
UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXVII Ciclo

Real-time trajectory planning for systems subject to high

order kinematic and dynamic constraints

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutor:

Chiar.mo Prof. Corrado Guarino Lo Bianco

Dottorando: Fabio Ghilardelli

Gennaio 2015

To my parents,
for their support

Contents

Introduction 1

1 Real-time trajectory generation with dynamic filters 5
1.1 The optimal trajectory scaling problem 8

1.2 The discrete-time third order filter 10

1.3 Design and convergence properties of σ3 16

1.4 Design and convergence properties of σ4 22

1.4.1 Definition range proofs of a1, a2, a3 29

1.5 Convergence properties of σ1 and σ2 33

1.6 Comparisons with respect to the previous version 40

1.7 A test case . 41

2 Trajectory scaling systems in the configuration space 43
2.1 The scaling problem . 47

2.2 The manipulator model . 50

2.3 Evaluation of the equivalent longitudinal constraints 54

2.4 Feasibility problems . 56

2.4.1 Local scaling of R+ and R− 58

ii

2.4.2 Global scaling of R+ and R− 60
2.5 Experimental results . 61

3 Trajectory scaling systems in the operational space 69
3.1 Problem formulation . 70
3.2 The equivalent bounds evaluation for the LTL 75
3.3 Feasibility problems . 79
3.4 Experimental results . 81
3.5 Efficient evaluation of J′T (s) and J′′T (s, ṡ) 89

4 Singularity avoidance system: Online orientation modification 97
4.1 Problem definition and proposed solution 99
4.2 Singularity Detector and Orientation Modifier blocks 102
4.3 The Orientation Synthesizer block 104
4.4 The Equivalent Bounds Evaluator block 105
4.5 Simulation results . 111
4.6 Experimental results . 115

Conclusion and future studies 121

Bibliography 125

Acknowledgments 133

Introduction

This thesis deals with the smooth trajectory generation problem for systems subject
to high order dynamic and kinematic constraints. The task is achieved by formulat-
ing appropriate constrained optimization problems, which are handled by means of
conventional linear programming algorithms, or alternatively by means of specifi-
cally devised nonlinear filters. Considered constraints are obviously represented by
the dynamic and kinematic limits affecting mechatronic systems. Mechanical oscil-
lations and vibrations are correlated to the smoothness of the reference signals, so
that a smart planning guarantees reduced stresses and wears together with a general
improvement in control loops performances. Assumed cost functions depend on the
application. For example, a typical cost function is given by the total traveling time of
the trajectory: Minimal execution times lead to improved productivity performances.
Alternatively, the optimization problem could consider the minimization of the en-
ergy consumption associated to systems’ transients: In this case trajectory planners
must be able to generate profiles that minimize the motors’ losses in order to save
energy.

The planning issues described above can either be dealt with online techniques
or offline strategies, i.e. by executing the overall planning stage before any move-
ment can occur or by continuously adapting the reference trajectory during the task

2 Introduction

execution. In industrial contexts in particular, planning problems are typically solved
with offline strategies by assuming the perfect knowledge of the dynamic model of
controlled plants. This assumption obviously represents an evident approximation
since systems’ models are characterized by uncertainties. Moreover, in actual indus-
trial contexts, systems must react promptly to unforeseen events: New generation
machines must be driven through trajectories devised on-the-fly on the basis of the
mutating environmental conditions. The online trajectory computation guarantees a
reactive response to unpredictable situations generated, for example, by unmodelled
obstacles or by a reaction to emergency situations. Furthermore, it can also be used
to handle kinematic singularities online or undesired behaviors caused by model un-
certainties.

The planning approaches proposed in this work are based on the so-called path-
velocity decomposition paradigm: The trajectory is obtained by first designing the
desired geometric path and then by assigning a time-law to the movement along it.
The optimal planning problems proposed in this thesis are defined in this framework.
They are aimed at finding real-time and time-optimal solutions which fulfill both the
dynamic and the kinematic limits of the considered systems. This result is generally
achieved by designing proper feedback schemes which are able to online modify un-
feasible trajectories in order to fulfill the assigned limits. For this purpose, a dynamic
filter is presented in Chapter 1. It is able to smooth a rough scalar trajectory compat-
ibly with a given set of bounds concerning its first, second and third time derivatives
in real time. The filter generates a new profile that is identical to the original trajec-
tory only if this latter is feasible with respect to the limits. Conversely, if the given
profile is not feasible, it is replaced by its best feasible approximation. The filter pro-
posed in Chapter 1 is the core of the trajectory scaling systems designed in Chapters 2
and 3. Trajectory scaling systems have been introduced in literature in order to scale
down the time-law of trajectories to constrain the dynamics of controlled systems
within given limits. It is well-known indeed that saturation phenomena could affect
the path-tracking performances of mechatronic systems. They can be avoided in the
planning stage by taking into account the dynamic behavior of the plant, resulting
in evident improvements to the path-tracking performances. Chapter 2 proposes a

Introduction 3

solution for a planning scenario in the configuration space: Constraints, which are
managed in real time by the trajectory scaling system, are defined in the joint space
and concern maximum joint velocities, acceleration and jerks. Furthermore, the scal-
ing system is also able to manage limits on the joints’ generalized forces and on
their time derivatives, but this feature requires direct access to the control loops: If
the commercial controller is not accessible, the scaling system can only manage the
kinematic constraints.

Chapter 3 presents a trajectory scaling system in the operational space for indus-
trial manipulators: Paths in Cartesian space could elicit the violation of joint limits
more easily than paths in the configuration space. This happens especially in configu-
rations that are close to kinematic singularities: Trajectories that pass close to singular
points could elicit high joint velocities even in the event of slow Cartesian motions.
Problems deriving from singular configurations are well-known in robotic literature.
Historical approaches mainly propose solutions for redundant manipulators in offline
contexts. Non-redundant manipulators cannot share the same solutions, so that al-
ternative strategies must be proposed in order to manage singularities. The solution
presented in Chapter 3 is based on a reduction in the longitudinal velocity along an
assigned path, made in order to guarantee the fulfillment of a given set of constraints.
The time-delay accumulated in order to guarantee feasibility is eliminated as soon as
possible, depending on the status of motion of the system. The scaling system is able
to simultaneously handle constraints in the configuration and joint spaces: The com-
putational burden is compatible with online implementation. The proposed approach
is tested on a six degrees of freedom manipulator. Since the manipulator controller is
not accessible, only kinematic limits have been taken into account.

In Chapter 4, the trajectory planning problem is dealt with an alternative strategy,
but still considering motions in the operational space and non-redundant manipu-
lators. More precisely, singularities are avoided by admitting limited modifications
of the path primitives. In the novel approach, the assigned time-laws and Cartesian
paths are considered as “mandatory” for task accomplishment. Conversely, minor ori-
entation changes to the tool frame are considered “admissible”. The reason for this
choice is represented by industrial applications like automatic gluing or arc weld-

4 Introduction

ing, which do not allow any reduction in the longitudinal speed or changes to the
Cartesian path. For such applications, the traveling time is mandatory whereas small
orientation changes cannot adversely affect the correct task execution.

All the proposed strategies have been tested against actual robotic platforms such
as a Comau Smart-Six manipulator and a Quanser Consulting 2R planar manipulator.

Some conclusions and some future work recommendations are proposed in the
final chapter.

1
Real-time trajectory generation with dynamic filters

Smooth trajectory generation guarantees improved tracking performances for feed-
back control systems. For this reason, trajectories studied in this thesis will be char-
acterized by proper continuity conditions and their dynamics will be accordingly
bounded. Moreover, due to reasons linked to productivity, industrial applications nor-
mally require a minimization of the time necessary to complete assigned tasks. The
traveling time minimization imposes high actuators’ speeds and, consequently, me-
chanic and dynamic limits could easily be reached and violated. Such limits are cor-
related to the maximum velocities that motors can reach and to the maximum torque
that actuators can provide. Torque constraints are related to the velocity change rates,
i.e. to the accelerations that motors can tolerate. If these bounds are neglected at the
planning stage, they could cause unexpected controllers’ behaviors and lead to high
tracking errors. Additionally, it is well-known that torque discontinuities cause un-
wanted oscillations that can endanger the control system stability, so that these must
be strictly avoided.

In order to deal with the aforementioned issues, reference generators must be
able to produce smooth trajectory profiles that are compliant with the kinematic and
dynamic constraints of the mechanical system. In particular, the required degrees
of smoothness imply that generated profiles must be continuous up to their second
time derivative, i.e. the minimum degree of smoothness that is required in order to

6 Chapter 1. Real-time trajectory generation with dynamic filters

avoid acceleration discontinuities. Robotic literature proposes several solutions to the
abovementioned problems, which can be roughly divided into two mainly categories:
Offline methods and online approaches.

In early works, the reference generation problem was addressed by means of of-
fline strategies. For example, minimum-time trajectories, which satisfy kinematic and
dynamic constraints, have been planned in [1] and in [2] with the aid of a polyhedron
search strategy. A similar problem has been studied in [3] by also considering con-
straints on the actuator torques: The solution has been found by adopting a sensitivity
approach. A discretized version of the same problem has been solved in [4] by means
of a linear programming strategy.

The offline solutions are only useful for particular applications where the con-
trolled plant does not interact with the operating environment or where the environ-
ment is fully structured and known a priori. However, in a modern industrial context,
automatic systems must be able to react to unpredictable and instantaneous changes:
For example, human-robot interaction and knowledge limitation a priori are also
becoming more frequent in industrial environments. For these reasons the planning
stage has to be computed online, i.e. with execution times compatible with control
loops updating, and the introduction of online and minimum-time trajectory genera-
tors are essential to support these increasingly challenging requirements.

The online trajectory generation problem has been mainly addressed in robotic
literature through two different approaches: With direct planning methods, i.e. by
resolving explicit online optimization problems (see [5, 6] for example) or with indi-
rect methods, i.e. by generating trajectories via proper feedback systems. In [6] it has
been shown that the optimization process typically converges in some milliseconds, a
computational time that is not compatible with many real-time applications. A differ-
ent approach has been presented in [7–9], where trajectories with bounded velocities,
accelerations and jerks have been generated online by means of decision trees which
only require a few microseconds. The branches of the decision trees have been de-
fined by means of an offline investigation concerning all possible evolutions. The
sole drawback of these approaches is represented by the complexity of the planning
algorithm. This consideration is at the basis of the studies on the indirect planning

1.0. Real-time trajectory generation with dynamic filters 7

methods, which aim for the same performances but are obtained with compact algo-
rithms.

The early solutions based on indirect planning methods were based on second
order filters that were able to constrain the resulting profile within given limits on
maximum velocities and accelerations. Examples of these first milestones have been
proposed in [10–13] and in [14–16] respectively for continuous and discrete-time
frameworks. These kinds of planning strategies have been widely employed in actual
real-time applications because, compared to previously cited direct planning meth-
ods, they are characterized by several advantages: Trajectories are not limited to rest-
to-rest movements but, conversely, generic initial and final conditions can be handled,
constraints can be changed in real time, and, finally, the code that is required for their
implementation is extremely compact and efficient, so that it can be executed with
industrial micro-controller boards.

In a continuous-time context, the first proposal of a jerk-limited feedback plan-
ner was introduced in [17] with a scheme able to generate trajectories characterized
by bounded velocities, accelerations and jerks. The planner does not handle generic
interpolation conditions but, conversely, can only drive the system toward the rest
status.

The first third-order continuous-time solution, which was able to manage generic
interpolating conditions, has been proposed in [18]. Its discrete-time implementation
is affected by jerk chattering and transient overshoots (see [19]). The discrete-time
scheme, which was later presented in [20] in order to deal with these problems, was
only able to manage the jerk bounds. For this reason, this solution was later improved
in [21] to simultaneously consider velocity, acceleration and jerk limits, and was sub-
sequently revised in [22] by considering asymmetric jerk bounds: The jerk chattering
problem was totally eliminated but, for particular interpolating conditions, the over-
shoot issue, caused by suboptimal transients, was still present.

The main goal of this chapter is to present a nonlinear variable-structure filter
that solves all the issues still left open in [22] and the following challenging prob-
lem: Given a piecewise continuous input signal, the filter must be able to generate
a smooth output reference that represents its best possible approximation compati-

8 Chapter 1. Real-time trajectory generation with dynamic filters

bly with some assigned bounds on velocities, accelerations and jerks. The admissible
bounds can be asymmetric and can be changed online. The bounds asymmetry is a
novelty with respect to any other solution proposed in literature and is essential in
order to handle applications like those described in [23, 24]. Furthermore, the filter
always guarantees minimum-time transients and eliminates the overshoot problem
that was affecting analogous filters proposed in [21, 22]. Many results discussed in
this chapter have been presented early in [25].

The chapter organization can be summarized as follows. In §1.1 the trajectory
scaling problem is formulated and the third-order discrete-time filter is proposed in
§1.2. The convergence properties of the filter are analyzed in §1.3, in §1.4, and in
§1.5. The performances of the filter are compared in §1.6 with those of the filter pro-
posed in [21]. In the last section, §1.7, a numerical test case is discussed to highlight
the main characteristics of the filter.

1.1 The optimal trajectory scaling problem

Let us introduce a preliminary definition:

Definition 1. A function

f : [0, t f] → R
t → fd := f (t)

is feasible, and it is possible to write f ∈F , if it is continuous together with its first
and second time derivatives and if it fulfills the following constraints

R− ≤ ḟ (t)≤ R+, ∀t ∈ [0, t f],

S− ≤ f̈ (t)≤ S+, ∀t ∈ [0, t f],

U− ≤
...
f (t)≤U+, ∀t ∈ [0, t f].

where R−,S−,U− ∈ R− and R+,S+,U+ ∈ R+ are freely assignable bounds.

The nonlinear discrete-time filter proposed in this chapter solves the following
problem:

1.1. The optimal trajectory scaling problem 9

Problem 1. Given a piecewise reference signal r(t) made of steps, ramps or parabo-
las, evaluate an optimal output signal x(t), which is continuous together with its first
and second time derivatives, by solving one of the following optimality problems,
selected on the basis of the feasibility of x(0) and r(t):

a) x(0) /∈F

min
x(t)

t f

subject to x(t f) ∈F .

t f evidently indicates the instant in which x(t) becomes feasible.

b) r(t) /∈F and x(0) ∈F

min
x(t)

∫
|r(τ)− x(τ)|dτ

subject to x(t) ∈F .

c) r(t) ∈F and x(0) ∈F

min
x(t)

t f

subject to r(t f)− x(t f) = 0

x(t) ∈F , ∀t ∈ [0, t f].

t f is evidently the instant in which x(t) hangs r(t). The tracking condition must
be obtained, compatibly with the given bounds, without overshoot.

Problem 1 can be summarized as follows. If x(0) /∈F , then feasibility must be gained
in minimum time, otherwise two different situations could occur: If r(t) /∈F , then
x(t) must be its best feasible approximation, while, r(t) must be hanged in mini-
mum time if r(t) ∈F . Evidently, feasibility represents the prior target of the system.
The bounds could be time-varying and can also be changed during transients. Analo-
gously, r(t) could be modified at any time, so that the solution of Problem 1 must be
evaluated at each sample time. Since control systems are mainly governed by means
of digital controllers, a discrete time solution of Problem 1 is proposed. In the fol-
lowing, subscript i ∈ N indicates sampled variables that are acquired at time t = iT ,
where T is the system sampling time.

10 Chapter 1. Real-time trajectory generation with dynamic filters

The problem is clearly similar to the one that was considered in [21] and [22],
but, as a novelty, asymmetric jerk constraints are handled. Moreover, in [21] and [22],
under particular operating conditions, some transients toward r were suboptimal and
characterized by overshoot issues: The solution here proposed totally eliminates both
problems. These improvements have required a complete redefinition of the filter
control laws.

1.2 The discrete-time third order filter

T

1

+

u

..

T

2

1 + 4 +

(1 -)(1 +)

T

3

x+

r

r

r

UU
+ x

z

z

z

z

+

-

z

z z

z Algebraic Variable

Structure Controller

-1

-1

-1

-1

-1

-1 -1

-2

1

1

x
.

-

S S R R
- - -

Figure 1.1: The discrete-time system that solves Problem 1. The system is composed by a
dynamic chain based on three integrators and an algebraic variable-structure controller.

The structure of the discrete-time filter is shown in Fig. 1.1 and it is the same that
was proposed in [21] and in [22], i.e., it is made of a chain of three integrators. The
Algebraic Variable Structure Controller (AVSC), that is based on sliding mode tech-
niques [26, 27], has been completely rewritten with respect to the version presented
in [21] in order to fulfill the new requirements. The AVSC uses a combination of
appropriate Sliding Surfaces (SS) to robustly stabilize the system and to solve Prob-
lem 1. This section shows the control law that drives the AVSC.

The system dynamics is only due to the integrators chain and can be represented
as follows

xi+1 = A xi +b ui , (1.1)

where xi := [xi ẋi ẍi]
T is the system state and

A =

 1 T T 2

2

0 1 T
0 0 1

 , b =

T 3

6
T 2

2

T

 . (1.2)

1.2. The discrete-time third order filter 11

Reference signal ri is evaluated as follows

ri+1 := Ari , (1.3)

where ri := [ri ṙi r̈i]
T . A step, a ramp, or a parabola can be generated depending on

the initial values that are chosen for ṙi and r̈i. According to the hypothesis posed in
Problem 1,

...r i = 0.
The control law for the AVSC is defined by first consider the following change

of coordinates yi := xi− ri, ẏi := ẋi− ṙi, ÿi := ẍi− r̈i, that places the system origin on
the trajectory to be tracked. Due to (1.3), system (1.1) becomes

yi+1 = A yi +b ui , (1.4)

where A and b coincide with (1.2), while yi := [yi ẏi ÿi]
T .

A further change of coordinates yi = Wzi, where

W :=

 T 3 −T 3 T 3

6

0 T 2 −T 2

2

0 0 T

 , (1.5)

is required to eliminate sampling time T from matrices A and b. System (1.4) be-
comes

zi+1 = Ad zi +bd ui , (1.6)

where zi := [z1,i z2,i z3,i]
T and

Ad =

 1 1 1
0 1 1
0 0 1

 , bd =

 1
1
1

 . (1.7)

Matrix W is non singular and can be evaluated by means the following expression

W−1 =

1

T 3
1

T 2
1

3T

0 1
T 2

1
2T

0 0 1
T

 . (1.8)

Therefore, the inverse transformation zi = W−1 yi exists with certainty.

12 Chapter 1. Real-time trajectory generation with dynamic filters

t,1

t,-1

c= 1

c= -1

c= 0
x = 1

h = -1

c= 0
x = -1
h = -1

c= 0
x = -1
h = 1

c= 0
x = 1
h = 1

z2

s=s3

s=s3

s=s4

s=s4

s= s6

s=s5
-

-

-

-

-

-

(r)V

(r)V

'Vj,-1

'Vj,1

z1

Figure 1.2: Partitions of the (z1,z2)-plane that are used to select the most appropriate sliding
surface. Curve ςςς ′j,1 is given by the intersection between σ4 and σ5, while ςςς ′j,−1 is given by
the intersection between σ4 and σ6. Curves ςςς τ,η represent the borderlines between the areas
where η = 1 and η =−1.

The proposed controller is designed to force state z toward the origin in minimum
time by means of transients which fulfill the given constraints on velocity, accelera-
tion, and jerk. If this result is achieved, then, y = Wz = 0 and, in turn, x, as desired,
hangs reference r.

The AVSC, that is used to control system (1.6), depends on system state z and
on the input reference signal, i.e., on r, ṙ, r̈. In particular, the following sliding mode
control law has been explicitly designed to solve Problem 1 (sampling time i has been
omitted in the following for conciseness, so that, e.g., command signal ui is simply
indicated as u)

u :=

−U−sat

(
z3−σ

U−

)
if z3−σ ≥ 0

−U+sat
(

z3−σ

U+

)
if z3−σ < 0

, (1.9)

where σ is a Sliding Surface (SS) that depends on z1 and z2, while sat(·) represents a
function that saturates its argument to ±1. Evidently, due to (1.9), the jerk constraint
is certainly satisfied since u∈ [U−,U+]. Equation (1.9) also defines a Boundary Layer
(BL) around the SS. Its upper bound is equal to σ −U−, while its lower bound is
equal to σ −U+.

The SS has a variable structure that depends on z. It is obtained by switching

1.2. The discrete-time third order filter 13

among several SSs according to the following rule

σ :=

σ1 if σ1 < σ

σ if σ2 ≤ σ ≤ σ1

σ2 if σ < σ2

. (1.10)

The equations of σ1 and σ2 will soon be given, while σ is composed itself by sev-
eral SSs. More precisely, the (z1,z2)-space, i.e., the space in which the first two
components of the state span, is partitioned into the macro-areas that are shown in
Fig. 1.2 and each of them is unambiguously identified by means of three parame-
ters χ = −1,0,1, η = ±1, and ξ = ±1. Depending on the state location, the most
appropriate SS is chosen according to the following rules

σ :=

σ3 if χ = 0 & ξ =−1
σ4 if χ = 0 & ξ = 1
σ5 if χ = 1
σ6 if χ =−1

. (1.11)

Surface σ , that is obtained by composing σ3, σ4, σ5, and σ6, is continuous and covers
the whole (z1,z2)-space. All SSs are defined in the following:

1) Surfaces σ1 and σ2 (in the following n = 1,2)

σn :=− γn

mn
− mn−1

2
κn + z+3 , (1.12)

where γn, κn, and mn are evaluated as follows

z−3 := S−−r̈
T , z+3 := S+−r̈

T , (1.13)

z+ := [z+2 z+3]
T :=

[(
R+−ṙ

T 2 − r̈
2T

)
− r̈

T

]T
, (1.14)

z− := [z−2 z−3]
T :=

[(
R−−ṙ

T 2 − r̈
2T

)
− r̈

T

]T
, (1.15)

ẑ+3 := z+3 − z+3 , ẑ−3 := z−3 − z−3 ,

ẑ+2 :=−
⌈
− ẑ+3

U−

⌉[
ẑ+3 + U−

2

(⌈
− ẑ+3

U−

⌉
−1
)]

,

ẑ−2 :=−
⌈
− ẑ−3

U+

⌉[
ẑ−3 + U+

2

(⌈
− ẑ−3

U+

⌉
−1
)]

,

14 Chapter 1. Real-time trajectory generation with dynamic filters

d1 := z2− z+2 , d2 := z2− z−2 ,

γn :=

ẑ+2 if dn < ẑ+2
dn if ẑ+2 ≤ dn ≤ ẑ−2
ẑ−2 if dn > ẑ−2

,

κn :=

{
U− if γn ≤ 0
U+ if γn > 0

,

mn :=
⌊

1
2 +

√
1
4 +2

∣∣∣ γn
κn

∣∣∣⌋ .

and where d·e and b·c respectively return the ceil and the floor of their arguments.
2) Surface σ3

σ3 :=− 2
h(h+ τ)

z1−
2h+ τ−1
h(h+ τ)

z2−
τ(1− τ2)

6h(h+ τ)
α− 2h3−3h2 +h+3h2τ−3hτ

6h(h+ τ)
β ,(1.16)

where

[α β] :=

{
[U− U+] if η = 1
[U+ U−] if η =−1

, (1.17)

while h,τ ∈ N+ and η = ±1 are parameters that depend on z1 and z2. The role and
the meaning of such parameters will be discussed in §1.3. The procedure that is used
to devise σ3 is proposed in the same Section.

3) Surface σ4

σ4 :=
n1 α +n2 β +n3 z1 +n4 z2

6 d1
, (1.18)

where

n1 := 6
[

j2 + τ̂(τ̂−1)+(2τ̂−1) j
]

ρ̂
2 +2τ̂ ρ̂

[
6 j2 +9 j(τ̂−1)+2τ̂

2 +1−9τ̂
]

+6
[

j2 +(τ̂−2) j
]

τ̂
2 + τ̂

4−6τ̂
3 +5τ̂

2 ,

n2 := 6h(1−h)(jρ̂ + ρ̂ τ̂ + jτ̂)−2ρ̂h(2−3h+h2)−hτ̂(7−9h+2h2)

+3τ̂
2h(1−h) ,

n3 := −12(τ̂ + ρ̂) ,

n4 := −12(h+ j)(τ̂ + ρ̂)+12ρ̂(1− τ̂)+6τ̂(3− τ̂) ,

d1 := h [τ̂(τ̂−2+h+2 j)+ ρ̂(2 j−1+h+2τ̂)] ,

1.2. The discrete-time third order filter 15

and where α and β are defined according to (1.17), while τ̂ and ρ̂ are evaluated by
means of the following expressions

z∗ :=

{
z+3 if η = 1
z−3 if η =−1

, (1.19)

τ̂ :=
⌊
− z∗

α

⌋
, (1.20)

ρ̂ :=− z∗
α
− τ̂ . (1.21)

Parameters h, j ∈N+, and η =±1 only depend on z1 and z2. Their role and meaning
will be discussed in §1.4, together with the method that is used to devise σ4. It is
worth to point out that, because of (1.19)–(1.21), ρ̂ ∈ [0,1), while τ̂ ∈ N+.

4) Surfaces σ5 and σ6

σ5 := z+3 , (1.22)

σ6 := z−3 . (1.23)

The role of each SS is explained by means of the simple rest-to-rest transient that
is shown in Fig. 1.3. The following limits have been assumed: U− = −10 m s−3,
U+ = 20 m s−3, S− = −3.9 m s−2, S+ = 1.9 m s−2, R− = −0.95 m s−1, and R+ =

1.4 m s−1. Surface σ3 is used to drive the system, in minimum time, toward the origin
compatibly with the jerk constraint. As shown in the solid curves in Fig. 1.3, surface
σ3 does not account for the velocity and the acceleration limits, so that such bounds
could be violated. The fulfillment of the acceleration constraint can potentially be
achieved by using σ5 and σ6 in any area of the (z1,z2)-space in which σ3 is unfeasi-
ble. Indeed, z+3 and z−3 , that are defined according to (1.13), represent the equivalent
bounds, in the z-space, of S+ and S−. The dashed transients in Fig. 1.3 highlight that
this solution, that is similar to the one that was used in [21, 22], has a drawback: An
overshoot can appear. The filter will be used to generate reference signals for indus-
trial machines, so that such overshoot is clearly undesired. Moreover, the transient
is not minimum-time. Surface σ4, when used in conjunction with σ3, as shown by
the dotted lines in Fig. 1.3, eliminates both issues. The last two surfaces, i.e., σ1 and
σ2 defined in (1.12), are used to guarantee the fulfillment of the velocity limits: The

16 Chapter 1. Real-time trajectory generation with dynamic filters

0

4

8

12

0
-2

2

4

6

0

4

8

-4

-8

0

-10

10

20

0 2 4 6 8
t (s)

x
 (

m
)

x
 (

m
 s

-1
)

.

x
 (

m
 s

-2
)

..
u
 (

m
 s

-3
)

r

R
+

R
-

S
+

S
-

U
+

U
-

Figure 1.3: Comparison between transients that are achieved by using σ3 (solid lines), σ3, σ5,
and σ6 (dashed lines), σ3, σ4, σ5, and σ6 (dotted lines), all the SSs (dash-dotted lines).

dash-dotted lines in Fig. 1.3 correspond to the system response that is obtained when
all the surfaces are simultaneously used.

The role and the convergence properties of all the surfaces will be deeper ana-
lyzed in next Sections.

1.3 Design and convergence properties of σ3

Surface σ3 is designed to drive the system state toward the origin in minimum time
by fulfilling, at the same time, the jerk constraint. Differently from the SS that was
proposed in [20], it is able to handle asymmetric jerk bounds. The design and con-
vergence properties of σ3 are illustrated by forcing

σ = σ3 (1.24)

1.3. Design and convergence properties of σ3 17

u=U
 +

u=U
-

0

s3

u=U
-

u=U
 +

u=U
 +

u=U
-

upper BL
lower BL

t,-1(r)V

t,1(r)V

z1

z2

z3

1

2

Figure 1.4: Schematic representation of some transients toward the origin. Surface σ3 is
shown together with its BL.

in (1.10) and by using (1.24) in (1.9) to drive the system (1.6). Equations (1.16) and
(1.17) determine the shape of σ3, while (1.9) wraps the SS within an appropriate BL.

The optimality of the transients from any generic state z can be understood with
the aid of Fig. 1.4, that schematically shows two typical trajectories toward the origin.
If the initial state is located below σ3 (see Transient 1 in Fig. 1.4), the control law
returns u =U+, so that the z3 component of z, owing to (1.6) and (1.7), increases: σ3

covers the whole (z1,z2)-space, so that the BL is certainly reached in minimum time.
Once the state is inside the BL, command signal becomes, as it will soon be shown,
u =U− and the state reaches curve ςςς τ,η(ρ) where a new switch occurs. The origin is
finally approached with u =U+. According to the Pontryagin’s maximum principle,
the convergence is obtained in minimum time, since u is bang-bang and two switches
have occurred. Similar transients are obtained for initial states that lie above σ3 (see
Transient 2 in Fig. 1.4).

The design of σ3 and the proofs of the optimality of the transients from any
generic state z within the BL to the origin are described as follows. First of all, it
is possible to prove that all points ph,τ,η , from which the origin can be reached in
minimum time by means of a bang-bang command signal and with a single switch,

18 Chapter 1. Real-time trajectory generation with dynamic filters

have equation

ph,τ,η =

−
[

τ(τ−1)(τ−2)
6 + hτ(h+τ−2)

2

]
α− h(h−1)(h−2)

6 β[
τ(τ−1)

2 +hτ

]
α + h(h−1)

2 β

−τ α−hβ

 (1.25)

where α and β , according to (1.17), depend on η . To this purpose, a first set of points,
indicated in the following by pτ,η , has been individuated by integrating backward
system (1.6) from the origin. Two situations have been considered, each of them is
denoted by a different value of η : If η = 1, then the system is driven with command
signal u =U−, while u =U+ if η = −1. By means of this procedure, the following
points have been obtained

pτ,η =
[
−τ

6
(
τ

2−3τ +2
)

α
τ

2
(τ−1)α − τ α

]T
,

where α depends on η because of (1.17), while τ ∈N+ indicates the number of back
integrations that have occurred. Evidently, from any point pτ,η , the origin can be
reached in minimum time with τ steps by applying the maximum admissible com-
mand signal, i.e., u =U− if η = 1 or u =U+ if η =−1.

From any point pτ,η a new stage of backward integrations returns points ph,τ,η

as defined by (1.25). They are obtained by switching the command signal, so that
from points pτ,−1 command signal u = U− is assumed while, viceversa, u = U+

from points pτ,1. Evidently, bearing in mind the definitions of α and β given by
(1.17), from any point ph,τ,η the origin is reached, by construction, by first applying
command signal u = β , for h ∈ N+ steps and, then, by assuming u = α for τ ∈ N+

steps. The control is clearly bang-bang, a single switch occurs, so that it is possible to
assert that the transient toward the origin is, according to the Pontryagin’s maximum
principle, minimum-time.

