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Introduction

The focusing of hard X and g rays in the energy range between 60 and 600 keV
has important applications in astronomy to improve the sensitivity of telescopes
(Frontera et al., 2005) and in nuclear medicine for in vivo diagnosis of diseases
associated with organ malfunctioning, for cancer detection (Roa et al., 2005)
and for focussed radiotherapy. A clear example is given by the case of scinti-
graphic monitoring, in which target images are currently obtained by collecting
monochromatic g radiation coming from speci�c radiopharmaceuticals, selected
in the emission energy range from 80 keV (Xenon-133) to 511 keV (Fluorine-18),
by means of gamma cameras based on �ne multi-hole collimators and scintil-
lators. A major drawback in such systems is the high dose distributed to the
body because most of the radiation is lost by collimator absorption.

Bragg di�raction in Laue geometry is a method to focus high energy X and
g rays. This is the goal of a Laue lens, which is composed of a set of crystals
disposed in concentric rings and properly oriented in order to concentrate the
di�racted beams into a small focal point on the detector (see Chap. 1).

Crystals suitable for such a lens should be able to e�ciently di�ract the
radiation in an angular range from a few tens of arc seconds up to some minutes
of arcseconds, depending on the required lens resolution. Perfect crystals cannot
be used due to their very narrow angular range of di�raction at g ray energies.
Instead, mosaic crystals are good candidates as optical elements for these lenses,
because their angular acceptance can be directly tuned by modifying the mosaic
spread and/or the size of microcrystals forming the mosaic structure during the
growth process. Mosaic crystals of high di�raction e�ciency at g ray energies,
such as Cu, Au, Ag and many others, have been proposed (Lund, 1992; Courtois
et al., 2005; Barriere et al., 2009) due to their high electronic density and
structure factor. Moreover, the integrated intensity Iint (de�ned as the area of
the di�raction pro�le for a monochromatic radiation, which gives directly an
indication of the di�raction e�ciency of the crystal) of an ideal mosaic crystal
can be two orders of magnitude larger than that of a perfect crystal, as predicted
by the dynamical theory of X ray di�raction (Authier, 1998). Unfortunately
the production of crystals with well-de�ned mosaic spread and grain size is a
di�cult technological task, so that the resulting di�racted intensity is often
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much lower than that predicted for the ideal case. Mosaic crystals of high
di�raction e�ciency at g ray energies, such as Cu, Au, Ag and many others,
have been proposed (Lund, 1992; Courtois et al., 2005; Barriere et al., 2009)
due to their high electronic density and structure factor.

An e�ective alternative is represented by self-standing bent crystals, in
which the external curvature induces also a bending of the di�racting planes.
In this case the Bragg condition is satis�ed for a broad angular range accord-
ing to the degree of curvature; this also causes the high angular acceptance of
these crystals (Smither et al., 2005). If the curvature radius R is smaller than a
critical value resulting from dynamical theory, curved di�racting plane (CDP)
crystals can theoretically reach the Iint values obtained for ideal mosaic crystals
(Malgrange, 2002).

In this thesis a theoretical study of the Iint of CDP crystals is presented
in Chap. 3, based on dynamical theory of X and g ray di�raction, described
in Chap. 2. The theoretical study point out what are the best material and
values for parameters, such as thickness, curvature, dimensions, and di�raction
geometry to maximize the di�raction e�ciency of curved crystals in the energy
range of interest.

In Chap. 4, two di�erent simple methods to obtain self-standing curved
crystals with reproducible and uniform curvature are presented. The �rst one
is based on the controlled surface damaging induced by a mechanical lapping
process (Bu�agni et al., 2011). A compressive strained layer of few micrometres
in thickness is generated and causes the convex curvature of the damaged side of
the crystal (Bu�agni et al., 2012; Bu�agni et al., 2013). This technique allows
to obtain external radii of curvature R down to 2 m in crystals with thickness up
to 2 mm in the direction perpendicular to the damaged surface. The di�raction
pro�le of CDPs, parallel to the damaged surface, is close to that of an ideal
bent crystal curved by elastic deformation (Ferrari et al., 2014).

Another innovative and simple bending technique presented for the �rst time
in this work is based on the shrinking of resins during a polymerization process,
as it is well known in wood and mechanical industry. The process consists on
a �lm deposition of selected bi-component epoxy resin on one side of crystals
with thickness uniformity guaranteed by means of a spin-coater. During the
polymerization, the resin induces a tensile strain that causes the bending of the
substrate, with concave curvature on the side of the resin deposition.

In order to verify the theoretical results obtained about the crystal di�rac-
tion e�ciency, detailed characterizations at low and high X ray energies are
performed on �at and bent crystals obtained with the damaging and the resin
deposition techniques, Chap. 5. Thanks to the access to the European facili-
ties, as ILL and ANKA synchrotron, it was possible to perform a quantitative
study of the di�raction e�ciency of crystals with di�erent thickness at di�erent
geometries, in the energy range of interest.
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To complete this work, the study of the focusing e�ect of GaAs curved
crystals realized with the damaging tecnique are shown in Chap. 6. The contest
is a project founded by the Italian Space Agency (ASI), called LAUE project,
that was devoted to create a technology to build a Laue lens with long focal
length (f =20 m) able to focus photons in the 70ö300 keV energy range. The
lens is assumed to be made of petals constituted by a large number of crystals
tiles disposed in concentric rings and properly oriented in order to di�ract an
incident beam parallel to the lens axis in the focal point of the lens. In this
case, curved crystals are directly used as focusing optical elements.
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Chapter 1

Laue Lens Concept

Di�raction lenses are based on the interference between the X and g radiation
and the periodic structure of matter in a crystal. In a Laue lens, an incoming
beam with wavelength l, passing through the whole volume of crystals, can be
di�racted if it satis�es the Bragg condition (see sec. 2 ),

2dhkl sin θ = nλ (1.0.1)

With dhkl the spacing of a chosen set of planes (hkl). The Bragg condition
can occurs in two di�erent geometries (re�ection and transmission), illustrated
in Figure 1.0.1 and explained in detail in sec (2.1.3).

Figure 1.0.1: The Bragg condition for constructive interference of an X and g ray
with the atoms of a given crystalline plane. (a) Bragg di�raction in re�ection con�g-
uration (Bragg geometry). (b) Bragg di�raction in transmission con�guration (Laue
geometry), (Frontera and von Ballmoos, 2010)

A Laue lens is made of a large number of crystals disposed in concentric rings
(Figure 1.0.2 Left) properly oriented in order to di�ract, in Laue geometry, the
incident radiation into a common focal point (see Figure 1.0.2 Right). The
lens has a shape of a spherical cup, with a radius of curvature R, covered with
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1. Laue Lens Concept

crystal tiles having their di�racting planes perpendicular to the surface of the
sphere. The focal spot falls on the detector placed on the lens axis at a distance
f = R/2 from the cup, where f is called the focal length.

Figure 1.0.2: Left : Scheme of the disposition of crystals in concentric rings on a Laue
lens . Right : Concentric rings at a given ring r concentrate a de�ned energy E into
the focal point (Frontera and von Ballmoos, 2010).

Considering the Bragg equation 1.0.1, for the �rst di�raction order (n = 1);
the energy E of an incident beam di�racted by a set of crystals disposed in a
ring at distance r (rmin ≤ r ≤ rmax) from the lens axis, is:

E =
hc

2dhkl sin
[

1
2arctan

(
f
r

)] ≈ hcf

dhklr
(1.0.2)

Assuming that chosen di�racting planes (hkl) of all the crystals that com-
pose the lens are the same; the energy of the photons di�racted from all the
crystals in the ring will be centered on E. A Laue lens can di�ract photons over
a certain energy passband (Emin, Emax):{

Emin≈ hcf
dhklrmax

Emax≈ hcf
dhklrmin

(1.0.3)

The energy passbands of the di�racted photons by contiguous crystal rings
have to overlap each other in the focal point.

Suitable crystals must be selected as optical elements for a Laue lens. The
angular acceptance α of a perfect crystal, represented as the full width at half
maximum (FWHM) of the di�racted pro�le (known as the Darwin width),
is extremely narrow (fractions of an arcsec to a few arcsec depending on the
photon wavelength, see (Zachariasen, 1945)), whereas angular acceptances of
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1.1. Astronomical application

several tens of hundredth arcsecond are desirable; therefore perfect crystals are
not suitable for Laue lenses. In order to increase the angular acceptance or the
energy passband of individual crystals, mosaic crystals or curved crystals must
be used. For astronomical applications, crystals with mosaicity or total bending
angles ranging from a few tens of arcseconds to a few arcminutes are of interest.

The focal length f has a key importance in the case of Laue lenses. Indeed
from the expression of the energy passband (Emin, Emax) of a lens, it results
that the lens radii (rmin, rmax) depend linearly on f :

rmin≈ hcf
dhklEmax

rmin≈ hcf
dhklEmax

(1.0.4)

High energy photons are di�racted by the inner part of the lens so, to get
a lens with a de�ned inner area, the focal length must be increased. It is
important to note that the lens area approximately increases with f2. An X
and g ray lens with a broad coverage from 300 keV to 1.5 MeV was proposed
by Lund (Lund, 1992, Lund, 2005). He assumed the lens constituted by mosaic
crystals of Copper and Gold. In order to achieve a signi�cant e�ective area at
high energies (350 cm2 at 300 keV and 25 cm2 at 1.3 MeV), the focal length
proposed was 60 m.

1.1 Astronomical application

Broad band X and g ray missions, like BeppoSAX, and INTEGRAL, have
shown that, in order to better understand the physics underlying several classes
of galactic and extra-galactic sources, two main requirements on the instrumen-
tation are crucial (Frontera et al., 2012):

1. to be able to cover a broad energy band: from a fraction to several hundred
of keV;

2. to achieve a high spectrum sensitivity.

The current experimental scenario is the following:

� low energy X ray (0.1ö10 keV) telescopes are available and are well tested
in space;

� medium energy X ray (up to 70/80 keV) telescopes, based on multilayer
mirrors, are mature and will be tested in space in the next future;

� high energy X ray (>70/100 keV) telescopes are under development.

7



1. Laue Lens Concept

To take full advantage of the extraordinary potential of hard X and soft g ray
astronomy, a new generation of focusing telescopes is needed.

With Laue lenses, a big leap in both �ux sensitivity and angular resolution is
expected. In particular, for the sensitivity the expected increase is by a factor
of 10 � 100 with respect to the best non-focusing instruments of the current
generation. Concerning the angular resolution, the increase is expected to be
more than a factor 10 (from ∼15 arcmin of the telescopes like INTEGRAL IBIS
to less than 1 arcmin), (Frontera and von Ballmoos, 2010).

The astrophysical issues that are expected to be solved with the advent of
these telescopes are many and of fundamental importance. A thorough dis-
cussion of the science case has been carried out in the context of the mission
proposal Gamma Ray Imager (GRI), submitted to ESA in response to the �rst
AO of the Cosmic Vision 2015�2025 plan (Knödlseder et al., 2009; Frontera et
al., 2005; Knödlseder, 2006).

Some of these astrophysical issues are:

I. Deep study of high energy emission physics in the presence of super-
strong magnetic �elds (magnetars); soft Gamma Ray Repeaters
(SGRs) and Anomalous X ray Pulsars (AXPs) have raised many
questions related to the role of their strong magnetic �eld in the
high energy emission (> 100 keV). Furthermore, also the belonging
of these two types of source to the same class can be understood.

II. Deep study of high-energy emission physics in compact galactic ob-
jects and Active Galactic Nucleus (AGNs); high energy emission in
compact galactic objects and AGNs is also not well understood. The
emission region can be investigated measuring the high energy cuto�
and its relation to the power-law photon index of the energy spec-
trum. Furthermore, AGNs physics is in the focus of astrophysicists
also to establish the origin of Cosmic X ray Background.

III. Positron Astrophysics; positron production occurs in a variety of
cosmic explosion and acceleration sites, and the observation of the
characteristic 511 keV annihilation line provides a powerful tool to
probe plasma composition, temperature, density and ionization de-
gree. Compact objects, both galactic and extra-galactic, are be-
lieved to release a signi�cant number of positrons.

IV. Establishing the precise role of non-thermal mechanisms in extended
objects like galaxy clusters

V. Origin of cosmic hard X/soft g-ray di�use background

VI. Physics of supernova explosions

8



1.2. Medical application

For a detailed description of these issue see [Frontera and von Ballmoos, 2010],
and the references therein.

In this perspective, Italian Space Agency funded the Laue project, with
the aim to develop a new technology for building a Laue lens with a broad
energy band (70 ÷ 300 keV) and long focal length (20 m), for astrophysics
observations. This work is in part devoted to realize suitable optical elements,
based on curved crystals, to be used as focusing elements in this lens (see Chap.
6 ).

1.2 Medical application

On the basis of a know-how developed during the Laue project, another impor-
tant project is funded by SPINNER (Emilia Romagna Region) with the aim of
developing an innovative in-vivo medical imaging tool for tomography in nuclear
medicine. This thesis is completely included in that project.

The term medical imaging indicates a group of techniques allowing to take
images of inside of the human body (parts, tissues, or organs) for use in clinical
diagnosis, treatment and disease monitoring; it certainly represented a revolu-
tion in the world of medicine. Medical imaging shows a great versatility and it
�nds so various applications.

It emerges the need to identify more advanced solutions in the �eld of med-
ical imaging technology with the goal to provide always more e�ective and high
resolution images in order to achieve the most truthful diagnosis and accord-
ingly making the best medical decision. This means not only the giving to
patients of the best therapy, but also to avoid unnecessary procedures often
caused by false positives or overestimated disease severity and prognosis.

Typically, the identi�cation and monitoring of neoplastic diseases is per-
formed by administering to the patient a speci�c radiopharmaceutical (biologi-
cal compounds containing a radioactive isotope) to locate physiological abnor-
malities in the body. These isotopes are typically g ray emitters of ∼ 100÷ 200
keV in energy and with half-lives T1/2on the order of a few hours (see Table 1.1).

The basic process for nuclear imaging involves introduction of a radiophar-
maceutical into the patient (usually by intravenous injection) which subse-
quently accumulates in the target site or biological process of interest. Higher
concentrations of the radiopharmaceutical yield a higher g ray emission rate
relative to surrounding tissues and background. These g rays are generally
captured by means of gamma cameras that subsequently send the data to a
computerized system that generates a two or three dimensional image (Adler
et al., 2003) see (Figure 1.2.1).

Currently, most nuclear medicine imaging systems have limited spatial reso-
lution that ranges from 7 to 15 mm [Roa et al., 2005]. For example the latest di-
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1. Laue Lens Concept

Nuclide T1/2 g ray energy (keV) Purpose
Cr-51 28 d 320 red cell volume
Ga-67 79.2 h 93, 185, 300, 393 tumor location e in�ammation
I-123 13 h 159 imaging of thyroid
In-111 67 h 171, 245 labeling white blood cell
Tc-99m 6.02 h 140.5 Multi-purpose imaging
Tl-201 73 h 135, 166 Myocardial imaging
Xe-133 5.3 h 81 Ventilation imaging
F-18 1.83 h 511 Tumor imaging

Table 1.1: Typical radiopharmaceuticals used in nuclear diagnostic medicine.

Figure 1.2.1: Patient undergoing a scan using a gamma camera. Administration of a
radiopharmaceutical (upper left display) [Roa et al., 2005] .

agnostic system in nuclear medicine, the Positron emitted Tomography (PET),
can achieve resolutions of 4/5 mm at best. Furthermore, because the radio-
pharmaceuticals needed for PET imaging have signi�cantly short half-lives (at
most two hours), relatively large radiopharmaceutical doses must be prepared
to leave enough activity to image the patient. In addition, most PET centers
must be located in close proximity to a cyclotron facility, in order to minimize
the transport time of the radiopharmaceutical from the preparation laboratory
to the imaging room.

The possibility to obtain more de�ned, and therefore more accurate, images
of the examined area depends on the ability of focusing radiations, and more
precisely, of the lens interposed between the patient (g ray source) and the ra-
diation detector. A Laue lens can increase, with respect to other di�racting
instruments, the focusing power. The application of this new system is envi-

10



1.2. Medical application

sioned to scan the patient's body and, after a software elaboration, to produce
2D or 3D images with a spatial resolution of ≤ 2 mm. If a patient has under-
gone a full-body scan and the data suggest the presence of a tumor or suspicious
process (e.g., ischemia), a localized scan of that region could be performed with
this imaging system without the need of injecting more radiopharmaceutical in
the patient. This system may be better able to provide additional information
to the size of the tumor or suspicious process and to de�ne its location more
accurately .

The SPINNER project proposes to realize a new type of engineered Laue
lens realized with curved crystals as optical elements. Curved crystals, in this
case are not used as focusing optical elements, because the geometry of the lens
is designed in order to focalize the incident X and g beam into a focal point.
Curved crystal are used to increase the angular acceptance of the lens and so to
di�ract the most part of the photons that come from the radiopharmaceutical
injected in the patient (Fig. 1.2.2).

Figure 1.2.2: Schematic diagram of a single lens constituted of curved crystals with its
corresponding detector.

This method of g ray focusing and subsequent detection eliminates the need
for high-spatial resolution collimators typically used in gamma cameras which
causes signi�cant reduction in sensitivity (Chandra, 1999). Moreover, this pho-
ton di�raction imaging system can be tuned to di�ract a speci�c g ray energy
(within∼ 100 − 200 keV) by simply adjusting the source-to-lens and lens-to-
detector distance such that the lens remains equidistant between the source
and detector. This adjustment changes the Bragg angle to match the de�ned g
ray energy.
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Chapter 2

Di�raction of X and g ray from

crystals

In this chapter the theory of X and g ray di�raction from real crystals is out-
lined, starting from the simplest case: the kinematical theory from ideal crys-
tals. Since for thick and real crystals this theory is limited, the dynamical
theory of di�raction is adopted. Dynamical theory allows to understand and
to describe the di�raction from mosaic and curved di�racting planes (CDP)
crystals, permitting also to predict their di�raction e�ciency.

Basic and useful notions of crystallography are also introduced.

2.1 Fundamentals of crystallography

2.1.1 Crystalline structure

An ideal crystal is constituted by periodical repetition, in the three dimensions
of the space, of a single or a group of atoms. The group of atoms constitutes
the cell and it may have a very complex structure. The repetition of the cell
can precisely cover the whole space, without superposition or vacancies, through
in�nite translations. The primitive cell is the smallest cell that contains all the
structural and symmetry informations to build-up the structure of the lattice
by translations. The periodical repetition of the primitive cell is called Bravais
lattice. It is built by three vectors not complanar and linearly independent a,
b and c called primitive vectors; the primitive cell is the parallelepipedon,
with volume Vc, de�ned by primitive vectors:

Vc = |a · b× c| (2.1.1)

The choice of these three vectors is not unique, so also the choice of the primi-
tive cell is unlimited. A generic lattice vector t can be written as t= n1a + n2b + n3c

13



2. Di�raction of X and g ray from crystals

where n1, n2, n3 are integers.
The primitive cell and the Bravais lattice determine univocally and totally

the structure of the crystal.
The classi�cation of the crystal's structure is done by lattice translations

and the symmetry operations, constituted by all rigid operations that convert
the lattice in itself, leaving it unchanged . In three dimensions there are 14
Bravais lattices divided in 7 categories marked by given symmetry operations,
Fig.2.1.1, .

Figure 2.1.1: The 14 Bravais lattices in the three dimensions. The a, b, and g are the
angles between a, b and c respectively.

X-ray di�raction from crystals is concerned with the scattering from atoms
that may be thought as lying within families of planes called Miller indexes

(h,k,l). For a given family of planes, the Miller indexes are de�ned such that
plane closest to the origin (but not including the origin) with the intercepts
( a
h ,

b
k ,

c
l ) on the axes (a, b, c) . The most important features of Miller indices

are:

14



2.1. Fundamentals of crystallography

1. by convention, a negative intercept is represented by writing a bar over
the correspondent Miller index;

2. the triplet hkl can be placed in parentheses, when it refers to a speci�c
plane, and in accolades, when it refers to all crystallographic planes de-
scribed by the same indices;

3. for a given family, the planes are equally spaced so it is possible to de�ne
the distance dhkl between two sets of planes . In the simplest case of a
cubic lattice, the d spacing is given by dhkl = a√

h2+k2+l2
where a is the

lattice parameter.

