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ABSTRACT 

 

 

It is well recognized that matter has a discrete nature, but this aspect is 

usually considered only at the nano and microscale, on the other hand at the 

meso and macroscale levels compact matter is represented with a continuous 

model. At the macroscopic scales can be usefully adopted a discrete model of 

solids, without losing accuracy in the description of the main mechanical 

involved phenomena; when a multiscale study of solids is necessary the 

discrete approach, tailored to the scale of observation of interest, allows 

complete and exhaustive descriptions of many phenomena.  

This PhD thesis presents a general computational particle method suitable 

for analyzing the dynamic behaviour of compact solids as well as granular 

matters. The particle interaction is modelled through proper force functionals 

related to the nature of the material being analyzed (solid, granular or their 

interaction); such an approach is also adopted for the boundary and for the 

particle-particle contacts, so a unified mechanical model can be simply 

adopted for the simulation of a very wide class of mechanical problems under 

static or dynamic conditions.  

In particular the failure of brittle solids under dynamic dynamic impact can 

be easily predicted, avoiding the necessity of complex remeshing operations, 

stress field enrichment or the introduction of discontinuous displacement 

field, as typically required by numerical continuous approaches such as the 

finite element method. Moreover the discrete approach allows to simply 

model mechanical problems involving large displacements, friction or 



 x 

frictionless interactions with elastic boundaries, fragmentation and clustering 

of the failed material as well as cohesion in particle-like matters. 

Some examples aimed at demonstrating the versatility of the developed 

approach are finally presented: in particular the problems involving the failure 

of continuous solid elements under impact loading, confined particle flows 

and  solid-granular materials interaction are simulated through the proposed 

approach and the related results are critically discussed and, when available, 

compared with literature data. 
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NOMENCLATURE 

In the following the main symbols used in the present PhD thesis are listed 

 

)( inflra  Function of the influence radius 

ijij AA ,0,  

Cross section area of the truss assumed   

between particles i and j and its reference 

value, respectively 

c  Coefficient of the force potential 

D  Depth of the potential well 

2/)(

2

ji dd

rd

+=

==
 

Average diameter of the particles i and j 

*d  Equivalent diameter of two particles in contact 

ii rd 2=  Diameter of the generic particle i 

iE  Elastic modulus of the generic particle i 

E  
Equivalent Young modulus of the elastic 

contact between two particles 

)()( xx Π=totE  Total energy of the particle system 

)(rF  
Generic force acting between a couple of 

particles at the distance r  

ebdi FFFF ,,,  
Internal force, damping force, boundary and 

external force vectors, respectively 

iT ;F  Vector of the total force acting on the particle i 
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)(sK , 0K  
Stiffness of the particles bonding and its value 

when 0)( =sF  

nK  Stiffness of the particle-boundary stiffness 

M,im  Mass of the particle i and mass matrix 

n  Exponent of the force potential 

n , t  

Unit vectors normal and parallel to the 

tangential plane in the contact point between a 

generic particle and the boundary surface, 

respectively 

iP  Force vector acting on article i 

p  
Unit vector identifying the direction 

connecting the two particles centres 

R  
Distance at which the potential reaches its 

minimum 

inflr  Radius of influence of a particle 

jiijr xx −=  
Generic distance between the centres of the 

particles i and j 

0r  
Distance between the centres of the particles at 

which −∞→= )( 0rrF  

s  Effective distance between particles’ surfaces 

)2/2/(' ji ddrs +−=  Distance between particles’ surfaces 

t  Time variable 

nT , tT  

Particle-boundary contact surface forces 

normal and parallel to the tangential plane in 

the contact point, respectively 
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w  
Displaced distance of one particle into another 

or into the contact surface 

ix , ix& , ix&&  
Position, velocity and acceleration vector of the 

particle i, respectively 

x , x& , x&&  
Position, velocity and acceleration vector, 

respectively 

α  
Coefficient defining the maximum co-

penetration depth  

γ  
Thickness of a soft layer added to the boundary 

surface to smooth the contact forces 

r⋅= αδ  
Maximum co-penetration amount between two 

particles 

t∆  Time integration step amplitude 

LJΦ  Lennard-Jones interatomic potential 

)(xΦ , )(xtotΦ  
Generic strain energy potential and potential of 

the particle system, respectively 

dλ  Damping coefficient 

η  Viscosity coefficient 

)(wχ  
Smoothing function for the force particle-

boundary contact evaluation 

dµ  
Coefficient of dynamic friction between 

particles and boundaries 

mdµ  
Coefficient of dynamic friction between 

particles 

iν  Poissons ratio of the generic particle i 
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Chapter 1 

 

 

OBJECTIVES AND SCOPE 

 

 

 

1.1  Introduction 

The discrete nature of matter – typically recognised at the nano and 

microscale – is usually replaced by a continuous model at the meso and 

macroscale levels. However the discrete model of solids can be usefully 

adopted also at the macroscopic scales, still enabling a proper description of 

the main mechanical involved phenomena; it can be stated that the discrete 

approach, tailored to the scale of observation of interest, allows the multiscale 

study of solids, being based on the same common approach. 

The discrete element method (DEM), originally developed by Cundall and 

Strack (1979) has proven to be a powerful and versatile numerical tool for 

modeling the behavior of granular and particulate systems and also for 

studying the micromechanics of materials, such as soil, at the particle level. 

However, the method has also the potential to be an effective tool to model 

continuum problems, especially those that are characterized by a mechanical 

behavior involving the transformation from a continuum to a discontinuum 

(fragmentation). Such problems include failure of concrete structures, 
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crushing and fragmentation of rock due to blasting, fracture of quasi-brittle 

materials such as ceramics, etc. 

1.2 Objectives 

This study presents a general computational particle method suitable for 

analyzing the dynamic behavior of compact (continuum) solids as well as 

granular matters. The particle interaction is modelled through proper force 

functionals, related to the nature of the material being analyzed (solid, 

granular or their interaction); such an approach is also adopted for the 

boundary and for the particle-particle contacts, so a unified mechanical model 

can be simply adopted for the simulation of a very wide class of mechanical 

problems.  

In discrete approaches, complex non-linear interactions between bodies 

and within bodies (allowed to present different shapes and properties), are 

numerically simulated in order to get the motion of particles described by 

non-linear differential equations. 

In particular the failure of brittle solids under dynamic conditions can be 

easily predicted, avoiding the necessity of complex remeshing operations, 

stress field enrichment or the introduction of discontinuous displacement 

field, as typically required by numerical continuous approaches such as the 

finite element method. That is, the developed discrete element method will be 

used to model the static or dynamic response of materials that are initially 

solid and continuous, but eventually undergo fracture and become 

discontinuous due to fragmentation, due to extreme loading conditions. 
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1.3 Scope and thesis content 

After illustrating the basic concepts related to the discrete nature of 

materials and their mechanical modelling, a unified particle-based approach, 

suitable for continuum solids as well for discrete incoherent aggregates, will 

be presented by taking into account for the dynamic nature, large 

displacements and large strain characteristic of the problem. Finally, some 

examples related to the failure of brittle solids under impact loading and 

granular flow will be analyzed in order to underline the capability of the 

proposed approach. 

The obtained results, related to very different problems involving elastic-

brittle solids, granular assemblies of particles or mixed cases, have shown the 

wide capability of the method to capture very different and complex 

mechanical phenomena in dynamic problems, such as elastic deformation, 

large strains, elastic impact, material failure, boundary contacts, crack 

closure, particle-particle and particles-boundary contact friction etc.. 

The content of this doctoral thesis is organized as follow: 

Chapter 2 contains an overview on particles methods; it is a review of 

recent efforts of researchers in computational science for modelling and 

simulation of discrete or continuum mechanical behaviors of materials and 

structures. 

In Chapter 3 the theoretical basis of discrete element simulation of solids 

and fluid is analyzed: the main idea is that fluids or solids can be both 

represented as a large number of (usually rigid) bodies (particles) that interact 

via forces exerted at their common contact points. 

Chapter 4 describes how the Discrete Element Methods (DEM) can be 

formulates through a minimal set of contact models as a compromise between 
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a realistic and an “easy to handle” modeling approach; in some cases a single 

contact-model allows to simulate various systems and structures and a better 

and simpler contact models facilitate deeper understanding of the relation 

between micro and macro-properties. 

In Chapter 5 the proposed potential-based inter-particle method is 

presented; in particular a discrete computational method for continuum 

materials, granular-like or mixed cases, based on the concept of force 

potential interaction law, for the assessment of the mutual forces exchanged 

by particles representing the solid, is derived in detail. 

In Chapter 6 several numerical analysis simulating different problems 

involving compact or granular solids are illustrated.  

Finally in Chapter 7 some conclusions and perspectives are drawn. 
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Chapter 2 

 

 

OVERVIEW ON PARTICLE METHODS 

 

 

 

2.1 Introduction 

Solid and fluid mechanics focuses on the materials response to applied 

external loads and it is concerned with the stressing, deformation, and failure 

of incoherent solid materials and structures. The mechanics of fluids and 

solids has traditionally been founded on the principles of continuum 

mechanics; therefore, the physical quantities necessary to study the 

kinematics and force-balancing laws within the framework of continuum are 

displacements, strains, and stresses. The ever-increasing power of modern 

computers has had a remarkable impact on solid mechanics, indeed more 

efficient computational methodologies and accurate numerical solution of 

initial and boundary value problems have been major issues in the research 

of computational solid mechanics. More realistic and detailed descriptions of 

materials response, more efficient computational methodologies and accurate 

numerical solution of initial and boundary value problems, began in the 

research field of computational solid mechanics [1]. In the last thirty years 

many new computational methods in the field of solid and structural 

mechanics has been developed such as the Finite Element Method (FEM) [2] 
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and Meshfree Particle Methods also known as the Smoothed Particle 

Hydrodinamic SPH [3, 4, 5]. The fast development of these models has made 

them popular numerical techniques widely used in both academia and 

industry to solve various types of mechanics problems; also continuum-based 

approaches have been successful by solved for specific nano and macro-

mechanics problems [3]. 

Continuum mechanics does not refer the discrete structure of materials at 

microscopic length scales; the fundamental postulate of continuum 

mechanics assumes that materials are continuously divisible and the 

mechanical deformation and failure of many engineering materials have 

inherently a multiscale nature, in that processes, which occur on many 

different length and timescales, govern the observed macroscopic material 

behavior. At the smallest length scale, quantum mechanical interactions and 

atomic structure provide an underlying framework for the elastic deformation 

of materials and, more importantly, for the formation of a wide variety of 

defects in otherwise crystalline solids. There is an intimate coupling between 

long-range scale problems defects at the atomic-scale, although theories at 

higher length scales attempt to subjugate the smaller scale phenomena into 

‘effective’ properties or ‘constitutive rules’; however macroscopic 

phenomena of prime interest in material applications such as fracture and 

fatigue degradation, strictly depend on the details of smaller scale 

phenomena. On the other side, full atomistic description of individual defects 

alone does not permit to understand macroscopic behavior, since the higher 

scale defect interactions, collectively operate to drive large-scale behavior. 

Realistic methods and approaches for properly coupling different length 

scales is a great challenge for computer simulations. 
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This chapter is a review of recent research efforts in computational science 

for discrete or continuum based modelling and simulation of mechanical 

behaviors of materials. 

Computational methods related to atomistic/continuum coupling are based 

on the determination of the total potential energy of a system as a function of 

its degrees of freedom. It is possible to find the static equilibrium state, by 

minimizing the total energy or finding the zero force position for every degree 

of freedom (dof), where the derivative of the total energy with respect to the 

dof coordinate represents the force related to a dof. Finally, it is worth 

mention that at the heart of dynamics simulations is the Newton’s second law 

to study the evolutions of the system in the time domain.  

2.2 Atomic scale models 

Quantum mechanics governs energetics at the atomic-scale; atomistic total 

energy calculations provide the energy as a function of the collective nuclear 

coordinates, which are also the degrees of freedom in an atomic-scale 

calculation. The energy functional is minimized with respect to the electronic 

degrees of freedom for fixed nuclear coordinates. The force on an individual 

nucleus can then be obtained by taking the derivative of the total energy with 

respect to the desired nuclear coordinate. Atomic simulations, such as 

molecular dynamics (MD) and molecular mechanics (MM) are based on the 

assumption that atoms are the smallest unit need to be modeled. 

The field of molecular dynamics has developed into a sophisticated 

analysis methodology for simulating atomic-scale processes of different 

material types. MD Methods provide a mean for simulating those processes 

involved in material failure, such as void nucleation and dislocation formation 
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and interaction that form the foundation of a ‘bottom-up’ multiscale analysis 

methodology.  

MD simulations represent individual atoms as point masses that interact 

with near atoms through ad hoc force fields. The most refined description 

utilizes quantum theory that can be applied using some well-known physical 

constants such as the velocity of light or charges of nuclear particles and 

differential relationships to directly calculate molecular properties and 

geometries. Obviously, the computational demands are high and only a 

relatively small number of atoms can be analyzed.  

For larger atomic aggregates, empirical and semi-empirical potential 

functions have been developed to approximate atomic force fields. This 

approach to MD replaces quantum mechanics with classical Newtonian 

mechanics to predict the trajectories of individual atoms. Newton’s second law 

is expressed as: 

 �� = ���� (2.1) 

 

for each atom i, in a system constituted by N atoms. Here ��	is the atomic mass, �� 	 is the acceleration vector and �� is the resultant force acting on the �	
  
atom 

due to the interactions with other neighboring atoms. The force can also be 

expressed as the gradient of the potential energy, V, as 

 �� = −∇
 (2.2) 

At the atomic-scale, energetic aspects (governed by quantum mechanics), 

are function of the collective nuclear coordinates, which are the degree of 

freedom at this length scale. Quantum effects can be best described using, for 
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example, the Density Functional Theory [6-7] or the Tight Binding Method 

[8].  

2.2.1 The Density Functional Theory 

Density Functional Theory, formulated by Hohenberg and Kohn [6] and 

Kohn and Sham [7] in the 1960’s, expresses the total energy of a system as a 

functional of the total electron density; it calculates the total electronic energy 

by considering the entire electrons system as a whole. The ground state energy 

of many-electron system is a unique functional of the electronic density of the 

type: 

 � = ������� + 
������� + ��������� (2.3) 

 

where T and Vc are known functionals, corresponding to kinetic energy of 

electrons and the potential energy of electron-nucleus (or electron-ion) and 

nucleus-nucleus (or ion-ion) Coulomb interactions, respectively. For large 

many-electron atoms, only the outer (valence) electrons are usually 

considered to contribute to the electronic density of interest, while core 

electrons and the nucleus are treated together as an ion. In this case, the 

corresponding electron-ion and ion-ion interaction energies are employed for 

deriving the Vc term. 
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2.2.2 The Tight-Binding Method 

Tight-Binding Method, frequently used in mechanical problems, is a semi-

empirical method since such application operates by approximations and 

some parameters need to be well controlled. 

This method derives from the method of Linear Combination of Atomic 

Orbitals (LCAO), proposed by Bloch [8]. The objective of the method is to 

construct an approximate wave function of a single electron used to obtaining 

approximate trial functions for the corresponding many-electron systems. 

Tight-Binding method permits the study of inorganic materials including 

atomic and electronic structure of surfaces and the interplay between 

structural and electronic problems. 

This method permits to calculate properties of materials, structures, 

energies, electronic states, charge distributions, spin distributions as ab initio 

methods do, but it is computational much less demanding; obviously accuracy 

is reduced by an order of magnitude compared with more precise ab initio 

methods. 

 

Density Functional Theory and Tight-Binding Method are capable of 

capturing the physics of the problem at the atomic level; in quantum 

simulations of nano-materials, the force on an individual nucleus is the 

derivative of the total energy with respect to the desired nuclear coordinate. 

From a materials nanomechanics point of view, the quantum mechanics total 

energy calculation is also of central importance because it is possible to study 

various structural and mechanical properties of materials such as defect 

structures, grain boundaries, impurities and surfaces.  
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2.2.3 Empirical Interatomic Potentials 

The study of energetic problems at the atomistic scale can be faced 

adopting classical potentials models, typically used in MD, or quantum 

mechanics. An important difference between total atomic energy obtained 

from classical potential and quantum mechanics is that classical potentials 

models admit the form: 

 

�� = ����  (2.4) 

 

where �� is the energy of the ith atom, so the energy is expressed as a sum of 

individual atom energies. On the other hand, quantum mechanical description 

of the total energy cannot be partitioned into energies on a per-atom basis. For 

example fracture problems at atomistic scale, requires an understanding of the 

bonding between atoms and the simulation must accurately describe the 

interatomic bonding. Since the bonding is mediated by the valence electrons, 

a quantum-mechanical (QM) description would be the most accurate, but the 

computational cost limits such methods to a few thousand atoms for dynamic 

simulations.  

Classical Empirical Potential (EP) simulations, that approximate the 

interatomic interactions without an explicit QM description, can simulate 

millions of atoms; obviously, EPs are less accurate than QM to describe the 

bond breaking process. Most used molecular level continuous potentials are 

the Morse Potential and the Lennard-Jones Potential. 
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The Morse – Potential, is an empirical potential that describes covalent 

bond between a couple of atoms. Its analytic form is: 

 
���� = ���1 −  !��"!"#��$ (2.5) 

 

where D0 is the dissociation energy and r0 the equilibrium distance, which 

corresponds to the minimum of the potential function. 

This potential is used when interatomic distances are near to equilibrium 

distance. The research of equilibrium distance, r0, corresponding of the 

energy minimum, needs the calculation of the first potential derivative. 

 %
����%� = 2���1 −  !��"!"#��$' !��"!"#� (2.6) 

 

This expression represents the force between atoms obtained by deriving the 

potential. 

 

First applications of Lennard – Jones Potential was in chemistry problems 

of Van der Waals interactions between atoms. It is an isotropic potential, 

dependent only by the distance (r) between atoms and is defined as the sum 

of two terms, one attractive proportional to �!(, one repulsive proportional to �!)$. 

At shortest interatomic distances (� → 0) repulsive term prevail, while 

attractive term prevail for long distances (� → ∞); there is an equilibrium 

distance, r0, where potential energy is lower and reach the minimum. The 

classical form of this L-J potential is: 

 



OVERVIEW ON PARTCLE METHODS 13 


-.��� = 	�� /0��� 1)$ − 0��� 1(2 (2.7) 

 

where, as for the Morse-Potential, D0 is the dissociation energy and r0 the 

equilibrium distance. 

 

Eff. distance between particles surface, s = r - r0
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Figure 2.1– Lennard – Jones Potential  
"#"34 represents repulsive term 

"#"5 
represents attractive term. 

2.3 Mesoscopic models 

A widely used mesoscopic model is the discrete element method (DEM). The 

elementary units of granular materials are mesoscopic grains, which deform 

under stress. A discrete element simulation consists of a large number of 

bodies, usually assumed as rigid, that interact via forces exerted at their 

common contact points. By definition the “discrete element method applies 
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to a computer program only if it allows finite displacements and rotations of 

the discrete bodies, including complete detachment, and recognizes new 

contacts as the calculation progresses.”[9] 

Recent theoretical models [10] use molecular dynamics approach to study 

different scale problems, establishing relations between the microscopic 

quantities of the model and the macroscopic mechanical properties. 

DEM is applied in different application fields, ranging from rock 

mechanics to computer graphics, molecular dynamics (MD) etc, in which 

classical Newtonian mechanics is the base to predict the dynamic of 

individual elements. The dynamic behavior of DEM is usually described 

through time-stepping algorithms; at every time step the movement of every 

single particle and the contact forces between particles are calculated. 

DEM simulations can provide dynamic information, such as the 

trajectories and transient forces acting on individual particles; most common 

types of DEMs used are the soft-particle and the hard-particle approaches.  

The soft-sphere method, originally developed by Cundall and Strack 

[11], was the first granular dynamics simulation technique published in the 

literature; they introduced this method to analyze the behavior of soil by using 

two dimensional disc elements in the numerical scheme. In such an approach, 

particles are permitted to suffer minute deformations, and these deformations 

are used to calculate elastic, plastic and frictional forces between particles. 

The motion of particles is described by the well-established Newton’s laws 

of motion. A characteristic feature of the soft-sphere models is that they are 

capable of handling multiple particle contacts, which are of importance when 

modelling quasi-static systems. 

In a hard-particle simulation, a sequence of instantaneous collisions is 

processed and the forces between particles are not explicitly considered. 
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Therefore, typically, hard-particle method is most useful in rapid granular 

flows. 

In a granular flow, a particle can have two types of motion: translational 

and rotational. The particle may interact with its neighboring particles or 

walls and eventually interact with its surrounding fluid during its movement, 

through which the momentum and energy are exchanged. The particles and 

fluids of the domain influenced this movement by not only the forces and 

torques originated from its immediate neighboring particles and eventually 

the surrounding fluid, but also through the propagation of disturbance waves 

that involve also particles far away.  

In DEM approach, this problem can be solved by choosing a numerical 

time step less than a critical value so that during a single time step the 

disturbance cannot propagate from the particle and fluid farther than its 

immediate neighboring particles and closest region of fluid. 

Thus, at all times the resultant forces on a particle can be determined 

exclusively from its interaction with the contacting particles and neighbor 

fluid for a coarse particle system. For a fine particle system, non-contact 

forces such as the van der Waals and electrostatic forces should be also 

included. Based on these considerations, Newton’s second law of motion can 

be used to describe the motion of individual particles. The governing 

equations for the translational and rotational motion of particle i with mass mi 

and moment of inertia Ii are: 

 

�� %6�%7 = 	�8�9�9 +�8�:;�: + 8�< + 8�= 
(2.8) 
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>� %ω�%7 = 	�@�99  
(2.9) 

 

where 6� and ω� are the translational and angular velocities of particle i, 

respectively, 8�9�  and @�9 are the contact force and torque acting on particle i 

due to particle j or walls, 8�:;� is the non-contact force acting on particle i by 

particle k or other sources, 8�< is the particle-fluid interaction force on particle 

i, and finally  8�= is the gravitational force. 

