is uniform over the cross-section and the water level across the

section is horizontal (one-dimensional flow);

• the pressure distribution is hydrostatic (small streamline curvatures and

negligible vertical accelerations);

• the channel bed slope is small;

• friction can be accounted for through steady-state resistance laws;

• the effect of viscosity and surface tension is negligible.

In vector conservative form the governing equations may be written as (e.g. Cunge

et al., 1980):
∂U

∂t
+

∂F

∂x
= S (1.1)

where x is the distance along the channel (positive downstream), t is time, U,

F and S are the vectors of conserved variables, of fluxes and of source terms

12



1.3. Preissmann slot model

respectively:

U =





A

Q



, F =





Q

Q2

A
+ gI1



, S =





0

gA(S0 − Sf ) + gI2



. (1.2)

In Eq. (1.2) A is the flow area, Q is the flow discharge, g is the gravitational

acceleration, I1 is the hydrostatic pressure force term, defined as:

I1 =

∫ h(x)

0

(h(x)− η)σ(x, η) dη (1.3)

where h represents the water depth, and σ(x, η) is the cross-sectional width at

elevation η above the bottom. Moreover, S0 = −dzb/dx is the bottom slope (zb

is the bottom elevation), and Sf is the friction slope, which may be evaluated as:

Sf = n2
m

u|u|

R
4/3
h

(1.4)

where nm is Manning’s roughness coefficient, u is the cross-sectional average

velocity, and Rh is the hydraulic radius. Finally, the term I2 takes into account

the channel width variation along x (which is null for prismatic channels), and is

defined as:

I2 =

∫ h(x)

0

(h(x)− η)
∂σ(x, η)

∂x
dη. (1.5)

This term is neglected in the following.

1.3.2 Extension to pressurized flows

Equation (1.1), coupled with statements (1.2), is used for the simulation of

free-surface flows not only in rivers and channels, but also in sewers and other

conduit systems as long as the water depth is not expected to reach the pipe

crown. When the flow becomes pressurized, the de Saint-Venant equations can
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Chapter 1. 1D numerical modelling of mixed flows in pipes

still be employed if the Preissmann slot (PS) approach is adopted (Cunge and

Wegner, 1964). The cross-sectional geometry is modified through the introduction

of a fictitious narrow vertical slot above the top of the closed conduit (Fig. 1.1).

In pressurized conditions, the water depth exceeds the pipe crown and represents

the pressure head with reference to the bottom. Provided that small slot widths

are chosen, the water volume stored in the slot is negligible, and the mass balance

is not significantly affected (Cunge et al., 1980).

For a circular pipe of diameter D, the geometrical relations for the new

composite cross-section can be synthetized as follows:

A =











D2

8
(θ − sin θ) if h < D

Amax + (h−D)Ts if h ≥ D

(1.6a)

b =











D sin

(

θ

2

)

if h < D

Ts if h ≥ D

(1.6b)

Figure 1.1 – Sketch of a circular cross-section with the Preissmann slot
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P =











D

2
θ if h < D

πD if h ≥ D

(1.6c)

Rh =
A

P
=















D

4

(

1−
sin θ

θ

)

if h < D

D

4
if h ≥ D

(1.6d)

I1 =



















D3

24

[

3 sin

(

θ

2

)

− sin3
(

θ

2

)

− 3

(

θ

2

)

cos

(

θ

2

)]

if h < D

Amax

(

h−
D

2

)

+ Ts
(h−D)

2

2
if h ≥ D

(1.6e)

c =

√

gA

b
=



















√

gD (θ − sin θ)

8 sin (θ/2)
if h < D

√

gA

Ts
if h ≥ D

(1.6f)

In Eq. (1.6), Amax is the full pipe cross-sectional area, P is the wetted perimeter

(note that the slot is not accounted for in its computation), b is the free-surface

width, Ts is the slot width, c is the speed of gravity waves, and θ is the wetted

angle, which depends on the water depth h:

θ = 2arccos

(

1− 2
h

D

)

. (1.7)

Actually, the transition from free-surface to pressurized flow is assumed to

take place for a slightly smaller water depth than the pipe diameter, precisely

at the value corresponding to a free-surface width equal to the slot width. This

approximation avoids division by zero in the celerity evaluation when the water

surface reaches the pipe crown, and does not sensibly affect mass conservation,

due to the minimal reduction in the pipe area. Some authors (e.g. León et al.,

2009) even introduce a smooth transition between the pipe crown and the slot, so

that the celerity value increases gradually from free-surface to pressurized flow.
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Chapter 1. 1D numerical modelling of mixed flows in pipes

Similar relations can be obtained for other cross-sectional shapes, e.g. rectan-

gular, elliptical, etc.

1.3.3 Slot width

Pressure waves propagate as gravity waves when the PS approach is used,

hence, in order to model the physics of the phenomenon correctly, the slot width

Ts should be set in such a way that the speed of gravity waves c equals the

pressure wave speed a, according to the relation:

Ts =
gA

a2
. (1.8)

In practical applications, pressure wave speed depends on many factors, including

fluid compressibility, pipe deformability, and also air entrainment. In particular,

the presence of air may lead to considerable uncertainties in the definition of this

value. If high frequency pressure fluctuations or water hammer transients need

to be modelled, the slot width should be set according to Eq. (1.8), giving a the

value of the physical pressure wave speed. However, this constraint generally leads

to the estimate of very narrow slots, which on the one hand ensure negligible

mass error and correct pressure wave speed computation, but on the other hand

induce spurious numerical oscillations at flow regime transitions if shock-capturing

schemes are used (Vasconcelos et al., 2009), and also reduce the allowable time

step for stability if explicit schemes are used (thus increasing the computational

time).

To overcome this problem, some authors (e.g. Trajkovic et al., 1999; DHI,

2002) set the slot width at 1− 2% of the pipe diameter, accepting a significant

reduction in the pressure wave celerity value, but still obtaining satisfactory results

in the simulation of experimental test cases.

The influence of the slot width on the propagation speed of transition bores
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1.3. Preissmann slot model

can be assessed considering a simple test case with analytical solution. Let us

consider a square pipe (1 m× 1 m), where two uniform free-surface flows with the

same water depth but opposite velocities collide. The impingement of the two

incoming flows produces a pressurized intermediate state which expands thanks

to two transition shock waves traveling in opposite directions. If only one half

of the domain is considered, this situation is equivalent to the propagation of a

pipe-filling surge originated by the sudden closure of the downstream end of a

conduit. The domain is [−10, 10]m.

In Fig. 1.2, the analytical profiles of pressure head at t = 1 s, obtained from

the exact Riemann solver of Kerger et al. (2011b) using different values of the

slot width (Ts/B = 0.10, 0.02, 0.01, 0.004, 0.001, and 0.0001), are compared for

the case of a high initial filling ratio (h/D = 0.8) and velocity u equal to 2 m/s.

In particular, Table 1.1 shows the influence of the Preissmann slot width on the

accuracy of the exact solver in predicting the pressure head h⋆ in the intermediate

(star) region, as well as the shock wave speed S⋆. Errors are computed with

reference to the solution obtained with the narrowest slot. The introduction of

the Preissmann slot, due to the additional volume made available, noticeably

affects both the propagation speed and the strength of the reflected surge: in fact,

wave celerity and jump height decrease with the increasing of the slot width. The

Preissmann slot model seems capable of accurately describing the propagation of

the transition wave as long as the slot is narrow enough to guarantee that the

water volume contained within the slot is negligible. In this work, a dimensionless

slot width equal to 0.01 is then preferably assumed, as a reasonable compromise

between accuracy and computational stability.
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Figure 1.2 – Analytical solutions for pressure head at t = 1 s calculated with different
values of the slot width

Table 1.1 – Errors on pressure head and propagation speed of the bore for the analytical
test case, calculated with different values of the slot width

Ts/D a(m/s) ∆h⋆(%) ∆S⋆(%)

0.10 10 −19.4 −32.7
0.02 22 −6.7 −11.3
0.01 31 −3.7 −6.3
0.004 50 −1.6 −2.7
0.001 100 −0.4 −0.6
0.0001 310 – –
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1.3. Preissmann slot model

1.3.4 Numerical scheme

Equation (1.1) is discretized using an explicit, Godunov-type, first-order

accurate, finite volume method. For the ith cell of length ∆x, the solution is

updated in the time step ∆t according to the following expression:

Un+1
i = Un

i −
∆t

∆x
(Fi+1/2 − Fi−1/2) + ∆t Si (1.9)

where Ui and Si indicate cell-averaged values for the vector of the conserved

variables and for the source term respectively, while F denotes the numerical flux

at the interface between neighbouring cells. Superscripts n and n+1 refer to time

levels t and t+∆t, respectively.

Numerical fluxes are estimated by solving the Riemann problem at each

cell edge. The evaluation of the left and right states is performed through the

reconstruction algorithm suggested by Sanders and Bradford (2011) and originally

applied to a TPA-based model. For the i+ 1/2 interface:

hL = hi +
1

2
∆hi QL = Qi

hR = hi+1 −
1

2
∆hi+1 QR = Qi+1

(1.10)

For wet cells, the change of h inside the ith cell is calculated as:

∆hi =











0 if si ≥ s⋆

−
∆zi
2

[

1 + cos
(

π
si
s⋆

)]

if si < s⋆
(1.11)

where ∆zi = zi+1/2− zi−1/2, si is the ratio of friction to bottom slope, and s⋆ is a

critical value, set equal to 0.01 in this work. On the basis of the ratio si/s
⋆, it is

therefore decided whether a piecewise constant or a piecewise linear water depth

reconstruction (assuring constant free-surface elevation) is performed. According
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Chapter 1. 1D numerical modelling of mixed flows in pipes

to Sanders and Bradford (2011), a cell should be considered as “wet” if si/s
⋆ > 1

or if the cell-averaged value of the flow area A, which represents the volume stored

in the computational cell, exceeds the minimum value to submerge both cell

vertices. For a dry cell, as well as for a wet cell in water at rest condition, si = 0,

and thus ∆hi = −∆zi; in this case, the momentum equation is not updated.

The HLL approximate Riemann solver (Toro, 2001) is used for flux evaluation

at cell interfaces:

F =



























FL if SL > 0

SRFL − SLFR + SLSR(UR −UL)

SR − SL
if SL ≤ 0 ≤ SR

FR if SR < 0

(1.12)

Wave speeds SL and SR are estimated according to León et al. (2006, 2009):

SL = uL −ML, SR = uR +MR

MK =















cK if A⋆ ≤ AK
√

g(I⋆1 − I1,K)A⋆

AK(A⋆ −AK)
if A⋆ > AK

(1.13)

with K = L,R. For the intermediate (starred) state, different estimates are

available in the literature. Those based on the two-rarefaction wave approximation

and the depth-positivity condition (Toro, 2001; León et al., 2006) are employed in

this work. In the case of wet-dry interfaces, wave speeds are estimated exactly as

follows:

SL = uL − cL, SR = uL + φL, if the right side is dry,

SL = uR − φR, SR = uR + cR, if the left side is dry.
(1.14)

The variable φ is defined as
∫

(c/A)dA and derives from the definition of the
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1.3. Preissmann slot model

Riemann invariants for circular pipes (León et al., 2006).

The treatment of source terms is accomplished according to Sanders and

Bradford (2011). The bottom slope source term is treated explicitly and is

calculated as:

(gAS0)
n
i = −

1

∆x
g

[

I1

(

hi +
1

2
∆zi

)

− I1

(

hi −
1

2
∆zi

)]

(1.15)

to ensure that the C -property (i.e. the ability of the scheme to preserve a

stationary condition in a non-horizontal pipe) is satisfied. On the other hand, the

friction slope source term is treated implicitly as follows:

(Sf )
n+1
i = n2

m

Qn+1
i |Qn

i |

(An
i )

2
(Rn

h)
4/3
i

(1.16)

in order to prevent unphysical flow inversions induced by flow resistance. Finally,

the update expression for the flow rate is:

Q⋆
i = Qn

i −
∆t

∆x
(Fi+1/2 − Fi−1/2) + ∆t (gAS0)

n
i

Qn+1
i = Q⋆

i

[

1 + ∆t
gn2

m|Q
n
i |

An
i (R

n
h)

4/3
i

]−1

.

(1.17)

Being explicit, the numerical scheme is stable provided that the CFL condition is

fulfilled, that is:

Cr =
λ∆t

∆x
≤ 1 (1.18)

where Cr is the Courant number and λ is the maximum wave speed along the pipe.

Boundary conditions are implemented on the basis of the ghost cell approach

(LeVeque, 2002).
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1.4 Two-equation model

1.4.1 Mathematical model

Bourdarias and Gerbi (2007) proposed a conservative formulation of the

governing equations for unsteady pressurized flow in a rigid prismatic conduit,

which formally appear equivalent to the de Saint-Venant equations for open

channel flow. Assuming a compressible flow, the authors introduced a new set of

conserved variables: the equivalent wet area Aeq = Amax ρ/ρ0 and the equivalent

discharge Qeq = Qρ/ρ0, where ρ and ρ0 are the density values at pressure p and

at atmospheric pressure p0, respectively. Pressure and density are linked by the

classic Boussinesq pressure law:

p = p0 + a2 (ρ− ρ0). (1.19)

The new conserved variables Aeq and Qeq obviously reduce to A and Q in the

case of incompressible free-surface flow. In this way, Eq. (1.1) defines a two-

equation (2E) dual model which combines the de Saint-Venant equations and the

compressible water hammer equations, provided that the following statements are

introduced for the vector of conserved variables, the flux vector, and the source

term:

U =





Aeq

Qeq



, F =







Qeq

Q2
eq

Aeq
+ I






, S =





0

gAeq(S0 − Sf )



. (1.20)

The pressure term I depends on the flow regime and is written:

I =











g I1(Aeq) if free-surface,

g I1(Amax) + a2 (Aeq −Amax) if pressurized.

(1.21)
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The pressure term is a continuous function of the equivalent area, yet it is

characterized by abrupt discontinuity in the derivative at the transition point

(for Aeq = Amax). This feature, along with the strong discontinuity in the wave

celerity value, is probably the main reason for the numerical instabilities that

arise when pipe filling bore fronts, causing the sudden transition between the

two flow regimes, are modelled by shock-capturing schemes (Vasconcelos et al.,

2009). It is to be noted that this model is automatically capable of handling

sub-atmospheric pressures (León et al., 2010), provided that ventilation conditions

are specified. The same formulation of the governing equations was adopted by

León et al. (2010, 2013).

1.4.2 Numerical scheme

Equation (1.1), coupled with statements (1.20), is numerically solved by using

the same finite volume scheme described in Section 1.3.4, the only exception

being few numerical details concerning the flux evaluation. For free-surface flow,

the HLL solver is still used, whereas for pressurized flow the approximate solver

suggested by León et al. (2008) is employed. In this latter case, the physical flux

F (U⋆) is computed at the intercells according to Eq. (1.20), and the intermediate

state U⋆ is estimated as follows (the subscript eq is dropped for simplicity):

A⋆ =

(

AL +AR

2

)(

1 +
uL − uR

cL + cR

)

Q⋆ = QL +

(

uL + uR

2
−

cL + cR
2

)

(A⋆ −AL).

(1.22)

Finally, a special flux treatment is required at free-surface/pressurized flow inter-

faces, as suggested by Bourdarias and Gerbi (2007). According to this method,

the interface is considered as a shock wave, and Rankine-Hugoniot conditions are

imposed across the wave, coupled with closure relations, which may represent
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characteristic equations, Riemann invariants, or energy balances, depending on

the type of interface and wave pattern. The resulting non-linear system must be

solved iteratively. For more details, the reader is referred to the original paper.

1.5 Validation

1.5.1 Laboratory test case

The laboratory test case used for the validation and comparison of the two

models is described in Aureli et al. (2015). The experiments were carried out in the

facility sketched in Fig. 1.3, which was set up at the Hydraulics Laboratory of the

University of Parma. It consisted of a 12 m long Plexiglas pipeline with 0.192 m

inner diameter. At approximately 7 m from the upstream end, the pipe slope

changed abruptly from about 8.4% (downward) to about −27.7% (upward). A

sluice gate (orthogonal to the pipe axis) was placed approximately 5 m downstream

of the upper end of the device. The gate could be almost instantaneously lifted by

means of a simple manhandled pulley system. Aeration was guaranteed at both

pipe ends, hence air entrapment does not influence the phenomenon. Pressure

and velocity measurements were performed by non-intrusive techniques at the

cross-sections indicated in Table 1.2.

The sluice gate retained still water upstream, with a pressure head of 0.225 m at

Figure 1.3 – Sketch of the laboratory set-up
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gauge G1, while the conduit was initially dry downstream. The sudden removal of

the gate triggered a rapid transient, whose main stages are qualitatively represented

in Fig. 1.4. Immediately after the gate opening, a wetting front propagated in the

downstream conduit, while gauges from G1 to G3 (located upstream of the gate)

registered a rapid depressurization. At approximately t = 1 s, the wetting front

reached the slope reversal, and free-surface regime occurred everywhere (Fig. 1.4a).

At about t = 2 s, the wetting front reached gauge G6, and, immediately after, the

run-up of the wave in the counter-sloped branch induced partial pressurization

of the pipe and the formation of a positive transition wave travelling upstream

(Fig. 1.4b). Between t = 3 s and t = 8 s (Fig. 1.4c) the advancing shock wave kept

moving and involved all the upstream gauges, while the downstream portion of

the pipe was subject to emptying. Then, a damped oscillatory flow developed in

the device, with almost persistent pressurization of the three lowest gauges G3,

G4, and G5. After t = 8 s, gauge G6 recorded free-surface water levels only, and

after t = 20 s the extreme upstream gauge G1 was no longer affected by wetting

(Fig. 1.4d).

