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Abstract 

 

 

Cyclic liquefaction is a phenomenon during which granular uncemented saturated soils 

(gravel, sand and low plasticity silt) lose much of its strength and stiffness for a short 

interval of time, but long enough to cause significant failures.  

The occurrence of liquefaction depends on the cyclic shear loading induced by an 

earthquake and on the cyclic resistance of the soil; the latter, due to the difficulties in 

obtaining undisturbed samples of most liquefiable soils, is deduced from field test results 

interpreted via empirical correlations which provide the link between cyclic resistance 

and various test indices. CPT based methods of liquefaction assessment are the most used 

in practice engineering 

The cone penetration resistance qc and the cyclic resistance CRR of a soil depend on the 

material properties and the state of the soil (stress level and density). The latter two 

quantities can be expressed by the state parameter ψ, which is an indicator of the direction 

of volumetric strains (dilation or contraction) during shearing; the amount of the 

volumetric strains govern the stress variation respect to the initial level of stress. 

In these thesis a link between the cone resistance and the cyclic resistance has been 

defined using the results of centrifuge CPT tests and cyclic undrained triaxial tests carried 

out using two well none Italian and Japanese sands: Ticino (TS4) and Toyoura (TOS).  

The results of cone penetration tests evidenced the existence of a simple relationship 

between the normalised cone resistance, Qp and the state parameter ψ (Jefferies and Been, 

2006).  

The cyclic triaxial test results have been interpreted to define a correlation between the 

state parameter and the cyclic resistance ratio CRR at a given number of cycles N, for the 

two studied sands. 

Finally results of centrifuge and triaxial tests have been combined to deduce a direct 

relationship between the normalised cone resistance and the cyclic resistance ratio. 
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Chapter 1 

 

 

 

 

1 Litterature Review 

 

 

 

 

1.1 Introduction to undrained soil behavior 

After Niigata earthquake in 1964, which caused a lot of building damages due to 

liquefaction, a lot of studies were performed by many authors in order to understand 

cyclic behavior of sands [Seed and Lee, 1966; Ishihara, 1996; Hyodo, 1991;Yoshimi, 

1984; Vaid, 1985, 1995; Sladen, 1985; Tatsuoka, 1984; Toki, 1986, 1993]. 

Hystorically the liquefaction of saturated sand was defined as a loss of strenght caused 

by cyclic loading and it was usually related to geological considerations and surface 

evidances (sand boils, large deformation or fracture of the ground, etc.). 

Castro (1969) defined liquefaction as the strain-softening and collapse of a loose sand to 

an ultimate state of constant effective stress and deformation. Seed at al. (1983), using the 

results of an extensive laboratory testing, defined liquefaction as essentially the condition 

of zero effective stress due to cyclic loading. At zero effective stress a granular soil 

becames very soft and develops large deformations during cyclic loading. Ishihara (1993) 

suggests that liquefaction can be defined in terms of the magnitude of cyclic stress ratio 

required to produce a given level of strain. 

Macking reference of the soil behavior in undrained shear, the following definitions of 

liquefaction are suggested [Robertson, 1994]: 
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(i) flow liquefaction requires strain-softening behavior response in undrained loading 

and the trigger to cause collapse can be either monotonic or cyclic. 

This type of failure seldom occurs in level ground, as it requires that in-situ shear stress is 

greater than undrained residual or steady-state shear strength. Cases in which flow 

liquefaction can arise, are slope or retaining walls: in these situations fast failure occurs 

when the dynamic load is larger than the static shear stress; on the contrary, with smaller 

static shear stress, a large excitation is needed in order to start flow liquefaction.  

Flow liquefaction occurs in loose sands submitted to high stresses and it is associated to a 

fast failure with a rapid increase of both deformations and pore pressures.  

(ii) cyclic liquefaction and cyclic mobility [Castro, 1975; Casagrande, 1976] might 

succeed in sands with strain-hardening behavior; in these conditions the failure 

mechanism will be mainly the consequence of an accumulation of strains as a result of 

pore pressure increasing. 

The cyclic liquefaction requires undrained cyclic loading where stress-reversal or zero 

shear stress can develop (i.e. in-situ gravitational shear stress is low compared to cyclic 

shear stress) with a sufficient cyclic load to allow the effective confining stress to 

essentially reaches zero (Figure 1.1 a).  

When the effective stress is zero no shear stress exists and a soft initial stress-strain 

response can progress, resulting in large deformations. Soil will strain-harden with the 

increase of shear strain and the failure condition is only a temporary state. 

Cyclic liquefaction can occur in sands provided size and duration of cyclic loading is 

sufficiently large. The more the sand is dense the more the size and duration of cyclic 

loading will be large and hence, the condition of zero effective confining stress may not 

always be achieved. Generally, deformations are large when the effective stress is zero 

but they tend to stabilize when cyclic loading stops; on the contrary, a pore pressure 

redistribution can occur in soil deposit and sand might experience strain-softening 

behavior. 

Cyclic mobility requires undrained cyclic loading where stress is always greater than zero 

(i.e. no stress-reversal) and zero effective stress cannot develop (Figure 1.1 b). 

It is usually associated to the development of small deformations that tend to stabilize 

during cyclic loading. It can occur in (i) all sands provided size and duration of cyclic 
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loading is sufficient large and no stress-reversal occurs or (ii) in dense sands with shear 

stress-reversal provided cyclic loading is not sufficient to cause zero effective stress.  

Robertson et al (1994) proposed to use a schematic flow chart reported in Figure 1.2, 

where cyclic behavior is firstly linked to monotonic behavior of sands. 

 
Figure 1.1- Schematic illustration of (a) cyclic liquefaction and (b) cyclic mobility 

 
Figure 1.2- Suggested flow chart for evaluation of soil liquefaction [Robertson, 1994] 

  

(a) (b) 
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1.2 Introduction to in-situ static and dynamic penetration tests 

1.2.1 Cone penetration tests 

Since being developed in early ‘30s as a geological tool for stratigraphic purposes, the 

cone penetration test has attracted attention from the geomechanics point of view. The 

main advantage of the CPT is the interesting combination of a continuous data record 

with excellent repeatability and accuracy at relatively low cost.  

The first cone penetrometers were built by Barentsen in 1932, at the Department of Public 

Works in Netherlands while the electric cone penetrometer was most likely developed in 

Berlin during the Second World War and, after, implemented during ‘80 in Netherlands 

[Lunne et al., 1997; Broms 1988]. The improvement in the instrumentation was continued 

in Canada by Campanella and his students [Campanella et al., 1983; Robertson and 

Campanella, 1983; Robertson et al., 1986; Robertson and Wride, 1998; Robertson, 2009].  

The cone penetration test is conducted by pushing a penetrometer with a conical tip 

attached to the end of a series of rods into the ground at a constant rate (20 mm/s). The 

standard electronic cone penetrometer has a conical point with 60° apex angle and a 

projected cone base of 10 cm
2
. The cone tip resistance and sleeve friction resistance are 

the basic readings of CPT results; the excess pore water pressure (u) can be obtained 

through a piezometer placed on or behind the cone tip. Commonly, the piezo-element of 5 

mm is arranged above the cone and the pore pressure recorded at this location is denoted 

by u2.  

The tip recorded force Qc divided by the projected area of the cone, Ac, produces the tip 

resistance qc that must be corrected for the effect of the net area ratio, a. The tip resistance 

qt is defined as: 

[1.1]  )1(2 auqq ct   

Where:  qt is the tip resistance; it is equal to qc in coarse-grained soil due to low 

pore water pressures generated during penetration around the cone; 

qc = Qc/Ac is the measured tip resistance; 

a is the net area ratio function of the geometry of the cone areas. 

Friction resistance, fs, is obtained dividing the lateral measured force, Fs, by the surface 

area of the friction sleeve, As. The normalized friction ratio is defined as follow:  
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f
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
  

Since fs is measured about 10 cm behind the cone tip, the values of fs and qt are not 

recorded at the same depth, i.e. fs should be shifted down in order to consider the distance 

between the cone tip and the center of the friction sleeve.  

The location of the various sensors placed on standard cone penetrometer is illustrated in 

Figure 1.3. 

 
Figure 1.3- Types of cone penetrometers and measurements location: (a) eletric cone penetrometer, (b) 

piezocone penetrometer (filter behind the tip), (c) piezocone penetrometer (mid face filter)  

1.2.2 Standard penetration tests 

The test originated in the la 1930s in the USA and was first standardized in 1958 under 

ASTM D 1586-58T. It is currently covered by several national and regional standards that 

fully comply with the ISSMGE IRTP published in 1988 at the 1
st
 International 

Symposium on Penetration Tests [Decourt et al. 1988]. 

The equipment uses a thick-walled tube that is driven into the ground at the bottom of a 

borehole by blows from a slide hammer that weighs 63.5 kg falling through a distance of 

76 cm, yielding a maximum energy of 474 J. The spoon was attached to the drill rods and 

lowered to the bottom of the drill hole after the hole had been cleaned. After the spoon 

reached the bottom, the number of blows of the hammer was counted to achieve three 

successive penetrations of 15 cm.  

The number of blows for the first 15 cm was disregarded because of the disturbance likely 

to exist at the bottom of the drill hole; the numbers for the second and third 15 cm 

increments were added and designated the standard penetration resistance, N. 

The fall is inhibited to some extent by the residual friction between the rope and cathead 

and also by friction in the sheave or pulley at the top of the derrick. The ratio of the 
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energy actually transmitted to the rods to that delivered by the hammer depends primarily 

on the efficiency of the anvil which, in turn, is a function of its weight. It varies from 

about 60% for heavy anvils to about 80% for light ones. 

The combined efficiency, representing the ratio of the energy that reaches the rod to the 

available potential energy of the hammer, ranges from about 45 to 78% [Skempton 1986]. 

In general, most correlations are based on N-values corresponding to a combined 

efficiency of about 60%. N-values corresponding to this efficiency are designated as N60. 

The range of acceptable dimensions for the SPT split-spoon sample have an average 

external diameter of De = 5.1 cm, an internal diameter of Di = 3.5 cm and a length greater 

than 45.5 cm. 

There are still significant differences between the drilling technique and tests procedures 

used in different country an the hammer design varies significantly, as well as the rod 

stiffness. 
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1.3 Liquefaction susceptibility of soil deposits 

The liquefaction susceptibility of soil deposits may be estimated by employing the 

following methods: 

(a) comparison of resistances profiles (i.e. SPT blow count or CPT tip resistance with 

depth) with critical values; 

(b) estimation of a safety factor FSLiq = Resistance/Action, which is evaluated as a 

function of depth. 

The Action can be obtained using either (i) an estimation based on the maximum 

acceleration at the ground surface using a semi-empirical equation, or (ii) a dynamic 

calculation including the reduction of soil stiffness due to built-up of pore pressure. 

The Resistance of the soil can be assessed from (i) cyclic undrained laboratory tests on 

undisturbed or reconstituted specimens or from (ii) correlations with the resistance 

measured by in-situ tests (i.e. SPT or CPT). 

1.3.1 Cyclic stress definition 

The cyclic stress ratio, CSR, was originally defined with a simplified procedure because 

the input motion and its effects on the sand were not always known for a specified case 

history. The deposit that experience ground motion was approximated to a rigid column 

(Figure 1.4), where the maximum shear stress was computed as the product of its mass 

and the horizontal surface acceleration: 

[1.3]  
g

a
a

g

z
vr

max
maxmax, 


 


   

Where: amax is the maximum acceleration evaluated at the surface of the soil 

column; 

 is the averaged total unit weight of the soil column; 

v is the total vertical pressure. 
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Figure 1.4- Method for determining maximum shear stress, τmax, and the stress reduction coefficient, rd 

[Seed et al. 1971] 

In order to take into account the deformability of the column, the maximum shear stress 

was reduced by a factor rd, determined with a site response analysis. The maximum shear 

stress evaluated for deformable body was defined as follow: 

[1.4]  rdd r max,max,     

Where rd is the stress reduction factor, accounting 1 on the ground surface and decreasing 

with depth [Blake, 1996; Youd, 2001]. 

Various studies have shown that an irregular earthquake acceleration-time series can be 

approximated by a uniform cyclic stress time series with an equivalent number of uniform 

cycles that depends on the uniform cyclic stress amplitude. Seed and Idriss (1971) chose 

to represent earthquake-induced cyclic stresses by using a representative value equal to 

65% of the peak cyclic stress. The corresponding earthquake-induced cyclic stress ratio 

CSR is therefore computed as follows: 

[1.5]  d

v

v

v

d

v

ave r
g

a
CSR

'
65.0

'
65.0

'

maxmax,












   

Where:  CSR is the cyclic stress ratio; 

’v is the effective vertical stress; 

τav is the averaged amplitude of cyclic stress considering the 

deformability of the soil column and using an equivalent uniform 

cyclic stress amplitude for earthquake. 
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1.3.2 Resistance from laboratory tests 

The liquefaction of saturated sands can be triggered by different combinations of uniform 

cyclic shear stress ratio using laboratory apparatus, as cyclic triaxial test, simple cyclic 

shear test and torsional test.  

Generally, the cyclic stress ratio CSR required to reach liquefaction in a specified number 

of loading cycles may also be called the sand’s cyclic resistance ratio CRR.  

The relationships between the CRR and N can generally be approximated with a power 

function as CRR = a∙N
−b

, where the parameters a and b are determined by a regression 

against the experimental data. The dependence of the CRR on N means that any reference 

to a sand’s CRR must specify N. 

The liquefaction of a sample from laboratory test is usually defined as the point at 

which the soil experience large deformations with zero effective stress; commonly, 5% 

double-amplitude axial strain in triaxial condition is the criteria employed. In loose of 

critical sand the adopted liquefaction condition is easily identify by the rapid blow up of 

deformation and pore water pressure; in contrast, for dense state, the specimen slowly 

develop 5% double-amplitude axial strain without achieving the rapid deformation 

associated with essentially zero effective confining stress. 

1.3.3 Resistance correlations with in-situ tests 

A possible methodology useful to establish a correlation between the cyclic strength and 

tip resistance is to collect a large numbers of cyclic laboratory tests data from undisturbed 

soil samples recovered from deposits of known penetration resistance. 

In order to correlate the in-situ cone resistance to the cyclic resistance of sands, numerous 

cyclic tests have been performed in recent years, both on reconstituted and undisturbed 

samples of sandy soils (usually recovered from alluvial deposits by advanced techniques 

of sampling).  

One of the first correlations to evaluate the cyclic resistance from in-situ tests was 

proposed by Tatsuoka et al. (1978). He used (i) cyclic triaxial test results conducted on 

undisturbed samples and (ii) the N-values from SPT carried out at various depths nearby 

sampling sites. Due to in-situ variability of sand’s grain-size, it has been proposed a 
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general correlation also introduced in Japanese Code of Brides, which allowed for the 

effects of the average particles dimensions D50: 

[1.6]  

mmDNCSR

mmD
D

NCSR

TX

TX

5.16.005.00676.0

6.004.0
35.0

log225.00676.0

50120

50
50

120















 

Where:  CSR
TX

20 = d/(2∙’v0)  is the cyclic triaxial resistance ratio estimated 

for 20 equivalent earthquake cycles; 

d     is the amplitude of dynamic stress; 

N1 = 1.7/(’v + 0.7)  is the normalized N-value; 

’v    is the effective vertical stress in (kg/cm
2
).  

This correlation was based on a linear dependence of cyclic triaxial resistance with 

relative density (i.e. DR = 16∙N1
0.5

), so it is applicable in loose to medium sands (i.e. N1 ≤ 

20). 

Other similar formulations were established by Kokusho et al. (1983) and by Ishihara 

(1990) for clean sands, as a result of a comprehensive series of laboratory tests.  

Instead, Porcino et al. (2009) deduced a correlation between (i) tip resistance of CPT 

performed in large calibration chamber and (ii) cyclic resistance obtained from simple 

shear tests; the latter two quantities were related to each other introducing  the relative 

state parameter concept [Idriss and Boulanger, 2004]. 

The circle points in Figure 1.5 are the Porcino’s results and they were consistent with the 

literature CPT-field based correlations (i.e. Idriss and Boulanger, 2004 and the correlation 

proposed by NCEER Working Group). 

 
Figure 1.5-  The dots represent data from the correlation of cyclic shear test and calibration chamber test 

results for Ticino sand [Porcino et al. 2009]  
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1.4 Liquefaction charts  

The first semi-empirical methodology proposed in the ’60s by Barkeley’s researches for 

liquefaction assessment, was defined as Geological Criteria since liquefaction definition 

was linked to the observed or non-observed phenomena at the ground surface (i.e. sand 

boils, important settlements or soil fractures). These yes or no observations were then 

related to two estimated quantities: (i) cyclic shear stress ratio experienced at the ground 

level during a specific earthquake event and (ii) the in-situ tip resistance adequately 

averaged with depth and normalized for overburden stress.  

The in-situ tests that have been used mostly as indices for evaluating liquefaction 

characteristics includes SPT and CPT tests. 

- N from SPT 

Seed and Idriss (1971) published one of the first liquefaction chart based on 

Geological Criteria. In this earlier work the authors used mainly in-situ results from 

SPT, as CPT database was in short supply. In Figure 1.6 is reported the first published 

liquefaction chart for clean sands based on some further data updates after ‘71. The 

definition of N1,60 is describe hereafter, while the definition of CSR was introduced in the 

Equation 1.5.  

The normalized resistance N1,60 blow value is defined as follow: 

[1.7]  
 nv

N
N

'

60
60,1


  

The number of blow N1,60 was corrected accounting for an energy dissipation occurring 

along the drill rods of about 60% of the theoretical free fall energy of the SPT hammer. 

The stress normalization exponent, n, was suggested by Seed and Idriss (1984) to be 

equal to 0.45 for sands having relative density from 60% to 80% and equal to 0.55 for 

sands with relative density from 40% to 60%; these last recommendations were based on 

SPT calibration chamber tests. 

It is remarkable that the case histories in Seed’s chart are evaluated for only sands with 

small fine content (FC < 5%). Charts with data from sites where sands presented a high 

fine content were also published, but not examined in this paragraph. 

Seed and Idriss correlation has been verified and revised along the years as well as the 

database of case histories increased with time and, for example, CSR and N1,60 definitions 
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were differently evaluated. Anyway, the various suggested curves always represent the 

division between non-liquefaction from liquefaction observations in the field [see i.e. 

Shibata, 1981; Tokinatsu and Yoshimi, 1983; Kokusho, 1983]. 

 
Figure 1.6- Correlation between cyclic strength ratio (ave/’0) and normalized blows count from SPT, 

N1,60 for sand with FC < 5%  [Seed et al. 1984]  

- qc from CPT 

With the growing contribution of case histories from all around the world (reported in 

the proceeding of NRC 1985 and NCEER 1996 workshops), several attempts have been 

made to establish correlation between field cyclic performance and CPT results.  

Based on field tests data, Robertson and Campanella (1985) proposed the correlation 

shown in Figure 1.7, where the value of qc1 represented the in-situ normalized tip 

resistance evaluated for a reference confining pressure of 98 kPa and cyclic stress ratio 

was evaluated as in Equation 1.5. This chart was based on CPT tests results and on Seed’s 

SPT database, in which N-values were converted to an equivalent qc tip resistance.  

The cyclic resistance curves were defined by Robertson and Campanella both for clean 

and silty sands (FC = 15%) and similar correlations proposed by various researches were 

superimposed on the same graph. The relation gathered from the comprehensive study 

conducted by Shibata and Teparaska (1988) correlated well with Robertson and 

Campanella relationships, in particular for clean sand case.  
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These correlations are however limited in coverage to uncemented, holocenic age and 

sandy soils and caution must be taken when they are applied to different materials. 

 
Figure 1.7- Summary chart for the cyclic strength evaluation of sands based on the normalized CPT value 

qc1 [Robertson and Campanella, 1985] 

In literature were published a lot of different type of correlations based on in situ 

measures, for example Shibata and Teparaska (1988), Stark and Olson (1995), Suzuki et 

al. (1995), all employed a limited database of field case histories in respect to Robertson 

and Wride (1998) ones. Mitchell and Tseng (1990) presented a theoretical correlation 

based on cavity expansion analyses, validated with laboratory cyclic simple shear and 

cyclic triaxial tests data. Recently, works by Juang et al. (2000, 2003) present correlations 

based on a probabilistic analysis of case histories.  

Only a few of the most reliable procedures used to estimate cyclic resistance ratio from 

in-situ test are described in detail in the follow paragraphs. 
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1.4.1 Robertson’s liquefaction approach (1998, 2004, 2010) 

In order to estimate cyclic liquefaction resistance of sand, Robertson and Campanella 

(1985) published one of the first liquefaction chart where the limited data available were 

plotted in CSR – qc1 plane; this chart was updated and revised after the discussions 

emerged in NCEER workshop in 1996 and, above all, after the published case histories by 

Stark and Olsen (1995) and Suzuki et al. (1995). The new curves (determined with only 

CPT data) are represented in Figure 1.8: CRR – qc1N (later defined) correlations were 

proposed for different observed superficial deformations, l. 

Field deformations used to upgrade liquefaction database were based on the following 

common conditions: holocene age, clean sand deposits (i.e. FC ≤ 5%), level or gently 

sloping ground, magnitude Mw = 7.5 earthquakes, liquefiable depth range from 1 to 15 

m (84% were data from depths less than 10 m) and representative average qc values for 

the layer that was considered to have experienced cyclic liquefaction. The curve 

represented in Figure 1.8 for l = 3% was taken as reference, inasmuch it was the most 

preventive for clean sand.  

Dealing with qc measures usually related to sand with different fine content, Robertson 

and Wride (1998) proposed to estimate an equivalent clean sand normalized penetration 

resistance qc1N,cs introducing a correction factor for tip resistance, Kc, later defined. 

The cyclic liquefaction resistance curve CRR – qc1N,cs, evaluated for an equivalent 

magnitude earthquake with Mw = 7.5, is reported in Figure 1.8 (for l = 3%): 
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Figure 1.8- Cyclic resistance ratio (CRR) for clean sands vs normalized and dimensionless tip resistance 

qc1N based on CPT [Robersone and Campanella, after 1996 updated] 

If thin layers are present, tip resistance corrections are appropriated.  

In the following, it will be explain the quantities introduced in the liquefaction chart and 

in Equation 1.8 and 1.9. 

Cone penetration resistance for clean sand was proposed to be, not only just corrected for 

overburden stress (resulting in the term qc1), but also properly normalized in order to 

result in a dimensionless quantity; so qc1N was given by: 
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The correction factor for overburden stress was defined only for CQ ≤ 2 and the stress 

exponent n was originally taken equal to 0.5 for clean sand only [Liao and Whitman, 

1986; Robertson, 1998]. 

Managing with in-situ data, which ones were likely to find a high fine content, Robertson 

and Fear (1995) recommended operating an average correction on the tip resistance 

depending on the apparent fines content, in order to report the normalized tip resistance 

of silty sand to the normalized tip resistance of equivalent clean sand. This type of 

correlation was supported by the idea that the tip resistance of silty sand had a lower 

value when compared to the tip resistance of a clean one. This was evidently only a 

simplification, as well as it was shown that fines content and soil plasticity brought out an 
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increasing of friction ratio rather than tip resistance [Olsen and Malone 1988; Olsen and 

Koester 1995; Robertson and Campanella 1988; Robertson 1990]. 

The unknown grain-size characteristics of in-situ soils, such as fines content, can be 

initially estimated directly from CPT data using, for example, the soil behavior charts 

proposed in Figure 1.9 [Robertson, 2010 modified from Robertson 1990 and 1998], where 

soil type in Qtn – FR plane are subdivided by Ic curves.  

Jefferies and Davies (1993) suggested that the boundaries between soil behaviors type 

zones 2 to 7 (in Figure 1.9) can be approximated as concentric circles: the value of the 

radius of each circle can be used as a soil behavior type index. Using the CPT chart by 

Robertson (2010), where the originally Q = (qt – v0)/’v0 (from Robertson, 1998) was 

updated with new values of Qtn (as suggested also by Zhang et al., 2002), the soil 

behavior type index, Ic, can be defined as follows: 

[1.11]    22
)22.1(loglog47.3  Rtnc FQI  
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The Ic value is determined with an iterative procedure and the new definition of the stress 

exponent n was defined by Robertson (2009) as a function of soil type. 

Along the normally consolidated region in Figure 1.9 soil behavior type index increases 

with increasing of fines content and soil plasticity; in order to determine an estimation of 

the apparent fines content, the following simplified relationships were suggested: 

[1.12]  if Ic < 1.26  apparent fines content FC (%) = 0 

[1.13]  if  1.26 ≤ Ic ≤ 3.5 apparent fines content FC (%) =1.75∙Ic
3.25 

- 3.7 

[1.14]  if  Ic > 3.5  apparent fines content FC (%) =100 

The recommended relationship between Ic and the correction factor Kc is defined as: 

[1.15]  if  Ic ≤ 1.64 Kc = 1.0 (for clean sand) 

[1.16]  if  Ic > 1.64 Kc = -0.403∙Ic
4
 + 5.58∙Ic

3
 - 21.63∙Ic

2
 +33.75∙Ic -17.88 
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From the proposed correlation it is evident that Kc value decreasing with the increasing of 

apparent fine content.  

 

 
Figure 1.9- Normalized CPT soil behaviour type chart and boundaries of soil behaviour type [Robertson, 

2010] 

The equivalent clean sand normalized tip resistance was determined as a function of both 

the measured penetration resistance and the grain-size characteristics of the soil, as below:  

[1.17]  NcccsNc qKq 11 ,   

Where Kc is iteratively deduced from Ic values.  

Factor Kc is only an approximation, since the CPT is susceptible to many factors, such as 

soil plasticity, mineralogy and shape particles, soil sensitivity and stress history: however, 

for small projects or for initial screening of larger ones, the above correlation provides a 

useful guide.  

It must be underlined that a particular caution must be taken in applying the proposed 

relationship to sands that plot in the region defined by 1.64 < Ic < 2.36 and FR ≤ 0.5%: in 

this area silty sand must not be confused with very loose clean sands.  

In this case, it is suggested to set the correction factor Kc to a value of 1.0 (i.e., assume to 

have clean sand).  
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Robertson suggested that it was reasonable to assume that soils with Ic > 2.6 were non-

liquefiable and that the correction factor Kc could be so large that no representative 

values were deducible. Anyway, soils that fall in the lower left region of the CPT soil 

behavior chart, with Ic > 2.6 and FR ≤ 1.0%, can be yet very sensitive to dynamic loading 

and, hence, possibly susceptible to both cyclic and flow liquefaction. 

Cyclic stress ratio CSR reported in the Robertson’s chart, for each analyzed case history, 

was define as Seed’s originally suggested (see Equation 1.5). 

Stress reduction factor, rd, was considered as originally evaluated by Seed (1971), with an 

average value of: 

[1.18]  

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Robertson (2004) defined the factor of safely against liquefaction as: 

[1.19]  MSF
CSR

CRR
FSliq

5.7

 
Where MSF is the magnitude scaling factor to convert the CRR7.5 for Mw = 7.5 to the 

equivalent CRR for the design earthquake. The recommended MSF [Youd et al., 2001] 

was given by: 

[1.20]  
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1.4.2 Idriss and Boulanger’s liquefaction approach (2004)  

The CPT liquefaction correlation and some case histories were re-evaluated also by Idriss 

and Boulanger (2003), using data collected by Shibata and Teparaksa (1988), Kayen et al 

(1992), Boulanger et al (1995, 1997), Stark and Olson (1995), Suzuki et al (1997) and 

Moss (2003). The Moss’s work was particularly valuable in providing the most 

comprehensive compilation of field data and associated interpretations. 

The re-evaluation of the CPT-based procedure incorporated adjustments and parameters 

revision: cyclic stress ratio CSR was improved to reflect the number of equivalent cycles 

that had occurred up to the time when liquefaction was triggered, in order to consider that 

the stronger is the motion, the earlier liquefaction occurs.  

The quantities deduced by in-situ evaluations were calculated using the revised rd and 

MSF factors, for cyclic stress conditions, and CN, for tip resistance; a stress correction 

factor for cyclic resistance was also introduced, K.  

Each case history was characterized by the cyclic stress ratio for an equivalent earthquake 

of magnitude Mw = 7.5 and by the normalized and dimensionless tip resistance.  