2.4 Multi-scale models 

Multi-scale models involve methods from different scientific disciplines 

to bridge the wide range of time and length scales that are inherent in a 

number of essential phenomena and processes in materials science and 

engineering (Fig.2.2). Approaches over many scales a time and space are used 

to describe a multitude of materials-related phenomena. 
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Figure 2.2 –Examples of the different time and space scales in the study 

of solids (from[12]). 

 

In this approach, models that best simulate the relevant physics at lower 

length scales are united with models at larger length scales, through 

information transfer involving averaging, homogenization, or superposition 

schemes. The ultimate success of this approach is dependent on the accuracy 

of data linkage and the intrinsic fidelity of the physical models used. 

Multiscale methodologies relate material over a range of length scales; they 

are founded on different physics-based models, able to appropriately 

represent damage mechanisms at each scale, linking larger length scales 

models with lower length scales(Fig.2.3). 
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Figure 2.3 –General scheme of coupled atomistic/continuum region (from 

[12]). 

 

Multiscale approaches usually focus on mechanisms involved in the 

initiation and evolution of damage and allow a more complete understanding 

of physics of fracture [4]. Nanoscale methods (Ab Initio, Tight-Binding TB, 

Density-Functional Theory DFT, Molecular Dynamics MD, and Molecular 

Statistics MS [3]) predict, by using basic physics principles, deformation and 

fracture processes at the atomistic level. The analysis of a suitable domain in 

real applications by using only nanoscale methods, in most applications, 

could reach an upper computational bound for practical analysis. In opposite, 

continuum methods, like FEM, enable to represent materials behavior at 

length scale with lower computational cost, but with continuum assumptions. 

Multiscale methods may be classified into two categories: 

1) Sequential methods that use average physical parameters as initial 

conditions or supply calibrated material constants to another separated 
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model. Using separated material models, the advantage is that every 

model has his own length and time scale. 

2) Concurrent methods are based on the contemporary solution of 

strongly linked material models. Generally, there exists two domains 

that describe materials at the atomic level and continuum 

representation respectively. Between the two domains is collocated an 

intermediate region where continuum and atomic discretization are 

overlapped through “pad” atoms/nodes in which different coupling 

schemes are used. In heterogeneous materials sequential methods the 

use of different constitutive laws at different scales is adopted; total 

material deformation, stress and strain con be subdivided in coarse 

macro-component and fine micro-component. Usually the approach 

of concurrent methods is to identify a small region of the simulated 

system where the material is studied at the atomic level; this region is 

linked with the larger one, where material is represented at the 

continuum level. To obtain a successful coupling between atomistic 

and continuum region, it is necessary to refine the continuum 

representation down to the atomic scale by superposing each node 

over an atom at the interface region. 

 

2.4.1 The Macroscopic, Atomistic, Ab initio Dynamics methods 

The Macroscopic, Atomistic, Ab initio Dynamics (MAAD) procedure was 

developed by Broughton et al. [13], Abraham et al. [14-17], and Shen et al. [18-

19] to simulate fracture; it combines ab initio quantum analysis, molecular 

dynamics, and finite element continuum models. 
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For example, in order to study the problem of fracture, bond breakage are 

predicted at the crack tip by using Ab initio analyses based on Tight-Binding 

(TB), molecular dynamics (MD) based on empirical force potentials to model the 

crack wake and surrounding atomic lattice, while finite element (FE) model is 

used to simulate the far field material. The FE nodes correspond in a one-to-one 

manner with the interface atoms of the MD region. 

Therefore, it was deemed necessary to include a quantum mechanical 

approach into the simulations for a small region in the immediate neighborhood 

of the crack tip, where bond breaking is prevalent during fracture, while far away 

from this region the empirical potential description is adequate.  

The spatial decomposition of the computational cell produces five different 

dynamic regions of the simulation: the continuum FE region at the far-field, 

where the atomic displacements and strain gradients are small; the atomistic MD 

region around the crack with large strain gradients but with no bond breaking; 

the quantum mechanical region (labelled TB because of the use of the tight-

binding method) right at the crack tip where atomic bonds are being broken and 

formed; the FE/MD hand-shaking region; and the MD/TB hand-shaking region. 

The total Hamiltonian, A	B	 for the entire system is: 

 

        A	B	 = ACD�EF, FH I ∈ K�� + A�L�E�, �HI ∈ M�� + 

               	+ANO�E�, �HI ∈ �P� + ACD/�L�EF, FH , �, �HI ∈ K�/M�� + 

           +ACD/�L�E�, �HI ∈ M�/�P�		 
(2.10) 

 

The degrees of freedom of the Hamiltonian are the atomic positions � and 

velocities �H  for the TB and MD regions, and displacements F and their time rates 

of change FH  for the FE regions. Equations of motion for all the relevant variables 

in the system are obtained by taking appropriate derivatives of this Hamiltonian. 
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All variables can then be updated in lock step as a function of time by using the 

same integrator. Thus, the entire time history of the system may be obtained 

numerically once an appropriate set of initial conditions is given. Following 

trajectories dictated by this Hamiltonian leads to the evolution of the system with 

conserved total energy, which ensures numerical stability. 

This kind of discretization has two main problems: one is the expensive 

computational cost and the other is the lack of damping, needed to remove 

spurious reflections at the interface between the three regions. 

2.4.2 The Finite Element-Atomistic method 

The Finite Element-Atomistic (FEAt) method developed by Kohlhoff et al. 

[20], Gumbsch and Beltz [21], and Gumbsch [22] is a methodology similar to 

MAAD approach that links atomistic representation to a continuum finite 

element discretization. 

This method is based on the decomposition of a crystal into a (generally) 

three different domains: a lattice region with fully atomistic resolution, where 

interatomic potentials are employed; a continuum region discretized by finite 

elements; between continuum domain and atomistic domain a region, called “pad 

region”, in which individual atoms are directly linked to finite element nodes 

(Fig.2.4).  

In FEAt, the coupling condition is on the force level, whereas other 

concurrent multiscale methods perform the coupling on the energy level. To 

define these coupling conditions in a consistent fashion, the elastic energy � =�R�S� is expanded into a Taylor series about the state of zero strain under the 

assumption of zero stress, 
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��S� = ��0� + T�TS�9 + 12 T$�TS�9TS:U TS�9TS:U + 

     + )( VWDVXYZVX[\VX]^ TS�9TS:UTS_;	+ ….. 

(2.11) 

 

For the stresses continuity, the strains and all coefficients in this series must 

be equal in the atomistic region and in the continuum. Since the strains have been 

made equal by means of the strong compatibility of displacements, equality of 

the stresses implies, that the elastic constants of the continuum are equal to those 

defined by the interatomic potential in the atomistic region	, 
 

ℂ�9 = VDVXYZ   ,    ℂ�9:U = V4DVXYZVX[\   ,    ℂ�9:U_; = VWDVXYZVX[\VX]^ (2.12) 

 

Since the reference state of the series in Eq.(2.11) is a homogeneous 

deformation, S = 0, it is indeed permissible to assign to the continuum the second 

and higher order elastic constant as defined by Eq.(2.12), derived from the 

interatomic potential. The first-order elastic constants in the continuum are zero 

by definition, which imposes the restriction on the potential that must provide 

zero stress in a perfect lattice. Within the framework of local and linear elasticity 

theory, equilibrium between the lattice and the FE continuum is fulfilled, if terms 

up to the second order are matched. FEAt accounts for elastic nonlinearity in that, 

additionally, elastic constants of third order, are adopted as well. 

These approaches have been successfully applied to the problem of crack 

propagation but the direct atom to node linkage at the MD-FEM interface gives 

rise to undesirable phonom reflection. 
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Figure 2.4 – FEAt model of a crack tip in an fcc crystall (from Gumbsch 

and Beltz [21]) 
 

2.4.3 The Coarse Grained Molecular Dynamics method 

A generalized formulation of conventional FEM utilizes FEM nodes 

superposed over the entire material domain to develop another computational 

scheme for atomistic-continuum coupling called Coarse Grained Molecular 

Dynamics (CGMD) developed by Rudd and Broughton [23,24]. 

According to this method, in the molecular dynamics (MD) refined region, 

atoms and nodes correspond in a one-to-one fashion; in the coarse-grained (CG) 

finite element region the finite element mesh is coarsened with individual nodes 

associated with many atoms. In this way, the computational cost of representing 

the entire material is reduced. Dynamic problem in the MD region is solved by 

using the integrated equations of motion for each atom, while the kinematics of 

the nodal degrees of freedom in the CG region are obtained by using the standard 

equations of continuum FEM approach. 

The key point of this effective model is that the equations of motion for 

the nodal (mean) fields are not derived from the continuum model, but from 

continuum region

pad region

atomistic domain
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the underlying atomistic model. The nodal fields represent the average 

properties of the corresponding atoms, and equations of motion (in this 

particular case the Hamilton’s equation) are constructed to describe the mean 

behavior of underlying atoms. 

One important principle of CGMD is that the classical ensemble must obey 

the constraint that the position and momenta of atoms are consistent with the 

mean displacement and momentum fields. To be specific, let the displacement 

of atom a be Fb = xb − xb� where xb�its equilibrium position is. The 

displacement of mesh node d is an average of the atomic displacements 

 

F9 = �e9bFbb  (2.13) 

 

where e9b  is a weighting function, a microscopic interpolating functions 

analog to the FE approach. Note that Latin indices, d, f denote mesh nodes 

and Greek indices, a, g, denote atoms; a similar relation holds for the 

momenta hb. Since the nodal displacements are less than or equal to the 

number of atomic positions, fixing the nodal displacements and momenta, 

does not necessarily determine the atomic positions entirely. Therefore some 

subspace of phase space remains not sampled, which corresponds to the 

degrees of freedom that are missing from the mesh points. The coarse-grained 

energy is defined as the average energy of the canonical ensemble on this 

constrained phase space: 
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��F:, FH :� = 〈A�L〉F[,FH [ = k%xb%pbA�L !mnopΔ/r 

Δ = stuu9 −�u9e9bb wt uuH9 −�pbe9b�bb w9  

(2.14) 

 

where x = 1/�fO�� is the inverse temperature and Z is the partition function. 

The 3-D delta function t�F� enforce the mean field constraint (Eq. 2.14). 

When the mesh nodes and the atomic sites are identical, the CGMD equations 

of motion agree with the atomistic equations of motion. As the mesh size 

increases some short-wavelength degrees of freedom are not supported by the 

coarse mesh. Nevertheless, these degrees of freedom not neglected entirely, 

because their thermodynamic average effect has been retained. This 

approximation is expected to be good if the system is initially in thermal 

equilibrium, and the missing degrees of freedom only produce adiabatic 

changes of the system. 

 

 
Figure 2.5 –GC and MD regions in the CGMD approach (from Rudd and 

Broughton [23]). 
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2.4.4 The Quasicontinuum method 

The Quasicontinuum (QC) method was originally formulated by Tadmor et 

al. [25] to provide a direct coupling of an atomistic region to a continuum 

domain; additional developments to the model have been presented by Knap and 

Ortiz [26].  

The essential building blocks of the static quasicontinuum model are: (1) 

the constrained minimization of the atomistic energy of the solid; (2) the use 

of summation rules to compute the effective equilibrium equations; and (3) 

the use of adaptation criteria in order to tailor the computational mesh to the 

structure of the deformation field. An extension of the method to finite-

temperature has also been proposed [27]. 

The material domain is fully described at the atomistic scale by introducing 

“representative atoms” or “repatoms”; this kind of atoms have a dual role in 

defining either “nonlocal” individual atoms that are subjected to a force 

environment of neighboring atoms, or “local” atoms that operate similarly to 

continuum finite element nodes. The partitioning of the QC region into local 

continuum regions and MD domains is shown in Fig. 2.6. Deformation gradients 

over local atomistic domains are calculated and, if small enough, allow the 

application of the Cauchy-Born rule [28] to be performed in which kinematic 

constraints, similarly to finite element shape functions are enforced on clusters 

of atoms that are considered as a local continuum. Remeshing is constantly 

performed to update the model in order to resolve atomic scale detail and to 

redefine continuum atomic subdomains, where deformation gradients are small 

and can be grouped to minimize computational cost.  

The quasicontinuum model starts from a conventional atomistic 

description that computes the energy of the solid as a function of the atomic 

positions. The configuration space of the solid is then reduced to a subset of 
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representative atoms. The positions of the remaining atoms are obtained by 

piecewise linear interpolation of the representative atom coordinates, in the 

same manner as displacements field is constructed in the FE method. The 

effective equilibrium equations are then obtained by minimizing the potential 

energy of the solid over the reduced configuration space. A direct calculation 

of the total energy in principle requires the evaluation of sums that are 

extended over the full collection of atoms, namely, 

 �	B	 = ∑ ��z�{) , (2.15) 

 

where N is the total number of atoms in the solid. The full sums may be 

avoided by the introduction of approximate summation rules; for example, 

the lattice quadrature analog of Eq.(2.15) can be written as  

 

�	B	 ≈ ∑ }��~�z��{) , (2.16) 

 

where }� is the quadrature weight that signifies how many atoms a given 

representative atom stands for the description of the total energy, and �~�  is the 

energy of i-th representative atom. Note that in this case the sum is over �" 

representative atoms only. In the quasicontinuum approach, the FE method 

serves as the numerical tool for determining the displacement fields, while an 

atomistic calculation is used to determine the energy of a given displacement 

field. The positions of the coarsegrained atoms are needed because the energy 

of the representative atoms depends on them. This approach is in contrast to 

standard FE schemes, where the constitutive law is introduced through a 

phenomenological model. The selection of the representative atoms may be 
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based on the local variation of the deformation field. The method  can be used 

in 2D problems. 

 

 
Figure 2.6 – Repatoms used to define individual atoms and local 
continuum regions in the QC method. (from Knap and Ortiz [26]) 

 

Spurious “ghost forces” are present at the interface and special treatments are 

necessary to remove them. 

 

2.4.5 The Coupled Atomistic/Discrete Dislocation method 

The Coupled Atomistic/Discrete Dislocation (CADD) method developed by 

Shilkrot et al. [29,30], Curtin and Miller [31], Shilkrot et al. [32], and Shiari et 

al. [33] can be used for problems in which dislocation formation and interaction 

are the physical mechanisms of interest and persist over long distances. 

The interface region between MD and FEM is similar to the MAAD and 

FEA methods; a detection band is created near MD-FEM interface to 

determine the type of dislocation entering the continuum. The detection 

scheme is shown in Fig.2.7 where, for 2D dislocations, active slip planes are 

separated by relative angles equal to 	�/3. 
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Because the material is assumed to be linear elastic, a superposition can be 

made to decompose the continuum into an infinite domain that contains the 

long–range singular dislocation stress fields, represented by dislocation 

dynamics methods and a finite domain region that contains smooth 

displacement fields represented by FEM. 

 

 
Figure 2.7 – Close-up of dislocation detection and near interface (from 

Shilkrot et al. [32]). 
 

Full atomic simulation is not required because the dislocations are 

represented analytically, and it allows a significant improvement in modeling 

efficiency. A one-to-one node-atom linking is used in the transition between 

the atomic and continuum finite element domains; this method links directly 

the interface atoms to the nodes in the continuum. Pad atoms are superposed 

with continuum elements and are connected to nodal displacements in an 

extension of the atomic region into the continuum. The atoms in the extension 

minimize the effect of the free surface on the interface atoms, but they 

contribute to increase a modelling error by introducing nonphysical stiffness 

along the interface.  

The interatomic interactions in the one-dimensional chain of atoms are 

assumed to be represented by linear springs connecting first and second 

neighbors along the chain. The presence of second-neighbor interactions 
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constitutes the non-locality of the atomic problem. The stiffness constant for 

first-neighbor interactions is denoted as f) and that for second-neighbor 

interactions as f$ A zero-force spring length ' is assumed for the near 

neighbor springs and 2' for the second neighbor springs. Thus, the unstressed 

reference crystal corresponds to a chain of atoms with lattice constant a. The 

energy functional for the chain of atoms can be written in terms of the 

displacements �� of the atoms measured from their original lattice sites as 

 

�� 	= 	�����  (2.17) 

 

where ��� = )$ �)$f)��� − ��!)�$ + )$ f)����) − ���$ + )$f)��� − ��!$�$� 
with factor ½ accounting for double counting of spring energies in the sum 

over Eq. (2.15). 

An appropriate continuum model of the one-dimensional chain is 

constructed by considering elastic energy density functional of the form 

 

�	 = 	12��S$ (2.18) 

 

where �� is the appropriate elastic constant and S is the strain. In the one-

dimensional chain with each atom corresponding to a continuum node, the 

strain between nodes � and �	 − 1 is S = ��� − ��!)�/', so the energy of 

element � can be written 

 

��� 	= 	12 f���� − ��!)�$ (2.19) 
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where f� is the effective stiffness of the element. To determine a proper value 

for f�, considering a state of uniform deformation, the energy of the 

continuum system is matched to that of the fully atomistic system. So we can 

get 

 f� 	= 	 f) 	+ 	f$ (2.20) 

 

By using the stiffness f�, the continuum model can predict perfectly the 

behavior under any uniform applied load. The total continuum energy is then 

 

�� 	= 	�����  (2.21) 

 

In the CADD model, the transition region contains the pad atoms > + 1 

and > + 2	 are not connected to the corresponding continuum nodes > + 1 and > + 2; they are extra degrees of freedom in the problem. The energy for the 

entire problem is written as 

 

���LL 	= 	 � �������$ +�������  (2.22) 

 

which is minimized with respect to the real atoms positions, the two pad 

atoms, and all the continuum nodes 

CADD is currently restricted to simulating dislocations in two 

dimensions. 
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2.4.6 The Equivalent Continuum Model 

A combined MD and Equivalent Continuum Model (ECM) method has 

been developed by Shen and Atluri [18], it is similar to the Quasi-continuum 

methods, but uses the meshless local Petrov-Galerkin (MLPG) representation 

to link the MD and ECM regions. 

 

 

Figure 2.8 – Depiction of ECM and MD region in the MLPG approach 

MD-FEM cupling (from Shen and Atluri [18]). 

 

Generally, the Finite Element Method has some disadvantages as the 

need for remeshing in large deformation problems or the need to interpolate 

discontinuous secondary variables across interelement boundaries; to 

overcome this kind of problems, meshless method has been developed. The 

Cauchy-Born hypothesis is applied in the ECM region for determining the 

elastic properties of the continuum from the atomistic description of the 

system. 
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As shown in Fig. 2.8, in the MD region the solid points represent atoms, 

while in the ECM region, the solid points represent atoms and the open points 

represent nodes used in the MLPG method. Thus, in the ECM region, atoms and 

nodes do not have to be coincident. The ECM method has been demonstrated to 

be suitable in one-dimensional chain models and in the two-dimensional analysis 

of graphene sheets. 

2.5 Continuum models 

Under the traditional continuum framework, materials are assumed to be 

composed of a divisible continuous medium, with a constitutive relation that 

remains the same for a wide range of system sizes. There are a large variety 

of numerical methods that can be used for solving continuum problems 

described by partial differential equations, the most popular being the finite 

element method (FEM) [34]. It is a numerical method that permits to obtain 

an approximate solution of a system of partial differential equations that are 

transformed in an algebraic system of equations. Dividing the continuum into 

a number of elements, each one connected to the next by nodes, it is possible 

to obtain a discretization (mesh). FEM’s discretization process converts 

continuum equations, that are typically in the form of deterministic or 

stochastic partial differential equations (PDE’s), into a set of coupled ordinary 

equations that are solved at the nodes of the FE mesh and interpolated 

throughout the interior of the elements using shape functions. Total potential 

energy is the sum of two parts, the internal energy U, that is the strain energy 

caused by the deformation of the body, and external work W associated by 

the applied surface and body forces. 

The total potential energy under the FE frameworks written as: 
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 Π = � −� (2.23) 

 

The internal energy is the strain energy caused by deformation of the body 

and can be explicitly written under the linear elastic hypothesis as 

 

 

� = 12k E�INESI� %Ω = 12k ESIN���ESI� %Ω 
(2.24) 

 

where E�I = ��������������������N denotes the stress vector,	ESI =
�S��S��S������������Ndenotes the strain vector, ��� is the elastic matrix, and 

Ω indicates that integration must be performed over the entire domain. 

A recent computational technique, known as element-free Galerkin 

method (EFG), proposed initially by Belytschko et al. [35, 36] for the solution 

of elasticity problems doesn’t suffer of the typical drawbacks of the finite 

element method. 

The EFG method is a Galerkin discretization technique based on the 

concept of moving least-square approximation, proposed by Lancaster and 

Salkauskas [37] that has been used first in the diffuse element method by 

Nayroles et al. in [38] and has some features in common with the Smoothed 

Particle Hydrodynamics (SPH) method.   

It can be considered as a generalisation of the finite element method since 

in the EFG method local approximation does not depend only on nodal values 

of nodes belonging to a particular element, as happens in the FEM, but on the 

weighted values of a “cloud” of nodes in the neighbourhood of the point of 
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interest. It has been successfully applied to different engineering problems 

such as elasticity [39], elastoplasticity [40], dynamic and fatigue fracture 

problems [41], and so on. 

The description of the moving least-square interpolant )(xhu  of a generic 

field function )(xu  is the key for the comprehension of the element-free 

Galerkin method. 

The moving local approximation (instead of interpolation as usually done 

with finite elements) is written by using a linear combination of a base of 

functions jp  (usually monomials) in the space coordinates ],,[ zyx=x : 

 

)()()()()(
1

xaxpxxx ⋅=⋅=∑
=

T
m

j
jj

h apu  (2.25) 

 

For instance linear and quadratic monomials bases in 3 dimensions are the 

following: 
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Once the vector of the coefficients )(xa  has been determined at the point 

(which position is given by the vector x ) where the approximation is sought, 

the local approximation is completely known.  Such a vector )(xa  can be 

determined by minimising the discrete weighted square difference 

[ ])()( xx uuh −  between the approximate and the real solution. This can be 

obtained by the minimisation of the norm L  defined by: 
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(2.27) 

 

where Iû  are the fictitious nodal values (and not the actual nodal values 

)( Iu x  of the unknown displacement field at Ixx = , )( IIdw x-x=  is a 

weight function (depending on some parameters such as the relative 

Euclidean distance between points Ixx   and  , IId x-x= ) and n  is the total 

number of nodes in the neighbourhood of x  where 0)( ≠Iw x-x  (i.e. inside 

the domain of influence of the considered point x ). 

