
Università degli Studi di Parma

Dottorato di ricerca in Scienza e Tecnologia

dei Materiali Innovativi

Ciclo XXVIII (2013-2015)

Intermolecular and Intramolecular

Charge Transfer

in Functional Molecular Materials

Coordinatore:

Prof. Enrico Dalcanale

Tutors:

Prof. Anna Painelli

Prof. Francesca Terenziani

Dottorando:

Francesca Delchiaro

2016



Costei chiama inimica; e incontro a questa

congiunta esser pensando,

siccome vero, ed ordinata in pria

l’umana compagnia,

tutti fra se confederati estima

gli uomini, e tutti abbraccia

con vero amor, porgendo

valida e pronta ed aspettando aita

negli alterni perigli e nelle angosce

della guerra comune.

Giacomo Leopardi, La ginestra



Contents

Contents I

List of Abbreviations V

Introduction 1

1 Spectral properties of organic dyes 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Essential-state models for polar, quadrupolar and octupolar dyes . . . . . 8

1.2.1 Two-state model for dipolar dyes . . . . . . . . . . . . . . . . . . . 8

1.2.2 Three-state model for quadrupolar dyes . . . . . . . . . . . . . . . 12

1.2.3 Four-state model for octupolar dyes . . . . . . . . . . . . . . . . . 16

1.3 The Brilliant Green case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 The essential-state model for BG . . . . . . . . . . . . . . . . . . . 24

1.3.3 The calculation of pump-probe spectra . . . . . . . . . . . . . . . . 28

1.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Vibrational coherences of charge transfer dyes . . . . . . . . . . . . . . . . 34

1.4.1 Essential-state models for dipolar and quadrupolar dyes at work . 35

1.4.2 Excitations and pump-probe spectra . . . . . . . . . . . . . . . . . 37

1.4.2.1 Vibrational coherences in dipolar dyes . . . . . . . . . . . 40

1.4.2.2 Vibrational coherences in quadrupolar dyes . . . . . . . . 43

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Mixed-stack charge transfer salts 49

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 The phenomenology of NIT . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Models, methods, approximation . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Modified Hubbard model (MHM) . . . . . . . . . . . . . . . . . . . 54

2.3.2 Electrostatic interactions: the mean-field approximation . . . . . . 55

2.3.3 Lattice phonons and molecular vibrations . . . . . . . . . . . . . . 56

2.3.4 The solution of the electronic problem . . . . . . . . . . . . . . . . 57

2.4 State of art of TTF-CA, TTF-2,5Cl2BQ and perylene-TCNQ . . . . . . . 61

2.5 Microscopic model parameters from DFT calculations . . . . . . . . . . . 62

2.5.1 Calculations on a DA pair: towards the first-principle estimate of
Γ and t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.2 Calculations on DA pairs . . . . . . . . . . . . . . . . . . . . . . . 66



II CONTENTS

2.5.3 Calculation of the small polaron binding energy . . . . . . . . . . . 72

2.5.4 Calculation of electrostatic interactions . . . . . . . . . . . . . . . 73

2.5.5 Ground state properties of MS-CT salts from DFT . . . . . . . . . 83

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 Charge transfer in organic radical dipolar dyes 89

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 The case of TTF-PTM and MPTTF-PTM . . . . . . . . . . . . . . . . . . 91

3.2.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.2 Quantum-chemical calculations: (TD)-DFT . . . . . . . . . . . . . 92

3.2.3 Semiempirical calculations: ZINDO . . . . . . . . . . . . . . . . . . 97

3.3 Essential-state parameters from ground state properties . . . . . . . . . . 100

3.3.1 The case of Fc-PTM . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.1.1 Comparison with essential-state models . . . . . . . . . . 106

3.3.2 The case of TTF-PTM and MPTTF-PTM . . . . . . . . . . . . . 108

3.4 The work function change . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4.1 Kelvin Probe Force Microscopy . . . . . . . . . . . . . . . . . . . . 111

3.4.2 The Helmholtz equation for the work function . . . . . . . . . . . 112

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Spectral properties of organic radical-based nanocrystals 117

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 Quantum-chemical calculations on the monomer . . . . . . . . . . . . . . 122

4.2.1 Crystallographic geometry . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.2 Optimization of ground and excited states . . . . . . . . . . . . . . 125

4.3 Quantum-chemical calculations on the dimer . . . . . . . . . . . . . . . . 128

4.3.1 Characterization of PES at fixed monomer geometry . . . . . . . . 133

4.4 Semiempirical calculations on the monomer and dimer . . . . . . . . . . . 134

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Concluding remarks 137

A Fluorescence anisotropy: main aspects and experimental setup 139

A.1 Fluorescence anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.1 Anisotropy measurements . . . . . . . . . . . . . . . . . . . . . . . 139

B Computational details about optical spectra 143

B.0.2 Absorption and fluorescence spectra . . . . . . . . . . . . . . . . . 143

B.0.3 Two-photon absorption spectra . . . . . . . . . . . . . . . . . . . . 144

B.0.4 Hyper-Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . 145

B.0.5 Emission and excitation anisotropy spectra . . . . . . . . . . . . . 146

C Theoretical methods 149

C.1 Semiempirical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.2 (TD)-DFT methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.2.1 Basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



CONTENTS III

Bibliography 158





List of Abbreviations

CT charge transfer

D/A electron donor/acceptor

NLO nonlinear optics

PES potential energy surface

OPA one-photon absorption

TPA two-photon absorption

ESA excited-state absorption

SE stimulated emission

PB photobleaching

HRS Hyper-Rayleigh Scattering

CV Crystal Violet

BG Brilliant Green

a. u. arbitrary units

N/I neutral/ionic

NIT neutral to ionic phase transition

IR infrared

1D/3D one/three dimensional

e− ph electron-phonon (coupling)

e−mv electron-molecular vibration (coupling)

mf mean field



VI List

(DM)TTF-CA (4,4’-dimethyl-)tetrathiafulvalene-chloranil

TTF-2,5Cl2BQ TTF-2,5-dichloro-p-benzoquinone

TTF-BA TTF-bromanil

TMB-TCNQ 3,3’,5,5’-tetramethylbenzidine

-7,7’,8,8’-tetracyanoquinodimethane

BT-TCNQ 2,7-didecyl[1]benzothieno-[3,2-b][1]

benzothiophene-TCNQ

DBTTF-TCNQ Dibenzotetrathiafulvalene-TCNQ

TMPD-TCNQ tetramethyl-p-phenylenediamine-TCNQ

TMB-CA 3,3’,5,5’-tetramethyl-benzidine-TCNQ

ClMePD- 2-chloro-5-methylp-phenylenediamine-

DMeDCNQI 2,5-dimethyldicyanoquinonediimine

MO molecular orbital

PCM Polarizable Continuum Model

(TD)DFT (Time Dependent) Density Functional Theory

ZINDO intermediate neglect of differential

overlap with spectrosocpic parametrization

(U)/RHF (un)/restricted Hartree Fock

TTF-PTM TTF-perchlorotriphenylmethyl

MPTTF-PTM N’-Vinylenephenyl-2-(1,3-dithiol-2-ylidene)

-(1,3)-dithiolo[4,5-c]pyrrole-2,3,5,6-PTM

Fc-PTM ferrocene-perchlorotriphenylmethyl



Introduction

Molecular multifunctional materials are currently investigated for advanced applications

in electronics and photonics. Smart molecular materials for organic electronics are in

demand for the development of plastic light-emitting diodes (OLEDs) [1], innovative

photovoltaic and solar cells [2]. Photonic materials may find novel applications in mi-

crofabrication [3], drug delivery [4], in vivo optical microscopy [5, 6], photodynamic

therapy [7, 8]. In a different context, plants use solar antennae, an intriguing example of

multifunctional molecular materials, to capture incident photons and efficiently transmit

the excitation energy to reaction centres, where photosynthesis is initiated [9].

Molecular multifunctional materials offer a wide spectrum of interesting features. They

are low-weight materials and can be easily and conveniently processed at low tempera-

tures on flexible substrates with large area-coverage. They do not contain rare elements

and are most often bio-compatible and easy to degrade. The powerful tools of molecular

and supramolecular synthesis offer unlimited possibilities to build structures with dif-

ferent properties and complexity with no counterpart in traditional hard materials for

electronics. To fulfil the promise of molecular materials for advanced applications and to

fully exploit the enormous potential of synthetic chemistry in the field, it is fundamental

to be able to guide the design of new materials and in this respect it is important to

understand the physics that governs their complex behaviour.

Delocalized electrons either within each single molecule or among different molecules are

a key towards smart behaviour and, charge transfer (CT) degrees of freedom represent a

strategy towards intra or intermolecular delocalization as well as add the interest features

of the tunability of CT energies, a strong coupling to internal or external electric fields

etc. In this Thesis we undertook a study, mainly from a theoretical perspective, of intra

and intermolecular CT in molecular materials of interest for advanced applications.

The first Chapter is devoted to intramolecular CT, as observed in CT dyes, a large

and interesting family of π-conjugated molecules decorated with electron donor (D) and

acceptor (A) groups in different geometries, ranging from simple dipolar D-π-A dyes,

to quadrupolar D-π-A-π-D or A-π-D-π-A, to octupolar DA3 or AD3 structures. The
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spectral properties of these dyes can be tuned affecting the electron-donating/accepting

character of D/A groups and by modifying the bridge length and structure, making them

an interesting and variegated family of compounds with applications in OLED, solar

cells, nonlinear optics, bioimaging etc [10, 11]. The low-energy photophysics of CT dyes

is governed by charge resonance between D and A groups and can be effectively described

by a family of parametric Hamiltonian, developed and extensively applied in the host

laboratory, known as essential-state models [12–16]. Here we develop and validate a

new essential state model for Brilliant Green, a commercial dye, whose extensive linear

and nonlinear spectroscopic investigation is done in collaboration with the group of

Prof. W. Wenseleers (Antwerp University) [17]. Moreover, we attack the problem of

coherent oscillations observed in pump-probe measurements for CT dyes in solution

upon impulsive excitation [18]. Quite interestingly, the non-adiabatic approach adopted

in essential-state models, allows us to quantitatively address the dynamics of systems

undergoing symmetry breaking in the excited state, following the dynamical Jahn-Teller

motion in real time.

Chapter II is devoted to intermolecular CT in mixed-stack CT (MS-CT) crystals. These

are an interesting class of multifunctional molecular materials, where electron donor

(D) and acceptor (A) molecules arrange themselves to form stacks, leading to delocal-

ized electrons in one dimension. The interplay between intermolecular CT, electrostatic

interactions, lattice phonons and molecular vibrations leads to intriguing physical prop-

erties that include (photoinduced) phase transitions [19], multistability [20], antiferro-

magnetism [21], ferroelectricity [22] and potential multiferroicity [23]. The standard

microscopic model to describe this family of materials is the Modified Hubbard model

accounting for electron-phonon coupling (Peierls coupling), electron-molecular vibra-

tions coupling (Holstein coupling) and electrostatic interactions. We adopt and validate

a method, based on DFT calculations on dimeric DA structures, to extract relevant

model parameters [24]. Calculations were done, in collaboration with Dr. G. D’Avino

(Mons University) and Prof. S. Pati (Bangalore, JNCASR), on a wide family of MS-CT

salts. The approach offers a powerful tool to shed light on the complex physics of MS-CT

salts.

A fairly intense research effort is currently done in the host laboratory on materials

where intra and intermolecular CT play a role at the same time. The work, started

with the aim to understand spectral properties of self-forming aggregates of TTF-PTM

molecules [25, 26], recently led the researchers in the host laboratory to the suggestion

of a new family of molecular materials with room-temperature ferromagnetic properties

and prospective multiferroicity [23]. The main building blocks of these materials belong

to the family of dipolar D-π-A dyes, but with the A-group represented by a stable
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radical species: D-π-R·. Chapter III, in collaboration with Prof. J. Veciana (ICMAB-

Barcellona) for the experimental part, is devoted to set up essential-state models for this

interesting and complex family of dyes that associate the electronic and optical properties

of CT dyes with magnetic properties from the unpaired electron. The experimental

validation of essential-state models is hindered in these dyes by the very weak and

broad CT absorption bands observed as a result of the weak conjugation between the

D and R· groups. Therefore we undertook an extensive effort to parametrize the model

from quantum-chemical calculations. Two strategies were adopted, one based on the

calculation of the low-energy spectral properties, the other based on the variation of

ground state properties with an applied static electric field. Our results were fairly

disappointing, demonstrating that, quite irrespective of the adopted functional, DFT is

not able to properly describe the ground state behaviour of these dyes, and that TD-

DFT is similarly inadequate. Apparently semiempirical methods (ZINDO) are somewhat

more reliable, even if further studies are needed to validate these results.

The first three Chapters, attacking intra and intermolecular CT represent the main core

of this Thesis. The last Chapter summarizes a theoretical analysis to support recent

experimental results on spectral properties of organic nanoparticles based on radical

species, obtained in collaboration with Dr. Imma Ratera (ICMAB-Barcellona). Organic

nanoparticles based on radical dyes show an anomalous dependence of the emission

intensity and frequency with the concentration of the radical themselves, suggesting

the presence of excimer states. Unfortunately the size of the molecules is too large to

allow for extensive calculations, and the preliminary results obtained in this work do

not support excimer states.





Chapter 1

Spectral properties of organic

dyes

”There is no science without fancy

nor art without facts”

-Vladimir Nabokov

1.1 Introduction

In this Chapter we focus attention on spectral properties of charge-transfer (CT) chro-

mophores. CT dyes are an interesting class of π-conjugated molecules composed by

electron donor and acceptor moieties linked togheter by a conjugated bridge to form

molecules with different symmetry and dimensionality, as sketched in Figure 1.1.

Figure 1.1: A schematic representation of CT dyes with different symmetry and di-
mensionality.
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In the simplest structure a D moiety is linked to an A group to give a dipolar or push-pull

chromophore. In quadrupolar dyes, two D (A) are linked to an A (D) group in a linear

molecule or bent structure. Octupolar dyes are characterized by a planar geometry with

three D (A) groups linked to a central A (D) one. CT chromophores find interesting

applications in the field of nonlinear optics and molecular electronics, since they combine

delocalized electrons, a powerful source of nonlinearity, with low cost and low weight.

The low-energy photophysics of CT dyes is governed by the charge resonance between

D and A and is efficiently and accurately described by essential-state models. Instead

of attempting a detailed first-principle description of the system, essential-state models

rely on chemical intuition and select for each dye a minimal set of electronic basis

states. These states, correponding to the main resonating structures, account for charge

delocalization through CT. Different essential-state models have been developed for the

description of spectroscopic properties of dipolar, quadrupolar and octupolar dyes [12–

16].

In the 50’s Mulliken proposed a two-state model to describe the optical spectra of charge-

transfer complexes in solution [27]. The same model is at the heart of the Marcus-Hush

theory of electron transfer [28]. Oudar and Chemla in the 70’s applied the same model

to investigate nonlinear optical properties for π-conjugated D-A molecules [29]. Start-

ing from these pioneering works, essential-state models have been extended to account

for electron-phonon coupling [30] and environment effects, such as polar solvation and

interchromophoric interactions [31–33].

The charge resonance implies a rearrangement of the electronic distribution in the

molecule, with important consequences on the molecular geometry: vibrational and

electronic degrees of freedom are stronlgly coupled. The coupling between electrons

and molecular vibrations is important in several respects: it contributes in non-trivial

ways to nonlinear optical properties of molecular materials [30] and a recent paper

demonstrates the coupling between electrons and vibrations in the bridge of a donor-

bridge-acceptor structure enhances the electron-transfer rates, suggesting a vibrational

control of electron-transfer [34]. In the framework of essential-state models, molecular

vibrations are described in terms of effective vibrational modes that linearly modulate

the energy of the relevant states [30]. Typically, one vibrational coordinate is intro-

duced for each CT degree of freedom, as to account for the variation of the molecular

geometry due to the different electronic charge distribution. The small dimensions of

the electronic and vibrational basis make the physics of the system fairly transparent

and help to grasp the common physics underlying the behavior of different families of

compounds. Moreover, the coupled electron-vibration problem is easily amenable to an

exact and fully non-adiabatic solution [35], opening the way to an accurate treatment
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of delicate issues, including optical spectra of systems undergoing symmetry breaking in

either the ground or excited state [36].

The band-shape and the energy of the CT transitions of some dyes depend on the solvent:

medium effects have been successfully included in essential-state models [12, 13, 36, 37].

In particular, polar solvation enters the model as an effective overdamped coordinate,

responsible for inhomogeneous broadening effects in steady-state optical spectra, while

its (Smoluchowsky) dynamics, describes solvent relaxation in time-resolved spectra [38,

39].

Electrostatic interchromophore interactions are also modeled in the essential-state pic-

ture, leading to fairly interesting results [40, 41] including multiexciton generation in

aggregates of polar dyes [32, 33], biexciton stabilization in aggregates of quadrupolar

dyes [42], bistability in molecular crystals [43], efficient energy transfer to dark states

[37, 44] and modulation of nonlinear optical properties in multichromophoric assemblies

[45, 46] .

As with all semiempirical approaches, essential-state models must be parameterized

against experimental data. Typically, absorption and fluorescence spectra in different

solvents offer enough information for a reliable parameterization but, depending on the

molecular complexity, additional information may be needed about the location of dark

states, as it can be inferred from nonlinear spectroscopy. However, when molecular

parameters are fixed from a minimal set of spectroscopic data, essential-state models

can reliably predict other spectral properties of the same molecule in different environ-

ments. Accurate results have been obtained for several dyes on two-photon absorption

spectra [31, 36, 47], Hyper-Rayleigh Scattering (HRS) [46], excited state absorption

(ESA) [14, 15], resonant and non-resonant Raman [48], fluorescence anisotropy [49] and

two-dimensional electronic-vibrational (2D-EV) spectra [39].

This chapter is organized as follows: the next Section shortly summarizes essential-state

models for polar, quadrupolar and octupolar dyes. Then, in Section 1.3, the robustness of

the modeling strategy is demonstrated by the razionalization of spectroscopic properties

of Brilliant Green. In the Section 1.4, we investigate the early-stage dynamics of coherent

states in polar and quadrupolar dyes, generated upon ultrafast excitation, that allows

for the direct observation of vibrational coherences. This represents a first step of a

more ambitious project aimed to investigate the dynamics of excited states.
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1.2 Essential-state models for polar, quadrupolar and oc-

tupolar dyes

This Section is dedicated to an overview of the work about the two-, three- and four-state

model for dipolar, quadrupolar and octupolar chromophores, respectively, developed in

the host laboratory.

1.2.1 Two-state model for dipolar dyes

Push-pull chromophores are a class of asymmetric molecules with the general structure

D-A. The intrinsic structure of push-pull dyes allows the displacement of electrons upon

excitation from the donor to the acceptor or vice-versa (CT transition). The presence of

a low-lying transition makes these molecules highly polarizable, and therefore interesting

for nonlinear optical (NLO) applications.

The essential-state model for dipolar dyes relies on the definition of two orthogonal basis

states: a neutral (|N⟩ = |DA⟩) and a zwitterionic structure (|Z⟩ = |D+A−⟩). The two

basis states are separated by an energy gap 2z and mixed by the mixing element −τ .
The electronic Hamiltonian reads:

Hel = 2zρ̂− τ σ̂ =

(
0 −τ
−τ 2z

)
(1.1)

where ρ̂ and σ̂ are the operators defined as:

ρ̂ =

(
0 0

0 1

)
(1.2)

σ̂ =

(
0 1

1 0

)
(1.3)

The eigenstates of the electronic Hamiltonian are:

|g⟩ =
√
1− ρ|DA⟩+√ρ|D+A−⟩ (1.4)

|e⟩ = √ρ|DA⟩ −
√

1− ρ|D+A−⟩ (1.5)

where ρ is the expectation value of the operator ρ̂ in the ground state and corresponds

to the degree of charge transferred from D to A (the so-called ionicity); ρ only depends

of the z/τ ratio:

ρ =
1

2

(
1−

z
τ√

( zτ )
2 + 1

)
(1.6)



1.2 Essential-state models for polar, quadrupolar and octupolar dyes 9

Depending on the value of the ionicity of the ground state, polar dyes can be classified

as neutral if ρ < 0.5 or zwitterionic if ρ > 0.5. The ρ = 0.5 case describes systems

characterized by the degeneracy of the two electronic basis states and is called cyanine-

limit.

Being interested in optical spectra, the dipole moment operator must be defined. As

originally suggested by Mulliken, the contribution to the dipole moment of the |D+A−⟩
state is largely dominant with respect to all other terms [27]. In this assumption, the

dipole moment operator is:

µ̂ = µ0ρ̂ (1.7)

where µ0 is the dipole moment of the |D+A−⟩ state. All spectroscopically relevant

quantities can be expressed in function of ρ:

µge = µ0
√
ρ(1− ρ) (1.8)

~ωCT =
τ√

ρ(1− ρ)
(1.9)

where µge is the transition dipole moment and ~ωCT is the transition energy. The

permanent ground and excited state dipole moments read:

µg = µ0ρ (1.10)

µe = µ0(1− ρ) (1.11)

In order to reproduce spectral bandshapes, the electronic problem must be extended to

account for the coupling between electronic and vibrational degrees of freedom. The

potential energy surfaces relevant to the two basis states have different equilibrium

geometry and the displacement of the two molecules is related to the electron-phonon

coupling. We therefore introduce an effective vibrational coordinate, q. The vibrational

Hamiltonian reads:

Hvib = −
√
2ωgq̂ρ̂+

1

2
(ω2q̂2 + p̂2) (1.12)

where g =
√
ωεsp is the electron-phonon coupling constant and ω is the vibrational

frequency. The strength of the coupling is measured by εsp, the vibrational relaxation

energy, that corresponds to the small polaron binding energy of the Holstein model; q̂

and p̂ are the position and momentum operator of the harmonic oscillator (~ = 1):

q̂ = (a† + a)

√
1

2ω
(1.13)

p̂ = −i(a† − a)
√

2

ω
(1.14)
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where a and a† are the phonon annihilation and creation operators, respectively.

Different strategies can be adopted to solve the coupled electronic and vibrational prob-

lem. The adiabatic approximation is often employed, taking advantage of the different

timescales of nuclear and electronic motions. In this approximation, the vibrational

momentum p̂ is neglected, and q̂ becomes a classical variable. The eigenvalues of the

electronic problem, calculated as a function of q, are the adiabatic PESs, representing

the potential energy for the vibrational motions, as shown in Figure 1.2.

Figure 1.2: The q-dependent energies of the two electronic basis states (black lines)
and the adiabatic eigenstate PESs (coloured lines) obtained from the diagonalization of
the total Hamiltonian resulting from eq. 1.1 plus 1.12. The figure is obtained for z = 1

eV, τ = 0.5 eV, ω = 0.2 eV and εsp = 0.4 eV.

In addition, Figure 1.2 points out that, while the vibrational coordinate enters the Hamil-

tonian as strictly harmonic (see eq. 1.12), the interaction with the delocalized electrons

leads to anharmonic PES.

Essential-state models are simple enough to allow for the non-adiabatic solutions of the

total Hamiltonian (H = Hel + Hvib). In the non-adiabatic approach, the basis states

of the coupled problem are defined as the direct product of the electronic basis states

times the eigenstates of the harmonic oscillator. Of course, the infinite eigenstate basis is

truncated to the first M states, with M large enough as to reach convergence of relevant

quantities (typically M amounts to ∼ 10). The diagonalization of the Hamiltonian

matrix written on the non-adiabatic basis leads to the (numerically exact) vibronic

eigenstates and to relevant transition energies.

To complete the picture, the solvent and its interaction with the CT dye have to be

introduced. To account for solvation effects, the reaction-field approach was followed.

Shortly, a polar solute molecule polarizes the surrounding medium and therefore feels a

reaction electric field, F , proportional to the dipole moment of the solute. The reaction

field has two contributions characterized by distinctively different dynamics [50, 51].

The electronic contribution to F (Fel) is due to the deformation of the electronic clouds

of the solvent molecules close to a polar solute. The relevant dynamics is very fast

(corresponding frequencies in the UV region), much faster than CT degrees of freedom
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of the solvent. The electronic contribution to F is therefore treated in the antiadiabatic

approximation simply leading to the renormalization of electronic parameters (τ and z),

that, therefore, acquire a dependence on the refractive index of the solvent [12]. This

dependence can be safely disregarded in most cases in view of the marginal variation of

the refractive index in common organic solvents. The orientational contribution (For)

to the reaction field is due to the re-orientation of polar solvent molecules around the

solute. The relevant dynamics is very slow compared to both electronic and vibrational

degrees of freedom. Due to its intrinsically over-damped nature, For can be treated as

a classical variable: basically, in this picture, it acts as an additional Holstein vibration

that can be described in the adiabatic approximation. The orientational component

of the reaction field is proportional to the solute dipole moment via a proportionality

factor, ror:

For = ror⟨µ⟩ (1.15)

where ror depends on both the solvent refractive index and the static dielectric constant,

vanishing for nonpolar solvents. Assuming that the solvent behaves as an elastic medium,

the Hamiltonian relevant to polar solvation reads [12]:

Hor = −Forµ̂+
F 2
or

2ror
= −Forµ0ρ̂+

F 2
or

2ror
= −Qρ̂+ Q2

4εor
(1.16)

where we introduced an effective solvation coordinate Q = Forµ0 whose coupling to

the electronic degrees of freedom is εor = rorµ
2
0/2, with the same meaning as εsp for

vibrations. The parameter εor is directly related to the solvent polarity: non-polar

solvents have εor=0, and εor increases with solvent polarity.

A positive solvatochromism, defined as a red-shift of both absorption and fluorescence

bands for increasing solvent polarity, is observed for neutral molecules (z > 0, ρ < 0.5).

By variance, negative solvatochromism characterizes zwitterionic molecules (z < 0 and

ρ > 0.5): increasing the polarity of the solvent the bands in absorption and in fluores-

cence shift to the blue because the energy gap between the states |DA⟩ and |D+A−⟩
increases with the solvent polarity. Polar solvation is also responsible for inhomogeneous

broadening in optical spectra of DA chromophores: from experimental data, it is evi-

dent that the vibronic structure is resolved only in non polar or weakly polar solvent.

The origin of this behavior is related to the presence of disorder in the system, caused

by a thermal fluctuation of the orientational component of the reaction field around its

equilibrium value.

To account for thermal disorder, the total Hamiltonian (Htot = Hel+Hvib+Hor) is diag-

onalized for fixed values of the reaction field, and each configuration is weighted for the

Boltzmann probability. A narrow Boltzmann distribution is expected for weakly polar
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solvents in agreement with the resolved vibronic structure observed in apolar solvents;

by contrast, a large Boltzmann distribution is expected for polar solvent (large εor), as

confirmed by optical data. Of course the distribution is different for absorption and flu-

orescence: the ground state Boltzmann distribution applies to absorption spectra (both

for linear and nonlinear processes); for fluorescence, the solvent relaxes after excitation,

and the distribution has to be calculated based on the relaxed excited state energy.

We underline that in the calculation of optical spectra, a Gaussian line is assigned to each

vibronic band, for each For, with a fixed width at half maximum Γ, independent on the

solvent polarity. Γ can be estimated by spectra in apolar solvents, when inhomogeneous

broadening is minimized.

1.2.2 Three-state model for quadrupolar dyes

Quadrupolar dyes can have a linear or a bent geometry, as drawn in Panel (a) of Figure

1.3.

Figure 1.3: Panel a: schematic representation of quadrupolar dyes and their orien-
tation in the (x,y) plane. Panel b: sketch of the OPA and TPA transitions in a linear

quadrupolar dye.

In both cases, a three-state description is adopted with three orthogonal basis states,

corresponding to the resonance structures of quadrupolar molecules, |DAD⟩, |D+A−D⟩,
|DA−D+⟩. The two zwitterionic states are degenerate and are separated from the neutral

state by an energy gap 2z and are mixed to it by −τ . The integral hopping between the

two zwitterionic states is set to zero. By exploiting symmetry, the zwitterionic states are

combined in a symmetric and an antisymmetric wavefunction; the symmetrized basis

set reads:

|N⟩ = |DAD⟩ (1.17)

|Z+⟩ =
1√
2
(|D+A−D⟩+ |DA−D+⟩) (1.18)

|Z−⟩ =
1√
2
(|D+A−D⟩ − |DA−D+⟩) (1.19)
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On the symmetrized basis, the following operators are defined:

ρ̂ =


0 0 0

0 1 0

0 0 1

 (1.20)

δ̂ =


0 0 0

0 0 1

0 1 0

 (1.21)

σ̂ =


0 1 0

1 0 0

0 0 0

 (1.22)

where ρ̂ and σ̂ define the charge distribution of the molecule: ρ̂ = ρ̂1 + ρ̂2 measures the

average charge on the acceptor site; δ̂ = ρ̂1 − ρ̂2 instead measures the unbalance of the

charge on the two external sites; as for dipolar dyes, σ̂ is the mixing operator between

the two gerade states.

In terms of these operators, the electronic Hamiltonian reads:

Hel = 2zρ̂− τ σ̂ = (1.23)

The diagonalization of the Hamiltonian leads to the ground state |g⟩ and two excited

states |c⟩ and |e⟩:

|g⟩ =
√

1− ρ|N⟩+√ρ|Z+⟩ (1.24)

|c⟩ = |Z−⟩

|e⟩ =
√
ρ|N⟩ −

√
1− ρ|Z+⟩

|Z−⟩ does not mix with the other basis states because of its different parity.

In the same approximation adopted for dipolar dyes, we assume that just |D+A−D⟩
and |DA−D+⟩ states have a large permanent dipole of magnitude µ0. The x and y

components of the dipole operator (see Figure 1.3 for the reference system and for α

angle) are:

µ̂x = µ0 sin
(α
2

)
δ̂ (1.25)

µ̂y = µ0 cos
(α
2

)
ρ̂
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For a linear quadrupolar dye, α = 180◦, µy = 0 and µx = µ0δ̂.

The expectation value of ρ̂ in the ground state defines the amount of charge separation

in the ground state, and therefore the quadrupolar moment of the molecule. As for

dipolar dyes, ρ is a function of the z/τ ratio:

ρ =
1

2

(
1−

z
τ√

( zτ )
2 + 2

)
(1.26)

In a linear centrosymmetric molecule, the odd state (|c⟩) is one-photon (OP) allowed,

while the even |e⟩ state is two-photon (TP) allowed. This simple scheme must be slightly

modified in bent molecules where the reduced symmetry makes the two transitions

allowed both in linear absorption (OPA) and two-photon absorption (TPA) [37].

In quadrupolar dyes, the charge rearrangement from |DAD⟩ to |D+A−D⟩ or to |DA−D+⟩
states occurs along the two molecular arms of the dye: two mutually independent ef-

fective coordinates (q1 and q2), describing the nuclear motion along each arm, are in-

troduced to describe electron-phonon coupling. The two coordinates have the same

frequency ω and the same relaxation energy εsp. The vibrational Hamiltonian reads:

Hvib = −
√

2εspωq̂1ρ̂1 −
√

2εspωq̂2ρ̂2 +
1

2
(ω2q̂21 + p̂21) +

1

2
(ω2q̂22 + p̂22) (1.27)

The operators q̂i and p̂i represent the coordinate and the momentum of the two vibra-

tions, while ρ̂i is the ionicity relative to each branch. Exploiting symmetry, the two

molecular coordinates can be combined to get a symmetric (q+ = (q1 + q2)/
√
2) and an

antisymmetric (q− = (q1 − q2)/
√
2) coordinate, and the relevant Hamiltonian reads:

Hvib = −
√
εspωq̂+ρ̂−

√
εspωq̂−δ̂ +

1

2
(ω2q̂2+ + p̂2+) +

1

2
(ω2q̂2− + p̂2−) (1.28)

Polar solvation is included in the picture following the same approach originally devel-

oped for dipolar systems. For bent molecules two components of the reaction field, Fx

and Fy, must be introduced that reduce to a single component, Fx, for linear molecules

(α=0). The relevant Hamiltonian reads:

Hor = −µ̂xFx − µ̂yFy +
µ20
4εor

(F 2
x + F 2

y ) (1.29)

The (Fx, Fy)-dependent Hamiltonian can be written on the basis obtained as the direct

product of the three electronic basis states times the eigenstates of the two harmonic

oscillators associated to q+ and q− with large enough M as to ensure convergence of

the relevant results. Numerical diagonalization of the resulting matrix (total dimension
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3M2) leads to numerically exact non-adiabatic eigenstates. The calculation is repeated

on a grid of (Fx, Fy) values to get (Fx, Fy)-dependent eigenstates and, weighting each

microstate according to the Boltzaman distribution, linear and nonlinear optical spectra

can be calculated.