Cyclic stress ratio was defined as follow: 
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Indeed, normalized tip resistance was established with the following formulation: 
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In Equation 1.21 the stress reduction factor rd was evaluated using a revised database. 

Idriss (1999), extending his initial work conducted in 1971 and referring to Golesorkhi’s 

research (1989), performed several parametric site response analyses. He concluded that 

the parameter rd could be adequately expressed as a function of depth, z, and earthquake 

magnitude, Mw, for the most practical interest case, with the following equations: 
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[1.23]  
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Magnitude scaling factors, MSF, was derived by combining correlations obtained by both 

(i) relating number of equivalent uniform cycles with earthquake magnitude and (ii) using 

laboratory-based relations between the cyclic stress ratio required to cause liquefaction 

and the number of uniform cycles. Idriss (1999) derived MSF using cyclic test results 

from high quality samples; the proposed equation is defined below: 

[1.24]  8.1058.09.6 4 
wM

eMSF  

Some difference has been observed between the last proposed correlation and the original 

Seed and Idriss (1982) MSF’s formulation base on reconstituted specimens results; the 

scatter was attributed to the difference in samples quality, as reconstituted specimens had 

always a lower cyclic strength. Besides, various authors proposed different equation for 

MSF definition, with relevant dispersion in the results, especially for smaller magnitude 

earthquake events [i.e. Arango (1996) and Ambraseys, 1988]. 

Lastly, for the CSR determination was introduced the effect of overburden stress for 

cyclic stress behavior [Boulanger, 2003, Boulanger and Idriss 2004]. The authors 

demonstrated that overburden stress effects for cyclic stress ratio could be taken into 

account in either two different ways: (i) through the additional normalization of 

penetration resistances introducing a relative state parameter, thereby producing the 

corrected quantity qc1ξ, or (ii) through a K factor.  

The first approach is useful as it eliminates the necessity to use K factor, as the relative 

state parameter for sand ξR (explained in Chapter 2) was found to be useful in combining 

the effects of relative density, DR, vertical effective stress, 'v0, and the cyclic resistance 

ratio CRR.  

In spite of this potentiality, the second approach (ii) has been the standard approach since 

the last years. The recommended K curves are expressed as: 
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The factor C is related, trough relative state parameter, to the normalized tip resistance 

and it is evaluated as: 
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Regarding tip resistance, it was normalized introducing a factor CN, both theoretically and 

experimentally determined. Boulanger proposed a linear exponential trend for stress 

normalization factor, expressed in the following form: 

[1.27]  

m

v

atm
N

p
C
















0'
 

The exponent was defined as m = 0.784 – 0.521∙DR. For as much as, in practice problems, 

DR is the unknown quantity, CN and m values were progressively adjusted on the base of 

some SPT’s results from calibration chamber tests [Marcuson and Bieganousky, 1977]; m 

stress exponent was adequately estimated using a least squares, weighted, non-linear 

regression analysis of the data. 

Go one step further and introducing relative state parameter index ξR, the relative density 

DR, for a given qc1N value, could be estimated with the following suggested equation: 

[1.28]    063.1478.0
264.0

1  NcR qD  

Consequently, Boulanger and Idriss (2004) obtained the following implemented 

expression for CN: 
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The CN upper limitation is necessary for the uncertainties in its evaluations at shallow 

depth.  

Tip and cyclic resistance correction factors, CN and K, are iteratively defined, as both 

depending on normalized tip resistance, qc1N. 

The revised CRR – qc1N relation, considering all factors introduced above, is shown in 

Figure 1.10 for only clean sand, together with liquefaction and non-liquefaction case 
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histories considered for the evaluation of the boundary recommended curve; the equation 

proposed was so defined as: 

[1.30]  
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It is useful to underline that correlation resulting from Boulanger’s analysis was derived 

for clan sand only, it referred to an equivalent earthquake of Mw = 7.5 earthquake and 

reference vertical stress of ’v0 = 101 kPa. 

The derived relation is comparable to the curve proposed by Shibata and Teparaksa 

(1988) and by Suzuki et al. (1997) for clean sands but it is more conservative than the 

corresponding curve proposed by both Robertson and Wride (1998) and Seed et al (2003), 

for almost the entire range of qc1N.  

 
Figure 1.10- CPT-based case histories and recommended relation for clean sands (FC < 5%) [Idriss and 

Boulanger, 2004]  
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2 Critical State of Sand and State Parameters 

 

 

 

 

2.1 Introduction  

Monotonic and cyclic behavior of sand depends on its initial physical state, since the 

tendency to generate excess pore pressure or volumetric deformation (in dependence of 

drainage conditions) is strongly influenced by both density and initial effective stress. 

From the historically point of view the pioneering work of Casagrande (1936) has been 

the cornerstone of modern understanding of soil strength behavior: with his strain-

controlled triaxial drained tests he demonstrated that specimens, with the same confining 

effective pressure, approached the same critical density when sheared to large strains 

despite the initial density. Loose specimens always contracted during shearing while 

dense ones first exhibited a little contraction, then they began to dilate very quickly. At 

large strains, all specimens approached the same density and continued to deform with 

constant shearing resistance under constant effective stress. The consequently related void 

ratio linked to large strains behavior was named the critical void ratio.  

Performing tests at different effective confining pressures, Casagrande found out that the 

critical void ratio was uniquely related to the effective confining pressure, and all 

critical values belong to the same locus called critical void ratio line in e – p’ plane. 
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2.1.1 Determination of Steady State of Deformation 

Castro (1969) continued and extended the Casagrande’s researches; he performed static 

and cyclic triaxial tests on isotropically consolidated specimens, besides several static 

tests on anisotropically consolidated ones. Undrained tests were for the first time 

conducted with a load-controlled system, the only one capable to adequately simulate the 

so called flow failure mechanism. Three different types of stress-strain behaviors were 

observed in monotonic undrained test as reported in Figure 2.1, from a qualitative point of 

view.  

Very loose specimens at low effective confining pressure (specimen A) exhibited a 

peak undrained strength at a small shear strain and then collapsed to flow rapidly with 

large strains. This type of behavior, called liquefaction by Castro, is now defined as 

flow liquefaction and correspond to a rapid loss of strength. Dense specimens (type 

B) initially contracted but then dilated until a relatively high and constant effective 

pressure was reached, and large strains and strengths were experienced.  

At intermediate densities (specimen C) the achievement of peak strength at low strains 

was found to be followed by a limited period of softening behavior; after this loss in 

strength, further loading produced continues dilation to high effective confining pressures 

and, consequently, higher strains and strengths. This type of failure was termed limited 

liquefaction and Ishihara (1975) defined the transition behavior from contractive to 

dilative as phase transformation. The points at which this changing in behavior was 

observed, were plot in e – p’ plane and they were interpolated with a line called quasi-

steady state line. 

The state in which the soil flowed continuously under (i) constant shear stress, (ii) 

constant effective pressure, (iii) constant volume and (iv) constant velocity was defined as 

the steady state of deformation in undrained condition [Ishihara, 1975; Castro and 

Poulos, 1977; Poulos, 1981]. The locus of points describing the relationship between void 

ratio and effective confining pressure in failure conditions was called the Steady State – 

Line (SS – Line), and it was defined as a projection of the three dimensional curve 

uniquely determined in e – p′ – q space. 
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Figure 2.1- Qualitative behaviour of triaxial anisotropically specimens results of stress – controlled tests. 

A: liquefaction, B: limited liquefaction and C: dilation [Castro, 1969] 

The Castro’s testing program showed that there was a unique relationship between void 

ratio and effective confining pressure at large strains. Graphically this function was 

defined as a line, roughly parallel to the critical line obtained from drained strain-

controlled tests conducted by Casagrande. In Figure 2.2, failure conditions derived by 

various type of tests, were plotted in void ratio e versus the minimum effective stress at 

the end of consolidation, ’3: the difference in strength at failure using load (ef line in the 

graph) or strain controlled test (es line in the graph) were caused by essentially the rate of 

strains. The constant driving force of a stress-control test produced effectively a rate of 

stain about 20000 times faster than that observed in the strain-control tests. The slow 

development of stains in Castro’s tests produced in the samples groups of sand’s grains 

to lose temporary their structure and so phase transformation was observed. 

In Figure 2.2 is shown that the failure condition of a sand always ended up along a fairly 

ef line, indifferently from the drainage condition, type and the magnitude of consolidation 

pressure applied to sample, or whether it was cyclically or monotonically loaded.  

Since the steady state of deformation is reached only at large strains beyond which the 

effects of initial conditions such as (i) soil fabric, (ii) stress and strain history and (iii) 

loading conditions have been obscured, the effective confining pressure, in an element of 

soil at failure, was considered dependent only by its initial density. 
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Figure 2.2- Triaxial tests on Banding sand. es line from strain-controlled tests, while ef line from dead-

load increments and cyclic loading [Castro 1969]  

Relatively recently it has been shown that the steady state conditions is different for 

compressive and extensional stress paths [Vaid et al., 1990; Reimer and Seed, 1992; Vaid 

and Thomas, 1995], particularly when the soil is deposited with inherently anisotropic 

structure. Otherwise, the location of the SS – Line in e – p’ plane is strongly influenced 

by gradation of sand and, its slope, by particle angularity, as illustrated in Figure 2.3, 

where different curves are associated to different type of sands.  

Furthermore, Poulos (1981), Vaid et al. (1990), Hird and Hassona (1990) suggested that 

the critical-state line, obtained from drained tests, and steady-state line, obtained from 

undrained tests,  were not the same line but they were stress path dependent.  

The majority of the researches demonstrated that a unique curve at failure in e – p’ plane 

exists and this leads to think that mechanical properties of sand could be determined by 

critical soil mechanics approach, therefore knowing where the sand will move to at large 

strains, it might be possible to relate some characteristics of sand to its in-situ state.  

Generally, a soil which physical states plot below the SS – Line is not susceptible to 

flow liquefaction but cyclic mobility could occur; on the contrary, a soil which states 

stand above the SS – Line, will be susceptible to flow liquefaction, in particular when 

the static shear stress exceeds the steady-state (or residual) strength. The distinction in 

soil behavior is usually related to the position of the current state in respective to its 

steady state condition. 
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Figure 2.3- State diagram showing steady state lines for various sand with different index properties [Castro 

and Poulos, 1977] 
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2.2 State Parameters 

Schofield and Wroth (1968) demonstrated that sand behavior is highly depending on the 

initial state of soil: they took critical state line, defined originally by drained triaxial tests, 

as a reference ultimately sand condition in effective stress and volume space. Been and 

Jefferies (1985) agreed that critical state line (calculated from drained tests) and steady 

state line (calculated from undrained tests) identified the same critical condition of sand. 

In a work conducted by Been and his co-workers (1991) , the critical state of sands has 

been examined by carrying out extensive triaxial tests on Erksak 330/0.7 sand and they 

evaluated that a unique critical-state line existed regardless of the specimen preparation 

method, drainage, initial condition and stress path effects. 

The state parameter  defined originally by Been (1985) is used in this research, but a 

briefly discussion of state index Is and relative state parameter ξR are given in next 

sections.  

The following definitions inherently assume that the critical-state line and steady-state 

line are equivalent and the subscripts are associated to what kinds of tests are used in the 

determination of failure condition: SS from undrained tests and CS from drained 

tests. 

2.2.1 State Parameter,  

Critical state soil mechanics [Roscoe, 1963] based on clay material behavior is applicable 

also to cohesionless soil, bypassing the obsolete idea that density governs sand behavior. 

Been (1985) introduced the first-order state parameter for soil as a quantity that 

potentially governed stress-strain behavior of cohesioless materials.  

The state parameter was defined by analyzing drained test results from different type of 

sands, as: 

[2.1]  csc ee   

Where: ec  is the void ratio at the end of consolidation at mean effective stress 

p’c; 

ecs  is the void ratio on the critical state at the same mean effective 

stress p’c. 
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In Figure 2.4 the meaning of state parameter is graphically reported, together with both 

the linear approximation of critical state line in e – ln(p’) and the normal consolidation 

lines for A e B points. 

For positive state parameter (point A), the soil exhibits contractive behavior and flow 

liquefaction is highly possible, for negative state parameter (point B) soil behavior is 

dilatant and flow liquefaction cannot happen, but cyclic mobility might occur in cyclic 

loading conditions.  

Considering a specimens with an initial state B in Figure 2.4, with a negative state 

parameter; if it is shared with constant mean effective stress (i.e. δp’ = 0 to failure, in 

drained condition), the stress path in e – p’ can be represented with a straight vertical line 

from point B to critical state condition.  

The vertical effective stress-path might be seen as an approximation of a triaxial drained 

complexion test, where the amount of contraction approached in the sample before the 

dilation started, is not considered. 

 
Figure 2.4-Definition of state parameter with linear approximation of critical state line in e – ln(p’) plane 

The total volumetric strain from point B to critical state can be evaluated as follows: 
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The dilative total volumetric strain v is linearly related to initial state parameter and 

inversely related to void ratio at the end of consolidation.  

Consequently, the average dilation D can be defined as a state parameter dependent: 
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Where  raq  
3

2  is the deviatoric strain in triaxial conditions, simply deduced 

during drained tests. 

The average dilation D in drained test is independent from mean effective stress p’ and 

slightly dependent from void ratio at the end of consolidation, as well as deviatoric strain.  

It must be underlined that, while the mean dilation D is easily relatable to state parameter 

and total deformations, from the stress-dilatancy theory the dilation of a sheared sample is 

linked to ηi = qi/pi’, which ratio change during sample deformation. Due to variation of 

dilation during the test, the minimum dilation Dmin is usually chosen to be related to the 

state parameter , as well as to the difference between peak and critical state shear angle 

(ϕp – ϕcs).  

The idea that dilation controls sand behavior was evidenced by many triaxial test results 

conducted on Kogyuk sand (Erksak sand) with different silt contents [Been, 1985]. The 

reliability of the relation between mechanical properties of sand and state parameter 

increased after some considerations emerged from the comparison of test results came 

from various types of sands, grouped together in a unique database.  

The catalogue summarized the main mechanical characteristic of both standard and 

natural mixed sand [from Golder Associates studies with the support of Canadian oil 

industry], as well as the digitalized collection of the majors data taken from various 

published researches. 

In Figure 2.5 (a) and (b) are reported the results of the interpretation of drained triaxial 

tests conducted on reconstituted specimens (with moist tamping, air pluviated and water 

sedimentation methodology) from 20 different sands. On the right (a) the minimum 

dilatancy Dmin and on the left (b) the difference between peak and critical shear angle (ϕp 

– ϕcs) are represented in dependence of  the initial state parameter . 

The scatter in the results in Figure 2.5 (b) is important since the difference between the 

two considered angles (ϕp and ϕcs) is strongly affected by the mineralogy and grain shape 

of sand’s particles. In Figure 2.5 (a) the trend between minimum dilatancy Dmin and state 

parameter  seems to be more consistent and the scatter is sensibly reduced, even if the 

comparison is done between very different sands and silty sands.  
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Figure 2.5- a) peak dilatancy vs state parameter; b) stress-dilatancy component of peak strength vs state 

parameter for 20 different soils in standard drained triaxial compression tests [Jefferies and Been, 2006] 

Even if state parameter was formulated focusing on drained behavior of sand in triaxial 

tests, the volumetric deformation at peak strength during drained shear of a sample could 

be useful in the understanding of the undrained behavior of sand.  

When in a drained test the volumetric strain at peak is compressive, than in undrained test 

the pore pressure would be positive: in many cases positive pore pressure at peak strength 

would correspond to rapid flow failure and the undrained strength of sand results smaller 

than the drained resistance. In contrast, when total volumetric strain at peak is negative 

(dilative samples), pore pressure would be negative in undrained tests, leading to a greater 

strength in undrained than in drained conditions.  

It must be underlined that, unfortunately, the volumetric deformations at peak stress are 

influenced by the depositional method used for the reconstituted samples, as well as by 

the stress path; the consequence is that a unique correlation with state parameter is not 

deductible. 

As can be noted from the test results in Figure 2.5 the majority of sand’s physical states 

present negative state parameter; additionally, when the state parameter reduces (in its 

modulus value), the dilation of a sample is less pronounced until  = 0 and the void ratio 

at the end of consolidation is equal to the void ratio at critical state.  

The prevailing dilatant behavior leads to suppose that in-situ sand’s states tend to develop 

negative pore pressure. 
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State parameter seems to be extremely useful for the soil behavior determination both in 

drained and undrained condition and, despite its simplicity, the possibility to determinate 

its value from in-situ or laboratory tests is interesting for geotechnical engineering 

purposes. The accuracy with whom the state parameter can be determined, however, is 

influenced by the accuracy with whom the position of the critical state line can be 

evaluated. 

2.2.2 State Index, Is 

Ishihara (1993) reported that  was a very good first-order parameter when it was used 

to quantify the behavior of medium-to-dense sand under relatively high mean effective 

stress, but it was not reliable for the description of mechanical behavior of very loose 

sand with low mean effective stress (i.e. physical states closely above or below the steady 

state line).  

According to what Been demonstrated in his researches, two samples with different initial 

state (e, p’) but similar state parameter, would have similar mechanical behavior if 

monotonically sheared: it did not seems to be true for sand with very low mean effective 

stresses.  

Ishihara demonstrated that under a small well-defined void ratio (e0), determined by the 

intersection of the quasi-steady state line (QSS – Line) with zero mean effective stress in 

e – p’ plane, the strength of the sand decreased rapidly to very low values even if the tests 

were conducted on samples with similar state parameters. This result was related to the 

fact that as void ratio increase, the behavior of sand became more sensitive to small 

variation in void ratio. 

In order to solve this problem, Ishihara proposed an upper reference line as a combination 

of the threshold void ratio line and the segment of isotropically consolidated line, IC – 

Line, considering only the part below the threshold void ratio line.  

It is possible to define state index parameter, Is [Ishihara, 1993], as follows:  

[2.4]  
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Where: e0 void ratio at corresponding upper reference line (Is = 0) for a given mean 

effective stress p’c; 
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eQSS void ratio at a quasi-steady state, QSS, at the same mean effective stress 

p’c; 

ec void ratio at the end of consolidation. 

State index is graphically explained in Figure 2.6 below. 

 
Figure 2.6- Definition of state index Is in e – p‘ plane [Ishihara, 1993] 

In order to capture the essence of sand behavior in the medium strain range, in the general 

definition was assumed the quasi-steady state condition as a reference state. 

Physical implications of state index are given below: 

Is < 0  zero residual strength; 

Is = 0  zero residual strength for an initial mean effective stress less than p’cr, or 

non-zero residual strength for an initial mean effective stress greater than 

p’cr; 

Is = 0 ÷ 0.72 occurrence of the QSS condition, with minimum deviatoric stress coupled 

with moderately large strains; 

Is ≥ 0.72 occurrence of the steady state at large strains. 

In Figure 2.7 (a) are plotted the Is curves, determined by fitting the initial physical states 

derived from an extensive triaxial tests program on Toyoura sand. It is evident that the 

lines of equal Is extends outwards from point P in the Figure 2.7  (a), where the effective 

confining stress is zero and the void ratio is the threshold one (e0 = 0.93 for Toyoura 

sand). In Figure 2.7 (b) are reported, as an example, the good applicability of Is 

parameters: the stress-strain behavior together with stress-path for three specimens with Is 

= 0.6 – 0.7, are effectively similar. 
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The main problem with Is parameter is that the QSS – Line, taken as reference line, is 

strongly affected by the preparation method adopted for reconstituted sand samples, as 

well as from the initial mean effective stress. 

 

  
Figure 2.7- (a) a family of curves with equal Is, value in e-p’plane: circles indicate the Is values for each set 

of tests; (b) behavior of Toyoura sand with Is ~ 0.68 [Ishihara, 1993]  

2.2.3 Relative state parameter, ξR 

Bolton (1986) proposed for the first time the relative dilatancy index IRD as a quantity 

useful to estimate strength and volume change of sands with reasonable accuracy for 

practice; IRD was defined as: 
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Where: DR is the relative density; 

 Q  is an empirical constant and determines the value of p’ at which 

dilatancy is suppressed; it depends on grain-size and mineralogy, for quartz 

sand is 10; 

 R is a fitting parameter taken equal to 1 and function of (ϕcv-ϕμ). 

(b) 
(b) 
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Even if IRD is empirically derived, it was found that the Equation 2.5 correlates quite well 

with relative density, confining pressure and dilatancy characteristics of sand. 

For the particular case of zero dilatancy index, it was defined a critical relative density 

DR,CS: 

[2.6]  
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The critical state line, in DR – p’ plane, is empirically derived by Bolton’s law with Q 

represents the value at which the curve sharply downwards, consequently to the beginning 

of particles crushing. 

Konrad (1988) introduced a relative state parameter, ξR, using concepts defined in 

Bolton’s work and normalizing the state parameter  with respect to the void ratio 

difference (emax − emin); the parameter was previously used by Hird and Hassona (1986) 

and after by Idriss and Boulanger (2004). The relative state parameter was derived as a 

difference in relative density: 

[2.7]  CSRRcR DD ,
 

Where DRc is the relative density for p’c (end of consolidation condition) and DR,CS is the 

relative density at the critical state for the same mean effective stress (see Figure 2.8). 

Relative state parameter was found to be connected to the behavior of sand and its 

positive value was associated to contracted behavior in triaxial tests. Contrary to  

parameter, ξR takes into account sand physical properties, i.e. Q or emax and emin, but 

considers relative density as one of the state variables. 

 
Figure 2.8- Definition of relative state parameter ξR [Idriss& Boulanger,2004] in e – p‘ plane  
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2.3 Physical state of sand from penetration resistance 

The direct determination of void ratio by in-situ testing is still a challenge, like sampling 

of cohesioless material, which is often unreliable or expensive technique. 

The tempting idea, grown up in the last twenty years, is looking for the solution of an 

inverse boundary problem by determining the resistance of soil with a standardized 

instrument. From the measured resistance the state parameter would be determined and 

possibly related with other strength and stiffness characteristic of tested sand.  

Considering an in-situ domain with an unknown physical state and with a not well-

defined boundaries conditions (stress distribution or drainage conditions), we know the 

answer, i.e. measured qc, but we want to identify the state and the properties of the 

material: this is called an inverse boundary problem resolution. 

Historically, the state of in-situ soil is determined using SPT (standard penetration test) or 

CPT (cone penetration test) results but the penetration resistance could be also determined 

by results of centrifuge or calibration chamber tests, where boundaries conditions (i.e. 

stresses and strains), initial physical state and characteristics of the material are known.  

Here after are reported some of the most used formulation used for the in-situ physical 

state determination. They were determined using both: 

(i) reference approach, where physical state of sand means mainly relative density 

linked with stress; 

(ii) dimensionless approach, where physical state of sand is mainly related to critical 

state line through the definition of a state parameters. 

  



Chapter 2                                                   Critical State of Sand and State Parameters 

38 

2.3.1 Reference approach 

It has been customary to associate the penetration resistance with the relative density 

using qc and fs to classify type and behavior of sand. 

Penetration testing, meant for many years, the standard penetration test (SPT), extensively 

used up through ‘90s; because of its economic benefit and simplicity, this test was, and 

still is, widely used to evaluate the spatial variability of a soil deposit.  

Meyerhof (1957) proposed one of the first formulation published in literature; he 

determined a correlation between the relative density to the in-situ resistance:  

[2.8]  
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N
D





 

Where parameters a = 17 and b = 24 are sand dependents values and N is the SPT blow 

count. The Equation 2.8 seems to underestimated the relative density of fine and silty 

sands when compared to relative density deduced from undisturbed samples of normally 

consolidated deposits [Tatsuoka et al. 1978]: generally a and b parameters decrease with 

the decreasing of mean diameter D50 or with the increasing of fine content [Skempton, 

1986]. 

Recently Cubrinowski and Ishihara (1999) used data of high-quality undisturbed samples 

(ground freezing) of clean sand, silty sands and gravelly soils, in order to establish an 

empirical correlation between SPT blow count and relative density of granular soils, 

introducing steady-state line in the general defined equation. The relationship between N, 

the maximum variation in void ratio (emax – emin) and the vertical effective stress where 

combined together as illustrated in Figure 2.9 for rounded grained (a) and for angular (b) 

sands. It can be noted that the biggest is the void ratio excursion, the biggest is the N blow 

count associated to flow liquefaction. For a defined stress level and void ratio range, 

when the N value exceeded Ns limit ones, there cannot be flow behavior of sand.  

In dependence of the type of mixture, authors proposed the curves N1 – DR illustrated in 

Figure 2.10. 

The equations derived for different sands, silty sands and gravelly sands are defined 

below: 
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Where:  CN is function of stress level defined as (98/’v)
1/2

; 

CD is an empirical parameter representing the grain-size effects, 

defined as [9/(emax – emin)
1.7

]. 

  
Figure 2.9- SPT boundaries differentiating between flow and no flow conditions for a range of (emax – emin) 

values: (a) rounded-grained sands; (b) angular sands [Cubrinowski and Ishihara, 1999] 

 
Figure 2.10- N1 - DR relationships for three sandy soils with different grain-size characteristics 

[Cubrinowski and Ishihara, 1999] 

During the last twenty years, SPT has been progressively replaced by the CPT tests. The 

change of direction in geotechnical in-situ testing practice was also supported by some 

perplexity about the real quality of relative density deduced from SPT samples, as errors 

Ns  
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in it evaluations was determined in the range of +20/-45% [Holtz, 1973; Tavenas et al. 

1993; Hatanaka and Feng, 2006].  

The first pioneering work aimed to determinate a relationship between cone penetration 

resistance qc and DR considering also stresses (’h and ’v) was done by Schmertmann 

(1976); he linked the measured qc in calibration chamber tests conducted under known 

boundary stress conditions, with the medium initial relative density of the reconstituted 

tested sample. The equation was defined fitting tests results conducted on medium, fine, 

unaged and normally consolidated sands: 

[2.10]  
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Where:  qc is the measured tip resistance corrected for chamber size effect; 

DR is the relative density expressed as decimal; 

’ is the initial vertical geostatic (considering NC deposits) or 

invariant (considering NC + OC deposits) stress; 

C0, C1, C2 sand’s dependent coefficients. 

Baldi et al. (1986) determined the coefficients of the Equation 2.10 with a best regression 

analysis, considering results from CC tests on normally-consolidated Ticino sand: 
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Slightly different coefficients were proposed by Jamiolkowski et al. (2001) because they 

were derived from CC tests results of three sands (Ticino, Toyoura and Hukksund). They 

were reported in Figure 2.11, together with the qc – ’v  or qc – ’h curves for different DR 

values.  

Lancellotta (1983) introduced in the elaboration the compressibility of sand and he 

proposed the following equation: 

[2.12]  
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Where: qc, DR and ’v0 have the same meaning seen in Equation 2.10. 

The A0, B0 and α coefficients were obtained with a best regression analysis of the CC 

tests results conducted on Ticino, Toyoura and Hukksund sands (Figure 2.12). 
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Figure 2.11- Relative density of NC (a) and NC+OC (b) sands from calibration chamber tests 

[Jamiolkowski, 2001]   

 
Figure 2.12- Experimental correlation between DR –qc -’v0 for mainly NC sands of different 

compressibility [Lancellotta, 1983; Garizio, 1997]  

Comparison between different correlations leads to determine different relative density, as 

the relationships proposed are sand’s dependents.  

Some implementation in physical state determination was done after the introduction of 

state parameters and steady-state line concepts in the analysis. 

  

(a) (b) 
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2.3.2 Dimensionless approach 

Been (1985, 1986; 1987) defined an exponential correlation between normalized tip 

resistance and state parameter  using a large numbers of CC test results conducted on 

different type of sands and silty sands, with known steady state lines.  

Normalized tip resistance was defined using a dimensionless approach: 

[2.13]  
p

pq
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p
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Where:  qc – p’ is the net tip resistance; 

  p is the total mean effective stress (in drained condition p’ = p). 