In Fig. 2.1.2 some examples of lattice planes in a cubic cell are represented.

Figure 2.1.2: Examples of lattice planes of a cubic cell.

2.1.2 Reciprocal lattice

In crystallography turn out to be useful consider another lattice called recip-

rocal lattice. It is a pure mathematical concept (introduced by[Ewald, 1921])
that hasn't a physical meaning of a structural lattice, but it allows to represent
more easily the crystallographic planes.

Starting from the direct lattice characterized by the primitive vectors (a,b,c),
it is possible to built-up a lattice of imaginary points that have a precise rela-
tion with the starting lattice. The basis of the reciprocal lattice is a triplet of
vectors (a*,b*,c*):

a∗ =
b× c

Vc
, b∗ =

c× a

Vc
, c∗ =

a× b

Vc
(2.1.2)

The relation that links the primitive vectors in real space with that ones in
reciprocal space is deducible by eq 2.1.2:

a∗ · a = 2π (2.1.3)
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2. Di�raction of X and g ray from crystals

The volume of the primitive cell in reciprocal lattice is Vc
∗ related with

direct lattice by Vc · V∗c = 1. As in the real space, the distances between two
sets of planes is d∗hkl and its value is d∗hkl = 1

dhkl
.

2.1.3 Di�raction condition: Bragg and Laue relation

The di�raction depends on the crystal's structure and on the wavelength of the
incident radiation, indeed when the wavelength is comparable with or smaller
than the lattice parameters a di�raction can occurs. Crystals are natural lattice
di�raction for X rays due to their periodic structure, with the periodicity of the
order of the Angstrom. W. L. Bragg in 1912 gave an interpretation of the
experiments on X ray di�raction as the re�ection of the X rays on families
of lattice planes and he formulated the Bragg's relations in 1913 (Bragg and
Bragg, 1913).

The simplest approach to study X ray di�raction from crystals is to treat it
as an interference of rays scattered by a multitude of equidistant lattice planes.
The maximum of constructive interference occurs when the path di�erence be-
tween scattered waves is an integer multiple of the wavelength l. For an incident
ray making an angle j with the scattering lattice planes spaced d, the di�er-
ence path between the incoming and the scattered ray is given by 2d sinj, see
Fig 2.1.3. The formula to �nd the maximum of the corresponding interference
pattern known as Bragg's law is:

mλ = 2dhkl sin θ (2.1.4)

where m has an integer value and it is known as the order of the correspond-
ing re�ection.

Figure 2.1.3: In panel A: Bragg re�ection from a particular family of lattice planes,
separated by distance d. The unit vectors s and s′ represent the incident and di�racted
waves. The di�erence path of di�racted beam from two atoms is also shown

If a beam impinges on a crystal, each atom within the crystal can scatter
the radiation in all directions. Di�racted peaks are observed only in that di-
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2.1. Fundamentals of crystallography

rections and wavelengths for which the scattered rays interfere constructively.
To �nd this condition, two scatterers separated by a displacement vector d are
considered, Fig.2.1.3 . The incident beam has a direction of propagation de-
scribed by the unit vector s, a wavelength l and a wavevector k. A scattered
ray will be observed in direction s′ with the same wavelength l of the incident
beam and with wavevector k′, provided that the path di�erence between the
rays scattered by each atoms is an integral number of wavelengths.

From Figure 2.1.3 B the path di�erence is d· (s− s′). The condition for
constructive interference is that the path di�erence is a multiple of l; expressing
it in wavevectors:

d·
(
k− k′

)
= 2πm. (2.1.5)

Because the reciprocal lattice is a Bravais lattice, if k and k' are reciprocal
lattice vectors, so is (k− k′) = G (Laue condition), where G = ha∗ + kb∗ +
lc∗is called scattering vector. It will be demonstrated that the Laue condition
is equivalent to the Bragg relation expressed in eq. 2.1.4.

Assuming that the Laue condition is satis�ed and that k and k' make an
angle j with the planes perpendicular to G, see Fig. 2.1.4

Figure 2.1.4: Scheme of Laue condition. The scattering vector G is represented.

The distance between successive planes in a family must satisfy:

|G| = 2πm

d
(2.1.6)

and from the Fig. 2.1.4 is possible to obtain:

|G| =2|k| sin θ (2.1.7)

So from eq. 2.1.6 and eq. 2.1.7 and considering the de�nition of k as k = 2π
λ

, the Bragg condition nλ = 2d sin θ is found.
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2. Di�raction of X and g ray from crystals

2.1.4 Ewald construction

PP. Ewald proposed in 1913 a simple and graphic construction, exhibited in Fig.
2.1.5 that may helps to visualize the di�raction condition in three dimensions.

Draw a sphere in reciprocal space centered on the tip of the incident wavevec-
tor k and with radius k (so that it passed through the origin). The wavevector
k' satis�es the Laue condition if and only if a reciprocal lattice point lies on
the sphere's surface and the directions of k' is the one joining the center of the
sphere with the point on her. In this case there will be a Bragg re�ection from
the family of real lattice planes perpendicular to that reciprocal lattice vectors.

Figure 2.1.5: The Ewald construction. The crosses represent the reciprocal lattice
points of the crystal. Given the incident wavevector k and a sphere of radius k,
di�raction beam k' is produced whenever a reciprocal lattice point lies on the surface
of the sphere.

The Ewald construction con�rms that for a generic incident wave there will
be no Bragg peaks. This constrain can be relaxed by the following experimental
method:

1. Laue method. Fix the orientation of the single crystal and use a white
X ray incident beam containing wavelengths from λ1 to λ0. The Ewald
sphere is considered as the region contained between the two spheres de-
termined by k and k′. The Bragg peaks will be observed corresponding
to any reciprocal lattice vectors laying within this region.

2. Rotating crystal method. A monochromatic beam is �xed in direction
while the crystal rotates around the same �xed axis. As the crystal ro-
tates, the reciprocal lattice rotates by the same amount. Thus the Ewald
sphere (which is determined by the �xed incident vector k) is �xed while
the reciprocal lattice rotates around the axis of rotation of the crystal. For
each reciprocal lattice point that traverses the circle during the rotation ,
the Bragg condition is satis�ed and a di�racted beam occurs.
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2.2. Di�raction from ideal crystal

2.1.5 Geometries of di�raction

The X and g rays di�raction from crystals can be realized in two di�erent
geometries: the Bragg geometry in which the re�ected beam rises from the
same face in which the incident beam impinges, and the Laue geometry where
the di�racted beam comes from the opposite side of the crystal, in Fig 2.1.6
both geometries are represented. At high energies (E > 60 keV) the angle of
di�raction is very small (generally less than one degree), so to get di�raction in
Bragg geometry it's necessary a crystal with a large area. On the other hand
the Laue geometry can be successfully adopted.

Figure 2.1.6: Laue and Bragg geometries. The lines inside of crystals represent the
lattice planes. The angle θBsatis�es the Bragg relation

2.2 Di�raction from ideal crystal

In this section the study of the di�raction of X ray from a perfect crystal
is presented, with an intuitive approach given by the geometrical di�raction
theory, called also kinematical theory.

2.2.1 Thomson scattering from a free electron

An electron of mass me and charge e is positioned on the origin of a coor-
dinate system in which the x axes represents the propagation direction of an
electromagnetic wave, with a wavevector k, that invests the charge. This wave
is characterized by an electric �eld E = E0e2πi(kx−νt), with E0 amplitude of
the wave. The electron is supposed free and the �eld exercises on it a force
F = eE that produces a oscillation with an acceleration a = eE

me
and a fre-

quency n, accordingly with that of electric �eld. From the classical theory of
electromagnetism, an electric charge accelerated emits radiation. Thomson has
demonstrates that the �eld produced by charge in a generic point Q at distance
R from the origin of the axes is :
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2. Di�raction of X and g ray from crystals

E(x, t) = − 1

4πε0

e2

mec2

sinψ

R
E0e2πi(kR−ν(t−R

c
)−φ) (2.2.1)

with:

y angle between the direction of the electron's acceleration and the
direction of the observer,

φ the phase shift introduced by the process of re-injection of the wave
by electron. It is possible to demonstrate that φ = π,

1
4πε0

e2

mec2
the length of di�usion or classical electron radius re. It has a di-
mension of a length. re ≈ 2.8179 10−15m.

It lies in the (x,y) planes as show in Fig. 2.2.1

Figure 2.2.1: Scheme of Thomson di�usion. The electron is in the origin O of the
reference system.

In terms of intensity:

Ip =

(
1

4πε0

e2

mec2

sinψ

R
E0

)2

= I0

(re

R

)2
sin2 ψ (2.2.2)

with I0 value of incident intensity. This intensity Ip is inversely proportional
to the square of the mass of the electron. This means that the particles heavier
than it, as example the proton, contribute at the intensity 18372times less that
the electron.

Suppose now that the incident beam is polarized:

� along z axes: Ip = I0
1

4πε0

(
re
R

)2
� along y axes: Ip = I0

1
4πε0

(
re
R

)2
cos2 2θ with 2θ the angle between the in-

cident beam and the direction of observation.
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2.2. Di�raction from ideal crystal

In general is necessary to decompose the incident beam in two components, one
parallel and the other one perpendicular to the plane that belongs the direct
beam and the direction of observation. In this case the intensity Ip becomes:

Ip = I0

(re

R

)2
P (2.2.3)

where P is called polarization factor and it's value is:

P =

{ 1
cos2 2θ
1+cos2 2θ

2

σ−polarization
π−polarization

random polarization
(2.2.4)

In the di�raction from hard X and g rays, the di�raction involves very small
angles, generally less that one degree. So the value of the three polarizations
can be assumed as ≈ 1 and in term of intensity this parameter can be neglected.

The Thomson scattering is a coherent scattering because there is a precise
relation between the frequency of incident and di�use beam.

2.2.2 Scattering from an atom

Classical scattering from a group of electrons con�ned to a small volume are
discussed (Warren, 1969) and a scheme is represented in Fig. 2.2.2 A. The
incident beam, of amplitude E0, has a propagation direction represented by the
unit vector s. The electrons n are distributed around point O at r position.
The scattering are studied in point Q at a large distance R from the electrons
in a direction given by a unit vector s'.

Figure 2.2.2: Panel A: Scattering from a group of electron at distance r from the origin.
The point Q is the point of observation. Panel B: relation between the vector of the
incident s and scattered direction s' with vector position r

The value of the incident electric �eld in point Q is given by

E = E0
re

D2
cos

(
2πνt− 2π

λ
(D1 + D2)

)
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2. Di�raction of X and g ray from crystals

Considering that the distance of the source and the R are both very big com-
pared to r, it is possible to write D2 as R and:

D1 + D2 = R− (s− s′)·r =R−∆S · r

Expressed in terms of the complex exponential, the di�use electric �eld at
distance R is the sum over the electron n:

E = E0
re

R
e2πi(νt−R

λ )
∑

n

e
2πi/λ∆S·r (2.2.5)

To calculate the coherent scattering from an atom, each electron can be
considered spread out into a di�use cloud of negative charge, characterized by
a charge density r(r). The quantity r(r)dr is the ratio of the charge in volume
dr centered on r position, so that for each electron

�
ρ(r)dr = 1. The wave

mechanical treatment says that the amplitude of scattering from the element
r(r)dr is equal to rdr times the amplitude of classical scattering from a single
electron. The total amplitude of scattering is calculated considering that instead
of electrons at positions r, we have charge elements pdV at positions r, and by
replacing the sum by an integral the eq. 2.2.5 can be written as:

E = E0
re

R
e2πi(νt−R

λ )
�

e
2πi/λ∆S·rρ(r)dr (2.2.6)

The integral
�

e2πi/λ∆S·rρ(r)dr = fe is called the scattering factor per electron
and it represents the scattering amplitude per electron, expressed in electron
units. Assuming a spherical symmetry for the charge distribution r(r), the
terms ∆S ·r can be written in polar coordinates as 2r sin θ cosφ (see Fig.2.2.2B)
and with the abbreviation k = 4π sin θ/λ the fecan be simpli�ed as:

fe =

∞�

r=0

∞�

φ=0

eikrcosφρ(r)2πr2 sinφdφdr (2.2.7)

The integration with respect to φ is readily performed, so

fe =

∞�

0

2πr2ρ(r)
sin kr

kr
dr

As the same for electric �eld, the intensity of the scattering per atom f is
the sum of the intensities of the scattering from the electrons:

f =
∑

n

fe (2.2.8)
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2.2. Di�raction from ideal crystal

2.2.3 Di�racted intensity from a small single crystal

Based on the Thomson scattering described above, the scattering from a more
complicated objects such as crystals is now considered. The details of this study
is developed by many authors from which Warren (Warren, 1969).

A monochromatic beam, of intensity I0, wavelength l, and with a direction
represented by the unit vector s, falls on a small crystal. The crystal is at
the origin O and the position of the atoms m in unit cell n1n2n3 are given by
Rm

n = n1a + n2b + n3c + rm. The intensity of the scattering from the crystal
is studied at a generic point of observation Q, in a direction speci�ed by a unit
vector s' and at a distance R. The conditions are very similar to that illustrated
in Fig. 2.2.2 where r can be substituted by Rm

n . Following the treatment of
par. 2.2.2 , the instantaneous value of the electric �eld at the point Q from the
atom (m, n) is given by

E = E0
re

R
fmei2πνt−( 2πi

λ )[R−∆S·(n1a+n2b+n3c+rm)] (2.2.9)

The total value of electric �eld at Q is due to all the atoms in the crystal,
so it is obtained by summing over m to include all the atoms in a unit cell, and
summing over n1n2n3 to include all the unit cells. It is possible to approximate
the crystal as a parallelepipedon with N1number of cells along the axis a, N2

along the axis b and N3 along c so that N1N2N3 = N is the number of unit
cells in the crystal. Separating the summations, the instantaneous �eld in Q is
expressed by

E = E0
re

R
ei2πνt

∑
m

fme
2πi
λ

∆S·rm
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

e
2πi
λ

∆S·(n1a+n2b+n3c) (2.2.10)

The summation over m involves the positions rm of the di�erent atoms in
the unit cell and it varies from one structure to another. It is called the structure
factor F and it is de�ned as:

Fhkl =
∑
m

fme
2πi
λ

∆S·rm (2.2.11)

The quantity Fhkl plays an important role in the di�raction theory. If
∆S = 0, the structure factor F is simplyF =

∑
m fm, so F approaches the atomic

number Z. This means that the structure factor gives immediately an estimation
of the number of scatters in the atom.

The summations over n1,n2,n3 in eq. 2.2.10 have the form of geometric

progressions and they can be rewritten as: e
2πi
λ

∆S·N1a−1

e
2πi
λ

∆S·a−1
So the value of the electric �eld in Q is:
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2. Di�raction of X and g ray from crystals

E = E0
re

R
ei(2πνt− 2π

λ )Fhkl
e

2πi
λ

∆S·N1a − 1

e
2πi
λ

∆S·a − 1
× e

2πi
λ

∆S·N2b − 1

e
2πi
λ

∆S·b − 1
× e

2πi
λ

∆S·N3c − 1

e
2πi
λ

∆S·c − 1
(2.2.12)

To �nd the intensity of the electric �eld Ip in Q it is required to calculate
EE∗ and express it in a simplest form. In particular it is possible to develop
the three exponential expression in a geometrical form:(

eiNx − 1

eix − 1

)(
e−iNx − 1

e−ix −1

)
=

sin2 Nx
2

sin x
2

(2.2.13)

So the intensity of the electric �eld is:

Ip = I0

(re

R

)2
PF2

hkl

sin2
(
π
λ

)
∆S ·N1a

sin2
(
π
λ

)
∆S · a

×
sin2

(
π
λ

)
∆S ·N2b

sin2
(
π
λ

)
∆S · b

×
sin2

(
π
λ

)
∆S ·N3c

sin2
(
π
λ

)
∆S · c
(2.2.14)

The three equations y = sin2 Nx
sin2 x

called Laue equation determine the intensity.
The function y is essentially zero everywhere except in proximity of x = nπ,
where the function reaches the maximum value. So the di�racted intensity Ip

is essentially zero while it can achieve a maximum when the three quotients are
simultaneously close to zero:

∆S · a = hλ
∆S · b = kλ
∆S · c = lλ

(2.2.15)

These three equations together are equivalent to the Bragg law.

2.2.3.1 Integrated intensity from small single crystal

The most useful quantity which can be both calculated and measured is the
"integrated intensity" and which gives directly information of the di�raction
e�ciency of the measured crystal.

Lets consider a collimated incident beam impinging on a small single crystal
at the Bragg angle θB for the set of planes (hkl). The di�racted beam falls
normally upon a receiving surface at distance R from the crystal where it is
detected.

Since intensity is energy per unit area per unit time, the integrated intensity
Ii is the total energy obtained by integrating Ip over time and over the area of the
detector. It is convenient to represent the three Laue conditions in eq. 2.2.15 as
a vector in reciprocal space ∆S · c = lλ = λ (p1b1 + p2b2 + p3b3) with b1b2b3

reciprocal vectors and p1p2p3 integer coe�cients. So the value Ii in a volume
in the reciprocal space dV = sin 2θdαdβdγ becomes:
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2.2. Di�raction from ideal crystal

Ii = Ip
R2

sin 2θ
F2

hkl

� � �
sin2 π ·N1p1

sin2 πp1

sin2 π ·N2p2

sin2 πp2

sin2 π ·N3p3

sin2 πp3
dV (2.2.16)

Developing the three integral in all reciprocal space and reminding that
N1N2N3 = N , the �nal expression for the total integrated energy can be ob-
tained:

Ii = I0
r2
eλ

3V

Vc sin 2θ
F2

hklP (2.2.17)

where V is the volume of the small crystal and Vc is the volume of the unit
cell.

Introducing a parameter L as Λ = πVc
reλ|Fhkl| called extinction length the Ii can

be written as:

Ii,kin = I0
π2λ

Λ2 sin 2θ

t

cos θ
P (2.2.18)

where the volume of the crystal crossed by the beam can be considered as
the thickness t divided by cos θ. The subscript kin helps to remind that this
results is valid for the kinematical theory

Is possible introduce the integrated re�ectivity Ri,kin as the ratio between
integrated intensity and the incident intensity:

Ri,kin =
Ii,kin

I0
(2.2.19)

This treatment is true for a non absorbing crystal while for absorbing crystal
the eq. 2.2.18 becomes:

Ri,kin =
π2λ

Λ2 sin 2θ

t

cos θ
Pe−

µt
cos θ (2.2.20)

2.2.4 Limitations and corrections to the kinematical theory:

the dynamical theory

As previously said, the kinematical di�raction theory is not the correct treat-
ment for a complete and exhaustive description of di�raction by crystals. Indeed
it is based on some approximations:

1. the interference between incident and di�racted beam is not considered,
as also the interference that occurs between the scattered beams from
crystals (multiple scattering),

2. the thickness of the crystal is small enough to consider the absorption
negligible,
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2. Di�raction of X and g ray from crystals

3. the refraction index of the crystal is very close to the refraction index of
the environment. This assumption is always valid for X and g rays.

4. The principle of energy conservation is violated: in eq. 2.2.18 the inte-
grated intensity di�racted by a crystal is proportional to its thickness, so
the integrated intensity tends to in�nity when the thickness goes to in�n-
ity. This happens because the di�usive centers in deeper layers receive an
incident beam that is considered with the same amplitude of that received
in the surface layers. This ignores the interaction of the wave with matter.

