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Abstract

In this thesis, a computationally efficient method for identifying in-
terstitial muon sites in crystalline solids is presented. An accurate
determination of muon embedding positions and effects is important
for muon spin rotation and relaxation experiments since it can signif-
icantly widen the capabilities of this experimental technique. Indeed,
these information are usually unknown to the experimenter and in
most cases it is not possible to characterize the muon sites and the
muon induced perturbation from experimental knowledge.
The approach proposed in this thesis is based on ab initio Density

Functional Theory (DFT) simulations and it was designed to provide
a companion tool to assist muon spin rotation data analysis. The
first principles determined muon stopping site(s) and the expected
perturbation produced by the muon implantation have been compared
to muon spin rotation and relaxation results in a series of textbook
cases that have been extensively characterized experimentally.
It is also highlighted that the estimation of the ground state energy

of the muon (also referred to as zero point motion energy) is cru-
cial in order to distinguish between trapping and non-trapping muon
sites. In order to keep the computational load of the ab initio sim-
ulations within the bounds of standard computer clusters capacities,
we approximate the total Hamiltonian of the system introducing a
Born-Oppenheimer separation between the degrees of freedom of the
muon and those of the nuclei and of the electrons. This approach has
been referred to as double adiabatic approximation in literature. The
method is found to be sufficiently accurate as well as computation-
ally feasible when an algorithmic procedure to efficiently perform the
simulations is introduced.
The successful results obtained so far include the identification of

muon sites in iron pnictide superconductors, the study of F-µ-F cen-

v



tres in fluorides, muon diffusion in Copper and the recent identifica-
tion of muon sites in MnSi and T′-La2CuO4. All these cases confirm
the validity of the DFT approach and emphasize the importance of
accurate muon site predictions.
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1 Introduction
and motivation

The scope behind the study presented in this thesis is the develop-
ment of a computational companion tool to assist Muon Spin rotation
and Relaxation spectroscopy (µSR) data analysis in a time effective
and affordable manner. An efficient, reliable and sufficiently accurate
way to study the interstitial sites and perturbations introduced by
the positively charged muon in its local neighbourhood in crystalline
solids would empower µSR with unprecedented quantitative estima-
tion possibilities.

µSR is a powerful experimental technique for all the problems in
condensed matter physics which can take advantage of a microscopic
magnetometer embedded within the sample, i.e. the muon. Among
the many, magnetism and superconductivity are probably the most
common, followed by the study of hydrogen-like impurities in semi-
conductors, their diffusion and reaction kinetics, and studies of quan-
tum diffusion mechanisms [1–3]. µSR is often compared to Nuclear
Magnetic Resonance (NMR) in providing information on static and
dynamic magnetic fields on a local scale, but, unlike NMR, it can eas-
ily be performed in zero applied field (since muons can be produced
in fully polarised beams), it is applicable to almost any material and
removes the requirement for a radio-frequency to activate the probe.
The price to pay is a large uncertainty in the muon position inside the
sample. In parallel and as a part of the development of the experimen-
tal technique, a lot of work has been devoted to the determination of
muon sites in crystals. A precise characterisation of the muon intersti-
tial sites was indeed possible from accurate experimental studies of the

3



1. Introduction and motivation

Knight shift, of the level crossing resonance (LCR) and by inspecting
asymmetry relaxation rates as a function of applied fields in selected
compounds (see for example [4–8]). However, in a large number of
cases the muon position and its effect on the hosting system cannot
be inferred solely by experimental knowledge and a reliable method to
obtain the muon site in condensed matter would be of great value. To
this aim, we have selected ab initio methods, and especially Density
Functional Theory (DFT) based quantum chemistry approaches, as
the computational scheme to perform muon site identification simu-
lations and support µSR data analysis.

DFT is a widely accepted framework to solve the Schrödinger equa-
tion for an interacting many-body system. Its enormous success is
testified by the large set of scientific fields which benefit from the
prediction power offered by the computational approaches based on
Kohn Sham’s auxiliary system method. Developments in electronic
structure methods combined with a continuously increasing comput-
ing power can deliver unprecedented accuracies in computational ex-
periments on a quantum mechanical perspective. As of today, many
experimental techniques rely on DFT to support the data analysis.
In the field of condensed matter, DFT can be used to interpret and
predict spectroscopic properties like core-level electron energy loss
(EELS) spectra, vibrational infra-red and Raman spectra, NMR and
electron paramagnetic resonance spectra (EPR), linear and nonlinear
optical spectra [9, 10]. This vast collection of successful results pro-
moted DFT simulations as the computational scheme of election for
the practical realisation of a tool for µSR data interpretation support.

Identifying muon sites with ab initio approaches is not a new idea.
A lot of attention has been devoted, in the last three decades, to the
analysis of muon interactions in solids by means of Hartree Fock (HF),
DFT and other simulation techniques (see for example Ref. [11–15]).
The contributions to the development of the experimental technique
obtained with computational methods are hardly enumerable. How-
ever, in most cases the attention has been mainly devoted to µSR
experiments where the interpretation of the experimental data was

4



1.1. Outline of the thesis

elusive or ambiguous. Here we started from the opposite perspective.
In this thesis we choose a set of materials where the muon site is known
from the experiment or can be easily checked. On this solid grounds
we test the accuracy of a DFT based approach to identify muon sites.
Accomplishing this ambitious task is of course well beyond the abil-
ity of any single researcher or group possibilities. However, the re-
sults discussed in this thesis and in literature (among the many, see
Ref. [16–25]) are promising and call for further investigations.

1.1. Outline of the thesis
In chapter 2 and 3 we introduce the µSR technique and illustrate
the basic concepts behind DFT. In chapter 4 we discuss a simple ap-
proach to identify muon sites, namely the inspection of the minima of
the electrostatic potential of the unperturbed material. This approach
is found to be sufficiently accurate for some special cases. However,
in general, this crude approximation does not provide satisfying re-
sults. Therefore, a better estimation, which takes into account the
perturbation introduced by the µ embedding, is discussed in chapter
5. In chapter 6 we improve our method by proposing a simple and yet
sufficiently accurate approach to evaluate the ground state energy of
the muon, whose effect is found to have relevant consequences on the
interstitial site determination task. In chapter 7 we discuss how all the
above results are used to unveil the magnetic properties of a material
of high scientific interest, namely the T ′ structure of La2CuO4. In-
deed, the knowledge of the muon site, which in this case happens to be
in a low symmetry interstitial position, allows to distinguish among
the possible long-range magnetic orders and therefore to determine
the ground state magnetic structure. In chapter 8 we conclude the
thesis and discuss some perspectives for future developments.
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2
A short

introduction to
µSR

Contents
2.1. Brief history . . . . . . . . . . . . . . . . . . 8
2.2. Muon production . . . . . . . . . . . . . . . 9
2.3. Implantation and decay . . . . . . . . . . . . 11
2.4. The µSR observable: the asymmetry . . . . 12

2.4.1. Continuous and pulsed puon beams . . . . 16
2.4.2. Experimental setup . . . . . . . . . . . . . . 17

2.5. Probing magnetic order . . . . . . . . . . . . 19
2.5.1. Contributions to the local field at the muon

site . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2. Static and dynamic local fields . . . . . . . 22

2.6. Quantum description of the dipolar inter-
action . . . . . . . . . . . . . . . . . . . . . . 25

2.7. Identification of muon sites . . . . . . . . . 28
2.7.1. Experimental approaches . . . . . . . . . . 28
2.7.2. Theoretical approaches . . . . . . . . . . . . 29

µSR is a spectroscopic technique in which implanted positive muons
are used as a nanoscopic magnetometer placed within the sample.
This is made possible by two favourable conditions offered by nature:
parity violation in the weak decay and the production of spin polarised
µ+ beams through the decay of the pion. The experimenter is provided
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2. A short introduction to µSR

Figure 2.1.: Header of the first µSR newsletter.

with the time evolution of the direction of the muon spin which can
be extracted from the collection of each decay positron as a function
of the individual muon lifetime spent within the sample.
The name stands, in the words of the first µSR Newsletter (Fig. 2.1),

for “Muon Spin Relaxation, Rotation, Resonance, Research, or what
have you” intentionally suggesting the analogy with NMR in which
nuclei are used for the same scope.
µSR is often utilised to investigate the magnetic and the supercon-

ducting properties of a sample, but it finds wide application also in
studies of the effect hydrogen-like impurities in semiconductors, quan-
tum diffusion, reaction kinetics and several other fields [2, 26].
In this section, a brief introduction to µSR is presented. For a

more detailed description of this technique as well as of the various
applications in many field of research, the reader is referred to the
several books and review articles [1, 3, 27–29].

2.1. Brief history

The muons arising from the secondary radiation of cosmic rays were
first observed in 1936 by C. D. Anderson and S. Neddermeyer. How-
ever, the breakthrough that allowed the progress toward the modern
µSR technique was the discovery of parity violation in weak decay

8



2.2. Muon production

observed experimentally in 60Co beta decay by Wu et al[30] in 1957
and predicted by Nobel awarded scientists Lee and Yang [31].
The first proton accelerators offering the intense pion (and hence

muon) beams which are needed to perform µSR experiments were first
produced at the CERN synchrotron, at JINR in Dubna, at SREL in
Berkeley and at Nevis Columbia at the end of the 1950s. Starting from
the 1970s, new high-intensity intermediate-energy accelerators were
built at laboratories in the Schweizerisches Institut für Nuklearphysik
(CH), Los Alamos (USA) and TRIUMF Vancouver (Canada). These
new accelerators offered continuous beams (vide infra) two orders of
magnitude more intense than the previous accelerators. Shortly after,
pulsed muon facilities were realised in ISIS at the Rutherford Appleton
Laboratory in UK and KEK in Tsukuba, Japan (now replaced by J-
PARC in Tokai) and the new continuous beam facility PSI was built
in Villigen (CH).

2.2. Muon production

High intensity collimated muon beams are produced using accelerated
protons in a two step process. The collision of two protons or a proton
and a neutron initially produces a pion according to

p+ p→ π+ + p+ n , (2.1)
p+ n→ π+ + n+ n (2.2)

or
p+ n→ π− + p+ p (2.3)

The first particle in Eq. 2.1, 2.2 and 2.3 comes from the accelerated
proton beam while the second is at rest in a muon production target
(usually graphite). The kinetic energy T = c2(m −m0) = m0(γ − 1)
of the accelerated proton having quadrimomentum P̄1i for producing
a pion at rest in the muon production target where the neutron with
quadrimomentum P̄2i resides is

9



2. A short introduction to µSR

P̄1i + P̄2i = P̄f(
P̄1i + P̄2i

)2
= P̄f

2

2m2
p + 2m2

pγ = (2mp +mπ)2

where we have assumed mn = mp (the intended meaning of the sym-
bols should be clear from context). This gives γ = 1 + 2mπ

mp
+ m2

π
2m2

p
'

1+ 2mπ
mp

and a threshold kinetic energy of about (γ−1)mpc
2 = 2mπc

2 ∼
280 MeV. However, for sake of efficiency in the pion production, usu-
ally proton beams with energies between 500 and 800 MeV are used.
Pion half life time is just 26 ns and from its decay a positive or

negative muon is produced via the two-body decay:

π+ → µ+ + νµ (2.4)
π− → µ− + ν̄µ (2.5)

It’s worth noting that the negative pion (process in Eq. 2.3) stopping
in the production target almost always undergoes nuclear capture be-
fore it has a chance to decay. Negative muons may be produced from
the in-flight negative pion’s decays (see following) but, as for negative
pions, the lifetime of negative muons in matter is reduced by nu-
clear capture. For this reason, and also because surviving µ− fall into
atomic orbitals extremely close to atomic nuclei, µ+SR is more com-
monly used to investigate condensed matter and will be considered in
the following.
In the process in Eq. 2.4, since the neutrino has negative helicity

and the pion is a spin-less particle, the conservation of momentum
implies that muon spin is aligned antiparallel to its momentum in
the pion’s rest frame. As a consequence, polarised muon beams are
produced in two distinct pion momentum regimes

• selecting muon that arise from π+ at rest near the surface of
the muon production target. This method produces a 100% po-
larised muon beam with kinetic energies of about 4.1 MeV and
a maximum momentum of 29.8 MeV/c. This is the so called
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2-3 kEv50 MeV ∼ 200 eV

scattering
with valence
electrons

Epithermal scatter-
ing of muonium with
atoms and molecules,
vacancy formation

Formation of
”molecules
in crystals”
containing µ+

µ+ beam
scattering
with core
electrons

thermal µ+

thermal µ+e−

∼ 20 eV

Figure 2.2.: Flow chart showing the processes involved in the slowing
down of high-energetic muons in matter.

“surface” or “Arizona” beam. The low momentum character-
ising these beams is suited for studying thin samples and tiny
single crystals of about 1 mm2.

• By collecting muons from in-flight pion’s decays in a long su-
perconducting solenoid. Typical muon beams with a polarisa-
tion < 100% and energies of ∼40-50 MeV are produced after
momentum selection by bending magnets. As a consequence,
muons have appreciably longer stopping ranges in matter and
this can be used to overcome thick cryostat walls or pressure
cells, thus allowing the exploration of extreme temperature or
pressure conditions.

2.3. Implantation and decay

As already discussed, µ+ are directed at the sample as a fully po-
larised beam. They slow down loosing energy primarily by ionisation,
vacancy formation and bremsstrahlung emission [32]. During the de-
celeration, the muon may form a bound state, called muonium, with
an electron. The bound state can dissociate during the deceleration
and the formation and dissociation process may take place repeatedly.
The muon eventually reaches an interstitial position where it may re-
side with the collected electron or (partially) lose it as a consequence
of chemical interactions with the electrons of the hosting material.
In several cases muons end up in multiple final states, with different
probabilities.
A sketch of the processes involved in the deceleration is shown in

Fig. 2.2. Muonium interacts with the host by collisions with the atoms

11



2. A short introduction to µSR

and radiation damage is produced during the deceleration. However,
when muon’s energy eventually drop below the threshold for vacancy
production, it still travels ahead for∼ 100−600 Å [33]. For this reason,
the muon usually probes a region of the sample which is far from
the initial part of the deceleration path which suffered from radiation
damage.
The interactions between the muon and the sample during the de-

celeration process most often preserve the muon’s polarisation [34].
The deceleration time depends on the density of the material and
ranges from 100 ps in condensed matter to 10 ns in gases. This time
interval is too short to allow a significant loss of polarisation coherence
during the early stages of the thermalization in non-magnetic metallic
samples where muonium formation is rare. The situation is different
in insulators and molecular materials. In this case a discrepancy be-
tween the initial muon beam polarisation and the polarisation at the
earliest measurable time is not uncommon. This is possibly due to
the formation of a muonium precursor that may give rise to a prompt
depolarisation usually referred as “missing fraction”. It’s important to
mention that, in high field experiments, the initial polarisation of the
muons can be slightly different from that of the muon beam, but, in
this case, the coherence between the initial polarisation of all incoming
muons is preserved.

2.4. The µSR observable: the asymmetry

The average lifetime of the muon is τµ = 2.2 µs and the decay proba-
bility follows the well known exponential law e−t/τµ . The weak decay
of the muon is a three body process

µ+ → e+ + νe + ν̄µ (2.6)

where e+ is a positron and νe and ν̄µ are neutrinos. Parity violation
in the weak decay and the conservation of angular momentum imply
an asymmetry in the positron emission direction. This is the result
on which the entire µSR technique is based. In the weak decay the
positron emission probability as a function of its energy is given by

12
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Figure 2.3.: In (a), the probability of emitted positron energy and the
relative asymmetry function a are shown (see Eq. 2.4).
In (b), the angular distribution of the positron emission
probability for various positron energies is depicted.

[35]
dP (ε∗, θ)
dε∗ dΩ = 1

2πp(ε
∗) (1 + a(ε∗) cos θ) (2.7)

where ε∗ = ε/εmax (εmax = 52.8MeV), θ is the angle between muon’s
spin and positron emission direction and p(ε∗) and a(ε∗) are the rela-
tive emission number and the asymmetry functions, given by:

a(ε∗) = 2ε∗ − 1
3− 2ε∗

p(ε∗) = (ε∗)2(3− 2ε∗) .

Both functions are plotted in Fig. 2.8. Averaging over all positron
energies gives

Ã = 〈a(ε∗)〉 =
∫ 1

0
a(ε∗)p(ε∗) dε∗ = 1

3 (2.8)

Substituting Ã from Eq. 2.8 into Eq. 2.7 and integrating over all
positron emission energies one finds that the positrons are emitted
predominantly in the direction of the muon spin. Thus, collecting the
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2. A short introduction to µSR

Sample

e+

µ+ B detector F detector

ν̄µ

νe+
Muon detector

Electronic timer

U detector

L detector

Figure 2.4.: A simple diagram of the detector’s geometry in a typical
µSR experimental setup. Black and orange arrows indi-
cate particles’ spin and momentum direction, respectively.
The detectors are identified by capital characters U, L, F,
B respectively for upper, lower, forward and backward.

positron counts in a detector at a given direction as a function of time,
it is possible to follow the muon spin dynamics.
When immersed in a magnetic field B forming an angle with the

initial muon polarisation sµ(t0) the muon will precess around it with
an angular frequency ωµ given by

ωµ = γµ|B| (2.9)

where γµ = e
2mµ gµ is the gyromagnetic ratio of the muon. The exper-

imental values [36] gµ = −2.0023318418(13), mµ = 1.883531475(96)×
10−28 kg give γµ/2π = −135.538817(7) MHz/T.
The time dependent count of detected positrons can be written as:

N
(i)
e+ (t) = N

(i)
0

{
e−t/τµ

[
1 + ÃP (i)(t)

]
+B

(i)
0

}
(2.10)

where i is a label enumerating the detectors and, with reference to the
scheme shown in Fig. 2.4, ranges from 1 to 4 and refers to the Upper,
Lower, Backward and Forward detectors, B0 is a time-independent
background of uncorrelated counts and N0 is a normalizing rate con-
stant. The decreasing exponential accounts for the decay of the µ+
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Figure 2.5.: Schematic illustration of a µSR acquisition histogram.
The figure shows the exponential decay of the muons (dot-
ted line) as collected by an appropriate couple of opposite
detectors in the presence of a local magnetic field form-
ing an angle with the initial muon spin (for example the
forward and backward scintillators reported as NF and
NB in the figure). The signal will overshoot or stay un-
der the standard exponential decay during the µ+ lifetime
reflecting the time dependence of the muon polarization.

and P (i)(t) is the time evolution of the muon polarisation in the di-
rection of the i-th detector.
If the muons stop in equivalent sites within the lattice and experi-

ence a unique perpendicular magnetic field (either internal or applied)
with respect to the detector i and the initial beam polarization, the
spins precess around the field and the emission in the i direction is
given by inserting

P (i)(t) = cos(ωµt+ θ(i)) (2.11)

in Eq. 2.10, where θ(i) is the initial phase of the muon relative to the
i-th detector. The signal coming from opposite detectors shows the
typical decay plus oscillation sketched in Fig. 2.5.
It’s possible to remove the dependence from the exponential decay
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2. A short introduction to µSR

by introducing the asymmetry function:

A(t) = N (i)(t)−N (j)(t)
N (i)(t) +N (j)(t)

(2.12)

where i and j are couples of opposite detectors, for example backward
and forward or upper and lower. Substituting Eq. 2.11 and Eq. 2.10
into Eq. 2.12 and disregarding the constant background one gets

A(t) =
(α− 1) + Ã

(
αP (i) − P (j)

)
(α+ 1) + Ã

(
αP (i) + P (j)) (2.13)

where α = N
(i)
0 /N

(j)
0 . This last parameter takes into account the

differences in finite detectors’ geometry, efficiency between i and j de-
tectors and not perfect initial beam polarisation. In general α takes
values close to 1. Once the differences among the detectors that in-
fluence the asymmetry have been corrected using

A∗(t) = αN (i)(t)−N (j)(t)
αN (i)(t) +N (j)(t)

(2.14)

by substituting Eq. 2.11 into Eq. 2.14 one gets

max(A∗(t)) = Ã . (2.15)

Practically, max(A∗(t)) ' 0.25 due to lower relative efficiency in the
detection of high energy large asymmetry positrons and to the finite
size of the detector array.

2.4.1. Continuous and pulsed puon beams

Muon spectroscopy facilities offer two kind of muon beams: continuous
and pulsed. These two approaches offer complementary potentialities.
In continuous-µSR, muons arrive nearly continuously and are detected
by muon’s detector one by one (see Fig. 2.4). Each muon hitting the
muon detector starts the electronic clock and the system awaits for
the decay event to be detected in one of the positron detectors. It may
happen anyway that two muons reach the sample before a decay event
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2.4. The µSR observable: the asymmetry

is detected. This prevents the association of the decayed positron to
its parent muon. This fact constitutes the main source of background
noise in continuous-µSR and limits the maximum incident muon rate.
On the other hand, one of the main advantages of the continuous
beam facilities is the excellent time resolution, which can be of a few
tenths of ps.
In pulsed-µSR a bunched beam of muons (up to more than 103

muons per pulse, at ISIS) reaches the sample and the zero time ref-
erence is synchronised with the beam pulses’ extraction. Two con-
straints apply to the time structure of the pulsed beam: the time
length of the pulses must be considerably shorter than the muon life-
time, while the repetition time must be much longer than the muon
lifetime. The first condition constitutes the main disadvantage of this
kind of facilities. The time resolution of the µSR signal is limited by
the muon pulse width and, for example, a band width of about 10
MHz (pulse width of 70 ns) will result in a maximum detectable local
field of about 600 G. The pulsed muon technique has the advantage
of using all muons entering the sample (contrary to continuous µSR
where many muons are discarded due to multiple decay events in a
single acquisition time window) and provides a signal almost free from
background counts. Asymmetry measurements up to 10τµ are possi-
ble due to both the negligible background and the possibility of using
a higher rate of incoming muons with respect to continuous beams.