The vibrational Hamiltonian of eq. 1.28 shows that q̂− is coupled to the antisymmetric

δ, which mixes |Z+⟩ with |Z−⟩: oscillations along q−, driving an unbalance of charge dis-

tribution, are responsible for symmetry breaking phenomena with relevant consequences

in the optical spectra of linear quadrupolar dyes, further supported by the reaction field

(Fx), that is also coupled to δ̂ operator [36].

Symmetry-breaking in quadrupolar dyes has been extensively discussed by F. Terenziani

and A. Painelli [36]. In the adiabatic approximation, the PESs are functions of the two

vibrational coordinates q+ and q−. Stable states with respect to symmetry breaking

show PES with a displacement just along the q+ coordinate: the single minimum is

located at q− = 0 and q+ =
√
εsp⟨ρ⟩/ω (where ⟨ρ⟩ is the expectation value of the ρ̂ in

the relevant state). By contrast, states undergoing symmetry-breaking show a double

minimum at finite and opposite q− values (q− = ±√εsp⟨δ⟩/ω) separated by a saddle

point at q− = 0. Analizing the structures of the PESs, the phase diagram reported in

Figure 1.4 is obtained, as a function of ground state ionicity (ρ) and of the vibrational

relaxation energy (εsp). Three different regions can be recognized:

Figure 1.4: Phase diagram for linear quadrupolar chromophores, describing the sta-
bility of different states as function of ρ and εsp in τ unit. Region I: stable ground state
and bistable first excited state; Region II: all PES have a single minimum; Region III:

bistable ground state.
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• Class I describes dyes where symmetry breaking is expected in the first excited

state. Chromophores belonging to this class have a nondipolar |g⟩ and |e⟩ while
|c⟩ is polar; several dyes are known for Class I, for example fluorene- [36] and

biphenyl- [52] based dyes.

• Class II includes dyes not undergoing symmetry-breaking, like squaraine dyes.

• Class III describes systems undergoing symmetry-breaking in the ground state,

like cyanine dyes.

Symmetry breaking gives rise to important consequences in spectral properties of linear

quadrupolar molecules. The presence of polar states, originated by symmetry break-

ing in the first excited state or in the ground state, leads to solvatochromic behavior.

Specifically, since absorption is a vertical process no solvatochromic effects are expected

in absorption process neither in Class I and II dyes; on the contrary, strong positive

fluorescence solvatochromism is expected for Class I dyes: after absorption the system

relaxes towards one of the two minima giving rise a fluorescence relaxed polar state. For

dyes of Class III a strong inverse solvatochromism is predicted only in absorption.

1.2.3 Four-state model for octupolar dyes

In the essential-state framework, octupolar dyes, AD3 or DA3, are described in terms of

four states, |N⟩ and the three degenerate zwitterionic structures, (|Z1⟩, |Z2⟩ and |Z3⟩),
where the charge is displaced along one of the three molecular arms. The energy differ-

ence between |N⟩ and the three charge-separated states is 2z, and the three zwitterionic

forms are mixed with the neutral one by the charge-transfer integral, −τ . On this basis

set, the following operators are conveniently defined:

ρ̂ =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (1.30)

σ̂ =


0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

 (1.31)
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δ̂1 =


0 0 0 0

0 2 0 0

0 0 −1 0

0 0 0 −1

 (1.32)

δ̂2 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

 (1.33)

Exploiting the C3 symmetry, we find two totally-symmetric (A-type) wavefunctions,

|A1⟩ = |N⟩ and |A2⟩ = 1/
√
3(|Z1⟩ + |Z2⟩ + |Z3⟩), and two degenerate (E-symmetry)

states, |E1⟩ = 1/
√
6(2|Z1⟩ − |Z2⟩ − |Z3⟩) and |E2⟩ = 1/

√
2(|Z2⟩ − |Z3⟩). On this basis,

the Hamiltonian mixes the A-symmetry states, giving the ground (|g⟩) and the highest-

energy excited state (|e⟩) while the two E-states stay unmixed. The previous operators

(1.30, 1.31, 1.32 and 1.33) in the symmetrized basis are:

ρ̂ =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (1.34)

σ̂ =
√
3


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 (1.35)

δ̂1 =
√
2


0 0 0 0

0 0 −1 0

0 −1 1√
2

0

0 0 0 − 1√
2

 (1.36)

δ̂2 =
1√
3


0 0 0 0

0 0 0 −
√
2

0 0 0 −1
0 −

√
2 −1 0

 (1.37)

The electronic Hamiltonian written in the symmetrized basis reads:

Hel = 2zρ̂− τ σ̂ (1.38)
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Two dipole moments operators are defined, along the x- and y-direction (see Figure 1.5

for the reference system):

µ̂x =
1

2
µ0δ̂1

µ̂y =

√
3

2
µ0δ̂2 (1.39)

where µ0 is the magnitude of the dipole moment of each of D+A− branches.

The eigenstates of the Hamiltonian in eq. 1.38 are:

|g⟩ =
√

1− ρ|A1⟩+
√
ρ|A2⟩

|c1⟩ = |E1⟩ (1.40)

|c2⟩ = |E2⟩

|e⟩ =
√
ρ|A1⟩ −

√
1− ρ|A2⟩

where ρ is the ground state expectation value of the operator ρ̂ (eq. 1.34), and repre-

sents the weight of the zwitterionic states in the ground state. ρ is fixed by the model

parameters z and τ as follows:

ρ =
1

2

(
1− z√

z2 + 3τ2

)
(1.41)

The permanent dipole moments of |g⟩ and |e⟩ are both zero, while |c1⟩ and |c2⟩ have
non-vanishing components along x. As summarized in Figure 1.5, the OPA transition

from the ground state |g⟩ is allowed towards the two-degenerate states, while |e⟩ is a

dark state; the TPA transitions from the |g⟩ towards |c1⟩/|c2⟩ and to |e⟩ state are allowed
though the former is weak.

Figure 1.5: Panel a:schematic representation of the octupolar dyes and their orien-
tation in the (x,y) plane. Panel b: four-state model for octupolar chromophores on the
symmetrized basis and relevant electronic states. Panel c: chemical structure of Crystal

Violet (CV).
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The electronic model is now extended to account for molecular vibrations. Three vi-

brational coordinates (q1, q2, q3), one for each molecular arms, are introduced. They are

equivalent by symmetry and they are characterized by the same frequency ω and by the

same relaxation energy εsp. The symmetry adapted vibrational coordinates are:

q̂A =
1√
3
(q̂1 + q̂2 + q̂3) (1.42)

q̂E1 =
1√
6
(2q̂1 − q̂2 − q̂3) (1.43)

q̂E2 =
1√
2
(q̂2 − q̂3) (1.44)

where q̂A describes a totally symmetric deformation, while q̂E1 and q̂E2 have E-symmetry.

The vibrational Hamiltonian reads:

Hvib = −
√

2ϵsp
3
ωq̂Aρ̂−

√
ϵsp
3
ωq̂E1 δ̂1 −

√
ϵspωq̂E2 δ̂2 (1.45)

+
1

2
(ω2q̂2A + p̂2A) +

1

2
(ω2q̂2E1

+ p̂2E1
) +

1

2
(ω2q̂2E2

+ p̂2E2
)

where the operators p̂A, p̂E1 and p̂E2 represent the conjugate momenta of the relevant

vibrational coordinate.

Following the same procedure adopted for quadrupolar dyes, the total Hamiltonian is

solved in the adiabatic approximation to get relevant PESs. In Figure 1.6 we report the

potential energy surface along (qE1 , qE2) keeping the qA coordinate at its equilibrium

value. The PESs relevant to c1 and c2 show the typical structure of a conical inter-

section with the two states exactly degenerate only at (qE1 , qE2 = 0, 0) and the lowest

surface developing three equivalent minima along the directions of the three molecular

branches. In close analogy with the case of quadrupolar dyes, we classify octupolar

chromophores as belonging to Class I when having a stable ground state and a multi-

stable first excited state, and to Class III when having a multistable ground state. In

octupolar chromophores Class II is not present: symmetry-preserving octupoles do not

exist. Class I largely dominates the phase diagram of octupolar dyes.

The picture emerging from Figure 1.6 is in line with available experimental data [53,

53–55]. In fact, known octupolar dyes do not show major solvatochromic effects in

absorption spectra, in agreement with their non-polar ground state; at variance, their

fluorescence band exhibits a large bathochromic shift with increasing solvent polarity.

The solute-solvent interaction is introduced in the framework of the reaction-field ap-

proach. Treating the solvent as an elastic medium, two orientational components for the
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Figure 1.6: Phase diagram for octupolar chromophores, describing the stability of
different states as function of ρ and εsp; Region I corresponds to stable |g⟩ and |e⟩ and

multistable |c1⟩ state; Region III have both ground and |c1⟩ multistable PESs.

reaction field are considered, Fx and Fy. The Hamiltonian relevant to solvation reads:

Hor = −µ̂xFx − µ̂yFy +
µ20
4εor

(F 2
x + F 2

y ) (1.46)

To attack the problem of optical spectra in polar solvents, the total Hamiltonian, (Hele+

Hvib +Hor) is diagonalized for a grid of (Fx, Fy)-values, and non-adiabatic spectra are

calculated for each value of (Fx, Fy). The full spectra, accounting for polar solvation, are

finally obtained summing up the spectra calculated at different (Fx, Fy), each spectrum

being weighted for the relevant (ground or excited state) Boltzmann distribution.

A prototypical example of octupolar dye is Crystal Violet (CV), as shown in Figure 1.5,

whose linear and nonlinear spectral properties has been extensively investigated [16].

1.3 The Brilliant Green case

Having summarized essential-state models as applied to the different classes of dyes, here

we address the case of Brilliant Green (BG), studied in collaboration with the group of

Prof. W. Wenseellers (Antwerp University) [17]. BG belongs to triarylmethane class and

it combines the large NLO responses typical of multibranched CT dye with an optical

response sensible to the environment, making it good candidate as biological marker
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[56]. BG is very weakly fluorescent but its fluorescence quantum yield increases by up

to six orders of magnitude when bound to biomolecular hosts or when dissolved in a

viscous solvent [57–59]. BG, shown in Figure 1.7, is a cationic molecule, very similar to

CV, the parent compound with octupolar symmetry discussed in previous Section, but

with a lower symmetry, due to the lack of the amino-group in one of the three arms.

Figure 1.7: Chemical structure of BG dye.

1.3.1 Experimental data

The experimental investigation of BG is made in collaboration with the group of W.

Wenseleers of the University of Antwerp. Absorption, fluorescence and fluorescence

anisotropy were collected in our group; HRS and pump-probe spectra were measured by

the group of Antwerp.

Brilliant Green was purchased from Sigma Aldrich and used without further purification.

Absorption spectra are recorded on a Perkin Elmer Lambda 650 UV-Vis spectrometer.

Fluorescence and fluorescence anisotropy (emission and excitation) spectra were col-

lected on a Fluoromax-3 Horiba Jobin-Yvon spectrofluorometer equipped with a Xenon

lamp, as the excitation source, and excitation and emission Glan-Thompson automatic

polarizers for anisotropy measurements (single-channel L format). Spectra were collected

in chloroform (CHCl3, Sigma-Aldrich, > 99.0), tetrahydrofuran (THF, Sigma-Aldrich,

> 99.0%), dichloromethane (CH2Cl2, Sigma-Aldrich, > 99.0%), 1,2-propandiol (propy-

len glycole,Sigma-Aldrich, > 99.0%), glycerol (Sigma-Aldrich, > 99.0%) and dimethyl

sulfoxide (DMSO, Sigma-Aldrich, > 99.0%).

The absorption spectrum of BG, collected in CHCl3 and reported in Figure 1.8, exhibits

three main bands: a very intense transition at 630 nm (S0−→S1) with a shoulder at

587 nm, and two weaker transitions at 430 nm and 321 nm (S0−→S2) and (S0−→S3),

respectively. Absorption spectra are marginally affected by solvent polarity, as observed

in Figure 1.9, showing a small broadening with increasing solvent polarity. The molar
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extinction coefficient measured at 630 nm in CHCl3 is 112800 M−1cm−1. BG emission

is not detectabled at room temperature in non-viscous solvents but its fluorescence

quantum yield increases in viscous or glassy solvents, as shown in Figure 1.10.

Figure 1.8: Experimental data: panel (a) Absorption spectrum in CHCl3 (green),
HRS data in CHCl3 (blue squares), fluorescence excitation anisotropy spectrum (black)
detected at 675 nm; panel (b) unpolarized pump-probe spectra collected in CHCl3 at
different delay times; the pump beam is centered at 600 nm using UV and NIR probes.

Figure 1.9: Experimental linear absorption spectra of BG in different solvents.

Figure 1.10 shows fluorescence and fluorescence excitation spectra recorded in glassy

propylene glycol at 200 K: at this temperature the inhomogenous broadening due to

polar solvation is reduced and the excitation spectrum shows a more resolved vibronic

structure than the absorption spectrum at room temperature. The emission spectrum

shows a single broad band at 662 nm. At variance with ref. [60] and [61], the emission

from S2 state is not observed.

Excitation anisotropy (panel (a) in Figure 1.10) ranges from -0.2 (the minimum value for

anisotropy, corresponding to perpendicular transition dipole moments for the absorption
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and emission processes) within the S2 band and increases up to 0.4 (the maximum value

for anisotropy, corresponding to parallel transition dipole moments for the absorption

and emission processes) in the S1 band. Similar information is obtained from fluores-

cence emission anisotropy spectra (panel (b) Figure 1.10): when exciting within S1, the

anisotropy is close to 0.4, while it decreases down to -0.2 when exciting into S2.

Figure 1.10: Top: experimental data, BG in glassy propylene-glycol at 200K; (a)
fluorescence excitation spectrum (black), fluorescence excitation anisotropy spectrum
(green) detected at 675 nm; (b) fluorescence spectrum (black), fluorescence anisotropy

spectrum obtained upon excitation at 434 nm (blue) and 595 nm (green).

Two main bands are seen in the HRS spectrum in Figure 1.8, clearly corresponding

to the S0−→S1 and S0−→S2 bands in the absorption spectrum. A hint of a third

band S0−→S3 is seen in the increase of the HRS signal, but unfortunately reliable HRS

data could not be collected at shorter wavelengths. The lowest-energy HRS band is

the most intense HRS feature and shows a clear vibronic structure, being slightly red-

shifted with respect to the corresponding linear absorption band [16, 62]. The two main

bands observed in the HRS spectrum have similar intensity, resulting in a very different

spectroscopic profile with respect to the linear absorption spectrum, where instead the

S0−→S1 largely dominates the spectrum.

In line with the minor dependence of the spectral properties of BG on solvent polarity,

pump-probe spectra of BG in Figure 1.8 show a minor dependence on the delay time,

apart from decrease of the intensity of the photoinduced signal due to the re-equilibration

of the system after excitation. The pump-probe spectrum exhibits two positive signals

attributed to excited state absorption (ESA): a broad band centered at 1354 nm, at-

tributed to S1−→S2, and a smaller feature at 455 nm, corresponding to the transition

from S1 to some higher-energy excited state. The VIS region of the spectrum is dom-

inated by an intense negative signal at 630 nm with a partly resolved shoulder in the

high-energy side, ascribed to the superposition of the negative signals due to S0−→S1

photobleaching (PB) and S1−→S0 stimulated emission (SE). In the same region, the



24 1. SPECTRAL PROPERTIES IN ORGANIC DYES

S0−→S3 transition should give rise to a positive ESA signal that is probably hidden by

the superimposed negative PB and SE signals. Finally a negative feature at 430 nm is

ascribed to the S0−→S2 PB.

1.3.2 The essential-state model for BG

BG is a substituted triphenylmethyl carbocation dye, closely related to CV but with a

lowered symmetry: removing the amino group, one of the three arms is made a poor

donor. In a model for a perfect octupolar dye (Section 1.2.3), the lowest optical tran-

sition is towards two degenerate bright states (|g⟩ −→ |c1⟩, |g⟩ −→ |c2⟩) that are also

responsible for an intense HRS signal and a comparatively weak TPA signal. The third

excited state |e⟩, at higher energy, is a dark state, and appears with a large intensity in

TPA spectra. Indeed, vibrational coupling and symmetry-lowering due to polar solva-

tion relax the symmetry rules, and a tiny signal is seen in OPA and HRS at the frequency

of the dark state. In BG, the appearance of a secondary band in the linear absorption

spectrum to the blue of the main band marks the reduced symmetry of BG with respect

to CV: the two |g⟩ −→ |c1⟩,|g⟩ −→ |c2⟩ transitions loose their degeneracy giving rise to

OPA-, HRS- and TPA- bands. In addition the third excited states appears with a weak

intensity in OPA spectrum.

The different optical features of BG respect to CV can be qualitatively rationalized based

on simple perturbative arguments. Specifically, we adopt a purely electronic model for

an octupolar dye with the same model parameters as for CV, τ=0.91 eV, Γ=0.05 eV,

µ0=18.5 D and 2z=0.48 eV, as to implicitly account for red-shift of the spectra due to

electron-vibration coupling; then we first reproduce the qualitative BG optical features

varying the energy of the CT along the asymmetric arm from 2z (as in the perfect

octupolar system) to 2(z +∆z). Results are summarized in Figure 1.11.

As expected, the degeneracy of the two bright states of the perfect octupole is lost.

Accordingly, two transitions appear, one slightly red-shifted with respect to the octupole

and a second one more markedly shifted to the blue, in line with BG spectra. The

corresponding peaks dominate OPA and HRS spectra. The dark state in CV, dominating

the TPA spectrum, moves to the blue with increasing ∆z, and for ∆z > 0.4 eV it enters

in resonance and the TPA spectrum is obscured by the OPA resonance. In the same

region a resonance enhancement is clearly seen in HRS, with the intensity of the relevant

peak increasing by orders of magnitude when close to resonance. Of course, when ∆z

becomes very large we reach the limiting case of a bent quadrupolar molecule, where

only three states are relevant, since the fourth resonant state goes too high in energy to
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Figure 1.11: OPA, HRS and TPA spectra calculated for a purely electronic model
of a distorted octupolar molecule. The dark green line shows results relevant to CV, a
perfect octupolar dye, with τ=0.91 eV, Γ=0.05 eV, µ0=18.5 D and 2z=0.48 eV. The
light green line refers to a bent quadrupolar dye, corresponding to the ∆z −→ ∞ limit
of the distorted octupolar dye. Other colored lines refer to intermediate cases with ∆z

increasing from 0.2 to 1eV (see caption).

be relevant. In this limit, the signal seen in HRS at 670 nm is just the overtone of the

main peak at 1340 nm.

Quite irrespective of the fine tuning of model parameters, we are not able to reproduce

the relative intensity of the two main OPA and HRS bands and their position. More

generally, we are not able to obtain a satisfactorily fit of the large amount of available

spectra for BG. Therefore, we conclude that a distorted octupolar model does not apply

to BG.

A clue towards a successful model is offered by chemical intuition: in BG, the unsub-

stituted benzene will not act as a poor donor, rather it can act as a weak acceptor. In

addition, the broad and structureless bandshape of the second OPA transition, suggests

the involvement of a highly polar state. Therefore we introduce the model sketched in

Figure 1.12, formally analogous to a four-state model recently proposed for cyanine dyes

[15].
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Figure 1.12: The essential-state electronic model for BG; (a) the energy of the four
resonating structures; (b) the four resonating structures; the green arrows connects
states mixed by τ and τ ’ matrix elements, the black arrows close to φ1, φ2 and φ3

show relevant permanent dipole moments (φ0 has a vanishing dipole moment); (c) the
orientation of the molecule in the (x,y) plane.

The electronic model for BG is therefore defined as a 4x4 Hamiltonian matrix:

Hel =


0 −τ −τ 0

−τ 2z 0 −τ ′

−τ 0 2z −τ ′

0 −τ ′ −τ ′ 2z′

 (1.47)

where the physical meaning of the model parameters is illustrated in Figure 1.12.

Being interested in optical spectra, the dipole moment operator must be defined, a non-

trivial task for a dye with a net charge. Following the successful approach adopted

for CV, we expand the charge distribution in terms of monopolar and dipolar charges

located in the central C atom [16]. The monopole charge stays fixed in all states and

becomes irrelevant in the subsequent discussion. The dipole vanishes in state φ0; φ1 and

φ2 have a permanent dipole of magnitude µ0 along the first or second molecular arm

(compare with Figure 1.12) and φ3 has a permanent dipole equal to the vectorial sum

of the dipoles associated with φ1 and φ2. In line with the Mulliken approximation, we

neglect all off diagonal elements of the dipole moment with respect to µ0, so that the

operators associated with the x and y components of the dipole moment read:

µx = µ0 sin
(α
2

)


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 (1.48)
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µy = µ0 cos
(α
2

)


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

 (1.49)

Two symmetry-equivalent effective vibrational coordinates, q1 and q2, are introduced

to account for the structural reorganization occurring following the CT along the two

molecular arms. The electron-vibration coupling is introduced accounting for a varia-

tion of the equilibrium geometry: setting the origin of the coordinates at the equilibrium

position for the |φ0⟩ state, the PESs for |φ1⟩ and |φ2⟩ are displaced along q1 and q2, re-

spectively, while |φ3⟩ is displaced along both q1 and q2, with the strength of the coupling

fixed by the vibrational relaxation energy, εsp [15]. Solvation effects are introduced in the

same framework adopted for three states and four states model reaction-field approach.

The total Hamiltonian, accounting for both electron-vibration coupling and for polar

solvation reads:

Htot =


0 −τ −τ 0

−τ 2z + ω
√

2εspq1 0 −τ ′

−τ 0 2z + ω
√
2εspq2 −τ ′

0 −τ ′ −τ ′ 2z′ + ω
√

2εspq1 + ω
√
2εspq2


+
1

2

∑
n=1,2

(p2n + ω2q2n)− µxFx − µyFy +
µ20(F

2
x + F 2

y )

4εor

(1.50)

where the matrix represents the electronic Hamiltonian with q1- and q2- dependent

diagonal energies, the third term describes the harmonic oscillators associated with q1

and q2, p1 and p2 being the conjugated momenta. The last three terms describe polar

solvation, where Fx and Fy are the two in-plane components of the orientational reaction

field, coupled to the relevant components of the dipole moment operator, defined in eq.

1.48 and 1.49. The very last term is the elastic energy associated with the orientational

field, where ⟨For⟩2 = ⟨Fx⟩2 + ⟨Fy⟩2 and εor, the solvation relaxation energy, increases

with solvent polarity [30].

Since For enters the problem as a classical variable, the Hamiltonian in eq. 1.50 can be

diagonalized at fixed Fx and Fy. The (Fx, Fy)-dependent Hamiltonian can be written

on the basis obtained as the direct product of the four electronic basis states times the

eigenstates of the two harmonic oscillators associated to q1 and q2 (trunctaed to M=10

states). Numerical diagonalization of the resulting matrix (total dimension 4M2) leads
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to numerically exact non-adiabatic eigenstates. The calculation is repeated on a grid

of (Fx, Fy) values to get (Fx, Fy)-dependent eigenstates. These eigenstates can then be

used to calculate linear and nonlinear optical spectra, using standard sum-over-state

expressions that are defined by transition energies and dipole moments. Explicit expres-

sions used for the calculation of absorption, fluorescence and fluorescence anisotropy

and TPA can be found in the Appendix B. The description of the calculations of the

pump-probe spectra at two different limiting time is offered in the following Section.

1.3.3 The calculation of pump-probe spectra

In a typical pump-probe experiment, a pump pulse creates an excited state population in

the system, which is interrogated by a delayed probe pulse. The pump pulse is simulated,

in this work, as a Gaussian beam with full width at half maximum of 0.03 eV, as shown

in Figure 1.13.

Figure 1.13: Spectral profile of the pump used for the calculation of the pump-probe
spectra and absorption profile (S0−→S1) of BG in CHCl3.

Due to the finite spectral width of the pump, only the vibronic excited states resonant

with its spectral profile can be populated. After photoexcitation, vibrational degrees of

freedom relax almost instantaneously with respect to the slower solvation time scale. For

this reason, we can separate vibrational and solvation dynamics, assuming that solvent

relaxation starts once the vibrational relaxation is accomplished.

Specifically, we calculate the pump-probe spectrum in two limiting cases: the zero sol-

vation time, describing a system with a complete relaxation of vibrational coordinates

but unrelaxed solvent, and the infinite time, referring to the fully relaxed vibrational

and solvent coordinates, but without accounting for the depopulation of the electronic

state. At zero solvation time, the vertical occupation probability of the vibrationally

cooled excited state for each value of the reaction field, dex,t=0(Fx, Fy), is given by the

ground state probability distribution of the reaction field, dgs,t=0 (Fx, Fy), multiplied
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by the absorbance of the sample generated by the specific pump profile, δpump(ω), as

to account for the finite width of the pump pulse. The population of the excited state

evolves to adapt to the new reaction field generated by the excited dipole moment: at

the effective infinite time, the occupation probability of the excited state for each value

of the reaction field, dex,t=∞ (Fx, Fy), is described by the excited state distribution of the

reaction field (normalized as to preserve the initial area, not to introduce any spurious

depopulation effect). The resulting distributions are reported in Figure 1.14. In the

same Figure, the evolution of the ground state population is shown: at zero time, it is

proportional to dgs,t=0 (Fx, Fy) multiplied with the population remained in the ground

state after the pulse excitation; after few picoseconds, dgs,t=∞ (Fx, Fy) recovers its equi-

librium form.

Figure 1.14: Schematic view of the potential energy surfaces relevant to the four
electronic states and distribution of reaction field relevant to the calculated pump-probe
spectrum; the ground state distribution of reaction field at t=0 (orange line) is super-
imposed to the corresponding ground state PES; no appreciable difference is observed
between ground state distribution at t=0 ps and at t = ∞ (blue line); the excited state
distribution of reaction field at t=0 ps (green line) and t =∞ (magenta line) is super-

imposed to corresponding excited state PES.

Differential absorption pump-probe spectra are calculated as the sum of four contribu-

tions:

∆A(ω, t) =
∑
Fx,Fy

ESA(ω)dex,t(Fx, Fy) +A(ω)dgs,t(Fx, Fy) + (1.51)

−A(ω)dgs,t=0(Fx, Fy)− SE(ω)dgs,t(Fx, Fy)

where ω is the probe frquency, dex,t(Fx, Fy) and d
gs,t(Fx, Fy) are the excited state and

the ground state population, respectively, at the delay time t (either 0 or infinite in the

present treatment), and A(ω)dgs,t=0(Fx, Fy) is the absorbance induced by the specific

pump pulse. The ESA(ω) contribution takes into account all the transitions from the

fluorescent state to all higher-energy eigenstates; SE(ω) is computed summing over

all the eigenstates lying lower in energy than the fluorescent state; the photobleaching
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(A(ω)dgs,tFx, Fy) - A(ω)dgs,t=0(Fx, Fy)) accounts for the reduced absorbance from the

ground state due to its pump-induced depletion.

1.3.4 Discussion

For the BG model proposed here, the four energies in the electronic Hamiltonian of

eq. 1.47, µ0 and α of eqs. 1.48 and 1.49, define the electronic problem, while ω and

εsp define the vibrational model. These molecular model parameters and the additional

parameter Γ, the intrinsic bandwidth of each vibronic line in the calculation of optical

spectra, are maintained fixed, irrespective of the solvent, while a last parameter, the

solvent relaxation energy εor, is tuned to account for the solvent polarity.

The success of the proposed model for BG then clearly emerges from Figure 1.15 where

calculated and experimental spectra are shown together as to best appreciate the overall

quality of the agreement. All spectra in Figure 1.15, including linear absorption, HRS

and pump-probe spectra were obtained using the 9 molecular parameters in Table 1.1;

we fixed α=119◦ based on the results of the optimization of ground state geometry at

DFT level (CAM-B3LYP/6-31+G*) with PCM model (chloroform) and fixing εor= 0.16

eV for CHCl3.

Table 1.1: Molecular parameters for BG; all energies are in eV;

2z 2z’ τ τ ′ ω εsp µ0(D) α Γ
0.37 1.1 1.15 0.43 0.15 0.37 16.5 119◦ 0.06

The model reproduces very well the linear absorption spectra, including their minor

solvent dependence, as shown in Figures 1.15 and 1.16. The main discrepancy concerns

the highest energy feature at 321 nm. This transition is also observed in CV [16],

suggesting the presence of a localized excitation that is clearly beyond the scope of

essential-state models.

A similar quality of the agreement is observed for excitation anisotropy and HRS spectra

in Figures 1.15 and 1.17, respectively. The model quite naturally reproduces the different

relative intensity of the first and second peak in linear absorption and HRS as well as

the bandshapes. Again, the calculated spectrum reproduces well the shape and relative

intensities of the two lowest bands. As for the absolute intensity, calculated spectra are

less intense by a factor of three with respect to experimental spectra. Indeed, calculated

HRS spectra are most often underestimated by a factor of 3 with respect to experimental

data [16], shedding doubts on the absolute calibration of HRS data.

As for the pump-probe experiment, the t =∞ spectrum should be compared with long-

time pump-probe signal, keeping in mind that, for the sake of simplicity, we do not
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Figure 1.15: Experimental data: (a) Absorption spectrum in CHCl3 (green), HRS
data in CHCl3 (blue squares); (b) unpolarized pump-probe spectra collected in CHCl3
at different delay times; the pump beam is centered at 600 nm using UV and NIR
probes. Bottom: Calculated spectra (molecular parameters in Table 1); (c) Absorption
spectrum (green), HRS spectrum (blue squares) in CHCl3 (εor = 0.16 eV); (d) Pump-
probe spectrum in CHCl3 (εor = 0.16 eV) calculated at zero solvation time and for the
fully relaxed system (see text). The adopted spectral profile of the pump beam is shown

in Figure 1.13.

explicitly account for the depopulation of the photoexcited states. Indeed, the pump-

probe spectra calculated at t = 0 and t =∞ are only marginally different, in line with the

experimental result, and with the general observation of minor solvent effects in spectral

properties of BG. Going in more detail, the low-energy ESA signal and the negative

feature ascribed to PB are well reproduced in calculated spectra. The most significant

discrepancy is observed for the narrow ESA contribution at 590 nm (corresponding to

the S1 −→ S3 transition) that is not clearly recognizable in the experimental spectra.

A problem could be a partial superposition with the bleaching signal, but we underline

that, as for the linear absorption, S3 state is partially overlapped (mixed) with some local

excited state. In good agreement with experimental data, the time evolution has minor

effects on the pump-probe spectrum: just a slight redshift is observed in the calculated

ESA signal at low energy. The relative intensity of the bands is not addressed, since

spectra have been collected using different probes and different conditions depending on

the wavelength of interest.
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Figure 1.16: Experimental (top) and calculated (bottom) OPA spectra of BG in dif-
ferent solvents.

To complete the analysis we shortly address TPA spectra, available in a narrow spectral

region around 3 eV (631 nm) for glycerol solutions [11], and in a wider spectral range for

acetonitrile solution [63] [64]. The gross features of the TPA spectra are well reproduced

by the calculated spectra in Figure 1.18, where two bands are recognized, corresponding

to the S0−→S1 and S0−→S2 transitions. The intensity ratio of the two bands, roughly

1:8 is in line with the experimental data, even if calculated spectra are a factor of two

less intense than experimental spectra and somewhat broader.
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Figure 1.17: Top: Experimental data, BG in glassy propylene-glycol at 200K; (a) flu-
orescence excitation spectrum detected at 675 nm and fluroscence excitation anisotropy
obtained by detecting at 675 nm (green line); (b) florescence spectrum (black) and flu-
orescence anisotropy spectra obtained upon excitation at 434 nm (blue) and 595 nm
(green). Bottom: Calculated spectra (c) fluorescence excitation spectrum obtained for
643 nm (black line) and fluroscence excitation anisotropy obtained by detecting at 643
nm (green line); (d) fluorescence spectrum (black) and fluorescence anisotropy spectra
obtained upon excitation at 433 nm (blue) and 588 nm (green). The excitation wave-
lengths for calculated spectra were chosen as to best simulate the spectral position of

experimental spectra.

Figure 1.18: Calculated TPA spectrum (black line with circles) compared with the
linear absorption spectrum (black line) in glycerol (εor=0.18 eV).
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In this work, we have demonstrated that the definition of the diabatic states is not a

trivial task for multi-branched chromophores and extensive comparison with experiment

is crucial to validate the choice of the electronic diabatic basis states. Without a proper

model, there is no way to fully understand the photophysical properties of a given dye

and in this perspective, chemical/physical intuition can help to address towards the most

relevant resonating structures among a wide spectra of potential states. Once a proper

model is defined however we obtain a powerful tool: with few parameters, a large amount

of photophysical properties of a given dye can be quantitatively estimated. In the present

case, with nine parameters we are able to reproduce absorption spectra collected in

several solvents, fluorescence and fluorescence anisotropy spectra, HRS and TPA spectra

as well as time-resolved pump-probe spectra. Finally, the present model can be applied

to other dyes of similar structure, allowing for a rationalization and systematization of

the large and variegated group or organic dyes into families of systems that share the

same basic physics. In this perspective, essential-state model offers a valid alternative

to quantum-chemical calculations to understand the families of tripheylmethane dyes:

S. Rafiq et al. report a computational study of Malachite Green, closely related to BG

but with N,N-dimethyl substituted phenyl rings instead of N,N-ethyl groups. TD-DFT

(B3LYP/ 6-31+g(d,p)) are not able to reproduce neither the absolute energy of the two

lowest transition bands nor the relative transition energy: the S0−→S1 and S0−→S1 are

overestimated, respectively, by 0.53 eV and 0.16 eV giving rise to a relative difference

about twice the experimental data [65].

