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Introduction

One of the most intriguing and mysterious issue that has been feeding the
brain of scientists is the way brain itself works and how it produces ques-
tions, thoughts and reactions to external stimuli. The increasing refine-
ment of experimental techniques has led to a detailed description of single
units composing the brain, neurons. The network composed by neurons
connecting together is thought to be the main system ruling brain’s activ-
ities [1]. The language through which single neurons communicate with
each others has been addressed to their electrical activity, able to stimulate
other neurons, like in a electrical circuit. Physiological information about
neural structure and activity was employed from the very beginning to
construct effective mathematical models of brain functions. There is a
large variety of models present in the literature, describing different phys-
iological mechanisms with higher or lower degree of detail. For instance,
the combination of complex single–neuron dynamics, noise and specific
network topologies revealed quite crucial for reproducing experimental
observations, like the spontaneous emergence of synchronized neural ac-
tivity, both in vitro (see, e.g., [2]) and in vivo, and the appearance of pecu-
liar fluctuations, the so–called “up–down" states, in cortical sensory areas
[3, 4]. Nevertheless, every model is far from the real complexity and re-
finement that would be necessary to describe every physical mechanism
present in neural dynamics. On the other hand, anatomical observations
suggest that real neural networks are made up of a very large number of
interacting neurons and, when dealing with large–scale or collective neu-
ral processes, one can expect that a high level of detail is not necessary
in order to catch the fundamental aspects of collective dynamics. This
can be argued observing that a single neuron does not play a crucial role
for brain processes and cannot modify them significantly in case of inef-
ficiency. Actually, it is well known that the brain activity is quite robust
also with respect to relatively strong perturbations.
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iv Introduction

On the basis of these observations in this thesis the attention is mainly
devoted to the collective dynamics of networks of neurons, that, in addi-
tion, is typically the easiest observable that is measured in experiments.
In the perspective of considering a model describing the fundamental as-
pects of neural dynamics we consider a system of leaky integrate–and–fire
(LIF) neurons, interacting via a synaptic current regulated by the short–
term plasticity mechanism [5]. As a model for the underlying topology
we consider randomly uncorrelated diluted networks (we take into ac-
count both dense and sparse networks) made of N nodes. We will show
how such model is able to reproduce a very rich variety of dynamical
phases. In particular, disorder on network structure yields a dynamical
phase characterized by quasi–synchronous events (QSE). This means that
a large fraction of neurons fire in a short time interval of a few millisec-
onds (ms), separated by uncorrelated firing activity lasting over some tens
of ms. The resulting collective field generated by this model shows os-
cillations typically observed in in vivo setups. Furthermore, disorder on
different model parameters (in particular on neurons excitability and con-
nections), produces synchronization patterns observed in in vitro experi-
ments, where bursts of neurons alternate with very long uncorrelated ac-
tivity (lasting seconds) distributed according to a long tail statistics [2, 5].

Accordingly, disorder on model parameters, like network connections
and neurons excitability, plays a crucial role for the emergent dynamics.
Moreover, the large number of units and the redundancy of connections
suggests that a mean–field approach can be the right mathematical tool
for understanding the large–scale dynamics of neural network models.
The thermodynamic limit, N ! 1, is expected to provide the basic in-
gredients for an analytic treatment. On the other hand, the way such a
thermodynamic limit is performed may wipe out any relation with the
model features that are responsible, for finite N , of relevant dynamical
properties. In this thesis we show how it is possible to derive a mean field
model that keeps track of relevant inhomogeneities responsible for finite
size dynamics, called heterogenous mean field (HMF), similar to the one
recently introduced in the context of epidemiological spreading on net-
works [6, 7, 8]. Given a real finite size sample, the HMF model is able to
reproduce its dynamics from the knowledge of the parameters probability
distributions that can be picked up from the finite size system.

In the perspective of a direct problem, i.e. the investigation of the
model dynamics for certain parameters distributions, such mean–field
like equations can be studied analytically by introducing the return maps
of the firing times. Furthermore, the HMF model sheds light on the role
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of the network topology in the collective synchronization of the network.
Another a big advantage in the introduction of such a mean field ap-
proach is the possibility to formulate and solve an inverse problem, that is
addressed to the reconstruction of the network topological features from
dynamic time series [9, 10, 11, 12]. The latter approach is particularly in-
teresting when the direct investigation of the network is impossible or
very hard to be performed.

In local approaches to inverse problems [9, 10, 11, 12], the network is
reconstructed through the knowledge of long time series of single neuron
dynamics, a methods that applies efficiently to small systems only. Actu-
ally, the signals emerging during neural time evolution are often records
of the average synaptic activity from large regions of the cerebral cortex
– a kind of observable much easier to be measured than signals coming
from single neuron activities [13]. Furthermore, inspired by previous con-
siderations, it is reasonable to expect that collective signals do not de-
pend on the detail of the neuronal model considered, permitting a good
position of the inverse problem with real data. Inferring the topological
properties of the network from global signals is still an open and central
problem in neurophysiology. In this thesis we show how it is possible
to formulate and solve such a global version of the inverse problem, re-
constructing the network topology that has generated a given global (i.e.
average) synaptic-activity field.

Furthermore, we will show how it is possible to extend this approach
to the reconstruction of different parameters distributions given the global
signal. Finally, by considering the presence of inhibitory neurons, we will
present the extension to this case, reconstructing network topology and
fraction of inhibitory neurons from a finite size global signal.

The thesis is organized as follows. In the first Chapter the experimen-
tal observations of neural dynamics are described. Furthermore we de-
scribe how one can build up mathematical models of a neural network
from the basis of physiological observations. In the second Chapter we
report the main dynamical features of the dynamics relative to the model
we take under consideration. In the third Chapter we describe how one
can define a mean field model in the simplest case of a excitatory network
with disorder only on network structure and how this approach leads to
the formulation and solution of a global inverse problem where informa-
tions on the network topology are reconstructed from the knowledge of
the collective electrical activity of the network. Finally, in the last chapter,
we show how the overall procedure of mean field approach and inverse
problem can be extended to a system in presence of inhibitory synapses
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and to networks where disorder is applied on excitabilities of single neu-
rons.



CHAPTER 1

Neural ensambles: synchronization and models

The brain is the organ acting as control system over the actions of the ma-
jority of animals. Its main role is to elaborate the sensory stimuli coming
from the environment and drive the relative response of the body. A cru-
cial issue that has attracted the attention of many scientists is the way this
system works and how it elaborates and sends information. Thanks to
more and more refined experimental techniques it has been possible to
deduce that the answer lies in the cellular elements composing the brain.
These cells, called neurons, are able to emit and propagate electrical po-
tentials to other neurons, usually called spikes. The temporal sequence of
these spikes is supposed to be the code through which neurons exchange
information and regulate the response of muscles and the secretion of hor-
mones. Accordingly, brain tissues generate electric fields that can be mea-
sured with electroencephalography (EEG) [14]. This technique, as other
different measurements like MEG or FMRI, permits the definition and
detection of a quantitative observable to describe brain’s region activity
[15, 13]. From a microscopic ground, accurate experimental techniques
(like the so called patch clamp [16]) have permitted to measure single
neuron electrical activity and how this activity is transmitted to other neu-
rons. As a result, it has been possible to build up mathematical models
that simulate the electrical activity of groups of neurons. These two ingre-
dients permit to investigate the physical mechanism giving rise to specific
collective activity of large regions of the brain through the comparison of
model predictions and experimental observations. In this chapter some
examples of these scientific developments are reported. In Sec. 1.1 we
report some experimental observations of the electrical activity of neural
ensembles. Given the microscopic organization of brain tissues composed
by neurons connected to each other in Sec. 1.2 we recall the typical math-
ematical formalism that can be used to describe a group of dynamical

1



2 1.1 Experimental observations of neural tissues

units that are connected through topological structures. In Sec. 1.3 we
report the experimental observations about single neural electric activity
that lead to the construction of the fundamental model for the single unit
dynamics, called the leaky–integrate and fire (LIF), that will be consid-
ered in this thesis. Finally, in Sec. 1.4 we discuss how neurons transmit
information to each other. In particular, we focus on the influence of the
activity (the spikes) of a neuron on the neurons connected to it, and on
the connections, and we discuss in details the model of coupling dynam-
ics between neurons developed by Tsodyks, Uziel and Markram (TUM
model). Combining these results we obtain a description of the activity
of groups of neurons with a set of coupled differential equations, whose
dynamics is the subject of this thesis.

1.1 Experimental observations of neural tissues

The brain is composed by neurons that are connected to each other. Anatom-
ical evidence indicates that the density of neurons and connections is very
high. In particular, it has been estimated that neurons in human brain
have on average 7000 connections to other neurons. Furthermore, in cere-
bral cortex the density of neurons is about 104 neurons/mm

3 [17]. The
neuron is characterized by its membrane potential V which is the differ-
ence between the voltage outside and inside the main body of the cell,
called soma. The membrane potential V sets, in absence of stimuli, at a
resting potential. When V , because of external stimuli, exceeds a certain
threshold value it rapidly rises and falls. This short change of V is called
action potential and has a stereotyped shape. Each neuron has many
branches, called dendrites, that receive the signal coming from other neu-
rons. This signal is propagated along the axon which is the nerve fiber
that carries the signal to dendritic projections of receiving neurons. They
carry this information in the form of action potentials, starting at the soma
and terminating at points where the axon makes contact with target cells,
called synapse. Here the action potential of the neuron sending informa-
tion affects the membrane potential of target neuron, increasing or de-
creasing it [18].

The anatomical structure is qualitatively the same for all neurons, even
if different neurons can have different dendritic ramifications. As an ex-
ample, in Fig. 1.1 we show three examples of neural structures where we
can see that, apart from structural differences, neurons have a stereotyped
organization composed by inputs (dendrites), elaboration center (soma or
cell body) and output (axon). Apart from the chemical mechanisms ruling
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Figure 1.1: Examples of neural cells with different dendritic ramifications [19].

the dynamics of V and of the synaptic transmission (these will be treated
in Sec. 1.3 and 1.4), from this phenomenological description it is clear that
the electrical activity of neurons, i.e. their membrane potential dynamics,
makes neural tissues able to generate electric fields.

The most famous and used technique to detect these fields is the elec-
troencephalography, shortly called EEG [14]. The first record of human
EEG dates back to 1924, by German physiologist and psychiatrist Hans
Berger [20]. The main advantage of this technique is that is not invasive,
as it reveals the electric field outside the scalp, while the main disadvan-
tage is the limited spatial resolution [21]. Nevertheless, this method is still
largely used in order to diagnose sleep disorders, coma, encephalopathies,
and brain death. The electric fields generated by a single neuron cannot be
detected by EEG, as their intensity is too small to be revealed outside the
scalp. Accordingly, EEG signals are always the result of the constructive
composition of single neurons electric fields and reflect the synchroniza-
tion of the spiking time of neurons. Typically, neurons taking part to the
global signal are thousands or millions and their synchronization gives
rise to oscillations in their mean activity [22]. The observed EEG signals
reveal oscillatory activity in certain frequency bands. The most famous
and first to be discovered is the alpha band (8�13Hz), that can be well re-
vealed during relaxed wakefulness. Nevertheless, other frequency bands
have been observed like delta (0.5� 4 Hz), theta (4� 8 Hz), beta (13� 30
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Hz) and gamma (30� 70 Hz) [14]. In Fig. 1.2 are reported some examples
of collective oscillations detected by EEG. These observations reveal that

Figure 1.2: Some examples of EEG recordings [23].

synchronizations properties of neurons play a crucial role for the emer-
gent dynamics and functionality of large brain areas. As an example,
epilepsy is characterized by abnormal synchronous neuronal activity in
the brain [14]. For completeness, let us indicate the existence of several
other methods to study brain function exist, e.g. functional magnetic res-
onance imaging (fMRI) [13], positron emission tomography, magnetoen-
cephalography (MEG) [15], from which the same deduction mentioned
above can be done.