The condition of minimum of L  with respect the unknown vector )(xa , 

0)(/ =∂∂ xaL , leads to a system of linear equations with the solution: 

 

uxBxAxa ˆ )( )()( 1−=  
 

(2.28) 

 

where the matrices )( ),( nmmm ×× BA  and the vector û  can be written: 
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(2.29) 

 

By substituting eqn. (2.28) into (2.25) the approximate solution )(xhu  of 

the filed variable can be obtained: 

 

[ ] uxΦuxBxAxpx ˆ )(ˆ )( )()()( 1 =⋅= −Thu  (2.30) 
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where the vector )(xΦ  of the shape functions can be recognised: 

 

[ ] )( )()()(....)()()( 1
21 xBxAxpxxxxΦ

−⋅== T
nΦΦΦΦΦΦΦΦΦΦΦΦ

 

(2.31) 

It is important to note that, at the location Ixx = , the obtained shape 

functions depend only on the polynomial basis, on the local node arrangement 

and on the weight function used )( Idw .   

The EFG method requires that the support of the weight function 

associated with the I-th point involves a sufficient numbers of nodes to ensure 

the invertibility of the matrix )(xA .  On the other hand, such a support should 

not be too large in order to keep the local character of the approximation 

necessary in the EFG method and not producing ill-conditioned system 

matrices. 

Since the shape functions do not fulfil the so-called Kroneker delta 

condition (i.e. IJIJ δ≠Φ )(x ), as usually happens for the shape functions in 

the FE or boundary elements methods, the enforcement of Dirichlet boundary 

conditions is not simple as in classical computational technique. 

Different techniques have been proposed to this end: the most common 

can be considered the Lagrange multiplier method, modified variational 

principles [43], the penalty method [44], etc.  In other words, in the EFG 

method the boundary conditions cannot be enforced by simply writing uu =ˆ  

due to its approximation property; the following relation must be considered 

instead: 
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uuxΨxu == ˆ )()(h  
 

(2.32) 

where Ψ  is the matrix of shape functions. 

By adopting for the penalty method [44], the functional governing the 

equilibrium problem must be modified as follows: 
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(2.33) 

where α  is the penalization term; when the boundary conditions are 

exactly satisfied, the added term in eqn. (2.33) is zero and the functional *Π   

is therefore identical to the standard one, Π . 

By using the approximation of the displacement field, uxΨxu ˆ )()( =h  

(Eq. (2.33)), the stationariness of the modified functional becomes: 

 

( ) 0ˆ * =−−+= ααδ ffuKKΠ  (2.34) 

 

where u

Γ

T

Ω

T dΓdΩ
u

∫∫ ==    and   SΨΨKDBBK αα  represent the standard 

stiffness matrix and the contribution to stiffness matrix due to constraints, 

respectively; t

Γ

T

Ω

T dΓdΩ
t

∫∫ +=    tΨbΨf , and u

Γ

T dΓ
u

∫=   uΦf αα  are the 

vector of nodal forces and the contribution to vector of nodal forces given by 

constraints, respectively, while ΨB ∂=  is the compatibility matrix and S  is 

a 3x3 (in 3-D problems) diagonal matrix in which the term jjS  is equal to 1 if 

the j-th degree of freedom is prescribed on uΓ  and equal to 0 otherwise.   
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2.6 Macroscale DEM 

Macroscale DEM is becoming an effective method of investigating 

engineering problems in sold, liquid, granular and heterogeneous materials, 

especially in granular flows, powder mechanics, advanced ceramics, and rock 

mechanics.  

DEM at the macroscale in geomechanics is a widespread method to study 

many kind of problems. The behavior of bulk granular materials is usually 

difficult or sometimes impossible to measure and the performance of 

equipment that handles or processes these materials can often only be 

determined by making measurements on the outputs from physical 

prototypes. DEM simulation to the discrete manufacturing industry can 

simulate and analyze the bulk behavior of granular materials, providing the 

means to reduce dependency on physical prototyping shorten design cycles 

and leverage design know-how in the simulation environment. Other 

industries within the discrete manufacturing sector use DEM in the design of 

steelmaking plants, asphalt production plants, pharmaceutical processing 

equipment, high-speed printers, electronics, aircraft and automotive 

components. 

Examples of processes where DEM is being used at the macroscale to 

improve designs and optimize process configuration include: dry and wet 

mixing of powders, drying – drum, cross-flow and counter-flow, 

comminution – crushing, grinding, mixing and blending of pharmaceutical 

powders, drying and coating of pharmaceutical tablets, aggregates, food 

products, granulation and agglomeration of powders, mixing and extrusion 

melting of plastics. 
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Another field of application for macroscale DEM is the modeling or 

simulation of fluid-solids or fluid-particles systems. 

These concepts will be treated accurately in the Chapter 3, considering 

different theories and studies presented in literature. 
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Chapter 3 

 

 

SOLID AND FLUID MODELLING WITH 

PARTICLE METHODS 

 

 

 

3.1 Introduction 

Since the invention of the finite element method (FEM) in the 1950s, it has 

become a widely used method in engineering computations. A salient feature 

of the FEM is that it divides a continuum into discrete elements connected 

together by a topological map, which is usually called “mesh”.  

However, this procedure is not always advantageous, because the 

numerical compatibility condition is not the same as the physical 

compatibility condition of a continuum.  

Today, some kind of problems like simulations of impact/penetration, 

explosion/fragmentation, flow pass obstacles, and fluid-structure interaction 

problems, involve adaptive remeshing procedures that often introduces 

numerical errors, and thus is not desirable from a computational point of view. 

Therefore, the so-called Arbitrary Lagrangian Eulerian (ALE) formulations 

have been developed [1-5]. 

The objective of the ALE formulation is to make the mesh independent of 

the material so that the mesh distortion can be minimized. In computer 
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simulations of very large deformation and/or high-speed mechanical and 

structural systems, even with the ALE formulation, a distorted mesh 

introduces important errors in numerical computations. Furthermore, the 

convective transport effects in ALE often leads to spurious oscillation that 

needs to be stabilized by artificial diffusion or  through a Petrov-Galerkin 

stabilization.  

Another way it would be to subdivide a continuum by only a set of nodal 

points, or particles, without mesh constraints, with the aim to have a method 

computationally efficient; this is the leitmotif of contemporary meshfree 

Galerkin methods. Indeed, the meshfree particle methods can easily handle 

very large deformations, since the connectivity among nodes is generated as 

part of the computation and can change with time; the discretized domain can 

be linked more easily with a CAD database than finite elements do. Since it 

is not necessary to generate an element mesh, it is possibly to study the 

damage of the components, such as fracture, which should prove very useful 

in modeling of material failure and accuracy can be controlled more easily, 

since in regions where more refinement is needed, nodes can be added quite 

easily (h-adaptivity). 

According to computational modeling, particle methods may be 

categorized into two different types: those serving as approximations of the 

strong forms of partial differential equations (PDEs) and those serving as 

approximations of the weak forms of PDEs.  

To approximate the strong form of a PDE by using a particle method, the 

partial differential equation is usually discretized by a specific collocation 

technique. Examples are Smoothed Particle Hydrodynamics (SPH) [6–10], 

the vortex method [11-16], the e generalized finite difference method [17,18].  
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It is worth mentioning that some particle methods, such as SPH and vortex 

methods, were initially developed as probabilistic methods [8,12], and it turns 

out that both SPH and the vortex method are most frequently used as 

deterministic methods today. Nevertheless, the majority of particle methods 

in this category are based on probabilistic principles, or used as probabilistic 

simulation tools. Methods in this category are molecular dynamics (both 

quantum molecular dynamics [19-20] and classical molecular dynamics [21-

22]), direct simulation Monte Carlo (DSMC), or Monte Carlo method based 

molecular dynamics, such as quantum Monte Carlo methods [23-24] and the 

lattice gas automata (LGA), or lattice gas cellular automata [25–26].  

Therefore, a discrete element simulation of solids consists of a large 

number of bodies, usually rigid, that interact via forces exerted at their 

common contact points. For example in the DEM models of cemented 

material the bonding agent is often represented by breakable bonds between 

particles. Some of the bond models are based on a transfer of tensile and 

tangential forces until there is bond breakage [27-28] while others use 

additionally torque transfer to account for the finite extent of the cementation 

[29-30]. 

In this context, it is useful to cite some sentences about the discrete nature 

of solids taken from [31]: “Primarily, Cauchy and Navier considered a rigid 

body as a system of material particles. They assumed that the material 

particles in each pair are mutually connected by interaction forces that are 

directed along the line connecting them and linearly depend on the distance 

between the particles. On the level of the physical science at the beginning of 

the nineteenth century, it was impossible to describe the elastic properties of 

actual bodies. Nowadays, there are rigorous physical theories that permit 

determining the elastic properties of crystal of various structure, starting 
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from the consideration of the interatomic interaction forces in the crystal 

lattice. A simpler way accepted in the modern theory of elasticity is to 

consider the distribution of the body matter over the entire volume, which 

permits, considering the displacements of material points, as continuous 

functions of the coordinates”. 

From the above considerations, it appears as the discrete nature of solids 

can be exploited for their modelling in computational approaches. 

3.2 Discrete model strain and stress evaluation 

The model of elastic strain of a continuum medium is constructed 

following the simple way mentioned above. In the theory of elasticity the 

principal postulates are based on the assumption that the medium is 

continuum and infinitely divisible, the displacements and strains are relatively 

small, and the stresses and strains are related by a linear law. Under these 

conditions, considering an infinitely small cube cut from the continuum, the 

equilibrium condition can be written as: 

 ������� + �� = 0		��, � = 1,2,3� (3.1) 

 

where ��� are the stresses acting on the faces perpendicular to the axes O�� in 

the direction of the axes O��, and the �� are the components of the body force 

in the principal coordinates; summation from 1 to 3 over repeated indices are 

assumed. The stress tensor ��� is symmetric 

 ��� = ��� (3.2) 
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The notion of relative variations in the distance between points of the 

continuum can be introduced by the formula  

 

��� = 12����	��� + ������� = 0		��, � = 1,2,3� (3.3) 

 

where ��� are the strains. At this point, the tensor law relation between the 

stresses and strains (Hooke’s law) can be written: 

 

��� − 	����� = 2�	���� − 13����� (3.4) 

 

These are the classical equations of Cauchy-Navier theory of elasticity. 

The displacements of the points of the continuum medium after the 

application of the loads are indicated as �� = �����, ��, ���, while � and � 

are constants characterizing the elastic medium resistance to uniform 

compression (tension) and shear (shape variation); � = ��� + ��� + ��� is the 

bulk or volumetric strain and ��� is the Kronecker symbol. It is assumed that 

the displacements and strains in formulas (3.1,), (3.3) and (3.4) are small. 

The expression (3.3) cannot be used if the displacements and strains are 

not small and it is necessary to study the medium properties in the framework 

of the so-called geometrically nonlinear theory of elasticity. Hooke’s law is 

not appropriate for many materials even for small strains (��� ≅ 5 − 10	%); 

for these situations were developed numerous physically non-linear models 

of continuum. 

Another case of particular interest concerns anisotropic materials that 

have different behavior in different directions; for this reason the physical 
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properties of the medium are described by the corresponding generalization 

of Hooke’s law (3.4). 

When only the displacements are considered as unknown variables, it is 

possible to obtain a system of three partial differential equations in the form: 

 

�Δ�� +	�" + �� ����� + �� = 0,				� = 1,2,3 (3.5) 

Δ = ������ + ������ + ������ ,				" = � − 23� > 0 
(3.6) 

 

To solve the system composed by (3.5) and (3.6) it is necessary to define 

the corresponding boundary conditions. 

3.2.1 General basis of the discrete  method 

Some authors [32] try to return to the Cauchy-Navier idea and to 

construct a model of deformable continuum as a system of mutually 

interacting material particles. The basic idea is to divide the medium into 

material particles or points interacting each other by forces depending on the 

relative distance between them. The interaction can be studied considering 

not only the simple Hooke’s law but also the physical non linear properties of 

the continuum. 

The total mass of the matter is distributed over discrete interrelated 

points; for example in 2D problems, the material system is subdivided in 

some cases using circles or triangular elements of various shape interacting 

each other with springs. In 3D problems cubes, spheres or tetrahedral 

elements can be used. Once the continuum discretization scheme and the law 

of interaction between particles are chosen, it is assumed that all the particles 
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(with mass $�) obey Newton’s second law, eventually by taking into account 

the attenuation force usually proportional to the particle motion velocity: 

 

$��% � + &��' � +()��*
�+� ,�� − ��- = .��/�,				&� > 0,
)�� > 0, � = 1,2, … , 1 

(3.7) 

 

where 1 is the number of discrete particles into which the deformable 

continuum is divided, &� is the attenuation coefficient, )�� characterize the 

rigidity of interaction between particles i and j when a relative displacement 

occurs, k is the number of particles surrounding a given particle, and .��/� is 

the nodal force (for example the gravity force for internal particles or the 

external force for the boundary particles).  

As mentioned above an important aspect is the domain of influence of 

every particle; it is typically assumed as a volume, such as a sphere centered 

on every element of discretization, such that particles inside this space interact 

with the particle under consideration, while other particles do not exchange 

forces with it. 

3.2.2 Interactions between particles  

Basic DEM interaction is usually defined by two stiffnesses: normal 

stiffness 	�2 and shear (tangent) stiffness	�3. It is desirable that 	�2 be related 

to fictitious Young’s modulus of the particles’ material, while 	�3 is typically 

determined as a given fraction of computed	�2. The 
	4546 ratio can be 

associated to the macroscopic Poisson’s ratio of the arrangement as can be 
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shown by dimensional analysis: elastic continuum has two parameters (E and 7) and basic DEM model also has two parameters with the same dimensions 

	�2 and 
	4546; macroscopic Poisson’s ratio is therefore determined solely by 

	4546 

and macroscopic Young’s modulus is then proportional to 	�2 and affected 

by 
	4546. 

The commonly formulated algorithms use normal interaction stiffness 

represented by two springs in serial configurations with lengths equal to 

sphere radii (Fig.3.1). 

 

 

Figure 3.1 – Stiffness between two particles represented by a couple of 
spings in series configuration. 

 

The normal contact stiffness between two spheres is thus represented by a 

series of two springs; defining 	8� as the distances between the contact point 

and spheres centers, it is possible to calculate the distance 8 = 	 8� + 8�.When 

the distance between particles centers change, a length variation of the springs 

takes place, ∆8 = ∆8� + ∆8�, i.e. the sum of deformations of both spheres, that 

is proportionally to their compliances. 

l2 = r2l1 = r1

l = l1 + l2
E1

E2
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The displacement change ∆8 generates the force .� = ��∆8�, where the 

term �� = �2	 represent stiffness; it can be related to the sphere’s material 

elastic modulus :� and to an equivalent cross-section ;<=,  

 

�� = :� ;<=8� 		 (3.8) 

3.2.3 Relation between the parameters of the discrete-truss 

dynamic model and the basic parameters of the theory of 

elasticity 

In the mathematical model of the classical elasticity theory, Young 

modulus and the Poisson ratio play a key role; the Young modulus is usually 

considered as the rigidity coefficient between the stress (force per unit area) 

and the strain (relative elongation) of the specimen: 

 

: = ��  (3.9) 

 

where � = ./?, . is the tensile force, ? is the cross-section (after tension), 

and � = 	∆8/8 is the specimen strain. Usually E is assumed the same in case 

of tension or compression, otherwise different moduli can be adopted for 

some materials. 

It follows that, in two-dimensional problems of elasticity where the 

medium is discretized according to a rectangular scheme, the rigidity of 

interaction between material particles under tension or compression, can be 

considered to correspond to the Young modulus. A specimen under tension 

somewhat decreases its dimension in the transverse direction because of 
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tension of diagonal springs, which means that it is similar to the Poisson ratio 

effect for this model [32]. 

 

 

Figure 3.2 – Truss Model of particles in 2D elastic problems. 

 

It is assumed that the fixation points A e B move freely along the vertical 

axis. In actual experiments, to determine the Young modulus, it is necessary 

to take a sufficiently long specimen, because, according to the Saint-Venant 

principle, the specimen fixation does not affect its strain at a sufficiently large 

distance, so the relations are: 

 

� = @A,      � = ∆BB ,      � = :C� (3.10) 

  

where :C  is the total Young modulus of the discretized material with the 

stretched springs taken into account, including diagonal ones. 

 

l

Α

Β
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Figure 3.3 - Square Lattice deformation 

 

It is possible to obtain the Young Modulus :C  in case of small strains for 

the square lattice. In Fig. 3.3 the square shaped continuum has side length 8 =1. The quantities ∆�	 and ∆D	 are the longitudinal elongation and the 

transverse compression of the stretched specimen. The diagonal length 

increment in case of small strains is equal to: 

 

∆8 = E�1 + ∆��� + �1 − 2∆D�� −	√1� + 1� =
E2 + 2∆� − 4∆D − √2 = √2,E1 + ∆� − 2∆D − 1- =

√2 H∆I� − ∆DJ  

(3.11) 

 

where the second order terms have been neglected. The diagonal strain is thus: 

 

�K = ∆8√2 = ∆�2 − ∆D (3.12) 

 

y

x

F/2

F/2

∆y

∆x

0

0.5
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If the spring rigidity in the direction Ox is equal to L� and the rigidity of 

diagonal springs is L�, respectively, then we obtain the obvious classical 

equilibrium condition  

 

2L�∆� + 2L� M∆�2 − ∆DN OPQ45 = . (3.13) 

 

Taking into account the relation between ∆�, ∆D and the strains ���, ���, ��� = Δ�, ��� = 2ΔD, we have: 

 

2L���� + √2L� H���2 − ���2 J = . (3.14) 

 

By the definition of the Poisson ratio as the transverse contraction 

coefficient, it is possible write out the following relation between the strain 

absolute values ��� and ��� in two directions: 

 ��� = 7��� (3.15) 

 

Then, finally, formulas (3.12) and (3.14) imply that 

 

R2L� + √22 �1 − 7�L�S ��� = :� = � (3.16) 
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Figure 3.4 – Different Stiffnesses 

 

Thus the total Young modulus in the model is determined by the 

coefficient of longitudinal rigidity of the spring in the direction Ox (L�) and 

by the diagonal rigidity (L�) by the formula 

 

: = 2 RL� + √24 �1 − 7�L�S � (3.17) 

 

If L� = L� = L, then, according to (3.17), the Young modulus becomes 

 

: = 2L R1 + √24 �1 − 7�S (3.18) 

 

Thus, in the classical theory of elasticity formula (3.18) relates the Young 

modulus to the rigidity coefficient k of the constraints between particles. 

The formulas obtained above also permit calculating an analog of the 

Poisson ratio for the model under study. Obviously, the diagonal springs 

α

1+d

k3
1

k2
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compress the elastic edges of the square in the direction Oy. The equilibrium 

force condition readily implies the relation 

 

2L�OPQ45 H���2 − ���2 J = L���� (3.19) 

 

Taking to account (3.15), it is possible to derive the following expression 

for the Poisson ratio of the model from (3.19): 

 

7 = L�OPQ45L� + L�OPQ45 = L�√2L� + L� (3.20) 

 

It follows from (3.19) that 7 ≈ 0.4 for L� = L�, which corresponds to the 

Poisson ratio for a large class of materials. 

For an isotropic material (L� = L�): 

 

7 = QV1&1 + QV1& (3.21) 

 

Note that 0 ≤ 7 ≤ 0.5 if 0 ≤ QV1& ≤ 1. 

The above equilibrium considerations enables to relate explicitly the 

mechanical parameters of the material to the stiffnesses of the springs 

connecting the particles. However, for more complex arguments of particles 

or for 3D assemblies the above theoretical equations become very difficult to 

be determined and numerical analysis are thus necessary to this end. 

Such numerical approach will be adopted in section 3.3 where the 

mechanical parameters of the 3D particle arrangements considered in this 

thesis are prospected. 
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3.3 DEM applied to solid materials 

In the last decades computer calculation power increase very fast, so 

simulation methods of material behavior allow more realistic modeling of the 

microstructure (particles, phases, and the bonds between them). In the last 

years researches on solid models at the macroscale have been oriented 

towards transition from the finite element method (with the classical 

hypothesis of continuum mechanics) to discrete particle models and lattice 

models in which the continuum is approximated by a system of discrete 

elements in contact.  

The discrete element method (DEM) discretizes a material by using rigid 

elements of simple shape that interact with neighboring elements according 

to interaction laws that are applied at points of contact. This kind of approach 

is not so different from molecular dynamics; the most important differences 

between DEM and MD are the interelement potentials and scale analysis, 

micro for molecular dynamics and meso or macro for DEM. 

Obviously, this method is ideal for problems not accessible to traditional 

continuum-based methods such as concrete structural failure, rock-blasting 

operations, fra  cture of brittle materials involving great deformations, 

presence of discontinuity in the material structure as voids, imperfections and 

heterogeneities. 

The elementary units of DEM methods are usually mesoscopic grains or 

spherical particles, which deform under stress. Frequently the realistic 

modeling of the deformations of the single elements is too much complicated, 

so the interaction force is strictly related to the overlap � of two particles or 

grains (this is an assumption of the proposed model, see Chapter 5).  
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To calculate the deformation field all forces X� acting on every single 

particle �, caused from boundaries, other particles or external forces are 

needed. The solution of the discretized problem is reduced to the integration 

of Newton’s equations of motion for the translational and rotational degrees 

of freedom: 

 

$� KYKZY [� = \� +$�],   and   �̂ KKZ_� = `� (3.22) 

 

where $� is the mass $� of particle �, position vector [�, total force acting on 

it \� = ∑ \�bb  (due to contacts with other particles or with the walls), inertia 

forces responsible for volume forces like gravity ], spherical particles 

moment of inertia �̂, angular velocity _� and total torque                                             `� = ∑ �c�b × \�b × e�b�b , where e�b are torques/couples contacts other than due 

to a tangential force (due to rolling and torsion).The equations of motion are 

thus a system of coupled ordinary differential equations.  