Table 1.2 – Location of the measuring gauges (x is the distance along the pipe axis)

Pressure gauges Velocity gauges

Gauge x (m) Gauge x (m)

G1 1.00 V1 0.94
G2 3.00 V2 2.94
G3 4.50 V3 4.44
G4 6.80 V4 6.74
G5 7.32 V5 7.26
G6 8.52 V6 8.46
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Figure 1.4 – Pressure head profiles for the laboratory test case. The variable x is the
distance along the pipe. Elevation z is referred to the bottom of section G1
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1.5.2 Simulation parameters

The experimental test case described in Section 1.5.1 is simulated by applying

the two numerical models described in Sections 1.3 and 1.4. The computational

domain is discretized by means of 300 grid cells (with grid spacing∆x = 4 cm), and

the Courant number is set at 0.8. Manning’s roughness coefficient is calibrated

to correctly reproduce the observed arrival time of the wetting front at the

downstream gauge sections, and is set at 0.009 m−1/3s. In the PS model simulation,

a slot width equal to 1% of the pipe diameter (corresponding to about 12 m/s

pressure wave celerity) is adopted in order to prevent the numerical oscillations

that typically arise at flow regime transitions when much larger wave celerity

is assumed. This low value, although not representative of the actual pressure

wave speed in the pipe (estimated to be in the order of 200 m/s) guarantees that

post-shock oscillations do not sensibly deteriorate the quality of the numerical

results. Accordingly, the same value of the pressure wave speed is adopted in

the 2E model simulation. Simple reflective boundary conditions (Toro, 2001) are

specified at both pipe ends.

1.5.3 Numerical results

Figures 1.5 and 1.6 compare numerical results and experimental measurements

for the six pressure gauges G1-G6, while Figs. 1.7 and 1.8 show the same compar-

ison for the six sections V1-V6, equipped with velocity gauges. It is noteworthy

that the two models, despite the different approach used for coupling free-surface

and pressurized flow regimes, give almost identical results. In general, both

numerical methods reproduce the experimental data satisfactorily, in spite of

the non-physical value assigned to the pressure wave speed. This fact was also

observed by other authors on the basis of the numerical simulations of different

experimental tests (e.g. Capart et al., 1997; Trajkovic et al., 1999; Ferreri et al.,
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2010). The main consequence of the assumption of a reduced value for the

pressure wave speed is recognizable at gauges G1 and G2 (Figs. 1.5a and 1.5b).

The depressurization wave originated by the gate opening has been experimentally

observed to arrive almost instantaneously at the upstream sections; conversely,

the numerical results show a delay in the arrival time, and the initial state is

maintained for about 0.2 s at the upstream limb of the reservoir (see the insert in

Fig. 1.5a). However, the subsequent development of the phenomenon is excellently

reproduced by both numerical models at gauges G1 and G2, where, except for the

very first stages, the flow remains in free-surface regime. The temporal sequence of

wetting and drying is also well caught. At section G3 (Fig. 1.5c), the closest to the

gate, the numerical results do not exactly match the experimental measurements

between t = 0 s and t = 5 s, and show a noticeable underestimation of the pressure

head. Actually, as already highlighted in the literature (e.g. Ozmen-Cagatay and

Kocaman, 2010; Shigematsu et al., 2004), 1D depth-integrated numerical models

fail to correctly describe dam-break phenomena near the gate site immediately

after the gate opening, due to their inability to handle strong curvatures with

non-zero vertical velocity components. The correct prediction of this and other

three-dimensional (3D) effects would require a detailed 3D simulation of the

phenomenon.

At gauges G4 and G5 (Figs. 1.6a and 1.6b), sudden flow regime transitions

can be observed at t = 3 s, when a pipe filling bore travelling upstream reaches

these sections. The timing of the pressurization wave is correctly estimated by

both numerical models, but small post-shock oscillations can be observed on the

pressurized side of the interface (see, for example, the pressure head longitudinal

profile at t = 2.8 s shown in Fig. 1.9). The pressure time series recorded at all the

measuring sections exhibit a long-time damping oscillatory behaviour. During

the long-time oscillations, sections G1, G2, and G6 remain in free-surface flow

regime, G4 and G5 in pressurized flow regime, while G3 shows multiple smooth
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Figure 1.5 – Comparison between experimental and numerical pressure head time
series at the measuring sections labelled G1, G2, and G3
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transitions, which are accurately captured by both numerical models. In the last

phase of the oscillatory phenomenon, gauge G1 remains dry, whereas, at the other

gauges, pressure head peaks are slightly overestimated and anticipated. This

effect becomes more and more noticeable as time increases. This circumstance is

probably referable partly to a slight underestimation of the long-time frictional

effects due to the adoption of a steady friction model, and partly to the numerical

diffusivity introduced by the first-order scheme.

As for velocity measurements, it must be noticed that the experimental data

are characterized by scattering over the entire time interval under consideration

(Figs. 1.7 and 1.8). Nevertheless, Figs. 1.7 and 1.8 show that the numerical models

are able to satisfactorily reproduce the experimental data from a qualitative point

of view, even if peak values are not always well captured.

0 1 2 3 4 5 6 7 8 9 10

x (m)

-0.4

0.0

0.4

z
 (

m
)

PS
2E
experimental

t = 2.8 s

Figure 1.9 – Post-shock oscillations affecting the pressure head profile at t = 2.8 s

1.5.4 Sensitivity analysis on Manning’s coefficient

Small changes in Manning’s coefficient do not appear to be effective in im-

proving the agreement of the numerical results with the experimental data in the

last stage of the phenomenon. In fact Fig. 1.10, which shows the sensitivity of

the PS model results to Manning’s coefficient, confirms that, if nm ranges from
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0.007 m−1/3s to 0.011 m−1/3s (a plausible range for Plexiglas), the long-time antic-

ipation and overestimation of pressure head peaks are still observed (see Fig. 1.10b

concerning gauge G5 for t > 15 s): as the roughness coefficient decreases, the

temporal shift diminishes slightly, but, at the same time, the overestimation of the

pressure head peak seems to increase. The same trend for the pressure head peak

value can be observed at the initial stages of the pressurization process (Fig. 1.10b

at t = 3 s) as roughness changes. Furthermore, the value of Manning’s coefficient

considerably affects the prediction of the long-time oscillatory process. As an

example, Fig. 1.10a shows the results concerning gauge G1, which is characterized

by repeated wetting and drying. It can be observed that the selected roughness

coefficient (0.009 m−1/3s) allows the best reproduction of the experimental data,

while the lowest value leads to an erroneous prediction of wetting at t = 25 s.

1.5.5 Convergence analysis

A convergence analysis on the grid size is performed on the basis of the

proposed test case. Simulations are repeated with grid sizes ∆x = 0.08, 0.04,

0.02, and 0.01 m, and the discrepancy from the reference solution obtained from a

simulation performed using a very fine mesh with size ∆x = 0.005 m is estimated

for the pressure head profile at t = 2.8 s (Fig. 1.9). With this aim, the error based

on the L1-norm (LeVeque, 2002) is used:

EL1
= ∆x

N
∑

i=1

|hi − hi,ref | (1.23)

where N is the total number of cells along the profile.

Figure 1.11 summarizes the results. The error decreases with grid refinement

approximately linearly with ∆x, and this confirms that the numerical scheme is

first-order accurate, as theoretically expected. The grid spacing ∆x = 0.04 m is
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Figure 1.10 – Sensitivity analysis on Manning’s roughness coefficient

chosen for all simulations as a satisfactory compromise between accuracy and

computational efficiency. In fact, the use of this grid size already provides an

overall good reproduction of the pipe geometry and gives sufficiently accurate

results compared with the experimental ones, especially in the spatial description

of shock waves and in the prediction of wetting and drying processes.
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Figure 1.11 – Convergence analysis: L1-error for the pressure head profile at t = 2.8 s
as a function of grid size

1.5.6 Sensitivity analysis on slot width and pressure wave

celerity

The sensitivity of the numerical results to pressure wave celerity (for the 2E

model) and to slot width (for the PS model) is also analyzed. In the PS model,

slot widths equal to 1%, 0.06%, 0.015%, and 0.0037% of the pipe diameter are

investigated; correspondingly, pressure wave speed values equal to 12, 50, 100,

and 200 m/s are assumed in 2E modelling.

Figure 1.12 shows some significant numerical results of the sensitivity analysis.

It must be noticed that the almost instantaneous depressurization that occurs at

upstream gauge G1 is better reproduced with high pressure wave celerity values

(Fig. 1.12a). In general, however, the use of high celerity values does not lead

to significant improvements in the numerical results compared with the ones

obtained with smaller unphysical values. As an example, pressure head time series

at gauge G5 are reported in Fig. 1.12b. The 2E model, even if affected by spurious

oscillations originating at flow regime transitions, yields satisfactory results for all

the pressure wave celerity values considered. Conversely, the PS model solution

appears corrupted for the highest celerity values (Fig. 1.12c).
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1.6 Concluding remarks

This chapter compares the effectiveness of the PS model and of the 2E model

on the basis of the simulation of a laboratory test case. The two 1D numerical

methods appear to be equivalent in predicting the evolution of the phenomenon

investigated when low values of the pressure wave speed are assumed. The 2E

model, at the cost of greater complexity, seems more robust in handling the

severe conditions of transient mixed flows when realistic pressure wave speeds are

assumed. However, numerical instabilities and spurious oscillations always arise

at the transition bores, due to the abrupt change in wave celerity.

For the test case considered here, the propagation of disturbances in the

pressurized zone is quasi-instantaneous compared with the global evolution of the

phenomenon. This fact confirms that realistic values of pressure wave speed are

not strictly necessary to correctly predict the propagation of the transition waves.

Therefore, the slot width for the PS model and the pressure wave celerity for the

2E model should be calibrated as model parameters rather than set on the basis

of physical considerations.

Given the substantial similarity of results between the two models when low

values of pressure wave celerity are chosen, the PS model is preferred in the

following developments of this work due to its greater simplicity.

Manning’s coefficient must be carefully calibrated in order to accurately predict

the advancing of the wetting front observed during the first stages of the transient.

The sensitivity analysis, performed on the basis of roughness values typically

assumed for Plexiglas, shows that this parameter has a weak influence on the

pressure head peak at flow regime transitions and on the propagation speed of

the bore, but more noticeably affects the long-time oscillatory process.
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Local time stepping

2.1 Introduction

Free-surface flow and pressurized flow are characterized by celerity values

which lie within a range of up to two orders of magnitude. In the case of mixed

flows, one of the main consequences of the coexistence of wave celerity values

varying considerably in the flow field is the fact that, if an explicit scheme is

adopted, the pressurized cells (characterized by higher values of wave celerity)

will determine the computational time step to be used to update the solution

in the whole domain, according to the CFL stability condition. This restriction

has two main negative effects: first, the computational effort increases greatly

compared to free-surface flow simulations; second, the numerical solution in the

free-surface portion of the domain is updated with a much smaller time step than

its maximum allowable, resulting in an expected reduction of solution accuracy

(Zhang et al., 1994). The problem is similar to the one encountered in free-surface

flow applications when the mesh is locally refined, in which case the smallest

grid cell will dictate the size of the time step, thereby drastically reducing model
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efficiency, especially if the mesh refinement is restricted to only a small portion of

the entire computational domain.

The local time stepping (LTS) strategy (or temporal adaptivity) has been

proposed in the literature since the 1980s (Osher and Sanders, 1983) to increase

computational efficiency when a non-uniform spatial discretization is used. It

is based on the idea of updating each computational cell with a local time step

as close as possible to its maximum allowable to satisfy the stability criterion,

in contrast with the global time stepping (GTS) strategy, which advances the

solution by using the minimum permissible time step in the whole domain. Most

of the available LTS schemes are based on local time steps defined as integer

multiples of a common reference time step (e.g. Kleb et al., 1992). However, some

authors presented LTS algorithms where each cell can be advanced at its own time

step without introducing any defined time step ratio (e.g. Dumbser, 2014). LTS

methods have been satisfactorily applied to Euler and Navier-Stokes equations

(e.g. Pervaiz and Baron, 1988; Kleb et al., 1992; Coquel et al., 2010), but also to

other hyperbolic systems (e.g. Dumbser et al., 2007; Grote and Mitkova, 2010).

Moreover, LTS schemes have also been adopted in combination with adaptive

mesh refinement (AMR) techniques (e.g. Berger and LeVeque, 1998; Dumbser

et al., 2013).

Applications of the LTS strategy to 1D and 2D shallow water equations can

also be found in the literature (e.g. Crossley et al., 2003; Sanders, 2008; Trahan

and Dawson, 2012; Kesserwani and Liang, 2015; Maleki and Khan, 2016). The

results reported in these works show that considerable saving in computational

time can be achieved without impairing model accuracy when a non-uniform

mesh in used. However, despite the fact that LTS methods can be expected

to be profitable not only when a local mesh refinement is employed, but also

in applications involving significantly variable wave celerity, to the best of the

author’s knowledge the applicability of the LTS methodology to unsteady mixed
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flows has not yet been thoroughly assessed. This strategy can be very useful and

effective in practical applications, especially in those cases where only a small

region of the domain is pressurized in an otherwise fully free-surface flow field.

This occurs, for example, when a single branch of a pipe network is surcharged,

or when a culvert, a bridge or an inverted siphon inserted in an open channel

system are partially or totally surcharged. Actually, in the context of pipe network

modelling, Sanders and Bradford (2011) adopted a TPA model in which the

computational cells within each pipe were updated by using the minimum time

step permissible in that pipe, while a larger global time step was used for the

synchronization of all pipes and junctions.

This chapter presents the application of a LTS method modified from previous

works (Kleb et al., 1992; Crossley and Wright, 2005) to the numerical modelling

of 1D unsteady mixed flows. The LTS scheme is implemented in the PS model

presented in Section 1.3. Several simulations of idealized numerical tests, of an

experimental test, and of a simplified field-scale test are performed to assess the

effectiveness and robustness of the LTS method in mixed flow applications and to

evaluate the achievable improvement in model efficiency and solution accuracy in

comparison with the conventional GTS scheme.

This chapter is derived in part from Dazzi et al. (2016).

2.2 Local time stepping numerical scheme

The LTS technique proposed by Kleb et al. (1992), and then successfully

applied to shallow water equations by different authors (e.g. Crossley et al., 2003;

Krámer and Józsa, 2007; Sanders, 2008), is adopted here with modifications.

According to this method, the local time step ∆ti in each cell is set as a power of
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two multiple of the minimum time step ∆t throughout the computational domain:

∆ti = 2mi∆t (2.1)

where mi is an integer parameter computed for each cell as:

mi = int









log

(

∆ti,CFL

∆t

)

log(2)









(2.2)

in which ∆ti,CFL denotes the maximum allowable time step in cell i to satisfy

the CFL condition.

Following Sanders (2008), the cell edges are also marked with a specific

parameter mf which is defined as mf,i+1/2 = min(mi,mi+1), and a new integer

parameter m⋆ is associated to each cell based on the following criterion: m⋆
i =

min(mf,i−1/2,mf,i+1/2); the local time step is then redefined according to Eq. (2.1)

on the basis of the parameter m⋆
i . Finally, the value mmax = maxi(m

⋆
i ) is

computed, and the maximum time step is defined as ∆tmax = 2mmax∆t.

The time advancing of the computational cells during each update from

the common time level tn to the new common time level tn+1 = tn + ∆tmax,

is asynchronous: actually, the updating cycle from tn to tn+1 is divided into

a sequence of 2mmax intermediate steps (identified with the step number p =

0, 1, . . . , 2mmax − 1); during each of these steps, only the cells for which (p + 1)

is a multiple of 2m
⋆

are advanced via Eq. (1.9) on the basis of their local time

step ∆ti. Consequently, in the overall updating cycle, each computational cell is

advanced by 2mmax−m⋆

steps. In particular, cells marked with m⋆ = mmax are

advanced by a single time step of size ∆tmax, while those labelled with m⋆ = 0

are updated by 2mmax unit steps of size ∆t. The update algorithm is sketched

in Fig. 2.1 for mmax = 2, corresponding to a sequence of four intermediate steps.
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Black dots indicate the known states at the beginning of each intermediate step,

while white and black arrows represent cell updates and intercell flux evaluations

performed during the current step, respectively.

The LTS algorithm for the flux evaluation at the cell boundaries follows the

procedure proposed by Sanders (2008). Accordingly, at each intermediate step,

numerical fluxes are evaluated only at those intercells labelled with a mf value

for which p is an integer multiple of 2mf . In particular, at the first intermediate

step (p = 0) fluxes are computed at all cell boundaries and stored in a dedicated

array; fluxes at intercells marked with mf = 0 are re-evaluated at all intermediate

steps (see Fig. 2.1).

Special attention must be devoted to the case of neighbouring cells characterized

by different local time steps as, for example, cells i− 1 and i in Fig. 2.1. Although

the permissible time step of the cell i is 2∆t, the update procedure based on the

parameter m⋆ dictates that this cell is advanced by two distinct intermediate steps

of size ∆t. Only the flux at intercell i − 1/2 is re-computed during the second

step (p = 1), while the flux at i + 1/2 is kept unchanged during the two steps

p = 0 and p = 1. The added intermediate state is represented with dashed lines

in Fig. 2.1. The use of m⋆ instead of m to identify which cells must be advanced

during each intermediate step ensures that flux evaluation is carried out correctly

at edges between adjacent cells characterized by different values of the parameter

m. It can be noticed that the original method (Kleb et al., 1992; Crossley and

Wright, 2005) employed a different strategy based on an interpolation procedure

at interfaces, and a correction was necessary to ensure conservation properties

(Tan et al., 2004; Krámer and Józsa, 2007). The update procedure adopted here

instead is intrinsically conservative (Sanders, 2008).

Some authors suggest that, in order to increase the robustness and accuracy

of the method, the jump in the m value between neighbouring cells should not

exceed one (e.g. Krámer and Józsa, 2007). Moreover, the correct propagation
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Figure 2.1 – Sketch of the LTS update procedure for mmax = 2 (corresponding to a
sequence of four intermediate steps)
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of information at interfaces between cells updated with different time steps

requires that a suitable interface region, where m varies gradually, separates areas

characterized by highly different values of m (Crossley and Wright, 2005). In

applications with non-uniform grids, this requirement is often satisfied thanks

to an appropriate mesh design, which should guarantee smooth transitions from

small to large cells. In the context of mixed flows, instead, transitions from

free-surface to pressurized flow induce abrupt changes in the permissible time step

size; thus values of m must be artificially re-assigned in a few cells near the flow

regime transition prior to updating, in order to ensure the correct propagation of

travelling waves. The procedure outlined in Crossley and Wright (2005) to define

this interface region is adopted in this work. In short, if neighbouring regions are

characterized by two different values m1 and m2 (with ∆m = m2 −m1 > 0), the

interface is composed of 2∆m + 3 cells. In particular, value m1 is assigned to the

first four cells originally belonging to the m2 region; then, a gradual transition

is created by assigning the value m1 + l to 2l cells, with l being an integer

counter ranging from 0 to ∆m− 1. For example, at the interface between m1 = 0

and m2 = 3 (which could reasonably be the case of a flow regime transition),

the originalm vector [. . . , 0, 0, 0,3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . . ] becomes

[. . . , 0, 0, 0,0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, . . . ], where numbers in bold type

refer to cells belonging to the interface zone.