As fields coming from the mentioned method are the result of thou-
sands or millions of single neural fields, much effort has been done in or-
der to move the experimental analysis to a microscopic ground. A crucial
step forward in this direction has been the possibility to build up neural
cultures in laboratories, made up by real neural cells connected together.
The main advantage of this approach is the possibility to have access to
the dynamics of every single neuron, through a microelectrode array [24].
This is a patterned array of electrodes laid out in a transparent substrate
used to detect neural activity and spiking patterns. Accordingly, it is pos-
sible to obtain the timing at which every neuron emits a spike and ana-
lyze the dynamics of the culture by collecting the activity of all neurons.
As an example, in Fig.1.3 it is reported the observation from a culture of
about fifty neurons. In particular, it is reported the raster plot of neural
network. On the ordinates it is reported the neuron index and on ab-
scissa the time. Every time a neuron emits a spike a dot is drawn at the
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Figure 1.3: Typical raster plot of the recorded activity for coupled neural net-
work. Each line corresponds to the recorded activity from a specific electrodes.
Bars indicated neuronal firing [25].

relative time and neural index. The raster plot is a microscopic picture
of the system dynamics, at variance with the EEG recordings presented
previously. As typically happens in neural cultures observations, the dy-
namics is characterized by events of bursting, usually called population
bursts (PB), where the majority of neurons fire in a short interval (typically
of hundreds ms). At variance with oscillations of large populations ob-
served in EEG recordings, in this case the collective activity shows peaks
at irregular times (actually when the PB appears). In fact, the distribution
of time lapse in between two consecutive PB (usually called IPBI) follows
a long tail statistics with rare events [2]. Accordingly, also from this mi-
croscopic picture, it seems clear that synchronization between neurons is
the fundamental aspect that determines the dynamics of the system.

Synchronization is a widely studied phenomenon that appears in many
different frameworks and scientists have payed much attention in the the-
oretical mechanism yielding the observed synchronization patterns [26].
In particular, systems of dynamical units connected together can be stud-
ied through general mathematical models that apply in different fields. In
the next section it will be shown how one can write down a model for dy-
namical units connected together that will be used in the rest of the thesis
to investigate the dynamics proper of neural ensembles.
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1.2 Model for dynamical units on extended networks

In previous section we have discussed the observed features of neural en-
sembles dynamics derived from experiments. At this point we can think
about a mathematical model, with the aim to reproduce and interpret
some observed synchronization characteristics observed in experiments.

1.2.1 Single unit and coupling dynamics

Let us start from the observation that a neuron can be schematized as a
dynamical unit (the cell body) that can be described by a vector of time
dependent variables, say w(t). In absence of external stimuli or connec-
tion with other units w(t) has its own dynamics, that can be written as

˙w = F
↵

(w), (1.1)

where the function F
↵

represents the single unit dynamics and ↵ is a set of
parameters from which F depends. Notice that, for the sake of simplicity,
we have not introduced an explicit dependence of F on time t as in all the
cases usually studied for investigating oscillators and neural dynamics
the dependence on t is implicit in w.

Furthermore, each unit i receives a certain number of inputs that pro-
duces a change in the dynamical variable w

i

of the cell body. In many
models of oscillators, in particular in neural systems, the effect of node
j on node i depends by the state of node j, in the case of neurons by its
spike train. Thus, we consider this class of models by defining a general
function G(w

j

) that rules the effect of unit j on unit i in the following
sense

˙w
i

= F
↵

(w
i

) + gG(w
j

), (1.2)

where g is the coupling strength. In general, also G depends on some pa-
rameters but they are not shown explicitly in Eq. (1.2) as in all the cases
here considered they are fixed and do not change from neuron to neu-
ron. Furthermore, in Eq. (1.2) G depends only from presynaptic terminal
j. Nevertheless in many cases, like in the presence of inhibitory neurons
(see Sec. 1.4), the dynamics depends also on the postsynaptic terminal i.
We will treat this case as an extension of the main methods developed in
this thesis in Sec4. Another example where G depends from postsynaptic
neuron i are electrical coupling (see Sec. 1.4). Nevertheless we will not
treat this case as the majority of neural coupling do not use this mecha-
nism. The functions F and G depend on the specific system one wants to
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analyze. In next sections we will show how we can define them to recover
the fundamental properties of neural dynamics.

1.2.2 Structure of connections and network models

In order to study the dynamics of extended systems, like neural ensem-
bles, one has to define the structure of connections between single units.
Graph theory is the mathematical framework to characterize the network
of connections [27, 28]. A graph can be defined as set V of nodes together
with a set E of edges. Nodes represent the dynamical units of the sys-
tem while edges the connections between single nodes. Graphs can be
divided in two main families, undirected and directed graphs. The first
class is characterized by edges with no preferential direction. This means
that, if a connection exists between node i and j, the influence of one on
each other is bidirectional. This case applies in epidemic spreading mod-
els where there is no directionality in the coupling between two nodes
that infect each other when they come in contact [6]. On the contrary,
in neural systems the coupling is directional as the axon of neuron i can
come in contact to a dendrite of neuron j and not vice versa. Thus, neuron
i can send spikes to neuron j but not necessarily neuron j affects neuron i

dynamics. This class of graphs are called directed and the edges are usu-
ally called arcs or arrows. In order to make this difference clearer, in Fig.
1.4 we show two examples of directed and undirected graphs. A graph

Figure 1.4: A undirected and directed graph is drawn on the left and right,
respectively. Dots are nodes and lines or arrows undirected or directed links
[29].

formed by N nodes can be represented by a NXN matrix ✏, called adja-
cency matrix. Its entries ✏

ij

are 0 or 1. If node j is directly connected to
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neuron i ✏

ij

= 1, otherwise ✏
ij

= 0. By definition, if the graph is undirected
the adjacency matrix is symmetric. A first quantity that plays a funda-
mental role in the dynamics of the units is its connectivity. In the case of
directed graph we can define two different connectivities. The in–degree
connectivity k

i

in

=

P
j

✏

ij

and the out–degree connectivity k

i

out

=

P
j

✏

ji

.
For the sake of simplicity we define k = k

in

the in–degree or simply con-
nectivity of node i. Given a certain graph of size N we can define P (k) the
in–degree or connectivity distribution of the network. In finite size sam-
ples this distribution is the envelop of the histograms obtained analyzing
the connectivity of the nodes. Furthermore, as k 2 [0, N � 1]in order to
avoid self loops, P needs to be suitably normalized. There are several
ways to construct networks. In this thesis we will consider random and
uncorrelated network [28]. A random network is a network constructed
with some random process that can be defined by a probability distribu-
tion or by the random process which generates it. Uncorrelated graphs
are graph for which the probability that a neuron with connectivity k is
connected with a neuron with connectivity k

0 does not depend on k

0. The
most used model to generate random uncorrelated graphs is the Erdős–
Rényi model [30]. It consists in choosing every couple of nodes (i, j) and
connecting them with a certain probability p. The resulting connectivity
distribution P (k) turns out to be binomial

P (k) =

✓
N � 1

k

◆
p

k

(1� p)

N�1�k

. (1.3)

If the size N is sufficiently large and p is fixed the central limit theorem
implies that P (k) is a Gaussian distribution with average hki = pN and
variance �

2

k

= Np(1� p).
Many networks, including World Wide Web links and social networks,

show a power law distribution for P (k), at variance with Erdős–Rényi
model. The mostly used generative model for scale-free networks is Barabśi
and Albert’s generative model in which each new node creates links to
existing nodes with a probability distribution proportional to the current
nodes in-degree [31]. A cleaver way to construct random graphs with
desired distribution P (k) is the configuration model [32]. Chosen a nor-
malized distribution P (k), a sequence of N values of k (k

1

, k

2

. . . , k

N

) are
extracted by P (k). Then, randomly chosen k

i

nodes indexes are assigned
to each node i.

A crucial issue in graph theory and in particular for dynamical models
arranged on graphs is the dependence of the structure on the size N . In
order to show the size effects on network structure let us introduce the
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specific connectivity ˜

k = k/N . As a result one has that P 0
(

˜

k) = NP (

˜

kN).
In particular, for the Erdős–Rényi network, in large ensembles and for
fixed p, P 0 is a Gaussian with average h˜ki = p and standard deviation
�

˜

k

= �

k

/N ⇠ 1/

p
N . This result will be useful in next sections and

shows that the relative fluctuations of connectivity go to zero in the ther-
modynamic limit (i.e. when N ! 1). In this framework, an impor-
tant classification in networks construction is based on the difference be-
tween sparse and dense/massive networks. Sparse networks are net-
works where the rescaled connectivity of neurons k/N goes to zero in
thermodynamic limit. A massive network is a network where connec-
tivities of neurons scale at least as the size N of neurons. In the case of
Erdős–Rényi model this distinction is ruled by the dependence of p by N .
If p/N does not go to zero in the thermodynamic limit the network is said
massive and sparse otherwise.

1.2.3 Extended system model

We can now formulate a formal model for dynamical units on graphs. The
dynamics of node i receiving input by node j is described by Eq.(1.2). To
obtain the dynamics of node i on a graph we need to add the effect of all
nodes sending outputs to i. If the structure of the network is described by
the adjacency matrix ✏

ij

we can write, for each node i 2 [1, N ]

˙w
i

= F
↵

(w
i

) +

g

N

X

j

✏

ij

G(w
j

). (1.4)

Notice that the coupling term has been rescaled by the network size N .
This choice depends on the choice of the network model we are consid-
ering. In the case of Eq. (1.4) we suppose that the network connectivities
scale as the size N of the network, i.e. a massive network. In fact, we
want the coupling term to remain finite in the thermodynamic limit and
comparable at different sizes. If we are dealing with sparse networks it
is more convenient to rescale by the average connectivity hki in order to
respect the mentioned requests. These model adjustments are not a prej-
udice of generality. In fact, in this thesis we want to refer to real neural
systems that are always finite, i.e. N is a finite number. By considering the
dynamics of a certain brain region, we will deal with a specific network
of a certain size N with its own network structure. Thus, a real network
is neither massive or sparse and, in the model describing that specific net-
work, the choice of the term 1/N or 1/hki is just a rescaling of the coupling
g. Nevertheless, if one wants to analyze the network at increasing size it
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is necessary to choose the way to generate graphs at increasing values of
N and to have a well defined model with the opportune rescaling of the
coupling term.

In order to study the dynamics of neural ensembles we need a model
for F and G. In the next Sections we describe the experimental studies
that have led to the model equations that will be used in this thesis.