Been demonstrated that it can be determined an exponential correlation between Qp and 

: 

[2.14]   m
p ekQ

 

Where m and k are sand’s parameters dependents and are respectively defined as the slope 

of the curve in Qp –  plane and as the minimum value of Qp for  = 0. From the 

measured normalized tip resistance it is possible to deduce the physical state of sand, as a 

combination of e and p’ as follow: 

[2.15]  
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Concurrently with the growing of CC data, it has been possible to compute the Qp –  

curves for different type of sands, as can be seen in Figure 2.13 [database published by 

Jefferies and Been, 2006].  

The simplified equation imposes a substantial restrain, as the evaluation of state 

parameter was based on a linear equation of critical state line in semi-logarithmic plane 

and it suggests that the contours of normalized tip resistance must be parallel to the steady 

state line, in an e – ln(p’) plot. 
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Figure 2.13- Comparison of log(Qp) -  curves obtained by the best fitting of CC tests results [after Been, 

1986] 

Sladen (1989) stated that the Qp -  relationships were stress dependent as can be noted 

from Figure 2.14, where are reported Ticino’s sand CC test results, grouped together for 

constant mean effective stress. The medium fit curve deduced by Been (1986) tends to 

underestimate state parameter for small value of p’ and overestimate state parameter for 

medium-to-high p’ (error of Δ = ± 0.2).  

Shuttle and Jefferies (1998) determined numerically that there wasn’t a unique 

relationship between dimensionless tip resistance and state parameter and that changing 

the stress level, keeping a constant G0 value, (i.e. G0 = 64 MPa for p’ = 100 – 1000 kPa) 

arose to a stress level bias in the results. It was recognized that the state parameter is 

uniquely related to normalized tip resistance only if it was considered a constant value of 

the dimensional group G0/p’ in the Qp –  determination.  

Indeed, the complete formulation of the general dimensionless inverse problem must take 

into account six parameters (G0/p’, M, N, H, , ), all of which could affect the 

relationship between Qp and . The influence of each parameter on the results was 

numerically and separately studied (Figure 2.15 from a to f): it is evident that the 

relationship between tip resistance and state parameter is mainly influenced by shear 

modulus (G0/p’), shear strength (M parameter), dilatancy (N parameter) and hardening (H 

parameter) of sand. 
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Figure 2.14- Linear regression relationships between the log(Qp) and  for various mean stress levels. 

Comparison from (a) p’ = 25 – 28 kPa to (f) p’ = 442 - 458 kPa [Sladen, 1989]. It is shown the relationship 

published by Been et al (1987) as a mean trend of the results 

The numerical simulation done by Shuttle and Jefferies leaded to determine the correction 

for m* and k* in order to take into account sand rigidity, but it was noted that this 

procedures was accompanied by a very small progress in the uncertainties in  

determination. It must be underlined that cavity expansion solution, used in the numerical 

analysis, returns an half normalized tip resistance value when compared to measured 

value in CC tests, if the same state parameter is considered. 

Actually, the rigidity dimensional group, Ir = G0/p’, is indeed not considered in the 

simplified curve deduced by Been and Jefferies and the scatter in CC results might be 

conducted to this missing variable as one of the most influencing in the results.  

  

(a) (b) 



Chapter 2                                                   Critical State of Sand and State Parameters 

45 

 

 
Figure 2.15- Effect of stress level on drained spherical cavity expansion in Ticino sand for different initial 

condition [Shuttle and Jefferies, 1998] 

Another dimensionless approach has recently proposed Idriss and Boulanger (2004). 

Boulanger (2003, 2004) introduced in the normalization of the tip resistance the factor Cξ 

as he formulated that a uniform deposit of sand with the same DR over all depth would be 

expected to have the same normalized qc1 values at all depth. The sand in such a deposit 

would become, however, less dilatant with the increasing depth. The corrected 

penetration resistance could be further normalized to an equivalent relative state index ξR 

value at σ’v/patm = 1, introducing the state normalization factor Cξ as: 

[2.16]  
atm

c
NNcc

p

q
CCqCq   11  

A uniform deposit of sand at the same DR would therefore have qC1ξ values that slowly 

decrease with depth, whereas a uniform deposit of sand at the same ξR over all depths 

would have DR increasing with depth, qc1 values that increases slightly with depth and 

qC1ξ values that are constant with depth. 

The state normalization factor was defined by firstly finding the difference in DR that 

would give the same ξR at an equivalent σ’v = 1 atm. This corresponds to the difference 

between the critical state DR,CS at the in situ σ’v and at the reference σ’v of 1 atm: 

(c) (d) 

(e) (f) 
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The p’rif is usually taken equal to patm. In most situations, the values for Q and k0 can 

reasonably be set at 10 and 0.45 respectively; in this case, the expression can be 

simplified to: 
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The Cξ derivation can then be completed by determining how ΔDR,CS affects the qC1 

values. For the CPT, the derivation uses Equations 1.28 to get: 
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Using Equation 2.19 and 1.28 introduced in Chapter 1, the state normalization factor is 

defined as: 
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Where qc1N ≤ 254.  

The resulting curves are reported in Figure 2.16 (a) and (b).decreasing with depth and are 

slowly dependents to both qc1N, k0 and Q values. 

Robertson (2010) recently re-evaluated some flow liquefaction case histories (static or 

dynamically induced) in order to link the behavior of sand with soil behavior chart. Using 

calibration chamber tests with defined state parameter and resistance, it was possible to 

define curves of equal state parameter in soil behavior chart Qtn – FR [Robertson, 1998]. 

The author determined an equivalent clean sand curves in Qtn – FR plane using Olsen 

(2001) and Olsen and Stark (2002) database of case histories, observing that Qtn,cs curves 

in Figure 2.17 (b) had the same trend observed in  curves in Figure 2.17 (a). 

Robertson suggested that boundaries between dilative and contractive soil behavior could 

be determined at an equivalent normalized clean sand tip resistance QtN,CS ~ 70, in 
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correspondence to the limitation of state parameter  = - 0.05 proposed by Jefferies and 

Been). 

  
Figure 2.16- (a) state normalization factor Cξ for range of qc1N and (b) sensitivity of Cξ to variations in k0 

and Q [Boulanger, 2004] 

 
Figure 2.17- (a) approximate boundary between dilative and contractive soil response using normalized 

CPT parameters using CC tests and CSSM theory; (b) contours of equivalent clean sand normalized cone 

resistance, Qtn,cs, based on in situ evidence of seismic caused liquefaction [Robertson and Wride, 1998; 

Robertson 2010] 

  

(a) (b) 

(a) (b) 
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2.4 Evaluation of state of sands from laboratory tests 

Here after are introduced some of the most used test apparatus for liquefaction analysis in 

the laboratories, with particular attention on triaxial test. 

2.4.1 Cyclic simple shear tests 

In cyclic simple shear test, the specimen is initially k0 consolidated to a mean confining 

stress p’ = [(1 + 2∙k0)/3]∙’v0; the initial principal stress conditions are shown in Figure 

2.18 (a), together with the relative Mohr’s circle.  

After consolidation, a cyclic horizontal shear stress of peak magnitude τh is applied in 

undrained condition at the top and at the bottom of the sample. The condition of non-

volume change is obtained by forcing axial deformation to be zero (r = 0 during all test); 

the change in total vertical stress in such a constant volume test equals the pore pressure 

which would developed in an equivalent undrained test. The effective stress condition and 

Mohr’s circle are illustrated in Figure 2.18 (b). The CSR = τh/’v0, where the vertical 

effective stress at the end of consolidation is the major of the principal stresses and the 

only one always precisely known. 

 
Figure 2.18- Mohr’r circle for cyclic simple shear test  

There are currently two designs of simple shear apparatus: one developed at Cambridge 

University and the other at the National Geotechnical Institute (NGI) in Oslo; the last one 

is commonly used also in academic and commercial laboratories.  

The sample in NGI apparatus (80 x 10 cm) is contained in a special membrane reinforced 

with iron wires that prevent lateral deformation, but allows uniform vertical deformation 

(a) (b) 
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and rotation of vertical sides of sample. Cambridge apparatus contains a rectangular prism 

(10 x 10 cm) laterally confined by smooth side platens that allows vertical displacements 

but they not provides complementary shear stresses on the vertical plane.  

The cyclic simple shear is considered the test apparatus that batter reproduced the in situ 

condition under cyclic loading [Boulanger, 1993, 2004, 2006, 2007; Sancio, 2003; 

Ghionna and Porcino, 2003]. 

2.4.2 Torsional cyclic test 

At the beginning of 70’s Ishihara and Li developed one of the first torsional triaxial test 

device. The whole setup is almost identical to the triaxial test apparatus except for the 

new features consisting of a piston with the same diameter as the sample, which permits 

the condition of no lateral strain of the specimen. Therefore, it became possible to apply 

torsional cyclic shear while preventing lateral movements of the specimen (i.e. simulation 

of k0 condition) and simulate the field condition during earthquake. 

When a full cylindrical specimen with a circular cross section is subjected to a twisting 

moment, the distribution of torsional shear stress in a plane perpendicular to the axis is 

not uniform, so the choice of a representative shear stress in not a simple task. Usually the 

average shear stress deduced from plastic distribution of stress in the sample and the 

corresponding strain are the quantities utilized in the analysis.  

In order to step ahead from the non-uniformity of stress and strain valuation, hollow 

sample are usually preferred. The hollow cylinder test allows testing on both isotropically 

and anisotropically consolidated specimens. This instrumentation is capable to simulate 

field’s stresses conditions, including principal stress axis rotation. As it is possible to 

control all principal stresses applied on the specimen, tests result are used to calibrate 

constituted model using different stress path.  

The four components of stress z, r,  e τz induced the four components of deformation 

z, r,  e z (Figure 2.19) and all of these quantities are directly measured. 

Vertical stress is assumed to be uniformly distributed across the cross section, while the 

others quantities are obtained by averaging stresses over the volume of the specimen 

assuming soil to be linear elastic. 
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Failure due to cyclic loading is usually defined by the development of a specific level of 

strain; the shear strain in the sample is defined below considering the principal strains in 

triaxial condition is  = 2/3∙(1 - 3). 

 
Figure 2.19- Mohr’s circle for cyclic torsional shear test; hollow cylinder case 

Using a triaxial torsional shear test apparatus two type of strain-controlled tests were 

carried out. In the first type the principal stress ratio was maintained unaltered during 

cyclic loading and the changes in torque, pore pressure and vertical displacement were 

measured. The results showed that the liquefaction did not occur and the pore pressure 

ceasing to increase after reaching a certain level, but the vertical displacement continued 

to increase indefinitely suggesting some failure of the sample. In the second type of tests, 

the water can’t entry in the cell during the torsional test. After anisotropical consolidation, 

it was observed that in this type of test liquefaction could easily set up, concurrently with 

a lateral increase of lateral stress. Pore pressure was generated both by cyclic loading and 

by the change in principal stress rotation. 

Ishihabi and Sherif, (1974) adopted a device that summarized the qualities of torsional 

and simple shear. The instrumentation was capable to eliminate the effect of wall friction 

coupled with the fact that the magnitudes of the horizontal stresses were known as in 

torsional shear device. For the particular geometry of the container, the shear strains 

through the sample were uniformly defined as well as the shear stresses. The authors 

demonstrated how the CSR – N curves were dependent both on the type of shear stress 

and on the type of normalization chosen for cyclic stress ratio definition. Furthermore, 

comparison from torsional and simple shear tests were not comparable, even if the same  

k0 value was adopted. In fact, authors found that (Δτmax/oct) – N curves were independent 
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of k0 values while Seed and Peacock’s (1971) work revealed a decrease of (Δτmax/oct) 

with decreasing k0 for a constant number of cycles N, a well contradictory result.  

The torsional device is not always available in laboratory and specimen’s preparation 

procedure could be very difficult due to placement of two membranes on the specimen. 

Lastly, the interpretation of the test is not immediate and is difficult to be correlated with 

other test results. 

2.4.3 Triaxial cyclic test 

The triaxial cyclic apparatus is certainly the most used equipment for cyclic liquefaction 

analysis of sand.  

Cyclic stress and deformation of an in situ finite element is reproduced, in approximately 

way, by cyclic triaxial compression tests. In order to demonstrate the analogy, in Figure 

2.20 (column 1) are shown three stress conditions at different stages of loads while in the 

column 2 the three correspondents Mohr’s diagrams. In case (a, column 1) the stress 

applied to an infinite element is isotropic and the Mohr circle is a point. In condition (b, 

column 1) the vertical stress is increased by an amount of dp/2 while the horizontal stress 

is decreased by the same quantity; by the Mohr circle is deducible that on the plane XX 

acts again the initial isotropical stress 3, as well as a shear stress equal to dp/2. Finally, 

in condition (c, column 1) the vertical stress is reduced by dp/2 and the horizontal stress 

is increased by the same amount. Again, the resulting stress on the XX plane is the same 

of case (b, column 1) but with revers sign. Thus, the stress acting on a plane XX cycling a 

sample as (b) and (c) is considerably the same as the stress acting on a horizontal plane in 

situ. In (column 3) there is a decomposition of the applied stresses represented in (column 

1); it is clear that applying an all-around pore water pressure does not change the effective 

stress and the deformation of the specimen so it might be neglected.  

The stress acting on in situ elements for saturated sand is so easily obtainable in triaxial 

test apparatus applying to the specimen the stress in (column 4), correcting the water 

pressure by a factor equal to dp/2. 
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Figure 2.20- Stress condition for triaxial test on saturated sand under simulated earthquake loading 

condition [Seed and Lee, 1966] 

Garca and McKay grouped together many cyclic triaxial tests results of more than 30 

different type of soils, 13 of which were sand and silty sand; tests were analyzed with 

limiting strain criteria (Δa = 5% for isotropically consolidated tests and a = 2.5% in 

compression for anisotropically consolidated tests) in order to determinate the number of 

cycles causing liquefaction. Sample tested were reconstituted in laboratories or collected 

from thin-wall tube sampler, so they presented different relative density and type of 

particle arrangement. 

In Figure 2.21 are reported some test results conducted on tailing sand in CSRDR = 50% – N 

plane. The cyclic resistance of the samples were corrected in order to be representative of 

a sample with DR = 50%. While results in Figure 2.21 (a) seem to have a reasonably 

unique trend, the same conclusion is not deduced from the Figure 2.22 (b) for non-tailing 

sands results. 

The scatter in the cyclic resistance is considerably high such as the sands compared were 

different; the trend in the mean curves is evident, as the number of cycles to liquefaction 

increases with the decreasing of the normalized cyclic stress. 

(col.1)   (col.2)   (col.3)     (col.4) 
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Figure 2.21- (a) cyclic stress ratio vs number of cyclic for tailings sand and (b) for non – tailing sands where 

CSR is normalized to an equivalent CRR(DR = 50%) [Garga and McKay; 1984 database] 

The main consideration and doubt about CSR – N curves is how cyclic resistance, for a 

particular number of cycles, is related to state of sand throughout critical soil mechanics. 

It has to be considered that cyclic resistance should be related to critical friction angle 

trough parameter M and critical state theory also leads to expect that the undrained 

behavior of sand is related to the ratio between elastic and plastic modulus of the sand 

[Jefferies and Been, 2000]. In any case, the most important factor affecting cyclic 

behavior of sand is considered to be grain contact and intrinsic arrangement of the particle 

of sand, together with initial void ratio and mean effective stress.  

Boulanger (2003) determined that the CRR of sand for both triaxial and simple shear tests 

could be expressed as an approximately unique function of relative state parameter ξR, as 

illustrated in Figure 2.22 (a). He used data from tests conducted on Fraser river sand [after 

Vaid and Sivathayalan, 1996] on specimens with DR = 30 ÷ 70%, consolidated under 

effective stress from 50 to 400 kPa. CRR was determined in correspondence to the 

development of 3% shear strain in 10 uniform loading cycles. This data suggest that ξR 

parameter can reasonably represents the combined effects of DR and ’v on the cyclic 

resistance, but are profoundly dependent from the type of test condition as can be noted 

from the difference between triaxial and simple shear tests. 

In Figure 2.22 (b) are illustrated the interrelations among Kσ , ξR, CRR, DR and ’v. The 

CRR – DR relationship, for a given consolidation stress, upwards with increasing DR, but 

cyclic resistance ratio decreases with the decreasing of ξR value.  

Increasing the consolidation stress from 100 kPa to some higher value, it results in the 

same decrease in ξR for all values of DR.  

This ξR changes the CRR by amounts that depend on the initial DR, because of the 

curvature of the CRR versus ξR relationship (which applies to all values of DR and 

consolidation stresses). Thus, the reduction in the CRR, as expressed through the Kσ 

(a) (b) 
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factor, depends on the initial DR. The Kσ relationships derived from the CRR versus ξR 

relationship match the relationships resulting directly from the experimental results, as 

expected. State normalization approach seems to be an alternative methodology for the 

computation of CRR, instead of using K. Porcino et al. (2009) correlated CRR for Ticino 

sand and relative state parameter using results from simple shear device deducing a 

unique function between CRR – ξR, deducing the same correlation as introduced by 

Boulanger. 

 
Figure 2.22– (a) CRR versus ξR for reconstituted specimens of Fraser Delta sand (b) correlating K and ξR 

values [Boulanger 2003] 

In Figure 2.23 are reported some results grouped together and derived by different 

experimentations; the plot represents the CRR (for 15 cycles) versus the initial state 

parameter  as defined by Been (1985). As determined for the CRR – ξR graph, also in 

this kind of representation the decreasing of cyclic resistance with state parameter is 

evident, but a unique trend is not determinable as the sands were tested in different 

conditions. 

The results derived all from cyclic triaxial isotropically consolidated tests (with p’c = 100 

kPa), but the inner characteristics of sands were different. Methods adopted for 

reconstituting samples were dissimilar from research to research, furthermore some state 

parameter values were referred to void ratio before the consolidation;  inasmuch some 

data were not available.  

(a) 

(b) 
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From the Figure 2.23 is deduced that state parameter alone does not capture the 

anisotropy of the sand and here’s why it was observed an important scatter in the results.  

 
Figure 2.23- Cyclic liquefaction resistance versus state parameter for different type of sands (p’c = 100 kPa 

for all tests) [after Jefferies and Been, 2010] 

2.4.3.1 Triaxial cyclic test apparatus 

In this research the ISMGeo triaxial apparatus is used for the estimation of cyclic 

behaviour of Ticino sand.  

The cell for cyclic triaxial testing is the result of an improvement in its construction 

details. This cell can stand pressure up to 1000 kPa and is designed to easily allow the 

removal of the only lateral chamber, rather than the whole top part. 

The top platen and the bottom platen are perfectly aligned, providing better contact 

between the specimen and the platens. On the other hand, being the two platens 

interchangeable, the cell can accommodate specimens of variable diameter, from 38.1 to 

100 mm. 

The cell is equipped with special ball valves and fitting for sealing, if necessary, the cell 

during the test. A vertical lock mechanism is also provided to maintain axial pressure. 

Thanks to this features, the cell may be disconnected from the compressed air generation 

system, and moved without disturbing the specimen. Thus, it is possible, for example, to 

consolidate in a laboratory room and to test in another part, where loading and acquisition 

equipment are located.  



Chapter 2                                                   Critical State of Sand and State Parameters 

56 

The cell is constructed of high-strength stainless steel; it requires no maintenance, and 

may be used with corrosive soils and brackish water. 

The heart of the cell consists of a piston and a bearing system, especially designed to 

eliminate friction phenomena which have in the past compromised the results of the 

triaxial tests. An O-ring is used during the static consolidation phase to maintain lateral 

pressure in cell. 

During the dynamic loading or static shear testing, the ring is disengaged: thus a small 

volume of air is allowed to pass around the load rod. The resulting friction on the rod is 

virtually zero. This feature is very important, since in the cyclic triaxial test, even a small 

amount of friction involves improper measurements of forces acting on the specimen and 

consequently of test results. This drawback takes a special significance during tests on 

slight-strength materials, or still, when loads of small amount are to be applied. 

The system is electro-pneumatic: the signal produced by an electrical function generator 

is converted into a pneumatic signal, which may be used to control pneumatic actuators 

applicable to any type of soil test equipment.  

The system producers not only signal for applying dynamic loads but also for static loads, 

under stress-controlled conditions. The latter are used both to consolidate specimens and 

for shear testing. In addition, static and dynamic combined loads may be applied. 

The amplitude and frequency of loading may be varied by programming the function 

generator which is incorporated into the system. All the necessary pneumatic controls are 

included in the system, as well as a digital counter to display the number of loading 

cycles.  

The double acting pneumatic cylinders are designed to be used with electro-pneumatic 

cyclic load generator and make it possible to apply static or repeated loads, at controlled 

amplitude, to a variety of different test equipment.  

The cylinders are available in a variety of size, so as to achieve the loading system that 

better suits test requirements. For example, for cyclic testing on small-size or soft 

specimens, small loading cylinders are available. For other specimens which require the 

application of higher stress, larger cylinder are available, which make it possible to 

develop static or cyclic forces of about some hundreds of daN. These actuators use 

Bellofram sealing membranes and bearings on the load rod to minimize friction. 
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3 Monotonic Behavior of Saturated Sand 

 

 

 

 

3.1 Monotonic resistance of saturated sand in undrained condition 

The mechanical behavior of granular soil mainly depends on its initial physical state, as 

introduced in the previous Chapters [see i.e. Poulos, 1981 and Been, 1985]. It was also 

found that, in the e – p’ plane, exists an ultimate curve corresponding to the steady state 

of a cohesionless material defined when continuous deformation of soil, at constant 

volume and constant stresses occurs [Castro, 1975; Poulos, 1981].  

The region above steady-state curve corresponds to the contractive behavior of soil, 

which means that the pore pressure in sand built up if it is sheared in undrained condition. 

The region below steady-state curve corresponds to a dilative behavior of sand with the 

developing of negative pore pressure during shearing.  

In undrained tests, it is useful to define three different sand’s behaviors associated to 

different levels of deformations. The definitions of the steady-state, the quasi-steady state 

and the phase transformation state are shown in Figure 3.1, for a monotonically triaxial 

undrained test result.  

It can be seen that the steady-state is associated to large deformations and corresponds to 

a state of residual undrained strength at C condition. The state of transient minimum 
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strength in A corresponds to the phase-transformation state in q – p’ plane or to the 

quasi-steady state in e – p’ plane [Ishihara et al., 1975]. 

Experimental evidences suggest that a single line, usually named PT – Line in the q – p’, 

plane would exist as a fitting line of the phase-transformation states plotted. Identically in 

the e – p’ plane the quasi-steady state line could be determined. 

More precisely, Ishihara (1993) determined a line in e – p’ plane (called Initial Dividing 

line) that separated the initial state (e, p’)c that could present quasi-steady state behavior 

from that ones that couldn’t. Samples with physical state that hung on the plane region 

above the ID – Line will manifest the quasi-steady state when sheared; on the contrary, 

below the ID – Line no drop in shear will occur and the sand approaches steady state with 

a hardening behavior. 

Furthermore, as can be seen in Figure 3.2, the curve that interpolates the quasi-steady (or 

phase transformation) state condition is stress dependent: two samples of Toyoura sand 

reconstituted with the same void ratio but consolidated with two different mean effective 

stresses manifest the quasi-steady state condition for different deformation values.  

Finally, instable behavior of very loose sand has received particular attention, as at failure 

a quasi-zero shear resistance is observed; mechanical behavior of such loosely packed 

sand has been called flow liquefaction or static liquefaction [Castro, 1969; Poulos, 

1981; Sladen et al., 1985; Ishihara, 1993; Yamamuro and Lade, 1997].  

Two approaches were commonly used to interpret the location of the occurrence of static 

liquefaction in the q − p ' plane by establishing different lines: (i) collapse line [Sladen et 

al., 1985] and (ii) instability line [Lade et al., 1988] or flow liquefaction line [Vaid et al., 

1990]. The first was a straight line locus of points triggering liquefaction that passes 

through the steady-state points with the same void ratio at different confining pressures, 

while the second was a straight line locus of points triggering liquefaction passing 

through the origin point and was regardless of stress path, initial void ratio and confining 

pressure. 

Some discussions have proven that flow liquefaction line is not exclusively determined 

but variable with state of sands [Yang, 2002] and researches are still in progress. 
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Figure 3.1- The definition of various states of sand subject to undrained loading [Ishihara, 1996] 

 

                                                                   
Figure 3.2- Position of QSS – Line in dependence of the mean effective stress and ubiquity of SS – Line. 

Results from two CIU tests on Toyoura sand with the same void ratio (e = 0.91) but different consolidation 

mean effective stress (p’c = 100 – 500 kpa) [Verdugo, 1992; Ishihara, 1993] 
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3.2 Monotonic resistance of saturated sand in drained condition 

As was mentioned in the previous sections, both the initial void ratio and the level of 

effective confining pressure have an influence on the stress-strain and volume change 

responses of sand, even in drained load conditions [Lee and Seed, 1967; Miura et al.; 

1984; Tatsuoka et al., 1986]. 

In Figure 3.3 (a, loose state) and (b, dense state) are reported some triaxial drained tests 

conducted by Lee (1967) on reconstituted air pluviated samples of Sacramento River 

sand. In dense specimens the mechanical behaviour was dilative until high stress ’3c  10 

atm was approached. Overtook the very high consolidation stress of ’3c ≥ 19 atm, a 

dense sand looks like a loose sand at medium pressure, as it contracted to critical state. 

The behaviour of dense sand for very high confining pressures was associated to the 

continuous breakage of sand particles: during shearing grains tend to packages differently 

in conjunction with the increasing of fine content in the original grain size distribution 

[Bandini and Coop, 2011; Ghafghazi, 2014]. 

Loose sand (Figure 3.3 b) sheared at low confining pressure (’3c = 1.0 – 1.9 atm) 

behaves nearly like a dense sand sheared at medium effective confining pressure, and a 

slightly dilation is observed; with the increasing of confining pressure the loose sand 

approaches the critical state with a contractive behavior. 

It is well known that shear bands form in dense sand samples sheared under drained 

conditions and the deformations are herein localized. The post-peak brittleness is 

anticipated and the magnitudes of drop in shear seem sample-size dependent: the smaller 

sample shows a small decline in strength with strain after peak, whereas the larger 

samples show a more rapid drop to a stable residual strength. [Jefferies et al., 1990; Scott, 

1987]. The void ratio at critical state condition may be not fully representative of in-situ 

condition and an underestimation of volumetric strains could be important for a correct 

evaluation of critical state line [Oda, 1972, Desrues et al., 1996, Frog and Jang, 2000]. 

Results in Figure 3.4 demonstrated that the distribution of void ratio within the specimens 

deformed beyond peak stress, were not uniform and their middle part showed an higher 

void ratio than the top and bottom of the specimens. 

The tests were conducted by Oda (1972) on dense specimens reconstituted by air 

depositional method (P series) and wet tamping method (T series); he established that a 



Chapter 3                                                        Monotonic Behavior of Saturated Sand 

61 

deformed sample could be subdivided into three statistically homogenous sections in 

regard to void ratio distribution: 

- dead domain: the formation of this domain at the end of specimens was due to the 

restraining effect of radial friction forces at the end plated, by which little fabric 

reconstruction occurred during deformation; 

- dilated domain: this domain was characterized by a great void ratio (dilation occurred in 

specimen) occurring in a narrow bonds in the central part of the specimens. With the 

increasing of deformation dead domain became smaller and the final volumetric 

deformation must be determined, not only by the initial narrow void ratio, but by the 

extent of the final expansion of its domain; 

- shear domain: this domain had also large void ratio, but smaller of that one in dilated 

domain. 

 
Figure 3.3- Drain triaxial tests on (a) dense and (b) loose samples of Sacramento River sand. Stress strain 

behavior on ’1/’3 - a and a - v plane [Lee and Seed, 1967] 
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Figure 3.4- Evolution of internal void ratio during a compression triaxial test from start to the end of test. 

P sample reconstituted with air pluviation method T sample reconstituted with wet tamping method 

[Oda, 1972] 
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3.3 Factors affecting the resistance of a sand 

3.3.1 Depositional methods 

Laboratory tests conducted on granular soils are usually performed on reconstituted 

specimens as well as obtaining samples of these materials in their undisturbed state is 

very difficult and sometimes not representative (especially for loose sand).  

Various samples preparation methods have been developed based on (i) the moisture 

condition of the soil, (ii) the method of soil placement (i.e. pluviation, spooning or 

flowing) and (iii) medium through which the soil is placed (air or water).  