A possible source of numerical instability is due to the fact that, throughout a

global update from tn to tn+1, the local time step in each cell is kept constant, while,

after a partial update, wave speed may increase in some cells, with consequent

reduction of the permissible time step, and the CFL condition might then be no

longer fulfilled in these cells. Possible strategies to face this problem include the

use of a slightly reduced value of the Courant number (e.g. Cr = 0.8 in Sanders,

2008) and the artificial limitation of the maximum value of m (e.g. mmax = 3

in Crossley and Wright, 2005; Krámer and Józsa, 2007). A different strategy is
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implemented in this work. After each intermediate update from tk to tk+1, the

local values assumed by the Courant number in the next intermediate time step

are calculated as:

Crk+1
i = ∆ti

|uk+1
i |+ ck+1

i

∆xi
. (2.3)

If the Courant number exceeds unity somewhere, the usual update procedure is

interrupted, and all cells are advanced to the current intermediate time level tk+1

(see Fig. 2.2). After this synchronization, local time steps are re-evaluated in all

cells and a new updating cycle can start. During the simulation of the laboratory

test presented in Section 2.3.4 and used for validation, the robustness of the model

appeared to be improved by stopping the update procedure and re-evaluating the

local time steps, unlike what happened when limiting the maximum time step.

This strategy actually proves to be effective when some cells become pressurized,

starting from a free-surface condition; in this case celerity values increase suddenly,

and instabilities possibly arise (and are further compounded by the well-known

spurious oscillations near sudden flow regime transitions) if local time steps are

not re-evaluated correctly.

2.3 Numerical tests

This section shows the results of some numerical simulations concerning

different test cases and compares the LTS and GTS schemes in terms of accuracy

and CPU time. First, the simple case of water at rest in a pipe is simulated; then,

idealized test cases with analytical solution and a simple test case of gradual

pipe filling are considered in order to assess the effectiveness and efficiency of the

two time stepping techniques; finally, a laboratory test and a real-field test are

analyzed as applications of practical significance. All simulations are performed

on a workstation with a 2.67 GHz Intel Core i7 processor and 8 GB RAM.
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Figure 2.2 – Sketch of the synchronization procedure introduced to avoid instabilities:
(a) if Crk+1

i > 1, the update procedure is interrupted, and (b) all cells are synchronized
at tk+1

2.3.1 Test cases with water at rest

The first test case concerns a 100 m long sloped pipe with diameter D = 1 m.

Both pipe ends are closed, and the pipe is partially filled with still water up

to a certain level. Different pipe slopes ranging from +0.5% to +5% (positive

downwards) are considered. The water depth at the upstream end (x = 0 m) is

assumed equal to 0.5 m for all slopes. Consequently, the upstream region of the

pipe is in free-surface conditions, while the downstream part is pressurized; the

length of this latter region increases with pipe slope, and the pressure head at the

downstream end of the pipe ranges between 1 m and 5.5 m.

The computational domain is discretized with N = 200 cells of uniform size

∆x = 0.5 m, and the Courant number is set at 0.9. Dimensionless slot widths

Ts/D equal to 0.01 and 0.001 are assumed, corresponding to 27 m/s and 87 m/s

pressure wave celerity values, and to ratios of maximum to minimum local time
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step equal to 8 (i.e. mmax = 3) and 32 (i.e. mmax = 5), respectively. In both

cases the solution is advanced for 3000 time steps in the GTS simulation and

for the corresponding duration in the LTS simulation (approximately 50 s for

Ts/D = 0.01, and 16 s for Ts/D = 0.001).

Both LTS and GTS schemes are able to preserve the static condition, except

for round-off and truncation errors. As an example, at the end of the simulation

with the pipe slope equal to +1%, the maximum discharge is in the order of 10−14

m3/s in both cases.

Table 2.1 reports the speed-up factors calculated for simulations carried out

with different pipe slopes and with both values of the slot width. The speed-up

factor is the ratio of the execution time of the GTS simulation to that of the

LTS simulation, thus representing an estimate of the performance improvement in

terms of computational effort that the LTS scheme can achieve compared to the

GTS scheme. The speed-up factor decreases with the increase in the percentage of

pressurized cells and, theoretically, tends to unity when the whole computational

domain is pressurized. Moreover, the narrower the slot is, the greater the value of

the speed-up factor is.

Table 2.1 – Sensitivity of the speed-up factor to the percentage of pressurized cells and
to the slot width for the test case of water at rest in a sloped circular pipe

Slope α
Ts/D = 0.01 Ts/D = 0.001

Speed-up Speed-up Speed-up Speed-up
(actual) [Eq. (2.4b)] (actual) [Eq. (2.4b)]

+0.5% 1% 4.2 7.5 6.4 24.4
+0.553% 10% 3.2 4.7 4.3 7.8
+0.66% 25% 2.7 2.9 3.7 3.7
+1.0% 50% 1.9 1.8 2.4 1.9
+2.0% 75% 1.5 1.3 1.7 1.3
+5.0% 90% 1.3 1.1 1.5 1.1
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These trends can be explained by estimating the achievable speed-up, as sug-

gested by Kleb et al. (1992). If α (0 < α ≤ 1) is the percentage of pressurized cells

(which is known a priori and does not change in time in this simple application),

then a dimensionless quantification of the computational loads (W ) associated

with the GTS and LTS schemes (assumed proportional to the total number of

updates carried out until the computational time t) and the achievable speed-up

are roughly given by:

WGTS ∝

N
∑

i=1

t

∆t
= N

t

∆t
, WLTS ∝

N
∑

i=1

t

∆ti
= αN

t

∆t
+ (1− α)N

t

2mmax∆t

(2.4a)

speed-up =
WGTS

WLTS
∝

[

α+
(1− α)

2mmax

]−1

. (2.4b)

It follows that the LTS procedure basically reduces the number of update opera-

tions in the free-surface portion of the domain with a factor 2mmax . Thus, other

conditions being equal, the more cells belong to the free-surface region, the more

update operations are skipped, and the faster the LTS simulation run time is,

compared to the GTS simulation. Furthermore, narrower slots, corresponding to

higher pressure wave celerity values, lead to higher values of the parameter mmax,

further increasing the achievable speed-up. The speed-up factors expected accord-

ing to Eq. (2.4b) are also reported in Table 2.1 for comparison. The theoretical

and actual values do not coincide, since the estimate of Eq. (2.4b) does not take

into account the presence of an interface region with gradually varying values of m

and other implementation details. Moreover, geometrical relations in free-surface

conditions may require iterations or interpolations even for common cross-section

shapes (e.g. circular), while in pressurized conditions explicit calculations can be

done, and the CPU time necessary to perform such operations may differ for the

two regimes. In any case, Eq. (2.4b) can be used as a rule of thumb to predict

whether the use of the LTS strategy can be beneficial for a certain application,
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even if in general the percentage of pressurized cells changes in time and may be

difficult to estimate a priori.

Equation (2.4b) also suggests that the achievable speed-up should not depend

on the total number of cells. This was verified by simulating the test case

characterized by Ts/D = 0.01 and a pipe slope equal to +1% (which led to the

pressurization of exactly half of the domain) with different grid sizes (N = 200, 400,

and 800 cells). The speed-up factor is almost constant, ranging between 1.9 and

2.1.

2.3.2 Test cases with analytical solution

Idealized test cases with analytical solution are presented in this subsection.

The exact Riemann solver proposed by Kerger et al. (2011b) is used here to

calculate reference solutions for initial value problems with piecewise constant

initial states UL (on the left-hand side) and UR (on the right-hand side). All tests

are performed in a frictionless 500 m long horizontal conduit with rectangular

cross-section characterized by width B = 1 m and height H = 1 m. The slot width

Ts is set at 0.01B, which corresponds to pressure wave celerity approximately

equal to 31 m/s. The computational domain is defined by the interval [0, 500]

m and the initial discontinuity is located at x = 250 m. Test conditions are

summarized in Table 2.2. The solution of both Tests T1 and T2 is characterized

by a rarefaction wave propagating to the left with transition between pressurized

and free-surface conditions; the wave on the right instead is a free-surface shock in

Test T1 and a free-surface rarefaction in Test T2. For the numerical simulations

of both tests, the computational domain is discretized by means of N = 500 cells

and the Courant number is set at 0.9.

Figures 2.3 and 2.4 compare the GTS and LTS numerical pressure head and

velocity profiles with the analytical solution at t = 6 s. Both schemes correctly
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Table 2.2 – Test conditions for three discontinuous initial-value problems with exact
solution

Test hL(m) uL(m/s) hR(m) uR(m/s) Description

T1 3.0 0.0 0.5 0.0 Left transition rarefaction and
right shock

T2 1.8 −0.9 0.8 1.0 Left transition rarefaction and
right rarefaction

T3 0.8 2.0 0.8 −2.0 Two transition shocks

predict the speed of both left and right waves and the intermediate state. However,

the LTS scheme provides slightly less diffusive results in the free-surface portion

of the solution (see the inserts in Figs. 2.3 and 2.4 at x ≃ 270 m).

The error based on the L2-norm (LeVeque, 2002) is used to quantify the

accuracy of the numerical solution. Accordingly, the error at a fixed time can be

assessed in term of conserved variables as:

EL2
(A) =

[

1

N

N
∑

i=1

(Ai −Ai,ref )
2

]0.5

, EL2
(Q) =

[

1

N

N
∑

i=1

(Qi −Qi,ref )
2

]0.5

(2.5)

where the subscript “ref” refers to the analytical solution. Table 2.3 reports the L2-

norms calculated for flow area and discharge profiles at t = 6 s with progressively

halved mesh size (N = 500, 1000, and 2000 cells). The LTS scheme gives lower

error norms than the GTS scheme for all mesh sizes and for both test cases.

The improvement in accuracy mainly concerns the free-surface region of the flow

field, where error norms decrease by about 20− 30% switching from GTS to LTS

scheme, since in this region the Courant number is locally closer to unity. On

the other hand, in the pressurized region of the flow field, error norms increase

slightly (only by a few percent) for the LTS numerical solution. This is probably

due to the fact that the LTS technique adopted here employs the same time step

over a certain number of intermediate updates, potentially making the scheme
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slightly more diffusive, especially where celerity decreases, as near the transition

from pressurized to free-surface flow; conversely, the time step is recomputed after

each time advancement in the GTS scheme.

Table 2.3 also reports the speed-up factor for test cases T1 and T2. In general,

the speed-up factor is not expected to change considerably with the total number of

cells, and this is confirmed by the fact that it varies from 1.6 to 1.9 (corresponding

to CPU time reduction between 37% and 47%) if N increases from 500 to 2000.

In this case, the percentage of pressurized cells is time-dependent; considering

an average value in the time interval between t = 0 s and t = 6 s, the speed-up

estimated according to Eq. (2.4b) is approximately equal to 1.9 for both tests.

Finally, the numerical scheme does not deteriorate mass conservation; in fact,

for Test T1, which involves no inflows or outflows in the time interval considered,

the relative mass conservation error is in the order of 10−15 (with reference to the

mass initially present in the conduit) for both LTS and GTS schemes at the end

of the simulation (after approximately 103 updates in the GTS simulation with

N = 2000 cells).

Test T3 is characterized by an initial condition representing two approaching

free-surface uniform flows; the impact produces two pipe filling bores propagating

Table 2.3 – Comparison between GTS and LTS accuracy and efficiency at t = 6 s for
different mesh sizes for test cases T1 and T2

Test N
EL2

(A)(×10−3 m2) EL2
(Q)(×10−2 m3/s)

Speed-up
GTS LTS GTS LTS

T1
500 12.0 10.5 4.0 3.6 1.6
1000 8.5 6.4 3.0 2.5 1.6
2000 6.1 4.4 2.2 1.8 1.9

T2
500 9.9 7.4 3.2 2.4 1.7
1000 7.2 4.8 2.3 1.7 1.6
2000 5.0 3.1 1.7 1.1 1.9

52



2.3. Numerical tests

0.0

1.0

2.0

3.0

h
 (

m
)

pipe crown

260 270 280

0.5

0.6

0.7

0.8

(a)

0 100 200 300 400 500

x (m)

0.0

0.5

1.0

1.5

u
 (

m
/s

)

analytical

LTS

GTS

260 270 280
0.0

0.5

1.0

1.5

(b)

Figure 2.3 – GTS and LTS numerical profiles of pressure head (a) and velocity (b)
at t = 6 s for tests T1, compared with analytical solutions. In numerical profiles, one
symbol out of three is represented for clarity
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Figure 2.4 – GTS and LTS numerical profiles of pressure head (a) and velocity (b)
at t = 6 s for tests T2, compared with analytical solutions. In numerical profiles, one
symbol out of three is represented for clarity
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in opposite directions. The computational domain is discretized by means of

N = 1000 cells and simulations are repeated for three different values of the slot

width (Ts/B = 0.04, 0.01, and 0.001), corresponding to pressure wave celerity

values approximately equal to 15, 31, and 100 m/s. The Courant number is set

at 0.7. Figure 2.5 shows the pressure head and velocity profiles at t = 20 s; only

LTS results are reported, since the LTS and GTS profiles practically overlap. The

speed-up factor increases with the reduction of the slot width, and ranges from

1.4 to 1.9 to 2.4.

2.3.3 Gradual pipe filling

Pipe pressurization can be induced not only by a transition bore (as in Test

T3), but also by gradual rising of the water level (e.g. Capart et al., 1997; Ferreri

et al., 2014b). The numerical simulation of gradual pressurization is presented in

this subsection in order to further verify the effectiveness of the LTS scheme.

The test is performed in a 100 m long circular pipe with 1 m diameter and

0.4% slope. Manning’s roughness coefficient is set at 0.015 m−1/3s. A subcritical

uniform free-surface flow with 0.7 m3/s discharge and approximately 0.52 m normal

depth is assumed as initial condition. The sudden closure (at t = 0) of a gate

located at the downstream end of the pipe causes an abrupt increase in the water

depth which propagates upstream as a free-surface shock wave. Due to pipe slope,

after a few seconds the downstream portion of the pipe becomes pressurized and

a smooth flow regime transition travelling upward arises.

The pipe is discretized by N = 100 computational cells (∆x = 1 m), and the

slot width is set at 0.01D. The Courant number is assumed equal to 0.9, and the

solution is advanced for 60 s. A constant discharge is specified at the upstream

boundary, while the reflective boundary condition is imposed downstream.

Figure 2.6 shows the pressure head profiles at t = 5, 20, and 40 s for the
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Figure 2.5 – Numerical (LTS) and analytical (solid lines) pressure head (a) and velocity
(b) profiles at t = 20 s for Test T3. The x-axis is restricted to [50, 150]m for clarity. In
numerical profiles, one symbol out of three is represented

56



2.3. Numerical tests

GTS and LTS schemes, along with a reference solution obtained with a very fine

mesh (N = 2000 cells, ∆x = 0.05 m). Moreover, Table 2.4 reports the L2-error

norms of flow area and discharge profiles calculated via Eq. (2.5) at selected

times (the same shown in Fig. 2.6) with reference to the fine mesh predictions.

The results confirm that the overall numerical scheme is able to describe smooth

free-surface/pressurized interfaces and that the LTS scheme reproduces the moving

free-surface discontinuities in a slightly more accurate way than the GTS model.

The speed-up factor is approximately 1.6 in this test.
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Figure 2.6 – Numerical (LTS and GTS, N = 100 cells) and reference (N = 2000 cells)
pressure head profiles at t = 5, 20, and 40 s for the gradual flow transition

Table 2.4 – Gradual pipe filling: LTS and GTS L2-error norms of flow area and
discharge profiles at selected times

time (s)
EL2

(A)(×10−2 m2) EL2
(Q)(×10−2 m3/s)

GTS LTS GTS LTS

5 1.4 1.4 3.8 3.8
20 1.5 1.3 3.7 3.4
40 1.6 1.4 2.9 2.6
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2.3.4 Laboratory test case

The robustness and effectiveness of the LTS scheme are assessed in this

subsection on the basis of the laboratory test proposed by Aureli et al. (2015) and

described in Section 1.5.1.

The computational domain is discretized by means of 300 grid cells (∆x =

0.04 m) and Manning’s coefficient is set at 0.009 m−1/3s. The slot width is assumed

to be equal to 0.01D and the Courant number is set at 0.9. A reflective boundary

condition is imposed at the upstream end, whereas the downstream end is never

reached by the flow.

Figures 2.7 and 2.8 show GTS and LTS numerical pressure head profiles

at selected times, along with the local experimental measurements available.

Moreover, Fig. 2.9 compares the numerical and experimental pressure head time

series at Sections G1 (x = 1.0 m) and G5 (x = 7.32 m), as well as velocity time

series at Section V5 (x = 7.28 m). The LTS scheme yields almost identical

numerical results to the ones provided by the GTS scheme. Table 2.5 reports

GTS and LTS L2-errors of flow area and discharge profiles calculated via Eq. (2.5)

at selected times (the same shown in Figs. 2.7 and 2.8) with reference to the GTS

results obtained with a very fine mesh (∆x = 0.005 m). The results confirm that

the accuracy of the two schemes is comparable. Moreover, for both schemes, the

dimensionless mass conservation error remains in the order of 10−15 at the end

of the simulation (corresponding to almost 104 updates in the GTS simulation).

Thus, LTS does not deteriorate mass conservation, even in the presence of wetting

and drying. Finally, the speed-up factor varies approximately from 2.0 to 2.1

(corresponding to about 50% CPU time reduction) as the mesh is refined from

∆x = 0.04 m to ∆x = 0.005 m.

