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3 

Introduction and context 

The history of photogrammetry is closely related, in his theoretical principles, to the 

history of descriptive geometry and in particular to the formulation of the theory of 

perspective. Differently, with regard to the applications, it is related to the history of 

optics, photography and related technological developments. Photogrammetry 

represents one of the most reliable approach for metric (and thematic) data acquisition; 

therefore, it is important to highlight that the purpose of reconstruction techniques, 

based on this approach, must be focused on the achievement of the most accurate, 

complete and detailed three-dimensional reconstruction.  

In recent years, photogrammetry has experienced an important development and 

renovation, and the possibilities, now made concrete by the electronic and information 

technologies, offer new perspectives in all the detection and survey applications that 

make full use of three-dimensional digital contents.  

Image matching, digital image correlation, stereo correspondences problem: all refer to 

the class of noncontact techniques that utilize two or more digital images depicting (at 

least partly) the same scene and provide a dense reconstruction of the shape and the 

spatial position of the analysed object. In other words, given two (or more) views of a 

scene, correspondence needs to be established among homologous features [160], 

which are  projections of the same physical identity in space. A stereo algorithm is 

usually applied to compute the disparity map (i.e. a rastermap where the value of each 

cell is equal to the difference (also called disparity value) between the coordinates of 

corresponding pixel locations on the two images of the stereo pair).  

It is possible to say that image matching represents a key component of many 

photogrammetric and computer vision tasks. However, right now, it is quite hard to 

identify a completely satisfactory taxonomy of the different techniques: encouraged by 

the growing interest in automatic 3D image-based reconstruction, a large number of 

image matching algorithms and methods have been developed and refined over the 

years leading to the complete automation of the entire 3D modelling process in several 

application areas (such as Remote Sensing data processing, Medical Image analysis, 

Computer Vision and Pattern Recognition [30]). A very good overviews on the topic 

can be found in literature (see for instance [13][157]).  

An easy way to classify the image matching algorithms is to consider the matching 

primitives: in accordance with that condition it is possible to distinguish between 

Feature Based Matching (FBM) and Area Based Matching (ABM) methods.  

FBM algorithms [58][59] extract features of interest from all the images (lines, edges, 

peculiar shapes, etc.) using specific analytical operators [116] and afterwards identify 
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correspondences between feature lists. These methods are reliable and fast, but they 

produce sparse disparity maps that are generally thickened in a second step by using 

area based matching or model-based interpretation step (e.g. the assumption that the 

intermediate space between the edges is occupied by planar surfaces). Differently, in 

ABM, starting from a point on a reference image, the algorithm identifies the most 

probable location of the homologous point on the other images; usually this operation 

is computed for all the points of a dense points grid defined on the image. Consequently, 

these methods are able to produce dense disparity maps, allowing the reconstruction of 

the parallax field in all the image areas.  

Since the matching problem is an important research topic both in photogrammetry 

and computer vision, in a short time (the last decades) several methods and applications 

have been developed and are still developing. In this context, the thesis will discuss of 

some popular and widespread stereo matching algorithms (local and global) and 

techniques. In particular, the Semi-Global Matching (SGM) [82][84] will be deeply 

analysed, and a proprietary code implementation will be presented.  

Being the final purpose of this dissertation, the description of the developed image 

matching software code, the current chapter will now present a brief analysis of the state 

of the art in image matching (and the related application fields) followed by a brief 

analysis of the objectives and motivations of this work. 

1.1 State of the art in image matching algorithms and 

techniques 

Over the past 60 years, important changes have characterized the advancements in 

image matching techniques and, according to Gruen [73], the chronology can be 

structured into the following four period: the “Early Years” (1960s – 1960s); the “New 

Approaches” (1980s); the “Time of consolidation and Extensions” (1990s) and, finally, 

the “Time of Acceptance” (2000s). 

The earliest matching algorithms were developed in the photogrammetric community 

in the 1950s [88]. In the 1970s, the concepts of epipolar geometry and cross-correlation 

[77][78][79] for image matching were rapidly spread and, in the middle of the 1970s, the 

advent of digital images has allowed the researcher to start focussing on automatic 

processing of photogrammetric procedures (to offer the possibility of replace manual 

operator intervention and achieve more powerful and accurate performances). 

By the early 1980s, the literature on image analysis and matching had grown extremely 

thanks to the important developments of new, more powerful and automatic, matching 

approaches. Precisely in the early 1980s we saw the most significant contributions: the 
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Least Squares Matching (LSM) technique [68], which is currently used in many digital 

photogrammetric tasks.  Early investigations were reported by [58] [2] [135]. In [59] and 

[69] the multi-photo geometrically constrained (MPGC) extension were introduced. 

Indeed, the quality of a matching procedure depends mainly on the type and content of 

the image signal but very often there is, however, additional information available that 

can support the matching. These important categories of information are geometrical 

and radiometric conditions, which have to be added to the observation equations in the 

least squares context. Thanks to the use of all the geometric information available and 

the internal consistency of the algorithm, it offered considerable advantages with 

respect to precision and reliability of the results ([73]). Subsequently, the matching 

procedure was also generalised to object space through the introduction of the concept 

of the “groundel” or “surfel” ([51][80][200]). 

As accurately described in [148] and [73], the 1990s was a time of consolidation for 

image matching and a large number of commercial photogrammetric systems appeared, 

in particular, for automated Digital Surface and Terrain model (DSM/DTM) generation 

from large blocks of near-nadir aerial images. The results of studies comparing the 

performance of different digital stations with respect to DTM generation are illustrated 

in [71]. The results of yet another empirical accuracy study were published in [70]. The 

matching software of three commercial systems was tested with three different aerial 

image data-sets of different image scales. The RMS (Root Mean Squares) errors 

achieved were worse than the theoretical expectations for manual measurements and 

this was largely due to very large numbers of blunders. Gong et al. [65] have also carried 

out an interesting assessment, obtaining low-quality results as well. Thus, the capabilities 

of existing matching algorithms had not been fully utilised but, in the early 2000s, 

significant improvements and much attention to the automatic DSM/DTM procedures 

were obtained. These years represented the period of major diffusion of digital 

photogrammetric workstations, in particular for aerial/satellite images processing. 

Differently, Close-Range applications were still considered an area of interests of 

research groups (due to the difficult in obtaining high-quality and accurate results). At 

the same time, new and rapid developments in this area were largely achieved in the 

computer vision community where, at first, the attention was focused on obtaining 

complete results in real-time. In this field, stereo matching was investigated as early as 

the mid-1970s [113] and developments continued in the 1980s mainly for terrestrial 

applications [5]. Then, in the 1990s, the focus moved to multi-view approaches 

[127][61], 3D imaging [15] and then, more recently, to field programmable gate array 

(FPGA) and graphics processing unit (GPU) developments in computer architecture 

[92]. 
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1.2 Image matching applications 

Over the years, a wide range of applications made full use of image correlation 

techniques for analysing various type of problems and data (close-range/archeologic 

survey, orthophotos generation, change detection, precision agriculture, Geographic 

Information System (GIS) services, and obstacle avoidance problems), making use of 

different type of data (such as Red-Green-Blue (RGB), Near-Infra-Red (NIR) and 

multispectral images, and so on). The possible products that can be obtained from 

matching process varying from three-dimensional surface and volumetric models, to 

depth maps and planar layers (such as orthoimages, panoramic layers and rectification 

of plane surfaces) and find suitable applications in many areas, including: monitoring 

activities, topographic mapping and GIS analysis, entertainment, automated systems, 

displacements/deformations measurements, high accurate 3D digital surface models, 

clinical studies, and many, many more. Scientific and applicative tasks for digital stereo 

vision include the extraction of information from aerial/satellite surveys, for contour 

maps calculation, volumetric surveys or geometry extraction for 3D building models 

and mapping. Other applications in robotics field include object recognition, where 

depth information allows the system to separate occluding image components which 

the robot may otherwise not be able to distinguish as a separate object by any other 

criteria.  

Hereafter, a synthetic description of state of the art for some image matching 

applications is presented. It is important to highlight that the following brief 

examination will regard only the fields of study that have been investigated in more 

detail during the work of thesis. Such applications have, in fact, required the 

development of special functions and the obtainment of specific performance from the 

matching image implemented algorithm. For this reason, the peculiarity of each field of 

interest (in terms of algorithmic requirements and observed difficulties) will be 

following presented. 

1.2.1 Dense image Matching for cartography and DEM 

Digital Terrain Models and Digital Surface Models are classical and common products 

of a photogrammetric system and they have large relevance in many 

territorial/environment engineering applications such as modelling water flows or mass 

movements, topographic mapping, natural hazards analysis, spatial and temporal change 

detection, visualization and many others [47]. For decades terrestrial surveying 

techniques and aerial images from airborne/spaceborne sensors were the only 
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approaches available for generating DTM and DEM (Digital Elevation Model). With 

the  launch  of  IKONOS on  September 1999 [153], very  high  resolution  (VHR)  

optical satellites have been introduced, leading to significant improvements and 

transformations in digital elevation model extraction pipeline.  

At present, the data required for the generation of DSMs can be acquired by several 

sensors/techniques, among which airborne LiDAR, aerial photogrammetry, optical and 

radar spaceborne sensors play the major role. In modern map production, they have 

become an information source for scene analysis and understanding, for change 

detection, for GIS database updating, for cartographic 3D feature extraction and 

reconstruction. In particular, DSMs in suburban and urban areas are very useful for a 

great number of applications, which include the inter-visibility calculations for the 

optimization of the location of telecommunication antennas, risk mapping, (true) 

orthoimage generation, mission planning and rehearsal, virtual and augmented reality 

applications and urban planning.  

Alongside the sensor-side developments (linear array sensors have being widely used to 

acquire panchromatic and multi-spectral imagery for photogrammetric and remote 

sensing applications), the algorithmic procedure for DEM  extraction has  been  

improved  significantly. Indeed, the processing of these kinds of images has provided a 

challenge for image matching algorithmic redesign and this offers the possibility of 

reassessing and improving many photogrammetric processing components (like image 

enhancement, multi-channel colour processing, triangulation, orthophoto and DEM 

generation and object extraction).  In fact, recently matching techniques have been 

improved by adapting the algorithms to aerial [207] and terrestrial photogrammetry [54], 

partly overcoming some of the matching problems that affect the quality of the final 

results (such as repetitive patterns, occlusions, shadows, reflections, etc., as regard, in 

particular, urban areas). For example, Zhang [207] has presented a matching procedure 

for automatic DSM generation from linear array imagery data. The proposed approach 

is able to produce reliable and accurate results by the use of an innovative procedure, 

which combines different image matching algorithms and automatic quality control 

systems; the resulting DSMs will be in turn a combination of matching results derived 

from different analysed primitives (feature points, grid points and edges). In recent 

years, others research efforts have been devoted to the efficient utilization of satellite 

images.  

The recent developments and improvements of the matching techniques performances 

for dense point clouds generation has gained considerable research attention over recent 

years. In fact, over the last decade, LIDAR techniques have replaced traditional 

photogrammetric systems in many applications, because of their speed in point cloud 
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generation and the percentage of acceptable points. A traditional image matching 

survey, based on the use of stereo pairs, can acquire no more than 80% of the possible 

points ([125]). However, with regard to satellite/airborne applications for DSM/DTM 

production, laser scanning techniques have non-negligible limits due to the impossibility 

of directly obtaining radiometric information and the exact position of object 

breaklines. Furthermore, other limits for LIDAR terrestrial applications are the weight 

and the size of the instrument, the cost, the limited range of application and the output 

data volume, which often requires high performance workstations to be managed and 

analysed. Finally, when point clouds are produced, segmentation and classification 

procedures have to be applied in order to correctly interpret and model the surveyed 

object. For this reason, most LIDAR surveys are integrated by digital image acquisition. 

Digital photogrammetry directly associates a radiometric information to the acquired 

points and the use of a stereo pair allows a manual or semi-automatic survey of the 

breaklines, when automatic algorithms fail. For these reasons, a wide variety of 

approaches have been developed and automatic DTM generation packages 

([184][142][102]) are nowadays commercially available for most digital photogrammetric 

workstations, focusing on improving the performances of matching techniques in order 

to generate dense point clouds from only images.  

1.2.2 Geostructural surveys and monitoring activities 

Environmental control and monitoring systems represent the most interesting and 

important fields of interest and application for geologists and geotechnical engineers: 

analysing the evolution of an unstable slope may provide important information to 

achieve a better knowledge of the active processes that could lead to failure and to 

forecast potential geo-disasters [110] [199]. The behaviour of different phenomena (in 

the time domain as well as in the space domain) depends on a lot of factors, which 

presents the geologists and the surveyors each time with different challenges. One of 

the most widespread earth surface hazard is due to slope processes such as falls of rock-

weathered fragments, landslide in cliffs together with civil engineering structures 

stability checking (and maintenance) problems. Therefore, it is crucial to investigate, 

and to develop, prevention measures and monitoring systems that allows evaluating 

slope stability and predicting the failure risk (e.g. by using automatic measurements 

systems). 

In principle, as far as a geometric survey is concerned, the main parameter when 

designing a measurement and control system is the accuracy needed to assess, with a 

given probability, the magnitude of the expected displacement. However, a number of 
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other issues influence the choice of the best monitoring system to use: the size of the 

area to control, the frequency of data acquisition, the time to deliver the results (alert 

time), the stability of the reference system, the influence of atmospheric parameters on 

measurement accuracy or operation, the site constraints, etc. In this context, 

photogrammetry is one of the many fields for three-dimensional measurement that can 

be taken into account. It has been used since long to periodically control the evolution 

of landslides, either from aerial images [33], as well as from ground [31]; in [117]the 

same technique has been used in combination with GPS surveys on the landslide body.  

Survey activities performed with photogrammetric methods allow assessing a regular 

basis monitoring in order to investigate landslide or slow movements, and to assess 

whether a movement is still active. The use of photogrammetry techniques and systems 

represents a low-cost alternative (w.r.t. other techniques such as total station/LIDAR 

monitoring, ground-based SAR (GB-InSAR), GNSS and so on) to have important 

information about the monitored object/area: indeed, thanks to image matching, it is 

possible to reconstruct a dense description of the object itself and, comparing the digital 

surface models reconstructed at different time instants, an accurate description of the 

object movements during time can be obtained. The systems/platforms used to acquire 

the data can be different: images can be taken using a UAS (Unmanned Aerial System) 

flight (aerial photogrammetry) or from the ground (close range photogrammetry) and 

several are the photogrammetric products that can be used to study the investigated 

geo-structural phenomena (DSMs, orthophotos, depth maps, displacement maps, etc.).  

The advantages of this method is that the acquisition systems and procedures are cheap 

and totally user-customizable: it is possible to decide the acquisition frame rate, the 

monitoring frequency, the precision and accuracy of the obtained photogrammetric 

products, considering just the system and data analysis costs. However, more recently, 

terrestrial (TLS) and aerial (ALS) laser scanning are also being used as alternative  [23][1]; 

in this regard, on the contrary of LIDAR techniques, photogrammetric survey methods 

suffers from some disadvantages connected with the images acquirement settings: the 

presence of bad meteorological conditions (such as fog, wind, snow) can reduce (or 

make impossible), the survey quality, the reference system definition in hard-accessible 

areas can be difficult (in particular for Ground Control Points (GCP) measurements 

and monitoring), and so on. However, in particular in these context, the use of UASs is 

rapidly spreading in many applications and will surely become a promising alternative 

in the next future: their relatively low cost and their capability of acquiring concurrently 

geometric (usually producing Digital Surface Model) and thematic data (using RGB or 

NIR imaging systems), as well as a very good productivity rate, make the technology 

extremely appealing also for monitoring applications.  
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1.2.3 Planetary mapping  

The importance of high resolution DTMs in the geomorphological studies of planets 

and asteroids has established stereo coverage and the photogrammetric reconstruction 

of the body surface as a standard among the scientific requirements of space missions 

[145][184] [163][146]. 

From the acquisition of stereo-images of planetary bodies, it is possible to reconstruct 

the DTM, that could also be derived, usually with lower resolution, from laser altimeter 

experiments. Nowadays, the acquisition of planetary bodies stereo-images has become 

(and will continue to be) one of the most important requirements for many planetary 

missions. In fact, the possibility to have high-precision topographic information is 

critical for planetary exploration and surface operations and the DTM generation is 

acquiring a central role in the programming and realization of the future space missions 

on the solar system planets. These products support the choice and the analysis of the 

landing sites and provide important information for geologists studying the 

geomorphology, structure and physics of the planets and asteroids. The great progress 

on last decades in high-resolution imaging of planetary surfaces allows providing 

detailed 3D geomorphological information over planetary surface and also the height 

variation with a fine spatial resolution. [145]. However, the process for deriving DTMs 

starting from these raw data is very complex because it has to consider two important 

aspects: it must create the highest accuracy results possible (considering that image data 

transfer is very costly in the mission budget), and it must be able to work with extremely 

large data volumes (since from a planetary mission the whole planet surface should be 

acquired and processed). Therefore, it is necessary to consider that a matching algorithm 

must be optimized for processing the high resolution images provided from the 

planetary missions (e.g. LROC mission produced more than 160 GB of image data so 

far). Efforts must be mainly directed at the improvement and investigation of the image 

correlation kernels/functions (for obtaining high performance in terms of precision and 

accuracy) and of the process optimization in terms of memory requests and 

computational time (implementing for example tiling and multi-resolution strategies) n 

fact, several aspects, such as occlusions, shadows, low image-texture, atmospheric dust, 

steep terrain and also the illumination conditions can be, in this context, more 

problematic for the image matching performances, and they must be taken into 

consideration during the development/adaptation of the matching algorithms or in the 

case of its simple application.  

Nowadays the most important institutes involved in the planetary mapping (University 

College of London (UCL), German Aerospace Center (DLR), U.S Geological Survey 
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(USGS), Ohio State University (OSU)) are working on developing strategies to fulfil 

these requests. 

1.2.4 Digital Image Correlation analysis 

Accurate measurements of full-field strain components are required in experimental 

solid mechanics testing. In this context, it is usual to speak of Digital Image Correlation 

(DIC), which refers to a class of non-contacting techniques that utilize two or more 

digital images and, performing image analysis, are capable of extracting a full field 

description of the deformations of the object itself [31]. The basic principle of DIC is 

the tracking of the same points (or pixels) between two consecutive images (i.e. before 

and after loading.) and the feature tracking is usually achieved using Area Based 

Matching (ABM).  

The improvement in image processing by means of microcomputers has fostered non-

contact measurement techniques to become more and more popular in the experimental 

mechanics community [37] in comparison to some full-field measurement techniques 

like Moiré, interferometry or photoelasticimetry. In the last decade, the opportunity to 

obtain displacement or strain contours directly (by automatic image processing), with 

low costs and high accuracy, has determined an increased use of optical devices, digital 

cameras, algorithms and software. DIC was originally proposed in the 1980’s [38] to 

study 2D solid mechanics problems, such as resin films [119], fiber reinforced polymer 

composites [120] and concrete [36]. In asphalt pavement technology field, where our 

research group has important co-operation agreement, Kim and Wen [98]first proposed 

the use of DIC technique as a possible displacement/strain measurement method for 

asphalt mixture. Seo et al. [166] utilized a DIC technique to investigate the size and 

shape of the fracture process zone for asphalt mixtures. Masad et al. [114] used both 

digital imaging and X-ray computed tomography techniques to evaluate the 

microstructure of hot mix asphalts in terms of aggregate orientation and air voids 

concentration, as well as strain distribution. Birgisson et al. [21] used DIC to validate 

the theory at the base of the visco-elastic fracture mechanics-based crack growth, which 

identifies a fundamental crack growth threshold as the key element in defining the 

cracking mechanism and fracture resistance of asphalt mixtures. Nowadays, DIC strain 

measurement is a continuously improving technique: for instance, Nashon et. al. 

[120]have analysed the ductile fracture of aluminum panels, using the obtained results 

also as calibration and validation data for the numerical modeling of ductile fracture in 

large structures. Strain and displacement analysis of specific and unusual materials were 

recently tested by using DIC: Makki et. al. [112] have presented the stress localization 
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and concentration for isotropic and orthotropic materials with holes and, in Petrikova 

et. al. [136], the big deformations of a hyperelastic material are investigated. Recent 

advances and perspectives in DIC and related methods for accurate, full-field 

deformation mappings have been described in [176] and in [46] the application of 

different algorithms for DIC applications is presented.   

The use of matching algorithms to obtain a full-field descriptions of the analysed 

specimens and their mechanic characteristics, requires the use of some precautions, in 

order to provide accurate results. To ensure a successful imaging acquisition, the 

specimen surface must show a random grey intensity distribution (i.e. random speckle 

pattern) that it is not always guaranteed by the natural texture of the material (asphalt 

mixture, aluminium panels, plastic samples, etc.). Therefore, the speckle pattern is 

usually artificially made, resulting in a homogeneous and well-contrasted randomly 

oriented texture, paying attention to the used paint, which mustn’t affect the real 

material behaviour. The correlation results, in term of accuracy of points displacement 

measurements, will depend on the resolution of the used digital cameras, the quality of 

the speckle pattern on the specimen surface and, not least, the conditions and setting 

of material testing system (climatic conditions inside the testing chamber, sources of 

illumination, etc.). The choice of the correlation algorithm represents also an important 

task: recently, in [46], the use of a Semi-Global algorithm in a 2D disparity search range 

space has been tested, comparing it with traditional Least-Squares matching method. 

The use of a semi-global (or global) technique for this kind of applications, where the 

continuity of the displacement field through the image sequence is requested, can be an 

appropriate method since the hypothesis at the base of the algorithm (i.e. the regularity 

of the displacement field) perfectly describe the physical geometry of the problem. 

1.3 Motivations and Objectives 

Since the early 60s, the introduction of digital cameras and imagery started the 

development of automation in the photogrammetric processing; in the last decades, 

advanced computer technologies has enabled the processing of digital images, regarding 

in particular the automatic recognition and measurement of image features and the 

matching process (research matter of this work of thesis) involved in the generation of 

the final dense point cloud that describes the surveyed scene. By the early 1980s, the 

literature on image analysis and matching had grown extremely: the methods and 

achievements obtained in the photogrammetric community are well-described in [7] 

[111]. The most significant contribution was probably the Least Squares image 

Matching technique [68] which, thanks to its adaptability and accuracy, has been widely 
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researched and explored in the scientific community and in many image matching tasks. 

Simultaneously, Computer Vision scientists has also had a significant impact in the 

development of matching techniques (as an example in [5]). Obviously, in the current 

scientific scenario, the boundary between the two disciplines is increasingly blurred: 

image matching products (such as three-dimensional digital surface and terrain models, 

displacement/deformation maps, image blocks orientation, image registration, etc.) are 

essential component for both the disciplines; at the same time, currently, the application 

and interest fields are very different. In photogrammetry the image matching products 

represent crucial data for monitoring activities, Geographic Information System (GIS) 

development, topography surveys and cartography production, image registration, 

points tracking for deformation studies in engineering applications and three-

dimensional reconstruction and modelling. Differently, in CV the interest is shifted 

towards automatic navigation systems, robotic automation, object recognition, 

entertainment, security and intrusion detection systems, motion tracking and 3D 

modelling. Moreover, in the last decades a common cliché stated that photogrammetry 

was focused primarily on image metrology, i.e., on the precision and reliability of the 

results [10], while CV was primarily aimed at the results completeness and the 

computational efficiency of the process (in order to allow the three-dimensional models 

generation with low computationally efforts). However, it is important to notice that, 

in the current scenario, these differences have almost disappeared and, as initially said, 

the boundary between the two disciplines (both in term of application fields (CV-based 

techniques and software packages are more and more being used for engineering 

[11][180], geology [191], geoscience [90][55] and cultural heritage [4][72] applications) 

and method major objectives) is increasingly blurred. If, on one hand, in CV the 

achievement of high accuracies is becoming an important and required tasks, and their 

software application are already capable of guaranteeing such results, on the other, in 

photogrammetry, the process speed and results completeness are becoming key factors. 

Therefore, it is important to understand and identify the successful strategies and find 

the interferences, rather than the differences, between these two approaches, integrating 

the qualities of both disciplines in order to solve each other's weak points.  

This work of thesis wants to present a dissertation of the wide range of modern dense 

matching algorithms, which are spreading in different application and research fields, 

with a particular attention to the innovative “Semi-Global” matching techniques. the 

choice of develop a semi-global numerical code was justified by the need of getting 

insight on the variables and strategies that affect the algorithm performances with the 

primary objective of maximizing the method accuracy and efficiency, and the results 

level of completeness.  
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The Semi-Global Matching stereo method realizes a pixel-wise matching and relies on 

the application of consistency constraints during the matching cost aggregation. 

Combining many 1D constraints realized along several paths, symmetrically from all 

directions through the image, the method performs the approximation of a global 2D 

smoothness constraint which allows detecting occlusions, fine structures and depth 

discontinuities. The regularity constraints allow using very small similarity windows 

(usually 1÷5 pixel) making the method particularly robust where shape discontinuities 

arise; on the other hand, traditional area based (template) matching techniques, using 

bigger templates to achieve good accuracies, are more prone to such issues. 

The dissertation will consist in the metrological characterization of the proprietary 

implementation of the semi-global matching algorithm, evaluating the influence of 

several matching variables and functions implemented in the process and comparing 

the accuracy and completeness of different results (digital surface models, disparity 

maps and 2D displacement fields) obtained using our code and other commercial and 

open-source matching programs in a wide variety of application fields. 

In Chapter 2, an attempt of classification and evaluation of the stereo Area-Based 

matching algorithms and all the parameters and processes strictly connected with the 

image correlation workflow, will be illustrated. Focusing on the essential component of 

the images correspondence problem, in the first part of the thesis, stereo methods that 

operate on two frames (stereo pair) will be described, and a general way of characterizing 

the stereo algorithms workflow will be presented. Multi-Image methods will be then 

investigated and the more popular techniques will be described.   

After this general overview, in Chapter 3 the Semi-Global proprietary implementation 

will be presented: the chapter will face, at a first level, the classical stereo matching 

implementation (i.e. that operate on two frame); after that, the chapter will deal with the 

algorithm developments of  multi-image approaches and the innovative extension to bi-

dimensional research of correspondences (e.g. temporal point tracking). 

Next, in chapter 4, the performances evaluation of the algorithm in surface 

reconstruction applications is presented. First, the results of some tests performed with 

other stereo matching software package and algorithms will be discussed, with the aim 

of inspecting the accuracy and completeness of the obtained three-dimensional digital 

models and of analysing the influence of several process variables. Second, several 

application fields and case studies will be presented, to illustrate the algorithm 

capabilities in real world scenarios.  

Finally, the results of the novel extended semi-global code (for 2D displacement search 

domain) will be presented in Chapter 5, together with an explanation of the different 

areas of interests and the capabilities of the method.  
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In a concluding chapter, an overview of the all the aspects covered in the dissertation, 

with particular regard to the emerged applications and other possible interest areas, will 

be discussed, highlighting the elements of originality conducted and possible future 

developments. 
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Introduction  

Area-based methods perform the correlation among brightness (intensity) patterns in 

the local neighbourhood of a pixel in one image, with brightness patterns in a 

corresponding pixel neighbourhood in the other image. In other words, they make a 

one by one search of the homologues: each image point to be matched is the centre of 

a small window of pixels (template) in a reference image (master image). The grey values 

of the template are (statistically) compared with those of an equally sized window of 

pixels (patch) in a search image (slave image), which corresponds to the second image 

of the stereo pair. A simple explanation in described above in Figure 2.1. 

 

  

Figure 2.1: ABM example. On the left: the template extracted on the reference image; On 

the right: the patch on the slave image and the search area in black. For each template 

defined in the reference image, the best corresponding region in a second image is searched 

and identified. 

 

The centre of the patch, that gives the highest similarity with respect to the template 

(the maximum correspondence between the grey values of the two windows), 

represents the homologous point (the two correspondent features are therefore 

considered the projection of the same physical entity in each view). However, grey value 

correspondences always differ since the patch is affected by both radiometric and 

geometric differences. Radiometric differences are due to sensor response, illumination 

changes, and object reflective changes. Geometric differences arise from camera 

movements (translations and rotations), and subsequent perspective effects. The 

continuous improvement of stereo matching algorithms, in terms of robustness against 

illumination differences, occlusions, repetitive pattern, and prospective variations, as 

well as efficiency and computation load, represents the most important requirement, 

i 

j 
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and some of the strategy developed to overcome these limits will be described in the 

following sections.  

Focusing on the essential component of the images correspondence problem, in this 

first part of the thesis, stereo methods that operate on two frames (stereo pair) will be 

considered and a general way of characterizing a stereo algorithm workflow will be 

presented. 

It is increasingly evident that matching problems are one of the most active research 

areas both in photogrammetry and computer vision and, therefore, very different 

algorithms and approaches have been proposed and investigated in the last decades by 

both communities. The wide range of these methods makes difficult to identify and 

illustrate a clear, unique and general algorithm workflow, along with their algorithmic 

components and processing steps. In this regard, a general taxonomy and categorization 

of stereo matching algorithms, where a set of well-defined processing steps has been 

presented in [157]. According to Scharstein, stereo algorithms generally perform the 

following four steps: 

1.  Compute a pixel-wise matching cost (a similarity measurement between a pixel 

2.  in the master  image and a pixel in the slave image); 

3.  Aggregate cost spatially (e.g., by summing over a window/support, or by 

diffusion); 

4.  Compute disparity (with a local, global or semi-global strategy) and find the best 

match based on the aggregated support; 

5.  Compute a sub-pixel disparity refinement (optional) by interpolation or image 

filtering. 

Although this classification proved to be suitable for a lot of image matching algorithms, 

it not always fit exactly all the approaches. Indeed, more commonly in photogrammetry, 

the distinction between steps 1 and 2 is not so clear: the costs calculation presumes the 

use of a window (“template” on the master image and “patch” on the slave image) 

within which the pixel costs are “aggregated” and this means that steps 1 and 2 collapse 

in a unique processing level. In other words, the similarity measurement between the 

images is not computed with a pixel-wise approach, but rather with a “window-wise” 

approach. However, the subdivision in the two first steps remains more attractive for 

applications where the computing efficiency is one of the primary tasks: compute a 

pixel-wise cost and then aggregate over a support is generally more efficient than the 

window-based approach. To provide a more general processing workflow we propose 

the following categorization scheme: 

1.  Image pre-processing procedures (optional); 

2.  Compute matching cost by using a window/support; 
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3.  Disparity computation and optimization by implementing local, global or semi-

global methods. 

4.  Compute a sub-pixel disparity refinement (optional). 

In the following an accurate description of each step will be presented, identifying and 

structuring the individual components that characterize an image stereo matching 

algorithm and with the foresight to give a useful guide to offer the knowledge, according 

to this new interpretation, about existing stereo matching algorithms.  

Finally, the multi-image matching process will be introduced and described. 

2.1 Image pre-processing procedures 

The essence of stereo matching is, given a point in one image, to find the corresponding 

point in another image, such that the two points are the projections of the same physical 

point in space. Therefore, at the base of any matching algorithm, a matching cost that 

measures the similarity of two locations on the images is necessary and the performance 

of all the existing different strategies rely on the radiometric characteristics of the 

images. In other words, in order to obtain reliable and precise results, the matched area 

must have high radiometric gradients (to facilitate a unique localization of the searched 

area within the image). In this regard, image pre-processing procedures can be used: 

these techniques allow optimizing the grey values distribution, obtaining better 

brightness and contrast values than the original ones.  

The most famous pre-processing filter, used for providing better image information in 

shadowed and saturated areas, is represented by the Wallis filter [196]. Differently from 

global contrast filters (e.g. Linear, Normalized contrast stretch), the algorithm is locally-

adaptive,  and therefore allows to simultaneously enhances the contrast values at both 

end of the brightness range (bright and dark areas). The output image is a user-

controlled weighted average of the Wallis filter output and the original image: the user 

must specify target mean and standard deviation values and the filter will adjust the local 

areas into the image in order to achieve the target values. The results will be a new 

transformed and optimized image.  

There are many other filters created to reduce the effects of the radiometric problems, 

for example the adaptive smoothing filter proposed by Saint-Marc et. al. [154] which is 

applied to reduce the noise level and to sharpen edges and preserve fine detail such as 

corners and line end-points. Moreover, in [208], a new pre-processing method that 

combines the adaptive smoothing filter and the Wallis filter, was developed. 

Furthermore, it is important to mention the Laplacian of Gaussian (LoG) filter, which 

is often used for removing noise and brightness changes, in particular in local real-time 
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method [101], and the mean filter, which aims to compensate a change in bias by 

subtracting from each pixel the mean intensity of a certain neighbourhood area of pixels.  

Several authors have suggested to compute the correlation measures on transformed 

images instead of on the original intensities [109]. This transformation can be 

considered as a pre-processing step, which has the goal to increase independency in 

camera bias-gain. 

In fact, patterns in images are corrupted by many non-Gaussian and non-additive 

phenomena; in order to minimize non-Gaussian noise many computer vision 

techniques use discrete approximations of image derivatives. In [109] it was shown that, 

by computing correlation measures on the gradient norm of each pixel, a higher 

robustness, with regard to illumination and geometric rotation insensitivity, can be 

obtained. Another example is represented by the histogram equalization methods [42]: 

these methods are based on the assumption that the image brightness of corresponding 

points (or windows) must be equal; however, this assumption is often false and the 

comparison of corresponding pairs of intensity histograms must be modelled. In [42] is 

demonstrated that a linear model does not adequately represent these deviations while, 

on the contrary, a non-linear monotonically increasing function is capable to solve the 

problem, correcting, or at least reducing, the errors introduced by the constant 

brightness assumption. This function tries to consider and model some of the problems 

that affect the images radiometric contents (variations in illumination, contrast and 

camera signal response) and allows mapping the intensity values in an image to intensity 

values in another one. Finally, instead of consider the original images, the intensity 

corrected histograms of the two images will be matched. Roy and Cox [42] have 

proposed an original solution to perform the local comparison of histograms based on 

a dynamic histogram warping that, instead of locally compare histograms, works directly 

on the intensity histograms by expanding or compressing intensity bins (one-to-one and 

one-to-many mapping are allowed). This method, avoiding intensity derivatives 

computation, seems superior to histogram specification procedure[174]. Similarly, in 

[64] a model for image brightness transformation between images is also proposed, 

introducing a spatially varying multiplier to relate images brightness.  

Other transforms, that try to create transformed images which can better respond to 

the needs of matching algorithm are the non-parametric rank and census transforms. 

These measures allow to generate new image pairs where the radiometric values of the 

image pixels were replaced with a different information, which gives indication, and 

takes into account, of variations in brightness between neighbouring pixels.  

The Rank transform [204] defines the number of pixels 𝑝′in a square window W whose 

intensity is less than the luminosity value of the central pixel 𝑝: 
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𝑅(𝑝) = ‖{𝑝′𝜖 𝑊(𝑝)| 𝐼(𝑝′) < 𝐼(𝑝) }‖   (2.1) 

 

In practice, this rank is determined by counting the number of neighbours with a smaller 

grey value than the reference pixel. In this case the function output is not an intensity 

value but an integer and the image correspondence can be realized with any correlation 

method on the transformed image. In other words, the images can be pre-filtered with 

the rank transform and then compared. Although this method allows reducing 

sensitivity to radiometric gain and bias, at the same time it also reduces the 

discriminatory power of the matching procedure since (usually) some information are 

lost (e.g. the new “colour” depth is lower than the original).  

In rank transform approaches, the relative ordering of all the pixels surrounding a given 

location is encoded in a single value, therefore, Zabih and Woodfill [204] have also 

proposed a variation of the rank transform, called census transform, that preserves the 

spatial distribution of ranks by encoding them in a bit string. In fact, it can be considered 

as a fairly new area-based approach to the correspondence images problem [204] since 

it realize a non-parametric summary of local spatial structure followed by a correlation 

method using, for example, an Hamming distance metric (see following sections). 

Census measure tries to map the intensity values of the pixels within a square window 

W to a bit string where pixels intensities are compared to the window central pixel 

intensity p. The boolean comparison returns 1 when the pixel intensity is less than the 

central pixel, or 0 otherwise. That is: 

 

𝑅(𝑝) =  𝑝′∈𝑊   (𝐼(𝑝′), 𝐼(𝑝))      where       (𝑖, 𝑗) = 1, 𝑖 < 𝑗, 

                                                                                   (𝑖, 𝑗) = 0, 𝑖 > 𝑗 
(2.2) 

 

where  represent the concatenation operator. 

Census transform has been proved to be one of the most robust image transform for 

stereo vision [85][82]. Stein et al. [171] used the census transform as an efficient 

descriptor for structure matching in driver assistance systems and Fröba and Ernst [60] 

used a modified census transform for face recognition. 