Darwin (Darwin, 1914) was the �rst to mark the kinematical theory as incorrect.
He introduces the concept of the wave�eld: he describes the incident electric
�eld that propagates in the crystal as a sum of plane waves with wavevector
that di�ers from each other by a reciprocal lattice (Bloch waves). The aim
of this theory is to determine the possible positions for the tiepoint and so to
describe the wave�eld that propagates in the crystal. It will be shown that the
results of the dynamical theory tend asymptotically to those of the kinematical
theory when the crystal thickness is much smaller that a quantity de�ned by
the extinction length, that is inversely proportional to the structure factor Fhkl

and to the wavelength l.
In this thesis the details of the dynamical theory will not be investigated

because of their complexity, but the most important results will be exposed, to
better understand the problem to obtain crystals for a Laue lens. The reader
can �nd a much more complete treatment of the dynamical theory in Authier
(Authier et al., 1996)

2.2.5 The dispersion surface

Is possible to represent this concept starting from the Ewald construction. Fig.
2.2.3 shows how one passes from the Ewald sphere to the representation of the
Bragg condition. The Laue point La is the center of the Ewald sphere, it is
situated on the intersection of the two spheres centered at the reciprocal lattice
nodes O and H with a radius of curvature k = 1

λ ; the position of Laexactly
satis�es the Bragg condition.

The waves propagating in the medium interact with matter characterized
by an index of refraction n. For X and g rays this index is slightly less that
one so the wave number of waves propagating in the crystal is nk < k and
another two spheres of radius nk can be drawn inside the other ones; now the
point representing the Bragg condition is on the intersection of the two spheres,
called Lorentz point Lo, see Fig. 2.2.4 . The distance between the Lorentz and
the Laue point is LoLa = k(1−n)/cosθb. The wave propagating in the incident
direction is called refracted wave.
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2.2. Di�raction from ideal crystal

Figure 2.2.3: Di�raction condition according to the kinematical theory from a recip-
rocal space.

−→
OH is a vector of reciprocal space, La is the Laue point that satis�es the

Bragg condition, OLa = k0 and HLa = kh are the wavevector of incident and re�ected
beam respectively, (‖OLa‖ = ‖HLa‖ = 1/λ). OM is a wavevector that don't satis�es
the Bragg's condition. Both the dotted spheres have a radius of k.

Contrary to kinematical theory, in a semi-in�nite crystal (ideal case) the re-
�ection can occur for an angular range in which the Bragg condition is satis�ed,
called re�ection domain. So, for every position within the re�ection domain,
there is a refracted beam, of wavevector k0 = OP coexisting with the re�ected
wave kh = HP, Fig. 2.2.5. For reason of symmetry, P don't lie on either of the
two sphere but on a connecting surface between them, called the dispersion sur-
face. In this case there are two coexing waves, with wavenumbers di�ering from
nk and closely linked to form a wave�eld; to stress this concept Ewald called
the point P tiepoint. The position of P determines the direction of propagation
of the wave�eld.

The angular width of the re�ection domain is represented in reciprocal space
by the size of the dispersion surface, which diameter is proportional to Fhkl. So
the larger is the structure factor, so is the re�ection domain and the stronger is
the interaction. The dispersion surface is constituted by two hyperbolae in the
proximity of Lo, with a distance from it given by the inverse of the extinction
length, indeed the distance of Lorentz point to the dispersion surface is shorter
than the distance of the Lorentz point to the Laue point.

2.2.5.1 Qualitative approach to the dynamical theory

The wavenumber of the wave propagating in the vacuum in the incident or
re�ected direction is k and the common extremity M of their wavevector OM =
k0 and HM = kh lies on the sphere of radius k and centered in O and H
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2. Di�raction of X and g ray from crystals

Figure 2.2.4: In�uence of the index refraction on the Ewald construction. The Bragg's
condition is now satis�ed in the the Lorentz point Lo that lies in the intersection of
the spheres of radius nk (solid line). The vector OP is the refracted wave and HP the
re�ected wave.

respectively, passing through the Laue point La. The intersections of these
spheres with the plane of incidence are two circles which can be approximated
by their tangent T′0and T′h , and the distance LaM is k∆θ where ∆θ is the
angle between OM and the direction that satis�es the Bragg condition. In
the crystal, the incident wave OM excites two wave�elds, characterized by the
tiepoints P1 and P2 that are the projections of M on the two branches of the
dispersion surface along the normal of the surface of the crystal, see Fig. 2.2.6
.

In the crystal the wave�eld propagates on straight line parallel with the
Poynting's vectors S1 and S2, respectively normal to the dispersion surface in
P1 and P2 and symmetric with respect to the di�racting planes. The Poynting's
vectors are proportional to

Si ∝ E2
0 + E2

h = s0 |E0|2 + sh |Eh|2

where E0 and Eh are the amplitudes of the waves that constituted the wave-
�eld i, and s0 and sh are respectively the unit vectors indicating the incident
and re�ected directions.

The separation of the intensity between wave�eld i at the entrance surface
results from boundary conditions applied to the electric �eld vectors. The in-
tensity is higher in the wave�eld with Poynting vector closer to s0 and the ratio
of the two wave�eld intensities increases with increasing the angle between the
Poynting vector and the re�ecting planes. At the exit surface of the crystal,
the wave�eld splits into a re�ected and a transmitted wave. Their intensities
are again given through boundary conditions and one �nds that the as Poynt-
ing vector is closer to sh the re�ected intensity is higher (or inversely if the
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2.2. Di�raction from ideal crystal

Figure 2.2.5: Representation of the refracted OP and re�ected wave HP that are
coexisting. The surface dispersion (solid line) is the surface that connect the two
sphere and P is the tiepoint.

Poynting's vector is much closer to s0 the transmitted intensity is higher).
When the crystal rotates, the point M moves along the tangent T0 and

crosses the Laue point, which corresponds to the exact Bragg condition. The
tiepoints P1 and P2 move along the dispersion surface through its center. For
an incident wave far from the Bragg condition, the Poynting vectors S1 and
S2 are almost parallel to s0 and sh on one side of the Bragg peak, and to sh
and s0on the other side. In both cases, all the intensity is transferred to the
wave�eld parallel to s0 , the Poynting vector is parallel to s0 and at the exit
surface there is only a transmitted wave. This is expected since, far from Bragg
incidence, the beam passes straight through the crystal that is only a�ected by
normal absorption (Keitel et al., 1997).

Some important parameters can be deduced by the geometrical construction
of the dispersion surface, and they can help to express the re�ectivity and the
integrated intensity in the dynamical theory.

The asymmetry ratio: Let γ0 = cosψ−θB and γh = cosψ+θB be the cosine
of the angles between the normal to the surface of the crystal and the incident
and re�ected beam (y is called asymmetry angle), respectively. Their ratio γ is
so de�ned:

γ =
γ0

γh
=

cos (ψ − θB)

cos (ψ + θB)
(2.2.21)

The Darwin width δw is the full width at half maximum (FWHM) of the
rocking curve in the Laue geometry and the width of the total re�ection domain
in the Bragg geometry. It is expressed by:

δw =
dhkl
Λ

=
λ

Λ

|γh|
sin 2θB

(2.2.22)
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2. Di�raction of X and g ray from crystals

Figure 2.2.6: Scheme of the dispersion surface and of the boundary conditions in the
Laue geometry. O is the origin of reciprocal lattice and OH is a reciprocal vector. s0
and sh are respectively the unit vector of the incident and re�ected directions. MO is
a wavevector of the incident wave, La and Lothe Laue and Lorentz points. S1 and S2

are the Poynting' vector and P1 and P2 the tiepoint on the dispersion surface. T′
0 is

the tangent of the circle of radius k, T0 and Th are the tangent of the circle of radius
nk centered in O and H respectively [Authier et al., 1996]

where L is the Pendellösung distance in the Laue geometry and the extinc-
tion length in the Bragg geometry de�ned in par. 2.2.3.1.

The deviation parameter h in the Laue geometry is:

η =
∆θ

δw
(2.2.23)

where ∆θ is the deviation from the exact Bragg condition.

2.2.6 Integrated Intensity and re�ectivity in Laue case in dy-

namical theory

The integrated intensity Ii is the area under the di�raction pro�le. In dynamical
theory the expression for the integrated re�ectivity by a non absorbing crystal
is:

Ri,dyn =
π2P

2 sin 2θB

λ

Λ
B0 (2A) (2.2.24)
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2.2. Di�raction from ideal crystal

where A = πt
Λ , B0 (2A) =

� 2A
0 J0 (z) dz and J0 (z) is the Bessel function of

0 order.
The Fig. 2.2.7 represents the variation of B0 (2A) as a function of the

thickness t/Λ. The value oscillates around 1 when the thickness of the crystal
increases and becomes 1 when the thickness goes to in�nite. This oscillation,
called Pendellösung e�ect is due to the interference of the refracted and re�ected
waves [Halloin and Bastie, 2005]. The periodicity of the oscillation is the same
of the extinction length, with a minimum in correspondence of it. If the crystal
is absorbing the oscillation is quickly smoothed .

Figure 2.2.7: Variations of the integrated re�ectivity with the thickness in case of
absorbing non absorbing crystals.

When A tends to 0, i.e. t� Λ, the function B0 (2A)tends to 2A. In this
condition one can �nd that:

Ii,kin = Ii,dyn

So this mean that the kynematical theory can be considered the limit of the
dynamical theory for small crystals. The transition between the two theory is
leaded by the extinction length. When t� Λ the kinematical theory can be
applied whereas t � Λ the crystal is thick and the dynamical theory can be
adopted.

On the basis of the dynamical theory, W. H. Zachariasen (Zachariasen, 1945)
presents the theory in a form which enables a direct quantitative comparison
with experiment. It is possible to calculate the intensity of re�ection and trans-
mission of a parallel monochromatic X ray beam as a function of the angle of
incidence to the re�ecting planes. The re�ectivity R and the transmittivity T
are obtained from the ratio of the di�racted and transmitted beam respectively
with the incident one (Hirsch, 1951) :
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2. Di�raction of X and g ray from crystals

R =
Id

I0
= |b| |q|

|q + z2|
e−µt

(
sin2 av + sinh2 aω

)
(2.2.25)

T = IT
I0

= e−µt

|q+z2|
{∣∣q + z2

∣∣+
(∣∣q + z2

∣∣+
∣∣z2
∣∣) sinh2 aω

−
(∣∣q + z2

∣∣− ∣∣z2
∣∣) sin2 av

±1
2

∣∣∣(∣∣q + z2
∣∣+
∣∣z2
∣∣)2 − |q|2∣∣∣ 1

2

±1
2

∣∣∣(∣∣q + z2
∣∣− ∣∣z2

∣∣)2 − |q|2∣∣∣ 1
2

sin2 av

} (2.2.26)

with:

q = PbχHχH̄
χH = − reλ2FH

πVc
z = 1

2 (1− b)χ0 + 1
2bα

a = πt
λγ0

b = y0

γH
α = 2 (θB − θ) sin 2θB

where γ0 and γH are de�ned in eq. 2.2.21 and t0 is the nominal value of the
crystal's thickness. The Fig. 2.2.8 compares di�raction pro�les as a function
of the incidence angle (rocking curve) (eq. 2.2.25 ) of a silicon crystal (100)
oriented for a parallel and monochromatic beam of energy 17 keV. The two
pro�les represent a crystal with the same thickness of extinction length and a
crystal with the same thickness of half extinction length. In the �rst case the
central peak can reach a re�ectivity of about 100% . The oscillations are due
to the Pendellösung e�ect.

In Fig. 2.2.9 The di�racted and transmitted pro�les of a Si (100) with the
same thickness of extinction length are calculated on the basis of eq. 2.2.25 and
2.2.26.

Considering in eq. 2.2.25 and 2.2.26 the thickness t0 ≈ 10−3cm, the oscil-
lation caused by sin av becames very rapid and is very di�cult to observe it
in experiments. So it's possible to simplify the previous equations replacing
sin2 av with his average value, obtaining:

R =
Id

I0
=

1

2

|b| |q|
|q + z2|

e−µt cosh 2aω (2.2.27)

T = IT
I0

=1
2
e−µt

|q+z2|
{(∣∣q + z2

∣∣+
∣∣z2
∣∣) cosh2 aω

±
√∣∣∣(|q + z2|+ |z2|)2 − |q|2

∣∣∣ sinh2 aω
(2.2.28)
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2.2. Di�raction from ideal crystal

Figure 2.2.8: Rocking curves of a Si (100) crystal with thickness equal to L and L/2
at energy 17 keV.

Figure 2.2.9: Di�racted and transmitted pro�le of Si (100) at energy 17 keV. The
thickness is assumed to be the same as the extinction length.

These equations are used in this work to simulate the di�racted and trans-
mitted pro�les to compare with that obtained in experiments.

Owing to the complexity of equations 2.2.27 and 2.2.26 it is not possible to
do an analytical integration to get the expression and the value of integrated
intensity, however it is possible to rewrite the equations in a approximated form
that allows to use them more easily with thick crystals:

R =
1

2

e−µt

1 + y2
cosh

µtε√
1 + y2

(2.2.29)

T=1
2
e−µt

1+y2 cosh

(
µtε√
1+y2

+ χ

)
(2.2.30)

33



2. Di�raction of X and g ray from crystals

with
y =

(√
bπα

)
/
(
Preλ

2N |FH |
)

coshχ = 1 + 2y2

µ = 2π
Λ ΓF

′′
0

Γ = reλ2

πVc

ε = K
F
′′
H

F
′′
0

and with N = 1/Vc number of cell for unit volume and P assumed to be 1.
The change of the sign in the cosh function in eq. 2.2.30 occurs when y = 0
that is the Bragg condition. These equations are used in this work to get the
di�raction and transmission pro�les without the Pendellösung e�ect to do a
comparison with the experimental pro�les.

As an example in Fig.2.2.10 experimental di�racted and transmitted pro�les
are compared with that ones calculated with equations 2.2.29 and 2.2.30 for a
Si (100) crystal of 0.75 mm in thickness with di�racting planes (202) at energy
17 keV. It is important to note that simulated pro�les follow very well the
experimental pro�les, moreover it was found that the value of the experimental
integrated intensity 0.47± 0.2 arcsec is comparable with that calculated of 0.50
arcsec (Bonnini, 2012). The experimental integrated intensity is obtained by
direct integration of the di�raction pro�le. This demonstrates the validity of
the theory adopted based on eq. 2.2.29 and 2.2.30 .

Figure 2.2.10: Comparison between di�racted and transmitted pro�les simulated (blue
and green lines respectively) and experimental (red and pink lines respectively) for a
crystal Si (100) of thickness 0.75 mm at energy 17 keV.

The phenomenon called Borrmann e�ect is the anomalous increase of the
intensity before the expected decrease in correspondence of the di�raction peak.
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2.2. Di�raction from ideal crystal

It will be discussed in the following section.

2.2.7 Borrmann e�ect

The Laue di�raction geometry illustrated in Fig. 2.1.6, in which the asymme-
try angle of the di�racting planes is zero, is called symmetrical geometry. In
condition of real and thin crystals a transmitted peak in correspondence of a
re�ected is expected.

Suppose now that the crystal is perfect and rather thick. As an example
letµt = 20, where µ is the linear absorption coe�cient and t is the thickness
of the crystal. Under these conditions it is not expected to observe either a
re�ected or transmitted beam because of the absorption factor e−µt. However
at the Bragg condition the re�ected and transmitted peaks are simultaneous ob-
served with the same intensity. This means that closer to the Bragg condition
there is a slightly reduction of the absorption of the crystal. This surprising
experimental fact is called the "Borrmann e�ect�,and it was observed for the
�rst time by Borrmann (Borrmann, 1950), or sometimes the "anomalous trans-
mission e�ect". The other characteristic of this e�ect is that for both beams
the point of emergence from the crystal is directly opposite the entrance point,
suggesting that the e�ective combination of the two beams has traveled through
the crystal parallel to the di�racting planes, see Fig. 2.2.11.

Figure 2.2.11: Emergence of the re�ected and transmitted beams at a point directly
opposite the entrance position for symmetrical Laue re�ection in a thick perfect crystal.
The angle j satis�es the Bragg condition for that set of di�racting planes.

2.2.7.1 Polarization in�uence

The e�ect of polarization is considered in the polarization parameter P in the
expression of integrated intensity 2.2.24; it assumes di�erent values in function
of di�erent type of polarization (eq. 2.2.4 ). This factor a�ects also in the ex-
tinction length, but at high energies, more that 100 keV, the di�erence between
the p and sv polarization becames completely negligible. So the polarization of
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2. Di�raction of X and g ray from crystals

the incident wave at high energies has no considerable e�ect on the integrated
intensity.

2.3 Di�raction from mosaic crystal

The theory introduced describes the di�raction of X rays by perfect crystals.
These crystals are not suitable for the Laue lens (Chap. 1 ) because they
can di�ract a very narrow energy band, limited by the Darwin width of the
di�raction pro�le, which also decreases as a function of energy. A suitable
crystal should be able to di�ract e�ciently X ray energies and X ray beams
in an angular range relatively large, depending on the lens resolution. For this
reason, mosaic crystals are a possible solution.

2.3.1 Darwin model

Darwin in 1914 (Darwin, 1914) propose a relatively simple model to describes
real crystals as an assembly of tiny identical small perfect crystals, the crystal-
lites, each slightly misaligned with respect to the others according to an angular
distribution usually taken as Gaussian, Fig.2.3.1. These are called mosaic crys-
tals. In the Darwin's model the integrated re�ectivity of a mosaic crystal is
much bigger of that for perfect crystal, predicted by the dynamical theory.
Indeed each crystallite di�racts a portion of the incident beam (an angular por-
tion if the beam is monochromatic and divergent and a portion of the energy
spectrum if the incident beam is polichromatic and parallel) without a phase
relation with the beam di�racted from adjacent crystallites; each crystallite can
be considered as an independent crystal. The intensity of the di�racted peak in
this case is the sum of the intensities of each di�racted beam from crystallites.

Figure 2.3.1: Scheme of a mosaic crystal in the Darwin model

The angular distribution of the crystallite orientation W is a gaussian dis-
tribution that can be expressed as:
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2.3. Di�raction from mosaic crystal

W (θ) =
1√
2πη

e
−∆θ2

2η2 = 2

√
ln 2

π

1

Ω
e
− ln(2)

(
∆θ
Ω/2

)2

(2.3.1)

where W ,calledmosaicity ormosaic spread, is the full width at half-maximum
(FWHM) of this distribution and:

Ω = 2
√

2 ln 2η (2.3.2)

This model is based on these assumptions:

1. the number of the crystallites crossed by the incident beam is big enough
to be considered a continue function,

2. the distribution of crystallites has a gaussian symmetry,

3. the crystallites are so small that their absorption can be neglected µt� 1.

When the thickness of crystallites are more than ∼ Λ/10 the kinematical the-
ory is not valid and it is necessary to consider the dynamical theory. In the
dynamical theory the interaction between incident and di�racted theory (Pen-
dellösung e�ect) causes the extinction of the re�ected beam; this e�ect is called
primary extinction. In the Darwin model the intensity of the di�raction is the
coherent sum of the di�racted beam of each single cristallite. However if two
nearby crystallites have about a parallel orientation, the �rst can remove the
intensity that will arrive on the consecutive crystallites; this e�ect is called sec-
ondary extinction. The ideally imperfect crystals are mosaic crystal in which
the crystallites are small enough to permit to apply the geometrical theory.

The treatment of the Laue di�raction in symmetrical geometry by a mosaic
crystal was studied in detail by Zachariasen (Zachariasen, 1945). The crystal
is considered as a slice with parallel surfaces, thickness T0 and lateral in�nite
extension.

The re�ectivity of a mosaic crystal in the Darwin model is found to be:

Rmos =
1

2

(
1− e−σTo

)
e
−µT0

γ0 (2.3.3)

where sv gives the probability per unit length that fotons of direct beam will
be re�ected by the crystal. It depends on the structure of the crystals and on
the distribution of crystallites:

σ (E, θ) = W (θ)

(
re

Vc

)2 λ3P

sin 2θ

The FWHM of the re�ected curve is:
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∆u = 2

√
− ln

(
− 1
σ ln

(
1
2 (1 + e−σ)

))
ln 2

The integrated re�ectivity can be approximated as the product of the FWHM
of the re�ected pro�le with the value at the top of the peak:

Rint,mos =
(
1− e−αTo

)√− ln
(
− 1
σ ln

(
1
2 (1 + e−σ)

))
ln 2

e
−µT0

γ0 (2.3.4)

From the Bragg relation (2.1.4) it is easy to �nd that, when a polichromatic
beam impinges on mosaic crystal with an average angle j that satis�es the
Bragg condition, thanks to the mosaicity, photons with an energy included in
a energy range DE will be re�ected:

∆E =
EΩ

tan θ
(2.3.5)

From eq. 2.3.5 it is evident that the mosaicity de�nes directly the angular
acceptance of the crystals.