The sensitivity of numerical results to the slot width is also analyzed. The

simulation of this test case is repeated with dimensionless slot widths decreasing
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Figure 2.7 – Numerical (GTS and LTS) pressure head profiles at selected stages for
the experimental test case. Experimental data are also reported. The spatial variable x
represents the distance along the pipe. Elevation z is referred to the bottom of section
G1
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Figure 2.8 – Numerical (GTS and LTS) pressure head profiles at selected stages for
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represents the distance along the pipe. Elevation z is referred to the bottom of section
G1
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Table 2.5 – Experimental test case: LTS and GTS L2-error norms of flow area and
discharge at selected times with reference to a simulation performed with a very fine
mesh (∆x = 0.005 m)

time (s)
EL2

(A)(×10−4 m2) EL2
(Q)(×10−4 m3/s)

GTS LTS GTS LTS

1.5 2.8 2.8 2.5 2.6
2.5 5.7 5.3 7.2 7.3
5.0 4.9 4.3 3.3 2.8
7.5 3.8 4.6 3.0 2.8
10.0 3.7 2.8 3.4 4.3
15.0 4.1 3.0 2.1 1.0
20.0 3.1 4.0 2.5 2.4

from 0.01 to 0.0005 (correspondingly, the pressure wave celerity increases from

12 m/s to 54 m/s), maintaining ∆x = 0.04 m and assuming Cr = 0.5. The speed-

up factor is observed to increase from 2.2 to 2.5. As an example, numerical

and experimental pressure head time series at cross-section G4 (x = 6.8 m) are

reported in Fig. 2.10 for the simulation performed with Ts/D = 0.0005. It must be

considered that GTS and LTS time series are characterized by different temporal

resolutions, since output results are available only at synchronization times for

the LTS simulation, whereas GTS results can be obtained after each update. In

this simulation, mmax is expected to be equal to 6, hence in Fig. 2.10 only one

value out of 26 is represented in the GTS time series, in order to compare the

numerical results consistently.

2.3.5 A field-scale application

The simulation of an idealized field-scale test is finally presented. A 2000 m

long sewer pipe, characterized by a circular cross-section (D = 1.2 m) and by

0.1% slope, intersects a subway structure at x = 1000 m, and an inverted siphon

is used to bypass the obstacle from below. This element is simply schematized
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Figure 2.10 – Numerical (GTS and LTS) and experimental pressure head time series
at cross-section G4 (Ts/D = 0.0005). Only one value out of 64 is considered in the GTS
time series

as a vertical deviation in the pipe axis, which is 50% sloped (downward) for 8 m,

horizontal for 5 m, and −50% sloped (upward) for 7 m. This geometry is certainly

a simplification, since these structures often consist of multiple pipes, inlet and

outlet chambers, and control devices. However, the main purpose of this test case

is to demonstrate the efficiency of the LTS scheme in practical applications where

only a small region of the flow field is surcharged.

The pipe is initially dry, the only exception being the siphon, filled with

static water, as if it was left from a previous rainfall event. At t = 0 min, a

triangular inflow hydrograph, with 30 min duration and 1.2 m3/s peak discharge

at t = 9 min, is imposed at the upstream section. A free outfall is assumed

downstream. The domain is discretized by means of N = 2000 cells of length

∆x = 1 m; moreover, the Courant number is assumed equal to 0.9, Manning’s

coefficient is set at 0.014 m−1/3s, and the dimensionless slot width is set at 0.01

(corresponding to a 30 m/s pressure wave celerity value). The flood propagation

in the sewer is simulated for 60 min.

As an example of model results, Fig. 2.11 shows pressure head profiles at
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selected times (Fig. 2.11a), and hydrographs of discharge (Fig. 2.11b) and pressure

head (Fig. 2.11c) at three cross-sections. Only LTS results are represented, since

GTS results are almost identical. The maximum water depth predicted is 0.84 m,

thus the flow in the pipe always remains in free-surface conditions, except for

the few cells (less than 1% of the total) representing the siphon. Hence, this

case is suitable to be simulated with the LTS scheme, since the few pressurized

cells would dictate the time step for the whole domain if the GTS scheme was

used. The achieved speed-up is in fact equal to 5.7, corresponding to 82% CPU

time reduction. If the simulation is repeated with “wet” initial conditions (for

example, 0.05 m in the whole pipe), the speed-up grows to 6.5 (−85% CPU time).

This is due to the fact that, for both schemes, flux evaluation in dry cells is

computationally inexpensive compared to the case of wet cells, thus making the

improved performance of the LTS scheme more evident.

2.4 Concluding remarks

In this chapter the local time stepping strategy is applied for the first time

to the numerical modelling of unsteady mixed flows. The LTS method adopted,

coupled with a Godunov-type finite volume solver based on the Preissmann slot

approach, is found to be effective in simulating these phenomena as regards both

computational efficiency and solution accuracy. In particular, the results of the

numerical simulations show the following:

• The LTS reduces run time and improves model efficiency in comparison

with the conventional GTS, without impairing overall solution accuracy

and without deteriorating mass conservation. In the transient test cases

presented in this work, speed-up factors between 1.4 and 6.5 were achieved

(corresponding to a reduction in CPU time between 29% and 85%). Moreover,

the LTS strategy ensures improved accuracy in the free-surface region of
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Figure 2.11 – LTS numerical results for the inverted siphon simulation: (a) pressure head
profiles at selected times (elevation z is referred to the siphon invert; the representation
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the flow field.

• The speed-up factor increases with the percentage of free-surface cells in the

domain (which is time-dependent in unsteady applications); this suggests

that LTS is particularly suitable for applications where flow pressurization

is expected to involve only a small region of the flow field.

• The run time improvement achievable by the LTS scheme (compared to the

GTS scheme) is slightly enhanced when narrow slot widths, corresponding

to more realistic values of pressure wave celerity, are employed.

• The novel procedure based on the check of the local Courant number, which

interrupts the series of intermediate updates and imposes synchronization

to a suitable limited computational time, is useful to prevent numerical

instabilities.

The application of the LTS method presented in this paper can easily be

extended to finite volume mixed flow models based on different approaches, such

as the TPA model or the dual model, and to numerical schemes of higher order of

accuracy.
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2D modelling of mixed flows

3.1 Introduction

Researchers have mainly focused their attention on the implementation and

validation of 1D numerical models, because the 1D approximation is suitable

for most applications (e.g. Politano et al., 2007; Sanders and Bradford, 2011;

Trindade and Vasconcelos, 2013; Cataño-Lopera et al., 2014). However, some

practical situations involving mixed flows require a 2D approximation, at least.

This is the case of hydraulic structures, such as bridges and culverts, which may

become partially or totally pressurized. In the numerical simulation of flood

events in a wide area, the presence of bridges, culverts, or similar structures is

often either neglected (when these elements do not sensibly affect the flow field)

or treated in a simplified way: as an example, Ratia et al. (2014) account for the

head loss induced by a bridge as an additional source term in a 2D finite volume

numerical scheme. For these hydraulic singularities, which are inevitably poorly

described in large 2D areas (unless a very high spatial resolution is adopted),

2D/1D dynamically linked modelling has been proposed for an adequate prediction
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of the near-field effects (e.g. Syme et al., 2004). However, a near-field simulation

of the flooding process may require a more accurate description of the flow field

around and under bridges or culverts, coupled with a detailed representation of

the topography.

Moreover, the 1D approximation appears to be unsuitable for circular or

vaulted conduits (such as derivation or by-pass tunnels) in the presence of a

curved pipe alignment, when the superelevation in water surface causes a partial

wetting of the conduit ceiling.

Therefore, 2D numerical modelling of transient mixed flow appears to deserve

attention, but to date, to the best of the author’s knowledge, only the study by

Van Nam et al. (2012) has attempted to examine this topic, providing original

experimental data concerning a steady flow induced in a narrow rectangular culvert

placed asymmetrically inside a laboratory flume with rectangular cross-section.

Another recent work by Bashiri Atrabi et al. (2015) focused on the 2D extension

of an interface-tracking model to simulate the propagation of air cavities into

ducts. However, only the transition from pressurized to free-surface flow (and not

viceversa) could be modelled.

This chapter presents a novel 2D model for simulating transient mixed flows

which extends the validity of the 2D shallow water equations to the case of

pressurized flows using the Preissmann slot approach. With this aim, each

computational cell is expanded over its top by ideally adding two perpendicular

narrow slots. The model is validated by comparison with exact solutions of 1D

discontinuous initial value problems and radial solutions of idealized test cases

with cylindrical symmetry. Moreover, the simulation of a simple laboratory test

case concerning a partially pressurized arch bridge in steady state conditions is

performed. Finally, the suitability of the model to deal with field-scale problems

is assessed on the basis of the simulation of the transit of a dam-break bore under

an arch bridge. This chapter is derived in part from Maranzoni et al. (2015).
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3.2 Mathematical model

The extension of the Preissmann slot concept to 2D modelling is based on

the idea of introducing two hypothetical narrow vertical slots on the top of

each Cartesian element in which the 2D computational domain is assumed to be

discretized. The two slots are aligned along the Cartesian plane directions x and y

and extend indefinitely upward (see Fig. 3.1). In Fig. 3.1, H denotes the elevation

of the ceiling above the bottom; ∆x = x2 − x1 and ∆y = y2 − y1 indicate the

plane dimensions of a generic fixed control element with a rectangular base; Tx

and Ty are the widths of the slots along the y- and x-axis directions, respectively.

As long as the water surface is below the ceiling, free surface flow occurs and h

represents the local water depth; conversely, when the water surface reaches the

top of the cell, the free-surface is inside the slot and water depth h provides an

estimate of the pressure head of an equivalent pressurized flow. Again in Fig. 3.1,

Ax and Ay are the flow areas of the x- and y-normal faces respectively, shaped as

rectangular sections with a vertical slot added on the ceiling.

3.2.1 Governing equations

The mass conservation principle, expressed in the Eulerian form and applied

to the case of incompressible flow, states that the rate of change of the total

amount of fluid volume V in a control volume equals the net volume rate of flow

entering through its boundaries. For the fixed control volume shown in Fig. 3.1

with planar basis [x1, x2]× [y1, y2], this leads to the following basic integral form

of the continuity relation:

∂V

∂t
= [f(x1, t)− f(x2, t)] + [g(y1, t)− g(y2, t)] (3.1)
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Chapter 3. 2D modelling of mixed flows

Figure 3.1 – Definition sketch of the 2D elemental Cartesian control volume with the
addition of two narrow vertical slots on the top: flow not involving (a) or involving (b)
the slots
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where f =
∫

Ax
u dAx and g =

∫

Ay
v dAy represent the intercell volume fluxes in the

x- and y-directions across the lateral faces Ax and Ay respectively, u and v are

the x- and y-components of velocity. Introducing the surface-averaged values ū

and v̄ of velocity components over the areas Ax and Ay, the flux functions f and

g can be represented as follows:

f = ūAx, g = v̄Ay. (3.2)

Division of Eq. (3.1) by the plane area Ω = ∆x×∆y leads to:

∂h̄

∂t
=

1

∆x
[q̄x(x1, t)− q̄x(x2, t)] +

1

∆y
[q̄y(y1, t)− q̄y(y2, t)] (3.3)

in which h̄ = V
Ω is the average value of the areal density of water volume over the

control element, i.e. a kind of “average water depth” over the planar area Ω, while

q̄x = Axū
∆y and q̄y =

Ay v̄
∆x are equivalent flow discharges per unit width along the x-

and y-axis directions, respectively. If the control volume becomes infinitesimal,

for smooth solutions Eq. (3.3) reduces to the differential form:

∂h̄

∂t
+

∂q̄x
∂x

+
∂q̄y
∂y

= 0. (3.4)

In addition to mass, momentum is also a “conserved” quantity for the fixed

control volume of Fig. 3.1, and the linear momentum equation can be derived

from Newton’s second law. In the following, only the x-component of the equation

will be derived. First, the rate of change of the x-momentum within the control

volume (CV) can be written as:

∂

∂t

∫

CV

ρu dV ≃
∂

∂t
(ρūAx∆x) (3.5)

assuming that the water mass contained in the slot extending along the y-direction
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does not carry x-momentum. Recalling the definition of the equivalent unit

discharge q̄x introduced above, the time derivative in Eq. (3.5) becomes

∂

∂t
(ρq̄xΩ). (3.6)

Then, the x-component of the convective part of the momentum flux through

the faces normal to x-axis is:

mc(x1, t)−mc(x2, t) (3.7)

with mc =
∫

Ax
ρu2dAx ≃ ρū2Ax, while the x-momentum carried past the faces

normal to y-axis becomes:

nc(y1, t)− nc(y2, t) (3.8)

where nc =
∫

Ay
ρuvdAy ≃ ρūv̄Ay. Consequently, the total advective contribution

to the momentum flux is:

− ρ∆y

(

q̄2x
h̄x

) ∣

∣

∣

∣

x2

x1

− ρ∆x

(

q̄xq̄y
h̄x

) ∣

∣

∣

∣

y2

y1

(3.9)

where h̄x = Ax

∆y represents the surface-averaged water depths over Ax (similarly

h̄y =
Ay

∆x ). By assuming a hydrostatic distribution, the pressure term in the

x-momentum flux reads:

mp(x1, t)−mp(x2, t) = −(ρgζxAx)
∣

∣

x2

x1

(3.10)

where ζx denotes the vertical distance of the centroid of the areas Ax from the

water surface.
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Finally, the source term includes a component due to gravity:

∫

CV

ρgS0xdV ≃ ρgAxS0x∆x (3.11)

S0x being the bottom slope in the x-axis direction, and a component due to

friction:

− ρgAxSfx∆x (3.12)

in which Sfx is the friction slope in the x-direction. If only bed friction effects are

considered, the friction slope can be assessed with the usual Manning formula:

Sfx =
n2
mū|ū|

h̄
4/3
x

. (3.13)

The mass stored in the y-directed slot is assumed not to contribute to the

flowing in the x-direction, thus is again neglected in the assessment of contributions

(3.11) and (3.12). By joining all the previous terms and dividing by ρΩ, the

following linear momentum equation can be obtained for the control volume of

Fig. 3.1:

∂q̄x
∂t

= −
1

∆x

(

q̄2x
h̄x

) ∣

∣

∣

∣

x2

x1

−
1

∆x
(gζxh̄x)

∣

∣

x2

x1

−
1

∆y

(

q̄xq̄y
h̄x

) ∣

∣

∣

∣

y2

y1

+ gh̄x(S0x − Sfx).

(3.14)

Ultimately, the application to an infinitesimal control volume gives the x-

momentum equation written in differential conservation law form:

∂q̄x
∂t

+
∂

∂x

(

q̄2x
h̄x

+ gζxh̄x

)

+
∂

∂y

(

q̄xq̄y
h̄x

)

= gh̄x(S0x − Sfx). (3.15)

Similarly, the y-momentum equation can be derived:

∂q̄y
∂t

+
∂

∂x

(

q̄xq̄y
h̄y

)

+
∂

∂y

(

q̄2y
h̄y

+ gζyh̄y

)

= gh̄y(S0y − Sfy). (3.16)
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Equations (3.4), (3.15) and (3.16) can be combined into a system of equations

that can be written using the compact vector notation:

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= S (3.17)

in which the vector U of the conserved variables, the flux vectors F and G, and

the source term S read:

U =











h̄

q̄x

q̄y











, F =













q̄x
q̄2x
h̄x

+ gζxh̄x

q̄xq̄y
h̄y













, G =















q̄y
q̄xq̄y
h̄x

q̄2y
h̄y

+ gζyh̄y















,

S =











0

gh̄x(S0x − Sfx)

gh̄y(S0y − Sfy)











. (3.18)

Equation (3.17), coupled with the previous statements, actually represents

a system of modified 2D shallow water equations with a peculiar definition of

the set of unknown variables. In particular, the assumption that the water mass

flowing in a slot has only one component of velocity (in the slot direction) ensures

that Eq. (3.17) shows the classic structure of the 2D shallow water equations with

the first terms of the F and G flux vectors coinciding with the second and third

component of the vector U of the conserved variables, respectively. If h < H , then

the water surface is below the ceiling, h̄ reduces to h (the same holds for h̄x and

h̄y), and Eq. (3.17) returns to the usual system of the 2D shallow water equations

(e.g. Toro, 2001). The geometrical properties of the control volume can easily be

extended for h ≥ H considering the addition of two crossing vertical slots on the
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top with dimensionless widths kx = Tx/∆x and ky = Ty/∆y, respectively:

V =











Ωh if 0 ≤ h ≤ H

ΩH

[

1 + (kx + ky − kxky)

(

h

H
− 1

)]

if h ≥ H

h̄ =











h if 0 ≤ h ≤ H

H

[

1 + (kx + ky − kxky)

(

h

H
− 1

)]

if h ≥ H

(3.19)

Ax =











∆y h if 0 ≤ h ≤ H

∆y H

[

1 + ky

(

h

H
− 1

)]

if h ≥ H

h̄x =











h if 0 ≤ h ≤ H

H

[

1 + ky

(

h

H
− 1

)]

if h ≥ H

(3.20)

ζxh̄x =















h2

2
if 0 ≤ h ≤ H

H

(

h−
H

2

)

+
(h−H)2

2
ky if h ≥ H

(3.21)

Similar expressions can be derived for Ay, h̄y, and ζyh̄y. It can be noticed that

these geometrical quantities are continuous functions of h, with a discontinuity in

the derivative at h = H. This sudden change in the gradient is more severe for

narrower slots.

Therefore, by the simple generalization of the classic Preissmann slot model

described above, a 2D mixed flow can easily be modeled as an equivalent 2D

free-surface flow occurring in a fixed integration element with peculiar composite

shape, without the need of any special treatment for handling transitions between

free-surface and pressurized conditions. In this way, the capability of dealing

with the surcharging of the system can be extended to the 2D modelling, without

modifying the governing equations. The high celerity values typical of the pressure
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waves can be reproduced through a suitable setting of the slot widths. Finally,

Eq. (3.17) easily reduces to the x- (or y-) split 2D shallow water equations when

the velocity component in the y- (or x-) direction vanishes; in this case, the classic

1D geometrical schematization of the Preissmann slot model can be obtained if

the width of the transverse slot is set to zero.