Points ph,τ,η , as shown in Fig. 1.5, completely cover the (z1,z2)-space, that is
partitioned into two sectors depending on η . The borderline between the two sectors
is given by curve ςςς τ,η(ρ). The vertexes of σ3 are obtained by adding vector [0 0 β]T

to points ph,τ,η . σ3 is a composite SS that is made of flat quadrangles and that, evi-
dently, covers the whole (z1,z2)-plane. Each quadrangle is indexed by h,τ,η . Given

1.3. Design and convergence properties of σ3 19

z
1

z2

0

0

h = 1

h = -1

-200 -150 -100 -50 0 50 100 150 200
-200

-150

-100

-50

0

50

100

p1,1,-1

p6,2,-1

p1,3,1

p2,2,1

p1,4,1

p2,3,1

p3,2,1

p4,1,1

p5,1,1

p6,1,1

p7,1,1

p3,1,1p2,1,1

p1,2,1

p4,1,-1

3,2,-1

2,4,-1

6,1,1

B

5,1,1

B

4,1,1

B
6,2,1

B

5,2,1

B

4,2,1B

3,2,1B

2,3,1B

2,2,1B

1,3,1

B

2,4,-1B

3,3,-1B
2,3,-1B

1,4,-1

B

1,3,-1

B

2,2,-1

B

2,2,-1

B

3,2,-1

B

4,2,-1B

5,2,-1B

6,3,-1B

6,2,-1B

4,3,-1B

5,3,-1B

4,1,1B

3,1,1B

2,1,1
B

2,1,-1
B

3,1,-1

B

5,1,-1p

5,2,-1p

4,2,-1p

p

p2,1,1

1,1,1p

3,1,-1p

1,2,-1p

2,1,-1p

1,2,-1

B

1,4,-1p

2,3,-1p

p

3,3,-1p

4,3,-1p

5,3,-1p

Vt,-1(r)

Vt,1(r)

Figure 1.5: Projection of σ3 on the (z1,z2)-plane. Curve ςςς τ,η(ρ) separates the two zones that
admit different values of η .

p
h,t,1

-

z z0
1

p
h-1,t,1

U

U

+

-

B

h-1,t+1,1B

h-1,t,1B

e
-

h-1,t,1

~eh-1,t,1

e
-

1

e~ 1h,t,

e^ 1

^eh-1,t,1
s3

upper BL

lower BL

h,t,

h,t,

h,t,1

p
h+1,t,1

p
h+1,t-1,1

p
h,t-1,1

__

Figure 1.6: Single step evolution starting from box Bh,τ,1.

any point in the (z1,z2)-plane, the corresponding value of σ3 is found by first indi-
viduating the quadrangle h,τ,η in which it is located – to this purpose, techniques
similar to those proposed in [28] can be adopted – and, then, by using (1.16) and
(1.17).

Equations (1.9), (1.16), (1.17), and (1.24) associate to each point ph,τ,η a planar
sliding surface σ3 and its BL. In particular, as shown in Fig. 1.6, a box Bh,τ,η , which
upper/lower surfaces are given by the borders of the BL, is associated to each point

20 Chapter 1. Real-time trajectory generation with dynamic filters

zh-1
zh

1,t,1
p1,t,1B

1,t-1,1B

�t,1

�t-1,1

p

1,t-1,1
e~ 11,t,

1,t,

e
-

1

e^ 1

e
-

1,t-1,1

~e1,t-1,1

^e1,t-1,1
1,t,

t,1(r)V

t-1,1(r)V

s3
p

2,t,1
p

2,t-1,1

_
_

Figure 1.7: Single step evolution form the box B1,τ,1

ph,τ,η . Bh,τ,η can be formally defined as follows

Bh,τ,η := {z : z = ph,τ,η +λ ēh,τ,η +µ ẽh,τ,η +ν êh,τ,η ; λ ,µ,ν ∈ [0,1)} (1.26)

where ph,τ,η is given by (1.25), while vectors ēh,τ,η , ẽh,τ,η , and êh,τ,η are defined as
follows

ēh,τ,η := α
[
−1

2 [τ(τ−1)+h(h−1)+2hτ] h+ τ −1
]T
, (1.27)

ẽh,τ,η := (α−β)
[1

2 h(h−1) −h 1
]T

, (1.28)

êh,τ,η := [0 0 β −α]T . (1.29)

The vectors placement is shown in Fig. 1.6 for η = 1. Practically, vectors (1.27)–
(1.29) represent a non-orthogonal reference frame that can be used to describe any
point z∈Bh,τ,η . More precisely, any point z∈Bh,τ,η can be alternatively represented
by means of a vector of six elements z̄ := [h τ η λ µ ν]T : The first three coordinates
individuate the box, the last three define the position inside the box. In this represen-
tation, the origin assumes coordinates z̄ := [1 1 η 0 −α

β−α

β

β−α
]T .

Bearing in mind these premises, it is possible to prove the optimality of the tran-
sients from any point that is located inside the BL. In particular, from any initial state
z0 ∈Bh,τ,η or, equivalently, from z̄0 = [h τ η λ µ ν]T , with h,τ ∈ N+, the origin is
certainly reached, if system (1.6) is controlled by means of (1.9), (1.16), (1.17), and

1.3. Design and convergence properties of σ3 21

(1.24), according to the following sequence of steps:

i z̄i ui+1

0 [h τ η λ µ ν]T να +(1−ν)β

1 [(h−1) τ η λ µ 0]T β

2 [(h−2) τ η λ µ 0]T β

... β

h−1 [1 τ η λ µ 0]T β

h [1 (τ−1) η λ 0 (1−µ)]T µβ +(1−µ)α

h+1 [1 (τ−2) η λ 0 1]T α

... α

h+ τ−2 [1 1 η λ 0 1]T α

h+ τ−1 [1 1 η 0 α(λ−1)
β−α

1]T α

h+ τ [1 1 η 0 −α

β−α

β−λα

β−α
]T λα

h+ τ +1 [1 1 η 0 −α

β−α

β

β−α
]T

Fig. 1.7 shows the transient that drives the system to switch the command law. More
precisely, it is depicted the h-th step of the above sequence: After h−1 steps, the state
reaches the box B1,τ,η with command law u = β and the execution of a further single
evolution step projects the state on the lateral surface of B1,τ−1,η box, alternatively
indicated with zh = [1 (τ−1) η λ 0 (1−µ)]T : In this case, the command law is equal
to u = µβ + (1− µ)α which indicates the switching instant. This lateral surface,
pointed out in Fig. 1.7 with Sτ,1 for η = 1, contains the curve ςςς τ,η(ρ), i.e., the
borderline between two sectors characterized with different values of η . Therefore,
zh ∈Sτ−1,1 ∀λ ,µ,ν ∈ [0,1). Fig. 1.7 also depicts that all points B1,τ,η , that share the
same values of λ and µ , are mapped into the same point zh ∈Sτ−1,η , independently
from ν . The next step, indicated in the above sequence with i = h+ 1, places the
state on the upper edge of the surface Sτ−2,η and the reached point is indicated with
zh+1 = [1 (τ−2) η λ 0 1]T .

The final convergence toward the origin, starting from a generic state z ∈B1,1,η ,
is shown with the aid of Fig. 1.8. The final transient corresponds to the last three steps
in the above sequence. Fig. 1.8, in case of η = 1, shows that independently from ν ,

22 Chapter 1. Real-time trajectory generation with dynamic filters

z2

z3

A

z1

O

B

D

C E

F

z

z zh+t

p1,1,1

1,1,1B

�1,1

e1,1,1
-

e1,1,1
^

e1,1,1
~

h+t-1

h+t-2

_
_ _

Figure 1.8: Final evolution steps: If the system enters into box B1,1,1, it is forced in three
steps toward the origin. Surface ABCD is contained into the plane individuated by vectors z2

and z3

the state evolves in one step in zh+τ−1 which lies on the surface ABCD. A further step
drives the system, with command law u = α , to point zh+τ that lies on segment OA.
The last transient drives the state toward the origin: The associated command law is
u = λα . If η =−1, an analogous transient occurs: The state reaches first a point that
lies on the surface ADEF, successively the AVSC drives the state on the segment OD
with command law u = α and, finally, the state reaches the origin with command law
u = λα .

After an additional analysis of the sequence of steps, it is evident that h+ τ + 1
steps are required, i.e., only one more step with respect to the optimal transient from
ph,τ,η , to reach the origin. According to the Pontryagin’s maximum principle, a single
switch occurs and the command signal, apart from switching instants, is always equal
to β or to α , i.e., by virtue of (1.17), it is equal to U+ or to U−. It is worth to point out
that, at the switching instants, the command signal cannot be exactly equal to β or α

because the switching times of discrete-time systems are fixed and cannot be freely
selected. If the initial state is equal to ph,τ,η , i.e., z̄0 = [h τ η 0 0 0]T , the sequence
converges to the origin in h+ τ steps and u is, as desired, exactly bang-bang.

1.4 Design and convergence properties of σ4

Surface σ3 manages neither the velocity nor the acceleration constraints that, conse-
quently, could be violated. The acceleration constraint could potentially be satisfied

1.4. Design and convergence properties of σ4 23

0-1000 1000 2000
z
1

3000

0

-400

400

z
2

1

s3

s3

s6

t,-1(r)V

s5

t,1(r)V

2

h = 1

h = -1

Figure 1.9: State transient in the (z1,z2)-space that is obtained by using σ3 (Transient 1) and
a combination of σ3, σ5, and σ6 (Transient 2). Highlighted areas refer to regions in which σ3

does not satisfy the acceleration constraint.

by simply bounding the third component of z within interval [z+3 ,z
−
3]. It was early

anticipated that this result can be achieved by adopting σ3 only in the areas of the
(z1,z2)-space in which it is feasible, and by using σ5 and σ6 in the other zones. As
shown in §1.2, this rough approach can cause overshoots and suboptimal transients.
For this reason, in any zone of the (z1,z2)-plane in which σ3 would lead to unfeasible
accelerations, an alternative surface σ4 is used.

The resulting partitions of the (z1,z2)-space are shown in Fig. 1.9. In the same fig-
ure, Transient 1 represents a typical state evolution that is obtained by only using σ3,
while Transient 2 is obtained by also adopting σ5 and σ6: In the first case, transitions
are minimum-time, but the state enters in zones where σ3 violates the acceleration
constraint, in the second case, the given bounds are satisfied, but the transient is not
time optimal and the convergence is obtained with an overshoot. The overshoot is
generated every time the state crosses curve ςςς τ,η(ρ), i.e., the curve obtained from the
intersection between surfaces Sτ,η and the SS σ3 (see also Figs. 1.7 and 1.11).

In order to avoid the overshoot problem a new surface σ4 is devised: σ4 drives
the state, in minimum-time and by satisfying the acceleration bound, toward regions
where σ3 cannot lose the feasibility. The behavior of σ4 is highlighted with the aid
of Fig. 1.10: The AVSC uses σ4, σ5, and σ6 in order to drive the state toward σ3 in
minimum-time. With the introduction of σ4, the partitioning scheme of the (z1,z2)-
space coincides with the one shown in Fig. 1.2.

24 Chapter 1. Real-time trajectory generation with dynamic filters

0

-400

400

z
2

0-1000 1000 2000
z
1

3000

s4

s4

s3

s3

'Vj,1

t,1(r)V

s5

'Vj,-1

s6

h = -1

t,-1(r)V

h = 1

Figure 1.10: State transient in the (z1,z2)-space that is obtained by using σ3, σ4, σ5, and
σ6. Highlighted areas refer to regions in which neither σ3 nor σ4 satisfy the acceleration
constraint.

Surface σ4, similarly to σ3, has been planned by first individuating a set of points
qh, j,η from which the origin can be reached in minimum time by means of a trajectory
that fulfills both the jerk and the acceleration constraints. The positions of such points
are given by (1.30).

qh, j,η =

α

{
[6(h+ j)(2−ρ̂)−3(h+ j)2+9ρ̂−11]τ̂

6 +
[(3−2h) j− j2−(h−1)(h−2)]ρ̂

2

}
−α

{
τ̂3

6 + (h+ j+ρ̂−2)τ̂2

2

}
− βh

6 (h−1)(h−2)

α
[1

2 τ̂(τ̂−3)+(j+ τ̂ +h−1)ρ̂ + τ̂(h+ j)
]
+ 1

2 βh(h−1)

−α(τ̂ + ρ̂)−βh

, (1.30)

The Pontryagin’s maximum principle suggests that, because of the additional con-
straint, optimal transients must be bang-zero-bang. Fig. 1.11, which shows a situa-
tion in which η = 1, can be used to explain the synthesis of σ4. By integrating back-
ward from the origin system (1.6), with u = U−, a monotonically increasing curve
is obtained. An indefinite execution of the back integration process would clearly
lead to the violation of upper bound z+3 . In order preserve feasibility, in proximity
of z+3 the command signal is switched to u = 0, and a set of points r j,1 is obtained.
They are characterized by a third component equal to z+3 , i.e., they are all strictly
feasible with respect to the acceleration bound. Points qh, j,1 are finally obtained by
means of a new stage of back integrations from r j,1, which is made by assuming

1.4. Design and convergence properties of σ4 25

t,1(r)

u = 0

u = U
-

u = U+

z3 = z3
+

≡

s4

�t,1

� j,1
'

q

q s3s3

q

-

U

U

+

-

-

U

U

+

-

5,1,1

4,1,1

3,1,1

V

'Vj,1

V ,1(r)^
t^

q4,2,1

r3,1
r2,1

r1,1

rj,1

0

Figure 1.11: 3D view of a transient toward the origin for η = 1 starting from q2,4,1 (solid
line) and from a generic point inside the BL (dash-dotted line). Point ςςς τ̂,1(ρ̂) is reached in 5
steps, then the origin is gained by means of σ3. The same number of steps is required for the
second transient. Upper bound z+3 is never violated.

u =U+. An analogous sequence of backward integrations is used for η =−1 in or-
der to devise points qh, j,−1, but in this second case the command sequence becomes
u =U+ ⇒ u = 0 ⇒ u =U−.

Fig. 1.11 also shows a typical approach to the origin from q4,2,1 (h = 4, j = 2,
η = 1). If system (1.6) is driven with u = U+, point r2,1 is reached after h steps (in
the example h = 4). The transient is clearly minimum-time because the maximum
available jerk has been used. As previously mentioned, points r j,1 are characterized,
by construction, by a third component, equal to z+3 , i.e., equal to the maximum allow-
able acceleration. Evidently, all points along curve ςςς ′j,1, which passes through points
r j,1, possess the same property. In r2,1, command signal switches to u = 0 in order to
avoid the violation of the acceleration bound, and the state slides along ςςς ′j,1 toward
ςςς τ̂,1(ρ̂) that is reached with further j− 1 steps (in the example j = 2, thus a single
step is required). The transient is again minimum-time, since u = 0 is the maximum
allowable command signal which guarantees the feasibility.

From ςςς τ̂,1(ρ̂), the origin is finally gained in τ̂ + 2 steps (τ̂ + 1 if ρ̂ = 0) with
u =U−. It is possible to prove that this final transient exactly coincides with the final
transient that can be obtained by means of σ3: For this reason, the actual implemen-

26 Chapter 1. Real-time trajectory generation with dynamic filters

tation of the control law uses σ3 for the final convergence to the origin. In conclusion,
from any point qh, j,η , the origin is reached after h+ j+ τ̂+1 steps (h+ j+ τ̂ if ρ̂ = 0)
by means of a bang-zero-bang command signal and by fulfilling the acceleration con-
straint. The transient is clearly time-optimal.

Vertexes of surface σ4 are obtained by adding [0 0 β]T to points qh, j,η . By con-
struction, for η = 1, σ4 monotonically decreases in function of h and, moreover,
σ4 ≤ z+3 , i.e., it is feasible with respect to the upper acceleration constraint. On the
contrary, for η =−1, σ4 monotonically increases in function of h and σ4 ≥ z−3 .

By assuming a command law given by (1.9), (1.17), (1.18), and

σ = σ4 , (1.31)

a BL is created around σ4. In the following it is shown that, by means of such control
law, the origin is reached in minimum time from any generic state z that is located
inside the BL. Similarly to σ3, surface σ4 attracts the system state with a command
signal that is equal to U+ or U−, i.e., in minimum time. The transient toward the
origin starts after the BL of σ4 has been reached. Let us prove its optimality and
feasibility. Command law (1.9), (1.17), (1.18), and (1.31) associates, to each point
qh, j,η , a box Wh, j,η which upper and lower surfaces coincide with the BL limits and
that is formally defined as follows

Wh, j,η :=
{

z : z = qh, j,η +λ ē′h, j,η +µ ẽ′h, j,η +ν ê′h, j,η ; λ ,µ,ν ∈ [0,1)
}

(1.32)

where

ē′h, j,η :=

(−h− τ̂− j+1)ρ̂− τ̂(1

2 τ̂ +h+ j− 3
2)

τ̂ + ρ̂

0

α, (1.33)

ẽ′h, j,η :=
[
−1

2 h(h−1)β hβ −β
]T

, (1.34)

ê′h, j,η := [0 0 β −α]T . (1.35)

Bearing in mind (1.30)–(1.35), any point z ∈Wh, j,η can be alternative represented as
ẑ := [h j η λ µ ν]T .

1.4. Design and convergence properties of σ4 27

The optimality of the transients, that are obtained by means of σ4, is proved by
verifying that, from any state z ∈Wh, j,η , the origin is reached in h+ j+ τ̂ +1 steps,
i.e., the same number of steps that are required from qh, j,η with the minimum-time
control, and that the command signal is bang-zero-bang. In particular, by adopting
command law (1.9), (1.17), (1.18), and (1.31), system (1.6) evolves, from any initial
state z0 ∈Wh, j,η , with h, j ∈N+ or, equivalently, from ẑ0 = [h j η λ µ ν]T , as follows:

i ẑi ui+1

0 [h j η λ µ ν]T να +(1−ν)β

1 [(h−1) j η λ µ 0]T β

2 [(h−2) j η λ µ 0]T β

... β

h−1 [1 j η λ µ 0]T β

h [1 (j−1) η λ 0 (1−µ)β
β−α

]T µβ

h+1 [1 (j−2) η λ 0 β

β−α
]T 0

... 0
h+ j−2 [1 1 η λ 0 β

β−α
]T

The transient is also shown by the dash-dotted line of Fig. 1.11, for η = 1. Practi-
cally, with a single step the state is projected on the lower surface of the BL. At step
h− 1, z reaches box W1, j,η , then, with a single step, it moves on the lateral surface
S ′

j−1,η of W1, j−1,η . It is possible to verify that points lying on ςςς ′j,η have equation
[1 j η λ 0 β

β−α
]T , so that zh is clearly located below ςςς ′j−1,η when η = 1 (or above

ςςς ′j−1,η if η =−1), while the subsequent state, i.e., zh+1, exactly lies on ςςς ′j−2,η . Box
W1,1,η is reached, after h+ j− 2 steps with u = 0 and with an acceleration that is
equal to z∗, i.e., to z+3 or to z−3 depending on η : The whole transient is feasible with
respect to the acceleration constraint.

The subsequent step is the most critical. It was early anticipated that the final tran-
sient toward the origin is achieved by means of σ3: The state, with a single transient,
enters in the area that is handled by such SS. As shown in Fig. 1.12, two alternative
situations can arise depending on ρ̂ , both characterized by u = 0:

a) ρ̂ ≥ [(1−λ)(τ̂−1)]/[τ̂+2λ−1]. The state evolves to z̄h+ j−1 = [1 τ̂ η a1 a2 a3]
T

28 Chapter 1. Real-time trajectory generation with dynamic filters

q
2,1,1

zh+j-2

zh+j-1

q3,1,1

2,1,1W

1,2,1W

B

'Vj,1

Vt,1(r)

B1,t,1^

2,t-1,1p ^

B2,t-1,1^

p3,t-1,1^

p1,t-1,1^

^p1,t-2,1

q1,1,1

q1,2,1

q1,3,1

p3,t,1^
2,t,1^

zh+j-2

zh+j-1

B1,t -1,1^

1,1,1W

Figure 1.12: 2D view in the (z1,z2)-space of the switching phase between σ4 and σ3 (η =

1). Starting from W1,1,1 the state always reaches, with a single step, B1,τ̂,1 (dashed line) or
B1,τ̂−1,1 (dash-dotted line).

where

a1 =
(λ −1)(τ̂−1)+ ρ̂(τ̂ +2λ −1)

τ̂ +1
,

a2 =
(1− ρ̂)(λ −1)α

β −α
,

a3 =
β (τ̂ +1)(1−µ)+α[τ̂(λ −1)(2− ρ̂)+ ρ̂(λ −1)]

(τ̂ +1)(β −α)
.

It is easy to verify that coefficients a1,a2,a3 ∈ [0,1), so that z̄h+ j−1 ∈B1,τ̂,η .
Formal proofs are reported in §1.4.1;

b) ρ̂ < [(1−λ)(τ̂−1)]/[τ̂+2λ−1]. The state evolves to z̄h+ j−1 = [1 (τ̂−1)η a1 a2 a3]
T

where

a1 =
ρ̂(τ̂−1)+λ (τ̂ +2ρ̂−1)

τ̂−1
,

a2 =−
αλρ̂(τ̂ +1)

(τ̂−1)(β −α)
,

a3 =
β (1−µ)−α(1−λ +λρ̂)

β −α
.

Coefficients a1,a2,a3 ∈ [0,1) (detailed proofs are reported, again, in §1.4.1),
so that z̄h+ j−1 ∈B1,τ̂−1,η .

1.4. Design and convergence properties of σ4 29

Once inside B1,τ̂,η , the origin is reached with σ3 according to the following steps
(one less step is required from B1,τ̂−1,η):

i z̄i ui+1

h+ j−1 [1 τ̂ η a1 a2 a3]
T a3α +(1−a3)β

h+ j [1 (τ̂−1) η a1 0 (1−a2)]
T a2β +(1−a2)α

h+ j+1 [1 (τ̂−2) η a1 0 1]T α

... α

h+ j+ τ̂−2 [1 1 η a1 0 1]T α

h+ j+ τ̂−1 [1 1 η 0 α(a1−1)
β−α

1]T α

h+ j+ τ̂ [1 1 η 0 −α

β−α

β−a1α

β−α
]T a1α

h+ j+ τ̂ +1 [1 1 η 0 −α

β−α

β

β−α
]T

Thus, starting from any state z0 ∈ W j,h,η , the origin is reached, in the worst case, in
h+ j+ τ̂ + 1 steps, i.e., the same number of steps of the transients that are required
from q j,h,η . The transient optimality is also proved by the bang-zero-bang behavior
of the command signal, that admits u = 0 only when the acceleration is equal to the
maximum admissible value.

1.4.1 Definition range proofs of a1, a2, a3

In the following, it is proved that coefficients a1,a2,a3 ∈ [0,1) ∀ρ̂ ∈ [0,1), λ ∈ [0,1),
µ ∈ [0,1), [α,β] defined in (1.17) and ∀τ̂ ≥ 2 if ρ̂ < [(1−λ)(τ̂ − 1)]/[τ̂ + 2λ − 1].
It is worth to highlight that the definition range of τ̂ is τ̂ ≥ 2 when the system state
evolves to z̄h+ j−1 = [1 (τ̂−1) η a1 a2 a3]

T . It is easy to verify that, bearing in mind
(1.19) and (1.20) and from τ̂ ∈ N+, the system could evolve in B1,τ̂−1,η only if the
starting box W1,1,η intercepts surface σ3 inside a box B1,τ̂,η characterized by τ̂ ≥ 2:
If the switching transient from σ4 to σ3 drives the system to box B1,1,η , only case a)
can occur. This assertion is proved by substituting τ̂ = 1 in the boundary relation

ρ̂ <
(1−λ)(τ̂−1)

τ̂ +2λ −1
.

The analysis of the resulting condition highlights that ρ̂ < 0 and, bearing also in mind
the definition (1.21), case b) becomes impossible. Hence, if the system evolves in

30 Chapter 1. Real-time trajectory generation with dynamic filters

B1,τ̂,η with τ̂ ≥ 2 one of the two cases could arise. Conversely, if the destination box
is characterized by τ̂ = 1, only case a) can occur. After these premises, it is possible
to demonstrate which is the definition interval for coefficients ai where i = 1,2,3.

Property 1. If ρ̂ ≥ [(1−λ)(τ̂−1)]/[τ̂ +2λ −1], coefficient

a1 =
(λ −1)(τ̂−1)+ ρ̂(τ̂ +2λ −1)

τ̂ +1
(1.36)

belongs to the following range: a1 ∈ [0,1) ∀λ , ρ̂ ∈ [0,1), τ̂ ≥ 1.

Proof. Firstly, we prove that a1 ≥ 0. It is easy to verify that a1 is proportional to
ρ̂ and, by hypothesis, ρ̂ ∈

[
(1−λ)(τ̂−1)

τ̂+2λ−1 ,1
)

. Consider the worst-case analysis on the

boundary condition ρ̂ = (1−λ)(τ̂−1)
τ̂+2λ−1 . By substituting such expression in (1.36) and

after a few algebraic manipulations, it is possible to verify that a1 ≥ 0 ∀λ , ρ̂ ∈ [0,1),
τ̂ ≥ 1.

The last part of the proof demonstrates that a1 < 1. From the analysis of (1.36)
it is evident that a1 is a positive monotonic function of λ . Hence, it is possible to
dominate the relation (1.36) by assuming λ = 1. Equation (1.36) becomes:

a1 ≤
ρ̂(τ̂ +1)

τ̂ +1
= ρ̂ < 1 ,

∀λ , ρ̂ ∈ [0,1), τ̂ ≥ 1.

Property 2. If ρ̂ ≥ [(1−λ)(τ̂−1)]/[τ̂ +2λ −1], coefficient

a2 =
(1− ρ̂)(λ −1)α

β −α
(1.37)

belongs to the following range: a2 ∈ [0,1) ∀λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 1.

Proof. It is possible to rearrange (1.37) as follows:

a2 =
−α

β −α
(1− ρ̂)(1−λ) . (1.38)

Bearing in mind (1.17), evidently 0 < −α

β−α
< 1. Equations (1.32) and (1.21) make it

possible to assert that λ < 1 and ρ̂ < 1 and, in turn, that a2 > 0 ∀λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 1.
For the same reasons a2 < 1 ∀λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 1.

1.4. Design and convergence properties of σ4 31

Property 3. If ρ̂ ≥ [(1−λ)(τ̂−1)]/[τ̂ +2λ −1], coefficient

a3 =
β (τ̂ +1)(1−µ)+α[τ̂(λ −1)(2− ρ̂)+ ρ̂(λ −1)]

(τ̂ +1)(β −α)
(1.39)

belongs to the following range: a3 ∈ [0,1) ∀µ, λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 1.

Proof. By tacking into account the definition ranges of all the variables in (1.39), i.e.,
[α,β] as defined in (1.17), τ̂ ≥ 1, and µ, λ , ρ̂ ∈ [0,1), the proof of a3 ≥ 0 ∀µ, λ , ρ̂ ∈
[0,1), ∀τ̂ ≥ 1 is straightforward.

The proof of condition a3 < 0 is provided by a worst-case analysis: Relation
(1.39) is a positive monotonic function of λ and can be dominated by considering
λ = 1:

a3 ≤
β (τ̂ +1)(1−µ)

(τ̂ +1)(β −α)
= (1−µ)

β

(β −α)
< 1

∀µ ∈ [0,1), ∀[α,β] (see (1.17)), so that 0≤ a3 < 1.

Property 4. If ρ̂ < [(1−λ)(τ̂−1)]/[τ̂ +2λ −1] and τ̂ ≥ 2, coefficient

a1 =
ρ̂(τ̂−1)+λ (τ̂ +2ρ̂−1)

τ̂−1
(1.40)

belongs to the following range: a1 ∈ [0,1) ∀λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 2.

Proof. As already done in Property 1, first consider a worst-case analysis of (1.40).
a1 is a positive monotonic function of ρ̂: By substituting boundary condition ρ̂ =
(1−λ)(τ̂−1)

τ̂+2λ−1 in (1.40), it is evident, after a few algebraic manipulation, that a1 = 1.
Since ρ̂ < (1−λ)(τ̂−1)

τ̂+2λ−1 , the previous analysis proves that a1 < 1 ∀λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 2.

The last part of the proof demonstrates that a1 ≥ 0. Equation (1.40) is a positive,
monotonic function of λ : It can be dominated by considering λ = 0. After a few
algebraic manipulations, (1.40) can be written as follows:

a1 ≥
ρ̂(τ̂−1)

τ̂−1
= ρ̂ ≥ 0 .

Hence, a1 ∈ [0,1) ∀λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 2.

32 Chapter 1. Real-time trajectory generation with dynamic filters

Property 5. If ρ̂ < [(1−λ)(τ̂−1)]/[τ̂ +2λ −1] and τ̂ ≥ 2, coefficient

a2 =−
αλρ̂(τ̂ +1)

(τ̂−1)(β −α)
(1.41)

belongs to the following range: a2 ∈ [0,1) ∀λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 2.

Proof. It is easy to verity that a2 ≥ 0 by tacking into account the definition intervals
of all its variables, i.e., [α,β] as defined by (1.17), τ̂ ≥ 2, and λ , ρ̂ ∈ [0,1).

In order to demonstrate that a2 < 1 let us make the following considerations:
a2 is a positive monotonic function of ρ̂ . By substituting boundary condition ρ̂ =
(1−λ)(τ̂−1)

τ̂+2λ−1 in (1.41), coefficient a2 is dominated as follows:

a2 ≤−
αλ (1−λ)(τ̂ +1)

(τ̂ +2λ −1)(β −α)
. (1.42)

A further step of worst-case analysis is necessary to obtain the final proof of con-
dition a2 < 1. Equation (1.42) can be dominated by considering τ̂ = 2. After a few
manipulations, (1.42) can be written as follows

a2 ≤−
α

β −α
(1−λ)< 1 ,

so that it is possible to assert that a2 ∈ [0,1) ∀λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 2.

Property 6. If ρ̂ < [(1−λ)(τ̂−1)]/[τ̂ +2λ −1] and τ̂ ≥ 2, coefficient

a3 =
β (1−µ)−α(1−λ +λρ̂)

β −α
(1.43)

belongs to the following range: a3 ∈ [0,1) ∀µ, λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 2.