These procedures were developed in order to correctly reproduce both in situ orientation 

of sand’s particles and in order to reconstitute the widest range of void ratio. 

Pluviation in water is one of the most used reconstituted method; it has been shown to 

resemble the alluvial deposition process because the fabric that ensues upon water 

pluviation has been found to be similar to that of the naturally deposited alluvial and 

hydraulic fill sands [Vaid et al., 1999; Kuerbis and Vaid, 1988; Chaney and Mulilis, 

1978]. Also, the air depositional method [Oda et al., 1978; Oda and Koishikawa, 1978] 

has been used as ones of the easier and trusty procedures available for reconstituted 

samples. 

Even if the problem posed by sampling is overtaken by introducing different samples 

reconstructions techniques, the complicatione is that different depositional methodologies 

used in specimens preparation cause different mechanical behavior of tested sands [Vaid 

et al., 1999; Ishihara, 1993; Wood and Yamamuro, 1999; Della, 2009].  

In Figure 3.5 is shown the effect of fabric on the behavior of Synclude sand in a constant 

volume simple shear device. Three specimens were formed at approximately the same 

void ratio ec = 0.76 and consolidated at a vertical stress of ’v = 200 kPa, only 

depositional method was varied (air pluviation, water pluviation and moist tamping).  

The specimens show completely different patterns of behavior: the moist-tamped sample 

(c) is brittle in undrained shear and shows a tendency to easily collapse; the water 

pluviated sample (a) is ductile and mobilizes a large undrained strength and the air 

pluviated sample (b) shows an intermediated pattern of behavior.  
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The first sample reconstruction methodology (c) is usually associated to a drop in shear 

resistance due to the honeycomb particles configurations, which seems particularly 

collapsible and phase-transformation is difficulty observed [Casagrande, 1975]; 

moreover, the moist-tamped methodology allows to reconstituted very loose samples but 

a great non-uniformity is always observed [Castro, 1969]. 

Deposition through water, indeed, produces very uniform samples [Vaid and Negussey, 

1988]; on the other head, very loose states are very difficultly reproduced. 

Air depositional method seems the most reliable because, with standard procedures, 

uniformity of the sample is easily achieved [Lo Presti, 1993] and different densities are 

obtained varying easily the height of fall or the sieves opens from witch the sand come 

out [Vaid and Nagussy, 1984; Lo Presti, 1993]. 

 
Figure 3.5-Influence of different depositional methods on the mechanical behavior of Synclude sand in 

simple undrained shear test [Vaid et al, 1995] 

3.3.2 Loading direction and loading type 

A similar range in behavior as observed in sample formed with different depositional 

methods is shown in Figure 3.6 [Uthayakumar and Vaid, 1998], where differences in 

stress-strain behaviors are related to consequence of anisotropy produces during the shear 

stress application.  

The samples of loose Fraser river sand were reconstituted with the same depositional 

methodology and with the same void ratio, but were sheared with different modes; 

actually the samples were sheared with different direction of the principal stress. 

Loading direction of the shear stress applied to the sample is usually associated to α 

parameter: 

(a) 

(c) 

(b) 
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[3.1]  
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This parameter defines the grade of the major applied stress 1 with respects to the 

intermediate stress 2. 

In multi-axial general stress condition is useful to define also the b parameter, capable to 

consider the influence of the intermediate stress on the result of the test: 

[3.2]  
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The major, the intermediate and the minor stress are respectively 1, 2 and 3. 

For example, in triaxial compression tests α = 0 e b = 0 while in triaxial extension tests α 

= 90° e b = 1. 

Introduced the α and b factors, it can be deduced from Figure 3.6 that the strongest stress-

strain response is associated to a shear stress applied with 1 perpendicular to the bedding 

(i.e. triaxial condition with b = 0 and α = 0°) and the weakest one when 1 is parallel to 

the bedding (i.e. b = 1 and α = 90°). The α and b parameters rule response of sand: in 

triaxial compression conditions a strain-hardening behavior is observed while in triaxial 

extension test a soften behavior with a collapse in strength is experienced in the sample; 

in simple shear tests an intermediate stress-strain behavior with a limited phase-

transformation condition were detected. 

Different monotonical behavior of sand is surely linked to the anisotropy of sand’s 

particles. Usually, the methodologies used in laboratories always take the vertical 

depositional direction as the most representative of in situ condition [Bishop, 191; Oda et 

al, 1978; Hanzawa, 1980, Miura e Toki, 1982; Vaid et al., 1990]. 

 
Figure 3.6-Different mechanical stress-strain behavior for triaxial undrained test on Fraser River sand for 

various α and b values   
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3.4 Critical state from triaxial tests 

Critical state line definition was historically associated to the interpretation of medium to 

high density drained tests, while steady state line definition was associated to undrained 

triaxial tests results deduced from loose samples. 

A lot of discussions occurred in the last decades on the difference between the two failure 

lines obtained from drained and undrained tests; the questioning about the uniqueness and 

equivalence of the two curves in e – p’ were usually linked to an incorrect evaluation of 

critical state condition [Casagrande, 1975; Poulos, 1971; Sladen, 1985; Alarcon, 1988, De 

Gregorio, 1990]. This misleading might be related to some confusion between ultimate 

critical and phase transformation state; this last temporary condition can’t be confused 

with an ultimate failure situation, because, if the sample is continuously loaded, it 

presents some extra resistance. 

Laboratory experiences have indicated that the most reliable method for the determination 

of critical (or steady) state line is based on a series of triaxial compression tests on loose 

samples. 

Working with soften specimens, Castro’s approach is usually employed and a series of 

undrained triaxial tests (in stress-controlled apparatus) are always recommended as a 

starting point for critical state line determination. In fact, loose samples don’t develop 

shear bands localization and an accurate evaluation of critical state condition is possibly 

determined because, for a small starting deformation, occurs a fast pore pressure build up. 

Indeed, specimens with a loose of critical state approach to failure with fast deformations 

that are in the range of triaxial tests apparatus. 

Sometimes, undrained tests are usually replaced by drained tests conducted on loose 

samples because they approach failure with a lower rate of displacements, even though 

they take more than a > 20% before critical condition becomes established.  

This change in laboratory practice is linked to some limitations encountered in the 

determination of soften samples; in order to obtain loose of critical states a very high 

consolidation pressure (p’c > 2 MPa) must be applied to the specimens. Such high 

pressures are inconvenient for most commercial triaxial equipment as well as they often 

involves grain crushing effects. 
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The critical state line is considered to be correctly defined when the following cautions 

are considered: 

- uniform samples are prepared with a reliable technique; 

- samples must be fully saturated (B ≥ 0.95); 

- void ratio must be accurately calculated before, during and after the test (Δe = ± 

0.003); 

- apparatus system must be capable to measure very low pressures, as well as very 

high pore pressures generation; 

- number of triaxial tests must be sufficient to have an adequately confidence on 

critical state line determination. 

Been suggested to determine the critical state line from at least 5 tests, in two phases:  

- 3 undrained tests on very loose samples (e1 > e2 > e3) consolidated to a medium 

value of mean confining stress (for example p’c = 350 kPa equal for all samples). 2 

others drained tests on very loose samples with a void ratio similar to e2 from the 

first set data, and consolidated with two different mean effective stress, one higher 

and one smaller than p’c = 350 kPa (say i.e. 200 and 800 kPa); 

- others 3 or more tests in order to correctly define the critical state line slope. 

In the present thesis critical state line and steady state line are considered uniquely 

determined by drained and undrained triaxial tests interpretation [Castro, 1975; Been, 

1991].  

In the following paragraphs are reported the procedures adopted for the determination of 

critical state of sand. 
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3.4.1 Critical state from triaxial undrained tests 

Critical state condition in undrained test is extrapolated from the experimental stress-stain 

and stress-path graphs, as explained below. 

For each test the deviatoric stress qcs, the overburden pressure Δucs, the mean effective 

stress p’cs and the void ratio ecs at critical state conditions were determined as follows:  

- deviatoric stress at critical state condition qcs is derived interpreting the test results in ηi - 

a,i, where stress ratio is defined as ηi = qi/p’c. At large axial deformation the stress-stain 

curves approach to the same critical stress ratio ηcs = Mtc and consequently qcs: 

[3.3]  ctccs pMq '
 

- overburden pressure Δucs is graphically defined as the asymptotic value of pore pressure 

in Δu – a plane but it must satisfied simultaneously δu/δa = 0 and δq/ δa = 0; 

- the mean effective stress at critical state is deduced from the following equation: 

[3.4]  
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Where the subscript c is associated to the end of consolidation condition, f to the end 

of test condition, cs to the critical state condition and tc to triaxial compression test 

condition. 

Note that the values of Mtc = ηcs = ηf are coincident for undrained tests and the void ratio 

at critical state is defined as ecs = ec. 

3.4.2 Critical state from triaxial drained tests 

In drained tests the critical state is extrapolated considering that the failure condition is 

easily deduced when both mean dilatancy D and its rate variation,  ̇, are zero: the last 

condition is the most important one in order to correctly determine critical state line. 

Generally, the dilatancy  ̇ is defined as an increment of principal strains: 

[3.5]  
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Where v an q are the volumetric and deviatoric deformations; dilation is conventionally 

negative for dilatant samples after the peak value ηp. 

The mobilized dimensionless stress is defined as: 
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[3.6]  
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Where q and p’ are the deviatoric and mean effective stresses. 

The critical states of all tests involved in this research are extrapolated as summarized 

hereafter: 

- using the Stress-Dilatancy method (described below) the deviatoric stress qcs at the 

critical state is defined, linearly extending the end-path of each test’s graph in q –  ̇ plane 

until  ̇ = 0; 

- the mean effective stress at failure p’cs is defined as follows: 

[3.7]  
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- the critical void ratio value ecs is defined by considering the total volumetric variation of 

the sample, extrapolating v,cs from a – v plot: 

[3.8]  )1()( ,, ccsvfvfcs
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The subscript f, cs and c have the same meaning already reported for undrained 

tests. 

The critical state angle of shear resistance ϕcs appears to be constant for a particular soil 

under triaxial compression conditions; however, there is no agreement on the most 

accurate method to determine its value. Ghafghazi and Shuttle (2006) suggested that the 

(i) Bishop and (ii) Stress-Dilatancy methods are the most reliable procedures for the 

determination of ϕcs from triaxial compression test. 

Bishop’s method (1972) is based on the interpretation of dense of critical drained tests. 

For each test the value of the total minimum dilatancy Dmin (δv/ δ1) at peak strength is 

computed neglecting the zero elastic strain (from compression to extension strains) and 

the total and plastic strains increments are considered identical. 

This method relies on the experimental observation that dilatancy and hence peak angle of 

shear resistance, increase with density; for sand that reaches the critical state directly 

(contractive behavior) the peak stress ratio corresponds with the critical state value, where 

ηcs = Mtc and Dmin = 0. For convenience, this method is used to interpret the results in max 

– Dmin plane, instead of using the peak shear angle.  

After plotting the drained tests values in ηmax – Dmin, it is possible to determine Mtc 

extrapolating linearly the fitting line until D = 0. The slope of this line, (N1), has been 
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used by some researchers as a material parameter [Nova 1982; Jefferies, 1993]; N is 

called the volumetric coupling parameter. 

Stress-Dilatancy method, involves extrapolating the plot of the only post-peak stress ratio 

η versus dilatancy D data to zero.  

This provides good predictions when shear localizations are not involved after the post-

peak strength value. At larger strains (above 15%) other problems such as a higher effect 

of membrane penetration, tilting or bulging of the sample could occur, hence the data 

should be used very carefully especially after the post-peak data.  

For known stress conditions the angle of shear resistance is directly related to the stress 

ratio at the critical state; in triaxial compression tests: 

[3.9]  
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Where Mtc is the stress ratio and ϕcs is the angle of shear resistance at the critical state and 

under triaxial compression conditions. 
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3.5 Physical and mechanical characteristics of Toyoura Sand  

The Japanese Toyoura sand has been widely studied by various authors [Yoshimi, 1977; 

Oda, 1978; Tatsuoka, 1986; Hyodo, 1991; Yamashita, 1993; Hyodo, 1994; Verdugo, 

1992; Ishihara, 1993; Georgiannou, 2008; Chiaro, 2012]. 

It is a uniform fine sand having sub-angular grains with a high content of quartz (90%) 

and a small content of feldspar (7%) and chert (3%) [Fioravante et al., 1992]. 

The two grain size distributions are reported in Figure 3.7.  

Toyoura sand used in monotonic and cyclic triaxial tests (called Toyoura 180) is 

compared to the one used in calibration and centrifuge tests (called Toyoura 220); a small 

difference is observed between the two sands in both uniformity and grains distribution. 

 
Figure 3.7- Grain size distribution of Toyoura Sand  

Critical state line adopted in this thesis is the one obtained from a great number of triaxial 

isotropically consolidated tests [Verdugo, 1992; Ishihara, 1993]. The samples were 

reconstituted with different depositional methods (i.e air depositional, wet-tamping and 

water sedimentation methods), in order to study the widest range of possible physical 

state, varying both relative density (DR = 7 ÷ 65%) and mean effective stress (p’c = 100 ÷ 

3000 kPa). 

Critical state points are reported in Figure 3.8, together with the critical state line obtained 

by a non-linear regression fitting calculation; it is defined as [Verdugo, 1992; Li and 

Dafalias, 2004]: 
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Where: 

 is a sand property, defined as the void ratio for p’ = 1 kPa; 

 is a sand property, linked with the compressibility of the sand; 

n is a sand property, defined as the stress exponent; 

patm is the reference atmospheric pressure usually equal to 101 kPa. 

In Figure 3.8 is also evident how the critical state line is independent from the samples 

preparation method. 

In Table 3.1 are summarized the physical and mechanical characteristics of Toyoura sand: 

grain-size, physical properties, critical state line parameters and angle of shear resistance 

[see Jefferies and Been, 2006] of Toyoura 220 and Toyoura 180 have small variations and 

only Toyoura sand will be used in the future, as they will be considered equal. 

 
Figure 3.8- CS – Line for Toyoura sand in e – p’ plane. WT water-tamping method; DD dry 

depositional method; WS: water sedimentation method [Verdugo and Ishihara, 1993]. 
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Table 3.1- Physical and mechanical characteristics for Toyoura sand 

3.6 Physical and mechanical characteristics of Ticino Sand  

All triaxial tests on Ticino sand belong to the database of ISMGeo (Istituto Sperimentale 

Modelli Geotecnici, formerly ISMES, Seriate – BG – Italy). Ticino sand is a uniform 

mainly feldspathic (65%) sand, with quartz (30%) and minor mica content (5%) 

[Jamiolkowski, 2003].  

Its particles have high sphericity, small roundness and its angularity is defined as sub-

angular-to-sub-rounded [Baldi, 1982; Bellotti, 1989]. The grain-size distribution is 

reported in Figure 3.9, while the physical characteristics in Table 3.3. 

The critical state parameters are derived interpreting triaxial drained and undrained 

compression tests. The samples were prepared by air depositional method and they were 

both isotropically and anisotropically consolidated. These tests are integrated with some 

triaxial tests carried out on wet-tamped samples conducted by Been (1986) [source 

Golder Associates]. In order to cover the widest range of the physical states of sand, mean 

effective stress range between 50 kPa to almost 800 kPa. 

In Table 3.2 are summarized the main data with respect to the tests used for the critical 

state line definition: type of tests and load conditions, tougher with the physical state both 

at the end (ec, p’c, qc) and at the critical state (ecs, p’cs, qcs) conditions are reported. 

The extrapolated critical state points deduced from drained and undrained tests as 

described in Paragraphs 3.4.1 and 3.4.2, are shown in Figure 3.10 in e – p’ plane; even 

though the general trend seems clear, the scatter in data points for the drained tests is 

much more significant than for the undrained tests, which seems preferable for evaluating 

the critical state. Although, tests lead to the determination of the critical state line with a 

non-linear shape as proposed by various authors [Been, 1991; Ishihara, 1993; Li and 

Wang, 1998]. Critical state line for Ticino sand is defined as follows: 

Physical properties

min max emin emax Gs D50 Cu

kN/m
3

kN/m
3 - - - mm -

TOS 220 13.09 16.13 0.611 0.986 2.65 0.22 1.31

TOS 180 13.15 16.28 0.597 0.977 2.65 0.18 1.52

Mechanical properties

  n Mtc ϕcs

[-] [-] [-] [-] [°]

0.934 0.019 0.7 1.24 31
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Where , , n and patm are defined as in Equations 3.10. 

For undrained tests the calculated state parameter is slightly minor or greater than zero ( 

= -0.01 ÷ 0.03) and the overburden pressure were positive in the samples until phase-

transformation occurs; after the drop in shear resistance and with the decreasing of 

confining pressure, the samples tend to developed a change in pore water pressure from 

positive to slightly negative. It is noticed that the quasi-steady state is associated to an 

axial deformation ranging from 3 % to 10 % [Ishihara et al., 1975; Alarcon-Guzman et 

al., 1988; Ishihara, 1993; Verdugo, 1992].  

Drained tests have negative state parameters ( = -0.02 ÷ - 0.15) so dilatant behaviors 

ware always observed. 

Angle of shear resistance at critical state is also deduced from triaxial tests, interpreting 

the data with both (i) Stress-Dilatancy and (ii) Bishop’s methods. 

The first methodology consists in the linear extrapolation of the critical ratio ηcs for zero 

dilatancy reporting the data in ηi – Di graph; this procedure is used for the determination 

of critical state conditions in drained triaxial tests, assuming that axial and deviatoric 

deformation are similar. In Figure 3.11 are reported the extrapolated critical state values 

in the q – p’ plane using the methodology proposed in Paragraph 3.4.2 (Stress-Dilatancy 

method). The slope of the fitting line leads to determine ηcs = Mtc = 1.36 and the critical 

angle of shear resistance is ϕcs =34°. 

The second methodology considers that a linear fitting curve is determinable in ηmax – 

Dmin plane. In Figure 3.12 are reported the values deduced from each drained triaxial tests 

and the linear trend with the black fitting line. For zero dilatancy the critical ratio is 

deduced as ηcs = Mtc = 1.33 and the critical angle of shear resistance is defined as ϕcs = 

33°.  

The two methodology used for the determination of the critical angle of shear resistance 

are compared in Figure 3.13. The experimental data are reported in ηi – Di for the only 

drained 172 test as an example: the dotted black line is extended until D = 0 and ηcs = Mtc 

= 1.38 (Stress-Dilatancy method) while the white circle symbol represents the point 

where the maximum stress ratio ηmax and the minimum dilation Dmin occurs in the same 

moment (Bishop’s method).  
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The angle of shearing resistance at the critical state is considered equal to ϕ’cs = 34°, as 

the analysis with the two proposed methodology hang over a very small difference in its 

evaluation (Δϕ = 1°) 

All triaxial tests and their critical state evaluation are reported in Appendix A, while in 

Table 3.3 are summarized the physical and mechanical Ticino sand characteristics. 

 
Figure 3.9- Grain size distribution of Ticino Sand  
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Table 3.2- Main characteristics for triaxial tests carry out on Ticino sand’s samples 

 
Table 3.3- Physical and mechanical characteristics for Ticino sand 

 

Test Type Stress path Sourse ec σ'vc σ'hc p'c q'c  OCR/R ecs p' cs qcs ηcs

[-] [kPa] [kPa] [kPa] [kPa] [-] [-] [-] [kPa] [kPa] [-]

171 CK0D 3=cost ISMES 0.759 500 235 324 265 -0.082 1.2 0.810 439 610 1.39

172 CK0D 3=cost ISMES 0.773 401 221 281 180 -0.074 1.5 0.824 397 530 1.33

CK5 CK0D 3=cost ISMES 0.790 877 370 539 507 -0.028 1 0.809 677 921 1.36

K6 CK0D 3=cost ISMES 0.730 1447 581 870 866 -0.059 1 0.770 1061 1440 1.36

K8 CK0D 3=cost ISMES 0.798 774 341 485 433 -0.025 1 0.827 620 837 1.35

M32 CID 3=cost ISMES 0.640 800 800 800 0 -0.154 1 0.678 1543 2230 1.44

R14 CK0D p' cost ISMES 0.698 1200 507 738 693 -0.102 1 0.778 726 980 1.35

U21 CK0D 3=cost ISMES 0.756 301 298 299 3 -0.088 4 0.814 525 680 1.30

U22 CK0D 3=cost ISMES 0.796 125 124 124 1 -0.076 4 0.856 212 265 1.25

U24 CK0D 3=cost ISMES 0.760 125 118 120 7 -0.112 4 0.827 205 260 1.27

U36 CK0D 3=cost ISMES 0.751 200 246 231 -46 -0.103 6 0.785 420 521 1.24

U38 CK0D 3=cost ISMES 0.760 50 59 56 -9 -0.129 6 0.852 102 130 1.27

U50 CK0D 3=cost ISMES 0.785 75 94 88 -19 -0.095 8 0.847 164 210 1.28

V9 CK0D 3=cost ISMES 0.687 1155 437 676 718 -0.118 1 0.761 810 1119 1.38

CID_C262 CID 3=cost GOLDER 0.851 200 200 200 0 -0.008 1 0.819 324 374 1.16

CID_C263 CID 3=cost GOLDER 0.781 200 200 200 0 -0.078 1 0.796 337 407 1.21

LIQ_1101 CIU 3=cost GOLDER 0.867 308 308 308 0 0.024 1 0.867 147 155 1.05

LIQ_1103 CIU 3=cost GOLDER 0.877 302 302 302 0 0.033 1 0.877 95 103 1.08

LIQ_1105 CIU 3=cost GOLDER 0.898 279 279 279 0 0.051 1 0.898 36 38 1.05

LIQ_1106 CIU 3=cost GOLDER 0.850 504 504 504 0 0.029 1 0.850 278 334 1.20

H0 CIU 3=cost ISMES 0.810 800 800 800 0 0.015 1 0.810 845 1126 1.33

H1 CIU 3=cost ISMES 0.831 400 400 400 0 -0.001 1 0.831 486 649 1.34

H2 CIU 3=cost ISMES 0.827 500 500 500 0 0.005 1 0.827 582 788 1.35

H3 CIU 3=cost ISMES 0.826 600 600 600 0 0.014 1 0.826 687 921 1.34

H4 CIU 3=cost ISMES 0.812 700 700 700 0 0.009 1 0.812 728 983 1.35

H5 CIU 3=cost ISMES 0.808 800 800 800 0 0.013 1 0.808 751 1022 1.36

H6 CK0U 3=cost ISMES 0.816 750 341 477 409 -0.008 1 0.816 781 1079 1.38

H7 CK0U 3=cost ISMES 0.844 750 367 495 384 0.022 1 0.844 571 764 1.34

H8 CK0U 3=cost ISMES 0.846 750 360 490 391 0.024 1 0.846 561 753 1.34

H10 CK0U 3=cost ISMES 0.839 600 286 391 315 0.006 1 0.839 530 703 1.33

H11 CK0U 3=cost ISMES 0.842 750 344 479 406 0.019 1 0.842 527 699 1.33

H12 CK0U 3=cost ISMES 0.841 900 428 585 473 0.028 1 0.841 641 849 1.32

H13 CK0U 3=cost ISMES 0.825 1050 479 669 572 0.019 1 0.825 682 911 1.34

H14 CK0U 3=cost ISMES 0.826 1200 556 770 644 0.029 1 0.826 717 962 1.34

H15 CK0U 3=cost ISMES 0.812 750 358 489 392 -0.011 1 0.812 692 944 1.36

H16 CK0U 3=cost ISMES 0.813 750 359 489 391 -0.009 1 0.813 639 868 1.36

Physical properties

min max emin emax Gs D50 Cu

[kN/m
3
] [kN/m

3
] [-] [-] [-] [mm] [-]

13.64 16.67 0.574 0.923 2.68 0.53 1.3

Mechanical properties

  n Mtc ϕcs

[-] [-] [-] [-] [°]

0.923 0.046 0.5 1.37 34
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Figure 3.10- CS – Line for Ticino sand in e – p’ plane 

 
Figure 3.11- Determination of critical shear angle ϕcs in q – p’ plane. Critical state for drained tests deduced 

with Stress-Dilatancy method. 
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Figure 3.12- Determination of critical shear angle ϕcs with Bishop’s method in ηmax – Dmin plane 

 
Figure 3.13- Interpretation of drained 172 test in ηi – Di plain for Mtc determination. Stress-Dilatancy 

method (black dot line) and Bishop’s method (white circle) 
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Chapter 4 

 

 

 

 

4 Cyclic Behavior of Saturated Sand 

 

 

 

 

4.1 Cyclic resistance from reconstituted sample 

Dynamic behavior of saturated sand has been widely studied by using results from 

reconstituted samples tested by triaxial, simple shear and torsional shear apparatus.  

Test results evidence that cyclic resistance of sand is mainly influence by (i) initial 

condition state (ec, p’c), (ii) intensity and shape of the dynamic stress, (iii) number of 

cycles imposed and (iv) level of deformation [Yoshimi et al, 1977; Seed, 1979]. 

Some in-depth elements influencing cyclic resistance to liquefaction are discussed here 

after. 

4.1.1 Void ratio and initial effective stress 

The major parameter influencing cyclic behavior of sand is the relative density, DR, or, 

better, initial void ratio, e. Indeed, while relative density takes into account the maximum 

and minimum packages of sand, it does not predict the possibility of liquefaction 

condition, because even medium to dense sands may present loss of resistance due to 

dynamic loading. Actually e controls the type of failure mechanism in sand and influence 



Chapter 4                                                                     Cyclic Bahavior of Saturated Sand 

80 

the cyclic strength, as well as the liquefaction resistance increases with the increasing of 

void ratio as can be notice in Figure 4.1 [Tatsuoka, 1986]. 

The effect of initial confining pressure p’c is also important on dynamic behavior of sand 

as two samples, with the same void ratio, have different mechanical comportments. 

Worse luck, the effect that confining pressure has on the test results is a controversial 

argument in literature. 

 
Figure 4.1- Stress ratio versus Nc to 10% DA axial strain by triaxial tests on Toyoura sand for different 

initial density and sample preparation [Tatsuoka, 1986] 

Benahmed (2001) shown that the more the confining pressure ’3c increasing the more 

the cyclic strength was high: in fact, very loose specimens subjected to the same cyclic 

stress ratio, request more cycles to liquefaction when consolidation pressure increases. On 

the contrary, Hyodo et al. (2002) performed cyclic isotropical consolidation triaxial tests 

on dense sand and obtained a decrease of cyclic strength up to very high pressure, more 

than 1 MPa (see Figure 4.2). This last evidence is confirmed by other authors, which 

tested also samples with smaller consolidation pressure and higher void ratio [Vaid, 1985; 

Vaid and Sivathayalan, 1995]. 

The influence of stating stress conditions of the specimen, i.e. anisotropical or isotropical, 

has also been studied by many researchers [Seed, 1979; Ishihara, 1996; Hyodo, 2002; 

Ghionna and Porcino, 2006; and so on].  

They all agreed that the initial stress condition influences the cyclic behavior of sand. 
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Figure 4.2- Isotropic cyclic strength curves for different consolidation pressures in triaxial conditions 

[Hyodo, 2004] 

4.1.2 Depositional methods 

Specimens tested in research are usually reconstituted by various depositional methods in 

order to better reproduce the anisotropy and fabric of in-situ conditions.  

Mulilis (1977) conducted a large number of triaxial tests on specimens reconstituted with 

various methods in order to quantify the influence that the depositional methods might 

have on the cyclic behavior of sand. The results are reported in Figure 4.3, where the 

resistance curves, ’d/(2∙’0) – N, belong to the samples with the same initial physical 

states but reconstituted with different methods: vibratory compaction methods (a) or 

compaction methods (b).  

Air pluviation technique leaded to the lowest liquefaction resistance, while moist tamping 

technique the strongest ones. This result is in agreement with other researches, as far as 

these two methods determine the lower and the upper limits for cyclic resistance 

determination for reconstituted specimens [Yoshimi, 1984; Tatsuoka, 1989]. 

As liquefaction evaluation depends on depositional methods, the aim in each research is 

to choose the methodology capable to better assessment the arrangement of in-situ 

particles. It seems essential the comparison between results from undisturbed and 

reconstituted samples subjected to cyclic loading.  