2.4.2. Experimental setup

For sake of simplicity, in the next section we will introduce the typical
experimental setup of a continuous beam facility.
The muon coming from the beam-line and its decay positron are

usually detected by fast plastic scintillation and fast phototube de-
tectors (Fig. 2.4). The muon detector is thin enough to let the muon
pass through and allows to set the t = 0 reference. After its detection
an electronic timer is started and the time between implantation and
the positron emission is recorded. The positrons are detected by an
array of detectors and µSR data are acquired as a set of time-series
histograms.
Three experimental configurations are possible depending on the
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Sample

e+

µ+ B detector F detector

ν̄µ

νe+
Muon detector

Electronic timer

HL

Figure 2.6.: LF-µSR experimental setup. Red lines represent external
field flux lines. Black and orange arrows indicate particles’
spin and momentum direction, respectively.

direction of the applied field relative to the initial muon spin polari-
sation:

Zero-field configuration (ZF-µSR) This experimental setup is char-
acterised by the absence of external magnetic fields. Due to the ex-
treme sensitivity of the µSR technique, usually cancellation of the
Earth’s magnetic field is also required. This approach is particularly
useful in materials with spontaneous magnetic properties since µSR
can be used to probe samples without the application of an external
field thus providing complementary information with respect to NMR.
In magnetic materials, this method offers a measure of the evolution
of the order parameter as a function of temperature or pressure since
the precession frequency is proportional to the magnetisation (or the
staggered magnetisation) of the system.

Longitudinal-field configuration (LF-µSR) In this experimental con-
figuration the magnetic field HL is applied along the direction of the
initial muon polarisation (Fig. 2.6). Longitudinal fields are generally
used in combination with zero-field experiments to disclose the nature
of the internal magnetic field distribution, the presence of dynamic
processes (see Refs. [1, 27] for details) or in Level Crossing Resonance
(LCR) experiments.
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Electronic timer
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Figure 2.7.: TF-µSR experimental setup. Red lines represent external
field flux lines. Black and orange arrows indicate particles’
spin and momentum direction, respectively.

Transverse-field configuration (TF-µSR) In this configuration the
external field is applied perpendicularly to the initial muon spin di-
rection (Fig. 2.7). The muon spin precesses about the composition
of transverse and internal field (if any). The TF-µSR configuration
can be used to measure the magnetic field distribution of the vortex
lattice in a type-II superconductor or the µ Knight shift in metallic
systems.

2.5. Probing magnetic order
Since in this thesis we deal with paramagnetic and magnetically order
systems only, in the next section we focus on the description of the
interactions which involve the muon spin in a magnetic sample.

2.5.1. Contributions to the local field at the muon site
In the semi-classical description of the magnetic field at the muon site,
the interaction between the material and the muon spin Sµ is written
as

H = h̄γµSµ ·Bµ, (2.16)
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2. A short introduction to µSR

Sample geometry n factor
Cylinder in parallel field 0

Cylinder in transverse field 1/2
Sphere 1/3

Thin plate in perpendicular field 1

Table 2.1.: The demagnetizing factor n for various geometries.

where Bµ is the total field at the muon site.
The main contributions to the total field at the muon site Bµ come

from the dipolar field, the hyperfine field and the demagnetizing field:

Bµ = Bdip + Bhf + Bdem + µ0Happ , (2.17)

where Bhf originates from unpaired electron spin polarization at the
muon site and is commonly evaluated as a contact hyperfine field
Bcont and/or a transferred hyperfine field Btrans. Finally, Happ is the
externally applied field.
The crucial physical parameters governing the size of these contri-

butions are the distance between the µ+ and the magnetic ions, the
magnetic moments of the ordered magnetic phase, the density of spin
polarised electrons at the µ+ site and the shape of the sample in the
case of ferromagnets or ferrimagnets.
The dipolar field can be written, assuming a classical moment m

centred at the atomic positions of magnetic atoms, as

Bdip(r) = µ0
4π
∑
i

(
3ri(mi · ri)

r5
i

− mi
r3
i

)
(2.18)

where mi is the magnetic moment of atom i and ri is the distance
between atom i and the muon site.
The local field at the muon sites are is usually evaluated in direct

space by introducing the so-called Lorentz construction. The value B′µ
is evaluated for all atoms within a sphere with radius rL from the muon
site. The sphere is assumed to reside in a single magnetic domain and
the magnetic moments outside the Lorentz sphere are regarded as a
continuous and homogeneous magnetization density and contribute to
an additional field BL. Within a single magnetic domain, BL = µ0

3 Ms
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2.5. Probing magnetic order

with Ms being the saturation magnetization of the magnetic domain.
The dipolar field at the muon site is then Bµ = B′µ+BL. On standard
desktop computers, summations of millions of atoms can be performed
in a few seconds.
The demagnetizing field Bdem arises from the dipoles on the surface

of the sample. For ellipsoidal samples Bdem = −µ0DMs where D
is the demagnetization tensor and Ms is the magnetization of the
sample. Of course, both Bdem and BL vanish in antiferromagnets.
In the case of ferro/ferrimagnets, for the special case of ellipsoids,
the demagnetization field is linearly related to the magnetization by
a geometry dependent constant called the demagnetizing factor n.
Its value is reported in Tab. 2.1 for various geometries. For non-
ellipsoidal samples, Bdem is inhomogeneous and broadens the local
field distribution at the muon site(s).
The contact hyperfine field or contact Fermi field can be written as

|Bcont(r0)| = −2
3µ0geµB(nup(r0)− ndn(r0)) (2.19)

for a spherical electronic cloud surrounding the muon in position r0
[27].
Two additional contributions are worth citing: in metals with un-

paired d or f electrons, a RKKY contribution can take place while in
insulators a transferred hyperfine field, Btrans, can contribute to the
local fields at the muon site. The former arises from a second order
process which involves the polarisation of conduction electrons by the
localised d or f shells having unpaired electrons and a subsequent
local field at the muon site is produced by the contact hyperfine in-
teraction. The latter stems from the overlap between the muon wave
function and the localised magnetic wave functions.
Finally, a few symmetry considerations apply for the contributions

to the local field appearing in Eq. 2.17. In a ferromagnet, Bcont lies
in the same direction of the domain magnetization. By symmetry
considerations Bdip vanishes for a muon site in a system of dipoles
with cubic point group symmetry (m3̄m).
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2.5.2. Static and dynamic local fields
We consider now the effect of a static local magnetic field B at the
muon site forming an angle θ with the initial muon spin direction. In
the semi-classical picture, the muon spin precess around the magnetic
field forming a cone of half-angle θ between the spin and the local
magnetic field direction. The muon polarization as a function of time,
σ(t), projected in the direction of the initial spin polarization is

σ(t) = cos2 θ + sin2 θ cos(γµ |B| t) (2.20)

Let f(B) be the magnetic field distribution function at the muon
site, then the spin relaxation function G(t) is formally given by

G(t) =
∫
f(B)

[
cos2 θ + sin2 θ cos(γµ |B| t)

]
dB . (2.21)

If the internal field distribution is only a function of |B|, as it is
the case, for example, for an antiferromagnetic (AFM) polycrystalline
sample, one has

G(t) =
∫ ∞

0
f(|B|)

[
cos2 θ + sin2 θ cos (γµ |B| t)

]
4πB2dB (2.22)

By integrating over angular variables, G(t) can be written as

G(t) = 1
3 + 2

3

∫
f(|B|) cos (γµ |B| t) 4πB2dB (2.23)

If the local magnetic field has a well defined modulus and randomly
distributed directions, i.e.

f(|B|) = δ(B − B̄) (2.24)

substituting Eq. 2.24 and integrating gives

G(t) = 1
3 + 2

3 cos(γµB̄t) (2.25)

This is what would be observed in ideal powdered magnetic sam-
ples. However, the delta distribution of Eq. 2.24 is never detected in
real materials since the local magnetic field is usually broadened by

22



2.5. Probing magnetic order

the presence of vacancies, self-interstitials, magnetic impurities, dis-
locations or domain walls. A more realistic approach is to consider
a Gaussian distribution for the internal magnetic fields in the i-th
direction

f(Bi) = γµ√
2π∆

exp
(
−
γ2
µ(Bi − B̄i)2

2∆2

)
(2.26)

where i = x, y, z identify the three field components. Let the local
field at the muon site be the sum of two components with angular
independent distributions given by Eq. 2.24 and Eq. 2.26 and assume
for the latter B̄i equal zero. The integration over angular variables
gives the distribution [29]

f(|B|) = 1
(2π)3/2∆B̄|B|

exp
(
−B̄

2 +B2

2∆2

)
sinh

(
B̄|B|
∆2

)
(2.27)

which is known as Koptev-Tarasov distribution. From Eq. 2.23, for
B̄ � ∆, one has

G(t) = 1
3 + 2

3 cos(γµB̄t) exp
(
−
γ2
µ∆2t2

2

)
(2.28)

which evidence a damping of the oscillating component which origi-
nates from the de-phasing of the muon spins due to the presence of a
distribution of local fields. This is the typical signal found in static
magnetically ordered samples, characterised by disorder or impurities.
Considering the Gaussian distributions of Eq. 2.26 with B̄x,y,z = 0

for all the three directions, integration of Eq. 2.21 gives

G(t) = 1
3 + 2

3(1− γ2
µ∆2t2) exp

(
−
γ2
µ∆2t2

2

)
. (2.29)

Eq. 2.29 is known as static Kubo-Toyabe relaxation function (Fig. 2.8b)
and describes the µSR signal of randomly oriented classical dipoles.
This is the case, for example, of nuclear magnetic dipoles but poten-
tially also static magnetic disorder of electronic origin.
Finally, if a magnetic field is applied along the i-th direction par-

allel to the muon spin (LF configuration), B̄i 6= 0 and the integral of
Eq. 2.22 yields [37]:
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Figure 2.8.: In (a) a sketch depicting randomly oriented local moments
in a lattice. The resulting distribution of fields projected
onto an axis is showed on the left. In (b) the Kubo-Toyabe
relaxation function for several values of ∆ is plotted.

G(t) = 1− 2∆2

B̄2
i

[
1− cos(γµB̄t) exp

(
−
γ2
µ∆2t2

2

)]
+ o(∆3

B̄3
i

) (2.30)

If B̄i � ∆, the polarisation of the muon is fixed and the spin will
be aligned along the i-direction.
Up to now we have only considered static local fields on the timescales

investigated (which depend on γµ). When dynamical fluctuations of
internal field sets in, they introduce an additional relaxation processes
which is independent from magnetic disorder.
There are two possible reasons why a magnetic system could ap-

pear dynamic in µSR signals. Either fluctuations of the local field are
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present or the muon is dynamic, i.e. it diffuses in a static spin sys-
tem. A solution for a dynamical modulation of local magnetic field,
resulting either from the muon hopping from site to site or from the
internal fields instantly changing as a consequence phase shifts, can
be accounted for within the strong collision Markovian approximation
[37].
For slow hopping rate in a local moment environment described

by a Gaussian field distribution, the asymptotic form of static Kubo-
Toyabe distribution (Eq. 2.29) is modified and may be evaluated ap-
proximately as

G(t) ∼ 1
3 exp

(
−2

3νt
)

(2.31)

where the fluctuation frequency ν is the inverse of the hopping cor-
relation time (τc = ν−1). Eq. 2.31 shows the signature of dynamic
contributions to the asymmetry, i.e the loss of the 1/3 tail. Indeed in
the case of slow dynamics the asymptote progressively reduces from 1/3
to 0 as a function of ν. In the fast fluctuation limit, the depolarisation
has the form

G(t) ∼ exp(−λt) . (2.32)

with λ = 2(γµ∆)2τc. This is the so called “motional narrowing limit”
in which the depolarisation of the asymmetry signal is inhibited by
the fast hopping rate. In the intermediate fluctuation rate, G(t) is

G(t) = exp
[
−2

γ2
µ∆2

ν2 (exp(−νt)− 1 + νt)
]

(2.33)

This is the so called “Abragam relaxation function” [38, 39].

2.6. Quantum description of the dipolar
interaction

All of the above results are based on a semi-classical description of the
electromagnetic interaction taking place between the muon spin and
the localised moments in a sample. Celio and Meier were the first to
consider the dipolar interaction between the muon and the nuclei in
a pure quantum-mechanical fashion in the context of µSR [40]. They
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Figure 2.9.: The time evolution Gp(t) of the normalised asymmetry for

an axial F-µ-F site with ωd = 0.16 MHz in a powdered
sample.

showed that the difference between a Kubo-Toyabe function, which
is expected from classical arguments, and a quantum description of
the same interaction produces small differences that can be observed
within the µSR time window. However, a marked departure from
the classically expected trend was first observed in LiF [41]. Indeed
in fluorides, because of the high nuclear moment of F nuclei (19F
has spin I = 1/2 and ∼ 100% natural abundance) and of the high
electronegativity of this element, the interaction, commonly referred
as F-µ-F†, is more pronounced. Here we briefly revise the analysis
proposed in the article by Brewer and co-workers for LiF.
An entangled quantum state develops between the muon and the

surrounding nuclei and the system may be described with the following
Hamiltonian

H =
∑
i>j

µ0γiγj
4πr3 [Si ·Sj − 3(Si · r̂)(Sj · r̂)] , (2.34)

where r is the vector between spins Si and Sj of either the fluorine
nuclei or the muon, which have gyromagnetic ratios γi and γj . The
muon depolarisation is given by:

†We mention that “F-Mu-F” is probably a more appropriate label for this
“molecule-in-a-crystal” [18] structure. Indeed, Mu identifies both the µ+ particle
and the electronic orbital forming the bonds with the F nuclei. However, we prefer
to stick with the original and widely used notation.
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2.6. Quantum description of the dipolar interaction

Gζ(t) = 1
N

∑
m,n

ei(ωm−ωn)t |〈m|σζ |n〉|2 (2.35)

where N is the Hilbert space dimension, |m〉 and |n〉 are eigenstates
of H and h̄ωm,n are the corresponding eigenvalues, σζ is the Pauli spin
matrix corresponding to the quantization direction and h is the Planck
constant. In a powdered sample with cubic symmetry, the observed
signal is the result of the weighted average over all directions, i.e.

|〈m|σζ |n〉|2 = 1
3
(
|〈m|σz|n〉|2+

+ |〈m|σy|n〉|2 + |〈m|σx|n〉|2
) (2.36)

Since the dipolar interaction is inversely proportional to the cube
of the inter-nuclear distance, one usually consider only up to next
neighbouring atoms in order to make the calculation of the muon
polarisation computationally inexpensive within a negligible loss of
accuracy. Moreover, the coupling between F nuclear spins may be
often disregarded with a limited loss of accuracy even if its inclusion
does not lead to an increase of the computational load.
For an axially symmetric F-µ-F complex, as in the case for LiF

which is discussed in Chapter 5.2, when considering only two nearest
neighbouring F atoms, the analytic solution of Eq. 2.34 for a powder
averaged depolarisation is:

Gp(t) = 1
6

(
3 + cos

√
3ωdt+ (1− 1√

3
) cos 3−

√
3

2 ωdt

+ (1 + 1√
3

) cos 3 +
√

3
2 ωdt

) (2.37)

where ωd = µ0γFγµh/(2r3). This characteristic signal (shown in
Fig. 2.9) allowed to identify the muon site in LiF and other flurides
[41, 42].
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2.7. Identification of muon sites
In µSR experiments, the location of the muon site is, a priori, un-
known. A few experimental and computational approaches allow the
identification of muon sites in condensed matter systems. Here we
shortly revise the strategies discussed so far in literature.

2.7.1. Experimental approaches

From the experimental side, three strategies for identifying muon sites
have mainly been used:

Study of the dipolar tensor in a transverse field experiment. This
approach provides information on the symmetry of the occupied muon
site(s) through the study of the muon Knight-shift. It requires single
crystal compounds and a large transverse applied field. Moreover
the sample should have a well defined shape in order to simplify the
dependence of the demagnetisation component of the local field at
the muon site on the angle of application of the transverse field. The
symmetry of the precession pattern allows to identify the symmetry
of the site and the calculation of the dipolar field together with the
determination of the hyperfine field enable the comparison between
the muon site predictions and the experiment. For additional details
and some examples see Ref. [29, 43, 44].

Analysis of the relaxation functions. This approach is particularly
useful in materials containing nuclei with large nuclear moments (eg.
F, H). Oscillations in the asymmetry which are due to the interaction
between the muon spin and the nuclear moments are usually observed.
The precession frequencies can be evaluated by considering the quan-
tum dipolar interaction between the spin of the muon and those of the
neighbouring nuclei as shown in the previous section. Since the posi-
tion of the nuclei is known (even though some distortions may occur)
the identification of the muon position is usually straightforward (see
for example Ref. [45–50]). Unfortunately the distance between the
muon and the nuclei must be small enough to allow the acquisition of
the muon spin precession in the µSR time window. For example, the
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2.7. Identification of muon sites

interaction between the muon and a fluorine nuclear moment in a F-µ
bond 1.5 Å long produces an oscillating signal with frequencies of the
order of 0.1 MHz which barely fit the µSR resolution.

Analysis of the electric field gradient through muon level crossing
resonance (µLCR). (µLCR) is a form of cross relaxation involving
the muon spin and nuclear energy levels suggested by Abragam [51].
The key idea is that by varying the applied longitudinal field, the non-
interacting muon and nuclear spin energies may become degenerate.
These degeneracies are removed in the presence of a small interaction
and the degenerate states become mixed. The resonance is detected
as a dip in the muon relaxation rate as a function of the applied field.
As for the previous cases, LCR experiments can be used together with
numerical simulations to identify the local geometry of the muon site.

2.7.2. Theoretical approaches

Simulations aiming at identifying muon sopping sites with quantum
mechanical approaches have been around since the very beginning of
µSR experiments. To the best of our knowledge, the first theoretical
investigation on muon perturbations in matter is Ref. [52] which dates
back in 1975. From then on, a large number of authors adopted DFT
or HF simulation techniques to identify muon sites and investigate
muon perturbations from first principles.
In early studies, semiconductors and transition metal elements at-

tracted most of the attention [13, 53–59]. However, paramagnetic
muon sites (i.e. muonium sites) were mainly considered.
Shortly after, copper oxides insulators were the subject of intense

studies due to due to the discovery of high temperature supercon-
ductivity [60–62]. Also in this case both density functional and HF
approaches were often used. Finite clusters with a relatively large
number of atoms were constructed in order to accurately reproduce
the material under study avoiding the introduction Periodic Bound-
ary Conditions (PBC) which can become computationally expensive
when considering the effect of interstitial impurities (see Sec. 3.4).
From then on, on one hand, the muon regarded as a light isotope

of the hydrogen took both experimental and computational attention
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2. A short introduction to µSR

[18, 20, 59]. On the other hand more sophisticated strategies were
developed to take into account the large ground state energy of the
muon, the most successful probably being Feynman path integral ap-
proaches to molecular dynamics [63].
During the last ten years, the exponential growth of the available

computational power marked a rebirth of the DFT approach to the
identification of the muon sites. As of today, DFT simulations can
provide accurate descriptions of materials of interest for the solid state
research and are used both for studying the unperturbed electronic
ground state and the perturbed electronic configuration which results
from the interstitial µ+ [16–18, 20, 23]. In this thesis, these aspects
are discussed in detail.
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The fundamental power of DFT resides in the idea of disregard-
ing the many-body wave function of an interacting-particle system
and instead extract the observables with functionals of the parti-
cle density, which is a scalar function of only space and time. The
earliest tractable approach using density functionals is the Thomas-
Fermi method, which however had several failings, the most notable
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3. A short introduction to DFT

being the inability to bind atoms to form molecules. Later on, Ho-
henberg and Kohn (HK) [64] and Kohn and Sham (KS) [65] showed
that it is possible to introduce a mapping of the many-body problem
to a non-interacting one-particle problem. The mapping is formally
exact but, in practice, one must rely on approximations. Despite
that, the available approximations have had a tremendous success
and make the theory extremely powerful for ground state total en-
ergy estimations. More recently, the time-dependent analogue of the
HK theorems, known as Time-Dependent Density Functional Theory
(TDDFT), was formally introduced by Runge and Gross [66] to treat
the dynamics of many-body systems in the presence of time-dependent
potentials. These scientific advances made DFT an extremely pow-
erful computational method in quantum physics, used for modelling
both ground-state and excitation properties of solids in a variety of
scientific applications. A brief introduction to DFT is required for the
discussion of the muon site problem. In summarising the key points I
took inspiration from Ref. [67–69].

3.1. The Hohenberg-Kohn theorems
Hohenberg, Kohn and Sham formulated their famous theorems in 1964
[64] and 1965 [65]. They turned out to be a milestone in the devel-
opment of density functional formalism since they provide the formal
justification to use the electron density as the basic variable in deter-
mining the quantum properties of a system of interacting particles.

3.1.1. One to one mapping
The first HK theorem states that, given the non degenerate ground-
state of the external potential Vext(r) with particle density n0(r), it
is possible to unambiguously recover to the external potential from
n0(r). In other words, there exists a one-to-one mapping between the
external potential Vext(r) and the particle density n0(r) if the ground
state is non-degenerate.
The proof uses the Rayleigh-Ritz principle and is given by reductio

ad absurdum. Let |1〉 and |2〉 be the ground state wave functions of
the external potentials V̂1 and V̂2 with V̂1 6= V̂2 + α.
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3.1. The Hohenberg-Kohn theorems

Suppose that n(1)
0 (r) = n

(2)
0 (r) = 〈1|

∑
i δ(r − ri)|1〉 = 〈2|

∑
i δ(r −

ri)|2〉 is the ground state density for both external potentials, which
we identify as V1 and V2 for simplicity. One has:

E1 = 〈1|T̂ + V̂int + V̂1|1〉 < 〈2|T̂ + V̂int + V̂1|2〉 (3.1)

where T̂ and V̂int are the kinetic and interaction terms for the par-
ticle in the system. The right-hand term of Eq. 3.1 can be recast as
follows:

〈2|T̂ + V̂int + V̂1|2〉 = 〈2|T̂ + V̂int + V̂2|2〉+ 〈2|V̂1 − V̂2|2〉

= E2 +
∫
n0(r)

[
V̂1(r)− V̂2(r)

]
d3r

and we obtain

E1 < E2 +
∫
n0(r)

[
V̂1(r)− V̂2(r)

]
d3r . (3.2)

We can now exchange 1 for 2 in the above inequality obtaining:

E2 < E1 +
∫
n0(r)

[
V̂2(r)− V̂1(r)

]
d3r . (3.3)

Eq. 3.2 and Eq. 3.3 are obviously incompatible with the requirement
n

(1)
0 (r) = n

(2)
0 (r). Thus we conclude that for V̂ (ext)

1 6= V̂
(ext)

2 it must
be n(1)

0 (r) 6= n
(2)
0 (r).