Proof. It is evident from the definitions of [α,β] (see (1.17)) and µ , λ , ρ̂ ∈ [0,1), that
a3 ≥ 0. The proof of a3 < 1 is archived by means of a worst-case analysis. Bearing
in mind (1.43), the following assumptions are made: (1− µ) ≤ 1 ∀µ ∈ [0,1) and
(1−λ +λρ̂)≤ 1 ∀λ , ρ̂ ∈ [0,1), so that it is possible to verify that

a3 ≤
β −α

β −α
= 1

thus a3 ∈ [0,1) ∀µ, λ , ρ̂ ∈ [0,1), ∀τ̂ ≥ 2.

1.5. Convergence properties of σ1 and σ2 33

Finally, it is possible to assert that, regardless of the box which is reached by a
single step evolution starting from box W1,1,η , coefficients a1, a2, a3 always belong
to interval [0,1).

1.5 Convergence properties of σ1 and σ2

z
__

z
_
+

R1

R2

R3

R4

R5

-10 0 5 10-5

0

-1

-2

1.5

U
+

-U
_

U
+

U

_

z2

z3

z3= z3
+

z3= z3
_

s1

s2

Figure 1.13: Partition induced in the (z2,z3)-plane by the AVSC together with the SSs σ1 and
σ2 and with some system trajectories. The dotted quadrangle represents the feasible area in
the (z2,z3)-plane obtained from the transformation of the velocity and acceleration limits.

Surfaces σ1 and σ2 are used to fulfill the velocity limits. To this aim, they force z
inside the quadrangle (shown in Fig. 1.13) that has been obtained by converting the
feasible domain of the (ẋ, ẍ)-space into an equivalent feasible domain in the (z2,z3)-
space. The feasible domain of the (ẋ, ẍ)-space is represented by a rectangle that is
bounded by the following four straight lines: ẍ = S+, ẍ = S−, ẋ = R+, and ẋ = R−.

Surfaces σ1 and σ2 are derived from analogous surfaces that were originally pro-
posed in [29]. This is possible because the evolution of system (1.6) in the (z2,z3)-
space does not depend on the z1 component of the state and it is given by[

z2,i+1

z3,i+1

]
=

[
1 1
0 1

][
z2,i

z3,i

]
+

[
1
1

]
ui , (1.44)

i.e., system equations coincide with those that were considered in [29], but the role
of the pair z1 and z2 is now played by z2 and z3. Thus, by adopting the same com-
mand law that was proposed in [29], the same convergence properties are obtained.
However, minor changes have been introduced in σ1 and σ2 in order to modify the
convergence points: σ1 guarantees the convergence toward z+, while σ2 guarantees

34 Chapter 1. Real-time trajectory generation with dynamic filters

the convergence toward z−. Therefore, the convergence properties of σ1 and σ2 are
revisited and reported in the following.

The evolution of the reduced system (1.44) is shown with the aid of Fig. 1.13.
The same figure is also useful to demonstrate the convergence properties of σ1 and
σ2. The (z2,z3)-plane can be subdivided into five regions Ri, i = 1,2, . . . ,5, where
regions R1 and R2 are totally defined outside the BL, while the borders of the regions
R3, R4 and R5 share at least one of the BL obtained with the surfaces σ1 or σ2.

The following properties describe the behavior of the SSs σ1 and σ2: They force
z inside the feasible quadrangle that is shown in Fig. 1.13.

Property 7. For any (z2,z3) point lying in R1 the AVSC returns u =U−. Conversely,
for any (z2,z3) point lying in R2 the AVSC returns u =U+.

Proof. Consider a point (z2,z3) that lies in R1: Three cases could arise depending on
the relation (1.10).

1. σ(z1,z2) > σ1(z2). Due to (1.10) the selected SS is σ = σ1(z2). By assuming
these premises in (1.10) and in (1.9), the AVSC returns u = U− because the
point is outside the BL, i.e., from (1.9), z3−σ > 1.

2. σ1(z2)≤σ(z1,z2)≤ σ2(z2). The selected SS is σ(z2,z3). Even in this situation,
the (z2,z3) point is located outside the BL and the command law, that is chosen
by the AVSC, is again u =U−.

3. σ(z1,z2) < σ2(z2). Even in the last case, the point (z2,z3) is located outside
the BL. The chosen command law is evidently u = U− because, from (1.9),
z3−σ > 1.

Similar considerations holds in case the point (z2,z3) is located in region R2. Con-
versely from any point that lies in R1, the AVSC chooses, bearing also in mind (1.9),
the command law u =U+.

Remark 1. Since the maximum control law is assumed in both regions R1 and R2,
i.e., u = U− in region R1 and u = U+ in region R2, one of the regions R3, R4, and

1.5. Convergence properties of σ1 and σ2 35

R5 is certainly reached in minimum-time compatibly with the given bounds (see the
system evolution trajectories in Fig. 1.13).

Property 8. Any point (z2,z3), that lies in R3, is forced in a single step on σ1 and,
then, it slides toward R5 with command signal u = 0. Conversely, any point in R4 is
forced in a single step on σ2 and, then, it slides toward R5 with u = 0.

Proof. Consider a point (z2,z3) that lies inside region R3. Independently from the
position of σ(z1,z2), it is easy to verify that (1.10) returns σ = σ1 = σ2 = z+3 ≥ 0.
According to (1.44), z3 evolves as follows

z3,i+1 = z3,i +ui . (1.45)

The command signal, due to (1.9) and (1.10), becomes ui =−U−
(

z3,i−σ1
U−

)
=−z3,i+

z+3 , so that (1.45) returns z3,i+1 = z+3 independently from the starting point z3,i, i.e.
the system (1.44) reaches σ1 in a single step. If the starting point lies on σ1 in R3, i.e.
(z2,z3) = (z2,z+3), the AVSC command law assumes ui = 0. Hence, z3 remains on the
σ1 SS with a constant and positive value.

The evolution of z2 can be deduced again by (1.44) and it follows the law:

z2,i+1 = z2,i + z3,i +ui . (1.46)

Even in this case, from any point inside R3, the AVSC command law becomes ui =

−z3,i + z+3 and, from (1.46), z2 evolves in z2,i+1 = z2,i + z+3 , i.e. the point shifts right
with step equal to z+3 that corresponds to the maximum acceleration value in the z-
space.

Therefore, independently from the starting point inside R3, any (z2,z3) point
reaches the SS σ1 in a single step and, in turn, slides right in minimum-time, i.e.
with increments equal to z+3 (the AVSC returns u = 0), since it enters with certainty
in R5.

It is possible to archive the same conclusion, with similar reasonings, if the start-
ing point is located inside R4. In this scenario, the role of σ1 is assumed by σ2 and
the system state slides left in minimum-time with increments equal to z−3 ≤ 0.

36 Chapter 1. Real-time trajectory generation with dynamic filters

Remark 2. Property 8 asserts that if the system state enters in R3 or R4, it is en-
trapped into those regions and it enters with certainty in R5 with minimum-time tran-
sients, i.e. with the maximum acceleration allowable with respect to the assigned
bounds. Besides, the acceleration limits are not violated because z3 = z+3 in R3 and
z3 = z−3 in R4.

Properties 7 and 8 ensure that from any point in the (z2,z3)-plane the system
evolves, with minimum-time transients, to region R5. Next properties show that the
system state cannot abandon region R5 and, furthermore, it converges toward the
origin with the minimum number of steps.

Property 9. Consider a starting point (z2,z3) belonging to R5. The system remains
inside R5 and converges toward the origin or one of the two points z+, z− (defined in
(1.14) and (1.15) and shown in Fig. 1.13).

Proof. A further change of coordinates must be first applied to reduced system (1.44)
in order to move the σ1 (or σ2) convergence point from z+ (or z−) to the new point
t+ (or t−) defined in the following (see (1.49) and (1.50)). The main purpose of the
coordinate transformation is to convert reduced system (1.44) into the analogous one
presented in [21] and, in turn, in [15]. The change of coordinates transforms any point
that lies on the (z2,z3)-plane in a new point defined in the t-space:[

t2
t3

]
=

[
1 0
0 1

][
z2,i

z3,i

]
+

[
r̈

2T
r̈
T

]
, (1.47)

i.e the (z2,z3)-state is shifted, in the new space, by [r̈
2T

r̈
T]

T . Due the affine transfor-
mation (1.47), the reduced discrete system maintains the same dynamics of (1.44).
Bearing in mind (1.13)–(1.15), the equivalent bounds in the z-space are transformed,
owing to (1.47), as follows:

t−3 := S−
T , t+3 := S+

T , (1.48)

t+ := [t+2 t+3]
T :=

[
R+−ṙ

T 2 0
]T
, (1.49)

t− := [t−2 t−3]
T :=

[
R−−ṙ

T 2 0
]T
. (1.50)

1.5. Convergence properties of σ1 and σ2 37

The use of (1.48)–(1.50) in place of (1.13)–(1.15), makes it possible to define the
transformed SSs σ̃1 and σ̃2 as follows (n = 1,2).

σ̃n :=− γ̃n

m̃n
− m̃n−1

2
κ̃n , (1.51)

where, γ̃n, κ̃n, and m̃n are evaluated as:

t̂+2 :=−
⌈
− t+3

U−

⌉[
t+3 + U−

2

(⌈
− t+3

U−

⌉
−1
)]

,

t̂−2 :=−
⌈
− t−3

U+

⌉[
t−3 + U+

2

(⌈
− t−3

U+

⌉
−1
)]

,

d̃1 := t2− t+2 , d̃2 := t2− t−2 ,

γ̃n :=

t̂+2 if d̃n < t̂+2
d̃n if t̂+2 ≤ d̃n ≤ t̂−2
t̂−2 if d̃n > t̂−2

κ̃n :=

{
U− if γ̃n ≤ 0
U+ if γ̃n > 0

m̃n :=
⌊

1
2 +

√
1
4 +2

∣∣∣ γ̃n
κ̃n

∣∣∣⌋ .
By analyzing (1.48)–(1.51), it is easy to verify that the transformed reduced system
has the same structure of the reduced system described in [21]. The sole difference is
represented by the jerk bound asymmetry, but a similar asymmetric case is discussed
in [29]. Hence, by assuming the same conclusions proposed in the aforementioned
papers, any (z2,z3) point, belonging to R5, is attracted towards point t+ if the AVSC
chooses σ̃1 (or t− if it chooses σ̃2) and, in turn, towards point z+ (or z−) in the z-
space. Alternatively, the system is driven in minimum-time toward the origin by σ .

It is worth to remember that surface σ is designed to force the system toward
the origin in minimum-time. However, σ would drive the system outside the feasible
area because it does not manage the velocity constraints (see §1.3 and §1.4 for further
details): In this eventuality, the AVSC selects σ1 (or σ2) and the system is “parked”
in z+ (or z−) waiting until σ newly enters in R5.

The reduced system behavior in the z coordinates can be better explained with
the aid of Fig. 1.14 which shows several system trajectories in case of convergence
toward σ1 (Fig. 1.14a) or σ2 (Fig. 1.14b). All trajectories first hang one of the two
SSs with u = U+ or u = U−, i.e., with the maximum admissible command signal.
After that, the system slides on the right with u = 0 if the AVSC chooses σ1 and it

38 Chapter 1. Real-time trajectory generation with dynamic filters

-8
z2

z3

z3

-10 -6 -4 -2 0 2 4 6 8

-1

-2

s1

s2

a

b

+-
z--

z

+-
z--

z

0

-1

-2

0

-U

U
+

-

1.5

1.5
z3z3=
+

z3
-

z3=

z3
-

z3=

z3z3=
+

z3=
- r
T

.
-

-

2 z2[]2-R z3=
- r
T

.
-

+

2 z2[]2-R

z3=
- r
T

.
-

+

2 z2[]2-R

z3=
- r
T

.
-

-

2 z2[]2-R

-U

U
+

-

Figure 1.14: System trajectories in the (z2,z3)-space obtained by assuming: a) σ = σ1 and
b) σ = σ2. SSs σ1 and σ2 are indicated by means of dashed lines and are surrounded by
their BLs (dash dotted lines). The dotted quadrangle contours the feasible area. z+3 and z−3 are
defined according to (1.13).

converges toward to z+. Conversely, if the system first hangs σ2, then it slides left
along σ2 with u = 0 and then it reaches z− in minimum-time. Those transients are,
evidently, minimum-time due to the bang-zero-bang behavior of the command law.

Property 10. Points z+ and z−, defined in (1.14) and (1.15), i.e. the two points cor-
responding to states (R−,0) and (R+,0) in the (ẋ, ẍ)-space, are left with certainty in
finite time.

Proof. Consider the evolution of the system (1.6) and (1.7) when the starting point is
located in z+ and preliminarily assume σ > σ1: The system evolves as follows

z3,i+1 = z3,i = z+3 , (1.52)

z2,i+1 = z2,i + z3,i = z2,i + z+3 , (1.53)

z1,i+1 = z1,i + z2,i + z3,i = z1,i + z2,i + z+3 , (1.54)

Without loss of generality, consider z+3 ≥ 0, so that the AVSC chooses σ1 in (1.10)

1.5. Convergence properties of σ1 and σ2 39

s

z1c

-10 -8 -6 -4 -2 0 2

0

100

-100

x 104

z1

z3

_

z3 = z3+
_

Figure 1.15: σ(z1,z2) evolution and its BL projected in the (z1,z3)-plane drawn for z2 = z+2 =

400. σ monotonically decreases in function of z1. The system transients along z1 is depicted
by means dots and arrows.

with command law u = 0. In the (z2,z3)-plane the reduced system (1.44) evolves
along a plane characterized by z3 = z+3 . According to (1.54), z1 evolves in the (z1,z2)-
plane with steps equal to z2,i+z+3 . The system behavior can be easily understood with
the aid of Fig. 1.15 which shows the shape of σ(z1,z2) in the (z1,z3)-plane together
with its BL: σ monotonically decreases in function of z1. This characteristic applies
over the whole (z1,z2)-plane. In z+, σ1 = z+3 > 0 and, in turn σ > z+3 . The positivity
of σ implies that the current value of z1 is located on the left of z1c, where z1c is the
point where surface σ crosses line z3 = z+3 , i.e. the solution of σ(z1,z2) = z+3 . Since z1

increases, surface σ is reached with certainty. As soon as σ < z+3 , the AVSC switches
(owing to (1.10)) and starts using σ . Hence, convergence point z+ is abandoned in
minimum-time (z1 evolves with increments equals to z+2 , i.e. the maximum allowable
velocity compatible with the assigned constraints) and the system starts a transient
toward the origin following σ with control law u = U− (see §1.3 and §1.4 for the
convergence proofs of σ3 and σ4).

The same reasoning can be made by assuming z+3 < 0.

Analogous considerations hold when σ < σ2 and the system is initially locked
in z−. In that case, as soon as σ ≥ σ2 the AVSC selects σ and, with command law
u =U+, the system converges toward the origin in minimum-time.

40 Chapter 1. Real-time trajectory generation with dynamic filters

1.6 Comparisons with respect to the previous version

The performances of the new filter are compared with those of an analogous filter
devised in [21]. As claimed in §1.1, the filter here presented eliminates a suboptimal
behavior that was affecting the version proposed in [21]: Depending on the reference
signal and on the bounds, transients of [21] could be non-minimum-time and, in turn,
undesired overshoots could appear.

r

x

R
+

R

S
+

S

U
+

U
-

-

-

u

x
..

r
..

x
.

r
.

x
(m

)
x

(m
s-2

)
..

u
(m

s-3
)

0.8

0.4

1.2

0.4
0

-0.4
-0.8

1

0

-1

-2

4

0

-4

0 1 2 3 4 5
t (s)

x
(m

s-1
)

.

a

b

c

d

Figure 1.16: Comparisons between the outputs of the novel filter (solid lines) and those pro-
posed in [21] (dash-dotted lines): Reference signal (dashed lines) is reached in minimum-time
and by fulfilling the imposed bounds (dotted lines). Circles highlight the configurations for
which the new filter returns shorter transients.

The filters performances are highlighted by executing the same sequence of a
step, a ramp followed by a parabola as shown in Fig. 1.16. The reference signal
is non-smooth and unfeasible with respect to the bounds and, as asserted in §1.1,
the filter output is the best possible approximation of the input signal. The assigned
bounds on the jerk signal have been assumed symmetric for comparison reasons. The
bounds are changed online and are assigned as in Table 1.1.

In particular, user-defined bounds are changed at t = 1.2 s during a transient and

1.7. A test case 41

Table 1.1: Kinematic bounds used for the comparisons with the filter proposed in [21].

t R+ R− S+ S− U+ U−

[s] [m s−1] [m s−1] [m s−2] [m s−2] [m s−3] [m s−3]

0.0 0.65 -1 1.6 -2 5 -5
1.2 0.56 -1 1.3 -1.8 7 -7

both filters reach the reference signal without overshoot. The circles of Fig. 1.16
show, conversely, two cases in which the new filter returns better solutions. Improve-
ments are especially evident for the second of the two transients, which has been
shortened by 0.3 s and the hanging overshoot has been totally eliminated. It is in-
teresting to notice that the overshoot of the transient toward the parabolic reference
is common to both approaches. This implies that the solution found by [21] was al-
ready minimum-time compatibly with the constraints: This overshoot can only be
eliminated by loosening the given bounds.

1.7 A test case

The discrete-time filter has been tested in a simulation environment and its perfor-
mances have been evaluated in case of asymmetric constraints, by using an input
signal that has been appositely devised in order to highlight the system capabilities.
The test has been executed in a real-time environment, based on RTAI [30].

As shown in Fig. 1.17, the reference signal is discontinuous and it is given by a
combination of steps, ramps and parabolas. Assigned constraints are online changed
and have been assigned according to Table 1.2. Fig. 1.17 shows the obtained results.
Fig. 1.17a depicts the original discontinuous signal (dashed line) compared with the
output of the proposed filter. Figs. 1.17b-d show the velocities, accelerations and
jerks signals: In dotted lines are shown the dynamic bounds, dashed lines highlight
the reference signal.

The filter, as expected, mimics the input signal by means of an output that fulfills
the given velocity, acceleration, and jerk constraints. The reference signal is always

42 Chapter 1. Real-time trajectory generation with dynamic filters

2

4

6

8
x
 (

m
)

0

2

-2x
 (

m
 s

-1
)

.

0

4

-4

x
 (

m
 s

-2
)

..

0
10

-10

u
 (

m
 s

-3
)

20

-20

8

0 2 4 6 8 10 12 14 16 18
t (s)

r

x

r
.

x
. R

+

R
-

r
..

x
..

S
-

S
+

U
-

U
+

u

0

a

b

c

d

Figure 1.17: Results of the test case. The reference signal (dashed line) is tracked at the best
by the filter output (solid lines). Given constraints are always satisfied (dotted lines).

Table 1.2: Kinematic bounds used for the test case.

t R+ R− S+ S− U+ U−

[s] [m s−1] [m s−1] [m s−2] [m s−2] [m s−3] [m s−3]

0.0 3.1 -3 6.9 -5.1 20 -25
6.4 2.75 -3 5.4 -3.6 19 -19
12.5 0.65 -3 4.4 -2.6 17 -19
16 0.65 -2 4.4 -2.6 17 -19

reached without overshoot even when, at t = 7.2 s and t = 12.5 s, the bounds are
changed in the middle of a transient. Transients are always minimum time compati-
bly with the constraints. The jerk has a bang-zero-bang behavior and the chattering
phenomenon is totally avoided. The filter has been executed with a sampling time
T = 1 · 10−3 s. An average evaluation time of 5.24 · 10−6 s has been measured on
a PC equipped with an Intel Core2 Duo processor @ 3.00 GHz: Even considering
less efficient processors, the computational burden would still be compatible with the
sampling times of many industrial applications.

2
Trajectory scaling systems in the configuration space

Any industrial plant is affected by physical limits that could worsen motion control.
These limits can be managed at control level or by synthesizing proper reference
signals. In particular, ranges of controlled variables are typically limited, admissi-
ble motor velocities and accelerations are bounded, actuator torques are finite, etc..
The controller performances worsen every time saturation occurs and, in the worst
situations, feedback systems can also be destabilized. For this reason, industrial con-
trollers are necessarily designed tacking this phenomenon into account. Approaches
that are typically used to prevent the problem are based on anti-windup schemes or
on model predictive controllers. Both techniques require specially devised control
schemes. Alternatively, it is possible to manage system limitations by properly plan-
ning reference signals. The main advantage of this choice is that it permits the use of
much simpler control structures.

Early trajectory-based approaches were conceived to be executed offline [31–33]
through the resolution of an optimization process. Unfortunately, offline techniques
cannot account for model uncertainties, trajectory changes or unexpected disturbance
in the system, so that given bounds cannot be fulfilled with certainties. In order to
solve these issues, online techniques have been developed. Online approaches are
typically based on the path-velocity decomposition paradigm [34]: The trajectory is
composed of a path and a Longitudinal Time-Law (LTL). By correctly acting on the

44 Chapter 2. Trajectory scaling systems in the configuration space

LTL, trajectory feasibility is preserved and path tracking performances are signif-
icantly improved. Algorithms based on this concept are also known as Trajectory
Scaling Systems (TSS) because trajectory feasibility is maintained by properly slow-
ing (or scaling) down the LTL in order to fulfill the kinematic and the dynamic limits.

The scaling problem has been traditionally solved by considering two planning
frameworks: Trajectories could be planned in the configuration space or in the op-
erational space. This chapter focusses on defining and solving a scaling problem in
the configuration space. The trajectory is scaled down in order to fulfill a given set of
kinematic bounds on joint velocities, accelerations and jerks, and of dynamic bounds
on the generalized force and force derivatives.

Alternatively, the scaling problem can also be handled by considering paths plan-
ned in the operational space: The introduction of bounds defined in the Cartesian
space requires a more challenging problem to be solved with respect to the one posed
above because of the non-linear relationships between the operational and configu-
ration spaces. The scaling problem in the operational space will be formulated and
solved in next Chapter 3.

A closer examination of robotic literature about the path planning in the configu-
ration space reveals that the early works were developed in the eighties in an offline
context. The interpolation between joint configurations can be accomplished by pos-
ing a polynomial interpolation problem. In [1] a total traveling time minimization
problem has been solved offline by simultaneously managing limits on joint veloci-
ties, accelerations and jerks. The jerk constraints were added in order to prevent, or,
better, to minimize mechanical stresses. This historical approach had a major draw-
back: It does not consider, in the optimization process, the manipulator dynamics and,
as a consequence, control performances of the actual implementation could worsen.

The open problem of the integration of the robot dynamics in the optimization
procedure has been considered in [35]. In an offline context, paths were planned by
considering limitations on the manipulator dynamics and constraints on the joint ve-
locities and accelerations. More precisely, the manipulator dynamics were accounted
for by considering the actuator torques and by converting them into equivalent limits
on joint accelerations. The trajectory feasibility was maintained with the aid of an it-

2.0. Trajectory scaling systems in the configuration space 45

erative algorithm, which added new spline control points every time the optimization
process was unable to find feasible solutions. In the approach proposed in [35] the
jerk constraints were not managed. More recent approaches adopt fifth-order splines
in order to also manage the jerk limits. In [5], for example, the system dynamics has
been handled by considering torque and torque derivative limits. In a similar solution
presented in [36], torque and torque-derivative constraints were mapped into equiv-
alent bounds used to find the best control points configuration of a cubic spline, in
order to simultaneously satisfy the given kinematic and dynamic limits.

In order to obtain a more efficient solution to the optimization problem, a sub-
optimal strategy for systems subject to kinematic constraints on velocities, accelera-
tions and jerks and to dynamic limits on actuators’ torques has been proposed in [37].
It is based on the use of a dynamic programming approach. The proposed approach
approximates the time-optimal solution to any desired degree of accuracy.

The optimization problem, which is at the basis of the planning method, has been
subsequently solved in a discrete-time framework. The discretization process could
add undesired approximations to the optimization procedure which could lead to fea-
sibility issues. The main reasons which motivated the discretization of the planning
problem have been summarized in [38]:

• Commonly manipulators are governed through discrete-time controllers;

• Dynamics equations, which rule the manipulators’ motions, are highly coupled
and require demanding computational resources for their computations.

A significant step forward for the resolution of path planning problems in real-
time frameworks has been presented in [39]. Although the solution found in that
paper is based on an offline investigation, it proposes an interesting idea based on
the Pontryagin’s maximum principle: Minimum-time trajectories can be obtained
from the generation of discrete curves that, at each sample time, assume maximum
or minimum allowable acceleration with respect to the given limits. The accelera-
tion constraints and the generalized force limits caused by the actuators’ electronics
have been considered in [39] by converting them into equivalent bounds on the joint

46 Chapter 2. Trajectory scaling systems in the configuration space

accelerations. According to this strategy, it is not necessary to solve a complex op-
timization problem to constrain the whole trajectory but, at each sample time, it is
sufficient to choose a proper acceleration value on the basis of the current kinematic
and dynamic configuration. The acceleration signal can admit only two values which
correspond to the given acceleration limits. The solution has been investigated of-
fline through an iterative algorithm based on a forward integration with maximum
acceleration command followed by a backward integration procedure obtained, from
the trajectory end-point, by assuming the maximum deceleration command. Pontrya-
gin’s maximum principle postulates that, for the problem at hand, trajectories, which
admit a single switch in the acceleration command, are minimum-time. Moreover,
paper [39] has introduced the use of the phase plane s-ṡ. It represents the evolution of
the velocity signal with respect to the distance along the path s. The admissible region
has been defined as the region where the generated profile is feasible with respect to
the given bounds.

The planning technique proposed in [39] has been extended in [40] where, at the
planning stage, bounds in the operational space have been considered and the phase
plane definition has been extended. The idea introduced by Bobrow et. al. has been
improved in subsequent years in order to obtain a time-minimum trajectory for 6
Degrees of Freedom (DoF) robots [41]. Furthermore, the gripper forces’ constraints
have been introduced in [42].

Previously cited methods are unfortunately not compatible with real-time im-
plementations. Even considering suboptimal solutions, the solution of optimization
problems requires computational times of several milliseconds. If lower computation
times are required, i.e. execution times are comparable with control loops’ sample
times, profile generations can be managed in an “indirect” way: Trajectories can be
generated by means of appropriate feedback schemes that smooth rough unfeasi-
ble signals in order to fulfill the given bounds. Early works on this topic have been
presented in [10] and [43] where, in a continuous time framework, trajectories for
mechatronic systems with bounded joint velocities and accelerations were generated
by means of a continuous time filter. The limits are changed in real-time and are sym-
metric. The technique has been successively discretized in [14] but, in this case, only

2.1. The scaling problem 47

the symmetric acceleration limits has been managed.

By exploiting the path-velocity decomposition paradigm [34], paper [16] pro-
posed the first version of the Trajectory Scaling System (TSS): The trajectory is gen-
erated by composing a Longitudinal Time-Law (LTL) and a path. The TSS is placed
between the LTL and the path generators and it scales the LTL in order to fulfill the
given limits. These constraints, defined in the joint space, must be converted into
equivalent bounds for the LTL. In [16] the limits on the maximum joint velocities
and accelerations have been considered. The problem has been revised and extended
in [23] in order to manage high-order kinematic and dynamic constraints. In particu-
lar, the TSS was modified to be able to generate smooth profiles for systems subject
to constraints on: Joint velocities, accelerations and jerks and generalized forces and
force derivatives acting on the joints. A preliminary experimental study on the TSS
presented here has been accomplished in [44]. It is worth noting which are the main
differences between the results proposed in this chapter and those presented in [44]:
In the previous version, the planner was able to manage bounds on the joint veloci-
ties and accelerations online as well as the generalized forces acting on the joints. The
TSS presented in the following is also able to constrain joint jerks and the derivative
of the generalized forces acting on the joints.

The scaling problem proposed in [23] is revised in the following sections and
tested in an experimental environment in order to prove the robustness of the pro-
posed method with respect to paths that differently solicit the dynamic behavior of
the system. Moreover, §2.4 proposes a solution for the feasibility problems that could
arise when the motors rotate at high speed. Most of the following results have been
presented in [45].

2.1 The scaling problem

The scaling problem can be summarized as follows: A trajectory, planned according
to the path-velocity decomposition paradigm [34], must be proper scaled in order
to fulfill the dynamic or kinematic constraints and to track at best the desired tra-
jectory. The problem is solved by properly slow down the Longitudinal Time-Law

48 Chapter 2. Trajectory scaling systems in the configuration space

(LTL) of an appositely design scaling system. The scaling system, for configuration
in witch the given limits cannot be violated, must also eliminate accumulated delays
in minimum time. Indicating with q := [q1 q2 . . . qN]

T the vector of the generalized
variables used to describe the joint displacement, the considered kinematic/dynamic
constraints are related to the maximum joint velocities, accelerations, and jerk and to
the maximum generalized forces and their first order derivatives acting on the manip-
ulator joints. In particular, it is possible to denote with τττ := [τ1 τ2 . . . τN]

T and with
τ̇ττ := [τ̇1 τ̇2 . . . τ̇N]

T the vector of the generalized forces and their derivatives, respec-
tively. The scaling system must to modify the LTL in order to fulfill the following
user-defined limits (i = 1,2, . . . ,N)

τ i ≤ τi ≤ τ i , (2.1)

τ̇ i ≤ τ̇i ≤ τ̇ i , (2.2)

q̇
i
≤ q̇i ≤ q̇i , (2.3)

q̈
i
≤ q̈i ≤ q̈i , (2.4)

...q
i
≤

...q i ≤
...
q i , (2.5)

where underlined and overlined terms respectively indicate lower and upper user-
defined bounds on the considered entities and N is the dimension of the configuration
space.

The planning scenario is introduced as follows (more details in [23]): System
trajectories are defined by users or by an automatic planning systems according to
the path-velocity decomposition paradigm [34], i.e. they are obtained by combining
a LTL u(t) with a path that is defined in the configuration space in the following
manner

f : [0,u f] → RN

u → qd := f(u)
, (2.6)

where scalar u parametrizes the path, u f is its final value. The LTL is directly pa-
rametrized in function of the time and it is a monotonic function defined as follows

u : [0, t f] → [0,u f]

t → ud := u(t)
, (2.7)

2.1. The scaling problem 49

IDC

longitudinal

time-law

generator

qd
q
d

.

q
d

..

u

u
.

u
..

u
...

u
d

u
d

.

u
d

.. manipulator

nonlinear

scaling

filter

S
+
S
-

U
+
U
-

R
+
R
-

bounds

estimator

q
d

...

qt

trajectory

scaling

system

path

generator

Kalman

filterq
..
^

q
.
^

q^

Figure 2.1: The control scheme used to drive the manipulator.

where t f is the total traveling time. The overall trajectory is obtained by combining
(2.6) and (2.7): qd = f[u(t)]. Desired trajectory qd can be differentiated by means of
a chain differentiation rule in the following manner

q̇d(u, u̇) = f ′(u)u̇ , (2.8)

q̈d(u, u̇, ü) = f ′′(u)u̇2 + f ′(u)ü , (2.9)
...qd(u, u̇, ü,

...u) = f ′′′(u)u̇3 +3 f ′′(u)u̇ ü+ f ′(u)...u . (2.10)

Functions f(u) and u(t) must be characterized by continuity properties. More pre-
cisely, for the sake of smoothness, the third derivative of f(u) with respect to u must be
piecewise continuous, i.e., f ′′′(u)∈Cp([0,u f]), while its first derivative, for regularity
reasons, must be different from zero, i.e., f ′(u) 6= 0. Analogously,

...u (t) ∈ Cp([0, t f]).
The scaling system, that was first proposed in [23], can be described with the aid
of Fig. 2.1. A manipulator, that is affected by known dynamic/kinematic limits, is
driven by means of an Inverse Dynamic Controller (IDC). The system actuators are
not equipped with velocity and acceleration sensors and, moreover, the acquired po-
sition signals are particularly noisy. For this reason, the control feedback has been
closed by means of a Kalman filter, that evidently introduces a non ideal behavior in
the loop, since performances also depend on the accuracy of the model it uses.