Nevertheless, the measurements performed on real crystals of thickness T0

can't be explained either by the kinematical or by the dynamical model of a
perfect crystal. Actually, the angular (or energy) acceptance can be relatively
large (up to a few degrees), and the integrated re�ectivity is much higher than
expected from a perfect crystal:

Rint,kin < Rint,mos < Rint,dyn

2.4 Di�raction from crystal with curved di�racting

planes

The main problem in the use of mosaic crystals is the di�culty to grow crystals
with de�ned mosaic spread. Bent crystals with curved di�racting planes (CDP)
represent an important alternative to obtain a di�racted energy band bigger
with respect to that of perfect crystals. Bent crystals show, in some di�racting
geometry and for certain set of di�racting planes, a cylindrical or spherical
curvature, depending on the bending technique. The value of this internal
curvature is directly linked to the external curvature and it allows to di�ract a
wide portion, in terms of energy or angle, of the incident beam, so increasing
the angular acceptance.

This section is based on the works of (Malgrange, 2002)and (Keitel et al.,
1997) based on the dynamical theory in distorted crystals (Authier, 2001).
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2.4. Di�raction from crystal with curved di�racting planes

Penning and Polder in (Penning and Polder, 1961) and Kato in (Kato, 1964)
develop simultaneously a theory based on optical geometrical to describe the
propagation of X rays in curved crystals, and they reach the same results.
These theories are merged in one called theory PPK. They demonstrate that
the wave�eld, that propagates in straight line in perfect crystals, follows curved
path in curved crystals as the light does in a medium with a gradient of refractive
index. The geometrical theory no longer applies when the strain gradient is too
high. An important contribute to the model arrives from Authir and Balibar
in 1970 (Authier et al., 1970). They first introduced the variation of the angle
of incidence j on the re�ecting planes (h,k,l):

∂θ =
1

k sin 2θB

∂

∂sh
(u · h) (2.4.1)

where s0 and sh are the unit vectors of incident and re�ected directions
respectively, h the reciprocal lattice vector of the re�ection, u the displacement
vector and k the wavevector.

Autheir and Balibar introduce the condition written as:

1

k sin 2θB

∂2

∂sh∂s0
(u · h)� δw

Λ
(2.4.2)

where δw is the Darwin width already introduced in eq. 2.2.22 for the
application of the dynamical theory to the distorted crystals.

Kato introduces a parameter b that describes the deformation of the re-
�ected planes:

β =
Λ

cos2 θB

∂2

∂sh∂s0
(u · h) (2.4.3)

It is important to point out that the parameter b, which describes the ef-
fective distortion of the crystal, is proportional to the extinction length, i.e.
proportional to the energy of incident beam. So, a crystal almost perfect at a
de�ned energy may behave like a highly deformed crystal at higher energies;
this e�ect will be observed during some experiment show in the next chapters.

The condition for the application of dynamical theory (small deformed crys-
tal, so small strain gradient) becomes (neglecting an unimportant factor cosj/2)

βΛ� 1 (2.4.4)

where each wave�eld propagates following a curved beam path.
Whereas on the contrary for strongly deformed crystals

βΛ� 1 (2.4.5)

the wave�eld tie point can jump from one branch to the other, creating a new
wave�eld.
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2. Di�raction of X and g ray from crystals

Let consider the case of a small strain gradient (2.4.4) and the Laue ge-
ometry. When a plane wave beam impinges onto a crystal with an angle that
satis�es the Bragg condition, it propagates along two beam paths. These beam
paths which are straight lines in a perfect crystal (Fig. 2.4.1 a) became curved
and follow hyperbolic paths (Fig. 2.4.1 b) due to the distortion of the lattice
planes. The tie point moves along the dispersion surface as the angle of in-
cidence varies on the re�ecting planes. The curvature of the beam path are
proportional to the strain. For very large strain gradients the tie point jumps
from one branch to the other; the new wave�eld is created in this area and
follows a normal propagation, which becomes very rapidly a straight line Fig.
2.4.1 c.

Figure 2.4.1: Propagation of a parallel incident beam in a symmetric Laue di�raction
and the corresponding dispersion hyperbola: a) Perfect crystal; b) Re�ecting planes
slightly curved (bL<�<1); c) Re�ecting planes strongly curved (bL>�>1). In this last
case wave�eld 2 is drawn with a dashed line to evidence its negligible intensity.

The fraction of the intensity for wave�eld which is transferred into this new
wave�eld is exp

(
− π2

βΛ

)
and tends to zero for bL <�< 1.

Consequently, two beams appear: one in the transmitted direction issued
from the new wave�eld, and one in the re�ected direction whose intensity is
reduced by the intensity transferred into the new wave�eld. Due to the very
short fraction of the beam path that corresponds to tiepoints in the domain
of re�ection, the Borrmann e�ect is negligible and the intensity is reduced by
normal absorption.
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2.4. Di�raction from crystal with curved di�racting planes

In condition of strongly bent crystals the expression for the di�racted peak
is:

Ip,ben = I0e−µt

[
1− e

− π
2

βΛ

]
(2.4.6)

The integrated re�ectivity Rint,ben = Iint/I0 is considered here, rather than
the mere peak re�ectivity, as the most relevant parameter characterizing the
di�raction e�ciency of the crystal. In fact, the peak intensity alone does not
take into account the width of the rocking curve, which is strongly in�uenced
by crystal features (mosaicity or curvature). Furthermore the rocking curve has
a top �at shape with a width w of the plateau equal to ω = tδβ

2 . So the the
integrated intensity for strongly bent crystals can be given approximately by
Ip,benω and, taking into account equation 2.4.6, can be written as

Iint,ben = I0e−µt tδβ

2

[
1− e

− π
2

βΛ

]
(2.4.7)

Now, a more strictly condition may occurs. For βΛ� π2 the Iint,ben can be
approximated with:

Iint,ben = I0e−µt tδπ2

2Λ
(2.4.8)

SoIint,ben corresponds to the maximum value of integrated intensity for CDP
crystals. It does not depend anymore on crystal curvature, and coincides with
the Iint,mos of an ideal mosaic crystal.

The discussion of this results will be show in chapter 3.
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Chapter 3

Di�raction e�ciency of bent

crystals: theoretical study

The e�ciency of a Laue lens for X and g ray focusing in the energy range 60÷
600 keV is closely linked to the di�raction e�ciency of its optical elements.

Both mosaic and CDP crystals can be used for a Laue lens, if they can be
produced with the needed angular spread.

Mosaic crystals are good candidates because their angular acceptance can
be tuned by modifying the mosaic spread and/or the size of the microcrystals
forming the mosaic structure during the growth process. The production of
mosaic crystals with a well de�ned mosaic spread and grain size is a di�cult
technological task, so that the resulting di�racted intensity is often much lower
than that predicted for the ideal case. In addition the peak intensity of mosaic
crystals is limited to 50% and they exhibit a non-uniform (typically Gaussian)
passband with a width proportional to the mosaicity.

On the other hand in CDP crystals, due to continuous change of the in-
cidence angle of an X ray trajectory on the crystalline planes, re-di�raction
within the crystal is prevented so the 50%-limit overcome and they can reach
in principle a peak e�ciency of 100% (Bellucci et al., 2011). Moreover CDP
crystals have a rectangular di�raction pro�le with width strictly bound up to
its curvature, so they have a uniform distribution of the energy passband.

For all these reasons CDP crystals are considered the best candidates for
the realization of X and g focusing system.

In this chapter a comparison of the e�ciency between CDP and mosaic
crystals was performed on the basis of dynamical theory of X ray di�raction de-
scribed in Chap. 2. Moreover, some crystal's properties as material, curvature,
dimensions, and di�raction geometry will be discussed in order to maximize the
e�ciency of the crystals, and so the e�ciency of the lens.
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3. Di�raction e�ciency of bent crystals: theoretical study

3.1 Di�raction e�ciency

Let rewrite some parameters to facilitate the calculation of the integrated re-
�ectivity in order to obtain the maximum di�raction e�ciency in bent crystal.

Considering the deformation parameter b in eq. 2.4.3, it can be written as:

β =
2∆θ

lθ
(3.1.1)

where d is the Darwin width of the di�raction de�ned as the full width at
half maximum (FWHM) of the rocking curve for a perfect non absorbing crystal
and l is the optical path of the beam along the crystal thickness t, related by
l = t/cosθB. Since at high energy the Bragg angle θB is very small, it is possible
to assume l = t.

The quantity Dj is the variation of the Bragg condition along the direction
of incident beam direction across the sample thickness. It consists of three terms
that consider the lattice bending, the variation of the lattice parameter and the
lattice deformation (see for the detail App. A). For a spherical deformation the
variation Dj is given by (Erola et al., 1990), modi�ed for a spherical curvature):

∆θ =
t

R

[
tan (φ∓ θB) +

sin 2ϕ

2

c11 + 2c12

c11
± tan θB

(
cos2 φ− 2c12

c11
sin2 φ

)]
(3.1.2)

where c11 and c12 are the elastic constants for cubic crystals and f is the
inclination of lattice plane with respect to the surface normal. The signs ∓ and
± refer to the condition of angle of incidence lower (�rst sign) or larger (second
sign) than the asymmetry angle φ . It is worth noting that for symmetrical
Laue di�raction (φ=0°) and in the approximation of isotropic material or high
symmetry directions, the Dj is zero even if the corresponding lattice planes are
bent (Kalman and Weissmann, 1979;Ferrari et al., 2013). The function ∆θ · R

t
reported in Fìg. 3.1.1 for Bragg angles of 1° (high energy X rays), 10.6° (E=17
keV and Si 220 planes) and 30° represents the �e�ective curvature� of the lattice
in the direction of the incident beam. The variation Dj is related to the crystal
external curvature radii R by R = t/Dj, so the FWHM of the di�racting pro�le
is proportional to it.

Now, considering the expression of the Darwin width d,

δ =
2rePFHλ

2

πV sin (2θB)
(3.1.3)

the approximated expression of the integrated intensity in eq. 2.4.8 valid
for strongly bent crystals, is:

Iint,ben = I0

(
reFH

V
P

)2 tλ3

sin 2θB cos θB
e−µt (3.1.4)
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3.1. Di�raction e�ciency

Figure 3.1.1: The function ∆θ · Rt as a function of angle asymmetry and Bragg angles
1°, 10°, 30°. We have considered the second sign in Eq. 3.1.2

The integrated re�ectivity that has to be optimized is:

Rint,ben =

(
reFHP

V

)2 tλ3

sin 2θB cos θB
e−µt (3.1.5)

3.1.1 Approximated calculation of integrated intensity: Lamel-

lar model

X ray integrated re�ectivity of bent crystals is calculated from a model devel-
oped in (Erola et al., 1990) where curved crystals can be approximated by a
stack of perfect-crystal lamellae which have a gradually increasing tilt angle
corresponding to the bending of the crystals. The re�ectivity of the crystal is
the sum of partial re�ections in the lamellae. The thickness of the lamellae is
taken such that angles between two successive lamellae is equal to the Darwin
width of the re�ection.

Considering the variation of the Bragg conditions along the di�racting planes
∆θ in eq. 3.1.2, can be written as:

∆θ =
t

R
[γ0B(θ, φ)]−1 (3.1.6)

Introducing A as the re�ecting thickness in the units of the extinction length
Λ for a lamellae of thickness T
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3. Di�raction e�ciency of bent crystals: theoretical study

A = RB
λ

Λ2 sin 2θ
(3.1.7)

it is possible to obtain the trend of the integrated re�ectivity of curved
crystals as a function of the curvature of crystals.

Rint(A) =
tanh A

A
Rint,ben (3.1.8)

The trend of the integrated re�ectivity can be studied, studying the behavior
of tanhA:

lim
A→∞

tanhA = 1

lim
A→0

tanhA = A
(3.1.9)

3.1.2 Crystal's material

The material of the crystals is the �rst important parameter to be considered
in order to optimize the integrated re�ectivity 3.1.5, indeed it is mandatory
to establish a list of materials ful�lling basic requirements: the material must
exist in a crystalline state at room temperature and must has a good di�rac-
tion e�ciency, it must be easily bent but not be ductile, and it must not be
radioactive. Crystals composed of di�erent atoms tend to have larger lattice
parameters than pure materials, which dramatically decreases their di�raction
e�ciency. So, the choice is limited to pure materials and bi-component crystals.

The integrated re�ectivity depends on the square of the ratioFH/V which
is proportional to the atomic density N. The value of N as a function of the
element atomic number Z is shown in Fig. 3.1.2 reported in (Barriere et al.,
2009).

As can be seen, for single-element materials, the density peaks are evident
in correspondence of the Z = 5, 13, 28, 45, and 78. Common materials like Al ,
Si , Cu, Ge, Mo, Rh, Ag and Au are good candidates to be used for Laue lenses
and should be preferred to other elements if they are available as crystals with
the requested properties. Also double-element crystal materials can be used
for Laue lenses. Several of them, developed for other applications, are already
available, like GaAs, InAs and CdTe. With some improvements, these crystal
materials can be used for Laue lenses [Barriere et al., 2010]. Due to the high
energies involved, the choice of high-Z mosaic crystals such as Cu, Au and Ag
is preferred (Halloin and Bastie, 2005; Lund, 2005).

3.1.3 E�ect of crystal's thickness

The crystal thickness t traversed by the beam is therefore a crucial parameter
that must be optimized to achieve the maximum of integrated re�ectivity in
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3.1. Di�raction e�ciency

Figure 3.1.2: Density of a crystal unit cell versus element atomic number.

mosaic and CDP crystals.
The thickness which maximizes the di�raction e�ciency, can be obtained

from the partial derivative of Rint,ben in eq. 3.1.5 with respect to t and putting
it equal to zero:

∂Rint,ben

∂t
= 0 (3.1.10)

The values of thickness that optimize the integrated re�ectivity is tmax = 1
µ

as in the case of symmetrical Laue di�raction for mosaic crystals (Authier and
Malgrange, 1998). Fig.3.1.3 reports tmax for ideal mosaic (Cu and Au) and
CDP (Si and GaAs) crystals in the energy range of interest; the curve of Ge
overlaps that of GaAs due to the equivalent crystal density. It is important to
note that tmax depends only by the absorption and it is almost independent
of the re�ection geometry; a high absorption coe�cient implies a low crystal
thickness for e�ciency optimization.

Now replacing t with tmax = 1
µ in eq. 3.1.5, the formula that expresses the

maximum integrated intensity with respect to thickness for ideal mosaic and
CDP crystals can be obtained, (Bonnini et al., 2015):

Rint,max =

(
reFHP

V

)2 λ3

eµ sin 2θB cos θB
(3.1.11)

Fig.3.1.4 shows the maximized integrated re�ectivity Rint,max calculated
from eq.3.1.11 for GaAs, Si, and high-density materials such as Cu and Au
usually proposed as X and g ray lens elements; the di�raction geometries with
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Figure 3.1.3: Left : The crystal thickness tmax, maximizing the integrated re�ectivity
for CDP crystals (Si, Ge and GaAs) and mosaic crystals (Cu and Au) in the energy
range 60 ö600 keV. Right : A zoom of tmax in the energy range 60ö200 keV.

the highest values of FH for face-centred cubic crystals are considered, i.e. the
111 and 220 re�ections.

Data concerning the absorption coe�cients of the materials considered have
been taken from the NIST database (http://www.nist.gov/pml/data/index.cfm).

In the range between 80 and 400 keV in the (111) di�raction geometry
(Fig.3.1.4 bottom) Cu mosaic crystals provide the higher e�ciency, being nearly
2 times larger than that of GaAs and Ge. This is not true for the (220) geometry
(Fig. 3.1.4 upper), in which GaAs and Ge provide a 30% higher intensity than
Cu crystals, thus con�rming that a higher Z number does not always correspond
to a higher e�ciency.

As an example, the integrated re�ectivity as a function of the thickness
calculated by equation 3.1.11 was studied at a �xed energy E = 140.5 keV,
(Roa et al., 2005), Fig. 3.1.5. As expected the integrated intensity increases
until it reaches a maximum and thereafter decreases due to the absorption of
radiation in the crystal. This calculation is made for di�erent materials as Si,
GaAs and Cu at (220) and (111) re�ections.

By combining the results of Fig. 3.1.3 and Fig. 3.1.4 it is possible to
conclude that even relatively light materials, under the condition of optimal
length tmax, reach an integrated re�ectivity comparable or better than high Z
crystals in the energy range 60ö600 keV.

This can considerably increase the real possibility to realize a Laue lens,
reducing the huge economical e�ort that is requested to produce Au and Cu
mosaic crystals and also the weight of the system that is a critical point for
astronomical applications.
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Figure 3.1.4: The calculated integrated re�ectivity as a function of energy for Si and
GaAs CDPs and for Cu and Au mosaic crystals in the 220 and 111 re�ections (top
and bottom panels, respectively). The thickness of the crystals was tuned to obtain
the maximum integrated re�ectivity at each energy.

3.1.4 Radius of curvature

Another parameter that must be optimized in order to obtain the maximum of
Rintis the radius of curvature of bent crystals.

As discussed in sec. 2.4 the eq. βΛ = 1 de�nes the critical condition for
which crystals can be considered slightly curved (βΛ � 1) or strongly curved
(βΛ � 1). It is possible to de�ne Rc1 as the critical radius of curvature asso-
ciated with the critical condition, so when R� Rc1the crystals can be consid-
ered strongly bent (Malgrange, 2002). On the basis of the dynamical theory of
di�raction, the radius Rc1 has been calculated as a function of energy over the
range of interest in CDP Si and GaAs crystals (Fig. 3.1.6 ) in (220) and (111)
re�ections. This shows that the condition of strong curvature occurs for radii of
several tens of metres, which are easy to obtain by the lapping process ( Chap.
4).
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Figure 3.1.5: Integrated re�ectivity as a function of the crystal thickness for E=140.5
keV calculated for di�raction (111) and (220) for di�erent materials of interest (top
and bottom panels, respectively).

The condition βΛ = π2 gives a new critical value Rc2 (see Fig. ) for which
crystals achieve the maximun e�ciency. Indeed, for radii of curvature R� Rc2

the integrated intensity in equation 2.4.7can be approximated with eq. 2.4.8
that corresponds to the maximum integrated intensity for CDP crystals. It no
longer depends on the crystal curvature and coincides with the Iint of an ideal
mosaic crystal.