1.3 Neuron dynamics

As introduced in Sec.1.1 the state of the neuron is described by its mem-
brane potential V , defined as the voltage difference between the cell body
of the cell and the extracellular liquid in which neurons are embedded.
In absence of external stimuli V sets in a resting state V

r

. Whenever V

exceeds a certain threshold value, due to external stimuli, we observe a
rapid increase of V (polarization) followed by a rapid decrease up to a
value lower then the resting state. Then, a third phase called iperpolar-
ization brings back V to the resting value V

r

. This change of V in time is
said action potential and has a stereotyped shape. In Fig. 1.5 we report its
shape derived by an experiment in 1962, where we can see its time dura-
tion lasting around 2ms [33]. Much effort has been done in order to un-

Figure 1.5: Oscilloscope traces from the voltage of a neuron recorded by Baker
et.al. in 1962 [33].

derstand the mechanisms ruling the dynamics of V in absence of stimuli
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and how it is able to generate the action potential. The pioneering exper-
iment of Hodgkin and Huxley paved the way for possible understanding
and modelization of neuron dynamics by performing experiments on the
squid giant axon [34]. The large diameter of the axon provided a great
experimental advantage for Hodgkin and Huxley as it allowed them to
easily insert voltage electrodes. The electric activity of neurons is guided
by ionic currents passing through the membrane. The dominant currents
are generated by sodium (Na+), potassium (K+), calcium (Ca2+) and chlor
(Cl�). The concentration of these ions are different inside and outside the
cell and the electric gradients due to their mobility are responsible for
the electrical activity of the cell body. In particular, the membrane per-
meability for these ions is the fundamental ingredient responsible for the
generation of the action potential. Thanks to their experiment, Hodgkin
and Huxley have been able to construct a suitable model for the perme-
ability of the cell membrane to Calcium and Potassium allowing for an
explanation of the action potential formation. The model proposed takes
under consideration four dynamical variables for the dynamics of V . The
complexity of the model, both for computational and purely analytical
investigations, led to a reductionist approach for the neuron dynamics
modelization [35]. Models later implemented, like Morris–Lecar model
[36], use simpler dynamical equations with the aim to describe the fun-
damental characteristics of the neural dynamics. The simplest model in
this direction is called leaky–integrate and fire (LIF) and it was proposed
by Lapique [37]. This model does not care about the reproduction of the
action potential dynamics. It takes under consideration two fundamental
ingredients of neural dynamics: a spike is emitted whenever V reaches a
certain threshold and then V returns rapidly to its reset value. The equa-
tion chosen to describe this dynamical features is

⌧

m

˙

V = E

l

+ V

r

� V (1.5)
if V > V

th

! spike emission and V = V

r

, (1.6)

where V

r

is the resting potential and ⌧

m

is a time constant that takes into
account the capacity of the cell membrane that, in this scheme, can be con-
sidered like a capacitor. The voltage E

l

is present in all neural models and
is due to the leakage current that, because of different concentrations of
non–dominant ions inside and outside the cell, flows through the mem-
brane. Finally, 1.6 is a hand–role taking into account that when V exceeds
a certain threshold value V

th

a spike is emitted to other neurons and V is
reset to the resting state V

r

. In this approximation the action potential is
instantaneous and in the next session we will see how one can model the
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effect of the spike train of the considered neuron. Let us introduce from
the very beginning adimensional variables, i.e. we rescale appropriately
time and voltages. In particular

t ! t/⌧

m

(1.7)

v =

V � V

r

V

th

� V r

. (1.8)

As a result we obtain the following equation for the dynamics of v

v̇ = a� v, (1.9)

where a is the rescaled leakage current, the resting value is v = 0 and
the threshold value is v

th

= 1. For the rest of the thesis we will consider
only adimensional equations. Accordingly, in order to read the results in
physical units, voltage and time have to be rescaled back. Typical values
for parameters are ⌧

m

= 30ms, V
r

= �65mV and V

th

= �55mV [5, 35].
By looking at the comparison with Eq.(1.1) we have that w = v is a scalar
and that F

↵

(w) = a � v plus the hand–role 1.6. In this case a is the only
parameter of the single neuron dynamics.

Let us analyze the dynamical properties of LIF model for v(t). If a > 1

v follows a periodic dynamics of period T

v

= ln(a/(a� 1)) and spikes are
emitted at regular piece (spiking regime). Accordingly, the time lapse be-
tween two consecutive spikes, inter–spike–interval (ISI), is constant and
equal to T

v

. On the contrary, if a < 1 the dynamics of v has a stable fixed
point v⇤ = a and the neuron does not emit spikes (silent regime). In Fig.
1.6 we show these two dynamical regimes. Accordingly, a plays the role
of a bifurcation parameter with critical value a

c

= v

th

= 1. In order to
obtain more complex spike trains one can use stocastic processes ⇠(t) in
the form of additive noise in Eq.(1.9). For example, one may consider a
random walk with boundaries. By changing the time correlation of the
process one can obtain a wide range of spiking patterns [38]. This case
will be taken in consideration in Sec. 2.2 when we will deal with some
peculiar collective dynamics observed in neural cultures.

The LIF model has the advantage to be computationally efficient and
analytically integrated in–between two consecutive spikes. It is not able to
describe specific characteristics of neural dynamics as the action potential
formation. Nevertheless, by using mathematical tools like the hand–rule
1.6, it is able to catch the fundamental properties of neural behaviors. Fur-
thermore, it permits a clear interpretation of dynamical regimes observed
in network structures. The main methods shown in this thesis can be ap-
plied also to more complex neural models. Nevertheless, we will deal
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Figure 1.6: Dynamics of the membrane potential v. In the main picture we
observe the spiking regime for a = 1.3. The dashed red line is the threshold
value v

th

= 1. In the inset we show the silent regime. In this case a = 0.8 (green
continuous line).

with LIF neurons that will permit us a straightforward application of our
approach and a clearer interpretation of the observed dynamics.

1.4 Neural coupling dynamics

Once investigated the dynamics of the single neuron and built up a model
for the dynamics of the membrane potential in absence of stimuli from
other neurons, it is necessary to take under consideration the coupling
dynamics. From an experimental point of view this means to quantify
the effect of the spike train of a neuron into the membrane potential of
the receiving node. From a mathematical point of view this means to
determine the function G(w) that, in the contest of LIF neural ensembles
where w = v, is a scalar function G(v).

The electrical signal is transmitted from a neuron to the receiving neu-
ron through a structure called synapse. Accordingly, neuron sending the
spike is said presynaptic and the neuron receiving that information is
said postsynaptic. There are two types of synapses: electrical and chem-
ical [18]. In the firsts axon and dendrite come in contact and the elec-



14 1.4 Neural coupling dynamics

trical signal passes directly from a neuron to the other [39]. Electrical
synapses are pretty rare in nervous system which is mostly connected
through chemical synapses. In chemical synapses, the axon does not come
in contact with the dendrite and the region between these membranes is
called synaptic cleft. When the cell body of the presynaptic neuron pro-
duces an action potential, it propagates pretty fast as a wave along the
axon (around 25m/s, see [40] for details on the mechanisms of propaga-
tion). As soon as it arrives at the axon terminal it induces the opening
of Calcium channels. The ratio between Ca

2+ concentration inside and
outside the cell is around 10

�4 and this provokes a gradient of ions flow-
ing inside the axon terminal. In the axon terminal are present vesicles
that, whenever the calcium concentration increases around them, release
molecules said neurotransmitter (or resources) [41]. These neurotransmit-
ters bind to specific receptors in the membrane of the postsynaptic side of
the synapse. This generates the opening of specific ionic channels that de-
termine the postsynaptic current I

syn

that rules the change in postsynaptic
neural membrane potential, i.e. �v = I

syn

�t (notice that from now on all
the variables and parameters are adimensional). In Fig. 1.7 we show a
schematic description of this picture. There are different chemical type of

Figure 1.7: Chemical synapse’s components [42].

neurotransmitter. One of the most famous is the amino acid GABA[43].
When this neurotransmitter is released, the current I

syn

flowing in postsy-
naptic neuron is negative reducing postsynaptic neuron excitability. This
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type of neurotransmitters are said inhibitory. On the contrary, glutamate
is a neurotransmitter said excitatory as it generates a positive current I

syn

in postsynaptic terminal. A neuron whose neurotransmitters are excita-
tory or inhibitory is said excitatory or inhibitory, respectively. In the rest
of this thesis we use the term inhibitory or excitatory related to the neuron
and not to the synapse, even if in some cases the same neuron produce ei-
ther inhibitory or excitatory post–synaptic signal in the target cell. In gen-
eral the percentage of inhibitory neurons is pretty low, around 10 � 30%

[44].
As the action potential has a stereotyped shape, the responsible of

the intensity of postsynaptic current are the neurotransmitter properties.
These properties are able to modify in time and change the efficiency of a
synapse. Furthermore, it is possible that new synapses create thus chang-
ing the network structure. These mechanisms are called synaptic plas-
ticity and they are generally thought to be responsible for memory and
learning [45, 46]. There are two main forms of synaptic plasticity: long
and short–term plasticity. They differ mainly for the time scales ruling
the process. Furthermore, in short–term plasticity mechanism the synap-
tic efficiency depends only on the dynamics of pre–synaptic neuron, i.e.
from its spike train, and does not affect the structure of connections, at
variance with long–term forms of plasticity [47].

In this thesis we will take into account the short–term–plasticity mech-
anism. For this mechanism it has been built up a quite confident model
that well reproduces the experimental observations. From the observa-
tion of the electrical activity of pairs of neocortical pyramidal neurons of
the rat, in [48] it is reported a model for short–term–plasticity between
excitatory neurons. It is based on the dynamics of synaptic resources (i.e.
neurotransmitters) in function of presynaptic spike train. The resources
can set in three different states. There is a fraction of available resources
x, a fraction of active resources y and a fraction of inactive resources z.
Their dynamics are described by the following dynamical equations for
presynaptic neuron i

ẏ

i

= � y

i

⌧

in

+ Ux

i

S

i

(1.10)

ẋ

i

=

z

i

⌧

r

� Ux

i

S

i

(1.11)

ż

i

=

y

i

⌧

in

� z

i

⌧

r

, (1.12)

where S

i

(t) =

P
�(t� t

n,i

) is the spike train where each action potential is
describer by a � function that activates at the n–th action potential emitted
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by neuron i, u is a parameter, ⌧
in

and ⌧

r

are said inactivation and recovery
time, respectively. Notice that, by construction, the sum of all the fraction

Figure 1.8: Comparison between experimental data and model for a couple of
neurons. In B) it is reported the response to a regular activity of presynaptic
neuron and in C) the case of non periodic activity [48].

of resources is equal to one, i.e. x
i

+y

i

+z

i

= 1. Whenever a spike is emitted
by neuron i a fraction U of the available resources x

i

passes immediately
from the available to the active state , i.e. �y

i

= Ux

i

and �x

i

= �Ux

i

(see
the second term in Eq.s (1.10) and (1.11)). In between two consecutive
spikes, the usage of the active resources y

i

responsible for postsynaptic
current I

syn,j

flowing in neuron j, causes their exponential inactivation
with a time scale ⌧

in

, in favor of an increase of inactive resources z

i

of the
same amount (see the first term in Eq.s (1.10) and (1.12)). In the mean-
while, the fraction of available resources recover exponentially, in a time
scale ⌧

r

, the fraction of inactive resources (see the first term of Eq. (1.11)
and the second one of Eq. (1.12)). Accordingly, the postsynaptic current
is proportional to the fraction of active resources y

i

, i.e. I

syn,j

= Ay

i

. In
Fig.1.8 it is reported the comparison between the model and experimental
recordings where the accordance is quite good. The mechanism described
by Eq.s (1.10)–(1.12) is called depressive. In fact, if the presynaptic neu-
ron fires with high frequency, the synapse efficiency becomes negligible
as there are no more available resources.

From the model above described, the dynamics of every node i in a



Neural ensambles: synchronization and models 17

system of N purely excitatory neurons can be written as follows

v̇

i

= a� v

i

+

g

N

X

j

✏

ij

y

j

(1.13)

ẏ

i

= � y

i

⌧

in

+ U(1� y

i

� z

i

)S

i

(1.14)

ż

i

=

y

i

⌧

in

� z

i

⌧

r

, (1.15)

where we suppose that the proportional factor A between y and the post-
synaptic current between neurons is the same for every couple.

In general, real systems are composed by a relatively small fraction if
inhibitory neurons. Experimental observations show that between pyra-
midal excitatory neurons and inhibitory inter–neurons another mecha-
nism in addition to the depressive one is present in synapses. This mecha-
nism is called facilitation and can be introduced by increasing the synapses
efficiency at every spike. In the language of Eq.s (1.10)–(1.12) this can be
introduced by turning the parameter U in a dynamical variable u(t). In
particular, in its evolution equation for the presynaptic neuron i becomes
the following [49]

u̇

i

= �u

i

⌧

f

+ U

f

(1� u

i

)S

i

, (1.16)

where U

f

is a parameter that determines the increase of u at the arrival
of the spike and ⌧

f

is the facilitation time constant that comes into play
in between two consecutive spikes. These results have been merged in a
model for the dynamics of a population of both excitatory and inhibitory
neurons developed by Tsodyks, Uziel and Markram, named TUM model
[5]. In this model the facilitation mechanism comes into play when the
postsynaptic neuron is inhibitory. Furthermore, the recovery time scale ⌧

r

is different when postsynaptic neuron is inhibitory or excitatory. In par-
ticular, from phenomenological data, if postsynaptic neuron is inhibitory
⌧

r

= ⌧

I

r

= 3.4 and if postsynaptic neuron is excitatory ⌧

r

= ⌧

E

r

= 26.6 in
rescaled units. Other parameter values are ⌧

in

= 0.2, U = 0.5 for excita-
tory postsynaptic neuron, U

f

= 0.08 and g = 30 [5]. Accordingly, when
inhibitory neurons are taken under consideration, each synaptic variable
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depends both from postsynaptic j and presynaptic neuron i

v̇

i

= a� v

i

+

g

N

X

j 6=i

✏

ij

y

ij

(1.17)

ẏ
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ij

⌧

in

+ u

ij

(1� z

ij

� y

ij

)S

j

(1.18)

ż

ij

=

y

ij
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in

� z

ij

⌧

ij

r

. (1.19)

If neuron i is excitatory u

ij

= U for every j, otherwise it is a function of
time

u̇

ij

= �u

ij

⌧

f

+ U

f

(1� u

ij

)S

j

. (1.20)

Furthermore, ⌧ ij
r

= ⌧

I

r

if i is inhibitory and ⌧

ij

r

= ⌧

E

r

if i is excitatory, for
every presynaptic neuron j.