The advantage of the above schemes is that correlation rely on the relative ordering of 

local intensity values (and not on the intensity values themselves). Therefore, measures 

are independent of absolute intensity scale and invariant to monotone transformations 

of intensity values like gamma variation between images. Correlation using such 
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transforms can tolerate a significant number of outliers. An example of the two non-

parametric cost metrics is shown in Figure 2.2. 

 

  

Figure 2.2: Rank (left) and Census (right) transform of a 3 x 3 neighbourhood patch (the 

reference pixel is marked in grey). 

However, one drawback of these approaches is that the local measures depend quite 

heavily on the centre pixel intensity. In this context, other methods have been developed 

[158] to match local intensity gradients instead of raw intensity values but it is worth 

noting that their performance can be poor when gradient information is not reliable.  

 

  

Figure 2.3: Epipolar constraint introduction during the disparity optimization process and 

an example of an epipolar rectified image pair: epipolar lines are highlighted in the above 

pictures.  

 

The epipolar constraint enforcement can be also considered pre-processing step: 

indeed, this means that images are firstly rectified (using known interior and exterior 

orientation parameters) in order to obtain a new image pair where correspondent image 
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elements appear on the same line (called as epipolar line) of pixels on the images (see 

Figure 2.3). The use of rectified images allows to considerably reducing the stereo 

matching computation effort and time and to improving matching reliability (more 

details about epipolar image rectification are provided in section 3.1.2). 

2.2 Matching cost computation 

All image matching algorithms rely on a quantification of the similarity of image pixels: 

such metric can be calculated by computing a pixel-wise matching cost, followed by 

costs aggregation over a support region, or with windows-based approach where costs 

are directly calculated on the aggregation region (e.g. as done by Normalized Cross 

Correlation  (NCC) similarity function). In other words, once the pixel-wise costs are 

calculated within a finite area, they must be “aggregated”: these measures must provide 

a unique value which will indicate the similarity information of each evaluated window 

of pixels.  According on the chosen similarity function, the costs aggregation step can 

be performed in several ways: costs can be simply summed (as in the case of Sum of 

Absolute/Squared Differences (SAD/SSD) cost functions) or can be related to a 

statistic indicator (as it occurs in the Normalized Cross Correlation indicator and in the 

LSM process). Common pixel-based matching costs include absolute differences, 

squared differences and the interesting (and more robust) sampling-insensitive absolute 

differences criteria developed by Birchfield and Tomasi [19].  

In [9], a similarity measure taxonomy is presented, analysing the different measures 

quality and properties. The most traditional and frequently applied  matching cost, used 

both in photogrammetry and computer vision, are SAD/SSD [85], NCC  [106][73][77] 

and Mean Absolute Difference (MAD), while, in the recent past, Mutual Information 

(MI) [195] and the non-parametric measures based on Census transform [204], were 

introduced.  The following section wants to provide a brief summary of the most 

popular similarity cost functions, usually implemented in photogrammetry to perform 

a dense stereo reconstruction. 

2.2.1 Sum of Absolute/Squared Differences 

Sum of Absolute Differences is one of the simplest similarity measures commonly 

implemented for image similarity analysis. It performs the absolute difference between 

each pixel of the master image and the corresponding pixel in the slave image, using a 

search window 𝑊 to realize the comparison. Similarly, in Sum of Squared Differences  

the differences between corresponding pixels are squared.  
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In a subsequent step, these differences are summed (cost aggregation).  

SAD and SSD formulations have the following expression: 

 

𝑆𝐴𝐷 =  ∑ |𝑓(𝑖, 𝑗) − 𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥)|

(𝑖,𝑗)𝜖𝑊

 
(2.3) 

SSD =  ∑ (f(i, j) − g(i + ∆y, j + ∆x))2

(i,j)ϵW

 
(2.4) 

 

where 𝑓(𝑖, 𝑗) is the gray scale pixel intensity at location (𝑖, 𝑗) in the master image and 

𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥) the gray scale pixel intensity at location (𝑖 + ∆𝑦, 𝑗 + ∆𝑥) on the 

slave image, considering ∆𝑥 and ∆𝑦 the corresponding pixel disparity. The quantity SSD 

(or SAD) measures the squared Euclidean distance between (𝑓, 𝑔), and a value close to 

zero indicates a strong match. 

2.2.2 Normalized Cross Correlation 

Normalized Cross Correlation is more complex than both SAD and SSD but it is 

invariant to linear changes in image intensity amplitude. Normalizing features vectors 

to unit length, the similarity measures between the features becomes independent to 

(linear) radiometric changes [106]. 

The NCC finds matches of a reference template 𝑓(𝑗, 𝑖) over an area W with respect to 

an equally sized area on the slave image 𝑔(𝑗, 𝑖) and it is defined as: 

 

𝑁𝐶𝐶 =  
∑ [(𝑓(𝑖, 𝑗)) ∙ (𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥)](𝑖,𝑗)∈𝑊

√∑ [(𝑓(𝑖, 𝑗))
2

∙ (𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥))
2

](𝑖,𝑗)∈𝑊

 
  (2.5) 

 

As it can be seen, the cross-correlation between 𝑓 and 𝑔 is normalized by the L2 norms 

of the two vectors, in order to render the measure robust to any spatially constant 

multiplicative bias. By subtracting the mean intensity value of the two image windows, 

we can get an even more robust matching measure: 

 

𝑍𝑁𝐶𝐶 =  
∑ [[(𝑓(𝑖, 𝑗) − 𝑓) ∙ (𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥) − 𝑔)](𝑖,𝑗)∈𝑊

√∑ [(𝑓(𝑖, 𝑗) − 𝑓)
2

∙ (𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥) − 𝑔)2](𝑖,𝑗)∈𝑊

 (2.6) 
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where 𝑓 ̅and �̅� represent the corresponding sample means. This measure is referred to 

as Zero-mean NCC (ZNCC) and it is robust to spatially constant affine variations of 

the image intensities. 

A unitary value of the coefficient indicates a perfect match, although, ideally, a unit value 

can only be obtained by a noise-free image pair of a flat surface with images acquired in 

the so-called normal case of photogrammetry. 

NCC and ZNCC appear more accurate and reliable then the other costs function (which 

don’t relate the radiometric information within the window, to a statistic indicator) and 

show good robustness with respect to linear brightness and contrast variations. 

However, all these metrics are not the ideal approach to feature tracking since it is not 

invariant with respect to imaging scale, rotation, and perspective distortions. SSD can 

be influenced moreover from radiometric changes, but it is computationally very 

attractive and shows good insensibility toward noise [109]. Further, by definition, they 

are not suitable in the presence of nonlinear intensity variation at corresponding pixels.  

2.2.3 Sum of Humming Distance 

The Humming distance is a metric expressing the distance between two objects by 

evaluating the number of mismatches among their pairs of variables. It is mainly used 

for string and bitwise analyses, but can also be useful for numerical variables. 

Sum of Hamming Distances (SHD) is normally employed for matching census-

transformed images by computing bitwise-XOR between the values extracted within a 

square window W on the master and slave images. The two bit strings (which must have 

the same length) are evaluated identifying the number of pixels that change from one 

string to the other; in other words, a bit-counting operation, which results in the final 

Hamming distance score, is performed: 

 

𝑆𝐻𝐷 =  ∑ 𝑓(𝑖, 𝑗) 𝑏𝑖𝑡𝑤𝑖𝑠𝑒𝑋𝑂𝑅 𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥)

(𝑖,𝑗)∈𝑊

= 𝑓(𝑖, 𝑗)^𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥)             

 

(2.7) 

where 𝑆𝐻𝐷 is the humming distance between the strings 𝑓 and 𝑔 and 𝑊 is the window  

used to extract the bit-values to compare. In Census metric, a window size of three or five pixels 

is generally used to Census-transform the images. 
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2.2.4 Other cost functions 

As already mentioned, stereo matching systems often fails when the radiometric 

conditions between images change. For example, Birchfield and Tomasi have proposed 

a matching cost that is insensitive to image sampling [19] where, instead of just 

comparing pixel values shifted by integral amounts (which may miss a valid match), the 

comparison of each pixel in the reference image against a linearly interpolated function 

of the other image is computed. More recently, with respect to the previously analysed 

cost metrics, the Mutual Information stereo similarity metric [52][83], which has been 

introduced in CV by Viola and Wells [195], has been proposed for matching images 

with complex relationship of corresponding intensities and reflection problems. Mutual 

information depends upon the entropy and the joint entropy of two random variables 

that, in the case of stereo matching, are represented by the information content of the 

image pixels taken from each image of a stereo pair. MI can be easily incorporate into 

an area-based algorithm with fixed size windows centered at each point (as it has been 

doing by Egnal [52]). However, this approach suffers from the classical problems of 

windows-based local methods as regard discontinuities, occlusions and low-textured 

regions on the images (problems that can be solved using energy minimization 

approaches). 

Considering two images 𝐼1 and 𝐼2, we can express Mutual Information 𝑀𝐼 at a given 

disparity 𝑑, as:  

 

𝑀𝐼(𝐼1, 𝐼2, 𝑑) = 𝐻(𝐼1) + 𝐻(𝐼2, 𝑑) − 𝐻(𝐼1, 𝐼2, 𝑑) (2.8) 

 

Then entropies 𝐻(𝐼1) and 𝐻(𝐼2) are calculated from the probability distributions P of 

the associated images intensities:  

 

𝑀𝐼(𝐼1, 𝐼2, 𝑑) = − ∫ 𝑃𝐼1
(𝑖)𝑙𝑜𝑔𝑃𝐼1

(𝑖)𝑑𝑖
1

0

− ∫ 𝑃𝐼2,𝑓(𝑖)𝑙𝑜𝑔𝑃𝐼2,𝑓(𝑖)𝑑𝑖
1

0

 

                     + ∫ ∫ 𝑃𝐼1,𝐼2,𝑓(𝑖1, 𝑖2)𝑙𝑜𝑔𝑃𝐼1,𝐼2,𝑓(𝑖1, 𝑖2)𝑑𝑖1𝑑𝑖2

1

0

1

0

 

(2.9) 

 

Since, usually, the matching algorithms tries to minimize the similarity cost, while a high 

mutual information rate corresponds to high information (since that well-registered 

images produce an high joint entropy because one image can be predicted by the other), 

the formulation is commonly changed in sign.  
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A new and recent approach to compute the stereo cost computation, is that proposed 

by Zbontar and LeCun [205]. They have solved the problem of computing the stereo 

matching costs by learning a similarity measure on pairs of small image areas/patches 

using a convolutional neural network. The output of the convolutional neural network 

is used to initialize the stereo matching cost; then, they proceed to a series of post-

processing steps, necessary to achieve good results. 

The key of the method relies in the identification and construction of the optimal 

network architecture for solving a specific problem: in [205] the described neural 

network has produced disparity maps with lower error rates than any other previously 

published method, on four different high-resolution scientific image dataset extracted 

from the Middlebury Stereo Evaluation Dataset. In particular, the 2014 high-resolution 

datasets has been considerate; such results are presented (and can be download) on the 

Middlebury Stereo Matching performance Evaluation web page [115]. 

2.2.5 Cost area supports 

As previously illustrated, window-based methods perform the aggregation of the 

matching cost by summing or averaging the pixels cost over the support region (as 

happens in SAD, SSD, MAD), possibly using suitable well-identified weights or statistic 

indicators referring to the radiometric data within window (as performed in NCC 

similarity function). 

However, implicitly all the previous metrics assume equivalent depth values for all pixels 

of the correlation window even if this hypothesis is violated at depth discontinuities, 

strong perspective changes between the images and whenever the object surface is not 

parallel to the image plane (slanted/non-planar surfaces). This assumption produces a 

smoothness effect of the pixels data within the window, especially if the matching 

window covers pixels which lie at different depths: this leads to wrong values in the 

matching cost. On one hand, small windows can lead to noisy, low precision results 

because consider just few information to evaluate the template similarity and might not 

cover enough intensity variations [94] but are less prone to such issues (and 

consequently can improve the restitution level of detail). On the other hand, larger 

windows give better support for the matching but makes constant depth hypothesis 

more inadequate. In fact, big window sizes usually produce smoother surfaces, losing 

information near object boundaries and where small object shape details are present. 

The larger the window, the larger will be the loss of object information in presence of 

depth variations, in particular for wide baselines and large angular images motions 

(image neighbourhood of corresponding pixels will look different in shape and size in 
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the stereo images pair). The ideal block size to perform the stereo matching depends on 

the chosen function and the evaluated object: in analogy with other techniques for DTM 

generation in close range (e.g. LSM), there seems to be an optimal range for template 

size value according to object features [146]. Nevertheless, several approaches face this 

issue in different ways, trying to solve the just mentioned correspondences difficulties 

connected to the use of a fixed window. Some rely on the concepts of a variable support 

employment [3][29][62][50] and some others try to set up an iterative stereo 

correspondence method that employ a variable shape window which changes adaptively 

according to the information content of the analysed image (e.g. LSM [68]).  

The basic concept at the base of the variable support methods is the following: instead 

of using a fixed size correlation window for each image point of the reference image, a 

more generic support, whose shape and dimensions vary by adapting themselves 

according to image characteristics, is used. These methods want to improve the accuracy 

and reliability of depth information. Indeed considering a fixed support region, the 

results reliability, when the patch is located near border and discontinuities, are severely 

compromised.  

Variable support methods rely, generally, on a fixed set of rectangular or squared 

window pairs which can dynamically change. On the basis of a specific condition on 

the image (such as a border, a discontinuity, a repetitive pattern, etc.), each window can 

modifies its dimension and/or can be centred on different neighbouring points in order 

to finally identify the support (extracted from the initial set of windows) which better 

identifies the searched corresponding point. After that, the disparity value 

determination of the evaluated point is performed.  

 The most famous variable support methods use multiple windows anchored at 

different points, i.e. shiftable windows [24], windows with adaptive sizes 

[94][126][193][95], and windows based on connected components of constant disparity 

[29]. Three-dimensional support functions have also been proposed and include limited 

disparity difference [67], limited disparity gradient [140], and Prazdny’s coherence 

principle [144]. 

For example, multiple windows method [3][24] considers multiple square windows 

centred at different locations and selects the one that gives the higher similarity cost 

([24][62]), allowing the determination of the best window that maximizes the similarity 

measure. An extension has also been proposed in [82], which picks several windows 

from surrounding square windows and computes the sum of their average costs. 

Multiple windows algorithm can employ, at every pixel location, 5 or 9 squared windows 

(clear examples can be seen in [82]), in symmetrical positions with respect to the central 

point (see Figure 2.4). Some windows are designed so that they will match to the left, 
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some are designed to match to the right, some are designed to match towards the top, 

and so on. Near an occlusion boundary, at each pixel, only the best result from matching 

using all 9 windows is stored while the bad matches resulting from occlusion tend to be 

discarded.  

 

Figure: 2.4: Multiple windows algorithm example: using 9 matching windows, border 

localization and noise problems in the disparity space image are avoided. The windows 

center (marked in red) are shifted, not constraining the support to be centered on the 

central position. Finally, just the position with the best score is selected. 

 

However, for both square-fixed-window and multiple-window approaches, the size of 

the support window is fixed and it should be large enough to include sufficient intensity 

variation data and, at the same time, small enough to avoid depth variation inside the 

window.  

An alternative is to change the window dimension, by maintaining it centred on the 

same point [126]. This is useful, in particular, in order to decrease the ambiguity of the 

correspondences determination within uniform textured areas. Several approaches has 

been developed in order to calculate the matching costs with adaptive windows:  for 

example, window size may vary within a single image: larger ones for areas with weak 

textures and smaller ones for areas with geometry details. At the same time, the shape 

of the support can also automatically change. To these ends, several adaptive-window 

approaches have been proposed, which select the optimal window sizes and shapes 

automatically by evaluating the image local information. For example Kanade and 

Okutomi [94] have proposed an adaptive window solution. In this case (and other 

variable support methods based on not-fixed windows shape such as [35][47] ) the 

variable support can have different shapes. They modified the window size and shape 

adaptively depending on the local intensity and disparity variations for each pixel. The 

selected window is optimal in the sense that it produces the disparity estimate having 

the least uncertainty. By evaluating both the intensity and the disparity variations within 
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a window, we can compute both the disparity estimate and its uncertainty which can 

then be used for selecting the optimal window. Although this algorithm produced better 

results than the standard single-window algorithms (in particular regarding accuracy at 

object boundaries), its final output depended on the choice of the initial disparity 

estimate. 

 A more recent method has been proposed in [203]: it is an adaptive-weight algorithm 

that adjusts the support-weight of each pixel in a fixed-sized square window. The 

support-weight of each pixel in the window is calculated based on both the colour 

similarity and the Euclidean distance with respect to the central pixel. However, the 

computation cost with this method is high, making the method usually computationally 

unfeasible. 

 Lastly, the Least Squares Matching method [68] can be also considered a variable 

support method. In fact, it implements an adaptive support whose shape can change on 

the slave image iteratively according to the radiometric information within the support 

itself. In other words, starting from an initial solution, characterized generally by a plane 

and squared or rectangular support, the methods modifies the patch shape (on the 

evaluated slave image) on the basis of a solution that is calculated iteratively. The aim is 

minimizing the implemented similarity cost function that represents the better solution 

to solve the system (the method details are described in paragraph  2.3.1.2).  

The similarity function gives a cost for each pixel at each disparity and these data can 

be stored in the Disparity Space Image (DSI) 𝐶(𝑥, 𝑦, 𝑑), where (𝑥, 𝑦) represents the 

pixel location and 𝑑 the considered disparity value. In general, a DSI is any image or 

function defined over a continuous or discretized version of disparity space (𝑥, 𝑦, 𝑑). 

In practice, for cost computation, each DSI element 𝐶(𝑥, 𝑦, 𝑑) represents the 

radiometric similarity cost of the correspondence between the reference (or master) 

image pixel/window IR(x,y) and the slave image pixel/window IS(x +d, y). It is easy to 

note that a 1D disparity search domain makes the complexity of the cost computation 

proportional to 𝑊 × 𝐻 × 𝐷, where 𝑊 and 𝐻 are the image pixel resolution and 𝐷 is 

the disparity search range (as it is represented in Figure 2.5). In other word, all costs for 

all pixels and all possible disparity values are evaluated up front in a big tensor of these 

dimensions 
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Figure 2.5: DSI three-dimensional representation. 

2.3 Disparity computation  

Once the costs are calculated, it is necessary to determine which discrete set of 

disparities represents the scene surface optimally. Three different stereo matching 

approaches will be described in the following sections: local, global and semi-global. 

Every approach performs the disparities computation and optimization steps (the latter 

will be separately discussed in paragraph 2.4) identifying the optimal disparity in an 

image matching problem. However, Local, Global and Semi-Global methods 

implement very different algorithms and optimization functions (or strategies): the main 

distinction between these algorithms is the minimization procedure used to compute 

the final disparities. On one hand we have the local methods, where computing the final 

disparities simply means choosing for each point the disparity associated with the 

minimum radiometric similarity cost value: each correspondences is evaluated one point 

at a time, not considering neighbouring points/measures; on the other hand,  global 

and semi-global techniques make explicit assumptions on the regularity of the results. 

The use of regularity constraints provide an additional support for the solving process 

and allows obtaining results even with areas which may be difficult to compute with 

local methods (e.g. with no texture variations). 

2.3.1 Local methods 

Local methods evaluate the correspondences of one point at a time (i.e. point-wise 

approach) by analysing the radiometric intensities within the finite support window, not 

considering neighbouring points/measures. This approach is very efficient, making it 

𝑊 

𝐻 
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particularly suitable for real-time applications; however, the disparity computation at a 

given point will depend only on intensity values within the finite window. 

Following, two typical local strategies are presented. 

2.3.1.1 Correlation based method 

Correlation methods realize a similarity measurement between a template in reference 

image and a patch extracted from a larger search area within the slave image. The 

matching process moves the patch window to all possible locations in the slave image 

and computes a numerical index that indicates how well the template matches the image 

in that location. The position of best agreement is assumed to be the location of the 

corresponding point. 

 

Figure 2.6: The extracted template in the reference image (on the left) is moved to different 

locations in the slave image (on the right), in order to identify the corresponding area. 

 

The similarity between the two areas can be evaluated using simple SAD/SSD 

matching cost or the more rigorous NCC coefficient. Finally, the easiest way of 

choosing the best disparity is to select, at each pixel, the minimum aggregated cost 

across all disparities under consideration, in other words, performing a local “Winner-

Takes-All” (WTA) optimization at each pixel (see Figure 2.6 and 2.7). 

It is interesting to notice that local matching strategies suffer of important problems 

connected to the method assumptions: for instance, considering individually each 

point neighbourhood, low textured and repeated patterns (Figure 2.8) represent a 

problem, leading to error and mismatches (i.e. the algorithm can find multiple 

correspondences that seem to be correct). These problems can be overcome by 

introducing some constraints to the matching process (as it performed by global 

matching methods, see paragraphs 2.3.2 and 2.3.3). On the other hand, problems 

often arise at depth discontinuities (an identical correspondent window on the slave 

image cannot be found - see for instance Figure 2.9). The algorithms are considerably 

sensitive to the presence of image regions characterized by sudden depth variations 
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as far as the content of the two templates differs: such problems can be overcome 

using variable supports as illustrated in paragraph 2.2.5. 

  

 

Figure 2.7: Identification of the best disparity value through the Winner-Take-All (WTA) 

strategy. 

 

Finally, correlation methods, which usually assume a constant disparity value inside the 

matching template, are influenced by geometric transformations such as rotations, 

perspective changes or scale variations. When the template and the patch are affected 

by some geometric variation, the similarity values, measured by simple correlation 

metrics, are low, even when the homologous points are well-identified. In this context, 

several authors suggested to use, in the matching process, not the original image but 

that obtained by means of appropriate convolutions [109]: for example, images derived 

from the gradient norm of each point proves to be invariant under rotations. 

 

 

Figure 2.8: Images with repeated texture patterns (which represent a problem for image 

matching algorithms). 
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Figure 2.9: The correlation window contains element at different depth in the image scene 

and some elements within it are occluded. 

2.3.1.2 Traditional Least Squares Matching 

As mentioned above, correlation methods are not robust if geometric variations 

(different from rigid translation) occur between the images; in order to overcome this 

problem, different algorithms were developed in the last 30 years, allowing to consider 

more general and complex geometric difference. The famous Least Squares Matching 

technique [68] is one of those: in this case the matching process consists in the 

estimation of a transformation parameter vector that makes the similarity between the 

template and the patch the highest considering a parametric deformation of the patch. 

LSM is an optimization method that employs an iterative geometric and radiometric 

transformation between reference image and search image in order to minimize the 

least-squares sum of pixel value differences (SSD) between the images. To keep the 

overall model simple but still effective, in most implementations the radiometric 

parameters allow a linear intensity stretch while the geometric parameters allow an affine 

transformation between the two images (interesting is the recent investigation of 

different and more complex geometric transformations between the images, described 

in [146] and [92]). The 6-parameter affine geometric model is an approximation of the 

actual perspective transformation between two images; when the object surface in the 

search area can be assumed to be planar, and for small patches and not too convergent 

images it works generally well. The six parameters are estimated by least-square 

adjustments using the template pixel values as observations. 

Given two image points, LSM considers the two conjugate image regions as discrete 

two-dimensional functions: the template 𝑓(𝑥1, 𝑦1) and the patch 𝑔(𝑥2, 𝑦2). The patch 

is transformed applying both radiometric and geometric adjustments to obtain a new 

patch 𝑔′(𝑥2, 𝑦2). The matching process establishes a correspondence minimizing the 

L2-norm of the residual vector 𝑒(𝑥1, 𝑦1): 

 

? 
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𝑓(𝑥1, 𝑦1) − 𝑔′(𝑥2, 𝑦2) = 𝑒(𝑥1, 𝑦1) (2.10) 

 

Radiometric changes (due to contrast and brightness variations of intensity values in the 

slave image) are modelled in the patch function as: 

 

𝑔′(𝑥2, 𝑦2) = 𝑟0 + (1 + 𝑟1) ∙ 𝑔(𝑥2, 𝑦2) (2.11) 

 

where 𝑟0 and 𝑟1 are two parameters accounting for brightness and contrast changes in 

the slave image, respectively.  

Geometric corrections are considered by means of a geometrical parametric 

transformation: 

 

𝑔(𝑥2, 𝑦2) = 𝑔(𝑥2(𝑥1, 𝑦1), 𝑦2(𝑥1, 𝑦1)    (2.12) 

 

The following affine transformation model is the most commonly used in image 

matching applications: 

 

{
𝑥2 = 𝑎1𝑥1 + 𝑎2𝑦1 + 𝑎3

𝑦2 = 𝑏1𝑥1 + 𝑏2𝑦1 + 𝑏3
  (2.13) 

 

where (𝑎1, 𝑎2 , 𝑏1, 𝑏2) model shape differences between patch and template, while (𝑎3, 

𝑏3) are the shift (translation) parameters. 

Radiometric and geometric correction parameters are then estimated solving, for 

||𝑒(𝑥1, 𝑦1)|| =min, the following least squares system, obtained by substituting the 

transformed functions in eq. (2.11):  

 

𝑓(𝑥1, 𝑦1) + 𝑒(𝑥1, 𝑦1) = 𝑟0 + 𝑟1 ∙ 𝑔(𝑥2(𝑥1, 𝑦1), 𝑦2(𝑥1, 𝑦1) )   

                                = �̅�(𝑟0, 𝑟1, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3)    
(2.14) 

 

Linearization of the function �̅�(𝑟0, 𝑟1, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) with respect to the 

parameters (𝑎1, ..., 𝑏3) requires the computation of the derivatives of the grey values 

with respect to (𝑥2, 𝑦2) using numerical approximations. 

 

𝑓(𝑥, 𝑦) =  𝑔0(𝑥1, 𝑦1) +  𝑔𝑥𝑑𝑎1 + 𝑔𝑥𝑥1𝑑𝑎2 + 𝑔𝑥𝑦1𝑑𝑎3 + 𝑔𝑦𝑑𝑏1 + 𝑔𝑦𝑑𝑏2

+ 𝑔𝑦𝑦1𝑑𝑏3 +  𝑟0 + 𝑟1𝑔0(𝑥1, 𝑦1) 
(2.15) 
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The partial differentials are given by the pixel value gradients: 

 

𝑔𝑥 =
𝜕𝑔0(𝑥1, 𝑦1)

𝜕𝑥1
                    𝑔𝑦 =

𝜕𝑔0(𝑥1, 𝑦1)

𝜕𝑦1
                  

(2.16) 

 

If the transformation parameters are written as an unknown vector 𝑥 ̂ , the partial 

derivatives  coefficients are stored in the design matrix 𝐴, and the pixel value differences 

between reference and search images are inserted in the vector of  observations  𝑙, then 

the linearized correction equation  is given by: 

 

𝑙 + 𝑣 = 𝐴 𝑥 ̂ (2.17) 

where 

 

𝑥𝑇 = [𝑑𝑎0, 𝑑𝑎1, 𝑑𝑎2, 𝑑𝑏0, 𝑑𝑏1, 𝑑𝑏2, 𝑟0, 𝑟1] (2.18) 

𝐴 = [
𝑔 

1
𝑥

⋮
𝑔 

𝑛
𝑥
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1
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1
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1
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1

𝑦

⋮
𝑔 

𝑛
𝑦

  

𝑔 
1
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1

⋮
𝑔 

𝑛
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1
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1

⋮
𝑔 

𝑛
𝑦 ∙  𝑦 

𝑛
  

1
⋮
1

] 
(2.19) 

𝑥 = (𝐴𝑇𝑃 𝐴)−1(𝐴𝑇𝑃 𝑙) (2.20) 

 

For usual cases, the weight coefficient matrix 𝑃 is set as identity. 

The adjustment equations must be solved iteratively (as is shown in Figure 2.10), and at 

every iteration the unknowns are corrected. This leads to new pixel value differences at 

each iteration between search and reference image, until the least-squares sum of the 

corrections is less than a predefined threshold or a specific number of iterations is 

reached. 

 
 

Figure 2.10: An example of the patch transformation during the iterations.  
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2.3.2 Global methods  

Global methods, try to overcome local methods limits: neighbours points correlation 

measures affect each other, leading to a global simultaneously  investigation of the whole 

image. They therefore result less sensitive to ambiguous disparity values as occurs in 

presence of occlusions, repeated patterns and uniform texture regions. While local 

techniques perform almost all of their work during the radiometric similarity cost 

computation and the cost aggregation steps, in global methods, the emphasis is on the 

disparity computation phase, skipping frequently the aggregation step (i.e. the cost is 

evaluated pixel-wise). Such algorithms seek a disparity solution (step 3) that minimizes 

a global cost function that combines data (step 1) and smoothness terms (the main 

distinction inside these class of algorithms is generally the implemented minimization 

technique).  

The problem of finding the correspondences deals with the minimization of a global 

cost function extended (usually) to all image pixels: since individual pixels do not 

contain enough information for unique matching solution, global methods add 

smoothness constraints that represent a further support to solving the process. This is 

typically formulated in a cost function: 

 

𝐸(𝑑) =  𝐸𝑐𝑜𝑠𝑡(𝒑, 𝑑(𝒑)) +  𝛼𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝒑, 𝑑(𝒑)) (2.21) 

 

where 𝒑 is the location vector of each point in the master image, 𝑑 is the disparity value 

and 𝛼 represents the disparities penalization variable (or weight) introduced for 

computing the disparity regularization enforcement. The first term, therefore, 

represents the image consistency/similarity cost, whereas the second term evaluates the 

regularity of the disparity field. Several approaches rely on simple pixel-based cost 

functions, but support aggregation strategies have been successfully adopted as well. 

The data term 𝐸𝑐𝑜𝑠𝑡(𝑑) sums all pixel-wise/aggregated matching costs, associated with 

a disparity value of𝑑, over the whole image: 

 

𝐸𝑐𝑜𝑠𝑡(𝒑, 𝑑) = ∑ 𝐶(𝒑, 𝑑𝑝)

𝑝

= ∑(𝐶((𝑥, 𝑦), 𝑑𝑝)

𝑥,𝑦

 (2.22) 

 

The smoothness term  𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) encodes the smoothness/regularization 

assumptions made by the algorithm: 
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𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝒑, 𝑑) =  ∑ 𝛼𝑃(|𝑑𝑝 − 𝑑𝑞| ≥  𝛾)

𝑝,𝑞∈𝑁𝑝

 (2.23) 

 

This term adds a penalty P for all pixels that have neighbours at a different disparity: 𝛾 

represents the disparity difference of neighbour pixels beyond which the regularization 

term intervenes, penalizing the cost value depending on the extent of the estimated 

difference. In this way, discontinuities are permitted if pixel-wise matching data is 

stronger than the penalty, i.e. if the texture indicates a discontinuity. The second term 

indirectly connects all pixels with each other in the image and makes the function global. 

In this formulation, the disparity image 𝑑 that minimizes the equation must be identified 

performing a 2D-optimization. Unfortunately, this is an NP-hard problem [28] [192], 

which means that…. In other words, the major difficulty with energy minimization with 

these approaches lies in the enormous computational costs. Moreover, typically, the 

energy function presents many local minima.  

Finding the minimum of the global energy function can be performed with different 

approaches: famous approximate solutions to this problem are Dynamic Programming 

algorithm [20], Graph Cuts [28] and Belief Propagation [56]. A detailed comparison of 

significant energy minimization methods can be found in [178]. 

2.3.3 Semi-Global methods 

Semi-Global Matching [82][83][84] successfully combines concepts of global and local 

stereo methods allowing to obtain accurate results at low runtime. The algorithm works 

with a pair of images with known interior and exterior orientation parameters – and 

consequently epipolar geometry (i.e. corresponding points lie on the same horizontal 

image line) - and performs a pixel-wise matching: it considers both the image similarity 

and the displacement continuity, by the concurrent application of regularization 

constraints (in terms of adjacent pixels displacement).  

Semi-Global techniques realize the minimization of a global cost function, combining 

matching costs along independent one-dimensional paths from all directions through 

the image. The costs extracted by each path, referred to a particular displacement value, 

are summed for each pixel and possible displacement (also referred as “disparity”) value. 

Finally, the algorithm choses the disparity solution with the minimum cost, using 

algorithms like Dynamic Programming, Graph Cuts or Belief Propagation (which will 

be described in the following paragraphs). As in Global methods, it is possible to say 

that they combine step 1 and step 3, identifying a disparity assignment that minimize 

the global cost function (which in turn combines data in step 1).  
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The first developments, which exploit a single global matching cost for each individual 

image line (“scanline”), were prone to streaking effects (see Figure 2.11), being the 

optimal solution of each line not connected with the neighbouring ones. SGM algorithm 

allows to overcome these problems thanks to the innovative idea of symmetrically 

compute the pixel matching cost through several paths (N scanlines) in the image (as is 

shown in Figure 2.12).  

  
Figure 2.11: An example of the misalignment of the disparity maps scanlines obtained with 

scanline optimization process, which does not allow inter-scanline consistency in the 2D 

image.  

 

With a known disparity value, the costs extracted by each path are summed for each 

pixel and disparity value. Finally, the algorithm choses the pixel matching solution with 

the minimum cost (most commonly using a dynamic programming approach). 

According to the original Hirschmuller paper [82], the cost 𝐿′
𝑟(𝒑, 𝑑) of the pixel 𝒑 at 

disparity 𝑑, along the path direction 𝒓 is defined as: 

 

𝐿′
𝑟(𝑝, 𝑑) = 𝐶(𝒑, 𝑑) + min (𝐿𝑟(𝒑 − 𝒓, 𝑑), 

(2.24) 

 𝐿𝑟(𝒑 − 𝒓, 𝑑 − 1) +  𝑃1, 

                      𝐿𝑟(𝒑 − 𝒓, 𝑑 + 1) +  𝑃2, 

                      𝐿𝑟(𝒑 − 𝒓, 𝑑 + 1) +  𝑃2, 

min𝑖 𝐿𝑟(𝒑 − 𝒓, 𝑖) + 𝑃2) − 𝑚𝑖𝑛𝑘𝐿𝑟(𝒑 − 𝒓, 𝑘) 

 

where the first term is the similarity cost associated with a disparity value of 𝑑, whereas 

the second term evaluates the regularity of the disparity field, adding a penalty term 𝑃1 

for little changes and 𝑃2 for all larger disparity changes with respect to the previous 

point in the considered matching path. The two penalty values allow to describe non-

frontal surfaces and to preserve disparity discontinuities, respectively. Since the cost 
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gradually increases during cost aggregation along the path, the last term allows reducing 

the final value subtracting the minimum path cost of the previous pixel from the 

amount. 

 
Figure 2.12: On the left: matching solution with the minimum cost; on the right: 

symmetrical computation of the pixel matching cost through 16 paths from all directions r 

in the image. 

 

Summing the path costs in all directions 𝒓 and searching the disparity with the minimal 

cost for each image pixel 𝒑, the final disparity map was obtained. The aggregated cost 

is defined as: 

 

𝑆(𝒑, 𝑑) =  ∑ 𝐿𝑟(𝒑, 𝑑)
𝑟

 (2.25) 

 

and, for sub-pixel estimation of the final disparity solution, the position of the minimum 

is generally calculated fitting a quadratic curve through the cost values of the neighbours 

pixels (see next section). This may shift the actual minimum by a value smaller than 1 

and, therefore, increase the disparity resolution. 

Similar approaches, where the surface reconstruction is solved through an energy 

minimization problem, has been evaluated in [139], where a Semi Global matching-like 

method was implemented identifying the formulation of an energy function 𝐸(𝑍) 

described as: 

 

𝐸(𝑍) =  ∑ 𝐴(𝑥, 𝑦, 𝑍(𝑥, 𝑦)) + 𝛼 ∗ 𝐹( �⃗�(𝑍)) (2.26) 

where  

- 𝐸(𝑍) =  ∑ 𝐴(𝑥, 𝑦, 𝑍(𝑥, 𝑦)) + 𝛼 ∗ 𝐹( �⃗�(𝑍)) is the disparity function; 

- 𝐴(𝑥, 𝑦, 𝑍(𝑥, 𝑦)) represents the similarity term; 

r 
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- 𝐹 (�⃗�(𝑍)) is the positive function expressing the initial parameters which characterize 

the surface regularity; 

- 𝛼 represents the weight to permit the data adaptation to the image content (i.e. the 

weight of disparity regularization enforcement). 

2.4 Disparity optimization 

The disparity values optimization in a matching problem can be performed using very 

different algorithms and functions. In particular, according to the disparity computation 

method used, i.e. Global or Semi-Global, the optimal strategy for computing the final 

disparity optimization process can be performed with different techniques: some of 

them are Dynamic Programming, Graph Cuts and Belief Propagation.  