Another fundamental aspect is the interaction range between particles in order 

to regularize the internal lattice with the solid material; for instance for 

granular materials short-range interactions are considered, in opposite to solid 

materials where long-range interactions exist. 

 

As mentioned above the interaction between two generic particles of the 

model is strictly related with their overlap � (the nature and the evolution of 

the contact will be analyzed in the following Chapter 4). This superposition 

causes a force on particle � from particle � that can be decomposed into a 

normal and a tangential part representing normal stiffness and tangential 

stiffness. 
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 \�b = Xfg + XZ` (3.23) 

 

Where the normal contact force is usually expressed as: 

 Xf = L� + hijf (3.24) 

 

with L the spring stiffness, hi the viscous damping coefficient, and jf the 

relative velocity in normal direction. 

For the tangential degrees of freedom, there are three different force- and 

torque- laws to be implemented: friction, rolling resistance and torsion 

resistance. 

Some authors [33] use the relative velocity as input, compute either 

sliding, rolling or torsion resistance and return the respective forces as 

function of accumulated deformations. 

Remaining at the macroscopic level, a consistent model has to consider the 

following forces in macroscopic simulations: contact plasticity, or recoil 

(when necessary), attractive forces, such as cohesion, adhesion, liquid 

bridging, electrostatic attraction. Note that, because of the overhead from 

determining nearest neighbor pairs, exact resolution of long-range (compared 

with particle size) forces, can increase the computational cost or require 

specialized algorithms to resolve these interactions. 
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3.4 Solid and Fluid Interaction 

In the last years, there has been an increasing interest in the development 

of efficient numerical methods for the analysis of engineering problems 

involving the interaction of fluids and structures [34], accounting for large 

motions of the fluid free surface and the existence of fully or partially 

submerged bodies. Ship hydrodynamics, offshore structures, spillways in 

dams, free surface channel flows, liquid containers, stirring reactors, mould 

filling processes are examples of fields applications of this numerical 

methods. 

A classical approach to study moving solids in fluid is the finite element 

method (FEM)[35] based on the Lagrangian-Eulerian (ALE) formulation 

[36]; in ALE the movement of the fluid particles is decoupled from that of the 

mesh nodes; as a consequence the convective velocity in the momentum 

equations is the relative velocity between mesh nodes and particles. 

Some numerical procedures for fluid-structure interaction (FSI) analysis 

use ALE formulation in conjunction with stabilized finite element methods; 

for instance the Deforming Spatial-Domain/Stabilized space-time 

(DSD/SST)[37] proposed for computation of fluid-structure interaction and 

free-surface flow problems, the Mixed Interface-Tracking/Interface-

Capturing Technique (MITICT) [38] used for computation of problems that 

involve both fluid-structure interactions and free surfaces. The MITICT can 

in general be useful for classes of problems that involve both interfaces that 

can be tracked with a moving-mesh method and interfaces that are too 

complex or unsteady to be tracked and therefore require an interface-

capturing technique. 
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Common problems in FSI analysis based on the use of FEM with both 

the Eulerian and ALE formulation are: 

- the treatment of the convective terms and the incompressibility 

constraint in the fluid equations,  

- the modelling and tracking of the free surface in the fluid,  

- the transfer of information between the fluid and solid domains via 

the contact interfaces, the modelling of wave splashing, 

- the possibility to deal with large rigid body motions of the structure 

within the fluid domain,  

Most of this problems can be eliminated formulating the governing 

equations of both solid and fluid domain by using a Lagrangian description; 

in this way the finite element mesh of solids can be considered as moving 

“particles”, and following the individual motion of them, is possible to study 

the transient solution of the total domain. 

This method called Particle Finite Element Method (PFEM), considers 

the mesh nodes in the fluid and solid domains as particles, which can freely 

move and even separate from the main fluid domain representing, for 

instance, the effect of water drops. A finite element mesh connects the nodes 

defining the discretized domain where the governing equations are solved in 

the standard FEM fashion [39]. 

An obvious advantage of the Lagrangian formulation is that the 

convective terms disappear from the fluid equations, but the need of properly 

treating the incompressibility condition in the fluid remains. 
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3.4.1 Basic concepts of Particle Finite Element Methods 

In a domain containing both fluid and solid subdomains, the moving fluid 

particles interact with the solid boundaries thereby inducing the deformation 

of the solid, which in turn affects the flow motion and, therefore, the problem, 

is fully coupled. FSI problems traditionally are solved using an arbitrary 

Eulerian-Lagrangian description (ALE) for the flow equation whereas the 

structure is modeled with a full Lagrangian formulation [34]. 

In the PFEM approach, both the fluid and the solid domains are modelled 

using an updated Lagrangian formulation and the finite element method 

(FEM) is used to solve the continuum equations in both domains. Hence, a 

mesh discretizing these domains must be generated in order to solve the 

governing equations for both the fluid and solid problems in the standard 

FEM fashion.  

A typical solution with PFEM follows these steps: 

a) Discretize the fluid and solid domains with a finite element mesh. 

The mesh generation process can be based for example on a standard 

Delaunay discretization; 

b) Identify the external boundaries for both the fluid and solid domains; 

c) Solve the coupled Lagrangian equations of motion for the fluid and 

the solid domains. Velocities, pressure and viscous stresses in the 

fluid and displacements, stresses and strain in the solid are relevant 

state variables; 

d) Move the mesh nodes to a new position in terms of the time increment 

size; 
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e) Generate a new mesh if needed. The mesh regeneration process can 

take place after a prescribed number of time steps or when the actual 

mesh has suffered severe distortions due to the Lagrangian motion; 

f) Back to step 2 and repeat the solution process for the next time step. 

3.4.2 Lagrangian Equations for an Incompressible Fluid.  

Considering a viscous incompressible fluid, the standard infinitesimal 

equations can be written in a Lagrangian frame as 

Momentum conservation 

 

klm − 12		ℎ� �klm��� = 0 (3.25) 

Mass balance 

 

kK − 12		ℎ� �kK��� = 0 (3.26) 

where  

 

klm = o�j��/ + ������� − p�						,						��� = ��� (3.27) 

kK = qrmqIm    ,      �, � = 1, 1K (3.28) 

 1K is the number of space dimension, j� is the velocity along the -ith global 

axis (j� = qsmqZ ), where �� is the -ith displacement, o is the (costant) density of 

the fluid, p� are the body forces, ��� are the total stresses given by ��� = Q�� −���t, p is the absolute pressure (defined positive in compression) and Q�� are 
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the viscous deviatoric stresses related to the viscosity u through the standard 

expression: 

 

Q�� = 2u M�vw' − ��� 13�j*��*N  (3.29) 

 

where ��� is the Kronecker delta and the strain rates �vw'  are obtained as: 

 

�vw' = 12 ��j���� + �j�����					 (3.30) 

 

The problem definition is completed with the following boundary conditions 

 1���� − /� + ℎ�1�klm = 0				P1	Γy					 (3.31) 

j� −	j�z = 0				P1	Γ{					 (3.32) 

 

and the initial condition is j� = j�i for / = /i. In equations (3.31), (3.32) /� 
and j�z are surface tractions and prescribed velocities on the boundaries Γy 
and Γ{, respectively, 1�  are the components of the unit normal vector to the 

boundary, ℎ� 	are characteristic lengths of the domain where balance  of 

momentum and mass is enforced. 

Equations (3.25-26) are the starting point for deriving stabilized finite 

element methods to solve incompressible Navier-Stokes equations in a 

Lagrangian frame by using equal order interpolation for the velocity and 

pressure variables. 
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The weighted residual expression of the final form of the momentum and 

mass balance equations can be written, respectively, as: 

 

| �j�klm} ~Ω +| �j�,1���� − /�-�� ~Γ = 0									  (3.33) 

| � �kK −(�� �klm���
f�
�+� �} ~Ω = 0								  (3.34) 

  

where �j� and � are arbitrary weighting functions equivalent to virtual 

velocity and virtual pressure fields.  

The term klm in Eq.(3.34), the deviatoric stresses and the pressure terms 

within klm in Eq. (3.30) are integrated by parts to give: 

 

| ��j�o �j��/ + ��vw' ,Q�� − ���t-�} ~Ω −| �j�} p�~Ω
−| �j�/��� ~Γ = 0									  (3.35) 

| � �j����} ~Ω +| �(�� �����
f�
�+� klm�} ~Ω = 0								  (3.36) 

 

Pressure gradient projection 

The computation of the residual terms in Eq.(3.36)  can be simplified by 

introducing the pressure gradient projection ��, defined as 
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�� = klm − �t���							  (3.37) 

 

The final system governing equation is: 

 

| ��j�o �j��/ + ��vw' ,Q�� − ���t-�} ~Ω −| �j�} p�~Ω
−| �j�/��� ~Γ = 0									  (3.38) 

| � �j����} ~Ω +| (�� �����
f�
�+� M�t��� + ��N} ~Ω = 0 (3.39) 

| �����} M�t��� + ��N ~Ω = 0 (3.40) 

with	�, �, L = 1, 1K. In (3.40) ��� are appropriate weighting functions and the  

weights ��	are introduced for symmetry reasons. 

3.4.3 Finite element discretization 

In Particle Finite Element Methods there is a �i continuous 

interpolations of the velocities, the pressure and the pressure gradient 

projections �� over each element with n nodes. The interpolations are written 

as: 

 

j� = ∑ N���+� j̅�� 	,      t = ∑ N���+� t̅� , 				�� = ∑ N���+� ����  (3.41) 

 

where �∙�̅� denotes nodal variables and N� are the common shape functions. 
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Substituting the approximations (3.38) into the equations (3.35-37) and 

choosing a Galerkin form with �j� = � = 	��� = N� leads to the following 

system of discretized equations 

 M��' + � − � = 0 (3.42) 

���� + �p� + Q�� = 0 (3.43) 

���� + ¡�� = 0 (3.44) 

 

where  

 

�� = | ¢3£¤ − ¥t¦~§
}

 
 

(3.45) 

�� is the internal nodal force vector derived from the momentum equations, ¤ 

is the deviatoric stress vector, ¢ is the strain rate matrix and ¥ = £1,1,0¦3for 

2D problems. 

3.4.4 Fractional Step method for Fluid-Structure Interaction 

analysis 

By splitting, the pressure from the momentum equations is possible to 

obtain a simple and effective iterative algorithm as follow: 

 

��∗ = ��f − ∆/ ©�ª�f«¬,� − �f«�­ (3.46a) 

��f«�,� = ��∗ + ∆/ ©����� (3.46b) 

 

where in Eq. 3.46a 
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�f«¬®,� = | ¢3ªsf«¬®,� − α¥3tf­~Ω±²³´,µ  
 

 

and α is a variable taking values equal to zero or one. For α = 0, �t ≡ tf«�,� 
and for α = 1, �t = ∆t. Note that in both cases the sum of Eqs. (3.46a) and 

(3.46b) gives the time discretization of the momentum equations with the 

pressures computed at /f«�. In above equations and in the following, index j 

denotes an iteration number within each time step. 

The value of ��f«�,� from Eq. (3.46b) is substituted now into Eq. (3.43) to 

give 

 

����∗ + ∆/�� ©·���� + �p�f«�,� + ���f«¬Y,µ = ¸ (3.47) 

 

The product �� ©·� can be approximated by a laplacian matrix, 

 

�� ©·� = �¹      with       º»�� ≃ ½ �¾¿ÀÁ�±Â ¿Á�~Ω (3.48) 

 

In the above equations ��, �� are algorithmic parameters ranging between 

zero and one.  

A semi-implicit algorithm can be derived as follows. For each interation: 

1) Compute �∗ from Eq.(3.46a) with   =  K where subscript d denotes 

here onwards a diagonal matrix 

2) Compute ��� and �f«� from Eq.(3.47) as  
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��� = −,� + Ã/�¹ -©·ª�3�∗ + ���f«¬Y,µ + &���f­ (3.49) 

 

The pressure tf«� is computed as follows 

For α = 0      ��f«�,� = ���  

For α = 1      ��f«�,� = ��f + ���  

3) Compute ��f«�,� from Eq. (3.46b) with   =  K 

4) Compute ��f«� from Eq. (3.44) as  

 ��f«�,� = − ¡ K©·�3��f«�,� (3.50) 

 

5) Solve for the movement of the structure due to the fluid flow forces. 

This implies solving the dynamic equations of motion for the structure written 

as  

 

 ÄÅ% + ÆÇÅ = �ÂÈÉ (3.51) 

 

where Å% and Å are r the nodes acceleration and the displacement vectors of 

the discretized structure respectively,  Ä and ÆÇ  are the mass and stiffness 

matrices of the structure and �ÂÈÉ is the vector of external nodal forces 

accounting for the fluid flow forces induced by the pressure and the viscous 

stresses. Solution of Eq. (3.51) in time can be performed using implicit or 

fully explicit time integration algorithms. 
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3.5 Particle dynamics simulation of fracture 

Attaining a better understanding of the comminution of rocks, a 

phenomenon that commonly takes place in the mining industry, has been one 

of the targets of particle methods. Comminution involves complex crushing 

and fragmentation processes, which, from a basic engineering science 

perspective, are complex dynamic fractures of multi-phase materials. Thus, 

there is a need to simulate such processes from basic principles. The first tool 

that comes to mind is the continuum-type dynamic fracture mechanics. That 

approach, however, is best suited for analysis of well-defined boundary 

initial-value problems with simple geometries.   

Structural materials need to retain their shape under mechanical loading. 

If the loading is too large, the material fails. During the fracture phenomenon 

the driving force, that breaks the bonds between atoms ahead of the crack, is 

concentrated at the crack tip; what ultimately controls the strength of the 

materials is the bonding between the atoms, so an understanding of the atomic 

scale processes at the crack tip permits to predict fracture development. 

However, the range of length scales involved, from elastic strain fields to 

interatomic bonds, makes such simulations challenging. Many authors 

propose different types of coupling length scales approach that addresses 

some of these difficulties by combining different simulation methods in 

different parts of the system.  

For example in [40] the author uses an implementation that combines two 

different atomistic simulations methods: a quantum-mechanical model of 

bonding near the crack tip, and an empirical interatomic potential far from the 

crack tip. 
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The particle modeling - also called particle simulation, discrete modeling 

or quasi-molecular modeling [45-47] - is a dynamic simulation method that 

typically uses a lattice of small (but not at the molecular level) particles, 

evolving according to laws of mechanics, as a discrete representation of fluids 

and/or solids. 

The method is set up to maintain the conservation of mass and energy of 

the particle system and satisfies the interaction laws between all the particles. 

As demonstrated in the above-cited references, the PM can handle a wide 

range of complex material systems, problems with complicated boundary 

shapes and boundary conditions, dynamic evolving free surfaces, and fracture 

of solids.  

Most recently, Abraham et al. [41] used large-scale molecular dynamics 

simulations to show that the elastic behavior of a solid by considering large 

strains (hyperelasticity), can play a governing role in the dynamics of fracture, 

and that linear elasticity theory is not capable of explaining all fracture 

phenomena. From their simulation results, they came to introduce the new 

concept of a characteristic length scale for the energy flux near the crack tip. 

Successively, they demonstrated that the local hyperelastic wave speed 

governs the crack velocity when the hyperelastic zone approaches this energy 

length scale [41].  

The classical theory of dynamics fracture is no longer valid once the 

hyperelastic zone size becomes comparable to the energy characteristic length 

[41]. This characteristic length for local energy flux near the crack tip had 

never been discussed before. However, through their molecular dynamics 

simulations, it becomes now the central concept in understanding the effect 

of hyperelasticity. 
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Molecular dynamics fracture simulation has also contributed to the 

understanding of the limit of crack propagating speed [42–44]. Mechanisms 

of intersonic crack propagation along a weak interface under shear-dominated 

loading have been studied by molecular dynamics simulations, which also 

motivated extensive continuum studies of crack propagation at the speed over 

the sound barrier.  

In addition to those introduced above, there have been numerous examples 

of MD simulations for fracture mechanism at the nanoscale [48]. 

3.6 Smoothed particle hydrodynamics 

Smoothed Particle Hydrodynamics (SPH) is one of the earliest particle 

methods in computational mechanics [10]. SPH permits to obtain an 

approximate numerical solutions of the equations of fluid dynamics by 

replacing the fluid with a set of particles; the particles are interpolation points 

from which properties of the fluid can be calculated and can be treated like 

any other particle of the system. The collective movement of those particles 

is similar to the movement of a liquid, or gas flow, and it may be modeled by 

the governing equations of classical Newtonian hydrodynamics.  

This method has some advantages, such as, pure advection is treated 

exactly. Another advantage is that with more than one material, each 

described by its own set of particles, interface problems are often trivial for 

SPH, but difficult for finite difference or FE schemes. The third advantage is 

that particle methods bridge the gap between the continuum and 

fragmentation in a natural way. 



SOLID AND FLUID MODELLING WITH PARTICLE METHODS 77 

Because of the distinct advantages of the particle method, soon after its 

debut, the SPH method was widely adopted as one of the most efficient 

computational techniques to solve applied mechanics problems.  

Therefore, the term hydrodynamics really should be interpreted as 

mechanics in general, if the methodology is applied to other branches of 

mechanics rather than classical hydrodynamics. To make distinction with the 

classical hydrodynamics, some authors called it Smoothed Particle Applied 

Mechanics [50-51]. 

This idea of the method is somewhat contrary to the concepts of the 

conventional discretization methods, which discretize a continuum system 

into a discrete algebraic system. In astrophysical applications, one of the first 

field of application of the method the real physical system is discrete; in order 

to avoid singularity, a local continuous field is generated by introducing a 

localized kernel function, which can serve as a smoothing interpolation field. 

If one wishes to interpret the physical meaning of the kernel function as the 

probability of a particle’s position, he is dealing with a probabilistic method, 

otherwise. Otherwise it is only a smoothing technique. Thus, the essence of 

the method is to choose a smooth kernel, Ê�È, ℎ) (h is the smoothing length), 

and to use it to localize the strong form of a partial differential equation 

through a convoluted integration. The interpolating kernel has to satisfy the 

following conditions: 

 

|Ê�È − ÈË, ℎ� ÅÈË = · 
(3.52) 

limÏ→iÊ�È − ÈË, ℎ� = ��È − È′� (3.53) 

Ê�È, ℎ� ≥ 0 (3.54) 
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where the limit is to be interpreted as the limit of the corresponding integral 

interpolants. 

If the SPH averaging/localization operator is defined as 

 

;*�È� = | Ê�È − ÈË, ℎ�;�ÈË
ℝ²

�~ΩÈË 
 

≈(Ê�È − ÈÔ , ℎ�;�ÈÔ�∆ÕÔ2
Ô+�  (3.55) 

 

it is possible to derive a SPH discrete equation of motion from its continuous 

counterpart [10]: 

 

〈o ~�~/〉Ô = −〈∇Ù〉Ô ⇒ oÔ ~�Ô~/  
 

≈ −(,ÙÛ − ÙÜ-¿Ê,ÈÛ − ÈÝ, ℎ-2
Ý+� ∆ÕÔ (3.56) 

 

where Ù is Cauchy stress, o is the density, � is the velocity, and ∆ÕÔ is the 

volume element carried by the particle Þ. 
Usually a positive function, such as the Gaussian function, is chosen as the 

kernel function: 

 

Ê�È, ℎ� = ��ßàY�²/Y exp ã− ÈäàYå,           1 ≤ 1 ≤ 3 

 

(3.57) 
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The kernel representation is not only an instrument that can smoothly 

discretize a partial differential equation, but it also furnishes an interpolant 

scheme on a set of moving particles. By utilizing this property, SPH can serve 

as a Lagrangian type method to solve problems in continuum mechanics. 

SPH technology has been employed to solve problems of both 

compressible and incompressible flow, multiple phase flow and surface 

tension, heat conduction, electro-magnetic (Maxwell equations), plasma/fluid 

motion, general relativistic hydrodynamics, heat conduction and nonlinear 

dynamics. 

Various improvements of SPH have been developed through the years. 

Most of these improvement are aimed to fix the following shortcomings, or 

pathologies, in numerical computations: tensile instability [52], lack of 

interpolation consistency, or completeness [53], zero-energy mode [54], 

difficulty in enforcing essential boundary condition [55].  

In solid mechanics the main advantage of SPH is the possibility of dealing 

with larger local distortion than grid-based methods. This feature has been 

exploited in many applications such as: metal forming, impact, crack growth, 

fracture, fragmentation, etc. Another important advantage of meshfree 

methods in general, and of SPH in particular, is that mesh dependence 

problems are naturally avoided given the meshfree nature of the method. In 

particular, mesh alignment is related to problems involving cracks and it is 

avoided in SPH due to the isotropic support of the kernel functions. 
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Chapter 4 

 

 

CONTACT PROBLEMS ANALYSIS IN DEM 

 

 

 

4.1 Introduction 

Discrete Element Model (DEM) simulations rely on realistic contact force 

models; however too many details make both implementation and 

interpretation prohibitively difficult. A contact model must represent the 

physical properties of elastic-plastic repulsion, dissipation, adhesion, friction 

as well as rolling and torsion-resistance. 

Research challenges involve not only the realistic quantitative and 

predictive simulation of many-particle systems and their experimental 

validation, but also the transition from the microscopic contact properties to 

the macroscopic flow behavior. The so-called micro-macro transition should 

allow understanding the collective flow behavior of many particles as 

function of their contact properties. 

The main goal in DEM is to provide a minimal set of contact models as a 

compromise between a realistic and an easy to handle modeling approach. 