In the rest of this thesis we will call TUM model the model for short–
term plasticity in both purely excitatory or excitatory and inhibitory sys-
tems.



CHAPTER 2

Purely excitatory network: dynamics on random
structures

In the previous chapter we have shown the possibility to build up models
of neural ensembles. The experimental advances on the chemical pro-
cesses responsible for neural activity lead to the formulation of many
models of neural dynamics that differ for the microscopic mechanism
taken under consideration. Accordingly, the diversity of microscopic mod-
els can produce different dynamical regimes characterized by different
synchronization pattern [26, 50, 3, 4, 57]. The choice of the model has
to be done as a function of what we are interested in investigating. In
this thesis we are mainly interested in the relation between inhomogene-
ity among neurons, like the structure of connections, and the collective
dynamics, i.e. global fields. For this purpose it is reasonable to suppose
that the collective dynamics does not depend crucially on the detail of the
model one takes under consideration. Furthermore, the heterogeneous
mean field approach we are going to develop in this thesis is quite gen-
eral and can be applied to different models. Accordingly, in order to show
its implementation and analyze the collective dynamics emerging in these
systems, we consider a quite simple model able to reproduce several dy-
namical regimes typically observed in experimental setups. In particu-
lar we consider random uncorrelated networks of LIF neurons equipped
with the mechanism of short term plasticity (TUM model).

This chapter is divided in two man sections, depending on the emerg-
ing dynamical regime we are interested in analyzing. In Sec. 2.1 we show
that the model considered shows collective oscillations ruled by inhomo-
geneity in network connections. Furthermore, the finite size dynamics is
chaotic and the maximum Lyapunov exponent goes to zero in the ther-
modynamic limit. In Sec. 2.2 we introduce disorder and noise in neurons

19
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excitability, a crucial ingredient to observe the dynamics characterized by
bursts typically observed in in vitro neural cultures.

2.1 Collective oscillations of neurons in spiking regime

In this Section we investigate the dynamics of the deterministic model of
Eq.s (1.13)–(1.15), where neurons have the same leakage current a = 1.3

(i.e. they are in periodic firing regime). Furthermore, following phe-
nomenological data [5], we fix the ratio ⌧

r

/⌧

in

= 133 and g = 30. We
consider Erdös-Renyi dense random networks where the average con-
nectivity scales as the system size N . In the first subsection we analyze
the dynamics of finite size samples and in the second subsection we in-
vestigate the dependence on the size N and the stability properties of the
dynamics.

2.1.1 Finite size dynamics

Given the complexity of the differential equations describing finite size
systems the prevalent tool to investigate the dynamics of the network is a
numerical simulation. A major advantage in this direction comes from the
possibility of transforming the set of differential equations into an event–
driven map [50, 51]. In fact, these differential equations can be formally
integrated from time t

n

to time t

n+1

, where t

n

is the instant of time imme-
diately after the n-th spike in the network. The resulting map for neuron
i reads

z
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where ⌧(n) = t

n+1

� t

n

is the n-th inter–spike–interval (ISI) in the network
and F

i

(n) has the following expression,

F
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in
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in

� 1
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e

� ⌧(n)
⌧in � e
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j 6=i
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ij
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(n), (2.4)

with the sum running over the index j of all presynaptic neurons of neu-
ron i. Notice that ⌧(n) can be determined by computing the time

⌧

i

(n) = ln

"
a� v

i

(n)

a+ gF

i

(n)� 1

#
, i = 1, · · ·N (2.5)

needed by the ith neuron to reach the threshold value and thereby select-
ing the shortest one,

⌧(n) = inf

i

{⌧
i

(n)|i = 1, 2, · · · , N}.

Numerical simulations show that in the fully coupled case (✏
ij

= 1, 8i, j),
generic initial conditions always converge towards a synchronized regime
with all neurons firing simultaneously [52]. This is a standard scenario
that can be observed in many networks of identical fully coupled phase-
oscillators. In particular, the same behavior is found in networks without
plasticity, when the transmitted pulse has an infinitely fast rise time, like
e.g. exponential or �-pulses [53, 54]. Notice that the event–driven algo-
rithm in Eqs. (2.1-2.3) has to be suitably modified in order to remove the
ambiguities that emerge when the synchronous state is approached: be-
cause of the finite computer precision, the identification of the firing neu-
ron may not yield a unique index. This problem can be straightforwardly
overcome by reducing the dynamics of the synchronized neurons to that
of a single one.

The stability of this regime, can be assessed by determining the evap-
oration exponent ⇤ [55], i.e. the convergence rate of a hypothetical single
neuron that is subject to the mean field generated by the network.

By integrating the dynamical equations over one period ⌧ , one obtains
implicit equations that allow determining ⌧ and the synaptic variables, ỹ
and z̃, immediately after the firing event,

ae

�⌧
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We now determine the evaporation exponent by estimating how the po-
tential of a probe neuron, forced by the mean field generated by the net-
work, converges towards the synchronized state. The membrane poten-
tial of each neuron follows the evolution equation

v̇(t) = a� v(t) + gY (t). (2.9)

For the probe neuron, the synaptic activity Y (t) is to be considered as a pe-
riodic non-autonomous forcing. The stability analysis will be performed
by following the evolution of the distance between the probe neuron and
the synchronized cluster. Let us consider an initial condition, where the
potential of the network neurons has just been reset (v

j

= 0), while the
probe neuron is lagging behind (v(0) = 1 � �(0)). The time s needed by
the probe neuron to reach the threshold (i.e the temporal distance from
the synchronized cluster) is implicitly given by the condition
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Over the time s, the potential of the network neurons increases from 0 to
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which represents the distance when the probe-neuron potential has been
reset, as well. From Eq. (2.9) it then follows that the later evolution follows
the equation

˙

� = �� (2.12)

so that
�(⌧) = �(s)e

s�⌧

. (2.13)

and the evaporation exponent is

⇤ = lim

�(0)!0

�(⌧)

�(0)

= ln

h
a+ gỹ

a+ gỹ � 1

i
� ⌧ . (2.14)

By obtaining ⌧ and ỹ from Eqs. (2.6)–(2.8) one can estimate ⇤. The de-
pendence of the evaporation exponent on ⌧

in

is plotted in Fig. 2.1 (see the
lower curve). The exponent ⇤ is always negative, meaning that the probe
neuron will attach back to the cluster firing simultaneously with the rest
of the neurons (i.e. the synchronous state is locally stable). If one started
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assuming that the single neuron is ahead of the cluster, a different expo-
nent would be obtained (see the upper curve in Fig. 2.1). The behaviour
for small ⌧

in

is somehow surprising since, by looking at Eq.s (2.2) and (2.4)
the effect of the coupling tends to vanish for ⌧

in

! 0. In order to clarify
this point, we perform a perturbative analysis. From Eqs. (2.6,2.11,2.13),
under the assumption of ⌧

in

and �(0) small, one finds

�(⌧) =

a� 1

a

(�(0) + s) (2.15)

At the same time, Eq. (2.10) reduces to
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If s ⌧ ⌧

in

, we are in the regime of infinitesimal perturbations; the expo-
nential in the above equation can be expanded, giving rise to

s =

�(0)

a� 1 + gỹ

(2.17)

By then replacing in Eq. (2.15) one finally obtains

�(⌧)

�(0)
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(a� 1)(a+ gỹ)

a(a� 1 + gỹ)

(2.18)

The logarithm of the r.h.s. is just the evaporation exponent for ⌧
in

= 0. If,
instead, ⌧

in

⌧ s, the exponential in Eq. (2.16) can be neglected, giving rise
to

s =

�(0)� gỹ⌧

in

a� 1

(2.19)

Again with the help of Eq. (2.15) one obtains

�(⌧) = �(0)� g

a

ỹ⌧

in

(2.20)

Equations (2.18,2.20) tell us that whenever the time separation s be-
tween the probe neuron and the cluster is larger than the decay time ⌧

in

the physical distance decreases linearly in time with a coefficient that be-
comes increasingly small with ⌧

in

. However, as soon as the distance be-
comes on the order of ⌧

in

, an exponential convergence sets in that is ruled
by an exponent that remains finite even for arbitrarily small ⌧

in

values.
This analysis reveals a rather awkward property, namely that the solu-

tion is stable against negative perturbations and unstable otherwise (see
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Figure 2.1: Evaporation exponents ⇤ as a function of ⌧
in

: the lower (black) curve
and the upper (red) curve refer resp. to the left (see Eq. (2.14)) and right exponent.
We have used the following rescaled parameters: g = 21, u = 0.5 a = 1.3 and
⌧
r

= 133⌧
in

. [52]

the left and right exponent in Fig. 2.1). This is because the periodic solu-
tion selected by the network belongs to a homoclinic cycle that is obtained
from the collapse of a stable with an unstable solution. This property was
already proved in Ref. [56] with reference to the TUS model in the absence
of synaptic plasticity. In this case, one can apply the same mathematical
formalism, since the synchronized regime is characterized by a sequence
of exponential pulses. In the case of a fully coupled network, the asym-
metric stability of the synchronous regime has no relevant consequences,
since the neurons that possibly escape while being ahead of the cluster,
are eventually attracted when they approach the cluster from the oppo-
site side. We will see that this property has instead relevant consequences
as soon as disorder is added to the network.

A second remarkable property is that the synchronized state is stable
for all parameter values and ⇤ remains finite even in the limit ⌧

in

! 0,
when the coupling vanishes. In fact, when the synaptic time scales ⌧

in

and ⌧

r

are significantly smaller than the typical ISI, the active transmitter
variable, y

i

(t), exhibits a short pulse (of finite height and duration ⌧

in

)
so that the membrane potential of all connected neurons increases by an
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amount
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which evidently vanishes for ⌧

in

! 0. Nevertheless, the synchronized
state is characterized by a finite stability, because it is surrounded by a tiny
basin of attraction (of size ⌧

in

). As a result, this model does not reduce, for
⌧

in

! 0 to a standard LIF network with � pulses [57] and the stability of
the synchronized state differs by a finite amount.

The stability of the synchronous state in homogeneous globally cou-
pled network seems to depend strongly on the smoothness of the receiv-
ing field F

i

(t) (i.e. on the dynamics of y
j

(t)). In different models, like the
↵ model [58] in absence of plasticity, the field F

i

(t) is not discontinuous
at the spiking time. Accordingly, also in globally coupled network the
synchronous state loses its stability and a partial synchronous state arises
[59]. Every neuron is quasi–periodic characterized by the same two fre-
quencies but their electrical activity interfere constructively giving rise to
non trivial collective oscillations [60].

Figure 2.2: The Kuramoto order parameter R as a function of ⌧
in

for a diluted
network of N = 500, (black) circles, and N = 5, 000, (red) squares. The values
of R have been obtained by averaging over a time span of 4·104 time units, after
discarding a transient of N · 103 iterations of the map [52].