3.2.2 Properties of the equations

In this subsection, the eigenstructure of the governing equations is analyzed

with regard to the conserved variables (Toro, 2001). For h ≥ H, the Jacobian

matrix JF corresponding to the flux vector F defined in Eq. (3.18) is given by:

JF =

















0 1 0
{

−

(

q̄x
h̄x

)2

+ gH

[

1

ky
+

(

h

H
− 1

)]

}

ky
kx + ky − kxky

2
q̄x
h̄x

0

−
q̄xq̄y
h̄2
y

ky
kx + ky − kxky

q̄y
h̄y

q̄x
h̄y

















(3.22)

while, for h < H, it reduces to the familiar form typical of the 2D shallow water

equations:

JF =











0 1 0

−ū2 + gh 2ū 0

−ūv̄ v̄ ū











. (3.23)

The eigenvalues of JF in Eq. (3.22) can be obtained after some algebra:

λ1 = ū− cx, λ2 =
q̄x
h̄y

, λ3 = ū+ cx (3.24)

where the celerity cx is a function of both h and ū (for h ≥ H):

cx =

√

ū2 −

{

ū2 − gH

[

1

ky
+

(

h

H
− 1

)]}

ky
kx + ky − kxky

. (3.25)
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For the special case of kx = ky = k, the celerity is

cx =

√

ū2
1− k

2− k
+ gH

1

2− k

[

1

k
+

(

h

H
− 1

)]

(3.26)

with k and H acting as geometric parameters. Moreover, in the particular case

of a 1D flow along the x-direction, assuming kx equal to zero in Eq. (3.25), cx

becomes a function of h only:

cx =

√

gH

[

1

ky
+

(

h

H
− 1

)]

. (3.27)

It can easily be verified that Eq. (3.27) is equivalent to the usual celerity formula

c =
√

gA/b applied to a composite rectangular section with the addition of a

vertical slot above the crown. For h = H, Eq. (3.27) shows a discontinuity in the

celerity value that can be very strong for low values of k.

A similar analysis can be performed for the Jacobian matrix JG corresponding

to the flux vector G. The classic 2D shallow water equations are known to

be strictly hyperbolic for a wet bed. The strict hyperbolicity of Eq. (3.17) is

confirmed even for h ≥ H, since the Jacobian matrices JF and JG admit three

real eigenvalues which, in addition, are all distinct.

77



Chapter 3. 2D modelling of mixed flows

3.3 Numerical scheme

Equation (3.17) is discretized over a uniform Cartesian grid with dimensions

∆x×∆y using the following explicit finite volume scheme, based on the Strang

splitting of the source term (Toro, 1999):

U⋆
i,j = Un

i,j +
∆t

2
Sn
i,j

U⋆⋆
i,j = U⋆

i,j −
∆t

∆x

[

Fi+ 1

2
,j − Fi− 1

2
,j

]

−
∆t

∆y

[

Gi,j+ 1

2

−Gi,j− 1

2

]

Un+1
i,j = U⋆⋆

i,j +
∆t

2
S⋆⋆
i,j .

(3.28)

According to this succession of updates, the cell-average Ui,j in the i, j-cell

evolves from the time level n to the time level n+ 1 (being ∆t = tn+1 − tn the

computational time interval). In a single step, both x and y fluxes are taken into

account through the intercell numerical fluxes Fi±1/2,j and Gi,j±1/2 (in the x-

and y-directions, respectively) calculated at the intermediate state U⋆. Forcing

effects are involved by the cell-averaged source term vector Si,j which is evaluated

at the states Un and U⋆⋆ in Eq. (3.28).

The Slope Limiter Centred (SLIC) scheme proposed by Toro (1999) is here

adopted in order to estimate the numerical fluxes. This scheme is characterized

by three steps.

1. According to the MUSCL-Hancock approach, boundary extrapolated values

are computed at the interfaces of each cell. For the x-axis direction, it reads:

UL
i+ 1

2
,j = Un

i,j +
1

2
Φ

+
i− 1

2
,j

(

Un
i,j −Un

i−1,j

)

UR
i+ 1

2
,j = Un

i+1,j −
1

2
Φ
−

i+ 3

2
,j

(

Un
i+2,j −Un

i+1,j

)

(3.29)

in which the superscripts L and R indicate the left- and right-hand extrapo-

lated states at each cell interface respectively, and Φ represents a suitable
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slope limiter function which enforces the Total Variation Diminishing (TVD)

property, with the aim of minimizing spurious oscillations in proximity of

strong gradients of the variables (Hirsch, 1990). In Eq. (3.29), the limiters

Φ
± depend on the corresponding ratios r±, which are defined as:

r
+
i− 1

2
,j
=

Un
i+1,j −Un

i,j

Un
i,j −Un

i−1,j

, r
−

i+ 3

2
,j
=

Un
i+1,j −Un

i,j

Un
i+2,j −Un

i+1,j

. (3.30)

In this work, the classic slope limiter function of Van Leer (1974) is adopted:

φ (r) =











r + |r|

1 + r
if r > 0

0 if r ≤ 0

(3.31)

Extrapolations along the y-direction can be performed in a similar way.

Moreover, intercell boundary values of the variables Ax, h̄x, and ζxh̄x

(similarly for Ay, h̄y, and ζyh̄y) are also reconstructed on the basis of the

geometrical relations (3.20) and (3.21).

2. The boundary extrapolated variables are evolved by an half time step ∆t/2

according to the following relations:

U
L

i+ 1

2
,j = UL

i+ 1

2
,j −

∆t

2∆x

[

F
(

UL
i+ 1

2
,j

)

− F
(

UR
i− 1

2
,j

)]

−
∆t

2∆y

[

G
(

UL
i,j+ 1

2

)

−G
(

UR
i,j− 1

2

)]

, (3.32a)

U
R

i+ 1

2
,j = UR

i+ 1

2
,j −

∆t

2∆x

[

F
(

UL
i+ 3

2
,j

)

− F
(

UR
i+ 1

2
,j

)]

−
∆t

2∆y

[

G
(

UL
i+1,j+ 1

2

)

−G
(

UR
i+1,j− 1

2

)]

. (3.32b)

Evolutions along the y-direction can be performed in a similar way. Again,
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evolved values of Ax, h̄x, and ζxh̄x (similarly for Ay, h̄y, and ζyh̄y) are

estimated through Eqs. (3.20) and (3.21).

3. Godunov fluxes at the intercell boundaries are evaluated by the First-Order

Centred (FORCE) flux (Toro, 1999), which is the arithmetic mean of the

Lax-Friedrichs (LF) and Richtmyer (RI) fluxes:

FFORCE

i+ 1

2
,j =

1

2

(

FLF

i+ 1

2
,j + FRI

i+ 1

2
,j

)

. (3.33)

The LF flux is computed as:

FLF

i+ 1

2
,j =

1

2

[

F
(

U
L

i+ 1

2
,j

)

+ F
(

U
R

i+ 1

2
,j

)]

+
1

2

∆x

∆t

(

U
L

i+ 1

2
,j −U

R

i+ 1

2
,j

)

(3.34)

while the RI flux is evaluated as:

FRI

i+ 1

2
,j = F

(

URI

i+ 1

2
,j

)

(3.35)

with:

URI

i+ 1

2
,j =

1

2

(

U
L

i+ 1

2
,j + U

R

i+ 1

2
,j

)

+
1

2

∆t

∆x

[

F
(

U
L

i+ 1

2
,j

)

− F
(

U
R

i+ 1

2
,j

)]

.

(3.36)

Similar relations can be written for the vector G of fluxes in the y-direction.

This numerical procedure for solving the homogeneous problem is second-order

accurate in space and time. With regard to stability, the explicit unsplit MUSCL-

Hancock scheme applied to the 2D linear advection equations with constant

velocity components ax > 0 and ay > 0 (in the x and y directions, respectively)

has the stability range (Toro, 1999):

ax
∆t

∆x
+ ay

∆t

∆y
≤ 1. (3.37)
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The extension of this condition to the non-linear problem (3.17) and (3.18) leads

to the stability restriction:

max
i,j

[(∣

∣

∣

∣

q̄x
h̄x

∣

∣

∣

∣

+ cx

)

∆t

∆x
+

(∣

∣

∣

∣

q̄y
h̄y

∣

∣

∣

∣

+ cy

)

∆t

∆y

]

≤ 1 (3.38)

involving the wave speeds cx and cy of the hyperbolic system. The condition

expressed by Eq. (3.38) is certainly satisfied if the computational time step ∆t is

calculated as follows:

∆t =
1

2
Crmin

i,j








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∣
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∣
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,
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∣

q̄y
h̄y

∣

∣

∣

∣

+ cy









(3.39)

where Cr denotes the Courant number (≤ 1).

The effectiveness and robustness of this numerical method for solving shallow

water equations in dam-break modelling had been extensively tested on the basis

of both analytical and real field test cases (see, for example, Aureli et al., 2008).

3.4 Numerical tests

In this section the model previously described is validated by comparing

numerical results with both exact solutions of 1D discontinuous initial value

problems and reference radial solutions of idealized test cases with cylindrical

symmetry. All validation tests concern frictionless problems with horizontal

bathymetry. Finally, applications to the experimental case of a steady flow

through an arch bridge and to a field-scale dam-break case are presented.
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3.4.1 1D test cases with exact solution

The ability of the numerical model to simulate highly transient mixed flows is

first assessed on the basis of 1D test problems with exact solution, which can be

obtained from the exact Riemann solver proposed by Kerger et al. (2011b).

All tests consider a 20 m long frictionless horizontal duct characterized by a

rectangular cross-section with height H and width B both equal to 1 m. The

computational domain [−10, 10]m × [0, 1]m is discretized by means of Nx =

2000×Ny = 10 rectangular cells with size ∆x = 0.01 m×∆y = 0.1 m. Since each

computational cell is provided with two fictitious vertical slots aligned along the

two plane directions x and y, the closed conduit presents Ny longitudinal slots

instead of the classic single slot that is ideally introduced above the pipe crown

when the slot concept is applied to the 1D equations. The width Ty of the slots

in the longitudinal direction is assumed to be equal to a small fraction of the

cross-sectional grid size ∆y (ky = Ty/∆y). Therefore, an array of longitudinal

slots with fixed dimensionless width ky conceptually replaces a single slot with the

same value of the ratio of slot width to conduit width. Moreover, in the simulation

of 1D problems, the dimensionless width of the transverse slots (kx = Tx/∆x)

should be assumed sufficiently small in order to limit the artificial increase in the

pipe volume.

Table 3.1 summarizes the test conditions and gives the initial left and right

values for the three test cases considered (in the following, the overbar above the

velocity components is omitted for simplicity). The discontinuity in the initial

states is located at the origin of the x-axis. Some of these tests have already been

employed in Chapter 2. In all the simulations, the stability condition stated by

Eq. (3.39) is adopted with the Courant number Cr equal to 0.9.
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Table 3.1 – Test conditions for three 1D discontinuous initial-value problems with
analytical solution

Test hL(m) uL(m/s) hR(m) uR(m/s) Description

A1 0.8 2.0 0.8 −2.0 Two transition shocks
A2 3.0 0.0 0.5 0.0 Left transition wave and right

shock
A3 1.5 1.0 1.5 −1.0 Two waterhammer waves

Test A1

Test A1 is characterized by an initial condition representing two colliding

uniform free-surface flows with the same water depth but opposite velocities. This

test coincides with T3 in Section 2.3.2. The impingement of the two incoming flows

produces a pressurized intermediate state which expands thanks to two transition

shock waves traveling in opposite directions. If only one half of the domain is

considered, this situation is equivalent to the propagation of a pipe-filling surge

originated by the sudden closure of the downstream end of a conduit.

Figure 3.2 compares the numerical results of two simulations carried out by

setting ky at 0.01 and 0.1 (kx = 0.001 for both simulations) with the corresponding

1D solutions obtained from the exact Riemann solver by considering a single

longitudinal slot with the same dimensionless width. The numerical model seems

to correctly resolve the abrupt transition between free-surface and surcharged

regimes. However, spurious oscillations appear behind the shock wave, as expected.

Figure 3.2 shows that the strength of the numerical oscillations at flow transitions

slightly depends on the slot width.

A sensitivity analysis is carried out on the basis of the same test conditions in

order to highlight the effect of the longitudinal mesh size ∆x on the numerical

results. Figure 3.3 compares pressure head and velocity profiles at t = 0.5 s

extracted from three different simulations performed with ∆x = 0.01, 0.05 and
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Figure 3.2 – Test A1: comparison between exact solution and numerical results at
t = 0.5 s and t = 1 s; (a) pressure head, (b) velocity. Two data series are reported,
corresponding to ky = 0.01 and ky = 0.1 respectively. Only the sub-domain [−10, 0]m
is represented for clarity
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0.1 m. All the other model parameters remain unchanged. The numerical model

shows a slight shift in the location of the discontinuity. Furthermore, it spreads

the discontinuity over a small number of grid cells, which does not seem to be

influenced by ∆x. For this reason, the coarser the mesh, the more diffusive the

numerical profiles appear. Similarly, the finer the mesh, the shorter the space

interval along which spurious oscillations at the transition front vanish. Moreover,

oscillation amplitude seems insensitive to grid size.

The deviation of the numerical pressure head and velocity profiles from the

reference solution provided by the exact Riemann solver can be quantified by the

L1-error, commonly used for conservation laws (LeVeque, 2002):

EL1
(h) = ∆x

N
∑

i=1

|hnum − hexact|, EL1
(u) = ∆x

N
∑

i=1

|unum − uexact|. (3.40)

Table 3.2 reports the results obtained for t = 0.5 s considering half of the compu-

tational domain, i.e. [−10, 0]m. It can be noticed that grid refinement induces

a reduction in the pressure head error. On the contrary, the overall error in the

velocity profile is slightly affected by the grid spacing in the ∆x-range considered.

Anyway, these errors are mainly attributable to the numerical approximation in

the reconstruction of the transition bore.

The sensitivity of the numerical results to the width of the transverse slot

Table 3.2 – Test A1: sensitivity analysis on longitudinal grid size based on the pressure
head and velocity profiles at t = 0.5 s. The L1-norms are calculated with reference to
the exact solution over the sub-domain [−10, 0]m

∆x EL1
(h)(m2) EL1

(u)(m2/s)

0.01 0.840 0.557
0.05 0.903 0.559
0.10 0.980 0.559
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can be assessed by looking at Fig. 3.4, in which three pressure head and velocity

profiles at t = 0.5 s, computed using three different values of the dimensionless slot

width kx (10
−2, 10−3 and 10−4), are compared with the exact solution (ky = 0.01).

Since the reference 1D solution does not take into account the fictitious increment

of the conduit volume induced by the system of transverse slots, it can be expected

that the agreement between reference and numerical solutions improves with kx

decreasing. This trend is evident in Table 3.3, which shows the deviation between

predicted and reference pressure head and velocity profiles at t = 0.5 s, estimated

through the L1-norm defined in Eq. (3.40) for the sub-domain [−10, 0]m. The

pipe filling bore is actually well reproduced provided that kx is set at least one/two

orders of magnitude lower than ky. If the width of the transverse slot is assumed

of the same order of magnitude as the longitudinal one, the celerity of the sharp

transition wave is underestimated, as well as the height of the jump in pressure

head caused by the wave transit.

Table 3.3 – Test A1: sensitivity analysis on the parameter kx based on the pressure
head and velocity profiles at t = 0.5 s. The L1-norms are calculated with reference to
the exact solution over the sub-domain [−10, 0]m

kx EL1
(h)(m2) EL1

(u)(m2/s)

10−4 0.788 0.518
10−3 0.841 0.557
10−2 1.324 0.916

Test A2

Test A2 represents a sort of “dam-break” problem in which a wall (located

at x = 0 m) initially separates a pressurized left state from a free-surface right

state (see Table 3.1). This test coincides with T1 in Section 2.3.2. The solution

consists of a free-surface shock wave propagating downstream and a left rarefaction
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wave along which a smooth transition between free-surface and pressurized flow

occurs (Fig. 3.5). This transition rarefaction wave appears to be very steep in

the pressurized portion and shows a considerable spread in correspondence with

the flow transition. This behavior is due to the fact that the left eigenvalue is

practically constant where the flow is pressurized and changes considerably across

the crown of the closed conduit.

Figure 3.5 shows pressure head and velocity profiles at t = 0.3 s computed on

the basis of two different values of the model parameter kx (kx = 10−3 and 10−4).

The numerical profiles (especially in the portion corresponding to the rarefaction

wave) are rather sensitive to the dimensionless slot width kx, and a good agreement

with the solution of the exact Riemann solver is achieved with kx = 10−4. The

free-surface intermediate state located between the two waves (star region) is well

reproduced by the numerical model. With reference to these simulations (not

involving inflow or outflow contributions), at t = 0.3 s, after approximately 2000

computational time steps, the relative volume conservation error (with reference

to the initial water volume) is in the order of 10−13, independently of the value of

kx.

Table 3.4 provides quantitative information on the overall accuracy of the

numerical reconstruction of pressure head and velocity profiles at t = 0.3 s for

different longitudinal grid sizes. The L1-error norms, calculated by applying

Eq. (3.40) over the total domain [−10, 10]m, show a trend towards pointwise

convergence of the numerical profiles to the reference solution as the grid is refined.

In particular, if too coarse a mesh is adopted, excessive numerical spreading of the

rarefaction and shock waves occurs, with significant inaccuracy in the prediction

of the intermediate state in the star region.
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Table 3.4 – Test A2: sensitivity analysis on longitudinal grid size based on the pressure
head and velocity profiles at t = 0.3 s (ky = 10−2, kx = 10−4). The L1-norms are
calculated with reference to the exact solution over the total computational domain
[−10, 10]m

∆x EL1
(h)(m2) EL1

(u)(m2/s)

0.01 0.223 0.232
0.05 0.551 0.602
0.10 0.807 0.845

Test A3

Finally, Test A3 involves a fully pressurized flow and aims at assessing the

model’s capability of simulating water hammer transients. The initial data refer

to two colliding pressurized flows moving with opposite velocities in a rectangular

duct. The same test can simulate the stopping of a pressurized uniform flow

caused by the instantaneous closure of a downstream valve. A Preissmann slot

with a size of 0.001% of the conduit width is adopted, thus the propagating

pressure wave is modeled by means of a gravity wave traveling with a celerity

of approximately 990 m/s. This value is realistic in water hammer phenomena.

Figure 3.6 shows numerical pressure head and velocity profiles at t = 0.003 s and

t = 0.008 s, and the reference solution derived from the exact Riemann solver.

The reference solution is accurately reproduced by the numerical model and, in

particular, the water hammer wave is well resolved without spurious oscillations.
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3.4.2 2D test cases with reference solution

The capability of the proposed model of predicting 2D transient mixed flows

is assessed in this subsection. In the literature, numerical schemes based on

the 2D shallow water equations are often validated by comparison with dam-

break test cases with cylindrical symmetry, namely the circular dam-break and

the shock-focusing problems (e.g. Alcrudo and García-Navarro, 1993; Liska and

Wendroff, 1999; Toro, 2001). In this work, these well-known test cases are modified

in order to set up 2D discontinuous initial-value problems capable of inducing

propagation phenomena involving transitions between free-surface and pressurized

flow. Table 3.5 summarizes the test conditions for the two cases considered here.