1.4 Vibrational coherences of charge transfer dyes

In this Section, we extend the essential-state machinery to investigate the early-stage

dynamics of coherent states generated upon ultrafast (coherent) excitation that allows

the direct observation of vibrational coherences. The capability to create coherent states

opens the possibility of controlling the excited state vibrations and the photoinduced

molecular dynamics: through ultrafast spectroscopy, an impulsive pump excites the sys-

tem to an electronic state, whose subsequent oscillations can be picked up by a delayed

probe. The instantaneous frequency and amplitude of these oscillations give the pos-

sibility to investigate the structural and electronic changes of excited molecules. To

understand these complex phenomena, non-adiabatic dynamics is crucial [66–70] since

the adiabatic separation of electronic and vibrational degrees of freedom blurs when

several electronic states are close in energy. Several approximation schemes have been

proposed to deal with the complex dynamics of systems undergoing photoinduced reac-

tions, photoisomerization, etc. The problem becomes particularly delicate if relaxation

is added to the picture, as needed to describe decay pathways after photoexcitation.
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An accurate picture of the systems of interest is obtained implementing non-adiabatic

dynamics based on the description of excited states derived from quantum-chemical cal-

culations, ranging from comparatively simple semiempirical approaches to more refined

first-principle or ab initio results. Several electronic states and several vibrational modes

are usually involved, making the resulting picture fairly complex and asking for refined

and advanced computational strategies.

By contrast, as discussed above, essential-state models, relying on an oversimplified

picture of the molecular electronic structure in terms of few electronic diabatic states

and only accounting for a minimal set of vibrational coordinates, can be written in the

non-adiabatic approximation: brute-force numerical diagonalization of the non-adiabatic

Hamiltonian is possible. The non-adiabatic approach of essential-state model has been

adopted to investigate the real-time vibrations in dyes, whose excited state PES clearly

shows dramatic symmetry-breaking effects, as quadrupolar Class I chromophores [36];

in order to underline the peculiar dynamics of Class I dyes as well as the efficiency of the

model, a comparison with systems characterized by stable PESs, is offered. Specifically,

a polar dye and a quadrupolar dye belonging to Class II have been selected [18].

1.4.1 Essential-state models for dipolar and quadrupolar dyes at work

In this Section we introduce the three CT dyes for which an ultrafast experiment has

been simulated. In particular, Phenol Blue (P1) has been chosen as prototypical polar

dye; among quadrupolar dye, squaraine (Q1) and fluorene (Q2) belonging to Class II

and Class I, respectively have been selected. The three CT dyes under investigation are

reported in Figure 1.19. All chromophores have been parameterized in the framework

of essential-state models several years ago [36, 48, 71]. The dipolar dye is modeled

adopting the two-state description presented in Section 1.2.1, while three-state model is

adopted for quadrupolar dyes (Section 1.2.2). Molecular parameters for the three dyes

are summarized in Table 1.2.

Table 1.2: Molecular parameters for the three dyes of interest; all energies are in eV;

Dye z −τ εsp ω Γ

P1 0.7 1 0.42 0.2 0.2
Q1 0.28 1.2 0.16 0.16 0.05
Q2 1.5 0.6 0.3 0.16 0.08

Phenol blue, also known as dimethylindoaniline, is an interesting chromophore for NLO

applications due to a large first hyperpolarizability. P1 is a non fluorescent dye showing

absorption solvatochromic effect: the absoprtion band moves by 950 cm−1 passing from
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Figure 1.19: Resonating structures of the three investigated molecules. In the red
boxes, the two/three electronic states are schematized for polar/quadrupolar dyes.

tetrachlorocarbone to chloroform. Essential-state model is also applied to investigate

vibrational spectroscopy: a large softening of the vibrational (IR and Raman) frequencies

increasing the solvent polarity are predicted in virtue of a large linear e-ph coupling

[48, 71].

The squaraine-based chromophore, with intermediate quadrupolar character (Class II)

is characterized by a large mixing betweeen the neutral and charge-separated states that

allows a sizable energy splitting between all relevant states. In addition, the intermediate

ρ value makes squaraine based dyes extensively studied in the literature for their high

two photon response, due to the pre-resonance effects with OPA transition. Due to the

non-polarity of relevant states, no solvatochromic effect is observed neither in absorption

nor in fluorescence [36].

Q2, a prototypical Class I dye, is characterized by two external electron donor amino

groups and a central fluorene core as an electron acceptor moiety. Spectral properties

are qualitatively different with respect to the previous compound. Absorption spectra

are only marginally affected by the solvent polarity: only inhomogeneous broadening is

observed increasing the solvent polarity; by variance, this dye shows a markable fluores-

cence solvatochromism: increasing the solvent polarity from toluene to acetonitrile, the

emission band is red-shifted by ∼3700 cm−1. This feature can be explained in terms of

symmetry breaking in the OPA excited state: indeed, the OPA excited state in Class I

dye shows two minima (see Figure 1.4) and after vertical excitation, the system relaxes
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towards one of those, leading to a polar relaxed excited state whose energy is stabilized

increasing the solvent polarity. The absorption spectra calculated for the three dyes in

absence of solvent are shown in Figure 1.20.
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Figure 1.20: Calculated absorption spectra for the three dyes in a non-polar solvent
(εor= 0). Model parameters are listed in Table 1.2.

1.4.2 Excitations and pump-probe spectra

Ultrafast excitation with pulse duration shorter than a vibrational period generates vi-

brationally coherent excitations, whose dynamics is responsible for characteristic oscilla-

tions in the transient absorption signals, giving real-time information about vibrational

motion. These coherent oscillations are well understood and are usually successfully

modeled based on the adiabatic approximation and assuming harmonic PES [72–76]. In

the adiabatic approximation, the ground state is the product of the ground electronic

wavefunction times the vibrational wavefunction. In the harmonic approximation and

low-temperature limit, the ground state vibrational wavefunction is χ0, the lowest eigen-

state of the relevant oscillator (assuming to consider a diatomic molecule). As it is well

known, χ0 describes a coherent state.

The Condon approximation leads to the simplest description of impulsive excitation:

if electronic transition dipole moments are assumed independent on vibrational coordi-

nates, the ultrafast excitation simply transfers the vibrational coherent state into the

excited state PES, creating a (non-equilibrium) coherent wavepacket. The motion of

a coherent wavepacket on a harmonic PES preserves its coherence and its dynamics

can be described as the dynamics of a classical particle on a harmonic potential [77]:

the wavepacket starts oscillating around the displaced minimum in the excited state

PES, giving rise to typical oscillations in the photoinduced signal. Pump-probe spec-

tra induced by ultrafast excitation then give us the opportunity to monitor vibrational

dynamics in real-time.
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This simple picture is very useful to understand the basic physics of coherent oscillations,

and most often leads to accurate results. However, it is based on several approximations

that, as discussed above, cannot apply to the excited state dynamics of dyes undergo-

ing symmetry breaking, like Class I quadrupolar dyes. Indeed as discussed in Section

1.2.2, due to the low quadrupolar character of the ground state, the two excited states

are quasi-degenerate giving rise to a double-minima first excited state PES: both the

adiabatic and the harmonic are doomed to fail in this case. We therefore exploit the

essential-state models to obtain a truly non-adiabatic approach to the description of

coherent oscillations in systems undergoing symmetry breaking in the excited state.

To start with, and to get confidence on the proposed approach, we discuss dyes in

non-polar solvents (εor= 0). The diagonalization of the Hamiltonian matrix written on

the non-adiabatic basis leads to the (numerically exact) vibronic eigenstates, ψk and

to relevant transition energies. At time zero, an ideal instantaneous light pulse excites

the system from the ground state to a coherent state [78], φ, expressed as a linear

combination of the exact vibronic eigenstates:

|φ(0)⟩ ∝
m∑
k=2

µk←−1|ψk⟩ ∝
m∑
k=2

δk←−1|ψk⟩ (1.52)

where the sum runs over all the vibronic excited eigenstates, ψk, of the non-adiabatic

Hamiltonian and µk←−1 is the transition dipole moment from the ground state, ψ1, to

the kth state. We underline that the ψk are truly vibronic (non-adiabatic) eigenstates,

obtained as linear combination of the basis states, that by themselves are expressed

as products of electronic and vibrational basis states. The transition dipole moments

are therefore the true (fully non-adiabatic) transition dipole moments associated with

(numerically exact) vibronic eigenstates.

In systems where the adiabatic approximation works well, the electronic and vibrational

problems effectively factorize and the adiabatic wavefunctions are a good approximation

of vibronic eigenstates. In these conditions, it is useful to distinguish two different kinds

of excitations:

• purely vibrational excitations, where the system is driven from the ground state

(product of the electronic ground state wavefunction and the ground state vibra-

tional wavefunction) to a state where only the vibrational state is changed;

• electronic excitations, where the system is driven from the ground state towards an

excited state with a different electronic wavefunction (and most often a different

vibrational wavefunction).
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In both cases, the relevant transition dipole moment, µk←−1 is calculated by first inte-

grating over the electronic wavefunction, to get q-dependent electronic dipole moments.

For vibrational transitions, the permanent molecular dipole moment for the electronic

ground state is expanded on the vibrational coordinates, and the linear term accounts

for the vibrational intensities of fundamental modes. For electronic excitations, the

electronic transition dipole moment is similarly expanded with respect to q : the zeroth

order (constant) term accounts for the Condon intensity of the electronic transition,

and the linear term accounts for Herzberg-Teller contributions. As expected on physical

grounds, purely vibrational excited states, having small transition dipole moments, con-

tribute marginally to the coherent state in eq. 1.52, that is instead largely dominated by

optically allowed states, showing sizable µk←−1. As discussed above, in the Condon ap-

proximation the transition dipole moment is independent of the vibrational coordinates,

and the coherent state |φ(0)⟩, can be written as the product of an electronic excited

state times the ground state vibrational wavefunction (the coherent ground state of the

harmonic oscillator).

We will not impose either the adiabatic or the Condon approximation, but we will show

in the following that the Condon approximation works well to describe the generation

of the coherent state |φ(0)⟩, but not its dynamics. The exact quantum dynamics of the

coherent state is calculated as follows:

|φ(t)⟩ =
m∑
k=2

µk←−1e
−iωk←−1t|ψk⟩ ∝

m∑
k=2

δk←−1e
−iωk←−1t|ψk⟩ (1.53)

where ωk←−1 is the frequency of the kth excitation from the ground state. Being inter-

ested in the early-stage dynamics, we will not introduce any dissipation term. In these

conditions, the energy of the coherent state is independent of time

Eφ =
m∑
k=2

|µk←−1|2εk (1.54)

where εk is the kth eigenvalue.

In the typical experiment, the temporal evolution of the coherent excitation is monitored

measuring the time-dependence of the differential absorbance

∆A(t, ω) = A(t, ω)−A0(ω) (1.55)

where A0(ω) is the frequency-dependent steady-state absorbance and A(t,ω) is the time-

frequency-dependent absorbance of the system after the ultrafast excitation. Three
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processes contribute to ∆A:

∆A(t, ω) ∝ ω
m∑

k>φ(t)

|µk←−φ(t)|2I(ω − ωk←−φ(t))

−ω
φ(t)−1∑
k=1

|µk←−φ(t)|2I(ω − ωk←−φ(t))

−ω
m∑
k=2

|µk←−1|2I(ω − ωk←−1) (1.56)

The first term (positive sign) describes the absorption from the coherent state to all

higher-energy eigenstates, ωk←−φ(t) = (εk − Eφ)/~ measuring the relevant transition

frequency. The second term (negative sign) is the stimulated emission from the coherent

state: the sum runs now over eigenstates lying lower in energy than the coherent state.

Finally, the third term (negative sign) accounts for the bleaching of the absorption, as

due to the depopulation of the ground state induced by the pump: the sum runs, in

this case, over all excited states. In all the three terms above, I(ω) is the Gaussian

bandshape (with half width at half maximum Γ) assigned to each transition. Exactly

the same treatment applies to the case of polar solvents, εor > 0, but the calculation is

repeated for different values of the effective solvation coordinate and then summing up

relevant spectra weighted by the Boltzmann distribution relevant to the ground state

energy, as discussed in Section 1.2.1.

1.4.2.1 Vibrational coherences in dipolar dyes

In this Section, we focus attention on transient absorption spectra and their temporal

evolution as calculated for P1, the prototypical polar dye. We start our discussion with

spectra calculated for non-polar solvents (εor = 0) and we refer to Figure 1.21.

In panel (a) we report the differential absorbance calculated as a function of time delay

and probe frequency. As we can observe from the color map, the signal is always nega-

tive: in fact, a two-state model cannot address photoinduced absorption from the single

excited state considered. Panel (c) describes ∆A as a function of probe energy at two

different delay time. Coherent oscillations at fixed probe energy are reported in panel (b)

and direct information about vibrational frequencies is obtained via Fourier Transform

(FT) and shown in panel (d). The FT signal (continuous line or dashed line) clearly

reports a single band at 0.21 eV. This energy corresponds to the vibrational frequency

relevant to the excited state PES which is expected to be somewhat higher than the

reference frequency [30]. As mentioned above, we do not introduce any source of friction

or relaxation in our model, so that calculated coherent oscillations are not damped. The

width of the FT-signal is therefore related to the finite width of the temporal window
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Figure 1.21: Calculated spectra for P1 in a non-polar solvent (εor= 0). Panel (a): 2D
map of pump-probe spectrum as a function of time delay and probe energy. Panel (b):
Pump-probe signal as a function of time, calculated for probe energy fixed at 2.17 eV.
Panel (c): Pump-probe spectrum calculated at two different times after pump excitation
(t=0 fs and t=13 fs). Panel (d): Normalized Fourier transform magnitude spectrum of
the pump-probe signal in panel (b). Continuous line: temporal windows of 2 ps; dashed

line: temporal window of 7 ps.

used for integration: this is clearly demonstrated comparing the FT spectra obtained

from the oscillating signal in panel (b), working on temporal windows of 2 and 7 ps

(continuous and dashed lines) respectively. Panel (c) shows ∆A as a function of probe

energy at two different delay time.

Several new features appear in a polar solvent, as summarized in Figure 1.22. First of

all, in panel (c) we can observe that the peak in the pump-probe spectrum is red shifted

respect to the signal in apolar solvent, due to the normal positive solvatochromism char-

acterizing optical spectra of dipolar dye [48, 71]. Similarly, one observes that the excited

state vibrational frequency becomes higher (see Figure 1.22, panel (d), to be compared

with Figure 1.21, panel (d)). More interesting is the behavior of the ∆A signal shown

as a function of time in panel (b): in fact, at variance with the previous results obtained

in non-polar solvents, a damping of the oscillations is clearly observed in polar solvents.

The observed damping of the oscillations is a pure-dephasing effect, due to disorder (in-

homogeneous broadening) induced by solvent polarity. In fact, in polar solvents, each

solute molecule is surrounded by solvent molecules that, due to thermal disorder, gener-

ate slightly different values of the local reaction field. The (polarizable) solute molecule

responds to the reaction field readjusting its charge distribution. Each solute molecule

is therefore characterized by a specific value of ρ and, due to the coupling between

electrons and vibrations, by a (slightly) different vibrational frequency. The observed
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Figure 1.22: Calculated spectra for P1 in a polar solvent (εor= 0.7 eV). Panel (a): 2D
map of pump-probe spectrum as a function of time delay and probe energy. Panel (b):
Pump-probe signal as a function of time calculated for probe energy fixed at 2.17 eV.
Panel (c): Pump-probe spectrum calculated at two different times after pump excitation
(t=0 fs and t=10 fs). Panel (d): Normalized Fourier transform magnitude spectrum of

the pump-probe signal in panel (b).

oscillations are then the sum of signals oscillating at slightly different frequencies: the

inhomogeneity shows up with a damping of the oscillations and a broadening of the

relevant Fourier transform spectrum (see Figure 1.22, panel (d)).

Photoselection is another phenomenon originating interesting spectral effects in polar

solvents. At each frequency of the probe beam, in fact, different molecules (i.e., molecules

experiencing slightly different values of the solvent reaction field, as a result of thermal

disorder) contribute by different amounts to the observed signal. Since each group of

molecules is characterized by a slightly different vibrational frequency, the observed

frequency of the coherent oscillation shows a small dispersion with the frequency of the

probe beam, as sketched in Figure 1.23.

This information is collected in the color map in Figure 1.23, where the magnitude

spectrum obtained from the FT of the pump-probe signal is reported as a function

of the probe energy in a 2D plot: the position of the maximum of the FT spectrum

changes with the probe energy, especially when the probe wavelength falls in the blue

side of the absorption and emission band. This effect is analogous to the dispersion of

the vibrational frequency in resonant Raman spectra while changing the excitation laser

wavelength [48, 71, 79].
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Figure 1.23: Fourier transform spectra calculated for P1 in a polar solvent (εor=0.7
eV). Left panel: 2D plot of the magnitude spectrum obtained from the FT of the pump-
probe signal. Right panel: Normalized Fourier transform magnitude spectrum of the

pump-probe signal for selected probe energies.

1.4.2.2 Vibrational coherences in quadrupolar dyes

We now turn attention to quadrupolar dyes. In Figure 1.24 are summarized results

obtained for the squaraine dye Q1.

Figure 1.24: Calculated spectra for Q1 in a non-polar solvent (εor= 0). Panel (a): 2D
map of pump-probe spectrum as a function of time delay and probe energy. Panel (b):
Pump-probe signal as a function of time, calculated for probe energy fixed at 2.17 eV.
Panel (c): Pump-probe spectrum calculated at two different times after pump excitation
(t=0 fs and t=13 fs. Panel (d): Normalized Fourier transform magnitude spectrum of
the pump-probe signal in panel (b). Continuous line: temporal windows of 2 ps; dashed

line: temporal window of 7 ps.

As shown in panel (c), the differential absorption signal is negative in the region 1.8-2.0

eV, where stimulated emission and absorption bleaching occur, but is positive at lower

energies, where excited state absorption (from the first to the second excited state)

dominates. This is in line with the behavior of squaraine-based dyes, or more generally
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of Class II quadrupolar dyes (ρ ∼ 0.5), characterized by an excitation spectrum where the

first excited state (OPA) approximately lies half-way between the ground and the second

excited state (TPA). As for P1, the transient signal shows a clean coherent oscillation,

whose frequency is independent of the probe energy (either in the positive or negative

∆A region, as shown in Figure 1.24, panel (b)) and the relevant FT shows a single

peak located at the same frequency (0.16 eV) assigned to the unperturbed harmonic

oscillator. Due to the large mixing character in the squaraine dyes and, more generally,

in Class II dyes, the large energy separation among electronic states are not prone to

symmetry breaking and relevant PES are well-behaved, showing a single minimum and

a roughly parabolic shape. Since excited states preserve the molecular symmetry, all

PES are aligned along the q− coordinate, being only displaced along q+. As a result,

after coherent excitation, the system oscillates according to the first excited state PES

but only along the symmetric q+ coordinate. Since the first excited state is the pure

(unmixed) zwitterionic state Z−, its curvature along either q+ or q− is not affected

by the electron-vibration coupling and we observe oscillations at the frequency of the

unperturbed oscillator (0.16 eV, compare with Table 1.2).

More interesting is the behavior of Q2, a Class I quadrupolar dye undergoing symmetry

breaking in the excited state (see Figure 1.4). Relevant spectra calculated in a non-polar

solvent are reported in Figure 1.25.

Figure 1.25: Calculated spectra for Q2 in a non-polar solvent (εor= 0). Panel (a): 2D
map of pump-probe spectrum as a function of time delay and probe energy. Panel (b):
Pump-probe signal as a function of time, calculated for probe energy fixed at 2.17 eV.
Panel (c): Pump-probe spectrum calculated at two different times after pump excitation
(t=0 fs and t=13 fs. Panel (d): Normalized Fourier transform magnitude spectrum of
the pump-probe signal in panel (b). Continuous line: temporal windows of 2 ps; dashed

line: temporal window of 7 ps.
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The energy difference between the two excited states is rather small in Class I dyes, due

to the small quadrupolar character, and therefore the contribution to the ∆A signal due

to excited state absorption is located outside the spectral region shown in the Figure

1.25. The oscillating signal is clearly dominated by a single frequency, even if some

noise appears, suggesting the contribution of some additional frequencies. Indeed, the

FT spectrum in panel (d) shows a slightly asymmetric single main peak, and some

small additional features. The relative simplicity of the oscillating signal and of the

corresponding FT contrast sharply with the complex shape of the excited state PES,

with its well pronounced two minima.

To understand the behavior of the system after coherent excitation, we have calculated

the evolution of (the square modulus of) the wavefunction on the (q−, q+) plane. Specif-

ically, for quadrupolar chromophores, the k -th eigenstate is expressed as follows:

|φk⟩ =
∑
i,m,m

cimn|ϕi⟩|m⟩|n⟩ (1.57)

where |ϕi⟩ represents the i -electronic basis state and |m⟩,|n⟩ are the eigenstates of two

independent harmonic oscillators. In the (q+,q−) space, the eigenstate in eq. 1.57 reads:

|φk(q+, q−)⟩ =
∑
i,m,m

cimn|ϕi⟩χm(q+)χn(q) (1.58)

where χm(q+) and χn(q−) are the m, n eigenstates of the relevant harmonic oscilla-

tors. The integration over the electronic coordinates gives the probability density in the

(q+, q−) space:

Pk(q+, q−) =
∑
i

∑
m,n

∑
k,l

c∗imnciklχm(q+)χn(q−)χl(q+)χk(q−) (1.59)

Figure 1.26 shows the evolution on the (q−, q+) plane of (the square modulus of) the

wavefunction for the two quadrupolar dyes. In each panel of Figure 1.26, the color map

shows the squared modulus of the wavefunction, while the information on the ground-

and first-excited state (adiabatic) PES is given by the isolines drawn as black and green

lines, respectively. The double minimum in the excited state PES is a signature of sym-

metry breaking in Q2. At t = 0 the coherently excited wavefunction has approximately

the same shape as the ground state wavefunction (the Condon approximation works

very well) and is centered around the minimum of the ground state PES.

For Q1, and more in general, for Class II dyes, the excited state PES is only displaced

along the q+ coordinate: after coherent excitation the wavefunction oscillates (basically
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Figure 1.26: Probability of the coherent wavepacket in the (q+, q−) space for Q1 (left)
and Q2 (right).

maintaining constant shape) back and forth around the minimum of the excited state

PES, with a frequency coincident with the curvature of the excited state PES along q+.

For Q2, the motion after coherent excitation is more complex and interesting: the wave-

function starts moving along q+, but it splits in two (equivalent) components moving

towards the two equivalent minima and then goes back almost retracing the forward

path. The motion represents a direct observation of a dynamical Jahn-Teller effect : the

system has a broken-symmetry PES yet it dynamically recovers the symmetry during

the motion. Basically, the only relevant oscillations are those along q+ and the complex-

ity of the bistable excited state PES only shows up with some noise and a deviation of

the main frequency from the reference frequency.

Solvent polarity has marginal effects on the spectral properties of squaraine dyes, and

this holds true for coherent oscillations as well, as shown in the left panel in Figure 1.27.

For systems undergoing symmetry breaking in the excited state, instead polar solvation

is important. We underline that, due to the very short time involved in the typical

experiment, we do not allow the solvent to relax after photoexcitation. However, thermal

disorder introduces pure-dephasing (inhomogeneous broadening) effects. For Class II
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molecules (like Q1), the presence of a finite reaction field has marginal effects on the PES.

For Q2, instead, the excited state PES is strongly affected by the reaction field, leading to

a largely asymmetric motion: after coherent photoexcitation, the wavefunction oscillates

both along q+ and q− driven by a strongly asymmetric and anharmonic PES: the FT of

the oscillating signal clearly shows two frequencies, associated to the oscillations along

q+ and q−, as well as a wide broadening.
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Figure 1.27: Normalized FT magnitude spectra calculated for Q1 (left) and Q2 (right)
in a non-polar solvent (ε = 0,, black line) and a polar solvent (εor = 0.25, red line).
The total delay time for the FT is 7 ps. The probe energy is 1.94 eV and 2.17 eV for

Q1 and Q2, respectively.

The picture emerging from all those observations is the following. In the polar dye (P1)

and the well-behaved quadrupolar dye belonging to Class II (Q1), the excited states are

fairly well separated in energy and the adiabatic approximation works well. The Condon

approximation and the harmonic approximation seem similarly robust.

When dealing with a Class I quadrupolar dye (Q2), the situation is different due to

the presence of two almost degenerate excited states that give rise, in the adiabatic

approximation, to a broken-symmetry (two-minima) PES. The Condon approximation

stays essentially valid but, to calculate the dynamics after coherent excitation, one must

relax both the harmonic and the adiabatic approximation. The results of non-adiabatic

calculation support a complex motion on the excited state PES, with the wavefunction

that symmetrically splits to explore the two degenerate minima and refocusing back

periodically. As expected in a dynamic Jahn-Teller system, the symmetry is broken at

the adiabatic level (the PES shows two minima) but it is regained dynamically, with

the system exploring both minima. Medium effects and in particular polar solvation

enter the model quite naturally. Of course, the solvent dynamics is irrelevant on the

time scales of an ultrafast pump-probe experiment. However, polar solvation introduces

thermal disorder and hence inhomogeneous broadening in the spectra and some new

features in the transient absorption signals: for polar dyes, a dispersion of the frequency

of coherent oscillations with the probe frequency; for Class II quadrupolar dyes, very

small features due to solvent-induced symmetry lowering. The role of polar solvation

has instead disruptive effects in Class I quadrupolar dyes, where finite reaction-field
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values effectively remove the degeneracy between the two minima in the excited state

PES, lowering the symmetry and leading to an asymmetric motion and the consequent

activation of both symmetric and antisymmetric vibrations.

1.5 Conclusion

In this Chapter theoretical methods based on the essential-state strategy were presented.

In the first Sections, a briefly review of the different model developed to describe CT

molecules of different symmetry was offered. The specific contribute of this thesis is

provided in Section 1.3 and 1.4.

In Section 1.3, the razionalization of linear and nonlinear optical properties of Brilliant

Green confirms that essential-state models are tractable and reliable tools to describe

low-energy spectral properties of CT chromophore. We demonstrate that the definition

of the diabatic states is not a trivial task for multi-branched chromophores and that

without the proper and physically relevant choice of the electronic basis set, there is

no way to reproduce the photophysical properties of a given dye. Once a proper model

is defined, with few parameters, we were able to reproduce linear, nonlinear and pump

probe spectra, offering therefore a reliable alternative to quantum-chemical calculations

to understand the families of tripheylmethane dyes.

In Section 1.4, we demonstrated that the same models can describe time-resolved spec-

tral properties and specifically coherent oscillations measured in pump-probe spectra

with ultrafast excitation. At variance with common approaches to the problem, based

on the adiabatic and (most often) harmonic approximation, essential-state models al-

low to attack the calculation in a genuinely non-adiabatic approach, so that reliable

results can also be obtained for critical cases, where the coherent excitation drives the

system towards degenerate or almost degenerate and/or bistable excited states and the

adiabatic approximation fails. The fully non-adiabatic treatment of coupled electronic

and vibrational motion allows for a reliable description of the dynamics of these intrigu-

ing systems, such as quadrupolar dyes showing a multistable, broken-symmetry excited

state.



Chapter 2

Mixed-stack charge transfer salts

”Measure what is measurable, and

make measurable what is not so”
-Galileo Galilei

2.1 Introduction

Charge transfer (CT) crystals represent a wide class of organic molecular materials

formed by planar π- conjugated molecules with electron donor (D) and electron acceptor

(A) character. Due to the directionality of the CT interactions between the frontier

orbitals, the molecules arrange themselves in quasi-one dimensional stacks. Different

stacking geometries are possible and CT crystals are conveniently classified as segregated-

stack CT crystals, when each stack is made up by the same molecule (...DDDD... or

...AAAA...) and mixed-stack CT crystals, in which D and A units pack in an alternating

DADADADA pattern. In the present Thesis, we will focus the attention on mixed stacks

systems.

In mixed stack CT salts, intermolecular distances along the stack imply sizeable over-

lap between frontier orbitals, leading to delocalized electrons along the stack. Large

interstack distances exclude electron delocalization in other directions. Electrons are

therefore delocalized in 1D and different stacks interact mainly via electrostatic inter-

actions. The charge delocalization and the inequivalence of D and A sites cause a CT

between D and A; the resulting stack can be described as D+ρA−ρD+ρA−ρ where ρ is

the fractional molecular ionicity. The large majority of mixed stack CT crystals have a

largely neutral (N) ground state, with ρ < 0.1. The number of largely ionic systems (I,

ρ > 0.9) is modest and even rarer are systems with intermediate ionicity [80].
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Figure 2.1: A schematic representation of the segregated CT salts (left) and mixed CT
salts (right); the latter is represented in the regular N phase (top) and in the dimerized

I phase (bottom).

As originally recognized by McConnell, the N/I nature of the ground state depends on

the balance between the electrostatic potential energy (Madelung energy, M) and the

energy cost for the charge transfer (ionization energy of a DA pair, ID−EA, where ID is

the ionization energy for D and EA is the electronic affinity for A) [81]. Specifically, a N

crystal is expected for ID−EA > M , while I salts are expected for ID−EA < M . More

interesting are systems where ID − EA ≈ M , for which, by varying external conditions

(decreasing temperature, increasing pressure), the N-I boundary can be crossed yielding

the neutral-ionic phase transition (NIT). In these systems, the lattice contraction due to

increased pressure or reduced temperature lead to an increase of the Madelung energy

driving the system from the N to the I phase [82, 83].

The first observations of pressure and temperature induced NITs were reported for

tetrathiafulvalene-chloranil (TTF-CA) by Torrance et al. in 1981 [84, 85]. From the

frequency of the infrared active vibrations, the average ionicity ρ was estimated: ∼ 0.3

at room temperature that becomes∼0.6 below 81 K [84]. This discovery triggered intense

experimental and theoretical investigations, and several systems with either continuous

and discontinuous NIT have been reported in literature [80].

Irrespective of its nature, the phase transition is always accompanied by stack dimer-

ization [83, 86]. Indeed in the I phase mixed stack CT crystals are unstable towards

dimerization. The dimerization is related to a generalized Peierls instability, due to

the coupling of the lattice to both charge (electronic Peierls instability of 1D metals)

and spin (spin Peierls instability of S=1/2 Heisenberg chains) degrees of freedom. The

reduced symmetry of the dimerized stack may lead to a ferroelectric phase, at least if

the dimerized polar chains properly order in 3D. The I phase in TTF-CA is ferroelectric

[87, 88], but the I phase of DMTTF-CA shows an antiferroelectric packing [89].
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Mixed stack CT crystals are among the most promising materials for organic ferro-

electrics [22] and possibly multiferroics [21, 23]. Renewed interest on NIT has recently

been prompted by the discovery of photoinduced NIT, shifting both experimentalists

[19, 90] and theoreticians [91] focus on the dynamic aspect of the transition.

2.2 The phenomenology of NIT

In this Section we shortly summarize some of the most interesting experimental find-

ings for mixed-stack CT salts. Specifically we discuss some of the anomalous features

observed in vibrational spectra and in diffuse X-ray scattering, focusing on TTF-CA

[85, 92, 93] and DMTTF-CA [94] (Figure 2.2), two examples of MS-CT crystal, showing

a discontinuous and a continuous NIT, respectively.

Figure 2.2: Molecular structure of TTF-CA and DMTTF-CA.

Vibrational spectra of MS-CT crystals are extremely informative and have been ex-

tensively investigated [95]. Specifically, the frequency of non-totally symmetric modes

linearly scales with the charge residing on the molecular site and for most D and A

molecules a few charge-sensitive modes have been recognized that can be safely used to

evaluate the molecular ionicity, via a linear interpolation between the known frequencies

of the neutral and fully ionic molecule [96].