3.1.2. Variational principle

The second theorem of HK states that, for any choice of V̂ext, a uni-
versal functional of the density E[n] provides the ground state energy
for the ground-state density n0(r) that minimises the functional. Here
we will follow the proof of Levy Lieb (LL) based on the constrained
search approach.† Roughly speaking, the idea is to divide the min-
imisation in two steps. We start considering the infinite many body
wave functions Ψn0 sharing the same density n0(r) of the true many

†The LL approach has the valuable advantage of dealing with N-
representability rather than V representability. This is discussed in the next sec-
tion.
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body ground state Ψ0. The minimum-energy principle for the ground
state gives

〈Ψn0 |Ĥ|Ψn0〉 ≥ 〈Ψ0|Ĥ|Ψ0〉 . (3.4)

This implies

E = 〈Ψn0 |T̂ |Ψn0〉+ 〈Ψn0 |V̂int|Ψn0〉+
∫
d3r Vext(r)n0(r) (3.5)

E0 = 〈Ψ0|T̂ |Ψ0〉+ 〈Ψ0|V̂int|Ψ0〉+
∫
d3r Vext(r)n0(r) (3.6)

E ≥ E0 (3.7)

that corresponds to

〈Ψn0 |T̂ + V̂int|Ψn0〉 ≥ 〈Ψ0|T̂ + V̂int|Ψ0〉 (3.8)

From the above equation, one can define the functional of the den-
sity as

ELL[n] = FLL[n] +
∫
d3r n(r)Vext(r) (3.9)

where FLL is a universal functional of n defined as

FLL [n(r)] = min
|Ψ>→n(r)

〈
Ψ|F̂ |Ψ

〉
, (3.10)

with F̂ being
F̂ = T̂ + V̂int . (3.11)

The functional ELL is manifestly a functional of the density and
the ground state E0 is found by minimisation with respect to n(r).
This completes the proof of HK theorems.

3.1.3. V-representability and N-representability

Two fundamental questions, which are extremely important for prac-
tical implementations of DFT, remain unanswered in the above theo-
rems. Firstly, whether it is possible to represent any density in terms
of the ground-state density of a potential Vext(r). Secondly, whether
all densities can be written in terms of an antisymmetric N-body wave
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3.1. The Hohenberg-Kohn theorems

function. The two question have been labelled V-representability and
N-representability.
It has been shown [70] that any function ρ(r) satisfying

ρ(r) ≥ 0 (3.12)∫
ρ(r) d3r = N (3.13)∫

|∇ρ(r)1/2|2 d3r <∞ (3.14)

can be written in terms of some φ(r1, . . . , r(n)), so any (reasonable)
density is N-representable. However, for V-representability no general
solution exists. For this reason, the constrained search formulation of
Levy and Lieb discussed above was preferred over the proof given by
HK which deals with V-representability.

3.1.4. Kohn Sham iterative scheme

HK theorems do not provide a practical strategy to deal with a quan-
tum many body problem. The second HK theorem is simply an exis-
tence theorem, which tells absolutely nothing about the actual depen-
dence of the kinetic part and the particle-particle interaction part on
the particle density. Indeed these are serious challenges for practical
applications. The Thomas–Fermi theory provides approximations for
both the kinetic and particle-particle terms, but they are not accurate
enough, especially in what regards the kinetic energy part. Although
advances have been made [71], there is still no (accurate) way to ex-
tract the kinetic energy of the system without reverting to an orbital
description.
Moreover, even if the functional of the electron density providing the

total energy were known, there is no straightforward way to analyse
the properties of a material from its particle density. For example,
it is not immediate to distinguish an insulating ground state from a
metallic ground state by only considering the electronic density.
KS derived a set of coupled differential equations which provide the

exact ground state density n0(r) of the interacting system with the
introduction of an auxiliary non interacting particle problem. The
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method is based on an ansatz: the pure-state non-interacting V-
representability of the interacting electrons density. In other words,
we suppose that the exact ground state density can be reproduced by
an auxiliary system of non-interacting particles (subject to a different
external potential). There is no proof of this ansatz for real systems
and its validity is assumed.
In what follows, we will specialise the results discussed up to now for

general densities to the case of electrons in solids and focus the atten-
tion on the electron system which obeys the following non-relativistic
Hamiltonian:

Ĥel = T̂e + V̂en + Ûee + V̂nn , (3.15)

where†

Te = −
ne∑
i

h̄2

2m∇
2
i ,

Ven = −
ne∑
i

nN∑
j

Zje
2

|Rj − ri|
,

Uee = 1
2

ne∑
i

ne∑
j

e2

|ri − rj |
.

where r and R are electronic and nuclear coordinates respectively.
In Eq. 3.15 we have removed the nuclear kinetic energy with the

usual Born Oppenheimer (BO) approximation and the Coulomb in-
teraction between nuclei enters just as the constant contribution Vnn.
The Hamiltonian of Eq. 3.15 can be recast, dropping the constant

contribution Vnn, as follows:

H(n) = T (n) + U(n) + V (n) = Ts + UH(n) + Exc + V (n) (3.16)

where, on the left-hand side, U(n) includes internal potentials (terms
arising from electron-electron interactions, the particles for which we
are solving the Schrödinger equation) and V is the “external potential”
(everything that stems from the interaction between the electrons and

†Starting from the next equation we drop the hat symbol for operators in this
section.
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3.1. The Hohenberg-Kohn theorems

other particles or fields). On the right-hand side, the kinetic term
is split into the non interacting part, Ts, and the interacting part,
Tc = T −Ts which enters Exc as Exc = Tc+(U−UH). UH is the usual
Hartree term which can be expressed as a function of the density as

UH [n] = e2

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| . (3.17)

Aiming at introducing the auxiliary system of non-interacting parti-
cles, we evaluate the terms in Eq. 3.16 for an antisimmetrized product
wave function Ψ(r1, . . . , rn) of single particle wave function φ(r). A
functional of the density for the kinetic energy term, Ts[n], is easily
obtained as the sum of the kinetic energy of the single particle wave
functions and is

Ts[{φi[n]}] = − h̄2

2m

N∑
i

∫
d3r φ∗i (r)∇2φi(r) . (3.18)

Exc is the sum of two contributions, the exchange energy Ex due to
the Pauli principle and the correlation energy Ec. For the exchange
part, in terms of single particle wave functions, the functional of the
density is

Ex[{φi[n]}] = −q
2

2
∑
jk

∫
d3r

∫
d3r′

φ∗j (r)φ∗k(r)′φ′j(r)φk(r)
|r− r′| , (3.19)

which is known as the Fock term. The orbital description of the
exchange contribution can be used to improve the accuracy of the
description of Exc which is not known in closed form (see for exam-
ple Ref. [72, 73]). Indeed, a functional description of the correlation
energy Ec is still unknown, either in terms of orbitals or densities.
The brightness of the KS approach is that, by explicit separation of

the independent particle contribution from the kinetic term and the
Hartree term, one can reasonably estimate the remaining terms with
approximate functionals of the density.
To evaluate the ground state energy of the system of interacting

electrons we proceed minimising the right-hand side of Eq. 3.16 with
respect to the variation δn.
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The minimisation is formally obtained as

0 = δH[n]
δn(r) =δTs[n]

δn(r) + δV [n]
δn(r) + δUH [n]

δn(r) + δExc[n]
δn(r) (3.20)

=δTs[n]
δn(r) + v(r) + vH(r) + vxc(r). (3.21)

The term δUH
δn yields the Hartree potential

vH(r) = e2
∫
d3r′

n(r′)
|r− r′| (3.22)

and the term δExc
δn has been labelled vxc in the right hand side of

Eq. 3.21.
The minimisation of Eq. 3.21 is equivalent to the minimisation

0 = δEs[n]
δn(r) = δTs[n]

δn(r) + δVs[n]
δn(r) = δTs[n]

δn(r) + vs(r), (3.23)

which represent the total energy of a non-interacting particle system
subject to the potential vs(r)

vs(r) = v(r) + vH(r) + vxc(r) . (3.24)

Consequently, one can calculate the density of the interacting (many-
body) problem, by solving the Schrödinger equation of a non-interacting
electron system experiencing the effective potential vs(r). However,
since the non-interacting kinetic energy functional of Eq. 3.18 is known
only as an orbital functional and vxc can be written only in terms of
the electron density, one cannot directly minimise Eq. (3.16) with re-
spect to n. For this reason, during the minimisation, both the orbital
and the density representation will be needed.
The Schrödinger equation of the non-interacting auxiliary system is[

− h̄
2∇2

2m + vs(r)
]
φi(r) = εiφi(r) . (3.25)

In the exact DFT, Eq. 3.25 provides a product wave function that
has exactly the same electron density n(r) of the interacting particle
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Select initial
n(k)(r) =

∑N
i |φ

(k)
i (r)|2

Contruct Kohn-
Sham Operator

ĥ
(k)
KS = −1

2
∇2 + v(k)s (r)

Solve
ĥ
(k)
KSφ

(k+1)
i (r) = ε

(k+1)
i φ

(k+1)
i (r)

n(k+1)(r) =
∑N

i |φ
(k+1)
i (r)|2

Density Converged?
|n(k+1) − n(k)| ≤ εtol

Set
n(k+1) → n(k)

Calculate
properties

END
yes

no

Figure 3.1.: Flowchart describing the iterative solution of the KS equa-
tions.

system, i.e.

n(r) = 〈Ψ0|n|Ψ0〉 ≡ ns(r) =
N∑
i

fi |φi(r)|2, (3.26)

where fi is the occupation of the i’th orbital and Ψ0 is the true many-
body wave function.
Since both vH and vxc depend on n, which is constructed from the

orbitals φi, which in turn are obtained from the solution of Eq. 3.24
and Eq. 3.25, the KS equations are a set of nonlinear integro-differential
partial differential equations for the one-particle wave functions. The
usual way of solving such problems is to start with an initial guess for
n(r), calculate the corresponding vs(r), and then solve the differential
equation Eq. 3.25 for the φi. From the latter one calculates a new den-
sity, using Eq. 3.26, and starts again. The iterative method is repeated
until convergence is reached. A flowchart showing the algorithmic pro-
cedure is depicted in Fig. 3.1. Different convergence criteria (such as
convergence of the total energy, of the density or of some other ob-
servables) and various convergence-accelerating algorithms [74–76] are
commonly used.
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3.1.5. Exchange and correlation approximations
While DFT is, in principle, exact, in practice one has to rely on ap-
proximations since a functional providing the exact exchange and cor-
relation energy is not known. However, the available approximations
have had a tremendous success in various applications.
We prefer to avoid entering into the details of the several approxi-

mations introduced to evaluate the exchange and correlation term, but
instead we stress that the exchange and correlation potential can be
accurately evaluated even with the rather intuitive approach proposed
by KS in their milestone paper which is based on the parametrization
of the exchange and correlation energy of the electron gas. From then
on, the study of exchange and correlation functionals became a very
active field of research constantly improving the accuracy of DFT pre-
diction for a wide class of materials.
The most widely used approximation for vxc assumes that the ex-

change and correlation contribution to the total energy of a slowly
varying density can be approximated with a contribution taken from
the homogeneous electron gas scaled locally with the density. The ex-
change energy of a homogeneous electron gas with density n is known
analytically and it is

εx(n) = −3e2

4

( 3
π

)1/3

n
4/3

On the other hand, the correlation energy density εc for the homo-
geneous electron gas is not known analytically. However, it can be
accurately estimated with Monte-Carlo approaches and subsequently
parametrized [77]. This allows to obtain the exchange and correlation
energy Exc from εxc(n) = εx + εc and one has:

Exc(n) '
∫
n(r)εxc(n(r)) d3r (3.27)

vLDA
xc (r) = δELDA

δn(r) = εxc(n(r)) + n(r)∂εxc(n(r))
∂n(r) (3.28)

where εxc(n) is the exchange-correlation energy density per electron
as a function of the uniform electron gas density n. This approxi-
mation is known as Local Density Approximation (LDA). Experience
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has demonstrated that LDA works well also for systems that are char-
acterised by strongly varying densities, i.e. non-metals. This unex-
pected success can be partially explained by the fact that the LDA
satisfies important sum-rules due to a systematic error cancellation in
the evaluation of the exchange and the correlation contributions [78].
A more accurate approximation can be obtained by including also

a dependency on the density gradient.

Exc(n) '
∫
n(r)εxc(n(r),∇n(r)) d3r (3.29)

vGGA
xc = εxc(n(r)) + n(r)∂εxc(n(r))

∂n(r) +∇
(
n(r)∂εxc(n(r))

∂∇n(r)

)
(3.30)

is the general form of the Generalized Gradient Approximation (GGA)
[79–82]. Although GGA does not provide a consistent generalized
improvement over LDA for all systems, it improves the binding energy
and the bond lengths in many materials. For this reason, in this work
the GGA was mainly used.

3.1.6. Reciprocal space sampling

Bloch’s theorem states that, for a periodic potential invariant under
lattice translation vectors Rm = m1a1 + m2a2 + m3a3 (m ∈ Z), the
eigenfunctions of the Hamiltonian can be written as

ψk(r) = eik · ruk(r) (3.31)

where uk(r) has the same periodicity of the potential, i.e.

uk(r) = uk(R + r) (3.32)

and
uk+G(r) = uk(R + r)e−iG · r (3.33)

which stems from the fact that plane wave functions are periodic func-
tions of the reciprocal lattice vector G = l1b1 + l2b2 + l3b3 (with
ai ·bi = 2πδij).
This has the valuable advantage of allowing to define the eigenstates

only within the reciprocal unit cell, i.e., all k + G states with G 6= 0
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are not needed and it is sufficient to know the energy dispersions only
within the first Brillouin zone.
In periodic system, properties like the electron density or the total

energy requires the integration of some quantities over the Brillouin
zone.
Usually a finite number of k-points are used and the integration is

performed as a finite sum

u(r) = Ω
(2π)3

∫
BZ

F (k)dk =
∑
j

wjF (kj) (3.34)

where Ω is the cell volume and the wj are weighting factors. The set
of “special” k-points that provide the best sampling of the Brillouin
zone was discussed by Monkhorst and Pack (MP) in Ref. [83]. The
k-points are distributed uniformly in reciprocal space as

kj = x1jb1 + x2jb2 + x3jb3 (3.35)

where xij = li
nj
, j = 1, . . . , nj , li are lengths of reciprocal lattice basis

vectors, and nj is an integer determining the number of special points
in the set. If we are dealing with a supercell and the reciprocal space is
therefore shrank and filled with folded single particle electronic bands,
we can restrict the sum in Eq. 3.34 to just one point. In this case, the
best choice, which depend on the reciprocal lattice symmetry, has been
discussed by Baldereschi [84]. The choice of the point relies on two
considerations: firstly, the first mean value theorem for integration
states that, given G : [a, b] → R a continuous function, a point x for
which the integrand equals the integral exists, i.e.∫ b

a
G(t) dt = G(x)(b− a). (3.36)

with x ∈ (a, b). The second consideration regards the use of symmetry
to find such a point approximately. The mean value points for simple
cubic, face centred cubic and body centred cubic are π

a (0.5, 0.5, 0.5),
2π
a (0.6223, 0.2953, 0.5), 2π

a (0.1666, 0.1666, 0.5).
Similarly, the point group symmetry of the lattice can substantially

reduce the number of points over which the sum in Eq. 3.34 is per-
formed. This allows one to write the sums as
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3.2. Ionic contribution to the total energy

f(r) =
P (nj)∑
j=1

wjF (kj) (3.37)

where P (nj) is the symmetry-dependent number of points in the
irreducible wedge of the Brillouin zone. The introduction of symmetry
modify the weights of the points which are now determined by the ratio
of the order of the point group to that of the group of the wavevector
kj under consideration.
Finally we mention that, in large supercell, sampling the reciprocal

space by considering only the Γ point (k = 0) leads to a substantial
speed-up of the calculation since eigenfunctions become real-valued.

3.2. Ionic contribution to the total energy
Within the BO approximation, the KS Hamiltonian provide a means
for obtaining the total energy of the electron system. However, the
true ground state energy also include an ionic contribution, i.e.

Etot = Eel + Eion({R}) (3.38)

where Eion({R}) is the contribution arising from the ion-ion interac-
tion and Eel is the total energy of the electrons moving in the coulomb
field of the ions.
The Schrödinger equation for the nuclei in the BO approximation

is
H = TN + Vext + VNN (3.39)

where TN = −
∑Nn
i

h̄2∇2

2Mi
is the nuclear kinetic energy, VNN is the

nuclear interaction term and Vext is an external potential acting on
the nuclei. The kinetic term in Eq. 3.39 gives rise to collective nuclear
motions which are commonly referred to as phonon modes. To analyse
vibrational modes, the potential acting on nuclei must be evaluated.
The Hellman-Feynman theorem provides a clever way to do so by
allowing the evaluation of the forces acting on the nuclei as

FI = −∂E({R})
∂RI

= −〈Φ{R}|
∂H{R}
∂RI

|Φ{R}〉 (3.40)
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where Φ{R} is the ground-state wave function of the KS Hamilto-
nian. This result is of extreme importance since it allows to obtain
forces (and therefore the potential in the harmonic approximation)
from ground state calculations. It also provides an efficient way to
perform structural relaxations in geometry optimisation simulations.
In the BO scheme we can provide an approximate result for the

ground state energy by varying the nuclear configuration {R} and
constructing the BO potential energy surface for the nuclei. The vi-
brational contribution to the total energy is commonly computed in
two ways. One is the direct approach, also known as frozen phonon
method, in which the ground state energy and the forces of the system
subject to a particular distortion are calculated from first principles.
This approach has the advantage of allowing the evaluation of non-
linear effects. The second method is known as the linear response ap-
proach and uses the Density Functional Perturbation Theory (DFPT)
to obtain, together with the ground state density n(r), the linear re-
sponse of the electron density to a distortion of the nuclear geometry,
i.e. ∂n(r)/∂RI . This last method is usually more efficient and can
be used to study vibrational excitations at any wavevector while the
frozen phonon method is limited by the size of the supercell that is
required to represent the distortion introduced by a given vibrational
mode.

3.3. Basis sets

As already discussed, in order to solve numerically the KS iterative
scheme, an orbital description of the density is needed and therefore a
basis set must be defined. The general definition of the basis expansion
is

ψ(r) =
∑
i

ciφi(r) (3.41)

and the basis functions φi may or may not form a complete basis.
Many different sets have been developed as of today. Here we will
briefly introduce the basic concepts behind the two approaches used
in this thesis: Plane Wave (PW) and Linearized Augmented Plane
Waves (LAPW).
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3.3.1. Plane Waves

The PW expansion of a wave function ψi in a periodic system can be
written as:

φi,k(r) = eik · rfi(r) (3.42)

where k is defined in the first Brillouin zone of the system and fi
takes the form

fi(r) =
∑
G
ci,Ge

iG · r (3.43)

with G being reciprocal lattice vectors. The basis set for a given
wavevector k is therefore discrete but infinite. In order to use the
basis in a computational implementation of the KS iteration, some
approximations are needed. Firstly, a cutoff energy |k+G|2

2 ≤ Ec is
used to restrict to a sphere in reciprocal space the size of the sum
over G in Eq. 3.43. In PW based DFT implementations, the cutoff
energy is the only parameter that controls the accuracy of the basis set.
This represents a substantial advantage over other basis sets which
often require many parameters to control the basis expansion and in
some cases, no systematic scheme for convergence is available (i.e.
a variational principle is not available). The second approximation
consists of removing the core region of the Coulomb potential which
would require a prohibitively large number of plane waves to reach
convergence. This is discussed in the next section.

Pseudopotentials

Pseudopotentials are always used in conjunction with the PW basis
to remove the 1/r behaviour of the Coulomb potential which otherwise
would make the use of this basis functions prohibitive. The need for
pseudopotentials is nicely shown by Fig. 3.2 where the rapid oscilla-
tions which maintain the orthogonality between the core and valence
electron states are depicted. The description of such rapid oscillations
would require a large cutoff energy and is usually useless since in many
cases one is interested in the description of atomic bonding which only
requires an accurate description of the region where valence electrons
overlap.
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Ψ

ψ̃

−Z
r

Vpseudo
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r

r

Figure 3.2.: Schematic illustration of the pseudopotential concept. For
r > rc the pseudo wave function, φ̃, and the local part of
the pseudopotential, Vloc, are equal to the all electron
functions.