Given the cylindrical symmetry of the problem, a 1D radial solution can be

obtained by solving the following 1D system:

∂U

∂t
+

∂F

∂r
= Sr (3.41)

where

U =





h̃

urh̃



, F =





urh̃

u2
rh̃+

g

2kr

[

h̃2 +H2 (kr − 1)
]



, Sr = −
1

r





urh̃

u2
rh̃





(3.42)

Sr being the source term induced by the metrics. In Eq. (3.42), r is the radial

Table 3.5 – Test conditions for two 2D discontinuous initial-value problems with
reference solution. For both tests uL = uR = 0

Test Domain hL hR R H
description (m) (m) (m) (m) (m)

Mixed circular dam-break [25, 50]× [25, 50] 10.0 1.0 11.0 5.0
Mixed shock-focusing [0, 1.5]× [0, 1.5] 0.2 1.0 0.35 1.03
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coordinate, ur is the radial velocity, and h̃ is an average depth defined as H +

kr(h−H), being kr the ratio between the length of the free-surface arch and the

circumferential length at a fixed radial distance. Accordingly, kr is a geometrical

parameter denoting the dimensionless slot width if h̃ > H; it reduces to unity if

h̃ ≤ H.

Actually, a 1D radial solution obtained from a very fine mesh can be considered

a good approximation of the exact solution. All reference solutions described

in the following are obtained from numerical simulations performed with a 1D

Preissmann slot model (described in Section 1.3), properly modified in order to

take into account the additional radial source term.

Mixed circular dam-break problem

In the original circular dam-break test case (see Liska and Wendroff, 1999), a

10 m high water column with radius equal to 11 m is placed in the middle of a

50 m× 50 m square horizontal frictionless domain. Around, quiescent water has

an initial depth equal to 1 m. In this work, a 5 m high ceiling is introduced over

the whole domain, in such a way that the central part of the domain is initially

pressurized (see Fig. 3.7). The sudden release of the water column generates a

wave system characterized by a flow regime transition.

Figure 3.8 shows the comparison between 1D radial solution and diagonal

(y = x) pressure head and velocity profiles computed by the full 2D model at

selected times (t = 0.1, 0.3, and 0.7 s). The reference radial solution is obtained

by numerically solving Eq. (3.41) over the domain [25, 50]m discretized through

a very fine uniform mesh consisting of 4000 cells. Due to geometrical symmetry,

the 2D simulation is restricted to the sub-domain [25, 50]m × [25, 50]m, which

is divided into 501× 501 uniform computational cells. The Courant number is

set equal to 0.9. From the cylindrical symmetry of the problem, it ensues that

no preferential streamwise direction is recognizable a priori in the 2D simulation.
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Figure 3.7 – Mixed circular dam-break test: sketch of the initial conditions

Therefore, it is reasonable to adopt the same slot size for both systems of parallel

slots aligned along the Cartesian axes (kx = ky = 0.01). Moreover, in order

to make the 1D radial solution (obtained by adding a single longitudinal slot)

comparable with the full 2D solution (computed in the presence of a lattice of

orthogonal slots), the width of the single 1D slot is assumed to be double the size

of each group of parallel slots in the full 2D modelling, i.e. kr = 0.02. In this way,

the two models ideally contain the same supplementary volume above the conduit

crown.

Figure 3.8 highlights the fact that the 2D numerical results fit the refer-

ence solution reasonably well and that the 2D model is capable of satisfactorily

reproducing both the depressurization of the water column generated by the

inward-propagating rarefaction wave and the evolution of the following fully free-

surface flow with a circular shock wave expanding outwards. Since axial and
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diagonal profiles are almost undistinguishable, only diagonal profiles are shown

in Fig. 3.8 for the sake of clarity. Hence, the 2D numerical solution excellently

preserves the circular symmetry despite the Cartesian mesh.

Mixed shock-focusing problem

The classic shock-focusing test case is commonly defined in a dimensionless

context (see, for example, Liska and Wendroff, 1999). In this work, an analogous

test is carried out on a dimensional square domain [−1.5, 1.5]m× [−1.5, 1.5]m,

again horizontal and frictionless. An idealized circular dam of 0.35 m radius is

placed in the center of the domain, and a static condition is initially assumed with

water depth equal to 0.2 m inside the dam and 1 m outside. The sudden removal

of the idealized dam induces a circular shock wave moving towards the center and

an outward-propagating rarefaction wave. The shock progressively concentrates

and “implodes” at the focusing point (0, 0). It is proved in the literature that this

collision process causes considerable numerical difficulties to 2D models, especially

if a Cartesian mesh is adopted (e.g. Morel et al., 1996). In the revised version of

the shock-focusing test case considered here, the implosion at the focusing point

is exploited to generate a 2D transient mixed flow. With this aim, a 1.03 m high

ceiling is introduced throughout the domain (see Fig. 3.9). Accordingly, the shock

collision produces strong pressurization near the focusing point and gives origin

to a circular filling bore which expands outwards.

The 2D simulation is restricted to the [0, 1.5]m× [0, 1.5]m sub-domain and is

performed by setting the model parameters as follows: ∆x = ∆y = 0.003 m, kx =

ky = 0.01, Cr = 0.9. Again, thanks to the cylindrical symmetry of the problem, a

reference solution is obtained by solving Eq. (3.41) on the sub-domain [0, 1.5]m

with a fine mesh of 3000 cells; the dimensionless slot width is assumed equal to

0.02 for the reason explained above. Figure 3.10 shows the comparison between

1D radial solution and diagonal (y = x) pressure head and velocity profiles at
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Figure 3.9 – Mixed shock-focusing test: sketch of the initial conditions

selected times (t = 0.05, 0.10, and 0.15 s). The good agreement between reference

1D and 2D results confirms the effectiveness and robustness of the full 2D model,

even for this extremely severe test case. In particular, the 2D model provides

a fairly good description of the propagating phenomenon immediately after the

collision, even though some discrepancies arise in the peak values (see the profiles

at t = 0.10 s). Axial profiles are omitted in Fig. 3.10 because circular symmetry

is very well preserved in this case too.
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3.4.3 Application to the case of flow under arch bridges

Steady-state conditions

A simple experimental test case is considered first. Experiments were performed

in a 10 m long, 0.3 m wide horizontal laboratory flume. An arch bridge made

of Plexiglas was positioned at x = 4.23 m from the upstream end. The bridge

geometry is detailed in Fig. 3.11. A constant discharge equal to 0.015 m3/s was

allowed to flow in the flume until steady state conditions were achieved, while the

free outfall occurred at the downstream end of the flume. This flow condition

guaranteed that the bridge was subject to partial pressurization, i.e. only the

lateral regions were surcharged, while the midstream region remained in free-

surface conditions. Two ultrasonic transducers, positioned along the centerline of

the flume at x = 3.75 m and x = 6.55 m, measured the water depths upstream

and downstream of the bridge.

The computational domain is restricted to the region [0, 6.55]×[0, 0.3]m, and is

discretized by means of a Cartesian mesh with cell size ∆x = 0.01 m×∆y = 0.01 m.

The Courant number is set at 0.9, and the dimensionless widths kx and ky are set

Figure 3.11 – Sketch of the experimental set-up
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equal to 0.01 and 0.1, respectively. A constant discharge is imposed as upstream

boundary condition, while the downstream boundary condition is a constant

level equal to 0.085 m, as measured by the ultrasonic transducer at x = 6.55 m.

Preliminary experiments indicated that Manning’s roughness coefficient for the

flume bottom could be reasonably assumed to be 0.01 m−1/3s; on the other hand,

the roughness coefficient assigned to the bridge low chord is artificially increased to

take into account the local head losses induced by flow contraction and expansion

when the bridge is pressurized. In this case, an “equivalent” roughness coefficient

is computed over the wetted perimeter (e.g. Chow, 1959).

Figure 3.12 reports the longitudinal profile obtained from the simulations

performed with the assumption of different values of Manning’s coefficient for

the soffit. It is to be noted that the backwater effect calculated with nsoffit =

0.01 m−1/3s is not reproduced correctly, while increasing roughness up to four or

five times guarantees a better agreement in this particular case.

Figure 3.13 shows the cross-sectional pressure head profiles at x = 4.3 m

(middle of the bridge), which are not much influenced by the roughness coefficient

value selected for the soffit. These profiles show a peculiar “U” shape, also

associated with highly different values between the center line and the sides of

the channel.

A field-scale test case

The transit of a dam-break bore under an arch bridge is modeled here, in

order to assess the model’s suitability for case studies with realistic size and for

unsteady simulations.

This idealized test case concerns a straight horizontal channel of length 500 m

with a 20 m wide rectangular cross-section (Fig. 3.14). An ideal thin vertical

wall (simulating a retaining structure) identifies an upstream channel reach with

length equal to 200 m. A 20 m wide arch bridge, located 50 m downstream of the
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Figure 3.12 – Longitudinal profiles of water depth along the midstream line computed
with three different values of the roughness coefficient for the soffit
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Figure 3.13 – Cross-sectional profiles of water depth in the middle section of the bridge,
computed with three different values of the roughness coefficient for the soffit
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wall, crosses over the canal perpendicularly to its center line. It is characterized

by a parabolic lower profile described by the equation: H = −0.04y2 + 0.8y + 4,

where H indicates the elevation of the ceiling and y the transverse coordinate.

The upstream channel reach initially acts as a reservoir containing still water with

15 m depth. Downstream, the bed is initially wet with a 1.5 m deep layer of still

water. The sudden collapse of the wall induces the formation of a bore moving

downstream towards the bridge. This test case represents a schematization of a

real situation; nevertheless, despite the schematic geometry, it is useful to verify

the model’s reliability in this kind of engineering applications.

The computational domain is discretized by means of a Cartesian mesh with

cell size ∆x = 1 m×∆y = 0.5 m. An orthogonal lattice of slots with dimensionless

widths kx and ky both equal to 0.01 is ideally introduced on the lower surface of

the bridge. Bed resistance is included by setting Manning’s roughness coefficient

at 0.03 m−1/3s, whereas the local head losses are included by setting the soffit

roughness coefficient at the augmented value 0.1 m−1/3s. Finally, the Courant

number is assumed equal to 0.9.

As an example of model results, Figs. 3.15 and 3.16 show computed cross-

sectional (Fig. 3.15) and longitudinal (Figs. 3.16a and 3.16b) profiles for pressure

head at t = 10 s. At this time, the bore has already passed beyond the bridge

Sect. Equation

(a1) x = 251.5 m

(a2) x = 259.5 m

(b1) x = 245.5 m

(b2) x = 279.5 m

(c) y = 9.75 m

(d) y = 1.75 m

Figure 3.14 – Plan view sketch of the idealized field-scale test case. Cross-sections are
selected along computational cell centers
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and keeps propagating downward. The opening under the bridge is partially

pressurized (Fig. 3.16c). Predicted transverse pressure head profiles along the

bridge show the peculiar “U” shape already observed in the steady state simulation.

Moreover, the presence of the arch structure gives origin to 2D near-field effects: a

wake and a backwater effect develop behind and in front of the bridge, respectively.

This justifies the adoption of a 2D mixed flow model to describe the flow field

near the bridge.

Although a reference solution is not available for comparison, the numerical

results confirm the applicability of the 2D Preissmann slot model to field-scale

problems characterized by the presence of topographic singularities (such as

culverts or bridges) that could locally induce the pressurization of the flow.

0 5 10 15 20

y (m)

0

4

8

12

h
 (

m
)

Sect. (a1), x = 251.5 m

Sect. (a2), x = 259.5 m

(a)
bridge

0 5 10 15 20

y (m)

Sect. (b1), x = 245.5 m

Sect. (b2), x = 279.5 m

bridge
(b)

Figure 3.15 – Transit of a dam-break bore under an arch bridge: numerical results at
t = 10 s. (a) Pressure head cross-sectional profiles (at x = 251.5 m and x = 259.5 m).
(b) Water depth cross-sectional profiles just upstream (x = 245.5 m) and downstream
(x = 279.5 m) of the bridge
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Figure 3.16 – Transit of a dam-break bore under an arch bridge: numerical results at
t = 10 s. (a) Pressure head longitudinal profile at the channel center line (y = 9.75 m).
(b) Pressure head longitudinal profile at the channel side (y = 0.25 m). (c) Water depth
contour map around the bridge (contour levels in m) and prediction of surcharged and
free-surface areas in the culverted reach
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3.5 Concluding remarks

In this chapter the Preissmann slot concept has been extended and applied to

2D highly transient mixed flows. The resulting shallow water model, coupled with a

Godunov-type finite volume numerical scheme, is capable of correctly reproducing

both exact solutions of 1D discontinuous initial value problems and reference

radial solutions of idealized cylindrically symmetric test cases, characterized by

either abrupt or mild transitions between free surface and surcharged flows.

In the numerical simulation of 2D problems, since a preferential direction for

the flow cannot be identified a priori, it seems reasonable to adopt the same value

of the slot width to grid size ratio for both systems of orthogonal slots. In this work,

a dimensionless ratio in the order of 1% guaranteed a good compromise between

accuracy and computational stability, especially when strong pressurization waves

occurred.

The simulation of the partial pressurization of an arch bridge, both at the

laboratory scale and at field-scale, confirms the reliability and robustness of

the model in practical applications involving topographical singularities, such as

bridges or culverts, that could be partially or totally filled during flood events.

The model, however, cannot be employed to simulate flooding events which give

origin to bridge or culvert overtopping, due to the fact that, for example, the flow

over a long culvert may even be totally separate from the culvert flow itself.

The value of Manning’s coefficient can be artifically increased for the bridge

low chord, so that the local head losses due to contraction and expansion when

the bridge is pressurized can be taken into account in a simplified way.

Finally, the peculiar “U” shape that is observed in the numerical results when

the arch bridge is pressurized should be further investigated experimentally, in

order to verify its physical relevance.
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Chapter 4

1D modelling of mixed flows

through bridges and culverts

with overtopping

4.1 Introduction

The presence of bridges, culverts, and similar hydraulic crossing structures in

open channels may significantly affect the flood propagation, since these structures

typically induce an obstruction to the flow. The lateral and vertical constrictions

at bridge sites cause a backwater effect upstream (e.g. DEFRA, 2004), thus

augmenting the flood hazard in the surrounding areas. Other notable problems

related to the presence of bridges include scour and erosion around piers and

abutments (e.g. FHWA, 2012), and hydrodynamic loading on its deck and piers

(e.g. Malavasi and Guadagnini, 2003). During severe flood events, the water level

may exceed the elevation of the deck low chord with consequent pressurization of
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Chapter 4. 1D modelling of mixed flows through bridges and culverts

the bridge; the deck may even be overtopped for extreme events. Moreover, also

a culvert may flow full in particular conditions, for example when the outflow is

submerged (Chow, 1959). The occurrence of these flow conditions is defined as

high flow, as opposed to low flow, which indicates that free-surface conditions occur

below the structure (HEC, 2010). The characteristics of the flow through this

kind of constrictions are in general very complicated due to the large number of

hydraulic and geometrical variables involved. For this reason, a number of studies

in the literature focused on this topic, especially on high flow conditions, from both

an experimental and a numerical point of view (e.g. Martín-Vide and Prió, 2005;

Picek et al., 2007; Kara et al., 2015). In particular, detailed experimental and

numerical flow patterns around a submerged bridge with overtopping are reported

in Kara et al. (2015). Other authors concentrated on the assessment of the

backwater effect (sometimes referred to as afflux ) in partially or totally submerged

conditions, relying on the application of energy or momentum equations between

two selected sections upstream and downstream of the bridge (e.g. Malavasi

et al., 2006; HEC, 2010), or on empirical formulas derived from non-dimensional

analysis and experimental data (e.g. Biery and Delleur, 1962; HR Wallingford,

1988; Seckin, 2004; Picek et al., 2007).

The integration of hydraulic structures which may be submerged or overtopped

(such as bridges and culverts) in 1D numerical models is useful in water flood

management applications, but is not straightforward. Actually, the effect of

these structures is often modeled in a simplified way in the practice. As regards

the effect of a bridge, Natale et al. (2004) separated the open channel in two

reaches, one upstream and one downstream of the bridge, and linked them through

suitable internal boundary conditions. Catella and Bechi (2006) imposed energy

and continuity relations across the bridge in submerged conditions. Ratia et

al. (2014) considered the head loss induced by the presence of a bridge as an

additional source term in a 2D shallow water model. However, none of these
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models consider the possibility of bridge overtopping. Moreover, the models

previously mentioned cannot be applied for near-field simulations and cannot be

extended to the case of flow through culverts, due to the fact that the bridge

is modelled as a junction element, and thus its length is neglected. Among the

commercial packages, HEC-RAS (HEC, 2010) is able to model high flow conditions

with overtopping by exploiting either the energy equation method or the pressure

and weir flow method. In particular, the pressure and weir flow method uses

distinct hydraulic equations for pressurized flow (below the deck) and weir flow

(above the deck). However, also within HEC-RAS, the bridge is modelled as a

point element (although represented by four user-defined cross-sections) in which

a special computational treatment is applied.

This chapter presents a 1D mixed flow model, based on shallow water approxi-

mation, which is able to effectively handle the effect of bridges and culverts on

the flow field. The pressurized flow potentially occurring under these structures is

modelled by means of the Preissmann slot approach. Internal boundary conditions

(IBCs) are introduced as coupling mechanism (see Steinebach et al., 2004) to link

free-surface flow upstream and downstream of the bridge, and potentially over the

bridge, with pressurized flow under the bridge for high flow conditions. The use of

these coupling conditions enables the numerical model to predict overtopping in an

efficient way. Actually, IBCs are already widely used in the literature to simulate

the flow changes induced by gates or other thin internal structures employed in

open channel systems for operational and regulation purposes (e.g. Jafaar and

Merkley, 2010; Morales-Hernández et al., 2013; Cozzolino et al., 2015).

Several simulations of laboratory and field-scale test cases are performed here

to verify the effectiveness and the robustness of the numerical model proposed.
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4.2 Topological discretization

The simple configuration of a rectangular channel with uniform width B,

crossed by a bridge deck with no lateral contractions, is considered in this work.