Totally symmetric molecular vibrations of the D and A molecules show a more interesting

behavior due to the coupling with delocalized electrons. Totally symmetric molecular

modes in fact modulate orbital energies, i.e. modulate the on-site energy of the Hubbard

model (Holstein coupling [95]). This leads to important spectroscopic consequencies. In

particular the frequencies of totally symmetric modes are softened as a result of the

coupling with delocalized electrons, an effect that becomes more important for systems

of intermediate ionicities. The effect is clearly seen in Figure 2.3, where the black lines

show Raman spectra of DMTTF-CA crystals at different temperatures [94]. When

temperature decreases from ambient conditions towards Tc, the ionicity of the crystal

increases from 0.18 to 0.43 [94] and the two totally symmetric modes seen in the Raman
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spectra (around 950 cm−1 and 1400 cm−1) show a well pronounced softening.

Figure 2.3: Temperature dependence of DMTTF-CA Raman spectra (black lines) and
IR conductivity spectra polarized parallel to the stack axis (red lines).

The totally symmetric modes, IR inactive in the regular stack, acquire a huge intensity

in the dimerized phase, due to vibronic coupling [95]. Indeed the appearance of relevant

vibronic bands in mid-IR spectra is used as an evidence of dimerization [95, 97]. In

Figure 2.3 vibronic bands are clearly seen in the low-T phase (T < 70K). However, even

at higher temperatures, some strange features are seen in infrared spectra. Specifically,

pairs of broad IR bands are observed close to the Raman bands and more precisely one

peak is seen to the red of the Raman bands and another to the blue-side. These side

bands approach each other when temperature is lowered towards Tc and finally coalesce

in a single band, superimposed to the Raman band in the I dimerized phase.

The physical origin of these bands was initially ascribed by Tokura group [98] to local

defects, called charge transfer exciton strings (LR-CT). Indeed these bands have a much

simpler explanation: the side-bands can be safely assigned to combination modes of the

totalsymmetric Raman band with the lattice-mode that drives the dimerization [92, 94].

The IR-active dimerization mode has the proper symmetry to give IR-active combination

band with the Raman mode. Moreover its softening at the NIT explains the fact that
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the two side-bands approach each other when the system is driven towards NIT. The

appearance of intense combination bands demonstrates the large anharmonicity of the

system close to NIT, that also shows up with the appearance of an overtone of the

dimerization mode in low-frequency Raman spectra [99]. A theoretical approach to

vibrational spectra of MS-CT crystals has been recently proposed, that fully accounts

for the observed features [99].

Direct experimental identification and characterization of the Peierls mode and of its

role in the NIT proved difficult. Analysis of the far-infrared reflectivity measurements

on TTF-CA (reported in Figure 2.4) performed by Girlando and coworkers suggests that

the Peierls mode is a superposition of several phonons, all coupled to the CT electrons

[93]. This effective mode softens upon approaching NIT in quantitative agreement with

the mid-IR spectra.

Figure 2.4: Experimental reflectivity of TTF-CA at T=300 K with the polarization
parallel to the a direction with logarithmic scale for the frequencies; the spectral region

above 3000 cm−1 is taken from Ref. [97].

Buron Le-Cointe, Collet et al. [100, 101] investigated TTF-CA and DMTTF-CA through

X-ray diffuse scattering at ambient pressure and observed strong peaks in the signal

upon approaching NIT. Results for TTF-CA are shown in Figure 2.5, where the spatial

dependence of the diffuse intensity in the reciprocal space at 84 K is presented. TTF-

CA exhibits an intense X-ray signal in the (b∗, c∗) planes of the reciprocal space around

Bragg reflections with integer values of the Miller index h. These anomalies in the

diffuse X-ray scattering signal were again ascribed to charge transfer exciton strings

(LR-CT) [100, 101]. Indeed, these anomalies are again due to the strong electron-phonon

coupling (e − ph) and can be quantitatively explained in terms of the soft behavior of

the dimerization mode [102].
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Electron-phonon coupling has enormous effects on the physics of MS-CT crystals that

appear not only in their vibrational spectra and diffuse X-ray spectra. The anomalous

large dielectric peak, appearing close to NIT for TTF-CA and related systems, is a man-

ifestation of e-ph coupling and is quantitatively reproduced using the Peierls-Hubbard

model and the Berry phase formulation of polarization dielectric [103, 104].

Figure 2.5: Diffuse scattering intensity at 84 K around (3 1 1) in the (a∗, b∗) (left)
and (a∗, c∗) (right) planes in TTF-CA crystal.

2.3 Models, methods, approximation

2.3.1 Modified Hubbard model (MHM)

The rich and variegated physics of MS-CT salts can be described by a half-filled 1D

Hubbard model accounting for the inequivalence of lattice sites and for 3D Coulomb

interactions. The modified Hubbard Hamiltonian reads:

Hel = ∆

Ns∑
i=1

(−1)in̂i +
U

2

Ns∑
i=1

n̂in̂i+1 −
Ns∑
i=1

β∑
σ=α

ti(â
†
i,σâi+1,σ +H.c.) +

3D∑
i,j

Vij ρ̂iρ̂j (2.1)

where the simple sums run on the Ns number of sites on the 1D stack, while the last

double sum runs on all sites in the 3D crystal. The operator â†i (âi) creates (annhilates)

an electron with spin σ on site i ; n̂i = â†i âi is the occupation-number operator. The

operators ρ̂i = 2− n̂i and ρ̂i = n̂i measure the charge on odd (D) and on even (A) sites,

respectively. Several energies enter the Hamiltonian:

• 2∆ represents the energy difference between the donor’s HOMO and the acceptor’s

LUMO;

• U represents the on-site electron-electron repulsion and it is set U ≥ 0 at each

doubly-occupied sites;
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• ti is the nearest-neighbor interactions between i and i+1 ;

• Vi,j measures the electrostatic interactions between fully ionized molecules on i

and j sites.

The average charge transferred from D to A is measured by the ionicity operator, defined

as:

ρ̂ =
1

Ns

Ns∑
i=1

ρ̂i (2.2)

If we focus on the two first parameters and we consider an isolated DA pair, there

are three different charge distributions, as sketched in the Figure 2.6. The neutral DA

configuration has a U−2∆ energy; the ionic state, D+A−, represents the zero of energy;

finally, the doubly ionized state D2+A2− has U + 2∆ energy. The doubly ionized state

Figure 2.6: Possible electron distributions for an isolated DA pair.

D+2A−2 is very high in energy and since we are interested in the low-energy physics of

the system, it can be safely disregarded. This is easily enforced by setting ∆, U → ∞
while maintening their difference, Γ finite; specifically, 2Γ = 2∆− U=ID − EA.

2.3.2 Electrostatic interactions: the mean-field approximation

Accounting for electrostatic interactions is difficult mainly because of their 3D nature.

Exact diagonalization of the Hubbard Hamiltonian on 3D lattices is not possible, so we

adopt a mean-field approximation (mf) for interstack interactions [82, 83]. Indeed the

problem can be recast into an Hamiltonian that treats electrostatic interactions exactly

within a stack, then, accounting for interstack interactions within mean field. Most often,

all electrostatic interactions are treated in mf . Specifically, one consider the crystal as

a collection of DA pairs and explicitly accounts for electrostatic interactions within each

DA pair. As a result, 2Γ = 2∆ − U = ID − EA, measuring the energy required for

the ionization of a single pair, is renormalized to 2Γ = 2∆ − U − V = ID − EA − V ,
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where V is the absolute value of the electrostatic interaction between D+ and A− within

a pair (for historical reasons, here attractive electrostatic interactions are positive and

repulsive negative). All other intermolecular electrostatic interactions are treated in

mean field, neglecting in the above Hamiltonian all terms containing squares of the

deviation operators ρ̂i − ρ, where ρ is the average value of ρi. The mf Hamiltonian

becomes [82, 104]:

Hel = (Γ− εcρ)
Ns∑
i=1

(−1)in̂i −
∑
i,σ

(â†i,σâi+1,σ +H.c.) +
Ns

2
εcρ

2 −Nsεcρ (2.3)

where εc = (2M − V ) measures the strength of electrostatic interactions with

M =
1

Ns

Ns∑
i,j

Vi,j , (2.4)

measuring the Madelung energy of a lattice composed of fully ionized D+ and A−

molecules. For a given ρ, the last two terms in eq. 2.3 are constant and, therefore,

irrelevant in the solution of the Hamiltonian. Therefore, in the mf treatment, the elec-

trostatic interactions enter as a self-consistent renormalization of Γ [82]. The mean field

treatment for electrostatic interactions leads reliable results when compared with exact

diagonalization of stacks with Vij restricted to 1D [83, 86].

2.3.3 Lattice phonons and molecular vibrations

Only phonons at the center of the Brillouin zone are relevant to spectroscopy, and, for

MS-CT salt, the dimerization mode is a k = 0 mode. Therefore we limit attention

to k = 0 lattice mode and molecular vibrations. As for the lattice phonon, we only

account for the dimerization (Peierls) mode, xP , describing the rigid motion of the D

and A sublattices in anti-phase. The coupling to the electronic system derives from the

modulation of the hopping integral due to the variation of the intermolecolar distances.

In the hypothesis of linear coupling:

ti = t+ γ(xi − xi+1) = t(1 + (−1)iδ) (2.5)

A harmonic lattice and linear electron-phonon coupling can be used to describe the

Peierls mode; the former is equal to:

Vvib =
K

2
x2P =

Ns

2εd
δ2 (2.6)
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where K is the harmonic force constant of the lattice mode and εd =
K

4γ2
is the lattice

relaxation energy.

Regarding the electron-molecular vibration coupling, we introduce a generic totally sym-

metric vibrational mode to describe the variation of the molecular geometry along the

symmetric coordinate, occurring upon ionization. In fact, as Rice noticed for segregated

stacks, upon ionization, D and A molecules relax along totally symmetric vibrational

coordinates [105]. The Holstein coupling enters the Hamiltonian with a modulation of Γ

and an elastic energy defined in terms of the corresponding relaxation energy, sometimes

called the small-polaron binding energy, εsp. Defining q as the effective dimensionless

coordinate the total Hamiltonian in units with t = 1 reads [82]:

Hel = (Γ− εcρ+ q)

Ns∑
i=1

(−1)in̂i −
∑
i,σ

[1 + (−1)iδ](â†i,σâi+1,σ +H.c.)

+
Ns

2
εcρ

2 −Nsεcρ+
Ns

2εsp
q2 +

Ns

2εd
δ2

(2.7)

2.3.4 The solution of the electronic problem

The Hamiltonian in eq. 2.7 is a typical adiabatic Hamiltonian. The relevant electronic

Hamiltonian can be solved for fixed q and δ. Neglecting constant terms, the electronic

Hamiltonian reduces to:

Hel = Γeff

Ns∑
i=1

(−1)in̂i −
∑
i,σ

[1 + (−1)iδ](â†i,σâi+1,σ +H.c.) (2.8)

and depends on just two terms Γeff and δ, with

Γeff = Γ− εcρ+ q (2.9)

This Hamiltonian can be diagonalized numerically on cluster of N sites. Specifically,

the diagrammatic valence bond (DVB), an implementation of the valence bond method

developed by Soos and Ramasesha for quantum-cell models [106] was adopted to calcu-

late the ground state properties of systems with a finite number of sites (up to 16) and

periodic boundary conditions. Once the ground state energy and ionicity are calculated

as a function of Γeff , eq. 2.9 is used to calculate the energy as a function of δ and q,

fixed all other model parameters [82]. Figure 2.7 shows the resulting adiabatic potential

energy surfaces, PES, calculated for the model parameters reported in the caption, and

for three different V values [82]. The PES in the top panel describes a stable neutral
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state with a single minimum located at δ0 = 0. The PES in the bottom panel, instead, is

representative for an ionic stack, which is unconditionally unstable to dimerization, and

therefore, develops two equivalent minima at ±δ, corresponding to I dimerized phases

with opposite polarization. In the central panel, a bistable PES is shown, characterized

by three minima; one of them describes a N regular phase (δ=0) coexisting with an ionic

dimerized phase, described by the two equivalent minima at ±δ. The PES in Figure 2.7

clearly describes a discontinuous NIT, where the system goes from a N regular phase to

an I dimerized phase with an abrupt jump pointed out by the bistable behavior.

Figure 2.7: The PESs relevant to the system with εd=0.28, εsp=1.8, M=1.4 and
Γ=0.5 calculated for V=2.26 (upper panel), V=2.34 (central panel) and V=2.42 (bottom

panel) [82].

The nature of the phase transition can be easily modified by changing the parameters of

the electronic Hamiltonian. Figure 2.8 shows the relevant PESs for the same parameters

of Figure 2.7 but with a smaller Madelung energy (M = 1.1, see the caption). In this
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case the transition is continuous and the dimerization starts on the N side at ρ ∼ 0.4.

Figure 2.8: The PES relevant to the system in Figure 2.7 but with M=1.1 calculated
for V=2.94 [82].

Figures 2.7 and 2.8 allow us to remark some important concepts. First, in mixed CT

crystals, coupling to both lattice phonons and molecular vibrations is amplified near

the phase transition, as confirmed by the largely anharmonic PES in Figure 2.7. Both

Peierls and Holstein vibrations enter the Hamiltonian as purely harmonic (see eq. 2.7),

and therefore the anharmonicity is totally due to the coupling to the electronic sys-

tem. Second, the nature of the transition is governed by the competition between a

discontinuous crossover, coupled to on-site vibrations, and a continuous dimerization

transition, driven by Peierls phonon. When moving from the N to the I phase, the

coupling to delocalized electrons causes a decrease of the curvature of the PES along

the δ direction so that a softening of the Peierls mode develops in any case. But, in a

system with large enough M and εsp, a discontinuous NIT occurs before the complete

softening of the Peierls mode. This is the case of Figure 2.7, where a discontinuous NIT

takes place, accompanied by lattice dimerization. On the opposite, when εsp and M are

small, a complete lattice softening of the Peierls mode drives the lattice dimerization.

The minima of the PES in Figures 2.7 and 2.8 define the equilibrium positions for q and

δ.

Much information about NIT can be gained working on regular stacks. For these sys-

tems, the purely electronic Hamiltonian is defined in terms of a single dimensionless

parameter Γeff . The universal curve relating ρ to Γeff for a regular chain is known

since 1986 [86] and is reported in Figure 2.9. The ρ(Γeff ) curve is characterized by a

sigmoid shape pointing to a continuous evolution of ρ: NIT is located in correspondence

of the maximum slope at Γ(ρc = 0.63).

Eq. 2.9 allows us to extract information about the role of Coulomb interactions and

molecular vibrations on ground state properties of mixed stack CT crystals. In partic-

ular, the Hellmann-Feynman theorem allows us to relate the equilibrium value of the



60 2. MIXED-STACK CHARGE TRANSFER SALTS

Figure 2.9: The black line shows the ρ(Γeff ) curve calculated for an infinite chain.
All energies are shown in units with t = 1.

Figure 2.10: ρ(Γ) curves obtained from the ρ(Γeff ) curve (see eq. 2.12) in the mean
field approximation for the different εT values shown in the legend and εsp = 0. All

energies are shown in units with t = 1.

vibrational coordinate, qeq, to the ground state charge distribution ρ by:

(
∂E

∂q

)
eq

=

Ns∑
even,i

(−1)i⟨ρ⟩+
Ns∑
odd,i

(−1)i(2− ⟨ρ⟩) + Nsqeq
εsp

= (⟨ρ⟩ − 1) +
qeq
εsp

= 0 (2.10)

so that

qeq = εsp(1− ⟨ρ⟩) = εsp(1− ρ) (2.11)

For fixed εc and εsp we can therefore calculate, from each point in the ρ(Γeff ) curve the

corresponding ρ(Γ) point, simply using the expression

Γ = Γeff − εsp + ρ(εsp + εc) = Γeff − εsp + ρεT (2.12)
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and

εT = εc + εsp (2.13)

The coloured lines in Figure 2.10 show the ρ(Γ) curves calculated for different εT values.

The slope of the curves increases fast with εT and, for εT > 3t, the curves acquire the

typical S-shape behavior that signals the occurrence of a discontinuous phase transition

and the ρ(Γ) function is no longer single valued. The portion of the curve with a positive

slope in fact corresponds to unstable states [86].

2.4 State of art of TTF-CA, TTF-2,5Cl2BQ and perylene-

TCNQ

In this Section, we illustrate how microscopic parameters of the MHM can be extracted

from experimental data. Specifically, the hopping integral (t), the degree of ionicity (ρ)

and the small polaron binding (εsp) can be estimated, following the method proposed

by A. Girlando and A. Painelli [107]. As discussed above, ρ, the degree of ionicity, can

be extracted from vibrational spectra assuming a linear dependence of the vibrational

frequency of non coupled molecular vibrations (i.e. of non-totally symmetric molecular

modes) on the molecular charge. Electronic spectra offer the opportunity to estimate

both ρ and t, since the frequency (ωCT ) and the oscillator strength (fCT ) of the CT

transition essentially depend on these two parameters [108]. The small polaron binding

energy is a molecular parameter that can be extracted from the analysis of spectroscopic

properties of segregated stack systems based on relevant molecules [95]. Based on these

values, the softening of totally symmetric modes leads to an estimation of the electronic

response to the vibrational perturbation allowing for an indirect estimation of εsp.

In Table 2.1, microscopic parameters for TTF-CA, TTF-2,5Cl2BQ and perylene-TCNQ

are summarized. TTF-CA and TTF-2,5Cl2BQ parameters were extracted by A. Girlando

and A. Painelli, adopting the methods proposed above. Instead, perylene-TCNQ pa-

rameters are estimated by Ida et al. from reflectance data [109] based on the numerical

results of A. Painelli and A. Girlando [108]. The Madelung energy has been estimated

in the hypothesis of a fully ionic system using the atomic charge distribution computed

at CNDO/2 and MNDO level for D and A [107, 109].
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Table 2.1: Microscopic parameters of TTF-CA, TTF-2,5Cl2BQ and perylene-TCNQ
at ambient conditions; parameters for the two first salts are taken from reference [107]
and for perylene-TCNQ from [109]; in the second row the difference between the ion-
ization energy of D and the electron affinity of A is reported; all energies are reported

in eV;

System ID −EA ρ t εsp V M

1 TTF-CA 4.08 0.21 0.21 0.37 2.77 3.87
3 TTF-2,5ClBQ 4.28 0.18 0.22 0.31 2.90 3.96

6 perylene-TCNQ 4.2 0.10-0.11 0.25 - 2.46 3.01

2.5 Microscopic model parameters from DFT calculations

Extracting model parameters from experimental data requires a large amount of data

that are often not readily available. Therefore it is important to define reliable first-

principle approaches to parametrize the model Hamiltonian. We follow a method re-

cently proposed by G. D’Avino et al. and apply it to the large set of MS-CT crystals,

listed in Figure 2.11, selected based on the availability of crystallographic data and to

cover the whole spectrum of ionicities and behavior.
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Figure 2.11: Chemical structure of the family of MS-CT salts theoretically investi-
gated; for each compound cell parameters and reference paper are reported.

2.5.1 Calculations on a DA pair: towards the first-principle estimate

of Γ and t

The Hubbard Hamiltonian for a DA pair is described on the basis of four basis states,

each of them accounting for a different electronic configuration:

Φ0 = [ψd(1)ψd(2)][α(1)β(2)− α(2)β(1)]

Φ1 = [ψd(1)ψa(2) + ψd(2)ψa(1)][α(1)β(2)− α(2)β(1)]

Φ2 = [ψd(1)ψa(2)− ψd(2)ψa(1)][α(1)β(2) + α(2)β(1)]

Φ3 = [ψd(1)ψa(2)][α(1)α(2)]

Φ4 = [ψd(1)ψa(2)][β(1)β(2)]

where Φ0 is the singlet neutral basis state, while the others represent the ionic basis

states; among them, Φ2, Φ3, Φ4 are the components of the triplet function and Φ1 is the

singlet ionic function. Triplet states stay unmixed and the Hamiltonian for the singlet

subspace reads:

H =

(
z1 −

√
2t

−
√
2t z2

)
(2.14)
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or

H =

(
0 −

√
2t

−
√
2t 2Γ

)
(2.15)

where 2Γ = z2−z1; the two singlet basis functions factorize into the two electronic states

Ψg and Ψe, defined in 2.16 and 2.17, respectively:

Ψg =
√

1− ρS |Φ0⟩+
√
ρS |Φ1⟩ (2.16)

Ψe =
√
ρS |Φ0⟩ −

√
1− ρS |Φ1⟩ (2.17)

where ρS , the degree of ionicity in singlet dimeric system, is expressed as:

ρS =
1

2

(
1− Γ√

Γ2 + 2t2

)
(2.18)

The components of the triplet function correspond to fully ionic states.

The ground state energy is:

ES = z1 + Γ−
√

Γ2 + 2t2 (2.19)

and the singlet-triplet gap reads:

∆ST = Γ +
√

Γ2 + 2t2 (2.20)

A scheme of the energies of the basis states and of the eigenstates of the dimer Hamil-

tonian is reported in Figure 2.12

Figure 2.12: Schematic representation of the two states model.

Quantum chemical calculations on an isolated DA pair in the crystallographic geometry

give access to ES and ET , the energies of the lowest eigenstates for the DA pair with

singlet and triplet multiplicity, and hence to ∆ST . Another quantity is needed however
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to extract model parameters. In Method A we access z1 by summing up the ground

state energies of isolated (neutral) D and A molecules. Equations 2.19 and 2.20 can then

be used to estimate Γ and t. This method, that has the advantage of only relying on

energies and not on wavefunctions, is however affected by large errors due to the neglect

of dispersion forces in the estimatation of z1.

An alternative approach Method B relies, instead, on the calculation of the degree

of CT, ρS , from the charge distribution calculated for the singlet ground state of the

isolated DA pair. Γ and t are therefore estimated from ρS and ∆ST as follows:

t = ∆ST

√
ρS

2(1− ρS)
(2.21)

Γ = t
1− 2ρS√
2ρS(1− ρS)

(2.22)

2.5.2 Calculations on DA pairs

For the selected systems in Figure 2.11, we extract relevant DA pairs, as illustrated in

Figure 2.13, and on these structures we perform DFT calculations. The same calcula-

tions are also run on isolated D and A molecules and D+ and A− ions, maintaining the

crystal geometry. For the calculation of vibrational relaxation energies, calculations on

isolated species at optimized geometry are performed, as discussed in Section 2.5.3.
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Figure 2.13: Selected dimer(s) along crystallographic axis (a,b,c respectively) for each
MS-CT salts theoretically investigated.
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For most salts, the crystal is built based on repetition of a single DA pair. TTF-BA

represents a notable exception, being characterized by two mutually orthogonal and non-

equivalent stacks [110]. In this case, two different TTF-BA pairs, 4a and 4b TTF-BA

are selected, as shown in Figure 2.13. In the disordered ClMePD-DMeDCNQI crystal

(13) the chlorine atom and the methyl group have 1:1 occupancy at each site [111],

originating two inequivalent pairs, called 13a and 13b. In either case the typical C-Cl

distance (1.71 Å) is used. When the position of H atoms is not explicitly given in the

crystallographic structure, they are added manually and their position is optimized at

PM7 level (MOPAC package [112] [113]).

All calculations are performed at DFT level (Gaussian 09 package [114]), using the

UωB97XD hybrid functional. This functional, in virtue of the range-separated treatment

of the Coulomb operator and of the inclusion of dispersion correction, is one of the most

reliable for the study of the intermolecular CT phenomena [115]. The basis set 6-31+G*

has been chosen to include both anisotropic distribution and electron distribution far

away from the nuclei (important for lone pairs systems and anions).

Table 2.2 collects the energies calculated for the lowest singlet and triplet eigenstates for

the DA pairs, ES and ET , respectively, as well as z1 estimated as the sum of the ground

state energies of the isolated (neutral) D and A molecules.

Table 2.2: Singlet and triplet energies for the selected dimers and z1 calculated as the
sum of the ground state energies of not interacting D and A; all energies are measured

in eV;

System ES ET z1

1 TTF-CA -110’008.190 -110’007.202 -110’007.624
2 DMTTF-CA -112’158.706 -112’157.819 -112’158.191

3 TTF-2,5,Cl2BQ -85’007.553 -85’006.348 -85’007.037
4a TTF-BA -339’848.881 -339’848.608 -339’847.999
4b TTF-CA -339’849.040 -339’848.621 -339’848.119

5 TMB-TCNQ -38’344.988 -38’344.289 -38’343.676
6 perylene-TCNQ -39’381.349 -39’380.178 -39’380.327

7 BT-TCNQ -76’139.606 -76’138.011 -76’138.513
8 BT-F4TCNQ -86’938.307 -86’937.089 -86’937.035

9 DBTTF-TCNQ -76’431.683 -76’430.944 -76’430.864
10 TMPDTCNQ -32’064.535 -32’064.885 -32’063.813

11 TMB-CA -80’280.816 -80’279.652 -80’279.846
12 N,N,N”-TMB-CA -80’289.735 -80’287.852 -80’288.951

13a ClMePD-DMeDCNQI -39’352.860 -39’351.975 -39’352.024
13b ClMePD-DMeDCNQI -39’352.835 -39’351.933 -39’352.006

We notice that for 5 and 9 we obtain ET < z1, making it impossible to estimate model

parameters according to Method A. This discrepancy is ascribed to the neglect of
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dispersion energies in the z1 estimation. The results in Table 2.2 allow to estimate

model parameters (Γ and t) based on Method A. Results are collected in Table 2.3.

The estimated t are fairly large. Indeed we believe that Method A, only relying on

energies, is not very accurate due to the neglect of dispersion forces in the calculation of

z1. Moreover in TMPD-TCNQ (system number 10) ET < ES , a result that cannot be

reconciled with the proposed model. Accordingly we cannot estimate model parameters

for TMPD-TCNQ following either Method A or B.

Table 2.3: Method A results: Γ and t, both reported in eV;

Method A

System Γ t
1 TTF-CA 0.211 0.529

2 DMTTF-CA 0.186 0.478
3 TTF-2,5,Cl2BQ 0.345 0.558

4a TTF-BA -0.304 0.347
4b TTF-BA -0.251 0.439

5 TMB-TCNQ — —
6 perylene-TCNQ 0.075 0.774

7 BT-TCNQ 0.251 0.934
8 BT-F4TCNQ -0.027 0.880

9 DBTTF-TCNQ — —
10 TMPDTCNQ — —

11 TMB-CA 0.097 0.751
12 N,N,N’,N’-TMB-CA 0.550 0.860

13a ClMePD-DMeDCNQI 0.024 0.608
13b ClMePD-DMeDCNQI 0.036 0.612

To address Method B we do not rely on z1, but we need estimation of the ground state

ionicity in the dimer. Table 2.4 reports the results obtained for the different DA pairs.

Specifically, ρ is calculated summing up the atomic charges in the D molecule (those on

A are equal and opposite). Two different choices have been made for the calculation

of atomic charges. The Hirshfeld (HIRS) charges should be the most appropriate way

to address charge distribution [116]. For the sake of comparison, we also list results

obtained from electrostatic potential charges (ESP) [117]. In the same Table we also

show the ionicity of the triplet state, ρT estimated from the charge distribution in the

lowest triplet state of the isolated DA pair. This quantity does not enter the expressions

for the estimation of microscopic model parameters, but is an important parameter to

verify the quality of the proposed approach. In fact, if the dimer model holds true, we

expect ρT = 1: large deviation from this limiting value suggests a poor reliability of the

approach.
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Table 2.4: Distribution of charge in singlet (ρS) and triplet (ρT ) state calculated for
all dimers investigated using two different charges schemes: Hirshfeld charges (HIRS)

and electrostatic ones (ESP);

System ρS,HIRS ρS,ESP ρT,HIRS ρT,ESP

1 TTF-CA 0.091 0.095 0.867 0.787
2 DMTTF-CA 0.097 0.120 0.864 0.801

3 TTF-2,5,Cl2BQ 0.097 0.081 0.887 0.792
4a TTF-BA 0.121 0.089 0.946 0.813
4b TTF-CA 0.128 0.079 0.947 0.810

5 TMB-TCNQ 0.169 0.267 0.820 0.854
6 perylene-TCNQ 0.109 0.155 0.867 0.823

7 BT-TCNQ 0.046 0.127 0.736 0.710
8 BT-F4TCNQ 0.064 0.121 0.880 0.809

9 DBTTF-TCNQ 0.155 0.157 0.860 0.780
10 TMPDTCNQ 0.244 0.309 0.813 0.862

11 TMB-CA 0.087 0.219 0.81 0.850
12 N,N,N’,N’-TMB-CA 0.070 0.131 0.841 0.861

13a ClMePD-DMeDCNQI 0.219 0.212 0.868 0.810
13b ClMePD-DMeDCNQI 0.219 0.200 0.878 0.817

According to Table 2.4, the ionicities calculated in either scheme are very similar for

TTF-CA, TTF-2,5Cl2BQ, DBTTF-TCNQ and ClMePD-DMeDCNQI, while more gen-

erally ESP overestimates the singlet ρ with respect to HIRS. In all systems we obtain

ρT ∼ 1 supporting the dimer model.

Data in Tables 2.2 and 2.4 can be used to extract model parameters according to

Method B. Results are reported in Table 2.5 that compares Γ and t estimates obtained

using both Hirshfeld and electrostatic charges. The estimated t in Table 2.5 obtained

used either HIRS or ESP charges are in reasonable agreement with available estimates

of charge transfer integral in mixed-stack CT crystals [97, 109]. For both set of charges,

TTF-BA has by far the smallest hopping integral: the low electron kinetic energy favors

electron localization so that TTF-BA is expected either largely neutral or largely ionic.

Indeed TTF-BA is a largely ionic system with ρ ∼ 0.95 [110]. The largest hopping

integral is found for N,N,N’,N’-TMB-CA. For most systems the hopping integrals eval-

uated based on HIRS or ESP charges are similar, except for BT-TCNQ, BT-F4TCNQ,

TMB-CA and N,N,N’,N’-TMB-CA. Apparently the estimate obtained based on ESP

charges for BT-TCNQ and BT-F4TCNQ agree well with previous estimates, t ∼0.4-0.6
obtained by Méndez et al. [118]. The hopping integral estimated for TTF-CA agrees

quantitatively with current estimates (t ∼ 0.21 eV, see Table 2.1) [107].

Regarding TTF-2,5Cl2BQ, a larger hopping integral than for TTF-CA is expected, based

on the shorter intermolecular distances [107] (see Table 2.1), in line with our results.

The mixing integral predicted by Hirshfeld charges in perylene-TCNQ matches exactly
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Table 2.5: Γ, t and ∆G parameters derived through Method B adopting Hirshfeld
charges (first three columns) and ESP charges (last three columns).

Method B

Hirshfeld charges ESP charges
System ρ(HIRS) Γ t ρ(ESP) Γ t

1 TTF-CA 0.091 0.445 0.221 0.095 0.442 0.226
2 DMTTF-CA 0.097 0.396 0.206 0.120 0.383 0.232

3 TTF-2,5,Cl2BQ 0.097 0.538 0.279 0.081 0.549 0.253
4a TTF-BA 0.121 0.118 0.072 0.089 0.123 0.060
4b TTF-BA 0.128 0.178 0.113 0.079 0.191 0.087

5 TMB-TCNQ 0.169 0.278 0.223 0.267 0.222 0.298
6 perylene-TCNQ 0.109 0.514 0.290 0.155 0.478 0.355

7 BT-TCNQ 0.046 0.759 0.248 0.127 0.681 0.430
8 BT-F4TCNQ 0.064 0.567 0.225 0.121 0.525 0.319

9 DBTTF-TCNQ 0.155 0.302 0.224 0.157 0.301 0.226
10 TMPDTCNQ 0.243 - - 0.309 - -

11 TMB-CA 0.087 0.526 0.254 0.219 0.419 0.436
12 N,N,N’,N’-TMB-CA 0.070 0.871 0.365 0.131 0.800 0.517

13a ClMePD-DMeDCNQI 0.219 0.318 0.331 0.212 0.323 0.325
13b ClMePD-DMeDCNQI 0.219 0.325 0.338 0.200 0.338 0.319

with Ida’s results, as shown in Table 2.1. In addition, Bewick et al. predict a mixing

integral equal to 0.25 eV for ClMePD-DMeDCNQI [119]: with both approaches, we get

comparable results. By contrast, present estimates of t for DBTTF-TCNQ are somewhat

smaller than Zhu’s computed value t ∼ 0.70 eV [120].

2.5.3 Calculation of the small polaron binding energy

The small polaron binding energy, εsp, measures the sum of the relaxation energies of

the two isolated molecules, associated with the geometrical relaxation following the D

to D+ and A to A− processes, as sketched in Figure 2.14. The relaxation energy is then

evaluated within the Adiabatic Potential approach (AP) as the reorganization energy

in the charged states for the two isolated molecules. Calculations on the neutral and

ionic isolated D and A species are executed at UωB97XD/6-31+G* level of theory in

gas phase. Results are reported in Table 2.6.

Previous estimates of relaxation energies in Ref. [83] were obtained analyzing spectral

properties of CT crystals with a segregated stack motif (indeed vibrational relaxation

energies are molecular parameters and hence transferable among different systems com-

posed of the same molecular units). Authors have estimated 0.11 < εsp < 0.40 eV.