Naturally, the contact models needs to be over-simplified, since many details 

seem not to be important for the behavior on the mesoscopic or macroscopic 

level. As mentioned above, a single contact-model allows simulating various 
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systems and structures, and simpler contact models will facilitate a better and 

deeper understanding of the relation between micro- and macro-properties. 

4.2 Configurations of colliding bodies 

 When a solid hits another solid, the surfaces of the two bodies come 

together with some relative velocity at an initial instant termed incidence. 

At each instant during the impact period, a pressure arises in a small area 

of contact between the two bodies, leading to a local deformation and 

consequent indentation. During impact, the interface or contact pressure has 

a resultant force or reaction that acts in opposite directions on the two 

colliding bodies thereby resists interpenetration. 

Initially during contact the force increases and produce a reduction of the 

speed at which the bodies are approaching each other. At some instant during 

the impact, the velocity is reduced to zero by the work done by the contact 

forces. Subsequently, the energy stored during compression drives the two 

bodies apart until finally they separate with some relative velocity. 

Local deformations produce the contact force that acts during collision, 

these deformations vary according to the incident relative velocity at the point 

of initial contact as well as the hardness of the colliding bodies. Low speed 

collisions, for example, implies small deformations, that are significant solely 

in a small region adjacent to the contact area, at higher speeds there are large 

deformations (strains) near the contact area which results in plastic flows; 

these large localized deformations are easily recognizable, since they have 

gross manifestations such as cratering or penetration. In each case the 

deformations are consistent with the contact force that causes velocity 

changes of the colliding bodies. 
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Phenomena involved in bodies during the collision can be summarized as 

follow: there is an instant of time, time t=0 termed incidence (the initial 

instant of impact) when a single contact point C on the surface of the first 

body B initially comes into contact with point C’ on the surface of the second 

body B’ (Fig.4.1). Usually is possible to determine a common tangent plane 

that passes through the coincident contact points C and C’; the orientation of 

this plane is defined by the direction of the unit normal vector n, which is 

perpendicular to the common tangent plane. 

 

Fig.4.1 – Colliding bodies B and B’ with (a) collinear and (b) non 
collinear impact configurations 

 

Considering two bodies with centers of mass G and G’ and colliding points 

C and C’, it is possible to define different impact configurations; if the line 

that links G and G’ passes through C the impact is termed collinear, or central 

(Fig.4.1a).  
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�� × � = �′� × � = 0 (4.1) 

 

In equations of motions collinear impact configurations can be decoupled 

in normal and tangential directions. 

If the bodies are rough and the line that links G and G’ does not pass 

through C, the configuration is eccentric and there is a tangential force of 

friction that oppose sliding; the equations of motions involve both normal and 

tangential forces and impulses (Fig4.1b). 

 

�� × � ≠ 										or										�′� × � ≠ 0 (4.2) 

 

4.2.1  Relative velocity at contact point 

Initially at the instant when colliding bodies first interact, the coincident 

contact points C and C’ have an initial or incident relative velocity 
� ≡

�0� = 
��0� − 
′��0�. The initial relative velocity at C has a component 


� ∙ � normal to the tangent plane and a component �
� × �� × � parallel to 

the tangent plane; the latter component is termed sliding velocity. The angle 

of obliquity at incidence, ��, is the angle between the initial relative velocity 

vector 
� and the unit vector � normal to the common tangent plane, and can 

be obtained as: 

 

�� ≡ ����� �|�
� × �� × �|
� ∙ � � (4.3) 
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Direct impact occurs when in each body the velocity field is uniform and 

parallel to the normal direction. Direct impact requires that the angle of 

obliquity at incidence equals zero (�� = 0�; on the other hand, oblique 

impact occurs when the angle of obliquity at incidence is nonzero (�� ≠ 0�. 
4.2.2 Interaction force 

Considering the common tangent plane of two colliding bodies, it is 

possible to divide the interaction force and the impulse, generated during the 

impact, into components normal and parallel to the plane. For particle impact, 

the impulse is considered to be normal to the contact surface. Contact forces 

for solid bodies arise from local deformation of the colliding bodies; 

compatibility of displacements in the contact areas are ensured by 

deformations associated to interactions forces that also prevent 

interpenetrations (overlap) of the bodies. If the bodies are rough and there is 

sliding in the contact area a tangential force called friction arises in such an 

area; it is usually negligible if the bodies are smooth. 

The relative displacement of the interacting bodies governs the 

conservative part of the forces. In an elastic collision the forces associated 

with attraction or repulsion  are conservative (reversible). In an inelastic 

collision the interaction forces (other than friction) are nonconservative, so 

there is a loss of kinetic energy as a result of the cycle of compression 

(loading) and restitution (unloading) that occurs in the contact region. The 

energy loss can be due to irreversible elastic-plastic material behavior, rate 

dependent material behavior, elastic waves trapped in the separated bodies, 

etc… 
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4.3  Classification of methods for analyzing impact 

Deformations during collisions develop in different ways for different 

body types and they influence the period of contact; following this concept, 

in order to classify collisions into specific types, distinct methods of analysis 

are required. 

Particle Impact, for example, is an analytical approximation that considers 

a normal component of interactions impulse only. Particles are smooth and 

spherical. The source of the interaction force is unspecified, but presumably 

it is strong and the force has a very short range, so that the period of 

interaction is a negligible small instant of time. 

When the contact area remains small in comparison with all section 

dimensions of the compact bodies, the collision is called Rigid Body Impact. 

Increasing radial distance from the contact region, stresses generated in the 

contact area decrease rapidly and the internal energy is concentrated in a small 

region surrounding the interface, which acts like a short but very stiff spring 

separating the colliding bodies at the contact point. For bodies that are hard, 

only very small deformations are required to generate very large contact 

pressure; if the surfaces are initially nonconforming, the small deformations 

imply that the contact area remains small throughout the contact period. The 

contact force is large enough to rapidly change the normal component of the 

relative velocity across the small-deformed region that surround the contact 

path. From an analytical point of view, the most important consequence of 

the small compliance of hard bodies is that very little movement occurs during 

the very brief period of contact; despite large contact forces, there is 

insufficient time for bodies to displace significantly during impact. This 

observation leads to the fundamental hypothesis of Rigid Body Impact Theory 
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that, for hard bodies, assumes the period of contact as very small; 

consequently, any changes in velocity occur instantaneously in the initial or 

incident configuration. 

Transverse Impact on Flexible Non-spherical Bodies occurs when at least 

one of the bodies suffers bending because of the interface pressures in the 

contact area; this bending reduces the interface pressure and prolongs the 

period of contact during collision and local deformation that arises near the 

contact, dissipates energy. Transverse impact on plates, shells or slender bars 

results in significant flexural deformations of the colliding members both 

during and following the contact period. 

Another type of collision model is the Axial Impact on Flexible Bodies that 

generates longitudinal waves; these affect the dynamic analysis of the bodies 

only if there is a boundary at some distance from the impact point, which 

reflects the radiating wave back to the source. The time of contact for an 

impact in this case depends on the time required by a wave to travel between 

the impact surface and the center of the body. 

There are many methods for analyzing changes in velocity and contact 

forces resulting from impact; the stereomechanical theory provides a 

relationship between incident and final conditions, leading to discontinuous 

changes in velocity at impact. Rigid bodies’ theories are useful for analyzing 

body impact between compact bodies composed of stiff materials, but they 

have limited applicability for multibody impact problems because they can 

give accurate results only if the normal compliance of the point of external 

impact is very small or large in comparison with the compliance of any 

connections with adjacent bodies. 

 



CHAPTER 4 94 

4.4 Elastic Particles Kinetics 

Considering kinetics related to the dynamics of a particle is the basis for 

the fundamental form of most principles of dynamics. In DEM, a particle is a 

body of negligible or infinitesimal size, i.e. a point mass. If a particle with 

mass M is moving with velocity V it has momentum MV. When a force F acts 

on the particle, this cause a change in momentum according to the Newton’ s 

second law of motion 

 

Fig.4.2 – Change in velocity of particle with mass M resulting from 
impulse P(t) 

 

That reads “The momentum MV of a particle has a rate of change with respect 

to time that is  proportional to and in the direction of any resultant force F(t) 

acting on the particle”[1], 

 

������� =   (4.4) 
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Usually the particle mass is constant, so Eq. (4.4) can be integrated to 

obtain the changes in velocity as a continuous function of the impulse P(t) : 

���� − 	��0� = ���!  ��′�"
� ��′ ≡ ���#��� (4.5) 

This vector expression is illustrated in Fig 4.2. 

 

Active forces  ��� and  ′��� acting on colliding particles B and B', during 

the interaction period tf, prevent interpenetration. The particular nature of 

interaction forces depends on its origin: whether they are due to contact forces 

between solid bodies that cannot interpenetrate, or are interatomic forces 

acting between atomic particles. In any case, the force on each particle acts 

solely in the radial direction. These interaction forces are related by Newton’s 

third law of motion. “Two interacting bodies have forces of action and 

reaction that are equal in magnitude, opposite in direction and collinear”[1]: 

 

 $ = −  (4.6) 

 

Second and third Newton’s laws are the basis for impulse momentum 

methods for analyzing impact. Let particle B has mass		�, and particle B’ has 

mass �′. Integration of Eq.(4.5) gives equal but opposite impulses −#$��� =
#���, so that equation of motions for the relative velocity 
 ≡ � − �′can be 

obtained as: 

 


��� = 
�0� + &��#���,									&�� = ��� +�′��  (4.7) 

where m is the effective mass. Eq. (4.7) is applicable only if the period of 

interaction �( → 0. 
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For a set of � particles where the ith particle has mass �* and velocity �*, the 

equations of translational motion can be expressed as  

 

+
+"∑ �*�*-*.� = ∑  *-*.� + ∑  ′*/-*.� ,																  0 ≠ 1 (4.8) 

 

where  * is an external force acting on particle i and  ′*/ is an internal 

interaction force of particle k on particle i. Since the internal forces are equal 

but opposite ( ′*/ = − ′*/), the sum of these forces over all particles 

vanishes; hence 

 

���2�*�*
-

*.�
= 2 *

-

*.�
														 (4.9) 

The moment of momentum 34 of particle i about point O is defined as 

34 ≡ 5* ×�*�*, where 5* is the position vector of the particle and �* is its 

mass. 

Thus, a set of particles has a moment of momentum about O, equal to 

 

34 ≡25*
-

*.�
×�*�*						 (4.10) 

 

For a set of n particles, the rate of change of moment of momentum about 

O is related to the moment about O of the external forces acting on the system: 

 

�34�� = ���25*
-

*.�
×�*�* =		25*

-

*.�
×  *	 (4.11) 
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If the configuration of the system does not change during the period of 

time t, integration of (4.11) with respect to time gives 

 

34��� − 34�0� 	≡25*
-

*.�
×!  *��$���′"

�

=		25*
-

*.�
× #*���					 

(4.12) 

4.4.1  Compression and restitution phases of collisions 

After the colliding particles first touch, 6 is defined as indentation or 

compression of the deformable particle, while 7��� is the force that rises 

between the two bodies. 

Only with detailed information about the compliance of the colliding 

bodies is possible to obtain 6 directly. If the bodies have an elastic behavior, 

the maximum indentation and maximum force occur simultaneously when the 

normal component of relative velocity vanishes [2].  

The Fig 4.3 shows the separation of the contact impulse into an initial 

phase of approach or compression and a subsequent phase of restitution. The 

contact force, during compression, transforms kinetic energy of relative 

motion into internal energy of deformation, the initial normal relative velocity 

is reduced by the contact force’s work, while simultaneously the internal 

deformation energy of the deformable particle is increased by the work of an 

opposite contact force. When the normal relative velocity of the contact points 

vanishes, the compression phase terminates and restitution begins. During 

this last phase, the elastic part of internal energy is released. The bodies are 

driven by the force generated by elastic strain energy stored during 
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compression. In Fig.4.3 8� ≡ 8�0� = 9�0� − 9′�0�, where 9�0� is the intial 

velocity of body B and 9′�0� is the initial velocity of the body B’; thus during 

the impact the normal component of relative velocity is a linear function of 

the normal impulse. Let the instant when indentation changes from 

compression to restitution be �:. The colliding bodies have a relative velocity 

between contact points that vanishes at the end of compression: 8��:� = 0; 

i.e. compression terminates when the contact points have the same speed 9: 
in the normal direction 

 

 

Fig.4.3 – Change of velocities of boies B and B’vs time at the contact 

point. 

Fig.4.3 illustrates that the contact point of each body experiences a change 

in velocity that is directly proportional to the normal reaction impulse at the 

contact point C: 

 

8 = 8� +&��;		,  where  8�<0 (4.13) 
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During compression the increasing impulse slows the body B’ and 

increases the speeds of B as illustrated in Fig.4.3. The reaction impulse is 

determinate by: 

 

;: = ! 7�����	"<
�  (4.14) 

 

termed the normal impulse for compression, which brings the two particles to 

a common speed; this impulse is a characteristic which is useful for analyzing 

collision processes.  

The normal impulse for a compression is obtained from Eq. (4.13) and the 

condition that at the end of compression the normal component of relative 

velocity vanishes. 

 

8�;:� = 0 (4.15) 

Hence the normal impulse for compression is the product of the effective 

mass and the intial relative velocity 8� at C 

;: = −&8�		,  where  8�<0 (4.16) 

4.4.2 Friction law for rough rigid bodies 

In DEM typically the normal and tangential (frictional) contact forces are 

dealt with separately; the first realistic model for static friction was introduced 

by Cundall and Strack [3]: a virtual tangential spring is attached to each 

contact point and evolves while the contact partners are moving and rotating, 

relative to each other, due to the contact force and to the many forces from 

other particles. 
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Amontons-Coulomb law of sliding friction [4] can represent the dry 

friction between colliding bodies. This law relates the tangential component 

to the normal component of reaction force at the contact point by introducing 

a coefficient of limiting friction = which acts if there is sliding; first define a 

common normal direction n that is perpendicular to the common tangent 

plane. Let �* , 0 = 1,2,3,	be a set of mutually perpendicular unit vectors with 

�� and �A in the tangent plane while �B = � is normal to this plane. 8� and 

8A are the projection of the velocity on axis �� and �A, i.e. 8�A + 8AA > 0. 

Denoting the magnitude of the normal component of a differential increment 

of impulse by	�; ≡ �D-, this law takes the form: 

 

E��;��A + ��;A�A < =�;		,            if  8�A + 8AA = 0 (4.17a) 

  

�;� = − GHI
JHIKLHKK

�;,								�;� = − GHK
JHIKLHKK

�;         

 if  8�A + 8AA > 0 

(4.17b) 

 

Eq.(4.17a) expresses an upper bound on the ratio of tangential normal 

force for rolling impact; for ratios of tangential to normal contact force are 

less then = the sliding speed M ≡ E8�A + 8AA vanishes. When the sliding is 

present, M > 0, the tangential increment of impulse or friction force at any 

impulse, acts in a direction opposed to sliding and has a magnitude that is 

directly proportional to the normal force. The angle N, measured in the 

tangential plane, defines the sliding direction, N ≡ ����� OHKHIP, and the 

tangential velocity can be written as 
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8� = M cosN,   8A = M sinN (4.18) 

 

During the collision period, since the normal contact force must be of 

compressive type, the impulse of the normal component of reaction is a 

monotonically increasing scalar function. Consequently, rates of change for 

relative velocity at the contact point C can be expressed as a function of the 

rate of change of impulse for the normal component of reaction. 

4.5 Direct impact of viscoelastic bodies 

Typically, impact between bodies develops a contact force that is rate 

dependent or viscoelastic; this rate dependence has some consequences on 

force, strain and velocity of the collision. 

The Maxwell-model (Fig. 4.4-a) is the simplest visco-elatic representation 

of the contact force [5] arising from mutual compression of colliding 

particles; an alternative representation is the Kelvin-Voigt model [6] (Fig.4.4-

b). Both models have a linear spring and dashpot. For the Maxwell model, the 

compliance of the deforming region gives a normal relative motion that is 

restored during restitution through a coefficient in the range 0 to 1. 

Fig. 4.4 Visco elastic Maxwell model (a) and visco- elastic Kelvin Voigt 

model 
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Let us consider two bodies B and B’ separated by a Maxwell element: the 

spring is assumed to be characterized by a constant k and uncompressed 

length x0, while the dashpot has a damping force constant c and uncompressed 

length y0. Between the two particles the contact force rises: it depends by the 

relative displacement of the bodies x and by the fraction of this displacement 

that is due to the compression of the dashpot y; the same force acts in both 

the spring and dashpot, 

 

7 = −1�U − V� = −WVX  (4.19) 

 

The Maxwell viscoelastic model results in a coefficient of restitution Y∗ 

that is independent of the incident of relative velocity: 

 

Y∗ = Y�[\/E��[K (4.20) 

with the damping ratio 

 

^ ≡ &_�/2W            (4.21) 

 

where the damped natural frequency is: 

 

_+ ≡ _�E1 − ^A            (4.22) 

 

The normal force between the two particles, during collision, is given by 

the force in the spring or that in the dashpot, that are the same for equilibrium 

reason [2]: 
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7 = −1�U − V� = �1 − ^A���/A&_�8�Y�[`a" sin�_+��,          
_+� ≤ c 

(4.23) 

 

The Maxwell model gives an asymmetrical force with a contact period �( 

that increases with the damping ratio ^. 

In a collision between viscoelastic bodies, the compliance relation is rate-

dependent; consequently, the transition from the compression to the 

restitution phase of contact does not occur at the instant of maximum force 

when the spring compression is maximum; with the Maxwell model, the 

dashpot continues to compress throughout the entire contact period. 

The transition from compression to restitution occurs when the normal 

impulse is equal in magnitude to the initial momentum of relative motion mv0 

and this impulse causes the normal velocity to vanish. 

 

4.5 Impact of a spherical body with a flat surface 

Let us consider a spherical body of mass m and radius R which is impacting 

a flat rigid surface with an initial velocity v0; from the knowledge of the 

particle elastic modulus, E1, and that of the rigid flat surface E2, is possible to 

calculate the equivalent elastic modulus E’, considering the Poisson’s ratios 

of the two materials, d� , dA  the sought relation is[11]: 

 

e$ = 1 − d�Ae� + 1 − dAAeA  (4.24) 

 

If e� = eA = e and d� = dA = d then 
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e$ = e2�1 − dA� (4.25) 

 

The equivalent radius for two spheres in contact is given by [10] 

 

1f = 1f� +
1fA (4.26) 

 

When a spherical particle collides against a rigid flat surface fA → ∞ and 

the equivalent radius is f = f�. 

 

An effective mass for two colliding bodies can be obtained from the 

definition  

1& = 1&� +
1&A (4.27) 

For the collision of the sphere with mass &� against the rigid flat surface 

with mass &A → ∞, the effective mass is &� = &. 

The interference, x, is the distance the sphere is displaced normally into 

the rigid flat plane. The Hertz solution assumes that the interference is small 

enough such that the geometry does not change significantly.  

The motion of impact point during the collision can be of different nature. 
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Fig.4.5 Different compression phases for a sphere colliding a flat surface. 

 

4.5.1 Elastic compression phase 

The first case occurs when an elastic compression phase starts with the 

intial impact instant, the contact force F is zero, 7 = 0, and ends when the 

contact force reaches the known value of the critical force, 7 = 7h . For the 

critical force the deformation is the critical deformation, U = Uh (Fig.4.5). 

During this phase, there are only elastic deformations U = Ui�Ui ≤ U:� and 

the Hertz law can be applied 

 

7 = 1�UBA (4.28) 
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where  

 

1� = 43e$√f = 2e√f3�1 − dA� (4.29) 

 

The equation of motion of the sphere is  

 

&Ul = &m − 7      or      &Ul = &m − 1�UnK   (4.30) 

 

The initial conditions at � = 0, are U�0� = 0, and UX �0� = 8�. 

Stresses increase when the contact force F increase and these stresses 

could cause the material within the sphere to yield. U: is the critical 

interference i.e. it is the distance at the initial point of yielding. This critical 

deformation has been obtained by Chang et al [7]: 

 

U: = ocpq2e′ r
A f (4.31) 

where H characterizes the plastic property of the material and can be 

approximated with the Brinell hardness, K is a hardness factor and is given 

by K = 0.454 + 0.41ν. 

 

The critical value of the impact force can be expressed in terms of the 

critical deformation U:,  

 

7h = 1�U:BA (4.32) 
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Jackson and Green [8] derive this critical interference analytically using 

the von Mises yield criterion 

 

U: = ocstu2e′ r
A f (4.33) 

 

where tu is the yield strength and C is a critical yield stress coefficient given 

by 

 

W = 1.295	Y�.yBz{ (4.34) 

 

The Poisson’s ratio d and the yield strength tu to be used in Eq. (4.33) are 

that of the material which yields first between particle and surface.  

Substituting the critical interference into Hertz theory one can calculate the 

critical force  

 

7h = 43 ofe′r
A ocstu2e′ r

B
 (4.35) 

This model predicts the contact force between an elastic perfectly plastic 

hemisphere and a flat surface. For 0 ≤ U/U: ≤ 1.9 it effectively coincides 

with the Hertzian solution, even though the onset of plastic deformation 

occurs at 
|
|< = 1 

The equation of motion &Ul = &m − 1�UnK will be applied in the 

interval	0 ≤ U ≤ 1.9U:. At the end of this phase U = 1.9U: the time is �} and 

the velocity is 8} . The time �} and the velocity 8} are calculated numerically 
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from the equation of motion. The initial conditions for the next phase are the 

results of the elastic compression phase 

� = �} , U��}� = 1.9U:, and , UX��}� = 8}. (4.36) 

4.5.2 Elastic-plastic compression phase 

When the ratio �U/U:� exceeds the value 1.9, the force at the contact point 

for modeling elastic-plastic impact is: 

 

7~� = 7h ��Y���O ||<P
�IK� o UU:r

BA + 4s �q�tu� �1 − Y� �A�O ||<P
��� UU:� (4.37) 

 

where 
���� = 2.84 − 0.92�1 − W�M�c�/f��, q�  is the hardness geometric 

limit. The contact radius �, 0 < �
� < 1, is calculated from 

 

� = c�A = cfU o U:1.9U:r
�

 (4.38) 

where B is the contact area material property coefficient, � = 0.14YAB��, and 

�u is the yield strength to elastic modulus ratio, �u = ��~$ 
The equation of motion is very similar to the elastic case: the difference is 

only about the force 

 

&Ul = &m − 7~�  (4.39) 

 

with the initial condition at � = �}, U��}� = 1.9U: and UX��}� = 8}. When 

compression is maximum and the velocity is zero this phase ends; for the 
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maximum compression the contact force 7� is maximum  and the 

deformation is maximum U� and during this phase the deformation is 

1.9U: ≤ U ≤ U�. Starting from the equation of motion, Eq.(4.36), the time 

�� and the displacement U� are numerically calculated, finally the initial 

conditions for the next phase are the final results of the elastic-plastic 

compression phase, i.e.. 