3.2 Conclusion

It was found that CDP crystals with radii of curvature of several tens of me-
ters can be considered as strongly bent crystals for X ray energies between 60
and 600 keV. In this case, a simpli�ed approach for calculating the integrated
re�ectivity of the crystals is applied. Under this approximation, the maximum
value of the integrated intensity is given by a crystal thickness tmax = 1

µ , as
in the case of ideal mosaic crystals. Then, taking into account the absorption
factor, it is found that Si, Ge and GaAs crystals with optimized thicknesses
show a comparable or superior di�raction e�ciency with respect to the heavier
materials proposed previously. This is because the higher structure factor in

50



3.2. Conclusion

Figure 3.1.6: Critical radii of curvature Rc1 and Rc2 calculated as a function of energy
for Si and GaAs (top and bottom panels, respectively), in the case of the (111) and
(220) re�ections.

heavier crystals is compensated by the larger values of optimized thickness in
the Si, Ge and GaAs crystals.
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Chapter 4

Bending technique

The use of bent crystals for X and g rays energy applications has been ex-
tensively studied in the last decades. The manufacture of self-standing bent
crystalline plates is a technological problem yet to be solved in a reliable way.
To realize a Laue lens a huge number of bent crystals, with a uniform and
well de�ned curvature is required. Mechanical holders are generally used for
bending single crystals (Carassiti et al., 2010) but due to the weight and the
space occupied, this technique is not suitable for settings with a large number
of crystals. Thermal gradients (Smither et al, 2005), pressing crystals between
curved surfaces (Smither et al., 2005), or strained �lm deposition (Virgilli et al.,
2015) are others methods but in general they are too expensive in energy and
material requirement. Malgrange et al. realized curved crystals by composition
gradient in GeSi alloy crystals (Malgrange, 2002; Abrosimov 2005) but a large
production can su�ers by the di�culty in the crystal growth and the yield rate.
Quite recently Guidi (Guidi et al., 2011) obtained curved crystals by grooving Si
(111) wafers by a precise dicing saw. A di�raction e�ciency of 88% for 150 keV
photons is also reported (Barriere et al., 2010). The method is reproducible
and the curvature can be established with accuracy, depending on the wafer
thickness, density and depth of grooves. On the other hand the presence of a
deep indentations removes a big volume of the crystal, reducing the hardness
and the real thickness of the crystal causing the reduction of their di�raction
e�ciency. In this work the bending of crystals is realized by a controlled surface
damaging (Bu�agni et al., 2011), which introduces defects in a super�cial layer
of few tens nanometers in thickness causing an highly compressive strain. On
the basis of results discussed in Chap. 3 , Si, GaAs and Ge are chosen as the
best materials to get high di�raction e�ciency. The GaAs crystals were grown
by the Liquid Encapsulated Czochralski method, as described in (Ferrari et al.,
2008). The slices are cut from the ingots perpendicularly to the growth direc-
tion and saw damaging were removed by a chemical etching with a HCl/HNO3

1:1 solution. The GaAs crystals are characterized by spontaneous formation of
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"cellular structures" with dislocations distribution at the boundaries between
perfect zones of the crystal. Because of the presence of cellular structures due
to the Czochralsky growth, GaAs shows a natural degree of mosaicity with mo-
saic spread of 20-25 arcseconds measured at 8 keV. The Si and Ge crystals are
commercial wafers. Moreover an innovative method of curving crystals has been
developed during this work. It consists on a deposition of resin on one side of
the wafer. During the polymerization, the resin induces a tensile strain on the
substrate, causing the elastic bending of the slice. The lapping and the resin
bending processes are described in details in this chapter.

4.1 Damaging technique

A simple method to obtain self-standing crystals with a reproducible and uni-
form curvature is based on controlled surface damage induced by a mechanical
lapping process. Scratches, inclusions, and dislocations due to the treatment
introduce defects in a super�cial layer of the sample, causing an expansion of
the crystal lattice and the bending of the sample, with convex curvature on the
damaged surface. The polishing machine is a Buelher Ecomec 4 which allows
to produce di�erent deformations by changing some parameters as: the grit of
the sandpaper, the pressure per unit area applied on the samples, the rotation
speed of the sandpaper plate and the duration of the treatment. The inde-
pendent rotation on two di�erent axes of the sandpapers plates guarantee an
uniform abrasion on the entire surface of the wafers. To evaluate the local and
the mean curvature induced in the crystals, high resolution X ray di�raction
measurements are performed in Bragg geometry by means of a X'Pert PRO
Philips di�ractometer, where the CuKα1 radiation ( λ=0.15405 nm) is selected
by four 220 re�ections in germanium monochromators. The rocking curve peak
shift as a function of the measurement position on the sample gives a direct
measure of the sample curvature radius, as Fig. 4.1.1 reports.

Figure 4.1.1: Scheme of the measurements for calculate the radius of curvature of
crystal tiles. The Bragg condition varies along di�erent positions on the samples.

Figure 4.1.2 shows the 004 Bragg di�raction pro�les measured before and
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4.1. Damaging technique

after a treatment of 180 minutes with sandpaper P400, represented in the same
scale for comparison. The mean curvature radius changes from about 480 m to
63 m, demonstrating the work of surface damaging process. The regularity of
the peak shift means that the curvature is almost uniform along the sample.

Figure 4.1.2: Si (100) sample. 004 Bragg di�raction peaks measured at 8 keV along a
diameter of the sample. Rocking curves measured before (panel A) and after (panel
B) a treatment 180 minutes long with sandpaper P400 on the same positions on the
sample.

If the peaks position are shown as a function of the measurement positions,
the uniformity of the curvature is immediately evident and the slope of the line
represent the value of the radius of curvature. The 004 Bragg di�raction pro�les
have been collected with incident beam in di�erent sample positions, along two
directions perpendicular to each other and parallel to the wafer �ats (x and y
directions) for a Si (100) sample. The superposition of the measurements along
the x e y directions means that the bending is practically spherical (Figure 4.1.3
Left). Moreover measurements performed impinging with the X ray beam on
the front and rear surfaces of the same Si wafer (Figure 4.1.3 , Right) showed
the curvatures are almost the same with opposite convexity. This con�rms the
curvature is a bulk property of the treated material.

For GaAs the values di�er considerably along the di�erent directions and in
particular the value of the curvature at 45° is intermediate between the values
at 0° and 90° directions, Fig. 4.1.4.

All analyzed GaAs samples presented similar behaviors, so it is possible to
conclude that in GaAs samples the curvature seems elliptical. This e�ect is
probably due to the elastic anisotropy characteristic of the GaAs crystals. To
con�rm the results, Ge (100) samples are bent with damaging technique and
characterized during this work. The measurements performed along 0°, 45° and
90° direction are superposed, underlining the spherical shape of curvature, see
Fig. 4.1.5.
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Figure 4.1.3: 004 di�raction peak shifts as derived from rocking curves measured in
di�erent points on the Si(100) sample. Measurements were performed along two di�er-
ent directions: x and y directions are along <110> crystallographic directions (Left)
and along the opposite sides of the slice (Right).

These results con�rm that for Si and Ge, which have isotropic behavior, the
curvature is spherical, while for GaAs it is elliptical. The study of the lapping
curved samples in term of stress and line tension are reported in (Bu�agni et
al., 2011). The most important results are:

� �xed the grain size of the sandpaper, the line tension as a function of the
treatment duration remains almost constant in a time range between 30
sec to 5 min. This means that the strain is induced in the crystals in
the �rst tents of seconds of the lapping process. On the other hand, the
curvature radius increases due to the substrate thickness reduction;

� �xed the time of the treatment for 1 min, the samples were treated with
di�erent sandpapers (from P180 to P4000), corresponding to di�erent
grain dimensions. The radius of curvature decrease increasing the grain
dimension of the sandpaper.

4.2 Resin deposition technique

For the �rst time an innovative and simple method to realize self-standing
curved crystals is presented in this work. The capacity of the resins to bent
substrates of some materials is well known in particular in wood and mechanical
industry. The bending process developed is based on the idea to take advance
of this capacity of the resin and try to maximize this e�ect. Some epoxy resins
are chosen and texted because their characteristic. They allow to obtain a layer
resistant to external mechanical strains and they have a good adherence to
di�erent materials as metallic or organic substrate. The process consists on a
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4.2. Resin deposition technique

Figure 4.1.4: 004 and 404 peaks re�ection as a function of a GaAs (100) sample position
along 0°, 45° and 90° directions. The value of curvature along the di�erent directions
are reported.

�lm deposition of selected bi-component epoxy resin on one side of crystals (Fig.
4.2.1 Left) and it is made rather uniform by mean of a spin-coater. During the
polymerization, the resin induces tensile strain that can cause the bending of
the substrate, with concave curvature on the side of the resin deposition (Fig.
4.2.1 Right).

Several Si and GaAs samples with di�erent thicknesses were treated to study
the e�ect of this new technique. High resolution X ray di�raction measurements
were performed in Bragg geometry by means of a X'Pert PRO Philips di�rac-
tometer to evaluate the local and the mean curvature induced. The 004 Bragg
di�raction pro�les have been collected with radiation beam incident in di�erent
sample position, along two directions perpendicular to each other and parallel
to the wafer �ats (x and y directions), before and after the treatment. Fig. 4.2.2
shows the rocking curves measured on a Si sample before (Right) and after a
treatment (Left). The shift of the Bragg peak as a function of the position
of the sample means a change in curvature radius from about 400 m to 3 m,
demonstrating that the glue process is e�ective to bend crystals. Systematic
studies of the e�ects of the spin coater speed at a �xed time are carried out on
one series of 10x10 mm2 of Si (100) 0.75 mm thick.

The speed of the spin-coater determines the thickness of the �lm of glue and
the e�ect on the radius of curvature is evident, see Tab. 4.1.

It is possible to represent the radius of curvature by the relation of the shift
of the Bragg peak as a function of the positions on the sample in which the
measurements are performed, Fig 4.2.3 Right reports this measurements for the
samples reported in the Tab. 4.1. It is evident the changes in the value of the
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Figure 4.1.5: 004 and 404 peak shift as a function of a Ge(100) sample position along
0°, 45° and 90° directions. The value of curvature along the di�erent directions are
reported.

Figure 4.2.1: Left : Two tiles of Si of 0.75mm and 2 mm treated with glue deposition.
Right : Scheme of substrate bending

radius of curvature, changing the slope of the function. In Fig. 4.2.3 Left the
dependence of the radius of curvature with the spin-coater speed is represented.

As for the damaging technique, the 004 di�raction peaks were collected
along two perpendicular directions (called x and y) to check the shape of the
curvature. Measurements performed on a Si(100) sample showed a uniform
and spherical bending (Figure 4.2.4 Left). Moreover measurements performed
impinging with the X ray beam on the front and rear surfaces of the same
Si wafer (Figure 4.2.4 Right) showed the curvatures are almost the same with
opposite convexity, con�rming that the curvature is a bulk property of the
crystals.

As already discussed in Chap. 3, the optimization of the thickness of crystal
is important in order to maximize the re�ectivity e�ciency. So one of the
most important characteristic for a suitable bending process is the capability of
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Figure 4.2.2: Rocking curves measured on a Si(100) sample before (Left) and after the
resin deposition (Right).

Spin-coater speed (rpm) Radius of curvature (m)

4800 �at
4000 250
2000 120
1100 65
500 13

Table 4.1: speed of spinning and the curvature radii as derived from the 004 di�rac-
tion peak positions (unless di�erently speci�ed) are reported in the columns 1 and 2
respectively. Several Si (100) of 0.75mm in thickness an with an area of 1x1 cm2 are
treated.

bending thick crystals. This is nowadays an open issue. To test this capacity of
the resins deposition technique, some 2 mm thick Si (100) samples are treated
and characterized. Fig. 4.2.5 reports the 004 peak shift as a function of sample
position measured along two perpendicular directions (Left) and on opposite
sides of a treated Si crystals (Right); the radius of curvature is ∼14 m ± 0.5m
along the x e y direction and in front and rear side.

These results con�rms that the resins technique is a good process to realize
self-standing curved crystals also rather thick, with uniform curvature along
the whole area of the sample. Rocking curves as a function of the measurement
position were collected also for several GaAs samples with 2 mm thickness.
Examples of the peak shift are reported in Figure 4.2.6: the 004 di�raction
peaks were measured along the x and y directions of a GaAs sample to check
the shape and the uniformity of the curvature. The curvature radii derived are
equal within the experimental error, so the curvature has a spherical shape.
This means that resin process is suitable to bent GaAs sample and that it is
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Figure 4.2.3: Left : peak shift as a function of a Si (100) samples treated with glue
deposition, changing the speed of spun-coating. Right : The values of curvature as a
function of spin-coating speed are reported.

possible to achieve also a spherical curvature.
In order to achieve a stronger curvature in thick (>2 mm) crystals, some

GaAs samples with t= 2 mm are treated with a combination of these 2 process.
First GaAs crystals were lapped for 5 min with sandpaper P80 and then a �lm
of epoxy resins is deposited with spin-coater speed of 1000 (rpm). The result is
illustrated in Fig. 4.2.7: a change in the radius of curvature from about 60 m
to 6 m along x direction and from 120 to 7 m along y direction is evident. It
is important to note that starting from an elliptical curvature in GaAs induced
by the damaging technique, the resin technique can bent the sample achieving
a spherical curvature shape. This result suggests the idea that is possible to
combine the two process to get strongly bent crystal rather thick.

To check the stability of the curvature in time, the characterization of the
samples' curvature are performed after 1 month. In Fig. 4.2.8 the radius of
curvature changes from 5 m to 24 m but the spherical curvature, con�rmed by
a good superposition in x e y direction of the 004 measurements, remains.

This result suggest a relaxation of the force that the �lm induces on the
substrate, causing the reduction of curvature. To optimize the resin deposition
process and the combination of it with the damaging technique, other test and
studies are necessary.

4.3 Conclusion

In this chapter the damaging bending technique mainly used during my work
is described. It consist in introducing an in plane surface strain by damaging
one side of the crystal with sandpapers of di�erent grain sizes. The damage
and the strain introduced by the surface treatment are reproducible, uniform
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Figure 4.2.4: 004 di�raction peak shifts as derived from rocking curves measured in
di�erent points on the Si(100) sample of 0.75 mm thick treated with the resin depo-
sition. Measurements were performed along two di�erent directions: 0° and 90° direc-
tions (called x and y direction) are along <110> crystallographic directions (Left) and
along the opposite sides of the slice (Right).

and depend mainly on the type of used paper, i.e. larger grains introduce a
larger stress and a lower curvature radius. Another new bending technique
is developed and the main results are shown. The process consists on a �lm
deposition of a selected bi-component epoxy resin on one side of crystal, made
uniform in thickness by mean of a spin-coater. During the polymerization, the
resin induces a tensile strain that causes the bending of the substrate, with
concave curvature on the side of the resin deposition. It was demonstrated
that choosing the speed of spin-coating, so changing the thickness of the �lm,
a control of radius of curvature can be obtained. Measurements performed
on curved Si(100) and GaAs(100) samples with 0.75 mm and 2mm thick, along
two perpendicular directions show a spherical and uniform curvature. Moreover
measurements performed on the front and rear surfaces of the same Si wafer
showed the curvatures are almost the same with opposite convexity, con�rming
that the curvature is a bulk property of the treated material. Finally it was
demonstrated the possibility to combine the two bending technique to obtain
curved crystal with a stronger curvature in rather thick crystals. These results
lead to the conclusion that the resin deposition technique is a suitable process
to realize curved crystal that can be used as optical focusing element for X and
g ray applications.
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Figure 4.2.5: 004 di�raction peak shifts as derived from rocking curves measured in
di�erent points on the Si(100) sample 2 mm thick treated with the resin deposition.
Measurements were performed along two di�erent directions: 0° and 90° directions
(called x and y direction) are along <110> crystallographic directions (Left) and along
the opposite sides of the slice (Right).

Figure 4.2.6: 004 peak shift as a function of sample's position measured along two
perpendicular directions called x e y, for a GaAs crystal with 2 mm in thickness.
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Figure 4.2.7: 004 peak shift as a function of sample's position measured on a GaAs
crystal with 2 mm in thickness. The sample is curved with damaging technique (black
and green points) and after treated with resin deposition (blue e red point).

Figure 4.2.8: 004 di�raction peak shifts measured in di�erent points on the Si(100)
sample treated with the resin deposition. Measurements were performed along two
di�erent directions: (called x and y direction) at 1 month distance.
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Chapter 5

Experimental results

In order to verify the results of simulations of the crystal di�raction e�ciency in
Chap. 3, detailed characterization at low and high X ray energies are performed
on �at and bent crystals obtained with the damaging and the resin deposition
technique, described in Chap. 4. Thanks to the access at the European facili-
ties as ILL and ANKA synchrotron, it was possible to perform a quantitative
study of the di�raction e�ciency of crystals with di�erent thickness at di�erent
geometries, in the energy range of interest. The description of the facilities are
reported in App. C.

5.1 Low energy

Several GaAs and Si curved with damaging and �at crystals were measured in
Laue and Bragg geometry at energies of 17, 19, 22.5 and 59 keV. Laue 220 sym-
metrical and 202, 111 asymmetrical di�raction pro�les (see Fig. 5.1.1 for the
measurement schemes) in Si crystals have been measured with the MoKa radi-
ation (E=17 keV) in a double crystal di�ractometer (Si (220) monochromator)
in non-dispersive con�guration (see App. C for the detailed description). The
line source of a �ne focus Mo tube was selected so that the beam cross section
in the scattering plane was approximately 50 mm. Di�racted and transmitted X
ray di�raction pro�les in Laue geometry have been also calculated on the basis
of the dynamical theory for comparison (Hirsch 1952). The 220 symmetrical
Laue pro�les of (001) oriented Si and GaAs samples were also measured at the
LARIX facility of the Physics Department of Ferrara University using the W
K line (E = 59 keV). Owing to the lack of a monochromator crystal, only the
integrated intensity could be measured. Moreover the 220, 202 and 111 re�ec-
tion in Si 0.75mm thick �at and bent are studied in detail at 19 and 22.5 keV
at ANKA synchrotron facility.

The 220 symmetrical re�ectivity and transmissivity di�raction pro�les of a
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Figure 5.1.1: Geometry of the Laue di�raction with symmetric (a) and curved asym-
metric (b and c) di�racting planes. In the last case the incidence angleis ϕ−θB (grazing
emergence, panel b) or ϕ+ θB (grazing incidence, panel c)

Silicon (001) oriented �at crystal of 750 mm in thickness at E = 17 keV (MoKa1
line) are reported in Fig. 2 Left and compared to the simulated pro�les from the
dynamical theory of X ray di�raction. The integrated re�ectivity agrees within
7% with the value calculated from theoretical pro�le, con�rming the validity of
the model. A well pronounced Bormann e�ect (par. 2.2.7) is observed in the
transmission pro�le as an indication of the crystal perfection.

Figure 5.1.2: MoKa 220 re�ection for �at (Left) and bent crystals with R =54m (Right)
di�raction and transmission pro�les (red solid curves) for a 750 mm thick Si crystal.
Theoretical pro�les (dashed blue lines) calculated for a �at crystal on the basis of the
dynamical theory (see par. 2.2.6 ) are added for comparison. The experimental and
calculated integrated re�ectivity are reported.

In Fig. 5.1.2 the (220) symmetrical Laue transmission and di�raction pro-
�les of a bent Si crystal, with a radius of curvature of 54 m are compared with
�at simulated pro�les. Contrary to what is expected in perfect slightly bent
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crystals, in which the excited Bloch wave at the Bragg condition follows the
curvature of the lattice planes (Authier, 2001), in the 54 m curved Si sample
the Borrmann e�ect is almost completely quenched (Fig. 5.1.2 Right). More-
over, we observe an increase of the integrated re�ectivity of more than two times
with respect to that of the perfect crystal, in contrast to the results reported
by (Kalman and Weissmann, 1979) and the vanishing Bragg angle variation Dj
as calculated from formula (3.1.2) in the case of Laue symmetrical geometry
on elastically bent Si (001)-oriented crystals. The calculated broadening of the
di�raction pro�le due to the beam cross section (∼0.19 arcseconds) is almost
negligible with respect to the observed peak width.

The increase of the di�racted intensity in symmetric Laue geometry has been
observed in curved crystals with speci�c surface orientations, such as 111 Laue
di�raction in (1 1̄ 0) oriented Si surfaces (Janacek et al., 1978) or 422 di�rac-
tion in ( 1̄ 1 1 ) oriented samples (Kalman and Weissmann, 1983). In fact,
because of the elastic deformations along these non-symmetric crystallographic
directions, a secondary curvature is induced in the lattice planes perpendicu-
lar to the sample surface. A possible origin of the increase of the integrated
intensity in symmetric Laue geometries for surface-damaged crystals may be
in the irregular elastic �eld at the sample surface, due to the surface damage.
004 Bragg re�ection measurements performed in a double-crystal arrangement
in the non-dispersive setting on both the damaged and the perfect side of the
curved sample (Fig.5.1.3 ) con�rm this hypothesis, with a much larger di�racted
intensity obtained from the damaged side. The peak broadening and the peak
splitting seen in the pro�le measured on the perfect side are due to the curva-
ture of the sample and the larger beam footprint in the Bragg geometry, leading
to a shift of the Bragg condition of the Mo K1 and Mo K2 lines. This does
not a�ect the integrated re�ectivity measurement. A similar result in term of
an increased integrated intensity was found in as-cut Cu crystals for neutron
monochromators (Courtois et al., 2005) in Laue di�raction geometry. In the
present case the observed peak broadening and increase of the di�raction ef-
�ciency is not detrimental for the Laue lens application for focusing hard X
rays.