2.4.1 Dynamic Programming 

A different class of global optimization algorithms are those based on Dynamic 

Programming (DP) techniques [20][123][41][87]. While the 2D-optimization of eq. 

(2.21) can be shown to be NP-hard for common classes of smoothness functions [190], 

dynamic programming method can reduce the computational complexity of 

optimization problems by decomposing them into smaller and simpler subproblems. 

Each subproblem is solved only once in order to reduce the number of computations 

and, once the solution to a given subproblem has been computed, it is stored (in DP 

the particular data storage is called “memoization”). The next time the same solution is 

necessary, it will be simply extracted from the stored data. Finally, subproblems 

solutions are combined to reach an overall solution. This approach is especially useful 

when the number of repeating subproblems grows exponentially as a function of the 

size of the input. 

The term “Dynamic programming” is not indicative of computer programming, but it 

rather denotes the “solution planning” of the problem; synthetically, the steps for 

solving a DP problems are: 

1. define the problem structure subdividing it in optimal substructure, which are 

solved sequentially one stage at a time; 

2. write-down the recurrence that relates subproblems; although each one-stage 

problem is solved as an ordinary optimization problem, its solution helps to define 

the characteristics of the next (“overlapping subproblems”); 

3. implement memoization ( i.e. remember and re-use solutions to subproblems for 

solving the problem). 
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Optimal substructure means that the solution to a given optimization problem can be 

obtained by the combination of optimal solutions to its subproblems. Consequently, 

the first step for planning a DP problem resolution, is to check whether the problem 

exhibits such optimal substructure. Such optimal substructures are usually described by 

means of recursion. For example, in term of mathematical optimization, given a graph 

𝒢 = {𝒱, ℰ}, the shortest path 𝑝 from a vertex 𝑢 to a vertex 𝑣 exhibits optimal 

substructure. Take into consideration any intermediate vertex 𝑤 on 𝑝: 𝑝 can be split 

into subpaths 𝑝1 from 𝑢 to 𝑤 and 𝑝2  from 𝑤 to 𝑣:these (the subpaths 𝑝1 and 𝑝2), in 

turn, are the shortest paths between the corresponding vertices. Hence, one can easily 

formulate the solution for finding shortest paths in a recursive manner, which is what 

the Bellman algorithm does (see the recursive relationship called the Bellman equation 

[16]. 

Overlapping sub-problems means that the space of sub-problems should be small: any 

recursive algorithm solving the problem should solve the same sub-problems over and 

over, rather than generating new sub-problems. For example, consider the recursive 

formulation for generating the Fibonacci series: 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 with base case  

𝐹1 = 𝐹2 = 1 ; the goal is to compute 𝐹𝑛. In the following, the naïve recursive 

relationship and the optimized DP approaches are explained (Figure 2.13 shows a 

numerical basic example of the Naïve Fibonacci Algorithm). 

 Naive recursive algorithm:  

fib(𝑛):  

if 𝑛 ≤ 2 ∶ return 𝑓 = 1   

else: return 𝑓 = fib(𝑛 − 1) + fib(𝑛 − 2)                                              

⟹        𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(𝑛 − 2) +⊝ (1) ≥  𝐹𝑛 ≈ 𝜑𝑛   

             ≥ 𝑠𝑇(𝑛 − 2) +⊝ (1) ≥ 2𝑛/2   

(2.27) 

  

Figure 2.13:  Naïve Fibonacci Algorithm, with a numerical basic example. 
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The computational time 𝑇(𝑛), of the fib(𝑛) function, exponential increases. An 

optimized approach for computing and optimize the recursive problem, can be 

achieved in either of the two, following ways. 

 Top-down memoized algorithm: This is the direct fall-out of the recursive 

formulation of any problem. If the solution to any problem can be formulated 

recursively using the solution of its sub-problems, and if such sub-problems are 

overlapping, then one can easily memoize (i.e. store) the solutions to the sub-

problems in a table. Whenever he attempts to solve a new sub-problem, he first 

checks the table to see if it has been already solved. If a solution has been recorded, 

we can use it directly, otherwise he solves the sub-problem and adds its solution 

to the table. Referring to the Fibonacci example: 

 

memo = { }  

fib(𝑛):  

if 𝑛 in memo: return memo[𝑛]  

else: if 𝑛 ≤ 2 ∶ 𝑓 = 1                                                            

else: 𝑓 = fib(𝑛 − 1) + fib(𝑛 − 2)   

memo[𝑛] = 𝑓 

return 𝑓   

(2.28) 

 

In this case, once 𝑓𝑖𝑏(𝑛) is computed, it can be stored in a “memo-dictionary”. 

Thereafter, every time 𝑓𝑖𝑏(𝑛) will have to be calculated, it can be just extracted In 

this case, once 𝑓𝑖𝑏(𝑛) is computed, it can be stored in a “memo-dictionary”. 

Thereafter, every time 𝑓𝑖𝑏(𝑛) will have to be calculated, it can be just extracted 

from the memory (if such solution has already been previously calculated) instead 

of recalculating it at each iteration. In this way, 𝑓𝑖𝑏(𝑘) only recurs the first time 

it's called, and only 𝑛 non-memoized must be compute (𝑘 =  𝑛, 𝑛 −

1, … , 1):memorized calls requests ⊝ (1) computational time. Therefore, this non-

recursive method demands ⊝ (1) time per call (ignoring recursions) and the 

algorithm works with a polynomial time. In other words, the running time can be 

expressed as: 

 Running time = n° of subproblems to solve • time/subproblem. 

 Bottom-up DP algorithm: Once we formulate the solution to a problem 

recursively as in terms of its subproblems, we can try reformulating the problem 

in a bottom-up fashion: try solving the subproblems first and use their solutions 
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to build-on and arrive at solutions to bigger subproblems. This is also usually done 

in a tabular form by iteratively generating solutions to bigger and bigger 

subproblems by using the solutions to small subproblems. In this case, algorithm 

example can be schematize as: 

 

fib = { }  

for 𝑘 in [1,2, … , 𝑛]: 

if 𝑘 ≤ 2 ∶ 𝑓 = 1 

else: 𝑓 = fib[𝑘 − 1] + fib[𝑘 − 2]                                                                        

fib[𝑘] = 𝑓 

return fib[𝑛]  

  

(2.29) 

with exactly the same running time as the previous top-down DP algorithm.  

 

Leading back to the stereo correspondence problem, we can treat such task as a 

minimization problem, finding an optimal set of disparities that minimizes the global 

energy function (in eq. (2.21)). As previously mentioned, founding the disparity map 

that minimizes the global energy function is a NP-complete problem but minimization 

along individual image rows (also defined as “scanlines”) can be efficiently performed 

in polynomial time using DP [20][190]. These approaches work by computing the 

minimum-cost path through the matrix of all pairwise matching costs between two 

corresponding scanlines that usually correspond to epipolar lines of rectified images. In 

this case, the correspondence can be expressed as a disparity value: if 𝑚(𝑥, 𝑦) and 

𝑠(𝑥, 𝑦) are corresponding pixels in the master and slave image respectively, then the 

disparity 𝑑 of 𝑚(𝑥, 𝑦) and 𝑠(𝑥, 𝑦) is defined as the difference of their horizontal image 

coordinates, i.e., 𝑑 =  𝑥𝑚 − 𝑥𝑠. Note that we have ym ≡ ys since corresponding pixels 

must be on the same scan line in rectified image pairs.  

However, it is important to consider that Scanline optimization of depth map does not 

allow inter-scanline consistency in a 2D image, leading to the misalignment of the 

disparity maps scanlines (Figure 2.11 for example).  Several approaches have been 

proposed to address this issue (e.g., [194][20]), and, more recently, new algorithms have 

been proposed to perform DP on a tree constructed from the matching cost volume 

[82]. In this regard, as previously disclosed in paragraph 2.3.3, the Semi-Global 

Matching method allows to efficiently overcome the streaking effect problems: 

combining scanline disparity computation method with a cost aggregation strategy, it is 

possible to obtain accurate results avoiding some of the problems that affect local and 

global methods.  

⊝ (1) 

⊝ (𝑛) 
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2.4.2 Graph Cuts 

Graph cuts can be employed to efficiently solve a wide variety of low-level computer 

vision problems, such as image smoothing, stereo correspondence problem, and many 

other problems that can be formulated in terms of energy minimization.  

The basic technique is to construct a graph for the energy function to be minimized 

such that the minimum cut on the graph also minimizes the energy (either globally or 

locally). The minimum cut, in turn, can be computed very efficiently by max flow 

algorithms. Several visual correspondences problems are based on it. For example, 

stereo and motion [18][97], image synthesis [105], image segmentation [26], voxel 

occupancy [170] and multi-camera scene reconstruction [100], showing good results, 

with higher accuracy and lower errors, than standard methods such as local normalized 

correlation.  

Many vision problems require the estimation of some spatially varying quantity (such as 

intensity or disparity) from noisy measurements. The major restriction is that the energy 

function smoothness term must only involve pairs of pixels which intensity (or 

disparity) can vary smoothly (at most points) or can change suddenly at object 

boundaries. 

In the classical approach to stereo, the goal is to compute, for each pixel in the left 

image, a label 𝑑𝑝, which denotes a disparity value for a pixel 𝑝. Therefore, let 𝑀 be the 

set of pixels in the master image, let 𝑆 be the pixels in the slave image, and let 𝑃 be the 

set of all pixels (𝑃 = 𝑀 ∪ 𝑆), the pixel 𝑝 will have coordinates (𝑝𝑥 , 𝑝𝑦) and, a 

characterization of the energy functions that can be minimized by graph cuts can be: 

 

𝐸(𝑓) =  ∑ 𝐷𝑝(𝑓𝑝)

𝑝∈𝑀

+ ∑ 𝑉𝑝,𝑞(𝑓𝑝, 𝑓𝑞)

𝑝,𝑞∈𝑁𝑝

 (2.30) 

 

The goal is to find a labelling that minimizes some energy function. 𝑁 is the set of pairs 

of adjacent pixels, 𝐷𝑝(𝑓𝑝) is a function derived from the observed data that measures 

the cost of assigning the label 𝑓𝑝 to the pixel 𝑝, 𝑉𝑝,𝑞(𝑓𝑝, 𝑓𝑞) measures the cost of 

assigning the labels 𝑓𝑝, 𝑓𝑞 to the adjacent pixels 𝑝, 𝑞 and is used to impose spatial 

smoothness. . It’s worth noting that eq. (2.30) is a generalization of eq. (2.21). At the 

borders of objects, adjacent pixels should often have very different labels and it is 

important that 𝐸 not over-penalize such labelling. This requires that 𝑉 be a non convex 
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function1 of |𝑓𝑝 − 𝑓𝑞| because there can be multiple locally optimal solutions. 

Unfortunately, in this case, the identification of the true global solution generally takes 

a lot of time. In the last few years, however, efficient algorithms have been developed 

for these problems based on graph cuts. 

Let 𝒢 = {𝒱, ℰ} a weighted graph with two distinguished vertices called the terminals, a 

set of nodes 𝒱  and a set of directed edges ℰ that connect them. Take into consideration, 

henceforth, in the context of image matching, that nodes correspond to the selected 

matching representation (generally pixels, but also voxels or other features) and have an 

associated cost; terminals, correspond to the set of labels that can be assigned to pixels. 

Each edge has an associated flow capacity that is defined as a function of the costs of 

the adjacent nodes it connects. 

Considering a graph with two terminal, namely source 𝑠 and sink 𝑡 (Figure 2.14 shows 

a simple example of a two terminal graph as is described in [152]).  

 

 
Figure 2.14: Maximun flow representation of disparity estimation (with a six-connected 3D 

mesh) as described by Roy and Cox [152]. 

 

                                                      
1 A convex optimization problem maintains the properties of a linear programming problem and 

a non convex problem the properties of a non linear programming problem. The basic difference 

between the two categories is that a) in convex optimization there can be only one optimal 

solution, which is globally optimal or you might prove that there is no feasible solution to the 

problem, while b) in nonconvex optimization may have multiple locally optimal points and it 

can take a lot of time to identify whether the problem has no solution or if the solution is global. 

Hence, the computational effort in convex optimization problem is usually much lower. 
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A 𝑠/𝑡 cut 𝐶 on the graph will be a partitioning of the nodes in the graph into two 

disjoint subset 𝑆 and 𝑇 such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇. The cost of the cut 𝐶  is defined as 

the sum of the costs of all edges that go from 𝑆 to 𝑇: it has also possible to say that the 

capacity of the cut is the sum of the edge capacities making up that cut. Then, the 

minimum cut problem is to find the cut that has the minimum cost among all cuts (as 

mentioned in the theorem of Ford and Fulkerson [57], this is equivalent to computing 

the maximum flow from the source to sink). 

Consider the example in Figure 2.15: the graph corresponds to a 3x3 image; 𝑠/𝑡 cut 

partitions the nodes into disjoint groups which contain one terminal each one.  

 
Figure 2.15: Example of a directed capacitated graph. Edge costs are reflected by their 

thickness. A similar graph-cut construction was first used in vision by Greig et al. [66] for 

binary image restoration. In (a) and (b) are shown respectively a graph 𝒢 and a cut on 𝒢. 

 

Therefore, any cut corresponds to some assignment of pixels (nodes) to labels 

(terminals). If edge weights are appropriately set based on parameters of an energy, a 

minimum cost cut will correspond to a labelling with the minimum value of this energy. 

An explicative description and representation of the stereo correspondence problem by 

using graph cuts is described in Roy and Cox [152] (see Figure 2.14). The graph in this 

case is composed by the image pixels (nodes) and the disparity values (edges).  

They searched a different solution for solving the image stereo (and also multi-image) 

correspondences problem, by transforming it into a maximum-flow problem. In 

particular, the authors have focused on the simplification and effects that the use of 

epipolar lines generates into the matching process. Indeed, these lines reduce the stereo 

matching problem to a 1D-search domain, operation that is fundamental for 

computational process efficiency. However, the use of epipolar lines can vary the 

accuracy of the method in particular near object boundaries (i.e. boundary that are 

perpendicular to the epipolar lines) and can create artefacts and misalignment problems. 
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Therefore, in [152], the traditional approach to stereo matching, which correlate a single 

pair of epipolar lines at a time, is extended to the whole image at once by matching all 

pairs of epipolar lines simultaneously. In this way, every minimum-cost path that defines 

the matching cost of an epipolar line is integrated into a single minimum cost surface, 

that contains all the disparity data of the master (or reference) image. The traditional 

ordering constraint (which states that the points order along corresponding scanline is 

preserved) is thus replaced with the more general local coherence constraint, which 

suggests that disparities data tend to be locally very similar in any directions. Since this 

property regards naturally the points ordering constraint along epipolar lines, but it is 

also true for all directions (and thus across epipolar lines), it becomes possible to take 

advantage of local coherence for putting all the epipolar lines together and solving 

globally for a disparity surface.  This means that we must consider a global 2D stereo 

correspondences global problem that, in this case, is transformed in a maximum-flow 

problem in which the minimum-cut of a graph can be interpreted as a disparity surface. 

Naturally, many graph cut methods have been developed through the years. To mention 

some: Thomos et al. [181] have developed an efficient data structure that reduces the 

memory requirements, making this algorithm more manageable for large data sets; 

Kolmogorov et. al., [99] has presented a new graph cut algorithm that handles 

occlusions properly, while maintaining the key advantages of graph cuts; Boykov and 

Kolmogorov [27] have developed an approximate Ford-Fulkerson style augmenting 

paths algorithm, which they show being much faster in practice than standard push-

relabel approaches; Boykov et al. [28] propose expansion move and swap move 

algorithms that can simultaneously modify labels of arbitrarily large pixel sets and, 

finally, in [140] the MICMAC dense point clouds and orthophotos generation tool is 

presented. 

2.4.3 Bayesian Networks and Markov Random Fields in 

graphical models 

State-of-art computer vision algorithms use prior knowledge about the statistics of 

typical surfaces to infer the three–dimensional (3D) shape of a scene from ambiguous, 

local image measurements. Probabilistic graphical models provide a powerful, general 

framework for designing systems like these. In this context, graphs are used to 

decompose joint distributions into a set of local constraints and dependencies. Such 

modular structure provides an intuitive language for expressing domain–specific 

knowledge, and facilitates transfer of modelling advances to new applications.  
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Several methods have been proposed for representing probability distributions with the 

use of a graph. For example, directed graphical models, i.e. Bayesian networks or 

undirected graphical models, i.e. Markov random fields (MRFs). This two methods 

allows to model the disparity estimation problem as in image labelling problem and 

finally, once the problem has been formulated using the graphical model, the energy 

minimization task can be performed with global optimization methods, such as the 

above described Graph Cut or the following presented Belief Propagation technique.  

First of all, a synthetic dissertation of the two most popular graphical models is 

presented. 

Bayesian Networks 

Bayesian networks are probably the most popular type of probabilistic graphical model 

[134] [91] that represents a set of random variables and their conditional dependencies 

via a directed acyclic graph (DAG). They are frequently used for medical diagnosis 

problem: for example, a Bayesian network could represent the probabilistic 

relationships between diseases and symptoms. Given symptoms, the network can be 

used to compute the probabilities of various diseases presence. 

Formally, Bayesian graphical models are graphs whose nodes represent random 

variables that can be in a discrete number of possible states. Set as 𝑥𝑖 the variable that 

represents the different possible states of node 𝑖. In addition to the qualitative 

dependencies described by the Bayesian network graph, there are quantitative statistical 

relationship associated with each edges. Edges represent conditional dependencies (or 

probability). Nodes that are not connected represent variables that are conditionally 

independent of each other, while connected nodes are defined as “parent”. Each node 

is associated with a probability function that takes, as input, a particular set of values 

for the node's parent variables, and gives (as output) the probability of the variable 

represented by the node. Nodes that have more than one parents are described by 

conditional probability in terms of all their parents.  

Generally, a Bayesian networks graph of 𝑁 random variables 𝑥𝑖 is described by a joint 

probability function 

 

𝑝(𝑥1, 𝑥2, … , 𝑥𝑁) = ∏ 𝑝(𝑥𝑖|𝑃𝑎𝑟(𝑥𝑖))

𝑁

𝑖=1

 (2.31) 

 

where 𝑃𝑎𝑟(𝑥𝑖) denotes the states of the parents of the node 𝑖.  

If 𝑖 has no parents, 𝑝(𝑥𝑖|𝑃𝑎𝑟(𝑥𝑖)) = 𝑝(𝑥𝑖).  
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To give a simple example of a Bayesian net see Figure 2.16. 

 

 

Figure 2.16: An easily understood representation of a simply Bayesian network. 

 

The algorithm goal is to compute a certain marginal probability within the variables 

introduced in the graph and, in fact, the term “inference” simply wants to indicate the 

computation of these marginal probabilities.  

Mathematically, marginal probabilities are defined in terms of sums over all the possible 

states of all the other nodes in the system. For example, in order to obtain the marginal 

probability of the last node 𝑁, we have to compute  

 

𝑝(𝑥𝑁) =  ∑ ∑ … ∑ 𝑝(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁)

𝑥𝑁−1𝑥2𝑥1

 (2.32) 

 

Marginalization sums can easily do directly but the number of terms in the sums grows 

exponentially with the number of hidden nodes in the network. Indeed, if information 

about some of the nodes are available, the corresponding variable can be fixed and we 

will not have to sum over the unknown states of the nodes.  

Pairwise Markov Random Fields 

Pairwise MRF’s is a powerful theoretical model to solve many computer vision and 

image matching problems [63]. To take an example [202], suppose that we want to infer 

the distance of the objects in a scene from the viewer. The problem, given the image, is 

to infer the distance values 𝑑𝑖 corresponding to intensity values 𝐼𝑖, where 𝑖 ranges over 

all the possible pixel positions within the image. 

More in general, some quantities about the image 𝑦𝑖 are observed, and some other 

quantities 𝑥𝑖 about the underlying scene are investigated. The indices 𝑖 could represent 

single pixel positions, or it might represent the position al a small patch of pixels.  

Assuming that there are statistical dependencies between 𝑥𝑖 and 𝑦𝑖 , at each position 𝑖, 

it is possible to write the overall joint probability function as  
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𝑝(𝑥, 𝑦) =  
1

𝑍
∏ 𝜓𝑖,𝑗(𝑥𝑖 , 𝑥𝑗) ∏ 𝜙𝑖(𝑥𝑖, 𝑦𝑖)

𝑖(𝑖,𝑗)

 (2.33) 

 

where the first product is over connected pairs of nodes, while the second term 

𝜙𝑖(𝑥𝑖, 𝑦𝑖) represents a joint compatibility function which assumes, and describes, that 

some statistical dependency between 𝑥𝑖 and 𝑦𝑖 exist. It is also called as the “evidence” 

for 𝑥𝑖. 𝑍 is a normalization constant.  

This structure can be better understood assuming that the nodes 𝑖 are arranged in a 

two-dimensional grid and considering the scene variables 𝑥𝑖 are compatible with 

neighbour scene variables 𝑥𝑗, as represented by the compatibility function 𝜓𝑖,𝑗(𝑥𝑖, 𝑥𝑗). 

In this example model the product over (𝑖, 𝑗) will be over nearest neighbours on a 

square lattice.  

 

 

𝑃(𝑤, 𝑥, 𝑦, 𝑧)  =  
1

𝑍
𝑓𝑤𝑥(𝑤, 𝑥)𝑓𝑥𝑧(𝑥, 𝑧)𝑓𝑦𝑧(𝑦, 𝑧)𝑓𝑤𝑦(𝑤, 𝑦) 

Figure 2.17: Example of a MRF graph. 

 

The MRF is defined as “pairwise” because the compatibility functions only depend on 

pairs of sites (𝑖,𝑗). In contrast to Bayesian networks, this graphical model is undirected 

therefore, there is no notion that the variable at one node 𝑥𝑖 represents a causal parent 

of its neighbour 𝑥𝑗. Thus, undirected compatibility function 𝜓𝑖,𝑗(𝑥𝑖, 𝑥𝑗) are used 

instead of conditional probability functions 𝑝(𝑥𝑖|𝑥𝑗). 

An example of a MRF graph is shown in Figure 2.17. 

2.4.4 Belief Propagation 

Belief propagation (BP), also known as max-product message passing, is a message 

passing algorithm for performing inference on graphical models, such as Bayesian 

networks [134][63] and Markov random fields [89] that represent statistical 

dependencies of variables by a graph. In other words, the key idea of BP is simplified 

Bayesian networks: it allows propagates information throughout a graphical model 

using a series of messages sent between neighbouring nodes iteratively. 
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The algorithm was first proposed by Judea Pearl in [133] who formulated this algorithm 

on trees. The tree representation insists that only one variable can be considered a cause 

for any other variable. This restriction simplifies computations and avoids the problem 

of maintaining consistency among interrelated variables. At the same time, using the 

Pearl approach, many real problems cannot be modelled naturally. Therefore, the 

method was later improved to poly-trees by Kim & Pearl in [96] who extend the 

hierarchical tree representation by allowing multiple causes to a given manifestation. 

Overall, BP has since been shown to be a useful approximate algorithm on general 

graphs [134]. 

The BP algorithm works by passing real valued functions, called messages, along the 

edges between the model/network nodes. These messages contain the "influence" that 

one variable exerts on another. In other words, BP is an iterative process in which 

neighbouring variables “talk” to each other, passing messages (such as “X variable think 

that Y variable belong in these states with various likelihoods …”). After enough 

iterations, this series of conversations is likely to converge to a consensus that 

determines the marginal probabilities of all the variables. The estimated marginal 

probabilities2 are called beliefs.  

Since undirected graphs are more useful in stereo mathing applications, a standard Belief 

Propagation process (focusing on pairwise MRF’s for simplicity) will be described. 

There are two types of BP methods for MRFs: max-product and sum-product. The 

max-product BP algorithm finds a labelling with maximum posterior probability, or 

equivalently with minimum energy. It works by passing messages around the graph 

defined by the four-connected image grid. The method is iterative, with messages from 

all nodes being passed in parallel. The sum-product BP algorithm can be used to 

approximate the posterior probability of each label for each pixel. As with the max-

product algorithm, the sum-product method works by passing messages around the 

graph. 

In order to describe a BF process, the “message” from node 𝑖 to node 𝑗 must be 

introduced. In the BP algorithm, the variable 𝑚𝑗𝑖(𝑥𝑖) represents a message from a 

hidden node 𝑖 to the hidden node 𝑗 about the state of node 𝑗 (see Figure 2.18 (a)) and 

it is a vector of the same dimension as 𝑥𝑖. 

                                                      
2 In probability theory and statistics, the marginal distribution of a subset of a collection of random variables 

is the probability distribution of the variables contained in the subset. It gives the probabilities of the values 
of the variables in the subset without reference to the values of the other variables. This contrasts with a 
conditional distribution, which gives the probabilities contingent upon the values of the other variables. 
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(a) (b) 

Figure 2.18: a) An example of a messages network (with node and message vectors). b) 

Representation of a node neighbourhood. 

 

The belief at a node 𝑖 is proportional to the product of the local evidence at the node 

(𝜙𝑖(𝑥𝑖, 𝑦𝑖)), and all the messages coming into node 𝑖: 

 

𝑏𝑖(𝑥𝑖) = 𝑘𝜙𝑖(𝑥𝑖, 𝑦𝑖) ∏ 𝑚𝑗𝑖(𝑥𝑖)

𝑗∈𝑁(𝑖)

 (2.34) 

 

where 𝑘 is a normalization constant (messages are similar to likelihoods: non-negative, 

don’t have to sum to 1) and 𝑁(𝑖) denotes the nodes neighbouring 𝑖 (see Figure 2.18 

(b)).  

The messages are determined through the message update rules: 

 

𝑚𝑖𝑗(𝑥𝑖) ← ∑ 𝜙𝑖(𝑥𝑖, 𝑦𝑖)𝜓𝑖,𝑗(𝑥𝑖, 𝑥𝑗)

𝑥𝑖

∏ 𝑚𝑘𝑖(𝑥𝑖)

𝑗∈𝑁(𝑖)\𝑗

 (2.35) 

 

On the right-hand side the algorithm takes the product over all messages that goes into 

node 𝑖 except for the one coming from node 𝑗. These rules give beliefs that are exact 

(or exact marginal probabilities) if the pairwise MRF is “single connected” and there are 

no loops in the pairwise MRF, i.e. for all the nodes in any singly-connected graph (as is 

demonstrated in [202]).  

In a practical computation, one starts with the nodes at the edge of the graph, and only 

computes a message when one has available all the messages necessary. It is important 

to note that each message must be computed once for single-connected graphs. 

Therefore, the whole computation takes a time proportional to the number of graph 
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links, which is less than the exponentially big time that would be required to compute 

marginal probabilities.   

More information are presented in [56][174][197]. 

Now, try to examine in depth how the max-product algorithm can be used to find an 

approximate minimum  

cost labelling of energy functions in the form of eq. (2.21).  

The max-product BP algorithm works by passing messages around the graph defined 

by the four-connected image grid. Each message is a vector of dimension given by the 

number of possible labels [56].  

Consider 𝑚𝑝𝑞
𝑡  as the message that node 𝑝 sends to a neighbouring node 𝑞 at time 𝑡: at 

each iteration new messages are computed in the following way: 

 

𝑚𝑝𝑞
𝑡 (𝑓𝑞) = 𝑚𝑖𝑛𝑓𝑝

{𝑉(𝑓𝑝, 𝑓𝑞) +  𝐷𝑝(𝑓𝑝) + ∑ 𝑚𝑠𝑝
𝑡−1(𝑓𝑝)

𝑠∈𝑁(𝑝)\𝑞

} (2.36) 

 

where 𝑁(𝑝)\𝑞 represents the neighbours of 𝑝 other than 𝑞. After T iterations a belief 

vector is computed for each node as: 

 

𝑏𝑞(𝑓𝑞) = 𝐷𝑞(𝑓𝑞) +  ∑ 𝑚𝑝𝑞
𝑇 (𝑓𝑞)

𝑝∈𝑁(𝑞)

 (2.37) 

 

Finally, the algorithm will allow to select the label 𝑓𝑞
∗that minimizes 𝑏𝑞(𝑓𝑞) individually 

at each node.  

Unfortunately, the standard implementation of this message passing algorithm on the 

grid graph runs in ⊝ (𝑛𝑘2𝑇) time, where 𝑛 is the number of pixels in the image, 𝑘 is 

the number of possible labels for each pixel and 𝑇 is the iteration number. It can be 

also explained as ⊝ (𝑘2) time to compute each message and ⊝ (𝑛) messages per 

iterations. Several techniques for reducing the time needed to compute the messages 

updates are described in [56]: combining all these methods together we obtain an ⊝

(𝑛𝑘)  algorithm that is very fast in practice. Moreover, they shown that the achieved 

results  are as accurate as those obtained when using standard max-product BP or graph 

cuts algorithms to minimize energy functions of the form in eq. (2.21). 

Concluding, as regard the Bayesian networks goal, the advantage of BP algorithm use is 

that it is possible to compute marginal probabilities in a time that linearly increases with 
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the number of system nodes; at the same time, BP is very useful to solve MRFs 

problems, where the computation of marginal probabilities takes exponential time. 

2.5 Disparities Refinement  

Since the disparity maps are typically computed at discrete pixel level, more accurate 

disparity estimation (and also outliers detection) would be desirable: in fact, several 

photogrammetric and computer vision applications, require high levels of accuracy. 

Generally, sub-pixel disparity estimation can be computed by fitting a curve to the 

matching costs at the discrete disparity levels [181][182] [94] and then searching for the 

extremum; typically it is obtained fitting three matching costs with a second degree 

function (see for instance Figure 2.19).  

 

  

 

Figure 2.19: Sub-pixel disparity estimation by fitting a curve to the matching costs at the 

discrete disparity levels. 

 

dmax -1 0 d 

C(x, y, d) 

10      11      12 

d=11.45 
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The position of the minimum point for this function will represent the subpixel shift. 

This provides an easy way to increase the resolution of a stereo algorithm with little 

additional computation.  

Fitting a curve through the matching costs can be performed, in the easiest way, using 

a parabola fitting method (in the variable 𝑥) of the form: 

 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (2.38) 

 

that will exactly fit a parabola to three neighbour matching costs (see Figure 2.20 (a)). 

If the order of the equation is increased to a fourth degree polynomial (Figure 2.20 (b)), 

the following quadric function (with two variables 𝑥1, 𝑥2) is obtained:  

 

𝑓(𝑥) = 𝑎𝑥1
2 + 𝑏𝑥2

2 + 𝑐𝑥1
2𝑥2

2 + 𝑑𝑥1
2 + 𝑒𝑥2

2 + 𝑓 (2.39) 

 

that will fit a surface to the nine values represented by a 3 x 3 pixels matching costs area. 

By equating the two expressions to zero the coefficients are characterized and the 

minimum of the polynomials functions can be determined. 

 

  
a)  b) 

Figure 2.20: a) A second degree polynomial of form of eq. (2.38). b) A quadratic polynomial of 

form of eq. (2.39).  

 

However, estimating a curve fitting to the cost function used for correspondences data 

between the master and slave images can lead to a systematic biasing towards integer 

values of displacements the corresponding points: this is a numerical problem also 

known as “pixel-locking (or peak-locking) effect”. According to the work of [124], it is 

possible to avoid the peak locking bias refining both the reference and the matching 

x 

f(x) 

x1 x2 x3 xmin 
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image coordinates simultaneously, in a symmetric way, thus the refined matches 

coordinates will have subpixel precision in both the images. In other words, the 

fundamental idea is to find the subpixel refinement by considering a 2-D 

neighbourhood of the matching cost around each matching pair and finding the optimal 

cut in the direction of the symmetric lines of the matching cost. The authors have also 

shown that the symmetry of the matching cost function can be described by a 

continuous surface that can be well-represented by a Gaussian Cylinder (GC) 

representation (more details are illustrated in paragraph 3.1.9.1).   

At the same time, there are other methods for computing the disparities refinement, 

which include the post-processing of the computed disparities data in terms of image 

filtering. In this case, the disparity maps can be simply refined by means of image 

filtering techniques without enforcing any constraint about the underlining disparity 

image. Common image operators are median filtering, and bilateral filtering which can 

be applied to “clean up” spurious mismatches; holes due to occlusion can be filled by 

surface fitting or distributing neighbouring disparity estimates [19][159] and, finally, 

occluded areas can be detected using cross-checking (comparing left-to- right and right-

to-left disparity maps) [39][61]. 

2.6 Multi-Image methods  

The term “multi-frame” or “multi-image” refers to image matching techniques that have 

the purpose of reconstructing a complete 3D object model from a collection of images 

(more than two) taken from known camera viewpoints. The advantages of performing 

matching across multiple images have been pointed out in different studies where multi-

image matching techniques were shown more robust and accurate than pairwise 

matching algorithm, thanks to the redundancy of multiple view points. This is true in 

particular for 3D reconstruction tasks, where the need of the highest 

robustness/accuracy is more important than the achievement of real-time results. 

The term “multi-image” can refer to different matching approach; it is used generically 

to compute the correlation to any number of images greater than two. However, these 

images can be matched in pairwise mode or simultaneously, and namely all images can 

be used both as template/reference and search images [132]. 

Over the last few years, a number of high-quality algorithms have been developed, and 

the state of the art is improving rapidly. Many approaches try to solve the multi-image 

problem as a repeated binocular processing but, in order to perform a real simultaneous 

matching across multiple images it is necessary to generalize the two-image epipolar 

relations to some multi-linear geometric relation between the different views. In this 
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regard, for example, Shashua [167] presented a trilinear constraint where points in three 

images can be the projections of a single 3D scene point by following an algorithmic 

rule. Hartley [75] also conceived a similar constraint for lines in three view, whereas 

Triggs [186] provided a quadrilinear relation for points in four views. Okutomi and 

Kanade [127] described a multi-baseline stereo method for producing a dense depth 

map from multiple images (having different baselines) by performing pairwise stereo 

matching on all image pairs and combining the results. In other words, the matching 

technique is based on the idea that global mismatches can be reduced by adding the 

sum of squared difference values from multiple stereo pairs (i.e., the SSD values are 

computed for each pair of stereo images.) Thanks to the integration of information 

given from multiple images, the method appeared accurate, reducing matching 

ambiguity and improving precision values. However, the main disadvantage was the 

time efficiency and the method assumption that all cameras must be located on the 

same line. For this reason, the strategy was later changed, allowing to combine the 

matching results between one reference image and all the other sequence images. A 

generalized version of the Okutomi technique is the disparity normalization method 

proposed by Sakai et. al. [155]: it can integrate the correlation functions calculated from 

stereo image with different viewpoints even if the cameras are not located on the same 

line. Finally, multi-baseline matching (as proposed e.g. in [83][84]) performs stereo 

matching by SGM between a base image and all the other matching images. In most of 

the developments, the processing pipeline removes invalid disparities by consistency 

check (left-right check) and combines all stereo matching results by selecting the median 

value of all disparities for each pixel.  

Although being popular approaches, there is an inherent flaw in this style of processing. 

Considering a matching algorithm that select one image as a “reference",  features in 

that image are extracted, and then the other images in the dataset are searched for 

correspondence matches, typically using epipolar constraints between the reference 

image and each other image in turn. However, if an important feature is missing in the 

reference image due to misdetection or occlusion, it will not be present in the 3D 

reconstruction even if it has been detected in all the other views, because the system 

won’t know to look for it [40] (for this reason many multi-image matching techniques 

that only operate in image-space were found less efficient with respect to multi-image 

methods that reconstruct scene structure in object space). Moreover, the combinatorial 

exploration of all possible correspondences could be computationally very expensive 

using these methods. A possible solution is to make full and efficient use of the 

geometric relationship between multiple images and the scene [162][40][131][128][17]. 

Briefly, it is possible to claim that: (i) a true multi-image matching technique should be 
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applicable to any number of images n greater than 2, (ii) that the algorithmic complexity 

should be O(n) in the number of images, and (iii) that the images should all be treated 

in an equal manner. In other words, the method it is not simply a repeated application 

of binocular - trinocular image matching techniques (i.e. approaches that process all 

image pairs and then fuse the results), and the information content of each image must 

be treated equally.  

As is described in [165], multi-view stereo algorithms can be roughly categorized into 

four classes.  

The first class operates by first computing a cost function on a 3D volume, and then 

extracting a surface from this volume. A simple example of this approach is the voxel 

colouring algorithm and its variants [164][185] which make a single sweep through the 

volume, computing costs and reconstructing voxels with costs below a threshold in the 

same pass. Other algorithms differ in the definition of the cost function and the surface 

extraction method. A number of methods define a volumetric MRF (i.e. a volumetric 

object reconstruction method using the three-dimensional Markov Random Field 

model-based-segmentation) and use max-flow [151] or multi-way graph cut [183] to 

extract an optimal surface. 