Reference trajectories are obtained by combining the output of a LTL generator
with the input of a path generator. A TSS is placed between them in order to generate,
starting from the user defined reference ud(t), a signal u(t) which derivatives fulfill
the following equivalent bounds

R− ≤ u̇≤ R+, S− ≤ ü≤ S+, U− ≤ ...u ≤U+ . (2.11)

50 Chapter 2. Trajectory scaling systems in the configuration space

Indeed, if (2.11) are satisfied, trajectory qd(t), as will be proved in §2.3, is feasible
with respect to the assigned kinematic/dynamic constraints. Bounds R+, R−, S+, S−,
U+, and U− are evaluated at run time by the bound estimator block on the basis
of the manipulator status of motion and of the controller status. This implies that
bounds change at each sample time and that they are not repetitive even in case of
cyclic trajectories like those that are later considered, due to the non ideal behavior
of the system and to the presence of external disturbances.

The generation of a feasible signal u(t) is demanded to the nonlinear scaling
filter described in the Chapter 1. It is worth to resume its main characteristics: The
filter returns u(t) = ud(t) if ud(t) is feasible, otherwise it generates an output u(t)
that is the best possible feasible approximation of ud(t) and that fulfills condition
...u (t)∈Cp([0, t f]). If ud(t), starting from an unfeasible state, newly becomes feasible,
it is hanged by u(t) in minimum time.

2.2 The manipulator model

Figure 2.2: The experimental setup.

The experimental setup, that has been used for the validation of the scaling system, is
shown in Fig. 2.2. It is constituted by a four links, closed-chain, planar manipulator,

2.2. The manipulator model 51

q1

q4 q2

q3

l

l

l

(x,y)

l

Figure 2.3: A schematic representation of the four links planar manipulator.

that is developed and distributed by Quanser Consulting Inc. for the fast prototyping
of controllers. It is schematically represented in Fig. 2.3. Joints 1 and 2 are actuated
by means of two DC motors, while all the other joints are passive. All links have the
same length l and the same mass ml . The system is described in the configuration
space by angles θ1 and θ2.

The system dynamic equations can be obtained by means of the Euler-Lagrange
approach. The potential energy of the whole system is constant, thus its evaluation
is not necessary. The kinetic energy of the two motors and of the two links solidly
connected to them can be expressed as follows

E1 =
1
2

Jmθ̇
2
1 , E2 =

1
2

Jmθ̇
2
2 ,

where Jm represents the equivalent inertia, referred to the output shaft, of the com-
bined system motor plus link.

An exact definition of the kinetic energy associated to links 3 and 4 should lead to
a complex model. Conversely, a simplified model can be obtained by assuming some
approximations. If θ1 ' θ2 ' 0 it is possible to write

E3 =
1
2

Jl θ̇
2
2 +

1
2

mll2
θ̇

2
1 , E4 =

1
2

Jl θ̇
2
1 +

1
2

mll2
θ̇

2
2 ,

where Jl is the link inertia around the joint axis. Practically, kinetic energy associated
to link 3 is supposed to be given by a translational component due to motor 1 and

52 Chapter 2. Trajectory scaling systems in the configuration space

a rotational component caused by motor 2. This is clearly an approximation, since
both components actually depend on θ1, θ2, θ̇1, and θ̇2. Model accuracy worsen if
the system works far from the origin. These approximations are inserted in the IDC
synthesis and in the Kalman filter model. The scaling system must also to be able to
manage these system uncertainties in order to guarantee feasible trajectories.

The inverse dynamics equations are obtained by differentiating the Lagrangian
equation L = E1 +E2 +E3 +E4, and by adding the dissipative effects (i = 1,2)

τi = (Jm + Jl +mll2)θ̈i +F θ̇i , (2.12)

where F is the viscous friction coefficient. Dissipative nonlinear terms have been
neglected, thus introducing a further approximation.

The system input is represented by the motors voltages, so that the model has been
rearranged in order to admit the same inputs. A reduction gear is placed between the
output shaft and the motor shaft. Its reduction gear ratio is defined as follows

Kg :=
θmi

θi
, (2.13)

where θmi indicates the angular position of the motor shaft. Consequently, the rela-
tionship between output torques τi and motor torques τmi is

τi = Kg τmi . (2.14)

Motor torques and feeding currents im are correlated by the electromechanics
equation

τmi = Kmimi , (2.15)

where Km is the motor torque constant. Finally, the electric equation expresses motor
feeding voltages vmi in function of motor currents imi and motor angular velocities
θ̇mi

vmi = Rmimi +Kmθ̇mi , (2.16)

where Rm is the rotor resistance, while Km is the back electromotive force constant,
that is supposed to be equal to the motor torque constant.

2.2. The manipulator model 53

By combining (2.12)–(2.16), after a few algebraic manipulations, it is possible to
write the following dynamic equations (i = 1,2)

vmi = αθ̈i +β θ̇i , (2.17)

where
α =

Rm

Km Kg
(Jm + Jl +mll2) , β =

Rm

Km Kg
F +Km Kg .

Due to the abovementioned simplifications, the model is linear and decoupled. This
is clearly an approximation that can potentially affect the performances of the scaling
system.

Hence, the simplified model of the whole 2R planar robot can be written as fol-
lows

τττ = Hq̈+Fq̇ , (2.18)

where τττ := [vm1 vm2]
T , q := [θ1 θ2]

T , while

H :=

[
α 0
0 α

]
, F :=

[
β 0
0 β

]
.

Instead of the feedforward torque controller with a feedback PD action proposed
in [29], here an IDC is used due to its better performances. It is based on model (2.18)
and it is characterized by the following equation

τττ = Ĥ(q)q̈d + Ĉ(q, q̇)q̇+ ĝ(q)+ v̂(q, q̇)+ Ĥ(q)
(

kT
p e+kT

v ė+kT
i

∫
e
)

, (2.19)

where symbol ˆ points out that the controller uses an estimated version of dynamics
parameters α and β that are derived by means of an identification procedure, while
kT

p , kT
v , and kT

i are diagonal matrices that contain positive gains. The generalized
joint variables derivatives are obtained from the Kalman filtering stage.

The time derivative of (2.19) can be written as follows (see [23])

τ̇ττ = ˙̂H(q, q̇)q̈d + Ĥ(q)
...qd + D̂(q, q̇)q̇+2Ĉ(q, q̇)q̈+ L̂(q, q̇)q̇+ Ê(q, q̇)q̈

+ Ĥ(q)
(
kT

p ė+kT
v ë+kT

i e
)

s+ ˙̂H(q, q̇)
(

kT
p e+kT

v ė+kT
i

∫
e
)

. (2.20)

54 Chapter 2. Trajectory scaling systems in the configuration space

Because of (2.9) and (2.10), (2.19) and (2.20) can be expressed in function of u and
its derivatives

τττ(u, u̇, ü;q, q̇) = â1(u;q)ü+ â2(u, u̇;q)+ â3(q, q̇) , (2.21)

τ̇ττ(u, u̇, ü,
...u ;q, q̇, q̈) = b̂1(u;q)...u + b̂2(u, u̇, ü;q, q̇)+ b̂3(q, q̇, q̈) , (2.22)

where

â1(u;q) = b̂1(u;q) := Ĥ(q)f ′(u) , (2.23)

â2(u, u̇;q) := Ĥ(q)f ′′(u)u̇2 , (2.24)

â3(q, q̇, q̈) := Ĉ(q, q̇)q̇+ ĝ(q)+ v̂(q, q̇)+ Ĥ(q)
(

kT
p e+kT

v ė+kT
i

∫
e
)
,

(2.25)

b̂2(u, u̇, ü;q, q̇) := ˙̂H(q, q̇)[f ′′(u)u̇2 + f ′(u)ü]+ Ĥ(q)[f ′′′(u)u̇3 +3f ′′(u)u̇ ü] , (2.26)

b̂3(q, q̇, q̈) := D̂(q, q̇)q̇+2Ĉ(q, q̇)q̈+ L̂(q, q̇)q̇+ Ê(q, q̇)q̈

+ Ĥ(q)
(
kT

p ė+kT
v ë+kT

i e
)
+ ˙̂H(q, q̇)

(
kT

p e+kT
v ė+kT

i

∫
e
)
.

(2.27)

and where â1(u;q) = b̂1(u;q) = [â11, â12, . . . , â1N]
T , â2(u, u̇;q) = [â21, â22, . . . , â2N]

T ,
b̂2(u, u̇, ü;q, q̇) = [b̂21, b̂22, . . . , b̂2N]

T , â3(q, q̇, q̈) = [â31, â32, . . . , â3N]
T , b̂3(q, q̇, q̈) =

[b̂31, b̂32, . . . , b̂3N]
T , while e := q− qd , ė := q̇− q̇d , and ë := q̈− q̈d represent, re-

spectively, the trajectory tracking error and its first and second time derivatives. Also
in this case, symbol ˆ points out that the controller uses an estimated model of the
manipulator.

2.3 Evaluation of the equivalent longitudinal constraints

Firstly, the generalized force and the generalized force derivative constraints have
to be converted to an equivalent version that can be used to bound the scaling filter
dynamics. Equations (2.1) and (2.2), owing to (2.21) and (2.22), can be reformulated
in the following manner (i = 1,2, . . . ,N):

τ i ≤ â1i(u;q)ü+ â2i(u, u̇;q)+ â3i(q, q̇)≤ τ i , (2.28)

2.3. Evaluation of the equivalent longitudinal constraints 55

Table 2.1: Expressions used for the evaluation of the equivalent longitudinal bounds.

f ′i > 0 f ′i < 0 f ′i = 0

σ i (
...
q i− f ′′′i u̇3−3 f ′′i u̇ü)/ f ′i (

...q
i
− f ′′′i u̇3−3 f ′′i u̇ü)/ f ′i ∞

σ i (
...q

i
− f ′′′i u̇3−3 f ′′i u̇ü)/ f ′i (

...
q i− f ′′′i u̇3−3 f ′′i u̇ü)/ f ′i −∞

µ i (q̈i− f ′′i u̇2)/ f ′i (q̈
i
− f ′′i u̇2)/ f ′i ∞

µ
i

(q̈
i
− f ′′i u̇2/) f ′i (q̈i− f ′′i u̇2)/ f ′i −∞

ζ i q̇i/ f ′i q̇
i
/ f ′i ∞

ζ
i

q̇
i
/ f ′i q̇i/ f ′i −∞

b̂1i > 0 b̂1i < 0 b̂1i = 0

γ i [τ̇ i− b̂2i(u̇, ü)− b̂3i]/b̂1i [τ̇ i− b̂2i(u̇, ü)− b̂3i]/b̂1i ∞

γ
i

[τ̇ i− b̂2i(u̇, ü)− b̂3i]/b̂1i [τ̇ i− b̂2i(u̇, ü)− b̂3i]/b̂1i −∞

â1i > 0 â1i < 0 â1i = 0

β i [τ i− â2i(u̇)− â3i]/â1i [τ i− â2i(u̇)− â3i]/â1i ∞

β
i

[τ i− â2i(u̇)− â3i]/â1i [τ i− â2i(u̇)− â3i]/â1i −∞

τ̇ i ≤ b̂1i(u;q)...u + b̂2i(u, u̇, ü;q, q̇)+ b̂3i(q, q̇, q̈)≤ τ̇ i . (2.29)

The relations (2.28) and (2.29) can be rearranged in order to convert the origi-
nal generalized force bounds into equivalent limits compatible with the longitudinal
time-law. To this purpose, for example, joint i fulfills (2.28) if ü ∈

[
β

i
β i

]
where β

i

and β i are defined in Table 2.1. The same reasoning must be applied for each joint
at the same time, so that the generalized force constraint (2.1) is satisfied only if
ü ∈

⋂N
i=1

[
β

i
β i

]
. Similar considerations apply for the derivative of the generalized

force constraint: Considered constraint (2.2) holds only if
...u ∈

[
γ

i
γ i

]
where γ

i
and

γ i are defined, also in this case, in Table 2.1.
The second family of the contemplated bounds are related to the joint velocities,

accelerations and jerks. Similar to the above procedure, these constraints must to be
converted into equivalent bounds for the longitudinal time-law. Hence, by considering
relations (2.8)–(2.10), joint space bounds (2.3)–(2.5) can be reformulated in

q̇
i
≤ fi

′(u)u̇≤ q̇i , (2.30)

56 Chapter 2. Trajectory scaling systems in the configuration space

q̈
i
≤ fi

′′(u)u̇2 + fi
′(u)ü≤ q̈i , (2.31)

...q
i
≤ fi

′′′(u)u̇3 +3 fi
′′(u)u̇ ü+ fi

′(u)
...u ≤

...
q i . (2.32)

Follow the same reasoning applied for relations (2.28) and (2.29), it is possible to as-
sert that the velocity bound (2.3) is satisfied only if u̇ ∈

⋂N
i=1

[
ζ

i
ζ i

]
, the acceleration

bound (2.4) is fulfilled only if ü ∈
⋂N

i=1

[
µ

i
µ i

]
, and the jerk bound (2.5) holds only

if
...u ∈

⋂N
i=1 [σ i σ i]. The values ζ

i
, ζ i, µ

i
, µ i, σ i, and σ i are given in Table 2.1.

In conclusion, equivalent bounds R+, R−, S+, S−, U+, and U− are obtained from
(2.1)–(2.5), by also considering (2.28)–(2.32). In particular, they are calculated as
follows

R− := max
i=1,...,N

{ζ
i
}, R+ := min

i=1,...,N
{ζ i} , (2.33)

S− := max
i=1,...,N

{β
i
,µ

i
}, S+ := min

i=1,...,N
{β i,µ i} , (2.34)

U− := max
i=1,...,N

{γ
i
,σ i}, U+ := min

i=1,...,N
{γ i,σ i} . (2.35)

2.4 Feasibility problems

Feasibility problems, that could arise when real-time scaling systems are used, can be
explained with the aid of Fig. 2.4, that shows some hypothetical scenarios in which
feasibility is lost with certainty. In all the considered cases, u̇ is supposed to be posi-
tive, but a similar analysis can be performed to account for problems that could arise
when u̇ < 0.

Firstly, consider Case a, in which u̇ reaches R+. Owing to the continuity of ü,
the velocity cannot be immediately reduced, so that the constraint is certainly vio-
lated. Short-time constraints violations do not alter the system performances – motors
slightly violate the maximum speed for brief periods – but the situation can become
critical if, as shown in Fig. 2.4, ü has reached its lower bound S−: u̇ decrements
slowly, constraints are violated for long periods, and the system stability is endan-
gered. A similar situation occurs in Case b, but, in this second case, the constraint
violation is caused by the saturation on

...u .

2.4. Feasibility problems 57

t

t

t

a
b

c

R
+

R
-

S
+

S
-

U
+

U
-

u
.

u
..

u
...

Figure 2.4: Possible constraints violations.

An even worst situation occurs in Case c:
...u reaches U+, so that the acceleration

limit cannot be fulfilled. Unfortunately, the acceleration constraint is correlated with
the maximum admissible motor torques: In case of violations motors saturate, thus
the controller performances worsen or, in the worst cases, stability is lost.

Critical situations are evidently caused by the proximity to zero of the accelera-
tion and of the jerk bounds, thus the obvious solution is based on a proper relaxation
of such bounds. In order to understand how it can be done, in the following is briefly
resumed the equations that are used for the constraints evaluation.

Equations (2.33)–(2.35) confirm that, for any point along the path, the equivalent
constraints are influenced by the status of motion of the system, i.e., by u̇ and ü. Thus,
by acting on u̇ and ü, it is possible to modify the longitudinal bounds.

In particular, considering first ü and Case a of Fig. 2.4, in the following is ana-
lyzed the relation between the bounds defined in Table 2.1 and the feasibility prob-
lems. As previously reported, problems are caused by values of S−, and, in turn, of

58 Chapter 2. Trajectory scaling systems in the configuration space

β
i

and µ
i
, that are too close to zero. Terms µ

i
approach zero if terms f ′i assume

large values or if products f ′′i u̇2 dominate over q̈
i

(or over q̈i). In the first case noth-
ing can be done, since terms f ′i only depend on the path shape. In the second case,
an appropriate reduction of u̇ can produce an enlargement of the bounds. A similar
consideration holds for terms β

i
: No action can be taken if their approach to zero is

caused by â3i or by â1i. Conversely, bearing also in mind (2.24), if problems derive
from the amplitude of â2i(u̇), positive effects can, again, be obtained by reducing u̇.
In both cases, the reduction of u̇ can also be justified through physical reasons. Terms
β

i
are directly correlated to (2.1), while terms µ

i
descend from (2.4): By decreasing

u̇, motor torques and accelerations are certainly reduced, so that constraint violations
are less probable.

Similar conclusions can be drawn for Cases b and c: The modules of S+, S−, U+,
and U− generally increase if u̇ is decreased, e.g., by properly downscaling R+, when
u̇ > 0, or R−, when u̇ < 0. It is worth to mention that productivity reasons suggest to
avoid global reductions of R+ (or of R−) that, conversely, should be limited to the sole
critical points. In the following §2.4.1 and §2.4.2 are reported strategies that properly
scale down R+ or R− in order to limit feasibility problems that could afflict the TSS.

2.4.1 Local scaling of R+ and R−

Several techniques have been tested in order to properly scale R+ and R−. The best
performances in terms of promptness and reliability have been achieved by means of
Algorithm 1. It is executed at the same sample rate of the main control loop and it is
based on a simple threshold approach. Three different thresholds, namely S, U , and
Ũ , have been chosen respectively on S−, U+, and U−. If one of such thresholds is
violated, i.e., if one of the three bounds approaches zero, R+ is posed equal to zero,
so that, necessarily, u̇ decreases. This causes an enlargement of the acceleration and
of the jerk bounds, so that the original limit R+ is restored in a short time: As shown
in §2.5, sufficiently large bounds on the acceleration and the jerk can be achieved by
adopting an upper velocity constraint that properly choppers between 0 and R+.

Thresholds S, U , and Ũ must be properly chosen. In order to achieve the best
performances, the actual shapes of R+, R−, S+, and S− should be known in advance.

2.4. Feasibility problems 59

Algorithm 1 Downscale R+ and R− when the acceleration and jerk limits are not
sufficient to guarantee the fulfillment of the velocity bounds.

1: Evaluate R+

2: if (u̇ > 0) and
[
(|S−|< S) or (U+ <U) or (|U−|< Ũ)

]
then

3: R+ = 0
4: end if

5: Evaluate R−

6: if (u̇ < 0) and
[
(S+ < S) or (|U−|<U) or (U+ < Ũ)

]
then

7: R− = 0
8: end if

For example, in Case a of Fig. 2.4, the knowledge of the slope of R+ could be used to
properly scale bound S−. Unfortunately, longitudinal bounds depend on the system
status and, consequently, they are only roughly known, being influenced by many
external factors. For this reason, S, U , and Ũ are chosen with a heuristic rule. In
general, sufficiently good performances are verified by adopting an initial value of S
that is one order of magnitude larger than the average longitudinal velocity, while U
and Ũ should be two orders of magnitude larger. Tunings can be later refined on the
actual plant.

It is worth to remark that the technique here proposed solves many of the issues
generated by an improper choice of the longitudinal time-law, but, since bounds S+,
S−, U+, and U− are also influenced by terms that do not directly depend on u̇, fea-
sibility cannot be guaranteed with certainty: The system can still enter into regions
from which the feasibility cannot be maintained. The convergence toward unfeasible
regions is pointed out by a sudden shrinkage of the feasible intervals: U+ and U−

approach each other (and/or the same happens to S+ and S−), so that it is no more
possible to respect the given constraints. If this happens, the user must choose a dif-
ferent time-law or, alternatively, he must globally scale down R+ and R−. In case of
cyclic time-laws, a completely automatic approach, like the one that is proposed in
the next section, can be adopted.

60 Chapter 2. Trajectory scaling systems in the configuration space

2.4.2 Global scaling of R+ and R−

If the local approach, presented in §2.4.1, is not able to solve all feasibility issues,
remaining problems can be handled by further scaling the equivalent velocity bounds
according to the following equations

R̃+ = ψ R+, R̃− = ψ R−,

where ψ ∈ [0.1,1]. Scaling factor ψ applies to the whole trajectory, so it cannot be
chosen too small in order to guarantee a proper tracking of ud(t).

Algorithm 2 Evaluation of the error signal used by the global bound-scaling system.
M indicates the number of samples occurring in a period T , while e j is the error signal
at time t = jT .

1: ẽ = ∞; e = ∞

2: for i = 1 to M do
3: if u̇i > 0 then
4: ei = min{U+

i −U ,
∣∣U−i ∣∣−Ũ}

5: else
6: ei = min{

∣∣U−i ∣∣−U ,U+
i −Ũ}

7: end if
8: if ei < ẽ then
9: ẽ = ei

10: end if
11: ei = min{S+i −S,

∣∣S−i ∣∣−S}
12: if ei < e then
13: e = ei

14: end if
15: end for
16: e j = [sign(e) & sign(ẽ)] |e ẽ|

The selection of ψ can be automated in case of cyclic trajectories by adopting a
strategy that maximizes its value compatibly with the assigned constraints: If the local

2.5. Experimental results 61

bound-scaling system proposed in §2.4.1 is sufficient to guarantee the feasibility, the
global scaling system must converge to ψ = 1.

Term ψ is obtained by means of the following discrete-time PI regulator, charac-
terized by a sample time T that is equal to the trajectory period

ψ j = ψ j−1 +KP e j +(KI T −KP)e j−1 , (2.36)

where e j is evaluated according to Algorithm 2.

The controller task is to maintain U+, |U−|, S+, and |S−| as close as possible to
the given thresholds, i.e., to U , Ũ , and S, by increasing ψ . If such thresholds, due to
the considered trajectory, cannot be violated, the controller converges toward ψ = 1,
otherwise lower values of ψ are obtained. Since ψ is bounded between 0.1 and 1, the
controller is equipped with an anti-windup system.

2.5 Experimental results

The TSS and, in particular, the bound-scaling techniques proposed in §2.4 for the
avoidance of feasibility issues, have been tested on the planar 2R robot that is shown
in Fig. 2.2. As asserted in §2.2, the system is not equipped with torque control loops,
so that its motors are directly voltage driven. The model coefficients, that have been
obtained through an identification procedure, have been successively used, according
to control approach proposed in [23], to implement the IDC. The evaluation of the
equivalent bounds R+, R−, S+, S−, U+, and U−, following the procedure defined in
§2.3, has been accomplished by assuming the following limits (i = 1,2): q̇i =−q̇

i
=

6 rad s−1, q̈i = −q̈
i
= 70 rad s−2,

...
q i = −

...q
i
= 3 · 103 rad s−3, τ i = −τ i = 5 V,

and τ̇ i = −τ̇ i = 35 V s−1. The scaling algorithm has been checked by means of the
following three paths

Path 1:

f1(u) =

[
θ10 +a cos(2πu)
θ20 +a sin(2πu)

]
, (2.37)

where θ10 = 8 deg, θ20 = 3 deg, and a = 25 deg;

62 Chapter 2. Trajectory scaling systems in the configuration space

-0.09

-0.11

-0.13

-0.15

-0.17

-0.19

y
 (

m
)

0.08 0.1 0.12 0.14 0.16 0.18 0.2
x (m)

Path 1

Path 2

Path 3

Figure 2.5: The three paths that have been used for the experiments.

Path 2:

f2(u) =

[
θ10 +a cos(2πu)+b cos(6πu)
θ20 +a sin(2πu)+b sin(6πu)

]
, (2.38)

where θ10 = 8 deg, θ20 = 3 deg, a = 25 deg, and b = 1 deg;

Path 3:

f3(u) =

[
θ10 +a cos(2πu)
θ20 +a sin(4πu)

]
, (2.39)

where θ10 = 8 deg, θ20 = 3 deg, and a = 20 deg. Paths 1 and 2, as shown in Fig. 2.5,
have very similar shapes, but they differently solicit the control system. This can be
evinced from Fig. 2.6, that compares functions f ′′′i (u) of the three paths. In particular,
values assumed by f ′′′2 (u) are higher than those assumed by f ′′′1 (u), so that, due to the
expressions of σ i, σ i, µ

i
, and µ i defined in Table 2.1, bounds U+ and U− of Path 2

create feasibility issues. From this point of view, Path 3 is, thus, the most critical.

The following three thresholds have been used for the bound-scaling system:
U = 500, Ũ = 20, and S = 15. They were chosen on the basis of the criteria that
were previously specified, with the exception of Ũ . Indeed, experimental tests have
shown that, for the proposed trajectories, small values of Ũ do not cause constraint
violations, so that Ũ is only used to guarantee that U− < 0.

2.5. Experimental results 63

f ''' (u)1

f ''' (u)2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0

400

-400

0

400

-400

b

a

c

0

400

-400

f ''' (u)1

f ''' (u)2

f ''' (u)1

f ''' (u)2

Figure 2.6: Function f ′′′(u) for the three paths.

For Path 1, as shown in Fig. 2.7, the outputs of the scaling filter fulfill the equiv-
alent longitudinal bounds, so that conditions (2.1)–(2.5), as proved by Fig. 2.8, are
fulfilled as well. Fig. 2.7a also proves a relevant characteristic of the proposed scal-
ing system: Differently from other approaches (see e.g. [46]), time delays, that have
been accumulated in order to satisfy the constraints, are eliminated, thus the system
efficiency is preserved. The LTL has been specifically chosen unfeasible in order to
mimic a situation in which the user is unaware of the system limits: Without the aid
of the two bound-scaling mechanisms, the system stability is lost in all the three test
cases. Fig. 2.7b highlights the combined actions of the two bound-scaling systems.
In particular, the commutations of R̃+, that are pointed out by means of dash-dotted
circles, are caused by the local mechanism, while the effects of the global strategy
are demonstrated by the reduced values of the velocity limits: In order to preserve
feasibility, ψ has converged to 0.47, i.e., the user selected bounds have been scaled
by more than the 50%.

64 Chapter 2. Trajectory scaling systems in the configuration space

1

0.6

0.4

0.2

0

u

0.8

0

-20

20

u
 (

s-1
)

.

u
 (

s-2
)

..

0

-2

2

0

-1

1

u
 (

s-3
)

..
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (s)

ud u

S
+

S
-

u
.

u
..

R
+

R
-

b

a

c

d

U+

U
-

u
...

R
-~

R
+~

x 103

Figure 2.7: Path 1: a) Position reference signal ud (dashed line) compared with the filter
output u (solid line); b) filter output u̇ (solid line) compared with velocity bounds R̃+ and R̃−

(dashed lines) and with unscaled bounds R+ and R−; c) and d) bounds S+ and S−, U+, and
U− (dotted lines) compared with filter outputs ü and

...u (solid line).

Experimental results have also proved that the best performances are obtained
thanks to the combined action of the two bound-scaling stages. Indeed, if the local
bound-scaling system is disabled and the initial value of ψ is chosen far from its
optimal value, the system becomes unstable during the first revolutions. Conversely,
still considering a disabled local bound-scaling system, if ψ is initially chosen close
to its optimal value, stability is preserved, but lower final values of ψ are obtained,
i.e., worse system performances are detected.

2.5. Experimental results 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (s)

0

q
q

.

.
(rad s-1)

(rad s-1)
1

2

q
q

..

..
(rad s-2)

(rad s-2)
1

2

q
q

(rad s-3)

(rad s-3)
1

2

...

...

6
4
2

-2
-4
-6

0

40

80

-40

-80

0

2

-2

0

4

2

-2

-4

0

40

20

-20

-40

b

a

c

d

e

t1(V)
t2(V)

(V s-1)
(V s-1)

t1

t2

.

.

t
.-

t
.
-

t-

t-

q
...-

q
-

q
..

-

q
..-

q-
.

.
q
-

...

x 103

Figure 2.8: Path 1: a) joint velocities; b) joint accelerations; c) joint jerks; d) motor feeding
voltages; e) derivatives of the motor feeding voltages.

Similar behaviors have been verified for the other two paths. In particular, since
the same time-law is used for Path 1 and Path 2, worse performances were expected
for the second path due to the larger values assumed by f ′′′2 (u). On the contrary, thanks
to the bound-scaling system, similar performances have been obtained and the results
are, thus, omitted for the sake of conciseness.

66 Chapter 2. Trajectory scaling systems in the configuration space

0 1 2 3 40.5 1.5 2.5 3.5
t (s)

1

0.6

0.4

0.2

0

u

0.8

0

-20

20

u
 (

s-1
)

.

u
 (

s-2
)

..

0

-2

2

0

-1

1

u
 (

s-3
)

..
.

-4

4

40

-40

2

-2

ud
u

R
+

R
-

u
.

S
+

S
-

u
..

U+

U
-

u
...

b

a

c

d

R
-~

R
+~

x 103

Figure 2.9: Path 3: a) Position reference signal ud (dashed line) compared with the filter
output u (solid line); b) filter output u̇ (solid line) compared with velocity bounds R̃+ and R̃−

(dashed lines) and with unscaled bounds R+ and R−; c) and d) bounds S+ and S−, U+, and
U− (dotted lines) compared with filter outputs ü and

...u (solid line).

Conversely, different results have been obtained for the critical Path 3. In par-
ticular, owing to the very large values of f ′′′3 (u), the global bound-scaling system
presented in §2.4.2, has converged to a smaller value of ψ , i.e., ψ = 0.18, in order to
fulfill, as proved by Fig. 2.9, the equivalent longitudinal bounds.

The solid circles in Figs. 2.7d and 2.9d show that, in order to guarantee that
U− < 0 and U+ > 0, higher values of ψ cannot be achieved.

2.5. Experimental results 67

The good behavior of the TSS is proved by the small path tracking errors that
have been detected for the three cases. In particular, the following root-mean-square
and peak errors have been measured:

• Path 1: erms = 4.40 ·10−4 m, emax = 1.11 ·10−3 m;

• Path 2: erms = 4.81 ·10−4 m, emax = 1.62 ·10−3 m;

• Path 3: erms = 4.02 ·10−4 m, emax = 1.27 ·10−3 m.