 

� = �� , U���� = U�, and , UX���� = 0. (4.39) 

4.5.3 Restitution phase 

For both cases, elastic compression phase or elastic-plastic compression 

phase, the last phenomenon is the restitution phase, when the contact force 

decrease from its maximum value, 7� to zero. The elastic deformation 

decrease according to Hertz law and the eventual plastic deformation remains. 

Assuming that the sphere recovers in a completely elastic manner, the Hertz 

solution can be used to model the contact force as the sphere rebounds. 

In the case of plastic deformations, the sphere will not fully recover to its 

original shape so the radius of curvature will change to f� and the surface 

will be compressed permanently by a residual interference, U�. There are two 

ways by which U� and f� can be obtained. According to Etsion et al.[10]  

 

|�|� = 1 −	 B���~$��|�	  and  f� = �~$��nB��  (4.40) 

 

where �� is the contact radius at the maximum interference, U� 

Another way to obtain U� and f� is by fitting an equation to finite element 

results [2] : 
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|�|� = 1.02 �1 − ����< L�.�z.� ���.���	 and  f� = ��|��|��n OB	���~� PA (4.41) 

 

The rebound phase ends when the deformation U is equal to the maximum 

plastic deformation U�. 

The equation of motion of the sphere for the restitution phase is  

 

&Ul = &m − O�Be′Ef�P �U − U��B/A  (4.42) 

 

with the initial conditions at	U���� = U� and UX ���� = 0 � = ��. This phase 

will end when U = U�. At the end of the restitution, the rebound velocity 8( 

is obtained. The coefficient of restitution can be finally calculated as Y =
8(/8�. 

4.6 Conclusions 

The interaction of particles with boundaries can be studied by considering 

the contact mechanics concepts related to the case of particle-particle 

interaction as briefly discussed above; the contact stiffness, the equivalent 

Young modulus, and the equivalent radius are the quantities that permits to 

study and calculate the interaction during and after the impact. 

 In DEM the case of solid or granular materials, colliding with others 

elastic solids or boundaries can be treated exactly in the same way by simply 

using the proper force relations for both phenomena. 
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Chapter 5 

 

 

THE PROPOSED POTENTIAL BASED 

INTERPARTICLE METHOD 

 

 

 

5.1 Introduction 

As discussed in the previous chapters the discrete nature of solids, despite 

typically modelled as continuous media, can be recognized by observing their 

structure at the microscale or at the molecular level [1-5]. On the other hand 

the simple continuous approach used in practical problems, normally adopted 

at the meso or macroscale, is based on the fundamental notion of a 

mesoscopic volume element, whose physical characteristics can be 

considered as averaged properties (evaluated over several discrete particles) 

obeying deterministic relationships.  

Discrete Element Methods (DEM) or Particle Methods (PM), typically 

identified at the nano-scale as Molecular Dynamics methods (MD), are 

numerical procedures for the solution of a wide range of engineering and 

scientific problems. The main assumption for this class of methods is the 

idealization of the material through an assemblage of separate discrete 

elements, such as atoms, molecules, grains, particle solid elements, etc. [5, 

6].  
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In these discrete approaches, complex non-linear interactions between 

bodies and within bodies (allowed to present different shapes and properties), 

are numerically obtained by solving in order to get the motion of particles 

non-linear differential equations. 

It appears as such an approach is straightforward in modelling the 

mechanical behavior of solids from different scales levels (atomic, molecular, 

nano, micro, meso and mascroscopic), by properly adopting the interaction 

laws corresponding to the particle-particle interaction phenomenon. The 

approach can range from the very microscopic one, such as in the so-called 

ab initio approach (multi-body electronic structure theory, density functional 

theory, quantum chemistry, …) in which the force field arising between 

atoms, electrons and nuclei are considered [2], to the atomistic dynamics and 

statistics approaches (referred to as molecular dynamics, MD, or kinetic 

Monte Carlo models, suitable to describe kinetically dominated mechanisms) 

in which the effective bonds between molecules are properly described 

through potentials [3, 4], the mesoscale approaches based on the mean field 

rate theoretical methods (that typically mimic average dynamical properties 

[6]), up to the macroscopic scale such as the continuum-based 

thermodynamics or constitutive kinetic models, typically formulated by using 

variational methods. Multiscale analysis of solids has also been proposed in 

recent papers [7, 8]. 

On the other hand, such discrete nature is well evident for other class of 

materials such as the granular ones that are constituted by several deformable 

particles, usually interacting each other through elastic, contact, cohesive and 

friction forces [9-13]; among the different problems involving the simulation 

of materials, geomechanical and powders ones can be naturally studied by 

exploiting their noticeable granular nature [14-17]. 
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At the macroscale the discrete methods have relevant applications in 

mineral processing, rock blasting, crushing, phenomena involving sand 

mechanics, powders technology, failure of compact or granular bodies [15, 

17]; moreover materials like gases and liquids can be simulated with this class 

of methods [18, 19], i.e. through the simple scheme of interacting particles. 

A generic solid can always be though to have a particle structure: the 

assumption of the average particles size and of the particular nature of the 

particles’ interaction forces, allows to describe different materials; in such a 

way their behavior can be made to range from the very incoherent cases up to 

the compact materials ones, typical of granular (or powder) and of 

polycrystalline materials, respectively. 

Particles can be viewed as objects carrying the physical characteristics of 

the system that can be therefore simulated through the study of the motion 

evolution of the properties carried by the particles (position, velocity, 

acceleration, forces, …); simulations of molecular phenomena or of 

continuum bodies can be formulated by following the motion of interacting 

particles enclosing the physical properties of the flow. In a continuum, these 

properties are typically macroscopically averaged, e.g. the fields of density, 

momentum, vorticity are of main interest, while for a discrete system at the 

atomic scale the  mass, velocity and electric charge are normally sought. 

The unavoidable particle nature of real materials suggests – in competition 

with classical continuum models – the possibility to use a different approach, 

namely a discrete one, to suitably describe their mechanical behavior, also at 

different scales. 

In the light of the above considerations, at the macroscopic scale a material 

cannot be simply associated univocally to one of the two extreme classes 

(continuum or granular), but can be assumed to be characterized by an 
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intermediate behavior, since the nature of the forces between the discrete 

particles can be regarded to range from adhesion-like (such as in powders 

materials) up to strong covalent bond (as for compact materials). 

Moreover, in heterogeneous materials the coexistence of different types of 

particles, interacting according to different bonding laws, requires to study 

the behavior of a generic multiphase solid. 

The above observations suggest the possibility to adopt a discrete model 

for the simulation of different class of solids, by simply properly choosing the 

nature of the interaction forces existing between their discrete constituent 

elements, i.e. by modelling the material as an assemble of small discrete 

elements once the mechanical behavior and failure evolution at a local level 

are properly described. 

By taking into account the particle-like nature of solids, such an approach 

can be suitably used for either continuum-like [20-22] or granular-like 

materials [23], by properly setting the law governing the mechanical and/or 

electrostatic interaction existing between particles. Such description allows 

us to get the overall response of the material at the macroscale, which is the 

main interest of materials science and mechanics of materials [24]. It should 

be also considered as the particle nature adopted for a solid matter naturally 

allows tackling the problem from a dynamic point of view, permitting the 

solution of high strain rate, impact, large displacements and large strains 

problems. 

Solid mechanics problems involving history-dependent behavior, large 

deformation, large displacements, plasticity, etc. are expressed more naturally 

in a Lagrangian computational framework that is particularly suitable and 

useful when the material free surfaces or multiple materials interaction has to 

be followed.  
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When large deformations are present, a purely Lagrangian approach 

applied to continuum mesh-based computational techniques, can become not 

convenient due the requirement of complex mesh adjustment and smoothing, 

unreasonably small time steps, and so on. For the above reasons, particle 

methods for solid mechanics problems have gained an increasing popularity 

in the last decade [25-28]. 

The discrete approach applied at the meso- or macro-scale level is usually 

referred as the discrete-element method (DEM) or particle method (PM) [18]. 

In the present chapter, a computational discrete element method developed 

for continuum materials, granular-like or mixed cases – based on the concept 

of force potential interaction law for the quantification of the mutual forces 

exchanged by particles representing the solid – is presented in detail. 

After illustrating the basic concepts related to the discrete nature of 

materials and their mechanical modelling, a simple particle-based approach 

for continuum solids or discrete incoherent aggregates is illustrated by taking 

into account for the dynamic nature and large strain characteristic of the 

problem.  

5.2  Potential-based interparticle method 

 By considering the meso or macroscale level of observation, it can be 

assumed – analogously to the atomic description of solids – that the material 

is characterized by a potential energy functional )(xΠ .  Such an energy 

allows determining the pair-wise potential forces (Fig. 1) and can be written 

as follows: 
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iitottotE xPxxx ⋅−Φ=Π= )()()(  
(5.1) 

 

where )(xtotΦ  and iP  are the strain energy of the system and the force applied 

to the particle i, respectively. The configuration of minimum energy can be 

obtained by setting to zero all the derivatives of )(xtotE  with respect to the 

position vectors ix , 

 

0
)(

=−
∂

Φ∂
=

∂

∂
i

i

tot

i

totE
P

x

x

x
 

 

(5.2) 

 

By writing the power series expansion of the total energy starting from the 

equilibrium state (identified by the position vectors synthetically indicated as 

0x ), we get: 
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(5.3) 

The stationary condition expressed by Eq. (5.2) can be rewritten in the 

following way: 

  



THE PROPOSED POTENTIAL BASED INTERPARTICLE METHOD 119 

0Pxx
xxx

xx

=−+−
∂

∂
+

∂

∂
≅

∂

∂
.....)( 02

2

00

tottottot EEE
 

or     

PxxK
x

Pxx
x

xx
x

xxx

=−⋅=
∂

∂
−=−

∂

Φ∂
=−

∂

∂
)()()( 002

2

02

2

000

tottottot EE

 

 

 

(5.4) 

where the so-called tangential stiffness matrix can be identified through the 

second derivatives of the strain energy function  as: 
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(5.5) 

Several potentials have been proposed in the literature to represent the 

mechanical interactions between particles.  Among them, we can mention 

here the Morse potential [29], the Lennard-Jones (LJ) potential [30], the 

classical strain energy potential (widely used in continuum mechanics), and 

so on. 

In the following paragraphs are presented some potentials and their 

mechanical interpretation is given; they are introduced to study different kind 

of problems, everyone fitted for a particular situation. 
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5.2.1  Potential function for molecular-like forces 

The above cited pair-wise Lennard-Jones (LJ) potential is usually 

employed to describe the forces between particles at the nanoscale (i.e. at the 

atomic or molecular level), but it has been also used for the description of 

continuum solids [20, 21]. Mathematically it can be written as follows: 
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(5.6) 

 

where R  is the distance at which the potential reaches its minimum, D  is the 

depth of the potential well, and r  is the actual distance between the centres 

of the two considered particles; the typical assumption 6=n  leads to the so-

called 12-6 Lennard-Jones potential used for the atomic simulation of matter. 

It has been shown that it does not give adequate description of all the 

properties of metals; for example, the above recalled LJ potential imposes the 

Cauchy relationship 4412 CC =  ( 4412 ,CC  are the elastic constants 

corresponding to the force-distance relation established by the potential) that 

has been demonstrated to be wrong for most of the known metals. Moreover, 

pair-wise potentials fail to estimate the structure relaxation and reconstruction 

around point defects (vacancies and self-interstitials) in metals.  The vacancy 

formation energy obtained by means of pair-wise potentials is overestimated, 

and has been found to be equal to about the bulk cohesive energy; the more 

suitable potentials for simulations of metals are the so-called many-body 

potentials. A suitable interatomic potential for metals is thus a many-body 
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one which includes a pair-wise interaction only as a part of the full potential 

[31]. 

The above concept, related to the development of forces derived from 

interatomic potentials at the atomic scale, can be conveniently used – if 

properly tuned – also to tackle the problem of the mechanical description of 

solids at the macroscale [20] at which the matter can be assumed to be 

composed by particle elements.   

By indicating with 2/id  and 2/jd  the radii of the particles i and j 

(assumed for the sake of simplicity to have a spherical shape), respectively, 

the potential can be conveniently written through the distance s  between the 

surfaces of the facing particles defined as )2/2/(' ji ddrs +−= , where r  is 

the distance between the centres of the particles (Fig. 5.1). 

 
Fig. 5.1. Scheme of pair-wise interparticle forces. 
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In order to have a realistic description of the interaction forces, a very high 

(theoretically infinite) repulsive force value can be reasonably assumed to 

appear when the two elements co-penetrate by a given amount 

rdd ji ⋅=+⋅= ααδ 4/)(  (where α  is a proper coefficient, and 4/)( ji ddr +=  is 

the average particles radius) (Fig. 5.2).   

 

 
Fig. 5.2. A pair of particle at the equilibrium distance. (a) Maximum co-
penetration corresponding to ��� = ��� → −∞ (b) and generic particles 

relative position with geometrical parameters (c). 

 
The effective surface distance ( 0>s ) can be expressed as follows: 
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(5.7) 

 

where, for not too different particles radii, it has been assumed that 

δδδ =≅ 21 , where 0r  is the distance between the centres of the particles at 

which −∞→= )( 0rrF . 

The co-penetration distance w  of the particles is finally expressed as: 
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By assuming, as in the previous case, that an infinite repulsive force takes 

place when the two elements co-penetrate by the amount δ  (or when 

δ2'i.e.,0 −== ss , Fig. 5.2b, c), the Lennard-Jones- potential can be 

rewritten as (Fig. 5.3a): 
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where the case Rs =  corresponds to the value of s  for which the potential 

attains its minimum or, equivalently, the interaction force becomes equal to 

zero, 0)( == RsF .  

As can be observed in Fig. 5.3b, the )(sF  relationship corresponds to the 

force-displacement behaviour of a softening-like material, since – once the 

force attains its maximum for dss =  – )(sF  - decreases by increasing the 

distance s ,  tending to zero for high values of s . In the present formulation 

a repulsive force is assumed always to be negative while an attracting force 

is taken as positive. 
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Eff. distance between particles surface, s = r - r0
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Fig. 5.3. (a) A graphical schematic representation of the Lennard-Jones 
potential for 2=n  ;  (b) the related force and stiffness. 

 

The corresponding stiffness )(sK  is also depicted in Fig. 5.3b; it presents 

unlimited values when 0→s ,  afterwards it decreases by increasing s  up to 
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the value dss =  at which it becomes equal to zero. Subsequently it attains 

negative values giving rise to the above mentioned softening behaviour.  For 

computational purposes, the )(sK  relationship can be assumed as plotted in 

Fig. 5.3b (thick dashed line), i.e. by only considering values greater or equal 

to zero (i.e. for dss >  )(sK  is assumed to be zero). 

The last assumption corresponds to case of non-interacting particles, 

situation that occurs when they are located at a distance, measured between 

their centers, greater than dsr +0 . 

By setting the stiffness )(sK  to be equal to  0K  when 0)( =sF , i.e. when 

Rs = , the constant D  in Eq. (5.7) can be explicitly evaluated: 
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Moreover, the distance at which the force )(sF  reaches its maximum can 

also be determined by setting 0/)()( == dssdFsK .  This condition leads to 

the following particular value of the effective distance ds  between the particle 

surfaces (Fig. 5.3b): 
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It can reasonably be assumed that such an interaction completely vanishes 

for a sufficiently large distance. In other words, it can be assumed the 

existence of a cut-off distance cs  for which the force becomes equal to zero 
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(as well as for greater distances).  From the above discussion, such a non-

interacting distance can be conveniently assumed as dc ss =  (Fig. 5.3b), i.e. 

the interparticle force is set to zero in the softening branch of the )(sF  

relationship. 

 

It must be emphasised as in the present model the rotational inertia, and 

consequently the angular coordinates, have not been considered for sake of 

simplicity, since the particles are assumed to be spherical and with very small 

dimensions with respect to the structural size. 

5.2.2 Potential function for granular-like solid materials 

In the case of granular materials, for which the simple scheme of multi-

interacting bodies is straightforward, a suitable force-particle distance 

description could be as that shown in Fig.5.4a where the corresponding 

potential is also displayed. As can be noted, a quadratic potential )'(sΦ  

implies a linear force-distance relationship when the particles are in contact   

( 0' <=− sw ), whereas the force becomes equal to zero when the contact 

disappears ( 0' ≥s ). The stiffness 0K  of such an interaction force corresponds 

to the slope of the F - 's  relationship when 0' <s  (Fig. 5.4a). 

A regularised (smooth) version of the above cited potential – suitable for 

such a class of materials (see Fig. 5.4a) – and the corresponding force-

distance relation, can be introduced in order to avoid possible problems in 

computational analyses. Such a regularised (smooth) potential can 

mathematically be described through the following equation  (Fig. 5.4b): 
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where c , n  are constants ( 2>n ), while the corresponding particle pair 

forces relationship can be expressed as follows: 
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where p  is the unit vector identifying the direction connecting the two 

particles centres (Fig. 5.1). 

The use of the effective surface distance s  in Eq. (5.11), instead of the 

real distance 's  between the particle surfaces, allows to get an unbounded 

repulsive force when the two particles have co-penetrated each other by the 

amount r⋅=αδ . 

The coefficient c  in Eqs (5.12, 5.13)  can be determined, for example, by 

setting the value of the stiffness when the two spheres are at incipient contact 

( 0' =s ), i.e. 02
/)2,0'( KsFssK

s
=∂∂===

= δ
δ . 
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Fig. 5.4. (a) Interparticles potential and corresponding forces for an ideal 
granular material without cohesion; (b) corresponding regularised 

counterpart . 
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The force )(sF  given by Eq. (5.13) is never equal to zero, irrespectively 

of the particles distance, but such interaction becomes smaller and smaller as 

the effective distance s  increases as shown in Fig. 5.4b.   

Finally, when the two particles are at a distance corresponding to the first 

contact ( 2/)( ji dddr +== ), by assuming an elastic interaction, the value of 

the tangent stiffness can be assessed through the relation: 
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that allows to determine the value of the constant c: 
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The contact force arising when two particles i and j are in contact, can be 

also evaluated through the well-known Hertz law; according to this approach 

the normal force-co-penetration relationship and the contact stiffness can be 

expressed as follows [32, 33]: 
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where iE , iν , id  ( jE ,
jν , jd ) are the elastic modulus, the Poisson ratio and 

the diameter of the particle i,j, respectively. The potential corresponding to 

the above Hertzian-like contact force can be finally expressed as (Fig. 5.5): 
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Fig. 5.5. Interparticles potential and corresponding forces and stiffness 
according to the Hertzian contact law Eq. (5.15a) for a granular-like 

material. 

 

In the framework of the Hertzian theory of contact between elastic bodies, 

in case of dynamic problems the viscoelastic effects during collision can also 
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be taken into account; in such cases the normal force acting between two 

particles in reciprocal contact can be expressed by updating Eq. (5.15a) as 

follows [34]: 
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where H  is a constant and dtdw /  is the particles co-penetration velocity. 

Furthermore during contact it can be also assumed the existence of a 

tangential force )(wT ; it acts parallel to the relative tangential velocity 

between particles and can be expressed through the relation: 

 

( ))(,min)(sign)( ,, wFwT mdreltrelt ⋅⋅⋅−= µη uu  (5.18) 

 

where η  is the viscosity coefficient and mdµ  is the dynamic friction 

coefficient of the materials, while relt ,u  is the relative tangential velocity 

between the two particles surfaces under contact; in practice Eq. (5.18) 

quantifies such tangential force as the minimum value between the dynamic 

friction and the viscosity action. 

 

5.2.3 A simple potential function for linear-elastic solids 

As is well known the simplest mechanical model describing the behavior 

of a continuum solid can be represented by the generalized Hooke’s law; 

according to such relationship the force between two infinitely closed 
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material points is proportional, through proper coefficients, to the strain value 

occurring in such a small region. Let us assume that two particles are 

representative of two material points of the solid (Fig. 5.6a); it can be argued 

that in the reference state at the equilibrium distance er  between the two 

considered particles in the reference state, the reciprocal force is equal to zero. 

Since the problem under study is not restricted to the small strain assumption, 

the large strain corresponding to a generic distance err ≠  between the particle 

centers, can be written as (Fig. 5.6b): 
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(5.19) 

 

 

 

Fig. 5.6. A pair of particles at the equilibrium distance (a). Configuration 
corresponding to a generic positive stretch (b). 

 

The force corresponding to such simple linear elastic behaviour, acts along 

the line joining the particle centres and can be expressed as: 
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(5.20) 

 

where ',EA  are the cross-section and the elastic modulus of a suitable truss 

element that can be assumed to join between the two particles (Fig. 5.6). In 

the above equation, the influence distance inflr  represents the maximum 

interacting distance between the couple of particles, i.e. the distance over 

which two particles are not interacting or, in other words, no bonding force 

exists between them. Note that according to such model the interaction 

between particles can exist also for elements that are not in direct contact each 

other. 