Yoshimi et al. (1984) conducted tests on (i) in-situ freezing and (ii) in-situ triple tube 

samples, (iii) reconstituted sample changing the depositional method in air pluviation 

(PA) and moist tamping (MT). The results, summarized in Figure 4.4, shown the clear 

difference between the cyclic resistance to liquefaction obtained by the in-situ freezing 

(FS) and triple-tube sampling (TS) technique. In particular TS method tended to 

underestimate the cyclic resistance to liquefaction, because of a probably variation in 
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structure and void ratio during sampling. Air pluviated samples seem more convenient 

instead triple-tube technique, also because the tests results were found to be comparable 

[Ishihara, 1985]. Furthermore, neither MT nor AP methods reproduce correctly the real 

cyclic behavior of undisturbed sand (FS sample); they all tended to underestimate the 

cyclic resistance. 

Ghionna et al. (2006) tested Gioia Tauro sand in triaxial cell and deduced that specimens 

reconstituted with water sedimentation method have very similar cyclic resistance if 

compared with that of undisturbed samples.  

 
Figure 4.3-Cyclic stress ratio versus number of cycles for different: a) vibratory compaction procedure, b) 

compaction procedure [Mulilis, 1977] 

 
Figure 4.4-CSRs required to cause 5% double-amplitude axial strain of in-situ frozen samples (FS), 

conventional “undisturbed” tube samples (TS), samples reconstituted by air pluviation (AP), and samples 

reconstituted by moist tamping (MT) [after Yoshimi et al. 1984] 
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4.1.3 Initial stress conditions 

Depositional environment and stress history of the deposit affected the anisotropy of sand, 

but how the initial particle configuration influences the cyclic liquefaction resistance has 

some contradictory results in literature. It is wildly recognize that (i) the initial physical 

state and (ii) stress/non-stress reversal of dynamic loads are the mains influencing factors. 

For Seed (1979) and Ishihara (1979, 1996), liquefaction resistance increased with the 

increasing of stress ratio k0 (k0 = 0.5 ÷ 1.5). Ghionna and Porcino (2006) establish a small 

increasing of resistance with the increasing of k0, for only samples prepared with air 

depositional method; opposite results have been reached for samples prepared with water 

sedimentation method, which shown a decreasing of resistance with the increasing of k0 

values (with k0 values from 0.59 to 1). 

Hyoda (2002) demonstrated that the increase or decrease of cyclic resistance was related 

to the stress reversal of dynamic stress applied to the specimens. In Figure 4.5 is reported 

a summary of the cyclic triaxial isotropically and anisotropically consolidated tests results 

of Aio dense sand (DR = 80%). In the case of isotropically consolidated tests always stress 

reversal happens: considering a constant number of cycles to liquefaction, the resistance 

to liquefaction decreasing with the increasing of confining pressure.  

When a static shear is imposed on the sample two different behaviors were observed: (i) 

for low consolidation pressures cyclic resistance increased with the decreasing of k0 value 

(with k0 values from 0.5 to 1) because stress-reversal always occurred, (ii) tendency of 

decreasing resistance with increasing of k0 values, when pressures are very high and 

stress-reversal did not occur.  

Different results are obtained from of a series of torsional and laterally constrain tests 

reported in Figure 4.6 [Ishihara, 1979] in the (d/’v0) – N ( = 2.5%) space. For constant 

density and consolidation pressure the resistance of samples with k0 > 1 is greater in 

comparison with sample with k0 < 1. This type of behavior is confirmed also from simple 

shear test results [Tatsuoka and Silver, 1980, 1982]. 
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Figure 4.5-Variation of cyclic strength at N = 20 cycles with initial shear stress ratio in triaxial stress 

condition [Hyodo et al., 2002] 

  
Figure 4.6-a) Effects of k0 consolidation on cyclic strength under the condition of lateral constraint.b) 

Cyclic stress ratio versus the number of cycles for the ACOT tests with different k0 conditions. Results from 

torsional tests on Fuji River sand [Ishihara, 1979] 

As can be deduced from the above considerations, cyclic resistance would be also related 

to the particular apparatus used. In effect, considerably discrepancy between the various 

started-stresses conditions and principal stress direction, are not negligible and a direct 

comparison between results from various tests are not possible.  

Ishihara (1972, 1977, 1985) suggests a correction factor for cyclic liquefaction resistance 

in order to consider the different results raise from isotropically and anisotropically 

consolidation conditions. The research, based on torsional tests, provided that the cyclic 

resistance from anisotropically consolidated test is linearly related to cyclic resistance 

from isotropical consolidation tests, by a factor enclosing the stress ratio k0: 

[4.1]  10
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This consideration brought up by the observation that, normalized the shear stress by p’c 

instead of ’v0, the cyclic resistance of a sand with different k0 values is defined only by 

number of cycles (Figure 4.6 b), for the case of torsional test results with lateral strains 

prevented. 

Similarly, the CRR from the simple shear tests can be related to the results of triaxial tests 

as follows: 

[4.2]  
TXssSS CRR

k
CRR

3

21 ,0
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For normally consolidated sand the reduction factor coefficient is nearly 0.65. This 

relationship is found to be consistence with the range of results obtained by various 

researcher [De Alba, 1976; Tatsuoka, 1986], although it seems to vary with density and 

depositional method [Tatsuoka, 1986]. 

4.1.4 Rotational effects of principal stress 

Characterized earthquake loading only by stress ratio CSR = d/’v0, in some cases can be 

restrictive as it does not link the liquefaction potential with the changes in principal stress 

directions; this last consideration is probably the main cause of liquefaction problems 

[Arthur et al., 1980; Wong e Arthur, 1986]. 

Ishihara and Towata (1993) studied the effect of variation in principal stress direction 

using cyclic simple shear device. Loose Toyoura sand was drainelly subjected to reversal 

stresses from 0° to  45°, keeping constant deviatoric and mean effective stress (p’c = 300 

kPa). Even if invariants ware unchanged during tests, principal stress rotation on its own 

caused the irreversible volumetric strains accumulation; q and p’ gradually decreased as 

number of cycles increased pointed out a hardening response of sample. 

Cyclic rotational of principle stress directions in sand which causes strain, radically alters 

the behavior of material from that presents in shear under constant direction of principal 

stress [Wong and Arthur, 1986].  

In triaxial test condition, direction of principal stress changes from + 90° to – 90° leading 

the largest excursion in variation of α parameter introduced in Chapter 3. On the contrary, 

simple shear test with lateral constrained strains brings a limited excursion of principal 

stress directions, which continually re-orientating during shearing. 
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4.2 Influence of criteria used in liquefaction estimation 

Seed and Lee (1966) concluded that the larger the stress or stain, the lower the number of 

cycles required to induce liquefaction; also, the more the number of stress cycles to which the 

sand is subjected, the more likely the liquefaction failure will occur. These two factors are 

directly related to the magnitude of cyclic loading.  

Generally, volumetric cyclic threshold shear strain tv is the limit shear strain after which 

significant permanent volume changes or permanent development of excess pore water 

pressure occurs in the soil. Its values seems to be independent from relative density, 

initial effective stress and fabric, and it is defined approximately at a shear deformation 

level of tv ~ 10
-4

 for most sands and silty sands [Dobry et al., 1982].  

For cyclic strain below tv there is no permanent microstructural change, on the contrary a 

permanent volumetric strain and high excess pore water pressure developments cause a 

stiffness degradation effect on sand.  

The load applied produces a cyclical stress (and so strain) reversal and two events might 

occur in the sand with the increasing of cycles: (i) the generation of plastic deformations 

under stress-controlled cycles and (ii) excess pore water pressure increases in undrained 

condition. 

In cyclic liquefaction tests the excess pore water pressure is usually expressed as: 

[4.3]  
c

u
u

R
3'




 

The pore pressure measure Δu is normalized by the minor initial effective stress ’3c.  

The Equation 4.3 is useful to determine the start of liquefaction, as well as when Ru = 1 

sand does not have any shear resistance. It must be noted that in tests with no stress-

reversal, great strains may occur but Ru = 1 could not be reached. 

Seed (1979) proposed to use as failure criteria the threshold pore pressure value Ru = 

100% but, due to limitation of applicability (i.e. Ru = 100% not always reached for all 

sands and silty sands), the specimen is said to be fully liquefied when a certain value of 

axial strain amplitude is reached. Different values of a are used in literature as a 

liquefaction criteria, almost the choice of which ones depending on the serviceability limit 

the project wants to achieve. The more the tested sand is dense, the more the difference in 

cyclic resistance curves are important if different strain conditions are used for 
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liquefaction definition. This is due to the fact that, after the initial liquefaction, the 

increase in the strain amplitude with each subsequent cycle is much more smaller in the 

case of dense sand than for loose one [Lee and Seed, 1967]. On the contrary, for loose 

sand the initial and fully liquefaction are nearly coincident and the strain criteria used 

doesn’t influence the final CSR – N curves. 

A definition based on threshold strain level seems appropriate for laboratory test. Ishihara 

(1996) proposed to assume as reference deformation level a (DA) = 5% for triaxial test 

(where DA: double amplitude, i.e. distance between minimum and maximum value of 

load). 

4.3 Linking monotonic and cyclic behavior 

Relating cyclic with monotonic behavior of sand seems to be a good approach in order to 

understand how resistance of a granular material changes in dependence of the loading 

type. Researches from Chen (1985), using triaxial tests results, and Alarcon-Guzman et 

al. (1988), using torsional test results, were the first that try to link monotonic and cyclic 

behavior of loose sand. As a conclusion, Vaid and Chen (1985) mentioned that in cyclic 

tests, the flow deformation initiated when the stress-path reached the peaks envelope line 

(herein called CSR). On the other hand, Alarcon et al. stated that flow liquefaction 

occurred when the stress state during cyclic loading reached the effective path from 

monotonic tests, in compression or in extension. 

Using results from some undrained triaxial test on very loosely samples, Sladen (1985) 

shown the existence of a surface in e – p’ – q space that separated stable from unstable 

behavior of loose sand (Figure 4.7). In q – p’ plane this surface is a straight line that 

interpolate the maximum peaks resistance qp and p’p and is usually called collapse line 

[Ishihara, 1993] or instability line [Lade, 1983]; this line is unique for a given void ratio 

and independent of consolidation pressure. In the space the collapse surface is an 

envelope of all peaks of stress, after which a drastic decay of resistance is observed in 

monotonic tests [Castro et al, 1982; Sladen et al., 1985; Sasitharan, 1992, Ishihara, 1993].  

In Figure 4.8 is reported the result of a cyclic torsional test conducted on loosely 

reconstituted specimens of Fontainebleu Sand [Georgiannou, 2008], where the monotonic 

and cyclic behaviors are compared. With the continues application of cycles, pore water 
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pressure rise up slowly until the effective stress-path reach the I – Line (IL in graph, on 

the basis of Lade definition) in correspondence of point (4) in  – p’ plane. From point (4) 

to point (5) the shear deformation increase rapidly in spite of increment of stress is small. 

Until point (6) pore water pressure accumulation during shear increases, than decreasing 

up to point (7) because effective stress path overtakes the PT – Line and the mechanical 

behavior from contractive became dilatative. 

If sample is reloaded the pore pressure again builds up and cause a quasi- zero effective 

stress and so liquefaction of sand. This state, generally, is momentary and sand continues 

to carry on loads and manifests cyclic mobility. Usually, collapse of sand always happens 

in the extension zone when a stress reversal load is applied. 

De Gennaro (2004) evidenced that sand behavior is controlled by the same characteristics 

lines when it was monotonically and cyclically stressed: the phase-transformation line 

(PT – Line), the critical state line (CS – Line) and the collapse/instability line (I – Line), 

the last one function of void ratio and type of load (i.e. compression or extension).  

Instead the different ideas propose in literature there is a good agreement in asserting that 

flow deformation is very likely to occur when stress path is in the range between PT – 

Line and I – Line. 

 
Figure 4.7- The collapse surface in p’ – q – e space showing typical stress – void ratio path followed by 

samples in triaxial undrained compression tests [Sladen et al., 1985] 
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Figure 4.8- Effective stress path of undrained cyclic torsional hollow cylinder test conducted on loose 

Fontainebleau Sand [Georgiannou, 2008] 
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4.4 Method of liquefaction evaluation in triaxial tests 

The assessment of liquefaction susceptibility using the cyclic stress-approach follows 

three steps: 

- characterization of earthquake loading converting an irregular motion of known moment 

magnitude into an equivalent cyclic loading of regular amplitudes and certain number of 

cycles; 

- characterization of cyclic liquefaction of soil using the simplifying concept of cyclic 

stress ratio CSR: usually the resistance is consider at a given number of cycles and for 

different initial state of sand; 

- evaluation of safety factor FS, considering the ratio between CRR required to cause 

liquefaction and the CSR equivalent to earthquake-induced shear stress. 

Usually, several cyclic tests with different stress amplitudes are conducted on a given 

sand varying both void ratio and mean effective stress at the end of consolidation. The 

number of cycles to liquefaction decreases with the increasing of the cyclic amplitude 

stress; commonly the test results are represented in a plot where cyclic stress ratio is a 

function of number of cycles that produce liquefaction. 

Focusing on triaxial isotropically consolidated tests results, cyclic stress ratio CSR is 

cyclically applied to the specimens with a stress-controlled device, and is defined as 

follows: 

[4.4]  
c

TX q
CSR

3

max

'2 


 

Where qmax represents the maximum deviatoric stress applied to the sample and ’3c the 

minimum effective stress at the end of consolidation phase. 

CSR is supposedly uniquely related to the number of cycles at failure for a given void 

ratio and pressure and the criterion for failure individuation is usually based on strain-

amplitude or pore pressure considerations.  

Worldwide used criteria is highly recommended in liquefaction analysis because CSR is 

very sensitive, not only to initial physical state of tested sample, but also to depositional 

method, OCR, aging [Dobry et al., 1982], shape of particles [Vaid et al., 1985; 

Benahmed, 2001; Geogiannou, 2008], as well as type and intensity of load; furthermore, 
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is well known that resistance to liquefaction is higher for tests without stress-reversal 

(only q > 0) that for tests with stress-reversal [Benahmed, 2001; De Gennaro, 2004]. 

The common practice is to consider soil liquefied when the development of 5% double-

amplitude axial strain is reached. It must be underlined that for very dance sand the CSR 

– N curves, depends strongly on the strain criteria chosen (i.e. a from 2.5 to 10%). In 

contrast, cyclic resistance curve for medium-to-loose sand is almost independent from the 

strain amplitude adopted to quantify liquefaction [Yoshimi, 1984; Toki et al., 1986]. 

From cyclic triaxial tests are possibly definable the cyclic resistance ratio CRR fulfilling a 

given failure criterion in a certain number of cycles N; this means that for different CSR – 

N curves, defined for different physical state of sand, the number of cycles need to be 

specified in the constant-amplitude uniform cyclic loading 

In Figure 4.9 is reported a correlation proposed by Idriss (1999), representing the number 

of equivalent cyclic for different earthquakes magnitude; usually, the cyclic resistance 

ratio is considered for an equivalent number of cycles of N = 15 (earthquake magnitude 

Mw = 7.5), in view of typical number of significant cycles being presents in many of 

actual and past time histories of accelerations record [Seed and Idriss, 1982, Ishihara, 

1996]. 

Most of the tests data concerning liquefaction used in this thesis have been obtained using 

the cyclic triaxial test and the difference between in-situ and laboratory tests was taken 

into account applying to the cyclic stress ratio from triaxial tests results the correction 

factor proposed in Equation 4.1 

 
Figure 4.9- Mean number of equivalent uniform cycles at 65% of the peak stress versus earthquake 

magnitude [Idriss, 1999] 
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4.5 Cyclic behavior of Toyoura Sand  

Cyclic resistance to liquefaction of Toyoura sand has been widely examined by many 

authors using different test apparatus (triaxial, simple shear and torsional apparatus) 

[Miura and Toki, 1982; Toki et al., 1986; Yomashita and Toki, 1993; Ishihara, 1993; 

Chiaro, 2012].  

In this research results from triaxial cyclic test published by Toki et al. (1986) have been 

considered. 

The maximum and the minimum densities of sand used by Toki in its experimentation 

were determined by JSSMFE methodology and resulted as d,max = 1.645 g/cm
3
 (emin = 

0.977) and d,min = 1.335 g/cm
3
 (emax = 0.605) while the mean diameter was defined as 

D50 = 0.18 mm.  

The samples were reconstituted by air depositional method and tested by five different 

laboratories in Japan. The slenderness of the specimens was kept constant (H/D = 2 ÷ 2.5) 

while the height, the diameter, the cyclic stress ratio and the void ratio were varied in 

order to determine their influence on cyclic resistance ratio.  

The difference in results from samples with different dimensions (i.e. D = 7 – 10 cm) 

were found to be negligible, even if the more the sample diameter was great the more the 

error in the measure resulted in less accuracy [Tatsuoka et al., 1986]. 

The results of the extensive series of the cyclic triaxial isotropical consolidated tests (with 

p’c = 98.1 kPa) are presented in Figure 4.10 in CSR
SS

 – N plane, where cyclic stress ratio 

deduced from triaxial condition is reduced by a quantity that keeps into account in-situ 

state and N is defined when axial deformation a(DA) = 5% [Toki et al., 1986]. In the 

normally useful range of N values adopted for cyclic resistance determination, it has been 

demonstrated that for loose to medium Toyoura sand the CRR is not influenced by the 

deformation values assumed as reference for liquefaction definition; on the contrary for 

high relative density the choose of 1 to 10 % DA deformation might produces some little 

cyclic resistance differences. 

In this thesis the results are grouped in two families with two different void ratio and state 

parameter: the set with higher and lower density have respectively a mean void ratio and a 

mean state parameter equals to ec = 0.684 ( = - 0.231) and ec = 0.788 ( = - 0.127). 
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Results from another research conducted by Hyodo (1994) are superimposed on the same 

graph; the tested samples of dry pluviated loose Toyoura sand have DR = 35% and p’c = 

100 kPa. The differences of the cyclic resistance behavior between loose-to-medium 

density is small if compared to the bigger one obtained between medium-to-dense sand. 

State parameters are deduced considering the non-linear critical state line obtained by 

Verdugo (1992), already reported in Chapter 3. 

The curves that interpolates data are defined as CSR
ss

 ( = -0.231) = 0.331∙N
-0.302

 and 

CSR
ss

 ( = -0.127) = 0.11∙N
-0.149

.  

Cyclic resistance of sand is clearly state parameter dependent: with the increasing of 

dilatancy the cohesionless material has a greater resistance to liquefaction. The cyclic 

resistance ratio is defined for a reference earthquake of magnitude Mw = 7.5, namely 

CRR
ss

 is defined for 15 numbers of cycles. It results: 

[4.5]  146.015 ssCRR  for  = - 0.231 

[4.6]  073.015 ssCRR  for  = - 0.127 

 
Figure 4.10-Cyclic stress ratio CSR

SS
 versus number of cycles N, where CSR is reduced by a factor (1 + 2 

k0)/3 and N is defined at axial deformation a = 5% DA [Toki, 1986, Hyodo, 1994]  
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4.6 Cyclic behavior of Ticino Sand  

The cyclic behavior of Ticino sand has been deduced by cyclic triaxial isotropical 

consolidated tests conducted on specimens reconstituted with air depositional method. 

Main characteristics of tests are reported in Table 4.1, where are summarized the source 

and the type of test, the initial state conditions (ec, p’c, ) and the initial cyclic stress ratio 

CSR
TX

 applied in triaxial condition. As can be seen from the table below, all samples are 

tested varying the initial void ratio and the cyclic deviatoric stress, keeping a constant 

mean effective stress at the end of consolidation, with the exception of TS4_13_12 test 

which is consolidated to a mean effective stress of p’c = 200 kPa. 

 
Table 4.1- Characteristics of cyclic isotropical triaxial tests on Ticino sand 

Tests are grouped together considering samples with similar initial state parameter; three 

main groups are obtained with mean state parameter equal to  = - 0.132, - 0.201, - 0.295, 

representing samples from medium to high initial density. State parameter is deduced 

using the critical state line introduced in Chapter 3. 

In specimens with a medium density it is not uncommon that cyclic stress ratio manifests 

some drop in values (as observed also in Toyoura sand cyclic tests), especially when both 

the specimen approaches the initial liquefaction and small cyclic stress is applied. 

All specimens exhibits cyclic mobility after liquefaction started because the physical state 

are well below the critical state line in e – p’ plane. Figure 4.11 is reported a test result 

Test Sample Type Sourse Depositional ec σ'vc σ'hc p'c  CSR
TX

B x H of Method * **

[cm x cm] test [-] [kPa] [kPa] [kPa] [-] [-]

TS4_13_1 0.740 100 100 100 -0.137 0.234

TS4_13_4 0.730 100 100 100 -0.147 0.183

TS4_13_6 0.700 100 100 100 -0.177 0.181

TS4_13_7 0.700 100 100 100 -0.177 0.336

TS4_13_8 0.640 100 100 100 -0.237 0.304

TS4_13_9 0.640 100 100 100 -0.237 0.243

TS4_13_11 0.760 200 200 200 -0.099 0.285

TS4_13_13 0.760 100 100 100 -0.117 0.253

TS4_13_14 0.730 100 100 100 -0.147 0.207

TS4_13_15 0.730 100 100 100 -0.147 0.162

TS4_13_17 0.700 100 100 100 -0.177 0.330

TS4_13_20 0.644 100 100 100 -0.233 0.198

TS4_13_23 0.707 100 100 100 -0.171 0.244

TS4_14_01 0.586 100 100 100 -0.291 0.414

TS4_14_02 0.580 100 100 100 -0.297 0.288

TS4_14_03 0.581 100 100 100 -0.297 0.208

TS4_14_04 0.582 100 100 100 -0.295 0.391

* emax =  0.923; emin = 0.574 **initial cyclic stress ratio TX condition

5 x 10
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that evidenced cyclic liquefaction. In the first cycles the stress-strain hysteresis are narrow 

and nearly linear in q – a plane; when the liquefaction starts the curves run parallel to a 

= 0-axis over a wide range of strains, implying that the soil does not mobilize any shear 

resistance. Once both a certain axial strain is reached and the pore pressure drops due to 

dilatancy, a shear resistance is regained. In q – p’ plane is shown the stress-path of the 

test: due to the increase in the water pressure and the accompanying decrease in the 

effective stress p’ with the increase of cycles, the stress-path shift to left. During the phase 

of cyclic mobility the stress path takes a butterfly-like shape.  

 
Figure 4.11- Cyclic liquefaction in triaxial test 

In medium-to-loose specimens the limiting deformation and the build up pore pressure 

are typically coincident and N values are uniquely determined, namely the deformation of 

5% in double-amplitude is achieved when the pore water pressure ratio is in the range of 

Ru = 0.95 ÷ 1. In any case liquefaction in samples is reached firstly by the cutch up of the 

limit deformation. 

In very dense specimens pore pressure reaches the mean effective stress value before the 

axial deformation develops the 5% (DA). The application of cyclic stress develops a peak 

pore pressure ratio of Ru > 0.95 but, subsequently, stress application causes limited strains 

because the soil dilates and stabilized under the applied loads. 

In Figure 4.13 are reported the results of the cyclic triaxial tests in CSR
SS

 – N plane; in 

this graph cyclic stress ratio, CSR
TX

, is reduced in order to take into account the in-situ 

stress and strain conditions and number of cycles to liquefaction N are evaluated when the 

criterion  a(DA) = 5% or Ru > 0.95 are satisfied.  

With the increasing of stress applied the number of cycles to liquefaction decrease with a 

potential low. The curves that interpolates data are defined as CSR
ss

 ( = - 0.132) = 

0.171∙N
-0.139

, CSR
ss

 ( = - 0.201) = 0.271∙N
-0.211

 and CSR
ss

 ( = - 0.295) = 1.396∙N
-0.377

. 
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Figure 4.12- Cyclic stress ratio CSR

SS
 versus number of cycles N, where CSR is reduced by a factor (1 + 2 

k0)/3 and N is defined at axial deformation a = 5% DA. Simple shear test results based on Porcino’s 

research (2005, 2009) 

The cyclic resistance ratio is defined for a reference earthquake of magnitude Mw = 7.5, 

namely CRR
ss

 is defined for 15 numbers of cycles. As cyclic stress ratio and state 

parameter are related to each other, CRR
ss

 results in: 

[4.7]  503.015 ssCRR  for  = - 0.295 

[4.8]  152.015 ssCRR  for  = - 0.201 

[4.9]  118.015 ssCRR  for  = - 0.132 

In the same graph are superimposed the results of a series of simple shear tests conducted 

on Ticino sand [Porcino et al., 2005, 2009]. Samples ware reconstituted with water 

sedimentation method and tested with two different void ratio and consolidated to a 

vertical effective stress ’v0 = 100 kPa (ec = 0.646, 0.767, with emax = 0.905 and emin = 

0.559, sand slightly different from Ticino sand used in triaxial cyclic tests of these 

research). In order to report the data in CSR
ss

 – N plane, k0 = 0.44 is assumed in order to 

determine the state parameter . 
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The differences in results are mainly assigning to the different depositional method used 

in the two researches: in particular air pluviation method leads a smaller cyclic resistance 

ratio if compared with water sedimentation method results, as it can be confirm by the 

comparison of the two curves with similar state parameter (WS = - 0.120 and AP = -

0.132). 

More detailed concerning the tests and the results in q – p’, q – a, a – N and Δu – N 

planes are reposted in Appendix B. 
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5 Tip Resistance of Sands from Physical Modelling Tests 

 

 

 

 

5.1 ISMGeo Centrifuge  

The ISMES-GEO geotechnical centrifuge (IGC) is a beam centrifuge with a symmetric 

rotating arm that holds two swinging basket that contain the model and the counterweight 

(Figure 5.1). An outer fairing, which rotates with the arm, has an aerodynamic purpose of 

limiting the air friction in reaching the limit speed with low power consumption [Baldi et 

al., 1988].  

The IGC is a medium size centrifuge with a capacity of 240 g-ton, which has designed to 

reach a limiting speed of 600g with a payload of 400 kg. The particular beam shape is 

project for (i) minimize the distortion on the model due to centrifugal forces, (ii) simplify 

the position of the basket and location of the instrumentation, (iii) eliminate Coriolis’s 

acceleration, ac. 

The nominal radius of the model is 2 m, and its maximum dimensions are: length 1000 

mm, height 600 mm and width 500 mm. As centrifuge acceleration increases, the 

swinging baskets rotate from a vertical position at rest to a horizontal one and then move 

radially to rest against the arm in order to prevent transmitting working loads to the 

suspension system. The propulsion system is a 300 kW D.C. electric motor. 
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The centrifuge is equipped with a set of hydraulic slip rings, for the oil at high pressure 

(250 MPa max), water and air (20 MPa max), and electrical slip rings for the power 

supply (7 A) and electrical signals. 

Special signal conditioners, specifically developed by ISMES, have been mounted in the 

centre of the arm, and are programmable from the control room in terms of type of 

transducer to be supplied, transducer supply voltage, offset and sampling frequency; the 

signal conditioners are equipped with both analogical and digital outputs. A 14 bit A/D 

converter is employed, with a maximum sampling rate, for digital acquisition, of 100 Hz 

per channel for a total number of 32 channels. All operations can be completely remote 

controlled from the centrifuge control room. 

  
Figure 5.1- Cross section of ISMES – Geo Geotechnical Centrifuge [Fioravante, 1994] 
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5.1.1 Linear scaling low 

In order to extrapolate the observations made on a model to a prototype scale, we need to 

understand scaling laws. The way we can obtain these similarity rules is through 

dimensional analysis, which is based on the hypothesis that any physical phenomenon can 

be described by a dimensionally consistent equation between governing variables. 

The tool used in dimensional analysis is Buckingham’s Pi theorem which states that the 

number of variables to be considered in a dimensional analysis problem, defined by a list 

(V) of h variables, encompassing a total of independent m primary dimensions (D), can 

always be reduced to a number N of dimensionless groups, where N = h - m. 

The use of dimensional analysis allows one to identify the variables that are independent 

and hence important to be reproduced at model scale. Butterfield (1999) demonstrates that 

Buckingham’s theorem is a necessary, but not sufficient condition to establish a general 

dimensional analysis solution for problems in which time intervenes only to converse 

mass to force. 