The concept of pseudization was introduced to overcome all these
problems. Moreover for heavier atoms in which relativistic effects are
important, and so the Dirac equation is required, the valence electrons
can be treated non-relativistically. Therefore removal of the core elec-
trons also allows to maintain the non-relativistic approach.
Pseudopotentials remove localised core states by modifying the charge

state of the nucleus. This will lead to a modified valence wave function
ψ̃ that replaces the true valence eigenfunction ψ and is characterized
by a smoothed form between the nucleus and some cut-off radius rc.
Beyond this radius, ψ̃ is identical to the full all-electron wave function
ψ.
In what follow we will consider only ab initio pseudopotential which

are a class of pseudopotentials that are obtained from the inverse
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solution of the KS Schrödinger equation. Consider the Schrödinger
equation for the l component of the radial part of the atomic orbital
φl(r)[
−1

2
d2

dr2 + l(l + 1)
2r2 − Ze

r
+ VH(r) + Vxc(r)− El

]
φl(r) = 0 (3.44)

where φ = rψ and VH(r) and Vxc(r) were introduced in Eq. 3.21. To
remove the core divergence we have to replace the −Ze

r term with an
attractive Vps which provide a different eigenfunction but the same
eigenvalue. The problem can be formally written as

[
−1

2
d2

dr2 + l(l + 1)
2r2 + Vps + VH(r) + Vxc(r)− El

]
φ̃l(r) = 0 (3.45)

Usually one defines the form of the pseudo wave function ψ̃ and the
cutoff radius. Then Vps, which is assumed to have the form

Vps = Vloc +
∑
lm

Bl|χlm〉〈χlm| (3.46)

where orbitals χlm vanish outside the core region and are obtained
from the solution of

χlm(r) =
{
El −

[
−1

2
d2

dr2 + l(l + 1)
2r2 + Vloc + VH(r) + Vxc(r)

]}
ψ̃

(3.47)
where

Bl = 1
〈χlm|ψ̃〉

(3.48)

It is clear from the above equation that we still have some freedom in
the form of Vloc. This is used to fulfil two requirements that the pseu-
dopotential should provide: softness and transferability. The former
concept is a measure of the number of planewaves that are needed
to describe the smooth wave function. The transferability is the ac-
curacy that the pseudopotential provides for smooth wave functions
different from the one for which it was generated. Accuracy and good
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transferability are obtained, at the expense of softness, by introduc-
ing norm conserving pseudopotentials [85]. These are defined by the
condition: ∫ rc

0
r2dr |ψ(r)|2 =

∫ rc

0
r2dr |ψ̃(r)|2 (3.49)

together with the requirement that, for a given atomic configuration,
the pseudopotential provides the exact eigenvalues of the all electron
potential. This constraints fix the form of Vloc and therefore also Vps.
However, norm-conservation requires exceedingly high cutoff ener-

gies for the first row elements and for transition metals. To solve
this issue, Vanderbilt introduced the concept of ultrasoft pseudopo-
tentials. The key idea is to relieve the norm-conserving condition for
the smooth wave functions but guarantee the correct evaluation of the
core charge. This is achieved by introducing a generalised eigenvalue
problem of the form

Ĥ|ψ̃l〉 = εiŜ|ψ̃l〉 (3.50)
〈ψ̃l|Ŝ|ψ̃l′〉 = δll′ (3.51)

where the requirement for charge conservation is included in the
operator Ŝ. For more details on this method, the reader is referred to
the original article Ref. [86].
Finally, shortly after the introduction of ultrasoft pseudopotentials,

Blöchl proposed the Projector Augmented Wave (PAW) method [87].
Somehow resembling the APW method discussed in the next chapter,
in the PAW method the core part of the smooth wave function is
reconstructed by means of a linear transformation acting on φ̃. This
is obtained by defining a set of projector operators. The projection
operators allow to describe the rapidly varying core wave function
with linear combination of smooth wavefaunction like, for example,
polynomials or Bessel functions.
We conclude this section by mentioning that the plane wave basis

set offers a number of advantages, including the simplicity of the basis
functions and, as a consequence, of matrix elements evaluation, the
parallel efficiency and the easily tuning accuracy. Moreover, the adop-
tion of plane-wave basis set provides simple expression for forces and
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stress tensor calculations and enables the full relaxation of the struc-
ture to minimize the forces in the system efficiently and accurately.

3.3.2. Linearized Augmented Plane waves

The LAPW basis introduces a different approach to treat the core
states. Rather then encapsulating their effect in a pseudopotential,
the core states are included in the basis set. Therefore, since the
LAPW basis does not require any shape approximation to the effective
one-electron potential vs, it is usually referred to as a Full Potential
(FP) method.
The basis is constructed by dividing the unit cell in non overlapping

spheres centred at the atomic sites, called muffin-tin (MT), and inter-
stitial regions (I). While the potential is almost spherically symmetric
in the muffin-tin region, it will be fairly flat in the interstitial. For
this reason, in the latter space, plane waves are used to describe the
non-interacting wave function. In the interstitial space, plane waves
are augmented by the introduction of localised orbitals of the form

ul(r, E)Y m
l (θ, φ) (3.52)

where Y m
l (r) is the spherical harmonic function of angular momentum

quantum numbers l and m, r is defined with respect to the centre
of each MT sphere and the angles θ, φ specify the direction of r in
spherical coordinates. The ul function is the solution of the radial
Schrödinger equation. In order to introduce LAPW we first discuss
the Augmented Plane Waves (APW) basis functions [88, 89]. These
are constructed from the two wave functions used in the solution of
the Schrödinger equation discussed above:

φi =
{
V −1/2eikr I∑
lm a

i
lmul(r, E)Y m

l (θ, φ) MT (3.53)

The coefficients ai are fixed by imposing the matching between the
plane waves and the localised states at the MT boundary rMT.
Each augmenting function ul(r, E) represent the exact muffin-tin

potential eigenstate of eigenenergy E. Therefore, any eigenstate of
different eigenenergy will be poorly described by the augmentation
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function. Thus, in order to keep a manageable basis set size, the
basis functions must be re-evaluated for each new energy E examined.
This makes the APW basis functions energy dependent and extremely
computationally expensive.
To solve this issue, O. K. Andersen [90] introduced the Linearized

APW basis. The fundamental idea is to substitute the augmenta-
tion function in the MT region with an expression providing enough
flexibility to represent the eigenstates in a region around E. This is
obtained with the basis containing the following augmentation func-
tion:

φi =
{
V −1/2eikr I∑
lm

[
ailmul(r, E) + bilmu̇l(r, E)

]
Y m
l (θ, φ) MT (3.54)

where u̇l(r, E) is the energy derivative of ul taken at the same energy
E.
The coefficients a and b are now obtained by matching in both value

and slope the augmentation function to the plane wave at rMT . This
new augmentation function resembles a first order Taylor expansion
in which the a and b coefficients provide enough flexibility to describe
the neighbouring energies of E thus removing the energy dependence
of the basis set. The cost of doing this is the loss of the optimal shape
inside the muffin-tin spheres. Moreover a larger secular matrix with
respect to the APW case must be considered. However the LAPW
method provides a great improvement over the APW method, since
it removes the energy dependence of the APW basis.
In general, the LAPW basis is used in conjunction with other basis

functions in order to take into account semicore states or core orbitals.
Among the many possible approaches, we mention the APW+“lo”
approach [91, 92] and the LAPW+LO approach [93], which are used
respectively in the Elk and Wien2K codes [94, 95].
The convergence of this basis set is controlled by many parameters.

These include the plane wave expansion for the interstitial space, the
size of muffin tin radii, the description of core and semicore states. For
the plane wave expansion the dimension of the basis is defined by the
adimensional number min(RMT )×max(|G + k|). The above adimen-
sional quantity is preferred over the dimensional value max(|G + k|)
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because it includes a reference to the border of the smallest muffin
tin sphere which is the most problematic point for the plane wave
expansion. The more we increase the muffin tin radius, the smaller
the plane wave basis set must be to achieve the same accuracy in the
description of the interstitial space. Small radii will require a large
plane wave basis set. Big radii will reduce the dimension of the plane
wave set but also produce unconverged results since the atomic func-
tion are not suited to describe the wave function in the region far from
the nucleus.

3.4. DFT for muon site identification

The methodology used for the identification of muon sites with DFT
inherits most of the knowledge developed for first principles analysis
of impurities and defects. For this reason, a short overview on the
details of alloys and impurities simulation is given below. Afterwards,
these results are specialised to the muon case and the peculiarities of
the interstitial site identification problem are discussed.

3.4.1. Alloys, impurities and defects

In this section we briefly review some aspects of the analysis of dis-
order in solids studied with theoretical approaches. Many of the con-
cepts developed in this field provide the theoretical background for
the analysis of muon sites from first principles.
There are two popular ways to calculate the effects of defect or

impurities from first principles: one is the Korringa-Kohn-Rostocker
(KKR) approach (in its Green Function formulation †) and the other
is DFT calculations on supercells. In the former method, the electron
problem is tackled as a multiple-scattering problem between electrons
and nuclei. The Schrödinger equation is transformed into an equiva-
lent integral equation and the problem is transformed into the evalu-
ation of a multiple scattering model.
The solution of a single atomic site embedded in a free electron

environment is first evaluated. In addition, one considers the scat-
†For a recent review see for example Ref. [96]
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tering of an incoming electronic wave by the single site potential.
This will produce an outgoing wave characterised by a phase shift.
The scattering process can be equivalently expressed as a single-site
scattering t-matrix and, instead of using eigenfunctions and eigenval-
ues, the single-particle Green function is used to solve the scattering
problem. The system’s Green function is obtained by requiring that
the incoming and outgoing wave function at each (possibly different)
atomic site must be identical.
One of the most important outcomes of the KKR method is the

possibility to treat impurities and alloys in the coherent potential
approximation which yields superior results with respect to the virtual
crystal approximation in which the alloy is replaced by an averaged
crystal potential. We finally mention that one of the advantages of
this method is represented by the limited computational effort that
is required to compute large quantum mechanical problems (up to
thousand of atoms). Moreover effective parallelization strategies can
be introduced.
In the supercell method, a direct calculation on a supercell, which

becomes the new unit cell of the system once the impurity/dislocation
is introduced, is performed and the effect of disorder is subsequently
considered. The disadvantage of the supercell method is that, for a
point-defect in a three-dimensional system, a three-dimensional peri-
odic array of defects is actually simulated. Despite that, PBC enable
fast and accurate calculations for the estimation of impurity ener-
getics, structural parameters, vibrational modes and other physical
characteristics. Indeed the great advantage of supercell calculations
is that the Bloch theorem is maintained and therefore the results dis-
cussed in the previous sections, with special reference to the plane
wave basis, can be applied directly.
The disadvantage is that supercells are computationally demand-

ing and the periodicity introduces spurious interactions between the
defects or impurities and dispersion of the defect/impurity-induced
electronic states. These must be carefully considered in preliminary
convergence tests against the supercell size.
A typical consequence of the presence of point defects, which is espe-

cially relevant for the charged ones, is the introduction of elastic stress
in the host lattice. In real systems, this is relieved by ionic displace-
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ments, i.e., lattice relaxation. However, when dealing with supercells,
the ionic relaxations around the defect are limited by the supercell
size. The presence of periodic replica imply that the relaxation pat-
tern is truncated midway between the defect and its nearest replica.
An argument often used in supercell calculations is that the ion dis-
placements should vanish near the borders of the supercell. However,
this does not necessarily guarantee that the long-range ionic relax-
ations are correctly described, as the supercell symmetry may fix the
positions of the ions at the border of the supercell. For this reason,
the forces and the displacements of all ions in the supercell should be
inspected.
Another, more difficult problem arises with charged defects. In or-

der to avoid the divergence of the electrostatic energy, a commonly
adopted solution is to introduce a neutralizing background charge, of-
ten in the form of a uniform “jellium”, which enables the evaluation of
electrostatic (Coulomb) energies. The well known problem with this
approach is that there are no general predictions of the convergence
of the Coulomb energy against the supercell size [69]. Many possi-
bilities have been proposed to estimate and correct the influence of
the neutralizing charge on the total energy (and derived quantities)
convergence [97–100]. We do not enter into the details here but just
remark once more the importance of checking convergence against
supercell size especially in charged impurities calculations.
Finally, it is important to note that defect and impurity calculations

should be carried out using the lattice constant optimised for the
bulk unit cell or, alternatively, experimental lattice constants. This
is crucial in order to avoid spurious elastic interactions between the
defects or impurities of the supercell and that of the periodic replica.
Otherwise the calculation results would refer to a system containing
an ordered array of highly concentrated defects/impurities.

3.4.2. The muon as a charged impurity

The identification of the muon site with DFT takes advantage of the
knowledge developed over the years for charged defects and impurities.
Being leptons, muons are identical to electrons except for the finite
lifetime of ∼ 2.2 µs and for their mass being around 200 times the
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electron mass. However, from the standpoint of µSR and electronic
structure calculations, the muon looks rather like a light isotope of
the proton, with spin 1/2 and a magnetic moment.
As already discussed in the introduction, the final stage of the

muon’s deceleration process in matter takes place by electrostatic in-
teractions with the sample and, passing from kinetic energies of tens
to fractions of eV, the muon travels up to 1 µm before coming to rest
in an interstitial site [32]. Thus the most simple approach to obtain
physical intuition for the final muon site is to inspect the electrostatic
potential for the muon in the hosting system. The electrostatic po-
tential felt by the positive muon is defined as

Vµ(r) = −e2
∫

n(r′)
|r− r′|d

3r′ +
∑
i

Zie
2

|r−Ri|
, (3.55)

where r and R are electronic and nuclear coordinates respectively and
i runs over the nuclei.
Quite surprisingly, the (absolute or relative) minima of the unper-

turbed bulk electrostatic potential are close to the muon sites in a
variety of metallic materials. To check the stability of the various
sites, at first we solved the Schrödinger equation for the muon in
electrostatic potential of Eq. 3.55 or in an approximated form in the
vicinity of each minimum. This provides the eigenstates’ energies E(i)

µ

that are reported according to

E
(j)
i = E(i)

µ (R)−min
rµ

[V (j)
µ (rµ)] (3.56)

where i enumerates the eigenvalues (i = 0 being the ground state)
and j, if present, identifies the approximated potential for which the
Schrödinger equation was solved.
The analysis of the Ground State Energy (GSE) of the muon in

the electrostatic potential usually reveals that many local minima are
unstable, i.e. the muon can overtake the barrier towards interstitial
positions with lower energy. In the rest of this thesis we label possible
muon sites the minima that remain disconnected when the GSE of
the muon is evaluated in the unperturbed Vµ potential of Eq. 3.55.
The remarkable accuracy provided by this simple strategy in several

materials can be understood by considering the central role played
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by conduction electron in the screening of the charged particle. If
the screening is effective, it guaranties a small modification of the
charge densities forming the chemical bonds in the system. However,
there is no rigorous account for this effect even in metals and no
reason that the minima of Vµ(r) will provide the correct muon sites
in semiconductors or insulators.
In view of this fact, a different approach, based on DFT supercell

calculations, has been considered. The simulation of the positively
charged muon is achieved by introducing an interstitial hydrogen, i.e.
a classical positive point charge, and checking the convergence of the
electronic perturbation it provides against the supercell size. Indeed,
as already mentioned, it is important to avoid the spurious contri-
butions from the replica introduced by PBC. An estimation of the
accuracy of the simulation can be obtained by considering the pa-
rameters already discussed in the previous section: the tensile stress
introduced in the supercell by the impurity, the range of the force
field, the variation of total energy differences and bond lengths for
supercells of increasing dimension, the width of impurity bands in the
system and possibly also the changes in the band structure of the
material (for example, doping effects)†.
It was found that a neutral supercell approach provides the best

results for metals while a charged supercell with a corresponding
compensating background is a better approximation for insulators
[16, 18, 19, 101, 102]. This difference can be understood again by
considering that in metals the charged particle is effectively screened
by conduction electrons. Considering a neutral supercell is therefore
a better description of the real system. On the other hand, in insula-
tors, the correct description of the muon sites is obtained by removing
an electron from the system and adding a compensating jelium charge
to provide supercell charge neutrality and avoid Coulomb energy di-
vergence. In the rest of this thesis we will refer to the addition of
a hydrogen atom inside the host material (with the possible removal
of an electron) as the simulation of the µ particle in the embedding

†To compare the bulk band structure with the one obtained from a super-
cell calculation, a procedure to unfold the supercell band structure is required.
Within the Quantum ESPRESSO suite of codes this can be done with the tool
of Appendix D.2
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system.
Starting from a grid of possible interstitial positions, the effect of

the muon embedding is inspected. The grid is usually selected by
requiring that initial muon positions are far enough from the atoms in
the system (usually more than 1 Å) and sample the whole interstitial
space in the unit cell. By considering the point group symmetry of the
system, the number of interstitial positions that are needed to sample
the whole interstitial volume can be significantly reduced. We mention
that, in some cases, owing to the simplicity and the limited size of
the unit cells of the various materials, a slightly different approach
was used. Instead of constructing a grid of interstitial points, random
position inside the unit cell are selected by hand and a graphic method
is used to check whether the interstitial positions explore the whole
interstitial space.
For each of the starting points, electron density rearrangements and

lattice distortions are obtained by letting the atoms’ position relax
towards a configuration which minimises the forces in the system. A
convergence threshold for both the total energy differences between
the relaxation steps and total forces must be reached. Many (local)
minima of the total energy hyper-surface are identified by the above
procedure. We label them candidate muon sites. Usually not all can-
didate sites are stable muon sites. This is due to the quantum nature
of the muon which is neglected in the relaxation step. This problem
is not so relevant when studying hydrogen intercalation since small
energy barriers are sufficient to trap hydrogen impurities. However,
the GSE of the muon can be up to an order of magnitude larger
than that of the proton (mp/mµ ∼ 9), thus making many interstitial
position unstable. To discriminate between binding and non-binding
sites, the ground state energy of the muon must be carefully evaluated.
Many approaches to go beyond the BO scheme have been developed
[103–108]. However, since our aim is to provide a supporting tool
for µSR data analysis, these methods are found to be prohibitively
demanding of storage and computer time when materials of real in-
terest for condensed matter research are considered. For this reason
the quantum nature of the muon, which is of course relevant given
its small mass, is introduced a posteriori [18, 109]. During the de-
velopment of the work presented in this thesis, two approaches have
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been considered. One is the study of the vibrational modes of the
impurity as discussed in Ref. [18]. This method has the advantage of
treating the nuclei and the muon on the same footing. However the
calculation of phonon modes can become computationally expensive
in supercell simulations. Moreover, usually the light mass of the muon
makes the muon wave function quite extended, hence the harmonic
approximations not sufficiently accurate. Therefore, we opted for a
different scheme following the lines of the Double Adiabatic Approxi-
mation (DAA) which was developed in Ref. [18, 110]. This scheme is
presented in the next section.

3.4.3. Double Adiabatic Approximation
The muon is roughly ten times lighter than the proton, thus, a proper
account of its larger GSE when confined or bound is very important.
In this section we briefly recall the formal equations for the DAA used
in chapters 6 and 7 to evaluate the quantum ground state of the muon.
This procedure has already been introduced in literature [109] to study
the quantum effects of muonium in silicon and germanium. The total
Hamiltonian of a system which describes a host lattice formed by
nuclei and electrons and a single muon is:

Htot = HN +Hµ +He (3.57)

Hµ = − h̄2

2mµ
∇2
µ (3.58)

HN = −
NN∑
j=1

h̄2

2Mj
∇2
Nj (3.59)

He = −
Ne∑
i=1

h̄2

2me
∇2
i + V (re, rµ,R) (3.60)

Htot|Ψ〉 = E|Ψ〉 (3.61)

where index j runs over the NN nuclei having the set of position
operators R and masses Mj , rµ and mµ are the position operator and
the mass of the muon and the index i runs over theNe electrons having
the set of coordinate operators re and massme. If we approximate the
total wave function |Ψ〉 with the product wave function |ψe〉|φµ〉|χN 〉,
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the position operators of the muon and of the nuclei enter only as
parameters in the Hamiltonian for the electrons Heψe(re; rµ,R) =
ε(rµ,R)ψe(re; rµ,R) that is solved with the KS iterative scheme. By
solving the Schrödinger equation of the electrons for the positions {rµ}
we can construct the potential entering the Schrödinger equation of
the muon(

− h̄2

2mµ
∇2
µ + ε(rµ,R)

)
φµ(rµ; R) = Eµ(R)φµ(rµ; R) , (3.62)

where, for a nuclear lattice with coordinates R, Vµ(rµ) = ε(rµ,R).
Let E(i)

µ be the i-th eigenvalue of Eq. 3.62, in the following we will
refer to

Ei = E(i)
µ (R)−min

rµ
[Vµ(rµ)] (3.63)

as the i-th energy of the i-th muon eigenfunction (i = 0 being the
ground state).
At a first sight it may seem that this approach is rather impractical

since it requires the execution of a large number of self consistent
loops. However the intermediate mass of the muon greatly reduces the
number of points to be acquired. Indeed the ground state energy of
the muon is usually slightly less than 1 eV. This makes the calculation
feasible since it is possible to obtain a good accuracy up to a couple of
eV by interpolating from 5 to 10 hundred points in a points cloud. The
favourable convergence against the supercell sizes (usually less than
100 atoms are needed) and the constantly increasing computational
power available on computer clusters make this method effective for
many materials of interest in condensed matter research.
The computational scheme developed to evaluate Vµ is discussed

in details in Appendix B. The method, which involves the sampling
of the potential on a grid of points which form a points cloud that is
subsequently interpolated, is referred to as Double Born Oppenheimer
(DBO) in the next chapters.
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In this chapter we present an elementary method for identifying
muon sites based on the inspection of the minima of the unperturbed
electrostatic potential of the material under study. This is the simplest
and quickest approach that can be used to have a rough estimation of
possible muon sites. As discussed hereafter, a surprisingly good de-
scription of the µ embedding positions is obtained for many metallic
materials with this approach. However, it was shown that the minima
of the electrostatic potential do not match the muon sites in insula-
tors where the muon usually occupy low-symmetry positions (see for
example chapters 6 and 7). Moreover, also in metallic compounds,
muon sites can be quite far from the minima of the unperturbed elec-
trostatic potential due to the perturbation introduce by the muon on
the valence electrons forming the chemical bonds in the system.
Summarising, to date there is no clear strategy to distinguish be-

tween the cases in which the muon site is accurately provided by the
unperturbed electrostatic potential and those where this approach is
doomed to fail. For this reason we refer to the positions provided by
this method as possible muon sites. In this chapter, possible muon
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4. Iron Pnictides: studying the unperturbed system

sites are validated by comparison with the experiment. In the next
sections we show that Iron Pnictides Superconductors (IPSCs) repre-
sent a fortunate case that is worth reporting since the simple strategy
presented here offer a quick and computationally inexpensive way to
help locating muon sites.

4.1. Introduction

The discovery of IPSCs represented a breakthrough in condensed mat-
ter research and boosted the interest for the analysis of the mechanism
governing the formation of the Cooper pairs in high Tc superconduc-
tors. These materials, as the cuprates superconductors, are charac-
terised by a phase diagram showing neighbouring or even overlap-
ping magnetic and superconducting states as a function of the charge
doping. This evidence renewed the debate on the relation between
superconductivity and magnetic fluctuations in high temperature su-
perconductors. µSR is one of the best technique to probe the crossover
between magnetic and superconducting phases due to its effectiveness
in acquiring the small local fields generated either by nanoscopically
coexisting magnetic orders or external fields penetrating in the vor-
tex phase of a superconductor. Indeed a µSR experiment provided
one of the first electronic phase diagrams of LaFeAsO1−xFx, the first
compound showing high temperature superconductivity discovered by
Prof. Hosono’s group [111–113].