In Fig. 5.1.4 the 202 asymmetrical Laue transmission and di�raction ex-
perimental pro�les corresponding to an angle of incidence f �θB = 45° � 10.63°
is reported. Due to the lattice plane bending an increase of 3.3 times of the
di�racted integrated intensity and a FWHM of the di�raction peak of nearly 6
arcseconds with respect to the �at crystals is observed as expected from theory
due to the curvature of di�racting planes.

In the case of weak bending (bL<1) as in the case of a bent crystal with a
radius of curvature R=54 m at E=17 keV the integrated re�ectivity Rint of the
di�racted pro�le of bent perfect crystals is proportional to 1/R following the
slope (Kalman and Weissmann, 1983; Erola et al., 1990)

67



5. Experimental results

Figure 5.1.3: Comparison between 004 Bragg di�raction pro�les measured on the
perfect (dashed line) and damaged side (solid line) of an Si crystal with a curvature
radius of 54 m.

Rint ∝ 1
R

(
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− µtγg −e−

µt
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)
µ
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1− γ0
γg

) (5.1.1)

where m is the linear attenuation coe�cient, γ0 and γg are the director
cosines of incident and di�racted beams with respect to the surface normal
directed inside the crystal, respectively. It is worth noting that for symmetrical
geometry γ0 = γg so that Rint is independent from curvature, as expected
from theory. The dependence of the experimental integrated re�ectivity as a
function of 1/R are reported in Fig. 5.1.5 Left and compared with the expected
dependence valid for weak curvatures, eq.5.1.1. Flat and bent crystals (R= 54
m and R = 29 m) are measured. In all the measurements performed, included
those in symmetrical Laue geometry, the integrated re�ectivity follows a linear
dependence with curvature but with larger values than the expected theoretical.

The 220 measurements on the same crystals are performed also al 59 keV at
Larix facility. Figure 5.1.5 Right shows the integrated re�ectivity as a function
of the radius of curvature in the case of Si samples (E=59 keV). Also in this
case the experimental values exceed the theoretical ones.

To better understand the trend of the di�raction e�ciency of bent crystals
in the region of weak and strong bending, a detailed study was realized at
beamline PDIFF in ANKA synchrotron facility. Five Si (100) samples are
measured (1 �at and 4 bent crystals with a radius of curvature from 54 m
to 2 m obtained with damaging technique) in 220 symmetrical geometry and
202, 111 asymmetrical geometry at 19 and 22.5 keV. Due to some technical
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5.1. Low energy

Figure 5.1.4: 202 di�raction and transmission (red solid curves) pro�les measured on
a 670 mm thick and bent (R=54 m) Si crystal with MoKa1 line. Theoretical pro�les
(dashed blue lines) calculated for a �at crystal on the basis of the dynamical theory
are added for comparison. The experimental and calculated integrated re�ectivity are
reported.

problems it was not possible to measure the incident beam intensity, so it is not
possible to compare the experimental values with theory but it is only possible
to observe the dependence of integrated intensity with radius of curvature. Fig.
5.1.6 reports the slope of the integrated intensity with 1/R. A good agreement
between the measurements (red dots) and the theoretical behavior (blue line)
is observed.

The tree di�erent bending regions are evident : in the �rst one the integrated
intensity increases linearly with the curvature corresponding to the weak bend-
ing region (bL<1) and achieving a maximum in region of strong curvature.
The region of strong curvature is the most interesting because for energies E
> 100keV a crystal with moderate bending R < 50 m can be considered as
strongly bent. Moreover for bent crystals with a radius of curvature above a
critical value, the integrated e�ciency is almost constant.

Thanks to this measurements it is possible to conclude that the damaging
bent crystals can be described as ideally bent.

The increase of the integrated intensity in the 220 geometry is also evident
in the measurements at 19 and 22.5 keV, con�rming the idea that this e�ect
does not depend on the experimental set up, but is an intrinsic phenomena of
surface damaged bent crystals.
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Figure 5.1.5: Left: Experimental integrated re�ectivity of a �at and two surface dam-
aged weakly bent Si crystals (R =29 and 55 m) measured at E= 17 keV in (202), (220)
and (111) geometry. Right: The values are reported as a function of crystal curvature
1/R compared to the linear increase given by formula 5.1.1 (blue lines) at E=59 KeV.

5.1.1 Preparation of thicker di�racting elements

The e�ciency of a Laue lens for X and g ray focusing is closely linked to
the di�raction e�ciency of the single crystals composing the lens. As already
discussed in Chap. 3, a fundamental parameter in order to increase the perfor-
mances of the lens, is the thickness of optical elements. In the surface damaging
process, due to the limited value of the strain and of the thickness of the dam-
aged zone obtained, the dimension h (see a schematic representation in Fig.
5.1.7) of the crystal plate cannot exceed few millimeters for radius of curvature
down to 50 m.

Figure 5.1.7: A schematic diagram of a bent crystal in the Laue di�raction geometry.
The damaged surface is the upper one, parallel to the CDPs and perpendicular to R.
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5.1. Low energy

Figure 5.1.6: Integrated intensity of �at and bent crystals (red dots) as a function of
curvature at 19 and 22 keV. Theoretical pro�les ( blue lines) calculated on the basis of
eq. 3.1.8 are added for comparison.

A possibility to overcome such limitations is stacking CDP crystals to ob-
tain thicker crystal elements. This method was already proposed for neutron
monochromators (Frey, 1974; Alianelli et al., 2004 and references therein), but
in this case the di�culty to achieve a good alignment among crystal elements
can induce a limitation in the performance of the monochromators. Indeed, a
little misalignment may cause di�erent Bragg conditions on the selected di�ract-
ing planes producing multiple di�raction peaks and a broadening of the image
in the focal plane of the Laue lens.

A �ne control of the value of the curvature, the stability of the curvature of
the tesserae under stress and the uniformity of the thickness h are mandatory.
To achieve an accurate lattice plane alignment, the stack was realized with
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crystals coming from the same wafer and having exactly the same orientation.
Moreover, it is extremely important to get a very uniform surface grinding,
since an error in the thickness h of only 1.5% over the entire area may induce
a misalignment of hundreds of arc seconds. A stack of two Si (001) CDP tiles
with dimension 28Ö8Ö0.5 mm3 and radius of curvature R = 2 m was realized.
The high curvature value is necessary to reach the strongly bent regime even
at the low X ray energies available for the characterization measurements. The
alignment of the elements was investigated with an incident beam 0.5 Ö 0.5mm2

of 19 keV at the PDIFF beamline of the ANKA Synchrotron Radiation Facility
(Karlsruhe, Germany) in two di�erent re�ections, (111) and (220), and di�erent
positions on the tile. Figure 5.1.8 shows a single and well-de�ned peak under
X ray di�raction, underlining that the plates are su�ciently aligned to behave
like a single crystal.

Figure 5.1.8: Left: Di�raction pro�les of a stack of curved (001) Si crystals measured
at 19 keV at the ANKA synchrotron for the 111 and 220 re�ections (black and red
lines, respectively). Right: The geometry of the di�raction experiment.

A similar result was obtained by (Neri et al., 2013) with indented Si crystals
but with lower curvature values; unfortunately in that case during the inden-
tation bending technique a large part of the crystal was removed, reducing the
hardness and the real thickness of the crystal. It is possible to conclude that
the surface damage bending technique is the most suitable to realize stacked
optical elements.
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5.2. High energy

5.2 High energy

A detailed study of the integrated intensity as a function of energy in the energy
range of interest (100ö 350 keV) was performed at ILL in the hard X ray facility.
Flat and bent Si (100) crystals with dimensions 10 × 10 × 0.75 mm3, realized
with damaging and resin deposition technique, are analyzed. The experimental
set-up is designed in order to focalize on the detector all the di�racted beam
coming from a �at perfect crystals (see Appendix C).

The integrated intensity is calculated by evaluation of the integral under the
di�raction pro�le obtained by the di�racted image. Due to some experimental
limitations it was not possible to measure the incident beam intensity, so the
Iint values are not absolute, but their tend is a signi�cant result. The study
of the trend of Iint as a function of energy for curved crystals obtained with
lapping technique, in symmetrical (220) and asymmetrical (111) geometry is
shown in Fig. 5.2.1 Up and Bottom respectively. Tree samples: 1 �at and 2
bent with radius of curvature 54 m and 29 m are measured. The unexpected
increase in di�raction e�ciency of bent crystals with respect to the �at one in
symmetrical geometry of more than 3 times is evident and underlined by the
green vector. This result is already observed in measurement performed at low
energy (previous sec.), con�rming again that this e�ect is not due to the set-up
but it is an intrinsic property of the samples. A gain in di�raction e�ciency
of about 12 time is calculated for bent crystals in asymmetrical 111 geometry,
verifying that in this geometry bent crystal are much more e�cient than �at
crystals due to the bending of di�racting planes, as expected from the theory.

It must be noted that the Iint decreases increasing the energy, as expected
from the eq. (3.1.4) where it is evident that Iint is proportional to λ3. Moreover
in 111 geometry, above a 200 keV bent crystals with di�erent curvature tend to
have the same value of e�ciency, and above 300 keV bent crystals tend to have
the same di�raction e�ciency of �at crystal. A similar behaviour was measured
in imperfect copper crystals measured at di�erent g rays energies [Authier and
Malgrange, 1998], Fig. 5.2.2.
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Figure 5.2.1: Trend of the integrated intensity as a function of energy in a �at and
two bent (R = 54 , 29 m) Si crystals, realized with the damaging technique. Up: the
symmetrical di�racting geometry 220; Bottom: the asymmetrical di�racting geometry
111.

Figure 5.2.2: Integrated intensities of di�raction pro�les for 5 copper crystals with X
ray wavelength from 0.01 to 3 Å (From [Authier and Malgrange, 1998]).
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This result can be understood considering the study of integrated re�ectivity
reported in Chap. 2. Indeed crystals with radius of curvature above the critical
radius Rcπ2 can be described as ideally mosaic crystal (par. 3.1.4) and the Iint is
reported in eq. (3.1.4). As Fig. (3.1.6) shows, for very high energies, the value
Rcπ2 becamse very big, so also nearly �at crystals or with very weak curvature
can be considered by the X and g ray as strongly bent, and they reach the value
of the Iint of ideal mosaic crystals.

To verify these considerations, the same study of integrated intensity as a
function of energy in the range (100 ö 350 keV) is performed in bent crystals
realized with resin deposition technique at symmetrical and asymmetrical ge-
ometry, Fig. 5.2.3 Up and Bottom. It is evident the same unexpected increase
of integrated intensity for bent crystals for the 220 re�ection and, at the same
time, also the expected increasing in the 111 re�ection is evident. The decrease
of the di�racted intensity increasing the energy occurs also in this case. Fi-
nally, it is possible to observe the same behavior of bent and �at crystal above
200 keV and 300 keV described before for the lapping curved crystals. Because
CDP crystals realized with resin deposition technique can be considered as ide-
ally curved crystals, and because the damaging bent crystals behave as resins
bent crystals, it is possible to conclude that also CDP damaged crystals behave
as ideally curved crystals.

5.3 Conclusion

Several GaAs and Si �at and CDP crystals realized with damaging technique
were measured in Laue geometry in symmetrical (220) and asymmetrical (202)
and (111) geometries at low energies of 17 and 59 keV. The di�racted and
transmitted X ray di�raction pro�les are also calculated, for comparison, on
the basis of the dynamical theory (Hirsch, 1952). An expected increase of
di�raction e�ciency in CDP crystals with respect to the �at ones is observed in
asymmetrical di�raction geometry. Also an increase of the integrated intensity
of curved crystals in symmetrical geometry is observed, not predicted by the
theory.

To better understand the trend of the di�raction e�ciency of CDP crystals
in the region of weakly and strongly bending, a detailed study was realized at
low energy (19 and 22 keV) at beamline PDIFF in ANKA synchrotron facility.
Five Si (100) samples �at and bent, obtained with lapping process with di�erent
radius of curvature, are analyzed in 220 symmetrical geometry and 202, 111
asymmetrical geometry. The experimental trend of Iint is in a good agreement
with that predicted by the theory, so it is possible to conclude that the damaging
bent crystals can be described as ideally bent. The increase of the integrated
intensity in the 220 geometry is evident also in these measurements, con�rming
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that this e�ect does not depend on the experimental set up, but is an intrinsic
property of surface damaged bent crystals.

A study of the integrated intensity as a function of the energy in the energy
range of interest (100 ö 350 keV) is performed at ILL in bent crystals realized
with damaging and resin deposition technique at symmetrical and asymmetrical
geometry. A gain in di�raction e�ciency of about 12 time is observed for bent
crystals in asymmetrical 111 geometry, con�rming that in this geometry bent
crystal are much more e�cient than �at crystals due to the bending of di�racting
planes, as expected from the theory. The value of the di�raction e�ciency of
curved crystals realized with both techniques tends to coincide with that for
�at crystals at very high energy (> 200 keV). These results suggest that at very
high energy, nearly �at crystals have a curvature larger than the critical value
and are seen by the radiation as strongly deformed.
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5.3. Conclusion

Figure 5.2.3: Trend of the integrated intensity as a function of energy in a �at and two
bent (R = 54 , 29 m) Si crystals, realized with the resin deposition technique. Up: the
symmetrical di�racting geometry 220; Bottom: the asymmetrical di�racting geometry
111.
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Chapter 6

LAUE Project

A relevant part of the thesis work was dedicated to The LAUE project, sup-
ported by the Italian Space Agency (ASI). The project is devoted to create a
technology to build a Laue lens with long focal length (f =20 m) able to focus
photons in the 70ö300 keV energy range. The lens is assumed to be made
of petals constituted by a large number of crystals tiles disposed in concentric
rings and properly oriented in order to di�ract an incident beam parallel to the
lens axis in the focal point of the lens. The lens is a spherical cup covered with
crystal tiles with di�racting planes perpendicular to the sphere (see Fig. 6.0.1
Right). The focal spot is on the symmetry axis at a distance f = R/2 from the
cup, with R the radius of the sphere.

A single petal is developed as a result of the LAUE project, as as Fig.
6.0.1Left reports. The tunnel with the working instruments and motorizations
are o�cially inaugurated in October 2014, demonstrating the possibility to re-
alize the whole Laue lens.

In Table 6.1, the properties of the lens petal prototype are reported. The
energy passband (70ö300 keV) is de�ned by the inner and outer radius of the
lens (Chap. 1).

Energy passband 80 ö 300 keV
Focal length 20 m
Petal inner/outer radius 20/80 cm
Petal dimension (lens diameter) 60 ö 150 cm
No of rings 18
No of crystals per petal 274
Crystal cross section 30× 10mm2

Weight of the petal (entire lens) 27.2 kg

Table 6.1: Main properties of the petal that is being built in the framework of the
Laue project.
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Figure 6.0.1: Left : sketch of a Laue lens made of crystals placed in concentric rings.
In the LAUE project, a petal as part of a whole lens will be built and test (blue part)
[Liccardo et al., 2014].. Right : geometry of a Laue lens (Frontera and von Ballmoos,
2010)

The optical focusing elements used to realize the petal prototype are bent
crystals. The focusing proprieties take advanges of the external curvature for
geometrical reason. Bent crystals have important advantages with respect to
�at and mosaic ones, as already explained in Chap.2. Moreover due to their
focusing e�ect the angular resolution can be 20 arcsec, signi�cantly increasing
the lens sensitivity with respect to that formed by �at crystals (Frontera et
al., 2012). Crystals are aligned under control of a g ray and then glued upon
the lens frame, that is �xed during the entire assembling process, while the g
ray source and a mechanical collimator are moved together along the Y and Z
axes to simulate a parallel beam. Each di�racting crystal is correctly translated
and oriented in order to focus the beam photons on the lens focal plane. This
method allows to minimize errors in the orientation of crystals and increases the
crystal assembling rate in the lens. I report in this chapter a detailed description
of the whole facility in particular the results of the focusing e�ect from the
(220) di�racting planes of GaAs curved crystals with lapping technique. The
experimental results are compared with the Monte Carlo simulations, realized
by the group of research of LARIX facility. These results are also reported in
[Virgilli et al., 2015]

6.1 Crystal selection

The lens petal will be constituted by bent crystals with a radius of curvature
of 40± 2 m. In order to e�ciently di�ract the whole energy range, Germanium
(111), and Gallium Arsenide (220) were selected and conveniently disposed on
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the petal as Fig. . 6.1.1 Left shows; the main characteristics of tiles are reported
in tab. A.2. The GaAs crystals are provided by CNR/IMEM, and Ge by the
Sensor and Semiconductor Laboratory of the University of Ferrara, Fug. 6.1.1
Right.

Figure 6.1.1: Left : Scheme of the positions of crystals on the lens. The upper part
of the petal (blue and red portion) will be �lled with Ge (111) while the bottom part
will be �lled with GaAs (220). Right : Two tiles of Ge and GaAs in correspondence of
their sector are represented; the two di�erent methods of curvature are evident.

The GaAs (220) crystals are bent by lapping process in which the exact
curvature can be obtained selecting the lapping exposure time and the grain of
sandpaper as described in Chap. 4. The curvature of the Ge (111) are obtained
by grooving the crystal surface (Bellucci et al., 2011; Guidi et al., 2013) in
which the curvature is obtained by �nely tuning the parameters of the process
like the grooves number, width, depth and the speed of the process. Thanks to
the focusing capability of each single tile, it was possible to choose the crystal
cross section to be 30 × 10 × 2 mm2, with the longer size radially placed. The
big radial dimension reduces the total number of crystals requested, minimizing
the errors due to the misalignment of crystals during the assembling phase.
The 2 mm of thickness is chosen because it is a good compromise between high
di�raction e�ciency and the current limitations in the thickness imposed by
the bending technologies. The main characteristics of tiles are reported in tab.
6.2.

The entire set of tiles used for the experiment is provided by two partners
of the project: GaAs by our group at CNR/IMEM, and Ge by the Sensor and
Semiconductor Laboratory of the University of Ferrara.
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GaAs (220) Ge (111)
Radius of curvature 40 m 40 m
Energy range 148 ö 304 keV 90 ö 267 keV
No. of rings 14 18
Radius min ö max 40.66 ö 83.47 cm 28.40 ö 83.47 cm
No. of crystals tiles 119 155
crystals dimension 30× 10× 2mm2 30× 10× 2mm2

Table 6.2: Main characteristic of curved crystals employed in Laue project

6.2 The Larix facilities

The entire apparatus for both assembling and testing the lens is installed in
the LArge Italian X ray laboratory (LARIX) located at the Physics and Earth
Science Department of the University of Ferrara. The laboratories include an
experimental room (LARIX A) with a 12 m long facility and a 100 m long
tunnel. The test of crystals for the LAUE project has been performed in LARIX
A facility shown in 6.2.1. By means of a motorized crystal holder, it is possible to
translate the crystal samples along 2 directions perpendicular to the beam and
rotate them around three orthogonal axes. The X ray beam coming from the W-
tube crosses two collimators distant each other 580 cm and with adjustable size.
The direct and re�ected beams are analyzed by means of two detectors, an X
ray imager with spatial resolution of 300 mm, and a cooled HPGe spectrometer
with a 800 eV spectral resolution at 100 keV; both can be moved back and forth
along the beam axis.

Figure 6.2.1: Sketch (not to scale) of the LARIX A con�guration. (Lo�redo et al.,
2005)
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The lens assembly apparatus is installed in the 100 m long tunnel. It allows
to obtain a small divergence of the beam impinging on each crystal and to build
Laue lenses with long focal length. In Figure6.2.2a sketch of the tunnel and the
relative distances between the installed sub-systems is shown.

Figure 6.2.2: Scheme of the 100 m tunnel. The relative distances between the elements
are reported.