The potential and the stiffness function in this case are given by: 
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In order to represent the real problem of the elastic contact between 

particles, the condition of non co-penetration should be considered: the 

distance between the particle centres cannot become lower than a limit value 

0r  (Fig. 5.2) corresponding to the maximum allowable co-penetration depth, 



CHAPTER 5 134 

δ2=w . This aspect can be taken into account – under the assumption of an 

unlimited compressive strength of the particle’s material by assuming that the 

stiffness of the truss element increases as 0→s (or equivalently δ2→w ); 

this can be obtained by adopting the elastic modulus 'E  not to be constant but 

dependent on the effective distance s . A suitable expression for the elastic 

modulus-relative distance relationship can be written as: 
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As an example the function )(sc  can be assumed in the form:  

 

[ ] [ ]mm sssc −− +−++= )1(1/)1(1)(  (5.23a) 

where the exponent 
 allows to set the elastic modulus gradient when 0→s

The stiffness term can therefore be written as: 
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In Fig. 5.7 dependence of the potential, of the force and of the stiffness, on 

the distance is displayed for the linear elastic particles interaction for two 

different equilibrium distances ( 
��



= 1, Fig. 5.7a; 

��



= 2, Fig. 5.7b ); the same 

quantities are illustrated for the case of no co-penetration according to Eqs 

(5.22, 5.23b) (Fig. 5.7c). 



THE PROPOSED POTENTIAL BASED INTERPARTICLE METHOD 135 

 

Dimensionless effective distance 
between particles surface, s / r

In
te

rp
a

rt
ic

le
s
 f
o

rc
e

, 
F

c
o

n
ta

c
t 
s
ti
ff
n

e
s
s
, 

K

F
o

rc
e

 p
o

te
n

ti
a

l,
 Φ

se / r = 2

F(s)

Φ(s)

(b)

K(s)

1.0

0.0

 

Dimensionless effective distance 
between particles surface, s / r

In
te

rp
a

rt
ic

le
s
 f
o

rc
e

, 
F

c
o

n
ta

c
t 
s
ti
ff
n

e
s
s
, 

K

F
o

rc
e

 p
o

te
n

ti
a

l,
 Φ

F(s)

Φ(s)

(c)

K(s)

se / r = 1

1.0

0.0

 

Fig. 5.7. Interparticles potential and corresponding forces and stiffness 
according to the linear elastic behaviour law Eqs (5.18, 5.19) for different 

equilibrium distance ((a) 
��



= 1; (b) 

��



= 2). Corresponding functions for 

the corrected stiffness (Eq. (5.21)) enabling to consider the interparticles 
non co-penetration  condition (c). 
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In order to correctly represent the elastic behaviour of continuous bodies 

discretized through particle elements, the trusses connecting each couple of 

particles (Fig.5.6) must be characterized by a suitable choice of their cross-

section area; since the number and layout of the resulting truss lattice structure 

depends on the particle arrangements in the space (Fig.5.1) and on their 

influence distance inflr , the above relation (5.20) must consider a corrected 

cross-section area, ijij AraA ,0infl )( ⋅= , in order to correctly represent the 

elastic body. In the previous equation 2
,0 )(

4 jiij ddA +⋅=
π

 is the area of the 

assumed circular cross-section truss, having radius equal to the average radius 

of the two connected particles i and j (Fig. 5.6a). The pattern of the function 

)( inflra , determined through numerical analyses, is reported in Fig. 5.8a, b 

for the cubic and tetrahedric particle arrangements. 
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Fig. 5.8. Cross-section corrections function )( inflra  for cubic and tetrahedric 

particle arrangements (a), (b) and Poisson’s coefficient vs the dimensionless 
influence radius for different relative particle sizes (the assumption ji dd =  has 

been made for sake of simplicity). 
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The function )( inflra  has been evaluated by discretizing through spherical 

particles (in reciprocal contact) having diameter id , an elastic cube with edge 

length l  under uniform tension, by changing the influence radius  in the range 

53 infl ≤≤ r . As can be noted the correction function )( inflra  is almost 

independent by the relative particle size ldi /  for a specific particles 

arrangement (Fig. 5.8a, b) while the Poisson’s coefficient tends to the value 

1/3 as the influence radius is increased (Fig. 5.8c). As a matter of fact, the 

Poisson’s coefficient cannot be modified once the arrangement and the 

particle size have been assumed: however, for sufficiently high value of the 

influence radius 4infl ≥r , the obtained Poisson’s value 1/3 can be considered 

to be suitable for a wide class of materials. 

From the above results it appears as a suitable choice of the correction 

function )( inflra  for an influence radius values equal to about 4)2//(infl ≅idr  

– the value assumed in the following examples, Chapter 6 – is approximately 

equal to 4.0)( infl ≅ra  for both cubic or tetrahedric arrangements. The case of 

granular materials can be also tackled in the same way by adopting 

2)2//(infl ≤idr , i.e. by assuming the interaction of particles only when they 

are in reciprocal contact, while no forces exist when 0' >s ; the tangential 

force eventually present between the colliding particles when the distance 

between their surfaces is 0' ≤s , can be evaluated exactly as in Eq. (5.18) by 

considering the actual force )(sF  – instead of )(wF  – acting along the 

particles’ centres. 



THE PROPOSED POTENTIAL BASED INTERPARTICLE METHOD 139 

5.2.4 Material Failure 

The lattice scheme of a continuum solid easily allows to model internal 

failure of the material; in fact the force exerted by a truss representing the 

bonding between two interacting particles can be set to zero when its tensile 

(or compressive) strength is reached; this corresponds to the failure condition 

of the connecting element; from then on, the two originally connected 

particles can interact in successive time instants only if a compressive contact 

takes place. This simple criterion enables to manage brittle failure and 

compressive contact between the failed particles, such that occurring in the 

crack closure phenomenon in fracture mechanics. 

5.2.5 Strains calculation 

The strain field in the solid can be recovered once the strains in the trusses 

are known; Eq. (5.19) allows to obtain the strains in a given point of the body 

measured along given directions (coincident with the truss directions 

connecting the particles). The strain tensor )( ixε  in the equivalent continuum 

body represented through particles identified by the position vector ix  can be 

approximately evaluated by using the relation  

 

iji
T
ijiij nxεnx )()( =ε  (5.24) 

 

where )( iij xε  is the strain in the truss element connecting the particle i with 

j and 
ijn  is the unit vector identifying the i-j direction. Once the strains  

pjiij ,..2,1),( =xε  are known (p indicates the number of particles that are 

within the region of influence of the particle i), the above relations can be 
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arranged in a (rectangular) system of equations where the unknown is the 

strain tensor )( ixε . If 6≥p  the system is overdetermined and such a strain 

tensor can be obtained through the least square-like algorithm or equivalent 

approaches. 

By performing such approximate solution for all the particles constituting 

the solid under study, the strain tensor field can be reconstructed throughout 

the region occupied by the body. 

5.3 Particles-Boundary Contact simulation 

The interaction of particles with boundaries can be studied by considering 

the contact mechanics concepts as briefly discussed at the end of par. §5.2.2, 

related to the case of particle-particle interaction; the contact stiffness, the 

equivalent Young modulus, and the equivalent radius related to the case of an 

elastic sphere impacting an elastic plane can be assessed as [33]: 

2/12/1 *22)( wrEwrEwK in ⋅=⋅=  
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where iE , iν , ir  are the elastic modulus, the Poisson’s ratio and the diameter 

of the particle, while jE , 
jν  are the elastic modulus and the Poisson’s ratio 

of the elastic surface (assumed to be flat, i.e. with local radius of curvature of 

the contact area tending to infinity, �� → ∞) representing the boundary 

constraint. The above equation is analogous to the relation (5.17) related to 

the contact between two colliding particles. 
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The force acting normal to the tangent plane at the particle-surface contact 

point can be assessed as 

 

nT ⋅⋅= 2/3)( wKw nn  (5.26) 

 

where n  is the unit normal to the boundary surface in the contact point, while 

the tangential force belonging to such a tangent plane is assumed to be 

expressed by the following friction-like relation 

 

t
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 (5.27) 

 

where dµ  is the coefficient of dynamic friction and titi ,, / xxt &&−=−  

represents the unit vector opposite to the direction of the tangential velocity 

of particle i with respect to the boundary surface (Fig. 5.9). 
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(a) 

 

(b) 

Fig. 5.9. Scheme of the forces transmitted to a particle in contact with an 
external boundary surface (a). Scheme of the approach used to attenuate the 
forces produced by the impact of the particle with an elastic boundary (b). 

 

In order to avoid possible numerical instabilities due to the high value of 

the contact force given by Eqs (5.26, 5.27) when a very stiff plane is 

considered, the contact force co-penetration w relation can be attenuated by 

introducing a smoothing function )(wχ  for the contact stiffness: 

 

nn KwwK ⋅= )()( χ  ,    1     ,1)/()(0 /1 >≤=≤ mww mγχ  (5.28) 

 

The above relation corresponds to assume that the interaction with the 

boundary takes place when the particle touches a layer having a small 
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thickness γ  superposed to the surface; the contact force increases 

progressively up to the final co-penetration depth w (Fig.5.9b). 

It can be observed that the potential function concept adopted for the 

particles interaction, can be used also to describe the particle-boundary 

phenomenon, i.e. the forces acting on a particle due to the contact with an 

elastic boundary can be described through a suitable potential with an 

influence radius for the impacting particle i equal to γ+= irrinfl  (see Eq. 

(5.20)). 

The case of solid or granular materials colliding with others elastic solids 

or boundaries can be treated exactly in the same way, by simply using the 

proper force potential. 

Generally, in the examples presented in Chapter 6, a soft layer with relative 

thickness equal to 1.0/ =irγ  and 2=m  are adopted for the numerical 

simulations. 

5.4 Model implementation 

5.4.1 Equation of motion and time integration algorithm 

The governing equations of the discretized problem under dynamic 

conditions can be written as: 

 

0FFFFxM =++++− bedi&&     or    TFxM =&&  (5.29) 

 

where M  is the mass matrix, x&&  is the vector of the particles center 

acceleration (the rotation degrees of freedom are herein neglected), while 
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edi FFF ,,  are the internal force vector evaluated through the adopted 

potential force, the damping force vector and the external force vector, 

respectively. Finally, the force vector bF  represents the eventual actions 

transmitted by the collision of the particle with the elastic boundaries. 

5.4.2 Damping of particles interaction 

The numerical simulation of the dynamic interaction of particles can 

benefit by the presence of damping effects that helps in maintaining a stable 

evolution of the phenomenon; since most of the constitutive laws do not 

contain any velocity-related damping, it is convenient to introduce a so-called 

numerical damping [11]. The main feature of the numerical damping is the 

introduction of forces leading to a reduction of the particle velocity, i.e. the 

particle is subjected to a force responsible for an acceleration opposite to its 

current velocity. 

In this context, Cundall [9] proposed the following expression for the 

numerical damping force dF : 

 

( )xFFF &⋅⋅⋅−= sgndd λ  (5.30) 

 

where xF &,,dλ  are the damping coefficient, the actual force acting on the 

particle and the particle velocity, respectively. 

5.4.3 Numerical integration in the time domain 

In the above paragraphs it has been explained as each particle is subjected 

to generalized forces deriving from the interactions with other bonded 
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particles, contact with boundaries, colliding particles, damping effects, etc.. 

The knowledge of the force vector enables to integrate the equations of 

motion for each particle separately, without the need to solve a huge system 

of equations, as typically required when the stiffness matrix (in the context of 

implicit methods) is adopted; explicit methods, despite being conditionally 

stable with respect to the adopted time step value, are normally preferred with 

respect to implicit ones in particles simulations due to their memory saving 

properties. 

Among explicit methods, the so-called leapfrog method or Verlet 

integration scheme [35], is frequently adopted for numerical problems in 

which the trajectories of particles (such as in molecular dynamics simulations 

and computer graphics) is required. Such integration method provides a 

satisfactory numerical stability property, provides time-reversibility and 

preservation of the symplectic form on phase space. Its name derives from 

the fact that even derivatives of position are known at on-step points, whereas 

odd derivatives are known at mid-step points. 

The procedure determines the particle acceleration at the current time step 

k as: 

 

ikiTki m/,,, Fx =&&  (5.31) 

 

Using the second order finite difference method to approximate ki,x&& , the 

mean velocity vector during  the time step interval 1+÷ kk  can be written 

as: 
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is the mean velocity during the previous time interval kk ÷− 1 . 

The position vector of particle i at time step 1+k  can be finally written as: 

 

( )kikikiki tt ,2/1,,1, xxxx &&& ⋅∆+∆+= −+     or   

2/1,,1, ++ ⋅∆+= kikiki t xxx &  
(5.33) 

 

Positions of particles are thus known at time instants tktk ∆⋅= , while 

velocities are known at time instants tktk ∆⋅±=± )2/1(2/1 . 

The leapfrog integration scheme can be used, with some proper 

adjustments, also for the evaluation at discrete intervals of the rotation 

position, velocity and acceleration of non-spherical particles.  

5.4.4 Stability in explicit integration 

A numerical model consisting of N degrees of freedom contains N natural 

frequencies and corresponding mode shapes. Mathematically, natural 

frequencies and mode shapes are eigenvalues and eigenvectors, respectively. 

Since explicit integration is conditionally stable, the theory of spectral 

stability shows that the time step t∆  should satisfy 

 

( )ξξ
ω

−−<∆ 2

max

1
2

t  
(5.34) 
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for linear viscous damping, where ξ  is the fraction of critical damping at 

����, which is the highest natural frequency of the mesh. Mass proportional 

damping can be implemented implicitly if the mass matrix is diagonal, 

although this improves the time step only marginally since mass proportional 

damping decreases at higher frequencies. Nonetheless, if mass proportional 

damping is used and is treated implicitly, then Eq. 5.34 applies where ξ  is 

the fraction of critical damping at  ���� due to stiffness proportional damping 

only. 

The leapfrog integration scheme can be used, with some proper 

adjustments, also for the evaluation at discrete intervals of the rotation 

position, velocity and acceleration of non-spherical particles.  Typically, 

admissible timestep size t∆  in DEM simulation is obtained from the 

eigenfrequency of a couple of particles, Kmt /⋅=∆ α , where the minimum 

ratio Km /  among all the particles constituting the discretized body must be 

considered and 1<α  is a proper constant [36]. 
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Chapter 6 

 

 

NUMERICAL APPLICATIONS 

 

 

 

6.1 Introduction 

The numerical analysis, illustrated in the following paragraphs, simulate 

different cases of compact and granular solids. In some cases, the use of the 

real elastic parameters of brittle solids (such as concrete…) in the constitutive 

equation would result in extremely small time steps in the integration of the 

dynamic equations determining very high computational cost. In order to 

prevent this, in some case where the main interest is to study the large 

deformations, brittle fragmentation, granular flows etc.., from a qualitative 

point of view an artificial smaller elastic modulus is used. 

6.2  Elastic cantilever beam under impulsive load 

In order to verify the accuracy of the developed particle method in 

modelling elastic solids, the simple problem of the dynamic response of a 

cantilever beam subjected to an impulsive load applied to its free end is herein 

considered (Fig. 1a). The beam is supposed to have an elastic modulus equal 

to � = 5 ∙ 10��	, Poisson’s ratio 
 = 0.1 and mass density equal to 2400 
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kgm-3. The beam dimensions are assumed as those employed for the beam 

considered in paragraph 6.2, while the concentrated load F  is assumed to 

vary according to the relation �
�� = �� ∙ ��
��, where �� = 1000� and the 

impulsive functions ��
��
� = 1,2� are represented in Fig. 6.1b; a negligible 

damping of the system has been considered. 

The force potential described in Chapter 5 has been used to describe the 

interaction forces inside the beam’s particles by adopting an influence 

distance of the discrete elements particles equal to ����� = 2�. 

2D plane stress FE analyses have been used for comparison with the 

particle method approach; in Fig. 6.1c the time histories of the vertical 

displacement of point A, located at the free edge of the beam, are represented 

for both the FE (250 quadrilateral quadratic elements have been used to 

discretized the beam) as well as for the 3D PM model (that considers the beam 

discretized through about 1200 particles, arranged in cubic fashion, Fig. 6.1a) 

under the two assumed impulsive loads. 
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Fig. 6.1 - Cantilever beam under impulsive load (a); load functions (b) 

and time histories of the free edge vertical displacement at point A (c) . 

�
�� = �� ∙ �
�� 

Clamped Section 

A 



CHAPTER 6 156 

As can be observed the discrete approach provides results that are in 

satisfactory agreement with the FE results, in term of magnitude of 

displacements as well as of period of oscillation, confirming the good 

capability of the developed PM approach to correctly represent the dynamic 

behavior of an elastic body. 

6.3 Impact of an elastic body on a cantilever beam 

In the present example the impact of a cubic elastic body on a cantilever 

beam is considered; the falling cube has an initial velocity equal to 0v  and is 

located above an elastic cantilever beam at a distance H , while its horizontal 

position with respect to the beam is given by the distances � and �. Both 

bodies are assumed to be in the gravitational field acting in the vertical 

direction, z− .  The material of the beam is supposed to be brittle with an 

elastic modulus equal to � = 3 ∙ 10��	 and a tensile strength equal to �� =

2 ∙ 10 �	, while the force potential described in Chapter 5 has been used to 

quantify the interaction forces inside the two solids and between the different 

bodies, by adopting an influence distance of the particles equal to ����� = 2�  

and ����� = � for the beam and the falling body, respectively. In some cases 

the tensile strength of the cantilever beam is considered to have higher values 

to prevent its failure and to study the different responses of the impact 

between the beam and the falling body. 

Below the described mechanical system, an elastic (� = 3 ∙ 10!��	) flat 

horizontal boundary plane surface π  – lying on the x-y plane – is assumed to 

be placed at a distance ℎ from the bottom of the beam (Fig. 6.2). In the 

numerical particle approach the beam is modelled through 1200 spheres 

(arranged in a cubic lattice with diameters assumed to be normally distributed 
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with a mean value equal to  5mm  and variance 0.1mm) while the falling body 

is supposed to have an elastic modulus equal to � = 3 ∙ 10#�	  and a very 

high tensile strength to avoid failure. The geometry of the system is 

characterised by $ = 10	, % = 	 and ℎ = 5	/2,  while the falling body is 

assumed to be initially located in a position identified by: i) � = 	, � = 0; ii) 

� = 	/2, � = 5	; iii) � = 	/2, � = 0. The initial velocity of the falling body 

has been assumed equal to	(� = 3)/*  and 5)/*. 

It must be emphasised as the elastic constants of the bodies have been 

assumed very small, with respect to real materials, to get large displacements 

in the structure in order to underline the geometrical nonlinear feature of the 

computational algorithm. The mass density of the beam has been assumed 

equal to 2400 kgm-3, while the falling block density has been assumed equal 

to 7800 kgm-3. The time integration procedure has been conducted by using 

a time step amplitude	∆� = 5,* (the analysis duration has been extended up 

to 0.4s). 

Fig. 6.2. Cubic elastic body falling on a cantilever beam: geometry of the 
system. 
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Case i) Impact at the beam extremity with failure 

In Fig. 6.3 and Fig. 6.4 the configuration for the falling case i) at three time 

instants is shown for the two cases (� = 3)/* (Fig. 6.3a, b, c) and (� =

5	)/* (Fig. 6.4a, b, c). It can be noted as the initially slower falling block 

causes a local rupture of the beam in the impacted zone and the failure of the 

restrained cross section of the beam while only the local failure takes place 

for the case  (� = 5	)/*, since the shock elastic wave produced in the beam 

is lower in the second case because of the suddenly failure of the impacted 

part of the beam. 

a) 

 

0.2 
 
 
0.0 
 
 
-0.5 

 b) 

  

 c) 

  

Fig. 6.3. Beam configuration at different time steps, falling body          
(� = 3)/* a) t = 0.016s, b) t = 0.200s, c) t = 0.400s. Color scale 

indicates the strain values in the beam axis direction 
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Fig. 6.4. Beam configuration at different time steps, falling body          
(� = 5)/* a) t = 0.016s, b) t = 0.200s, c) t = 0.400s.Color scale 

indicates the strain values in the beam axis direction 

Case ii) Impact along the beam span with failure 

In Fig. 6.5 and Fig. 6.6 the bumped beam for the case ii) is shown; it can 

be noted as the falling block produces a local failure of the beam leading to 

two separated parts. As in the previous case, for (� = 3)/* the restrained 

cross section failure occurs (Fig. 6.5 c), while this is not the case when (� =

5)/* (Fig. 6.6 b), i.e. the slower falling block causes a local rupture of the 
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beam in the impacted zone and the failure of the restrained section, while only 

the local failure takes place for the case  (� = 5)/*. 

 

 a) 
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Fig. 6.5. Beam configuration at different time steps, falling body              
(� = 3)/* a) t = 0.016s, b) t = 0.200s, c) t = 0.400s. Color scale 

indicates the strain values in the beam axis direction 
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 a) 
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Fig. 6.6. Beam configuration at different time steps, falling body         
(� = 5)/* a) t = 0.016s, b) t = 0.200s, c) t = 0.400s. Color scale 

indicates the strain values in the beam axis direction 

 

Case i) Impact at the beam extremity without failure 

In Fig. 6.7 and Fig. 6.8 the configuration for the falling case i) without 

failure of the beam, at three time instants is shown for the two cases (� =

3)/* (Fig. 6.7a, b, c) and (� = 5)/* (Fig. 6.8a, b, c). It can be noted as the 

slower falling block, (� = 3)/*, causes a dynamic response to the impact 

different from the faster falling block, (� = 5)/*. 
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a) 

b) 

c) 

d) 

Fig. 6.7. Beam configuration at different time steps, falling body        
(� = 3)/* a) t = 0.024s, b) t = 0.240s, c) t = 0.420s, d) t = 0.600s 
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a) 

b) 

c) 

d) 

Fig. 6.8. Beam configuration at different time steps, falling body        
(� = 3)/* a) t = 0.024s, b) t = 0.240s, c) t = 0.420s, d) t = 0.600s 
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Fig. 6. 81. Time history of the vertical displacement of point A (Fig. 6.2): 

elastic beam without failure (a), elastic beam with failure (b) for three 

different initial positions of the falling block ( i), ii) and iii) ) and                    

(� = 5)/*       . 