The second class of techniques works by iteratively evolving a surface to decrease or 

minimize a cost function. This class includes methods based on voxels [53], level sets, 

and surface meshes. Space carving [103] and its variants (such as [169][104]) 

progressively remove inconsistent voxels from an initial volume. Other variants of this 

approach enable adding, as well as deleting, voxels to minimize an energy function 

[168][201]. Level-set techniques minimize a set of partial differential equations defined 

on a volume. Like space carving methods, level-set methods typically start from a large 

initial volume and shrink inward; unlike most space carving methods, however, they can 

also locally expand (if needed) to minimize an energy function. Other approaches 

represent the scene as an evolving mesh [206] that moves as a function of internal and 

external forces.   

In the third class are image-space methods that compute a set of depth maps. To ensure 

a single consistent 3D scene interpretation, these methods enforce consistency 

constraints between depth maps [100][177], or merge the set of depth maps into a 3D 

scene as a post process [122].  

The final class consists of algorithms that first extract and match a set of feature points 

and then fit a surface to the reconstructed features [179]. 

In Schluter [162], a new method for high resolution surface reconstruction by multi-

image matching in object space is formulated with regard to the integration of a general 

3D surface model in object space. Following, the concept of facets stereo vision in  
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[104] has outlined how it is possible to established a relationship between every pixel 

position in image space and the corresponding position on the surface in object space, 

providing the successfully estimation of a 3D surface description from multiple images. 

Collins has presented a multi-image matching algorithm that simultaneously determines 

image correspondences and 3D scene locations of point-like features across multiple 

views. The method assumption is that the areas of space where image feature viewing 

rays intersect are likely to be the 3D locations of observed scene features. Performing a 

volume partition of space into voxels, the back projection of each image can be guessed 

as a ray through this volume, allowing to record how many rays pass through each voxel 

(see Figure 2.21, from Schluter [162]). 

 

 

Figure 2.21: Illustration of the space-sweep method. Features from each image are 

backprojected onto successive positions Z = zi of a plane sweeping through space. 

 

Recently, important advances are developing thanks to an innovative object-based 

multi-image Semi-global Matching (OSGM) that has been proposed by Bethmann in 

[17]. OSGM differs in two major aspects from standard Semi-global Matching because 

it is mainly characterized by transferring the process of cost calculation and path-wise 

cost aggregation from image space into object space. First, the cost calculation is 

formulated in object space within a dense voxel raster by using the grey- (or colour-) 

values of all images (the central coordinate of each voxel is reprojected into all images 

by using the collinearity equations) instead of pairwise cost calculation in image space. 

Then, the semi-global (path-wise) minimization process is transferred into object space 

as well, so that the result of semi-global optimization leads to index-maps (instead of 

disparity maps) which directly indicate the 3D (height) positions of the best matches.  

OSGM appears a very promising method because it maintains the benefit of SGM 

method, adding several advantages. Opposite to most multi-baseline or multi-view 

stereo approaches, the new approach works without rectified images and therefore 
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reduces the efforts for pre-processing (no need for image rectification) and for post-

processing (no need for the fusion of disparity maps). For example, in a general SGM 

pairwise multi-image matching algorithms, for a bundle of n images, (n·(n-1)) images 

have to be rectified to create (n·(n-1))/2 image pairs, and each image pair should be 

processed (e.g. with n=5, twenty images have to be rectified and ten different pairwise 

matching have to be performed). This, obviously, increases the computation time 

significantly. Besides, the image rectification process induces always a loss of 

information due to the need of grey- (colour-) value resampling. Further on, for all 

subsequently steps the results of pair-wise image matching (which are disparity maps) 

cannot directly be joined together but have to be fused.  
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Introduction 

Stereo matching algorithms are used to correlate points from one digital image of a 

stereo pair with the corresponding points in the second image. However, finding the 

overall best algorithm and processing parameters, is usually difficult, since different 

aspects can be considered: accuracy, completeness, robustness against radiometric and 

geometric changes, occlusions, computational efforts, etc. The Semi-Global matching  

is, actually, one of the best matching strategies used both in photogrammetry and 

computer vision, offering good results with low runtime. 

As it was previously explained, many image matching methods have been developed in 

the past and in recent years implementing both well-established local method (like Least 

Square Matching), and other innovative global and semi-global methods. The latter 

consider both the image similarity and the disparity continuity. Therefore, several 

considerations about the implemented matching cost functions (used to realize pixels 

correlation), the aggregation step that combine these costs and, finally, the choice of 

penalty functions which enforce depth continuity, need to be evaluated. Indeed, the 

implementation of these methods requires the introduction of many parameters and 

their optimal combination is fundamental to have good performances and accurate 

results.  

In order to provide an in-depth view of all these aspects, a proprietary image matching 

code, based on Hirschmuller Semi-Global Matching algorithm [84] and optimized with 

Dynamic Programming method, has been implemented, enabling the evaluation of the 

best variables combinations and the optimal formulation of the matching cost function.  

At the same time, SGM approach has been mainly applied in stereo-vision problem (e.g. 

for photogrammetric applications such as the generation of digital surface/terrain 

models). In such context, the image geometry allows simplifying the problem of 

homologous points identification between stereo images, reducing the parallax domain 

to a mono-dimensional space (i.e. along corresponding epipolar lines). However, the 

mono-dimensional research of correspondences, although it represents an advantage in 

terms of computational efficiency and memory requirement, represents also a limit 

when the correlation analysis must perform a bi-dimensional investigation of image 

correspondences (for example, point tracking or displacement analysis). Therefore, an 

extension of the SGM method is proposed and developed in this work, in order to 

extend the disparity domain to 2D. 

The current chapter will describe the heart of this work of thesis: with the aim of 

maximize the algorithm metrological accuracy, computational time and fields of 
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application, the following sections will deal with all the functional aspect of the 

implemented solution. In the first part, the method workflow, together with all the 

implemented strategies, will be accurately described. Then, a description of the tests 

performed for the algorithm calibration and optimization will be presented. 

3.1 SGM stereo software code  

Semi-Global Matching or SGM is a method developed by Heiko Hirschmuller from the 

DLR. He first reported his method in 2005 [83], and then he elaborated and proposed 

further improvements in [84][85][86]. Since its original publication, the Semi-Global 

Matching technique has been implemented by many researchers and companies. 

The numerical code developed in this work, written in a .Net environment (using C# 

language), performs the images correlation, both with stereo and multi-image approach, 

using a Semi-Global method. It can produce, as final output, the disparity map of the 

investigated stereo image pairs, the stereo image correspondences for 2D displacement 

fields or the raster DSM. The core of the algorithm considers pair of stereo images with 

known interior and exterior parameters: if standard stereo-matching applications are 

concerned, the software pre-process the images providing their idealization and epipolar 

rectification. Then, a series of procedures common to all the different operational 

modes of the software (stereo-matching, multi-image matching, point tracking, etc.), 

which represent the real core of the matching process are performed.  

Further developments, as already said, have regarded the algorithm extension to a multi-

image matching process. Similarly, as far as displacement/tracking analysis is concerned, 

an algorithm extension for the 2D disparity search space investigation has been 

developed. In this case, due to the increase requirements of the new algorithm in terms 

of computational and memory cost, optimization strategies were introduced in the 

algorithm pipeline.   

Assuming a general stereo geometry of two or more images with known relative 

orientation, the general matching process evolves through the following steps: 

1. Image idealization/rectification: in a first step the images can be idealized and 

rectified. In the first case, the process consists in removing distortions from the 

analysed images in order to obtain a new resampled image pair where the effects 

of the distortions, generally introduced by the camera lens system, are 

corrected. In the rectification process, the stereo images are resampled, 

producing new photograms where corresponding points lie on the same 

horizontal image line. 
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2. Processing parameters initialization: at this initial stage the operator can 

initialize the algorithm processing variables and functions (such as the similarity 

and regularization function to use, the template size, the penalty factors, the 

points grid step, the master image mask, etc.). This step is fundamental since 

the user can intervene refining the process variables, obtaining more accurate 

and reliable solution based on the specific analysed problem. However, if the 

user doesn’t initialize the required data, default parameters are internally 

defined. 

3. Costs calculation: firstly, the similarity cost of the evaluated stereo pair is 

computed, with the selected correlation window size and similarity cost 

function (SSD, SAD, NCC, Humming Distance).  

4. Smoothness constraints enforcing: in this stage, being the pixel-wise cost 

computation generally ambiguous (wrong matches can easily have a lower cost 

than correct ones, due to noise, repeated patterns, etc.), additional constraints 

are added to constrain the regularity of the displacement field. In other words, 

these “smoothness” constraints allow penalizing neighbouring disparities 

changes (in terms of adjacent pixels displacement). The pixel wise cost and the 

regularization constraints are expressed by defining a global energy function 

that has to be evaluated for all possible disparities combinations of each pixel. 

The problem is that the asymptotic time for evaluating the global energy 

function is the number of possible disparities raised to the image width times 

the image height: this is a NP-complete problem that takes an almost infinite 

computational time. The employed DP algorithm realizes the minimization of 

this global cost function, combining matching costs along independent one-

dimensional paths from all directions through the image. The costs extracted 

by each path, referred to a particular displacement value, are summed for each 

pixel and for each possible displacement (also referred as disparity) value. 

5. Disparity computation (with sub-pixel accuracy): finally, the algorithm choses 

the disparity solution with the minimum cost, using a Dynamic Programming 

approach. 

The algorithm general workflow (stereo matching) is schematize in Figure 3.1:  
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Figure 3.1: General SGM algorithm workflow (valid for 1D/2D disparity search) for stereo-

pairs approach. 

 

The workflow starts considering an image stereo pair and, being known their orientation 

parameters, the idealization and epipolar rectification processes are performed (see 

paragraphs 3.1.1 and 3.1.2 for more details). After that, in order to improve the 

computational performances, the program decompose the master image into tiles (the 

operator can choose the tile size and overlap). At this point, the determination of 

corresponding points will be done simultaneously (taking advantage of parallel 

computing capabilities of modern multi-core processors) for each tile. If the hierarchical 

image pyramid approach (see paragraph 3.1.5) is used, starting from the full resolution 
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of the image, each tile is down-sampled from the previous level, resulting in smaller 

images where the spatial sampling density (and, consequently, also the disparity search 

range) decreases level by level.  

The correlation step can now start: the image matching is performed on the lower-

resolution image pairs and, starting from a regular grid step defined on the reference 

image, the approximate correspondences on the slave image are computed by using one 

of the implemented parametric or non-parametric cost functions. At this time the 

process goes ahead performing the costs penalization and disparity optimization steps.  

The described workflow (and illustrated within the detached yellow frame in Figure 3.1) 

is repeated for each image level and, at the end of the image matching procedure, the 

results of each tile are joined and the disparity map of full-resolution images is 

determined. It is important to notice that the images rectification process is necessary 

if the research of image correspondences is performed in a mono-dimensional search 

domain. However, an extension of the algorithm to 2D search space has been 

implemented for tracking purposes. In this case, the rectification process (and often the 

idealization process, too) is not needed. 

 

 

 

Figure 3.2: Algorithm workflow extension for pairwise multi-image approach. 
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Figure 3.3: Algorithm workflow extension for object-based multi-image approach. 

 

As far as the multi-image algorithmic extensions are concerned, two different methods 

have been developed: a pairwise-based and an object-based multi-image SGM 

algorithm. In Figure 3.2 and 3.3 the strategies for both approaches are presented (for a 

more clear comprehension, the “matching core” stage summarizes here all the matching 

steps detached in blue in the basic SGM workflow just described in Figure 3.1). 

In the following paragraphs, all the strategies implemented in the method will be 

accurately described. 

3.1.1 Image idealization 

The image idealization process consists in removing distortion components (which are 

a consequence of the non rectilinear path of the projection ray through the camera 

lenses) resampling the analysed images and obtaining a new frame that geometrically 

fulfils the collinearity condition model.  

The process is quite simple: in a first stage, for each image to resample, the correction 

to be applied on the image coordinates (i.e. the deformation field) is calculated with the 

Brown’s distortion model (other custom distortion models can be specified by the user): 

 

 

 4

2

2

10

4

2

2

10







KKKY
Y

Y

KKKX
X

X

r

r





 

 

  



YPYPY

XPXPX

d

d

1

22

2

2

22

1

22

22





 

(3.1) 

SUB-VOXEL REFINEMENT 

IMAGE IDEALIZATION 

IMAGE 1 

 

IMAGE 2 IMAGE N 

MATCHING CORE 

HEIGHT MAP (RASTER DSM) 

https://en.wikipedia.org/wiki/Rectilinear_projection


CHAPTER 3  73 

 

 

where X , Y represent the correction to apply in X and Y direction (r and d represent 

the radial and tangential distortion components) and 0K , 1K , 2K  1P , 2P are the radial 

and tangential distortion parameters, that can be obtained using a calibration procedure. 

In particular, on the original (distorted) image, a set of image points are selected on a 

regular grid. The point density (i.e. the grid step) is selected according to the magnitude 

of the distortion: for higher distorted images a denser grid is selected. For each point 

the corresponding, undistorted, position is computed using eqs. (3.1). The resulting 

point distribution, unfortunately, is not regular anymore and require to be re-

interpolated: using a Delaunay triangulation the correction to pass from undistorted 

image position to the corresponding deformed location can be easily computed. In this 

way, a new resampled image, where the effects of the distortions are removed, can be 

now obtained by image resampling.   

3.1.2 Epipolar rectification process 

Consider (see Figure 3.4 below) two cameras, with their respective centres of projection 

points OL and OR, and a general object point P.  

 

 
Figure 3.4: Epipolar geometry problem. 

 

PL and PR denote the projection of P onto each of the image planes π1 and π2. Let’s call 

epipolar plane the one defined by the point P, OL and OR. The epipolar plane intersects 

the image planes defining two epipolar lines, which contain the image points PL and PR. 

The images of  OL on π2 and OR on π1 are the epipoles EL and ER. 

The epipolar geometry can be summarized in two main statements: 
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- Every 3D point P together with the two camera centres defines a plane which 

intersects the image planes in two epipolar lines; 

- Given an image point in one image, the epipolar constraint states that the 

corresponding image point on the other image plane belongs to the relative 

epipolar line. 

Epipolar geometry can then be employed to simplify the problem of identification of 

homologous points between stereo images. To make the search of corresponding points 

along the epipolar lines faster and simpler, an image rectification algorithm can be used 

to resample the stereo images and to produce new photograms where corresponding 

points lie on the same horizontal image line. 

 

 
Figure 3.5: Epipolar rectification concept between two images (in yellow). 

 

The epipolar image generation concept can be easily described by the previous Figure 

3.5. The projective transformation that project the two original image planes (in yellow) 

to a new plane π parallel to the baseline P1P2 is estimated. Cropping adequately the two 

new images, correspondent points on the new images (in light-blue) lie on the same 

horizontal line, and the matching can be enforced to move along the same direction. In 

this way matching points search is greatly simplified, also by the near-correspondence 

(in terms of similarity) of the two images (e.g. rotation or other perspective 

deformations due to individual image poses are usually reduced). 

The epipolar rectification requires that corresponding epipoles are mapped to a point 

at infinity (e.g., in homogeneous coordinates, to the point (1,0,0)𝑇) by a projective 

transformation (i.e. an homography). Referring, for clarity, to a single frame, it is 

possible to demonstrate that once the correspondence between the epipole and the 
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point at infinity has been determined, four degrees of freedom (one rotational, two 

translational and one for the plane scale) remain. If an unwanted homography 𝐻 is 

chosen, severe projective distortion of the image can take place. Therefore, the four 

degrees of freedom must be chosen carefully.  

A first condition that can be considered, is to minimize perspective deformations in the 

neighbourhood of a specific image point 𝑥0 (for example an appropriate choice of 𝑥0 

may be the image centre). Let us suppose that the epipole of the considered frame lies 

on the x-axis (i.e. 𝑒 = (𝑓, 0, 1)𝑇). The homography should be identified by the 

following transformation matrix: 

 

𝐺 = |

1 0 0
0 1 0

−
1

𝑓
0 1

| (3.2) 

 

This transformation takes the epipole (𝑓, 0, 1)𝑇 to the point at infinity (𝑓, 0, 0)𝑇as 

required. It is easy to prove that, if the point of interest is near the origin (0, 0, 1), the 

deformation in the point neighbourhood is null. In fact, a point of general coordinates 

(𝑥, 𝑦, 1)𝑇is mapped by 𝐺 as follows: 

 

𝑥′ = 𝐺𝑥 = (𝑥, 𝑦, 1 − 𝑥/𝑓)𝑇 = (
𝑥

1 − 𝑥/𝑓
,

𝑦

1 − 𝑦/𝑓
, 1)

𝑇

 (3.3) 

 

Approximating these coordinates by means of a Taylor series expansion, assuming that 

the ratio 𝑥/𝑓 ≪ 1 (i.e. the epipole must be at a sufficient distant from the frame 

format), it is possible to write 

 

𝑥′ ≅ (𝑥(1 + 𝑥/𝑓 + ⋯ ), 𝑦(1 + 𝑥/𝑓 + ⋯ ),1) (3.4) 

 

In other words, the transformation Jacobian is 

 

𝐽 = ⌊
1 + 2𝑥/𝑓 0

𝑦/𝑓 1 + 𝑥/𝑓
⌋ (3.5) 

 

Please note that, if we consider the principal point (𝑥 = 𝑦 = 0), J degenerates to the 

identity matrix (i.e. the projective deformation is null). For an arbitrarily placed point of 



76   SEMI-GLOBAL MATCHING IMPLEMENTATION 

 

 

interest 𝒙𝟎 (not located in the origin) and epipole 𝒆, the overall homograpy can be 

obtained as follows 

 

𝐻 = 𝐺𝑅𝑇 (3.6) 

 

where 𝑅 is a rotation about the origin taking the epipole 𝒆′ to a point (𝑓, 0, 1)𝑇on the 

x-axis,  𝑇 the translation taking the point of interest  𝑥0 to the origin and 𝐺 the mapping 

just considered taking (𝑓, 0, 1)𝑇 to infinity. 

After the epipole in one image is mapped to infinity, a map must be applied to the other 

image in order to allow the the epipolar lines matching. Two conditions must be taken 

into account in this case: the epipole in the second image must be also mapped to the 

same point at infinity, in order to obtain corresponding points on the same horizontal 

line. Then, since the previous condition is not able to fix all the degrees of freedom, a 

rule for fixing the residual free parameters is needed. The most obvious condition to 

apply could be to choose the transformation that minimize images parallaxes: 

 

∑ 𝑑

𝑖

(𝐻𝑥𝑖, 𝐻′𝑥′
𝑖)2 = 𝑚𝑖𝑛 (3.7) 

 

A deeper description of this procedure can be found in [76], where the demonstration 

of this condition is presented in more details. 

3.1.3 Processing parameters initialization 

At the very beginning of matching processing, the code requires some important 

variables initialization. If it is not specified, default parameters are internally defined to 

allow the matching algorithm working; otherwise, the operator can intervene for 

refining and adjusting the processing variables with regard to the specific problem 

complexity.  

- The processing parameters that can be set by the operator are: 

- the region of interest (ROI): if it is not loaded or drawn a specific mask on the 

master image, the whole image will be considered as the matching area of 

interest; 

- the disparity search range: i.e. the mean value and the disparity range which 

define the DSI depth (the values can be automatically evaluated using an initial 

points set obtained from the previous images orientation process, or using a 

SIFT feature matching); 
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- the image tiling procedure: if this process is selected, tiles number and tiles 

overlap can be defined;  

- the image pyramiding option: if the procedure is selected, the image pyramid 

number of levels must be set; during the matching process, the disparity search 

range is adapted automatically taking into consideration the resolution level. 

- the similarity cost function to use (with the relative image window size);  

- the penalization function; 

- the multi-processor option: the algorithm can run on multiple processing cores 

thanks to parallelization of several computation steps; 

3.1.4 Matching by using image tiling 

Due to the high memory requirements of SGM, especially if the DSI dimensions are 

relevant (i.e. using high resolution images and/or wide disparity search range), a tile-

based strategy was adopted in order to increase the computational performances. The 

procedure allows dividing the whole master image into squared areas (partially 

overlapped) which are independently processed (see Figure 3.6). In case, a hierarchical 

approach, which is described in the following paragraph, can be applied further 

improving algorithm performances with high resolution images and allowing the use of 

bigger tiles.  

 

 

Figure 3.6: Image tiling concepts: in purple and yellow the image tiles, which are 

independently processed by a different processor core. 
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The problem of tiling is the definition of the tile size and their overlap. For well textured, 

rather flat scenes, small tiles (e.g. 100 x 100 pixels) and low overlaps (e.g. 15-20 pixels) 

are sufficient. However, low-textured scenes or high depth differences require bigger 

tiles and higher overlaps. The tiling procedure is widely used when high-resolution 

images must be correlated and represents an optimal strategy for maximizing the 

performance of a semi-global (or global) algorithm, where the efficiency in terms of 

memory requirements and time of process are determinant factors. In this context it is 

important to highlight that, although a global/semi-global algorithm requires to 

correlate neighbour pixels information, the effect on the matching operation (due to 

adjacent pixels cost contribute) becomes uninfluent at a certain distance from a 

considered pixel. Therefore, it is possible to process each tile individually without any 

problem connected to the loss of the costs information about the pixels processed in 

another tile. 

In brief summary, the tiling procedure can be schematizes as follows: once the tile 

desired dimension is defined, the algorithm identifies the image tiles number and 

calculate an optimal tile dimension (i.e. making all the tiles, also on the edges, the same 

size); then, the master image is subdivided in n tiles that are matched individually (the 

number of processing cores determines the number of tiles that can be computed 

concurrently) with the slave image; the disparity computation/optimization (see section 

3.1.8) of each tile is performed individually as well;  finally, the matching results are 

merged together, blending the disparity results in the overlapping regions, in order to 

obtain the full disparity image.  

3.1.5 Matching by using image pyramids 

In order to perform an efficient stereo matching with high resolution images, the 

developed software implements also a multi-resolution approach using image pyramids 

and a coarse-to-fine disparity map evaluation.  

Every level of the pyramid is down-sampled from the previous level (in particular the 

resolution is one-half of the previous level scale), resulting in smaller image. As this 

process proceeds, the result is a set of gradually smoother images, where the spatial 

sampling density (and, consequently, also the disparity search range) decreases level by 

level (see Figure 3.7). The idea is that performing image matching on the lower-

resolution images allows performing the matching process for fewer pixels (and a 

smaller disparity search range) and to adaptively compute the matching parameters for 

the subsequent levels. In particular, the matching process has been modified to consider 
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an adaptively defined DSI so that the disparity range, except in the first pyramid level, 

is shrinked w.r.t. the full, user-defined, range. 

 

 
Figure 3.7: Disparity maps pyramid concept. 

 

At the lower resolution level, the process allows to refine the initial approximate 

disparity values and, once an initial low-resolution parallax map has been obtained, a 

bilinear (super -sampling) interpolation of the parallax values is computed to provide an 

initial disparity best-guess for the next level. In this way, being available a pixel-wise 

approximate disparity value, a new matching process (with the new image pyramid pairs 

of the next level) using a reduced disparity search range and an optimized pixel-wise 

disparity offset can be performed. The reduced disparity search range can be set by the 

user in the initialization step. 

If the tiling procedure is used, the images are processed iteratively using the pyramid 

strategy applied individually for each tile. This allows to considerably reduce the 

computational time of the correlation process. The process is repeated until it reaches 

the original, full resolution, image level. At this stage the final full-resolution disparity 

map can be obtained (see Figure 3.7).  

3.1.6 Variables and implemented functions 

As described in [84] and in 2.3.3 paragraph, the algorithm must consider some 

parameters that regard the similarity cost functions and others that allow the parallaxes 

regularity constraint (i.e. penalty functions).  



80   SEMI-GLOBAL MATCHING IMPLEMENTATION 

 

 

In the developed proprietary SGM algorithm, a generalization of the Hirschmuller semi-

global matching (already been presented in eq. (2.24) has been performed. The cost 

𝐿′
𝑟(𝒑, 𝑑) of the pixel located in 𝒑 at disparity 𝑑, along the path direction 𝒓 is defined 

recursively as: 

 

𝐿′
𝑟(𝒑, 𝑑) = 𝐶(𝒑, 𝑑) + 𝑚𝑖𝑛𝑖{𝐿𝑟(𝒑 − 𝒓, 𝑑 + 𝛥𝑑𝑖) + 𝑃(𝛥𝑑𝑖)} (3.8) 

 

where the first term is the similarity cost associated with a disparity value of 𝑑, whereas 

the second term evaluates the regularity of the disparity field, adding a penalty term 𝑃, 

function of disparity changes (𝛥𝑑𝑖) with respect to the previous point (𝒑 − 𝒓) in the 

considered matching path 𝒓. Different cost and penalty functions have been 

implemented in the Semi-Global matching code, but the abstraction level of the source 

code allows also the user to provide his own functions.  

First, as far as similarity cost computation is concerned (represented by the term 

𝐶(𝒑, 𝑑) in eq. (3.8)), we have implemented, the most common parametric and non-

parametric correlation measures: Sum of  Absolute/Squared Differences, Normalized 

Cross Correlation and  Sum of Humming Distance:  

 

𝑆𝐴𝐷 =  ∑ |𝑓(𝑖, 𝑗) − 𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥)|

(𝑖,𝑗)𝜖𝑊

 (3.9) 

 

SSD =  ∑ (f(i, j) − g(i + ∆y, j + ∆x))2

(i,j)ϵW

 
(3.10) 

𝑁𝐶𝐶 =  
∑ [(𝑓(𝑖, 𝑗)) ∙ (𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥)](𝑖,𝑗)∈𝑊

√∑ [(𝑓(𝑖, 𝑗))
2

∙ (𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥))
2

](𝑖,𝑗)∈𝑊

 
(3.11) 

𝑆𝐻𝐷 =  ∑ 𝑓(𝑖, 𝑗) 𝑏𝑖𝑡𝑤𝑖𝑠𝑒𝑋𝑂𝑅 𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥)        
(𝑖,𝑗)∈𝑊

=  𝑓(𝑖, 𝑗)^𝑔(𝑖 + ∆𝑦, 𝑗 + ∆𝑥)    

(3.12) 

 

 

An in depth descriptions of all these similarity functions has already been presented in 

paragraph 2.2. 

As far as the disparity field regularization terms are concerned, two penalty functions 

are actually implemented: the one proposed by Hirschmuller, which uses two penalty 

parameters “𝑃1 , 𝑃2” (𝑃1 - for small changes - permits an adaptation to slanted or curved 
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surfaces; , 𝑃2 - for larger changes - preserves discontinuities), and a different 

penalization method, where penalty increases linearly with the disparity difference of 

neighbour pixels. In Figure 3.8 the two implemented functions are shown: 𝑃 represents 

the penalization value and ∆𝐷 the neighbour pixels disparities value.  

 

 
 

Figure 3.8: The two implemented penalty functions 

 

Furthermore, as reported in [84], since that big disparity changes are usually indicated 

by significant intensity variations (as happens near objects borders and discontinuous 

areas), the penalty 𝑃2 can be set not only as a constant value but it also possible to 

identify a different definition of the penalization parameter: in this case 𝑃2 is adapted 

to the intensity gradient between the current and the previous pixel, according to the 

following equation:  

 

𝑃2 =  {   

𝑃2               ∆𝐼 > 𝑡

𝑃2

∆𝐼 + 𝜀
              ∆𝐼 ≤ 𝑡 

 (3.13) 

 

where ∆𝐼 = |𝐼𝐿(𝒑) − 𝐼𝐿(𝒑 − 𝒓)| represents the intensity registered difference value 

between adjacent pixels on the same path 𝒓 , 𝜀 a constant value and 𝑡 is an intensity 

differences threshold. 

3.1.7 Matching Core and disparity optimization 

The minimization problem of the semi-global cost function expressed in eq. (2.24) is 

solved in our implementation using a DP algorithm combining matching costs along 

independent one-dimensional paths from all directions through the image (just like in 

the Hirschmuller implementation). Thus, for each pixel 𝒑 and disparity 𝑑, the cost is 

computed by the sum of the matching cost and the minimum path cost of the previous 

pixel 𝒑 − 𝒓. The last term of eq. (2.24) subtracts the minimum cost at the previous pixel 
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from all costs of the current pixel. This is done for keeping the values 𝐿 low and 

consequently using a more efficient (smaller) data type to store the matching cost. In 

fact, an arbitrary value could be chosen, as long as it is constant for all disparities: the 

minimum of the previous pixel is used, because it is already available and subtraction 

will never make the whole term negative. 

In a DP framework (as the ones implemented in the code and in many SGM software 

packages [42]), the cost 𝐿′
𝑟(𝒑, 𝑑) is defined recursively for allowing the identification 

of the 𝑚𝑖𝑛𝑖{𝐿𝒓(𝒑 − 𝒓, 𝑑 + 𝛥𝑑𝑖) + 𝑃(𝛥𝑑𝑖)}. It is precisely in this moment that the 

“memoization” step (see paragraph 2.4.1), occurs. In other words, whenever a 

determinate sub-problem (whose solution contributes together with the other identified 

optimal sub-problems to the solution of the whole process) is proposed again, it will be 

not necessary to solve the problem, because its solution has already been calculated (i.e. 

it is available) and only have to be called back from the memory. The disparity solution 

of the previous pixels 𝐿𝒓(𝒑 − 𝒓, 𝑑 + 𝛥𝑑𝑖) are necessary data to obtain the 𝐿′
𝒓 term but 

they must not be computed every time such sub-problems arise: the solutions have 

already been stored. 

In the initial research stages, a first algorithmic development of the costs penalization 

step that provided more flexibility in terms of penalization paths w.r.t. the first 

Hirschmuller implementation of SGM, has been implemented and tested. Later, on the 

basis of such results, a different SGM solving approach, algorithmically more similar to 

the OpenCV Semi Global stereo Block Matching library [128], has been studied and 

employed, to improve computational efficiency of the algorithm. In the following two 

paragraphs, both implementation are described. 

3.1.7.1 First implementation of SGM  

In the first implemented SGM [84], the minimization of eq. (2.24) is done going along 

one dimensional paths at a time, usually considering four, eight or sixteen different 

directions 𝒓. Anyway the user, in this implementation, can provide any number of paths 

indicating their direction vector (see further for details). In Figure 3.9 the paths direction 

are shown.  The cost 𝐿𝑟 are then summed over paths in all the directions  . The final 

aggregated cost, that takes into account all the different 𝒓 paths, is defined as: 

 

𝑆(𝒑, 𝑑) =  ∑ 𝐿𝑟(𝒑, 𝑑)
𝑟

 (3.14) 

 

where  𝑆  is the data volume from which the final disparity is selected. 
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The user can choose how many paths wants to use for the stereo correlation process; 

this is useful for analysing the influence of the each directions on the final results. 

Generally, the use of 16 paths (as is proposed in [83]) allows obtaining a detailed and 

more noise-free result (providing a good coverage of the 2D image) but, if a good trade-

off between accuracy, completeness and computational time is requested, the matching 

using only 8 paths can also represent a good choice. 

 
Figure 3.9: Representation of the 8 (on the left) and 16 paths (on the right) implemented in 

the software code.  

Finally, the disparity solution can be determined by selecting for each pixel 𝒑 the 

disparity 𝑑 that corresponds to the minimum cost (which is set after all directions have 

been calculated), i.e. 𝐷𝑆𝐺𝑀(𝑝) = 𝑚𝑖𝑛𝑑𝑆(𝒑, 𝑑).  

In order to better understand and clarify how the program works when it process each 

scan line disparity costs with dynamic programming, a simple example is following 

presented.  

Consider only a simple image row, composed by 5 pixels (see Figure 3.10), and suppose 

that we want to compute the stereo correspondence between the two pixel lines which 

ideally correspond to the first row of pixels of an images pair, considering the path 

corresponding to the direction r = (-1,0) (i.e. from right to left). 

Master (or right) image 
 

Slave (or left) image 
 

Figure 3.10: Example of stereo correspondences between a simple image row composed by 

7 pixels. 

Now, starting from the last pixel (to be clear the pixel n° 5), the similarity and 

penalization step will be performed iteratively (thanks to the DP technique) for each 

pixel (which correspond at one pixel) of the disparity costs matrix filling the DSI. In 

this example, we suppose that the penalization linearly increases with respect to the 

(1,0) 

(0
,1) 

(-1,0) 

(0
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imposed disparity field, and the similarity term is calculated making the simple absolute 

value of the intensities difference and using a one pixel template size. 

For the first pixel, the similarity cost 𝐶(𝒑, 𝑑) function of the different disparity values 

results as in Figure 3.11: 

Disparity  

-5 -4 -3 -2 -1 0 1 2 3 4 5 

           

1000 80 30 20 20 30 1000 1000 1000 1000 1000 

Figure 3.11: Similarity costs of the first pixel by varying the disparity value. 

 

Being the first pixel of the path, the similarity cost coincides with the total cost. The 

cost associated with locations in the slave image outside the boundaries are set to a very 

high value to avoid not congruent disparity solutions. For the second pixel, i.e. the 

second to last pixel, the similarity cost (Figure 3.12) is: 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

           

1000 1000 40 70 20 60 70 1000 1000 1000 1000 

Figure 3.12 Similarity costs of the second pixel by varying the disparity value. 

Now, to implement the DP approach and fill the DSI with the matching costs expressed 

by eq. (3.8), it is helpful to create a penalty disparity matrix (Figure 3.13) that stores the 

matching cost of the pixel varying the disparity, and penalizing the costs considering 

the different parallax value w.r.t. the previous (first) pixel. For instance, in this case, the 

penalization has a value of 127 for every pixel of difference in the disparity between 

adjacent path pixels:  

Pixel Index Delta Disparity Disparity 

1 3 2000 2000 1381 461 411 401 401 411 1381 

2 2 2000 1254 334 284 274 274 284 1254 1254 

3 1 1127 207 157 147 147 157 1127 1127 1127 

4 0 80 30 20 20 30 1000 1000 1000 1000 

5 1 157 147 147 157 1127 1127 1127 1127 1127 

6 2 274 274 284 1254 1254 1254 1254 1254 2000 

7 3 401 411 1381 1381 1381 1381 1381 2000 2000 

 

Minimum values 80 30 20 20 30 157 284 411 1000 

Figure 3.13: Matching costs penalization of the first pixel. 
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Finally, the minimum of each column of the disparity penalty matrix is selected 

according to eq. (3.8). At this time, the minimum vector will be summed to the previous 

(i.e. the fourth) line of the disparity costs matrix obtaining a new vector (shown in green 

in Figure 3.14) that will be penalized in the same above described.  

 

80 30 20 20 30 157 284 411 1000 

+ 

1000 40 70 20 60 70 1000 1000 1000 

= 

1080 70 90 40 90 227 1284 1411 2000 
 

Figure 3.14: Aggregation of the first pixel penalized matching costs. 

 

The process continues up to the location of the line considering that for all the pixels, 

different from the first, the minimums vector of the previous pixel must be subtracted. 

For sake of understanding, in Figure 3.15-16 the costs penalization matrix of the 

following pixel (the fourth) to penalize is shown. 

 

Pixel Index Delta Disparity          

1 3 3000 3000 3015 1095 85 105 55 105 242 

2 2 3000 3010 1090 80 100 50 100 237 1294 

3 1 3005 1085 75 95 45 95 232 1289 1416 

4 0 1080 70 90 40 90 227 1284 1411 2000 

5 1 197 95 45 95 232 1289 1416 2005 3005 

6 2 344 50 100 237 1294 1421 2010 3010 3000 

7 3 421 105 242 1299 1426 2015 3015 3000 3000 

           

Minimum values 197 50 45 40 45 50 55 105 242 

Figure 3.15: Matching costs penalization of the second pixel. 

 
197 50 45 40 45 50 55 105 242 

+ 

1000 1000 1000 90 20 30 10 20 1000 

- 

80 30 20 20 30 157 284 411 1000 

= 

1040 1070 130 60 120 60 50 80 170 
 

Figure 3.16: Adjacent pixel aggregation.  

 

In the end, once the DSI has been completely filled, the minima of the matching costs 

for each pixel can be searched, its location in the DSI can be memorized and the 
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solution parallax estimated (by reconstructing the route of the optimal indexes within 

the DSI matrix). An example of this step is shown in Figure 3.17nd 3.18. 