The introduction of inhomogeneity in network structure gives rise to
a partial synchronous regime. We consider an Erdös-Renyi (ER) network
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Figure 2.3: In left and right panel we report the firing patterns for resp. ⌧
in

=

0.2, 1.2: s is the index of the neuron firing at time t and the ordering is fixed
according to the randomly–seeded initial condition [52].

where the average connectivity, hki = p ⇥ N , is an extensive quantity.
It is instructive to characterize the network dynamics by monitoring the
Kuramoto parameter [61],

R =
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where h·i denotes a time average, t
i

(m) the m–th spike emitted by neu-
ron i and ✓

i

(t) is the phase of neuron i at time t 2 [t

i

(m), t

i

(m + 1)]. The
phase ✓

i

(t) is useful in order to characterize synchronization between the
spiking times of neurons. In fact, if all neurons fire simultaneously, ✓

i

(t)

rotate in phase and R = 1. On the contrary, if the spiking of neurons
is uncorrelated, ✓

i

(t) are uniformly distributed in [0, 2⇡] and R = 0. In
Fig. 2.2 we plot the Kuramoto parameter R versus the decay time ⌧

in

for a
network with 500 neurons (see the lower curve). For ⌧

in

! 0, the evolu-
tion is perfectly synchronous (R = 1), but upon increasing ⌧

in

, the degree
of synchrony is progressively lost until an almost asynchronous regime
sets in (for ⌧

in

>⇡ 1). The raster plots obtained for different parameter
values reported in Fig. 2.3 help to visualize the underlying dynamics. In
particular, synchrony manifests itself as sharp quasi–synchronous–event
(QSE) for ⌧

in

= 0.2, which spread in time when ⌧

in

is increased, and even-
tually disappear for ⌧

in

⇠ 1.2. Let us fix our attention on the partially
synchronized phase (i.e. ⌧

in

= 0.2) where collective oscillations of global
fields arise. In Fig. 2.4 we plot the global attractor of the system, by plot-
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ting each pair (Y (t),Z(t)). We observe that, apart from fluctuations due

0 0.01 0.02 0.03 0.04

Y(t)

0.92

0.93

Z(t)

Figure 2.4: Global attractor of the QSE dynamical phase represented by the av-
erage synaptic fields Y (t) and Z(t) for N = 10

4 and ⌧
in

= 0.2. Data are reported
after discarding a transient of N · 103 iterations of the map [52].

to finite size effects, the collective dynamics is periodic. An interesting
point to be addressed is the microscopic organization giving rise to such
a collective activity. At variance with the globally coupled model the het-
erogeneity of the network produces a profund difference in the dynamics
of different neurons. In fact, we observe that neurons can be divided in
two families, depending on their dynamics. The first family shows, apart
from finite size fluctuations, a periodic dynamics and its components are
called locked neurons. The second one shows a quasi periodic dynamics
characterized by two frequencies and its components are called unlocked
neurons. In order to characterize the dynamics of neuron i we use the
time interval between two consecutive spikes m and m + 1, namely the
inter–spike interval of neuron i ISI

i

(m) = t

i

(m + 1) � t

i

(m). In Fig. 2.5
we report the microscopic attractor for two neurons belonging to two dif-
ferent families by plotting ISI(m + 1) vs ISI(m) for the considered neu-
rons. We observe that the locked neuron fires periodically with always
the same ISI while the unlocked one spend sometimes firing with the
same frequency of the locked neurons and then anticipates its firing un-
til it turns back firing with the same frequency of locked neurons. This
microscopic scenario is present in all locked and unlocked neurons, in the
sense that the microscopic attractor for locked neurons is the same, as well
as for unlocked neurons. What one observes by following the dynamics
of neurons in time is that locked neurons not only fire with the same fre-
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Figure 2.5: ISI return map for a locked neuron, (red) open circles, and an un-
locked neuron, (black) dots (data have been collected in the same simulation of
Fig.2.4) [52].

quency but also their phases ✓

i

are locked in phase, i.e. they fire almost
simultaneously with a small delay fixed in time. This is the reason why
they are called locked. Furthermore, they always take part to the quasi
synchronous event (see the raster plot in the left panel of Fig. 2.3) and
make the greatest contribution to the Kuramoto parameter R. Unlocked
neurons do not fire periodically and typically fire in between two quasi
synchronous events. After firing in the QSE they anticipate their firing
with respect to locked neurons and then turn back to take part in the clus-
ter. While locked neurons share the same periodicity of the global field
Y (t), unlocked neurons tend to have different average firing frequency.
Nevertheless, unlocked neurons play a crucial role as they produce a col-
lective field that contributes to Y (t) in such a way to sustain the overall
dynamics.

As a result, this model shows how collective oscillations are non triv-
ial and arise as a complex organization of microscopic dynamics. For
the sake of completeness let us remark that non trivial collective oscil-
lations are typically observed in coupled oscillators or neurons models
on extended systems [26, 62] evidencing the robustness of this qualita-
tive scenario with respect to the detail of the model considered. As in the
model here reported this characteristic emerges with the introduction of
topological disorder, in the next chapter it will be shown how a heteroge-
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neous mean field approach permits to perform a stability analysis clarify-
ing what is the topological ingredient acting as a bifurcation parameter to
generate this difference in single neurons dynamics.

2.1.2 Size scaling behavior and chaoticity

The dynamics presented in previous section is strongly dependent on
structural disorder. This is pretty clear from the observation that in glob-
ally coupled network all neurons are synchronized, independently from
the parameter’s values of the model, while the introduction of disorder
gives rise to a complex organization of single units yielding partial syn-
chronous or asynchronous regimes. The Erdös-Renyi model for network
construction gives the possibility to investigate the size effect in the model,
i.e. the dynamics at increasing values of N . In Fig. 2.6 we plot the number
of unlocked neurons in the network N

u

in function of N , for fixed dilution
p = 0.7. We observe that the fraction of unlocked neurons, namely N

u

/N ,

Figure 2.6: Number of unlocked neurons N
u

as a function of the size N . The
(black) dashed line is a power law fit with exponent ⌘ = 0.90 ± 0.01. The mea-
sures have been averaged over 5 different realizations of the disorder (the corre-
sponding error bars are smaller than the symbols) [52].

goes to zero increasing N . This means that the dynamics at increasing N

is different, e.g. the collective field Y (t), as the Kuramoto parameter R,
takes different quantitative values. This is a direct consequence of how
one constructs the succession of graphs at increasing N . In the next chap-
ter we will show how it is possible to construct networks at different sizes
N sharing the same dynamics, also from a quantitative point of view.
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Another issue to be addressed in this framework is the stability of the
network dynamics. This can be done by computing the Lyapunov expo-
nents of the network in partially synchronous regime by using the stan-
dard algorithm by Benettin et al. [63]. In Fig. 2.7a we show the spectrum
of the Lyapunov exponents in a network of N = 50 neurons and for the
phenomenological value ⌧

in

= 0.2. There exists a small positive compo-
nent as it can be appreciated from the inset, which reveals the chaotic
nature of the dynamics. More precisely, the Kaplan–Yorke dimension [64]
is approximately equal to 12, i.e. we are facing a very thin attractor em-
bedded into a configuration space of much higher dimension. The chaotic

0 50 100 150
i

-6

-5

-4

-3

-2

-1

0

λ
i

0 5 10 15i
-0.025

0

0.025

λ
i

a)

100 1000

N

0.01

0.02

0.03

λ
1

b)

Figure 2.7: a) The spectrum of Lyapunov exponents for a diluted network of size
N = 50. In the inset we report a zoom of the spectrum to show the presence of
six positive exponents. In b) it is shown the maximum Lyapunov exponent �

1

as
a function of the number of neurons N: the measures of �

1

have been averaged
over 10 different realizations of the network (the error bars refer to the maximum
deviation from the average). A power-law fit is reported (dashed line) with decay
exponent � = 0.27± 0.01. In both cases we have considered ⌧

in

= 0.2 [52].

nature of the evolution is not at all surprising, given the nonlinear char-
acter of the model. On the other hand, in the thermodynamic limit, one
expect chaos to disappear. In fact, as shown in Fig. 2.7b, the maximum
Lyapunov exponent �

1

vanishes in the limit N ! 1. This is consistent
with previous studies in the absence of synaptic plasticity (see, e.g. [50]),
although the convergence is here significantly slower, �

1

/ N

�� with
� = 0.27 ± 0.01, instead of � = 1/2, as expected on the basis of simple
statistical arguments. This effect, again, is due to the way one constructs
the network. In fact, increasing N , not only statistical fluctuations vanish
as 1/

p
N but also the dynamics itself changes qualitatively (e.g. the num-

ber of unlocked neurons increase) yielding different Lyapunov exponents.
In [52] it is reported an argument to explain the unusual exponent � com-
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bining the scaling of unlocked neurons and of statistical fluctuations. In
the next Chapter we will explain better this point. In particular, it will be
shown how the usual statistical scaling is recovered when one constructs
networks in such a way to conserve the dynamics from a qualitative and
a quantitative point of view (apart from statistical fluctuations).

2.2 Bursting behavior in networks with neurons in silent
regime

Collective oscillations arise in many in vivo experiments and a quite sim-
ple model as that taken here under consideration is able to reproduce
such a collective phenomena. Nevertheless, as discussed in Sec 1.1, dif-
ferent regimes can arise, usually in in vitro conditions. These regimes
are characterized by quite long periods (1 to 100 seconds) where a small
fraction of all neurons emits uncorrelated spikes. These periods are sepa-
rated by bursting events lasting around 100–200 ms where almost all neu-
rons emit more then one spike, called population bursts (PB). The time
interval between two consecutive PB, called inter PB interval (IPBI), is
not regular and follows a long tail statistics [2, 65, 66]. In order to have
a quantitative comparison one can observe that, given the phenomeno-
logical value ⌧

m

= 30ms, the time interval between two consecutive QSE
is around 30/50 ms. Furthermore, there are also qualitative differences.
First, PB are separated by non regular time intervals (i.e. the global field
Y (t) is not periodic) and secondly in the PB all neurons fire more then
once, at variance with QSE that are guided by locked neurons firing just
once for every event. This scenario remains the same also changing the
time scales of synaptic plasticity or the coupling g. In fact, as neurons are
in a firing regime (a = 1.3) and being the network fully excitatory (i.e.
synaptic coupling get the potential v closer to the spiking threshold), the
maximum time interval between two consecutive spikes of a neuron is
⌧

m

ln(a/(a � 1)) ⇠ 44ms. As a result, topological disorder is not enough
to reproduce this scenario that seems to be due to different model char-
acteristics. Accordingly, fixing the topology to be a Erdös-Renyi network
with dilution p = 0.7, in order to obtain a scenario similar from a qual-
itative and a quantitative point of view to in vitro observations one has
to change the excitability of neurons. Nevertheless, by getting a near to
1 the dynamics is qualitatively the same of the QSE one with collective
oscillations, even if the time lapse in between two QSE can increase [69].
In order to observe a qualitative change in the dynamics we need to work
with neurons in silent regime, i.e. a < 1. Nevertheless, if all neurons are
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in silent regime the network does not show spontaneous activity [69]. Ac-
cordingly, one can suppose that every neuron i receives external current
a

i

(t) not constant in time. In particular, let us consider i.i.d. stochastic
variables, that evolve in time according to a random walk between fixed
boundaries, a

min

and a

max

, so that the average external current is defined
as ā = (a

max

+ a

min

)/2. At each step of the random walk the values of a
i

(t)

are independently updated by adding or subtracting with equal proba-
bility a fixed increment �a. Whenever the value of a

i

(t) crosses one of
the two boundaries, it is reset to the same boundary value. The introduc-
tion of this stochastic component prevents the possibility to use the event
driven algorithm to simulate the dynamics. As a result, we integrate the
dynamics at steps. The value of the integration time step has been set
�t = 9 · 10�4 expressed in the adimensional time unit (in physical units
�t = 2.7 · 10�5s). The choice of this value of �t guarantees a sufficient
time sampling of dynamics over the range of parameter values explored
in this paper. Moreover, in numerical simulations we have assumed that
each step of the random walk occurs at each integration time step of the
dynamics. The results hereafter reported have been obtained by fixing
a

max

�a

min

= 0.1001, so that the parameter space can be explored by vary-
ing the parameters �a and ā only. These parameters play a crucial role
for the emerging dynamics. In fact, �a determines the time correlation
of noise and ā the average excitability of neurons. In Fig. 2.8 we plot the
autocorrelation function defined by

f(⌧) =

ha(t+ ⌧)a(t)i � ha(t)i2
�

2

, (2.23)

where h. . . i represents an average over time and realizations and �

2

=

h(a(t) � ha(t)i)2i is the variance. Accordingly, we can change �a to ob-
tain the desired correlation time ⌧

c

. As reported in [69], the role of ā is
essentially that of moving the dynamics from a QSE regime where the
global field shows collective oscillations to a PB regime where QSE turn
into PB and the time lapse in between two consecutive PB is not regular
anymore. When ā is bigger then the critical value a

c

= 1 one observes
QSE separated by almost regular time intervals. For ā sufficiently below
a

c

we observe two main qualitative changes in the dynamics. First, inco-
herent neural activity extends over much longer time lapses and follows
a long tail statistics. Secondly, the QSE turn into PB lasting around 200
ms. The correlation time ⌧

c

determines the shape of the tail in the proba-
bility distribution of the inter–PB–interval (IPBI). As shown in [69], if ⌧

c

is
smaller then the typical values of IPBI the tail has an exponential shape.
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Figure 2.8: Log-lin plot of the time autocorrelation function f(⌧) for a
max