It is interesting to notice that, since the system constraints are always fulfilled, similar
tracking errors have been obtained for the three examples: They are mainly due to the
IDC tuning.

The TSS defined in the configuration space permits also to maintain the trajec-
tory feasibility with respect to system uncertainties (introduced in the identification
process and in the IDC’s realization) and to paths that different solicit the system
dynamic behavior. The experimental results, reported in the previous version of the
TSS [44], highlight the robustness of the TSS with respect system uncertainties: In
those experiments the estimated dynamics parameters α̂ and β̂ have been perturbed
(increased and decreased by 30%) and the resulting path tracking errors have been
proved the TSS robustness.

On the other hand, if trajectories are defined in the operational space, a different
scaling algorithm has to be developed: The user-defined limits could potentially be
defined directly in the Cartesian space and a different evaluation of the equivalent
bounds on the longitudinal time-law has to be formalized. The problem formulation
and a possible solution will be reported in the next chapter.

3
Trajectory scaling systems in the operational space

Planning trajectories in the operational space could elicit unfeasible joint velocities
and accelerations that are mainly due to kinematic singularities. A kinematic singu-
larity is a point defined in the operational space where, even in the event of slow
Cartesian motions, high joint velocities and accelerations must be expected. Deal-
ing with singularities is a problem that is widely discussed in literature and several
techniques have been proposed in order to avoid singular points. The problem has
often been solved offline because of the highly coupled relations that exist between
the configuration space and the operational space.

The singularity avoidance problem can be addressed in several ways depending
on the number of independent joints of the manipulator. A manipulator is defined
redundant if the number of independent joints is greater than the DoFs of the robot
or non-redundant in the other case.

In case of redundant manipulators, the solution to the problem can be found by
acting on the available DoFs that derive from the exploitation of the null space in the
Jacobian matrix (see, for example [47, 48]). For non-redundant manipulators, known
approaches could be roughly divided into two categories. In the first, minor path
changes are admitted in order to avoid critical configurations, while in the second,
planned trajectories are slowed down in the vicinity of singular configurations in or-
der to preserve accurate path tracking. The choice of the most appropriate approach is

70 Chapter 3. Trajectory scaling systems in the operational space

dictated by the manipulator tasks. If the execution time is mandatory, the first strategy
is preferred – a solution based on this approach will be presented in next Chapter 4.
Conversely, if deviations from the planned path are not admissible, kinematic bounds
must be handled with the second approach. The aim of this chapter is to present a
scaling system developed according the second approach.

Robotic literature proposes only a few works which address problems in the
Cartesian space. Early works have been proposed in [39] and in [49] where, in an
offline context, a trajectory optimization problem in the Cartesian space has been
solved in order to constrain joint accelerations and jerks respectively. As stated in
Chapter 2, if the trajectory planner must be computed in real-time, an approach based
on Trajectory Scaling Systems (TSS) could be used in order to constrain Cartesian
trajectories within some specified bounds. In this chapter it will be shown that even
for trajectories in the Cartesian space, despite the increased problem complexity, the
TSS computational time is fully compatible with real-time implementation. Recently,
trajectories planned in the operational space have been, for the first time, handled on-
line in [50] to satisfy velocity and acceleration constraints. In the following sections
a more challenging problem will be defined and solved: The TSS has been modified
to manage jerk constraints in real-time. §3.4 is dedicated to comparisons between the
TSS proposed in [50] and the novel TSS.

3.1 Problem formulation

The scaling problem here formulated is similar to the problem exposed in §2.1 but,
in this case, trajectories are defined in the operational space. Besides the limits on
joint velocities, accelerations and jerks, constraints directly expressed in the opera-
tional space must be real-time evaluated and managed in order to guarantee smooth
movements of the robot end effector and the overall trajectory feasibility. The scaling
problem can be formulated in the following manner.

Given a trajectory in the operational space and a set of kinematic constraints, the
TSS here proposed appropriately modifies the longitudinal speed in order to preserve
the path tracking. To this aim, trajectories are planned according to the path-velocity

3.1. Problem formulation 71

decomposition paradigm [34], an approach that is also suited for planning scenarios
in the operational space. Practically, trajectories are obtained as a combination of a
path in the operational space and a LTL. By defining s as the Euclidean distance from
the beginning of the path, measured along the path itself, the LTL is specified by
assigning the following function

s : [0, t f] → R+

t → s := s(t)
, (3.1)

where t f is the total traveling time. Along this and the following sections, term “path”
will indicate the combination of the positions and the orientations that are assumed
by the tool frame or by the wrist frame during the motion. Positions of the robot tool
frame are specified through a function pT (s) that is defined as follows

pT : [0,s f] → R3

s → pT := pT (s)
, (3.2)

where s f = s(t f) is the path length. Orientations can be specified in two different
manners, depending on the planning strategy. They can be expressed, e.g., by the
following function

ΦΦΦT : [0,s f] → R3

s → ΦΦΦT := ΦΦΦT (s)
, (3.3)

where ΦΦΦT indicates a tool frame orientation that is expressed through any minimal
representation. Alternatively, orientations could also be described by means of a ro-
tation matrix

0
T R : [0,s f] → R9

s → 0
T R := 0

T R(s)
. (3.4)

Depending on the selected planning scheme, the trajectory is thus given by func-
tions pT (t) = pT [s(t)] and ΦΦΦT (t) = ΦΦΦT [s(t)] or, alternatively, by pT (t) = pT [s(t)]
and 0

T R(t) = 0
T R[s(t)]. Position and orientations are measured with respect to an in-

ertial frame. Without any loss of generality, it will coincide with the manipulator 0
frame.

Differently from the TSS in the configuration space presented in Chapter 2, here,
manipulator control loops cannot be accessed and, therefore, the TSS manages only

72 Chapter 3. Trajectory scaling systems in the operational space

controller

longitudinal

time-law

generator

q
d

q
d

.

q
d

..

s

s
.

s
..

s
d

s
d

.

manipulator
scaling

filter

S
+

S
-

U
+

U
-

bounds

estimator

trajectory

scaling

system

path

generators
d

..

R
+

R
-

s
...

q
d

...

Figure 3.1: The overall manipulator control scheme. The dashed box surrounds the trajectory
scaling system.

kinematic constraints. In addition, operational space trajectories are supposed to be
known. From these trajectories, it is possible to obtain an analogous path qd(t) in the
joint space by solving an inverse kinematic problem. qd(t) is the reference signal for
the manipulator controller.

The TSS, shown in Fig. 3.1, is a dynamic system that is inserted between the
LTL generator and the path generator: It prevents constraint violations by properly
reducing longitudinal speeds, accelerations and jerks. An advantage of this scaling
technique is immediately evident: The TSS does not require data from the manipula-
tor controller, which internal structure can even be unknown.

The scheme of the TSS is similar to that one presented in Chapter 2 for problems
in the configuration space. It is made of a general purpose, nonlinear scaling filter
and a bounds estimator. The first modifies the nominal LTL, that is expressed through
function sd(t), in order to keep its first, second and third time derivatives within given
bounds, i.e., the filter output is a signal s(t) that fulfills the following inequalities

R− ≤ ṡ≤ R+ , S− ≤ s̈≤ S+ , U− ≤ ...
s ≤U+ , (3.5)

where R+, R−, S+, S−, U+, and U− are freely assignable limits. The scaling fil-
ter, formed by a chain of three discrete time integrators, has been widely described
in Chapter 1. It is worth to summarize its main characteristics: Output signal s(t)
tracks sd(t) if this latter is feasible, otherwise s(t) becomes the best possible feasible
approximation of sd(t). Moreover, s(t) always hangs in minimum time, compatibly
with the imposed constraints, any feasible sd(t). This property can be used, as will be
shown in §3.4, to generate minimum-time trajectories.

3.1. Problem formulation 73

The second block of the TSS is the bounds estimator, that converts the kinematic
constraints, which affect the manipulator, into equivalent limits for the LTL. It is
totally different from the analogous implementation that has been presented in Chap-
ter 2, since it must handle constraints that are defined in the operational space. Its
computational complexity is necessarily higher, because the required conversions in-
volve the existing relationships between the configuration and the operational spaces.
Nevertheless, the proposed formulation, as shown in §3.4, is perfectly compatible
with real-time implementation. The bounds estimator handles several different con-
straints. For example, velocities, accelerations and jerks of the end effector must be
kept within some given limits. Thus, by defining the desired generalized velocity of
the tool frame as

ṽT :=

[
vT

ωωωT

]
= [ṽT1 ṽT2 ṽT3 ṽT4 ṽT5 ṽT6]

T ∈ R6 (3.6)

where vT and ωωωT respectively represent the desired linear and angular velocities in
the operational space, by indicating with

ãT :=

[
aT

αααT

]
= [ãT1 ãT2 ãT3 ãT4 ãT5 ãT6]

T ∈ R6 (3.7)

the desired generalized acceleration, where aT and αααT respectively indicate the de-
sired linear and angular accelerations, and by posing with

j̃T :=

[
jT

ιιιT

]
= [j̃T1 j̃T2 j̃T3 j̃T4 j̃T5 j̃T6]

T ∈ R6 (3.8)

the desired generalized jerk, where jT and ιιιT respectively indicate the desired lin-
ear and angular jerks, following constraints must be simultaneously satisfied (k =

1,2, . . . ,6)

vk ≤ ṽTk ≤ vk , (3.9)

ak ≤ ãTk ≤ ak . (3.10)

j
k
≤ j̃Tk ≤ jk . (3.11)

74 Chapter 3. Trajectory scaling systems in the operational space

Constraint vectors v := [v1 v2 v3 v4 v5 v6]
T ∈ (R−)6, v := [v1 v2 v3 v4 v5 v6]

T ∈ (R+)6,
a := [a1 a2 a3 a4 a5 a6]

T ∈ (R−)6, a := [a1 a2 a3 a4 a5 a6]
T ∈ (R+)6, j :=

[j
1

j
2

j
3

j
4

j
5

j
6
]T ∈ (R−)6, and j := [j1 j2 j3 j4 j5 j6]

T ∈ (R+)6 are assigned by users
depending on the desired motion smoothness.

Bounds on joint velocities, accelerations, and jerks, i.e., q̇i, q̈i, and
...q i respec-

tively, must also be taken into account. It has been previously pointed out that trajec-
tories in the operational space could produce joint velocities and accelerations that
are beyond the actuators capabilities. In order to prevent path tracking problems the
following limits must be fulfilled

q̇
i
≤ q̇i ≤ q̇i , (3.12)

q̈
i
≤ q̈i ≤ q̈i , (3.13)

...q
i
≤

...q i ≤
...
q i , (3.14)

where i = 1,2, . . . ,N, while N is equal to the number of independent joints. Bounds
q̇ := [q̇

1
q̇

2
. . . q̇

N
]T ∈ (R−)N and q̇ := [q̇1 q̇2 . . . q̇N]

T ∈ (R+)N typically coincide with
the motor speed limits, q̈ := [q̈

1
q̈

2
. . . q̈

N
]T ∈ (R−)N and q̈ := [q̈1 q̈2 . . . q̈N]

T ∈ (R+)N

are used to reduce the mechanical stress, while
...q := [

...q
1

...q
2
. . .

...q
N
]T ∈ (R−)N and

...
q := [

...
q 1

...
q 2 . . .

...
q N]

T ∈ (R+)N are introduced to limit the rate of joint accelerations:
Continuous accelerations make it possible to drastically reduce the elicitation of os-
cillatory modes.

Longitudinal velocities, accelerations, and jerks along the path can be bounded,
by imposing

ṡ≤ ṡ≤ ṡ , (3.15)

s̈≤ s̈≤ s̈ , (3.16)
...
s ≤ ...

s ≤
...
s , (3.17)

where ṡ ∈ R−, ṡ ∈ R+, s̈ ∈ R−, s̈ ∈ R+, ...
s ∈ R−, and

...
s ∈ R+ are user-defined limits

respectively on longitudinal velocities, accelerations and jerks.
In next §3.2, it will be shown how constraints (3.9)–(3.14) can be converted into

equivalent bounds R−, R+, S−, S+, U−, and U+ for the LTL. No adaptation is required
for constraints (3.15)–(3.17), that can be immediately applied to (3.5).

3.2. The equivalent bounds evaluation for the LTL 75

3.2 The equivalent bounds evaluation for the LTL

As known, velocities, accelerations, and jerks of the end effector can be evaluated as
follows

ṽT = JT q̇ , (3.18)

ãT = J̇T q̇+JT q̈ , (3.19)

j̃T = J̈T q̇+2J̇T q̈+JT
...q , (3.20)

where JT = JT (q) is the system geometric Jacobian, while J̇T = J̇T (q) and J̈T =

J̈T (q) are its first and second time derivative, respectively.

If JT is not singular, by inverting (3.18)–(3.20) it immediately descends that

q̇ = J−1
T ṽT , (3.21)

q̈ = J−1
T (ãT − J̇T q̇) = J−1

T (ãT − J̇T J−1
T ṽ) , (3.22)

...q = J−1
T (̃jT − J̈T q̇−2J̇T q̈)

= J−1
T

[̃
jT − J̈T J−1

T ṽT −2J̇T J−1
T (ãT − J̇T J−1

T ṽT)
]
. (3.23)

Equations (3.21)–(3.23) are expressed in function of variables of the configuration
space and are instrumental for the evaluation of the equivalent longitudinal bounds,
provided that they could be posed in function of s.

To this purpose, path [pT (s), 0
T R(s)] is first converted into an equivalent path

qT (s) in the configuration space, which is subsequently used to evaluate

JT (s) = J[q(s)] and J−1
T (s) = J−1[q(s)] .

Linear velocity vT can be obtained from pT (s) by means of the chain differentia-
tion rule, i.e.

vT (s, ṡ) =
dpT (s)

ds
ds
dt

=
dpT (s)

ds
ṡ := vT (s) ṡ . (3.24)

A similar result can also be obtained for ωωωT := [ωx ωy ωz]
T . The differentiation

rule of rotational matrices, i.e. 0
T Ṙ = S(ωωωT)

0
T R, where S(ωωωT) is a skew symmetric

76 Chapter 3. Trajectory scaling systems in the operational space

matrix that is defined as follows

S(ωωωT) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ,

makes it possible to write

S[ωωωT (s, ṡ)] = 0
T Ṙ 0

T RT =
d
[

0
T R(s)

]
ds

0
T RT (s) ṡ . (3.25)

Owing to (3.25), ωωωT (s, ṡ) can evidently be written as follows

ωωωT (s, ṡ) = ωωωT (s) ṡ . (3.26)

Bearing in mind (3.24) and (3.26), (3.18) can be posed into the following form

ṽT (s, ṡ) = ṽT (s) ṡ , (3.27)

so that, by using the chain differentiation rule, its first and second order derivative are
given by

ãT (s, ṡ) = ṽ′T (s) ṡ2 + ṽT (s) s̈ , (3.28)

j̃T (s, ṡ, s̈) = ṽ′′T (s) ṡ3 +3 ṽ′T (s) ṡ s̈+ ṽT (s)
...
s , (3.29)

where ṽ′T (s) := [dṽT (s)]/(ds) and ṽ′′T (s) := [d2ṽT (s)]/(ds2). Hence, equations (3.27)–
(3.29) permit to express bounds (3.9)–(3.11) in function of the curvilinear abscissa
s.

Relations (3.12)–(3.14) must also be expressed in function of the curvilinear ab-
scissa. By means of (3.27), (3.18) can be written as follows

q̇(s, ṡ) = a(s) ṡ , (3.30)

where
a(s) := J−1

T (s) ṽT (s) . (3.31)

As shown in [51], ṽT (s) can be obtained from the knowledge of the path equations, so
that, given s, it is certainly possible to evaluate a(s). Consequently, in the following,
a(s) is supposed to be known.

3.2. The equivalent bounds evaluation for the LTL 77

The critical part of the procedure to express the joints’ constraints in function of
the curvilinear abscissa is represented by the explicit derivation of the first and the
second time derivative of the Jacobian in function of s. An efficient procedure for the
evaluation of J̇T and J̈T is proposed in §3.5, where it is also shown that J̇T and J̈T

assume the following structure

J̇T (s, ṡ) = J′T (s) ṡ ,

J̈T (s, ṡ, s̈) = J′′T (s) ṡ2 +J′T (s) s̈ .

Thus, bearing also in mind (3.27)–(3.29), (3.22) and (3.23) can be respectively writ-
ten as follows

q̈(s, ṡ, s̈) = a(s) s̈+b(s) ṡ2 , (3.32)
...q(s, ṡ, s̈, ...s) = a(s) ...

s +3b(s) ṡ s̈+ c(s) ṡ3 , (3.33)

where a(s) is given by (3.31), while

b(s) := J−1
T (s) [ṽ′T (s)−J′T (s)a(s)] , (3.34)

c(s) := J−1
T (s)[ṽ′′T (s)−J′′T (s)a(s)−2J′T (s)b(s)] . (3.35)

Since ṽ′T (s) and ṽ′′T (s) can be analytically obtained from the path equations, all
terms that are required for the evaluation of b(s) and c(s) are known.

Previous results (3.30), (3.32) and (3.33) permit to pose constraints (3.12)–(3.14)
in the following manner (i = 1,2, . . . ,N)

q̇
i
≤ ai(s) ṡ≤ q̇i , (3.36)

q̈
i
≤ ai(s) s̈+bi(s) ṡ2 ≤ q̈i , (3.37)

...q
i
≤ ai(s)

...
s +3bi(s) ṡ s̈+ ci(s) ṡ3 ≤

...
q i . (3.38)

Similar to the procedure presented in §2.3, equations (3.36)–(3.38) must evidently be
simultaneously satisfied for any i = 1,2, . . . ,N, and they can be rearranged in order
to convert the original joint bounds into equivalent constraints for the curvilinear
coordinate. For example, joint i fulfills (3.36) if ṡ∈

[
ζ

i
,ζ i

]
where ζ

i
and ζ i are given

78 Chapter 3. Trajectory scaling systems in the operational space

Table 3.1: Equivalent longitudinal bounds.

ai > 0 ai < 0 ai = 0

σ i (
...
q i− ciṡ3−3biṡs̈)/ai (

...q
i
− ciṡ3−3biṡs̈)/ai ∞

σ i (
...q

i
− ciṡ3−3biṡs̈)/ai (

...
q i− ciṡ3−3biṡs̈)/ai −∞

µ i (q̈i−biṡ2)/ai (q̈
i
−biṡ2)/ai ∞

µ
i

(q̈
i
−biṡ2/)ai (q̈i−biṡ2)/ai −∞

ζ i q̇i/ai q̇
i
/ai ∞

ζ
i

q̇
i
/ai q̇i/ai −∞

ṽTk > 0 ṽTk < 0 ṽTk = 0

γk (jk− ṽ′′Tk
ṡ3−3ṽ′Tk

ṡs̈)/ṽTk (j
k
− ṽ′′Tk

ṡ3−3ṽ′Tk
ṡs̈)/ṽTk ∞

γ
k

(j
k
− ṽ′′Tk

ṡ3−3ṽ′Tk
ṡs̈)/ṽTk (jk− ṽ′′Tk

ṡ3−3ṽ′Tk
ṡs̈)/ṽTk −∞

β k (ak− ṽ′Tk
ṡ2)/ṽTk (ak− ṽ′Tk

ṡ2)/ṽTk ∞

β
k

(ak− ṽ′Tk
ṡ2/)ṽTk (ak− ṽ′Tk

ṡ2)/ṽTk −∞

αk vk/ṽTk vk/ṽTk ∞

αk vk/ṽTk vk/ṽTk −∞

in Table 3.1. The same inclusion must simultaneously apply for all joints, so that
velocity constraint (3.12) is satisfied only if ṡ ∈

⋂N
i=1

[
ζ

i
,ζ i

]
. Similar considerations

apply on the acceleration and on the jerk constraints, thus equations (3.37) and (3.38)
are satisfied, and, in turn, also (3.13) and (3.14), only if s̈ ∈

⋃N
i=1[µ i

,µ i] and only if
...
s ∈

⋃N
i=1[σ i,σ i], respectively.

A similar procedure can also be used to transform the limits in the operational
space. By virtue of (3.27)–(3.29), bounds (3.9)–(3.11) become (k = 1,2, . . . ,6)

vk ≤ ṽTk(s) ṡ≤ vk , (3.39)

ak ≤ ṽTk(s) s̈+ ṽ′Tk
(s) ṡ2 ≤ ak , (3.40)

j
k
≤ ṽTk(s)

...
s +3 ṽ′Tk

(s) ṡ s̈+ ṽ′′Tk
(s) ṡ3 ≤ jk . (3.41)

The structure of (3.39)–(3.41) is evidently the same of (3.36)–(3.38), so that it is pos-
sible to assert that the trajectory is feasible only if ṡ∈

⋂6
k=1 [αk,αk], s̈∈

⋂6
k=1

[
β

k
,β k

]
and

...
s ∈

⋂6
k=1

[
γ

k
,γk

]
where coefficients αk, αk, β

k
, β k, γ

k
, and γk are defined ac-

3.3. Feasibility problems 79

cording to Table 3.1.

Finally, constraints (3.15)–(3.17) are directly defined in the curvilinear-coordinate
space, thus they do not require any transformation.

In conclusion, time-law s(t) is feasible if the following conditions are simultane-
ously fulfilled

ṡ ∈
[
R−,R+

]
, (3.42)

s̈ ∈
[
S−,S+

]
, (3.43)

...
s ∈

[
U−,U+

]
, (3.44)

where (i = 1,2, . . . ,N, k = 1,2, . . . ,6)

R− := maxi,k{αk,ζ i
, ṡ}, R+ := mini,k{αk,ζ i, ṡ}, (3.45)

S− := maxi,k{β k
,µ

i
, s̈}, S+ := mini,k{β k,µ i, s̈}, (3.46)

U− := maxi,k{γk
,σ i,

...
s }, U+ := mini,k{γk,σ i,

...
s }. (3.47)

3.3 Feasibility problems

The scaling mechanism proposed in this chapter is subject to the same feasibility
issues already pointed out in §2.4 for trajectories in the configuration space. The
problem can be summarized as follows: Depending on the system status of motion,
interval [S−,S+] could become very small. Obviously, when this happens the dynam-
ics of the speed signal is strongly limited, so that it can only be slowly changed. Un-
fortunately, the velocity bounds, i.e., R− and R+, are not constant: If they change too
rapidly the feasibility is lost since the available dynamics is not sufficient to permit
fast speed changes. A similar problem arises for the acceleration signal when interval
[U−,U+] tends to vanish. In §2.4 a solution is provided for trajectories in the con-
figuration space: Roughly speaking, if [S−,S+] and/or [U−,U+] become too small, it
is possible to invert such trend by reducing in advance the longitudinal speed. This
result is achieved by properly downscaling velocity bound R+ (more details on the
strategy can be found in §2.4). This principle is generally valid, provided that critical

80 Chapter 3. Trajectory scaling systems in the operational space

situations could be known in advance. Preliminary tests have revealed that the tech-
nique adopted in §2.4 for trajectories in the joint space is not suited for those in the
operational space. In case of paths passing close to kinematic singularities, indeed,
acceleration and jerk feasibility intervals are normally well open along the whole tra-
jectory, then they suddenly collapse to zero when the trajectory passes very close to
a singular point: The available time is not sufficient for any reaction.

An alternative strategy, also presented §2.4, for cyclic trajectories could be the-
oretically reused for the problem here presented. However, the assumption made in
§3.1 is that trajectories are not repetitive and that any reaction to possible problems
must be taken in real-time. For this reason, alternative approaches have been inves-
tigated such to promptly react to undesired behaviors caused by singular point. It is
known that an approach to a singularity can be detected by analyzing the singular val-
ues of the Jacobian matrix associated to the end effector. However techniques based
on the singular value decomposition did not give acceptable results, partially because
of their computational burden, but mainly because they do not reveal singularities
with a sufficient time margin.

Conversely, an approach based on an analysis in the configuration space, despite
its simplicity, has given the most promising results. More precisely, singularities can
be easily detected through checks in the joint space. For example, wrist singularities
of a 6R anthropomorphic manipulator like the one considered in §3.4, can be pre-
dicted by observing the fifth joint variable: A wrist alignment corresponds to a sin-
gular configuration and it is pointed out by condition q5 ' 0. Consequently, bounds
R− and R+ can be downscaled as follows[

R̃−, R̃+
]
=

{
[R−, ψR+] , if ṡ≥ 0
[ψR−, R+] , otherwise

, (3.48)

where ψ is given by

ψ =

{
sat
[
1+ |ṡ|vR

(
|q5|
q5
−1
)]

, if |q5|< q5

1, otherwise
. (3.49)

Function sat(·) saturates its output between 0 and 1.

3.4. Experimental results 81

Threshold q5 is chosen such to guarantee a reasonably anticipated reaction of
the system, while vR coincides with the maximum longitudinal speed that can be
admitted for the considered application: More incisive reactions are provided when ṡ
approaches vR. The new bounds, i.e., R̃− and R̃+, replace R− and R+, so that (3.42)
is replaced by

ṡ ∈
[
R̃−, R̃+

]
.

Similar detection methods can be used to manage other singular configurations of the
manipulator.

It is worth to mention that the bound-scaling system proposed in §2.4 should still
be used to manage possible problems which could occur even in uncritical zones be-
cause of, for example, reference signals characterized by too demanding longitudinal
speeds.

3.4 Experimental results

The experimental tests have been executed on a real Comau Smart-Six 6-1.4 manipu-
lator and have been fitted to compare the tracking performances of the TSS presented
in the above sections, i.e. the Jerk Constrained TSS (JC-TSS) with the performances
of its previous release proposed in [50], i.e. the Acceleration Constrained TSS (AC-
TSS). It is important to remark the main difference between the two systems: In the
JC-TSS is introduced the management of jerk constraints. The performances of these
systems have been successively compared with those of the commercial trajectory
generator, as shown in the last part of this section.

The trajectory planner of the commercial controller has been replaced with a
novel reference generator equipped with one of the two TSSs. Conversely, joint mo-
tors are still driven with the control loops of the commercial controller. The trajectory
updating time is equal to 2 ·10−3 s.

The first test sets have been concerned the execution of a horizontal linear trajec-
tory from pA = [0.25 0.83 1.095]T to pB = [−0.25 0.83 1.095]T , which passes close
to a wrist singularity located at pT = [0 0.83 1.077]T and that, consequently, it could

82 Chapter 3. Trajectory scaling systems in the operational space

Table 3.2: Kinematic limits that have been used for the experiments. Jerk bounds only apply
to the JC-TSS.

q̇ [−10−10−10−7.5−10−9]T

q̇ [10 10 10 7.5 10 9]T

q̈ [−100−100−100−100−100−100]T

q̈ [100 100 100 100 100 100]T
...q [−4000−4000−4000−4000−4000−4000]T
...
q [4000 4000 4000 4000 4000 4000]T

vT [−0.4−0.4−0.4−10−10−10]T

vT [0.4 0.4 0.4 10 10 10]T

aT [−5−5−5−100−100−100]T

aT [5 5 5 100 100 100]T

j
T

[−400−400−400−1000−1000−1000]T

jT [400 400 400 1000 1000 1000]T

require unfeasible velocities for joints 4 and 6. The tool frame orientation is kept con-
stant and, by assuming the RPY notation, it is posed equal to ΦΦΦT,0 = [π/2 0 π/2]T rad.

The nominal LTL is given by a step signal defined as follows

sd(t) :=

{
0 m t = 0
s f m t > 0

,

ṡd(t) = 0 m s−1, and s̈d(t) = 0 m s−2, where s f = 0.5 m is equal to the path length.
The TSSs react to the nominal LTL by generating smooth and minimum-time profiles
which are compatible with user-defined limits. The upper and lower bounds, defined
in (3.9)–(3.14), are computed by assuming the values defined in Table 3.2, while
the limits for the constraints along the path, defined in (3.15)–(3.17), are evaluated
by imposing ṡ = −0.4 m s−1, ṡ = 0.4 m s−1, s̈ = −15 m s−2, s̈ = 15 m s−2, ...

s =

−1000 m s−3,
...
s = 1000 m s−3. For the AC-TSS, obviously, jerk constraints have not

been applied.

As explained in §3.2, the assigned bounds in the joint and Cartesian spaces are on-
line converted into equivalent limits for the LTL through (3.42)–(3.44) and Table 3.1.

3.4. Experimental results 83

0 0.4 0.8 1.2 1.6
t (s)

0

0.2

0.3

0.4

0.5

0.1

s
 (

m
)

0

0.2

0.3

0.4

0.1

0

2

4

-2

-6

-4

a

b

s
 (

m
 s

-1
)

.

s
 (

m
 s

-2
)

..

c

sd

s

s
.

s
..

R

_
R

+

S

_ S
+

Figure 3.2: Outputs of the AC-TSS compared with the equivalent longitudinal bounds: (a)
Longitudinal time-law s(t); (b) Longitudinal velocity ṡ(t); (c) Longitudinal acceleration s̈(t).
Dash-dotted lines point out minor constraints violations.

The R− bound has been imposed equal to 0 in order to avoid backward movements.
The output of the AC-TSS is shown in Fig. 3.2. Since transients are minimum-time,
the acceleration suddenly assumes its maximum value and the velocity increases until
its upper limits is reached. During this phase the motion is essentially limited by the
constraints in the operational space. Fig. 3.3 shows the same transient achieved with
the JC-TSS. The motion is still minimum-time and the cruising speed is reached with
a bang-zero-bang jerk signal. Transient time is evidently longer due to the imposed
continuity on the acceleration.

In the vicinity of the singular point, bounds on joint velocities and accelerations
become dominant and the longitudinal speed is reduced in order to maintain the fea-
sibility. Figs. 3.2 and 3.3 make it possible to appreciate the different behaviors of the
two scaling systems. In particular, while the AC-TSS shows an evident chattering on
the acceleration signal (highlighted with dash dotted circles in Fig. 3.2c), the JC-TSS
admits much smoother transients. Fig. 3.3 is also useful to understand the importance

84 Chapter 3. Trajectory scaling systems in the operational space

0

0.2

0.3

0.4

0.5

0.1

s
 (

m
)

0

0.2

0.3

0.4

0.1

0

2

4

-2

-6

-4

s
 (

m
 s

-1
)

.

s
 (

m
 s

-2
)

..

0

40

80

-40

-80

s
 (

m
 s

-3
)

..
.

0 0.4 0.8 1.2 1.6
t (s)

a

b

d

sd

s

S
+

S

_

s
.

U
+

U

_

s
..