Index 1 2 3 4 5 6 7 8 9 

          

1° pixel 3 2 2 3 4 5 5 5 5 

2° pixel 5 4 4 4 2 3 3 3 3 

3° pixel 5 5 5 4 3 3 2 2 3 

4° pixel 5 5 5 4 3 2 1 1 1 

5° pixel 4 4 4 4 4 3 2 1 4 

Figure 3.17: Optimal indexes matrix. 

 

120 230 250 220 235 

     

     

     

140 250 200 240 250 

Figure 3.18: Optimal indexes route recover. 

 

This example has simply considered an image pixels line, but a typical matching problem 

must evaluate the whole image. In this case, the process must continue, starting from 

the farthest image line pixel and repeating itself iteratively for each image scan line, from 

the top left pixel line wise through the image, computing the path for each defined 

direction (e.g. from left, diagonally from top-left, from top, diagonally from top, etc.). 

The Disparity Costs matrix becomes therefore a three-dimensional matrix where at each 

image pixel correspond a set of costs calculated by varying the disparity search range. 

In other words we computed a data storage 𝐶(𝑥, 𝑦, 𝑑), where (𝑥, 𝑦) represents the pixel 

location and 𝑑 the considered disparity value (as shown in Figure 3.19). In other word, 

each DSI element will contain the cost of the correspondence between the master image 

pixels and the slave image pixels, creating a big tensor of all the costs for all the pixels 

and all possible disparity values named as 𝐶(𝒑, 𝑑) in eq. (3.8). 
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Figure 3.19: Disparity costs matrix for matching costs data storing. 

 

Summarizing, finding the minimum path with a Dynamic Programming approach 

means iterate through the matrix left to right and take a rolling sum. The optimal cost 

of an element in the rolling sum vector, for the current pixel and disparity combination, 

is equal to the cost for the current location plus the lowest summed cost from the set 

of all possible disparities for the prior pixel locations. Simultaneously, the algorithm 

records the optimal indexes (i.e. the locations of the minimum values) and finally 

recovers the optimal route through the matrix that gives the minimum cost.  

In this first SGM implementation the path directions are managed with an external 

algorithm cycle that takes one path at a time and performs the costs penalization. For 

each direction, first of all, the algorithm works by individuating the starting points from 

whom the next process of penalization should begin. For example, considering the 

horizontal and vertical directions, the algorithm will have to store the image (or mask if 

it has been defined) border pixels. From these, the penalization algorithm will start to 

perform the regularization step, paying attention to the component directions of the 

specified evaluated vector. A stylized starting points identification (in orange) is clarified 

Height 

Width 
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in Figure 3.20, where in blue are visualized the pixels exposed to the previously 

explained rolling sum procedure. 
 

     

     

     

     

     

 

     

     

     

     

     

 

     

     

     

     

     

a) b) c) 

Figure 3.20: In orange the identified starting points in the case of: a) Horizontal path 

direction; b) Vertical path direction; c) 45° path direction. 

 

Finally, the information from all paths is fused for all pixels and disparities by eq. (3.14), 

and the optimal disparity for each pixel, which corresponds to the minimum cost, is 

determined. 

The process produces a large amount of data that have to be stored. All costs for all 

pixels and all possible disparity values are stored in a big tensor that has a size of W * 

H * D, where W and H represents the image (or tile) resolution (W and H are equivalent 

to image/tile width and height) and D is the disparity search range. The high 

computation cost of the entire process, which in this implementation was not 

considered a key aspect, have made essential the investigation of a different data 

storage/access in order to obtain better performance for real case applications. 

3.1.7.2 Memory efficient SGM implementation  

The first tests performed on the initial implementation of the SGM algorithm showed 

that it’s commonly useless to consider more than 16 path directions and the best 

performing penalization function is the one proposed by Hirschmuller, with two penalty 

factors that weights differently disparity differences equal to one pixel (i.e. object 

continuity of slanted surfaces) and higher differences (associated to object surface 

discontinuity). Limiting the context of the algorithm to such behaviour, some 

simplification can be provided, developing a much more efficient software code. In 

other words, in a second stage of the research, a new implementation of the matching 

algorithm was developed, obtaining a less general but much faster solving procedure. 

The drawback of the first SGM method is the temporary memory requirement that 

depends on the number of pixels (image resolution), the disparity range and the paths 

number. In fact, the base algorithm aggregates the disparity costs of each directions in 
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a data volume 𝑆𝑟, from the sum of which the final disparity is computed. This means 

that the costs have to be stored for each pixel and disparity value, and for each directions 

until the optimization process ends. In other words, the algorithm forces to memorize 

both the S total costs volume and one 3D costs matrix for each path direction. 

Moreover, the process allows to perform one direction at a time and then load the cost 

of the generic path inside 𝑆. Using this approach, the algorithm is not efficient because 

each pixel are evaluated N times (where N indicates the total number of paths) in the 

total matching process. 

This paragraph describes a different SGM data storage method (similar to the one 

implemented in the OpenCV libraries [129]) where the matching costs penalization 

phase becomes faster and more memory efficient. The new algorithm, instead of storing 

the costs for all disparities, for each pixel and for N paths, performs the costs calculation 

and costs penalization steps simultaneously, considering two (or three if sixteen 

directions are considered) rows of image pixels at a time. The advantage of this 

approach is that the matching process doesn’t need two data structure (the data volume 

for the generic path direction and data volume 𝑆 from which the final disparity is 

selected) since it requires the memorization of just two (or three) image lines of pixels 

at a time: the present and the previous lines. 

 

 
Figure 3.21: Calculation of the eight path directions in a top-down pass (on the left) and a 

bottom-up pass (on the right). 

 

The algorithm follows partially the ideas described in [87] and shown in Figure 3.21: for 

each pixel, the costs of the previous pixel (on the basis of the considered path direction) 

are loaded. eq. (3.8) shows that, to compute the matching cost of one pixel, 

𝐿𝒓(𝒑 − 𝒓, 𝑑) and 𝑚𝑖𝑛 (𝐿𝒓(𝒑 − 𝒓, 𝑑)) should be considered beforehand: except for 

horizontal path direction, the previous line of pixels costs must be already computed. 

If (𝒑 − 𝒓) interests lines other than the previous one (i.e. diagonal direction that span 

3 rows of pixels if sixteen directions are considered), also such lines must be memorized. 

The disadvantage of this method is that, being necessary the previous pixel costs data, 

it is not possible to perform all the optimization paths directions in one step unless they 
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all come from left or top of the current position. In all the other cases aggregation must 

be performed in two passes: the first pass goes from the top left pixel through the image 

and computes the path from left, diagonally from top-left, from top and diagonally from 

top-right. For each pixel, the four paths are continued from the previous pixels to the 

current pixel according to eq. (3.8) and as shown on the left in Figure 3.21. Thereafter, 

once the whole image has been analysed with the first pass, a second pass, that starts 

from the bottom, right pixel and goes upwards is performed in order to compute the 

remaining four paths. 

Data are stored within an array which will contain the cost data of two row of image 

pixels (or three row if we consider eight directions instead of four) i.e. 𝐿𝒓(𝒑 − 𝒓, 𝑑) and 

𝑚𝑖𝑛 (𝐿𝒓(𝒑 − 𝒓, 𝑑)) for each pixel, direction and disparity value.  

Figure 3.22 describes the data storage method: each L𝐫 array contains, for each pixel, 

four memory locations (corresponding to the four evaluated paths); within them the 

cost for each disparity value under consideration is stored. At the boundaries of the 

image the method has no cost data, therefore, the costs information will be initialized 

to a NaN value (maintaining however the same data structure).  Finally, the 

𝑚𝑖𝑛 (𝐿𝒓(𝒑 − 𝒓, 𝑑)) arrays are organized in the same way of the L𝐫 arrays but contain 

less information since the minimum of the costs has just been calculated with respect 

to all the possible disparity values d. 

 

Border  Lr  previous Lr  current min(Lr) previous min(Lr) current Border  

 

 

L1 L2 L3 L4 L1 L2 L3 L4 …  

 

 

 

 

Figure 3.22: Data storage layout: for each pixel, four memory locations (corresponding to the 

four evaluated paths) are initialized and filled with the pixel costs for each disparity value under 

consideration. 

 

The above illustrated data storage structure allows a much more efficient memory 

access, optimizing the processes and providing low computational time. In .Net 

environment, data structures are usually accessed in a “safe” behaviour, which means 

N disparity 

4 path directions 

ith pixel 

 

(i+1)th pixel 

 

nth pixel 
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that the compiler provide an internal system to avoid wrong memory access. The 

proposed data structure, however, allows to access the data using pointer algebra in 

“unsafe” conditions making the entire process extremely fast. Moreover, the proposed 

data structure allows to store the two lines of pixel data (the computing line and the 

previous) in a cyclic buffer: once the data of the previous image line are known, the 

second array is gradually filled; when this second image line is completely calculated the 

previous line data will be no longer useful, since its costs have just been transferred to 

the second image line (i.e. the “current” array), and can be overwritten. This means that, 

when the process switches to the third line, the pointer of the previous line becomes 

that of the second one (whose data must be used for updating the costs of the third) 

and the pointer of the computing line can point to the first line data (whose information 

are no longer needed), allowing to overwrite the data efficiently. After computing the 

four path-wise costs 𝐿𝒓, for the generic pixel and disparity, before shifting the pointers, 

the result is added to 𝑆𝑡𝑜𝑡: 

 

𝑆𝑝(𝑑) =  𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝑆𝑝(𝑑) (3.15) 

 

where 𝑆𝑝(𝑑) is the contribute that contains the data of the pixels calculated in the 

previous pass (i.e. the pass that goes from the top left pixel line of the image). 

3.1.8 SGM algorithm extension for a bi-directional research of 

correspondences 

The basic idea behind semi-global methods is to reduce the correlation problem 

complexity to a sub-set of image points (also called as “scanline”), reducing in this way 

the matching problem dimension.  

The classical SGM approach is functional in stereo-vision problem and for 

photogrammetric applications such as the generation of digital surface models, where 

the images to be matched can be rectified (see images rectification in the paragraph 

3.1.2), simplifying the problem of homologous points identification between stereo 

images. However, this represents also a strong limitation for traditional SGM 

implementation: there are a lot of applications that require a 2D disparity search and, 

moreover, real data always has imperfections and finding the true disparity should 

require searching in the Y direction even if an epipolar rectification process is 

performed. In other words, traditional SGM algorithms cannot be used when the 

displacements tracking of image points is investigated. 
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Given these considerations, and in order to create a software able to give a solution to 

many engineering applications, the proprietary SGM software code was improved, 

including the possibility to analyse a 2D disparity search domain.  

The algorithm works within the same pipeline described in paragraph 3.1 but eq. (3.8) 

should be extended to consider the 2D search domain: 

 

𝐿′
𝒓(𝒑, 𝑑) = 𝐶(𝒑, 𝑑𝑥, 𝑑𝑦) + 𝑚𝑖𝑛𝑖,𝑗{𝐿𝒓(𝒑 − 𝒓, 𝑑𝑥 + 𝛥𝑑𝑗, 𝑑𝑦 + 𝛥𝑑𝑖 )  

                                 +𝑃(𝛥𝑑𝑖 , 𝛥𝑑𝑗)} 

(3.16) 

 

where 𝑑𝑥 and 𝑑𝑦, and 𝛥𝑑𝑖 and 𝛥𝑑𝑗, are respectively the displacement components and 

the disparity changes along the principal image plane axis.  

However, the high amount of memory and calculations required by the original SGM 

is further increased introducing the 2D disparity search option. It is easy to note that a 

1D disparity search domain makes the complexity of the problem proportional to O(m 

∙ n ∙ d), where m and n are the pixel resolution of the image and d is the disparity search 

range, while, in the novel approach, the complexity tends to O(m ∙ n∙ d2). In fact, the 

DSI matrix 𝐶(𝒑, 𝑑) = 𝐶(𝑥, 𝑦, 𝑑) becomes a four-dimensional tensor 𝐶(𝒑, 𝑑𝑥, 𝑑𝑦) =

𝐶(𝑥, 𝑦, 𝑑𝑥, 𝑑𝑦) where for each image pixel, the costs by varying the disparity search 

range in two direction are stored. Proportionally will also increase the dimension of the 

matrices that store the penalized costs and the optimal indices. 

In particular, with the aim of solving these memory and computation issues, the 

implementation of the multi-resolution strategy (described in paragraph 3.1.5) was 

developed, in order to limit the disparity search range as much as possible.  

3.1.9 Sub-pixel refinement 

Most dense stereo correspondence algorithms (as the ones implemented in our SGM 

code) start by establishing discrete pixel matches (integer disparity map) and later refine 

these matches to sub-pixel precision, estimating a parabola fitting to the cost function. 

Once the analytical minimum cost is determined, the corresponding fractional offset is 

used to adjust the initial integer disparities (as described in paragraph 2.5).  

This process is very simple and yet efficient, but many studies (such as [124][36][143] 

[172]) and tests reported that such strategy can lead to a systematic biasing towards 

integer values of displacements, also known as “pixel-locking (or peak-locking) effect”. 

This bias produces random or coherent noise in the final reconstruction, introducing 

erroneous ripples or waves in the reconstruction of the disparity map.  
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As described in [172], considering a generic object and camera pose, the histogram of 

sub-pixel disparities should be approximately uniform (i.e. the fractional part of the 

disparity has a uniform probability distribution function); instead, using a simple 

parabola fitting over an initial integer disparity matrix, the histogram of sub-pixel 

disparities shows usually evident peaks (see for instance results in Figure 3.23). 

 

 

Figure 3.23: Example histograms of sub-pixel disparities for a planar region, illustrating the 

“pixel-locking” effect (based on [172] experiments). Using standard parabola fitting 

algorithms, peaks are clearly visible in the second histogram, while the ground truth is 

uniform. 

 

In literature, several methods have been proposed to solve the pixel-locking problem. 

To avoid bias, and preserve details, Nehab et. al. [124] suggested a symmetric sub-pixel 

refinement strategy that improves both the reference and the matching image 

coordinates simultaneously, in a symmetric way, by looking for the minimum of the 

matching cost function along a direction that is insensitive to its confidence variations. 

Differently, Stein et. al. [172] approach refines initial integer disparities by using local 

estimation techniques based on the classical optical flow or the Lucas-Kanade (and 

Tomasi) tracker ([108][183]).  

3.1.9.1 Symmetric sub-pixel refinement implementation 

Since strong pixel locking effects occurred in most of the case studies performed to 

calibrate the algorithm, Nehab strategy [124] has been studied and later implemented in 

the proprietary SGM software code. This sub-pixel refinement approach can be used 

instead of the traditional, and primarily implemented, sub-pixel parabola fitting 

interpolation method. According to Nehab et al., the peak locking bias can be avoided 

not considering only one image as reference, i.e. refining both the matched images 

Subpixel disparity histogram for a planar region 

Ground 

Truth 

 

 

Parabola  

Fitting 
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coordinates simultaneously, in a symmetric way. They propose a symmetric approach 

in which both images are treated equal by working in image coordinates rather than in 

the disparity space. Looking for the minimum of the matching cost function along a 

direction that is insensitive to its confidence variations, neither camera is considered as 

reference, thus the refined matches coordinates will have subpixel precision in both the 

images.  In other words, the fundamental idea is to find the subpixel refinement by 

considering a 2-D neighbourhood of the matching cost around each matching pair and 

finding the optimal cut in the direction of the symmetric lines of the matching cost. 

Consider two rectified cameras C1 and C2, producing images I1 and I2 of an object, such 

that the scan-lines in each image are corresponding epipolar lines, and defined the 

metric cost for comparing pixel values as M, we can define 

 

𝐹𝑦(𝑥1, 𝑥2) = 𝑀(𝐼1(𝑥1, 𝑦), 𝐼2(𝑥2, 𝑦)) (3.17) 

 

so that, instead of work in the disparity space, it is possible to work directly with image 

coordinates. 

With the aim of capture the symmetry of the matching cost function (Figure 3.24 from 

[124] shows the matching ridge and how the cost functions are symmetric with regard 

to it), a 2D neighbourhood of matching cost values around (𝑖1, 𝑖2) is considered, 

allowing to define a continuous surface 𝑆(𝑥1, 𝑥2) (see Figure 3.25). The surface can be 

well-represented by a Gaussian Cylinder (GC) representation (as described in [124]): 

 

𝑆(𝑥1, 𝑥2) = 𝐺(𝐷(𝑥1, 𝑥2)) (3.18) 

𝐺(𝑑) = 𝑎𝑒−𝑑2
+ 𝑏 (3.19) 

𝐷(𝑥1, 𝑥2) = 𝑠1𝑥1 + 𝑠2𝑥2 − 𝑝 (3.20) 

 

since this surface enforces a ridge-like shape for the reconstruction. The parameters 𝑎, 

𝑏, 𝑠1, 𝑠2, 𝑝 can be determined by a non-linear least squares minimization system 

(composed by the derivatives of 𝐺(𝑑) in 𝑎, 𝑏, 𝑠1, 𝑠2, 𝑝) on the 3×3 neighbourhood 

around (𝑖1, 𝑖2).Once the GC has been estimated the correct coordinate match pair (x1, 

x2) for each pixel can be located directly on the matching ridge. 
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Figure 3.24: Examples of matching cost functions values and their symmetry w.r.t. the 

matching ridge. a. Master image; b. Slave image; c. SAD; d. NCC. 

 
Figure 3.25: The continuous surface 𝑆(𝑥1, 𝑥2). 

A good estimate for a cut through 𝑆 is represented by the direction [𝑠1𝑠2]𝑇
 which 

follows the symmetric lines of the applied matching cost function: the cut direction can 

be directly identified. Then, the line 𝐷(𝑥1, 𝑥2) = 0 will give the examined local 

approximation for the matching ridge. The system minimization, in our implementation 

is performed with Levenberg-Marquardt method [118], as suggested by Lourakis [107], 

which has demonstrated to be rather well robust. 

3.1.10 Multi-Image SGM extensions 

Originally developed for image pairs correlation, the proposed Semi-Global Matching 

algorithm has been also extended to cope with Multi-Image configurations. Indeed, 

although many applications do not use multi-images data, several tasks relies on 

accurate, reliable and complete 3D reconstruction of the scene. For these cases, stereo 

dense image matching processes have been adapted to perform the correlation process 

in multi-image conditions. These methods are called multi-baseline matching or multi-

view stereo algorithms.  
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As described in paragraph 2.6, most of the implementations perform the image 

matching by analysing consecutive image pairs and combining the pairwise results 

afterwards, in order to generate the complete final solution of the matching process. 

However, according to [17], this methods work well, but often shows several 

disadvantages connected for example to points visibility problems between the stereo 

images, that can lead to a less accuracy and completeness of the final disparity solution 

and consequent 3D reconstruction. To test both methodologies and highlight their 

performances, a pairwise-based multi-image SGM implementation and an alternative 

Object Space based approach have been implemented. The latter differs from the 

original SGM method in two major aspects: firstly, the cost calculation is formulated in 

object space (instead of in image space) within a dense voxel raster, and uses the 

radiometric values of all images concurrently, instead of pairwise cost data. Similarly, 

the semi-global minimization process is performed into object space as well, since the 

result of the semi-global optimization directly represents the possible 3D positions of 

each points. Thus, the entire process leads to the generation of height-maps (instead of 

disparity maps) which indicate the 3D positions of the best matches.  

3.1.10.1 Pairwise-based Multi-Image SGM implementation 

The first algorithmic development in multi-image matching process has regarded the 

implementation of a multi-baseline stereo method for producing dense depth map by 

performing pairwise stereo matching on all image pairs and finally merging the results.  

The code initially identifies all the possible pairs of stereo images that build up the 

photogrammetric sequence and then performs the image correlation of each pair using 

epipolar rectified images.  

Considering n pairs of stereo images, the correlation process produces n depth maps 

that are individually re-projected, in our implementation to a common image plane. This 

operation is necessary for combining the n depth maps into a unique reference frame. 

Once the n depth maps have been merged, a median filter is used to filter out the noise: 

for each pixel of the overlapping depth maps, the depth values are sorted and the 

median is selected.  

In paragraph 4.3 the results of the application of this second multi-image algorithmic 

development are presented. 

3.1.10.2 Multi-Image SGM algorithm in object space 

Object-based Semi-Global matching works by subdividing the X-Y-Z object space into 

a raster volume subdivided into voxels (as described in Figure 3.26). Each voxel has 

precise dimension (ΔX, ΔY, ΔZ) which define the resolution of the object space (i.e., 
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voxel size defines the resolution and level of detail of the final results). A good 

evaluation of the object space resolution can consider for example the mean Ground 

Sampling Distance (GSD) value, in order to ensure an adequate sampling rate of the 

space. 

Traditional SGM method (see eq. (2.24) and (3.8)), compute the matching costs building 

up the structure 𝐶 = 𝐶(𝑝, 𝑑) = 𝐶(𝑥, 𝑦, 𝑑), in which 𝑥, 𝑦 refer to the image pixels 

coordinates and 𝑑 is the disparity value. Implementing a costs aggregation/penalization 

strategy, which search the minimum path costs, an optimal matching solution is 

computed. In the case of object-based SGM, the costs matrix 𝐶(𝑥, 𝑦, 𝑑) is modified 

to 𝐶(𝑋, 𝑌, 𝑍), in which the coordinates 𝑋, 𝑌, 𝑍 indicate the 3D position of a voxel and 

the disparity search range 𝐷 is replaced by a Z search range. 

Once the user has defined the voxels size, the re-projection of each ground point (i.e. 

the centre of the voxel) into all the images is performed, by using the collinearity 

equations. Since windows-based cost functions are used, the matching window (defined 

parallel to X/Y plane) will be re-projected and then resampled into all the images. This 

allows to obtain a template within each image, from which the radiometric information 

will be stored and used for cost calculation (see Figure 3.26).  

 

Figure 3.26: Calculation of matching costs for a voxel. 

 

However, it is interesting to notice that, in order to perform a multi-image correlation 

process, it becomes necessary to investigate a method for extending the similarity 

functions and combining matching costs. According to [17], different solutions can 

solve this matter: the simplest way is represented by the cost calculation for all possible 

image pairs and the parallel initialization of the 𝐶(𝑋, 𝑌, 𝑍) structure where the cost value 

will be stored. The calculated value can be the minimum costs with respect to the costs 



98   SEMI-GLOBAL MATCHING IMPLEMENTATION 

 

 

extracted with the correlation templates on the n images or, for example, the 

mean/median value of all these. 

Finally, the global energy function, expressed in eq. (2.21), is modified to 

 

𝐸(𝑍) = ∑ 𝐶(𝑋, 𝑌, 𝑍)

𝑋,𝑌

+  

(3.22) 
+ ∑ 𝑃1 ∙ 𝑇[|𝑍 − 𝑍𝑞| = ∆𝑍] + ∑ 𝑃2 ∙ 𝑇[|𝑍 − 𝑍𝑞| > ∆𝑍]

𝑞∈𝑁𝑝

 

𝑞∈𝑁𝑝

 

 

where the first term contains the matching costs for each voxel of the raster and the 

second and third term add penalties 𝑃1 and 𝑃2 in case of differences in Z-direction 

between adjacent voxels.  Therefore, in the case of object-based SGM, is it possible to 

say that the smoothness constraints have the task to perform the “regularization” of  

the object 𝑍-coordinates, imposing the continuity, at least along some specific plan 

direction of the object surface. Obviously, the energy minimization process must be 

transformed as well: 

 

𝐿𝑟(𝑣, 𝑍) = 𝐶(𝑣, 𝑍) + min (𝐿𝑟(𝑣 − 𝑟, 𝑍),  

                                                                    𝐿𝑟(𝑣 − 𝑟, 𝑍 − 𝛥𝑍) + 𝑃1, 

                                                                    𝐿𝑟(𝑣 − 𝑟, 𝑍 + 𝛥𝑍) + 𝑃1, 

                  𝑚𝑖𝑛𝑖𝐿𝑟((𝑣 − 𝑟, 𝑖 ∙ 𝛥𝑍) + 𝑃2) 

                                                                −𝑚𝑖𝑛𝑘𝐿𝑟(𝑣 − 𝑟, 𝑘 ∙ ∆𝑍)   

(3.23) 

 

where 𝑣 represent the voxel (x,y) location. 

The path-wise cost aggregation process can be done in analogy to the standard SGM 

separately for every path 𝐿𝑟 (see eq.(2.21)) but, in this case, the minimum path costs will 

include added penalties 𝑃1 and 𝑃2 at the position of the previous voxel in path direction 

(instead of the previous pixel) and adds this minimum to the cost value 𝐶(𝑋, 𝑌, 𝑍) of 

the current voxel. The penalty 𝑃1 is added if the difference in 𝑍-direction between the 

current voxel and the adjacent voxel is equal to ∆𝑍 (which is the height of one voxel) 

and 𝑃2 is added if the difference in 𝑍-direction is larger than ∆𝑍. The last term of eq. 

(3.23) subtracts the minimum path cost of the previous voxel to avoid very large values 

in 𝐿𝑟. Finally, as in the original SGM implementation, the results of the costs 

penalization through the n paths are fused into the matrix 𝑆 and the optimal final Z-

coordinates will be derived from 𝑆(𝑣, 𝑍) by searching the minimum of  𝑆 for each voxel 

𝑣: 
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𝑚𝑖𝑛𝑧𝑆(𝑣, 𝑍) = 𝑚𝑖𝑛𝑧 ∑ 𝐿𝑟(𝑣, 𝑍)

𝑛

𝑟=1

 (3.24) 

 

The final 𝑍 values will be stored, for each 𝑣, in a 2D height. 

3.2 Algorithm calibration  

In order to get a better understanding of the relationships between all the algorithms 

variables (penalty functions, similarity cost functions, template size, etc.) a calibration 

of the algorithm's processing parameters was performed.  

Several images datasets were used for studying the algorithm performances: 

- Synthetics images: image rendering of simple three-dimensional computer 

generated objects, created in a 3D modelling software and draped with a texture 

(data are shown in Figure 3.27 (a –b – c - d)). For each dataset, images has been 

taken with different baselines, exposure and perspective effects and the 

matching performance has been evaluated by comparing the reconstructed 

parallax map with the original 3D model, considered as “ground-truth”. 

- Middlebury Stereo Evaluation Dataset: high-resolution scientific image dataset 

for stereo and multi-image matching applications (in particular, the 2014 high-

resolution datasets has been used). As described in [161], the authors have 

created a structured lighting system for generating high-resolution stereo 

datasets of static indoor scenes with highly accurate ground-truth disparities 

(one case of study are visible in Figure 3.27 (e)). Each dataset consists of input 

images taken under multiple exposures and multiple ambient illuminations. 

They also provide each dataset with both “perfect” and realistic “imperfect” 

rectification, with accurate 1D and 2D floating-point disparities, respectively. 

- CvLab dataset [173]: high-quality datasets consisting of distortion removed 

images, known interior orientation parameters and reference laser scanning 

DSMs. In particular, the Fountain- P11dataset has been used (see Figure 3.27 

(f)). The performed tests will be presented in this case in the following Chapter 

4, which considers the three-dimensional reconstruction algorithm capabilities. 

In fact, the image disparities comparison is not possible since the parallax fields 

are not directly provided: therefore, the influence of the matching process on 

the final 3D reconstruction (i.e. DSMs comparison) has been investigated. 
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a) b) 

  

c) d) 

  
e) f) 

Figure 3.27. a)-b) Simple computer generated objects used as calibration dataset. c) 

Synthetic image of a 3D reference model. d) e) Example of Middlebury dataset. Real 

image of the P11-Fountain dataset. 

 

The performed calibration tests have regarded in particular the following aspects: 

- the algorithm accuracy: the SGM algorithm metric accuracy and reliability has 

been evaluated by comparing, for each case study, the reconstructed parallax 

map with the provided ground-truth disparities data (i.e. evaluating the 

algorithm accuracy in finding the corresponding point on image space). 

Information about the results quality has been acquired through the use of 

suitable statistical indicators (such as for example the mean, median and 

standard deviation values of the differences between the reconstructed and the 

ground-truth disparity maps). As far as the three-dimensional reconstructed 

models are concerned, accuracy evaluation has been done by computing the 

distances between the reconstructed and the ground truth DSMs; 
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- the results completeness and level of detail: the distribution of the 

reconstructed parallax values has allowed to evaluate the percentage of pixels 

whose errors are smaller than an established value: thus highlighting the results 

reliability in terms of “inlier and outliers percentage”; 

- the computational time of the whole matching process: since the computational 

efficiency of a matching algorithm is becoming a more and more influential 

factor, both SGM implementations (described in paragraph 3.1.7) are tested for 

analysing the time of the correlation process, in particular the time for 

computing the matching core step. 

Many are the SGM processing variables that considerably intervene in the metrological 

algorithm characterisation; namely, the correlation window size, the regularization and 

similarity cost functions, the penalty values analysis and identification, the use of multi-

resolution and image tiling approaches, etc. Therefore, the following paragraphs will 

describe how the algorithm performances (in terms of results accuracy, completeness 

and time of calculation) are influenced by the above parameters. Several parametric 

combinations have been tested, in order to analyse the process weaknesses and to 

highlight its performances. In the following, a summary of the more interesting results 

is presented (with the aim of identifying the best strategies and parameters combination 

that allows the most efficient description of different object typologies).  

3.2.1 Algorithm accuracy evaluation 

In this first stage, the simple computer generated object shown in Figure 3.27 (a), was 

used as calibration dataset and tests have been computed considering the SAD cost 

function and full-resolution images (i.e. no image pyramid and tiling processes). The 

achieved results will be following presented. 

First, the calibration of the implemented two penalization methods and their 

regularization factors (e.g. P1 and P2 for Hirschmuller formulation) has been performed.   

In order to identify the best penalty values for allowing the correct application of semi 

global constraints, the accuracy of the method was tested by varying different 

combinations of penalty values (also with respect to the template size). The results are 

shown in the diagram in Figure 3.28, which has allowed the identification of the best 

values range that produces stable results. 
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Figure 3.28: Penalty values calibration 

 

The diagram above shows that the differences on varying the penalty values 

combination are light: standard deviation values vary in the range of 0.1 pixel. However, 

if small template size are used (e.g. 3 or 7 pixels window dimension) it is necessary to 

pay more attention on the penalty values to use in the correlation process. At the same 

time the results have allowed to assess a penalty value range that has been kept fixed, in 

the next tests, limiting the number of varying parameters.      

As described in paragraph 3.1.6, two different penalization function has been developed 

in the proprietary software: one based on Hirschmuller formulation (which considers 

two penalty factors P1 and P2) and another one that linearly increase the penalty with 

the increase of the disparity changes between adjacent pixels. The two methods 

performances were tested and the results of the comparison are presented in the 

histogram of Figure 3.29: the accuracy of the two penalty implementations is practically 

the same for each examined template size. Thus, in all subsequent algorithm tests, the 

Hirschmuller defined penalty function was used. 

The next testing stage considered the influence of the similarity functions on the final 

accuracy. For each function also the influence of the template size have been 

considered. The ideal block size to perform the stereo matching depends on the chosen 

function: the tests have been conducted using the same synthetic dataset which, not 

presenting discontinuities, allows to better analyse the influence of the template size on 

the final parallax accuracy: with bigger template sizes, in fact, object shape discontinuity 

are likely to produce gross errors.  
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Figure 3.29: Comparison of the two implemented penalization costs functions accuracy. 

 

In other words, in this initial stage we have focused the attention on the relationship 

between the template size and the cost function, not introducing more variability 

connected to the complexity of the analysed object shape. In this context, in analogy 

with other techniques for DTM generation in close range (e.g. LSM), there seems to be 

an optimal range for template size value according to object features. An extended 

evaluation is investigated in [146] and the diagram shown below (Figure 3.30) allows to 

observe the variations of the standard deviation w.r.t. the template size. 

 
Figure 3.30: Accuracy of the similarity functions by varying the window template size. 

 

In the diagram, the performances of three different cost functions changing the 

template windows size, can be observed. As expected, the enforcement of the disparity 
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continuity allows to obtain comparable results between the evaluated cost functions, 

showing a light improvements of the accuracy with the increase of the template size. 

Looking at the diagram, there seems to be an optimal windows size beyond which the 

cost functions seems to produce less accurate and reliable results.  However, it’s worth 

noting that the maximum differences in the registered standard deviation values are 

slightly more than one tenth of pixel. and the use of NCC with small block size has 

produced isolate outlier which were removed from the estimation.  

Finally, the accuracy of the second memory efficient SGM algorithmic implementations 

has been investigated w.r.t. the first implemented method. The following diagram 

shown in Figure 3.31 presents an evaluation of each solution accuracy.  

 

a) 

 

b) 

Figure 3.31: Comparison between the accuracy of the two implementation of SGM: 

the first implementation and the memory efficient variation. a) The results obtained 

using the SAD cost function; b) The results obtained using the NCC cost function. 
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The results show again the improvement of the accuracy with the increase of the 

window size: this is evident in the NCC behaviour while the same cannot be said for 

the SAD cost function, which maintains constant performances for template size 

greater than 3 x 3 pixels. As regard the accuracies comparison between the two 

strategies, the novel more efficient implementation seems to be as accurate as the first 

SGM implementation. Some lightly differences are just evident in particular for small 

template size: the memory efficient method seems to provide better performances with 

NCC w.r.t. to the first implementation, but with SAD cost function the same is not 

true. That’s probably due to the fact that SAD with small template sizes relies heavily 

on a good disparity regularization: the first implementation, although much slower than 

the new one, performs a more rigorous penalization stage. 

3.2.2 Algorithm completeness evaluation 

A second calibration stage has regarded the study of the algorithm capability of 

obtaining complete results. The algorithm has been tested, in this context, on the 

Middlebury datasets. In fact, the synthetic images datasets were not appropriate for this 

type of examination since the computer generated object and the relative image 

renderings were generated considering optimal conditions for the image matching 

process (e.g. simple objects with no discontinuities, well-contrasted images texture and 

good illumination). Consequently, in all the synthetic datasets, the level of completeness 

of the reconstructed parallax is usually almost 100%. On the contrary, the Middlebury 

stereo datasets show characteristics that will likely cause problems at the matching 

algorithm in terms of reconstruction abilities.  

 

  

Figure 3.32: The two Middlebury datasets used for the algorithm calibration: on the left the 

“Playtable” case, on the right the “Vintage” case. 

 

Tests were performed on the two dataset shown in Figure 3.32, using two different 

similarity functions, no image pyramiding and tiling, and the Hirschmuller penalization 

method with fixed  penalty factors (the optimal set of parameters were previously 
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identified with the tests shown in the previous paragraph). The diagrams shown in 

Figure 3.33 and 3.34 present, for each case of study, the results of the algorithm 

completeness of reconstruction capability. The distribution of the parallax errors 

(evaluated with SAD, NCC, Rank and Census costs functions) has been reconstructed 

by highlighting the percentage of “inlier” pixels whose errors are lower than 0.5, 1, 2, 4 

and 8 pixels respectively. Higher percentage (values) represent thus better results. As 

far as the two non-parametric Rank and Census transformation are concerned, images 

have been transformed applying the Rank metric on a 9 x 9 pixels template size and, 

after that, the correlation has been performed with NCC and SAD cost functions. On 

the other hand, for Census, the transformation has been performed using a 5 x 5 pixels 

window size and the matching process has been performed on the Census-transformed 

images with SHD metric. 

The two evaluated cases of study have shown similar results which are presented in 

Figure 3.33(a) – (b) and Figure 3.34. Both for the SAD and NCC cost functions, the 

parallax completeness increase with the use of big template size but, the SAD similarity 

function shows better results since the inlier percentage values, for each considered 

inlier threshold, are greater than the NCC results. It is interesting to notice that, with 

the increase of the window size, NCC data tend more and more towards high accuracies, 

thus there is a continually improvement of the cost function performances (this is even 

more evident looking at the NCC results for the “Vintage” case (Figure 3.35). 

Differently, SAD completeness levels becomes constant for template greater than 5 

pixel. The NCC behaviour can be justified considering the peculiarity of the Middlebury 

images. In fact, in presence of low contrasted areas, repetitive patterns and constant 

brightness regions the NCC statistical indicator does not have enough information, with 

small templates, to produce reliable results. On the contrary, the formulation of the 

SAD cost function allows performing a better investigation of corresponding luminosity 

areas (even if low or no-texture are present), while it produces less reliable and accurate 

results in areas with high contrast and luminosity differences between the images. 

However, with the use of medium-large template size, the NCC performance can 

improve significantly thanks to the increase of the radiometric information within the 

correlation window.  
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a) 

 

b) 

 

Figure 3.33: Results of the “Playtable” dataset: Percentage distribution of the inlier parallax 

values whose errors are lesser than 0.5, 1, 2, 4 and 8 pixels respectively, by using the SAD 

(a) and NCC (b) cost functions. 