The complete apparatus mounted in the LARIX facility consists of the fol-
lowing elements, that will be described in detail:

� Pipeline with vacuum environment;

� Clean room with thermal and humidity control;

� Adjustable mechanical slit;

� Hexapod positioning device and crystal holder;

� Petal frame;

� Focal plane detectors;

� Translation and rotation systems for the motion of each subsystem (source,
collimator slit, crystals);

� Rail for translating the focal plane detectors along the lens axis;

� Hardware and software needed for the remote control (Ground Support
Equipment, GSE).

The tunnel of the LARIX facility is equipped with a traditional W tube (pro-
vided by Bosello Technology) with a �ne focus of 0.3 × 0.4mm2, a maximum
voltage of 320 kV, and a maximum power of 1800 W (Fig. 6.2.3 Left). A 20 mm
thick Tungsten shield with a 3 mm diameter hole has been installed in front of
the aperture of the X ray tube. To reduce the background at the lens focus,
a further collimation is obtained with a drilled (1 mm diameter) 50 mm thick
lead collimator. Source and collimators move together on the plane Y-Z (X is
the beam axis). After, the collimated beam pass through a 21 m long beam-
line under vacuum to avoid absorption and scattering from air of the generated
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beam. The beamline is made of 7 modules constituted by a tube of stainless
steel 3 m long, Fig. 6.2.3 Right. The vacuum environment is guaranteed by
three vacuum pumps that keep stable the pressure below 1 mbar. The X ray
entrance and exit windows of the beamline are made of carbon �ber 3 mm thick
which guarantee a g/ray transparency > 90% at 100 keV.

Figure 6.2.3: Left: The X ray source used for assembling and testing the lens petal.
Right: The 21 m beam line in which is carried out the vacuum for avoiding absorption
and scattering.

After the beam-line the beam impinges on a slit with variable aperture.
It moves together with the X ray generator along the Y-Z axes to arti�cially
reproduce a source coming from the in�nity. The collimator is equipped with
motors that can translate it in the X-Y plane and it is provided with three
motors to rotate the slit around the X, Y and Z axes. It is constituted by a lead
panel with 200 × 200mm2 cross section and 50 mm thick. In the center of the
panel there is a 30× 30mm2 motorized slit with variable aperture obtained by
means of four 20 mm thick blades made of Tungsten Carbide, Fig. 6.2.4 Left.
The orientation and the positioning of each crystal on the carbon �ber petal
frame is performed with a mechanical micro adjusters 6-axis hexapod system
controlled by software. The rotation around X, Y and Z axes are possible with
an error of 1 arcsecond. The crystal tile holder has been developed in order
to strongly hold the tile without introduce deformations on crystals and to
leave free the surfaces of the crystal, where the incident beam arrives and the
di�racted beam is produced (Fig.6.2.5 Right).

The lens petal frame is realized with a superposition of 10 layers of carbon
�ber, for a total thickness of 2.3 mm, in order to reduce the absorption of X
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Figure 6.2.4: Left: Collimator and carriage. Right : the hexapod system that is used
to tilt and place each crystal in the proper position.

rays. It has little holes in correspondence of the positions of the crystals where
the resin is injected for �xing the crystals to the frame (Fig. 6.2.5).

The glue used for �xing the tiles must have a fast curing time and a shrink-
age as low as possible, to minimize the building time and maximize the gluing
accuracy, which is the most critical part. The elements that in�uence the gluing
process are various. The temperature and the humidity of the building environ-
ment play a crucial role in the stability of the crystal/adhesive/support system.
For this reason the petal frame is positioned inside a clean room with humidity
and temperature stability control was set up (20 ± 1°, relative humidity f = 50
± 5%). The di�racted beam coming from each crystal is measured by means of
two focal plane detectors: an imager �at panel and a cooled HPGe spectrometer
(see Fig. 6.2.6). They are placed on a carriage at the focal distance of 20 m
from the petal frame and they can move along the lens axis by means of a 15
m long rail.

The imager allows to detect the space distribution of the photons di�racted
by each crystal which is irradiated by the incident beam. It is based on a CsI
scintillator (0.8 mm thick) that converts the X and g rays into optical light that
is afterwards converted into an electric signal from an array of photodiodes.
It has a spatial resolution of 200 mm with an active area of 28.48 × 28.48cm2.
By means of an IDL code the Y and Z coordinates of the di�racted beam
are converted into two rotation angles in order to properly shift the di�racted
image over the reference pixel in the center of the detector. The cooled HPGe
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Figure 6.2.5: Left : The holder system. Right : The petal frame used as a support for
the Laue lens. In the small box is visible a small portion of the petal with the holes
used to inject the glue from the back side.

spectrometer provides the spectrum of the di�racted photons. The spectrometer
allows to establish the well-de�ned di�racted energy by each crystal , and so to
determine the correct positioning of them on the lens.

The entire subset of carriages can be remotely controlled from the control
room. For the control of each sub-system a proper LabVIEW code has been
developed (Virgilli et al., 2013). The front-end of the remote management suite
is shown in Fig. 6.2.7 Left. During the assembling procedure as well as in the
testing phase a selection of the generic light indicators (indicating the crystal
to be placed at the corresponding lens position) make the X ray beam (source
and collimator slit) and hexapod/crystal holder automatically moving to the
desired position. The control of the hexapod is instead not implemented in
the LabVIEW code but is obtained exploiting a dedicated software (Fig. 6.2.7
Right).

6.2.1 Alignment of the facility

Much time was spent to correctly align all the components of LAUE appa-
ratus in the tunnel. The petal frame has been placed perpendicularly to the
direct beam (X-axis direction) and within the beamline cross section (in the
Y-Z plane). The detectors were placed along the X-axis at 20 m from the petal
frame. The structure holding the detectors was designed in order to get both
direct and di�racted beams by a translation along Y axis. The alignment was
done by means of a laser that emits a horizontal light beam and it is set be-
tween the pipeline and the motorized collimator slit. The beam is re�ected by
a mirror placed at 45° and sent to a beam-splitter which splits it along opposite
directions: one towards the hexapod crystal holder, positioned in a reference po-
sition, through the collimator slit and the other toward the g ray source through
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Figure 6.2.6: The two detectors used in the LAUE project: the �at panel detector is
positioned below the HPGe detector.

the pipeline (see Fig. 6.2.8 Left). Mirrors placed over the source and the crystal
holder re�ect back the two beams. Their superposition in the laser output en-
sures the correct zero-position for source, collimator, hexapod holding aperture,
and the petal reference position. The optical alignment guarantees an excellent
precision in positioning the center of the g ray imager in correspondence of the
lens focus.

The g ray alignment performs a �ne tuning of the previous alignment pro-
cess. It has been performed using two Tungsten crosses (wire diameter of 200
m) that are placed respectively on the center of the crystal holder, and on the
center of the slit. The crystal holder with the tungsten cross was placed in cor-
respondence of the frame hole from which the resin is injected to �x the crystal
to the frame.

The right orientation of each crystal on the frame is achieved when the beam
di�racted by the crystal has a peak energy corresponding to the energy expected
for the selected hole. A Ge (111) tile was �rst tested. Its orientation was that
expected for the hole #24 with nominal centroid energy of 96.14 keV. Fig.
6.2.9 Left shows the spectrum of the incident beam. When the spectrometer is
translated to the lens focus, the di�racted spectrum occurs, Fig. 6.2.9 Right.
Similarly, for the GaAs (220) tile placed in the contiguous hole, the spectrum
of the di�racted beam is shown in Fig. 6.2.10 Left. A systematic monitoring of
the di�racted beam was performed during the gluing procedure. The spectrum
was acquired every 15 minutes after the adhesive injection. Figure 6.2.10 Right
shows that the e�ect of the glue polymerization does not produce any signi�cant
deviation of the centroid energy with respect to the nominal energy expected
for the GaAs (220) placed in the hole#25.
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Figure 6.2.7: Left : Front-end of the LabVIEW management software for the remote
control of each carriage. Right: the dedicated software for the hexapod control.

After the glue polymerization, the holder removal is the most critical phase.
With the GaAs (220) the centroid energy changed by less than 1 keV, corre-
sponding to less that 20 arcsec. Figure 6.2.11 shows the measured spectra before
and after the holding removal. The e�ect is mainly related to the angular tilt
between the petal frame and the glued crystal plane. The tilt produces an asym-
metric glue distribution over the crystal, giving origin to the observed energy
change. The same e�ect was also observed during the preliminary resin tests
in which the orientation of 20 tiles of 30× 10 mm2cross section was monitored
during their polymerization phase. A systematic deviation of 20-30 arcseconds
was found; this systematic error is taken into account during the assembling
phase.

6.3 Focusing e�ect

When X rays from an in�nitely far source impinge over a perfect crystal, the
di�racted image has the same size of the crystal cross section. In the case of
a mosaic crystals, the mosaic spread results in a defocusing e�ect, so the size
of the di�racted image is the convolution between the crystal size itself and
the mosaicity. On the other hand the spot dimension of the di�racted beam is
strongly reduced by a proper curvature of the crystal in the x direction causing
a focusing e�ect, even if the mosaic defocusing is still present, Fig. 6.3.1. For a
bent crystal the spatial distribution of the photons on the focal plane along the
x direction is smaller than the crystal length. No focusing e�ect is expected in
the other direction.

The GaAs (220) bent crystals realized with lapping process have been char-
acterized in terms of focusing e�ect. The curvature radius of R = 40 ± 1.5
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6.3. Focusing e�ect

Figure 6.2.8: Left : The laser adopted to ensure the optical alignment. Right : The
radiography of the entire apparatus once the collimator has been shifted out of the X
ray beam. Part of the petal, the holder and a dummy crystal with the tungsten cross
are visible.

m was estimated with the method already described in sec. (4.1). To test
the focusing e�ect, the beam size on the crystals was set to 20 × 10mm2, the
longer size in the x coordinate, in order to better demonstrate the focusing ef-
fect along that direction. The image of the di�racted signal was studied with
a total exposure time of 510 seconds. The detector was progressively set at the
distance of 8.5, 9.5, 10.5, 11.5, 12.5, 13.5 m from the petal frame. The results
are shown in Fig. 6.3.2, where it is evident that the di�erent distance between
crystal and detector results in a changing of both image shape and dimensions.
The analysis of the x pro�le for each image of the di�racted beam acquired at
di�erent distances are also shown. The GaAs crystal mosaicity can be satis-
factory described with a Gaussian function, plus a constant that represents the
background counts which have not been subtracted. The function adequately
�ts the data, mainly at distances close to the distance 11.40 m, while the �t
becomes poor far from the nominal position (e.g. at 8.5 m or 13.5 m). This
discordance between �t and data is caused by a not uniform curvature of the
speci�c sample along its x axis, which is emphasized particularly out of focus.
The FWHM as a function of the distance between the crystal and the detector
is show in Fig. 6.3.3

It is important to note that the focusing e�ect occurs at 11.40 m instead of
20 m. Indeed a parallel beam coming from a source placed to in�nite is focalized
at a distance f=R/2 from the lens. In the case of a source positioned at a �nite
distance, as in the case of laboratory, the focal point position changes.

Let's consider a di�racting plane, reported in green in Fig. 6.3.4 , placed at
distance x from the axis of the lens and perpendicular to the curved plane of
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6. LAUE Project

Figure 6.2.9: Spectrum of the beam through a Ge (111) tile, when it is oriented for
di�raction. Left : transmitted spectrum. Right : di�racted spectrum. Exposure time
= 300 sec.

Figure 6.2.10: Left : Spectrum of the di�racted photons from the GaAs (220) tile placed
in the cell #25. The nominal energy for its position is 157.10 keV. Exposure time = 300
sec. Right : After the injection of the adhesive, the GaAs (220) has been systematically
monitored during the 80 minutes of the polymerization phase. No signi�cant deviation
with respect to the nominal energy was observed.

the lens.
The angle di�racting b with respect to the parallel beam is β = x

2F = x
R .

If the source S is placed at a distance s from the lens, the angle that the beam
coming from S and incident on the di�racting plane considered creates with the
direction parallel to the axis lens is x/s. The di�racting angle g will be

γ =
x

S
+ β =

x

S
+
x

R
(6.3.1)

The angle a between the di�racted beam and the lens axis is α = x
S′ , so

α = β + γ =
x

S
+ 2β =

x

S
+
x

F
. (6.3.2)

It is possible to obtain the following equation:
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6.3. Focusing e�ect

1

S′
=

1

S
+

1

F
(6.3.3)

That is in agreement with that obtained in (Halloin and Bastie, 2005) In
particular in the Larix facility F = 20 m and s ~ 26 m, so the new focal point
is at F' ~ 11.3 m. To validate the results obtained, Monte Carlo simulations
are realized by the Larix team. All the simulations are made with the LLL
(Laue Lens Library) software developed by the Laue project team. The code is
developed for a complete description of Laue lenses made of mosaic or perfect
crystals, with �at or bent structure, for a source of radiation placed at either
a �nite distance or in�nitely far from the target. The software is based on a
ray tracer that takes into account the di�raction law, the absorption caused
by crystals of di�erent materials and by the lens frame and allows the spatial
distribution of the photons at a given distance from the crystal after the X
ray di�raction to be determined. Di�erent geometries of the lens have been
implemented depending on the particular case of interest. Single crystals, rings
of crystals, sectors (petals) or entire lenses made of tiles set in concentric rings
or in spiral con�guration can be simulated. A dedicated library also assumes
an ideal focal plane X ray imager detector (whose size can be adapted to the
particular application) with spectral capability. The detector can be set at
an arbitrary distance from the Laue lens. The libraries �les are invoked by a
main python application that requires a number of input parameters (crystal
tiles properties and dimensions, lens focal length, the crystal packaging factor,
the lens energy passband) providing the physical con�guration of the simulated
lens (total weight of the lens, spatial dimensions, total geometric area) and its
scienti�c features (output energy pass-band, photon distribution on the focal
plane, e�ective area, sensitivity). I report here the simulation performed and
reported in (Virgilli et al., 2015) in order to study the focusing e�ect in a
curved GaAs (220) crystals, for a source placed at a �nite distance 26.4 m.
Fig. 6.3.5 reports the simulated di�racting images calculated with a beam size
of 20 × 10 mm2 for the detector place at di�erent distance 8.5, 9.5, 10.5, 11.5,
12.5, 13.5 m from the petal (Virgilli et al., 2015). In Fig. 6.3.6 the x pro�les
of the images acquired at di�erent distances with the red line representing is
the best �t function are also shown . A satisfactory function is represented by
a convolution between a Gaussian pro�le with a �xed value of FWHM and a
rectangular function with variable width. Within this explanation, the width
of the Gaussian function represents the angular spread which is constant along
the entire crystal length. In the experimental case the mosaicity of the sample
was of ~15 arc seconds.

In Tab. 1 the best �t values of the measured FWHM are reported and
compared with those obtained from the Monte Carlo calculations.

Along the x direction, where the focusing e�ect is expected, we found a
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Experimental data Monte Carlo
Crystal-detector distance FWHM FWHM

(m) (x dimension mm) (x dimension mm)
8.5 4.95± 0.21 4.45± 0.07

9.5 3.11± 0.25 3.30± 0.07

10.5 1.85± 0.23 2.25± 0.07

11.5 1.37± 0.29 1.35± 0.07

12.5 2.29± 0.24 2.11± 0.08

13.5 3.12± 0.24 3.26± 0.07

14.5 4.63± 0.21 4.75± 0.07

Table 6.3: Table 1: Comparison between the fwhm of the x and the y pro�les for the
acquired di�racted images, with the Monte Carlo simulations, at di�erent distances
between crystal and detector (Rc = 40 m curvature radius). The FWHM of the
rectangular function is taken at half of the peak value of the curve.

good agreement between experimental and Monte Carlo results. Along the y
coordinate, no focusing e�ect is expected and the di�racted beam su�ers a
lengthening which is mainly due to the divergence of the beam.

6.4 Conclusion

In this chapter, a real focusing e�ect from a bent crystal of GaAs (220) realized
with damaging technique has been shown and discussed. For the Laue project
a big number of tiles made of GaAs (220) and Ge (111) are being mounted on
a lens petal frame, in order to build for the �rst time a Laue lens petal capable
of operating over a broad energy band ( 90ö300 keV). A systematic analysis
of the di�racted pro�les has been presented, using a Monte Carlo ray tracer
with a set of tools capable of describing the focusing e�ect for both a parallel
beam and a diverging beam. A detailed study of the behavior in the case of a
�nite distance between the radiation source and the crystals is done. The good
agreement found between experimental tests and Monte Carlo results give us
the con�dence needed about the correctness of the Monte Carlo calculations
also for the case of a parallel beam from an astrophysical source, that is the
�nal goal of the Laue project.
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6.4. Conclusion

Figure 6.2.11: Di�racted spectra of the GaAs (220)before and after the mechanical
release of the holder. The di�erence is visible in terms of energy deviation from the
nominal position. After the holding removal the energy deviation was within 1 keV,
corresponding to 20 arcseconds. The e�ect is known and mainly due to a not uniform
glue distribution between the crystal and the carbon �ber support, given the angular
tilt applied to the crystal. This e�ect can be taken into account during the assembling
phase.

Figure 6.3.1: sketch of a bent GaAs crystal and the principles of the di�raction from
the (220) planes. The crystal dimensions and the di�raction planes are also indicated.
The curvature radius of 40 meters is also indicated and overstated for sake of clarity.
The dimensions of the X ray beam are also drawn over the crystal cross section. Right:

picture of a bent GaAs mosaic crystal tile used for the experimental run.
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Figure 6.3.2: Di�racted beams measured at di�erent distances crystal/detector, from
the top. To the bottom right 8.5, 9.5, 10.5, 11.5, 12.5, 13.5 m, respectively.
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6.4. Conclusion

Figure 6.3.3: Fig. Plot of the FWHM of the x pro�le of the di�racted image as function
of the distance between crystal and detector, for a GaAs (220) crystal with 39.9 ± 1.5
m curvature radius and �xed distance source-target of 26.40 m.

Figure 6.3.4: Sketch of a source S placed at a �nite distance s from the lens.
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6. LAUE Project

Figure 6.3.5: Simulation of the di�racted image generated by a GaAs bent crystal with
a beam size of 20 × 10 mm2, observed at 8.5, 9.5, 10.5, 11.5, 12.5, 13.5 m from the
crystal (respectively from the left top to the right bottom).
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6.4. Conclusion

Figure 6.3.6: X-pro�le of the di�racted image generated by a GaAs bent crystal with
a beam size of 20× 10 mm2 cross section observed at 8.5, 9.5, 10.5, 11.5, 12.5, 13.5 m
from the crystal (respectively from the left top to the right bottom).
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Conclusions

The focusing of X and g rays can be obtained by a Laue lens made of properly
oriented crystals. The e�ciency in focusing of the lens is closely related to the
di�raction e�ciency of the single crystals composing the lens. In this thesis
crystals to be used for focusing X and g ray in the energy range 60 ö 600 keV
have been studied.

An e�cient focusing system is crucial for applications like medical imaging
and X ray astronomy where wide beams must be focused.

In previous studies mosaic crystals with a high electronic density, such as
Cu or Au, were considered for the realization of the lens, owing to their high
di�raction e�ciency. In this work I studied the di�raction e�ciency of Si, Ge
and GaAs curved crystals on the basis of the theory of X ray di�raction.

It is found that in crystals with curved di�racting planes (CDP) having radii
of curvature of several tens of meters for X ray energies between 60 and 600
keV a simpli�ed approach can be applied for calculating the integrated X ray
re�ectivity of the crystals, considered as a measure of the di�raction e�ciency.
Under this approximation, the maximum value of the integrated re�ectivity is
given by a crystal thickness tmax = 1/µ , as in the case of ideal mosaic crystals.
Then it is found that Si, Ge and GaAs crystals with optimized thicknesses
show a comparable or superior di�raction e�ciency with respect to the heavier
materials previously proposed.

The bending technique mainly used during this work consists in a surface
treatment with sandpapers of di�erent grain sizes. This process introduces de-
fects in a super�cial layer that induces the convex bending of the whole crystals.
The strain introduced by the surface treatment are reproducible, uniform and
depend mainly on the type of used paper, i.e. larger grains introduce a larger
stress and a lower curvature radius.