Actually, DFT calculations in gas phase suggest somewhat larger small-polaron bind-

ing, spanning a range of 0.30-0.82 eV. Among the studied systems ClMePDMeDCNQI is
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Figure 2.14: Schematic representation of the potential energy of the neutral and
charged state of D and A; specifically for D(A) the cation (anion) is considered. The
relaxation energy is calculated as the difference between the energy of the charged state

at optimized neutral geometry minus the energy of the optimized charged state.

Table 2.6: Relaxation energies for salts under investigation;

System εsp (eV)

1 TTF-CA 0.47
2 DMTTF-CA 0.49

3 TTF-2,5,Cl2BQ 0.49
4 TTF-BA 0.45

5 TMB-TCNQ 0.60
6 perylene-TCNQ 0.31

7 BT-TCNQ 0.36
8 BT-F4TCNQ 0.36

9 DBTTF-TCNQ 0.36
10 TMPD-TCNQ 0.65

11 TMB-CA 0.70
12 N,N,N’,N’-TMB-CA 0.58

13 ClMePD-DMeDCNQI 0.82

the softest crystal, while perylene-TCNQ is the hardest one. The relaxation energy esti-

mated for TTF-2,5Cl2BQ is lower than that in TTF-CA, at variance with the previous

parametrization (Table 2.1) [83].

2.5.4 Calculation of electrostatic interactions

As mentioned in Section 2.3.2, in the mf , intersite electrostatic interactions enter the

problem in terms of a single parameter εc = (2M −V ) where M is the Madelung energy

(see eq. 2.4) and V the interaction between D and A species in a single pair [82]. The

Madelung energy can be estimated as the difference between the sum of electrostatic

interactions in a lattice of fully ionized D+ and A− sites (MI) minus the same energy

calculated in a lattice of neutral D and A species (MN ), M = MI −MN [42]. The two
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basic interactions are defined as

MN/I =
1

Ns

∑
i,j

V
N/I
i,j (2.23)

corresponding to the Madelung energy for a crystal of fully ionic (I) or fully neutral (N)

molecules, with the sum running on the 3D lattice, Ns counting the number of sites and

V
N/I
i,j measuring the electrostatic interactions between i and j sites in the 3D cluster.

For historical reasons, we use a convention so that a positive (negative) Vi,j refers to

attractive (repulsive) interactions, so that V is always positive.

The V
N/I
i,j are calculated as sum of electrostatic interactions among point atomic charges

located at the crystallographic positions for the neutral and ionic D and A isolated

species [42]. The crystallographic data give information about the atomic positions,

whereas atomic charges are calculated at ωB97XD/6-31+G* level of theory in the ESP

scheme, as the most appropriate to simulate the electrostatic potential [117].

The sum in eq. 2.23 run on the infinite 3D crystal: we calculate MN/I for spherical

clusters of increasing radius constructed out of the crystalline structure (see Figure

2.15 for an example) and we increase the size of the cluster until convergence. The

codes to calculate Madelung energies were kindly provided by G. D’Avino. Results are

summarized in Table 2.7. For TTF-BA compound and ClMeDMeDCNQI, the Madelung

energy is calculated considering just the charge distribution of units a.

Figure 2.15: Spherical clusters with different radius for TTF-CA crystals; from left:
radius values 40, 70, 100 Å.

The nearest-neighbor interaction V is estimated as the difference between the electro-

static interaction calculated for a D+ A− pair (VI) minus the same interaction calculated

for a neutral DA pair (VN ) [121]. Table 2.8 reports relevant results.

The current estimate of V = 2.53 eV is in good agreement with the literature data,

V = 2.77 eV calculated for TTF-CA [107]. The shorter intermolecular distances in
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Table 2.7: Madelung energy extrapolated for an infinite crystal;

System M (eV) Mionic (eV) Mneutral (eV)

1 TTF-CA 1.654 1.752 0.140
2 DMTTF-CA 1.197 1.391 0.193

3 TTF-2,5,Cl2BQ 1.314 1.517 0.203
4 TTF-BA 1.456 1.473 0.019

5 TMB-TCNQ 1.325 1.712 0.386
6 perylene-TCNQ 1.035 1.242 0.207

7 BT-TCNQ 1.002 1.220 0.218
8 BT-F4TCNQ 0.952 1.191 0.240

9 DBTTF-TCNQ 1.038 1.320 0.282
10 TMPDTCNQ 1.132 1.248 0.108

11 TMB-CA 1.602 1.843 0.217
12 N,N,N’,N’-TMB-CA 1.011 1.113 0.102

13 ClMePD-DMeDCNQI 1.259 1.661 0.403

Table 2.8: Nearest-neighbor electrostatic interactions;

System V VI VN

1 TTF-CA 2.533 2.593 0.059
2 DMTTF-CA 2.414 2.476 0.062

3 TTF-2,5,Cl2BQ 2.578 2.626 0.048
4a TTF-BA 2.355 2.392 0.037
4b TTF-BA 2.624 2.660 0.036

5 TMB-TCNQ 2.029 2.291 0.263
6 perylene-TCNQ 2.055 2.210 0.155

7 BT-TCNQ 2.004 2.161 0.157
8 BT-F4TCNQ 1.887 2.103 0.216

9 DBTTF-TCNQ 2.008 2.103 0.095
10 TMPDTCNQ 2.370 2.387 0.018

11 TMB-CA 2.290 2.416 0.126
12 N,N,N’N’-TMB-CA 2.258 2.281 0.023

13a ClMePD-DMeDCNQI 2.465 2.579 0.114
13b ClMePD-DMeDCNQI 2.435 2.563 0.128

TTF-2,5Cl2BQ with respect to TTF-CA suggest a larger V , as confirmed by our re-

sults. Similarly, we can explain the different results observed in the two dimeric units

in TTF-BA, in which the second one presents shortest intermolecular distances. Inter-

molecular distances cannot be invoked to explain the smaller V observed in DMTTF-CA

respect to TTF-CA or that in BT-F4TCNQ respect to BT-TCNQ. In the systems with

substituents, the charge distribution is delocalized among a larger number of atoms

diluting interactions respect to unsubstituted ones.

The large M value in TTF-CA can be ascribed to the presence of attractive electro-

static intra- and inter- chain interactions, along a axis and c axis, respectively (see
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Figure 2.19). Specifically, in the monoclinic TTF-CA, we observe short C-H99KO and

SL99Cl distances between D and A molecules of different stacks, that play an impor-

tant role favoring attractive electrostatic interchain interactions [122]. Both interactions

are also observed in DMTTF-CA, while, in TTF-2,5Cl2BQ C-H99KO as well as ClL99H
attractive contacts are presents. On this basis one could expect for these systems a

comparable Madelung energy as for TTF-CA. Instead, weaker Madelung energy is pre-

dicted for both (respect to TTF-CA). However in TTF-2,5Cl2BQ and in DMTTF-CA,

the triclinic structure with only one DA pair per unit cell, induces unfavorable inter-

stack D+D+ and A−A− Coulomb interactions in the bc plane, as shown in Figure 2.16

possibly justifying the obtained results.

Figure 2.16: TTF-2,5Cl2BQ and DMTTF-CA in the bc plane; hydrogen atoms are
omitted for clarity.

TMB-TCNQ and perylene-TCNQ, report both inter- and intra- stack N-H closest con-

tacts, as shown in Figure 2.17; in addition, in perylene-TCNQ, the copresence of donor-

donor and acceptor-acceptor interactions along b axis (Figure 2.19) contributes to de-

crease the Madelung energy respect to TMB-TCNQ; a similar rearrangement is observed

in DBTTF-TCNQ and in TMPD-TCNQ. Specifically, in the former, both inter - N-H

and intra-stack C-S interactions (see Figure 2.17) are found togheter with the adjacent

(and slightly glided) D-D and A-A in the ac plane (Figure 2.19); in addition, since the

cell volume in DBTTF-TCNQ is about the half respect the perylene-based salt (Figure

2.11), we hypothesize that the D-D and A-A repulsions contribute much more, suggest-

ing therefore a smaller value of εc respect to perylene-TCNQ.

In TMPD-TCNQ, adjacent donor-donor moieites are observed along a and b axis and

acceptor-acceptor interaction are found just along the a direction. This packing can be

invoked to explain the smaller value of Madelung energy in TMPD-TCNQ respect the

TMB counterpart.

As expected, BT-TCNQ and BT-F4TCNQ show the smallest Madelung energies due to

the steric hindrance of chains which block attractive intrastack interactions. In addition,
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Figure 2.17: TMB-TCNQ, DBTTF-TCNQ and perylene-TCNQ packing in which
inter- and intra- stack close contacts are shown (cyan line) along a,c and b axis respec-

tively.

it is surprisingly that BT-TCNQ is characterized by a zero value of εc, indicating a very

short range of intermolecular Coulombian interactions.

As reported in Figure 2.18, inter- and intra- chain interactions are involved in TMB-CA,

where each acceptor attractively interacts with two donors, owning to the same stack and

with other two donors of different stacks; on the other hand, in N,N,N’,N’-TMB-CA, just

intrachain interactions are observed: each acceptor is involved in attractive interactions

with only two donors and in repulsive Cl-Cl interactions with two other acceptor units.

This rearrangement can explain the smaller Madelung energy computed.

Figure 2.18: TMB-CA and N,N,N’,N’-TMB-CA packing in which the close contacts
betweeen each acceptor are shown along c and b axis, respectively; hydrogen atoms are

omitted for clarity.
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Data in Tables 2.7 and 2.8 allow to estimate the main parameter entering the mf

description of electrostatic interactions, εc = (2M − V ); then, combining εc with εsp

(Table 2.6) we can access to εT (see eq. 2.13). Results are listed in Table 2.9.

Table 2.9: εc (eV), εT (eV), εc/t and εT /t;

System εc εT
εc
t

εT
t

1 TTF-CA 0.77 1.25 3.50 5.63
2 DMTTF-CA -0.02 0.47 -0.10 2.29

3 TTF-2,5,Cl2BQ 0.54 0.18 0.49 1.93
4a TTF-BA 0.56 1.01 7.77 14.0
4b TTF-BA 0.29 0.74 2.54 6.51

5 TMB-TCNQ 0.62 1.22 2.79 5.48
6 perylene-TCNQ 0.01 0.33 0.05 1.12

7 BT-TCNQ 0 0.36 0 1.45
8 BT-TCNQF4 0.02 0.38 0.08 1.67

9 DBTTF-TCNQ 0.07 0.43 0.30 1.91
10 TMPDTCNQ -0.11 0.55 - -

11 TMB-CA 0.91 1.61 3.60 6.36
12 N,N,N’,N’-TMB-CA -0.24 0.34 -0.65 0.94

13a ClMePD-DMeDCNQI 0.05 0.88 0.16 2.63
13b ClMePD-DMeDCNQI 0.08 0.90 0.25 2.67

A first observation of Table 2.9 concerns the three systems, DMTTF-CA, TMPD-TCNQ

and N,N,N’,N’-TMB-CA, showing negative (repulsive in our convention) εc values. In-

deed εc is always positive for a single DA chain: negative values imply strong repulsive

interchain interactions as to override the positive (attractive) intrachain interactions.

BT-TCNQ is characterized by a zero value of εc, indicating a very short range of inter-

molecular Coulombian interactions.
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Figure 2.19: Crystal packing along crystallographic axis for each MS-CT compounds
investigated; hydrogen atoms are omitted for clarity.
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2.5.5 Ground state properties of MS-CT salts from DFT

We now have all parameters needed for a mean-field description of the ground state

properties of our systems. Using eq. 2.12 we can now extract out of the universal curve

ρ(Γeff ) in Figure 2.9, the ρ(Γ) curves relevant to the systems at hand, as shown in

Figure 2.20.

Figure 2.20: Degree of ionicity as function of Γ in t unit calculated for each salt based
on model parameters estimated in this work.

The scenario emerging from Fig. 2.20 is very variegated and three different trends can

be observed:

1. perylene-TCNQ (orange), N,N,N’,N’-TMB-CA (grey), DBTTF-TCNQ (yellow),

BT-TCNQ (cyano), BT-F4TCNQ (violet) and TTF-2,5Cl2,5BQ (dark green) are

characterized by a fairly modest steepness of the curve pointing to a continuous

or almost continuous behavior;

2. TTF-CA (red), TMB-TCNQ (blue), TMB-CA (brown), DMTTF-CA (light green)

and ClMePD-DMeDCNQI (black) show a well evident S-shaped ρ(Γ) curve point-

ing to a discontinuous behavior;

3. in TTF-BA (magenta) the curve points to an extremely discontinuous behavior

with region of stability limited to just fully N (ρ < 0.1) or fully I (ρ > 0.9) states.
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The observed behavior is fully dominated by the εT /t ratio, reported in Table 2.9, as

already discussed in Section 2.3.4. Specifically, according to Figure 2.10, a continuous

behavior is predicted for perylene-TCNQ, N,N,N’,N’-TMB-CA, DBTTF-TCNQ, BT-

TCNQ, BT-F4TCNQ and TTF-2,5Cl2,5BQ since they are characterized by εT /t < 2:

in this case, neither intersite interactions nor molecular vibrations are large enough to

overcome the effect of the integral hopping, giving rise a second-order phase transition.

By contrast, in TTF-CA, TMB-TCNQ and TMB-CA, εT /t > 3 signals a discontinuous

phase transition: the ρ(Γ/t) function is no longer single valued and two stable states

corresponding to the curve with positive slope can be found. Moreover, Tables 2.6 and

2.9 allow to discriminate the main contribution to the discontinuous transition between

εc and εsp. In particular, we can state that in TTF-CA, intersite interactions play the

major role, while the discontinuous behavior in TMB-TCNQ stems mainly from the

significant relaxation energy of the Holstein mode. Finally, both contributions play an

important role in TMB-CA.

DMTTF-CA and ClMePD-DMeDCNI show continuous or weakly discontinuous ρ(Γ/t)

curve as due to the intermediate value of εT /t (2< εT /t <3) respect with the previous

cases. We can attribute such behavior in ClMePD-DMeDCNQI to the competition

between the significant molecular relaxation energy and relatively large hopping integral;

while in DMTTF-CA the repulsive intersite interactions are the main responsible.

The ρ(Γ) curve in TTF-BA is completely different; in this case the large εT /t ratio is due

to the very small hopping integral predicted: for this salt, only largely neutral (ρ < 0.1)

or largely ionic states (ρ > 0.9) are accessible with a very large bistability.

A more detailed comparison would include the estimate of ρ from Γ and t reported in

Table 2.5. Indeed, the calculated Γ/t allows to estimate from the curves in Figure 2.20

the relevant ρ values, as reported in Table 2.10.

The results however point to underestimated ionicities if compared with experimental

values (see fourth column in Table 2.10). This can be ascribed to several problems. We

exclude a role of adopted functional: Γ values obtained by D’Avino et al. for TTF-CA

through CAMB3LYP and M06HF are similar [24]. One problem arises from the fact

that all calculations are performed in gas phase, then leading to an overestimation of

Γ. To correct for this contribution we mimic the environment repeating the calculation

on a TTF-CA pair in cyclohexane. This leads to a stabilization of both neutral singlet

and triplet states, with a decrease of ∆ST down to 0.3 eV. Method B gives a Γ and an

hopping integral values amounting to 0.306 eV and 0.162 eV respectively; then adopting

the new value of Γ in t unit, we estimate the degree of ionicity in the crystal ρcalc ∼ 0.03

that does not improve appreciably over the previous result. For TTF-CA D’Avino et

al. estimated the polarizability correction to Γ of the order of 0.2 eV. [24]. Again the
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Table 2.10: ρcalc is extracted from data plotted in Figure 2.9 using Γ and t computed
by Method B (see Tables 2.5) in comparison with ρexp;

System Γ/t ρcalc ρexp Ref.

1 TTF-CA 2.014 0.06 0.24 [107]
2 DMTTF-CA 1.922 0.06 0.18 [94]

3 TTF-2,5,Cl2BQ 1.928 0.06 0.18 [107]
4 TTF-BA 1.607 0.04 1 [80]

5 TMB-TCNQ 1.247 0.06 0.5-0.6 [123]
6 perylene-TCNQ 1.772 0.09 0.10-0.11 [109]

7 BT-TCNQ 3.060 0.05 0.1 [118]
8 BT-TCNQF4 2.520 0.05 0.1 [118]

9 DBTTF-TCNQ 1.348 0.08 0.2 -
10 TMPD-TCNQ - - 1 [80]

11 TMB-CA 2.071 0.05 0.14 [124]
12 N,N,N’,N’-TMB-CA 2.386 0.06 - -

13 ClMePD-DMeDCNQI 0.961 0.07 0.35-0.58 [111]

correction does not qualitatively improve the result. However, due to the much smaller

t, a correction of the similar order of magnitude would bring TTF-BA into the ionic

phase. Further analysis of this point is in order.

2.6 Discussion

While the estimate of Γ is not successful, the overall scenario offered by the curves

ρ(Γ) in Figure 2.20 leads to a reasonable picture. The S-shaped curves of TTF-CA,

TMB-TCNQ and TMB-CA clearly predict a discontinuous transition in agreement with

available experimental data. In particular TTF-CA is the first MS-CT undergoing a

discontinuous NIT [125]: on cooling below Tc=81 K in fact an abrupt jump from a

largely neutral (ρ ∼ 0.3) to a largely ionic (ρ ∼ 0.6) ground state is observed, as shown

in Figure 2.21 [126]. Iwasa et al. report a first-order NIT for TMB-TCNQ, signaled by an

abrupt jump in the magnetic susceptibility and a stack dimerization at low temperature

[123]. The ionicity jump in TMB-TCNQ (∼0.1) is smaller than in TTF-CA (∼0.3).
Preliminary low-temperature measurements on TMB-CA do not show a temperature-

induced phase transitions. Additional studies are planned in order to see if a phase

transition may be induced in this system by increasing pressure.

DMTTF-CA and ClMePD-DMeDCNQI show continuous or weakly discontinuous ρ(Γ)

curve as due to the rather small εT /t value. Indeed for DMTTF-CA, Ranzieri et al.

report a Peierls transition accompanied by a continuous variation of ionicity, and the

system dimerizes before reaching the I phase (ρ ∼ 0.43 at 20K, see Figure 2.21). On the

other hand, ClMePD-DMEDCNQI undergoes to a continuous temperature-induced NIT
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Figure 2.21: Temperature dependence of ionicity in TTF-CA (left panel) and
DMTTF-CA (right panel), estimated from the frequency of the carbonyl stretching.

at ambient pressure: IR absorption spectra suggest a continuous change in ionicity at

around 200K. The ionicity estimated from the C=C stretching frequency of the acceptor

goes from 0.3 at room temperature to 0.6 in the ionic phase. The continuous or almost

continuous phase transition is confirmed by the very small hysteresis observed [111].

For TTF-2,5Cl2BQ,DBTTF-TCNQ, BT-TCNQ, BT-F4TCNQ and

N,N,N’,N’-TMB-TCNQ and perylene TCNQ the curves in Figure 2.20 clearly indicate

a continuous change of ionicity. The data available for TTF-2,5Cl2BQ and perylene-

TCNQ confirm these results.

TTF-2,5Cl2BQ has been investigated by A. Girlando et al. [107]. TTF-2,5Cl2BQ does

not undergo a T-induced NIT, but a continuous pressure-induced NIT is observed [107].

The different behavior in the two complexes has been discussed by Girlando et al. in

terms of the more competitive role of CT integral respect to the Madelung energy in

TTF-2,5Cl2BQ, in agreement with our result. In fact, a εc/t amounting to 0.18 is

obtained for TTF-2,5Cl2BQ while a larger value (3.50) is predicted for TTF-CA.

For perylene-TCNQ there is no evidence of NIT neither upon lowering temperature nor

increasing pressure (up to 27 Kbar) [109]. The different behavior respect to TTF-CA

was justified based on the larger hopping integral and the smaller Madelung energy [109].

Our results confirm this picture.

The extreme discontinuity predicted for TTF-BA stems from the very small hopping

integral calculated for this system: only largely neutral (ρ < 0.1) or largely ionic states

(ρ > 0.9) are accessible with a very large bistability. Indeed TTF-BA shows a largely

ionic ground state (ρ ∼ 0.95) [110, 127].

These results reveal the strength of this relatively simple method that is able to reproduce

not only some relevant microscopic parameters of the MHM, but also gives a wide picture
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of ground state properties, revealing the nature of the NIT transition. It is surprising

that the pertinence of such model is not confined to some crystals but is extended to a

large family of MS-CT crystals.

2.7 Conclusion

In this Chapter, MS-CT crystals are presented. In Section 2.2 we have summarized the

most interesting experimental features observed in MS-CT compounds. Then in Section

2.3, the modified Hubbard model accounting for Peierls coupling to lattice phonons

and Holstein coupling to molecular vibrations, that successfully treats the rich physics

governing the phase transition, is extensively described. The specific contribution of this

Thesis is provided in Section 2.5, where we extract model parameters for MS CT salts

from DFT calculations on DA pairs.

The method has been applied to a large family of MS-CT salts covering a wide spectrum

of ionicities. DFT calculations (UωB97XD/6-31+G*) in gas phase are performed on the

relevant DA pair and on the corresponding isolated moieties, both at crystallographic

and optimized geometry. Among selected salts, only TMPD-CA cannot be parametrized

since it doesn’t fit the electronic model: the triplet state is in fact calculated as more

stable than the singlet state.

The extensive comparison of our calculated parameters with the same parameters pre-

viously extracted from experimental data, when available, is a valid proof of the robust-

ness of the present approach in the description of MS-CT crystals. The strength of the

method is best represented by the calculation of ρ(Γ) curves: from a qualitative point

of view, the present model gets insight into the extremely complex behavior of the NIT

in MS-CT salts. The pertinence is not confined to one salt but is expanded to a large

group of MS-CT salts for which experimental data are available. In addition, for some

compounds our results offer a prediction of experimental evidences and should encourage

further experimental work to investigate the dependence of ionicity from pressure and

temperature. In this perspective, the present model has demonstrated to be a reliable

and powerful tool for experimentalists: measurements in very extreme conditions (low

temperatures and high pressure) are very demanding. Once the crystallographic struc-

ture is known, the model offers an excellent qualitative screening to discriminate systems

that can undergo to first- or to second-order transition, as well as, to discriminate the

more competitive effect in the entangling between electronic and vibrational degrees of

freedom. The model underestimates the ionicity, most probably due to an overestimate

of Γ. Further investigation has to be carried out in order to obtain reliable ρ estimation.
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The proposed approach offers a valid alternative to DFT calculations on periodic sys-

tems, which perform poorly in situations involving strong electron correlation effects

[128], often predicting results that are not only quantitatively but also qualitatively in-

consistent. Such failure has been attributed by Cohen et al. to the inability, recognized

in all current functionals, to correctly describe the two systemsH+ andH2 [129]. A more

accurate picture of periodic systems is addressed by the quantum Monte Carlo (QMC)

method, but this is highly demanding [128]. By contrast, the present approach, relying

on calculation on a DA pair, is simple enough to overcome those difficulties opening the

way towards a reliable description of strongly correlated systems.



Chapter 3

Charge transfer in organic radical

dipolar dyes

Probare et reprobare

Dante Alighieri, III Canto Paradiso

3.1 Introduction

In this Chapter we present the work done in collaboration with the group of Prof. J.

Veciana (ICMAB, Barcelona) on the radical polar dyes D-π-R· shown in Figure 3.1. In

these dyes the persistent polychlorotriphenylmethyl radical (PTM) plays the role of an

electron acceptor, so that two main resonating structures can be considered: D-π-R·

and D·+-π-R−. PTM radical is an interesting unit in view of its high stability and

persistence. It is composed of three totally chlorinated phenyl rings connected to a

central carbon atom with a sp2 hybridization.

PTM radical is also interesting because it is an electroactive species that can be easily

reduced to the anion PTM−. Moreover, its stable derivative PTMH make PTM radical

an excellent candidate as building block for functional molecular materials.

Figure 3.1 shows PTM connected to ferrocene through a vinylene bridge (Fc-PTM) as

well as to a tetrathiafulvalene-based electron-donor (TTF-PTM) and to monopyrrolo-

TTF (MPTTF-PTM). Fc-PTM is an interesting valence tautomeric compound showing

thermally induced CT and bistability in solid state [121]. TTF-PTM shows an intrigu-

ing aggregation in polar solvents leading to a subtle interplay between intramolecular
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Figure 3.1: Chemical organic radical dyes Fc-PTM, TTF-PTM and MPTTF-PTM
theoretically investigated in this Chapter.

electron transfer and intermolecular charge transfer [25, 130]. TTF-PTM represents the

first aim towards a more ambitious effort to investigate a new family of materials based

on D-π-R· organized in molecular crystals with sizeable intermolecular CT interactions

[23]. In this perspective, M. Souto in the group of J. Veciana has recently synthesized

the first example of this new family of crystals, MPTTF-PTM [131].

In Chapter I, we have shown the power of essential-state models to describe the low-

energy physics of CT dyes. A similar approach could apply to D-π-R· systems, governed

by the CT between D and R·. However, these systems are characterized by a very weak

conjugation between D and R·, leading to extremely weak CT absorption bands, making

the estimate of model parameters from optical spectra very difficult and uncertain. The

success of DFT for intermolecular CT (Chapter II) invites to explore similar strategies

to attack the problem of intramolecular charge transfer in D-π-R·.

D-π-R· dyads based on Fc have been recently used to create self-assembled monolayers

(SAM) on metallic (gold) surfaces, with the aim to modify the work function of metals

in order to facilitate the charge injection [132, 133]. In this perspective, D. Morales,

in the group of J. Veciana, has experimentally investigated SAM based on a radical

Fc-PTM complex in comparison with SAM based on the hydrogenated Fc-PTM (Fc-

PTMH) complex and with SAM based just on Fc moiety. With the aim to support

experimental results, we have performed theoretical calculations at PM7 level on the

relevant molecules.
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3.2 The case of TTF-PTM and MPTTF-PTM

In this section, experimental and theoretical investigation of the MPTTF-PTM and

TTF-PTM is discussed. An extensive characterization was carried out in the Veciana

group for these two dyes, including UV-Vis spectroscopy, cyclic voltammetry (CV), X-

Ray analysis. The main goal of our theoretical calculations is to support experimental

data, setting a firm basis for the parameterization of essential-state models.

3.2.1 Experimental data

Figure 3.2 reports the UV/Vis/near-infrared (NIR) spectra of dyad TTF-PTM and

MPTTF-PTM recorded in THF at 300 K. They show an intense absorption band at

λ=385 nm, characteristic of PTM radical, with a shoulder at λ=376 nm, attributed to

the MPTTF fragment. The two broad bands appearing at lower energies (λ=439 nm and

550 nm) can be assigned to the electronic conjugation of the unpaired electron to the π

framework. Interestingly, MPTTF-PTM also shows a weak and broad absorption band

at λ ∼ 800 nm, which can be ascribed to CT taking place between the TTF and PTM

units, whereas a similar CT band is observed in the region between λ ∼900-1000 nm for

the shorter radical dyad. The hypsochromic shift observed in MPTTF-PTM, compared

with TTF-PTM, can be ascribed to the lower donating character of the MPTTF subunit.

When MPTTF-PTM is oxidized with one equivalent of Fe(ClO4)O3, the CT absorption

band disappears and a new band appears at λ ∼ 600 nm, assigned to the formation

of the radical cation of the MPTTF subunit. Data in Figure 3.3, showing MPTTF-

Figure 3.2: UV/Vis spectra recorded at 300 K in THF of 0.05 mM solution of dyads
TTF-PTM and MPTTF-PTM.
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Figure 3.3: UV/Vis-NIR spectra of TTF-PTM (on the left) and MPTTF-PTM (on
the right) recorded at 300 K in different solvents.

PTM spectra collected in different solvents, suggest that MPTTF-PTM stays essentially

neutral in all solvents, with the only exception of DMF where a peak at 512 nm is

assigned to the PTM anion, supporting the presence in solution of zwitterionic species.

For TTF-PTM a more intriguing results are observed: the dye is in fact fully neutral in

CH2Cl2, where only the band assigned to PTM is seen, it becomes zwitterionic in DMF

(the band due to neutral PTM disappears while the band of PTM anion appears), but

both species are observed in acetone, a solvent of intermediate polarity [25, 130]. The

different behavior of the two dyads can be ascribed to the poorer donating character

of the MPTTF unit in comparison with the TTF unit. We observe, however, that the

formation of zwitterionic species of TTF-PTM dissolved in medium and high-polarity

solvents is actually triggered by the formation of (TTF+)2 dimers [43, 130]. It is possible

that attaching the pyrrole ring to the TTF moiety reduces the well-known tendency of

TTF to form dimers, thus hindering the formation of zwitterionic species.

It was not possible to crystallize TTF-PTM. The longer bridge in MPTTF-PTM instead

allows to grow crystals suitable for X-rays analysis. Crystallographic data at 150 K and

300 K of MPTTF-PTM crystals, obtained by slow evaporation from a solution in n-

hexane/CH2Cl2, support a monoclinic system with space group P1̄. The asymmetric

unit reveals two inequivalent molecules (A and B) aligned parallely along the a axis, as

shown in Figure 3.4.

3.2.2 Quantum-chemical calculations: (TD)-DFT

A series of quantum-chemical calculations have been performed on dyads TTF-PTM

and MPTTF-PTM in solution, using Gaussian 09 package [114]. Geometries are opti-

mized at (U)CAM-B3LYP/6-31G* level for different oxidation states of both dyads, the
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Figure 3.4: Molecular packing of MPTTF-PTM molecules at 300 K: on the left, A
units in the ab plane and on the right, A,B units along ac plane.

neutral open-shell doublet states (neutral species), the closed-shell anions

(anionic species), the cation-biradical (cationic species), where the bi-radicaloid char-

acter was enforced by considering the triplet state and the dication radical (dicationic

species). In all cases, solvent is introduced based on the polarizable continuum model

(PCM). The adopted hybrid functional is expected to describe well long range interac-

tions in the charge transfer excited states [134]. In the PCM model the system under

scrutiny is described at a quantum-mechanical level, while the surrounding environment

is described as a polarizable continuum model characterized by its macroscopic dielectric

constant [135].

Dividing the molecule in D and A fragments as sketched in Figure 3.5, the charge on each

fragment is calculated of the order of 0.09 and 0.10 for TTF-PTM and MPTTF-PTM

in CH2Cl2, respectively, and only marginal variations with solvent polarity are obtained

(see Table 3.1). At variance with experimental data, the systems do not show a tendency

to become zwitterionic. Indeed, according to recent theoretical result for TTF-PTM,

zwitterionic species are due to the formation of TTF dimers in polar solvents [26].

Figure 3.5: Donor and acceptor fragments of TTF-PTM and MPTTF-PTM.
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Table 3.1: The degree of ionicity in D fragment defined in Figure 3.5 referred to neu-
tral, cationic, dicationic and anionic species for both compounds at UCAMB3LYP/6-

31G* with PCM level with (Pop=MBS) keyword [136].

Mulliken charge distribution

System Solvent ρNeut ρCat ρDicat ρAn

TTF-PTM CH2Cl2 0.09 1.00 1.93 0.04
AcCN 0.09 1.00 1.93 0.04

MPTTF-PTM CH2Cl2 0.10 1.08 2.06 0.05

Charge distributions in the cationic, dicationic and anionic species confirm the CV data

[131], with an excess of electron residing on PTM fragment in the anionic species, and

positive charges residing in the TTF/MPTTF fragments in the mono and dicationic

species.

The spin distribution in Figure 3.6 shows that in both neutral species, the spin is local-

ized on the PTM moiety and on the vinylene group, in line with the results obtained

using EPR spectroscopy. In the cationic and diradicaloid species, the two spin densities

on the TTF/MPTTF and PTM units are fully disconnected.

Figure 3.6: Spin density of both radicals in CH2Cl2, calculated at UCAMB3LYP/6-
31G* level with PCM. Top and bottom panel show results for the neutral and cationic

species, respectively. Isovalue of the plot equal to 0.002.

Calculations on the isolated dyad MPTTF-PTM at the crystallographic geometry sup-

port a largely neutral ground state both at room and at low temperature, in agreement

with experimental data, as summarized in Table 3.2.

Having characterized the ground state, we turn attention on optical properties. In Table

3.3, we show calculated energies and oscillator strengths (f) for transitions with size-

able oscillator strength (>0.01, corresponding to the f of the lowest energy transition)

obtained for TTF-PTM and MPTTF-PTM at TD-UCAMB3LYP/6-31G* at optimized
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Table 3.2: Mulliken atomic charges and spin density distributions (for D fragment,
see Figure 3.5) calculated at the UCAMB3LYP/6-31G* level for isolated MPTTF-PTM

molecule at the crystallographic geometry for A and B, at 300 K and 150 K.