 
Figure 3.34: Results of the “Vintage” dataset: Percentage distribution of the inlier parallax 

values whose errors are lesser than 0.5, 1, 2, 4 and 8 pixels respectively, by using the NCC. 
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A more direct comparison between all the evaluated cost functions results , with regard 

to the 4 and 0.5 pixels “inlier” percentage (that threshold is considered as a good 

tolerance ranges for the completeness evaluation with these datasets) is shown in the 

histograms in Figure 3.35 and 3.36.  

 

a) 

 

b) 

Figure 3.35: Results of the “Playtable” dataset. Comparison between the NCC, SAD, Rank 

and Census cost functions results, with regard to a) the 4 pixels “inlier” percentage; b) the 0.5 

pixels “inlier” percentage. 

 

Looking at the histograms in Figure 3.35 (a)-(b), the worse results are achieved by the 

Rank cost functions. Anyway, the results trend is similar to the previous SAD and NCC 

ones, since the completeness levels increase along with the template window size. On 

the other hand, the Census behaviour shows good results, which are slightly worse than 

the SAD cost function (that remains the “winner metric”) but significantly better that 

NCC solution with regard to the 4 pixel inliers percentage (Figure 3.35 (a)). The metric 

shows thus a good robustness with respect to outliers identification but, at the same 

time, it proves to be less accurate (see Figure 3.35 (b)) than the other similarity measures. 

Following, the “Vintage” study case results, although very similar to the “Playtable”, are 

illustrated.  



CHAPTER 3  109 

 

 

 

 

a) 

 

b) 

Figure 3.36: Results of the “Vintage” dataset. Comparison between the NCC and SAD cost 

functions results, with regard to: a) the 4 pixels “inlier” percentage; b) the 0.5  pixels “inlier” 

percentage. 

 

The completeness increases with the use of big template size but with lowest 

improvement degree than in “Playtable” (as already explained and shown in Figure 

3.35). As regard the cost functions performances, the results improvement using the 

SAD metric is even more evident (than in the first dataset), both in the case of 4 and 

0.5 pixels inliers percentages (see the histograms presented in Figure 3.36).  

Differently from the first case results, the noticeably gap between the cost functions 

results is evident for each template size under evaluation and, at the same time, the 

depicted completeness levels are significantly lower. The images “Vintage” dataset has 

shown thus worsen radiometric characteristic for the matching algorithm capabilities, 

than those characterizing the first case. However, as it will be presented in 3.2.7 

paragraph, the proprietary semi-global algorithm has reached up in this case comparable 

performance with respect to other semi-global strategies. 
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In order to better understand the algorithm robustness, the maps of the differences 

between ground truth and the reconstructed disparity maps (obtained using a 

correlation window size equal to 5 x 5 pixels and the SAD cost function) is presented. 

As visible in Figure 3.37, the parallax map suffers of lacks of completeness in 

correspondence of low textured regions, repetitive pattern and reflective materials.  

 

  

  
 

Figure 3.37: Maps of the differences between ground truth and the reconstructed disparity 

map considering a tolerance range of 4 pixel. On the left the “Playtable” case, on the right 

the “Vintage” case. 

 

This occurs especially when the algorithm tries to find matching points on the white 

rooms walls, on the plastic surfaces of the workstation and the chair, which appear in 

the “Vintage” and “Playtable” cases respectively, and near the shiny terminals monitors 

of the “Vintage” case. 

In paragraph 3.2.7 additional results on the Middlebury datasets are shown together 

with a comparison between the proprietary algorithm performance and other two SGM 

implementations. Moreover, further investigations about the algorithm reconstruction 

capabilities will be examined in Chapter 4.  

3.2.3 Algorithm computational time evaluation 

In this paragraph the process efficiency is considered. In particular, the second SGM 

implementation, which was developed for obtaining a much faster disparity penalization 
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procedure, has been tested and compared with the first algorithmic implementation. It 

is important in this analysis to distinguish between the three stages that characterize the 

matching solving process, namely: the costs computation, the disparity penalization and 

optimization steps. This proves to be important since the novel more efficient SGM 

strategy modifies, with significantly lower computational load, the cost data penalization 

processing stage. Differently, the matching costs analysis and the disparity minima 

search steps are unchanged between the two SGM approaches.  

In the previous diagrams shown in Figure 3.31, the novel improved SGM algorithm has 

proved to be as accurate as the previous one. Figure 3.38 shows the time (in seconds) 

to  compute the matching cost process for a single image pair, employing NCC and 

SAD similarity functions with different template sizes.  

 

 
Figure 3.38: Computational time comparison of the costs computation process, by using 

NCC and SAD cost functions with different template size. 

 

The computation time, in both cases, increase quadratically with the increase of the 

template size. Furthermore, in the histograms presented in Figure 3.39, an evaluation 

of the novel memory efficient SGM algorithm improvements (in terms of 

computational time) with respect to the oldest one is presented. The diagrams show a 

noteworthy enhancement of the algorithm efficiency.  
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Figure 3.39: Computational time (in seconds) to process a single image pair, employing SAD 

similarity functions with different template sizes: a comparison between the novel memory 

efficient SGM algorithm and the first SGM implementation. 

 

As previously proved in the diagram in Figure 3.38, the matching cost stage increase 

quadratically with the template size both for the two SGM approaches but it is evident 

the improvement of the novel strategy with respect to the old one in the costs 

penalization (about 12 seconds instead of the 70 seconds of the oldest method). It is 

also important noting that, in both cases, the disparities penalization and optimization 

steps (depicted in orange and grey respectively in the histograms) require the same 

computational time for each considered template, since the efficiency of these process 

do not depend on the size of the correlation window. At the same time, changing the 

0 10 20 30 40 50 60

1

3

5

7

11

Time [s]

T
e
m

p
la

te
 s

iz
e
 [

p
ix

]

Memory efficient SGM

COST PENALIZATION MINIMA SEARCH

0 20 40 60 80 100 120

1

3

5

7

11

Time [s]

T
e
m

p
la

te
 s

iz
e
 [

p
ix

]

First SGM

COST PENALIZATION MINIMA SEARCH



CHAPTER 3  113 

 

 

disparity search range, the total time for performing the penalization step is obviously 

higher with wider ranges, but the gain w.r.t. the old implementation is basically constant 

as shown in Figure 3.40. 

 

 
Figure 3.40: Penalization step efficiency gain of the memory efficient SGM approach w.r.t. 

the old implementation.  

 

Concluding, both implementations produce accurate results, showing comparable 

deviation data when the comparison between the ground truth and the reconstructed 

parallax map is considered. For this reason, the novel SGM implementation seems to 

be more convenient, being much faster and more memory efficient.  

3.2.4 Evaluation of the sub-pixel refinement accuracy 

In all the previous examples, both the implementations have shown a random or 

coherent noise in the final reconstructed scenes. Such behaviour, which produces less 

accurate correspondences, is called “pixel locking”. The following paragraph analyses 

the problem and showing its influence on the obtained results and proposing, finally, a 

method to avoid biasing and limit its influence. 

The simple computer generated object used as calibration dataset, has allowed the clear 

identification of pixel locking phenomena. Indeed, comparing the “true” disparity map 

(or ground truth) with those obtained by the method using the three implemented cost 

functions, a sort of staircase pattern has been observed (see Figure 3.41).  

The occurrence of peak locking becomes more visible in a histogram of the individual 

components of the displacement; another way to determine the degree of peak locking 

is to consider the histogram of the fractional part of the displacement in pixel units (i.e. 
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only the fractional part between –0.5 and +0.5 pixel units). An example of such 

fractional histogram is shown in in Figure 3.41. 

 

SAD NCC CENSUS 

   

 
Figure 3.41. Top: Disparity maps of the computer-generated object, obtained with three 

different implemented cost functions. Bottom: Pixel-locking degree quantifications of each 

evaluated cost function (in pixel units).  

 

The histograms of the fractional part of the displacement show clearly the pixel locking 

effect: it is possible to identify, for each case study, a high elevation near zero 

displacement and a depression near ±0.5 pixels displacement. Therefore, through the 

histograms and the parameter extracted from eq. (3.25), the identification of the results 

biasing, towards integer values of displacement, has been possible, showing a “severe” 

degree of the phenomena for all the presented case of study shown in Figure 3.41. 

The degree of pixel locking can be quantified, as is described in [129], as:  

 

𝐶 = 1 −
𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥
  (3.25) 

 

where 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are the lowest and highest number of counts in the fractional 

histogram (as it is illustrated in Figure 3.41). 𝐶 = 0 indicates complete absence of pixel 

locking, while 𝐶 = 1 indicates very strong pixel locking; Figure 3.42 (extracted from 

[128]) gives a useful indication of the fractional histogram shapes considering several 
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degree of pixel locking. Four different levels of pixel locking can be distinguished: (i) 

for C < 0.2 virtually no pixel locking occurs; (ii) ‘mild’ pixel locking occurs for 0.2 < C 

< 0.4, while (iii) ‘strong’ pixel locking occurs for 0.4 < C < 0.6, and (iv) C > 0.6 indicates 

‘severe’ pixel locking.  

 

 
Figure 3.42: Fractional displacement histograms for various levels of the pixel locking 

parameter C defined in eq. (3.25).  

 

Usually pixel locking is associated to numerical behaviour of the sub-pixel disparity 

refinement strategy at the end of the matching procedure. 

For this reason, we chose to implement a different refinement strategy where the 

disparities sub-pixel investigation is performed not with the traditional parabola fitting 

method (see paragraph 3.1.9 for more details) but with the improved “sub-pixel 

symmetric refinement” method, as explained in the work of Nehab in [124]. Following, 

the result obtained with the novel refinement strategy is shown (Figure 3.43), 

considering the matching procedure applied on the same synthetic dataset and with the 

SAD similarity function.  

The diagram shows the improvement of the results: the parallax map obtained with the 

new strategy is smoother and, concurrently, the staircase pattern (very evident in the 

case of the parallax maps obtained with parabola fitting method) is less marked; the 

histogram displays a more irregular distribution of the displacements fractional 

components, resulting in the improvement of the pixel locking degree index. Indeed, 

while C=0.75 can be quantified (according to [129]) as “severe” pixel locking, a degree 

of 0.46 reveals that the result is lightly affected by the locking effect (C=0.4 is classified 

as “mild” degree of pixel locking). 
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C=0.75 C=0.46 

Figure 3.43: The parallax map and the histogram of the fractional part of the displacements: 

on the left the results obtained with parabola fitting sub-pixel refinement, on the right the 

results obtained with sub-pixel symmetric refinement method. 

3.2.5 Tiling strategy performances evaluation 

A final calibration stage has regarded the evaluation of the accuracy and reliability of 

the image pyramiding and tiling strategies, employed at the start of the matching 

workflow for improving the algorithm computational performance.  

When high resolution images are used, the program can subdivide the master image into 

small, user defined size, tiles. In order to verify the procedure accuracy and reliability, 

the Middlebury datasets were processed both with and without the tiling strategy 

application and the obtained results were compared. As an example, Table 3.1 and 

Figure 3.44 show the results obtained for the “Playtable” dataset. 

As expected, even if the tiling process allows reducing the computational efforts of the 

matching procedure, enabling the simultaneous processing of each tile in parallel, the 

final quality of the results is a little lower. This is due to the overlap size between adjacent 

tiles: for well textured scenes an overlap of 20-40 pixels, like the one used for the tests, 

is sufficient. 
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 WITH tile strategy WITHOUT tile strategy 

Median [pix] 0.537 0.479 

INLIER 0.5 [%] 48.96 50.75 

INLIER 1 [%] 58.26 61.24 

INLIER 2 [%] 66.59 70.36 

INLIER 4 [%] 73.25 76.86 

Table 3.1: Distribution of the “inlier” pixels percentage by using the tiling strategy. 

 

However, low-textured area or high depth differences in the scene require a higher 

overlap. The reason of this lies in the fact that the matching solution of the pixels within 

the overlapped areas can be not well-estimated since the matched points, within these 

areas, can have not according disparity values in the two different tiles, and the blending 

procedure can produce inaccurate results. Indeed, tiles borders (as well as image 

borders) represent the image regions where the semi-global matching process obtains 

the lower precision results, because lower information are coming from the 

neighbouring pixels.  
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Figure 3.44: Comparison of the results obtained with the SGM algorithm with and without the 

use of the image tiling procedure. a) The obtained parallax maps. b) Maps of the differences of 

the reconstructed disparity maps and the reference disparity ground truth.  

 

Therefore, scanline optimization procedure can generate erroneous or inaccurate 

correspondences data in these regions: if we consider that tiles matching solutions are 
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fused at the end of the whole process, the errors and the imprecisions at the boundaries 

of each solutions are added together, worsening the total accuracy of the results (Table 

3.1) and increasing data noise. A good habit to follow may be to use not too small tiles, 

in order to reduce as much as possible the overlapping areas. 

3.2.6 Multi-resolution approach (image pyramids) 

performances evaluation  

The matching process using image pyramids is an efficient system for improving the 

algorithm performances in term of computation effort and memory requirements: as in 

the previous method, it is necessary to verify the method quality and reliability w.r.t. the 

single pyramid level approach. Thus, the computer generated object created for testing 

the semi-global proprietary method (see Figure 3.28 (a)) and the “Vintage” Middlebury 

image dataset (see Figure 3.28 (e)) have been used to compare the results of the 

algorithm by processing in one case the full-resolution image pair, in the other using the 

pyramid strategy (three image pyramids levels have been used). Tests were carried out 

to consider also the template size influence.  

The accuracy of matching process considering one-level and three-levels image 

pyramids,  is described in Figure 3.45 and Table 3.2, which show the increase of the 

standard deviation values of the differences between the ground truth disparities data 

and obtained final disparity map with the increase of the correlation window size. This 

is particularly true for medium-large template sizes. Indeed, the discrepancies between 

the two evaluated strategies are absent or quite low for small windows dimension (see 

the results for template sizes of three, five and seven pixels). 

 

 Template size [pix] 3 LEVELS 1 LEVEL 

STD DEV  

[pix] 
 

3 x 3 0.109 0.109 

5 x 5 0.103 0.103 

7 x 7 0.101 0.101 

9 x 9 0.102 0.101 

11 x 11 0.104 0.102 

15 x 15 0.108 0.105 

Table 3.2: Accuracy and efficiency evaluation of the multi-resolution approach by varying the 

template size. 

 



CHAPTER 3  119 

 

 

 
Figure 3.45: Comparison of the results obtained considering the image matching process 

with and without the application of the multi-resolution approach: evaluation of the 

accuracies by varying the window template size.  

 

The algorithm behaves differently in the case of templates bigger than seven pixels. The 

use of big template produces the flattening of the images disparities data (the same can 

be said in terms of depth information), reducing the algorithm capabilities in 

reconstructing object fine structure and details and increasing the probability of passing 

wrong information from one level to the next. Furthermore, together with this issue, 

the image interpolation process intervenes: once the initial low-resolution parallax map 

has been obtained, a bilinear interpolation of parallax values between matched conjugate 

points is computed and utilized as approximate parallax map useful to perform the 

matching process with the new higher resolution image pairs. Thus, the inaccuracies 

introduced by the computation of image costs with big template size, together with the 

image pyramids resampling process, introduce errors that accumulate until the method 

reaches the original image level, producing lower accurate results.  

As regard the computational efficiency improvements as concerned, the histogram 

presented in Figure 3.46 shows the significant gain in terms of process time using the 

multi-resolution approach. 

It is also important considering that the image-pyramids employment offers 

considerable advantages (in process efficiency) the wider is the disparity search range. 

Figure 3.47 shows clearly the profits, in term of process efficiency, connected to the use 

of the multi-resolution strategy, using different disparity search ranges and different 

template sizes. In the case of a 250 and 750 pixels disparity ranges, the multi-resolution 

method is respectively 10 and 20÷25 times faster than the full-resolution approach 

applied in the same process conditions. At the same time, considering the window size 
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variation, the results highlight that the gain, in terms of process efficiency, lightly 

increases with the template dimension.  

 
Figure 3.46: Comparison of the results obtained considering the image matching process 

with and without the application of the multi-resolution approach: evaluation of the 

computational time by varying the window template size. 

 

It is possible to say that the use of image pyramids has undoubtedly a key role in 

correlation processes of high-resolution images (such as, for example, the planetary 

ones) where high disparity search ranges are needed. Moreover, this strategy has proved 

to be an essential step of the 2D SGM method workflow because of the quadratic 

increase of the image points search domain size.   

 
Figure 3.47: Computational time gain of the multi-resolution approach by varying the 

disparity search range and the template size.  
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3.2.7 Comparison with other SGM algorithm  

A final validation stage has regarded the comparison of the proprietary semi-global 

algorithm performance with other SGM implementations considering some of the 

datasets extracted from the Middlebury Stereo Datasets.  
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Figure 3.48: The evaluated Middlebury datasets with the ground truth disparities data. 
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In particular, the two compared SGM strategies are the Hirschmuller SGM algorithm 

[84] and the OpenCV Reimplementation of the latter [128].  

Tests were performed with equal processing variables and input data, taking advantage 

of the considerations derived from the analysis of the previous calibration stages results:  

- full resolution images; 

- no multi-resolution processing (images were considered with their initial 

resolution and no image pyramids were created); 

- size of the correlation window equal to 5 x 5 pixels; 

- images similarity cost performed with the SAD cost function. 

The considered Middlebury datasets are shown in Figure 3.48: different environments, 

illumination conditions, objects shapes and surface materials are represented in the 

stereo image pairs. Each dataset presents several difficulties that can affect the 

performances of the matching algorithms: the presence of image backgrounds 

characterized by constant radiometric contents, localized lighting sources that can create 

reflection phenomena on the objects surface (in particular for high-reflecting materials), 

occlusion problems and repetitive patterns. 

The obtained results are presented in Table 3.3.  

 

  Vintage Piano Playtable Shelves Jadeplant 

MEDIAN 

[pix] 

SGM 1.70 1.03 0.48 2.89 1.43 

SGBM [128] 2.37 0.68 1.96 2.64 0.98 

SGM [84] 2.53 0.56 5.12 2.12 0.74 

BAD 0.5 

[%] 

SGM 69.8 63.8 49.2 77.2 67.4 

SGBM 72.7 59.1 72.9 73.1 60.7 

SGM 73.5 53.8 82.2 74.3 55.2 

BAD 1 

[%] 

SGM 57.6 50.4 38.8 63.6 54.6 

SGBM 61.1 40.1 59.7 60.6 49.8 

SGM 62.3 33.8 71.4 60.7 42.2 

BAD 2 

[%] 

SGM 47.6 42.0 29.6 53.8 46.6 

SGBM 52.2 31.1 49.7 52.8 42.4 

SGM 43.2 26.9 41.5 45.9 36.9 

BAD 4 

[%] 

SGM 37.6 35.8 23.1 46.6 41.6 

SGBM 53.0 23.8 61.3 50.8 33.7 

SGM 44.3 18.2 52.7 40.7 28.7 

Table 3.3: Comparison of the “bad” pixels percentage distribution between the proprietary 

SGM code, the Hirschmuller algorithm and the OpenCV variation. 
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For each case study, the distribution of the parallax values has been computed, 

highlighting the percentage of “bad” pixels whose errors are greater than 0.5, 1, 2 and 

4 pixels respectively; the median value (50% error quantile) of each distribution is also 

calculated. Lower percentage (values) represent thus better results. The resulting 

parameters were compared with those uploaded online by the other authors that have 

implemented a Semi-Global matching method. 

Table 3.3 shows the results obtained with the proprietary implemented SGM code and 

those obtained with other SGM versions uploaded on the Middlebury Evaluation page. 

Data demonstrate coherent results: in particular, two of the five cases of study show 

that the better solution was obtained with the proprietary semi-global algorithm; on the 

contrary, the remaining three cases show slightly worse results. Except in the 

“Playtable” case, where a great improvement of our result is evident, the parallax 

distributions obtained with the three different semi-global algorithms show similar 

behaviours on average. Nevertheless, it is important to notice that the proprietary 

software code does not implement pre or post-processing steps (such as hole-fitting, 

interpolation, median filtering, etc.) on the disparities data. On the contrary, both the 

compared strategies perform different post-processing methods to refine the disparity 

image and remove errors. In Hirschmuller SGM [84] disparity refinements strategies 

include peak filtering, intensity consistent disparity selection and discontinuity 

preserving interpolation processes; in OpenCV's "semi-global block matching" method 

[128], post-filtering and hole-filling methods are computed to obtain dense and smooth 

disparity image. It is therefore possible to say that the results of the comparison are very 

satisfying. In Figure 3.49 the reconstructed parallax map and the map of the differences, 

with regard to the ground truth disparities map, are shown for each considered dataset. 

Examining the parallax and difference maps, the main sources of error are represented 

especially by low textured areas and depth changes in the scene. The low radiometric 

content does not help the discontinuities and occlusions identification. For example, 

some mismatches are evident in “Vintage” case, at workstations boundaries and in 

correspondence of the terminals screen; also, the background on the right of the scene 

appears inaccurate, due to the black uniform area on the right side of the wall. The same 

stand for the other datasets: flattened colours of backgrounds and walls, reflective 

material surfaces, source of illumination and occlusions represent the major sources of 

errors and mismatches. 
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Figure 3.49: The reconstructed parallax map and the map of the differences with regard to the 

disparities ground truth considering a tolerance range of 4 pixel.  

 

Comparing the obtained parallax maps with those performed with Hirschmuller and 

OpenCV semi-global strategies (shown in Figure 3.50), some considerations can be 

made. 
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Figure 3.50: The reconstructed parallax map achived by Hirschmuller and OpenCV 

semi-global strategies. 

 

Hirschmuller algorithm seems to better preserve objects discontinuities and boundaries 

(this is particular evident in “Jadeplant”, “Piano” and “Shelves” cases) and, moreover, 



126   SEMI-GLOBAL MATCHING IMPLEMENTATION 

 

 

it shows more robustness toward low textured areas, producing however an evident 

smoothing effect of the parallax maps data. Differently, OpenCV algorithm shows 

noisier parallax data and lower accuracies in identifying objects boundaries, probably 

due to misalignment problems of the disparity map scanlines (it is worth noting that in 

OpenCV method costs aggregation is performed by dynamic programming along only 

5 paths). Overall, OpenCV parallax maps seem to be, at a glance, the most similar to 

the proprietary algorithm results. Just in the “Playtable” case our SGM algorithm has 

produced much better results, in term of accuracy, discontinuities preservation and it 

has correctly reconstructed the areas which are not well- identified by the other two 

strategies (such as the floor, the small objects on the table and the shelf). 
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Introduction 

Encouraged by the growing interest in automatic 3D image-based reconstruction, the 

development and improvement of robust dense matching techniques is one of the most 

investigated research topic of the last years in photogrammetry and computer vision. 

In order to understand the main performance differences between different 

strategies/implementation and the proprietary semi-global code, tests on real and 

synthetic images have been performed, evaluating in particular the accuracy of the 

obtained digital surface models. The comparison has basically two main objectives: first 

of all, checking the accuracy of the SGM proprietary implementation, and getting insight 

on the influence of some matching variables in the process. Second, comparing the 

accuracy and completeness of the digital models obtained using the proprietary code 

with other commercial and open-source matching programs [45] (in particular with 

respect to traditional local methods approach). The comparisons want also to consider 

the completeness and the level of detail within fine structures, and the reliability and 

repeatability of the obtainable data. All the codes/algorithms used in this first 

investigation considered only stereo pairs in order to identify the correlation 

performances of each strategy. In the final section of the chapter, the multi-image 

algorithmic extensions has been used and evaluated for analysing their performances in 

digital surface models reconstruction. 

4.1 Comparison of dense matching algorithms for surface 

reconstruction 

4.1.1 Image matching strategies description 

Several algorithms and different implementation are considered in the comparison, 

using freeware software codes (e.g. MICMAC and OpenCV), commercial software (e.g. 

Agisoft PhotoScan (PS)) and proprietary codes implementing Least Squares and Semi-

Global Matching algorithms. 

4.1.1.1 DenseMatcher 

DenseMatcher (DM) is a digital terrain model generation program developed at the 

University of Parma [146], based on classical Area Based stereo algorithm. It 

implements NCC, LSM and Multiphoto Geometrically Constrained Matching [69] 

correlation algorithms and it uses a multi-resolution scheme. The common processing 
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pipeline is as follow: using known interior and exterior orientation parameters, the 

algorithm perform the epipolar resampling of the image pair (see paragraph 3.1.2) 

improving the efficiency of the process; then, using tie-points information (or an initial 

approximate depth map), it realizes the disparity data optimization with an initial NCC 

matching step (optionally at each level of the pyramid). Finally, the LSM procedure is 

applied to obtain the final correspondences with a parallel dense matching procedure. 

The program has been developed in C# object-oriented program language, it is able of 

multicore processing, and produces as the final output a point-cloud Digital Terrain 

Model. 

The implemented code allows controlling several parameters such as the number of 

pyramid levels, the template size, the correlation coefficient threshold, the correlation 

algorithm and many others variables involved in the matching process. 

4.1.1.2 MicMac 

APERO and MICMAC are two open source tools realized at IGN (Institut National de 

l’information Géographique et Forestière, Paris) that allows to realize all the steps of a 

typical photogrammetry process, starting from Structure&Motion orientation up to 

dense point clouds and orthophotos generation. APERO is the orientation software, 

which uses both computer vision approach to estimate an initial solution and 

photogrammetry for a rigorous compensation of the total error [140]. It allows 

processing multi resolution images and, for each resolution level, it computes tie points 

extraction for all images pair performing finally a bundle block adjustment [187]. 

The final DSM generation phase is performed with the MICMAC tool which produces 

the depth maps, and eventually the 3D models, from the oriented images. This step is 

performed solving the surface reconstruction problem under the form of the 

minimization of an energy function [139]. 

MICMAC suite contains several photogrammetric tools for the automatic processing 

of aerial and terrestrial image blocks and the DSMs and orthophotos extraction.  

The software is very interesting for the photogrammetric community because it 

provides statistical information of the data and allows detailed analysis of the 

photogrammetric processing results. Moreover, all the parameters and the results of the 

orientation and matching step are stored in XML files which can be adapted whenever 

the user needs to impose certain settings and values of the processing parameters. 

4.1.1.3 Photoscan 

Agisoft PhotoScan is a commercial software, developed by Agisoft LLC Company. It 

has a very simple graphical user interface and, as MicMac, it is able to perform both the 
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orientation and the following dense stereo matching steps using a multi-image 

approach.  

Initially the software defines the images orientation and refines calibration camera 

parameters; in a second step, it proceeds to the DSM generation. Differently to MicMac, 

PhotoScan doesn’t display the statistical results of the photogrammetric processing, 

being a sort of “black-box” software. All the photogrammetric process is performed 

with a high level of automation and the user can decide the desired points cloud density 

and the 3D modelling quality. The workflow is therefore extremely intuitive being an 

ideal solution for less experienced users.  

Due to commercial reasons very few information about the used algorithms are 

available: some details can be recovered from the Photoscan User forum [138]. 

Apparently the depth map calculation is performed pair-wise (probably using all the 

possible overlapping image pairs) and merging all the results in a single, final, 3D model. 

A multi-baseline matching extension, like the one implemented, is more robust than 

pair-wise stereo correlation with regard to occlusions detection and wrong matches, 

realizing the fusion of disparity information given by all the matched images and 

producing smoother results. 

Anyway, in all the following tests, only stereo-pair were considered in order to compare 

the base stereo matching approach of the proprietary semi global algorithm with respect 

to the other matching strategies. 

4.1.1.4 OpenCV libraries 

OpenCV (Open Source Computer Vision Library: [129]) is an open-source BSD-

licensed library written in C, C++, Python and Java that offers high computational 

efficiency and a simple use of Computer Vision and Machine Learning infrastructures. 

The library, developed by Intel in 1998, is cross-platform, running on Windows, Linux, 

Mac OS X, mobile Android and iOS; it contains several hundreds of optimized 

algorithms for image processing, video analysis, augmented reality and many more, 

providing the tools to solve most of computer vision problems. 

Using IPP (Intel Performance Primitives) it provides an improvement in processing 

speed and optimization that are very useful for real time applications [30]. In 2010 a 

new module that provides GPU acceleration was added to OpenCV and, right now, the 

library is expanding day-by-day. 

In order to perform the image matching strategies comparison, the open library for 

computing stereo correspondence with semi-global matching algorithm was used. The 

method executes the semi-global block matching (SGBM) (adapted by the first 

Hirschmuller description of the algorithm [84]) on a rectified stereo pair, introducing 
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some pre and post processing steps (for example uniqueness check, quadratic 

interpolation and speckle filtering) of the data. Several matching parameters may be 

controlled and set to a custom value but, especially, in order to isolate only the matching 

step contribution, the additional pre-post processing parameters were disabled. 

OpenCV version of the SGM strategy is focused on speed and, in contrast to our 

implementation of SGM, calculates the disparity algorithmic implementation described 

in [20], which uses less path directions to calculate the matching costs (8 paths, instead 

of 16). 

4.1.2 Comparison datasets 

In order to understand the main differences between the strategies/implementations, 

three tests on real and synthetic images have been performed. An exhaustive description 

about the different datasets and three-dimensional digital surface models used as 

reference data in the comparisons is presented in the next sections. 

4.1.2.1 Synthetic images of 3D shapes 

First of all, in order to evaluate the performance and the best parameters combination 

used by the different stereo matching approach, a  simple 3D scenery was created using 

3D modelling software. Spherical and rectangular objects were located on a wavy 

surface creating significant depth discontinuity in the scene (as it is visible in Figure 4.1). 

 

 

Figure 4.1: Computer-generated 3D primitives dataset. 

 

An ideal, well-contrasted texture was draped on the objects favouring the matching 

algorithms. Two virtual cameras were located in the scene taking two nadiral synthetic 
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images. Optimum illumination conditions were simulated, producing light and shadows 

useful for a simpler (human) depth identification. 

4.1.2.2 Synthetic images of a 3D reference model 

Using the same 3D modelling program, a 3D model of an architectural element (Figure 

4.2) was imported and draped with an ideal texture. The chosen object is a Corinthian 

capital 1.33 meter high and with a circular base of 90 cm diameter, characterized by 

complex architectural details.  

 

 

Figure 4.2: Synthetic image of a 3D reference model. 

 

As in previous case, two virtual nadiral cameras were created, with known interior and 

exterior orientation parameters. To simulate a photorealistic scenario, illumination 

sources were located using photometric virtual lights. Finally, images rendered through 

a raytracing algorithm, were generated and exported (see Figure 4.2). 

4.1.2.3 Real images and reference DSM 

The third case is an image pair extracted from a sequence of a 5 meter high richly 

decorated fountain from the cvlab dataset [173]. The dataset consists of known interior 

orientation parameters, distortion removed images and a reference laser scanning DSM. 

The exterior orientation parameters were estimated through a Structure from Motion 

procedure, followed by a bundle adjustment step using some features extracted from 

the DSM as Ground Control Point. The availability of a laser scanning surface reference 

model of the fountain has allowed to validate the results of the surface reconstructions. 

Figure 4.3 illustrates one of the two convergent images used in the stereo matching. 

1
3
3
 cm
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Figure 4.3: Real image of the fountain. 

4.1.3 DSM generation and comparison 

The evaluated matching methods implement different strategies for generating the final 

DSM.  

 

 

Figure 4.4: DSM generation and comparison workflow. 

 

In order to obtain comparable solutions, the models were generated using the same 

known internal and external orientation parameters, making the results as independent 

as possible from the automatic orientation procedure. In fact, both PhotoScan and 

MicMac software are able to perform, beside the DSM generation, also the automatic 
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orientation of the image block; however, different orientation solutions can produce 

unwanted DSM deformation. On the other hand OpenCV library expects to work with 

rectified images (i.e. corresponding points in the stereo pair lay on the same horizontal 

image line) and produce a disparity map. Differently from MicMac and PhotoScan, a 

subsequent triangulation stage, to be carried out externally, was required to produce the 

final DSM. 

Finally, the distances between the reconstructed and the reference DSM have been 

evaluated to perform the comparison. Figure 4.4 describes the comparison workflow. 

4.1.4 Results: relative accuracy and reliability of the 

reconstructed DSM 

The relative accuracy of the DSM reconstructed models with synthetic and real images 

is summarized in Table 4.1 where, for each test case, statistics of the distances between 

reconstructed and reference DSM are presented. Disparity map comparison (i.e. 

evaluating the algorithm accuracy in finding the corresponding point on image space) 

were considered as well but, for some software (e.g. Photoscan) the parallax field are 

not directly accessible and are hard to be computed. Also, the influence on the final 

reconstruction accuracy was considered more interesting. 

 Test cases DM OpenCV PS SGM MicMac 

Normalized 
relative 
accuracy 

3D Shapes 100 % 92 % 91 % 83 % 94 % 

Capital 100 % 85 % 83 % 71 % 81 % 

Fountain 90 % 97% 100 % 89 % 90 % 

Inlier 
percentage 

3D Shapes 86.9 % 91.4 % 88.7 % 83.2 % 80.9 % 

Capital 77.5 % 92.7 % 89.27 70.1 % 66.8 % 

Fountain 84.6 % 88.7% 97.5 % 86.5 % 88.1 % 

Lacks of 
completeness 

3D Shapes * NO *** NO NO 

Capital * NO * NO NO 

Fountain ** NO NO NO NO 

Pixel locking 

3D Shapes *** *** *** *** NO 

Capital * ** ** * * 

Fountain n/a n/a n/a n/a n/a 

Table 4.1: Statistics of the reconstructed DSM. 

To make the results independent of the total size of the object all the distances standard 

deviations are normalized with respect to the best value (“Normalized relative accuracy”). 

At the same time, some methods present, in some areas of the model, very evident gross 

errors that must be removed from the relative accuracy computation (lack of 
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completeness problems are symbolized in Figure 4.5 with a red arrow on the incomplete 

area). On the other hand, it’s important to highlight which algorithm produces more 

reliable results (in terms of “inlier percentage”): for each model, tolerance ranges were 

selected based on some assumption about image matching (and consequent 

reconstruction) a-priori precision and on the actual performance of the best method. In 

particular (1 cm for 3D Shape, 3 mm for Capital and 3 cm for the fountain case study 

ranges) are selected considering that at least one algorithm must produce a 90% in-

tolerance 3D model: in this way reconstruction accuracy is related to a sort of quality 

completeness for each method. 

DENSE MATCHER OPEN-CV  

 
 

 

PHOTOSCAN MIC MAC  

 
 

SEMI-GLOBAL 

 
Figure 4.5: Map of the distances (in cm) between the reference and the reconstructed DSM 

for 3D Shape case 

The table shows that, for each test case, the different matching algorithms produce 

results that are not dramatically different. The general trend is similar, though not 
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identical, in particular for computer-generated data. Analysing the first two tests, we can 

identify that the best solution were obtained by LSM with DenseMatcher, followed by 

OpenCV, PhotoScan and our implementation of Semi-Global matching. 

For ‘3D Shape’ case, looking at the error map presented in Figure 4.5, we can see two 

big holes (highlighted with the red arrows), in correspondence to high depth changes, 

in PhotoScan DSM. Therefore, it is worth noting that low values of discrepancies from 

the reference model, derived from standard deviation information, cannot be the only 

indication of the digital model reliability but we have to evaluate the completeness and 

surface distribution of the points. 

DENDE MATCHER OPEN-CV  

  
PHOTOSCAN MIC MAC  
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Figure 4.6: Map of the distances (in cm) between the reference and the reconstructed DSM 

for Capital case. 



138   TESTS OF SGM SOFTWARE CODE FOR SURFACE RECONSTRUCTION 

 

 

The capital test case, presents the higher base-length to distance ratio, and higher 

perspective effects can be expected: also in this case, unsurprisingly, the LSM achieve 

the highest accuracy. On the contrary, in the Capital and Fountain test cases some area 

of the images lack of a well-contrasted pattern: while the semi global methods achieve 

good quality results also in these areas, the LSM algorithm cannot always produce 

complete results. 

 

DENSE MATCHER OPEN-CV  
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Figure 4.7: Map of the distances (in cm) between the reference and the 

reconstructed DSM for Fountain case. 
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In other words, we can say that the error map of DenseMatcher (see Figure 4.5, 4.6 and 

4.7 for analysing the 3D Shapes, Capital and Fountain maps respectively) usually shows 

more noisy data, due to its pointwise estimation approach. While semi-global-like 

methods constrains (with different degree of enforcement) the regularity of the disparity 

field, every point in LSM methods are considered and evaluated individually. On the 

other hand, the reconstructed DSM reveals the LSM ability to produce accurate results, 

as shown not only from standard deviation (see Table 4.1) but also from spatial 

distribution of the distance values. The disparity regularity constraints (and smoothing 

filtering procedure – e.g. those implemented in the PS workflow) can generate 

erroneous systematic surface reconstruction, if image noise, occlusions, repeated 

pattern influence a whole matching path.  