Another new bending technique is developed and the main results are shown.
The process consists on a �lm deposition of a selected bi-component epoxy
resin on one side of crystal, made uniform in thickness by mean of a spin-
coater. During the polymerization, the resin induces a tensile strain that causes
the bending of the substrate, with concave curvature on the side of the resin
deposition. Choosing the speed of spin-coating, so changing the thickness of the
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�lm, a control of radius of curvature can be obtained. Moreover the possibility
to combine the two bending techniques to obtain CDP crystals with a stronger
curvature in rather thick crystals was demonstrated.

In order to verify the results of the theory on the crystal di�raction e�ciency,
detailed characterizations at low and high X ray energies were performed on �at
and bent crystals obtained with the damaging and the resin deposition tech-
nique. GaAs and Si �at and curved crystals realized with damaging technique
were measured in Laue geometry in several geometries at X ray energies of 17,
19, 22.5 and 59 keV. As expected an increase of di�raction e�ciency in asym-
metrical di�raction geometry in CDP crystals with respect to the �at ones is
observed. On the other hand, an unexpected increase of the integrated inten-
sity in symmetrical geometry, not predicted by the theory, is observed in all
the measurements performed with di�erent set up. The experimental trend of
the integrated re�ectivity as a function of the radius of curvature is in good
agreement with the prediction of the theory for bent perfect crystals, so it is
possible to conclude that the surface damage has a limited e�ect on the crystal
re�ectivity.

A study of the integrated re�ectivity in the energy range of interest (100
ö 350 keV) was performed at the Institute Laue Langevin in CDP crystals
realized with damaging and resin deposition techniques, both at symmetrical
and asymmetrical geometries. Also at these energies the di�raction e�ciency of
bent crystals was much larger (a 12 time increase is observed for bent crystals in
asymmetrical 111 geometry) than that measured in �at crystals. The di�raction
e�ciency of CDP crystals realized with both techniques tends to coincide with
that of �at crystals at very high energies (> 200 keV). This suggests that also
real �at perfect crystals can be considered as strongly bent or mosaic crystals
at very high X ray energies.

In conclusion we found that crystals of relatively light elements, such as
Silicon, Germanium and Gallium Arsenide, properly bent by using one of the
two methods proposed in this thesis, are completely suitable to realize a lens
for focusing wide X and g rays beams, with applications in the �eld of X ray
astronomy and nuclear medicine.
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Appendix A

Calculation of the inner lattice

plane bending in bent crystals

We assume that the crystals has a thickness t and a spherical curvature of radius
R given by an applied external stress, such as in the case of surface treated
crystals. We want to calculate the variation of the Bragg angle condition of
a X ray beam crossing the crystal in the condition of Laue di�raction for a
lattice plane with inclination φ with respect to the normal to the surface (see
Fig. A.0.1). The angle φ is positive when is clockwise positioned with respect
to the normal to the surface; the angle θB is positive when the incident beam
is clockwise rotated with respect to the lattice plane.

Figure A.0.1: Bent crystal with trace of the lattice plane; φ is positive with respect to
the surface normal.

Due to the e�ect of tensile strain introduced by the damaged layer every
part of the lamella undergoes a biaxial tensile strain along the crystal surface,
varying with crystal depth: in the case of Fig. A.0.1 the strain will be tensile
at the upper crystal surface and compressive at the lower crystal surface. The
line in the middle of the lamella is at zero strain.

In the case of cubic lattices the relationship between stress sv and strain e is
given by (Ferrari et al., 2013):
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A. Calculation of the inner lattice plane bending in bent crystals


σxx = c11εxx + c12εyy + c12εzz
σyy = c12εxx + c11εyy + c12εzz
σzz = c12εxx + c12εyy + c11εzz

σij = c44εij i 6= j

(A.0.1)

For the sake of simplicity we now consider the case of cubic crystals having
a (001) orientation of the surface, coincident with our z direction. For such
biaxial strain σxx = 0, σxx = σyy, σij 6= 0 for i 6= j, so the strain components
can be written as:

εzz = −2
c12

c11
εyy (A.0.2)

that can be written also as:

ε⊥ = −2
c12

c11
ε� (A.0.3)

Assuming a as the lattice parameter of the crystal considered, due to the
strain the local values of the lattice parameters a⊥and a�, will di�er from the
value a of the unstrained material. Locally there will be a perpendicular ε⊥and
a parallel ε�strain of opposite sign, related to the local lattice parameters a⊥and
a�by (Fig. A.0.2):

ε⊥ = a⊥−a
a = ∆a⊥

a

ε� =
a�−a
a =

∆a�
a

(A.0.4)

Due to the deformation generated by the biaxial strain there are two e�ects
that cause the shift of the Bragg condition:

1. the e�ect associated to the change in the lattice parameter;

2. the e�ect associated to the change in the tilt of the re�ecting plane.

The �rst e�ect can be calculated from the formula (Ferrari et al., 2013
modi�ed modifying φ in 90° −φ):

∆θB = − tan θB·
(

∆a⊥
a

sin2 φ+
∆a�

a
cos2 φ

)
= − tan θB·

(
ε⊥ sin2 φ+ ε� cos2 φ

)
(A.0.5)

so the �rst contribution becomes:

∆θB = − tan θB · ε�
(

cos2 φ− 2
c12

c11
sin2 φ

)
(A.0.6)

The lattice rotation is expressed by the formula :
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Figure A.0.2: e�ect of the lattice deformation on the rotation ∆φ of the lattice planes.

∆φ = −sin 2φ

2

(
∆a⊥
a
−

∆a�

a

)
=

sin 2φ

2
· ε�

(
1 + 2

c12

c11

)
(A.0.7)

Another contribution comes from the crystal deformation itself. When the
incident beam crosses the crystal, the angle of incidence at an inclination φ+θB
with respect to the surface normal, the angle of incidence on the di�racting plane
at a depth x with respect to the crystal surface is rotated by an amount given
by (Fig. A.0.3) :

∆α = − x
R
· tan (φ+ θB) (A.0.8)

Figure A.0.3: Bragg di�raction with positive φ and θB .
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A. Calculation of the inner lattice plane bending in bent crystals

Finally we observe that due to the lattice deformation associated to the
spherical curvature (Fig. A.0.1) with biaxial strain we have ε� = − x

R .
Now, adding all the tree contributions ∆θB, ∆φ and ∆α, the variation of

the bragg condition along lattice plane ∆θ(x) is (Ferrari et al., 2013):

∆θ(x) =
x

R

[
− tan (φ+ θB)− sin 2φ

2
· c11 + 2c12

c11
+ tan θB

(
cos2 φ− 2c12

c11
sin2 φ

)]
(A.0.9)

We observe that according to the previous formula for symmetric Laue
di�raction φ = 0 and ∆θ(x) = 0, that is no broadening of Laue di�raction
peak or increase of the peak integrated intensity should be observed for bent
crystals. This is con�rmed in elastically bent silicon crystals.
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Appendix B

Origin of strain in surface

damaged bent crystals

B.1 Line tension characterization

In Chap. 4 a method to produce curved crystals based on a controlled damage
of the crystal surface [5,6] is described. Curvatures of several metres, deter-
mined by means of high resolution X ray di�raction, were obtained in Si and
GaAs crystals up to 2 mm in thickness. The crystal bending is induced by a
compressive strained layer of few micrometers in thickness due to the surface
damage, but the physical mechanism at the origin of this compressive strain is
still unclear. Scratches, inclusions, and dislocations due to the sandpaper treat-
ment introduce defects in a super�cial layer of the sample causing an expansion
of the crystal lattice. This results in a wafer bending with convex curvature
on the side of the damaged surface. We can consider the damaged super�cial
layer at the same way as a thin �lm deposited on a substrate: the stress in
the �lm induces a curvature of the substrate that can be described by means
of the Stoney formula (Stoney, 1909). This equation can be applied when the
�lm is thin compared to the substrate and the stress is in-plane. For an elastic
isotropic substrate the Stoney formula is:

σf tf =
Est

2
s

6 (1− νs)R
(B.1.1)

where σf is the in-plane stress component in the �lm, tf is the �lm thickness,
Es and νs are the Young's modulus and the Poisson's ratio for the substrate,
respectively, ts is the substrate thickness, and R is the curvature radius. In
the case of an elastically anisotropic substrate, as GaAs, the formula in B.1.1
cannot be used. For a (001) substrate the correct formula is:
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σf tf =
t2s

6 (s11 − s12)R
(B.1.2)

where s11 and s12 are elements of the compliance tensor of the substrate
([Janssen et al., 2009]). The factor 1/(s11−s12) is called the biaxial modulusM001

of the material. In both cases, depending on several features (as substrate shape
and intensity of the force per unit width) the predicted deformation of the wafer
can be axially symmetric, ellipsoidal, or cylindrical (Janssen et al., 2009; Finot
et al., 1997; Fahline et al., 1991).

In the present case our system made of a thin �lm and a substrate is made of
the same material and equation B.1.2 can be simpli�ed and made independent
of the elastic constants of the particular material; it becomes:

f · t =
T 3

6R(T − t)
≈ T 2

6R
(B.1.3)

In which f is the layer strain, t is the layer thickness, T is the substrate
thickness and R is the curvature radius. To study the e�ect of super�cial
damaging a GaAs crystal was divided in �ve pieces, each one underwent a
super�cial treatment with the same sandpaper P1200 but di�erent time long.
Figure B.1.1, panel A shows the x curvature radius Rx dependence on the
squared residual thickness. Since grain dimension of the P1200 sandpaper is
only 14 mm, we can approximate the sample residual thickness as the substrate
thickness T of the Stoney formula B.1.3. Since we observe a linear dependence
with the squared thickness we conclude that the line tension of the super�cial
layer is almost constant in the di�erent samples and does not depend on the
treatment time. Figure B.1.1, panel B displays the resulting σf tf as a function
of the treatment duration: as already observed the term σf remains almost
constant in the time range between 30 sec up to 5 min. Times shorter than 30
sec are not investigable due to the non-uniformity of the super�cial damaging
for so brief intervals. Similar results were obtained for the y direction. Thus,
the line tension does not change at least after a 30 sec long treatment. On the
other hand, the curvature radius changes: this is simply due to the substrate
thickness reduction.

Another series of GaAs were treated for 1 min with di�erent sandpapers
(from P180 to P4000), corresponding to di�erent grain dimensions. The GaAs
piece, damaged for 1 min with P1200, was also considered in this analysis.
Figure B.1.2 shows the line tension of the super�cial layer, as derived according
with equations B.1.2 and B.1.3, and the x curvature radius (inset) as a function
of the grain dimension. At variance with the time dependence, the line tension
trend is now not constant. The analyses above suggest the possibility to achieve
a desired curvature radius by means of a careful combination of crystal thickness
and surface damage characteristics.
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Figure B.1.1: GaAs WT3 pieces undergone to super�cial treatment with sandpaper
P1200 but di�erent time long. Panel A: x curvature radii as a function of the squared
thickness. Panel B: line tension of the super�cial layer as a function of the treatment
duration. The straight lines and the equations above come out from linear �ttings.

B.2 Model of strain formation in surface treated crys-

tals

In order to understand the physical mechanism at the origin of the compressive
strain that causes the bending of crystals in surface damaged treatment, we
performed a Transmission Electron Microscopy characterization in cross section
mode of several GaAs samples (100) oriented. A GaAs, treated with sandpaper
P400 for 10 minutes, with a radius of curvature R = 2.8 m is analyzed by High
Angle Annular Dark Field (HAADF) mode and in scanning mode (STEM), Fig.
B.2.1: higher contrast correspond to heavier elements in the sample.

TEM images in Fig. B.2.1 show a dense dislocation network with dislocation
lines inclined at 57° with respect to the sample (001) surface. The sample
orientation and the dislocation line angle demonstrate that the dislocations glide
along on (111) type planes perpendicular to the image plane; the dislocation
penetrates up to several mm in the substrate. In face centered cubic crystals,
such as GaAs, Ge, Si, an easy glide systems is based on the glide of perfect
dislocation with Burgers vector of type b = 1/2[110] on (111) type plane. In fcc
crystals the majority of dislocations are of the type b = 1/2[110], since they are
perfect (the Burgers vector coincides with a lattice vector) and have the lowest
elastic energy among all possible perfect dislocations. From Fig. B.2.1 we can
estimate a linear dislocation density ρ ∼ 15 · 106m−1 and a penetration depth
t = 2µm.
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B. Origin of strain in surface damaged bent crystals

Figure B.1.2: Line tension σf tf of the super�cial layer as a function of the grain
dimension for GaAs pieces undergone to super�cial treatments 1 min long with di�erent
sandpapers. The line is a guide for the eyes. Inset: x curvature radii as a function of
the sandpaper grain dimension.

B.3 Mechanism of dislocation formation

We propose here a possible mechanism of the strain formation due to the surface
damage of the crystal. We assume that the e�ect of sand paper grain is similar
to the indentation of a tip in the material, as sketched in Fig. B.3.1 .

The e�ect of the tip is to introduce dislocation loops of perfect a/2[110]
dislocations gliding on the (111) and (-1 -1 1) planes perpendicular to the plane
of the image. Due to the dislocation movement the part of the crystal between
the (111) and (-1 -1 1) planes moves one lattice step downward. Note that the
components of the Burgers vectors perpendicular to the surface at the (111) and
(-1 -1 1) plane are of opposite sign. The dislocation loops move up to a depth
tf below the surface leaving a network of dislocations lines perpendicular to the
plane of the �gure at a depth tf . The resulting Burgers vector b coincides with
a vector of the direct space:

b =
a

2
[011] (B.3.1)

With a the lattice parameter. The component of the Burgers vector b
parallel to the sample surface is given by:

b⊥ =
a

2
(B.3.2)
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Figure B.2.1: High angle annular dark �eld (HAADF) images in STEM mode.

where a = 5.6535Å for GaAs. We now have a network of dislocation with
linear density ρ ∼ 15 ·106m−1 placed at a depth t = 2µm between the damaged
surface and the bulk of the GaAs crystal, all having the same value of the
perpendicular component b⊥. We may conclude that the damaged surface layer
is under a compressive strain f given by the lattice mismatch induced by the
dislocation network:

strain = f = ρ�b⊥ = ρ�
a

2
(B.3.3)

If we consider a dislocation density (from TEM) ρ = 2·107m−1 , a = 5.6535Å
we obtain a strain value of 5.6 · 10−3. We may compare this value with that
obtained from the crystal curvature. From equation B.1.3 for a biaxial stress,
with T = 0.36mm and R = 2.8 m, we obtain f · t = 7.71e−9. Considering a
penetration measured from TEM images, we obtain a strain value f = 3.9 ·
10−3 in reasonable agreement with observations and therefore validating our
preliminary model.
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Figure B.3.1: Mechanism of dislocation introduction by means of indentation by a tip.
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Appendix C

Experimental set up

C.1 ANKA Synchrotron radiation facility

During the measurements at ANKA Synchrotron Radiation Facility at beamline
PDIFF it was possible to characterize the Integrated intensity Iint of some Si
and GaAs �at and bent crystals, realized with the lapping process, in Laue
di�raction geometry.

The PDIFF beamline is dedicated to di�raction experiments on bulk poly-
crystalline materials, with the emphasis on in-situ investigations. Additional
experimental facilities enable high-resolution powder di�raction, residual stress
and texture measurements. The overall layout of the beamline is shown in the
Figure C.1.1 .

Figure C.1.1: Schematic layout of the beamline PDIFF showing the main components.

It consists of two main functional parts: the beam optics and a small 4-circle
Kappa di�ractometer for high angular resolution studies.

The main parameters of the beamline optics are summarized:
Energy/ Wavelength range: 6 ö 20keV / 2.1 ö 0.62Å
Energy resolution [DE/E] ≈ 2E-4 (at 10 keV)

111



C. Experimental set up

Source: 1.5 T Bending magnet (EC = 6 keV)
Optics: � Upward re�ecting Rh-coated cylindrical mirror (�xed horiz. focus,

variable vert. focus), � Si111 double-crystal monochromator
Flux at 1st sample position ≈ 10E+9 photons/(s x 0.1%bw) in 1 mm² @ 10

keV
Typical beam cross section (fwhm): � 0.6mm (H) x 0.3mm (V) (focused)

at the 3-circle instrument, � 2mm (H) x 0.3mm (V) (focused) at the 4-circle
instrument

Experimental setup/ sample environment: � 3-circle Powder Di�ractometer
with 2D and 1D detectors; � 4-circle Kappa Di�ractometer with 3 sample orien-
tation circles (W, K, F) and detector circle (2j) equipped with Ge111-analyser

Experimental setup / detectors: � Princeton Instruments 4Mpx CCD-camera,
� INEL 90° linear detector, � scintillation detectors with optionally analyser, �
slits or Soller collimators for variable resolution/throughput.

Data Acqustion Software/ Data treatment/ Databases /Evaluation: � SPEC
instrument control, � ImageJ, �Area Di�raction Machine, � FIT2D,ICSD, PDF-
2-search-match, TOPAS, FullProf, � Crystallographica

The smaller of the two di�ractometers on PDIFF is a 4-circle Kappa-geometry
instrument with an additional 2-circle stage for an analyser/detector combina-
tion (Fig. C.1.2).

Figure C.1.2: Schematic of a 4-circle di�ractometer.

The experiment consists in the measurement of the rocking curves in Laue
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C.2. Hard X ray Facility, ILL

transmission geometry of several Si and GaAs (100) �at and bent crystals at
energies 19 and 22.5 keV. Is possible to set the energy changing the optics.

C.2 Hard X ray Facility, ILL

The experimental set-up is designed in order to focalize on the detector all the
di�racted beam coming from a �at perfect crystals. This is a geometrical e�ect
realized where the distance sample-source is the same that distance of sample-
detector (L in Fig. C.2.1). Two di�erent line are available: the �rst called
Low resolution line where the distance 2L is 7.2 m with a standard resolution
of about 0.17 arcsec and the other called High resolution line, where 2L is 12
meters and the standard resolution is 6 arcsec. All the measurements reported
in this work are performed in the high resolution line.

Figure C.2.1: Scheme of the di�raction measurement. The distance between source
and the sample is the same distance between sample and detector. In this con�guration
all the di�racted beam are focalized on the detector.

The main characteristic of the facility are summarized here:
Energy range : from 80 keV to 450 keV (0.15 to 0.03 Å)
Maximum intensity : 1.5 mA (at 450 keV)
Source: W tube
Generator focus : 1× 1mm2

Focus collimation : down to 0.5 mm diameter
Max beam size (at sample position) : 80×40 mm2

Bragg angles : < 3 degrees (0.5 ö 1 degree typically)
Lattice tilt max sensitivity : 6 arcsec (2 L = 12 m)
XRII (X-Ray Image Intensi�er) + cooled CCD camera (16 or 32 bits):
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C. Experimental set up

� Spatial resolution : about 0.35 mm;

� Time acquisition : typically few seconds

As an example Fig. C.2.2 panel A shows the image of a �at perfect Si (100)
crystal; it appears as a very narrow line. The sum for column of pixel give
the di�raction pro�le as in Fig. C.2.2 panel B the di�raction pro�le of perfect
crystal is reported. The FWHM is calculated and for a perfect crystals it can
be compared with the experimental resolution of 18 arcsec, so the value of
FWHM is a directly estimation of the crystal perfection. In this con�guration,
a slightly deformation of the crystals lattice as mosaicity, bending ecc.. can be
immediately see in the changing of the di�racting images. Moreover, studying
the di�racted images also topographic information can be obtained, for example
is possible to evaluate if the bending in uniform in the whole crystals, Fig.
C.2.2 panel C. The integrated intensity Iint is the integral under the calculated
di�raction pro�le.

Figure C.2.2: panel A: image of a �at perfect Si crystal. Panel B: di�raction pro�le
given by the sum for column of the pixels of the di�racting image. The FWHM is
about 18 arcsec that correspond to the instrumental resolution. Panel C: image of a
bent lapped Si crystal.

The energy of the di�racted beam is calculated by geometrical considera-
tions.
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