Charge and spin density

System ρ spin density
A 300K 0.093 0.0531
A 150K 0.079 0.0622
B 300K 0.085 0.0549
B 150K 0.110 0.0899

ground state geometries. Results refer to CH2Cl2 solutions, but solvent effects are

marginal. Relevant MOs are shown in Figure 3.7.

Table 3.3: Lowest and most intense optical transitions calculated for both radicals in
CH2Cl2 at TD-UCAM-B3LYP/6-31G* level;

TD-UCAM-B3LYP/6-31G*

System λ(nm) f transition nature
TTF-PTM 365 0.10 (HOMO-4)β −→ SUMO (0.40)

368 0.50 HOMO-α −→ LUMO-α (0.21)
(HOMO-4)β −→ SUMO (0.18)
HOMO-β −→ LUMO-β (0.15)

375 0.02 (HOMO-3)β −→ SUMO(0.61)
474 0.16 HOMO-β −→ SUMO (0.69)
636 0.01 HOMO-β −→ SUMO (0.13)

HOMO-β −→ LUMO-β (0.13)
(HOMO-1)β −→ SUMO (0.12)

(HOMO-1)β −→ LUMO-β (0.12)

MPTTF-PTM 364 0.47 (HOMO-5)β −→ SUMO (0.11)
(HOMO-1)α −→LUMO-α (0.10)
(HOMO-3)β −→ SUMO (0.11)
(HOMO-1)β −→ SUMO (0.21)

366 0.01 (HOMO-6)β −→ SUMO (0.81)
372 0.03 (HOMO-5)β −→ SUMO (0.71)
416 0.08 HOMO-β −→ SUMO (0.76)
438 0.06 (HOMO-9)β −→ SUMO (0.23)
516 0.013 (HOMO-1)β −→ LUMO-β (0.14)

(HOMO-1)β −→ SUMO (0.10)
(HOMO-3)β −→ SUMO (0.07)

(HOMO-3)β −→ LUMO-β (0.07)
(HOMO-1)α −→ LUMO-α (0.15)

Both radical dyads show in the 364-375 nm region three transitions mainly localized on

the PTM unit with minor contributions from bridge states. These transitions are readily

assigned to the strong and structured peak observed at ∼385 nm. Several transitions are

observed at lower energy for both compounds all showing some CT character, even if a

large mixing is observed with excitations involving bridge-states as expected on physical

basis [137]. These transitions are assigned to the many broad features pointed out in
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Figure 3.7: Molecular orbitals involved in transitions reported in Table 3.3 in TTF-
PTM amd MPTTF-PTM at TD-UCAMB3LYP/6-31G* with PCM model.

experimental spectra in the low-frequency region. The oscillator strength associated with

this lowest energy transition is a small fraction (1/50-1/100) of the oscillator strength

associated with the intense peak localized on PTM, in line with experimental data. In

addition, TD-DFT calculations predict a shift of the CT-transition energy (∼0.45 eV) in
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good agreement with experimental results (∼0.3-0.4 eV). Though TD-UCAMB3LYP/6-

31+G* calculations are able to catch the CT nature of the lowest-energy transition and

to reproduce the relative CT energy in the two systems, the energy is overestimated by

∼0.6 eV. This fact can be attributed to several reasons. In the first place an overestimate

of energy for a mixed ICT-valence states is an intrinsic feature for this hybrid functional,

as also further supported by ωB97XD/6-31G* results giving an overestimation equal to

0.8 eV [138–140]. Then, Eriksen et al. point out some difficulties of CAM-B3LYP

functionals to reproduce charge transfer excitation energies in push-pull chromophores

[141]; finally, molecules with open shell ground states have absorption spectra which are

more difficult to describe with any methods [142].

3.2.3 Semiempirical calculations: ZINDO

Here we briefly summarize results for TTF-PTM andMPTTF-PTM obtained by semiem-

pirical method. In particular, ZINDO calculation implemented in ORCA package has

performed [143]. Table 3.4 shows the lowest energy transitions calculated for both rad-

icals at optimized geometry at UCAM-B3LYP/6-31G* level.

ZINDO calculations confirm previous TD-DFT calculations. Results suggest that, in

both radicals, calculated excited states around 339-393 nm are mainly localized on PTM

moieties and therefore can be assigned to the strong absorption band at 383 nm; in TTF-

PTM and MPTTF-PTM, at 584 nm and 614-630 nm respectively, two excited states

with weaker oscillator strength and a localized nature on PTM are predicted: they

could be assigned to the feature observed around 450 nm for TTF-PTM and 550 nm for

MPTTF-PTM. Regarding the lowest excited state in both radicals, ZINDO suggests a

CT nature involving also bridge-states in agreement with previous results.

ZINDO offers a reasonable estimate of CT energy as well as of the ionicity in ground

state (ρ=0.09 and 0.10 for TTF-PTM and MPTTF-PTM, respectively). Therefore,

based on eq. 1.6 (see Chapter I), we can extract the hopping integral, τ , z and µ0 for

both dyads. In the present case, the relevant parameters are summarized in Table 3.5

and the relevant model drawn in Figure 3.9.

For both radicals, the values of µ0 point out D-π-R· distances comparable with the length

of the molecules. In addition, parameters suggest that MPTTF-PTM is characterized

by a lower donating character of the MPTTF subunit and by a higher charge transfer

integral respect to TTF-PTM, in agreement with the hypsochromic shfit in UV-Vis

spectrum.
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Figure 3.8: Molecular orbitals involved in transitions reported in Table 3.4 in TTF-
PTM and MPTTF-PTM with ZINDO at UCAMB3LYP/6-31G* geometry.
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Table 3.4: Lowest and most intense optical transitions calculated for both radicals at
ZINDO in gas phase starting at opt. UCAM-B3LYP/6-31G* geometry;

ZINDO

System λ(nm) f transition nature
TTF-PTM 339 0.2312 (HOMO-4)β −→ LUMO-β (0.60)

383 0.0011 SOMO −→ (LUMO+1) (0.50)
390 0.0023 SOMO −→ LUMO (0.58)
617 0.0183 (HOMO-2)α −→ (LUMO+6)α (0.24)

(HOMO-4)β −→ (LUMO+4)β (0.23)
(HOMO-4)β −→ (LUMO+5)β (0.23)

630 0.0021 (HOMO-4)β −→ (LUMO+6)β (0.23)
(HOMO-4)α −→ (LUMO+6)α (0.47)

873 0.0001 (HOMO-1)β −→ (LUMO+14)β (0.29)
HOMO-β −→ (LUMO+14)β (0.27)
(HOMO)α −→ (LUMO+16)α (0.25)
(HOMO-1)α −→ (LUMO+16)β (0.23)

MPTTF-PTM 352 0.56 (HOMO)α −→ (LUMO+4)α (0.24)
HOMO-α −→ (LUMO+6)α (0.25)

HOMO-β −→ SUMO (0.26)
HOMO-β −→ (LUMO+3)β (0.26)

393 0.04 SOMO −→ LUMO+2 (0.60)
584 0.071 HOMO-β −→ SUMO (0.76)

(HOMO-7)β −→ (LUMO+2)β (0.30)
(HOMO-7)α −→ (LUMO+3)α (0.26)

737 0.002 HOMO-β −→ SUMO (0.76)
(HOMO-1)β −→ SUMO (0.10)
(HOMO-3)β −→ SUMO (0.07)

(HOMO-3)β −→ (LUMO+2)β (0.07)
(HOMO-1)α −→ (LUMO+2)α (0.15)

Table 3.5: Two-state model parameters for TTF-PTM and MPTTF-PTM from cal-
culated optical spectra by ZINDO;

System z (eV) τ (eV) µ0 (D)

TTF-PTM 0.58 0.40 44
MPTTF-PTM 0.65 0.49 69

Figure 3.9: The two-state model derived for TTF-PTM and MPTTF-PTM in accord-
ing to eq. 1.6 and excitation energy and charge distribution at ZINDO level;
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3.3 Essential-state parameters from ground state proper-

ties

While ZINDO results lead to reasonable estimates of essential-state model parameters,

TD-DFT fails badly. A strategy to improve this disappointing result implies aban-

doning the calculation of excited state, limiting attention to ground state properties.

Accordingly, we calculate the ground state properties of a D-π-R· dyad under an applied

electric field as to drive it from the neutral (N) to the zwitterionic (Z) state. Specifically

we plan to extract essential-state model parameters from the fit of curves showing the

dependence of the ground state dipole moment versus an applied electric field.

3.3.1 The case of Fc-PTM

To validate the approach we focus on a well-studied system, Fc-PTM [121, 137]. Optical

absorption spectra of Fc-PTM collected in solution, reported in Figure 3.10, reveal that

solvated Fc-PTM is a largely neutral D-π-A molecule. The CT absorption band, located

in the near infrared region around 11000 cm−1, is related to the photoexcitation towards

a largely ionic (or zwitterionic) D+ ←−A− state. Experimental data are modelled in

terms of two-state model [121], as already described in Chapter I, and in terms of three-

essential-state model [137].

Shortly, three-essential state model has been introduced to account for the secondary CT

band involving the π-bridge observed in a Fc-PTM based dye [137]; the three resonating

structures are D-π-A, D-π+A− and D+-π-A−, where the first and the last structures

largely dominate over the second one, that represents an higher energy state. The CT

occurs through the bridge; D-π-A and D+-π-A− are separated by an energy gap of 2z

and mixed by τ , while 2x and τ ′ measure, respectively, the energy gap and the hopping

integral between D-π+-A− and D-π-A (with x > z). µ0, εsp and ω are defined as in the

two-state framework (see Chapter I). Results are summarized in Tables 3.6 and 3.7.

Table 3.6: Two-states model parameters extracted for Fc-PTM to fit optical data
[121]; all parameters except µ0(D) are in eV ;

Two-states model

z τ µ0 εsp ω
Exp. opt. data 0.61 0.35 7.5 0.1 0.18
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Table 3.7: Three-states model parameters extracted for Fc-PTM to fit optical data
[137];all parameters except µ0(D) are in eV ;

Three-states model

2z 2x τ τ ’ µ0 εsp ω
Exp. opt. data 0.78 0.87 0.47 0.47 15 0.06 0.18

Figure 3.10: Experimental (top panels, [121]) and calculated spectra for Fc-PTM;
central panel shows spectra calculated in the two-state model with molecular parameters
in Table 3.6 and the εor values in the legend; bottom panel shows spectra calculated in
the three-state model with molecular parameters in Table 3.7 and the εor values in the
legend. The intrinsic bandwidth is set to Γ=0.07 eV in all calculated spectra [137].

Semiempirical PM7 (MOPAC package [112, 113]) and DFT (Gaussian 09 package [114])

levels of theory are adopted; specifically, regarding the latter, following Geskin et al.

hybrid functionals have been selected, as CAM-B3LYP and ωB97XD with the basis set

6-31+G* [144]. All calculations are performed at crystallographic geometry in presence

of an external electric field applied along the molecular axis connecting the central Fe-

atom of Fc unit to the radical carbon in PTM (x-axis, below), as shown in Figure 3.11.

Due to the open-shell character of the molecule, spin polarized approach is adopted.

Actually this approach has been considered just for DFT calculations, whose results

do not significantly suffer of spin contamination. By contrast, PM7 results in UHF

approximation are rejected (S2 ∼ 1 for doublet states) and only RHF results are taken
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Figure 3.11: The external electric field is applied along x-axis, corresponding to the
axis connecting Fc to PTM.

into account. Calculations are performed in gas phase; PM7 and UCAM-B3LYP are

also carried out in a non-polar solvent (toluene).

Figure 3.12 reports the F-dependence of the dipole moment, or better of the x-component

of the dipole moment, µx.

Figure 3.12: Electric field-dependence of the dipole moment (x-component) calcu-
lated for Fc-PTM (crystal geometry) at PM7 in gas phase (blue) and in toluene (red),
at UCAMB3LYP/6-31+G* in gas phase (green) and in toluene (magenta) and at

ωB97XD/6-31+G* in gas phase (orange line).

In the following we disregard the role of electron-vibration coupling, focusing just on the

electronic part. The coupling is fairly small and in any case it would just lead to a (minor)

renormalization of z. Neglecting vibrational coupling is in line with quantum chemical
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Figure 3.13: Total net charge on Fc and PTM units in Fc-PTM at PM7 (blue line),
CAMB3LYP/6-31+G* (green line) and ωB97XD/6-31+G* (orange line) in gas phase.

Figure 3.14: Ground state energy in Fc-PTM (crystal geometry) at PM7 (blue line),
UωB97XD/6-31+G* (orange line) in gas phase; in CAMB3LYP/6-31+G* ground-state

energy is reported in gas phase (green) as well as in toluene (magenta).

calculations that, as already explained, are run at fixed geometry. Finally, the essential-

state model parameters refer to a non-polar solvent. In principle these parameters should



104 3. CHARGE-TRANSFER IN RADICAL DIPOLAR DYES

be comparable to those obtained from a calculation run in a non-polar solvent (as to

account for the effect of electronic component of the solvent polarization), but, for the

sake of comparison, we also show results obtained in the gas phase.

All µ(F) curves in Figure 3.12 clearly point out two different regimes: a low and a

high field regime separated by a region where charge rearranges dramatically. The two

regimes correspond to two different charge distributions: at low field the molecule is

in a neutral (D-π-A) ground state, while at high fields the molecule turns zwitterionic

(D+-π-A−).

To further support this interpretation, Figure 3.13 reports the total charges on the Fc

(continuous line) and PTM (dotted line) units for all examined levels of theory. The

sum of the charges on the two units is approximately zero, confirming the picture of a

charge transfer from D to A. Moreover, in the small F regime the charge transferred

from D to A is approximately zero, while the region of the second plateau corresponds

to a system where approximately one electron is transferred. The curve at PM7 level of

theory in Figure 3.12 clearly shows a characteristic S-shape and is qualitatively in line

with results published by D’Avino et al. and computed at PM6, though in this case, we

assist to a quantitative shift of the flex point towards higher values of F in comparison

with published results [121].

DFT curves in gas phase point out a characteristic step-like shape, suggesting a multi-

stable behavior. In support of this, calculations have been performed to distinguish the

N and the I regime. In the N regime we use as input for the density optimization, at

each F value, the calculated density at the previous lower F point. In the Z regime we

start from high F values and do the same. A bistability region clearly emerges when two

calculations lead to different µ(F ) values, as reported in the top panel of Figure 3.15.

A bistable feature is expected when a mean-field approximation is considered, as de-

scribed in Chapter II. In general, autoconsistency is introduced when e-ph coupling is

taken into account and therefore, for example, during an optimization of geometry, as

recently encountered by Jankowska et al. [145]. By contrast, in the present case, the

multistable behavior seems to be ascribed to an artefact of UωB97-XD/6-31+G* and

UCAM-B3LYP/6-31+G* since geometry is kept fixed. In order to exclude any potential

mf approximations, introduced in those hybrid functionals to better catch long range

interactions, other functionals are tested; in particular, a functional based on the local

density approximation, LSDA and the well-known hybrid, B3LYP are selected. Results

are reported in the central and bottom panel of Figure 3.15.

The µ(F) curve at ULSDA level in the central panel of Figure 3.15 is fully linear with

the field, in line with the possibility of fractional charges in the framework of DFT
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Figure 3.15: Electric field-dependence of the dipole moment (x-component) calculated
for Fc-PTM (crystal geometry) at UωB97XD/6-31+G* distinguishing N and I regimes
(see text, top panel), at ULSDA/6-31G* (central panel) and at UB3LYP/6-31G* (bot-

tom panel); all calculations are performed in gas phase.

[144]. As expected according to Geskin et al., the resulting picture (see bottom panel

of Figure 3.15) does not change if UB3LYP functional is considered [144]. Such results

seem to confirm our assumption pointing out a weakness of functionals including long-

range corrections in CT processes. The limitations of DFT in a closed shell description

of a step like one-electron jump in a D-π-A in presence of an electric field are well-known

but to the best of our knowledge there is no systematic investigation by a spin polarized

approach of open-shell systems; in this context, the relevant results seem to highlight

that previous limitations of DFT are extended also to the description of CT in radical

systems by means of spin polarized hybrid functionals. In addition, further doubts

regarding DFT reliability are suggested by results with PCM. In fact, based on physical

considerations, the zwitterionic state is expected to be stabilized in solution, even in a

non-polar solvent, so that the transition from N to Z state is expected to occur at lower

fields in solution with respect to the gas phase. This is not true for UCAM-B3LYP and

therefore DFT results with PCM are rejected.

Finally, in Figure 3.14, the evolution of ground state energy in presence of an external

field is collected. Firstly, in all levels of theory, we observe a steeper E(F ) dependence

in the Z regime in comparison with the N region, in line with an increasing of the

permanent dipole moment in Z state (E ∼ −µZ). Then, in both functionals at DFT

level, we assist to an unexpected destabilization of ground state energy moving from the
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N to the Z region equal to ∼ 1 eV; at variance, the curve at PM7 clearly points out that

the driving force of CT is a stabilization of the energy by an amount of ∼1.6 eV. These

results put doubts on the reliability of DFT method to describe ground-state properties

of CT systems.

3.3.1.1 Comparison with essential-state models

We now discuss how essential-state model parameters can be extracted from the µF

curves. The first point is that essential-state models only account for CT degrees of

freedom, so they do not account for the polarizability associated with electrons not

involved in CT. This means that the polarizability of the system at ρ=0 or 1 vanishes,

or, in other terms the two plateaux in the µ(F) curve are expected to have zero slope.

Therefore, in order to compare with essential-state model, the first step is to get rid of

the intrinsic (non-CT) polarizability. To do that we subtract to each curves in Figure

3.18 a straight line y=bx, with adjusted b for each curve as to obtain flat plateaux (or

the best approximation to flat plateaux).

Another correction to the calculated curves concerns the value of the dipole moment in

the N state. In the essential-state model it is zero, so we subtract a constant value to

each previous curve as to have µ=0 in the N plateau. Moreover, remembering that µ0

is the dipole moment of the zwitterionic state, we have now its estimate as the µ value

in the second plateau. Since in the essential-state model µ = ρµ0, we are now in the

position of extracting ρ(F ) curves from the µ(F ) data. Results are shown in Figure 3.16,

where, for the sake of clarity, also the optimized a and b values, and the µ0 estimates

are shown.

As discussed in Chapter I, the two-state model gives closed expressions for the ρ depen-

dence of z, where 2z is the energy that separates the Z from N state. In the presence of

an applied field, 2z becomes an effective value that linearly depends on the field. The

basic equations are:

ρ =
1

2

1−
zeff√
z2eff + τ2

 (3.1)

and

zeff = z0 −
Fµ0
2

(3.2)

All parameters have to be expressed in SI. Since F is expressed in V/Å(1010 V/m), µ0

in D (3.336·10−30 C·m), we have to multiply Fµ0 times 0.2097 to express it in eV. We

finally fit the ρ(F ) curves using the above equations to extract z0 and τ .

Results are collected in Table 3.8.
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Figure 3.16: The degree of ionicity dependence of external electric field in Fc-PTM
at PM7, UCAMB3LYP/6-31+G* and at UωB97XD/6-31+G* in gas phase; at PM7

also results in solution are reported.

Table 3.8: Two-state model parameters extracted from PM7 calculations for Fc-PTM
at fixed geometry; all energies except ωCT (cm−1) are in eV ; dipole moments are in D;

Two-state model

Calc. properties
z τ µ0 ρ ωCT µCT

PM7 vacuo 1.79 0.06 32 0.0003 24202 0.55
sol. 1.56 0.02 35 0.00004 28472 0.55

UCAMB3LYP vacuo 0.76 0.02 32 0.0002 11533 0.50
UωB97XD vacuo 0.47 0.01 34 0.0001 8065 0.34

All levels of theory, and especially DFT, underestimate by one order of magnitude the

hopping integral respect to experimental estimates (see Table 3.6). This fact leads, as

shown in Table 3.8, to a largely neutral dye and therefore to an almost forbidden CT

band, clearly in contrast with experimental data. The z values are grossly overestimated

in PM7 and more reasonable in DFT, but with a large dependence on the functional.

These results are somewhat disappointing, so we tried to see if a more detailed essential-

state model could better reconcile with DFT or PM7. Indeed Grisanti el al. showed that

a better description of optical spectra of Fc-PTM and related systems can be obtained

using a three-state model, also accounting for the role of the bridge in the CT process

[137]. Therefore we fitted µ(F ) based on the three-state model, as briefly described

above. Relevant parameters are collected in Table 3.9.
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Table 3.9: Three-state model parameters extracted from PM7 calculations for Fc-PTM
at fixed geometry; all parameters except µ(D) are in eV ;

Three-state model

z0 x0 τ τ ′ µ0
PM7 vacuo 1.79 1.85 0.35 0.35 32

sol. 1.58 1.68 0.2 0.2 35
UCAMB3LYP vacuo 0.77 0.87 0.16 0.16 35

UωB97XD vacuo 0.45 0.7 0.12 0.12 33

The τ value are somewhat better than in the two-state model, and for PM7 are almost

good; but, much as with the two-state model, z (and x) values are largely overesti-

mated by PM7 and largely functional-dependent in DFT. So we conclude that a reliable

estimate of essential-state model parameters cannot be obtained along these lines.

3.3.2 The case of TTF-PTM and MPTTF-PTM

For the sake of completeness we also addressed TTF-PTM and MPTTF-PTM. Semiem-

pirical calculations with PM7 (MOPAC [112, 113]) have been performed in gas phase

on TTF-PTM and MPTTF-PTM at fixed geometry as well as optimizing geometry at

each F value. Since for TTF-PTM the crystallographic structure is not available, for

both compounds the optimized geometry in gas phase at UCAMB3LYP/6-31G* is con-

sidered. All calculations are performed in presence of an external electric field applied

along x-axis as shown in Figure 3.17.

Figure 3.17: The external electric field is applied along x-axis, corresponding to the
axis connecting TTF(MPTTF) to PTM.

Figure 3.18 shows the F -dependence of the x-component of the dipole moment at fixed

and at optimized geometry, respectively, for both compounds at PM7.

All curves µ(F ) show the characteristic S-shape and as expected in presence of e-ph cou-

pling, the curve obtained optimizing geometry is less smoother than the other. According

to the procedure described in the previous Section, from the µ(F ) we can derive ρ(F ) and
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Figure 3.18: Electric field-dependence of the dipole moment (x-component) calculated
for TTF-PTM and for MPTTF-PTM at PM7 at fixed geometry and at optimized ge-

ometry, both in vacuo.

its fit through essential-state models. Fit parameters through two- and three-essential

states are collected in Tables 3.10 and 3.11, respectively.

Table 3.10: Two-state model parameters extracted from PM7 calculations for TTF-
PTM and MPTTF-PTM at fixed as well as at optimized geometry; all energies except

ωCT (cm−1) are in eV ; dipole moments are in D;

Two-state model

Calc. properties
System geom. z τ µ0 ρ ωCT µCT

TTF-PTM fixed 0.68 0.17 43 0.014 11691 5
opt. 0.63 0.06 44.5

MPTTF-PTM fixed 0.68 0.21 67 0.022 11547 9.8
opt. 0.58 0.11 69 0.009

Table 3.11: Three-state model parameters extracted from PM7 calculations for TTF-
PTM and MPTTF-PTM at fixed geometry as well as at optimized geometry; all energies

are in eV ; dipole moments are in D;

Three-state model

System geom z x τ τ ′ µ0
TTF-PTM fixed 0.68 0.99 0.42 0.42 43

opt. 0.63 0.65 0.21 0.21 44.5
MPTTF-PTM fixed 0.68 0.92 0.48 0.48 67

opt. 0.58 0.62 0.28 0.28 69

The ρ(F) dependence computed at fixed geometry as well as at optimized geometry offer

the opportunity to estimate the small polaron binding energy, εsp; specifically, in the
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two-state model we can write zeff as:

zeff = z0 + µ0
F

2
− εsp (3.3)

and we fit the curve µ(F ) obtained optimizing the geometry through the parameters

estimated at fixed geometry (see Table 3.10) changing εsp, in according with eqs. 3.1

and 3.3. Following this procedure, as expected on physical basis, we get a slightly

larger relaxation energy for MPTTF-PMT respect with the shorter dye; specifically, we

estimate εsp equal to 0.32 eV and 0.28 for MPTTF-PTM and TTF-PTM, respectively.

3.4 The work function change

Self-assembled monolayers (SAMs) of organothiolate molecules on gold substrate are

studied for a wide range of applications, such as supramolecular assembly, biosensors,

molecular electronics and microelectronic devices. Two decades ago, Evans and Ulman

suggested SAMs to improve charge-injection processes by modulating the work function

of the electrodes [146, 147]. A large number of experimental studies have confirmed

this early theoretical prediction and have demonstrated that dipolar organic monolayers

covalently linked on metal surfaces effectively modulate the work function, opening a way

to lower the energy barrier for charge injection and increasing the device performance

[148–150].

D. Morales in Veciana’s group has investigated the influence of D-π-R·-based SAM on the

modification of work function of a gold substrate through Kelvin Probe Force Microscopy

(KPFM). 5-(1,2-dithiolan-3-yl)pentanoate of Fc-PTM has been extensively character-

ized in comparison with its hydrogenated counterpart, Fc-PTMH and with SAM with

only ferrocene moiety (5-(1,2-dithiolan-3-yl)

pentanoate of Fc). The three different SAMs are shown in Figure 3.19.

Here we report results of semiempirical calculations to address the modification of the

work function of the three relevant SAMs in order to rationalize the complex experi-

mental results.

3.4.1 Kelvin Probe Force Microscopy

Kelvin probe force microscopy (KPFM) measures the local contact potential difference

(CPD) between a conducting atomic force microscopy (AFM) tip and a sample, related

to the charge distribution on a surface, mapping the surface potential of the sample with

high spatial resolution. Since its first introduction by Nonnenmacher et al. in 1991 [151],
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Figure 3.19: Schematic representation of the three monolayers studied.

KPFM has been used extensively to characterize the nano-scale electronic/electrical

properties of metal/semiconductor surfaces and semiconductor devices.

All measurements were done in Barcelona under a continuous flow of anhydrous nitrogen

at room temperature, taking as reference the unmodified silicon oxide surface. The

variation of CPD of the sample respect to gold (CPDSAM−Au) is measured as:

CPDSAM−Au = CPDSAM−SiO2 − CPDAu−SiO2 (3.4)

where CPDSAM−SiO2 and CPDAu−SiO2 are the difference contact potential between

SAM-SiO2 and between Au-SiO2. By knowing the CPDSAM−Au, the variation of work

function can be easily obtained as [152]:

∆Φ = −CPDSAM−Au (3.5)

Table 3.12 shows experimental results obtained for the SAMs under investigation.

Table 3.12: Variation of work function of D-R· monolayers;

System ∆Φ (mV)

Fc-PTM 20
Fc-PTMH 55

Fc -400

Two different dipoles contribute to the total dipole moment. The first one is related

to the formation of the thiolate-Au bond (Au+δ - S−δ) leading to a net dipole moment

at the Au/monolayer interface with its permanent component perpendicular to the sur-

face. The second (and usual dominant) contribution corresponds to the intrinsic dipole

moment of the molecule.



112 3. CHARGE-TRANSFER IN RADICAL DIPOLAR DYES

A negative ∆Φ implies that the CPD measured for the SAM is larger than for the

bare gold and implies that the presence of the SAM favors the electron transfer from

the KPFM tip towards the surface. This is expected when negative charges are lying

close to the surface (see Figure 3.20). By contrast, SAMs of molecules oriented with

the negative pole at surface/air interface, increase the work function of the metal [152]

(see Figure 3.20). This intuitive picture is confirmed by recent results on fluorinated

monolayers [152].

Figure 3.20: Schematic representation of the two different cases of the direction of
the intrinsic molecular dipole moment and its relation with the sign of work function

change.

It is important to stress that several factors can affect the direct correlation between the

molecular dipole moment and the SAM-induced ∆Φ:

• the chemical substrate-molecule bonding induces a substantial charge rearrange-

ment;

• structural reorganizations such as dimerization of the molecules, that reduces the

monolayer dipole moment, or depolarization of the dipoles due to the neighboring

polar molecules;

• significant charge transfer between substrate and SAM, as observed in Ref. [153].

The large negative ∆Φ measured for Fc is in line with the presence of a partial positive

charge on the Fc unit, a good electron-donor. When decorating the Fc with a strong

acceptor like PTM we do expect the presence of a partial negative charge on it, explaining

the reversed sign of ∆Φ. What is more difficult to understand is the behavior of Fc-

PTMH, since the PTMH is not an electron acceptor.
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3.4.2 The Helmholtz equation for the work function

The relationship between the work-function modification of the electrode and, the chem-

ical nature of the molecular SAM adsorbed on its surface is generally described on the

basis of electrostatic considerations by using the Helmholtz equation [154]:

∆Φ = − µ⊥
4πε0εeffA

(3.6)

where µ⊥ is the dipole moment perpendicular to the surface; ε0 (Faraday/m) is the

vacuum permittivity, εeff is the effective dielectric constant and A (m2) is the area den-

sity of dipoles on the surface. The ratio µ⊥/ε
eff represents the effective perpendicular

component of dipole moment in the isolated molecules; actually, as already explained,

the total dipole moment could be considered as formed by the contribution of two in-

ternal dipoles: the effective dipole moment of the monolayer and the effective intrinsic

Au-S dipole. Since the effective Au-S dipole is assumed to be almost independent of

the alkane chain length and composition, but strongly dependent on the nature of the

metal, it is reasonably considered as a constant. Therefore, following De Boer et al., µ⊥

corresponds to the perpendicular dipole moment for unbound, isolated molecules with

a thiol end group [155].

The dimensionless εeff value is introduced to take into account the effect of the densely

packed layers on the µ⊥ and its values have typically been estimated to lie between 2

and 3 [149, 154]. According to Romaner et al., the electrostatic expression of εeff reads

[154]:

εeff = 1 +
α

4πε0
FA−

3
2 (3.7)

where, α is the molecular polarizability (SI units, Cm2V −1) and F is a factor char-

acteristic of the geometry of the dipole lattice. F has been calculated by Topping for

two different packing geometries; hexagonal packing has F equal to 8.892, while cubic

packing is 9.0336 [156]. For the sake of simplicity we will set F=9 in the following.

To use eq. 3.6, we calculate, for the three molecular structures shown in Figure 3.19,

µ⊥ and α. All calculations refer to gas phase, with geometries optimized at the

UCAMB3LYP/6-31G* level. Optimized geometries along the cartesian coordinates are

reported in Figure 3.21 and an almost 0◦ dihedral angle between the 1,2-dithiolane and

the alkyl chain is exhibited in all systems under investigation.

The perpendicular component of the dipole moment is evaluated assuming that in the

self assembly the optimized molecules are oriented as to have the gold surface parallel

to the y-axis, as shown in Figure 4.10; for this assumed orientation, the perpendicular

component (µx) was computed at PM7 in gas phase. The polarizability was estimated



114 3. CHARGE-TRANSFER IN RADICAL DIPOLAR DYES

Figure 3.21: Chemical structure of Fc-PTM, Fc-PTM-H and Fc- linked to disulfide-
alkyl chain optimized at (U)CAM-B3LYP/6-31+G* level of theory in gas phase along
the three cartesian coordinates; we assume that in the formation of SAM, optimized
molecules maintain this orientation and gold surface is parallel to y axis; the red arrow

indicates the direction of µx dipole moment.

through numerical differentiation of the perpendicular dipole moment and hence PM7

calculations in gas phase at fixed optimized geometry are carried out in presence of

an external electric field. The perpendicular component of the dipole moment and the

polarizability are reported in Table 3.13

Table 3.13: Perpendicular component and module of the dipole moment and polariz-
ability;

System µx (D) |µ| (D) α (10−24cm3)

Fc-PTM -1.165 1.987 113
Fc-PTMH -1.201 1.832 99

Fc 1.590 1.920 6

Having obtained µx and α values from semiempirical calculations on the isolated species

in Figure 4.10, we need an estimate for the average area. A first estimate can be

obtained from geometry calculations, estimating the area of the terminal group at the

SAM-surface. We have estimated for Fc a rectangular basis of dimension 10.46 x 6.24

Å2, and for PTM-based system 4.36 x 3.26 Å2. A second estimate of the area can be

obtained from the experimental value of the surface charge density, Γ, according to the

expression:

A(nm2/molec) = 1016/(NAΓ) (3.8)

where NA is the Number of Avogadro and Γ is evaluated experimentally through cyclic

voltammetry, as summarized in Table 3.14. Both estimates are affected by large errors,

so that only the order of magnitude is relevant. By the way, the calculated ∆Φ is only

marginally affected by the adopted A value (see Table 3.15).