The bridge low and top chord elevations above the channel bed are D and Z,

respectively, and its length is L (Fig. 4.1). A similar configuration was considered

in Malavasi and Guadagnini (2003), Catella and Bechi (2006), and Picek et al.

(2007).

The channel system including the bridge is modeled as composed by four

distinct channel reaches linked at the two junctions (see Fig. 4.1): the first reach

starts at the upstream end of the channel and ends immediately upstream of the

bridge; the second represents the closed “conduit” below the bridge, while the

third spans from immediately downstream of the bridge to the end of the channel;

finally, the fourth reach acts as an open channel for modelling overtopping: it

corresponds to the region above the deck, which obviously remains dry as long

as the water surface elevation is below the top chord of the bridge. In short, in

Figure 4.1 – Definition sketch of flow through a bridge with overtopping: (a) lateral
view; (b) topological model representation using branches and junctions
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4.3. Internal boundary conditions

the case of bridge overtopping, the pressurized flow under the bridge and the

free-surface flow above it are modelled as two parallel flows (see Fig. 4.1). IBCs

are implemented at junctions in order to link together the flow conditions in the

four reaches. Based on this topological discretization, a purely 1D model can be

reasonably used to simulate the effect of bridge and culvert singularities in high

flow conditions. In this way, flows under and over the structure can be modeled

in detail, with significant improvement in model predictability, especially in the

presence of structures characterized by long extension in the channel flow direction

(such as culverts). The idea of dividing the channel system into separate reaches

and linking them through IBCs has also been used by Natale et al. (2004) in the

presence of bridges, and by Jafaar and Merkley (2010) in the presence of gates,

although in these works the entire structure is considered as collapsed into a single

junction element where suitable IBCs are applied.

4.3 Internal boundary conditions

In the model proposed here, the IBC at the upstream end of the bridge/culvert

links the last computational cell in reach 1 to the first cell in reach 2 and, only in

the case of overtopping, to the first cell in reach 4 (see Fig. 4.2). The IBC at the

downstream end of the bridge/culvert links the last cell in reaches 2 and 4 to the

first cell in reach 3.

The flow along each branch is modelled through the finite volume scheme

presented in Chapter 1, which adopts the Preissmann slot approach to handle

pressurization. Conversely, the unknown variables in IBC cells are not updated

via the usual finite volume time advancing formula (1.9), but are computed

by a special procedure which introduces a suitable set of physical conditions

(mass conservation, energy balances, and characteristic equations) linking the

neighbouring states at the first and last cell of adjacent reaches. The IBC cells act
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Figure 4.2 – Sketch of the topological discretization around the bridge with the
indication of the computational cells involved in the IBCs (circled). Labels U and D
refer to the upstream and downstream ends of the bridge

then as internal “ghost” cells located at the boundary of a physical domain. The

flow states imposed at internal boundary cells via special updating formulas are

employed in the subsequent time step to compute the intercell fluxes necessary to

update the flow variables in the neighbouring cells inside each reach.

In the most general case, two flow variables in three cells need to be computed

at each internal boundary, hence the system must include six equations. In the

absence of overtopping, the system simplifies to only four equations, coupled with

the trivial condition of zero depth and velocity in reach 4. The IBC system is

non-linear and is solved iteratively in this work by using a modification of the

Powell hybrid method implemented in the MINPACK package (Moré et al., 1980).

In the following, the internal boundary conditions at both upstream and

downstream end of the bridge are explained in detail. The use of IBCs can be

easily extended to the case of a flow through a culvert.
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4.3. Internal boundary conditions

4.3.1 IBC at the upstream end of the bridge

The specification of IBCs at the upstream end of the bridge allows the compu-

tation of the flow variables UU1, UU2, and UU4 at cells U1, U2, and U4 of Fig. 4.2

for each computational time step. Different cases can be distinguished as follows.

A If max (hU1, hU2) < D, an undisturbed open-channel flow passes under the

bridge. This case is trivial since no IBCs need to be applied. The numerical

flux at the interface between cells U1 and U2 is computed with the selected

flux evaluation method (the HLL solver in this work), and the flow states

UU1 and UU2 are updated via the finite volume formula (1.9), as in the

other cells of the computational domain. Cell U4 remains dry.

B If D < hU1 < Z, no overtopping occurs: flow variables at cells U1 and

U2 must be assessed by imposing suitable IBCs, while cell U4 remains dry.

Therefore, a set of four equations must be defined and solved to compute

four unknown variables (hU1, uU1, hU2, uU2). In this case, two flow types

can be distinguished depending on the downstream conditions:

B.1 sluice-gate flow, when the inlet is unsubmerged (hU3 < D);

B.2 pressure flow, when the inlet is submerged (hU3 > D) and the channel

below the bridge flows full.

C If hU1 > Z, the bridge is overtopped and an open-channel flow occurs above

the bridge deck. In this case, also cell U4 is involved and the unknowns are

six (hU1, uU1, hU2, uU2, hU4, uU4). Hence, the definition of a system of six

equations is required.

Considering the most general case C, the steady flow continuity equation across

the upstream end of the bridge is coupled with two steady flow energy equations

connecting flow state UU1 to UU2, and flow state UU1 to UU4, respectively. To
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close the system, the positive characteristic equation at the downstream boundary

of reach 1 and the negative characteristic equations at the upstream boundary

of reaches 2 and 4 are considered in the case of subcritical flow. The resulting

non-linear system of equations (for a rectangular channel) reads:

un+1
U1 A

(

hn+1
U1

)

= un+1
U2 A

(

hn+1
U2

)

+ un+1
U4 A

(

hn+1
U4

)

(4.1a)

hn+1
U1 +

(

un+1
U1

)2

2g
= hn+1

U2 +

(

un+1
U2

)2

2g
+ k

(

un+1
U2

)2

2g
(4.1b)

hn+1
U1 +

(

un+1
U1

)2

2g
= Z + hn+1

U4 +

(

un+1
U4

)2

2g
(4.1c)

(

un+1
U1 + 2cn+1

U1

)

− (un
M1 + 2cnM1) = g∆t

(

S0 − Sn
f,M1

)

(4.1d)

(

un+1
U2 − 2cn+1

U2

)

− (un
M2 − 2cnM2) = g∆t

(

S0 − Sn
f,M2

)

(4.1e)

(

un+1
U4 − 2cn+1

U4

)

− (un
M4 − 2cnM4) = g∆t

(

S0 − Sn
f,M4

)

(4.1f)

in which k is a suitable loss coefficient. The variables labelled with the subscript

M refer to an intermediate flow state at the previous time level tn, which is

evaluated through a numerical technique similar to the classical Hartree method

(Cunge et al., 1980). For example, with reference to Eq. (4.1d), the flow variables

in an intermediate point M1, located between the centers of cells U0 and U1, at

current time tn must be derived. As shown in Fig. 4.3, the C+ characteristic line

projected backwards from the flow state Un+1
U1 intersects the time level tn at the

point M1 (whose abscissa xM1 is unknown). The flow state at M1 can then be

predicted by linear interpolation of Un
U0 and Un

U1 states through the following
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linear system which adopts a Euler first-order time discretization:































xU1 − xM1 = ∆t (un
M1 + cnM1)

un
U1 − un

M1

un
U1 − un

U0

=
xU1 − xM1

∆x

cnU1 − cnM1

cnU1 − cnU0

=
xU1 − xM1

∆x

(4.2)

Similarly, M2 state is interpolated from the known cell-centered states Un
U2

and Un
U3 (by projecting backward the C

− characteristic starting from the updated

state Un+1
U2 ), and M4 state is interpolated from Un

U4 and Un
U5 (moving backward

along the C− characteristic, starting from Un+1
U4 ). By adopting this procedure,

the flow variables of the neighbouring cells U0, U3, and U5 are also involved in

the upstream IBC.

It is to be observed that characteristic equation (4.1e) concerning surcharged

flow has the same formulation as the ones of free-surface flow (4.1d) and (4.1f),

due to the fact that the Preissmann slot approach models a surcharged flow as an

equivalent free-surface flow. Furthermore, Eq. (4.1c) assumes the conservation of

total head between cells U1 and U4, in analogy with the case of a broad-crested

weir flow. The only model parameter to calibrate is the head loss coefficient

k in Eq. (4.1b), whose value depends in general on the entrance geometry and

Figure 4.3 – Internal boundary condition at the upstream end of the bridge: sketch of
the characteristics-based procedure for the estimation of the intermediate state M1 at
time level tn
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approach condition (Chow, 1959). Finally, in the special case of water at rest, the

system has the trivial solution hU1 = hU2 = hU4 + Z and uU1 = uU2 = uU4 = 0.

If the flow in reach 4 is supercritical (FrU4 > 1), Eq. (4.1f) is no longer

applicable since no C− characteristic lines enter the reach 1 from U4. In this

case, it is assumed that un+1
U1 = un+1

U4 , and Eq. (4.1c) consequently simplifies to

hn+1
U1 = hn+1

U4 +Z. Moreover, Eq. (4.1f) fails when reach 4 is initially dry (incipient

overtopping): in this case, cell U4 is updated via Eq. (1.9), by computing the

numerical flux at the left intercell with the HLL solver for a Riemann problem

with left state (hU1 − Z, uU1)
n
and right state (hU4 = 0, uU4 = 0). This special

updating is applied until both cells U4 and U5 are wet.

Cases B can be considered as a simplification of case C when hU4 = 0 and

uU4 = 0. In particular, for case B.2, only Eqs. (4.1a), (4.1b), (4.1d) and (4.1e)

must be solved. Otherwise, for case B.1, if a free flow occurs, Eqs. (4.1a), (4.1b)

and (4.1d) are coupled with the following relation:

hn+1
U2 = CcD (4.3)

where Cc represents the contraction coefficient, usually assumed depending on the

ratio hU1/D (Chow, 1959). In this case, negligible head losses are assumed at the

inlet (k = 0). However, if cell U3 is in subcritical free-surface conditions, Eq. (4.3)

is substituted by the negative characteristic equation (equal to Eq. (4.1e)).

4.3.2 IBC at the downstream end of the bridge

As regards the IBC at the downstream end of the bridge, the flow variables

at cells D1, D2, and D4 of Fig. 4.2 must be assigned. Different situations can be

distinguished also in this case.

A If max (hD1, hD2) < D, the bridge outlet is unsubmerged and IBCs are not
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applied.

B If hD1 > D, the bridge outlet is submerged and a pressurized flow occurs

under the bridge. Four conditions are required in order to the specify the

flow states Un
D1 and Un

D2 at cells D1 and D2.

C If hD4 > 0, the deck is overtopped and six equations are required to specify

flow variables at three IBC cells D1, D2, and D4. However, two possibilities

must be considered:

C.1 unsubmerged flow (or free-flow), which occurs when the flow above the

deck is not influenced by downstream conditions;

C.2 submerged flow, which occurs if the flow depth downstream exceeds

a certain threshold, influencing the subcritical free-surface flow above

the bridge.

For case B, flow states at cells D1 and D2 are linked by both the steady

state continuity and energy equations. In the energy equation, it is advisable to

introduce a minor head loss like the one due to a sudden expansion. In order to

close the system, the positive characteristic equation coming from the interior of

reach 2 and the negative characteristic equation coming from the interior of reach

3 can be added:

un+1
D1 A

(

hn+1
D1

)

= un+1
D2 A

(

hn+1
D2

)

(4.4a)

hn+1
D1 +

(

un+1
D1

)2

2g
= hn+1

D2 +

(

un+1
D2

)2

2g
+

(

un+1
D1 − un+1

D2

)2

2g
(4.4b)

(

un+1
D2 − 2cn+1

D2

)

− (un
M2 − 2cnM2) = g∆t

(

S0 − Sn
f,M2

)

(4.4c)

(

un+1
D1 + 2cn+1

D1

)

− (un
M1 + 2cnM1) = g∆t

(

S0 − Sn
f,M1

)

(4.4d)
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As stated in Section 4.3.1, subscript M refers to intermediate flow state interpo-

lated through first-order time discretization from two known cell-centered states

at the current time level. In the case of overtopping (case C), the continuity

equation (4.4a) becomes:

un+1
D1 A

(

hn+1
D1

)

+ un+1
D4 A

(

hn+1
D4

)

= un+1
D2 A

(

hn+1
D2

)

(4.5)

and the positive characteristic equation at the downstream boundary of reach 4 is

added to the system:

(

un+1
D4 + 2cn+1

D4

)

− (un
M4 + 2cnM4) = g∆t

(

S0 − Sn
f,M4

)

(4.6)

As for the sixth equation required, for unsubmerged flow above the bridge

(case C.1), two sub-cases may be distinguished as follows.

• If FrD5 > 1, then supercritical flow occurs above the bridge, and the

negative characteristic equation at the end of reach 4 is used:

(

un+1
D4 − 2cn+1

D4

)

− (un
M4b − 2cnM4b) = g∆t

(

S0 − Sn
f,M4b

)

(4.7)

• else, cell D4 identifies a control section with critical depth:

hn+1
D4 =

(

un+1
D4

)2

g
(4.8)

In both cases, Eq. (4.6) coupled with Eq. (4.7) or (4.8) is first solved explicitly

to compute the flow variables in cellD4 (hD4 and uD4), and then Eqs. (4.4b)–(4.4d)

and (4.5) are solved together.

Finally, in the case of overtopping with submerged flow above the bridge (case

C.2), the sixth equation of the IBC system is provided by the energy balance
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between cells D4 and D2:

Z + hn+1
D4 +

(

un+1
D4

)2

2g
= hn+1

D2 +

(

un+1
D2

)2

2g
+

(

un+1
D4 − un+1

D2

)2

2g
(4.9)

No model parameters appear in the equations. The water at rest condition can

be easily obtained for cases B and C.2.

From the previous discussion concerning the formulation of the IBCs to be

imposed at both the upstream and downstream end of the bridge, it can be

deduced that the resulting numerical scheme is not rigorously conservative at IBC

cells. Indeed, considering the upstream IBC specified by Eq. (4.1), the intercell

flux past the right boundary of cell U1 does not equal exactly the sum of the

fluxes past the two left boundaries of the adjacent cells U2 and U4. Moreover, the

use of the energy approach in order to introduce physical equations between the

flow variables at the IBC cells does not ensure that the momentum conservation

principle is locally satisfied. Finally, it is expected that the adoption of steady

state flow equations in IBCs introduces errors which can be significant for rapidly

varied unsteady flows.

4.4 Numerical tests

4.4.1 Steady state test cases from Picek et al. (2007)

The model validation is first performed on the basis of a comparison with

some of the experimental data presented in Picek et al. (2007). The profile

measurements were provided by Prof. Picek.

The authors carried out a set of experiments in a laboratory flume with

horizontal bottom and rectangular cross-section with width equal to 0.75 m.

The deck low chord was positioned at an elevation D above the bottom, and its
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thickness s was 0.075 m; hence, according to the notation adopted here, Z = D+s.

The bridge was 0.3 m long and was placed 1.1 m from the downstream end of

the channel. Different steady state subcritical conditions, all characterized by

pressurized flow through the bridge, were realized by controlling the water level

hd at the downstream end of the flume. In this way, different flow conditions

could be achieved above the deck:

• no overtopping (tests P1);

• overtopping with unsubmerged free-surface flow (tests P2);

• overtopping with submerged free-surface flow (tests P3).

The constant flow discharge and the longitudinal water surface profile along the

channel centerline were measured for each experimental test. Table 4.1 reports

the details of the test conditions here considered.

The computational domain was discretized by means of cells of size ∆x =

0.02 m. Manning’s coefficient was assumed equal to 0.01 m−1/3s, the Courant

number was set at 0.9, and the Preissmann slot width was set at 0.01B. Finally,

the head loss coefficient k was assumed equal to 0.1.

Table 4.1 – Test conditions for the Picek et al. (2007) test cases

Test Q(m3/s) D(m) Z(m) hd(m) Type of overtopping flow

P1a
0.111 0.150 0.225

0.182 No overtopping
P2a 0.248 Overtopping – unsubmerged flow
P3a 0.334 Overtopping – submerged flow

P1b
0.155 0.225 0.300

0.243 No overtopping
P2b 0.325 Overtopping – unsubmerged flow
P3b 0.409 Overtopping – submerged flow

P1c
0.184 0.300 0.375

0.323 No overtopping
P2c 0.405 Overtopping – unsubmerged flow
P3c 0.522 Overtopping – submerged flow
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In the numerical modelling of subcritical flows, the backwater effect induced by

obstacles is one of the most important practical features which should be predicted.

Figure 4.4 compares the experimental and numerical backwater levels (normalized

to the measured tailwater depth) for the test cases detailed in Table 4.1. The

results show that the numerical model proposed is able to reproduce the backwater

effect of the bridge with good accuracy.

These test cases are also simulated with HEC-RAS (HEC, 2010). The distance

between cross-sections is 0.2 m, and the bridge is inserted as a separate structure,

whose presence is taken into account in the computations with the pressure and

weir flow method. According to this approach, the full flowing orifice equation is

used to compute the pressure flow discharge:

Qdown = CQDB

√

2g

(

hu +
u2
u

2g
− hd

)

(4.10)
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Figure 4.4 – Comparison between experimental and numerical dimensionless backwater
levels for the laboratory test cases reported in Table 4.1: results from the proposed
model and from HEC-RAS
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while the standard weir flow equation is employed to compute the flow over the

bridge:

Qup = CWB

(

hu +
u2
u

2g
− Z

)1.5

(4.11)

Two discharge coefficients need to be defined. Typical values of the coefficient

of discharge CQ in Eq. (4.10) are in the range 0.7 − 0.9, usually 0.8 (HEC,

2010). However, these values were calibrated for a trapezoidal channel with side

contraction in the bridge. Picek et al. (2007) showed that, for their deck geometry,

the coefficient of discharge is in the range 0.8 − 0.95 for partially submerged

deck, and between 1.0 and 1.1 when the deck is entirely submerged (overtopped).

In Eq. (4.10), CQ is then assumed equal to 1.04. As regards Eq. (4.11), the

coefficient CW is assumed in the range of typical values for broad-crested weirs

(1.38 − 1.71 m1/2/s, HEC, 2010), and in particular equal to the default value

1.4 m1/2/s. The normalized backwater levels predicted by HEC-RAS are also

reported in Fig. 4.4, which shows that the results provided by the two models are

characterized by a comparable accuracy, even if the IBC model performs slightly

better. In fact, the mean absolute deviation between numerical and experimental

(normalized) backwater levels is equal to 0.0058 for the IBC model, and to 0.0095

for HEC-RAS.