 

 DM OpenCV 

 
  

PS SGM MicMac 

   

Figure 4.8: Fountain error map with a zoom on the red delimited area. 

 

The same behaviour is clearly visible in the last case study, which considers real images. 

SGM and MicMac produced more noisy results (see Figure 4.7) but, at the same time, 

if the smaller object features are considered, they captured finer details; the smoothing 

effect implemented in PhotoScan, on the contrary, produced an apparently more 
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appealing results but with some local discrepancies (see for instance the zoomed areas 

extracted from ‘Fountain’ case results – Figure 4.8), flattening some detailed areas; on 

flat, low contrasted areas, the smoothing and filtering procedures, probably allow 

acquiring better results with an overall higher completeness level.  

Finally DM, suffers of lack of contrasted texture and higher noise due to the real image 

quality, producing a 3D model with higher error levels in some region. 

4.2 Monitoring of an active landslide in Mont de la Saxe (AO) 

Landslides control and monitoring systems face a large variety of cases and situations; 

indeed, the behaviour of a landslide (in the time domain as well as in the space domain) 

depends on many factors, which present the geologists and the surveyor each time with 

different challenges. 

In principle, the main design parameter when installing a measurement and control 

system is the accuracy needed to assess with a given probability the magnitude of the 

expected displacement. However, a number of other issues influence the choice of the 

best monitoring system to use: the size of the area to control, the frequency of data 

acquisition, the time to deliver the results (alert time), the stability of the reference 

system, the influence of atmospheric parameters on measurement accuracy or 

operation, the site constraints and limitations for the installation of the system (visibility, 

energy consumption, data telemetry, safety, security), etc. 

No single measurement system is therefore suited for any situation and the selection of 

the best solution for a specific site is not always straightforward; often, if the risk is high 

and the budget available allows for, more than a system is employed.  

In the analytical photogrammetry era, detection of the movement was based on 

evaluation of DSM changes (measured manually along profiles) or on displacement of 

targets distributed over the area. Today automatic block orientation and DSM 

generation, with high resolutions and accuracies, makes photogrammetry an alternative 

to Terrestrial (TLS) and Aerial (ALS) Laser Scanning. When the requested monitoring 

frequencies are high, the low costs photogrammetric approaches and systems represents 

an efficient and optimal choice (in fact, photogrammetry has been used since long to 

periodically control the evolution of landslide and an accurate description of the state 

of the art has been provided in paragraph 1.2.2).  

In this paragraph, a photogrammetric system to monitor landslides and, in general, 

changes in digital surface model, is presented. This study was carried out together with 

Fondazione Montagna Sicura (FMS) – a no-profit foundation promoted by the Valle 
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d'Aosta Region, which studies issues concerning the safety, rescue and life in high-

mountain.  

The study object is the landslide of Mont de la Saxe in Courmayeur (AO-Italy, Figure 

4.9), which is considered one of the most complex landslides in Italy. The landslide is 

monitored since 2009. With an estimated volume of about 8 million cubic meters [43], 

the movements threatens the villages of Entreves and La Palud as well as the A5 

motorway and the national road SS 26. A slow continuous movement alternates with 

sudden accelerations and, in the spring 2013, a sudden acceleration forced the local 

administration to evacuate the area and to close all the accesses to the Ferret Valley. 

This complex dynamic drew international attention, not only to assess the geological 

and geotechnical problems, but also to evaluate and compare different state-of-the-art 

monitoring techniques. 

 

 
Figure 4.9: The Mont de la Saxe landslide (25 th June, 2013). 

 

The most of the following arguments is taken from [150] where the authors have 

presented the first results of a fixed terrestrial stereo photogrammetric system based on 

a LSM algorithm and developed to monitor shape changes of the scene.  

4.2.1 The photogrammetric system  

The system is made of two single-lens reflex (SLR) cameras, each contained in a sealed 

box and controlled by a computer that periodically shoots an image and sends it to a 

remote computer (there is a programmable board for camera control and data 

transmission). The system automation is necessary because, being conceived for 

installation in hard-to-reach locations, the hardware must be remotely controlled and 

checked, reducing the on-site operator intervention to the minimum. Operating 
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outdoor temperatures well below −20 °C and exceeding +30 °C can be reached; as far 

as energy supply is concerned, a 50-W solar panel and a pack of three 17-Ah batteries 

ensure continuous operation (see Figure 4.10). Batteries are continuously recharged by 

the solar panel. In the case of persistent cloud coverage, the autonomy of the system is 

ca. 3 days. If available at a convenient distance, connection to a power outlet is possible. 

The acquisition frequency should be related to the attainable accuracy and matched to 

the expected magnitude of the displacement. In the Mont de la Saxe case, a Ground 

Sampling Distance (GSD) of ca. 20 cm and an accuracy of about 5 - 10 cm were 

foreseen: such values are compatible for a comparison of the reconstructed models on 

a monthly basis. 

Two Canon EOS 5D Mark cameras (21 megapixels) with a 50 mm focal lens have been 

considered suitable for completely framing the area on interests for the survey. One of 

the box stations was installed near FMS facilities; the second box was installed at about 

150 m from the first, at a slightly lower elevation. The location was carefully chosen to 

obtain a homogenous frame scale: the distance from the installation site to the object 

varies between 500 m and 650 m. The pose of the camera stations is slightly convergent 

to ensure maximum overlap. The interior parameters of the optical system and the 

camera position and orientation have been determined with a calibration procedure. For 

more accurate details about the system architecture, stability and metrological analysis, 

see [150]. 

 
Figure 4.10: Left the watertight IP67 box housing the system. Right one of the system units 

and the solar panel installed on a pole 

 

Once an image pair is received, the DSM of the scene is generated by digital image 

correlation on a processing server computer and the points extracted are triangulated 
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using the parameters of the reference image orientation. Data are thus available for 

archiving or analysis. Following an accurate description of the system automatic DSM 

generation workflow is described and, next, some results will be discussed. 

4.2.2 Image processing workflow 

A service running on a host remote server waits for incoming images from both stations; 

once a synchronous image pair is available, the DSM generation sequence is activated, 

as described below: 

1. The original images are resampled to remove the lens distortion; 

2. well defined points are extracted on both images with the SURF (Speeded Up 

Robust Feature) interest operator [14]); preliminary point pairs are established, 

looking for a similar score of their descriptor (see [11]); these pairs are then 

filtered by a RANSAC procedure considering as consistent a projective 

transformation induced by an (unknown) rotation of the support; 

3. the transformation is used to resample the input images, removing the effect 

of unwanted movements of the box; 

4. the new images are used in the matching procedure after epipolar resampling 

(see [141]). The points on the master image are always selected on the same 

regular grid (commonly with a 2 pixel spacing); 

5. to filter vegetation or gross matching errors, every matched point on the master 

grid is compared with its neighbours: if there is a sudden change in the disparity 

values (corresponding to an equally sudden change in depth in 3D space) the 

point is labelled as an outlier and discarded; 

6. after the matching step, the points extracted are triangulated using the 

orientation parameters of the reference image pair;  

7. a colour-coded map of the displacements measured by the system at the new 

epoch is automatically generated;  format).  

The whole process takes about 15 minutes on a medium performance server with eight 

processing cores to produce a DSM with on average 600-700 thousand points 

(excluding those removed by the filtering step). The new SGM algorithm was 

considered a strategic improvement of the processing pipeline since can provide in 

much less time (ca. 6 minutes) a more dense surface model (the matching can be 

performed pixel-wise) and is capable of filtering most of the noise connected to low-

texture, presence of vegetation or snow, different luminosity conditions (the shoots are 

not perfectly synchronized) just implementing the regularity constraints. 
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4.2.3 Results 

In a first stage, as a consistency test to evaluate the level of performance achieved by 

the system using LSM, it was decided to produce and compare, either automatically and 

manually, a series of 20 DSM referring to the time interval that goes from July 10th, 

2013 to September 10th, 2013.  

The DSM were selected considering the best days and time of the day according to two 

criteria: first, trying to monitor some periods of consecutive days evenly distributed on 

the two months’ period, and then selecting pairs with the higher number of matched 

points. Comparing DSM’s of consecutive days, the measurements repeatability can be 

evaluated: on such short periods the possible landslide displacements can be considered 

insignificant for the system accuracy level, and the models should not manifest any 

change. In other words, the differences shown by the comparison should be considered 

derived by the measurement noise of the system itself. The comparison is presented in 

Figure 4.11 in which the colours represent the distances (absolute differences) between 

two models separated by four hours. Most of the points are coloured in blue 

(corresponding to a movement of 2 ÷ 4 cm) with peaks reaching, in some cases (green), 

ca. 10 cm. It should be noted that usually the maximum discrepancies show up in those 

areas where the complexity of the object or the presence of shadows makes the 

matching procedure more troublesome. 

 
Figure 4.11: Repeatability between two 4-hours separated DSMs. 

 

Evaluating the differences point wise (in this case considering the signed distance of 

more than 600,000 points), and analysing their distribution, some remarks can be made. 

The data are approximately normally distributed with a mean distance between the two 

epochs considered in the different comparisons usually not null. A sort of systematic 

misalignment of the two DSM (likely due to a residual, not modelled box movement) is 
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found quite often. However, the mean distance between two epochs is always lower 

than 2 cm and can be considered negligible if compared to actual system accuracy. In 

fact, considering a distance from the object Z of 500 m and a base-length B of ca. 100 

m using a slightly convergent stereo camera system with a 21 Mpixel resolution (i.e. a 

6.5 m pixel FX sensor), equipped with a 50 mm focal optic, and considering that, in 

outdoor good lighting condition, current state of the art area based matching algorithms 

can achieve 0.2 pixel accuracy quite systematically, a final depth restitution precision of 

ca. 6.5 cm can be obtained. Therefore, the above described results are in agreement with 

the theoretical accuracy of the system.  

This evaluation were performed using the Adaptive Least Squares Matching (see [68]) 

but, the following and actual development of the SGM algorithm has allowed the 

landslide investigation with this method as well. In fact, thanks to the intrinsic 

characteristics of a semi-global method we can achieve important advantages: 

- the regularization constraints on adjacent pixels displacement allows, not only 

to obtain more complete reconstruction, but also to increase the repeatability 

of the reconstructed digital models since the improved results smoothness 

decreases the measurement noise; 

- the processing pipeline becomes faster thanks to the better performance of the 

SGM technique, with respect to the LSM method: to have an order of 

magnitude, the first takes about 2 minutes for obtaining the final DSM, the 

second 11 minutes approximately. Low computational time might allow an 

higher frequency of the monitoring activity and, especially, the possibility of 

elaborating the DSM on-board directly, avoiding to send the data to the remote 

server. 

In order to evaluate the SGM algorithm performance, two image pairs of the landslide, 

taken at a short time distance (the first was shot the 11th September 2014, the second to 

the 22 September 2014), were analysed comparing the results obtained with the old 

implemented LSM strategy and the novel SGM approach.  

First, in Figure 4.12, the digital surface models obtained with the two algorithm are 

presented.  the evident noise of the Digital model obtained using LSM technique is not 

evident, on the contrary, in the Semi-global solution, which reaches a more accurate and 

complete surface reconstruction. Holes and noise, which characterize the LSM solution 

(Figure 4.12 (a)) have a much lower magnitude in the SGM results. These noisy areas, 

together with the easily recognizable lack of completeness, allow to say that the semi-

global matching algorithm is able to obtain better results and, as previously said, with 

much lower computational efforts. 
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a) 

 

b) 

Figure 4.12: a) Mont de la Saxe reconstructed DSM (relative to the 11 September 2014 

epoch) using: a) LSM algorithm ; (b) SGM algorithm. 

 

Second, in Figure 4.13, the comparisons results are presented: on top (Figure 4.13 (a)) 

the reconstructed LSM and SGM digital models relative to the 11 September, on the 

bottom (Figure 4.13 (b)) those regarding the 22 September 2014 period. 

In both cases, a good agreement between the LSM and SGM solutions is shown: most 

of the surface differences are in the range of ± 5 cm. However, as better visible in Figure 

4.14, where a close up of the results is shown, it is possible to see isolated points that 

considerably deviate from the range of  ± 5 cm, since they can reach up to difference 

values equal to ± 30 cm.  
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a) 

 

 

b) 

 

Figure 4.13: Comparison [in m] between the LSM and SGM reconstructed DSMs. a) The 

distance map of the DSMs of the slope acquired on September 11th at 17 PM.; b) The 

distance map of the DSMs of the slope acquired on September 22nd at 17 PM.; 

 

  

a) b) 

Figure 4.14: In The 11 September (a) and the 22 September image pairs error maps with a 

zoom on the red delimited areas shown in Figure X. 
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After the analysis of the SGM method reliability, the algorithm was finally tested in the 

condition required by the monitoring application, i.e. comparing the 11th and 22nd 

September DSMs for evaluating the landslide displacements during such period (see 

Figure 4.15 (a)). The same map has been obtained using the two LSM digitals surface 

models for a further visual comparison of the two strategies performances (Figure 4.15 

(b)).  

 

 

 

a) 

 

b) 

Figure 4.15: Map of slope displacements [in m] between the 11th and 22nd September. a) The 

results obtained with SGM digital surface models. b) The results obtained with LSM digital 

surface models 

 

The results confirm the considerations just made: there is a good agreement between 

the displacements measured by the two method. Summarizing, during the short 

considered time period, important slope movements were not observed and just some 
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areas presents medium-high displacements that reach 30 cm. These regions are probably 

rocks or small stones that collapsed.  

Overall, the SGM method (Figure 4.15(a)) appears more accurate and complete, with 

respect to the LSM: the lower noise level makes the results more complete and detailed. 

Its employment within the image processing workflow of the photogrammetric 

monitoring system might allow to reach an higher quality and higher frequency 

monitoring of the landslide. 

4.3 3D surface reconstruction of the Parma Baptistery 

zoophorous  

The zoophorous of Benedetto Antelami is a series of seventy-five sculpted panels in 

red Verona marble, realized with bas relief technique on the lower level of the external 

marble façade of the Baptistery of Parma (Figure 4.16). The decoration wants to 

represent the fantastic in sculpture: human figures, real and imaginary animals are 

shown, almost following the directions of a medieval bestiary (see Figure 4.17). 

 

 

 

Figure 4.16: Some panel of the Baptistery south-west (on the top) and north-west side (on 

the bottom ). 

   

Figure 4.17: The Lion wounded by an arrow shot by a satyr with a cap on his head and the 

rooster, considered as a symbol of vigilance 
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After the laser scanning survey (more details on the application and work objectives of 

are presented in [47]) and the photogrammetric analysis of indoor and outdoor 

environments of the Parma Baptistery, an accurate close-range photogrammetric survey 

was computed to generate high-resolution digital surface models of the zoophorous 

panels. A Nikon D3X camera, with 50 mm and 105 mm optics and image resolution of 

6048 x 4032 pixels, was used for the photogrammetric investigation. The baptistery 

zoophorous was firstly surveyed with the 50 mm focal lens (as shown in Figure 4.18) to 

reconstruct the whole zoophorus and after, for each panel, sequences of about three-

four frames each were taken with the 105 mm optic for having an high-resolution 

description of the panels details.  

The 3D reconstruction of some panels (see for instance the panels in Figure 4.19) 

extracted from both sequences, was performed using the semi-global strategy both in 

stereo and multi-image processing conditions.  

 

 
Figure 4.18: The alignment of an images sequence of the zoophorous, taken with the 50 mm 

focal lens.  

In particular, the 50 mm sequence allowed to obtain the overall three-dimensional 

reconstruction of the panels sequences.  

After the image idealization and epipolar rectification processes, the image correlation 

was performed using the semi-global algorithm in a pairwise mode: i.e. considering an 

image sequence of five frame, the process was computed considering consecutive pair 

of stereo images and performing the image correlation of one stereo pair at a time. The 

four obtained parallax maps were then triangulated and the digital surface models were 

joined, producing the final three-dimensional reconstruction, which is shown in Figure 

4.19 in grey scale colours. 
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a) 

 

b) 

Figure 4.19: The 3D reconstruction of a Baptistery images sequences taken with Nikon 

D3X with 50 mm focal lens. The image correlation was computed with SGM in stereo 

mode. a) The point cloud in grey scale colours. b) The mesh of the reconstructed 

DSM.  

 

In a second steps, the attention was focused on the photogrammetric survey of each 

individual panel, which was performed using the 105 mm macro optic. In this case the 

image sequences were composed by only three photographs which capture the object 

from three very different perspective view (a high-resolution sequence is shown in 

Figure 4.20). In this case the great perspective changes between the three images has 

made the employment of the SGM particularly interesting. Indeed, as explained in 

paragraphs 2.6 and 3.1.10, the use of a multi-image method seems to be a better 

approach to perform the image correlation when the accuracy, reliability and 

completeness of the results are weakened by significant changes of the images point 

views. Moreover, since the objective is the achievement of a high-resolution and 

complete model the SGM multi-image method has been demonstrated to be a more 

appropriate choice also than the LSM one. 

 

   
Figure 4.20: The “lion” images sequence. 
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The case of the “Lion” panel is following described. For obtaining the DSM the 

proprietary Semi-Global matching code has been applied in the multi-image pairwise 

software variation (paragraph 3.1.10.1). 

Being the sequence composed three images, the method identifies six possible stereo 

image pairs and, for each one of these, the correlation process with the SGM algorithm 

is performed, obtaining as output the six depth maps presented in Figure 4.21. 

Once the depth maps have been obtained, the method proceeds to the data 

combination for the achievement of a unique result. The maps merging process includes 

also the application of a median filter in order to reduce/remove depth data noise (as 

evident from some of the depth maps in Figure 4.21). Once the final result is produced, 

the digital surface model can be easily reconstructed (Figure 4.22 on the left).  

 

   

    
Figure 4.21: The six depth maps [m] obtained with the pairwise SGM proprietary 

algorithm. 

 

 

 

 
 

Figure 4.22: On the left the DSM of the “lion” panel and the ccomparison (on the right) 

between the reconstructed DSM obtained using the multi-image SGM and PhotoScan 

software [mm]. 
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In order to have an evaluation of the method accuracy and reliability, the lion mesh has 

been compared with that obtained from the sequence processing in Agisoft PhotoScan 

[138] software. The comparison result is presented in Figure 4.22 and it shows a good 

agreement between the two software. It is possible to say that the results are almost 

identical: the lion body is well reconstructed by both the applications and the majority 

of the differences regards object discontinuity (such as the panel boundaries and small 

local details) where a discrepancy of about ±0.1 mm is revealed. Higher differences (that 

reach up to ± 0.3 mm) characterize the occluded regions where our algorithm, 

differently from PhotoScan, doesn’t provide post-processing tasks capable of filling 

holes and smooth surfaces. 

A final investigation has regarded a different zoophorous panel (shown previously in 

Figure 4.17). In this case, the SGM algorithm was compared with the Least Square 

Matching method employed in the same processing conditions (i.e. using only a stereo-

pair). This test allowed analysing the different behaviour of the algorithms with regard 

to the robustness of the stereo matching methods in correlating images characterized 

by high depth and perspective changes and, moreover, to evaluate the lacks and the 

qualities of both the Least Squares and Semi Global matching methods.   

 

  

a) b) 

Figure 4.23: The DSMs of the “Rooster” panel from matching of an image stereo pair. a) 

the LSM solution. b) SGM solution. 

 

The result is presented in Figure 4.23: the LSM model lack of completeness is evident, 

as well as the noisier reconstructed surface, in particular in the planar region. On the 

contrary, the SGM strategy shows its abilities in regularizing object shape and detecting 

points on high discontinuities and depth changes. However, in this kind of applications 
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where the examined objects present high depth variations and, at the same time, require 

high completeness level, the multi-image method represents a better strategy than stereo 

correlation.  

4.4 UAS flight on Veio archaeological site 

Multi-image matching algorithms are essential component in the restitution process of 

images sequences taken from UAS flights since the mission (flight and data acquisition) 

is planned with the aim to have high longitudinal and transversal overlaps between the 

images; therefore, many of the surveyed areas are captured by three or more frames. 

For this reason, the investigation of the proprietary algorithm abilities also in this field 

of interest has been evaluated. In particular the performances analysis were focused on 

the UAS flight of an archaeological area (data are provided from the authors of [147]), 

the ancient town of Veio, near Rome, in Italy. The survey was performed with a 

Microdrones MD4-200 system by Zenit company: images were taken with a Pentax 

Optio A40 digital camera, with  8 mm focal length, 1.87 pixel size and image resolution 

equal to 4242 x 3178 pixel.  The whole area of the Veio site includes a big (35 x 30 m2) 

and a small (30 x 10 m2) camp (se Figure 4.24). The image correlation process has been 

performed with the Object Multi-Image SGM software code (see paragraph 3.1.10.2).  

In a first stage, the attention was focused on the algorithm processing performances, in 

terms of quality of the reconstruction: many several tests have been made to understand 

the optimum parameter configuration of the Object SGM algorithm.  

 

 
 

Figure 4.24: On the left the route taken by the drone on the big and small camp of the Veio 

Park. On the right the orthophoto of the small archeological camp. 

Since that, in a previous work [156], several evaluations and analysis were made on the 

small camp one, the SGM technique has been also applied on that area. Moreover, the 



CHAPTER 4  155 

 

 

smaller size of the camp has allowed computing several, which were less onerous in 

terms of memory and time requirements. 

4.4.1 Image acquisition and processing  

The mission (flight and data acquisition) was planned with dedicated software, starting 

from the area of interest (AOI), the required ground sample distance (GSD) or 

footprint, and knowing the intrinsic parameters of the mounted digital camera. Thus 

fixing the image scale and camera focal length, the flying height is derived. The camera 

perspective centres (‘waypoints‘) are computed fixing the longitudinal and transversal 

overlap of strips, while the presence of GNSS/INS on board is usually exploited to 

guide the image acquisition. In Table 4.2, the flight planning parameters are 

summarized. 

 

Focal length [mm] 8.0331 

Sensor size [mm] 7.9386 x 5. 9462 

Pixel size [mm] 1.87 

Sensor format [pixel] 4242 x 3178 

Area of interest [m] 30 x 10 

Table 4.2: Planning parameters of the UAS flight on the Veio small camp. 

 

The designed flight altitudes is 40 meters that have corresponded operationally in 38 

meters for the flight on the small camp. The camera characteristics and the flight altitude 

has allowed to extract a Ground Sampling Distance (GSD) of the order of about 0.8 

cm. In this case a single strip composed of six images was sufficient. 

After the data acquisition stage, the interior orientation parameters of the camera have 

been extracted from a camera calibration process performed in the Photomodeler 

software [136] and, using the already obtained calibration parameters, the images 

idealization (for removing distortion components) has been computed. Following, the 

image exterior orientation has been achieved using the EyeDEA [149] proprietary 

software which has delivered about 8464 image corresponding points, well-distributed 

on the images sequence, and a theoretical precision of the computed object Z 

coordinates of 3 cm.  

Finally, starting from the known exterior and interior orientation parameters, the small 

camp has been reconstructed by means of automated dense image matching techniques. 
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Different image matching algorithms and solutions have been evaluated and compared 

for producing the Veio DTM: (i) the digital terrain model generation program 

DenseMatcher [146], which implements a LSM algorithm and processes consecutive 

stereo image pair; (ii) the Agisoft Photoscan software [138], (iii) the proprietary Object-

based SGM multi-image algorithm. 

Hereafter the results description and evaluation are presented. 

4.4.2 Results and comparisons 

The Object-based SGM method has required the following processing setting: 

- definition of the Area of Interest; 

- characterizations of the object volume in term of cells size and depth 

resolution; both the variables were set to 1 cm; 

- identification of the elevation search range (i.e. the maximum and the minimum 

of the object Z-coordinates for defining the equivalent, in the object space, of 

the images disparity search range). 

The other matching parameters remain unchanged with respect to a normal stereo or 

pairwise multi-image matching process: in this case, for example, a five pixel block size 

and the NCC similarity function were used. In Figure 4.25 the obtained point cloud and 

DTM of the Veio small camp are shown.   

 

  

Figure 4.25: On the left the point cloud of the Veio Park small camp and on the right the 

reconstructed DTM. 

 

It is interesting to notice how the matching parameters intervene in the quality of the 

final results. Indeed, considering that the  images taken from UAS are often lightly 

blurred and not highly resolute, the choice of the similarity function and optimal 
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regularization parameters to use in the semi-global optimization step is important and 

can vary the quality and noise level of the digital model (as shown in the DSM zoom 

areas depicted in Figure 4.26).  

At the same time, with regard to the surface reconstruction noise level, a second issue 

have to be considered:  the pixel locking effect. Therefore, a second digital surface 

model have been obtained, with the same processing parameters but enabling the sub-

pixel symmetric refinement strategy described in paragraph 3.1.9.1 

 

  

Figure 4.26: A zoom area of the two DSM of the Veio small camp obtained using different 

semi-global matching parameters combination.  

 

 

Figure 4.27: Comparison [in cm] between the two digital surface models obtained enabling 

and disabling the pixel locking decrease strategy. 
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The comparison between the two results is depicted in Figure 4.27: the staircase pattern, 

in particular on planar surfaces, of the first model is an evident indication of the pixel 

locking effect. However, the accuracy of each solution must be also highlight: indeed, 

despite the just emphasized differences between the results, the two DSM are in 

agreement showing differences in the range of 1 -3 cm.  

A final analysis, as previously said, has regarded the comparison of our result with 

respect to other digital surface model performed with different matching algorithms 

and software. The results are show in Figure 4.28 where the proprietary solution has 

been compared with those obtained by Agisoft Photoscan and DenseMatcher. 

 

a) 

 

 

b) 

 

Figure 4.28: Error map of the differences between the DSMs obtained with: a) Object-based 

SGM algorithm and Photoscan software; b) Object-based SGM algorithm and the 

DenseMatcher (i.e. LSM algorithm) software. 
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It is possible to highlight a good agreement between the two different error maps: the 

higher differences are located, for both the comparison plots, in the same areas that 

correspondence of the excavation areas. Here, the discrepancies reach also ±4-5 cm. At 

the same time some differences can be seen in the two error maps and, specifically, in 

the case presented in Figure 4.28 (a) also the vegetation regions that surround the 

excavation present higher differences that those shown in the case (b). Therefore, it is 

possible to assert that a better agreement is shown between the SGM and LSM solutions 

than respect the Photoscan result even if, it is important noticing that the LSM digital 

surface model presents some lacks of completeness shown as grey coloured areas. 

Nevertheless, as shown in Table 4.3, the difference in terms of amount of inlier 

compared points is low as well as the difference in standard deviation and mean values 

of the differences. 

 Points number Mean [cm] Std Dev [cm] 

Object-based SGM – PS 389ˈ337 0.0801 1.85 

Object-based SGM – DM 336ˈ555 0.0373 1.67 

Table 4.3: Statistics of the DSMs comparisons 
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Introduction 

The novel algorithmic extension to a bi-dimensional correspondences research through 

images was applied and verified in different areas of engineering interest, starting from 

motion tracking of particles within fluids, to the mechanical behaviour of materials, up 

to the 2D displacement field reconstruction of rock glaciers surface. Following, a brief 

description of each application together with the obtained results, will be presented. 

What is common to all these applications is the search and the inspection of the 

continuous displacement field: in fact, the images points tracking through two or more 

images can give a complete and accurate description of the variations between different 

temporal epochs. Therefore, the image correlation with the use of the semi-global 

algorithm can be an appropriate method since that the hypothesis at the base of the 

algorithm (i.e. the regularity of the displacement field between adjacent pixels) perfectly 

fits the physical geometry of these problem. The method variation for performing 2D 

correspondences search has been applied in the applications shown below, and its 

performance has been also compared with the local LSM method one. 

5.1 Strain measurements in material mechanics by image 

correlation 

Knowledge of the microstructure/deformation relationship in materials is a crucial issue 

in mechanics because microstructure-related strain heterogeneity and damage 

accumulation control fundamental phenomena of the materials mechanical behaviour, 

such as fracture, fatigue and creep. Therefore, experimental solid mechanics testing 

often requires accurate measurements of full-field strain components.  

DIC is a non-contact optical technique which allows measurement of displacements 

and strains in materials. It works by tracking the same points between two consecutive 

images of the material specimen at different stage of its deformation. The feature 

tracking is usually achieved using Area Based Matching (ABM), i.e. extracting the image 

correspondences by evaluating the similarities between grey values. To have more 

details about the state of the art in DIC applications and methods, an in depth 

examination was already illustrated in paragraph 1.2.4.  

In short, all the different image matching techniques aim at the same result: comparing 

images that present radiometric and geometric differences due to a relative (three-

dimensional) motion between the camera (the observer) and the object (the scene 
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framed by the camera), and tracking the (two-dimensional) movement of specific 

elements on the image.  

DIC performances depend on the algorithm capability to identify the same feature in 

different images: well-contrasted and recognizable pattern facilitate the tracking 

process, achieving good accuracies and high matching reliability. Consequently, 

specimen usually requires a preliminary surface treatment to ensure a successful imaging 

acquisition and the subsequent application of the DIC method. The technique involves 

measurements of the greyscale level at each pixel location of the image thus very well-

contrasted images are fundamental for achieving a high measurement accuracy.  

In this regard, in order to evaluate the reliability and the accuracy of the novel SGM 

implementation for 2D displacement solution space, the algorithm was tested for 

measuring strain fields in some highly deformable materials. Indeed, the implemented 

SGM code allows constraining the regularity of the displacement field, significantly 

improving the reliability of the evaluated strains, especially in highly deformable 

materials. 

 

 
Figure 5.1: Screenshot of DICe, developed at University of Parma, which implements LSM 

and SGM algorithms to perform the image correlation process. 

  

SGM novel approach is compared with other algorithms used commonly application in 

DIC applications:  

- a proprietary developed Digital Image Correlation System, based on an initial 

points correspondences research performed using the NCC algorithm, 

followed by a local Least Squares Matching approach for refining the 

correlation analysis. It has been developed for providing a dense and accurate 

full displacement/strain field measurement of composite materials and for 

detecting materials cracking behaviour. The software (named DICe) allows 

tracking a dense set of features along the acquired image sequence using an 

Point displacement in 

time space 
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approximate value of the correlation window position estimated at the  

previous step (see [22] for more detail). The displacement is computed as the 

difference of the feature location between each image frame in the sequence 

and the reference one (which is fixed). The graphic user interface of the 

software was conceived on purpose to pick the point of interest, choosing 

which information is requested (horizontal/vertical/shear strains, 

horizontal/vertical displacements). The strain values are then exported to plot 

stress-strain responses at the specific chosen point or by means of false colour 

maps. A screenshot of the DIC in-house implemented program in shown in 

Figure 5.1. 

- the open source code Ncorr [123] that allows a user-friendly, efficient and 

flexible computation of DIC analysis. The image processing workflow is easy 

and intuitive and, at the end of the correlation analysis, smooth displacement 

and strain maps can be obtained. Differently from the in-house developed LSM 

system, in Ncorr the initial guess obtained by applying the NCC algorithm are 

used as initial input to the iterative non-linear optimization scheme performed 

with Inverse Compositional Gauss-Newton (ICGN) method [24]. 

The investigation using the present DIC methods focus on 2D full-field strain maps of 

plain and notched specimens under tensile loading made of two different highly 

deformable materials: hot mix asphalt and thermoplastic composites for 3D-printing 

applications. In the latter specimens, an elliptical hole is introduced to assess the 

potentiality of the method in capturing high strain gradients in mixed-mode fracture 

tests.  

Since in this tests reference results, for comparing the algorithm performance 

independently, are not available, the DIC methods accuracy has been evaluated 

comparing the results of each software (results are presented in the following paragraph 

5.1.2) and with FEM (Finite Element Method) simulations. 

5.1.1 Materials and specimens 

Asphalt mixture is a composite material consisting of interspersed aggregates, asphalt 

binder and air voids. Its cracking behaviour is affected by its heterogeneity, specifically 

by the interaction between the aggregates and the mastic. The stiffness of the mastics 

affects the ability of the mixture to resist permanent deformation and their fracture and 

fatigue strength.  Accurate description of strain evolution and distribution in mastics is 

essential for revealing significant information on the influence of microstructure 

properties on asphalt mixture macroscopic behaviour.  



166    TESTS OF STEREO SGM SOFTWARE CODE FOR 2D DISPLACEMENTS DOMAINS 

 

 

Eight asphalt mastics with very different properties were used in this study. The 

cracking behaviour of the mastics is investigated using a Modified Direct Tension Test 

(MDTT) performed in a servo-hydraulic load frame to allow the material to stretch up 

to rupture. A digital Basler piA1600-35gm camera (resolution 1608x1308, focal length 

8mm, pixel size 7.4 micrometers, 35 fps@max resolution), directly connected to the 

testing control system, is located on a support inside the climatic chamber where tests 

are performed. Since the crack phenomenon is very fast and short-lasting (1-2 seconds), 

the camera is properly set up to acquire the images in a smaller area of the sensor 

(1600x500 pixel) reducing the bandwidth required for transmitting each frame and, 

consequently, allowing a higher frame rate (about 80 fps). 

To achieve high accuracies in the strain field measurements, the specimen surface must 

present a well-contrasted grey scale speckle pattern, easily obtainable by a water paint-

based treatment.  

Strains are obtained from DIC system, interpolating all the strain values of the grid 

points defined in the specimen central area. An example of the test configuration at 

failure is shown in Figure 5.2 (a). 

(a) (b) 

Figure 5.2: (a) Modified direct tension test for a mastic specimen at failure; (b) Tensile test 

for a polylactic specimen at failure. 

 

The second tested material is a biodegradable thermoplastic aliphatic polyester derived 

from renewable resources, called Polylactic acid or polylactide (PLA). PLA is commonly 

processed by 3D printing. In this work, PLA specimens are produced by a FFF (Fused 

Filament Fabrication) 3D printing technique, which is based on a layer-by-layer 

deposition, controlled by a slicing software, of plastic filaments (of 0.3 to 0.5 mm in 

diameter) supplied by an extrusion nozzle. PLA can be mechanically characterized by a 

visco-elastic behaviour which can be described for instance by the Maxwell-Wiechert 

model [188]. 

x 

 y 

x 

y 

http://en.wikipedia.org/wiki/Thermoplastic
http://en.wikipedia.org/wiki/Aliphatic
http://en.wikipedia.org/wiki/Polyester
http://en.wikipedia.org/wiki/Renewable_resource
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Tensile tests are performed on five 3D printed rectangular specimens with a width of 

80 mm, a length of 162 mm (clear length 119.2 mm) and a thickness of ca. 2 mm, 

containing a central hole with maximum size of 30mm and different shape and 

orientation: (i) a circular hole; (ii) an elliptical hole with aspect ratio 0.2 normal to the 

load axis; (iii) an elliptical hole, with aspect ratio 0.1, normal to the load axis; (iv) an 

elliptical hole, with aspect ratio 0.1, 60° inclined with respect to the load axis; (v) an 

elliptical hole, with aspect ratio 0.1, 45° inclined with respect to the load axis. The load 

is acting in the direction of the major dimension of the specimens and is applied by 

displacement control of regular 0.3 mm steps every 30 seconds.  Note that in each layer 

the deposition of plastic filaments follows the 45° direction with respect to the load 

axis, so as to induce some degree of orthotropy in the 3D printed specimens. 

A full-format Nikon D3X (6048x4032 pixels) digital camera, with 105 mm lens and 6 

micrometers pixel size, was used for DIC experiment. The camera was opportunely 

mounted on a tripod, in order to entirely capture the sample, and the images were taken 

manually at defined temporal instants. Specimens have been treated by applying an 

irregular painted surface pattern in order to get a non-uniform, well-contrasted coloured 

surface suitable for performing DIC analyses.   

An example of the test configuration at failure is shown in Figure 5.2 (b). 

5.1.2 Results 

For comparison purposes, the DICe system (using both LSM and SGM methods) and 

the open source Ncorr code are employed to obtain experimental measures of 2D full-

field displacements and strains maps for mastic and PLA specimens. As previously said 

in the first paragraph, a “ground truth” displacement/strain map for comparison studies 

was not available, therefore the repeatability evaluation was just performed comparing 

the three algorithms solutions in the several cases of study.  

Deformation components are calculated according to the Green-Lagrange finite strain 

tensor, which, in the case of small displacement gradient compared to unity, coincides 

with the small strain tensor. Green-Lagrange strains are obtained by using the four 

displacement gradients as shown below: 
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In the following some selected false colour displacements and strains maps are reported 

(Figure 5.3-5.7 - please note that X direction is aligned with the loading axis).  The 

results correspond to an applied nominal strain of about 30% of the strain at failure.  