Table 3.15 collects the main results of this Section, with the estimated εeff (eq. 3.7) and

∆Φ (eq 3.6) for the three investigated systems. Results obtained with the two different

A values, as discussed above, are shown.
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Table 3.14: The average area estimated from calculations (Acalc) and from experi-
ments (Aexp) for the three systems;

System Aexp (nm2/molec) Acalc (nm
2/molec)

Fc-PTM 1.30 0.652
Fc-PTMH 0.51 0.662

Fc - 0.143

Table 3.15: εeff and ∆Φcalc calculated for Fc-PTM,Fc-PTMH and Fc in comparison
with ∆Φexp for both the two estimations of area; A is (nm2/molec) and ∆Φ is in mV;

System A εeff ∆Φcalc ∆Φexp

Fc-PTM Exp. 1.30 1.68 16 20
Cal. 0.652 2.93 18

Fc-PTMH Exp. 0.510 3.45 20 55
Cal. 0.662 2.67 20

Fc Cal. 0.143 2 -167 -400

In PTM-based systems, irrespective of the A value adopted, εeff is always smaller than

3, in agreement with previous results [149, 154]. The proposed treatment is extremely

simple, however, semiempirical calculations on gas-phase molecules allow to understand

the different sign of ∆Φ for the Fc-SAM if compared with the PTM-decorated SAM. Fc-

PTMH-based SAM has a similar response (and possibly a slightly larger response) than

Fc-PTM-SAM, in agreement with a very similar dipole moment for the two structures.

3.5 Conclusion

In this Chapter we have theoretically investigated different D-π-R· systems with differ-

ent donors. The low-energy photophysics of such materials is governed by a CT between

D and R· and therefore the essential-state models could be applied. However for such

systems, the small ionicities and/or small delocalization leads to weak CT bands, mak-

ing difficult the parametrization of the essential-state model from optical spectra. In

this context, in the first part of the Chapter, we have proposed two strategies to attack

the problem of intramolecular charge transfer in such materials by means of quantum-

chemical calculations as well as semiempirical methods with the aim to identify a reliable

alternative for the parameterization of essential-state models respect to the usual param-

eterization against optical spectra. The first strategy relies on calculated CT transitions

through TD-DFT and ZINDO. However, we have demonstrated that TD-DFT fails due

to its intrinsic weakness in the treatment of charge-transfer transitions [138–140], in par-

ticular in push-pull chromophores [141], and to its intrinsic difficulties to treat excited

states of open-shell ground states [142]. At variance, we have shown that ZINDO results
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lead to more reasonable estimates of essential-state model parameters, giving an overall

picture consistent with experimental evidences. In the second strategy, essential-state

model parameters are extracted from ground state properties. More precisely, we have

triggered the CT process applying an electric field as to drive D-π-R· from the neutral

(N) to the zwitterionic (Z) state. We have demonstrated that spin polarized hybrid

functionals in the DFT machinery perform poorly on the description of ground-state

properties of open-shell CT dyes.

In the second part of the Chapter, we have presented a theoretical investigation of the

work function modification of a gold substrate induced by the presence of SAM based on

D-π-R· or on its hydrogenated counterpart or based just on the D group. Experimental

results can be satisfactorily reproduced based on simple model only relying on gas phase

calculations for isolated molecules.



Chapter 4

Spectral properties of organic

radical-based nanocrystals

Observations always involve theory

-Edwin Hubble

4.1 Introduction

In Chapter III we have introduced organic radicals as acceptor building block for obtain-

ing multifunctional molecular materials. In this Chapter, we focus on optical properties

of PTM (already introduced in Chapter III) and TTM, trichlorotriphenylmethyl radical,

both shown in Figure 4.1.

Figure 4.1: Chemical structures of PTM and TTM.
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These neutral organic radicals show magnetic properties by interactions of unpaired elec-

trons and large first-order hyperpolarizabilities due to the presence of accessible low-lying

electronic states [157]. The possibility to combine the intrinsic magnetic characteristics

with conducting or electrochemical properties make such materials nice examples of mul-

tifunctional molecular material and therefore good candidates for memory or spintronics

devices or for optical rectification. TTM and PTM are very promising also in the field

of bio-imaging. Indeed, the linear absorption spectrum of PTM and TTM exhibits two

main bands (see Figure 4.2): a very intense transition at 380 nm and a weaker transition

at 540 nm, while their emission spectrum is dominated by a weak broad band in the

region 560-700 nm; in addition, both compounds show a TPA band at around 840 nm

(see Figure 4.3). The large Stokes shift and the emission band in the region close to

the transparency biological window (700-1500 nm) are non-trivial features in common

closed-shell organic dyes and make these dyes interesting for two-photon microscopy.

Two-photon excitation microscopy offers several advantages with respect to standard

microscopy, based on one-photon absorption, including highly spatially confined excita-

tion and three-dimensional resolution. Moreover, the energy of the photons used in TPA

are half the energy of the photon used in OPA, reducing photodamage and more easily

approaching the transparency window as to reduce scattering as well as background

fluorescence. While PTM and TTM are promising in this respect, their fluorescence

quantum yield must be improved for bioimaging applications.

Figure 4.2: Absorption spectrum of TTM and PTM in THF; UV-Vis absorption
spectra were recorded on a Perkin Elmer Lambda 650 Spectrometer.

D. M. Nikolaidau and Prof. F. Terenziani, in collaboration with Dr. Imma Ratera and

D. Blasi from ICMAB, Barcelona, tried different strategies to improve the luminescence

of PTM and TTM radicals. Firstly, they have investigated the effects induced by dif-

ferent solvents and by temperature. As shown in Figure 4.4, the rigidity of the medium

leads to enormous enhancement of fluorescence, increasing, for instance, in TTM from
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Figure 4.3: Two-photon excited absorption action cross section of TTM and PTM
in THF; measurements are collected in the laboratory directed by Prof. E. Vauthey

(Geneva University).

2% to 77% in THF at 77K.

Figure 4.4: Fluorescence spectrum of TTM in THF at room temperature and at 77·K
in THF.

Then, they have investigated nanoparticles behavior. Particularly interesting results are

observed for nanoparticles obtained by coprecipitating PTM and TTM species with a

second diluting optically-neutral organic species (TTM-αH). The spectral properties of

nanoparticles are reported in Figure 4.5. The composite organic nanoparticles are highly

luminescent and, as shown in Figure 4.5, when increasing the radical amount, a second,

red-shifted emission band is obtained, characterized by long lifetime, while the overall

luminescence intensity decreases. The absence of changes in the absorption spectrum

suggests that this interesting phenomenon only involves excited molecules. These exper-

imental evidences, combined with the dependence on TTM concentration, suggest the

formation of multiplet excimers in the nanoparticles. The relevant phenomenon is less
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Figure 4.5: Top panels: absorption and emission spectra (λexc=378 nm) of composite
purely organic nanoparticles composed by TTM-αH and TTM with different percentage.
Bottom panels: absorption and emission spectra (λexc=389 nm) of composite purely

organic nanoparticles composed by TTM-αH and PTM with different percentage.

evident in composite organic nanoparticles based on radical PTM and TTM-αH and

appears for higher radical amount in comparison with TTM counterpart.

An excimer is defined as a complex between two molecules that is stable only in the

excited state [158]. Pyrene was the first aromatic molecule shown to form excimers in

solution, the key observations being the appearance of a red-shifted structurless emission

band as a function of pyrene concentration, but with no corresponding changes in the

absorption spectrum [159].

In order to understand these intriguing experimental data, theoretical calculations are

required. Usually, a potential energy surface involving the ground and the lowest excited

state of the relevant molecule as a function of intermonomer separation is invoked to

explain this phenomenon [158, 160] as reported in Figure 4.6. The main arguments

are as follows. The first step is the excitation of the monomer to its lowest excited

singlet state. This is followed by an attractive collision with a ground state monomer

and the formation of a bound excited state complex or excimer. Since the interaction

is attractive, the energy of the excimer is lower than that of the excited monomer.

When the excimer emits a photon to return to the ground state, it is generally believed

that the two monomers, at this short distance apart, are in a repulsive portion of the
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potential energy curve. As a result, the two ground state monomers rapidly dissociate

before the complex can undergo a single vibrational period, resulting in a broad emission

bandshape.

Figure 4.6: Schematic diagram of the relationship between a dimer in the ground state
(S0) and an excimer in the excited state. IC denotes internal conversion from higher

singlet excited states (Sn) to the lowest one (S1).

However, only few theoretical studies on excimers have been published and they are

limited to relatively simple organic molecular systems such as benzene or naphthalene

dimers because of the computational cost of excited state calculations involving dimers.

Then, most of the investigations rely on semiempirical and TD-DFT methods. In addi-

tion, to the best of our knowledge, no theoretical studies on excimers formation involving

open-shell systems have been reported.

In this Chapter, TDDFT is adopted to investigate the excited states of open-shell system

TTM. Since crystallographic structure is available, we focus on the description of the

monomer at crystal geometry and at its optimized ground and lowest-excited state. From

the crystal structure we extract a dimeric unit (on the basis of the shortest interplanar

and interatomic distances) and, keeping the dimer structure frozen, we evaluate the

possibility to the formation of an excimer building the PES for the ground and the

lowest excited state. Finally, following Kim D. and J.L. Brédas, we attempted to do a

complete optimization of the lowest excited state in the selected dimer unit to compare

it with the emission of the monomer [161].
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4.2 Quantum-chemical calculations on the monomer

Calculations are performed using the same basis set 6-31+G* but different functionals:

CAM-B3LYP, ωB97XD and B3LYP (Gaussian 09 package [114]). CAM-B3LYP was re-

cently shown to be preferable to other functionals, for TD-DFT calculations of excitation

energies [138]. By contrast, B3LYP functional has been selected since is more reliable

in term of energetics and is suggested to treat excimer interactions [158]. On the other

hand, ωB97XD is able to include long range interactions. Finally, to better understand

the photophysical (excitation/emission) properties of the system under investigation, we

also study the spin density.

4.2.1 Crystallographic geometry

The crystallographic unit for TTM unit is shown in Figure 4.7.

Figure 4.7: Crystallographic structure of TTM; green circles corresponding to A, B
and C show the three different fragments;

In Figure 4.8 frontier MOs for the isolated TTM in the crystallographic geometry are

shown; molecular orbitals in the relevant states are qualitatively similar at all different

levels of theory in exam. The SOMO (Singly Occupied Molecular Orbital) is delocalized

onto aromatic rings and radical carbon and it is similar to SUMO but with a smaller

contribute on the radical carbon. HOMO is substantially delocalized on two phenyl

groups and LUMO is the corresponding antibonding orbital. Interesting, HOMO-1 is

quasi degenerate with HOMO.
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Figure 4.8: Molecular orbitals of TTM radical in ground state at UωB97XD/6-
31+G*, UCAMB3LYP/6-31+G* and UB3LYP/6-31+G* at crystallographic structure.

In Table 4.1, the calculated results for the lowest energy transitions with oscillator

strength and wavefunctions are summarized.

Table 4.1: Calculated excited states at TD-UωB97XD, TD-UCAMB3LYP and TD-
UB3LYP with 6-31+G* basis set in gas phase assigned to experimental transitions;

Level of theory Transition λ (nm) f Transition nature

TD-UωB97XD S0−→S1 422 nm 0.009 HOMO-β −→SUMO (0.77)
S0−→S2 421 nm 0.015 (HOMO-1)β −→SUMO (0.76)
S0−→S7 332 nm 0.152 (HOMO-4)β −→SUMO (0.59)

SOMO−→LUMO-α (0.49)
S0−→S8 329 nm 0.169 (HOMO-3)β −→SUMO (0.55)

SOMO−→(LUMO+1)α (0.47)
TD-UCAMB3LYP S0−→S1 433 nm 0.007 HOMO-β −→SUMO (0.72)

S0−→S2 432 nm 0.012 (HOMO-1)β −→SUMO (0.73)
S0−→S7 335 nm 0.125 (HOMO-4)β −→SUMO (0.68)

SOMO−→LUMO-α (0.36)
S0−→S8 333 nm 0.14 (HOMO-3)β −→SUMO (0.66)

SOMO−→(LUMO+1)α (0.34)
TD-UB3LYP S0−→S1 477 nm 0.020 HOMO-β −→SUMO (0.92)

S0−→S2 475 nm 0.028 (HOMO-1)β −→SUMO (0.92)
S0−→S7 377 nm 0.161 SOMO−→LUMO-α (0.83)
S0−→S8 368 nm 0.184 SOMO−→(LUMO+1)α (0.82)

TD-DFT calculations suggest that the band at lower energy (∼540 nm) can be assigned

to the two first excited states characterized by a small oscillator strength and dominated

by the transition HOMO-β −→SUMO and (HOMO-1)β −→SUMO, respectively. The

band at higher energy (∼380 nm) can be assigned to the two transitions very close in
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energy with a larger oscillator strength. Their wavefunctions are dominated by two

configurations involving α and β molecular orbitals except for TD-UB3LYP/6-31+G*.

The present assignment is supported by the agreement of the relative energy between the

two transitions (0.81 eV, 0.84 eV, 0.73 eV for the three DFT functionals, respectively)

with the experimental absorption spectra (0.99 eV). The relative oscillator strength

is overestimated (0.075, 0.32, 0.14 for the three functionals, respectively) respect to

experimental results (0.024). Our results are in line with those from Hattori et al. [162].

In the Figure 4.9, the spin density at ground state and at the lowest excited states is

reported. The spin distribution in ground state is localized on the central carbon and on

the phenyl groups in agreement with results in Chapter III and experimental data [162].

In the lowest excited state, the spin density moves mainly from A and B phenyl branches

(see Figure 4.7 for the fragments) towards the TTM core, involving both radical carbon

and α carbons of the relevant phenyl arms. By contrast, C fragment still presents a

small amount of spin distribution. The charge distribution in ground and lowest excited

state reflects spin distribution results, as shown in Table 4.2, where we can observe an

increase of negative charge on the central carbon.

Figure 4.9: Spin density of the radical in ground state and in the lowest excited state
at crystallographic geometry; all levels of theory give same results.

Table 4.2: ESP (Electrostatic Potential) charges distribution in ground state and in
S1 at crystallographic structure; A, B and C fragments are shown in Figure 4.7; 1 is

referred to radical carbon;

Fragment Ground state S0−→S1

1 -1.25 -1.49
A 0.44 0.55
B 0.38 0.18
C 0.43 0.83

The picture presented above does not take into account the electron-phonon coupling,

responsible for an equilibrium geometry in the lowest excited state different from that

in the ground state. In order to evaluate emission properties, an optimization of the

lowest excited state is needed.
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4.2.2 Optimization of ground and excited states

In Figure 4.10, optimized ground and fluorescent geometry at

TD-ωB97XD/6-31+G*, TD-UCAMB3LYP/6-31+G* and TD-UB3LYP/6-31+G* are

shown. Between the two lowest quasi degenerate excited-states, optimization geome-

try has been successfully computed just for S1. In fact, after first steps, the S2 PES

crosses the S1 PES. In all levels of theory, at optimized ground state, we assist just to a

slight elongation of all bonds in comparison with crystallographic geometry. Moreover,

molecular orbitals at optimized ground and excited state do not change in comparison

with those at crystal structure.
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Figure 4.10: Optimized ground and fluorescence state geometry at all levels of theory
investigated.
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Vertical transitions at optimized ground-state geometry are collected in Tables 4.3. As

expected from previous considerations, the calculated absorption spectrum at this ge-

ometry do not differ significantly from that at crystal geometry: the oscillator strength

is still concentrated in the transition to the degenerate S7 and S8 excited states and

S1 and S2 still remain weak allowed (total oscillator strength for S7 and S8 ∼0.3 in

all levels of theory in comparison with f shown in Table 4.3). In the relaxed excited

state geometry the lowest excited state acquires some intensity, possibly explaining the

experimental observation of enhanced emission in rigid environments where other decay

mechanisms are hindered.

Table 4.3: Vertical transition S0−→S1, wavelength, wavefunction and oscillator
strength at optimized ground state and excited state at TD-UωB97XD/6-31+G*,

UCAM-B3LYP/6-31+G* and UB3LYP/6-31+G* in gas phase;

S0−→S1 transition

Level of theory Geometry: Opt S0 Geometry: Opt S1

TD-UωB97XD HOMO-β −→SUMO HOMO-β −→SUMO
λ= 418 nm λ= 492 nm
f= 0.0093 f= 0.019

TD-UCAMB3LYP HOMO−β −→SUMO HOMO−β −→SUMO
λ= 428 nm λ= 490 nm
f= 0.0063 f= 0.014

TD-UB3LYP HOMO−β −→SUMO HOMO−β −→SUMO
λ= 473 nm λ= 551 nm
f= 0.022 f= 0.028

By knowing the equilibrium structure of the ground and excited state we can estimate

the Stokes shift (SS). Specifically, we determine the reorganization energies associated

with relaxation in the ground and excited electronic states, within the adiabatic poten-

tial (AP) approach. The so obtained SS are listed in Table 4.4.

Table 4.4: SS and vertical transition energies at optimized ground and excited state
in comparison with experimental data (see Figure 4.4);

Level of theory SS (eV) λabs (nm) λemi (nm)

TD-Uωb97XD 0.44 418 492
TD-UCAMB3LYP 0.37 427 490

TD-UB3LYP 0.37 473 551
Exp 0.17 540 575

Experimental spectrum registered for a solution of TTM in CH2Cl2 reports a SS equal

to 0.17 eV. Since calculated SS refers to a gas phase, we would expect a slightly under-

estimated SS. By contrast, TD-DFT calculations largely overestimate the SS: a value of

0.44 eV for ωB97XD and 0.37 eV for CAMB3LYP and B3LYP.
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The spin distribution of the calculated relaxed excited state (see Figure 4.11) is sub-

stantially equivalent to that at crystallographic geometry (see Figure 4.9).

Figure 4.11: Spin density at optimized ground (top) and lowest excited states (iso-
value=0.003) at three levels of DFT theory investigated (bottom).

TD-DFT rationalizes the absorption spectrum of TTM in solution; the agreement with

experimental data is both qualitative and quantitative for TD-B3LYP, while the others

functionals slight overestimate the excitation energy. The tendency of CAM-B3LYP and

ωB97XD to overestimate the excitation energy (in particular for valence excitations) is

well-known [138] and therefore in the two latter cases, all of the computed spectra would

be rigidly red-shifted by 2600 cm−1. By contrast, all functionals overestimate the Stokes

shift, a fact that can be ascribed to the difficulty of TD-DFT with open-shell systems.

Indeed, in general, estimation of Stokes shift in closed-shell aromatic molecules at TD-

DFT level compares well with the experimental measurements in a non-polar solvent

[163].

4.3 Quantum-chemical calculations on the dimer

From the analysis of the crystal structure, we select one significant dimer (see Figure

4.12) characterized by the shortest interatomic and interplanar distances (between the

two units). Ground state and excited states calculation at different levels of theory are

performed assuming that the two unpaired electrons combine in an anti-parallel way

(singlet dimer).
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Figure 4.12: Selected dimer along the three crystallographic axis.

(TD)ωB97XD/6-31+G* and (TD)B3LYP/6-31+G* calculations in gas phase are car-

ried out; UKS singlet calculations are performed with and without adding the keyword

guess=mix. The guess=mix keyword is suggested in producing UKS wavefunctions for

singlet state and it requests that HOMO and LUMO be mixed so as to destroy α − β
spatial symmetry [114]. In order to evaluate the quality of the proposed calculations,

also a triplet UKS calculation is carried out. Indeed, by knowing that the coupling

between two TTM molecules is negligible in ground state (since no change in the ab-

sorption spectrum is observed), we expect that the singlet dimer energy converges to the

correspondent triplet state, in virtue of the negligible exchange term in the latter. On

the same grounds, we expect that the dimer ground state energy converges to twice the

energy of the isolated units as well as the energy splitting between the frontier molecular

orbitals, obtained from the combination of the SOMOs of the two isolated molecules,

has to be of the same order whatever multiplicity is considered. As reported in Table

4.5 and in Figure 4.13, singlet UKS calculation is not reliable; it does not satisfy any of

the previous considerations.

Table 4.5: Ground state energy of the dimer at UωB97XD/6-31+G* with different
multiplicity of spin in gas phase;

Multiplicity of spin Energy (Ha)

Triplet -973.77288229
Singlet -973.76506090

Singlet with guess=mix -973.77288270

The UKS calculation using guess=mix keyword gives more reliable results: the gap

between the two new frontier OMs is 0.02 eV, comparable with the triplet one, as well

as, the relevant energy is quasi degenerate with the triplet. The interaction between

the originally degenerate SOMO and SUMO molecular orbitals of the two isolated units

leads to the formation of four non degenerate levels that constitute the frontier orbitals

of the complex.
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Figure 4.13: Eigenvalues of the frontier molecular orbitals in the monomer in com-
parison with those of the dimer at singlet, triplet and singlet with guess=mix keyword

at UωB97XD/6-31+G*.

From Figure 4.14 we can observe that molecular orbitals are not delocalized over the

two units, and, since we are relaxing the spatial orbitals, both spin orbital α and β are

present.

Figure 4.14: Frontier molecular orbitals in the dimer at singlet UKS with
guess=mix keyword at UωB97XD/6-31+G*; molecular orbitals are qualitatively sim-

ilar at UB3LYP/6-31+G*.



4.3 Quantum-chemical calculations on the dimer 131

By starting from this ground state, we perform vertical excitations. The calculated ex-

cited states with their energy, wavefunctions and oscillator strength at (TD)UωB97XD/6-

31+G* and (TD)UB3LYP/6-31+G* in gas phase at crystallographic structure are re-

ported in Table 4.6 and 4.7, respectively. From TD-UωB97XD/6-31+G* calculations

Table 4.6: Transition energis, wavefunctions and oscillator strengths of the dimer
at (TD)UωB97XD/6-31+G* in gas phase at crystallographic geometry. Each wave-
function is reported in terms of the OMs of the dimer (first row) and of the monomer

(second row);

TD-UωB97XD

Transition λ Transition nature f
S0−→S1 423 nm (HOMO-1)α −→LUMO-α 0.0088

HOMO-B−→SUMO-B
S0−→S2 423 nm (HOMO-1)β −→LUMO-β 0.0144

HOMO-A−→SUMO-A
S0−→S3 422 nm (HOMO-2)β −→LUMO-β 0.0010

(HOMO-1)-A−→SUMO-A
S0−→S4 422nm (HOMO-2)α −→LUMO-α 0.0220

(HOMO-1)-B−→SUMO-B

Table 4.7: Transition energies, wavefunctions and oscillator strengths of the dimer
at (TD)UB3LYP/6-31+G* in gas phase and crystallographic geometry. Each wave-
function is reported in terms of the OMs of the dimer (first row) and of the monomer

(second row);

TD-UB3LYP

Transition λ Transition nature f
S0−→S1 650 nm HOMO-α −→LUMO-α 0.0001

SOMO-A−→SUMO-B
S0−→S2 650 nm HOMO-β −→LUMO-β 0.0014

SOMO-B−→SUMO-A
S0−→S3 478 nm (HOMO-1)α −→LUMO-α 0.0444

HOMO-B−→SUMO-B
S0−→S4 478 nm (HOMO-1)β −→LUMO-β 0.0052

HOMO-A−→SUMO-A
S0−→S5 477 nm (HOMO-2)α −→LUMO-β 0.0004

(HOMO-1)A−→SUMO-A
S0−→S6 475 nm (HOMO-2)α −→LUMO-α 0.0428

(HOMO-1)B−→SUMO-B

(see Table 4.6), excited states are almost degenerate, not significant changes in excita-

tion energy are observed and the excited states are localized on a single molecule. Such

results were expected considering the small splitting in the frontier molecular orbitals of

the dimer. At TD-UB3LYP/6-31+G* (see Table 4.7) the two lowest excited states are

two dark CT states: an electron is moved from SOMO-A(B) towards SUMO-B(A), in
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line with its tendency to underestimate CT states, while the relevant excited states are

S3 and S4 (corresponding to the monomeric S1 and S2 excited states respectively).

Data on Table 4.8, listing ground state and the excited state energy of the monomer and

of the dimer, allow to evaluate the stabilization energy in the dimer in comparison with

a non interacting pair of molecules in the two relevant states. Specifically, we evaluate

the stabilization energy in dimer ground state as the difference between its energy and

that of the two ground state isolated units, while the stabilization energy in excited state

of dimer is estimated as the difference between the dimer in excited state and the two

not interacting molecules with one in its excited state. Results are listed on Table 4.9.

Table 4.8: Energy at (TD)UωB97XD/6-31+G* and (TD)UB3LYP/6-31+G* of
ground and excited states both for monomer and dimer in gas phase at crystallographic

geometry;

(TD)UωB97XD (TD)UB3LYP

Monomer at ground state -4868.8573771 Ha -4869.2289449 Ha
Monomer at excited state -4868.7495299 Ha -4869.1333994 Ha

Dimer at ground state -9737.7288270 Ha -9738.4548618 Ha
Dimer at excited state -9737.6211919 Ha -9738.3848754 Ha

Table 4.9: Interaction energy in the dimer at ground and excited states at
(TD)UωB97XD/6-31+G* and (TD)UB3LYP/6-31+G* at crystallographic geometry;

Interaction

(TD)UωB97XD (TD)UB3LYP
ground state 0.38 eV 0.082 eV
excited state 0.40 eV 0.075 eV

The scenario emerging from Table 4.9 confirms previous results: the interactions in

the excited state are of the same order of magnitude as those in ground state, not

supporting the excimer picture. In order to exclude that weak interactions inside the

crystal affect experimental results, we run calculations with PCM model; such expedient

has been adopted by Cammi et al. to simulate weak interactions inside the crystal;

in the present case we do not observe any significant difference. In conclusion, TD-

DFT characterization on the dimer at frozen crystallographic geometry predicts the

same spectroscopic behavior of the singlet unit suggesting very negligible interactions in

excited state.
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4.3.1 Characterization of PES at fixed monomer geometry

We are now discussing the PES obtained by the selected dimer in which the geometry

is kept fixed. The effect of the displacement of one monomer with respect to the other

is explored in order to better characterize the role of π-π interactions. The excited-

state potential energy surfaces are characterized by calculations along the intermolecular

translational coordinates x- and y-axis, as reported in Figure 4.15. The PES for such

displacements are displayed in Figure 4.16. These calculations predict a repulsive ground

state while the lowest excited state does not exhibit any shallow well, indicating no

excimer formation.

Figure 4.15: Dimer view along x and y axis.

Figure 4.16: Plot of the potential energy surfaces for the dimer in exam in S0 and
S1-S2 (HOMO−→LUMO) and S3-S4 ((HOMO-1)−→LUMO); the zero of energy cor-
responds to the ground state dimer at crystallographic structure; S1-S2 and S3-S4 are

substantially degenerate.

This picture does not account for the possible influence of lattice relaxation in the

emission properties of the two interacting units. Therefore to investigate the emission

properties of the dimer, we have tried to optimize the lowest excited state at TD-ωB97XD

but we did not succeed; the optimization of an excited state is not-trivial and difficulties
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increase when we treat with a dimer based on two open-shell moieties. For this reason,

we have tried to repeat calculations at semi-empirical level of theory.

4.4 Semiempirical calculations on the monomer and dimer

Different semi-empirical theoretical tools have been selected: PM7 and RM1 in the

MOPAC package [112, 113] and ZINDO implemented in ORCA [143]. PM7 and RM1

have spotted some difficulties to calculate the weight of each configurations in the rele-

vant excited states and for this reason we just focus on ZINDO tools adopting cis package

[143]. Basically, we follow the same procedure adopted for TD-DFT. The absorption

and emission energy as well as the Stokes shift at the equilibrium geometry of relevant

states are listed in Table 4.10. During the optimization of the ground state geometry,

we assist to an elongation of all bonds in the phenyl groups except those connecting

central carbon to the three phenyl groups.

Table 4.10: Calculated vertical transition energies at optimized ground and excited
state and SS at ZINDO level in comparison with experimental data in solution of TTM

(see Figure 4.4);

λabs (nm) λemi (nm) SS (eV)

ZINDO 467 517 0.25
Exp. data 540 575 0.15

The computed SS, sum of the two reorganization energy values, amounts to 0.25 eV and

compares well with the experimental measurement in dichloromethane. The relevant

wavefunction is dominated by SOMO−→(LUMO+1)α

and HOMO-α −→(LUMO+1)α configurations and it contains also the main contribute

at TD-DFT level ((HOMO-1)β −→SUMO).

After having characterized the monomer, we turn attention on the relevant physical

dimer (see Figure 4.15). ZINDO calculations are performed on frozen crystallographic

dimer with the two unpaired electrons arranged in anti-parallel way. The obtained UHF

singlet calculation is meaningless: the ground state energy of the dimer is destabilized

respect with the two not interacting units (by 3.5 eV) as well as respect with the dimer

in the triplet configuration (by 3.35 eV). Unfortunately, differently from Gaussian, in

ORCA, there is not implemented the equivalent guess=mix keyword and therefore we

abandon ZINDO tools to investigate the optimized dimeric lowest excited state.
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4.5 Conclusion

In this Chapter we have tried to rationalize the intriguing optical properties of TTM

radicals. Experimental evidences of aggregation of TTM into composite nanoparticles

suggest the formation of multiplet excimers. By means of TD-DFT, we have firstly

investigated the monomer unit at crystallographic geometry and at optimized ground

and lowest-excited state. We have demonstrated that TD-DFT is able to reproduce the

absorption spectrum of TTM in solution predicting the main features in the absorption

though an overestimated Stokes shift. Then, from the crystal structure we have ex-

tracted a dimeric unit and, keeping the dimer structure frozen, we have investigated the

possibility of the formation of an excimer, building the ground and excited state PESs;

the obtained repulsive lowest excited state clearly pointed out the lack of excimer for-

mation. Because of the large dimension as well as of the complex nature of the relevant

dimer, we were not able to optimize the lowest excited state neither if a smaller basis

set is adopted. In any case, our analysis does not support excimer formation.





Concluding remarks

In this work a comprehensive computational effort was devoted to build reliable models

for charge transfer processes that govern the physics of different classes of molecular

functional materials.

Intramolecular CT in organic dyes is well understood in terms of essential-state models,

a family of parametric Hamiltonians, introduced since date in the host laboratory to

describe linear and non-linear spectral properties of the dyes in different environments.

The contribution of this work to this mature field was the definition of an original model

for Brilliant Green, a dye for which a large number of available experimental data put

strong constraint on the model itself. Then we were able, for the first time, to apply

essential-state models to the ultrafast dynamics of coherently excited dyes in solution.

In this context, intriguing results are obtained as for the effects of polar solvation and

inhomogeneous broadening on the spectroscopic behavior of polar dyes. Moreover, the

non-adiabatic treatment of electron-phonon coupling allowed us to follow the temporal

evolution of dynamic Jahn-Teller systems, a fascinating result that sheds light on the

power of simple models to understand complex phenomena.

Intermolecular CT is the key process in mixed-stack CT crystals, a family of mate-

rials where delocalized electrons in 1D coupled to phonon modes lead to a variety of

phenomena ranging from (photoinduced) phase transitions to ferroelectricity. The mod-

ified Hubbard Hamiltonian is the model of choice to describe the strongly correlated

electronic systems. However the experimental parametrization of the Hamiltonian is a

tricky problem and requires a welt of experimental data not readily available for many

systems. Here we successfully validate and approach for parameterizing the modified

Hubbard model from DFT calculations on dimeric (DA) structures. The analysis of 12

systems demonstrates that a reliable description of each system can be readily obtained

based just on the crystal structure.

More delicate is the work on D-π-R· systems. These systems are again CT dyes (more

precisely polar D-π-A dyes), but with a radical character due to the choice of the ac-

ceptor group as a stable radical (in the specific case the PTM radical). These molecules
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associate the interesting physics of CT dyes and systems with magnetic properties, and

represent fundamental building blocks for a new family of materials where the con-

comitant presence of intra and intermolecular CT may lead to new physics and new

opportunity for advanced applications. In this perspective a reliable modeling of the

intramolecular CT in D-π-R· molecules represents the first fundamental step towards

the design of new materials with sought functionality. Unfortunately, TD-DFT proved

unable to reliably reproduce the excitation spectrum of these molecules, quite irrespec-

tive of the adopted functional. An effort to overcome the problem, parametrizing the

essential-state model based on ground state properties (specifically the dependence of

the ground state dipole moment on an applied static electric field), demonstrated a fail-

ure of DFT itself for this class of molecules. At present best results are obtained from a

semiempirical (ZINDO) calculation of optical spectra. Further studies in this direction

are in demand. Similarly inconclusive are studies on the presence of excimer states in

organic nanoparticles built from radical dyes. In this case TD-DFT works well to repro-

duce absorption spectra but fails to reproduce emission spectra, while calculations on a

dimeric structure are too heavy for a complete study of the excimer problem.