=

1.0001, a
min

= 0.9000. The time variable ⌧ is expressed in units of the ran-
dom walk step. The dashed line is the fit with the function exp(�⌧/⌧

c

), with
⌧
c

= (0.081 ± 0.004)105 (in physical units ⌧
c

= (0.22 ± 0.01)s). The depen-
dence in log-log sale of ⌧

c

on �a (for the same values of a
max

and a
min

) is
shown in the inset: the dashed line is obtained by a fit with the power–law
⌧
c

= A
0

�a�� , where � = 2.05 ± 0.01 and A
0

= (1.296 ± 0.004)10�3 (in physical
units A

0

= (3.50±0.01)10�8s). Data here reported have been obtained averaging
over 103 realizations and 10

3 time lapses (see Eq. 2.23) [69].

Increasing ⌧

c

over the typical values of IPBI the tail turns to have a power
law behavior, that is generally detected in experiments [2]. In Fig. 2.10
we report the raster plot and the IPBI probability distribution that shows
a power law behavior.

As previously remarked, PB last around 200 ms. At variance with
dynamical scenario characterized by up–down states, their duration is
stereotyped and can be controlled by a suitable choice of the synaptic time
scale ⌧

in

, that in these simulations case amounts to 18 ms. Moreover, the
average available synaptic resources (see the green curve in Fig. 2.10)
are recovered over the much longer time scale, in our case ⌧

r

= 2.4 s, so
that in the meanwhile new firing neurons are no more able to produce
an avalanche. Before a new avalanche may occur one has to wait a time
lapse of the order of ⌧

r

and this is the reason why one can observe the
cutoff close to 1s in the IPBI statistics in Fig. 2.10.

Let us remark that, as conjectured by many authors (e.g. see [67, 68]),
typical features of neural activity can be reproduced with a model near
to critical conditions or to some bifurcation point for parameters. This
situation is in accordance with the present scenario. In particular, power
law distributions of the sporadic unsynchronized neural activity observed
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Figure 2.9: Dynamics of a network of N = 500 excitatory LIF neurons with ā =

0.95005 and �a = 6 · 10�6 (correlated noise, ⌧
c

⇠ 1700s) The synaptic parameter
values are u = 0.5, g = 7, ⌧

in

= 0.6 and ⌧
r

= 80. In the upper panel it is reported
the raster plot. In the lower panel it is shown the probability density functions
P of IPBI of a network. Data is plotted by a suitable exponential binning of the
support of the variables. The solid lines are power–law fits, with exponent ↵ =

�2.93 ± 0.05 for IPBI. Data have been obtained with a statistics of 5 · 104 events
[69].
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Figure 2.10: Dynamics of a network of N = 500 excitatory LIF neurons in the
presence of plasticity with ā = 0.95005 and �a = 6 · 10�6 (correlated noise): the
rescaled neuron index k/N is reported as a function of time t (in seconds). The
evolution of the average synaptic fields Y

i

(t) and X
i

(t) are also reported (red
and green curves, respectively). In the inset we show a zoom of a PB event. The
synaptic parameter values are u = 0.5, g = 7, ⌧

in

= 0.6 and ⌧
r

= 80. [69]

in experiments (e.g. see [2]) can be recovered by choosing sufficiently
correlated noise for values of a just below, but sufficiently close to the
critical value a

c

= 1.
The PB dynamical phase here reported can be reproduced also in ab-

sence of topological disorder and noise. In particular, by considering a
globally coupled network and a disorder in leakage currents of neurons
a

i

(notice that these variables do not depend on time anymore), one can
obtain the PB dynamical regime. Consistently for the results reported in
presence of noise, one has to extract the a

i

’s from a distribution P (a) ex-
tending to values a lower then the critical value a

c

= 1. In Fig. 2.11 we re-
poprt the the statistics of IPBI and in the inset the dynamics of the global
field Y (t) for a uniform distribution P (a) in the interval [0.9005, 1.006].
The difference with respect to the correlated noise case is that the IPBI
distribution turns back to be an exponential instead of a power law.

In conclusion, the model here used is able to reproduce a wide variety
of observed behaviors by equipping the model of the disorder component
suitable for certain dynamical phases. Nevertheless, given the complexity
of dynamical equations, the dynamics at finite size N is difficult to be
addressed if not with numerical simulations. In the next chapter we show
how one can analyze finite size dynamics by a mean field approach in the
case of spiking excitatory neurons in random network.
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Figure 2.11: Dynamics of a globally coupled network of N = 500 excitatory LIF
neurons, where the currents a have been extracted from a uniform distribution
P (a) in the interval [0.9005, 1.006]. The synaptic parameter values are u = 0.5,
g = 1.2, ⌧

in

= 0.6 and ⌧
r

= 80. We report the probability density functions P
of IPBI of the network in log–lin scale. Data is plotted by a suitable exponential
binning of the support of the variables and have been obtained with a statistics
of 5 · 104 events. In the inset we plot the time evolution of the global field Y (t).



CHAPTER 3

Heterogeneous mean field and global inverse
problem for random networks of excitatory

neurons

In previous chapters we have seen how a minimal biologically inspired
model of neural ensembles is able to reproduce some observed features of
neural dynamics detected in experiments. The model analysis has been
performed through numerical simulations of finite size samples as the
complexity of equations does not allow for a straightforward analytical
treatment (apart from the case of homogeneous system, i.e. all–to–all
structure). Accordingly, in this chapter we describe how one can take a
step forward for the comprehension of the dynamics of the model, by
manipulating the differential equations of the system.

The starting point is the observation that real neural networks (e.g.
those producing the fields one usually measures in laboratories) are made
up by a finite number of elements. Thus, the main point addressed in
this chapter is the way one can analyze the dynamics of a finite sample
of neurons. The method hereafter reported is based on a mean field ap-
proximation and is quite general, making it applicable to a wide range
of dynamical models on extended structures. Accordingly, we show its
implementation in a simple case of excitatory network in spiking regime,
where disorder is present only on network structure. Nevertheless, this
simple setup has the advantage to reproduce non trivial synchronization
patterns with the emergence of oscillations in global fields.

The mean field model we will obtain permits a deeper understand-
ing of the role of the network structure and how it drives the system
to the partially synchronous self organized dynamics presented in pre-
vious chapter. Furthermore it gives the possibility to formulate and solve
a global inverse problem. Starting from the dynamical signal of the aver-
age synaptic-activity

37
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field, the method provides with good accuracy the in–degree distribu-
tion P (

˜

k) (see Sec. 1.2) of the finite size network that produced it. This
chapter is structured as follows. In Sec. 3.1 it will be shown how it is pos-
sible to perform a mean field approach in this system and under which
assumption. In Sec. 3.2 we will analyze the resulting mean field model
in order to investigate the direct problem, that is the influence of the net-
work structure for the dynamics of neurons. Finally, in Sec.3.4 we will
show how one can formulate and solve the global inverse problem in dif-
ferent network structures.

3.1 Thermodynamic limit and mean field approximation

In this section we discuss how to describe the finite finite size dynamics
of the model discussed in Sec.2.1 through a mean field approximation.
First of all, let us point out the reference system we want to address with
this analysis. Let us consider a finite size sample made of N neurons con-
nected through a random uncorrelated network (see Sec. 1.2). Given a sin-
gle sample, i.e. let us imagine a real group of neurons, one can define the
distribution of specific in degrees P (

˜

k) as the envelope of the histogram
ideally obtained from the finite size sample with adjacency matrix of ele-
ments ✏

ij

. The dynamics of the model can then be obtained by integrating
the equations (1.13)–(1.15).

A possible way to investigate the dynamics is to perform the thermo-
dynamic limit that is expected to provide the basic ingredients for an ana-
lytic treatment. This approach involves the construction of ideal networks
at increasing size with respect to the reference system one we want to in-
vestigate. Nevertheless, the way such a construction is performed may
wipe out any relation with the topological features that are responsible of
the observed relevant dynamical properties. Accordingly, the construc-
tion needs to be done in such way that the dynamics of the network at
every sufficiently large size N maintains the same features. As shown in
Sec.2.2 the Erdős–Rényi way to construct network at different size N with
fixed dilution p does not have this propriety. In fact, the fraction of un-
locked neurons changes increasing N and the dynamics in the thermody-
namic limit is completely synchronous. Accordingly, this procedure does
not keep track of the ingredient responsible for the emergent dynamics.
The dynamics observed in finite size samples is the resultant of a mix-
ture of locked and unlocked neurons. As a consequence, this separation
(i.e. the relative fraction of locked and unlocked neurons) needs to remain
unchanged in order to observe the same dynamical behavior.



Heterogeneous mean field and global inverse problem for random networks of
excitatory neurons 39

0.68 0.7
~
k

1.22

1.24

1.26

<ISI>

Figure 3.1: Average inter spike interval (ISI) of neurons in function of specific
connectivity ˜k = k/N for a Erdős–Rényi network of N = 10

4 neurons with dilu-
tion p = 0.7. Averages have been obtained by sampling 10

4 firing events for each
neuron, after discarding a transient of N · 104 iterations of the map [52].

In Fig. 3.1 it is reported the average ISI of neurons in function of
their rescaled connectivity ˜

k = k/N for a Erdős–Rényi network of N =

10

4 neurons with dilution p = 0.7. We observe a plateau at low con-
nectivity of neurons sharing the same spiking frequency. These neurons
are the locked neurons taking part at the QSE. The other neurons, with
higher connectivity values, have higher spiking frequency and are the
non–periodic unlocked neurons (see Fig.2.5).