The IBC model automatically splits the approach dischargeQ into the discharge

Qdown of the pressure flow through the bridge opening and the overtopping

discharge Qup. The three P2-labelled tests (characterized by an unsubmerged

overtopping flow) are considered to analyze the model’s suitability for predicting

the discharge splitting. Due to the fact that Qup and Qdown were not measured

experimentally, reference values are estimated here using the method proposed by

Malavasi et al. (2006), based on an energy equation approach coupled with the

critical state assumption at the downstream end of the bridge. In the hydraulic

computations, the same head losses as in the proposed model are considered for
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consistency. Table 4.2 reports the computed values of Qup and Qdown (normalized

to the total discharge) provided by the IBC model, by the method of Malavasi

et al. (2006), and by HEC-RAS simulations. The results obtained by using the

three methods show differences within 2% of the total discharge.

Predicted water surface profiles along the channel centerline are analyzed for

the test cases of type “a” (Tests P1a, P2a, and P3a), characterized by fixed total

discharge (Q = 0.111 m3/s). Figure 4.5a shows the measured longitudinal water

surface profiles, along with the results of the 1D numerical simulations. The

profiles predicted by HEC-RAS are also reported. As expected, the characteristic

near-field features of the flow in vicinity of the bridge are not reproduced accurately

by 1D modelling, especially the local water surface upsurge at the upstream face

of the deck and the flow expansion profile downstream of the bridge. Indeed,

the flow through a bridge is in general rapidly varied in space, with significant

accelerations in the vertical direction, which cannot be modeled adopting the 1D

approximation. However, the backwater profile which develops upstream of the

bridge is well caught. The local upswell at the entrance of the bridge opening can

be reasonably related to the velocity head of the approach flow, and depends on

the degree of submergence (Picek et al., 2007). For test P1a, the velocity head

calculated at the computational cell located just upstream of the bridge opening

provides a satisfactory estimate of the experimental upswell with a relative error

Table 4.2 – Comparison of the discharge splitting prediction performed by the IBC
model, by the energy-balance method by Malavasi et al. (2006), and by HEC-RAS for
the P2-labelled tests

Test
IBC model Energy balance method HEC-RAS

Qdown/Q Qup/Q Qdown/Q Qup/Q Qdown/Q Qup/Q

P2a 0.866 0.134 0.883 0.117 0.867 0.133
P2b 0.900 0.100 0.906 0.094 0.905 0.095
P2c 0.914 0.086 0.917 0.083 0.922 0.078
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of roughly 2% of the total head. As regards the profile over the bridge deck, the

numerical model predicts the expected decrease in the water surface elevation,

but some discrepancies appear in comparison with the experimental profiles. In

particular, for test P3a the 1D numerical results do not match the complex wavy

profile over the deck, closely resembling an undular hydraulic jump.

The experimental pressure head profiles under the bridge are not available,

hence no direct comparison can be performed. In order to obtain further data for

comparison, the same tests are simulated by using FLUENT (FLUENT, 2011),

a widespread commercial software for computational fluid dynamics based on

the finite volume discretization. Actually, a 2D simulation in the x-z vertical

plane is sufficient, due to the symmetry of the flow, if the side walls friction

is neglected. The Volume of Fluid (VOF) approach (Hirt and Nichols, 1981)

is adopted to predict the interface between water and air. According to this
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Figure 4.5 – (a) Experimental and numerical (1D and 2D-vertical) longitudinal water
surface profiles for the three test cases P1a, P2a, and P3a. (b) Detail of the hydraulic
grade lines of the pressurized flow through the bridge opening predicted by the 1D and
2D-vertical numerical models

124



4.4. Numerical tests

method, the fluid is modelled as an immiscible two-phase system (water–air):

a new variable is introduced to represent the volume fraction of water in each

computational cell, and is used as a weighting factor to obtain volume-averaged

fluid properties in each computational cell. The transport equation for the volume

fraction must be added to the system of governing equations. Moreover, the

realizable κ-ε model is selected for modelling turbulence. The flow field around

the bridge is discretized through quadrilateral elements whose average size is

0.005 m, with some inflation near the bottom and around the deck. A mass

flow inlet is assigned as upstream boundary condition, while a constant water

depth is imposed downstream; moreover, a pressure outlet (with atmospheric

pressure) is selected as boundary condition at the upper limit of the computational

domain, and the no-slip wall condition with roughness height equal to 0.1 mm

is specified on the channel bottom and around the deck. The simulations were

run until steady state conditions were achieved. Static pressure at the channel

bottom is used to derive the hydraulic grade line, by assuming a parallel flow

with hydrostatic-pressure distribution. However, this assumption does not hold

near the entrance of the bridge, given the substantial curvature of the streamlines

(see Fig. 4.6).

Figure 4.6 shows that the 2D model accurately reproduces the flow features

in the vicinity of the bridge on the vertical plane. Moreover, Fig. 4.5b shows a

good agreement between 1D and 2D numerical results concerning the pressure

head profile of the pressurized flow below the bridge, especially in the region from

the middle to the downstream end of the bridge. In addition, the velocity maps

in Fig. 4.6 show that the fluid accelerates passing through the bridge and that

stagnation zones appear near the front and the rear faces of the deck (see for

comparison the experimental data by Malavasi and Blois, 2007). It can be noticed

that the 2D model wrongly predicts overtopping with very shallow water depths

above the deck for test P1a (see Fig. 4.6a). In this case, the measured backwater
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level is actually very close to the bridge high-chord elevation.

Figure 4.6 – Numerical velocity field on a vertical plane from 2D VOF simulations for
tests P1a (a), P2a (b), and P3a (c). The thick black line indicates the water surface
(estimated as the iso-surface with volume fraction equal to 0.5). The spatial frequency
of velocity vectors is reduced for clarity
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4.4.2 Steady and unsteady flow through a culvert with sub-

merged outlet

The numerical model is applied here to the idealized case of the steady flow

through a box tunnel placed in the middle reach of a 1000 m long and 3 m wide

rectangular channel with 0.1% bottom slope. The culvert is 100 m long, with a

2 m high soffit. The flow rate is equal to 15 m3/s. The downstream tailwater is

assumed sufficiently high to submerge the outlet and induce a pressurized flow

into the culvert.

The channel is discretized by means of N = 100 cells (∆x = 10 m), and

Manning’s coefficient is assumed equal to 0.015 m−1/3s. A constant water depth

of 2.5 m is imposed as the downstream boundary condition. Moreover, the Courant

number is set at 0.9, while the non-dimensional slot width Ts/B is set at 0.01.

The same test case is also simulated with HEC-RAS. The culvert is inserted

within the channel with the “lid-option” to represent the top of the pipe (HEC,

2010). For this configuration, the distance between the cross-sections is assumed

equal to 50 m, except for the inlet and outlet of the culvert, where two cross-

sections very close to each other (one with the lid and one without) are inserted

to describe the abrupt geometry change in a more accurate way. At the culvert

inlet, the contraction coefficient is set at 0.3 (instead of the default value 0.1) to

increase the local head loss.

Figure 4.7 shows the hydraulic grade line (HGL) and the energy line (EL)

along the channel obtained from the IBC model after the achievement of steady

state conditions. Results from the steady flow analysis performed with HEC-RAS

are also reported. The two models give very similar profiles, even if HEC-RAS

predicts a slightly lower friction slope than the IBC model in the culvert.

The model is also tested for unsteady flow. Starting from a 1.2 m normal flow

depth and a 5.79 m3/s discharge, an incoming inflow hydrograph with 30 min
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Figure 4.7 – Hydraulic grade line and energy line for a steady flow through a culvert
with submerged outlet: comparison of the results predicted by the IBC model and by
HEC-RAS

duration and 15 m3/s peak discharge after 15 min is admitted from the upstream

end of the channel. Downstream, a transmissive boundary condition is imposed.

The same test is simulated with HEC-RAS, and the Preissmann slot option is

activated.

Figure 4.8a shows the HGL along the channel at selected times. The culvert

is pressurized starting from t = 25 min, and the maximum backwater is observed

after approximately 35 min. During the falling limb of the hydrograph, the

pressure head in the culvert decreases, until free-surface conditions are restored

(after approximately 49 min). Figure 4.8 also reports the hydrograph of discharge

(Fig. 4.8b) and of water depth (Fig. 4.8c) at selected sections. The two models

predict very similar results, even if some discrepancies can be observed. In

particular, the IBC model overestimates the water depth at the downstream end

of the channel after the peak discharge.
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Figure 4.8 – Results of the IBC model (lines) and HEC-RAS (dots) for the simulation
of the unsteady flow in a culvert undergoing pressurization: HGL at selected times (a),
and hydrographs of discharge (b) and water level (c) at the channel ends and at the
cross-section immediately upstream of the culvert inlet
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4.4.3 Wave transmission through a submerged tunnel

One of the experimental test cases performed by Wiggert (1972) is used here

in order to validate the IBC model in unsteady flow conditions. In particular, the

transmission of a surge wave in a tunnel is examined. The tunnel remains in pres-

surized conditions during the whole experiment. Unfortunately, no experimental

measurements concerning overtopping in unsteady flow conditions are available in

the literature.

The experimental set-up consisted of a 30 m long, 0.51 m wide flume with

horizontal bottom. In the middle reach of the flume, a roof was inserted in order

to create a 10 m long and 0.15 m high culvert. The channel contained water at

rest, whose elevation was approximately equal to 0.176 m. Hence, the tunnel was

pressurized from the beginning. By manoeuvring a gate placed upstream, a surge

wave was allowed into the channel, while the downstream level was controlled by

a weir. Measurements of water depth and pressure head were taken at selected

locations, whose positions are reported in Fig. 4.9.

The numerical simulation is performed by assuming Manning’s roughness

coefficient equal to 0.012 m−1/3s, as indicated in the original paper. The domain

is discretized by elements of size ∆x = 0.05 m, and the Courant number is set at

0.9, while the non-dimensional slot width is assumed equal to 0.01. The lack of

details about the gate manoeuvre and the weir height made the choice of boundary

Figure 4.9 – Sketch of the experimental set-up for the test case reported in Wiggert
(1972)
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conditions difficult. The domain is restricted to the region of the channel between

sections 1 and 4 (see Fig. 4.9), and water depth recordings at the same locations

(digitalized from the original paper) are imposed as boundary conditions. These

data are reported in Fig. 4.10.

Results of the numerical simulations are shown in Fig. 4.11 along with exper-

imental data. Some discrepancies can be observed between the numerical and

experimental results; these differences can be attributable to the uncertainty in

the boundary conditions and in the digitalization of measurements. However, the

general trend of the phenomenon seems reasonably well caught by the numerical

model.
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Figure 4.10 – Boundary conditions for the test case reported in Wiggert (1972)
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4.4.4 Unsteady flow through a submerged bridge with over-

topping

In the present subsection, the numerical model is applied to the hypothetical

case study of the transit of a flood wave in a rectangular channel crossed by a

simple beam bridge. The channel is 1000 m long and 30 m wide, with 0.1% bottom

slope. The bridge deck is 10 m long, and is positioned between x = 490 m and

x = 500 m. It has the low chord at an elevation of 3 m above the channel bed, and

thickness equal to 1.5 m. Manning’s coefficient is assumed equal to 0.03 m−1/3s.

Initially, the flow is uniform with 92.4 m3/s discharge and normal water depth

equal to 2 m. An incoming flow hydrograph, characterized by a triangular shape

with duration of 9 h and peak discharge equal to 450 m3/s after 3 h, is imposed

at the upstream end of the channel. This configuration gives origin to bridge

overtopping. Downstream, a transmissive boundary condition is assumed.

The computational domain is discretized by means of N = 1000 cells (∆x =

1 m). The numerical simulation is performed by setting the Courant number at

0.9 and the non-dimensional slot width Ts/B at 0.01.

This test case is also simulated with HEC-RAS, by imposing the pressure and

weir flow method for taking the bridge into account. The coefficient of discharge

for weir flow is set at 1.5 m1/2/s, while the coefficient of discharge for pressure

flow is 0.85.

Figure 4.12a shows the longitudinal profiles of water surface elevation predicted

by the two models at selected times, while Fig. 4.12b reports the discharge

hydrograph at the bridge site, considering Qdown and Qup separately. Moreover,

Fig. 4.12c reports the time series of water surface elevation at the cross-section

located at x = 487 m, immediately upstream of the bridge. Results show that

the transit of the flood wave causes the bridge pressurization starting from a few

minutes before t = 1 h until a few minutes before t = 8 h. Bridge overtopping
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occurs between t = 1.6 h and t = 6 h, with a maximum at approximately t = 3 h.

The two models provide similar results, except for slight differences in the discharge

splitting at the bridge site (see Fig. 4.12b).
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Figure 4.12 – Results of the IBC model and HEC-RAS for the case of unsteady flow
through a bridge with overtopping: (a) longitudinal water surface elevation profiles
at selected times, (b) discharge hydrographs at the bridge site, and (c) water surface
elevation time series at x = 487 m
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4.5 Discussion and concluding remarks

The method proposed herein for coupling a 1D mixed flow numerical scheme

with a suitable formulation of IBCs yielded satisfactory results in the simulation

of several test cases concerning both steady and unsteady flows through bridges

and culverts. The model was validated by comparison with experimental data,

and also with the results of numerical simulations performed with the widespread

software HEC-RAS, which is often employed as a standard for 1D open channel

flow modelling.

The model was found to be robust, even for the simulation of rapidly varied

unsteady flows, such as the transit of a flood wave through a bridge with overtop-

ping. The only source of instability was sometimes observed to be the iterative

solution of the systems of equations for IBCs, especially when the water depth

was very shallow above the deck. In order to overcome this problem, different

methods for solving the non-linear system should be explored.

The use of IBCs is suitable to link in a simple and effective way the various

reaches introduced in the topological discretization. The method can then be

a useful tool for 1D modelling of high flows through bridges with potential

overtopping and for predicting the related backwater effect. Nevertheless, local flow

characteristics induced by significant vertical accelerations cannot be accurately

reproduced by adopting the 1D approximation.

The particular topological schematization strictly requires that the bridge

or culvert is discretized by at least 3 computational cells. The possibility of

discretizing the crossing structure with a high number of computational cells

makes the model effective in predicting the main features of the flow in detail,

especially in the case of long culverts.

Although simple geometrical configurations were considered in all tests pre-

sented, the application of the model can be easily extended to cross-sectional
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shapes other than rectangular, and even to non-prismatic channels, provided that

the characteristic equations are re-written for the given geometry and that the

head losses caused by contractions at the bridge/culvert inlet and expansions at

the outlet are reasonably taken into account. The pressurized flow potentially

occurring under the bridge/culvert was modelled by the classical Preissmann slot

method, but alternative methods recently presented in the literature (such as the

Two Pressure Approach and the dual model) can be used as well. Finally, the

occurrence of pressurized flow restricts the allowable computational time step due

to the stability condition, as already discussed in Chapter 2. The efficiency of the

model can be improved if a local time stepping strategy is implemented in the

scheme.
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A number of different approaches to model mixed flows are available in the

literature, two of which have been analyzed at the beginning of this work, in

particular the classic Preissmann slot approach and the more recent dual model.

Both models are governed by hyperbolic equations, which are discretized by means

of a first-order accurate finite volume scheme. The simulation of an experimental

test case confirmed that well-known post-shock oscillations originate at flow regime

transitions when shock-capturing schemes are adopted. The comparison showed

that both models are able to predict the main features of the flow dynamics

correctly, despite the low pressure wave celerity assumed to minimize these

spurious oscillations. However, due to its greater simplicity, the Preissmann slot

model was preferred in the following development of this work, which addressed

some issues related to the numerical modelling of mixed flows, not previously

taken into consideration in the literature.

The coexistence of markedly different celerity values which characterizes the

simultaneous occurrence of free-surface and pressurized flow also restricts the

computational efficiency if explicit schemes are used, due to the CFL stability

condition. In order to address this problem, the finite volume numerical scheme

used to discretized the governing equations of the Preissmann slot model was

coupled with a local time stepping strategy. The comparison with the conventional
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global time stepping strategy, performed on the basis of different idealized and

experimental tests, showed that the LTS speeds up the computations with a factor

ranging between 1.4 and 6.5, without impairing overall solution accuracy and

without deteriorating mass conservation. The speed-up factor is found to increase

when the value of pressure wave celerity increases, and also when the percentage

of pressurized cells in the domain is reduced, thus suggesting the suitability of

this strategy for those applications where only a small region of the domain is

surcharged.

The second part of the thesis focused on the integration of potentially pres-

surized hydraulic structures, i.e. bridges and culverts, in otherwise totally open

channel domains. A 2D extension of the Preissmann slot model was proposed,

so that transitions between free-surface and pressurized flow can be handled in a

natural and straightforward way through an adaptation of the classic formulation

of the shallow water equations with the addition of two orthogonal narrow slots

above the ceiling of each computational cell. The results of numerical simulations

of idealized tests and of cases involving partially pressurized arch bridges showed

that the proposed model is suitable for the prediction of highly transient 2D mixed

flows.

However, bridges and culverts might be overtopped for extreme events, and

the 2D mixed flow model here presented cannot account for this possibility. Hence,

this work also proposed a 1D model which allows for bridge/culvert overtopping

by introducing internal boundary conditions at the upstream and downstream

ends of the hydraulic structure considered. The Preissmann slot approach was

used to model the flow under the deck, thus allowing its detailed simulation (and

possibly the presence of flow regime transitions), which is particularly important

in the case of long culverts. The model was validated by comparison not only with

experimental data, but also with the results of numerical simulations performed

with the widespread software HEC-RAS. The agreement between the results of
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these two models showed that the IBC model can be a useful and effective tool for

predicting overtopping and backwater effects related to the presence of bridges and

culverts. At present, the IBC strategy is only implemented for a 1D geometry, but

the integration of a similar strategy in a 2D shallow water model could extend its

predictive capabilities in the case of the presence of hydraulic crossing structures

in the flow field.

The presence of a small pressurized region in a wide open channel domain

may increase the computational time prohibitively for real-field simulations. This

is true for both the 2D Preissmann slot model and the 1D IBC model. The

implementation of the local time stepping strategy in these schemes is an essential

requirement for making these numerical tools effectively exploitable in the practice,

and represents the most important future development of this work.
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