The various similarity conditions between models and prototypes that have to be fulfilled 

in geotechnical model testing have been examined by many researches [e.g. Roscoe, 

1968; Rowe et al., 1977; Schofield, 1980; Baldi et al., 1989a, Taylor, 1995; Butterfield, 

1999; 2000] and are therefore not discussed here. 

For all quantities that describe static and dynamic phenomena in soil mechanics, the 

following ratio is defined as scale factor: 

[5.1]  
prototype

model*
X

X
X   

Where X stands for a generic physical quantity (e.g. length, mass, density, or time). 

If the length, the mass density, the acceleration field and the strain (or stiffness) are 

assumed as independent quantities, the other quantities can be expressed as functions of 

the independent quantities. 

The critical similarity relationships between a centrifuge model and a prototype state that 

if a model in which each linear dimension is reduced by a factor N is subjected to a 

centrifuge acceleration of N∙g (where g is the gravity field), it achieves the equivalent 

vertical stress as the full scale prototype, on condition that a material with the same unit 
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weight is used. As the stresses derive from the density of the soil and gravitational 

acceleration: 

[5.2]  ****' Lgzg    

If g* = N, L* = 1/N and * = 1 hence the Equation 5.2 became: 

[5.3]  1*   

If the same soil is used for the model and the prototype, the stress strain behaviour of the 

model is the same as that of the prototype. This also means that a similarity of strain is 

achieved (i.e. ε*=1).  

The majors scaling lows use in centrifuge analysis are summarized in Table 5.1; they are 

derived considering the same soil both in prototype and model and they are better 

examined in the following paragraph. 

 
Table 5.1- Scale factors in an artificial gravity field 

The maintenance of consistency between a model and a prototype, in terms of stress and 

strain, is one of the key factors which leads to centrifuge modelling being preferred to 

unit gravity models, as soil behaviour greatly depends on the stress history and current 

applied stress. 

  

Parameter Unit Scale factor

model/prototype

acceleration m/s
2

N

linear dimension m 1/N

stress kPa 1

strain - 1

density kg/m
3

1

mass or volume kg or m
3

1/N
3

unit weight N/m
3

N

force N 1/N
2

bending moment N m 1/N
3

bending moment/unit width N m /m 1/N
2

flexural stifness/unit width N m
2
/m 1/N

3

time diffusion s N
2

time dynamic s N

frequancy 1/s N

following low v = ρm ∙ (N g)m ∙ (z/N)m = ρp ∙ gp ∙ zp
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5.2 Mechanics of centrifuge modelling 

The acceleration field in a centrifuge varies through the model depth, as it is a function of 

the radial distance as follows: 

[5.4]  
2 tc RgNa  

Where:  g = 9.81 m/s
2
 is the earth gravitational acceleration; 

N = ac/g is the ratio between centrifuge acceleration and earth’s gravity at 

free surface; 

   is angular velocity; 

Rt is the radial distance between the free surface of the model and the 

rotational axis. 

 
Figure 5.2- Stress distribution with depth in a centrifuge model and in prototype [Taylor, 1995] 

The infinitesimal increment of the vertical stress caused by an infinitesimal depth 

increment dR from the free surface (Figure 5.2) can be expressed through the following 

equation: 

[5.5]  dRRgdR
g

R
gdRNgd v 


 2

2

)(' 


  

Where ρ is the mass density and R is the radial distance from the rotational axis. 

The vertical stress of the point A in the soil model is given by the following integral: 

[5.6]   2222

2

1
' tA

tR

ARv RRdRR   
 

Where: RA is the radial distance of soil point A from the rotational axis; 
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Rt is the radial distance of the free surface of the model from the rotational 

axis. 

As the distance RA = Rt + zm, where zm is the model depth that refers to the free surface, 

and the angular velocity expressed by the relation 
2
 = (N∙g)/Rt, the resulting vertical 

stress at the corresponding prototype depth zp is: 

[5.7] 
























 

t

m
p

t

mtR

AR mv
R

z
zg

R

z
zNgdRR

2
1

2
1' 2 

 

Where zp= N∙zm is the corresponding prototype depth. 

In the earth’s gravity field, the vertical stress of point at depth z is given by the following 

equation: 

[5.8]    zz
v dzdzg 00' 

 
If soil is considered homogeneous with depth (i.e. soil density constant with depth, the 

result of the previous integer is: 

[5.9] zgv   '

 
It can be seen from Figure 5.2 that the model stress distribution is not linear and tends to 

slightly diverge from the triangular distribution, as the radial distance from the rotational 

axis increases. 
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5.3 In-Flight cone penetration tests: results and interpretations 

Centrifuge cone penetration tests have been carried out in dry samples reconstituted by air 

depositional method. This methodology is widely used to reproduce uniform specimens 

[Passalacqua, 1991; Lo Presti et al., 1993] and an adequate anisotropy, comparable with 

that of the alluvial deposit [Oda et al. 1978]. 

Sand is deposed at 1 g with a travelling sand spreader into a cylindrical container; varying 

the height of the hopper by keeping constant the fall height of sand and the speed of 

deposition, it is possible to obtained samples with various initial relative density. The 

container wall is 5 cm thick in order to prevent radial deformation during accelerated test. 

After the deposition phase the container with sand is weighted and then inserted on the 

swinging basket of the centrifuge. Here in, the model is accelerated until the pre fixed ac/g 

acceleration level is reached; during this stage the superficial sand settlement is monitored 

by an LVDT placed on the free surface of soil: specimen compacts in dependence of its 

initial relative density and acceleration level. At the end of consolidation phase, the cone 

advanced in the soil with a constant velocity until the end of test (v = 2 mm/s). The 

container dimensions and CPT system are illustrated in Figure 5.3. 

The ISMES miniaturized piezocone has a diameter of B = 11.3 mm, the driving force acts 

on both the 60° cone as well as on the shaft behind the tip (areas A = 100 mm
2
); the tip 

and the shaft have two load cells able to record force up to 9.8 kN, while the actuator 

system is capable to produce a 11.8 kN of trust. If the sample is saturated, the pore 

pressure transducer located in the mini – cone can measures up to 35 bars.  

It is of interest noting that a centrifuge test conduct with the ISMGeo Cone with B = 11.3 

mm at a g-level of 50 g represent a prototype cone of 56.5 cm; in spite of the different 

dimensions in real case and in prototype, the results of these CPT tests can be used for 

evaluating tip resistance of soil as proved by a great testing program conduct by 5 

laboratories in an European research [Renzi et al., 1994; Bolton et al. 1998]. 
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Figure 5.3- ISMES – Geo in flight cone penetrometer 

The results of this investigation leaded to evaluate the effects of (i) grain size and scale 

factors, (ii) stress non uniformity and (iii) boundary conditions. 

(i)  Grain size and scale factor: 

- B/D50 ≥ 20 (grain size effect): soil particle size doesn’t affect tip resistance if 

cone diameter is 20 times greater than mean particle size. This is evident for fine 

particle (Figure 5.4 c) and for medium course particle (Figure 5.4 d). 

(ii)  Stress non uniformity: 

as proposed by Bolton et al. (1999), in order to overcome the problem of non-

linear stress in centrifuge test, all the measurements of depth of penetration 

recorded by the miniaturized cone, are corrected as follow: 
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In most cases, centrifuge is design in order to have hm/Re < 0.2 (hm is the 

maximum height of the model) and so the maximum error committable on the 

evaluation of vertical stress is less than 3% with depth. 

(iii)  Boundary conditions: 

- D/B ≥ 30 (container size effect): as can be seen in Figure 5.4 (a) the influence of 

the container size D to cone diameter B on the normalized Q cone resistance is 

negligible if D is almost 30 times greater than cone diameter B. This limitation is 

particular important for dense sand because the rigid walls increases the confining 

pressure around the plastic soil zone leading to an overestimation of cone 

resistance. 

- s/B (size boundary effect): it was found that for a circular container, there is no 

significant deviation in Q, for both s/B = 11 and s/B  = 22 for dense sand (Figure 

5.4 b). 

 
Figure 5.4- Scale effect in centrifuge cone penetration tests in sand. In Figures normalized cone resistance 

Q = (qc- σv)/σ’v ; normalized penetration depth Z = z/B): (a) D/B - container size effect, (b) s/B – side 

boundary effect, (c) B/d50 – grain size effect (fine particles), (d) B/d50 – grain size effect (medium and 

coarse particles) [Bolton et al., 1999] 

The size of the container and of the piezocone used in this research allow concluding that 

(i) and (iii) conditions are prevent for the two sands, in fact: D/B = 35.4 and s/B = 17.2, 

for both tested sands, B/D50 = 21.3, for Ticino sand, and B/D50 = 51.4, for Toyoura sand.  

The stress non-uniformity (ii) has also been accounted for.  

a)

b)

c)

d)
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5.3.1 Tip resistance for Toyoura and Ticino sands 

The main data on CPT tests performed on Toyoura and Ticino sand are reported in Table 

5.2 and Table 5.3 respectively, where the acceleration factor N and density ρ, void ratio e 

and height H of the samples at the end of consolidation phase are summarized.  

The CPT tests conducted on TOS were performed on specimens with classes of three 

different void ratio (e ~ 0.778; 0.725; 0.654) and two acceleration levels (N = 30, 80). 

Considering the height of the samples the maximum investigated depth is almost 25 m.  

Identically, the CPT tests conducted on TS4 were performed on specimens with classes of 

three different void ratio (e ~ 0.819; 0.726; 0.627) and three acceleration levels (N = 30, 

50, 80). In this case the maximum investigated height is almost 30 m. 

The e and  data were evaluated at the end of consolidation phase and are medium values. 

In fact, the angular velocity of the centrifuge has been imposed so that the target ratio ac/g 

was reproduced at the surface of the model. The settlement of the sand during the in–

flight consolidation is non-linear with depth, thus the relative density increases with depth 

and is slightly lower at the soil surface and slightly higher at the container bottom, with 

respect to the average value. The maximum scatter from the average value has been 

estimated to be about 5%, therefore it was assumed constant in the presented analysis. 

In Figure 5.5 and in Figure 5.6 are reported the tip resistance qc function of mean 

effective stress p’ (on the left axis) and depth zpc (on the right axis) for TOS and TS4 

sands respectively, where all measures are in prototype scale and corrected for distortion 

produced by radial field.  

In the same graphs are superimposed some results from calibration chamber tests 

conducted by ISMES (Seriate – Bergamo – Italy). A selection of only BC3 boundary 

condition tests are considered, where vertical stress v is constant with depth and the 

radial deformation h is zero with depth; instead, cone diameters range between B = 11.3 

– 35.7 mm. Generally, the more the cone diameter is smaller the more the tip resistance is 

greater, keeping the other conditions the same [Fioravante et al., 1992].  

All data about tests carried out in calibration chamber are reported in Table 5.4 and Table 

5.5 for Toyoura and Ticino sands. 
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Table 5.2- Tests data of in-flight CPT in Toyoura Sand 

 
Figure 5.5- Cone tip resistance test results for Toyoura sand. In the graph: tip resistance qc vs mean 

effective stress p’ for various consolidation void ratio e. Superimposed on the same graph the results of 

calibration chamber tests [ISMES-Geo]. In dotted black lines evaluation of tip resistance with qc = 17∙ pref 

∙(p’/pref)
0.66

∙e
3.19∙D

R. Depth zpc on the right axis is a mean values  

 

s/B = 17.2 B/D50 = 51.4

D/B = 35.4 v = 2 mm/s

TEST Acceleration  dry e DR Prototype

Level N = a/g Height H

[-] [kN/m
3
] [-] [%] [m]

T1/TYC1 30 15.71 0.655 88 10.5

T1/TYC2 30 15.71 0.654 89 10.5

T1/TYC3 80 15.69 0.657 88 27.9

T1/TYC4 80 15.75 0.650 90 27.8

T1/TYC5 80 14.66 0.774 57 27.9

T1/TYC6 80 14.58 0.783 54 27.8

T1/TYC7 80 15.08 0.724 70 27.8

T1/TYC8 80 15.02 0.730 68 28.0

T1/TYC9 30 15.12 0.719 71 10.4

T1/TYC10 30 15.04 0.728 69 10.4

all values are at the end of consolidation emax = 0.986; emin = 0.612

Side boundary effect Particle size effect

Container size effect Penetration rate

CPT TESTS IN CENTRIFUGE ON TOYOURA SAND
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Table 5.3- Tests data of in-flight CPT in Ticino Sand  

 

s/B = 17.2 B/D50 = 21.3

D/B = 35.4 v = 2 mm/s

TEST Acceleration  dry e DR Prototype

Level N = a/g Height H

[-] [kN/m
3
] [-] [%] [m]

TS4-1 30 14.30 0.834 25.5 10.40

TS4-2 30 14.40 0.822 28.9 10.37

TS4-3 80 14.45 0.815 30.8 27.58

TS4-4 80 14.53 0.805 33.7 27.57

TS4-5 30 16.11 0.629 84.3 10.61

TS4-6 30 15.94 0.646 79.4 10.52

TS4-7 80 16.02 0.638 81.6 27.84

TS4-8 80 16.03 0.637 81.9 27.90

TS4-11 30 14.54 0.804 34.0 13.17

TS4-12 30 14.31 0.834 25.6 13.18

TS4-13 80 14.44 0.816 30.6 35.07

TS4-14 80 14.47 0.813 31.6 35.14

TS4-15 80 15.09 0.738 53.0 35.41

TS4-16 30 15.18 0.728 55.8 13.31

TS4-17 50 15.22 0.724 57.1 22.16

TS4-18 50 15.24 0.721 57.7 22.15

TS4-19 30 16.19 0.620 86.6 13.35

TS4-20 80 16.27 0.613 88.8 35.58

TS4-21 50 16.21 0.619 87.1 22.23

TS4-22 50 16.16 0.623 85.9 22.23

TS4-23 50 14.42 0.819 29.9 22.01

TS4-24 50 14.47 0.813 31.5 22.02

TS4-25 30 14.41 0.821 29.2 13.21

TS4-26 80 14.41 0.821 29.2 35.24

TS4-28 50 16.23 0.617 87.7 22.22

TS4-29 50 15.25 0.720 58.2 22.15

TS4-30 30 14.38 0.824 28.2 13.20

all values are at the end of consolidation emax = 0.923 emin = 0.574

Penetration rateContainer size effect

CPT TESTS IN CENTRIFUGE ON TICINO SAND

Side boundary effect Particle size effect
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Figure 5.6- Cone tip resistance test results for Ticino sand. In the graph: tip resistance qc vs mean effective 

stress p’ for various consolidation void ratio e. Superimposed on the same graph the results of calibration 

chamber tests [ISMES-Geo]. In dotted black lines evaluation of tip resistance with qc = 23∙ pref 

∙(p’/pref)
0.55

∙e
2.63∙D

R. Depth zpc on the right axis is a mean values  

 
Table 5.4- Test data of calibration chamber test on Toyoura sand [ISMES]  

 
Table 5.5- Test information of calibration chamber test on Ticino sand [ISMES]  

 

v h B.P. OCR : Dr e qc H v h dc qc p' k0 Qp Ψ CSL N.B E = ENEL end of consolidation penetration

Test v h e v h dc qc p' k0 Qp Ψ

[kPa] [kPa] [-] [kPa] [kPa] [mm] [MPa] [kPa] [-] [-] [-]

392i 62.4 27.3 0.673 63.4 28.5 11.3 17.4 40.1 0.45 432.0 -0.251

405i 62.2 27.6 0.673 63.9 35.4 20.0 19.3 44.9 0.55 429.7 -0.250

408i 62.2 27.1 0.674 63.4 29.7 11.3 19.1 40.9 0.47 466.8 -0.250

409i(a) 117.6 208.2 0.671 111.7 49.0 11.3 20.2 69.9 0.44 288.4 -0.248

412i(a) 75 107.7 0.673 74.2 38.0 11.3 17.2 50.1 0.51 342.0 -0.249

316i 112 49.5 0.690 124.8 65.1 20.0 25.3 85.0 0.52 296.7 -0.227

323i 111.1 53.2 0.803 111.9 60.7 35.7 10.2 77.8 0.54 130.7 -0.115

358i 111.7 52.1 0.776 112.3 55.1 20.0 13.6 74.2 0.49 182.9 -0.143

365i 61.6 29 0.793 62.1 30.9 20.0 9.5 41.3 0.50 230.1 -0.131

394i 61.5 29.2 0.800 61.6 29.5 11.3 7.5 40.2 0.48 184.6 -0.124

dry samples;  border condition "BC3";   OCR = 1

Test v h e v h dc qc p' k0 Qp Ψ

[kPa] [kPa] [-] [kPa] [kPa] [mm] [MPa] [kPa] [-] [-] [-]

124i 313.5 137.0 0.599 319.4 149.2 20.0 34.5 205.9 0.47 166.5 -0.258

121i 213.9 89.2 0.603 214.8 99.9 20.0 29.8 138.2 0.46 214.9 -0.266

119i 114.1 45.9 0.652 114.4 49.8 20.0 14.2 71.4 0.44 197.8 -0.233

284i 112.2 48.6 0.669 112.8 55.0 20.0 21.4 74.2 0.49 287.6 -0.215

194i 112.0 45.9 0.674 110.8 51.2 20.0 15.6 71.0 0.46 218.5 -0.211

166i 112.0 47.8 0.726 112.5 50.7 25.4 9.5 71.3 0.45 132.5 -0.159

199i 111.4 45.4 0.788 111.5 46.2 20.0 6.0 68.0 0.41 86.6 -0.097

201i 111.1 47.7 0.794 111.8 49.0 20.0 7.0 69.9 0.44 98.7 -0.091

70i 316.4 148.4 0.800 317.9 151.1 35.7 11.2 206.7 0.48 53.2 -0.057

70i 316.4 148.4 0.800 314.7 150.5 35.7 15.1 205.2 0.48 72.3 -0.058

dry samples;  border condition "BC3";   OCR = 1

end of consolidation penetration
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It can be seen that, for both sands, there is a good agreement between chamber tests and 

centrifuge tests results, especially for high density. Indeed, some scatter is evidenced for 

medium-to-loose state of sand. 

In order to take into account the progressive mobilization of the cone resistance from the 

model free surface [Schmertmann, 1978], the measures registered in the first 10∙B of 

penetration from the surface have been removed. 

The test results were also interpreted using a function proposed by Jamiolkowski et al. 

(2003), where the sand’s dependent coefficients are determined with a best-regression 

analysis based on centrifuge test results. Tip resistance is related with mean effective 

stress and relative density as fallow: 
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Where: 

qc is cone resistance; 

pref is atmospheric pressure, patm = 101 kPa 

p’ is mean effective stress at cone depth; 

DR is relative density expressed as a number; 

C0, C1, C2 are dimensionless empirical correlation factors. 

The tip resistances for the two sands are: 
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The functions, despite some scatter, follow the general tendency of the measured data and 

they are superimposed on experimental results in Figure 5.5 and 5.6, in dotted black lines. 
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5.3.2 Stress normalization 

Been (1991) proposed to normalizing tip resistance as follows: 

[5.14]   
'p

pq
Q c

p


  

Where (qc – p’) is approximately defined as qc as the penetration in sands is drained.  

In Figures 5.7 and 5.8 are reported the resulting normalized tip resistance Qp function of 

mean effective stress p’ respectively for Toyoura and Ticino sand; in the graphs are also 

shown the calibration chamber tests considered for comparison purpose.  

It is well noticed that tip resistance normalization, which considers a linear relationships 

between tip resistance and mean effective stress, is not sufficient to account for the stress 

effect. This is more pronounced in dense material at the maximum depths reached, where 

Qp is not a constant value but reduces with depth as shown in the normalized charts 

reported in Figures 5.7 and 5.8. 

 
Figure 5.7- Normalized cone tip resistance for Toyoura sand. In the graph: normalized tip resistance Qp vs 

mean effective stress p’ for various consolidation void ratio e. Superimposed on the same graph results of 

calibration chamber tests [ENEL - ISMES] 
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Figure 5.8- Normalized cone tip resistance for Ticino sand. In the graph: normalized tip resistance Qp vs 

mean effective stress p’ for various consolidation void ratio e. Superimposed on the same graph results of 

calibration chamber tests [ENEL - ISMES] 

Some centrifuge test data are reported in Figure 5.9 (a and b) in (qc – p) – p’ plane; each 

point is related to a specific void ratio and state parameter value.  

In the graphs the data with similar state parameter are interpolated with a linear equation, 

as proposed by Been (1986). This trend approximation is adequate for high void ratio and 

for swallow depth; on the contrary, with the increasing of mean effective stress and with 

the decreasing of void ratio, the net tip resistance tends to increase with a non-linear low 

with depth (dashed lines). 

A different normalization of tip resistance is proposed in Figure 5.10 and 5.11 for both 

Toyoura and Ticino sands, with the aim to understand how the normalization of qc is 

stress dependent. In these graphs, normalized tip resistance Q* are defined as follow: 

[5.15]   
 nref

refc

pp

pq
Q

/'

/
*   

Where Q* is a stress dimensionless ratio, pref is taken as 101 kPa.  

The stress exponent n was defined from Equations 5.12 and 5.13: n = 0.66 for Toyoura 

sand and n = 0.55 for Ticino sand. 

In the graphs, Q* is constant with depth only for medium-to-high density sand at 

medium-to-high effective stresses, while Q* increases with depth for low density sand at 

swallow depth. 
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The Qp normalization was adopted here since is largely used, also because a comparison 

with other researches is appealing.  

In both normalized charts proposed Qp – p’ and Q* – p’, the dilatancy of sand became the 

fundamental properties that affected soil behavior. 

Dilatancy of a cohesioless material is surly well related with state parameter value (see 

Chapter 2) inasmuch the more the absolute value of  decreases the more the tendency of 

the sand to dilate is suppressed. Confirmation of what suggested above is proved by the 

results in Figure 5.7 and 5.8, where values of the state parameter are superimposed in the 

normalization charts for various mean effective stress and void ratio; it can pointed out 

that higher values of state parameter leads to higher values of normalized tip resistance.  

In the conclusive Chapter 6 will be determine a correlation between tip resistance Qp and 

state parameter for the two tested sands. 

 
Figure 5.9- Net tip resistance qc – p’ vs mean effective stress p’ for various initial state parameter  for (a) 

Toyoura sand and (b) Ticino sand 
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Figure 5.10- Normalized cone tip resistance for Toyoura sand. In the graph: normalized tip resistance Q* vs 

mean effective stress p’ for various consolidation void ratio e.  

 

 
Figure 5.11- Normalized cone tip resistance for Ticino sand. In the graph: normalized tip resistance Q* vs 

mean effective stress p’ for various consolidation void ratio e.  
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6 Cyclic Resistance Determination from CPT. A Simplified 

Relationship 

 

 

 

 

6.1 Introduction  

Jefferies and Been (2006) demonstrated that both normalized tip resistance Qp and cyclic 

resistance ratio CRR were a function of the state parameter.  

In Figure 6.1 are summarized the exponential curves obtained by the fitting procedures of 

CC test results of different type of sands with 3.5% of maximum fine content. For each 

sand it was defined a correlation between Qp and : with the decrease of dilatancy, the 

normalized tip resistance drops as an exponential function, Qp = k∙e
-m∙

, where k and m 

parameters are sand dependents. 

Jefferies and Been  (2006) proposed a mean curve considering the totality of the CC tests 

and assuming average values of sands mechanical properties (i.e. Mtc = 1.25, 10 = 0.05, 

tc = 3.5, Ir = 600, k0 = 0.7 and ’v = 100 kPa); the equation, reported in Figure 6.1, was 

defined as follows: 

[6.1]  
 4.95.31 eQp  

Where k = 31.5 and m = 9.4 were determined as best-fit from all CC tests conducted on 

different type of sands. 
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Jefferies and Been (2006) demonstrated that cyclic resistance ratio was state parameter 

dependents: the more the sand was dilative the more the resistance to liquefaction was 

higher.  

The cyclic resistance ratio is easily derived from CSR
TX

 – N curves which interpolate the 

experimental values with similar state parameter; considering a reference earthquake of 

Mw = 7.5 (15 equivalent of uniform cycles). 

In Figure 6.2 the cyclic resistance ratio in triaxial condition CRR
TX

15 is plotted as a 

function of  and it is observed that each sand have its own liquefaction curve, linked 

with its intrinsic mechanical and physical characteristics. 

In the same graph, a mean exponential curve was determined despite the evident data 

dispersion due to the differences in samples preparation methodology and in the type of 

studied sand; the equation was defined as: 

[6.2]  
 85.3

15 125.0 eCRRTX
 

Hereafter, simplified correlations are going to be proposed for both tip and cyclic 

resistance; they will be linked with state parameter values in order to determine a function 

between CRR and Qp. The analyses are based on high quality tests data in controlled 

stress and strain conditions described in Chapters 3, 4 and 5.  
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Figure 6.1- Qp -  curves for different type of sands  

 
Figure 6.2- CRR -  curves for different type of sands  
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6.2 Qp -  and CRR -  curves for Ticino and Toyoura sands 

In Chapter 3 the critical state lines of Ticino and Toyoura sands have been defined. In 

Chapter 4 the cyclic behavior of Ticino and Toyoura sands were analyzed and it has been 

demonstrated that CSR – N curves were state parameter dependents. In Chapter 5 it has 

been described how tip resistance was influenced by dilation and state parameter. 

In Figure 6.3 the centrifuge tests results performed on Toyoura sand are reported in Qp - 

 plane. The results have been grouped in three sets of void ratio (i.e. ec = 0.778, 0.725, 

0.654): the measured qc profile of each test is associated with an initial void ratio value 

and, so, to a state parameter. 

The more the sand is initially dense of critical the more the normalized tip resistance is 

high; a unique mean exponential function between normalized tip resistance Qp and state 

parameter  was deduced, as follows: 

[6.3]  
 78.994.23 eQp  

In the equation above k = 23.94 and m = 9.78. 

In the same graph, are plotted some results from calibration chamber test conducted on 

sample with ec = 0.793 and ec = 0.675. Penetration tests were conducted in samples with 

constant vertical stress and zero lateral deformation conditions (BC3); even if it is thought 

that CC-BC3 test is the best representation of the centrifuge boundary conditions, there is 

some scatter in results between calibration chamber and centrifuge tests. Data from CC 

test are shifted above in Qp –  graph and this could be due to an underestimation of state 

parameter or to an overestimation of tip resistance. 

The centrifuge tests results of Ticino sand are reported in Figure 6.4 in Qp –  plane; also 

in this case an exponential trend between normalized tip resistance and state parameter is 

observed and the mean curve was deduced as: 

[6.4]  
 44.837.26 eQp  

In the equation above k = 26.37 and m = 8.44. 

Calibration chamber test results are superimposed in the graph with the aim to compare 

them with centrifuge ones. Tests were selected so that BC3 conditions were satisfied and 

void ratio were ec = 0.796, 0.726 and 0.639. For Ticino sand, a minor dispersion is 
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observed between CC and centrifuge tests, in comparison to that experienced for Toyoura 

sand.  

It is notably that Ticino and Toyoura sands have a very similar Qp -  curves. So that a 

mean function is herein proposed, in which k and m parameters are calibrated with all 

available centrifuge tests: 

[6.5]  
 9.86.25 eQp  

 
Figure 6.3- Centrifuge penetration test results and calibration chamber tests plot in Qp -  plane for Toyoura 

sand. In dot black line the mean exponential curve with m = 9.78 and k = 23.94  

As can be noted from the data plotted in Qp -  plains, the more the sand is dense the 

more the experimental results diverge from the mean trend curves.  

Sladen (1986) suggested that the mean exponential curve as deduced by Been et al. in the 

‘80s for different sands would not be so representative for all states (e, p’). He determined 

that, for Ticino sand, the m parameter was reasonably constant for different mean 

effective stress (m ~ 7.2), but k parameter had a significant excursion with stress level 

variation [k from 63 (p’ = 30 kPa) to 16 (p’ = 450 kPa)].  

In Figure 6.5 (a) and (b) are reported respectively the variation of the coefficients k and m 

with mean effective stress p’ as deduced by CC tests from Sladen (1989) and for the 

centrifuge test results used in this research.  
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The values of the parameters k and m from this research are deduced by the interpolation 

of tests results considering the fitting exponential curves in Qp -  plane using data with 

equal p’: the more the mean effective stress is high the less the exponential curve is steep. 