From this picture it is quite clear that a crucial role for the microscopic
organization of neurons (and as a consequence for the dynamics of the
system) is the disorder in the connectivity. One can expect that what re-
ally matters is not the absolute connectivity k but the fluctuations of the
relative connectivity k/hki. Nevertheless, for the construction of network
at increasing size we will consider massive networks for which the aver-
age connectivity scales as the size N . Accordingly, the parameter whose
distribution needs to be maintained in order to observe similar dynam-
ical features is the specific connectivity ˜

k. A possible way to construct
network with the same distribution P (

˜

k) is the following [32, 70]. For
every neuron i it is extracted its specific connectivity ˜

k

i

from the distribu-
tion P (

˜

k) and then ˜

kN presynaptic neurons are assigned randomly. No-
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tice that the distribution P (

˜

k) is takes values for ˜

k 2 (0, 1] and has to be
suitably normalized. In particular, if P (

˜

k) is a truncated Gaussian distri-
bution, the dynamics reproduces the scenario discussed in Sec. 2.1 and
shown in Fig. 3.1 for an Erdös–Renyi random graph. The overall scenario
can be further analyzed by plotting the raster plot of a finite size network
where the indexes of neurons are ordered according to their connectivity
(see Fig. 3.2). We observe unlocked neurons at high connectivity (i.e. high
index values) and at low connectivity (i.e. very low index values). Fur-
thermore the maroon crosses represent the mean field Y (t) = 1/N

P
j

y

j

(t)

that shows peaks at the QSE event.
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Figure 3.2: Raster plot of a randomly diluted network containing 500 neurons,
ordered along the vertical axis according to their in–degree. The distribution
P (

˜k) is a Gaussian with h˜ki = 0.7, standard deviation �
˜

k

= 0.077. A black dot in
the raster plot indicates that neuron s has fired at time t. The maroon crosses are
the global field Y (t) and the green (light grey) continuous curve is its analytic fit
by the function Y

f

(t) = Ae
� t

⌧1
+B(e

t
⌧2 �1), that repeats over each period of Y (t);

the parameter values are A = 2 · 10�2, B = 3.56 · 10�6, ⌧
1

= 0.268 and ⌧
2

= 0.141.
Notice that the amplitude of both Y (t) and Y

f

(t) has been suitably rescaled to be
appreciated on the same scale of the Raster plot [71].

In order to check that this construction is the appropriate one in Fig.3.3
we show the time-average of ISI vs ˜

k, here defined as ISI(

˜

k). One can
clearly observe the plateau of locked neurons and the crossover to un-
locked neurons. Notice that in this case, at variance with what observed
in Erdős–Rényi network, there is a family of unlocked neurons at low val-
ues of ˜

k. This family is not observed in Erdős–Rényi case (see Fig.3.1)
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Figure 3.3: Time average of inter-spike intervals ISI(˜k) vs ˜k from a Gaussian
distribution with h˜ki = 0.7 and �

˜

k

= 0.077 and for three networks with N = 500

(blue triangles), N = 5000 (red diamonds), N = 20000 (green squares). For each
size, the average is taken over 8 different realizations of the random network.
We have also performed a suitable binning over the values of ˜k, thus yielding
the numerical estimates of the critical values ˜k

c1

⇡ 0.49 and ˜k
c2

⇡ 0.70. In the
inset we show a zoom of the crossover region close to h˜ki = 0.7. Black dots are
the result of simulations of the mean field dynamics (see Eq.s (3.3)–(3.6)) with
M = 307 [70].

because the standard deviation of ˜k, namely �

˜

k

, is too small and cannot
be decided a priori (apart from changing p). Remarkably, networks of dif-
ferent sizes (N = 500, 5000 and 20000) feature the same dependence of
ISI(

˜

k) on ˜

k. There is not a sharp transition from locked to unlocked neu-
rons, because for finite N the behavior of each neuron depends not only
on its ˜k, but also on neighbor neurons sending their inputs. Nevertheless,
in the inset, the crossover appears to be sharper and sharper for increas-
ing N , as expected for true critical points. Furthermore, the fluctuations
of ISI(˜k) over different realizations, by P (

˜

k), of three networks of differ-
ent size exhibit a peak around ˜

k

c1

and ˜

k

c2

, while they decrease with N as
⇠ N

�1/2 (data not shown). Thus, the qualitative and quantitative features
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of the QSE at finite sizes are expected to persist in the thermodynamic
limit, where fluctuations vanish and it will be shown that the dynamics
of each neuron depends only on its in–degree.

In summary, given a reference sample with its own distribution P (

˜

k),
one needs to construct ideal network at increasing sizes keeping fixed
P (

˜

k). In this way, it is possible preserve the dynamics from a quantitative
and a qualitative point of view, apart from statistical fluctuations.

3.2 Heterogeneous mean field model

The network construction described in previous section preserves the dy-
namics of the system at each size N . This is true in particular in the ther-
modynamic limit, i.e. N ! 1. The dynamics of the model in this limit
can be a addressed through an approximation based on the finite size fluc-
tuations vanishing in this limit. In particular, let us consider a neuron i in
the ideal infinite structure, characterized by the distribution P (

˜

k) of the
finite sample of reference. The field Y

i

received by this neuron is

Y

i

(t) =

1

N

X

j

✏

ij

y

j

(t) =

1

N

X

j2I(i)

y

j

, (3.1)

where I(i) is the set of k
i

neurons transmitting to neuron i. In the thermo-
dynamic limit, as the network is massive, the connectivity k

i

goes to in-
finity and, given the randomness of the network (i.e. the choice of presy-
naptic neurons j 2 I(i) is random) one can assume that

1

k

i

X

j2I(i)

y

j

! 1

N

X

j

y

j

= Y (t) (3.2)

in the limit N ! 1. Accordingly, by combining Eq.s (3.1) and (3.2) one
finds that, in the thermodynamic limit, the field received (apart from the
coupling factor g) by every neuron i is Y

i

=

˜

k

i

Y . Let us point out that for
finite but large values of the connectivity of neurons Eq. (3.2) is an approx-
imation equivalent to say that the average of a large but finite number of
fields chosen randomly in the network is approximately equivalent to the
average over all neurons in the network. We will show that this approx-
imation is valid also when one considers sparse networks and typically
is well satisfied by a quite small value of hki is sufficient (e.g. hki ⇠ 50).
The mean field hypothesis permits to forget about the detail of the net-
work structure, i.e. which neurons fire to the reference neuron i. In order
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to determine the dynamics of neuron i it is sufficient to know its specific
connectivity ˜

k

i

. Accordingly, we can write a dynamical equation for the
class of neurons sharing the same specific connectivity ˜

k. The evolution
equations for each class ˜

k read

v̇

˜

k

(t) = a� v

˜

k

(t) + g

˜

kY (t) (3.3)

ẏ

˜

k

(t) = �y

˜

k

(t)

⌧

in

+ u(1� y

˜

k

(t)� z

˜

k

(t))S

˜

k

(t) (3.4)

ż

˜

k

(t) =

y

˜

k

(t)

⌧

in

� z

˜

k

(t)

⌧

r

, (3.5)

where v

˜

k

, y
˜

k

and z

˜

k

are the membrane potential, fraction of active and
inactive resources of the class of neurons with in–degree ˜

k, respectively
and the mean field Y (t) needs to be consistently written in order sum over
all the microscopic fields y

˜

k

weighted for the fraction P (

˜

k)d

˜

k of neurons
present in that specific class

Y (t) =

Z
1

0

P (

˜

k)y

˜

k

(t)d

˜

k. (3.6)

Notice that ˜k is a continuous variable in the interval (0, 1] and the infinite
set of equations (3.3)–(3.6) is the mean field model relative to a finite size
sample characterized by the distribution P (

˜

k). This model is said hetero-
geneous mean field (HMF) because it keeps track of the inhomogeneity
present in finite size realization. The overall procedure applies to a wide
class of network dynamics of the type described in Eq.(1.4). Actually, the
method can be extended to a more general class of the type

˙w
i

= F
⇣

w
i

,

g

N

X

j 6=i

✏

ij

G(w
j

)

⌘
, (3.7)

where the vector w
i

represents the state of the site i, F(w
i

, 0) = F is the
single site dynamics (see Eq. (1.4)), g is the coupling strength, G(w

j

) is
the coupling function and ✏

i,j

is the adjacency matrix of the directed un-
correlated network. In this case, calling E(t) the mean field, the evolution
equations corresponding to Eq.s (3.3)–(3.6) read

˙w
˜

k

= F
⇣

w
˜

k

, g

˜

kE(t)

⌘
(3.8)

E(t) =

Z
1

0

P (

˜

k)G(w
˜

k

(t))d

˜

k. (3.9)
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Despite this set of equations (3.3)–(3.6) cannot be solved explicitly, they
provide a great numerical advantage with respect to direct simulations of
large systems. Actually, the basic features of the dynamics of such systems
can be effectively reproduced (modulo finite–size corrections) by exploit-
ing a suitable sampling of P (

˜

k). One can subdivide the support (0, 1] of
˜

k by M values ˜

k

i

(i = 1, · · · ,M), in such a way that
R

˜

ki+1

˜

ki
P (

˜

k)d

˜

k is con-
stant (importance sampling). Notice that the integration of the discretized
HMF equations is much less time consuming than the simulations per-
formed on a random network. For instance, numerical tests indicate that
the dynamics of a network with N = 10

4 neurons can be confidently re-
produced by an importance sampling with M = 300.

The effect of the discretization of ˜k on the HMF dynamics can be an-
alyzed by considering the distance d(Y

M1(t), YM2(t)) between the global
activity fields Y

M1(t) and Y

M2(t) (see Eq.(3.6)) obtained for two different
values M

1

and M

2

of the sampling, i.e.:

d(Y

M1(t), YM2(t)) =

 
1

T

TX

i=1

(Y

M1(ti)� Y

M2(ti))
2

Y

M1(ti)
2

! 1
2

. (3.10)

In general Y (t) exhibits a quasi periodic behavior and d(Y

M1(t), YM2(t)) is
evaluated over a time interval equal to its period T . In order to avoid an
overestimation of d(Y

M1(t), YM2(t)) due to different initial conditions, the
field Y

2

(t) is suitably translated in time in order to make its first maxi-
mum coincide with the first maximum of Y

1

(t) in the time interval [1, T ].
In Fig. 3.4 we plot d

M

= d(Y

M

, Y

M/2

) as a function of M . We find that
d

M

⇠ 1/

p
M , thus confirming that the finite size simulation of the HMF

dynamics is consistent with the HMF model (M ! 1).
This result shows that the HMF model is well defined and that its dy-

namics can be exploited by a quite reduced computational cost. To check
its validity in Fig.3.3 we compare ISI(

˜

k), obtained from the HMF equa-
tions for M = 307, with the same quantity computed by direct simula-
tions of networks up to size N = 2 ⇥ 10

4. The agreement is remarkable
evidencing the numerical effectiveness of the method and the capacity of
the HMF model to reproduce finite size dynamics.

3.3 HMF: the direct problem

In this Section we report the main results one can obtain through the HMF
model in the framework of the direct problem, i.e. given a distribution
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Figure 3.4: The effect of sampling the probability distribution P (

˜k) with M
classes of neurons in the HMF dynamics. Finite size effects are controlled by
plotting the distance between the activity fields obtained for two sampling val-
ues M and M/2, d

M

= d(Y
M

(t), Y
M/2

(t)) (defined in the text), vs. M . The red
dashed line is the power law 1/

p
M . Data is obtained for a Gaussian distribution

P (

˜k), with h˜ki = 0.7 and �
˜

k

= 0.077 [71].

P (

˜

k) how it drives the microscopic and collective dynamics. The, we re-
port on the chaoticity of the HMF model through the calculation of the
Lyapunov exponents, i.e. orbit separation. Furthermore we show that the
overall method can be applied in the case of sparse networks and that the
mean field approximation remains valid also for quite low when connec-
tivity values.