R
+

R

_
R

+~

s
...

c

Figure 3.3: Outputs of the JC-TSS compared with the equivalent longitudinal bounds: (a)
Longitudinal time-law s(t); (b) Longitudinal velocity ṡ(t); (c) Longitudinal acceleration s̈(t);
(d) Longitudinal jerk

...
s (t).

of the downscaling action on R+, obtained by means of (3.48) and (3.49) and by as-
suming vR = 0.4 m s−1 and q5 = 0.1 rad. The JC-TSS, indeed, owing to the continuity
on the acceleration signal, normally reacts less promptly than the AC-TSS to sudden
changes of the velocity limits and, consequently, constraints’ violations could occur
more easily. Equation (3.48) anticipates critical situations by reducing in advance up-
per bound R+. It is worth to mention that also the AC-TSS could benefit from the use
of the same downscaling strategy since, as shown in Fig. 3.2b, it can be subject as well
to minor constraint violations. The fulfillment of the equivalent constraints implies,
it turn, that (3.9)–(3.14) are satisfied. Fig. 3.4 compares the resulting joint velocities,
accelerations, and jerks for joints 4 and 6, i.e. the most solicited joints, with the corre-

3.4. Experimental results 85

0

-4

4

8

-8

q6 (ms-1)
.

q4 (ms-1)
.

a

q4

._

q4

.
_

q6

._

q6

.
_

q6 (ms-2)
..

0

-40

40

80

-80
q4 (ms-2)
..

c

q4

.._

q4

..
_

q6

.._

q6

..
_

AC-TSS

JC-TSS

AC-TSS

JC-TSS

AC-TSS

JC-TSS

AC-TSS

JC-TSS

0 0.4 0.8 1.2 1.6
t (s)

0

2

4

-2

-4

x 103

q6 (ms-3)
...

q4 (ms-3)
... fe

q4

..._

q4

...
_

q6

..._

q6

...
_JC-TSS JC-TSS

0 0.4 0.8 1.2 1.6
t (s)

d

b

Figure 3.4: Joint reference signals generated by the AC-TSS and by the JC-TSS for joints 4
and 6: (a) and (b) Joint velocities; (c) and (d) Joint accelerations; (e) and (f) Joint jerks.

0 0.05 0.1 0.15 0.2 0.25-0.05-0.1-0.15-0.2-0.25

x (m)

0

5

10

15

|e
z|
 (

m
)

x 10-4

AC-TSS

JC-TSS

Figure 3.5: Trajectory tracking errors along the x axis.

sponding user defined bounds. Both scaling systems generate references which fulfill
the assigned constraints, even if minor violations can be detected for the AC-TSS:
They are caused by the above mentioned violations of the equivalent bounds. More-
over, the AC-TSS produces an evident chattering on the acceleration signal which
can be potentially troublesome depending on the characteristics of the manipulator
controller.

Robust comparisons between the two TSSs can be achieved by considering the

86 Chapter 3. Trajectory scaling systems in the operational space

Table 3.3: Statistics on trajectory tracking errors.

AC-TSS JC-TSS

ez,max [m] 1.44 ·10−3 1.10 ·10−3

E [|ez|] [m] 3.20 ·10−4 3.01 ·10−4

var(ez) [m2] 13.14 ·10−8 9.61 ·10−8

ez,rms [m] 4.84 ·10−4 4.32 ·10−4∫
T |ez| [m] 2.86 ·10−1 2.69 ·10−1

0 0.4 0.8 1.2 1.6
t (s)

2

0

4

8

-4

-8

0

4

8

-4

-8

a

b

a
T

1
 (

m
 s

-2
)

~
a
T

1
 (

m
 s

-2
)

~

JC-TSS

AC-TSS

Figure 3.6: Accelerations measured along the x axis. During the trajectory scaling phase, the
AC-TSS excites self-oscillations at a frequency close to 14 Hz (see the area surrounded by
the dash-dotted lines).

trajectory tracking errors in the operational space. To this purpose, the Cartesian ref-
erence signal has been compared with the end-effector position derived from the joint
encoders through the direct kinematic procedure. Fig. 3.5 shows the tracking errors
for the z axis measured along the direction of motion, i.e. the x axis, while tracking er-
rors along the x and the y axes have not been reported being negligible. The two TSSs
have similar performances at the beginning and at the end of each trajectory, while
differences become significant in the vicinity of the singularity: The smoother ac-
celerations, which characterize the JC-TSS transients, guarantee better control loops
performances and, in turn, tracking errors of reduced amplitude. The numerical com-
parisons proposed in Table 3.3 further confirm that smaller tracking errors can be

3.4. Experimental results 87

achieved by means of the JC-TSS.

In addition, the solicitations acting on the payload have been verified by means
of a further experiment. The end-effector of the manipulator has been equipped with
an accelerometer in order to measure the structural vibrations. Again, solicitations
along the y and the z axes are negligible, so that they have not been reported. From
Fig. 3.6 it is possible to evince that differences between the two TSSs are generally
minimal, but they become evident close to the singularity. In particular, during the
trajectory scaling phase the AC-TSS, differently from the JC-TSS, excites oscillations
at a frequency which is close to 14 Hz.

singular point

d1 d2

minimum distance

feasible trajectories scanning

direction

scanning

direction

trajectories

Figure 3.7: Scanning procedure: The singular point is approached from several directions by
means of parallel trajectories. For each direction, minimum distance di corresponding to the
last feasible segment is stored.

The last set of experiments has been conceived to verify the minimum distance
from the singular point that can be reached with a feasible trajectory. Several ap-
proaching directions have been considered, all of them lying in the xz-plane with
y = 0.83 m. The scanning procedure is schematically reported in Fig. 3.7. A set of
parallel straight lines have been planned with the same longitudinal velocity and with
Cartesian distance between two of them equal to 1 · 10−3 m. From each direction,
the scanning procedure has been stopped when the feasibility has been lost and it
has been stored the minimum distance from pT . The experiment has been repeated
by adopting the planner of commercial controller, the AC-TSS, and the JC-TSS. Not
only, all tests have also been repeated for different longitudinal speeds. Fig. 3.8, that
collect the stored information, summarizes the achieved results. The use of any of the

88 Chapter 3. Trajectory scaling systems in the operational space

0 0.04-0.04 0 0.04-0.04
x (m) x (m)

m = 1

m = 0

m = -0.5

m = 2

1.14

1.10

1.06

1.02

1.10

1.06

z
 (

m
)

z
 (

m
)

a b

c d

1

2

3

1
2

3

1

2

3

1 2

3

Figure 3.8: Minimum distance points from singularity achieved by executing linear segments
and for different slopes m. Points have been obtained (1) without any TSS, (2) with the
JC-TSS, and (3) with the AC-TSS. Experiments refer to different longitudinal speeds: (a)
0.4 m s−1; (b) 0.3 m s−1; (c) 0.2 m s−1; (d) 0.1 m s−1.

two TSSs evidently permits closer approaches to the singularity. Improvements are
especially evident at the highest speeds. Notice that the AC-TSS, owing to the dis-
continuity of its acceleration signal, reacts more promptly to critical configurations,
so that feasibility is even preserved in areas that cannot be reached with the aid of
the JC-TSS but, as depicted in Figs. 3.5 and 3.6, it solicits oscillatory modes that
smoother trajectories neglect.

The last aspect, that has been considered for the compared evaluation of both
TSSs, has been concerned in the estimation of planners’ computational burdens that
have been measured on a RTAI [30] based PC equipped with an Intel Core2 Duo
E8400 @ 3.00 GHz processor. The execution time of the AC-TSS is in the range
of between 7 · 10−6 s and 142 · 10−6 s with an average computational time equal to

3.5. Efficient evaluation of J′T (s) and J′′T (s, ṡ) 89

35 ·10−6 s. Conversely, the execution time of the JC-TSS is in the range of between
11 ·10−6 s and 153 ·10−6 s with an average computational time equal to 49 ·10−6 s.
The JC-TSS, since it also constrains the jerk signal, is characterized by greater com-
putational burdens. Despite this drawback, the JC-TSS, and even more so the AC-
TSS, is totally compatible with real-time implementation.

3.5 Efficient evaluation of J′T (s) and J′′T (s, ṡ)

Some preliminary considerations are instrumental for the synthesis of the Jacobian
derivatives. For a manipulator whose frames are assigned according to the modi-
fied Denavit-Hartenberg procedure, the Jacobian matrix associated to tool frame T –
which is located on the Nth link and, consequently, is rigidly connected to frame N –
has the following structure

JT =

[
JvT

JωT

]
=

[
jv1
T jv2

T · · · jvN
T

jω1
T jω2

T · · · jωN
T

]
,

where (k = 1,2, . . . ,N)

jvk
T =

{
ẑk prismatic joint
ẑk× [pT −pk] revolute joint

, (3.50)

jωk
T =

{
0 prismatic joint
ẑk revolute joint

, (3.51)

and where pT and pk are respectively the positions of the tool frame and of the kth
frame w.r.t. frame 0. ẑk is the ẑ unit vector of frame k, described w.r.t. frame 0 and
can be evaluated as follows: ẑk =

0
kRẑ∗, where ẑ∗ = [0 0 1]T .

Analogously, the jacobian matrix of the generic i-th frame has the following struc-
ture

Ji :=

[
Jvi

Jωi

]
=

[
jv1
i jv2

i · · · jvi
i 0 · · · 0

jω1
i jω2

i · · · jωi
i 0 · · · 0

]
,

where (k = 1,2, . . . , i)

jvk
i =

{
ẑk prismatic joint
ẑk× [pi−pk] revolute joint

, (3.52)

90 Chapter 3. Trajectory scaling systems in the operational space

jωk
i =

{
0 prismatic joint
ẑk revolute joint

. (3.53)

Evidently, by comparing (3.51) with (3.53) it is immediately possible to conclude
that, for any element jωk

i which is different from zero, it holds jωk
i = jωk

T . Conversely,
the equality jvk

i = jvk
T , still considering elements jvk

i which are different from zero, only
holds, according to (3.50) and (3.52), for prismatic joints.

Similar expressions can also be devised for the evaluation of the Jacobian deriva-
tives. For example, J̇T has the following structure

J̇T :=

[
J̇vT

J̇ωT

]
=

[
j̇v1
T j̇v2

T · · · j̇vN
T

j̇ω1
T j̇ω2

T · · · j̇ωN
T

]
,

where (k = 1,2, . . . ,N)

j̇vk
T =

{
˙̂zk prismatic joint
˙̂zk× [pT −pk]+ ẑk× [vT −vk] revolute joint

, (3.54)

j̇ωk
T =

{
0 prismatic joint
˙̂zk revolute joint

, (3.55)

while ˙̂zk can be evaluated in the following manner

˙̂zk =
d
dt

(0
kRẑ∗

)
=

d
dt

(0
kR
)

ẑ∗ = S(ωωωk)
0
kRẑ∗ = ωωωk× ẑk. (3.56)

The analogous matrix J̇i, for the generic i-th frame, admits the following, similar
representation

J̇i :=

[
J̇vi

J̇ωi

]
=

[
j̇v1
i j̇v2

i · · · j̇vi
i 0 · · · 0

j̇ω1
i j̇ω2

i · · · j̇ωi
i 0 · · · 0

]
,

where (k = 1,2, . . . , i)

j̇vk
i =

{
˙̂zk prismatic joint
˙̂zk× [pi−pk]+ ẑk× [vi−vk] revolute joint

,

3.5. Efficient evaluation of J′T (s) and J′′T (s, ṡ) 91

j̇ωk
i =

{
0 prismatic joint
˙̂zk revolute joint

.

The considerations, that were made for the Jacobian matrix, also apply to its first
derivative, so that it is always possible to assume j̇ωk

i = j̇ωk
T , while j̇vk

i = j̇vk
T is only true

for prismatic joints.
Finally, J̈T can be evaluated, by extending the abovementioned procedure, as

follows

J̈T :=

[
J̈vT

J̈ωT

]
=

[
j̈v1
T j̈v2

T · · · j̈vN
T

j̈ω1
T j̈ω2

T · · · j̈ωN
T

]
,

where (k = 1,2, . . . ,N)

j̈vk
T =

{
˙̂zk prismatic joint
¨̂zk× [pT −pk]+2 ˙̂zk× [vT −vk]+ ẑk× [aT −ak] revolute joint

,

j̈ωk
T =

{
0 prismatic joint
¨̂zk revolute joint

,

and, analogously, J̈i has the following representation

J̈i :=

[
J̈vi

J̈ωi

]
=

[
j̈v1
i j̈v2

i · · · j̈vi
i 0 · · · 0

j̈ω1
i j̈ω2

i · · · j̈ωi
i 0 · · · 0

]
,

where (k = 1,2, . . . , i)

j̈vk
i =

{
˙̂zk prismatic joint
¨̂zk× [pi−pk]+2 ˙̂zk× [vi−vk]+ ẑk× [ai−ak] revolute joint

, (3.57)

j̈ωk
i =

{
0 prismatic joint
¨̂zk revolute joint

. (3.58)

The term ¨̂zk can be evaluated, by using the chain differentiation rule, from (3.56), in
the following manner

¨̂zk = αααk× ẑk +ωωωk× ˙̂zk = αααk× ẑk +ωωωk× (ωωωk× ẑk) . (3.59)

Again, j̈ωk
i = j̈ωk

T , while j̈vk
i = j̈vk

T only applies for prismatic joints.

92 Chapter 3. Trajectory scaling systems in the operational space

The use of the path-velocity decomposition approach requires alternative tech-
niques for the evaluation of the Jacobian matrix and of its first two time derivatives:
Those matrices must to be defined in function of the curvilinear abscissa s. Since
those matrices must be often evaluated in real-time, the devised approach must be ef-
ficient. An efficient solution for the evaluation of JT (s) and J̇T (s, ṡ) has been original
proposed in [50], so that it is briefly summarized in the following. After, the pro-
cedure is extended for the evaluation of the second order derivative of the Jacobian
matrix, i.e. J̈T (s, ṡ, s̈).

The terms of JT (s) can be immediately derived from (3.50) and (3.51), so that for
prismatic joints it is possible to assume

jωk
T (s) := 0 , (3.60)

jvk
T (s) := ẑk(s) , (3.61)

while, for revolute joints, it holds

jωk
T (s) := ẑk(s) , (3.62)

jvk
T (s) := jωk

T (s)×∆k(s) , (3.63)

where ẑk(s) := 0
kR(s) ẑ∗ and

∆k(s) := pT (s)−pk(s) . (3.64)

The synthesis of the terms of J̇T (s, ṡ) has required some more steps (details are
omitted for conciseness and, here, it is reported its main results). It has been shown
in [50] that for revolute joints the following equation apply

˙̂zk = ṡ j′T
ωk(s) = ṡ[Jωk(s)a(s)× jωk

T (s)] , (3.65)

while for prismatic joints it is possible to assert

˙̂zk = ṡ j′T
vk(s) = ṡ[Jωk(s)a(s)× jvk

T (s)] . (3.66)

The equations of j̇ωk
T (s, ṡ) and j̇vk

T (s, ṡ) are obtained from (3.54) and (3.55) by
considering substitutions (3.30), (3.31), and (3.64)–(3.66). They can be represented

3.5. Efficient evaluation of J′T (s) and J′′T (s, ṡ) 93

as follows

j̇ωk
T (s, ṡ) := ṡ j′T

ωk(s) , (3.67)

j̇vk
T (s, ṡ) := ṡ j′T

vk(s) , (3.68)

where, for prismatic joints,

j′T
ωk(s) := 0 , (3.69)

j′T
vk(s) := Jωk(s)a(s)× jvk

T (s) , (3.70)

while, for revolute joints,

j′T
ωk(s) := Jωk(s)a(s)× jωk

T (s) , (3.71)

j′T
vk(s) := j′T

ωk(s)×∆k(s)+ jωk
T (s)× [JvT (s)−Jvk(s)]a(s) . (3.72)

It is important to mention that, because of the structure of (3.67) and (3.68), the
derivative of the Jacobian matrix can always be posed in the following form

J̇T (s, ṡ) = J′T (s) ṡ , (3.73)

with

J′T (s) :=

[
J′vT

(s)

J′ωT
(s)

]
=

[
j′Tv1(s) j′Tv2(s) · · · j′TvN (s)

j′Tω1(s) j′Tω2(s) · · · j′TωN (s)

]
.

The same property evidently applies for the Jacobians of the intermediate frames, so
that it is licit to assume for any generic frame i that

J̇vi(s, ṡ) = J′vi
(s) ṡ , (3.74)

J̇ωi(s, ṡ) = J′ωi
(s) ṡ . (3.75)

The trajectory scaling method proposed in §3.1 requires also the knowledge of
J̈T (s, ṡ, s̈). The starting point is represented by (3.57) and (3.58). According to (3.58),
for prismatic joint j̈ωk

T = 0, while for revolute joints j̈ωk
T = ¨̂zk.

From (3.18) it is possible to evince that

ωωωk = Jωk q̇ . (3.76)

94 Chapter 3. Trajectory scaling systems in the operational space

Its differentiation leads to the following expression

αααk = J̇ωk q̇+Jωk q̈ . (3.77)

By substituting (3.76) and (3.77) into (3.59) it is possible to obtain

¨̂zk = (J̇ωk q̇+Jωk q̈)× ẑk +Jωk q̇× (Jωk q̇× ẑk) . (3.78)

After the analysis of the terms in (3.78), some of them have already been expressed
in function of s, ṡ and s̈: q̈(s, ṡ, s̈) is obtained in (3.32), J̇ωk(s, ṡ) is given by (3.75),
while Jωk(s) is a matrix composed by terms ẑk(s) that, in turn, are given by (3.62).
The abovementioned substitutions make it possible to rewrite (3.78) as follows

¨̂zk(s, ṡ, s̈) =
{
[J′ωk

(s)a(s)+Jωk(s)b(s)]× jωk
T (s)

+Jωk(s)a(s)× [Jωk(s)a(s)× jωk
T (s)]

}
ṡ2 +Jωk(s)a(s)× jωk

T (s) s̈ ,

and, consequently, for revolute joints the generic term j̈ωk
T is given by

j̈ωk
T (s, ṡ, s̈) := ¨̂zk(s, ṡ, s̈) = j′′T

ωk(s) ṡ2 + j′T
ωk(s) s̈ , (3.79)

where j′Tωk(s) is defined according to (3.67), while

j′′T
ωk(s) := [J′ωk

(s)a(s)+Jωk(s)b(s)]× jωk
T (s)+Jωk(s)a(s)× j′T

ωk(s) . (3.80)

The evaluation of terms j̈vk
T (s, ṡ, s̈) requires a similar procedure. For prismatic joints,

because of (3.57), term j̈vk
T (s, ṡ, s̈) still coincides with ¨̂zk, so that it can be derived from

(3.78) by applying the same substitutions. The sole difference is represented by term
ẑk that, according to (3.61), is now given by jvk

T . Consequently it is possible to assert

j̈vk
T (s, ṡ, s̈) =

{
[J′ωk

(s)a(s)+Jωk(s)b(s)]× jvk
T (s)

+Jωk(s)a(s)× [Jωk(s)a(s)× jvk
T (s)]

}
ṡ2 +Jωk(s)a(s)× jvk

T (s) s̈

= j′′T
vk(s) ṡ2 + j′T

vk(s) s̈ ,

3.5. Efficient evaluation of J′T (s) and J′′T (s, ṡ) 95

where j′Tvk(s) is given by (3.70), while

j′′T
vk(s) := [J′ωk

(s)a(s)+Jωk(s)b(s)]× jvk
T (s)+Jωk(s)a(s)× j′T

vk(s) . (3.81)

Equation (3.57) is also the starting point for the evaluation of terms j̈vk
T (s, ṡ, s̈) for

revolute joints. The linear velocity and acceleration of any frame k, including tool
frame T , are given by

vk = Jvk q̇ ,

ak = J̇vk q̇+Jvk q̈ ,

so that the second equation of (3.57) can be rewritten as follows

j̈vk
T = ¨̂zk× [pT −pk]+2 ˙̂zk× [JvT −Jvk] q̇+ ẑk× [(J̇vT − J̇vk) q̇+(JvT −Jvk) q̈]

The analytic expression of j̈vk
T (s, ṡ, s̈) is obtained by applying the following substi-

tutions: ¨̂zk(s, ṡ, s̈) is given by (3.79), pT (s)−pk(s) coincides with (3.64), ˙̂zk(s, ṡ) is
given by (3.65), q̇(s, ṡ) is given by (3.30), q̈(s, ṡ, s̈) is given by (3.32), and, finally, J̇vk

and J̇vT can be evaluated by means of (3.74). As a consequence, j̈vk
T (s, ṡ, s̈) assumes

the following expression

j̈vk
T (s, ṡ, s̈) =

[
j′′T

ωk(s) ṡ2 + j′T
ωk(s) s̈

]
×∆k(s)+2 j′T

ωk(s)× [JvT (s)−Jvk(s)]a(s) ṡ2

+ jωk
T (s)×

{
[J′vT

(s)−J′vk
(s)]a(s) ṡ2 +[JvT (s)−Jvk(s)] [a(s) s̈+b(s) ṡ2]

}
= j′′T

vk(s) ṡ2 + j′T
vk(s)s̈ .

where j′Tvk(s) is given by (3.72), while

j′′T
vk(s) = j′′T

ωk(s)×∆k(s)+2 j′T
ωk(s)× [JvT (s)−Jvk(s)]a(s)

+ jωk
T (s)×

{
[J′vT

(s)−J′vk
(s)]a(s)+ [JvT (s)−Jvk(s)]b(s)

}
. (3.82)

It is thus clear that, independently from the type of joint, terms j̈vk
T (s, ṡ, s̈) and

j̈ωk
T (s, ṡ, s̈) always admit the following structures

j̈vk
T (s, ṡ, s̈) = j′′T

vk(s) ṡ2 + j′T
vk(s) s̈ , (3.83)

96 Chapter 3. Trajectory scaling systems in the operational space

Table 3.4: Terms that are required for the evaluation of the second time derivative of the
Jacobian matrix.

j′′Tvk(s) j′Tvk(s) j′′Tωk(s) j′Tωk(s)

prismatic (3.81) (3.70) 0 0
revolute (3.82) (3.72) (3.80) (3.71)

j̈ωk
T (s, ṡ, s̈) = j′′T

ωk(s) ṡ2 + j′T
ωk(s) s̈ , (3.84)

whose terms are defined according to Table 3.4 . Consequently, the second derivative
of the Jacobian matrix can be formally represented as follows

J̈T (s, ṡ, s̈) = J′′T (s) ṡ2 +J′T (s) s̈ . (3.85)

4
Singularity avoidance system: Online orientation

modification

As stated in Chapter 3, planning trajectories in the operational space could easily re-
sult in exceeding the physical limits of electromechanical systems especially when
trajectories pass close to singular points. By considering trajectory planning prob-
lems for non-redundant manipulators, online reaction to these critical situations is
a challenging problem that has only been partially dealt with in robotic literature.
As shown in Chapter 3, the path-velocity decomposition paradigm [34] could be an
appropriate scheme to deal with kinematic singularities. It has been previously men-
tioned that this result can be achieved through two different planning strategies: By
slowing down the longitudinal velocity of the robot or by introducing slight changes
to the tool orientation in order to preserve the execution time of the task. The former
methodology has been widely discussed in Chapter 3, while the latter is presented in
this chapter.

The main goal of the real-time trajectory planner proposed here is to preserve
the user-defined time-law and Cartesian path: If an assigned trajectory passes close
to singular configurations, small changes to the tool orientation can be tolerated in
order to maintain joint velocities and accelerations confined within the robot physical
limits. The original trajectory is restored as soon as the kinematic conditions do not
endanger trajectory feasibility.

98 Chapter 4. Singularity avoidance system: Online orientation modification

While many industrial processes require the preservation of both paths and time-
laws, robotic literature does not propose a wide solution spectrum to the aforemen-
tioned problem. Several robotic application fields exist where the planned time-law is
mandatory for proper task execution: For example automatic painting [52,53], gluing
or welding [54], in which alterations of the motion longitudinal speed would cause
task quality losses. For those applications, the problem is dealt with, when possible,
by means of offline constrained optimization algorithms. For example, for painting
applications, trajectories can be planned by considering performance indexes like
paint coating uniformity [55], task execution time [56], or energy consumption [57].

In real-time environments, trajectory feasibility cannot be checked in advance, so
that appropriate systems are required for the online handling of constraints. For this
purpose, it has been noticed that for many industrial applications, small changes to
the tool orientation minimally affect the quality of the final result. For example, pa-
pers [58,59] have shown that paint coating quality is mainly affected by longitudinal
velocity and by accurate Cartesian-path tracking, while small orientation errors (±20
deg) only slightly influence the final result. Even larger errors can be admitted in case
of thermally sprayed coatings [60]. This is the underlying assumption adopted in [61]
for the solution of the feasibility problem: Constraints on joint velocities and accel-
erations are fulfilled by introducing minimal changes to the tool orientation. Such
changes are evaluated through a non-linear programming algorithm which is executed
at each sample time. The method is explicitly suited for reduced speed applications
since, on principle, during the approach to singular points it only permits minimal
changes to the tool-frame orientation: When critical regions are finally reached, more
significant actions must be taken for singularity avoidance, which could alone lead
to constraint violations. Recent approaches deal with the real-time orientation mod-
ification problem by solving an optimization problem at each sample time [62]. The
trajectory updating time has been set equal to 10 · 10−3 s, i.e. it is much higher than
the usual sampling times of control systems.

The Singularity Avoidance System (SAS) described in this chapter handles the
same problem considered in [61] and in [62], but the proposed solution is conceived
to work even in conjunction with high speeds in the operational space. This result

4.1. Problem definition and proposed solution 99

is achieved by ensuring anticipated actions with respect to singularities. Roughly
speaking, as soon as a singular point is detected, the tool-frame orientation is prop-
erly modified by fulfilling the given constraints, so that close to critical points, only
minor adaptations are required. The following requirements have been assumed for
the SAS synthesis: Given a provisional and possibly unfeasible trajectory defined in
the operational space and passing close to a singular point, the SAS must smoothly
introduce, when necessary and in real-time, small variations to the tool-frame orien-
tation in order to guarantee feasible joint velocities and accelerations and preserve
the assigned Cartesian-path and longitudinal speed. According to the premises, only
minor orientation changes are admitted.

Following the definition of the problem and the explanation of the proposed so-
lution (§4.1), the blocks that constitute the SAS are described in §4.2, §4.3, and §4.4.
Afterwards, the proof of the effectiveness of the proposed method is reported in §4.5
in a simulation environment and in §4.6 in experimental tests based on the Comau
Smart-Six manipulator.

4.1 Problem definition and proposed solution

Trajectories in the operational space are typically specified by defining proper time
functions which describe position and orientation of tool frame T . For example, they
can be expressed through the following signals described w.r.t. an inertial frame (typ-
ically represented by manipulator frame 0)

0
T R(t) Rotation matrix: orientation of frame T ;
pT (t) Position of frame T ;
ωωωT (t) Angular velocity of frame T ;
vT (t) Linear velocity of frame T ;
αααT (t) Angular acceleration of frame T ;
aT (t) Linear acceleration of frame T .

According to the scheme shown in Fig. 4.1, the Cartesian planner is normally fol-
lowed by an inverse kinematics block which returns an equivalent trajectory in the

100 Chapter 4. Singularity avoidance system: Online orientation modification

Nominal

trajectory

Singularity

detector

Orientation

synthesizer

Orientation

modifier

Nonlinear

filtering

system

Equivalent

bound

evaluator

Inverse

kinematics

TR(t)

wT (t)

aT (t)

0

pT (t), vT (t), aT (t)

TR(t), wT (t), aT (t)
0~ ~ ~

FT,T (t)

FT,T (t)

FT,T (t)

^

^

^

.

..

FT,T (t)

FT,T (t)

FT,T (t)

.

..
~

~

~

F+, F-, F+, F-.

q(t)

q(t)

q(t)

.

..

Singularity

avoidance

system

Figure 4.1: A schematic representation of the singularity avoidance system.

configuration space that, in turn, is used to drive the joint actuators.

When trajectories are planned in real time, it is not possible to guarantee in ad-
vance their feasibility w.r.t. the physical limits of the system. In particular, joint ve-
locities could exceed the given bounds or available motor torques could be insuffi-
cient to guarantee the required joint accelerations. If q ∈ RN is the vector of the joint
generalized variables, the following requirements must be fulfilled:

q̇≤ q̇≤ q̇, (4.1)

q̈≤ q̈≤ q̈, (4.2)

where q̇, q̈ ∈ (R−)N , and q̇, q̈ ∈ (R+)N represent proper bounds for joint velocities
and accelerations.

In order to avoid possible feasibility issues, the standard planning scheme is mod-
ified according to Fig. 4.1. In particular, while the position signals are sent unchanged
to the inverse kinematics block, the orientation signals are preprocessed by the Sin-
gularity Avoidance System (SAS) which slightly modifies the tool frame orientation
in order to preserve feasibility.

The first block of the SAS is the Singularity Detector (SD). It detects possible
singular configurations along the nominal trajectory and raises an alarm in order to

4.1. Problem definition and proposed solution 101

activate the SAS. Such alarm is then read by the Orientation Modifier (OM), which
specifies, through an auxiliary frame T̂ , a new candidate orientation for the tool frame
in order to skip the singularity. The reciprocal orientation between nominal reference
frame T and T̂ is described by means of vector ΦΦΦT̂ ,T := [α β γ]T , which corresponds
to a Roll-Pitch-Yaw (RPY) minimal notation. Since only minor trajectory modifica-
tions can be admitted, ΦΦΦT̂ ,T is generally close to zero. The SD and the OM blocks are
described in §4.2.

The trajectory of frame T̂ can still be unfeasible. In fact, the avoidance of sin-
gular points, by itself, is not sufficient to guarantee that the modified trajectory is
feasible w.r.t. (4.1) and (4.2). On the contrary, any trajectory change that is made
in configurations which are close to singularities could potentially require additional
joint velocities and accelerations, thus worsening an already critical situation. For
this reason, the OM block is followed by a Nonlinear Filtering System (NFS) which
constrains the dynamics of ΦΦΦT̂ ,T between proper bounds. The NSF is made by three
independent scalar filters, each of them acting on a single component of ΦΦΦT̂ ,T . The
NFS returns a signal ΦΦΦT̃ ,T which represents the best possible approximation of ΦΦΦT̂ ,T

satisfying the following inequalities

Φ̇ΦΦ
− ≤ Φ̇ΦΦT̃ ,T ≤ Φ̇ΦΦ

+
, (4.3)

Φ̈ΦΦ
− ≤ Φ̈ΦΦT̃ ,T ≤ Φ̈ΦΦ

+ (4.4)

where Φ̇ΦΦ
−
,Φ̈ΦΦ
− ∈ (R−)3 and Φ̇ΦΦ

+
,Φ̈ΦΦ

+ ∈ (R+)3 are proper limits that are devised by
the Equivalent Bound Evaluator (EBE) block starting from the actual constraints of
the actuators and from the manipulator status of motion. As shown in §4.4, if (4.3)
and (4.4) are satisfied, then (4.1) and (4.2) hold with certainty and the trajectory is
feasible. The internal structure of the NFS filters, since they must constrain velocities
and accelerations of the auxiliary frame ΦΦΦT̃ ,T , has been extensively described in [29].
Conversely, the filter proposed in Chapter 1 is able to constrain also the jerk signal
and, for the problem at hand, is oversized. In order to obtain lower computational
burden, the filter presented in [29] is the best choice.