In Fig. 6.81 the time history of the vertical displacement of point A, placed 

on the middle beam section (Fig. 6.2), is shown for three different initial 

positions of the falling block for both the cases of beam without failure (Fig. 

6.81a) and with failure (Fig. 6.81b); it can be noted as the displacement is 

lower in the case of beam allowed to fail while it is more pronounced for 

elastic beam without break. 
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Impact along the span of a cracked beam 

In Fig. 6.9 the bumped beam is assumed to contain a crack placed in L/10 

along the beam span having a depth equal to L/20, while the case i) with 

falling bodies velocity (� = 5)/*  is considered.  

 

Fig. 6.9. Cubic elastic body falling on a cantilever cracked beam: 
geometry of the system 

 

In Fig.6.10 are reported some instants of the impact phenomenon, it can 

be noted as the falling block produces a local failure of the beam leading into 

two separated parts; such behavior is different from that of then the cantilever 

beam without crack considered above (§6.3). 



CHAPTER 6 166 

a) 
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c) 

  

Fig. 6.10. Beam configuration at different time steps, falling body        
(� = 5)/* a) t = 0.016s, b) t = 0.200s, c) t = 0.400s. Color scale 

indicates the strain values in the beam axis direction 

 

6.4  Plain concrete beam under impact load 

 In the present example, the case of a simply supported plain concrete beam 

(body labelled 1 in Fig. 6.11) under impact load presented in [1]. The system 

is characterised by the reference size - = 0.3), while the mechanical 

properties of the materials are as follows: elastic modulus  � = 3 ∙ 10!��	, 

Poisson’s ratio  
 = 0.18, tensile strength 	�� = 2.7 ∙ 10��	 and mass density 
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equal to 2300 kgm-3 for the concrete material, while the falling hammer (body 

labelled 2 in Fig. 6.11) is supposed to be made of steel (with elastic modulus 

� = 2 ∙ 10!!�	, mass density equal to 8000 kgm-3). The system is modelled 

with about 2200 particles with cubic arrangement and radius equal to 35mm. 

The impact velocity of the steel mass has been assumed to be equal to (� =

2,4,6 and 8)/*. The force potential has been used to quantify the particles 

interaction by adopting an influence distance of the particles equal to ����� =

2� and a time step increment for the dynamic analysis equal to 2� = 6,*.  

 

 

Fig. 6.11. Simply supported plain concrete beam under impact load [1]. 

 
In Fig. 6.12 the configuration of the system at different time instants is 

reported; in particular the initial development of the elastic wave propagating 

inside the beam is shown in Fig. 6.12a, while the failure pattern at t=0.125 s 

after the first impact is represented in Fig. 6.12b. As can be observed a wedge-
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like failure mechanism takes place, responsible for the detachment of a wide 

bottom portion of the beam. A diffused separation of the bottom part of the 

beam can be also acknowledged.  In Fig.6.12c the time history of the reaction 

force is displayed and compared with the FE results, provided in [1], obtained 

through a FE smeared crack band method where the contact is simulated 

through a Lagrangian multiplier algorithm. 
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Fig. 6.12. Elastic wave propagation (a), failure pattern (b) for the case   
(� = 2 ∙ )/* and time history of the reaction force at the beginning of the 

impact phenomenon (c) for (� = 2,4,6,8 ∙ )/*. 

 
As can be noted the reactions obtained by using the particle method 

approach are fairly close to the FE results, despite these two approaches are 

very different and the time interval of observation so short; after a first time 

interval equal to about ms30 , where the reaction is practically zero due to the 

(a) �	 = 	4.2 ∙ 1034* (b) �	 = 	0.125* 
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time required by the elastic wave to propagate from the hit zone to the support, 

such boundary force raises very quickly. Higher impact speed correspond to 

higher reaction force value. 

In the following images some configurations at different instants after the 

impact between the two bodies are reported, for two cases: a) impact velocity 

(� = 2	)/* falling height ℎ� = 204)), b) velocity (� = 4	)/* falling 

height ℎ� = 805)). 

In the present case an impact velocity equal to (� = 2	)/* and falling 

height ℎ� = 204)) is considered. 
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a) 

 

b) 

 

c) 

 

d) e) 

Fig. 6.13 - Simply supported plain concrete beam under impact load Case 
a) t = 0, different configurations after the first impact, b) t = 0.125s, c) t 

= 0.25s, d) t = 0.375s, e) t = 0.5s 

  



NUMERICAL APPLICATIONS 171 

In the following case the assumed impact velocity is equal to (� = 4	)/* 

while the falling height is ℎ� = 805)). 

  

a) 

 

b) 

 

c) 

d) e) 

 

Fig. 6.14 - Simply supported plain concrete beam under impact load Case 
a) t = 0; different configurations after the first impact, a) t = 0.45s, b) t = 

0.495s, c) t = 0.54s, d) t = 0.6s 

In both cases beam fragmentation presents a triangular shape; since the 

falling body do not hit the beam exactly at the centerline, the developed 

failure pattern is not perfectly symmetric with respect the two supports. 
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In [1] this problem is analyzed with a continuous FE model by determining 

the stress and damage state in the beam; however, with the discrete model it 

is also possible to calculate great displacements and dislocations that produce 

beam fragmentation. 

These two cases underline a different impact behavior: in the first case 

(lower velocity), the breakage marginally involves the beam zones over the 

supports, while this is not the case with impact velocity equal to (� = 4	)/*  

6.5 Granular flow in a hopper 

This example considers the flow of a granular material in a hopper with 

elastic walls.  An initial cubic volume of particles (Fig. 6.15) under the gravity 

action is assumed to be placed inside the upper left hand side of the hopper. 

A horizontal plane, placed at the position 5�, is assumed to exist below the 

particles; the simulation consists in removing instantaneously the above 

plane, causing the material inside the hopper to fall down.  The performed 

dynamic analysis is aimed at determine the particles configuration at different 

time instants. 

The material of the particles (with a mass density equal to 2000 kgm-3) is 

supposed to have an elastic modulus equal to � = 3 ∙ 10��	 and a negligible 

tensile strength (or equivalently no cohesion for a granular matter); the force 

potential has been used to describe the particles interaction by adopting an 

influence distance of the particles equal ����� = �. 

The particles volume, occupying the initial volume 67, is modelled through 

about 1400 spheres (with diameter value assumed to be normally distributed 

with a mean value equal to  9 mm  and variance of 0.1 mm), initially arranged 

in a tetrahedrical fashion, while the hopper walls are supposed to have an 
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elastic modulus equal to � = 3 ∙ 108�	. The geometry of the system is 

depicted in Fig. 6.15. 

The elastic constants of the particles have been assumed very small in 

order to allow a reasonable wide integration time step that has been taken 

equal to Δ� = 50,* ∙ 10��	  (the analysis duration has been extended up to 

2.0s); however the results, without loss of generality, provides useful 

qualitative information on the considered phenomenon despite these 

unrealistic mechanical constants. The damping coefficient for the dynamic 

analyses has been assumed equal to :; = 0.20 and the coefficients of 

dynamic friction ,;, ,<;, (between the particles and the boundaries and 

between the particles, respectively) has been assumed equal to 0.0 or 0.3. 

 

 

Fig.6.15. Granular material flowing down in a hopper (green: hopper 
walls; red: initial volume position of the granular material, pV ). 

Dimensions are expressed in cm. 
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In Fig. 6.16-17 the system configuration at three time instants (t=0.12, 0.36 

and 0.8s after removing of the horizontal plane) is shown: as can be noted, 

initially the right hand part of the volume pV  tends to move downward 

approximately as a rigid block and subsequently hit the lower horizontal 

surface; some particles remain on this plane while others continue their 

motion along the hopper. Others particles bouncy on the right hand side of 

the hopper and, due to the presence of the left wall, proceed moving down 

with an increasing vertical velocity to the hopper exit. Some particles finally 

remain at a rest on the two horizontal planes of the hopper; the number of 

these particles depends on the dynamic friction value assumed for walls and 

particles. 
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a) b) 
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c) d) 

  

e) f) 

 

Fig.6.16. Particles configuration in the hopper at three different 

time steps: situation without any friction forces (a-c), for ,; =

0.3, ,<; = 0.0 (d-f). Colour scale indicates the downward 

vertical velocity of the particles in m/s. 



CHAPTER 6 176 

 g) h) 

  

i) 
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Fig.6.17. Particles configuration in the hopper at three different time steps 
for 3.0== mdd µµ  (g-i). Colour scale indicates the downward vertical 

velocity of the particles in m/s. 

 

6.6 Impact of a cylinder on a rigid plane 

The present example considers the problem of an elastic cylinder (with   

	 = 3�, 	 = 6)) falling down on a rigid plane. The cylinder is supposed to 

have an initial velocity  (� = 10)/* in the −5 direction and is subjected only 

to its own weight due to the gravity field acting downward (Fig.6.18). The 

material of the cylinder is assumed to have an elastic modulus equal to � =

3 ∙ 10��	, while both cases of brittle (tensile strength equal to ��! = 1 ∙
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10��	, ��> = 2 ∙ 10 �	) and  indefinitely elastic material (obtained by 

adopting a high value of the material tensile strength, ��? = 2 ∙ 108�	) are 

considered. 

In the numerical particle approach the cylinder is modelled through 2261 

spheres (having diameter assumed to be normally distributed with a mean 

value equal to 0.1m and variance equal to 0.002, arranged in cubic fashion. 

 

 

Fig.6.18 Cylindrical elastic body falling on a rigid plane. 

 

In the first case (Fig.6.19) the material of the cylinder is assumed to have 

an elastic modulus equal to � = 3 ∙ 10��	, tensile strength equal to ��! = 1 ∙

10��	.  

It can be notice that the brittle behavior of the cylinder produces 

fragmentation of the material; in particular, at the first impact, when the 

kinetic energy is relevant, the fragmentation of the cylinder is similar to those 

of a granular material. During the final phases of impact, when the kinetic 



CHAPTER 6 178 

energy has decreased, fragmentation produces large blocks (or clusters) of 

particles of materials. 

a) b) 
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0.0 

 

 

 

-0.4 

c) d) 

  

Fig. 6.19.Configuration at different time steps for failure case. a) t = 
0.04, b) t = 0.20, c) t = 0.40 d) t = 0.80. Color scale indicates the vertical 

velocity of the particles ( smv /100 = ). 

In the second case (Fig.6.20) the material of the cylinder is assumed to 

have an elastic modulus equal to 	� = 3 ∙ 10��	, tensile strength equal to 

��> = 2 ∙ 10 �	. 

It can be notice that with such a low tensile strength, the cylinder shows a 

granular-like behavior. 

 



NUMERICAL APPLICATIONS 179 

a) b) 
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c) d) 

  

Fig. 6.20. Configuration at different time steps for failure quasi-granular 
case. a) t = 0.04, b) t = 0.20, c) t = 0.40 d) t = 0.80. Color scale indicates 

the vertical velocity of the particles  

In the third case (Fig. 6.21) the material of the cylinder is assumed to have 

an elastic modulus equal to � = 3 ∙ 10��	, and a high tensile strength equal 

to ��? = 2 ∙ 108�	. The choice of very high tensile strength produces an 

elastic behavior of the cylinder without failure or fragmentation, and the 

rebound of the body on the rigid plane can be noticed. 
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Fig. 6.21. Configuration at different time steps for failure quasi-granular 
case. a) t = 0.02, b) t = 0.10, c) t = 0.20 d) t = 0.40. Color scale indicates 

the vertical velocity of the particles  
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6.7 Granular material cutting simulations 

This example considers a vertical flat blade between and normal to two 

glass panels, the blade has a constant horizontal velocity ( = 10))*3! [2]. 

Particles of the model represent seed grains, because they closely resemble 

natural granular flow into dragline buckets. The seed grains are suitable for 

an easy discrete simulations because the stiffness of the grains is less than the 

stiffness of sand or gravel; the smaller stiffness results in a larger time step 

and decreases the total computing time. An initial cubic volume of particles 

(Fig. 6.22) under the gravity action is assumed to be placed inside a box. The 

vertical blade is placed at the position 0x , with vertical dimension smaller 

than the box vertical planes; the simulation consists in moving the blade, 

causing the material inside the box redistribute.  The performed dynamic 

analysis is aimed at determining the particles configuration at different time 

instants. 

The material of the particles (with a mass density equal to 855 kgm-3) is 

supposed to have an elastic modulus equal to � = 2.76 ∙ 10��	 and a 

negligible tensile strength (or equivalently no cohesion); the force potential 

has been used to describe the particles interaction by adopting an influence 

distance of the particles equal to dr =infl . 

The particles volume, occupying the initial volume pV , is modelled 

through about 1162 spheres with diameter with size equal to 20mm, initially 

arranged in a cubic fashion, while the box and the blade are supposed to have 

an elastic modulus equal to � = 3 ∙ 108�	. The geometry of the system is 

depicted in Fig. 6.22. 

The integration time step has been taken equal to ∆� = 2 ∙ 103!)*. The 

final blade displacement is equal to 200mm, with an analysis duration equal 
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to 2.0s.  The damping coefficient for the dynamic analyses has been assumed 

equal to  :; = 0.20 and the coefficients of dynamic friction particle – particle 

and particle planes are supposed , = 0.10. 

 

 

 

Fig.6.22. Granular material cutting [2]. 

 

The configurations of the granular material for the blade displacement 

equal to 10�) and 20�), are shown in Fig. 6.23; the obtained arrangement 

of the particles show a behavior similar to soil cutting problem analyzed in 

[2], 
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(a) (b) 

  

(c) (d) 

+0.2 

 

 

0.0 

 

Fig. 6.23. Final configuration in Ref.[2] for: a) displacement 10cm, 

b) 20cm;configuration of the present particle model for c) 

displacement 10cm and d) displacement 20cm. Color scale indicates 

the horizontal displacement of the particles expressed  in [m]. 

  

 

It is possible to note that in the present study the blade is shorter than in 

[2], this cause a little difference in the disposition of the particles near the 

blade (Fig. 6.23 c-d). Neglecting this last aspect, the shape assumed by the 

particles representing the granular material obtained in the present study, 

reflects the configuration presented in [2]. 
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6.8 Column drop test 

In this example, a column with an initial height-radius ratio of ℎ�/�� of 

approximately 1.51 is considered (Fig. 6.25a-c). The column is prepared by 

dropping particles into a box and letting them settle under gravity [3]; 

particles are assumed with a diameter value obeying normal distribution with 

a mean value equal to  18 mm  and variance of 5 mm, initially arranged in a 

tetrahedral fashion. The number of particles is 1440, while the material of the 

particles has a mass density equal to 2000 kgm-3 and it is supposed to have an 

elastic modulus equal to � = 3 ∙ 10��	 and a negligible tensile strength (or 

equivalently no cohesion). The friction coefficient of the base supporting the 

column is , = 0.5 while smooth vertical walls, are placed beside the column. 

The drop test is conducted by removing the left hand side wall of the box and 

letting the column spread under gravity. 
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a) b) 

  

  

  

c) d) 

Fig. 6.25. Configuration at initial and final time instants obtained with 
the present study (a-b) and according to  Ref.[3](c-d) 

 

It is possible to notice a good quality agreement provided by the particle 

model; moreover the final configuration in [3] is characterized by the 

height/width ratio equal to 
@A

BA
= 0.2185, while the present model provides the 

value 
@A

BA
= 0.2230 (Fig. 6.25b).  
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6.9 Elastic disc falling in a bed of particles 

The present example considers the problem of an elastic disc (with radius 

� = 0.4)) falling down on a bed of particles contained in a box 

(1.45x0.65x0.20m). The center of the disc is supposed falling from the height 

ℎ� = 0.95), with respect the bottom horizontal plane of the box and the 

initial velocity of the falling body is   (� = 5)/* in the −5 direction. It is 

subjected to only its own weight due to the gravity field acting downward 

(Fig.6.26). The material of the disc is assumed to have an elastic modulus 

equal to � = 3 ∙ 10!��	, Poisson’s ratio 18.0=ν , tensile strength                

�� = 2.7 ∙ 10��	 and mass density equal to 2300 kgm-3, the granular material  

is assumed to have an elastic modulus equal to � = 3 ∙ 10!��	, a negligible 

tensile strength and mass density equal to 1900 kgm-3, particles are assumed 

to be initially arranged in a tetrahedral fashion. 

In the numerical particle approach, the disc is modelled through 1254 

spheres having diameter � = 6�), the bed of particles is modelled through 

1581 spheres having diameter � = 6�). The integration time step has been 

taken equal to ∆� = 50,*, while the analysis duration has been extended up 

to 1.5s. 

 

  
 

Fig.6.26 Elastic disc falling on a bed of particles. a) geometric 
configuration, b) discrete model. 
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In Fig. 6.27 the system configuration at four time instants (t=0.03, 0.12, 

0.66 and 1.47s) is shown.  

a) b) 

 
c) 

 
d) 

  
Fig. 6.27. Configuration at different time;  a) t = 0.03, b) t = 0.12, c) t = 

0.66 d) t = 1.47. 
 

As can be noted granular particles contact with disc causes rebound and 

fracture in the disc and great displacements of the granular material, this 

behavior is compatible with a falling disc of concrete falling in a box of 

gravel. This example underlined the possibility to use the proposed method 

in some situations like demolitions or material delivering. 
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6.10 Conclusions 

The case studies shown in the previous sections, demonstrate the 

versatility of the proposed particle method; indeed the method has been used 

indifferently for solid or granular materials by only setting the appropriate 

influence distances and mechanical properties. 

Numerical results have demonstrated also a good capability to deal with 

large deformations problems. This aspect is fundamental to understand the 

versatility and superior mechanical prediction of the discrete method in 

opposite to continuous ones such as the finite elements method; it does not 

require the use of any remeshing technique or complex and computationally 

expensive operations to study fragmentation, clustering or large strains and 

deformations even under dynamic conditions. 

Some examples have shown as it is possible to exploit the developed 

particle method also for granular-solid interaction and fragmentation 

problems. However it is evident as one limitation of the developed discrete 

method resides is the necessity to use small time steps increments leading to 

high computational costs. 
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Chapter 7 

 

 

CONCLUSIONS 

 

 

 

7.1 Introduction 

Although empirical equations for local damage give a reasonable 

prediction of quantities such as depth of penetration, they do not describe the 

behavior of the solids structure at different scales. In order to understand the 

behavior of solid or granular materials subjected to dynamic loadings or 

severe damages, a combination of experiments and numerical methods are 

needed for a complete analysis.  

In this work, a discrete element method was developed as a general 

computer technique for unified modeling of the mechanical behavior of solid 

and granular materials, including the transition from solid phase to particulate 

phase. As a result of this research, the following contributions in the field of 

mechanical structure were made: 

 

- A unified potential-based particle approach suitable for taking into 

account the dynamic nature and large strain characteristic of the 

problem; 
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- Failure and Fracture of brittle solids under dynamic conditions can 

be predicted, model not use complex remeshing procedures, stress 

field enrichment, discontinuous elements as in continuous 

approaches; 

- Same formulation for both continuum-like, granular-like or mixed 

interaction by simply setting the nature of the forces exchanged 

between particles; 

- Capability of the method to capture very different and complex 

mechanical phenomena in dynamic problems. 

 

7.2  Convergence studies 

The proposed method used a particle model based on force potentials to 

calculate stiffness and failure. The simulations showed very good correlation 

(for both the elastic behavior and fracture) with theoretical results. However, 

the convergence rate was not clear from the simulations performed, and it 

appears to have a little change depending on element arrangement (i.e. simple 

cubic or tetrahedral arrangement). Nevertheless, the use of potential functions 

to determine forces between elements of the discretized domain was very 

beneficial because it avoided the procedure of model calibration for a given 

mesh refinement, saving computational time. 
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7.3  Recommendation for Future Work 

This work represent a first step in study of dynamic and fracture problems 

involving both solid and granular materials, recommendations for future 

research are summarized below. 

In this work, only one force potential was used to study solids and granular 

dynamic problems, other potentials are developed inside the software but not 

improved with study cases; the next step will be to fit them, for instance in  

liquid-solid or liquid granular interactions.  

It would be useful to determine the degree of variability in the results for 

penetration depth, scabbing thickness, and perforation thickness for similar 

models where the only difference is the element distribution (randomness) in 

the medium. 

Another target in the development of the model would be to use elements 

of different shape to better simulate granular materials like soils and sands or 

for instance, in a material such as concrete, large elements would represent 

the aggregates and a larger number of small elements would represent the 

concrete matrix. 

It would be beneficial to perform simulations where macroscopic mixed 

mode fracture is involved and compared with the numerical results along with 

theoretical and experimental studies to test the validity of the present 

approach to treat different crack orientations and modes of fracture. 

 The failure criteria developed in this work utilizes the material’s ultimate 

tensile strength and the force potential used was dependent on the material’s 

elastic modulus and distance between particles. 

Each of these parameters has an important influence on the overall 

behavior of the model. Future research should include a parametric study to 
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examine the influence of each of these parameters in the penetration depth, 

scabbing, and overall cracking and fragmentation of the medium. 

It is important to mention that thermodynamic effects were disregarded in 

this work. Even though it was concluded that such effects would not cause a 

considerable change in the numerical results, by including these effects, a 

better understanding of the thermo-mechanical coupling and energy released 

in the form of heat due to friction can be gained. 

A possible continuation of this work would be to study interactions 

between brittle and ductile materials, as reinforced concrete or FRP and 

concrete to understand the effect of reinforcement on impact simulations or 

dynamic problems (seismic analysis, demolitions, etc…).  

To fully develop confidence in the use of the proposed discrete element 

method for applications involving solids subjected to severe damage, small-

scale validation experiments are required, so that numerical results can be 

compared to actual experimental results where both local and global damage 

can be seen and compared. 

 

 

 

 

 

 

 

 

 

  