For what concerns the description of the muon sites in the IPSCs,
to the best of our knowledge, an initial estimation was obtained with
a modified Thomas-Fermi approach for LaFeAsO and FeSe [114–116].
The crude description offered by the Thomas-Fermi functionals is suf-
ficient to correctly identify the two muon sites present in the two ma-
terials. We confirmed these results with FP DFT simulations. More-
over, we identified muon sites in LaCoPO and unveiled the origin of
an unexpectedly large effect of pressure on the local field at the muon
site in this material.
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4.2. LaFeAsO

4.2. LaFeAsO
LaFeAsO is one of the parent compounds of the IPSCs. It belongs to
the 1111 family, a class of materials of the type REFeAsO (RE=Rare
earth element). In this family, superconductivity is achieved by both
hole and electron doping in the spacing REO layer or at the iron site.
Differently from other families of the IPSCs, in REFeAsO the coex-
istence of superconductivity and magnetic order may or may not be
observed depending on both the element providing the charge doping
and on the rare earth element forming the spacing layer [117–119].
The coexistence of the magnetic and the superconducting state on a
nanoscopic scale has important implication on the description of the
Cooper pair condensate. Therefore, this aspect has been extensively
studied during the last six years.
The identification of the muon sites in this class of materials allowed

a direct comparison with other compounds, other techniques used to
detect the magnetic order and a deeper understanding of the magnetic
properties of the system. Moreover, the presence of two muon sites
provides a route to simultaneously analyse both the long-range order
of the Fe plane and of the rare earth atoms. This was nicely shown
by Mäter and coworkers in Ref. [115].
As already discussed in Sec. 3.4.2, the crystallographic sites where

muon stop after thermalization processes may be identified, to a first
extent, by calculating the ground state electron density of the unper-
turbed material under investigation and subsequently obtaining the
electrostatic potential with Eq. 3.55. In what follows we will describe
the identification of the possible muon sites in LaFeAsO and the degree
of agreement that was obtained with the this crude approximation.
The electrostatic potential was obtained with a FP-DFT approach

as implemented in the Wien2K package. The other details of the
calculation are given in Sec. A.1.
Vµ(r) is shown in Fig. 4.1 where three local minima labelled A, B

and C can be identified. Two of them are close to the LaO layer one
in the 2c position, the other is in the 4f position. A third minimum
is just above the FeAs plane, again in the Wyckoff position 2c.
To understand whether the minima A, B and C are stable sites,

a simple approach was used: the potential around each minimum
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4. Iron Pnictides: studying the unperturbed system

Figure 4.1.: Isosurfaces of the electrostatic potential of unperturbed
LaFeAsO for V (r) = V

(i)
0 +E(i)

0 (see text). The three min-
ima are labeled A, B and C. [Plotted with XCrysDen,
Ref. [120], reprinted with permission from Ref. [121]]

Figure 4.2.: The long-range AFM order of the Fe ions that develops
below TN ∼ 140 K. The paramagnetic unit cell is also
depicted. The muon resideds in the positions obtained by
glide reflection of As and La sites, but at different height
from the Fe or O planes respectively.
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4.2. LaFeAsO

was modelled with an anisotropic harmonic well and the GSE for the
harmonic oscillator in each site E(i)

0 , with i=A,B or C, was considered.
The results are reported in Tab 4.1 and pictorially shown in Fig. 4.1
where isosurfaces for V (r) = V

(i)
0 + E

(i)
0 were drown (V (i)

0 being the
energy of the i-th minimum).
Assuming that in each minimum the muon can overtake any barrier

lower or equal to E(i)
0 , we see that minima A and B are disconnected,

while in C an interconnected network is formed since the migration
barrier is lower than E

(C)
0 . Therefore, minimum C is unstable and

we are led to conclude that, while the muon potential has three non-
equivalent minima, only possible muon sites A and B are surrounded
by barriers high enough to guarantee muon confinement. These two
sites correspond roughly to those identified in Ref. [115].

Table 4.1.: Possible muon sites: cell coordinates x, y, z, potential V
(eV) referred to the minimum, GSE E0, first excited level
E1 (eV), and local dipolar field, assuming a value of the Fe
moment mFe = 0.68µB (see text).

site x y z V − VA E0 E1 Bd
µ (mT)

µA 0.75 0.75 0.572 0 0.63 0.29 165
µB 0.25 0.25 0.137 0.55 0.51 0.09 29
µC 0.5 0.0 0.703 0.94 0.54 0.25 -

In agreement with the above findings, two oscillating signals are
observed. The two local fields at the muon sites B1 =0.165(5) T and
B2 =0.019(1) T were extracted from µSR data for T → 0 K.
A very good estimate of B1 is obtained by considering only the

dipole field contribution and, within this approximation, µSR yields a
direct measurement of the moment on iron atoms. By assuming that
the internal fields at the muon site originates from the Fe magnetic
moments mFe, in the known [122] AFM structure (see Fig. 4.2), and
that B1 originates in site A (see Ref. [121]), the value mFe = 0.68(2)
µB along the (110) direction is obtained. We note that this value is
in very close agreement with neutron scattering (Ref. [123]), mFe =
0.63(1)µB, and NMR (Ref. [124]), mFe = 0.58(9) µB results.
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Figure 4.3.: Isopotential surfaces V (r) for minima in A and B calcu-
lated at the respective V (A,B)(r) = V

(A,B)
0 +E

(A,B)
0 . The

disjointed inner surfaces (red) refer to A minima, while the
interconnected sheets (yellow) to the B minima. [Plotted
with Vesta, Ref. [125], reprinted with permission from
Ref. [126]]

By the same token, site B cannot be the main muon site since it
would require an unacceptably large value of the Fe moment (3.6 µB)
to reproduce B1(T = 0). The field reported in Tab. 4.1 for site B,
with 0.68 µB on Fe, agrees within a factor 1.6 with B2(T = 0).

4.3. FeTe

Iron tellurium (FeTe) and iron selenium (FeSe) are two parent com-
pounds of the 11 family of IPSCs. These materials reach a low super-
conducting critical temperatures when a small excess of Fe is present,
but also by other chemical doping or by applying pressure [127–130].
The superconducting temperature can be raised up to ∼ 40 K by
tuning the anion height from the Fe plane with externally applied
pressure [131]. However, they recently attracted much interest since
they constitute the first example of iron based superconductors with
TC higher than liquid nitrogen temperature when synthesized as single
layer film [132]. Moreover, these materials are the simplest realisation
of Fe-based superconductors and also have comparably low toxicity
with respect to the other families. This makes the 11 class of IP-
SCs one of the best candidates for applications among the Fe-based
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4.3. FeTe

Site Position zµ WFC V0 − V (A)
0 (eV) E0 (eV)

A (1/4, 1/4, 0.245) 0.27 0 0.36
(B) (3/4, 1/4, 0.500) 0.50 0.9 0.39

Table 4.2.: Results obtained from the analysis of the electrostatic po-
tential. The reported positions correspond to the minima
of the potential V (r) (Eq. 3.55). The respective Wyckoff
positions are A 2c and B 2b. E0 is the GSE of the muon
in the approximated potential (see text) and WFC is the
maximum probability point of the muon’s wave function.

superconductors.
In order to characterise the ground state AFM order of Fe1+xTe,

we studied single crystals of these compounds by means of µSR and
magnetometry measurements. We focus once more on the muon
site assignment task that allowed us to estimate the value of the lo-
cal moment on the Fe atoms. In order to determine possible muon
sites in FeTe, the same approach discussed for LaFeAsO was used.
Two inequivalent minima were found, whose positions are shown in
Fig. 4.3a, and their coordinates are reported in Tab. 4.2. The ab-
solute minimum (A) replicates the one determined in Ref. [116] for
FeSe, while the secondary minimum (B) coincides with the centre
of the tetrahedron formed by Te atoms. The latter site turned out
to be unstable against the GSE of the muon which was accounted
for by modelling the potential minimum with an anisotropic har-
monic well V (r) = 1

2mµ(ω2
xx

2 +ω2
yy

2 +ω2
zz

2) and evaluating the GSE
E

(j)
0 (j =A,B) of the implanted muon. The resulting isosurfaces for

V (r) = V
(A,B)

0 + E
(A,B)
0 are presented in Fig. 4.3b. While A minima

remain on disconnected isosurfaces, V (B)(r) forms an interconnected
network that rules out the presence of muon bound states in positions
B. Hence, interstitials of type A represent the only possible muon site
in the FeTe crystal.
Note that the electrostatic potential has an anharmonic component

along the c direction. Therefore, the equilibrium position of the muons
may not correspond to the potential minimum. Indeed, considering
the anharmonicity, we find that the correct value for the site A is
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(1/4,1/4, 0.27), as obtained from the maximum probability point of the
ground-state wave function. If we neglect the Fermi contact contri-
bution [115], by considering the ordered configuration of Fe magnetic
moments (each carrying 2.54 µB, as from neutron powder diffraction
on Fe1+yTe polycrystalline samples) [133], the dipolar contribution
~Bdip is the only non-vanishing term in Eq. 2.17. The expected value
of the local field at the muon implantation site is ∼ 238 mT. This
last result is in good agreement with 197± 11 mT, the value obtained
from ZF-µSR data [126]. The residual discrepancy can be attributed
to small inaccuracies in the determination of the muon position or to
a possible contribution arising from the Fermi-contact term, that was
neglected until now.

4.4. LaCoPO

The interest for LaCoPO, a Ferromagnetic (FM) metallic compound
isostructural to LaFeAsO, stems from mainly two issues, both con-
nected to the superconducting phenomenon. One is related to the
raise and subsequent suppression of superconductivity when Co is
progressively substituted to Fe and to the influence of the different
magnetic order of the Co parent compound [134, 135]. A second as-
pect is the role of rare earth atoms and their non trivial effect on
both the magnetic and the superconducting properties [117]. These
two points are probably linked and relevant insights can be obtained
with the P/As isovalent substitution for the pnictide element which
is known to introduce a strong chemical pressure pushing the R ions
much closer to the itinerant layers. Incidentally we also mention that
the efficiency of chemical substitutions of the TM element in providing
chemical doping has been largely debated in literature [136–139].
In order to evidence how crucial is the role of the chemical pressure

on the magnetic properties of LaCoPO, muon spin spectroscopy and
magnetometry measurements under pressure were performed. A few
results summarising the magnetic properties as a function of pressure
are shown in Fig. 4.4. The full discussion of the experimental data
can be found in Ref. [101]. As it is evident from the insets of Fig. 4.4,
LaCoPO is a ferromagnet with a magnetic moment arising from the
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4.4. LaCoPO

Figure 4.4.: Experimental results obtained with ZF-µSR and magne-
tometry measurements. In the main panel, the local field
at the muon site as a function of the applied pressure is
shown. In the upper inset, the magnetization as a func-
tion of the applied field at T = 5 K for various applied
pressures is reported (the linear paramagnetic term due
to the Pr3+ ions was subtracted). It is observed that all
the curves collapse on the same trend. In the lower in-
set, the Curie temperatures for various applied pressures
are presented. For further details on the data analysis see
Ref. [101].

Co d orbitals of mCo ∼0.3µB and a Curie temperature TC varying
between 33 K and 39 K as a function of the applied pressure.
We now focus only on the sudden jump of the local field at the muon

site which is detected in µSR measurements for P ∼ 7 kbar. As it is
evident from the upper inset of Fig. 4.4, magnetization measurements
show that pressures up to 10 kbar do not change the size of mCo
significantly. This is a clear indication that the jump in the local field
at the muon site must be associated with a variation of the coupling
parameters which govern the interaction between the muon and the
Co moment.
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Moreover, the sharp jump is not reflected in the pressure depen-
dence of TC (lower inset of Fig. 4.4) that steadily increases in a linear
fashion across the whole experimental pressure range.
As discussed in section 2.5, in a ferromagnet the local field at the

muon site may be due to three main contributions: the field of the
distant point dipoles, the demagnetizing field and the transferred or
contact hyperfine field. In order to understand the origin of the dras-
tic reduction observed for Bµ we have investigated the behaviour of
the quantities related to the contributions entering Eq. 2.17. The pre-
cession frequency of the muon spin around the local field depend on
the value of the Co ordered magnetic moment, mCo, on the structural
and magnetic order transitions and on the electronic spin polarization
at the muon site. All these factors may vary as a function of pressure.
To examine whether structural or magnetic phase transitions could

be responsible for the sudden jump of the local field at the muon
site, we studied the ground state properties of LaCoPO with DFT.
Energy-volume curves were obtained from the PW-based calculations
by constant volume energy minimisation. The optimised unit cell
volume at ambient pressure for LaCoPO is 133.21 Å3 with lattice
parameters a = 3.966 Å and c = 8.468 Å. In accordance with previ-
ous findings [140], the DFT calculations reproduce the experimental
structural parameters with errors ∼ 1%.
No anomalies in the energy-volume curves are observed within the

explored pressure range. At the same time, the FM-ordered configura-
tion is found to be the ground state for pressure values up to 100 kbar
in agreement with experimental results [140]. The results then suggest
that both the crystal structure and the FM ground state are stable
against the increase of pressure in LaCoPO at least in the investigated
pressure range.
The value of the magnetic moment from our calculation, mCo =

0.57 µB, is in agreement with previous DFT reports [140]. This value
is slightly higher than the experimental estimate mCo ' 0.3 µB. A
disagreement of this entity is not uncommon for DFT but, whereas
the precise absolute value may not be very accurate, its relative pres-
sure variation may still be significant. We find that the value of mCo
is substantially unchanged for P < 40 kbar while, for higher pres-
sures, the magnetic moment on Co atoms linearly decreases reaching
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0.55 µB for P = 100 kbar. Therefore, these results do not explain the
experimental observations.
In analogy with the case of LaFeAsO, we studied the muon local-

isation by analysing the minima of the electrostatic potential of the
bulk material. Three inequivalent minima are computed for LaCoPO.
Minimum A (B) is located within the LaO (CoP) tri-layers while min-
imum C is aligned with O and Co in between the different tri-layers,
as shown in Fig. 4.5b. The barrier between minima C and B is found
to be too small to bind the muon. Therefore we identify two possible
muon sites in this material.
Remarkably, we note that the electrostatic interaction favours site A

unlike what is found in RECoAsO and REFeAsO where the interstitial
site close to the transition metal plane is favoured [121, 141]. More
detailed information about the crystallographic positions of the two
possible muon sites and their evolution upon increasing pressure is
reported in Tab. 4.3 and in Fig. 4.5. The local magnetic fields at
the possible muon sites Bdip arising from the dipolar contribution of
mCo = 0.3 µB magnetic moments were also computed and reported
in Tab. 4.3 (assuming an undistorted lattice).
The electrostatic potential of the unperturbed material is shown in

Fig. 4.5 for P=0 and P=30 kbar. As a function of pressure, the poten-
tial is only slightly modified. Minima B and C, in particular, increase
their energy with respect to site A while the eigenstates’ energies of
both sites (obtained from the solution of Schrödinger equation for
the muon in the potential Vr from Eq. 3.55) do not change signifi-
cantly. This allows us to conclude that those sites remain practically
unchanged upon increasing pressure. In conclusion, no evidence for
sudden changes of interstitial site may be derived from DFT calcula-
tions. From the experimental side, no sign of occupancy of different
sites is present in all measurements. No sign of structural transitions
upon increasing pressure were evidenced by DFT computations, there-
fore, a complete redistribution of the site occupation between the two
inequivalent sites A and B is highly unlikely.
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Figure 4.5.: Isosurfaces of the electrostatic potential of LaCoPO for
ambient pressure (upper) and P = 30 kbar (lower). For
each pressure, the energies corresponding to the three
eigenvalues i=1,2,3 having probability maximum in min-
ima A, B, and C respectively are shown, i.e., V (r) = E0
for a) and d); V (r) = E1 for b) and e); V (r) = E2 for c)
and f). [Plotted with Vesta, Ref. [125], reprinted with
permission from Ref. [101]]
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However, all of the above considerations do not take into account the
perturbation effect that the muon induces on its neighbourhood. We
studied the effect of the muon on the chemical bonds of the neighbour-
ing atoms. In considering the electrostatic potential we are implicitly
assuming that the dielectric screening is so efficient that the positive
muon does not cause a significant lattice distortion. However, here we
are dealing with a material that is a poor metal, and so it is important
to get an estimate of the lattice distortion effect. Since we need to get
just an estimate, this time we ignore the effect of muon’s GSE. We
model the isolated impurity within the supercell approach discussed
in Sec. 3.4 by building a 64 atoms supercell from our bulk structure
calculations. For the hydrogen impurity we chose possible muon site A
as the initial interstitial position. The final optimised position for the
impurity provides the candidate muon site and represents the refined
position for the previously determined possible muon site. We found
that the refined muon position is in agreement with the one obtained
by analysing the electrostatic potential minima. Fully relaxed struc-
tures at ambient pressure, at P = 15 kbar and at P = 30 kbar show
that both the muon position inside the cell and the distance between
muon and P ions varies by less than 0.04 Å. The phosphorus ion close
to the muon is pushed closer to the Co plane by ∼ 0.06 Å and its four
neighbouring Co atoms increase their magnetic moment to 0.6 µB.
However, once more, no appreciable modification of the crystal struc-
ture and of the magnetic properties of the whole system (crystal and
muon) which could in principle justify the drop of the internal field
observed around P ∼ 7 kbar could be computed as a function of pres-
sure. Even the increase of the nearest neighbours magnetic moments
µCo has little effect since Bµ in a ferromagnet is slowly converging and
local moments count less than in an antiferromagnet.
To the aim of studying possible changes of the spin density at the

muon site we computed band structures to evaluate the conduction
electron contribution to the hyperfine field as a function of pressure.
At P ∼ 38 kbar, an unoccupied electron band shifts across the Fermi
energy (as shown in Fig. 4.6) creating a large cylindrical Fermi sur-
face owing to the flat dispersionless trend along Γ-Z. The modifica-
tion of the band structure as a result of applied pressure strongly
suggests that the variation of the local field with pressure is due to
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Figure 4.6.: Upper panels: energy bands of LaCoPO at ambient and
at 100 kbar (EF = 0). Black(red) colour refer to majority
(minority) spin bands. Lower panel: difference between
the energy at Γ and the Fermi energy EF for the band
crossing the Fermi energy. Inset: energy band dispersion
for selected pressure values.

a change in the hyperfine contact field Bcont(rµ) which stems from
the Fermi surface rearrangement. It should also be remarked that,
according to Tab. 4.3, for the in-plane orientation of the spins one
has Bdip (rµ(A)) ' −BL and the muon in site A is therefore mostly
sensitive to Bcont(rµ).

4.5. Discussion

In this chapter we have shown a simple method for the identification
of muon sites, namely the inspection of the minima of the unperturbed
electrostatic potential. This approach is found to be surprisingly ac-
curate for IPSCs as demonstrated by dipolar field calculations and the
supercell approach used for LaCoPO. Moreover, from the solution of
the Schrödinger equation for the muon in the electrostatic potential,
the correct number of muon sites is obtained for LaFeAsO. However,
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the same does not hold true for LaCoPO: we found experimental evi-
dence of just one populated muon site, but, according to our simula-
tion, there should be two muon sites, in close analogy with the case
of LaFeAsO. In principle, the difference could arise from a different
population of the muon sites in the two compounds and, since muon
site population depends on kinetic considerations that are outside the
scope of our models, we have no way to support this hypothesis.
In conclusion, we remark that the successful outcomes obtained for

IPSCs are rather fortuitous since they are based on crude and not well
justified assumptions. On one hand, by solving the Schrödinger equa-
tion for the muon in the electrostatic potential we assume that ions are
infinite mass particles and electrons are frozen in their unperturbed
configuration. While the former approximation can be reasonable the
latter is obviously never observed in real materials. On the other
hand, it is well known that the electron density at the interstitial site
is significantly modified by the charged impurity (among the many,
see for example Ref. [142–144]). In view of these considerations, the
somehow unexpected high accuracy of the “electrostatic potential”
approach still remains a puzzle.
It’s worth noting that an accurate analysis of the unperturbed elec-

tronic structure of the compound under study can provide valuable
additional information to the experimenter. LaCoPO represent one
of these cases since the details of the electronic structure turned out
to be responsible for the change in the coupling parameters between
the muon spin and conduction electrons.
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In the previous section we discussed a simple approach for the iden-
tification of muon sites. Even though that procedure was found to be
sufficiently accurate for some IPSC compounds, here we show that in
wide band gap fluorides the same approach badly fails. This is possibly
due to the absence of conduction electron screening that contribute to
the inhibition of hydrogen bond formation between the electron cloud
surrounding the µ and other valence electrons. Indeed bond forma-
tion is more frequent in insulators, where the positive muon interact
with the most electronegative atomic species present in the host ma-
terial. For this reason, the final interstitial location can be different
from the position of the minimum of the electrostatic potential. One
is therefore forced to include the muon inside the DFT description of
the material under investigation.
Wide band gap fluorides constitute an ideal class of materials to

study muon site localization in insulators. This is because the dipolar
interaction between the muon spin and the F nuclear moment leads to
a fingerprint in the asymmetry signal which usually uniquely identifies
the muon lattice site(s). This is the case, for example, for the results
by Brewer and co-workers published in Ref. [41]. Using the approach
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Figure 5.1.: The asymmetry signal in various fluorides compounds.
The solid lines are fit to the axial F-µ-F depolarisation
function of Eq. 2.37. Reprinted with permission from
Ref. [41]. Copyright (1986) by the American Physical
Society.

discussed in Sec. 2.6 for an axially symmetric F-µ-F bond, they could
correctly reproduce the experimental signal observed in several fluo-
rides compounds. Their experimental data are shown, together with
the expected depolarisation signal, in Fig. 5.1. The use of the simpli-
fied model containing only the F nuclei is justified by the rapid decay
characteristic of the dipolar interaction and by the peculiar site occu-
pied by the muon in these materials. Indeed, as discussed later, the
muon distorts its local neighbourhood by forming a hydrogen bond
with two F nuclei which are attracted by the charged impurity. The
analysis based on the quantum mechanical description of the dipolar
interaction (see Sec. 2.6) allowed to identify the muon site and the
displacements introduced by the muon on the two F nuclei forming
the bond.
The results obtained by Brewer and co-workers allow an immediate

and reliable comparison of the simulation data with the experiment.
Moreover, non magnetic fluorides are accurately described by the DFT
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5.1. The supercell approach

Figure 5.2.: Electrostatic potential for a muon in LiF. The isosurface
for V (r) = E0 + V0 (V0 being the absolute minimum) is
shown in c). The points A, B and C are the three can-
didate muon sites found with the structural relaxation.
[Plotted with XCrysDen, Ref. [120], reprinted with per-
mission from Ref. [102]]

approach and several materials belonging to this class have been thor-
oughly characterised experimentally at the end of the last century.
Before continuing, we mention that when publishing this work we

had not enough computing power to carefully study the muon GSE in
the DAA approximation discussed in Sec. 3.4.3. Hence the conclusions
of this chapter are still partially based on the comparison with the
experiment.