The last block shown in Fig. 4.1, i.e. the Orientation Synthesizer (OS), returns
0
T̃

R(t), ωωω T̃ (t), and ααα T̃ (t) of the modified trajectory, which are obtained, according to

102 Chapter 4. Singularity avoidance system: Online orientation modification

the procedure described in §4.3, from 0
T R(t), ωωωT (t), and αααT (t) and from the knowl-

edge of ΦΦΦT̃ ,T , Φ̇ΦΦT̃ ,T , and Φ̈ΦΦT̃ ,T .

4.2 Singularity Detector and Orientation Modifier blocks

As specified in §4.1, the SD block detects the insurgence of singular configurations
and raises an alarm that activates the OM block. As early anticipated, the determi-
nation of the alarm signal represents a crucial point because singular configurations
must be detected sufficiently in advance in order to have enough time to smoothly
modify the tool orientation.

Singular configurations depend on the manipulator pose, and can be detected
by analyzing the manipulability index. According to [63], the manipulability index
associated to q is defined as follows

j(q) =
σm(q)
σM(q)

∈ [0,1]

where σm(q) and σM(q) are, respectively, the minimum and the maximum singular
values associated to the Jacobian matrix of frame T . If j(q) becomes equal to zero,
the manipulator is in a singular configuration.

The alarm function exploits the reciprocal of the manipulability index

a(q) :=
1

j(q)
,

and its time derivative
b(q) :=

∣∣∣∣ d
dt

1
j(q)

∣∣∣∣ .
The typical shapes of a(q) and b(q), for a trajectory passing close to a singularity,
are shown in Fig. 4.2. Sudden changes of b(q) announce that a critical point is ap-
proaching then, closer to such point, b(q) goes to zero but a(q) raises, so that the
alarm signal can simply be given by the following logic function

SD(q) :=

{
true if [a(q)≥ a] or

[
b(q)≥ b

]
false otherwise

(4.5)

4.2. Singularity Detector and Orientation Modifier blocks 103

SD(q)
a(q)

b(q)

Figure 4.2: Signal a(q) (solid line) and b(q) (dotted line) that are used for the evaluation of
alarm signal SD(q) (dashed line).

where a and b represent appropriate thresholds.

Once the alarm has been raised, the OM block synthesizes the new candidate
orientation for the tool frame, which is expressed through an auxiliary frame T̂ . The
reciprocal orientation between nominal reference frame T and modified reference
frame T̂ is represented by means of an RPY minimal notation and it is given by

ΦΦΦT̂ ,T (q) := c(q) Φ̂ΦΦT̂ ,T (q) , (4.6)

where Φ̂ΦΦT̂ ,T (q) is a vector which fixes the “direction” of the reciprocal rotation be-
tween T and T̂ , while c(q) is a scalar which represents the amplitude of such rotation.
c(q) depends on longitudinal velocity vT and on the distance between end effector
and singular point: Larger rotations are admitted close to critical configurations and
for high speeds, according to the following function

c(q) := l(vT) a(q) , (4.7)

where

l(vT) := λ1 |vT |+λ2 (4.8)

is chosen such to guarantee that changes of the tool-frame orientation are increasingly
proportional to vT .

Vector Φ̂ΦΦT̂ ,T (q) is chosen by inspecting the surroundings of the nominal trajec-

104 Chapter 4. Singularity avoidance system: Online orientation modification

tory according to the following equation

Φ̂ΦΦT̂ ,T (q) = r
[α β γ]T∥∥∥[α β γ]T

∥∥∥ ,
where α,β ,γ ∈ {−1,0,1} and r = 1 · 10−3 rad. Practically, Φ̂ΦΦT̂ ,T (q) is chosen by
considering all possible permutations of α,β ,γ ∈ {−1,0,1} and by checking, for
each of them, the corresponding manipulability index: The value of Φ̂ΦΦT̂ ,T (q) which
admits the higher manipulability index is used in (4.6) for the determination of the
new tool-frame orientation.

4.3 The Orientation Synthesizer block

The OS is the SAS output block which combines the nominal trajectory with ΦΦΦT̃ ,T :=
[α β γ]T , Φ̇ΦΦT̃ ,T := [α̇ β̇ γ̇]T , and Φ̈ΦΦT̃ ,T := [α̈ β̈ γ̈]T , i.e. with the signals that are pro-
vided by the NFS and whose synthesis is discussed in next §4.4. Changes only affect
the tool frame orientation and, consequently, its angular velocity and acceleration
while, according to the premises, signals pT (t), vT (t), and aT (t) are left unchanged
in order to preserve the geometry of the Cartesian path.

The modified orientation of the tool frame can be evaluated according to the
following expression

0
T̃

R = 0
T R T

T̃ R(ΦΦΦT̃ ,T) ,

where T
T̃

R(ΦΦΦT̃ ,T) is the rotation matrix corresponding to minimal notation ΦΦΦT̃ ,T .
The relative angular velocity between frame T̃ and frame T can always be ex-

pressed as follows
T

ωωω T̃ ,T = T(ΦΦΦT̃ ,T)Φ̇ΦΦT̃ ,T , (4.9)

where T(ΦΦΦT̃ ,T) is a proper matrix which correlates angular velocities to Φ̇ΦΦT̃ ,T . The
structure of T(ΦΦΦT̃ ,T) depends on the minimal notation. For the RPY notation, it can
be easily proved that it is given by

T(ΦΦΦT̃ ,T) =

 1 0 sin(β)
0 cos(α) −sin(α)cos(β)
0 sin(α) cos(α)cos(β)

 . (4.10)

4.4. The Equivalent Bounds Evaluator block 105

In the following, the argument of T(·) will be omitted for conciseness.
Bearing in mind (4.9), it is immediately possible to derive the angular velocity of

frame T̃ by means of the following equation

ωωω T̃ = ωωωT +ωωω T̃ ,T = ωωωT + 0
T R T

ωωω T̃ ,T = ωωωT + 0
T RTΦ̇ΦΦT̃ ,T . (4.11)

The angular acceleration of T̃ can be evidently obtained by deriving (4.11), i.e.
according to the following expression

ααα T̃ = αααT + 0
T ṘTΦ̇ΦΦT̃ ,T + 0

T RṪΦ̇ΦΦT̃ ,T + 0
T RTΦ̈ΦΦT̃ ,T

= αααT +ωωωT × 0
T RTΦ̇ΦΦT̃ ,T + 0

T R
[
ṪΦ̇ΦΦT̃ ,T +TΦ̈ΦΦT̃ ,T

]
, (4.12)

where Φ̇ΦΦT̃ ,T := [α̇β̇ γ̇α̇ β̇ γ̇]T and

Ṫ :=

 0 0 cos(β)
−sin(α) −cos(α)cos(β) sin(α)sin(β)
cos(α) −sin(α)cos(β) −cos(α)sin(β)

 .
4.4 The Equivalent Bounds Evaluator block

As stated in §4.1, the SAS scheme requires that bounds q̇, q̈, q̇, and q̈ must be con-
verted into equivalent bounds on Φ̇ΦΦ

−
,Φ̈ΦΦ
−
,Φ̇ΦΦ

+, and Φ̈ΦΦ
+. Such conversion depends on

the current displacement of the tool frame and, more precisely, on its current posi-
tion, assumed to coincide with pT̃ = pT , and on its current orientation, assumed to be
given by 0

T̃
R. The solution of the inverse kinematic problem for 0

T̃
R and pT returns

the current value of q, which can be used for the evaluation of the Jacobian matrix JT̃

that, for this reason, from now on will be supposed to be known.
In non-singular configurations – remember that the proposed approach is used to

avoid such configurations – it is possible to write

q̇ = J−1
T̃

vT̃ ,

where vT̃ := [vT
T̃

ωωωT
T̃
]T represents the generalized velocity of T̃ . By partitioning J−1

T̃
into two sub-matrices such that

J−1
T̃

:=
[
J−1

vT̃
| J−1

ωT̃

]
, (4.13)

106 Chapter 4. Singularity avoidance system: Online orientation modification

it is possible to write
q̇ = J−1

vT̃
vT̃ +J−1

ωT̃
ωωω T̃ .

Velocity vT̃ coincides with vT , while ωωω T̃ is given by (4.11), so that constraint condi-
tion (4.1) can be rewritten as follows

q̇≤ J−1
vT̃

vT +J−1
ωT̃

[
ωωωT + 0

T RTΦ̇ΦΦT̃ ,T

]
≤ q̇ ,

or, analogously,
˙̃q
− ≤ J−1

ωT̃

0
T RTΦ̇ΦΦT̃ ,T ≤ ˙̃q

+
, (4.14)

where

˙̃q
−

:= q̇−J−1
T̃

vT , (4.15)

˙̃q
+

:= q̇−J−1
T̃

vT . (4.16)

Any feasible Φ̇ΦΦT̃ ,T must fulfill (4.14). All the terms in (4.15) and (4.16) are known:
q̇ and q̇ are defined by the users, J−1

T̃
is the inverse Jacobian of frame T̃ , vT is the

generalized velocity of frame T . In the same way, many of the terms in (4.14) are
known: J−1

ωT̃
derives from (4.13), 0

T R is the rotation matrix of frame T , and T is given
by (4.10).

The acceleration constraints can be similarly handled. It is well known that

aT̃ = J̇T̃ q̇+JT̃ q̈ ,

which can be solved for q̈, thus leading to

q̈ = J−1
T̃

[
aT̃ − J̇T̃ q̇

]
= J−1

T̃

[
aT̃ − J̇T̃ J−1

T̃
vT̃

]
. (4.17)

By using the partitioning scheme suggested in (4.13), it is possible to rewrite (4.17)
as follows

q̈ = J−1
vT̃

aT̃ +J−1
ωT̃

ααα T̃ −J−1
T̃

J̇T̃ J−1
T̃

vT̃ ,

which, in turn, can be written, because of (4.12) and since aT̃ = aT , as follows

q̈= J−1
vT̃

aT +J−1
ωT̃

{
αααT +ωωωT × 0

T RTΦ̇ΦΦT̃ ,T + 0
T R
[
ṪΦ̇ΦΦT̃ ,T +TΦ̈ΦΦT̃ ,T

]}
−J−1

T̃
J̇T̃ J−1

T̃
vT̃ .

(4.18)

4.4. The Equivalent Bounds Evaluator block 107

By substituting (4.18) into (4.2), after a few manipulations it is possible to obtain

¨̃q
− ≤ J−1

ωT̃

0
T RTΦ̈ΦΦT̃ ,T ≤ ¨̃q

+
, (4.19)

where

¨̃q
−

:= q̈−J−1
T̃

[
aT − J̇T̃ J−1

T̃
vT̃

]
−J−1

ωT̃

{
ωωωT × 0

T RTΦ̇ΦΦT̃ ,T + 0
T RṪΦ̇ΦΦT̃ ,T

}
,

¨̃q
+

:= q̈−J−1
T̃

[
aT − J̇T̃ J−1

T̃
vT̃

]
−J−1

ωT̃

{
ωωωT × 0

T RTΦ̇ΦΦT̃ ,T + 0
T RṪΦ̇ΦΦT̃ ,T

}
.

Vectors ¨̃q
−

and ¨̃q
+

can be evaluated from the knowledge of the nominal trajectory
and of the current values of ΦΦΦT̃ ,T and Φ̇ΦΦT̃ ,T . Evidently, any feasible Φ̈ΦΦT̃ ,T must fulfill
(4.19).

Equations (4.14) and (4.19) represent the starting point for converting the original
bounds on q̇ and on q̈ into equivalent bounds on Φ̇ΦΦT̃ ,T and on Φ̈ΦΦT̃ ,T . However, such
conversion is not straightforward since q and ΦΦΦT̃ ,T are dimensionally different. More
in details, (4.14) and (4.19) represent a set of 2N independent constraints on q̇ and on
q̈ that must be converted into 6 equivalent constraint equations on Φ̇ΦΦT̃ ,T and on Φ̈ΦΦT̃ ,T .
The conversion clearly admits some degrees of freedom that can be used to obtain the
best possible performances from the trajectory modification strategy. This is the rea-
son why the equivalent bounds are obtained by solving a Linear Programming (LP)
problem which returns a set of proper equivalent limits Φ̇ΦΦ

− := [α̇− β̇− γ̇−]T ,Φ̈ΦΦ
− :=

[α̈− β̈− γ̈−]T and Φ̇ΦΦ
+ := [α̇+ β̇+ γ̇+]T ,Φ̈ΦΦ

+ := [α̈+ β̈+ γ̈+]T for Φ̇ΦΦT̃ ,T and on Φ̈ΦΦT̃ ,T

which guarantee that (4.14) and (4.19) – and, in turn, (4.1) and (4.2) – are certainly
satisfied when (4.3) and (4.4) hold.

Available degrees of freedom can be used to improve the behavior of the SAS.
More precisely, its best performances can be obtained when bounds on Φ̇ΦΦT̃ ,T and
Φ̈ΦΦT̃ ,T are kept well open: In fact, this permits a good reactivity of the trajectory mod-
ifier which can rapidly react to critical situations.

By defining A := J−1
ωT̃

0
T RT and bearing in mind (4.14) and (4.19), it is possible

formulate the following semi-infinite minimax optimization problem

max
Φ̇ΦΦ

+
,Φ̈ΦΦ

+ ∈ (R+)3

Φ̇ΦΦ
−
,Φ̈ΦΦ
− ∈ (R−)3

min
i=1,...,6

{Γ+
i −Γ

−
i } (4.20)

108 Chapter 4. Singularity avoidance system: Online orientation modification

subject to

˙̃q
− ≤ AΦ̇ΦΦT̃ ,T ≤ ˙̃q

+ ∀Φ̇ΦΦT̃ ,T ∈ [Φ̇ΦΦ
−
,Φ̇ΦΦ

+
], (4.21)

¨̃q
− ≤ AΦ̈ΦΦT̃ ,T ≤ ¨̃q

+ ∀Φ̈ΦΦT̃ ,T ∈ [Φ̈ΦΦ
−
,Φ̈ΦΦ

+
], (4.22)

where Γ
+
i and Γ

−
i are the components of vectors ΓΓΓ

+ := [k α̇+ k β̇+ k γ̇+ α̈+ β̈+ γ̈+]T

and ΓΓΓ
− := [k α̇− k β̇− k γ̇− α̈− β̈− γ̈−]T , respectively, and k is used to correctly weight

the velocity and acceleration bounds. For the problem at hand, in particular, k = 10
guarantees acceleration bounds 10 times larger than velocity bounds.

Matrix A, which appears in (4.21) and (4.22) is certainly non-singular. As stated
in §4.2, indeed, ΦΦΦT̃ ,T is always kept close to zero, so that T(ΦΦΦT̃ ,T), owing to (4.10),
is almost an identity matrix. Furthermore, the avoidance of singular configurations
also guarantees that J−1

ωT̃
∈ RN×3, i.e. the rightmost part of the inverse Jacobian, is

certainly full rank. Finally, since 0
T R ∈ R3×3 is always non-singular, it is possible to

conclude that A is a full rank N×3 real matrix.
Equations (4.21) and (4.22) are clearly linear. This property can be used to con-

vert both semi-infinite constraints into a set of finite constraints. For example, the
feasibility of (4.21) can be checked by ignoring the interior points of box [Φ̇ΦΦ

−
,Φ̇ΦΦ

+
]

and by only inspecting its vertexes. More precisely, the feasibility of (4.21) is guar-
anteed if the following vertex points are feasible

Φ̇ΦΦ1 := [α̇− β̇
−

γ̇
−]T , Φ̇ΦΦ2 := [α̇− β̇

−
γ̇
+]T , Φ̇ΦΦ3 := [α̇− β̇

+
γ̇
−]T , Φ̇ΦΦ4 := [α̇− β̇

+
γ̇
+]T ,

Φ̇ΦΦ5 := [α̇+
β̇
−

γ̇
−]T , Φ̇ΦΦ6 := [α̇+

β̇
−

γ̇
+]T , Φ̇ΦΦ7 := [α̇+

β̇
+

γ̇
−]T , Φ̇ΦΦ8 := [α̇+

β̇
+

γ̇
+]T .

The same concept applies for (4.22), so that (4.20) can be easily reconverted into the
following LP problem

max
λ ,Φ̇ΦΦ

+
,Φ̈ΦΦ

+
,Φ̇ΦΦ
−
,Φ̈ΦΦ
−
{λ}

subject to

λ ≤ Γ
+
i −Γ

−
i i = 1,2, . . . ,6 (4.23)

Φ̇ΦΦ
+ ≥ 0 (4.24)

Φ̈ΦΦ
+ ≥ 0 (4.25)

4.4. The Equivalent Bounds Evaluator block 109

Φ̇ΦΦ
− ≤ 0 (4.26)

Φ̈ΦΦ
− ≤ 0 (4.27)

AΦ̇ΦΦk ≤ ˙̃q
+

k = 1,2, . . . ,8, (4.28)

AΦ̇ΦΦk ≥ ˙̃q
−

k = 1,2, . . . ,8, (4.29)

AΦ̈ΦΦk ≤ ¨̃q
+

k = 1,2, . . . ,8, (4.30)

AΦ̈ΦΦk ≥ ¨̃q
−

k = 1,2, . . . ,8. (4.31)

LP problems have been studied for a long time and many excellent solvers exist.
Thus, a quite natural choice should be to use one of them to solve the above linear
problem. For instance, CPLEX is one of the fastest and most reliable among the avail-
able LP solvers but, unfortunately, for the application at hand it has a drawback. Each
linear problem must be solved within the sampling time of the process, i.e. in a few
milliseconds. While CPLEX is extremely fast in solving linear problems, it wastes a
considerable amount of time – at least, compatibly with the sampling time – for the
preparation of the environment that is required by the solver. For the considered ap-
plication, a new problem must be formulated and solved at each sample time, so that,
instead of CPLEX, a custom LP solver has been implemented by posing a great care
in choosing the right strategies in order to reduce computational times. The proposed
solution is based on the well-known simplex algorithm (see, e.g., [64]). While such
algorithm has an exponential worst-case complexity, it works very well in practice. It
has been observed that the number of iterations required by the simplex algorithm is
of the same order of magnitude of the number of constraints of the problem. Problem
(4.23)-(4.31) has more than 200 constraints but only 13 variables. Thus, rather than
applying the simplex algorithm to (4.23)-(4.31), it is convenient to apply it to its dual,
where the number of constraints is equal to 13, i.e. the number of variables of prob-
lem (4.23)-(4.31). As known, the optimal value of the original problem is equal to
the optimal value of the dual problem, while the solution of the original problem can
be derived from the dual solution, e.g., by the complementarity conditions (details on
the latter assertion can be found, again, in [64]).

An important feature of the simplex algorithm, which has been specifically ex-

110 Chapter 4. Singularity avoidance system: Online orientation modification

ploited, is the so-called “warm-start”, i.e. the possibility of solving an LP problem
by starting from the solution of another LP problem, when this latter is just a slight
perturbation of the former one. This is indeed the case at hand: Each new LP problem
(4.23)-(4.31) differs from the preceding one for what concerns matrix A and vectors
˙̃q
+
, ˙̃q
−
, ¨̃q

+
, ¨̃q
−

, but the new entries are just slight perturbations of the old ones.
The optimal solution of an LP problem is strictly related to its optimal basis. Still

referring to [64] for details, the optimal solutions of the LP problem and of its dual,
as well as their common optimal value, can be easily found once the optimal basis
is known. By denoting as B∗i the optimal basis for problem (4.23)-(4.31) at the i-th
sampling instant, the solution of two linear systems allows to establish, at sampling
instant i+1, whether B∗i is:

• feasible both for problem (4.23)-(4.31) and for its dual, in which case it is also
an optimal basis for the two problems and no further computation is needed
(notice that while the optimal basis does not change, the values of the variables
and the optimal value usually do);

• feasible for problem (4.23)-(4.31) but not for its dual, in which case the simplex
algorithm is applied by using B∗i as a starting basis (usually, very few iterations
are needed to recover optimality);

• not feasible for problem (4.23)-(4.31) but feasible for its dual, in which case
the dual simplex algorithm is applied by using B∗i as a starting basis (again,
very few iterations are needed to recover optimality);

• not feasible for problem (4.23)-(4.31) and for its dual, in which case some
efforts must be spent, e.g., by applying the two-phase simplex method, in order
to recover feasibility (or dual feasibility) and start with the simplex (or dual
simplex) algorithm (notice that this is also needed at the first sampling instant).

The most time-consuming case is obviously the last one, where some additional effort
is needed before the simplex or the dual simplex algorithm is started. However, what
has been observed in practice is that most of the runs fall into the first case (at least in
99.56% of the cases), i.e. the new solution is obtained almost instantaneously, while

4.5. Simulation results 111

the fourth case occurs very seldom (at most in 0.04% of the cases). Test experiments
executed on a Intel Core2 Duo PC @ 3.00 GHz have shown that the computational
times for the LP problems are in range of between 0.11 · 10−3 s and 1.03 · 10−3 s,
with an average execution time equal to 0.13 ·10−3 s.

Equivalent bounds Φ̇ΦΦ
−
,Φ̈ΦΦ
−
,Φ̇ΦΦ

+, and Φ̈ΦΦ
+, once evaluated by the custom LP solver,

are sent to the NFS for the generation of the smooth signals that are used to change
the tool orientation. The description of the NFS is omitted for brevity, but its structure
and behavior have been proposed and extensively discussed in [29]. As stated in §4.1,
it is important to remark that the NFS needs to constrain the orientation modification
within bounds on Φ̇ΦΦT̃ ,T and Φ̈ΦΦT̃ ,T . The filter proposed in Chapter 1 is also able to
constrain the jerk signal. In order to limit the computational burden of the whole
SAS, the simplified version of the filter proposed in [29] is here used for the NFS
synthesis.

4.5 Simulation results

The SAS behavior has been firstly verified via a set of tests computed in a sim-
ulation environment based on the Comau Smart-Six kinematics. Conversely, next
§4.6 is devoted to present experimental tests executed on the actual manipulator.
The user-defined constraint vectors, i.e. q̇, q̇, q̈, and q̈, have been posed equal to
(i = 1,2, . . . ,N): q̇

i
= −10 rad s−1, q̇i = 10 rad s−1, q̈

i
= −100 rad s−2 and q̈i =

100 rad s−2. The choice has been motivated by the maximum joint velocity of the
actual robot for the velocity constraints and by obtaining smooth transients for the
acceleration limits. The SAS parameters have been experimentally tuned such to
guarantee orientation changes in the range ±0.1 rad (±5.7 deg) at the maximum
longitudinal speed considered for the experiments (|vT | = 0.4 m s−1). In particular,
thresholds in (4.5) and coefficients of (4.8) have been respectively appointed equal to
a = 9, b = 7.5, λ1 = 7/450, and λ2 = 2/4500.

In the first test case, the nominal trajectory is defined as a straight line from
pA = [0.65 0.83 1.12]T m to pB = [−0.2 0.83 1.12]T m. The nominal orientation of
the tool-frame is kept constant and, by assuming the RPY notation, it is posed equal

112 Chapter 4. Singularity avoidance system: Online orientation modification

t (s)
0 0.5 1 1.5 2 2.5

0

100

-200

200

-100

0

10

-10q
4
 (

ra
d
 s

-1
)

q
4
 (

ra
d
 s

-2
)

q4

..

q4

.._

q4

..
^q4

..
_

b

a

..

.

q4

._

q4

.
^

q4

.

q4

.
_

Figure 4.3: (a) Velocities and (b) accelerations of joint 4 obtained with the SAS (solid lines)
compared with those obtained without the SAS (dashed lines). Dotted lines highlight the
assigned bounds.

to ΦΦΦT,0 = [π/2 0 π/2]T rad. The trajectory passes close to a wrist singularity located
at pT = [0 0.83 1.077]T m with a longitudinal velocity equal to 0.4 m s−1: If the
SAS is not used, velocities and accelerations of joints 4 and 6 become unfeasible.
Fig. 4.3 shows, in particular, the behavior of joint 4: Without the SAS (dashed line)
the velocity and the acceleration limits are violated while, conversely, feasibility is
preserved when the SAS is active (solid line). Similar transients are obtained for
joint 6. As stated in §4.4, this result is achieved with the aid of the nonlinear filters
which keep the first and the second time derivatives of ΦΦΦT̃ ,T between the equivalent
bounds evaluated by the EBE. This assertion can be verified through Figs. 4.4 and
4.5, which compare components α and β of ΦΦΦT̃ ,T with the homologous components
α̂ and β̂ of ΦΦΦT̂ ,T . Transients related to the third component of ΦΦΦT̃ ,T , i.e. γ , have
been omitted since for all the considered tests the SAS always imposes γ = 0. In
non critical regions, ΦΦΦT̂ ,T is kept equal to zero, so that the manipulator is driven by
the nominal trajectory. Conversely, when the SD detects a singularity, the OM block
modifies the tool orientation by generating a proper signal ΦΦΦT̂ ,T (see the dashed lines
of Figs. 4.4 and 4.5). Such signal is generally discontinuous and unfeasible w.r.t. the
given joint limits. For this reason, it is filtered by the NFS which generates a smooth

4.5. Simulation results 113

t (s)
0 0.5 1 1.5 2 2.5

0

-40

40

80

a
 (

ra
d
 s

-2
)

..

0

-4

4

a
 (

ra
d
 s

-1
)

.

8

0

0.04

-0.04

a
 (

ra
d
)

a

a^

a
.

a
..

b

a

c

-
a
.

+
a
.

-
a
..

+
a
..

Figure 4.4: Time shapes of α , α̇ , and α̈ (solid lines). Dotted lines represent the equivalent
bounds on α̇ and on α̈ . Dashed line α̂ represents the non-smooth signal provided by the OM.

signal ΦΦΦT̃ ,T (solid lines) whose first and second time derivatives fulfill equivalent
bounds Φ̇ΦΦ

−
,Φ̈ΦΦ
− and Φ̇ΦΦ

+
,Φ̈ΦΦ

+, thus preserving the trajectory feasibility.

The effectiveness of the proposed method depends on the distance between the
trajectory and the singular point: When trajectories pass close to the singular config-
uration more orientation changing effort is required in order to maintain the system
feasibility. To this purpose, a different test set has been conceived to verify the sys-
tem performances for trajectories passing at different distances from pT : It has been
generated a set of linear paths from pA = [0.65 0.83 z]T m to pB = [−0.2 0.83 z]T m
for z ∈ [1.05,1.12] m and executed with a longitudinal velocity equal to 0.4 m s−1.
Fig. 4.6 shows the achieved shapes for α and β (also in all of this transients, the
SAS has chosen γ = 0). As expected, for trajectories passing closer to pT , the SAS
introduces higher orientation changes. For the considered longitudinal velocity, in-
terval z ∈ [1.065,1.092] m is still precluded (remember that singularity occurs at

114 Chapter 4. Singularity avoidance system: Online orientation modification

b

a

c

0

0.02

0.04

0.06
b

 (
ra

d
)

0

-4

4

8

b
 (

ra
d
 s

-1
)

.

0

40

80

-40

b
 (

ra
d

 s
-2
)

..

t (s)
0 0.5 1 1.5 2 2.5

b
..

b
.

b^ b

-

b
+.

b
.

b
+..

-
b
..

Figure 4.5: Time shapes of β , β̇ , and β̈ (solid lines). Dotted lines represent the equivalent
bounds on β̇ and on β̈ . Dashed line β̂ represents the non-smooth signal provided by the OM.

z = 1.077 m) but for lower velocities (0.1 m s−1) the singular point can even be
crossed.

The last set of tests has been conceived to verify the SAS performances for tra-
jectories approaching pT from different directions. These tests follow the same pro-
cedure highlighted in §3.4 for the evaluation of the behavior of the TSS. It is worth to
synthetically resume the singularity approaching procedure, in particular with the aid
of Fig. 3.7: For each direction, a sequence of parallel trajectories lying in the plane
y = 0.83 m and converging toward pT has been executed. All trajectories are char-
acterized by the same longitudinal velocity and the distance between two of them is
equal to 1 · 10−3 m. For each direction the scanning process ends when feasibility
is lost: The minimum distance from pT of the last feasible trajectory is stored and
subsequently shown in Fig. 4.7, where the performances that can be obtained with
the SAS are compared with those obtained without the SAS: the latter performances
have been obtained with the aid of the commercial controller (as the same manner

4.6. Experimental results 115

0

-0.04

-0.08

0.04
a

 (
ra

d
)

z = 1.04

z = 1.092
z = 1.10
z = 1.11

z = 1.065

z = 1.12

z = 1.05

0

-0.04

-0.08

0.04

0.08

b
 (

ra
d
)

t (s)
0 0.5 1 1.5 2 2.5

b

a

z = 1.092

z = 1.065

z = 1.065
z = 1.092

Figure 4.6: Orientation modification in function of the distance from the singularity point.
Larger deviations are obtained for trajectories closer to pT .

as points indicated with (1) in Fig. 3.8). The acquired results have highlighted that
SAS performances are influenced by the approaching direction but, in any case, the
SAS has been permitted to plan feasible trajectory closer to pT with respect to the
performances of the commercial controller: Improvements are especially evident for
vertical (m = ∞) and horizontal trajectories (m = 0). As shown in Fig. 4.7, similar
results have been achieved independently from the longitudinal velocity.

It is worth to mention a final consideration about the proposed methods for the
singularity management: Although the intent of the SAS and the TSS was different,
it is important to emphasize that both strategies have been allowed to generate feasi-
ble trajectories that are closer to pT with respect to the behavior of the commercial
controller.