        
(a) (b) 

Figure 5.4: Asphalt mixture sample 2: results, from left to right, with LSM, SGM, NCORR. (a) 

Map of the displacement along X axis [mm]; (b) Map of the strain along X axis. 

In the case of PLA specimens, the contour maps for the elliptical hole, with aspect ratio 

0.1, normal to the load axis, and for the elliptical hole, with aspect ratio 0.1, 60° inclined 

        
        (a)            (b)   

Figure 5.3: Asphalt mixture sample 1: results, from left to right, with LSM, SGM, NCORR. 

(a) Map of the displacement along X axis [mm]; (b) Map of the strain along X axis. 
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with respect to the load axis are reported in Figures 5.5-5.7, where the longitudinal 

nominal strain is equal to 2.01% and 3.36%, respectively. 

The results presented in Figure 5.3 and 5.4 show that the SGM solutions seem to be in 

better agreement with the Ncorr results rather than with the LSM maps. The SGM 

regularity constraint on neighbourhood pixels displacement allows to reduce the 

streaking effect presented in the LSM results, showing more detailed and accurate 

results.  

As regard the thermoplastic aliphatic polyester specimens results (Figure 5.5, 5.6 and 

5.7) a sort of waved/staircase pattern is clearly visible in the SGM strain maps; the same 

effect is visible, with lesser extent, in the Ncorr results, while it is absent in LSM 

solutions. This is likely due to the pixel locking effect. If the maximum deformation to 

be measured is less than 30% the use of simple similarity cost function (like SAD) can 

be used without any trouble with SGM algorithms, at least if small template sizes are 

used. However, with these approaches and as far as the displacements are limited, pixel-

locking effects, which often occur during the parabolic sub-pixel fitting of the cost 

function minimization, can produce unwanted biased results. 

 

    

(a) (b) (c)  

Figure 5.5: Map of the strain along X axis of the elliptical hole with an aspect ratio 0.1 normal 

to the load axis. Results computed, from left to right, with (a) LSM, (b) SGM, (c) NCORR. 

 

http://en.wikipedia.org/wiki/Thermoplastic
http://en.wikipedia.org/wiki/Aliphatic
http://en.wikipedia.org/wiki/Polyester


170    TESTS OF STEREO SGM SOFTWARE CODE FOR 2D DISPLACEMENTS DOMAINS 

 

 

    

(a) (b) (c)  

Figure 5.6: Map of the displacement along X axis[mm] of the elliptical hole with an aspect ratio 

0.1, 60° inclined with respect to the load axis. Results computed, from left to right, with (a) 

LSM, (b) SGM, (c) NCORR. 

  

    

(a) (b) (c)  

Figure 5.7: Map of the strain along X axis[-] of the elliptical hole with an aspect ratio 0.1, 60° 

inclined with respect to the load axis. Results computed, from left to right, with (a) LSM, (b) 

SGM, (c) NCORR. 

5.1.3 Comparison with FE analysis and discussion 

To provide numerical comparison data, Finite Element (FE) analysis of the PLA plates 

containing an elliptical hole were performed. Eight node finite elements in plane stress 

conditions are used. The FE model is loaded in tension by imposing a null axial 



CHAPTER 5  171 

 

 

displacement at one end and a uniform displacement at the opposite end. Linear and 

geometrically non-linear analyses were performed.  

The elastic equilibrium solution of the plane problem is related to prescribed boundary 

conditions, with no traction and no body forces being applied. The 

displacements/strains solution is independent on the Young modulus E (while stresses 

clearly depends on E), but it does depend on the Poisson ratio  (a value of  = 0.45 is 

adopted, which is typical of plastic materials and it is consistent with the experimental 

measurements of transversal contraction). This holds true also for the geometrically 

non-linear analyses with finite strains. The distribution of Green-Lagrange local strain 

components along the direction of the major axis of the elliptical hole as a function of 

the distance from the ellipse root is compared in Figure 5.8 for FE analysis and DICe 

using the SGM algorithm. 

 

Figure 5.8: Green-Lagrange local strain components along the major axis for the elliptical hole 

with an aspect ratio 0.1 normal to the load axis (axial normal strain = 2.01%). 

 

Undoubtedly, as far as high deformable materials are concerned, matching algorithms 

can experience a lot of different issues: the transformation considered between master 

and slave image can be inadequate to model localized deformations. Numerical 

problems, such as pixel-locking, can lead to systematic errors: if the maximum 

deformation to be measured is less than 30% the use of simple similarity cost function 

(like SAD) can be used without any trouble with SGM algorithms. However, with these 

approaches and as far as the displacements are limited, pixel-locking effects can produce 

unwanted biased results. On the other hand, taking into account that the displacement 

solution should present continuity to some extent (even if fractures occur, the 

discontinuity is limited to one specific direction), the use of regularization constrain in 

the matching technique is an efficient approach to improve the final results reliability. 

In this context the use of the new SGM algorithm developed by the authors seems to 
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adequately address such requirement. However, if higher deformation rates are 

expected, SGM algorithms should be discarded: the use of more complex similarity 

functions that consider also a patch deformation model, even if in principle can be 

implemented, will make the entire process computational unfeasible. At the same time, 

the simplistic regularization function in eq. (3.8) can be unsuitable to constrain the 

displacement field of the solution which, with high deformation, can show more likely 

localized effects. Providing appropriate regularization functions and penalization terms 

can be tricky and introduce might bias the final results. In this context we found that 

the use of other cost function (i.e. Census transform cost function [204]) improves to 

some extent the results. 

A final remark concerns the possibility to help the matching algorithm through the 

change of the master (reference) image during the DIC processing: in this way, 

comparing more similar images should improve the matching algorithm performance 

(no matter if LSM or SGM is used). Even if, in principle, that is true, the user have to 

consider that, in this way, accumulating the displacements computed from every 

reference and slave image, also the errors accumulate; in the end, it is likely that the 

entire process becomes less accurate than the case where the master image is fixed. 

5.2 Rock glacier monitoring system 

Monitoring the surface creep of mountain permafrost is important to understand the 

effect of ongoing climate change on slopes dynamics. Rock glaciers are widespread 

landforms that can show rapid acceleration and destabilization [49]. In heavily anthropic 

areas like the Alps, the accelerating creep of perennially frozen talus/debris with high 

ice content will probably become an increasing problem, notably for human 

infrastructures [74]. However, traditional techniques (e.g. topographical survey) cannot 

easily be applied in such scenarios: for example, the glacier surface is rough and presents 

hazards like crevasses. Only an operator with adequate training is able to realize a survey, 

often with some risks to his safety. 

An evaluation of movements and volumetric changes of an Italian rock glacier, obtained 

by multi-temporal analysis of UAS images over the period 2012-2015, has been 

investigated. The study area is located in the western Alps at the head of the 

Valtournenche Valley (Valle d'Aosta, Italia) on the Italian side of Matterhorn (see Figure 

5.9). The body of the rock glacier is composed by two lobes, spanning an elevation 

range between 2600 and 2750 m. It is nearly 400 m long, between 150 and 300 m wide 

and has an apparent thickness (based on the height of the front) of 20-30 m. 

 



CHAPTER 5  173 

 

 

 

 
Figure 5.9: The study area location and (Valle d'Aosta, Italia) and the body of the rock 

glacier. 

 

Since 2012, the surface movements of the glacier are monitored by ARPAVdA (Agenzia 

Regionale per la Protezione dell'Ambiente Regione Autonoma Valle d'Aosta - Environmental 

Protection Agency of Valle d'Aosta) as a case study for the possible impact of climate 

change on high-mountain infrastructures: in fact, this glacier juts on a ski slope of the 

Cervinia resort, causing every year maintenance issues to professionals. For these 

reasons, a multi-approach monitoring system, based on repeated UAS-photogrammetry 

and GNSS (Global Navigation Satellite System) survey, has been setup.  

The current dataset of observation consists of three UAS flights (October 2012, 

October 2014 and July 2015) and three GNSS campaigns (mid August 2012, 2013, 

2014). The fixed-wing Swinglet CAM produced by SenseFLY has been used for the 

photogrammetric UAS flight. It was equipped with a 12 Mpixel CANON IXUS 220 HS 

camera for the 2012 flight, and with a 16 Mpixel CANON IXUS 125HS camera for the 

2014 flight. The former flight was performed at 150 m height with a longitudinal overlap 

of 60% and a sidelap of 70% between adjacent strips, with a resultant GSD (Ground 

Sampling Distance) of 5 cm/pixel. The number of images acquired and used in the 

bundle block adjustment was 110. For the 2014 flight, the same GSD was obtained 

changing slightly the flight altitude. At the same time, to make the image block more 

rigid, the longitudinal and side overlap were respectively of 80 and 85%. Given the flight 

characteristics, the images acquired in the photogrammetric block were 239. Table 5.1 

summarises the design parameters of the two UAS flights.  

The GNSS data can be used as ground truth for validating the displacement obtained 

by orthoimage analysis and DSM comparison and check the accuracy of the monitoring 

system. 
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 2012 2014 

Date October 24th August 18th 

N° images acquired 110 239 (two flights) 

N° images used 110 239 

Side overlap 70% 80% 

Longitudinal overlap 60% 85% 

Ground resolution 5 cm/pixel 5 cm/pixel 

Table 5.1. Summary of the UAS flights characteristics. 

5.2.1 Measurement and analysis of the displacement field 

The reconstruction of the rock glacier surface movements is obtained by comparing the 

orthophotos and the DSM of the three UAS photogrammetric surveys of the 

investigated area. The photogrammetric workflow has allowed to obtain three raster 

DSM (with a cell size of 20 cm), and three different sets of orthophotos of the inspected 

region, with 5 cm pixel size. The orthophotos were analysed to identify the rock glacier 

displacements using two different methods:  

- a manual identification of well-recognizable points (on the glacier surface) on 

the orthophotos of three epochs (see Figure 5.10); 

- an automatic tracking method able to recognize a dense grid of corresponding 

points between the images (through image correlation analysis). 

 

 

 

Figure 5.10: Manual Measurement of the Displacements: Vector field displacements (x4 

magnification) above the period 2015/08–2012/10. 
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On one hand, the manual measurements are capable to describe all the survey area and 

allow to better understand the displacements dynamics; however, this activity is very 

time consuming: the measurement of ca. 1.000 points to describe 0.25 Km2 required 6 

-8 hours of operator work. On the other hand, displacement and/or deformation 

measurements of the object surface can be obtained by automatically tracking 

corresponding points between the images. Features tracking can usually be achieved 

using Feature (FBM) or Area Based Matching (ABM) algorithms and a much more 

dense displacements map of the region of interest (with little or no working load for the 

operator) can be reconstructed.  

The automatic procedure can be applied directly to the orthophotos. Usually, image 

matching software packages work on 8 bit indexed images (if RGB images are used, the 

software generally converts them in gray scale). However, the application of ABM 

algorithms on orthophotos can lead to inaccurate and erroneous matching results since 

image texture changes, low contrast regions, radiometric transformation problems and, 

especially, slope illumination variations over the monitored period can worsen the 

matching algorithms performance (as it be described in the following paragraph 5.2.2). 

Another option is to represent the local shape of the DSM converting its height map to 

some other representation (e.g. with a shaded relief map) and exporting it to a common 

image format (see Figure 5.10). Also in this case, however, the raster product has an 8-

bit colour depth. Moreover, as far as hill-shading rendering is concerned, being such 

technique based on the computation of the angle between DSM surface normals and 

incident light rays direction, height data noise can be amplified by the procedure. On 

the other hand, smoothing effects, where shape discontinuities occur, should be 

expected. A better choice would probably be the use of particular image filters such as 

the Wallis filter [196] to improve the height map local contrast (Figure 5.11). 

However, the best way to address the problem would probably be to match the two 

height maps directly: even if lighting or texture changes occurs in the monitoring period 

the matching algorithm would not be affected working only on the shape of the glacier 

surface. Although the vast majority of commercial or free software expect to work on 

8 bit image data,  both DenseMatcher [146] and the new SGM algorithm are able to 

perform the correlation process taking in input also 32- bit floating point rasters, so all 

the previous limitations are overcome. An automatic tracking of the displacements, 

using both the orthophotos and the DSMs will be presented in the next section.  
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Figure 5.11: On the left: Shaded DSM of the October 2012 flight; on the right: Elevation 

raster map, after the Wallis filter application, of the October 2012 DSM. 

5.2.2 Automatic displacement measurements on orthophotos 

Observing the evaluated ortho-image pairs (shown in Figure 5.12), the main issue for a 

matching procedure is represented by the illumination conditions of the slope, which 

change drastically over the monitoring period, producing significant contrast and 

brightness variations between the images. Moreover, the weathered surface of the rock 

glacier can produce relevant texture changes of the surface. Taking into account this, a 

first series of tests has been performed for evaluating and verifying the ABM algorithm 

accuracy and precision on the ortho-images matching process. In order to compare the 

displacement maps with the subsequent DSMs analysis, the results obtained using a 20 

cm pixel size orthophoto was used (instead of the original 5 cm high-resolution 

orthoimages).  

The results, illustrated in Figure 5.13, show a significant number of outliers (out of range 

red areas), probably due to false positive in the low contrasted regions. Indeed, the 

evident contrast and illumination changes, together with the presence of snow-clad 

areas, cannot be identified reliably by the correlation algorithm, producing erroneous 

matched points. At the same time, it is worth noting that, where the images radiometry 

shows suitable characteristics for the ABM application, the results accuracy is very good, 

especially considering that, in these comparisons, a pixel size of 20 cm was used. The 

results have been indeed validated against a GPS survey on the rock glacier that has 

consisted, in a first stage, in the points materialization by fixing well-recognizable target 

on glacier stones and, in a second moment, in the points measuring survey which was 

carried out several times, i.e. before each photogrammetric flight. The comparison 

between displacements obtained from the automatic comparison and the GNSS 

measurements has shown a final RMSE of about 10 cm (see Figure 5.13 right). 

However, these results are validated against only 28 points of the 48 GNSS total 
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measurements (just 58% of the control points are in agreement with those measured 

with the GPS campaign). The remaining 20 check points were discarded in the analysis 

since they fell in regions affected by outliers.  

 

  

a) b) 

 
c) 

Figure 5.12: a) October 2012 orthophoto; b) October 2014 orthophoto; c) August 2015 

orthophoto. 

 

To provide a more reliable comparison of the two epochs (possibly in all the extent of 

the rock glacier) a different method, described in the next paragraph, which considers 

the information derived from the raster elevation models, has been investigated. 
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Figure 5.13: On the left: 2D Displacement [m] coloured map obtained by ABM process on 

the orthophotos; on the right: Scatterplot between displacements obtained from the 

automatic comparison of UAS orthophotos and GNSS measurements on 28 points. 

 

5.2.3 Automatic displacement measurements on raster 

elevation models 

Forasmuch as the rock glacier is subjected to sliding, the local surface shape does not 

change so much, while the colour variations of the surface elements can be significant 

from one epoch to the other. As already pointed out, the proprietary image matching 

techniques can use floating-point rasters and the identification of homologous features 

can be performed on the DSM directly. Such solution represents the simplest and most 

efficient way to overcome the limitation represented by the use of long time-separated 

data. 

It is important to highlight that the application of the matching algorithms to the 

elevation data has requested the use of a big image block. Indeed, the level of detail of 

the DSM is not high enough to represent clearly the smaller blocks and, in analogy with 

traditional image matching techniques, the area inside the matching template should not 

be “flat”, unless high uncertainties are considered acceptable. For this reason, the use 

of large templates is necessary to perform an accurate and reliable identification of the 

same areas on the two investigated raster. In all the tests performed (presented in the 

following section) a template size corresponding to a ground size of ca. 6÷10 m has 

been used, because it was verified as the template size that produces the best results. 

The automatic displacement measurements final validation has been performed by 

comparing the achieved displacement vector with those acquired with the manual 
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measurement process: such comparison, being measured on 5 cm orthophotos 

resolution, can be considered the most suitable and accurate comparison data at the 

time being.  

5.2.3.1 Data analysis and results 

The first series of tests have regard the following two monitoring periods: a two-years 

period between October 2012 and October 2014, and a one-year survey between 

October 2012 and August 2015). With regard to the requirements of ARPAVdA, a 

periodic survey on a monthly basis will be also expected, in order to better investigate 

the seasonal velocity changes, especially during the summer period. During the winter, 

being the rock glacier body completely covered by the snow, the proposed methodology 

cannot be applied and different techniques should be implemented (e.g. GNSS survey 

on large rock blocks). At this time, being such solutions very expensive, and expecting 

little or no movement in winter, the monitoring activities are planned only during the 

spring, summer and autumn seasons. 

With the proposed automatic methodology, a very detailed description of the 

creep/displacement behaviour of the glacier can be produced. The results has been 

obtained using the LSM proprietary algorithm [44], and the novel Semi-Global strategy, 

with the aim to compare the solutions and thus verify the SGM reliability. Figure 5.14, 

and 5.15 describe respectively the rock glacier displacements occurred in different time 

periods, combined with the relative displacements scatterplot in order to validate the 

automatic measurements against the manual ones.The measurements validation has 

been performed on 785 points for the LSM solution and 872 points for the SGM one, in 

the case of two-years monitoring activity and on 881 points (LSM solution) and 996 points 

(SGM solution), in the one-year monitoring. 

The results are very good (Table 5.2): the R2 correlation index indicates a good 

correlation between the automatic and the manual measurements in both cases, and the 

Root Mean Squares Error (RMSE) is also good, showing values lower than 12 cm, 

which approximately corresponds to half pixel of the analysed raster DSM cell size (of 

20 cm). In other words, in these two cases, the methods have demonstrated that dense 

displacement fields, by tracking automatically homologous areas in raster DSMs, can be 

obtained with accurate and reliable results and sub-pixel precision.  At the same time, it 

is interesting to notice that the SGM strategy achieves, in all the investigated cases, 

greater inlier percentage: the introduction of the displacements regularization constraint 

allows to reduce the presence of mismatches and outlier and thus the statistic can be 

computed considering bigger data samples.  
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LSM             SGM  

 
  

a) 

  

b) 

Figure 5.14: Two-years monitoring activity. a) 2D Displacement [m] coloured map 

calculated automatically with LSM and SGM algorithm; b) Scatterplot of displacements 

obtained from the automatic comparison of DSM and the manual displacement.  

 

 

  RMSE R2 N 

Two-years monitoring 
LSM 0.122 0.977 785 

SGM 0.127 0.983 872 

One-year monitoring 
LSM 0.097 0.948 881 

SGM 0.128 0.940 996 

Table 5.2: Summary of the comparison statistics between the automatic DSM comparison 

technique and the manual identification of the displacements.  
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a) 

 

 

b) 

Figure 5.15: One-year monitoring activity. a) 2D Displacement [m] coloured map calculated 

automatically with LSM and SGM algorithm; b) Scatterplot of displacements obtained from 

the automatic comparison of DSM and the manual displacement measurements. 

 

As far as the monthly/seasonal surveys are concerned, a new DSM restitution, 

characterized by smaller raster cell size will be provided in the future: the expected 

displacements range is much lower than the other ones (contained within 20 cm), and 

the current DSM cell size is too big to allow distinguishing the small movement of the 

rock glacier. 
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5.3 Particle Image Velocimetry analysis 

Particle Image Velocimetry (PIV) is a non-intrusive whole-flow-field technique that 

provides instantaneous velocity vector measurements in a cross-section of a flow. 

Nowadays, PIV is widely used in fluid mechanics applications and problems 

(diagnostics into flow, turbulence, microfluidics, spray atomization, combustion 

processes, etc.) where unsteady and separated flows are predominant. 

The fluid is seeded with tracer particles which, for sufficiently small particles, are 

assumed to faithfully follow the flow dynamics; the section to be examined is 

illuminated with two consecutive and closely spaced laser light pulses (few 

nanoseconds), converted by means of an optical apparatus in light blades. The particles 

reflect the light, which is captured by a CCD or CMOS digital camera with the use of a 

synchronizer: the camera is able to capture each light pulse and the two particle images 

captured at time t and t’ and stored on separated frames of the CCD or CMOS sensor. 

This results in two images of the particles position at two different, very close time 

instants (an in depth explanation of the subsequent stages on image acquisition in PIV 

is presented in [198]).  

Comparing the two images, the particle displacement vector field on the plane of the 

light blade can be obtained. Assuming that a correctly seeding has been chosen, the 

particles will follow the motion of the fluid. Dividing the displacement by the time delay 

between the two images, the velocity field of the flow is obtained (it will be much closer 

to the instantaneous speed as far as the time interval is small). Considering the image 

matching aspects, the most important issue becomes the choice of the correlation 

method or function to use, for obtaining a reliable and dense displacement field, also 

when a low density or a poor quality distribution of the particles within the fluid 

occurred. Rapid temporal or spatial changes (transition from laminar to turbulent flow, 

coherent structures, pitching airfoils in transonic flows with shocks, rotors, etc.) can 

generate sudden flow variations, producing for example air bubbles in the fluid or noisy-

blurred image areas.  

The most commonly used PIV-images correlation algorithm is cross-correlation 

function, which represents the heart of most of the commercial software. However, the 

use of correlation method based on Cross Correlation (CC), Normalized Cross 

Correlation or Fast-Fourier Transform (FFT) algorithms require the use of a search 

window to perform the correlation between the image pairs. Since usually, in these 

approaches, the disparity values inside the template are supposed to be constant, the 

use of big correlation windows, when the fluids investigated present very strong local 

inhomogeneity in terms of velocity fields, should be discarded. At the same time, in 
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order to have an high density displacement vector field, small template size should be 

used. However, in PIV applications, reliable results (in term of points/particles 

correspondences) are generally achieved by using large window size (32x32 or 16x16 

pixels): the template radiometric content does not present optimal characteristic for the 

matching algorithm performance and this makes essential the use of big block size. In 

this regard, the use of a Semi-Global method could represent a valid alternative: SGM 

allows to perform a pixel-wise matching supported by a smoothness constraint. This 

allows obtaining very dense measurements field (it is possible to obtain one 

displacement measure per pixel) and, furthermore, thanks to the displacements field 

regularization function it is successful also in flow fields where the radiometric content 

is rather poor and rapid temporal and spatial changes intervene.  

The novel SGM algorithm has been tested with PIV datasets, in order to obtain a dense 

field of fluid velocity measurements. The results reliability was investigated by means of 

direct comparison with some analytical calculated data (synthetic PIV images) and the 

TSI PIV System commercial software [189](which performs the image correlation 

process with a classical local method). 

5.3.1 PIV tests cases 

The presented studies have been regarded two different PIV datasets: in a first stage 

computer generated flow field has been analytically simulated and the relative synthetic 

image sequences have been rendered. In Figure 5.16 the three synthetic case of study 

are shown and, for each case, the simulated flow field is highlighted with a yellow arrow.  

 

SYNTHETIC DATASETS 

   

A)  B) C) 

Figure 5.16: The analyzed PIV syntethic datasets. 
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The three test cases has been opportunely chosen in order to simulate very different 

velocity field and thus covering a wide range of different situations. 

The use of controlled computer generated dataset has allowed a numerical investigation 

of the proprietary algorithm performances; after that, a second analysis has regarded the 

evaluation of real PIV dataset. Three real case of study has been considered: the image 

sequences have been obtained with the Insight v.3.5 (TSI Inc.) PIV System. TSI was 

the first company to offer Particle Image Velocimetry technology for flow 

measurements; the equipment used for the tests is based on a laser imaging technique 

that combines the accuracy of nonintrusive point measurements with the global flow 

imaging capability of flow visualization to obtain time-resolved, instantaneous velocity 

information over an extended (customizable) interest region of the flow. The pulsed 

laser beam “freeze” the particles location in the planar measurement region; subsequent 

laser pulses are separated by a defined time (∆t). For each laser pulse one digital image 

is acquired and transferred to a computer for the image processing: at this time images 

are divided into many small regions and particles X–Y displacements between images 

is determined through a cross-correlation algorithm. Finally, the velocities are found by 

dividing the particles displacements by the time between pulses. The process is repeated 

for all region until the instantaneous velocity field is reconstructed for the whole image. 

The software allows, at the end, obtaining and visualizing the planar velocity vector 

fields and provides a temporal evolution of the flow characteristics.  

 

REAL DATASETS 

   
(D) (E) (F) 

Figure 5.17: The real PIV image datasets. 

 

Images were acquired with the 630049 PowerWiev Camera (of the TSI System) which 

has a 2048 x 2048 format size and a squared 7.4 μm pixel size.  

The final results have been obtained with Insight v.3.5 and the related global flows have 

been calculated considering an image grid size of a 16 × 16 pixel. In Figure 5.17 the 
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three datasets are shown: the low contrast and brightness that characterize the image 

radiometric content has made necessary the application of the Wallis filter for 

improving the visibility of the fluid particles.  

5.3.2 Results 

In this paragraph, the results that has been obtained applying the proprietary algorithm 

in the PIV analysis will be presented.  

First, the method accuracy has been investigated considering the synthetic flow fields: 

in this case, being known the analytic vector displacements field between each image 

pair, the direct comparison with the reconstructed 2D parallax maps, obtained using the 

SGM algorithm, was possible. The SGM particles flows are highlighted in the maps 

shown in Figure 5.18 were, for each computer generated dataset, the displacement 

vectors of the whole area of interest are depicted. The SGM reconstructed particles 

motions has been overlapped on the synthetic solutions for evaluating the agreement 

between the two datasets: for each case Figure 5.18 shows also, in a zoom region of the 

SGM vector maps, the coherence between the achieved displacement data (in blue 

arrows) and the reference displacement field (in green arrows).  

The SGM results seems to be in a good agreement with respect to the mathematical 

solution, producing high density displacement maps: the achieved flow fields has been 

computed pixel-wise. 

In order to further examine the method accuracy, an evaluation of the mean and 

standard deviation values of the two solution differences has been computed. The 

results are shown in Table 5.3. The presented data are satisfying: in all the case of study 

the SGM method reaches sub-pixel accuracies; at the same time cases (A) and (B) show 

better results with respect to the (C) one. This is due to the presence of the central hole 

(see Figure 5.16 (C)): in this area, where there is not particles transit, the SGM strategy 

has found erroneous solutions which have led to an overall worsening of the  

reconstruction accuracy of the whole displacement field. 

 

  Mean [pix] Std. Dev [pix] 

D
A

T
A

S
E

T
 

A 0.17 0.087 

B 0.05 0.098 

C 0.31 0.26 

Table 5.3: Comparison between the reconstructed and the reference vector flow fields for the 

synthetic PIV datasets evaluation. 
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Particles flow visualization 
Coherence between the reconstructed 

and the reference flow field   

  

(A) 

 
 

(B) 

  

(C)  

 

Figure 5.18: For each sythetic dataset the reconstructed flow fields obtained with the 2D 

SGM  strategy and, in a zoom area, the comparison between the reconstructed vectorial 

displacement map (in blue) and the analytical solution (in green).  

 

Once the algorithm accuracy and reliability was evaluated, a second analysis has 

regarded the real image data acquired with the PIV TSI System. 
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The SGM strategy was in this case applied for obtaining high density vector 

displacement fields (with a pixel-wise resolution), which can allow a better and deepen 

investigation of the turbulence and the characteristic of the fluid (the vectorial 

displacement field is presented in Figure 5.19). Differently, the commercial application 

force the minimum results resolution to a 16 x 16 sampling matching step.  

 

   

   
D) E) F) 

Figure 5.19: For each real dataset, the reconstructed vectorial displacement field obtained 

using the 2D SGM algorithm variation. 

 

Finally, the obtained SGM solutions has been compared to the PIV TSI one computing, 

as in the previous section, the mean and the standard deviation of the differences 

between the two algorithms . In this case, it is important to highlight that disparities 

“ground-truth” were not available and the methods comparison just wants to offer an 

evaluation of the two strategies agreement (or disagreement). Results are shown in Table 

5.4. 

Looking at the data it is possible to said that the two applications seems to differ not 

too much; with respect to the syntethic analysys (see Table 5.3), however, the standard 

deviations are much higher. The higher agreement between the two methods is achieved 

for case (F): the comparison shows a standard deviation of about 0.5 pixel and a mean 

value very close to zero. Case (F) considerably differ from the other two cases (D and 

E): the absence of air bubbles and turbolent phenomena makes more uniform the 
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particles motion and this results in a better quality of the image radiometric 

characteristics. This leads to more accurate points correspondences identification for 

both the correlation algorithms.  

 

  Mean [pix] Std. Dev [pix] 
D

A
T

A
S

E
T

 

A 0.0972 0.9859 

B -0.0371 0.9706 

C -0.0133 0.5855 

Table 5.4: Statistics of the differences between the results obtained using the proprietary SGM 

and the commercial TSI PIV System strategies. 

 

Finally, a visual evaluation of the achieved displacement maps, for each case of study, 

is presented in Figure 5.20. SGM solutions produces less noisy displacements maps, 

allowing to obtain continuous particles flow motion. On the contrary, the cross-

correlation algorithm used in the commercial PIV package presents more irregular and 

noisy displacement values.   
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 D) E) F) 

Figure 5.20: For each real dataset, the reconstructed 2D displacement maps obtained with the 

SGM and the commercial (TSI System) strategies. 
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The possibility of intervening on the numerical SGM code allows adapting the matching 

parameters according to the case of study: in this particular application field, the force 

of parallax regularization can considerably modify the final displacement maps 

completeness, smoothness level and regularity.  In Figure 5.21 is shown an example of 

the 2D parallax map changes by increasing the intensity of the regularization term in 

the matching step.  

 

   

Figure 5.21: Case (D) displacement maps assessed with different combination of 

regularization values. 

 

It is clearly visible that increasing the parallaxes filed penalization values, the 

displacements regularity also increase. If such behaviour actually improves the results 

and the algorithm robustness towards outliers and mismatches it’s however hard to 

assess. 
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This work has been essentially directed to verify the actual capability of a proprietary 

implemented Semi-Global Matching software code, mainly aimed at three-dimensional 

surfaces reconstruction. In fact, after an initial literary review stage, an in-depth analysis 

of the wide range of stereo matching algorithms has allowed to study the pros and cons 

of most local methods (i.e. the adaptive Least Squares Matching technique) and novel, 

increasingly widespread, Global and Semi-Global techniques. The choice to develop 

and implement a proprietary algorithm is mainly justified from the desire of maximizing 

the matching method accuracy and results completeness, paying attention to the process 

computational efforts as well. The investigation of these three aspects represent the 

heart of this work of thesis: it is increasingly evident that, both in Computer Vision and 

Photogrammetry, the achievement of high accuracy and complete results, taking 

however into consideration the time for obtaining the final result as well, are key factor 

for a state-of-art matching process.  

The algorithm calibration has allowed verifying the method performances in terms of 

(i) algorithm accuracy in finding corresponding points on image space; (ii) results 

completeness and level of detail; and (iii) matching core computational time. The 

processing variables, which decisively intervene in the algorithm metrological 

characterisation, have also been evaluated with the aim of understand how the method 

performances change varying the correlation window size, the regularization and 

similarity cost functions, the penalty values combinations and the use of the multi-

resolution and image tiling strategies. An efficient use of the semi-global technique 

depends extremely on the choice of the best strategies and parametric combinations 

that are able to well-describe and represent the object typology under evaluation. 

The results of the algorithm calibration stage, performed on several image datasets, has 

allowed to verify all the above described strategy variables. As far as the disparity 

regularization is concerned, penalty values optimal ranges were identified according to 

the applications and objects of interest. In particular, using small template size (e.g. three 

or seven pixels window dimension) it is necessary to pay more attention on the optimal 

penalty values to use in the correlation process. The influence of the template size on 

the parallax accuracy has also been evaluated considering the variation of the image 

similarity functions: it was observed that the enforcement of the disparity continuity 

allows to obtain comparable results between the analysed cost functions, showing light 

improvements of the accuracy with the increase of the template size; at the same time 
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there seems to be an optimal windows size beyond which the cost functions produce 

less accurate and reliable results.   

The accuracy of the second SGM algorithmic implementations has been investigated 

w.r.t. the first implemented method showing some lightly differences, in terms of 

accuracy, for small template size: the memory efficient method seems to provide better 

performances with NCC w.r.t. to the first implementation, but with SAD cost function 

the same is not true. That’s probably due to the fact that SAD with small template sizes 

relies heavily on a good disparity regularization: the first implementation, although 

much slower than the new one, performs a more rigorous penalization stage. Overall, 

the low highlighted differences (in terms of accuracy) are negligible if the significant 

computational time improvement of the novel method is considered. In other words, 

the novel SGM implementation seems to be more convenient, thanks to its more 

efficient computing approach.  

Finally, considering the results completeness, a first analysis was computed testing the 

method on the Middlebury stereo matching datasets: the SAD similarity function seems 

to be perform better on this type of images; at the same time NCC data tend towards 

high accuracies if big template size are used. The worst results are achieved by the Rank 

cost function, while Census shows a good robustness with respect to outliers 

identification proving, however, to be less accurate than the other similarity measures.    

The same datasets were also used for comparing the proprietary software with other 

SGM strategies: in two of the five cases considered, the best solution was obtained with 

the proprietary semi-global algorithm; on the contrary, the remaining three cases have 

presented slightly worse results. Considering that, differently from the compared 

strategies, the proprietary method does not implement post-processing steps (such as 

hole-fitting, interpolation, median filtering, etc.) it is possible to say that the results of 

the comparison are very promising. 

After the first method calibration and characterization stages, its performance was 

tested in real applications fields, where problems related to image radiometric content, 

points visibility, lacks of completeness and the achievement of established metric 

precisions, significantly intervene. The method achieved not only complete and 

appealing digital surface/terrain models, showing its higher robustness w.r.t. Area Based 

local method, but also highly accurate reconstructions. This concerns both the 

developed semi-global implementations for surface reconstruction, i.e. the classical 

stereo approach, and the SGM variation for the 2D displacement domain analysis. In 

fact, the algorithm metrological characterization stage and the development of 

computational optimized strategies has allowed a continuous improvement of the 

algorithm performances and the possibility to extend the method to the 2D search of 
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image correspondences. Finally, the multi-image algorithmic extensions have also been 

tested successfully in dense surface reconstruction in different application fields and 

images acquisition configurations.    

In most of the studied application cases, the “pixel locking effect” has produced a 

random or coherent noise in the final reconstructed scenes, due to costs biasing in the 

sub-pixel refinement strategy. It represents currently an open-topic since it interests 

most of the image matching methods: the sub-pixel symmetric refinement strategy has 

allowed obtaining a light improvement of the disparity refinement stage accuracy. 

However, further test and research work should be made in the future for investigating 

the causes and identifying more powerful resolution methods. 

Concluding, although several image matching open source and commercial applications 

are available in the photogrammetric images processing panorama, the choice to 

completely develop the semi-global software code has originated from the need to 

better acquire competence and knowledge about the several variables and strategies that 

are involved and influence the image matching process. The use of a proprietary source 

code has the advantage of allowing the complete control of the process: the problem 

solutions can be adapted to the user needs, the data input quality, the application field, 

the precision and accuracy of the results and the required time of process. 

Future developments will regard the creation of a graphical interface for increasing the 

“user-friendliness” of the matching code (and the settings of all its parameters) making 

it usable for a wider public and expanding its application fields. On the other hand, an 

important step for obtaining an accurate solution is the identification of the best 

algorithm parameters combination: in this context a significant improvement will be the 

automatic/adaptive assessment of the optimal parametrizations in relation if the 

application field, the image content and quality, as well as the required accuracy. 

Finally, the integration of the processing workflow with post-processing methods (such 

as images cross-checking, outliers filtering, interpolation techniques, noise reduction 

methods, etc.) for increasing the method robustness with regard to occlusions, points 

visibility and data noise problems, will provide further improvement in the final results 

quality. 

 

Although the most obvious and rapid developments in image matching field are 

attributed, in recent decades, to the computer vision field, the photogrammetric 

discipline must try to constantly develop novel solutions that must be mainly pertinent 

with their own goals and research areas. The importance of developing proprietary 

systems lies in the choice of be suspicious and curious of the results offered by open-

source or commercial applications (of which we do not have full control). In the current 
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state of the art, photogrammetry, as far as image matching is concerned, no longer 

seems to be oriented to the design of innovative algorithms or optimization strategies 

as in the past. Rather, a deeper understanding of each variable and process involved in 

the data analysis is requested, with the ultimate goals of getting controlled results and 

achieving a result which is not the first and only that has been obtained, but rather the 

best one of a series of detailed processes and analyses. The photogrammetric research 

in the image matching field cannot be said to be completed, but it will continue growing 

along with the birth and the development of new applications that make the image 

analysis a key of innovation and originality. 
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