5.1. The supercell approach

As already discussed in Sec. 3.4.2, in this chapter the muon is repre-
sented by the hydrogen pseudo potential in the PAW formalism [87].
A supercell is built up reproducing several bulk structure unit cells
in order to limit the interactions between the impurity and its peri-
odic replica. In Sec. 3.4 we mentioned that the accuracy of supercell
approach is limited by the size of the simulation. For neutral light im-
purities 2×2×2 supercells are generally large enough. However, since
we deal with charged impurities (muon interstitial), we made a con-
vergence test using the SIESTA code [145]. Comparing the structure
and the total energy of 2×2×2 and 3×3×3 supercells we estimate the
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numerical error on the energy and on the optimised distances to be
∼ 5 meV and ∼ 0.02 Å respectively.

5.2. LiF

LiF has the NaCl crystal structure, with a four formula unit conven-
tional cubic cell, containing eight cubic cages with vertexes at four Li
and four F atoms. As shown in Fig. 5.2 the minima of the electrostatic
potential in LiF are located approximately at the centre of each cage.
There are two symmetry inequivalent minima inside each cage. Their
position roughly correspond to the position of the candidate muon
sites B and C discussed later. In Fig. 5.2(b) the minimum close to B
is at the very centre of the cage and is surrounded by four equivalent
minima (close to label C) each displaced along the direction towards
a neighbouring F atom. The isosurface of these minima becomes con-
nected for E ≥ V0+75 meV (V0 absolute minimum of V (r)), forming a
tetrahedron shaped structure. All of these positions are incompatible
with the experimental muon site which is known from literature [41]
and was obtained with the strategy presented in Sec. 2.6 and 2.7.
From the solution of the Schrödinger equation for the muon in the

bulk electrostatic potential, the GSE E0 = 500 meV is obtained for
LiF. Fig. 5.2(c) shows that the isosurface V (r) = V0 +E0 forms a con-
nected network across the crystal suggesting a delocalized muon state
even at T=0 K. The experimental position, labelled A in Fig. 5.2(b),
is at the boundary of the isosurface. As it is evident from Fig. 5.2(b),
from the analysis of the electrostatic potential one would mistakenly
predict the existence of muon sites close to the centre of the cubic
cage. Moreover, the known experimental position is not even in a (rel-
ative) minimum of the electrostatic potential and, from the analysis
of the GSE, a delocalized muon wavefuction is obtained, in complete
disagreement with the experimental evidence of a static muon site.
It’s only by taking into account the µ-sample interaction within the

DFT simulation that a correct prediction is obtained. Indeed by al-
lowing nuclei to relax in the minimum energy configuration we obtain
large nuclear displacements from the periodic bulk for all of the sites
considered in this chapter. Starting from random interstitial sites
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LiF YF3
A B C A B C

F-µ distance [Å] 1.15 1.56 1.01 1.144 1.134 1.144
εi − εA [eV] 0 0.89 0.54 0 -0.64 0.36

Table 5.1.: Results for the structural optimisation with µ in the inter-
stitial positions A, B and C (see text and Fig. 5.4). Site A
is always the experimental/predicted site. F-µ is the dis-
tance between the µ+ and its nearest neighbour F atom(s),
εi−εA is the difference between DFT ground state energies
of the relaxed structures.

three candidate muon sites were obtained and are labelled A, B and
C in Fig. 5.2. In particular, a strong modification of the crystal struc-
ture is found when the muon is added to the interstitial position A.
While F nuclei are attracted by the charged impurity, Li atoms are re-
pelled. The distance between the muon and its neighbouring F nuclei
is 1.15 Å in excellent agreement with the experimental data [41]. Also
next neighbouring F atoms are affected by the muon and are subject
to a displacement of 0.04 Å. The relaxed atomic positions correctly
describe the formation of a F-µ bonding. The relaxed structure for
the candidate muon site B shows a similar behaviour: the distance
between the muon and its neighbouring F atoms reduces from 1.76
Å to 1.56 Å. We note anyway, that the F-µ distance in this case is
too large to reproduce the experimental fast decay of the µSR signal.
Candidate muon site C constitutes a local minimum for the structural
relaxation and the hydrogenoid impurity remains trapped there. How-
ever, given its small binding energy, it is reasonably expected that an
analysis of the GSE of the muon would make the site unstable. The
muon would therefore get out of the local minimum and reach site A.
This behaviour is moreover energetically favoured if we look at the
total energies for the µ-sample system given by our DFT simulations.
The total energy for site A, B and C are reported in Tab. 5.1. The
inclusion of structural relaxation effects allows to recover the agree-
ment with the experimental findings: site A has a total energy which
is 0.89 eV lower with respect to site B and is thus confirmed to be the
muon stopping site in LiF. The formation of the F-µ-F complex has
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Figure 5.3.: Expected muon asymmetry spectra for the three candi-
date muon sites and relaxed atomic coordinates in pow-
dered LiF. Sites are labelled according to Fig. 5.2. Dipo-
lar calculations include all the neighbouring atoms giving
rise to couplings larger than one tenth of the maximum
coupling constant (see Eq. 2.34, the number of F atoms
considered depends on the muon interstitial site). Posi-
tion A gives the best agreement with the measured data
of Ref. [41].

important consequences on µ delocalization in LiF. Indeed the lattice
relaxation breaks the lattice periodicity, while the formation of a bond
with F enhances the µ localisation hindering its diffusion across the
material in agreement with the experimental evidence.
The results of our calculations are further confirmed by comparison

with experimental data. The expected depolarisations for candidate
muon sites A, B and C are shown in Fig. 5.3. As already mentioned
in the introduction, the muon polarisation for the three inequivalent
sites are very different and this allows us to discard sites B and C.
Only site A is compatible with the observed asymmetry spectra, while
the other two locations for the muon give significantly worse fits (C)
and non physical values for the local modification of the bonds length
and distances between µ and F nuclei (B). Fitting the experimental
results with rµ−F as a free parameter in Eq. 2.34, we find that the
distorted crystal structure obtained from DFT calculations reproduces
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Figure 5.4.: Candidate muon sites in YF3 (left and center) and LiF
(right). The label A identifies the expected site in both
compounds. Isosurfaces for V (r) = E0 + V0 are shown in
dark yellow for YF3. The electrostatic potential sections
in YF3 and LiF allow a direct comparison the GSEs of
the muon obtained from the solution of the Schrödinger
equation in the electrostatic potential of the two com-
pounds. Unrelaxed lattice structures are shown for the
sake of clarity. [Plotted with Vesta, Ref. [125], reprinted
with permission from Ref. [102]]

the experimental F-F distance [41] with ∼ 1% precision.

5.3. YF3

DFT calculations in LiF find the known muon site, the same that was
identified in the original experimental work. The YF3 case is more
complicated and DFT provides the insight.
The Coulomb potential for the unperturbed bulk crystal shows

only one minimum corresponding to the possible muon site with frac-
tional coordinates (1/2, 1/2, 0) (with reference to the crystalline struc-
ture shown in Fig. 5.4) that yields a depolarisation which cannot cap-
ture the experimental asymmetry time spectra. Moreover the exper-
imental depolarisation signal is only roughly captured by the axial
F-µ-F model (Eq. 2.37) as shown in Fig. 5.5.†

†It is noted that authors of Ref. [42] show a better fit to Eq. 2.37 of the data
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Therefore in YF3 the uncertainty in the muon site assignment can
be removed only with the help of DFT calculations.
Following the same procedure detailed before, we relax the struc-

ture with the muon in asymmetric interstitial positions. Six candidate
muon sites were found after structural relaxations starting from ran-
dom interstitial positions. The three most energetically favourable
inequivalent sites (shown in Fig. 5.4) are all close to the minimum
of the unperturbed electrostatic potential. They are all characterised
by a slightly distorted F-µ-F bond with the muon shifted perpendic-
ular to the F-F axis forming, for sites A and C, an angle of ∼ 144◦
between the two bonds. For site B the angle changes to ∼ 160◦ (in
Fig. 5.4 the unrelaxed structures are shown for the sake of clarity).
The three remaining sites will not be considered since they have higher
ground state energies and produce depolarisation functions that are
incompatible with the experimental results.
The depolarisations arising from the relaxed structures of sites A,

B and C are compared in Fig. 5.6. The relaxed energies with the
relevant parameters obtained from the DFT structural relaxation, are
reported in Tab. 5.1.
In order to identify the muon site, all the above results must be

considered. Indeed, after the structural relaxation, site B, which has
the lowest energy, does not provide a correct description of the depo-
larisation function (Fig. 5.7). Instead a good description of the experi-
mental data is obtained when considering the expected depolarisation
from site A, as shown in Fig. 5.5. This led us to conclude that the
F-µ-F complex in site A is the maximally populated muon site in YF3.
A complete understanding of the physical motivation underlying the
preferential occupation of site A is still missing. It is reasonable to
consider either an inaccuracy due to the limited size of the supercell
or the possible role of reaction kinetics, which are neglected in the

with respect to the one in Fig. 5.5. The difference originates from the assumption
of distinct relaxation rates for the constant and the oscillating parts of Eq. 2.37. In
this work we compute the expected asymmetry spectra with more atoms then just
the first neighbouring F nuclei and we also add F-F interactions. As a consequence,
the nuclear component of the relaxation rate (for the relevant time interval of
the asymmetry spectra) is included in the GFµF term of Eq. 5.1 and only one
phenomenological relaxation rate, of electronic origin, is introduced in Eq. 5.1.
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5.3. YF3

Figure 5.5.: Fit of YF3 data from Ref. [42] with the conventional F-µ-
F model (Eq. 2.37) and with the depolarisation calculated
for the DFT predicted site in the fully relaxed structure.
The parameters of the fit are detailed in the text and
reported in Tab. 5.2.

identification of the stable sites with the structural relaxation. In-
deed non-adiabatic and/or kinetic effects may be responsible for the
stability and the selection of different interstitial sites.
The experimental data were fitted according to the equation:

A(t) = A0 [ p1GFµF (t, δω) exp
(
−(λFµF t)β

)
+ (1− p1) exp

(
−(σt)2

)
] +Acalbg

(5.1)

where A0 is the total asymmetry arising from the sample (and the sam-
ple holder), p1 measures the fraction of muons reaching the F-µ-F site,
1 − p1 and σ account for a phenomenological depolarisation present
in many µSR measurements of fluorides (see for example Fig. 5.1 and
Ref. [41]) and Acalbg is added in order to compensate for the back-
ground and for the unknown calibration of the detectors. GFµF is
obtained by solving Eq. 2.34 with the lattice structure obtained from
DFT calculations and δω is a parameter that accounts for small dis-
crepancies between F-µ calculated and experimental distances.
The parameters obtained from the best fits shown in Figs. 5.5 and

5.7 are reported in Tab. 5.2. We finally add that site C is also com-
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Figure 5.6.: Expected asymmetry spectra for optimised muon sites
and atomic coordinates in powdered YF3. Sites are la-
belled as in Fig. 5.4. Calculations include all the neigh-
bouring atoms giving rise to couplings higher than one
tenth of the maximum coupling constant (see Eq. 2.34).
Position A gives the best agreement with the measured
data.

patible with the experimental data and therefore we cannot rule out
the possibility of a partial occupation of this site.

5.4. Discussion
In this chapter we showed that a supercell approach for the analysis of
the effect of the µ impurity allows to get the refined atomic structure
and candidate muon sites. The procedure was tested in LiF, where we
showed that the bulk electrostatic potential fails to correctly predict
the actual µ+ site. Instead, upon structural refinement we were able
to reproduce the formation of the F-µ-F complex and its structural
details (F-µ+ distance). These results are also confirmed by a similar
computational work on this and other fluorides compounds [18]. We
then extended our investigation on YF3 where the presence of several
candidate interstitial site makes impossible the identification of the µ
position from experimental knowledge alone. Comparing the experi-
mental data with the refined structure obtained by DFT investigation
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5.4. Discussion

Conv. F-µ-F Site A Site B
A0 0.202(1) 0.184(1) 0.188(1)
p1 0.77(1) 0.76(1) 0.75(1)

Acalbg -0.028(1) -0.012(1) -0.014(1)
λFµF 0.18(1) µs−1 0.19(1) 0.15(1)
β 1.27(6) 1.45(1) 1.23(1)

rF−µ 1.23(1) Å 1.17(1) Å 1.22(1) Å
σ 0.73(1) µs−1 0.97(1) µs−1 1.00(2) µs−1

χ2
r 4.7 2.3 4.1

Table 5.2.: Parameters for Eq. 5.1 obtained from the best-fit to the
data of Fig. 5.5. In the first column the results obtained
with GFµF defined in Eq. 2.37 (already obtained by the
authors of Ref. [42]) are reported. In the second and third
columns GFµF is calculated from DFT results (see text).
rF−µ is the distance between the muon and the first neigh-
bouring F atom(s) for a given µ site. Small discrepan-
cies between the experimental and calculated rF−µ (that
may possibly arise from the non-vanishing GSE neglected
in Eq. 2.34) are accounted by the δω parameter (see text).
The final F-µ distance is obtained by conveniently scaling
all the distances between the µ and the atoms included in
the sum of Eq. 2.34. All the scaling factors are smaller
than 5%.

we were able to predict the correct location and shape for the F-µ-F
complex in YF3. An open problem of the above implementation is
the lack of a systematic investigation of the µ GSE when chemical
bonds with the valence electrons of the host system are formed. In-
deed, during the relaxation process many local minima in the total
energy hyper-surface are encountered both in YF3 and LiF (see for
example Fig. 5.2) and it is reasonably expected that not all of them
constitute trapping muon sites. In this preliminary work we relied
on the best fit of the experimental asymmetry to identify the site,
since DFT stand alone criteria were still not sufficient. However, an
accurate determination of the ground state energy of the muon can,
in principle, alleviate the problem and provide a way to distinguish
between trapping and non trapping muon sites from first principles.
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Figure 5.7.: Fit of YF3 data from Ref. [42] with the conventional F-µ-
F model (Eq. 2.37) and with the depolarisation calculated
from DFT results obtained for site A and B.

This is considered in the next section where the DFT approach is
extended with the DAA for the analysis of muon sites’ stability.
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In this chapter we complete the ab initio approach for the identifica-
tion of muon sites by taking into account the GSE of the muon within
the DFT formalism. Indeed, in all the cases already presented, the
muon’s GSE was always calculated by considering the unperturbed
electrostatic potential of the material under investigation. Instead, in
this and in the following chapter we use a supercell approach for the
simulation of the impurity and the DAA to evaluate the GSE of the
muon. MnSi and Cu are two interesting compounds for testing this
approach. The former material was thoroughly studied with Knight
shift experiments that allowed to identify the muon site with high ac-
curacy [44]. In FCC copper, the muon diffuses through the material
with an activation energy of about 80 meV [146]. This makes the
material an ideal test case to benchmark the accuracy of the DAA
approach.

6.1. MnSi
MnSi represents an interesting realisation of a magnetic system with
lack of inversion symmetry. This last property guaranties the presence
of a spin-orbit Dzyaloshinsky-Moriya interaction which has attracted
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Figure 6.1.: a) Angular dependence of the four frequencies originating
from the dipolar contribution to the local field at the muon
site. b) The Fourier transform of the asymmetry for one
of the point in a). In both images, the lines are best fit
to the model reported in Ref. [44].

a lot of interest in the fields of multiferroic interactions and non-trivial
magnetic structures. Indeed, below 29.5 K, the material develops a
homochiral spin spiral order with a wavelenght of 18 nm. This mag-
netic ground state is found to be extremely sensitive to applied fields
and pressure [147, 148]. Among the many characteristics of the mag-
netic phase of MnSi, the emergence of a skyrmion lattice has been
identified near the magnetic ordering temperature [149]. Skyrmions
are topologically protected field configurations that are stabilised by
an external magnetic field. The skyrmionic phase con be naïvely re-
garded as the magnetic equivalent of the flux lattice in superconduc-
tors. As for the flux lattice, the skyrmionic lattice can be tuned by
varying the applied magnetic field. However, it has been shown that
individual skyrmions can be manipulated with spin-polarised currents
from a scanning tunnelling microscope [150]. This makes the mate-
rials showing a skyrmionic phase important candidates for spintronic
applications devoted to information-storage.
During the characterisation of MnSi with µSR experiments, a con-

troversy regarding the muon stopping site and the existence of mag-
netic polarons was raised [151]. To lift the controversy, the muon site
was independently studied with transverse field experiments and with
ab initio methods [44]. Here we will only describe the latter method
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Figure 6.2.: The possible muon site as identified from the minima of
the electrostatic potential. The red isosurfaces of the elec-
trostatic potential identify four symmetry equivalent po-
sitions for the muon site. The isosurface energy is set to
V = E0/2 + V0 with V0 absolute minimum of the elec-
trostatic potential and E0 obtained from the solution of
the Schrödinger equation for the muon in the potential of
Eq. 3.55. [Plotted with XCrysDen, Ref. [120]]

and the results obtained. However, for the sake of completeness, ex-
perimental data showing the angular dependence of the dipolar field
that allowed to identify the muon site in the 4a Wyckoff position with
fractional coordinates (0.532, 0.532, 0.532) are reported in Fig. 6.1.
To verify if the simple method used for IPSCs yields the correct

result also for MnSi, we analysed the minima of the electrostatic po-
tential obtained from the ground state electronic density of the unper-
turbed material. There are four equivalent minima in the unit cell, as
shown in Fig. 6.2, which correspond to the 4a Wyckoff position with
fractional coordinates (0.523, 0.523, 0.523). Notably, this coarse es-
timation nicely agrees with the experimentally evaluated embedding
site.
We then performed full structural relaxation for the muon in the

material with the supercell DFT approach and stable muon sites were
then determined with the DAA approximation.
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Candidate sites Position ε(i) − ε(A) (eV) E0 (eV)
A (0.542, 0.542, 0.542) 0 0.6
B (0.607, 0.477, 0.220) 0.86 -
C (0.329 0.329, 0.329) 1.12 -

Table 6.1.: Candidate muon sites obtained with structural relaxations
in a 64 atom supercell. ε(i) are the total energies of the re-
laxed structures, E0 is the ground state energy of the muon
(see Eq. 3.62). The Mn and Si positions are assumed at
(0.1381, 0.1381, 0.1381) and (0.8462, 0.8462, 0.8462) re-
spectively in the cubic unit cell. The experimentally iden-
tified muon site is in fractional coordinates (0.532, 0.532,
0.532). The mismatch between the two results is less than
5× 10−2 Å.

The candidate muon sites were identified by performing structural
relaxations on a 64 atoms MnSi supercell plus the muon impurity.
Four starting points were selected to sample the interstitial space in
the unit cell. Their positions together with the symmetry replica are
shown in Fig. 6.3. We find three candidate muon sites which are
reported in Table 6.1.
To verify if the candidate muon sites are binding sites we used the

DAA approximation introduced in Sec. 3.4.3. A trade off between
speed and accuracy is needed to efficiently perform the DBO simula-
tions and extract the potential to solve the Schrödinger equation of the
muon. For this reason, we report some details on the parameters used
in first principles calculations for MnSi and discuss briefly the accuracy
that is obtained. Indeed, for sake of speed, in the DBO simulations
we slightly reduced the accuracy of the calculation by lowering to 50
and 250 Ry the kinetic energy and charge expansions and sampling
the Brillouin zone using only the Baldereschi point [84]. This guar-
anties a convergence of the total energy of ∼ 0.5 meV/atom. While
the total energy convergence may seem poor, we checked the accuracy
of the differences between the relaxed and the displaced position en-
ergies by performing calculations with higher cutoff and a 2 × 2 × 2
MP sampling grid for reciprocal space. These tests were done for the
first 20 points of the DBO calculation and for other random points.
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6.1. MnSi

Figure 6.3.: In a) the interstitial points (together with the symmetry
replica) used as starting positions for the identification
of the candidate muon sites. In b) the stable site found
in MnSi (some equivalent sites outside the unit cell are
shown to help the comparison with Fig 6.4b and 6.4c).

The worst case discrepancy was 4 meV with an average value of 1.5
meV. The cutoff for the potential exploration in the DBO calculation
was set to EC =1.2 eV and the spacing δ =0.15875 Å for the cubic
grid was used. The maximum step length between consecutive moves
was set to 3

√
3δ.

For sites B and C the barrier towards site A is slightly less than 0.25
eV. Indeed during the exploration process the barrier between candi-
date sites B (C) and A is reached and the algorithm finally reaches
site A. In both cases it is found that the barrier separating B and C
from site A is too small to bind the muon.
On site A the potential is interpolated over a 827 points cloud and

the Schrödinger equation is solved in a 2.54 Å edge cubic box with both
Dirichlet and PBC. From the solution of the Schrodinger equation we
obtain a ground state energy E0 = 0.6 eV. This is small enough to
guarantee the stability of the muon site A since the potential is still
well confining even at 1 eV (see also Fig. 6.4).
From these results we can conclude that only one muon site is

present in MnSi. This is in agreement with the experimental results
and the position obtained with the supercell approach differs from the
experimental results by less than 0.05 Å [44].
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Figure 6.4.: The main panel a) shows the potential felt by the muon in
the DAA approximation and the points cloud used for the
interpolation. The isosurface is at 0.8 eV. In b) and c) the
small dots identify some of the points acquired with the
exploration algorithm described in the text starting from
sites B and C which are found to be local minima and
non-trapping sites. In both cases site A (see Table 6.1) is
reached.