4.6 Experimental results

The SAS performances have been finally checked by means of a set of actual exper-
iments executed on a Comau Smart SiX 6-1.4 manipulator. They concern the execu-
tion of vertical and horizontal trajectories lying in the plane y = 0.83 m and passing
close to a wrist singularity. More precisely, vertical trajectories pass 5 · 10−3 m far

116 Chapter 4. Singularity avoidance system: Online orientation modification

1.14

1.10

1.06

1.02

1.10

1.06

0 0.04-0.04 0 0.04-0.04
x (m) x (m)

z
 (

m
)

z
 (

m
)

a b

c d

1
2

3

4
5

6

7

8

9

101
2

3

4
5

6

7
8

9

10

pT
-

2

3

4
5

6

7
8

9

10

1

1

2

3

4
5

6

7
8

9

10

5
6

1
6

7
8

10

2

7

10

9

8

1

2

5

3

4

3

4

9

1 5
4

3
210

9

8
76 6

7
8

910

1

23

4
5

m = 1

m = 0

m = -0.5

m = 2

Figure 4.7: Minimum achievable feasible distance from the singularity point with the SAS
(dashed lines) or without it (solid lines). Results achieved for a longitudinal velocity equal
to: (a) 0.4 ms−1; (b) 0.3 ms−1; (c) 0.2 ms−1; (d) 0.1 ms−1. Slopes of the linear segments: (1)
m=0; (2) m=-1/2; (3) m=-1; (4) m=-2; (5) m=-4; (6) m = ∞; (7) m=4; (8) m=2; (9) m=1; (10)
m=1/2.

from the singularity, while horizontal ones pass at 3.5 · 10−3 m: In both cases they
represent the minimum-distance trajectories that can be safely executed by means of
the SAS for a maximum longitudinal velocity equal to 0.4 m s−1. The trajectory up-
dating time is equal to 2 · 10−3 s and the performances are evaluated on the basis of
the path tracking errors in the operational space. Those errors is mainly due to the
system dynamics and depend on the controller characteristics and on the elasticity
of the structure. They can be mitigated by improving the controller performances or
by using smooth reference signals. Clearly, the trajectory planner here proposed can
only provide smooth references since, as stated in §4.1, control loops have not been
accessible.

4.6. Experimental results 117

0

-4

-2

x10-4

0.9 1 1.1 1.2 1.3
z (m)

e
x
 (m)

brakes

activation

0

-4

-2

x10-4

e
x
 (m)

0

-4

-2

x10-4

Exp 1

Exp 2

Exp 3

e
x
 (m)

0

-2
e
z
 (m)

0 0.1 0.2-0.1-0.2
x (m)

-1

1

2

brakes

activation

x10-4

0

-2

-1

1

2

0

-2

-1

1

2

x10-4

x10-4

Exp 7

Exp 8

Exp 9

e
z
 (m)

e
z
 (m)

Figure 4.8: Path tracking errors for vertical trajectories (Experiments 1, 2, and 3) and for
horizontal trajectories (Experiments 7, 8, and 9). In all of these experiments the SAS has
been disabled.

The experiments have been executed with different longitudinal speeds. In Exper-
iment 1 and Experiment 7 a vertical and an horizontal trajectories have been executed
by assuming a longitudinal speed equal to 0.01 m s−1 and with the SAS disabled.
Fig. 4.8 shows the path tracking error along the x axis for Experiment 1 and along
the z axis for Experiment 7. The tracking errors along the y and z axis for vertical
trajectories and along the x and y axis for horizontal ones have not been reported
being negligible. The main purpose of these two experiments have been sought in
the commercial controller performances. Due the extremely low velocity, the path
tracking error, calculated from the motors’ encoders through the forward kinematics,
can be neglected far from the singular value but, in the proximity of the singularity, it
has roughly assumed 1 ·10−4 m for both the experiments. Those experimental results
have been highlighted that the controller tracking performances worsen as soon as
joint velocities rise.

In Experiments 2 and 8 trajectories are executed with a longitudinal speed respec-

118 Chapter 4. Singularity avoidance system: Online orientation modification

x10-4

x10-4

x10-4

0

-4

-2

0

-12

-6

0

-12

-6

e
x
 (m)

0.9 1 1.1 1.2 1.3
z (m)

Exp 4-B1

Exp 4-B2

Exp 5-B1

Exp 5-B2

Exp 6-B1

Exp 6-B2

e
x
 (m)

e
x
 (m)

0

-2

-4
e
z
 (m)

0

-1

-2

0

-1

-2

0 0.1 0.2-0.1-0.2
x (m)

x10-4

x10-3

x10-3

Exp 10-B1

Exp 10-B2

Exp 11-B1

Exp 11-B2

Exp 12-B1

Exp 12-B2

e
z
 (m)

e
z
 (m)

Figure 4.9: Path tracking errors for vertical trajectories (SAS enabled) for Experiments 4, 5,
and 6. Solid lines represent errors obtained with bounds B1, while dashed lines indicate errors
acquired with bounds B2.

tively equal to 0.07 m s−1 and 0.02 m s−1, which represent the maximum velocities
that can be feasibly maintained without the SAS assistance. Then, in Experiments 3
and 9, still keeping the SAS disabled, they are further increased to 0.1 m s−1 and to
0.03 m s−1 respectively: Joint speeds become unfeasible, so that the manipulator is
stopped by the controller. In Experiments 4, 5, 6, 10, 11, and 12 the SAS has been
activated. For each experiment two alternative sets of bounds have been considered
(i = 1,2, . . . ,6):

B1) q̇
i
=−8 rad s−1, q̇i = 8 rad s−1, q̈

i
=−40 rad s−2, and q̈i = 40 rad s−2;

B2) q̇
i
=−10 rad s−1, q̇i = 10 rad s−1, q̈

i
=−25 rad s−2, and q̈i = 25 rad s−2.

Specifically, B2 is characterized by higher velocity constraints and lower acceleration
limits with respect to the B1 set. The use of two alternative sets of bounds makes it
possible to point out that, with a proper choice of the SAS constraints, it is possible to
improve the controller tracking performances. Practically, when B2 is used, trajecto-
ries require lower torques, so that closed-loop controllers are less solicited and track-

4.6. Experimental results 119

Table 4.1: Experimentally measured maximum path tracking errors and maximum angular
deviations from the nominal path.

vertical trajectories horizontal trajectories

Exp.
long. max max

Exp.
long. max max

speed error |α|, |β | speed error |α|, |β |
[m s−1] ×10−4 [m] [deg] [m s−1] ×10−4 [m] [deg]

SAS off
1 0.01 0.958 – 7 0.01 0.973 –
2 0.07 1.31 – 8 0.02 1.32 –
3 0.1 2.76 – 9 0.03 1.93 –

SAS on

4-B1 0.1 2.99 1.04 10-B1 0.03 4.65 0.391
4-B2 0.1 1.93 1.04 10-B2 0.03 5.28 0.391
5-B1 0.2 6.28 3.00 11-B1 0.2 13.5 2.86
5-B2 0.2 5.26 2.99 11-B2 0.2 10.6 3.02
6-B1 0.4 15.9 6.58 12-B1 0.4 21.9 4.57
6-B2 0.4 10.5 6.22 12-B2 0.4 16.4 5.07

ing errors reduce. This characteristic is particularly evident at high speeds as shown
by Fig. 4.9 and it is also confirmed by the data reported in Table 4.1. In all experi-
ments, trajectories are feasible w.r.t. the given limits. For vertical paths the maximum
achievable velocity increases from 0.07 m s−1 to 0.4 m s−1 with a maximum angular
deviation of the end-effector equal to 6.22 deg, while for horizontal paths it passes
from 0.02 m s−1 to 0.4 m s−1 with a maximum angular deviation equal to 5.07 deg:
Orientation changes are evidently compatible with those admissible for the industrial
applications considered at the beginning of this chapter.

The computational burden introduced by the whole SAS execution is in range of
between 0.163 ·10−3 s and 1.373 ·10−3 s with an average computational time equal
to 0.254 ·10−3 s. These performances have been evaluated on a RTAI [30] based PC
equipped with an Intel Core 2 Duo E8400 @ 3.00 GHz processor. The SAS is fully
compatible with real-time implementation. By comparing these execution times with
those highlighted in §4.4, i.e. computational times that are required for the resolution
of the optimization problem, it is evident that a large part of the time is spent by the

120 Chapter 4. Singularity avoidance system: Online orientation modification

EBE block computation.
In conclusion, it is important to remark that the orientation changes introduced

by the SAS behavior are feasible with respect to the bounds on joint velocities and
accelerations and are sufficiently smooth in order to avoid undesired oscillations and
mechanical stresses. Path tracking errors, measured on the actual manipulator, were
proportional to the longitudinal speed and were mainly due to control loops’ perfor-
mances.

Conclusion and future studies

This thesis has introduced and proposed solutions to the challenging problem of real-
time trajectory generation for systems subject to high order kinematic and dynamic
constraints. Proposed problems have been addressed by means of specifically de-
vised feedback schemes able to modify, in real-time, a provisional and potentially
non-feasible trajectory in order to fulfill a given set of constraints. Chapters 2 and
3 have introduced the trajectory scaling problem: By assuming the path-velocity de-
composition paradigm for the trajectory planning phase (i.e. the trajectory is obtained
from the composition of a geometric path and of a time-law), longitudinal velocity
has been modified online in order to preserve accurate path tracking and to fulfill the
physical limits of the mechatronic system under investigation: Chapter 2 has consid-
ered trajectories planned in the configuration space while Chapter 3 has been focused
on trajectories planned in the Cartesian space. An alternative planner for trajectories
defined in the Cartesian space has been discussed in Chapter 4 where a Singular-
ity Avoidance System (SAS) has been devised. Unlike the scaling systems, the SAS
slightly modifies the orientation of planned trajectories in order to maintain joint
velocities and accelerations confined within the robot’s physical limits. The SAS
assumes that the user-defined longitudinal velocity is “mandatory” for correct task
execution.

122 Conclusion and future studies

The choice of the most appropriate solution depends on the manipulator task.
Several applications exist where it is possible to slow down the longitudinal velocity
in order to maintain accurate path tracking such as, for example automated drawing
or cutting applications: These applications do not admit deviations from the plan-
ned path. Conversely, if the execution time and the Cartesian path preservation are
mandatory, small changes in the tool orientation can be tolerated in order to fulfill
the system’s physical limits. Applications like automatic painting, gluing or welding
are typical examples in which alterations of the longitudinal speed would cause task
quality losses.

The scaling system proposed in Chapter 3 has been successfully tested in an
experimental setup based on an actual 6R anthropomorphic manipulator. The exper-
imental tests were conceived in order to compare two different implementations of
TSSs: A first version that manages bounds on velocities and accelerations (AC-TSS)
and another one that is also able to constrain jerks (JC-TSS). The bounds have been
defined both in the joint and in the Cartesian spaces. The experimental results have
proven that trajectories with bounded jerks ensure smoother movements with respect
to those achievable with the AC-TSS. Conversely, the AC-TSS is more reactive in the
vicinity of singular configurations. It is important to mention that the evaluation of
the equivalent bounds used for the definition of the time-law also requires the eval-
uation of the inverse Jacobian. As a consequence, considered paths cannot directly
cross singular points: Such configurations can only be managed by admitting minor
path modifications, as has been done in the solution provided in Chapter 4.

The SAS presented in Chapter 4 has been tested both in a simulated and exper-
imental setup. The simulation results have proven the effectiveness of the proposed
strategy, which is able to handle singular points also in the event of high-speed tra-
jectories by admitting a maximum tool orientation variation of 6 deg for high longi-
tudinal speeds (0.4 m s−1). The experimental setup, based on a 6R anthropomorphic
manipulator, has highlighted negligible path tracking errors. In the event of slow mo-
tions, the SAS is able to generate feasible trajectories even where paths directly cross
singular configurations.

It is important to note that the computational burden of the proposed planners

Conclusion and future studies 123

is compatible with real-time implementation. In particular, the execution time of the
AC-TSS is in the range of between 7 · 10−6 s and 142 · 10−6 s with an average time
equal to 35 ·10−6 s. Conversely, the execution time of the JC-TSS is in the range of
between 11 · 10−6 s and 153 · 10−6 s with an average time computational equal to
49 · 10−6 s. Since it must also consider constraints on the jerk signal, the JC-TSS is
characterized by greater computational burdens, which are, however, still compatible
with the sampling times of many control systems. The computational burden intro-
duced by the SAS execution is in the range of between 163 ·10−6 s and 1373 ·10−6 s
with an average evaluation time equal to 254 ·10−6 s: The computational load is still
compatible with that admissible for real-time implementation.

Recommendations for future studies

Several research themes have been left open by this thesis. In particular, concerning
the discrete-time filter used for the generation of scalar smooth profiles, it would be
interesting to address the problem of the synchronization of several of these in order
to plan multidimensional trajectories for robotic applications. The problem can be
summarized as follows: If two or more trajectories must be synchronized in order to
obtain complex cooperative motions, i.e. consider the case of multiple electric cams,
it is necessary to scale the fastest of them in order to guarantee the simultaneous end
of the motion. A possible solution to this issue could be to provide synchronization
constraints between the sliding surfaces that govern the filters.

As far as the TSSs are concerned, an interesting improvement can be certainly
be the introduction of the generalized force and the force derivative constraints in the
solutions provided for paths planned in the operational space. This would require a
complete reformulation of the equivalent bounds evaluator procedure and more in-
depth knowledge of the controlled system model: Accurate dynamic models must
be developed and their parameters must be identified. Such models must then be
integrated into the equivalent bounds evaluation blocks.

Another research field, still related to the TSS implementation, concerns the in-
version of the Jacobian matrix. As it is well-known, Jacobians become singular close

124 Conclusion and future studies

to singularities, so that they cannot be inverted. It could be interesting to verify which
path tracking performances can be achieved when using an approximated Jacobian
inverse. If the performances do not deteriorate excessively and remain compatible
with the task guidelines, a solution that permits crossing singular configurations could
certainly represent a major improvement for the proposed TSSs.

Possible improvements in the SAS strategy concern the efficient evaluation of
the best orientation modification and the reduction of the minimum achievable dis-
tances from singular points. For the first open problem, research could focus on the
investigation of a novel method for the synthesis of the most promising orientation:
Methods based on the manipulability index are computationally onerous, so that sub-
optimal, but more efficient, solutions should be used in order to deal with this issue.
The minimum achievable distances from singular points are evidently correlated to
the longitudinal velocity, but they are also somehow correlated to the shape of the
manipulability ellipsoid: The performances of the SAS also depend on the singular
point approaching directions. It could be interesting to study changing behaviors of
the SAS, chosen depending on the approaching directions.

Another research branch could try to unify the SAS and the TSS in a common
framework. A general approach to singularity management could be used to solve a
wide variety of trajectory planning problems, since a hybrid solution, obtained from
the combination of the two methods, could potentially benefit from the advantages
of both: Path feasibility could be preserved also in trajectories that pass very close
to or, even, cross singular configurations. Evidently, the hybrid approach could only
be used in applications that admit variations of both the longitudinal speed and the
planned orientation.

Bibliography

[1] C.-S. Lin, P.-R. Chang, and J.Y.S. Luh. Formulation and optimization of cu-
bic polynomial joint trajectories for industrial robots. IEEE Trans. Automatic
Control, AC-28(12):1066–1074, 1983.

[2] G. Lini, L. Consolini, and A. Piazzi. Minimum-time constrained velocity plan-
ning. In Med. Conf. on Contr. and Autom., MED09, pages 748–753, 2009.

[3] A. De Luca, L. Lanari, and G. Oriolo. A sensitivity approach to optimal spline
robot trajectories. Automatica, 27(3):535–539, 1991.

[4] S. Engleder. Time-optimal motion planning and control of an electrohydrauli-
cally actuated toggle mechanism . Mechatronics, 17(8):448–456, 2007.

[5] S. Macfarlane and E. A. Croft. Jerk-bounded manipulator trajectory planning:
design for real-time applications. IEEE Trans. on Rob. and Autom., 19(1):42–
52, 2003.

[6] L. Messner, H. Gattringer, and H. Bremer. Efficient Online Computation of
Smooth Trajectories Along Geometric Paths for Robotic Manipulators . In
H. Gattringer and J. Gerstmayr, editors, Multibody system dynamics, robotics,
and control. Springer-Verlag, Wien, 2013.

126 Bibliography

[7] R. Haschke, E. Weitnauer, and H. Ritter. On-line planning of timeoptimal, jerk-
limited trajectories. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, IROS 08, pages 3248–3253, 2008.

[8] T. Kröger and F. M. Wahl. On-Line Trajectory Generation: Basic Concepts for
Instantaneous Reactions to Unforeseen Events. IEEE Trans. on Rob., 26(1):94–
111, Feb. 2010.

[9] X. Broquère, D. Sidobre, and I. Herrera-Aguilar. Soft motion trajectory planner
for service manipulator robot. In Proc. of the 2008 IEEE/RSJ Int. Conf. on
Intell. Rob. and Systems, IROS 08, pages 2808–2813, 2008.

[10] C. Guarino Lo Bianco, A. Tonielli, and R. Zanasi. Nonlinear trajectory genera-
tor for motion control systems. In IECON96 - 22nd Int. Conf. of the IEEE Ind.
Electr. Society, pages 195–201, Taiwan, Taipei, August 1996.

[11] Y. Su and P.C. Mueller. Smooth reference trajectory generation for industrial
mechatronic systems under torque saturation. In 4th IFAC Symp. on Mechatr.
Sys., volume 4 - PART 1, pages 896–901, Heidelberg, Germany, Sept. 2006.

[12] X. Wei, J. Wang, and Z. Yang. Robust Smooth-Trajectory Control of Nonlinear
Servo Systems Based on Neural Networks. IEEE Trans. Ind. Electr., 54(1):208–
217, 2007.

[13] L. Biagiotti and R. Zanasi. Online trajectory planner with constraints on ve-
locity, acceleration and torque. In Proc. of the IEEE Int. Symp. on Ind. Electr.,
ISIE2010, pages 274–279, Bari, Italy, Jul. 2010.

[14] R. Zanasi, C. Guarino Lo Bianco, and A. Tonielli. Nonlinear filters for the
generation of smooth trajectories. Automatica, 36(3):439–448, March 2000.

[15] C. Guarino Lo Bianco and R. Zanasi. Smooth profile generation for a tile print-
ing machine. IEEE Trans. on Ind. Electr., 50(3):471–477, 2003.

Bibliography 127

[16] O. Gerelli and C. Guarino Lo Bianco. Nonlinear variable structure filter for the
online trajectory scaling. IEEE Trans. on Ind. Electr., 56(10):3921–3930, Oct.
2009.

[17] S. Liu. An on-line reference-trajectory generator for smooth motion of impulse-
controlled industrial manipulators. In Proc. of the seventh Int. Work. on Ad-
vanced Motion Control, pages 365–370, 2002.

[18] R. Zanasi and R. Morselli. Third order trajectory generator satisfying velocity,
acceleration and jerk constraints. In Proc. of the IEEE Int. Conf. on Contr. Appl.,
pages 1165–1170, Glasgow, UK, Sept. 2002.

[19] L. Biagiotti and C. Melchiorri. Trajectory planning for automatic machines and
robots. Springer, Berlin, Heidelberg, Germany, 2008.

[20] R. Zanasi and R. Morselli. Discrete minimum time tracking problem for a chain
of three integrators with bounded input. Automatica, 39(9):1643–1649, 2003.

[21] O. Gerelli and C. Guarino Lo Bianco. A discrete-time filter for the on-line
generation of trajectories with bounded velocity, acceleration, and jerk. In IEEE
Int. Conf. on Rob. and Autom., ICRA2010, pages 3989–3994, Anchorage, AK,
May 2010.

[22] C. Guarino Lo Bianco and F. Ghilardelli. Third order system for the generation
of minimum-time trajectories with asymmetric bounds on velocity, acceleration,
and jerk. In Workshop on Robot Motion Planning: Online, Reactive, and in
Real-time 2012 IEEE/RSJ Int. Conf. on Int. Rob. and Sys., (IROS 2012), pages
137–143, Algarve, Portugal, Oct 2012.

[23] C. Guarino Lo Bianco and O. Gerelli. Online trajectory scaling for manipulators
subject to high-order kinematic and dynamic constraints. IEEE Trans. on Rob.,
27(6):1144–1152, December 2011.

[24] D. Kubus, D. Inkermann, T. Vietor, and F. M. Wahl. Joint Actuation Based
on Highly Dynamic Torque Transmission Elements – Concept and Control Ap-

128 Bibliography

proaches. In Proc. of IEEE Int. Conf. on Rob. and Autom., ICRA 2011, pages
2777–2784, Shanghai, China, May 2011.

[25] C. Guarino Lo Bianco and F. Ghilardelli. A Discrete-Time filter for the gener-
ation of signals with asymmetric and variable bounds on velocity, acceleration,
and jerk. IEEE Trans. on Ind. Electr., 61(8):4115–4125, Aug 2014.

[26] V. I. Utkin. Variable structure systems with sliding modes. IEEE Trans. on
Autom. Contr., 22:212–222, 1977.

[27] V. I. Utkin. Sliding Modes in Control and Optimization. Springer-Verlag, New
York, NY, 1992.

[28] R. Morselli. Nonlinear trajectory generators for motion control systems. PhD
thesis, 2003.

[29] C. Guarino Lo Bianco and F.M. Wahl. A novel second order filter for the real-
time trajectory scaling. In IEEE Int. Conf. on Rob. and Autom., ICRA 2011,
pages 5813–5818, Shanghai, China, May 2011.

[30] R. Bucher and S. Balemi. Rapid Controller Prototyping with Matlab/Simulink
and Linux. In 6th IFAC Symp. on Adv. in Control Educ., ACE2003, Oulu, Fin-
land, Jun. 2003.

[31] J. M. Hollerbach. Dynamic scaling of manipulator trajectories. J Dyn Sys Meas
Control, 106(1):102–106, 1984.

[32] A. De Luca and R. Farina. Dynamic scaling of trajectories for robots with
elastic joints. In Proc. of the IEEE Int. Conf. on Robotics and Automation,
pages 2436–2442, Washington, DC, May 2002.

[33] J. Kieffer, A. Cahill, and M. James. Robust and accurate time-optimal path-
tracking control for robot manipulators. IEEE Trans Robot Automat, 13(6):880–
890, 1997.

Bibliography 129

[34] K. Kant and S.W. Zucker. Toward efficient trajectory planning: The path-
velocity decomposition. Int. J. Robot. Res., 5(3):72–89, 1986.

[35] B. K. Kim and K. G. Shin. Minimum-time path planning for robot arms and
their dynamics. IEEE Trans. on Systems, Man, and Cybernetics, 15(2):213–223,
Mar/Apr 1985.

[36] D. Constantinescu and E. A. Croft. Smooth and time-optimal trajectory
planning for industrial manipulators along specified paths. J. Robot. Syst.,
17(5):233–249, 2000.

[37] K. G. Shin and N. D. McKay. A dynamic programming approach to trajec-
tory planning of robotic manipulators. IEEE Trans. on Automatic Control, AC-
31(6):491–500, June 1986.

[38] H. H. Tan and R. B. Potts. Minimum time trajectory planner for the discrete
dynamic robot model with dynamic constraints. IEEE J. of Robotics and Au-
tomation, 4(2):174–185, April 1988.

[39] J. E. Bobrow, S. Dubowsky, and J .S. Gibson. Time-optimal control of robotics
manipulators along specified paths. Int. J. Robot. Res., 4(3):3–17, 1985.

[40] K. G. Shin and N. D. McKay. Minimum-time control of robotic manipula-
tors with geometric path constraints. IEEE Transactions on Automatic Control,
30(6):531–541, Jun. 1985.

[41] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory planning. IEEE
J. of Robotics and Automation, RA-3(2):115–123, 1987.

[42] Z. Shiller and S Dubowsky. Robot path planning with obstacles, actuator, grip-
per, and payload constraints. The Int’l J. of Robotics Research, 8(6):3–18, 1989.

[43] R. Zanasi, A. Tonielli, and C. Guarino Lo Bianco. Nonlinear filter for smooth
trajectory generation. In NOLCOS98 - 4th Nonlinear Control Systems Design
Symp., volume 1, pages 245–250, Enschede, the Netherlands, July 1998.

130 Bibliography

[44] C. Guarino Lo Bianco, F. Ghilardelli, and D. Kubus. Experimental validation
of a time scaling algorithm for robotics systems. In IEEE Int. Conf. on Rob. and
Biomim. (ROBIO2012), pages 2044–2049, 2012.

[45] C. Guarino Lo Bianco and F. Ghilardelli. Techniques to preserve the stabil-
ity of a trajectory scaling algorithm. In IEEE Int. Conf. on Rob. and Autom.
(ICRA2013), pages 870–876, 2013.

[46] O. Dahl and L. Nielsen. Torque-limited path following by online trajectory time
scaling. IEEE Trans Robot Automat, 6(5):554–561, 1990.

[47] T. Yoshikawa. Analysis and control of robot manipulators with redundancy. In
1st Int. Symp. Robotics Research. MIT press, 1984.

[48] J. M. Hollerbach and K. Suh. Redundancy resolution of manipulators through
torque optimization. IEEE Jou. of Robotics and Automation, 3(4):308–316, Aug
1987.

[49] K.J. Kyriakopoulos and G.N. Saridis. Minimum jerk path generation. In IEEE
Int. Conf. on Rob. and Autom., ICRA’88, pages 364–369 vol.1, apr 1988.

[50] C. Guarino Lo Bianco and F. Ghilardelli. Real-time planner in the operational
space for the automatic handling of kinematic constraints. IEEE Trans. on Au-
tom. Sci. and Eng., 11(3):730 – 739, 2014.

[51] L. Sciavicco, B. Siciliano, L. Villani, and G. Oriolo. Robotics: Modelling,
planning and Control. Advanced Textbooks in Control and Signal Processing.
Springer-Verlag, Berlin, Germany, 2011.

[52] D.C. Conner, A. Greenfield, P.N. Atkar, A.A. Rizzi, and H. Choset. Paint depo-
sition modeling for trajectory planning on automotive surfaces. IEEE Trans. on
Autom. Sci. and Eng., 2(4):381–392, Oct 2005.

[53] P. Hertling, L. Hog, R. Larsen, J.W. Perram, and H.G. Petersen. Task curve
planning for painting robots. I. Process modeling and calibration. IEEE Trans.
on Rob. and Autom., 12(2):324–330, Apr 1996.

Bibliography 131

[54] J. Peng, Q. Chen, J. Lu, J. Jin, and C.A. van Luttervelt. Real time optimization
of robotic arc welding based on machine vision and neural networks. In The
1998 IEEE Int. Conf. on Industrial Electronics, Control, and Instrumentation,
IECON’98, pages 1279–1283, 1998.

[55] S.-H. Suh, I.-K. Woo, and S.-K. Noh. Development of an Automatic Trajectory
Planning System (ATPS) for spray painting robots. In IEEE Int. Conf. on Rob.
and Autom., ICRA91, pages 1948–1955, 1991.

[56] R. Ramabhadran and J. K. Antonio. Fast solution techniques for a class of opti-
mal trajectory planning problems with applications to automated spray coating.
IEEE Trans. on rob. and aut., 13(4):519–530, 1997.

[57] V. Potkonjaka, G. S. Dordević, D. Kostić, and M. Rašić. Dynamics of anthro-
pomorphic painting robot: Quality analysis and cost reduction. Robotics and
Autonomous Systems, 32(1):17–38, 2000.

[58] P.J. From and J.T. Gravdahl. A Real-Time Algorithm for Determining the Opti-
mal Paint Gun Orientation in Spray Paint Applications. IEEE Trans. on Autom.
Science and Eng., 7(4):803–816, 2010.

[59] P.J. From, J. Gunnar, and J.T. Gravdahl. Optimal Paint Gun Orientation in Spray
Paint Applications - Experimental Results. IEEE Trans. on Autom. Science and
Eng., 8(2):438–442, Apr. 2011.

[60] W. Tillmann, E. Vogli, and B. Krebs. Influence of the Spray Angle on the
Characteristics of Atmospheric Plasma Sprayed Hard Material Based Coatings.
J. of Thermal Spray Tech., 17(5-6):948–955, 2008.

[61] G. Schreiber, M. Otter, and G. Hirzinger. Solving the singularity problem of
non-redundant manipulators by constraint optimization. In IEEE/RSJ Int. Conf.
on Intel. Rob. and Sys., IROS’99, volume 3, pages 1482–1488, 1999.

[62] W. Decrè, H. Bruyninckx, and J. De Schutter. Extending the iTaSC constraint-
based robot task specification framework to time-independent trajectories and

132 Bibliography

user-configurable task horizons. In IEEE Int. Conf. on Rob. and Autom.
(ICRA2013), pages 1941–1948, 2013.

[63] T. Yoshikawa. Manipulability of robot mechanisms. Int. J. of Robotics Re-
search, 4(2):3–9, 1985.

[64] R.J. Vanderbei. Linear Programming: Foundations and Extensions (fourth edi-
tion). International Series in Operations Research & Management Science.
Springer, New York, 2014.

Acknowledgements

So, here I am! The last page of this thesis and the last day of my student career. Now,
it is time for acknowledgements.

First and foremost, I would like to express my sincere gratitude to my supervisor
Prof. Corrado Guarino Lo Bianco for his continuous and essential guidance, for all
the inspiring discussions we had, and for the help with scientific and non-scientific
problems.

Besides my supervisor, I would like to thank Prof. Marco Locatelli for his im-
mense knowledge in the optimization topic. I would also like to thank the head of the
Control Group, Prof. Aurelio Piazzi, for his encouragement. Then, I have to express
my gratitude to Prof. Stefano Caselli, head of the Robotics and Intelligent Machines
Laboratory, for giving me the opportunity to test my researches on actual mechatronic
systems.

My sincere thanks also goes to all the other colleagues I had the pleasure to share
this experience with, in particular my office mate: I surely miss the endless phone
calls of Mario Sabbatelli and the always interesting conversations with Fabio Oleari.

134 Bibliography

I would remember the fantastic experience that I have done at the Technischen
Universität of Braunschweig, Germany. In particular, I wish to thank the head of the
Institut für Robotik und Prozessinformatik, Prof. Friedrich M. Wahl, for the opportu-
nity he gave me to work with his wonderful group. I also thank friends Daniel Kubus
and Dirk Buchholz for making me feel at home every day during my stay in Germany.

Last, and most important, a huge thanks goes to my family and, in particular, to
my parents, for their endless support and their patience. To them I dedicate this thesis.

Fabio

	Introduction
	Real-time trajectory generation with dynamic filters
	The optimal trajectory scaling problem
	The discrete-time third order filter
	Design and convergence properties of s3
	Design and convergence properties of s4
	Definition range proofs of a1, a2, a3

	Convergence properties of s1 and s2
	Comparisons with respect to the previous version
	A test case

	Trajectory scaling systems in the configuration space
	The scaling problem
	The manipulator model
	Evaluation of the equivalent longitudinal constraints
	Feasibility problems
	Local scaling of R+ and R-
	Global scaling of R+ and R-

	Experimental results

	Trajectory scaling systems in the operational space
	Problem formulation
	The equivalent bounds evaluation for the LTL
	Feasibility problems
	Experimental results
	Efficient evaluation of J'(s) and J''(s)

	Singularity avoidance system: Online orientation modification
	Problem definition and proposed solution
	Singularity Detector and Orientation Modifier blocks
	The Orientation Synthesizer block
	The Equivalent Bounds Evaluator block
	Simulation results
	Experimental results

	Conclusion and future studies
	Bibliography
	Acknowledgments