 
Figure 6.4- Centrifuge penetration test results and calibration chamber tests plot in Qp -  plane for Ticino 

sand. In dot black line the mean exponential curve with m = 8.44 and k = 26.37 

Analysis conducted on Ticino and Toyoura centrifuge tests evidence that k parameter 

slowly increases with stress: its variation is considerably small for both tested sands and a 

constant value with mean effective stress is considered a good approximation.  

The mean trends are reported with black lines in k – p’ plane in Figure 6.5 (a), where k = 

26.37 for Ticino sand and k = 23.94 for Toyoura sand.  

The variation of m parameter is more pronounced with the increasing of stress but it is 

easy to demonstrate that the difference in using constant or variable m parameter results 

in a small increase of more precise evaluation of state parameter. A mean value of m 

parameter for both Ticino and Toyoura sands is convenient, as the maximum error on 

state parameter evaluation results in Δmax < 0.03 for only very dense physical states: m = 

8.44 for Ticino sand and m = 9.78 for Toyoura sand are reported in black lines in m – p‘ 

plane (Figure 6.5 (b)). 

It is notice that the trend of k and m with p’ proposed by Sladen is difference if compared 

to centrifuge tests, especially for low p’.  
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Finally, the k value for zero state parameter represents an ideal separation in Qp –  plane 

between contractive and dilative soil behavior; they are evaluated as k = 26.37 and k = 

23.94 respectively for Ticino and Toyoura sands.  

In Figure 6.6 are compared the best-fit trend lines for Ticino and Toyoura sands with 

others curves deduced from calibration chamber tests results [Been et al. 1987, Baldi et al. 

1987; Harman, 1987; Golder Ass., 1987]. The relationships are very different from sand 

to sand, even if they are derived from tests conducted on specimens reconstituted with 

air/dry depositional method. 

The values of CRR
ss

15 and the associated state parameter are reported in Figure 6.7. The 

cyclic resistance ratios are deduced from the CSR
ss

 – N curves described in Chapter 4; 

considering an equivalent number of cycles typical of earthquake with Mw = 7.5 it is 

possible to define a cyclic resistance for a constant state parameter. 

The two curves that interpolate the experimental data are represented in the Figure 6.7; 

the equations are defined for Toyoura and Ticino sands respectively as: 

[6.6]  
 6.6

15 03.0 eCRRss

 

[6.7]  
 2.9

15 03.0 eCRRss
 

In the equations above k* = 0.03 and m* = 6.6, for Toyoura sand, and k* = 0.03 and m* = 

9.2, for Ticino sand.  

When state parameter is zero the sand passes from a dilative to a contractive behavior and 

Toyoura and Ticino sands for  = 0 exhibit the same value of CRR
ss

15 = 0.03. 

It seems of interest to compare curves deduced from laboratories tests with the ones based 

on case histories and widely used in common practice.  

The liquefaction chart proposed by Robertson (1998) linked the cyclic resistance ratio 

CRR15 to the normalized in-situ tip resistance qc1N. 

The curve was based on selected case histories based on liquefaction (or non-liquefaction) 

evidences on sandy soils with a limited range of properties and subjected to a restrict 

stress variation (’v0 ~ 100 kPa). It was assumed here reasonable that the normalized tip 

resistance qc1N determined by Robertson was very similar to Qp, inasmuch normalized 

stress coefficient CQ ~ 1 and mean ratio k0 ~ 0.7. This leaded to determine a Qp value 

based on in-situ tip resistance evaluation and, using the inversion function in Equation 

6.1, it was possible to define an in-situ state parameter. 
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Figure 6.5- Determination of k and m values from centrifuge tests reported in k – p’ and  m – p’ plane( 

black symbols and lines) compared with Sladen data determined from CC test (grey symbols and lines) 

 
Figure 6.6- Comparison of Qp -  curves derived from samples reconstituted by air/dry pluviated method 

Furthermore, the cyclic resistance ratio associated to an equivalent earthquake of 

magnitude 7.5, was known for each case histories. 

In Figure 6.8 data with calculated cyclic stress ratio [by Robertson, 1998] was related to a 

particular state of sand determined by the inversion of Equation 6.1: the empty symbols 
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are associated to non-liquefable sites, while the full ones are linked to liquefaction 

evidence.  

The equation in black line in Figure 6.8 represents the demarcation between liquefaction 

and non-liquefaction occurring and was defined by Jefferies and Been (2006) as: 

[6.8]   11
5.7 03.0 eCRR  

Where k* = 0.03 and m* = 11. 

The Equation 6.8, calibrated on in-situ tests, together with the Equation 6.2, adequately 

scaled in order to reproduce the simple shear conditions (CRR
ss

15 = 0.04∙e
 -3.8∙

 with mean 

ratio k0 = 0.5) are superimposed in Figure 6.7. 

The curves deduced by laboratory triaxial tests for Ticino and Toyoura sands are in good 

agreement with the assessed curve resulting by case histories analysis for slightly dilatant 

soils (i.e.  = 0 ÷ - 0.1). On the contrary, for higher state parameter values, the curves are 

strongly divergent and the mean curve deduced from laboratory tests in dotted grey line 

represents the lowest cyclic resistance. 

 
Figure 6.7-  Results from cyclic triaxial tests for Ticino and Toyoura sands in CRR

ss
15 -  plane; in black 

lines the mean exponential curve with m* = 6.6 and k* = 0.03, for Toyoura sand, and m* = - 9.2 and k* = 

0.03 for Ticino sand. In traced and dotted grey lines are represented the curves proposed by Been and 

Jefferies (2006) deduce from triaxial tests and in-situ case histories 
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Figure 6.8- Field liquefaction or non-liquefaction case histories from Robertson’s database (1998) re-

evaluated in terms of state parameter . Inversion procedure involves the approximation of qc1N ~ Qp and k0 

~ 0.7 [after Jefferies and Been, 2006] 

6.3 Simplified CRR – Qp correlation for liquefaction analysis 

It has been demonstrated that the normalized tip resistance and the cyclic stress ratio are 

both state parameter dependent. The k-k* and m-m* parameters are also calibrated for the 

two investigated sands in order to determine a best-fit curve in Qp -  and in CRR -  

planes. 

In Figure 6.9 are reported the CRR
ss

15 and Qp values considering state parameters used in 

triaxial tests (i.e  = -0.132, -0.201, -0.295 for Ticino sand and  = -0.231, -0.127 for 

Toyoura sand). 

The cyclic resistance ratio can be linked to normalized tip resistance using the Equations 

6.5, 6.6 and 6.7. The resulting inversion curves are reported in Figure 6.9 in CRR
ss

15 – Qp 

plane, for Ticino and Toyoura sands: 

[6.9]  











6.25

ln03.1

15 03.0

pQ

ss eCRR  

[6.10]  











6.25

ln75.0

15 03.0

pQ

ss eCRR
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In the same graph is reported the CRR – Qp curve obtained from the, re-analyzed case 

histories by Jefferies and Been (2006), using the Equations 6.1 and 6.8.  

 
Figure 6.9- Cyclic resistance ratio and normalized tip resistance for Ticino and Toyoura sand 

6.4 Conclusion and remarks 

Simplified correlations between cyclic resistance ratio and normalized tip resistance 

for a uniform medium and for a uniform fine sands are proposed in this thesis.  

Dense Ticino sand shows smaller values of normalized tip resistance respect to those 

ones of Toyoura sand; this might be due to the higher compressibility of Ticino sand, 

where mica minerals are present. Nevertheless, the Qp –  curves for the two tested 

sands are very similar and it might be said that the curves in Figure 6.9 were not 

affected from Qp values. 

It is thought that the curves variance in CRR
ss

15 – Qp plane is mainly related to the 

cyclic behavior of the sands. In fact, at the same state parameter values, Toyoura 

sand manifests a lower value of cyclic resistance ratio respect to that of Ticino sand.  

The results evidence how the cyclic resistance decreases with the decreasing of the 

mean diameter D50, leading to a smaller CRR
ss

15 curves for Toyoura sand. Actually, 
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the reduction of the mean grain size is usually accompanied by a minor drainage 

condition and the complete loss of strength is achieved for less number of cycles 

[Lee, 1969; Seed and Idriss, 1971; Dupla and Canou, 2003].  

6.5 Recommendation for future research 

The scope of this research program was limited to the determination of simplified 

correlations for liquefaction analysis for only clean and uniform sands.  

The evaluation of these curves might be important for also well-graded sands or sands 

with fines, in order to establish a good affordability of the procedures proposed and to 

evaluate the variability of the curves with the grain-size distribution.  

In the semi-empirical equations are usually considered only the fine content influences on 

the cyclic resistance ratio, while the gradation and the shape of the particles are neglected: 

this might lead to an underestimation or an overestimation of the liquefaction potential. 

Indeed, fine content could be included in the analysis using the state parameter approach, 

neglecting the corrections factors used for tip resistance in empirical formulations. 

At least, some improvements might be useful also in CRR -  curves determination as 

well, in this thesis, they were determined for only a particular value of p’c. It might be of 

interest to confirm that a unique cyclic resistance curve is definable varying the mean 

effective stress at which the sample is consolidated.  

 



References 

128 

 

References 

 

 

Ahmadi M.M., Byrne P.M., and Campanella R.G., [1999]. Numerical simulation of CPT tip 

resistance in layered soil. Asian Institute of Technology 40th Year Conference, New 

Frontiers & Challenges. 

Ahmadi M.M., Byrne P.M., and Campanella R.G., [2005]. Cone tip resistance in sand: modeling, 

verification, and applications. Can. Geotech. J., 42, pp. 977 – 993. 

Alarcon-Guzman A., Leonards G.A. and Chameau J.L., [1988]. Undrained monotonic and cyclic 

strength of sands. Journal of Geotech. Eng., 114, 11, pp. 1089 – 1109. 

Arthur J.R.F., Chua K.S., Dunstan T. and Rodriguez del C. J.I., [1980]. Principal stress rotation: 

a missing parameter. Journal of the Geotech. Eng. Div., 106, 44, pp. 419 – 433. 

Arthur J.R.F., Koenders M.A. and Wong R.K.S., [1985]. Anisotropy in particle contacts 

associated with shearing in granular media. Acta Mechanica, 64, pp. 19 – 29. 

Bałachowski L. [2006]. Penetration resistance of Lubiatowo sand in calibration chamber tests. 

Archives of Hydro-Engineering and Environmental Mechanics 53, 4, pp. 311–329. 

Bałachowski L. [2007]. Size Effect in Centrifuge Cone Penetration Tests. Archives of Hydro-

Engineering and Environmental Mechanics 54, 3, pp. 161–181. 

Bandini V. and Coop M.R. [2011]. The influence of particle breakage on the location of the 

critical state line of sands. Soils and Foundations, 51, 4, pp. 591 – 600. 

Battaglio M, Bellotti R. and Pasqualini E. [1979]. La deposizione pluviale come mezzo per la 

preparazione dei provini in sabbia. Rivista Italiana di Geotecnica, 2, pp. 106 – 121.  

Been K. and Jefferies M.G. [1985]. A state parameter for sands. Géotecnicque, 35, 2, pp. 99 – 

112. 

Bobei, D. [2004]. Static Liquefaction of Sand with a Small Amount of Fines. PhD thesis. The 

University of New South Wales. 

Bobei D.C., Lo S.R., Wanatowski D., Gnanendran C.T. and Rahman M.M. [2009]. Modified state 

parameter for characterizing static liquefaction of sands with fines. Can. Geotech. J., 

46, pp. 281 – 295. 

Bolton M.D. [1986]. The strenght and dilatancy of sands. Géotecnicque, 36, 1, pp. 65 – 78. 

Bolton M.D. and Gui M.W. [1993]. The study of relative density and boundary effects for cone 

penetration tests in centrifuge. CUED/D-SOILS/TR256. 

Bolton M.D., Gui M.W and Phillips R. [1993]. Rewew of miniature soil probes for model tests. 

Eleventh southeast asian geotechnical conference, Singapore. 

Boulanger R.W. and Truman S.P. [1996]. Void redistribution in sand under post-earthquake 

loading. Can. Geotech. J., 33, pp. 829 – 834. 



References 

129 

Bolton M.D., Gui M.W., Garnier J., Corte J.F., Bagge G., Laue J. and Renzi R. [1999]. Centrifuge 

cone penetration tests in sand. Géotecnicque, 49, 4, pp. 543 – 552. 

Boulanger R.W. [2003]. Relating K to relative state parameter index. Journal of geotechnical and 

geoenvironmental engineering, 129/8, pp. 770 – 773. 

Boulanger R.W. [2003]. High overburden stress effects in liquefaction analyses. Journal of 

geotechnical and geoenvironmental engineering, 129/12, pp. 1071 – 1082. 

Boulanger R.W. and Idriss I.M. [2004]. State normalization of penetration resistance and the 

effect of overburden stress on liquefaction resistance. Proceedings of the 11th SDEE 

and of the 3rd ICEGE, Berkeley, CA. 

Bucknam M.D. [1981]. Densification and cyclic triaxial testing of Leighton-Buzzard 120/200 

sand. Master of Sience thesis. Massachusset institute of technoclogy. 

Carraro J.A.H., Bandini P. and Salgado R. [2003]. Liquefaction resistance of clean and nonplastic 

silty sands from cone penetration resistance. Journal of geotechnical and 

geoenvironmental engineering, 129/11, pp. 965 – 976. 

Carter J.P., Booker J.R. and Yeung S.K. [1986]. Cavity expansion in cohesive frictional soils. 

Geotechnique 36/3, pp. 349 – 358. 

Casagrande A. [1975]. Liquefaction and cyclic deformation of sands, a critical review. Harvard 

soil mechanics series no. 88. 

Castro G. [1975]. Liquefaction and cyclic mobility of saturated sands. Journal of the geotechnical 

engineering division 101/6, pp. 551 – 569. 

Castro G. and Poulos S.J. [1977]. Factors affecting liquefaction and cyclic mobility. Journal of the 

geotechnical engineering division, pp. 501 – 516. 

Cetin K.O., Seed R.B., Der Kiureghian A., Tokimatsu K., Harder Jr. L.F., Kayen R.E. and Moss 

R.E.S. [2004]. Standard penetration test-based probabilistic and deterministic 

assessment of seismic soil liquefaction potential.  

Chang N.Y., Yeh S.T. and Kaufman L.P. [1982]. Liquefaction potential of clean and silty sands. 

International earthquake microzonation conference proceedings 28/06-01/07 Seattle 

(Usa), 2, pp. 1018 – 1032. 

Chen Y. [1995]. Behavior of a fine sand in triaxial, torsional and rotational shear tests. PhD 

thesis. University of California, Davis. 

Chen Y.C. and Liao T.S. [1999]. Studies of the state parameter and liquefaction resistance of 

sands. Earthquake geotechincal engineering, pp. 513 – 518. 

Chern J. [1968]. Undrained response of saturated sands with emphasis on liquefaction and cyclic 

mobility. PhD thesis. National Taiwan University. 

Cheng Y.P., Bolton M.D. and Nakata Y. [2005]. Grain crushing and critical states observed in 

DEM simulations. Powder and grains, pp. 1393 – 1397. 

Chiaro G., Kosekic J. and Sato T. [2012]. Effects of initial static shear on liquefaction and large 

deformation properties of loose saturated Toyoura sand in undrained cyclic torsional 

shear tests. Soils and foundations, 52/3, pp. 498 – 510. 



References 

130 

Chiaro G., Kiyota T. and Kosekic J. [2013]. Strain localization characteristics of loose saturated 

Toyoura sand in undrained cyclic torsional shear tests with initial static shear. Soils 

and foundations, 53/1, pp. 23 – 34. 

Cho G.C., Dodds J and Santamarina C. [2006]. Particle shape effects on packing density, stiffness 

and strength – natural and crushed sands. J. Geotech. Environ. Engin., 132/5, pp. 591 – 

602. 

Collins I.F. Pender M.J. and Yan W. [1992]. Cavity expansion in sand under drained loading 

conditions. International journal for numerical and analitical methods in geomechanics, 

16, pp. 3 – 23. 

Collins I.F. and Yu Y.S. [1996]. Undrained cavity expansions in critical state soils. International 

journal for numerical and analitical methods in geomechanics, 20, pp. 489 – 516. 

Colombi A. [2005]. Physical modeling of an isolated pile in coarse grained soils. PhD thesis. 

University of Ferrara, University of Parma, University of Bologna, University of 

Brescia. 

Crova R., Jamiolkowski M., Lancellotta R. and Lo Presti D.C.F. [1993]. Geotechnical 

characterization of gravelly soils at Messina site: selected topics. Predictive soil 

mechanics, 16, pp. 199 – 218. 

Cubrinowski M. and Ishihara K. [1998]. State concept and modified elastoplasticity for sand 

modelling. Soils and foundations, 38/4, pp. 213 – 225. 

Cubrinowski M. and Ishihara K. [2000]. Flow potential of sandy soils with different grain 

compositions. Soils and foundations, 40/4, pp. 103 – 119. 

Cubrinowski M. and Ishihara K. [2001]. Correlation between penetration resistance and relative 

density of sandy soils. 15
th
 ISSMGE Istanbul, Turkey, pp. 393 – 396. 

Cubrinowski M. and Ishihara K. [2002]. Maximum and minimum void ratio characteristics of 

sands. Soils and foundations, 42/6, pp. 65 – 78. 

De Alba P., Bolton Seed H. and Chan C.K. [1976]. Sand liquefaction in large-scale simple shear 

tests. Journal of the geotechnical engineering division, 102/9, pp. 909 – 927. 

De Gennaro V., Canou J., Dupla J.C. and Benahmed N. [2004]. Influence of loading path on the 

undrained behavior of medium loose sand. Can. Geotech. J., 41, pp. 166 – 180. 

Di Prisco C., Wood D. M., [2012]. Mechanical behavior of soils under environmentally induced 

cyclic loads. International center for mechanical sciences – Course and lecturer - -No 

534, ISBN 978 – 3 – 7091 – 1067 – 6, pp. 1 – 137. 

Dupla J.C and Canou J. [2004]. Cyclic pressumeter loading and liquefaction properties of sands. 

Soils and foundations 43/2, pp. 17 – 31. 

Colliat-Dangus J.L., Desrues J. and Foray P. [1988]. Triaxial testing of granular soil under 

elevated cell pressure. Special technical publication 977, pp. 290 – 310. 

Dobry R. and  Abdoun T. [2011]. An investigation into why liquefaction charts work: a necessary 

step toward integrating the states of art and practice. Proceedings of the 5th int. conf. 

on Earthquake Geot. Eng., pp. 13 – 45. 



References 

131 

Erickson R.P.C. [2012]. State normalization of cone penetration resistance. ECI 284: theoretical 

geomechanics professor Boris Jeremić. 

Frost J.D. and Jang D.J., [2000]. Evolution of sand microstructure during shear. Journal of 

geotechnical and geoenvironmental engineering, pp. 116 – 130. 

Garga V.K. and McKay L.D., [1984]. Cyclic triaxial strength of mine tailings. Journal of 

geotechnical engineering, 110/8 pp. 1091 – 1105. 

Garnier J., Gaudin C., Springman S.M., Culligan P.J., Goodings D., Konigv D., Kutterv B., 

Phillipsv R., Randolph M.F., and Thorel L., [2007]. Catalogue of scaling laws and 

similitude questions in geotechnical centrifuge modeling. International Journal of 

Physical Modeling in Geotechnics, 3, pp. 01 – 23.  

Georgiannou V.N. and Tsomokos A. [2008]. Comparison of two fine sands under torsional 

loading. Can. Geotech. J., 45, pp. 1659 – 1672. 

Ghafghazi M. [2011]. Towards comprehensive interpretation of the state parameter from cone 

penetration testing in cohesionless soils. PhD thesis. University of British Columbia. 

Ghafghazi M., Shuttleb D.A., DeJong J.T. [2014]. Particle breakage and the critical state of sand. 

Soils and foundations, 54/3, pp. 451 – 461. 

Ghionna N. and Porcino D., [2006]. Evolution of sand microstructure during shear. Journal of 

geotechnical and geoenvironmental engineering, 132/2, pp. 194 – 202. 

Giretti D. [2009]. Modeling of piled raft foundations in sand. PhD thesis. University of Ferrara. 

Gui M.W. and Bolton M.D., [1998]. Geometry and scale effects in CPT and pile design. 

Geotechincal site characterization, pp. 1063 – 1068. 

Gui M.W., Bolton M.D., Garnier J., Corte J.F., Bagge G., Laue J. and Renzi R. [1998]. Gudelines 

for cone penetration tests in sand. Centrifuge 98, pp. 155 – 160. 

Gui M.W. and Jeng D.S.. [2009]. Application of cavity expansion theory in predicting centrifuge 

cone penetration resistance. The Open Civil Engineering Journal 3, pp. 1 – 6. 

Hanzawa H., Nutt N., Lunne T, Tang Y.X. and Long M. [2007]. A comparative study between the 

NGI direct simple shear apparatus and the Mikasa direct shear apparatus. Soils and 

foundations, 47/1, pp. 47 – 58. 

Hatanaka M. and Geng L. [2006]. Estimating relative density of sandy soils. Soils and 

foundations, 46/3, pp. 299 – 313. 

Hosono Y. and Yoshimine M. [2004]. Liquefaction of sand in simple shear condition. Cyclic 

behavior of soils and liquefaction phenomena: proceedings of the international 

conference, Bochum, Germany, pp. 129-136. 

Houlsby G.T. and Hitchman R. [1988]. Calibration chamber tests of a cone penetrometer in sand. 

Geotecnique, 38/1, pp. 39 – 44. 

Huang A.B. [1992]. Calibration chamber testing. Proceedings of the first international 

symposium on calibration chamber testing. 



References 

132 

Hyodo M., Tanimizu H., Yasufuku N. and Fujii T. [1991]. Undrained cyclic shear strength and 

residual shear strain of saturated sand by cyclic triaxial tests. Soils and foundations 

31/3, pp. 60 – 76. 

Hyodo M., Tanimizu H., Yasufuku N. and Murata H. [1994]. Undrained cyclic and monotonic 

triaxial behavior of saturated loose sand. Soils and foundations 34/1, pp. 19 – 32. 

Hyodo M., Hyde A.F.L., Aramaki N. and Nakata Y. [2002]. Undrained monotonic and cyclic 

shear behavior of sands under low and high confining stress. Soils and foundations 

42/3, pp. 63 – 76. 

Idriss I.M. and Boulanger R.W. [2004]. Semi-empirical procedures for evaluating liquefaction 

potential during earthquakes. Proceedings of the 11th SDEE and of the 3rd ICEGE, 

Berkeley, CA. 

Idriss I.M. and Boulanger R.W. [2008]. Soil liquefaction during earthquakes. Monograph by 

EERI, Oakland, California. 

International symposium on cone penetration testing [1995]. Linkoping, Sweden, Vol. 1, 2, 3, 4. 

Ishiara K., [1985]. Stability of natural deposits during earthquakes. Proceedings of the 11
th
 

international conference on soil mechanics and foundation engineering, San Francisco, 

pp. 321 – 376. 

Ishiara K. [1993]. Liquefaction and flow failure during earthquakes. Geotecnique 43/3, pp. 351 – 

415. 

Ishiara K. [1996]. Soil behavior in earthquake geotechnics. Clarendon Press, Oxford. 

Ishiara K. and Li S.I. [1972]. Liquefaction of saturated sand in triaxial torsion shear test. Soils 

and foundations 12/2, pp. 19 – 39. 

Ishiara K., Tatsuoka F. and Yasuda S. [1975]. Undrained deformation and liquefaction of sand 

under cyclic stresses. Soils and foundations 15/1, pp. 29 – 44. 

Ishiara K. and Takatsu H. [1979]. Effects of overconsolidation and K0 conditions in the 

liquefaction carachteristics of sands. Soils and foundations 19/4, pp. 59 – 68. 

Ishiara K., Shimizu K. and Yamada Y. [1981]. Pore water pressures measured in sand deposit 

during an earthqake. Soils and foundations 21/4, pp. 85 – 100. 

Ishiara K., Towhata I. [1983]. Stress response to cyclic rotation of principal stress directions as 

induced by wave loads. Soils and foundations 23/4, pp. 11 – 26. 

Ishiara K. and Perlea V. [1984]. Liquefaction-associated ground damage during the Vrancea 

earthquake of march 4, 1977. Soils and foundations 24/1, pp. 90 – 112. 

Ishiara K., Yamazaki A. and Haga K. [1985]. Liquefaction of K0-consolidated sand under cyclic 

rotation of principal stress direction with lateral constraint. Soils and foundations 25/4, 

pp. 63 – 74. 

Ishibashi I. and Sherif M.A. [1974]. Soil liquefaction by torsional simple shear device. Journal of 

the geotechnical engineering division, August 1974 pp. 871 – 888. 



References 

133 

Jamiolkowski M, Lo Presti D.C.F and Manassero M. [2001]. Evalutation of relative density and 

shear strength of sands from CPT and DMT. Soil behaviour and soft ground 

construction, pp. 201 – 238. 

Jefferies M. [1999]. A critical state view of liquefaction. Physics and mechanics of soil 

liquefaction, pp. 221 – 235. 

Jefferies M. and Been K. [2006]. Soil liquefaction – a critical state approach. Taylor & Francis e- 

Library. 

Jefferies M. and Shuttle D. [2011]. Understanding liquefaction through applied mechanics. 

Proceedings of the 5th int. conf. on Earthquake Geot. Eng.. 

Joseph P.J., Einstein H.H. and Whitman R.V. [1988]. A literature review of geotechnical 

centrifuge modeling with particular emphasis on rock mechanics. M.I.T. Dept. of Civil 

Eng., Final report. 

Juang C.H., Ku C.S. and Chen C.C. [2010]. Simplified model for evaluating soil liquefaction 

potential using CPTU.  CPTU-2010. 

Konrad J.M. [1997]. In situ sand state from CPT: evaluation of a unified approach at two 

CANLEX sites. Canadian geotechnical journal 34/1, pp 120 – 130. 

Kokusho T. [2007]. Liquefaction strengths of poorly-graded and well-graded granular soils 

investigated by lab tests. Earthquake geotechnical engineering, pp. 159 – 184. 

Kwong J.S.M. [1995]. A review of some drained reclamation works in Hong Kong. Geo Report 

63. 

Lee K.L. and Bolton Seed H. [1967]. Dynamic strength of anisotropically consolidated sand. 

Journal of the soil mechanics and foundations division 93/SM5, pp. 169 – 190. 

Lehane B.M., Schneider J.A. and Xu X. [1967]. CPT-based design of displacement piles in 

siliceous sands., Advances in deep foundations pp 69 – 86. 

Ladd R.S. [1978]. Preparing test specimens using undercompaction. Geotechnical testing journal 

1/1, pp. 16 – 23. 

Lagioia R., Sanzeni A. and Coleselli F. [2006]. Air, water and vacuum pluviation of sand 

specimens for the triaxial apparatus. Soils and foundations 46/1, pp. 61 – 67. 

Leung C.F., Lee F.H. and Tan T.S. [1994]. Centrifuge 94. 

Li X.S. and Wang Y. [1998]. Linear representation of steady-state line for sand. Journal of 

geotechnical and geoenvironmental engineering 124/12, pp. 1215 – 1217. 

Li X.S. and Dafalias Y.F. [2000]. Dilatancy for cohesionless soils. Geotecnique 50/4, pp. 449 – 

460. 

Liu Q.B. and Lehane B.M. [2012]. The influence of particle shape on the (centrifuge) cone 

penetration test (CPT) end resistance in uniformly graded granular soils. Geotechnique 

62/11, pp. 973 – 984. 

Liu J. [2012]. Liquefaction resistant on Monterey no.0/30 sand. Master of Sience Thesis, 

University of Colorado Denver. 



References 

134 

Lo Presti D.C.F., Berardi R., Pedroni S. and Crippa V. [1993]. A new traveling sand pluviator to 

reconstitute specimens of well-graded silty sands. Geotechnical testing journal 16/1, pp. 

18 – 26. 