6.2. Copper

Face centred cubic copper represents an interesting test case since
it is known that the muon diffuses through the material [152]. The
muon site and the diffusion mechanism have been thoroughly studied
both with experimental and theoretical approaches [146, 153–156].
Camani et al. [154] and Hartmann [157] showed that considering the
quadrupolar interaction between the copper nuclei and the electric
field gradient generated by the muon it is possible to describe the
value of the asymmetry depolarization rate σ obtained for the various
crystal orientations as a function of the applied field. The study of the
field dependence of the depolarization σ in single-crystal compounds
allowed to identify the muon site. Indeed they concluded that muons
occupy the octahedral interstitial sites in the temperature region be-
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6.2. Copper

Figure 6.5.: Experimental correlation time τc for various orientations
of Cu FCC crystals. The broken lines correspond to a
fit of the Arrhenius law, the full curves are fits to the
Teichler model (see text). Circles and squares points were
acquired in 200 G and 4500 G applied fields respectively.
Reprinted with permission from J. Phys. F: Met. Phys.
12 875 (1982) [146]

tween 20 and 80 K and that a 5% dilatation of the copper lattice
around the muon was necessary to reproduce the experimental value
of σ.
In one of the last experiment performed on highly pure FCC copper

samples, the high temperature data were analysed with both a clas-
sical thermal activated law, i.e. τ−1

c ∝ exp(−EA/kBT ) (EA activa-
tion energy to over-jump the barrier) and a phonon assisted quantum
diffusion model that takes into account the small polaron theory of
Ref. [158, 159] by Teichler. The latter differs from the Arrhenius law
by a temperature dependent prefactor [146, 160]. The experimental
data together with the two possible fits are shown in Fig. 6.5 and a
simplified representation of the two diffusion processes is sketched in
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6. MnSi and Cu: from classical to quantum

O

O O

Eph

EA

E0

E1

Figure 6.6.: Schematic description of the two possible diffusion mech-
anisms for the muon in FCC copper. E0 and E1 are the
energies for a muon in the distorted and in the neighbour-
ing O sites respectively. Eph is the energy of the phonon
contribution that makes E0 + Eph = E1 possibly result-
ing in a quantum tunnelling between the two sites. EA
is the activation energy for the classical over the barrier
hopping.

Fig. 6.6. Both authors of Ref. [146, 160, 161] also proposed that, at
high temperature, the activation of an additional diffusion mechanism
could justify the presence of some experimental points that completely
miss the 90-300 K trend for T > 300 K.
We performed DBO and Nudged Elastic Band (NEB) [162, 163]

calculations to extract the activation energies for both the classical
and the phonon assisted diffusion mechanisms. The DBO and NEB
calculations were performed with cutoffs of 50 Ry and 250 Ry for plane
wave expansion and for the charge density respectively and a 3×3×3
MP grid was used. A cubic supercell with 32 Cu atoms and the muon
was considered. Two candidate position in the octahedral (O) and the
tetrahedral (T) cavity sites were identified with the structural relax-
ations, in agreement with previous results. The nearest neighbours
Cu atoms are outward displaced away from the muon in the O site by
2.3% †, slightly less than what is obtained from the experiment but
in agreement with previous calculations [154, 164].
DBO calculations starting from the T site showed that the barrier

towards O sites is just 0.2 eV, definitively to small to bind the muon
and indeed, as detailed below, no localised states at the T site were
found. In order to construct Vµ for the O site with the DBO strategy,

†To check the convergence of this result against the supercell size we performed
the same relaxation calculation with a 109 atoms supercell and obtained the same
value for the Cu displacement.
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6.2. Copper

Figure 6.7.: In a) four isosurfaces for the interpolated potential felt
by the muon in the octahedral site. Notice that at nu-
clear “phonon-like” energies the potential almost retains
its spherical shape. On the other hand, at muon vibra-
tion energies, the potential is far from being harmonic. In
b) the points acquired during the dense grid DBO explo-
ration. The route towards the neighbouring octahedral
site passing through the tetrahedral site is clearly visible.
Copper atoms are in blue while all the positions occupied
by the muon are in grey. Copper atoms do not appear
at all the cell boundaries because of the small distortion
introduced by the muon. In c) the probability density
for the ground state and the degenerate excited state are
depicted with a colour map and the 95% probability den-
sities are shown with red and blue isosurfaces respectively.
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Figure 6.8.: The minimum energy path between equivalent octahedral
muon sites. The curve is asymmetric due to the distortion
introduced by the muon in its starting site.

the same parameters used for MnSi were adopted. The first 800 points
acquired during the simulation are shown in Fig. 6.7b.
In this case it was not possible to reach the cutoff energy of 1.2 eV.

Indeed, as it is evident from Fig. 6.7b, during the exploration process
the DBO algorithm reached the saddle point between the O and the T
site, explored the T site and then moved to the equivalent O minimum
of the neighbouring cell.
The O site is clearly the global minimum of Vµ and we can conclude

that the muon hops among O sites only [154].
To check if the mechanism responsible for the muon diffusion is

the classical over-barrier hopping or a phonon assisted tunnelling the
ground state energy of the muon in both the distorted O site and the
neighbouring sites must be evaluated.
To this aim we acquired more points above the saddle point between

the distorted O sites and one of the nearest neighbouring O site and
reconstructed the potential by imposing the 48 point group symmetry
operations. From this procedure we obtained an accurate description
of the potential up to 1.5 eV. We then solved the Schrödinger equation
for the muon with PBC in the potential Vµ obtained by interpolation
of the data points with radial basis functions (with r, r3 and r2∗log(r)
as basis functions) and trilinear interpolation (see Sec. B).†

†PBCs probably represent another relevant approximation since the potential

96



6.3. Discussion

We find a GSE E0 ∼ 0.48 eV and an excited state at E1 ∼ 0.62
eV (the results from the various interpolation schemes differ by about
10 meV). As shown in Fig. 6.7c the two energies correspond to a
muon in the distorted O site and in the neighbouring O sites. No
states localised only in the T site were found for energies up to 1 eV.
To understand if the phonon assisted mechanism dominates over

the over-barrier hopping a detailed description of the energy barrier
is required. To identify the minimum energy path between equivalent
O sites we performed NEB calculations. The results are shown in
Fig. 6.8. The curve is asymmetric due to the distortion introduced
by the muon in the starting O site. The best path towards the neigh-
bouring O site is through the T site. The saddle point between the
O and the T site is at EST = 0.56 eV, while the one between two
neighbouring O sites, which represents the classical activation energy
EA, is at about ESO=0.66 eV above the energy of the starting muon
site. The path between O sites passing through a Cu-Cu bond has a
much higher saddle point (about 1.6 eV).
The energy difference ESO−E1 = 40 meV indicates that the phonon

assisted quantum tunnelling dominates over the classical hopping at
low temperature, i.e. in the 80-300 K range. However, the classi-
cal diffusion mechanism should take place at slightly higher temper-
atures. Indeed, Schilling and co-workers found a better agreement of
the experimental data with the phonon assisted small polaron diffu-
sion theory and extracted an activation energy of about 80 meV [146].
The value found with the DAA is about 1.7 times larger, but this is
probably an overestimation due to the adiabatic approximation.

6.3. Discussion

The DAA approach provides a reliable way to distinguish between
trapping and non-trapping muon sites (which are routinely obtained
in calculations aiming at identifying muon sites) with a computation-
ally tractable method to introduce the quantum description of the

in the polaron site is replicated in the neighbouring cells. However, the distance
between the next-nearest-neighbouring site (about 3.6 Å ) is large enough to guar-
antee a small dependence of the results on the inaccurate periodic images.

97



6. MnSi and Cu: from classical to quantum

muon. A detailed description of the muon wave function can also pro-
duce accurate ab initio evaluations of many observables (e.g. contact
and transferred hyperfine couplings). While its applicability is limited
to the compounds having heavy nuclei, even the mass ratio mµ/mC
is smaller than 1%. In this context it’s also worth citing the work
by Takahashi and Takatsuka who considered the accuracy of the BO
approximation for the ppµ− molecule (p stands for proton) and found
a deviation smaller than 5% from the non-BO vibronic energies calcu-
lated with semi-classical methods [165]. It should also be noted that
for both MnSi and Cu the potential felt by the muon is far from being
harmonic nor it’s possible to fully describe it with small an-harmonic
corrections as evidenced in Fig. 6.4a and Fig. 6.7a. This is the case
for almost all the compound that we examined so far.
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7 T′-La2CuO4
field glasses for µSR
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In this section we discuss one of the main advantages that stems
from the knowledge of muon sites’ interstitial position, namely the
possibility of identifying the magnetic moment and, in some cases,
also the long-range magnetic order of crystalline solids. Indeed, this
was done in T′-La2CuO4, a parent compound of the high temperature
cuprates superconductors characterised by the presence of multiple
magnetic transitions as a function of the temperature. Its magnetic
characterisation has been conducted, up to now, only with µSR and
NMR since neutron scattering measurements are problematic because
of the small magnetic moments in the system (which make the mag-
netic scattering from the sample too weak) and of the presence on in-
elastic H scattering (which originates from a minority phase of hexag-
onal H3LaO3). The accurate prediction of the muon site provided by
DFT allowed, together with symmetry constrains, to extract from the
µSR measurements the long-range magnetic order of the sample.
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7. T′-La2CuO4: field glasses for µSR

Figure 7.1.: The T′ and T crystalline structures of La2CuO4. The La,
Cu, and O atoms are represented by the large, medium
and small sized balls, respectively. [Plotted with Vesta,
Ref. [125]]

7.1. Introduction

La2CuO4 can be synthesised in both the T and in the T′ lattice struc-
ture. The main difference between the two structures is the pres-
ence/absence of apical oxygen as shown in Fig. 7.1. T′-La2CuO4
represents the true parent compound of electron doped cuprates. In-
deed, starting from La2CuO4, which is usually grown in the stable
T-structure, the substitution of La by Sr and Ce yields hole and elec-
tron doping [166–168], but the two charge states crystallize in different
structures, namely the T and T’-structure, respectively.
Recently La2CuO4 was stabilised in the metastable T′ structure

by a low-temperature synthesis method [169]. Being the true parent
compound of electron-doped cuprates, the material attracted much in-
terest, especially with regards to the study of its magnetic properties.
As a side note, we mention that T′-La2CuO4 is of great interest also
in the field of low dimensional quantum magnetism and candidates
itself as one of the best experimental model systems in this context.
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7.2. Electrostatic potential

The material has been thoroughly characterised with synchrotron
powder diffraction, neutron scattering, bulk µSR, and NMR measure-
ments. A body-centred-tetragonal structure (BCT) was identified and
a series of magnetic transitions as a function of temperature were ev-
idenced by NMR and µSR measurements [170].
The true ground state of bulk T′-La2CuO4 is still debated. Two

independent groups obtained the T ′ structure with different chemical
routes but the two realisations differ significantly. While the com-
pound obtained with the method discussed above is an AFM insula-
tor, T ′ La1.8Y0.2CuO4 obtained with molecular beam epitaxy in thin
films is a metal and superconduct at low temperature [171].
From the theoretical point of view, DFT with the GGA for the

exchange and correlation potential provides a metallic ground state
with vanishing magnetic moment on the Cu atoms. By including
on-site Hubbard corrections the local moment on Cu atoms increases
and a gap opens in the density of states. The details of the electronic
band structure are discussed in Appendix A.7. A more refined study
based on DFT+Dynamical Mean Field Theory (DMFT) calculations
obtained a metallic ground state at the verge of a metal-to-insulator
transition [172].
As discussed in the appendix, we considered both the insulating and

the metallic ground state and obtained the same muon site. Indeed,
even if a Fermi surface exists, the material can be regarded as a bad
metal as shown in Ref. [172] and in Fig. A.3. The results reported in
this section were obtained considering the insulating and AFM ground
state.

7.2. Electrostatic potential

As already discussed for MnSi, to verify if the possible muon sites
obtained from the unperturbed electrostatic potential yield a correct
prediction, we evaluated the bulk electrostatic potential with a FP-
DFT approach [94]. The electrostatic potential (Eq. 3.55) isosurfaces
for unperturbed T′-La2CuO4 are shown in Fig. 7.2 for V (r) = 0.5 and
1.1 eV above the potential absolute minimum, respectively in panel a
and b. The potential has symmetry equivalent absolute minima close
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7. T′-La2CuO4: field glasses for µSR

Figure 7.2.: Electrostatic potential isosurfaces for V=0.5 eV in a) and
1.1 eV in b) (the absolute minimum is set to 0 eV). The
symmetry equivalent minima form a tetrahedra around
the O atoms as shown in c). [Plotted with Vesta,
Ref. [125]]

to the oxygen atoms in the LaO planes shown in Fig. 7.2c. There are
also narrow relative minima between the O atoms of different planes
at V (r) ∼ 0.7 eV and close to the O atoms in the CuO plane at
V (r) ∼ 0.9 eV. This is expected considering the high electronegativity
of the oxygen atoms.

None of the above points is found to be the correct muon site.
Indeed, by considering only the dipolar contribution for the local field
at the muon site, they all yield values for the magnetic moment on the
Cu atoms that are inconsistent with the results obtained from NMR
measurements (for additional details see Ref. [173]).
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7.3. Muon site estimation

Figure 7.3.: Schematic representation of the final interstitial candidate
muon sites labelled A, B and C. [Plotted with Vesta,
Ref. [125]]

7.3. Muon site estimation
Starting from random interstitial positions, we relax the muon’s po-
sition and the surrounding crystal lattice with the method discussed
in Sec. 3.4.2. Three symmetry inequivalent candidate muon sites, la-
belled A, B and C, were identified and are shown in Fig. 7.3. For
sake of clarity, in the figure we sketch the final interstitial sites in the√

2 ×
√

2 × 1 rather than showing the whole relaxed supercells. A
description of the perturbation introduced by the muon on the lattice
structure is reported in Table 7.1 and it is also displayed, for site A,
in Fig. 7.4c. In the same table we show the difference between the
total energies of the three sites and the occupation and polarisation
obtained from the projection of the electronic density on a s orbital
surrounding the muon.†
The three candidate muon sites are all characterised by the for-
†The occupation and the polarisation reported in Tab 7.1 are referred to the s

orbital of hydrogen.
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7. T′-La2CuO4: field glasses for µSR

Site εtot − εtot
A [eV] d(O,µ) d(O,O) µ s-orbital occ. pol.

A 0 1.03 2.56 0.6 0
B 0.10 1.02 2.65 0.65 0
C 0.44 1.00 2.70 0.67 0.0006

Table 7.1.: Total energy differences and structural details for the three
candidate muon sites. The total energy differences are
listed with respect to site A in the second column. The
distances, indicated as d(1,2) with 1 and 2 being either
the oxygen nucleus or the muon, refer to the first neigh-
bouring O atoms for the muon in the various sites. The
last two columns describe the electronic occupation and
the spin polarization of a spherically symmetric s-orbital
at the muons’ sites.

mation of bonds between the muon and an oxygen atom. The total
energies for the three configurations are different and it is noted that,
the smaller the µ-Cu distance is, the higher is the energy of the con-
figuration. We also point out that a muon in site A negligibly modify
the Cu magnetic moments. On the other hand, for a µ in site B,
the magnetic moment of the neighbouring Cu atom slightly decreases.
The exchange integral mediated by O atoms in the Cu-O plane is dras-
tically perturbed by a muon in site C, leading to a reduction of the
neighbouring Cu magnetic moment of about 40% of its original value.
Finally, we stress that we cannot draw a clear connection between the
occupation of the candidate muon sites and the total energies of the
final positions obtained from the DFT calculations, mainly because
the occupation probability depends on kinetic considerations. How-
ever, we mention that site A is close to the energetically favourable
diffusion path as suggested by the electrostatic potential isosurface of
Fig. 7.2b.

The experimental results show that only one site is present and the
local fields at the µ position are only compatible with position A,
irrespective of the Cu long-range magnetic order.
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7.4. Ground state energy

Figure 7.4.: In a) and b) the probability density for the muon in site A
is depicted. The coloured shadows are a pictorial view of
the muon’s probability density distribution with a linear
scale of opacity and colours from blue to red. In c) the
muon site A and the lattice distortions are shown.[Plotted
with Mayavi and XCrysDen, Refs. [120, 174]]

7.4. Ground state energy

Using the DAA presented in Sec. 3.4.3, we acquired the potential felt
by the muon in A. This was done by performing small displacements
from the muon’s relaxed position. To achieve a sufficiently accurate
energy profile, we performed displacements up to ∼ 1.7 Å with the
smallest step being 4 pm. We interpolated the potential on 597 ir-
regularly distributed points cloud obtaining an accurate description
of Vµ up to ∼ 1.3 eV.
From the solution of the Schrödinger equation for the muon in the

interpolated potential, a GSE of 0.8 eV is obtained. The probability
density for the ground state wave function is shown in Fig. 7.4. These
results confirm that site A is a trapping site since the ground state
energy is smaller than the potential barriers. The oval shape of the
probability density in the xy plane (Fig. 7.4a) is due to the anhar-
monicity of the potential while the elliptic shape in the yz plane is a
consequence of the neighbouring La atoms. Two remarks are in order.
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7. T′-La2CuO4: field glasses for µSR

First, the large area explored by the muon† is a well known conse-
quence of its light mass compared to the proton. In principle, the µ
wave function can be used to determine the contact hyperfine field
at the muon site. However, the electronic spin polarisation at site A
tends to 0 and is barely above the numerical error of the DFT simula-
tion thus making the ab initio estimation of Bcont unreliable. Second,
quite notably the most probable position for the muon is shifted from
the potential minimum by ∼ 0.07 Å along the oxygen-oxygen bond
direction and is located 1.10 Å away from the closest oxygen in the
LaO plane. This shows that the anharmonicity of the potential pro-
duces relevant effects also in the determination of the interstitial site’s
position.

7.5. Discussion

T′-La2CuO4 represents a peculiar case in which an accurate analysis
of µSR data supported by the DFT outcomes on the position occu-
pied by the muon in the sample and symmetry considerations on the
magnetic orders compatible with the crystal structure provide conclu-
sive information on the long-range magnetic structure [170]. Indeed,
the knowledge of the muon site allows to unambiguously identify the
non-collinear magnetic structure of the low temperature phase of T′-
La2CuO4. The reader is referred to the doctoral thesis by G. Pascua
(Ref. [173]) for the description of the µSR and NMR experimental re-
sults and for a detailed discussion of the symmetry allowed magnetic
orders in T′-La2CuO4. There are four possible inequivalent magnetic
structures (labelled Col I, NCol I, Col II, NCol II in Fig. 7.5) for the
Cu atoms in this compound. All of them give the same magnetic
field at the La nuclei for a given value of the magnetic moment of the
Cu atoms, mCu. Therefore 139La NMR provides, irrespective of the
long-range magnetic order, the value of the magnetic moment on Cu
atoms. On the other hand, owing to the non symmetrical interstitial
position occupied by the muon, it is possible to distinguish between
the various long-range magnetic orders with µSR measurements. This

†With 90% probability, the muon resides within a sphere of radius 0.56 Å
centred at the maximum probability point.
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7.5. Discussion

Figure 7.5.: Possible local fields distributions for the four symmetry
allowed (non-)collinear magnetic structures (shown with
different colours) and the two magnetic domains (shown
with the same colour) of the tetragonal T′-La2CuO4 lat-
tice. The green line is the Fourier transform of the zero-
field asymmetry data. Taken from Ref. [173]

is shown in Fig. 7.5 where the four different magnetic structures pro-
duce 8 local fields as a consequence of the twin domains. In general,
the two domains give rise to different local magnetic fields at the
muon site, except for one configuration. Since only one frequency is
observed in the Fourier transform of the asymmetry, one can iden-
tify the long-range magnetic order from µSR data and, at the same
time, extract the spin polarisation of the d orbitals of the Cu atoms.
The value mCu = 0.33 µB obtained with µSR data is in nice quanti-
tative agreement with the value obtained from the 139La NMR. We
have therefore determined the low temperature magnetic structure of
T′-La2CuO4 with the sole use of local probes.
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8 Conclusions

The aim of the work presented in this thesis is to provide a solid
ground for the identification of muon sites with ab initio methods.
This is clearly beyond the possibilities of a single research but, from
the developments discussed here and by many research groups across
the world, DFT simulations seem to be a promising method to fulfil
this task.
Our steps towards the identification of a reliable strategy based on

DFT ab initio approaches have been detailed with many examples.
We started from the most naïve way of identifying muon sites, i.e. the
inspection of the minima of the unperturbed electrostatic potential.
In IPSCs and in MnSi this simple strategy is found to be surprisingly
accurate. Having the possibility of identifying the muon sites with
the sole knowledge of the electronic properties of the unperturbed
material would be a great advantage since it would save a huge amount
of computational power. However it was soon realised that, in many
cases, the electron density modification introduced by the charged
impurity had to be included in the simulation. Unfortunately, to the
best of our knowledge there is no sharp way to distinguish between
the cases in which we expect the electrostatic potential approach to be
reliable and those where the charge density rearrangement will lead
to substantial differences. The unexpected high accuracy obtained
for IPSCs and MnSi is not justified on theoretical grounds but is
surprising. For this reason it will deserve more attention in future
studies.
To overcome the limitations of the unperturbed electrostatic ap-

proach, we opted for the inclusion of the muon as a charged hy-
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8. Conclusions

drogenoid impurity in the system. DFT have been intensively used
over the years to study impurities in semiconductors and the vast
knowledge developed in this context served as a background for the
specific case of the identification of muon sites in solids. We first in-
spected YF3 and LiF, two compounds which have been accurately
characterised experimentally. DFT results correctly identified the
muon site and confirmed the well known experimental knowledge that
the interstitial µ alter not only the charge distribution of the material
but also distort the crystal structure in its neighbourhood.
The central role of the ground state energy of the muon in the site

assignment procedure was considered in all the cases presented. The
electrostatic potential was initially used. This allowed an inexpensive
but inaccurate estimation of the GSE of the muon in some cases. How-
ever a refined strategy for all the materials where the charge density
is strongly perturbed by the charged impurity had to be introduced.
This is especially needed since, as it was shown, many minima are
usually encountered in the total energy profile explored during the
structural relaxation, but most of them are too narrow to bind the
light impurity.
The inclusion of a quantum description of the muon in the DFT

simulation can be computationally expensive. Having dropped the
possibility of solving the Schrödinger equation for the muon in the
unperturbed electrostatic potential, we considered many different ap-
proaches to approximate the quantum interaction between the µ and
the hosting system. This subject has been extensively discussed in lit-
erature and a variety of different methods have been proposed. How-
ever, most of them had to be discarded owing to the extreme com-
putational cost they require. We identified two possible strategies:
the use of density functional perturbation theory for studying the vi-
brational modes of the muon in the harmonic approximation and the
DAA. We opted for the latter, since, even if it is not always appli-
cable, it provides the best trade off between computational costs and
accuracy.
We showed that a detailed analysis of the GSE of the muon is crucial

for a correct determination of the muon site. For example, in MnSi,
two relative minima are found to be unstable when the GSE is taken
into account.
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Moreover, the DAA provides access to both ground state and ex-
cited energy levels for the muon in the system. Compared to the
harmonic approximation approach, this represents an additional ad-
vantage which allowed, for example, the estimation of the activation
energy for the phonon assisted quantum tunnelling of the muon in
FCC Copper.
Finally, we discussed the interesting case of T′-La2CuO4, the true

parent compound of electron doped cuprates, which shows a non-
collinear AFM ground state at low temperature. T′-La2CuO4 is one
of the many materials in which neutron scattering measurements, the
technique of election for long-range magnetic structure identification,
cannot be used. Indeed, to date, the small magnetic moment of Cu
atoms and the presence of H contamination have prevented the iden-
tification of the long-range magnetic order with neutron spectroscopy.
The T → 0 K magnetic order was instead established by combining
accurate experimental µSR measurements and the knowledge of the
muon site obtained with the DFT approach.
To conclude, we propose DFT in the DAA approximation as an

efficient method to predict muon sites. Even though some of the
approximations introduced either by DFT or the DAA can be drastic,
this approach has the notable advantage of being simple, efficient and
sufficiently accurate for a large set of materials. These are essential
requirements to offer a DFT based support tool for µSR data analysis
that can really boost the technique potentialities.
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A Technical
details of the
simulations

A.1. LaFeAsO

The details of the DFT simulations are reported in Ref. [121]. We used
the Wien2K package to perform DFT with a FP basis. The LDA as
parameterized by Perdew and Wang and Hubbard corrections (LSDA
+ U) as implemented in the all-electron LAPW code Wien2K [95]
were adopted. In all the simulations, the magnetic order was taken
into account in the collinear LSDA formalism. The muffin-tin radii
for La, Fe, As, and O are chosen equal to 2.3, 2.2, 2.0, and 1.9 Bohr,
respectively. RMT

min × max(|k|) = 7 (RMT
min is the smallest muffin-tin

radius in the unit cell and max(|k|) the largest wave number of the
basis set) is used for the plane-wave cutoff. Magnetic fields at the
muon site were calculated with dipole sums performed in real space
with a Lorentz sphere radius of 120 Å.