Appendix A

Fluorescence anisotropy: main

aspects and experimental setup

A.1 Fluorescence anisotropy

Fluorescence anisotropy is a spectroscopic technique based on the principle that upon

excitation with polarized light, many samples also emit polarized light. The origin of this

phenomenon is related to the presence of transition dipole moments for absorption and

emission, which lie along specific molecular axes. In solution, fluorophores are randomly

oriented. When exposed to polarized light, molecules with the absorption transition

dipole moment oriented along the electric vector of the incident light are preferentially

excited. Hence, the excited state population is not randomly oriented. Anisotropy

measures the change in orientation of the transition dipole moment relevant to emission

with respect to absorption. Depolarization of emission originates from a number of

different phenomena. One of the most common reasons of depolarization is rotational

diffusion. Since anisotropy measures the average angular displacement between the

absorption and emission transition dipole moments, if the rate of diffusion is faster than

the rate of the emission, fluorescence is completely depolarized. The rate of diffusive

motion depends both on the viscosity of the solvent, on the shape and on the dimension

of the fluorophore. Small molecules are characterized by a fast diffusion rate. On the

contrary, diffusion is hindered in viscous solvents, or in glassy matrices.

A.1.1 Anisotropy measurements

The experimental setup for fluorescence anisotropy measurements is schematically illus-

trated in Figure A.1.
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Figure A.1: Schematic diagram for fluorescence anisotropy.

The sample is excited with polarized light, and emission is detected through another

polarizer. Anisotropy is defined as:

r =
I∥ − I⊥
I∥ + 2I⊥

(A.1)

where I∥ and I⊥ are the emission intensities with emission polarizer oriented parallel

and perpendicular to the excitation polarizer, respectively. Anisotropy is a dimension-

less quantity, because the difference between the intensity of light emitted parallel and

perpendicularly to the excitation (I∥−I⊥), is normalized by the total intensity of emitted

light (I∥+2I⊥). The fundamental anisotropy of a sample of molecules in frozen random

orientation in absence of broadening effect is:

r0 =
2

5

(
3 cos2 β − 1

2

)
(A.2)

where β is the angle between transition dipole moments relevant to emission and ab-

sorption processes. The term r0 is used to refer to anisotropy observed in the absence

of other depolarizing process such as rotational diffusion.

The maximum value for anisotropy is 0.4, when the absorption and emission transition

dipole moments are aligned. Anisotropy is 0 at the magic angle (54.7◦), and the lowest

value, r0= -0.2, is obtained when the two dipole moments are perpendicular. Anisotropy

is 0 also when some depolarization effect occurs.

Measurements of the fundamental anisotropy r0 require special conditions. In order

to avoid rotational diffusion, the samples are examined in solvents forming transparent

glasses. Indeed, the latter are preferred to solvents forming the more common crystal-

lization transition in order to avoid light scattering in crystalline environment. Since the

matrix is rigid, photoselection plays a main role, as it will be discussed in the Appendix
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B. Moreover, solutions must be optically diluted (absorbance < 0.1) to avoid depolar-

ization processes due to internal absorption and subsequent emission of photons, or due

to energy transfer. To measure anisotropy we have adopted a single emission channel

(L-format). In particular after excitation with polarized light, emission is collected after

a monochromator (see Figure A.1). The monochromator has a different transmission

coefficient for vertically and horizontally polarized light, and, as a consequence, the

rotation of the polarizer causes a change in the detected intensity even if emission is

unpolarized. The G-factor takes into account the sensitivity of the detection system for

vertically and horizontally polarized light:

G =
IHV

IHH
(A.3)

where IXX is the fluorescence intensity and XX represents the polarization (V=vertical,

H=horizontal) of the excitation and emission polarizers. Consequently, anisotropy is

defined as follows:

r =
IHV

IHH
=

IV V −GIV H

IV V + 2GIV H
(A.4)

The excitation anisotropy spectrum is a plot of anisotropy detected at a fixed wave-

length, as a function of the excitation wavelength. According to the Kasha rule, the

lowest singlet state is responsible for emission, independently of excitation. Since the

detected wavelength is fixed, the emission dipole moment remains the same. On the

other hand, the transition dipole moment relevant to absorption changes for different

excited states, so that the anisotropy is different for different absorption bands. The

emission anisotropy spectrum is measured exciting the sample at a fixed wavelength and

detecting the emission anisotropy at frequencies covering the whole emission band. The

main difference with respect to the excitation anisotropy spectrum, is that in this case

only two excited states are involved: the lowest singlet excited state, responsible for

emission, and the state that absorbs the excitation wavelength (obviously, they can be

the same state). Consequently, in the lack of spectral features, the emission anisotropy

spectrum is a flat line across the whole emission band.

Fluorescence and fluorescence anisotropy (emission and excitation) spectra are collected

on a Fluoromax-3 Horiba Jobin-Yvon spectrofluorometer equipped with a xenon lamp,

as the excitation source, and excitation and emission Glan-Thompson automatic po-

larizers for anisotropy measurements (single-channel L format). All measurements are

performed on diluted solutions, with absorbance < 0.1 to avoid inner filter effects. Glassy

solution had been rapidly cooled to the relevant temperature with an Oxford Instruments

OptistatDN cryostat. Quartz cuvettes specially designed for cryogenics are used. The

experimental measurements performed on glassy solution of propylene glycol presented

in Chapter I (see section 1.3) have been collected at 200K.





Appendix B

Computational details about

optical spectra

In this Appendix we describe the procedure for the calculation of linear and nonlinear

spectra. Once defined the coupled electron-vibration problem, according to essential-

state models presented in Chapter I, the calculation follows the same steps for dipolar,

quadrupolar or octupolar chromophores.

B.0.2 Absorption and fluorescence spectra

The orientational i-th components of the reaction field, F
(i)
or , (where i runs on the rel-

evant component of the reaction field: i = 1 for linear molecules or i = 1, 2 for planar

chromophores) describes a very slow motion that can be treated classically. Therefore,

the coupled electron-vibration problem is solved for fixed F
(i)
or values via a numerically

exact diagonalization. Specifically, for each F
(i)
or , the total Hamiltonian is written on the

basis obtained as the direct product of the electronic basis state times the eigenstates of

the harmonic oscillator. The vibrational basis is truncated to a number of states large

enough as not to affect relevant results (the number of vibrational states depends on the

molecular parameters and on properties of interest; typical values are 6-10 states). The

resulting Hamiltonian matrix is diagonalized numerically to get vibronic eigenstates. A

Gaussian bandshape with half-width at half-maximum Γ =
√
2ln2σ (cm−1) is assigned

to each vibronic transition, so that the molar extinction coefficient (ε) and fluorescence

spectrum (I) are calculated as function of the wavenumber, ν̃ (expressed in cm−1), as

follows:

ε(ν̃) =
10πNAν̃

3ln10~cϵ0
1√
2πσ

∑
n

µ2gnexp

[
−1

2

(
ν̃gn − ν̃
σ

)]
(B.1)
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I(ν̃) ∝ ν̃3 1√
2πσ

∑
n

µ2fnexp

[
−1

2

(
ν̃fn − ν̃

σ

)]
(B.2)

In eq. B.1, NA is the Avogadro number, c is the speed of light, ε0 is the vacuum

permittivity, ν̃gn and µgn are the transition wavenumber and dipole moment respectively,

for the g → n transition from the ground (g) to the generic excited state (n), and

summation runs over all (vibronic) excited states. In eq. B.2, referring to fluorescence,

ν̃fn and µfn are the transition wavenumber and dipole moment, respectively, for the

f → n transition from the fluorescent state (f) to the generic lower-energy state (n),

and summation runs over all states having lower energy with respect to the fluorescent

state, f . The emitting state is recognized as the lowest-energy non-adiabatic excited

state having an appreciable transition dipole moment. The calculation of linear spectra

is repeated for different For values and the total spectra are obtained summing up the

contributions at different For weighted by the relevant Boltzmann population.

B.0.3 Two-photon absorption spectra

The two-photon absorption cross section (GM, 1GM=10−50cm4sphoton−1) is calculated

according to the following expression [10]:

σ2(ω) = 1058
~ω2

4ϵ20c
2
Im⟨γijkl(−ω;ω, ω,−ω)⟩IJKL (B.3)

where c is the speed of light, and ⟨γ⟩ the orientationally averaged second hyperpolariz-

ability (IJKL indices run on the laboratory axis; ijkl run on the axis of the molecular

reference system). Tensor elements γijkl(−ω;ω, ω,−ω) are given by the following sum-

over-states expressions [164]:

γijkl(−ω;ω, ω,−ω) =
1

~3
∑
mnp

{
⟨g|µi|m⟩⟨m|µ̄j |n⟩⟨n|µ̄k|p⟩⟨p|µl|g⟩
(Ωmg − ω)(Ωng − 2ω)(Ωpg − ω)

+

⟨g|µj |m⟩⟨m|µ̄i|n⟩⟨n|µ̄k|p⟩⟨p|µl|g⟩
(Ω∗mg − ω)(Ωng − 2ω)(Ωpg − ω)

+

⟨g|µi|m⟩⟨m|µ̄j |n⟩⟨n|µ̄l|p⟩⟨p|µk|g⟩
(Ωmg − ω)(Ωng − 2ω)(Ωpg − ω)

+

⟨g|µj |m⟩⟨m|µ̄i|n⟩⟨n|µ̄l|p⟩⟨p|µk|g⟩
(Ω∗mg − ω)(Ωng − 2ω)(Ωpg − ω)

}
(B.4)

where only two-photon resonant terms have been retained and the permutation operator

P(j; k; l;ω, ω,−ω) is already considered; g is the ground state and summations run over

all vibronic excited states as obtained from the diagonalization; Ωmg = ωmg − iΓmg (we

set Γmg = Γ, the width of the Gaussian bandshape defined above, for all transitions)

and µ̄ = µ− ⟨g|µ̂|g⟩.
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For linear molecules (dipolar chromophores and linear quadrupolar chromophores), the

only tensor element different from zero is the γxxxx term, where x is the molecular axis.

The orientationally-averaged second hyperpolarizability is thus given by ⟨γ⟩XXXX =

1/5γxxxx. For planar octupolar chromophores (C3 symmetry), ⟨γ⟩XXXX = 8/15γxxxx

[16]. For Brilliant Green (see Chapter I), the orientational average of the second hyper-

polarizability is

⟨γ⟩XXXX =
1

5

∑
i

γiiii +
1

15

∑
i ̸=j

(γiijj + γjiji + γjiij) (B.5)

As for OPA, the calculation of TPA spectra is repeated for different F
(i)
or values and the

overall spectrum is obtained summing up the TPA spectra weighted by the Boltzmann

population.

B.0.4 Hyper-Rayleigh Scattering

The orientationally averaged HRS response in the laboratory coordinate system is de-

scribed by:

β2HRS = ⟨β2ZZZ⟩+ ⟨β2XZZ⟩ (B.6)

where X,Y,Z define the laboratory coordinates and ⟨β2IJJ⟩ stands for the orientational

average of the square of the appropriate β tensor component. To express the HRS

response, βHRS , in molecular coordinate system, an average over all possible orientations

has to be introduced, in according to the following equation:

βHRS =

[
∥ 6
35

(β2xxx + β2yyy) +
4

35
(β2xyy + β2yxx)+

4

21
(β2xxy + β2yyx) +

2

21
(βxxxβxyy + βyyyβyxx) +

2

35
(βxxxβyyx + βxyyβyxx)∥

]1/2
(B.7)
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The molecular tensor components, βijk, are obtained through the standard sum-over

states expression:

βijk(−2ω;ω, ω) =
1

6~3
∑
mn

{
⟨g|µi|m⟩⟨m|µ̄j |n⟩⟨n|µ̄k|g⟩
(Ωmg − 2ω)(Ωng − ω)

+

⟨g|µj |m⟩⟨m|µ̄i|n⟩⟨n|µ̄k|g⟩
(Ω∗mg + ω)(Ωng − ω)

+

⟨g|µk|m⟩⟨m|µ̄j |n⟩⟨n|µ̄k|g⟩
(Ωmg + ω)(Ω∗ng + 2ω)

+

⟨g|µi|m⟩⟨m|µ̄j |n⟩⟨n|µ̄k|g⟩
(Ωmg − 2ω)(Ωng − ω)
⟨g|µk|m⟩⟨m|µ̄i|n⟩⟨n|µ̄j |g⟩

(Ω∗mg + ω)(Ωng − ω)
+

⟨g|µj |m⟩⟨m|µ̄k|n⟩⟨n|µ̄i|g⟩
(Ω∗mg + ω)(Ω∗ng + 2ω)

}
(B.8)

where a factor 1/6 is introduced to directly compare with experimental results, expressed

in the B* convention as defined by Willetts et al. [165].

B.0.5 Emission and excitation anisotropy spectra

The calculation of anisotropy spectra is not trivial, and in particular two tricky prob-

lems have to be considered. Firstly, experimental spectra are collected in a glassy matrix

at low temperature. This experimental condition has major consequences on inhomo-

geneous broadening and on the Stokes shift. The excitation wavelength preferentially

excites a subset of molecules out of the inhomogeneous distribution (those absorbing

at the specific wavelength). The same molecules are responsible for emission. Since

the matrix is rigid, the relaxation along the solvation coordinate is hindered, and only

vibrational relaxation takes place before fluorescence. Therefore the emitting state is

that relevant to the specific subset of photoselected molecules, with a relaxed geometry

along the internal coordinates but in the frozen solvent configuration. This phenomenon

is called energy photoselection. The second important aspect concerns polarization pho-

toselection: when excited with a polarized light beam, molecules with the absorption

transition dipole moment oriented along the direction of polarization are preferentially

excited. Moreover, because anisotropy is measured in solutions of randomly oriented

molecules, an appropriate averaging over all possible orientations has to be performed.

In our calculations, inhomogeneous broadening is associated with a distribution of reac-

tion fields weighted according to the Boltzmann distribution for the ground-state energy

(frozen solutions).
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For the calculation of fluorescence emission and emission anisotropy spectra, we account

for energy photoselection by considering the probability, for each point of the For grid,

that the incident photons at the excitation wavelength are absorbed by the correspond-

ing subset of solute molecules. For fluorescence excitation and excitation anisotropy

spectra, we consider the probability, for each point of the For grid, that photons at the

detection wavelength are emitted by the corresponding subset of solute molecules. The

first problem related to energy photoselection is solved considering the probability of

each molecule to absorb the incident monochromatic photons, according to the ground-

state energy distribution. In particular, the same ground state Boltzmann distribution

is assumed for both the ground state and for the excited state responsible for emission,

because the solvent molecule are frozen in the configuration they have around the solute

molecule in the ground state.

Concerning the problem of orientational photoselection, the following expressions allow

to estimate the fluorescence intensity, when the polarizers are parallel (I∥) or perpen-

dicular (I⊥), for a sample of randomly oriented molecules in frozen solutions [166]:

I∥ =
|µ⃗em|2 · |µ⃗abs|2 + 2(µ⃗em · µ⃗2abs)

15
(B.9)

I⊥ =
2|µ⃗em|2 · |µ⃗abs|2 − (µ⃗em · µ⃗abs)2

15
(B.10)

These two terms have to be weighted separately for the relevant Boltzmann distribution,

to take into account the effects related to inhomogeneous broadening. This is a key point:

as I∥ and I⊥ are the experimental results of two independent measurements, they must

also be averaged over the inhomogeneous distribution as two independent quantities.

Hence, the Boltzmann distribution has to be associated to these two terms, and not to

the final anisotropy. Therefore, I∥ and I⊥ are calculated for each point of the For grid

and results are summed according to the (normalized) probability associated with each

For value, giving the total polarized emission intensities entering eq. A.1 to calculate

the (emission or excitation) anisotropy.





Appendix C

Theoretical methods

Theoretical methods have been mainly adopted in this thesis with the aim to obtain an

accurate and realistic description of ground- and excited-states properties. The following

overview briefly describes semiempirical methods and Density Functional Theory.

C.1 Semiempirical methods

In computational chemistry, semiempirical methods occupy an intermediate position

between molecular mechanics and ab initio theory. Indeed semiempirical methods are

considerably faster than ab initio tools and considerably more versatile than molecular

mechanics. Semi-empirical methods reduce the computational cost by considering ex-

plicitly only valence electrons and adopting only minimal basis sets (see Section C.2.1).

The main assumption of semi-empirical methods is the Zero Differential Overlap (ZDO)

approximation, which neglects all basis functions depending on the same electron coor-

dinates when located on different atoms:

S = ⟨φA
µ |φB

ν ⟩ = δABδµν (C.1)

where S is the overlap integral between the basis functions and located on atoms (the so-

called centers within semi-empirical methods) A and B, respectively; δµν is the Kronecker

delta. Under this approximation, the overlap matrix is reduced to a unit matrix, all

one-electron integrals involving three centers (two from the basis function and one from

the operator) are set to zero and all three- and four-center two-electron integrals are

neglected. The remaining integrals are parameterized based upon assignment on the

basis of calculation or experiment Several semi-empirical methods have been formulated

according to a differently strict application of the ZDO approximation. One of the
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more robust families of such methods are the neglect of diatomic differential overlap

(NDDO) methods first developed by Pople. In the Neglect of Diatomic Differential

Overlap (NDDO) method, ZDO is applied exclusively between atomic orbitals centered

on distinct atoms, such as:

S = ⟨φA
µ |φB

ν ⟩ = δAB (C.2)

Following the pioneering work of Dewar and Thiel, several modifications were made to

the NDDO formalism in attempts to increase accuracy and generality, among which the

most popular are AM1 [167], PM3 [168] PM6 [169], PM7 [112] and RM1 [170]. Then

other different methods have been developed based on the different treatment of the

two-electron integrals. Specifically, in the Intermediate Neglect of Differential Overlap

(INDO) [171] model, all two-center two-electron integrals that are not of the Coulomb

type are neglected; in addition, in order to preserve rotational invariance, some of the

integrals are made independent of the orbital type. Then, in the Complete Neglect of

Differential Overlap (CNDO) [172] approximation, only the Coulomb one-center and

two-center two-electron integrals remain.

C.2 (TD)-DFT methods

The basis for DFT is the proof by Hohenberg and Kohn that the ground state electronic

energy of a molecular system is determined completely by the electron density, which,

unlike a wavefunction, is observable. The electron density is defined as a multiple integral

over the spin coordinates of all electrons and over all but one of the spatial variables:

ρ(r̄i) = N

∫
...

∫
|Ψ(x̄1, x̄2, ..x̄N )|2ds1dx̄2dx̄N (C.3)

where ρ(r̄i) determines the probability of finding any of the N electrons within a vol-

ume element dr̄i, but with arbitrary spin while the other N-1 electrons have arbitrary

positions and spin.

The first Hohenberg-Kohn [173] theorem implies that, since ρ(r̄i) uniquely determines

the Hamiltonian operator, the average value of any observable can be written as its

functional:

⟨A⟩ = A[ρ(r̄i)] (C.4)

Therefore, the total energy of the electronic system can be expressed as a functional of

the electron density:

E = E[ρ] = T [ρ] + EeN [ρ] + Eee[ρ] (C.5)



APPENDIX C 151

where T [ρ] represents the kinetic energy of the system, and EeN [ρ] and Eee[ρ] are the

nuclear-electron and electron-electron interactions, respectively. The sum of T [ρ] and

Eee[ρ] is called the universal functional of Hohenberg and Kohn, FHK [ρ]; if FHK [ρ] were

known exactly, the Schrödinger equation could be solved exactly. By extracting from

Eee[ρ] the Coulomb integral J [ρ], it is given:

FHK [ρ] = T [ρ] + J [ρ] + Encl[ρ] (C.6)

where Encl[ρ] incorporates the non-classically defined electron-electron interactions of

self-interaction, exchange, and electron correlation effects.

The second Hohenberg-Kohn theorem states that FHK [ρ] provides the lowest energy only

if the input density is the true ground state density; therefore, this theorem guarantees

the existence of a variational principle for electron densities. Kohn and Sham hypothe-

sized that the Hamiltonian would be simpler if it were one for a system of non-interacting

electrons that has the same density of some system where electrons interact [174]. This

corresponds to an exact dressed single-particle theory. In analogy to HF theory, the

electrons are treated as independent particles moving in the average field of all others

but now with included correlation. For such a system of non-interacting electrons, the

kinetic energy (TS) is the sum of the individual electronic kinetic energies and Kohn-

Sham (KS) wavefunctions is a Slater determinant obtained from KS orbitals (Φi(x̄i)),

in complete analogy to HF orbitals:

ΘKS(x̄i, x̄2, ..., x̄N ) =
1√
N !

=


Φ1(x̄1) Φ2(x̄1) ... ΦN (x̄1)

Φ1(x̄2) Φ2(x̄2) ... ΦN (x̄N )
...

...
...

. . .

Φ1(x̄N ) Φ2(x̄N ) ... ΦN (x̄N )

 ≡ |Φ1Φ2...ΦN |

We have to precise that the KS orbitals and their eigenvalues have no physical signifi-

cance: they are an abstract construct used to solve the many-body problem. Though,

the interpretative power of these orbitals is commonly used in rationalizing chemical phe-

nomena; such fact is justified by considering that KS orbitals give back the exact ground

state density and fully take into account all non-classical effects. Since TS does not equal

T[ρ],an exchange-correlation energy term EXC [ρ], incorporating both the residual part

of the true kinetic energy and the non-classical interactions, is introduced:

EXC [ρ] ≡ (T [ρ]− TS [ρ]) + (Eee[ρ]− J [ρ]) = TS [ρ] + Encl[ρ] (C.7)
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Thus, it is possible to express the total energy for the system as:

E[ρ] = TS [ρ] + J [ρ] + EeN [ρ] + EXC [ρ] (C.8)

With the introduction of orbitals, the minimized energy can be found through solving

the pseudo-eigenvalue equation:

hKS
i ϕi = εiϕi (C.9)

where the one-electron KS operator is defined as:

hKS
i = −1

2
▽2

i −
M∑

A=1

ZA

riA
+

∫
ρ(r̄j
rij

dr̄j + VXC(r̄i) (C.10)

with

VXC =
δEXC

δρ
(C.11)

VXC is the exchange-correlation potential which is best described as the one-electron

operator for which the expectation value of the KS Slater determinant is EXC ; since it

is not known how to express EXC [ρ], there is no explicit form for VXC and reasonable

approximations need to be made.

The three most commonly adopted approximations are the localized density approxi-

mation (LDA), the generalized gradient approximations (GGA) and the formation of

hybrid functionals through the incorporation of part of the exact HF exchange in the

DFT functionals.

By assuming that electrons move on a positive background charge distribution like a

uniform electron gas, the Local Density Approximation (LDA) defines the EXC [ρ] as:

ELDA
XC [ρ] =

∫
ρ(r̄)εXC [ρ(r̄)]dr̄ (C.12)

where εXC [ρ(r̄)] is the exchange-correlation energy per particle of a uniform electron

gas of density ρ(r̄). By introducing the spin into eq. C.12, the Local Spin-Density

Approximation (LSDA) is obtained, allowing to handle the unrestricted case (UKS).

The term εXC [ρ(r̄)] can be divided into exchange and correlation contributions:

εXC [ρ(r̄)] = εX [ρ(r̄)] + εC [ρ(r̄)] (C.13)

where the exchange contribute is generally expressed as:

εX [ρ(r̄)] = −3/4 3

√
ρ(r̄)

π
(C.14)
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As for the correlation term, no such explicit expression is known and therefore it is fitted

empirically to a set of experimental data or it is modeled on the basis of model systems

such as the uniform electron gas and other known properties.

Generally, in a molecular system, the electron density is not spatially uniform. In order

to overcome this limitation in the LDA/LSDA approach, the Gradient Corrected (GCA)

or Generalized Gradient Approximation (GGA) is introduced. In such approximation,

information regarding the gradient of the charge density ▽ρ(r̄) is added to the den-

sity ρ(r̄) at a particular point r̄. In general, GGA functionals are constructed with a

correction added to the original LDA/LSDA term:

εGGA
X/C [ρ(r̄)] = ε

LDA/LSDA
X/C [ρ(r̄)] + ∆ε

[▽ρ(r̄)]
[ρ

4
3 (r̄)]

(C.15)

where X/C indicates that the same functional form holds for either exchange or corre-

lation. The most popular GGA exchange functional was developed by Becke (B) [175]

Popular correlation functionals include those developed by Perdew (P86) [176] Perdew

and Wang (PW91), and Lee, Yang, and Parr (LYP)[177]. In general, exchange contri-

butions are significantly larger than correlation effects; thus, an accurate expression for

the exchange energy is required for a meaningful exchange-correlation functional. For

this purpose, an exact Hartree-Fock exchange contribution can be incorporate into the

DFT functional, obtaining a so-called hybrid functional. At present, in standard ground

state DFT applications [177–179], the functionals B3LYP is one of the most widely used

xc functionals :

, EB3LY P
XC = (1− a)ES

X + aEHF
X + b∆EB

X + (1− c)EVWN
C + cELY P

C (C.16)

which incorporates the exact HF exchange, exchange (Slater, S) and correlation (Vosko-

Wilk-Nusair, VWN) terms derived from LSDA, and the Becke exchange and LYP corre-

lation terms. The values optimized for a, b, and c are 0.20, 0.72, and 0.81, respectively,

as derived from atomization and ionization energies and proton and electron affinities

within 1 kcal/mol of experimental results for 125 reference molecules containing main

group elements [175]. This fact clearly highlights the semi-empirical nature in hybrid

functionals.

However B3LYP suffer as, all other functionals, for self-interaction energy error (SIE).

Indeed, the classical electrostatic repulsion term does not completely vanish for a one-

electron system because the density interacts with itself. As EXC [ρ] is never exact and

independent of classical electrostatic repulsion, there is generally a residual energy due

to self-interaction effects causing an over-delocalized electron density. Because of these

short comings, the use of non-corrected DFT methods may be questionable in dealing
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with charge-transfer states and systems featuring electrons weakly tied to the molecule.

In order to overcome SIE, the long-range interaction corrected CAM [180] and M06

[181] functionals have been proposed. From literature it emerges that CAM seems to

be suitable for charge-transfer states, while M06 seems to perform adequately in dealing

with non-covalent interactions [180] [181].

Excited states within the DFT methodology are investigated through Time-Dependent

DFT (TDDFT) [182], the time-dependent analogue of the first Hohenberg-Kohn theorem

[182, 183]. TDDFT is a formally exact theory that relies on the analysis of the time-

dependent linear response of the formally exact ground state density to a time-dependent

external perturbation, which after Fourier transformation yields exact excited-state en-

ergies and oscillator strengths. The derivation of the famous Runge-Gross theorem and

the subsequent formulation of a time-dependent Kohn-Sham equations were the cor-

nerstones in the development of the TDDFT formalism. However, since the exact xc

functional is not known, approximate xc functionals need to be employed in a practical

calculation. Concomitantly, errors in the excitation energies and oscillator strengths are

introduced. Still, for most valence-excited states, which lie well below the first ionization

potential, TDDFT yields results with high accuracy at relatively low computational cost

in comparison with highly accurate methods such as MRCI, CASPT2, or EOM-CCSD,

which are applicable only to small molecules up to 20 atoms. Nevertheless, one has to

be very careful using TDDFT with approximate xc functionals owing to its failures for

Rydberg states, systems with large π-systems, doubly excited states, and CT states.

The latter failure limits the applicability of TDDFT to large systems or small molecules

in solution or protein environments, because erroneous intramolecular CT excited states

occur in the low-energy region of the electronic spectra [183] .

C.2.1 Basis set

Molecular orbitals are described as a linear combination of different basis functions.

Therefore, the quality of a calculation depends upon the number of basis functions.

Two types of orbitals are typically used in electronic-structure calculations. The first,

Slater-Type Orbitals (STOs), have the form:

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)rn−1e−ζr (C.17)

where N is a normalization constant, Y(l,m)(θ.φ) is a spherical harmonic function, and

ζ the Slater orbital exponent. Gaussian-Type Orbitals (GTOs) can be written in terms
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of polar coordinates:

χξ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r(2n−2−l)e−αr
2

(C.18)

(C.19)

as well as Cartesian coordinates:

χξ,lx,ly ,lz(x, y, z) = Nxlxylyzlze−αr
2

(C.20)

where the sum of lx, ly, and lx determine the type of orbital, and α is the Gaussian orbital

exponent. GTOs have two complicating factors respect with their STO counterparts,

due to their r2-dependence:

• at the nucleus, GTOs have zero slope versus the cusp of the STO; therefore GTOs

exhibits difficulty representing the behavior of the wavefunction near the nucleus

and consequentially the energetics of the system.

• GTOs fall off too rapidly at distances far from the nucleus, which obviously affects

the proper description of chemical bonds as well as non-covalent interactions.

In order to overcome these issues, several GTOs are combined to form contracted GTOs.

The simplest form for a contracted GTO is:

Φµ =

L∑
i=1

diµφ
µ
i (αiµ) (C.21)

where φµ
i (αiµ) is the i-th GTO constituting the basis function φµµ, L is the contraction

length, and diµ is a contraction coefficient. A minimal basis set is one that uses one basis

function per atomic orbital of the electronic shells occupied in the free atom. In order to

get a better description of anisotropic electron distribution in molecules, a double-zeta

basis set is introduced. A double-zeta basis set employs two basis functions per atomic

orbital. Further extension of the basis sets is done through triple-zeta, quadruple-zeta,

etc. basis sets. Each split basis set has a set of two (or more) functions of different sizes

or radial distributions for each valence orbital orbital allowing more flexibility.

Basis sets can also extended through the addition of polarization and diffuse functions.

Atomic orbitals often become distorted (polarized) under the influence of other atoms

within a molecular system. To account for these effects, polarization functions (denoted

*) with one additional node (higher angular momentum terms) are added to the basis

sets. Diffuse functions, basis functions with small exponents α (denoted +), are added

to account for properties that extend far away from the atomic nucleus; for example,
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they are added for a proper description of loosely bound electrons in radical anions

and molecular polarizability. The most common functional basis are 3-21G, 6-31G and,

6-31+G*.



Acknowledgments

I wish to express my gratitude to my supervisors Prof. Anna Painelli and Prof. Francesca

Terenziani for the knowledge they liked to share with me and for the opportunities

they gave me during these years. I also thank Prof. Alberto Girlando, Dr. Cristina

Sissa and Dr. Matteo Masino for their help and fruitful collaborations. I am grateful

to all present and past PhD students of the research team for having get less lonely

the solitary computational work making those years nice: Francesco Di Maiolo, Nicola

Castagnetti, Cesare Benedetti, Domna Maria Nikolaidou, Somananda Sanyal and Siarhei

Kurhuzenkau.

I wish to thank all people I have collaborated with: Prof. Jaume Veciana, Dr. Imma

Ratera, Manel Souto, Dyana Morales, Davide Blasi of ICMAB in Barcelona (Spain),

Prof. Wim Wenseleers, Jochen Campo of Antwerp University (Belgium), Prof. Swapan

Pati, Arkamita Banerjee of JNCASR of Bangalore (India), Dr. Gabriele D’Avino of

Mons University (Belgium), Prof. Eric Vauthey and Dr. Arnulf Rosspeintner (Geneva

University).

Finally, up so far, I thought that the credit for people’s success mainly belongs to them;

instead, my PhD experience showed me that this is not always true: I need to thank

my parents, my brother, my sister, my enthusiastic granddaughter and all my friends

for their precious support. My deepest thank to Raffa for always encouraging me and

for bearing with me.

This work was supported by the Italian Ministry for Education, through

PRIN-2012T9XHH7. The stage of three months at ICMAB in Barcelona (Spain) and

that of one month at JNCASR of Bangalore (India) were supported by Erasmus place-

ment consortia 2014 and by Foreign Affair Ministry with the Indo-Italian programme

of scientific and technological co-operation, respectively; computational calculations are

partially supported by CINECA through ISCRA-PROJECT HP10C0Z88W-MMMmodel

and HP10CO18M1-MM2.





Bibliography

[1] Vogel, E. (2007) Technology and metrology of new electronic materials and devices.

Nature nanotechnology 2, 25–32.

[2] Brabec, C. J., Winder, C., Scharber, M. C., Sariciftci, N. S., Hummelen, J. C.,

Svensson, M., and Andersson, M. R. (2001) Influence of disorder on the photoin-

duced excitations in phenyl substituted polythiophenes. The Journal of Chemical

Physics 115, 7235–7244.

[3] Lafratta, C. N., Fourkas, J. T., Baldacchini, T., and Farrer, R. a. (2007) Multi-

photon Fabrication. Angewandte Chemie International Edition 46, 6238–6258.

[4] Sahoo, S. K., Parveen S, P. J. (2007) The present and future of nanotechnology in

human health care. Nanomedicine 3, 20–31.

[5] Diaspro, A., Chirico, G., and Collini, M. (2005) Two-photon fluorescence excitation

and related techniques in biological microscopy. Quarterly Reviews of Biophysicsly

Reviews of Biophysics 38, 97–164.
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