Lo Presti D.C.F., Puci I., Pallara O., Maniscalco R. and Pedroni S. [2006]. Experimental 

laboratory determination of the steady state of sands. Soils and foundations 40/1, pp. 

113 – 122. 

Maki I.P., Boulanger R.W., DeJong J.T. and Jaeger R.A. [2013]. State-based overbunden 

normalization of cone penetration resistance in clean sand. Journal of geotechnical and 

geoenvironmental enigineering. 

Miura S. and Toki S. [1982]. A sample preparation method and its effect on static and cyclic 

deformation-strength properties of sand. Soils and foundations 22/1, pp. 61 – 77. 

Miura S., and Toki S. [1984]. Anisotropy in mechanical properties and its simulation of sands 

sampled from natural deposit. Soils and foundations 24/3, pp. 69 – 84. 

Miura S., Toki S., and Tanizawa F. [1984]. Cone penetration characteristics and its correlation to 

static and cyclic deformation-strength behaviors of anisotropic sand. Soils and 

foundations 24/1, pp. 58 – 74. 

Mohamad R. and Dobry R. [1986]. Undrained monotonic and cyclic triaxial strength of sand. 

Journal of geotechnical engineering 112/10, pp. 941 – 958. 

Mooney M.A., Finno R.J. and Viggiani M.G. [1998]. A unique critical state for sands?. Journal of 

geotechnical and geoenvironmental engineering 124/11, pp. 1100 – 1108. 

Mortezaie A.R. and Vucetic M. [2012]. Small-strain cyclic testing with standard NGI simple 

shear device. Geotechnical testing journal 35/6, pp. 935 – 948. 

Moss. R.E.S. [2003]. CPT-based probabilistic assessment of seismic soil liquefaction initiation. 

PhD thesis. University of California, Berkeley. 

Moss. R.E.S., Seed R.B., Kaven R.E., Stewart J.P., Der Kiureghian A. [2006]. CPT-based 

probabilistic assessment of seismic soil liquefaction initiation. PEER Report. 

Mulilis J.P. [1977]. Effects of sample preparation on sand liquefaction. Journal of the 

geotechnical engineering division 103/2, pp. 91 – 108. 

Murthy T.G., Loukidis D., Carraro J.A.H., Prezzi M. and Salgado R. [2007]. Undrained 

monotonic response of clean and silty sands. Geotecnique 57/3, pp. 273 – 288. 

Oda M. [1972]. Deformation mechanism of sands in triaxial compression tests. Soils and 

foundations 12/4, pp. 45 – 63. 

Oda M., Koishikawa I. and Higuchi T. [1978]. Experimental study of anisotropic shear strength 

of sand by plane strain test. Soils and foundations 18/1, pp. 25 – 38. 

Omarov M. [2010]. Liquefaction potential and post-liquefaction settlement of saturated clean 

sands; and effect of geofiber reinforcement. Master of Sience thesis. University of 

Alaska Fairbanks. 

Onder Cetin K. and Tolga Blige H. [2012]. Cyclic large strain and induced pore pressure models 

for saturated clean sands. Journal of geotechnical and geoenvironmental engineering 

138/3, pp. 309 – 323. 



References 

135 

Pallara O., Lo Presti D.C.F., Jamiolkowski M. and Pedroni S. [1998]. Caratteristiche di 

deformabilità di due sabbie da prove monotoniche e cichliche. Rivista italiana di 

geotecnica 1/98, pp. 63 – 83. 

Passalacqua R. [1991]. A sand-spreader used for the reconstitution of granular soil models. Soils 

and foundations 31/2, pp. 175 – 180. 

Phillips R. and Valsangkar A.J. [1987]. An experimental investigation of factors affecting 

penetration resistance in granular soils in centrifuge modeling. Soils TR 210, pp. 1 – 

54.  

Pillai V.S. [1991]. Liquefaction analysis of sands: some interpretation of Seed's K (sloping 

gound) and K (depth) correction factors using steady state concept. Second Int. Conf. 

on Recent Adv. in Geotech. Earthquake Engin. and S. Dynam, St. Louis, Missouri, 

paper n.3.62, pp. 579 – 587.  

Pillai V.S. and Byrne P.M. [1994]. Effect of overburden pressure on liquefaction resistance of 

sand. Canadian geotechnical journal 31/1, pp. 53 – 60.  

Porcino D. and Caridi G. [2007]. Pre and post liquefaction response of sand in cyclic simple 

shear. Geotechnical Denver Proceeding, pp. 31 – 40. 

Porcino D. and Marcianò V. [2009]. Correlating qc and cyclic liquefaction resistance of sands 

through calibration chamber tests and simple shear tests. Performance-based design in 

earthquake geotechnical engineering, pp. 1307 – 1314. 

Porcino D., Marcianò V. and Granata R. [2012]. Liquefaction and re-liquefaction of a silicate 

grouted sand due to repeated earthquakes. Incontro annuale dei ricercatori di 

geotecnica. 

Poulos S.J. [1971]. The stress-strain curves of soils. Geotechnical Engineers, Inc. 

Poulos S.J. [1981]. The steady state of deformation. Journal of the Geotechnical Engineering 

Division 107/5, pp. 553 – 562. 

Pournaghiazar M., Russell A.R. and Khalili N. [2012]. The cone penetration test in unsaturated 

sands. Géotechnique, November 2012. 

Puppala A.J., Acar Y.B. and Tumay M.T. [1995]. Cone penetration in very weakly cemented 

sand. Journal of geotechnical engineering 121/8, pp. 589 – 600. 

Rahman M. [2009]. Modelling the influence of fines on liquefaction behaviour. PhD thesis. 

University of New South Wales at Australian Defense Force Academy. 

Rascol E. [2009]. Cyclic properties of sand: dynamic behaviour for seismic applications. PhD 

thesis. École Polytechnique Fédérale de Lausanne. 

Renzi R., Cortè J.F., Rault G., Gui M. and Laue J. [1999]. Cone penetration tests in the 

centrifuge: experience of five laboratories. Centrifuge 94, pp. 77 – 82. 

Riemer M.F. and Seed B. [1997]. Factors affecting apparent position of steady-state line. Journal 

of geotechnical and geoenvironmental engineering 123/3, pp. 281 – 288. 

Rowe P.W. [1962]. The stress-dilatancy relation for static equilibrium of an assembly of particles 

in contact. Proceedings of the Royal Society of London 269/1339, pp. 500 – 527. 



References 

136 

Robertson P.K. [1990]. Soil classification using the cone penetration test. Can. Geotech. J. 27, pp. 

151 – 158. 

Robertson P.K. [1994]. Suggested terminology for liquefaction – CANLEX (Canadian liquefaction 

Experiment). 

Robertson P.K. [2004]. Evaluating soil liquefaction and post-earthquake deformations using the 

cpt. 

Robertson P.K. [2009]. Interpretation of cone penetration tests – a unified approach. Submitted 

to the Canadian Geotechnical Journal. 

Robertson P.K. [2010]. Evaluation of flow liquefaction and liquefied strength using the cone 

penetration test. Journal of geotechnical and geoenvironmental engineering 136/6, pp. 

842 – 853. 

Robertson P.K. [2010]. Soil behaviour type from the CPT: an update. CPT ‘10 - 2
nd

 International 

Symposium on Cone Penetration Testing 

Robertson P.K., Campanella R.G., Gillespie D. and Greig J. [1986]. Use of piezometer cone data. 

Use of in situ tests in geotechnical engineering. 

Robertson P.K., List B.R. and Hofmann B.A. [1994]. CANLEX (Canadian liquefaction 

Experiment) – a one year update. 

Robertson P.K. and Wride C.E. [1998]. Evaluating cyclic liquefaction potential using the cone 

penetration test. Can. Geotech. J. 35, pp. 442 – 459. 

Robertson P.K. and Cabal K.L. [2010]. Guide to cone penetration testing for geotechnical 

engineering. Gregg Drilling & Testing, Inc. 

Russell A.R. and Khalili N. [2002]. Drained cavity expansion in sands exhibiting particle 

crushing. International journal for numerical and analytical methods in geomechanics 

26, pp. 323 – 340. 

Sadrekarimi A. [2013]. Influence of state and compressibility on liquefied strength of sands. 

Canadian geotechnical journal 50/10, pp. 1067 – 1076. 

Salgado R., Boulanger R.W. and Mitchell J.K. [1997]. Lateral stress effects on cpt liquefaction 

resistance correlations. Journal of geotechnical and geoenvironmental engineering 

123/8, pp. 726 – 735. 

Salgado R., Jamiolkowski M. and Mitchell J.K. [1998]. Penetration resistance in sands: analysis 

and applications to liquefaction potential assestment and estimation of pile base 

resistance. Rivista italiana di geotecnica 98/4, pp. 5 – 17. 

Salgado R., and Randolph M.F. [2001]. Analysis of cavity expansion in sand. The international 

journal of geomechanics 1/2, pp. 175 – 192. 

Salgado R., and Prezzi M. [2007]. Computation of cavity expansion pressure and penetration 

resistance in sands. The international journal of geomechanics 7/4, pp. 251 – 265. 

Sasitharan S., Robertson P.K., Sego D.C. and Morgenstern N.R. [1993]. Collapse behaviour of 

sand. Canadian geotechnical journal 30/4, pp. 569 – 577. 



References 

137 

Schneider J.A. [2007]. Analysis of piezocone data for displacement pile design. PhD thesis. 

University of Western Australia. 

Schofield A.N., and Wroth C.P. [1968]. Critical State Soil Mechanics. McGraw-Hill, London. 

Download: http://www.geotechnique.info/. 

Seed H.B. and Lee K.L. [1966]. Liquefaction of saturated sans during cyclic loading. Journal of 

the soil mechanics and foundations division 92/6, pp. 105 – 134. 

Shen C.K. and Lee K.M. [1994]. Hydraulic fill performance in Hong Kong. Geo Report 40. 

Shen C.K., Lee K.M. and Li X.S. [1996]. A study of hydraulic fill performance in Hong Kong – 

phase 2. Geo Report 64. 

Shibata T. and Teparaksa W. [1988]. Evaluation of liquefaction potentials of soils using cone 

penetration tests. Soils and foundations 28/2, pp. 49 – 60. 

Shuttle D. and Jefferies M. [1998]. Dimensionless and unbiased cpt interpretation in sand. 

International journal for numerical and analytical methods in geomechanics 22, pp. 351 

– 391. 

Silver M.L., Tatsuoka F., Phunkunhaphan A., Avramidis A.S. [1980]. Cyclic undrained strength 

of sand by triaxial tests and simple shear test. Soils and Foundations 32/1, pp. 35 – 38. 

Sladen J.A., D’Hollander R.D. and Krahn J. [1985]. The liquefaction of sands, a collapse surface 

approach. Canadian geotechnical journal 22, pp. 564 – 578. 

Sladen J.A. [1989]. Problems with interpretation of sand state from cone penetration test. 

Geotecnique 39/2, pp. 323 – 332. 

Swidzinski W. and Mierczynski J. [2005]. Instability line as a basic characteristic of non-

cohesive soils. Archives of Hydro-Engineering and Environmental Mechanics 52/1, pp. 

59 – 85. 

Stedman J.D. [1994]. Effects of confining pressure and static shear on liquefaction resistance of 

frasier river sand. Master of Sience thesis. University of British Columbia. 

Tadesse S. [2000]. Behaviour of saturated sand under different triaxial loading and liquefaction. 

PhD thesis. Norwegian University of Science and Technology. 

Tavenas F.A., Ladd R.S. and La Rochelle P. [1973]. Accuracy of relative density measurements: 

results of a comparative test program. Evaluation of relative density and its role in 

geotechnical projects involving cohesionless soils, pp. 18 – 60. 

Tatsukoa F., Iwasaki T., Tokida K., Yasuda S., Hirose M., Imai T. and Kon-no M. [1978]. A 

method for estimating undrained cyclic strength of sandy soils using standard 

penetration resistances. Soils and foundations 18/3, pp. 43 – 58. 

Tatsukoa F., Silver M.L., Phukunhaphan A. and Anestis A. [1980]. Cyclic undrained strength of 

sand by simple shear test and triaxial test I (test procedures). Soils and foundations 

26/3, pp. 35 – 38. 

Tatsukoa F., Silver M.L., Phukunhaphan A. and Anestis A. [1982]. Cyclic undrained strength of 

sand by simple shear test and triaxial test III (test results and discussions). Soils and 

foundations 26/3, pp. 209 – 212. 

http://www.geotechnique.info/


References 

138 

Tatsukoa F., Ochi K., Fujii S. and Okamoto M. [1986]. Cyclic undrained triaxial and torsional 

shear strength of sands for different sample preparation methods. Soils and foundations 

26/3, pp. 23 – 41. 

Tatsukoa F., Toki S., Miura S., Kato H., Okamoto M., Yamada S., Yasuda S. and Tanizawa F. 

[1986]. Some factors  affecting cyclic undrained triaxial strength of sand. Soils and 

foundations 26/3, pp. 99 – 116. 

Toki S., Tatsukoa F., Miura S., Yoshimi Y., Yasuda S. and Makihara Y. [1986]. Cyclic undrained 

triaxial strength of sand by a cooperative test program. Soils and foundations 26/3, pp. 

117 – 128. 

Uchida K. and Stedman J.D. [2001]. Liquefaction behaviour of Toyura sand under cyclic strain 

controlled triaxial testing. 11
Th

 Int. Offshore and Polar Eng. Conf. 

Uthayakumar M. [1992]. Dynamic properties of sands under cyclic torsional shear. Master of 

Sience thesis. University of British Columbia. 

U.S.A. Army Corps of Engineers [2000]. Thechnical bases for regulatory guide for soil 

liquefaction 

Vaid Y.P. and Negussey D. [1984]. Relative density of pluviated sand samples. Soils and 

foundations 24/2, pp. 101 – 105. 

Vaid Y.P., Chern J. and Tumi H. [1985]. Confining pressure, grain angularity and liquefaction. 

Journal of geotechnical engineering 111/10, pp. 1229 – 1235. 

Vaid Y.P., Chung E.K.F. and Kuerbis R.H. [1989]. Preshearing and undrained response of sand. 

Soils and foundations 29/4, pp. 49 – 61. 

Vaid Y.P., Fisher J.M., Kuerbis R.H. and Negussey D. [1990]. Particle gradiation and 

liquefaction. Journal of geotechnical engineering 106/4, pp. 689 – 703. 

Vaid Y.P. and Sivathayalan S. [1996]. Static and cyclic liquefaction potential of Fraser Delta 

sand in simple shear and triaxial tests. Canadian geotechnical journal 33/2, pp. 281 – 

289. 

Vaid Y.P. and Sivathayalan S. [2000]. Fundamental factors affecting liquefaction susceptibility of 

sands. Canadian geotechnical journal 37/3, pp. 592 – 606. 

Verdugo R. and Ishihara K. [1996]. The steady state of sandy soils. Soils and foundations 36/2, 

pp. 81 – 91. 

Wang J. [2005]. The stress-strain and strength characteristics of Portaway sand. PhD thesis. 

University of Nottingham. 

Wang Z., Dafalias Y.F., Li X. and Makdisi F.I. [2002]. State pressure index for modelling sand 

behaviour. Journal of geotechnical and geoenvironmental engineering 128/6, pp. 551 – 

519. 

Wichtmann T. and Triantafyllidis T. [2009]. On the influence of the grain size distribution curve 

of quartz sand on the small strain shear modulus Gmax. Journal of geotechnical and 

geoenvironmental engineering 135/10, pp. 1404 – 1418. 



References 

139 

Wood D.M. and Budhu M. [1980]. The behaviour of Leighton Buzzard sand in cyclic simple 

shear test. Int. symposium on soil under cyclic and transient loading, Swansea, pp. 9 – 

21. 

Yamashita S. and Toki S. [1993]. Effects of fabric anisotropy of sand on cyclic undrained triaxial 

and torsional strengths. Soils and foundations 33/3, pp. 92 – 104. 

Yoshimi Y. and Tokimatsu K. [1977]. Settlement of building on saturated sand during 

earthquakes. Soils and foundations 17/1, pp. 23 – 38. 

Yoshimi Y., Tokimatsu K., Kaneko O. and Makihara Y. [1984]. Undrained cyclic shear strength 

of dense nigata sand. Soils and foundations 24/4, pp. 131 – 145. 

Yoshimi Y., Tokimatsu K. and Hosaka Y. [1989]. Evaluation of liquefaction resistance of clean 

sands based on high-quality undisturbed samples. Soils and foundations 29/1, pp. 93 – 

104. 

Youd T.L. and Idriss I.M. [1997]. Proceedings of the NCEER workshop on evaluation of 

liquefaction resistance of soils. Inn at Temple Square, Salt Lake City, Utah. 

Yu H.S. and Houlsby G.T. [1991]. Finite cavity expansion in dilatant soils: loading analysis. 

Geotechnique 41/2, pp. 173 – 183. 

 



APPENDIX A                                                    Undrained and Drained Triaxial tests 

140 

 

 

APPENDIX A 

 

 

 

 

Undrained and Drained Triaxial tests 

TICINO SAND  

 

 

 

Symbols and abbreviations for triaxial condition: 

 

q =’1 - ’3 =1 - 3  deviatorico stress     [F/L
2
] 

p = (1 + 2∙3)/3  mean total stress    [F/L
2
] 

p’= (’1 + 2∙’3)/3  mean effective stress     [F/L
2
] 

a = ΔH/H0   axial deformation    [-] 

v = ΔV/V0   volumetric deformation   [-] 

Δu    overburden pressure    [F/L
2
] 

 

CS critical state condition 

AP air pluviation method 

MT moist tamping method 
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UNDRAINED TESTs 

A total of 16 undrained triaxial compression tests are performed on Ticino sand on 

specimens reconstituted with air pluviation method.  

The main data about the dimensions and the type of load, together with the initial state of 

samples are summarized in Table A.1. 

The depositional method used was that one proposed by Miura and Toki (1982).  

It consists in a simple preparation method of sand’s specimen using multiple sieving 

pluviation apparatus, capable to reproduce from loose to very dense sample without 

applying vibration or impact on sand.  

The dry sand is pluviated trough a conical hopper down in seven layers of sieved in order 

to insure a uniform material deposition. Changing the height of fall and the nozzle 

diameter is possible to reproduce a wide range of initial void ratio.  

Experimentally it is observed that nozzle diameter has a stronger influence on the 

variation of relative density, unlike the height of fall and speed of deposition.  

The test results are reported from Figure A.1 to A.16 in q – p’, q – a, a – Δu and p’ – Δu 

graphs. 
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Table A.1- Undrained triaxial tests on Ticino sand 
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Figure A.1-CIU-H0 

 

Δu q p'

[kPa] [kPa] [kPa]

330 1126 845

Critical State
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Figure A.2-CIU-H1 
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Figure A-CIU-H2 
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Figure A.3-CIU-H3 
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Figure A.4-CIU-H4 
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Figure A.5-CIU-H5 
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Figure A.6-CK0U-H6 
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Figure A.7-CK0U-H7 
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Figure A.8-CK0U-H8 
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Figure A.9-CK0U-H10 
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Figure A.10-CK0U-H11 
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Figure A.11-CK0U-H12 

 

Δu q p'

[kPa] [kPa] [kPa]

70 849 641

Critical State
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Figure A.12-CK0U-H13 

 

Δu q p'

[kPa] [kPa] [kPa]

100 911 682

Critical State
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Figure A.13-CK0U-H14 

 

Δu q p'

[kPa] [kPa] [kPa]

160 962 717

Critical State
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Figure A.14-CK0U-H15 

 

Δu q p'

[kPa] [kPa] [kPa]

-20 944 692

Critical State



APPENDIX A                                                    Undrained and Drained Triaxial tests 

158 

 

 
Figure A.15-CK0U-H16 

 

  

Δu q p'

[kPa] [kPa] [kPa]

10 868 639

Critical State
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DRAINED TESTs 

A total of 14 drained monotonic triaxial tests were performed on Ticino sand on 

specimens reconstituted with air pluviation method.  

The main data about the dimensions and the type of load, together with the initial state of 

samples are summarized in Table A.2. 

 
Table A.2- Drained triaxial tests on Ticino sand  
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Figure A.16-CK0D-171 

 

v q p'

[%] [kPa] [kPa]

-2.8 615 440

Critical State
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Figure A.17-CK0D-172 

 

v q p'

[%] [kPa] [kPa]

-2.9 560 407

Critical State
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Figure A.18-CID-U21 

 

v q p'

[%] [kPa] [kPa]

-3.3 680 525

Critical State
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Figure A.19-CID-U22 

 

v q p'

[%] [kPa] [kPa]

-3.3 265 212

Critical State
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Figure A.20-CID-U24 

 

v q p'

[%] [kPa] [kPa]

-3.8 260 205

Critical State
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Figure A.21-CID-U36 

 

v q p'

[%] [kPa] [kPa]

-1.9 521 420

Critical State
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Figure A.22-CK0D-V7 

 

v q p'

[%] [kPa] [kPa]

-4.4 1119 810

Critical State
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Figure A.23-CK0D-CK5 

 

v q p'

[%] [kPa] [kPa]

-1.1 921 660

Critical State
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Figure A.24-CK0D-K8 

 

v q p'

[%] [kPa] [kPa]

-1.6 837 621

Critical State
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Figure A.25-CID-M32 

 

v q p'

[%] [kPa] [kPa]

-2.3 2230 1543

Critical State
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Figure A.26-p’ cost-R14 

 

v q p'

[%] [kPa] [kPa]

-4.7 980 726

Critical State
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Figure A.27-CK0D-K6 

 

v q p'

[%] [kPa] [kPa]

-2.3 1440 1061

Critical State
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Figure A.28-CID-U38 

 

v q p'

[%] [kPa] [kPa]

-5.2 130 102

Critical State
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Figure A.29-CID-U50 

  

v q p'

[%] [kPa] [kPa]

-3.5 210 164

Critical State
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DRAINED AND UNDREAINED GOLDER ASSOCIATED TESTs 

Drained and undrained tests published by Been (1991) [Golder Associates] are used in the 

present thesis in order to determine the critical state line for Ticino sand. Two drained and 

four undrained tests are selected and the characteristics of the tests and the initial state 

conditions are reported in Table A.3. 

Samples were reconstituted with the wet-tamping method, a reconstitution technique that 

closely simulates field compaction systems.  

This methodology consists in pouring in the mold pre-weighed and oven-dried sand 

mixed with usually 5% of water. Sand is deposed by hand in five or six layers keeping the 

height of fall constant; at each stage of the lifts, tamping is applied lightly with a small 

flat tamper. The energy and the numbers of tamping determinate the variation of relative 

density in the sample: considering the capillarity effects and using a very small amount of 

energy, the moist sand can be placed in very loose configurations, well in excess of the 

maximum void ratio of the dry sand determined by ASTM or JSSMFE methods. 
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Table A.3- Undrained and drained triaxial tests on Ticino sand [Been, 1991] 
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Figure A.30-CID-C262 

 

v q p'

[kPa] [kPa] [kPa]

1.75 374 325

Critical State
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Figure A.31-CID-C263 

 

v q p'

[kPa] [kPa] [kPa]

-0.91 374 337

Critical State
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Figure A.32-LIQ-1101 

 

Δu q p'

[kPa] [kPa] [kPa]

213 155 147

Critical State
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Figure A.33-LIQ-1103 

 

Δu q p'

[kPa] [kPa] [kPa]

242 103 95

Critical State
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Figure A.34-LIQ-1105 

 

Δu q p'

[kPa] [kPa] [kPa]

256 38 36

Critical State
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Figure A.35-LIQ-1106 

 

Δu q p'

[kPa] [kPa] [kPa]

337 334 278

Critical State
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APPENDIX B 

 

 

 

Cyclic Triaxial Isotropical Consolidated tests 

TICINO SAND  

 

 

Symbols and abbreviations for triaxial condition: 

 

q =’1 - ’3 =1 - 3  deviatoric stress     [F/L
2
] 

p = (1 + 2∙3)/3  mean total stress    [F/L
2
] 

p’= (’1 + 2∙’3)/3  mean effective stress     [F/L
2
] 

a = ΔH/H0   axial deformation    [-] 

Δu    overburden water pressure   [F/L
2
] 

N    number of cyclic liquefaction  [-] 

Ru = Δu/’3c   overburden pressure ratio   [-] 

0    initial state parameter    [-] 

 

AP  air pluviation method 

WS  water sedimentation method 

Mtc , Mte critical state stress ratio in compression and extension in q – p’ plain 

CSR  cyclic stress ratio 

CRR  cyclic resistance ratio  

Summit “SS” and“TX”  simple shear and triaxial condition  



APPENDIX B                                             Cyclic Triaxial Isotropical Consolidated tests 

183 

CYCLIC TRIAXIAL TESTs 

A total of 17 cyclic triaxial tests are performed on Ticino sand on specimens reconstituted 

with air pluviation method.  

The main information about the dimensions and the source, the initial state of samples 

and dynamic stresses applied, together with the number of cyclic to liquefaction are 

summarized in Table B.1. 

The results of tests are reported from Figure B.1 to Figure B.17 in four graphs: 

- axial deformation a versus number of cycles N; 

- overburden water pressure Δu versus number of cyclic N; 

- deviatoric stress q versus axial deformation a; 

- deviatoric stress q versus mean effective stress p’. 

In all graphs are also superimposed with dot white symbol the liquefaction point derived 

from the analysis. 

In Figure B.18 are reported the liquefaction points deduced from the cyclic triaxial tests 

conducted on Ticino sand: the results are plotted in cyclic stress ratio CSR
TX

 vs. number 

of cycles to liquefaction N. 

Here after, some useful information about test results from Porcino’s research. The void 

ratio at the end of consolidation stage ec is deduced from the relative density and 

considering the maximum and minimum void ratio published in Porcino’s articles. In 

order to determine the state parameter the critical state line determined in Chapter 3 is 

used. In Table B.2 are summarized the main characteristics of the tasted samples, 

underlined that some data are graphically deduced. 

Specimens are reconstituted by water sedimentation method. In this technique mixture of 

sand and water is poured through the plastic tube in four layers at a constant speed, so that 

the surface of water is always coincident with that of sand sediment. The sand is 

deposited continuously under water without causing segregation but, if a denser specimen 

is to be prepared, compaction energy is applied by hitting the side of the mound. 
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Table B.1- ISMGeo cyclic triaxial tests 
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Table B.2- Porcino’s simple shear tests 

 

Test Sample Type Sourse Depositional ec σ'vc  CSR
SS

N

B x H Method * ** (SA 3.75%)

[cm x cm] [-] [kPa] [-] [-] [-]

1 0.000 100 -0.887 0.255 2.0

2 0.000 100 -0.887 0.195 4.0

3 0.000 100 -0.887 0.160 8.0

4 0.000 100 -0.887 0.100 80.0

5 0.000 100 -0.887 0.300 5.0

6 0.000 100 -0.887 0.250 5.1

7 0.000 100 -0.887 0.200 10.3

8 0.000 100 -0.887 0.160 65.0

* emax =  0.905; emin = 0.559, ** 'h0 = k0,field 'v0
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Figure B.1-CYC ISO TS4_13_1 
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Figure B.2-CYC ISO TS4_13_4 
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Figure B.3-CYC ISO TS4_13_6 
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Figure B.4- CYC ISO TS4_13_7 
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Figure B.5-CYC ISO TS4_13_8 
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Figure B.6-CYC ISO TS4_13_9 
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Figure B.7-CYC ISO TS4_13_11 
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Figure B.8-CYC ISO TS4_13_13 
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Figure B.9-CYC ISO TS4_13_14 

 

 

 

CSR
TX

* N** Ru**

- - -

0.157 15.5 0.90

*at cyclic liquefaction point,**DA 5% 

point of liquefaction



Chapter 1                                                                                               Literature Review 

195 

 

 
Figure B.10-CYC ISO TS4_13_15 
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Figure B.11-CYC ISO TS4_13_17 
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Figure B.12-CYC ISO TS4_13_20 
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Figure B.13-CYC ISO TS4_13_23 
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Figure B.14-CYC ISO TS4_14_01 
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Figure B.15-CYC ISO TS4_14_02  
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Figure B.16-CYC ISO TS4_14_03 
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Figure B.17-CYC ISO TS4_14_04 
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Figure B.18-Cyclic triaxial tests results for Ticino sand 