A.2. FeTe

The details of the calculation are reported in Ref. [126]. We considered
an ideal stoichiometric FeTe crystal within the DFT formalism with
GGA [79] for the exchange and correlation potential. We adopted the
FP LAPW method, as implemented in the Elk code [94]. In partic-
ular, we considered a bicollinear magnetic order on a 2a × a × c cell
with P4/nmm symmetry [133]. The experimental atomic positions
and lattice constant are used. RMT

min ×|G + k|max = 8 is chosen for the
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Figure A.1.: Comparison of the band structure of LaCoPO obtained
with the PW basis (black lines) and the FP-LAPW (red
lines) basis. The Fermi energy is set to 0 eV. In the
vicinity of the Fermi energy, the band structures overlap
almost perfectly.

expansion of the wave functions in the interstitial region. The recip-
rocal space was sampled with a 8×8×6 MP grid and the convergence
threshold is set to 0.1 mHa for the total energy and to 0.1× 10−5 Ha
for the root mean square value of the changes in vs (see Eq. 3.24). The
resulting magnetic moment per iron atom was 2.24 µB, in reasonable
agreement with 2.54 µB, the experimental value obtained via neutron
powder diffraction [133].

A.3. LaCoPO

The details of the calculation are reported in Ref. [101]. We used both
the PW and the FP-LAPW methods as implemented in the VASP
[175, 176] and Elk [94] packages. The Perdew Burke Ernzerhof (PBE)
functional was used in order to evaluate the exchange-correlation po-
tential [79]. As for the PW approach, the electron density was de-
scribed by the PAW pseudopotentials method [87]. Electronic con-
vergence was set up at 10−6 eV and the sampling of the Brillouin
zone was performed with the MP scheme [83] on a 8 × 8 × 4 grid.
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Figure A.2.: Comparison of the band structure of LiF obtained with
the LCAO basis (red lines) and the FP-LAPW (black
lines) basis. Below the Fermi energy, arbitrarily set
within the gap, the band structures nicely match.

A plane-wave cutoff of 600 eV and a Gaussian smearing of 0.02 eV
was used throughout. FP-LAPW calculations were carried out using
a basis set with RMT

min×|G + k|max = 7.5, and lmax = 8 for the angular
momentum expansion in the MTs (for both the wave functions and
the potential). The reciprocal space was sampled with the same grid
used in the PW approach. The results obtained with the two compu-
tational methods are in close agreement. The convergence criteria for
forces minimization was set to 5× 10−3 eV/Å and 10−5 eV was used
as threshold for self-consistent electronic cycles. Since in Sec. 4.4 we
deal with subtle modifications of the energy dispersions at the Fermi
level as a function of pressure, the accuracy of the pseudopotential ap-
proach was checked by comparing the band structures obtained with
the PW and the FP basis. The two single particle band structures
nicely match in the vicinity of the Fermi energy as shown in Fig. A.1
confirming the validity of the plane wave approach.

A.4. LiF and YF3

All the details of the simulation are reported in Ref. [102]. The results
presented in the thesis and in the above reference were obtained with
the plane wave and pseudpotential approach as implemented in the
Quantum ESPRESSO suite of codes [177]. The plane wave cutoff
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A. Technical details of the simulations

was set to 60 Ry and a 8 × 8 × 8 MP grid was used to sample the
reciprocal space when dealing with the conventional cubic cell (see
Sec. 5.2). In 2×2×2 supercells, the reciprocal space grid was halved.
The experimental lattice constants were used.
To check convergence against supercell sizes, we reverted to the

linear combination of atomic orbitals (LCAO) based code SIESTA
since we could not afford plane wave simulations’ computational costs.
The accuracy of the LCAO basis is confirmed by the comparison of
the band structure obtained with a FP-LAPW approach (Ref. [94])
shown in Fig. A.2. From the structural relaxation, similar results were
obtained with the 2× 2× 2 and the 3× 3× 3 supercell.
Since we are interested in the electrostatic potential generated by

electrons and nuclei, our calculations may be affected by the pseu-
doization of the potential inside the atomic core region. For this rea-
son, we double-checked our simulations by comparing the results we
got for the perfect bulk system with the full-potential method imple-
mented in the WIEN2K package [95]. We found that possible muon
sites are not affected by the electrostatic potential’s approximate de-
scription due to the pseudoization.

A.5. MnSi

To analyse the electronic structure of MnSi we use the FP-LAPW
approach as implemented in the Elk code [94]. The GGA as formu-
lated by PBE is used to approximate the exchange and correlation
potential [79]. The cutoff for the plane wave expansion in the inter-
stitial region is set to RMT

min × |G + k|max = 9. The reciprocal space
is sampled on a 16× 16× 16 MP grid [83]. The experimental atomic
positions and lattice constant are used. A FM ground state is consid-
ered and the resulting magnetic moment on the Mn atoms is 1 µB to
be compared to the experimental value of 0.41 µB. Indeed MnSi in
a well known case in which the mean field approximation leads to an
overestimation of the magnetic moments [178, 179]. For the supercell
methods used to study the effect of the muon impurity, a plane wave
basis was used. The simulations were performed with the Quantum
ESPRESSO suite of codes [177]. We set a cutoff of 60 Ry and 400
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A.6. Cu

Ry for plane waves expansion and for the charge density respectively.
In the 64+1 atoms supercell, a 2× 2× 2 MP grid for reciprocal space
sampling [83]. Spin polarisation was included in all simulations. With
these parameters the total energy was converged to 15 meV.

A.6. Cu
The DFT simulations for FCC Cu were performed with the Quantum
ESPRESSO suite of codes [177].
In all the calculations we used the GBRV pseudopotential library

built using PBE for exchange and correlation [79, 180]. The self-
consistency threshold for electronic optimization was set to ≤ 10−8

Ry. For relaxation calculations, in order to reach convergence, two
conditions had to be met: less than 10−3 Ry/Bohr for forces and
total energy differences between relaxation steps smaller than 10−4

Ry. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was
used for structural optimization. The reciprocal space in the supercell
was sampled with a 3× 3× 3 MP grid in DBO simulations.
To identify the minimum energy paths between equivalent muon

sites we performed NEB calculations. To comply with the DAA ap-
proximation we kept the atoms of the compound fixed in their relaxed
positions in all the images of the NEB simulations. This gives an upper
bound for the minimum transition energy between equivalent muon
sites. In all NEB calculations the convergence threshold was set to
0.05 eV/Å for the forces normal to the path.

A.7. T′-La2CuO4

T′-La2CuO4 crystallizes in a BCT structure with one formula unit per
unit cell. In chapter 7, we considered the magnetic unit cell and other
bigger supercells starting from the simple tetragonal structure which
has two formula units per cell. In all our calculations we used the ex-
perimental cell parameters a = 4.0084 and c/a = 3.1281. Nonetheless
we point out that the fully relaxed cell compare extremely well with
the experimental one having parameters a = 4.0360 and c/a = 3.1481.
Except for the supercell calculations where all the atomic positions
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A. Technical details of the simulations

are fully relaxed, also zLa = 0.35198 is kept fixed. Relaxing the La
position results in zLa = 0.3510, again in good agreement with the
experimental data.
In all calculations, a PW basis set and ultrasoft pseudopotentials

[86] as implemented in the Quantum ESPRESSO suite of codes
[177] was used. We set a kinetic-energy cutoff of 65 Ry (300 Ry for
the charge density) for supercells’ relaxation calculations and of 75
Ry (400 Ry for the charge density) for the refinement of the relax-
ation calculations. The latter cutoff is also used for the analysis of the
electronic band structures and the evaluation of the Cu magnetic mo-
ments. These cutoffs guaranties a self-consistent total energy of the
system converged to within 0.8 mRy/atom in geometrical relaxations,
and an improved convergence of 3 × 10−3 mRy/atom for refined cal-
culations. The convergence criterion for relaxation calculations was
set to 0.1 mRy for the total energy differences between the relaxation
steps and to 0.008 Ry/Bohr for forces. The reciprocal space sampling
was performed on a MP 12 × 12 × 6 grid for the magnetic unit cell
(
√

2 ×
√

2 × 1 cell obtained from the conventional simple tetragonal
cell). For supercell relaxation calculations and to sample the poten-
tial felt by the muon in the DAA, the gamma point or the Baldereschi
point were used. The density of states were obtained with Methfessel-
Paxton smearing [181] or the tetrahedron sampling method [182] on
a uniform 14× 14× 14 k-points grid.
The electronic structure of T′-La2CuO4 was studied with both GGA

and GGA+U. For the exchange and correlation potential we used
the parametrization introduced by PBE [79]. Within the GGA, the
material is found to be a metal with a small density of states at
the Fermi level. These results were published in literature together
with DFT+DMFT calculations [172]. The latter approach provided a
metallic ground state on the verge of an metal-to-insulator transition.
DFT+U simulations where performed in the simplified rotationally

invariant scheme of Cococcioni and De Gironcoli [183]. The density
of states as a function of U is shown in Fig. A.3. For U > 2 eV a
gap opens and the material is described as an insulator. As expected
from crystal field theory, the dx2−y2 orbital has the highest energy and
is found to be partially occupied in the symmetrized atomic orbital
projection scheme.
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Figure A.3.: Total density of states as a function of the value of Hub-
burd U used in the simulations of T′-La2CuO4. The
Fermi energy is conventionally set to 0 eV. The inset
shows a zoom of the total density close to the Fermi en-
ergy.

In the supercell simulations discussed in Chpater 7, the insulating
ground state is achieved with the use of a Cu pseudopotential that
favours the 3d9 configuration for Copper. This is a sort of an artefact
to reproduce the onsite Hubburd corrected results and optimize the
performances at the same time. Moreover, the introduction of the im-
purity often leads to problematic convergence of GGA+U simulations
when the crystalline symmetry is broken and the projection on lo-
calised orbitals is impaired by the charge density redistribution close
to the impurity. This is especially the case for muon sites close to
the Cu-O plane. As for the GGA+U approach, with the above strat-
egy a gap opens in the density of states and the structural properties
estimated in this way matches very well the experimental values.
The muon site analyses were performed with both the insulating and

the metallic ground states. Both gave similar results for the muon po-
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A. Technical details of the simulations

sition of the populated site A. The O-µ distance in the metallic ground
state simulations is found to be 1.02 Å (see Tab. 7.1 for comparison).
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B The DBO code

Cutting the computational costs needed to acquire the potential felt
by the muon in the DAA is of utmost importance. To this aim it is nec-
essary to optimise the sampling process used to construct the points
cloud on which the interpolation is performed. Acquiring all points
in a cubic grid would probably result in a too expensive computa-
tional procedure. Moreover that may eventually produce only a small
set of points useful for the interpolation of the potential of Eq. 3.62
since interstitial positions close to the nuclei have rapidly increasing
total energies. Finally, as shown in chapters 6 and 7, the potential
felt by the muon is usually far from being harmonic, thus making the
sampling over a sphere of increasing radius similarly inefficient.
A simple exploration algorithm was designed to perform an efficient

sampling of the a priori unknown potential Vµ of Eq. 3.62. The ex-
ploration is controlled by three parameters: a cutoff energy εC , a grid
separation length δ and a “search horizon” ∆. The first parameter
is used to specify the highest energy that should be explored. The
second parameter governs the inter-spacing between explored points
in a cubic grid. The third parameter controls the maximum distance
between two consecutively examined points during the exploration
process. The latter parameter is essential for two reasons. Firstly
and especially in magnetic materials, the previously calculated elec-
tron density must be used to converge to the correct ground state
and avoid other local minima in the total energy landscape which re-
produce, for example, different magnetic configurations. This can be
done only if the impurity is not too far from the position where the
previous self consistency was obtained. Secondly, reuse of electron
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B. The DBO code

densities speeds up the calculation significantly.
The algorithmic procedure begins with the definition of the starting

point for the exploration (labelled i) and the evaluation of its total
energy εi. Let n(i) be the number of neighbouring points of point i in
a cubic grid† for which the total energy has not been calculated yet.
From the initial point the iteration proceeds as follows:

• The total energies of the neighbouring points n(i) of the current
point i are inspected.

• The number of unexplored neighbours n(i) for all explored points
i is updated.

• Among the already explored points j, those with n(j) > 0 form
the set of the candidate positions for the next move. The point
j having the lowest energy εj and having distance d(i, j) < ∆ is
chosen as the next point for the exploration.

• The current position is set to position j and the algorithm is
iterated.

The iteration stops when there are no points j fulfilling the condi-
tions n(j) > 0, d(i, j) < ∆ and εj < εC .
For ∆ =∞ (infinite “search horizon”) all points with ε < εC will be

explored. This is no longer true when we limit the maximum distance
between consecutively explored points since the algorithm can remain
trapped in dead-end paths. To avoid this situation we can imagine to
label visited points with three different colours:

• red) explored points whose energy exceeds the cut-off energy,
ε > εC .

• yellow) explored points having ε < εC and at least one neighbour
unexplored.

• green) explored points without unexplored neighbours.
†In the implementation used in this thesis we used only the nearest neighbours

(left, right, up, down, front, back).
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When a dead-end point is reached there are two possible scenarios:
none of the explored points is yellow, or there is at least one yellow
point. In the first case the routine ends, otherwise we move from point
k, where the system is trapped, to the nearest yellow point, l. In
doing so, the path which minimise the distance d(k, l), obtained with
the algorithms described in Ref. [184], is used in order to minimise
the computational cost.
At the present stage, it is up to the user to check if the set of

explored points can accurately interpolate the potential up to the
threshold that is required for the subsequent analysis.
Starting from the points cloud {ε(rµ)}, the potential Vµ is obtained

by interpolation with radial basis function (RBF) interpolants and
with the Quadratic Shepard method [185–187].
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C
Solving the
Schrödinger

equation

To evaluate the ground state energy of the muon, we solved the sta-
tionary Schrödinger equation (h̄ = m = 1),

Hφi(r) = Eiφi(r), i = 0, 1, 2, . . . (C.1)

where
H = T + V (r) = −1

2∆r + V (r) . (C.2)

V (r) is the interpolated potential and ∆ is the Laplacian operator.
An important property of the Hamiltonian H is that, being an Her-
mitian operator, its eigenvalues Ei are real valued and non-negative
(by properly shifting the origin of the potential), and its correspond-
ing real eigenfunctions φi(x) can be chosen to form a real orthonormal
basis of the underlying Hilbert space.
The 3D Schrödinger equation has been solved with both periodic

and Dirichlet boundary conditions. For Dirichlet boundary conditions
the eigenfunction φi(x) are expanded on a spline basis with finite
element approach. The method used in this thesis is discussed in
detail in Ref. [188]. The expansion on B-splines is defined as

Ψi =
N∑
1
cilβl(r) (C.3)

where l runs over the N basis functions βl = B
(n)
i (x)B(n)

j (y)B(n)
k (z)
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C. Solving the Schrödinger equation

and B functions are

B
(n)
k (x) = A(n)(x/h− k) (C.4)

A(n)(x) = x

n
A(n−1)(x) + n− x+ 1

n
A(n−1)(x− 1) for x ∈ [0, n+ 1)

(C.5)
A(0)(x) = 1 for x ∈ [0, 1) (C.6)

where h is the spacing between the grid points in the finite elements
approach.
The finite elements expansion gives a generalised eigenvalue problem

whose matrix elements are

Tij = 1
2

∫
∇βi(r) · ∇βj(r) d3r (C.7)

Sij =
∫
βi(r)βj(r) d3r (C.8)

Vij =
∫
βi(r)V (r)βj(r) d3r . (C.9)

The advantage provided by the spline basis is that the kinetic T and
the overlap S terms can be evaluated analytically. The problem is then
solved with a sparse eigenvalue solver which provides the eigenvalues
in a specified energy interval. In the implementation used for the cal-
culations performed in this thesis, we adopted the FEAST algorithm
[189].
The approach used to solve the Schrödinger equation with periodic

boundary conditions is discussed in Ref. [190]. Shortly speaking, the
solution of Eq. C.1 is obtained by reverting to the corresponding time-
dependent Schrödinger equation (rewritten in 1 dimension for the sake
of simplicity)

i
∂

∂t
ψ(x, t) = Hψ(x, t), ψ(x, 0) = ψ0(x). (C.10)

By introducing the imaginary time t = −iτ (Wick rotation), the
formal solution is given by the evolution operator T = exp(−τH).
This can be used to obtain the eigenfunctions of Eq. C.1 because, in
principle, for any initial wave function, under the action of exp(−τH),
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the imaginary time evolution converges asymptotically to the ground
state solution for τ →∞.
Indeed Eq. C.10 is transformed by the Wick rotation into the dif-

fusion equation

− ∂

∂τ
ψ(x, τ) = Hψ(x, τ) (C.11)

where ψ(x, τ) = e−τHψ(x, 0). By expanding ψ0 on the basis formed
by the eigenfunctions of Eq. C.1, φi,

ψ0(x) =
∑
i

ci φi(x), ci = 〈φi(x) |ψ(x, 0)〉 , (C.12)

we obtain the time evolution, Eq. C.11, as

ψ(x, τ) = e−τHψ(x, 0) =
∑
i

e−τEi ci φi(x). (C.13)

Since for excited states Eq. C.13 decays more rapidly, for a sufficiently
long imaginary time evolution we get ψ(x, τ) → e−τE0 c0φ0 . The
speed of convergence depends on the separation between the ground
state energy and excited state eigenvalues. If the ground state is
degenerate, a linear combination of the ground state eigenfunctions
will be obtained.
The operator exp(−τH) cannot be calculated exactly an therefore

it is usually expanded with the so-called Suzuki-Trotter formula [191]

T (τ) = exp(−τH) = exp(−1
2τV ) exp(−τT ) exp(−1

2τV ) +O(ε3)
(C.14)

which descends from the known property of self adjoint operators

et(A+B) = lim
(n−>∞)

(
etA/netB/n

)n
. (C.15)

However, from a computational point of view, in order to obtain a well
converged result, τ steps must be small, thus requiring many iterations
to reach convergence. For this reason, fourth order factorizations of
the evolution operator is used in Ref. [190] to improve the performance
of the method.
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C. Solving the Schrödinger equation

The ground state energy is easily calculated as E0 = 〈φ0|H|φ0〉. By
propagating in imaginary time multiple wave functions and guaran-
teeing their orthonormalization, for example with the Gram-Schmidt
orthonormalization or diagonalizing the overlap matrix, it is also pos-
sible to obtain excited state eigenfunctions and eigenvalues.
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D Codes

Part of the work presented in this thesis relies on computer codes
that were developed on top of the Quantum ESPRESSO routines.
In the spirit of open science these codes are made freely available to
the community under GPL license.

D.1. DBO

DBO is a tool to efficiently sample the potential for an impurity in
a supercell simulation within the DAA. The potential is obtained by
interpolation of the acquired points cloud and the Schrödinger equa-
tion for the impurity in the supercell is subsequently solved. The set
of tools providing the exploration algorithm discussed in Appendix B,
the interpolation of the points cloud (adapted from [192, 193]) and
the solution of the Schrödinger equation (adapted and provided with
permission from the authors of Ref. [188, 190]) will be published under
GPL at the following internet address:
http://www.fis.unipr.it/~derenzi/dispense/pmwiki.php?n=MuSR.
MuonSite as soon as the related article will be published.

D.2. Unfold

This code performs supercell band structure unfolding. The tool
can be used to identify the effect of localised impurities in plane
wave supercell simulations. Inspecting the effect of the impurity in
reciprocal space by comparing the band structure of the bulk and
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D. Codes

the perturbed electron densities gives information on effects such as
doping, delocalised states, depth of the impurity energy levels. The
code is provided under GPL at the following internet address: http:
//qe-forge.org/gf/project/unfold/.
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