3.3.1 Stability analysis and chaoticity

In the HMF equations, once the global field Y (t) is known, the dynam-
ics of each class of neurons with in-degree ˜

k can be determined by a
straightforward integration, and we can perform the stability analysis
that Tsodyks et al. applied to a similar model [56]. As an example, we
have considered the system studied in Fig.3.2 and 3.3. The global field
Y (t) of the HMF dynamics has been obtained using the importance sam-
pling for the distribution P (

˜

k). For sufficiently large M the discretized
HMF dynamics allows one to obtain a precise fit of the periodic function
Y (t) and to estimate its period T . As an instance of its periodic behavior,
in Fig.3.2 we report also Y (t) (maroon crosses) and its fit (green continu-
ous line and the formula in the caption). The fitted field is exactly periodic
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Figure 3.5: The return map R
˜

k

in Eq. (3.12) of the rescaled variables t
˜

k

(n)/T for
different values of ˜k, corresponding to lines of different colors, according to the
legend in the inset: the black line is the bisector of the square [70].

and is a good approximation of the global field that one expects to observe
in the mean field model corresponding to an infinite discretization M . As
a result, the analysis performed using this periodic field are relative to the
dynamics of the HMF model, i.e. in the limit M ! 1. Let us call Y

f

(t) the
fitted field, continuous and periodic in time, with period T . Accordingly,
Eq. (3.3) can be approximated by

v̇

˜

k

(t) = a� v

˜

k

(t) + g

˜

kY

f

(t). (3.11)

Notice that, by construction, the field Y

f

(t) features peaks at times
t = nT , where n is an integer. In this way we can represent Eq. (3.11)
as a discrete single neuron map. In practice, we integrate Eq.(3.11) and
determine the sequence of the (absolute value of the) firing time–delay,
t

˜

k

(n), of neurons with in–degree ˜

k with respect to the reference time nT .
The return map R

˜

k

of this quantity reads

t

˜

k

(n+ 1) = R

˜

k

t

˜

k

(n). (3.12)
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In Fig. 3.5 we plot the return map of the rescaled firing time–delay t

˜

k

(n)/T

for different values of ˜k. We observe that in-degrees ˜

k corresponding to
locked neurons (e.g., the brown curve) have two fixed points t

s

˜

k

and t

u

˜

k

,
the first one is stable (the derivative of the map R

˜

k

is < 1 ) and the sec-
ond unstable (the derivative of the map R

˜

k

is > 1). Clearly, the dynamics
converges to the stable fixed point displaying a periodic behavior. In par-
ticular, the firing times of neurons ˜k are phase shifted of a quantity t

s

˜

k

with
respect the peaks of the fitted global field. The orange and violet curves
correspond to the dynamics at the critical in-degrees ˜k

c1

and ˜

k

c2

where the
fixed points disappear (see Fig.(3.3)). The presence of such fixed points in-
fluences also the behavior of the unlocked component (e.g., the red and
light blue curves). In particular, the nearer ˜

k is to ˜

k

c1

or to ˜

k

c2

, the closer
is the return map to the bisector of the square, giving rise to a dynam-
ics spending longer and longer times in an almost periodic firing. After-
wards, unlocked neurons depart from this almost periodic regime, thus
following an aperiodic behavior. As a byproduct, this dynamical analysis
allows to estimate the values of the critical in–degrees. For the system
of Fig.3.2, ˜k

c1

= 0.48 and ˜

k

c2

= 0.698, in very good agreement with the
numerical simulations (see Fig. 3.3).

A further investigation of the HMF model concerns its stability prop-
erties. From the picture described in Sec.2.2 it is clear that the dynamics of
every finite size sample shows deterministic chaos. Nevertheless, in the
thermodynamic limit and in the mean field model one expects fluctua-
tions to vanish, yielding a non chaotic dynamics. Using the deterministic
map (3.12), one can tackle in full rigor the stability problem of the HMF
model. The existence of stable fixed points for the locked neurons im-
plies that they yield a negative Lyapunov exponent associated with their
periodic evolution.

As for the unlocked neurons, their Lyapunov exponent, �
˜

k

, can be cal-
culated numerically by the time-averaged expansion rate of nearby orbits
of map (3.12):

�

˜

k

(n) =

1

n

nX

j=1

log

"
|�(j)|
|�(0)|

#
, (3.13)

where �(0) is the initial distance between nearby orbits and �(j) is their
distance at the j–th iterate, so that

�

˜

k

= lim

n!1
�

˜

k

(n) (3.14)

if this limit exists. The Lyapunov exponents for the unlocked component
vanish as �

˜

k

(n) ⇠ 1/n. According to these results, one expects that the
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maximum Lyapunov exponent �

max

(M) goes to zero in the limit M !
1. In fact, at each finite M , �

max

can be evaluated by using the standard
algorithm by Benettin et al. [63]. In Fig.3.6 we plot �

max

as a function
of the discretization parameter M . Thus, �

max

(M) is positive, behaving
approximately as M�� , with � ⇠ 1/2 (actually, we find � = 0.55).

The scenario in any discretized version of the HMF dynamics is the
following: (i) all unlocked neurons exhibit positive Lyapunov exponents,
i.e. they represent the chaotic component of the dynamics; (ii) �

max

is typ-
ically quite small, and its value depends on the discretization parameter
M and on P (

˜

k); (iii) in the limit M ! 1 �

max

and all �
˜

k

’s of unlocked
neurons vanish, thus converging to a quasi periodic dynamics, while the
locked neurons persist in their periodic behavior.

The same scenario is observed in the dynamics of random networks
built with the HMF strategy, where the variance of the distribution P (

˜

k)

is kept independent of the system size N , so that the fraction of locked
neurons is constant.

For the LIF dynamics in an Eördos–Renyi random network with N

neurons, it was found that �
max

(N) ⇡ N

�0.27 in the limit N ! 1 (see Fig.
2.7). According to the argument proposed in [52], the value of the power-
law exponent is associated to the scaling of the number of unlocked neu-
rons, N

u

with the system size N , namely N

u

⇠ N

0.9. The same argument
applied to HMF dynamics indicates that the exponent � ⇠ 1/2, ruling the
vanishing of �

max

(M) in the limit M ! 1, stems from the fact that the
HMF dynamics keeps the fraction of unlocked neurons constant.

This picture shows that the HMF model describes the backbone of the
microscopic and macroscopic dynamical attractors (see Fig.s 2.4 and 2.5),
delaying finite size fluctuations. This permits some easier treatments of
the equations (e.g. the map 3.12), being confident with the fundamental
aspects of finite size samples dynamics.

3.3.2 The role of P (

˜

k)

Still in the perspective of the direct problem, the HMF equations provide
further insight on how the network topology influences the dynamical
behavior. In particular, in this Section we will analyze the different collec-
tive dynamics that may emerge for choices of P (

˜

k) other than the Gaus-
sian case, discussed in the previous section. We will focus mainly in two
different distributions. The first one is a power–law distribution

P (

˜

k) = A

˜

k

�↵

, (3.15)
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Figure 3.6: The maximum Lyapunov exponent �
max

as a function of the sampling
parameter M : �
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has been averaged also over ten different realizations of the
network (the error bars refer to the maximum deviation from the average). The
dashed red line is the powerlaw M�� , with � = 0.55 [71].

where the constant A is given by the normalization condition
R

1

˜

km
P (

˜

k)d

˜

k =

1. The lower bound ˜

k

m

is introduced in order to maintain A finite. For
simplicity, we fix the parameter ˜k

m

and analyze the dynamics by varying
↵. Notice that the standard deviation �

˜

k

of distribution (3.15) decreases
for increasing values of ↵. Another distribution, generating an interesting
dynamical phase, is

P (

˜

k) = Bexp

 
� (

˜

k � p

1

)

2

2�

2

s

!
+Bexp

 
� (

˜

k � p

2

)

2

2�

2

s

!
, (3.16)

i.e. the sum of two Gaussians peaked around different values, p
1

and p

2

,
of ˜k, with the same variance �

2

s

. B is the normalization constant such thatR
1

0

P (

˜

k) = 1. In the rest of this Section we fix p

1

= 0.5.
We have found that, in general, the fraction of locked neurons in-

creases as P (

˜

k) becomes sharper and sharper, while synchronization is
eventually lost for broader distributions. In Fig. 3.7 we report the fraction
of locked neurons, f

l

=

R
˜

kc2
˜

kc1
P (

˜

k)d

˜

k (actually in Figure it s reported the
percentage), as a function of the standard deviation �

˜

k

, for different kinds
of P (

˜

k) (single or double–peaked Gaussian, power law) in the HMF equa-
tions. In all cases, there is a critical value �

⇤ of �
˜

k

above which f

l

vanishes,
i.e. QSE disappear. This asynchronous dynamical phase is characterized
by a mean field Y (t) exhibiting fluctuations due to finite size effects and
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Figure 3.7: The fraction of locked neurons (actually we report the percentage), f
l

,
as a function of the standard deviation �

˜

k

of the distributions: truncated Gaus-
sian with h˜ki = 0.7 (black dots); truncated superposition of two Gaussians (both
with standard deviation �

s

= 0.03), one centered at p
1

= 0.5 and the other one
at a varying value p

2

, that determines the overall standard deviation �
˜

k

(blue
squares); truncated power law distribution with ˜k

m

= 0.1 (red diamonds). In the
last case the value of the standard deviation is changed by varying the exponent
↵, while the average h˜ki changes accordingly. Lines have been drawn to guide
the eyes [70].

in the thermodynamic limit it tends to a constant value Y

⇤. From Eq.s
(3.3)–(3.5), one obtains that in this regime each neuron with in–degree ˜

k

fires periodically with a period

T

˜

k

= ln

"
b+ g

˜

kY

⇤

b+ g

˜

kY

⇤ � 1

#
,

while its phase depends on the initial conditions. The phases of neu-
rons are correlated in such a way to distribute properly yielding an asyn-
chronous state, i.e. the Kuramoto parameter R = 0 (see Eq. (2.21)). As a
further remark, in this case all the Lyapunov exponents �

˜

k

are negative.
The generality of this scenario points out the importance of the relation

between P (

˜

k) and the average synaptic field Y (t).
This picture signals a very interesting dynamical transition between

the quasi-synchronous phase (�
˜

k

< �

⇤) to a multi-periodic phase (�
˜

k

>

�

⇤), where all neurons are periodic with different periods.
Let us take under consideration now the single cases of power law and

double Gaussian distributions. In the case of the power law the dynam-
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ics for relatively high ↵ is very similar to the quasi–synchronous regime
observed for �

˜

k

< �

⇤ in the Gaussian case (see Fig. 3.2). By decreasing
↵ one can observe again a transition to the asynchronous phase observed
for �

˜

k

> �

⇤ in the Gaussian case. Accordingly, also for the power–law dis-
tribution (3.15) a phase with locked neurons may set in only when there
is a sufficiently large group of neurons sharing close values of ˜k. In fact,
the group of locked neurons is concentrated at values of ˜k quite close to
the lower bound ˜

k

m

, while in the Gaussian case they concentrate at values
smaller than h˜ki.

A more complex scenario appears for the double Gaussian of Eq. (3.16).
If �

s

is very large (� & 0.1), the situation is the same observed for a sin-
gle Gaussian with large variance, yielding a multi–periodic asynchronous
dynamical phase.

For intermediate values of �

s

i.e. 0.05 . � . 0.1, the dynamics of
the network can exhibit a quasi–synchronous phase or a multi–periodic
asynchronous phase, depending on the value of �. In fact, one can eas-
ily realize that this parameter tunes the standard deviation of the overall
distribution: small separations amount to broad distributions.

Finally, when �

s

. 0.05, a new dynamical phase appears. For small

0 0.2 0.4 0.6 0.8 1
~
k

1.1

1.2

1.3

1.4

1.5

 T  isi  
 ~
k

11788 11792

t

0

100

200

300s

Figure 3.8: The time average of the inter–spike interval T isi

˜

k

vs. ˜k for the probabil-
ity distribution P (

˜k) defined in Eq.(3.16), with � = |p
2

�p
1

| = 0.4, and �
s

= 0.03.
We have obtained the global field Y (t) simulating the HMF dynamics with a dis-
cretization with M = 300 classes of neurons. We have then used Y (t) to calculate
T isi of neurons evolving Eq. (3.3). In the inset we show the raster plot of the
dynamics: as in Fig.1, neurons are ordered along the vertical axis according to
their in–degree [71].
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values of � (e.g. � ⇡ 0.1) , we observe the usual QSE scenario with
one family of locked neurons (data not shown). However, when � is
sufficiently large (e.g. � ⇡ 0.4), each peak of the distribution generates
its own group of locked neurons. More precisely, neurons separate into
three different sets: two locked groups, that evolve with different periods,
T

1

and T

2

, and the unlocked group. In Fig.3.8 we show the dependence of
the average inter spike interval, here called T

isi

˜

k

, on ˜

k and the raster plot
of the dynamics (see the inset) for �

s

= 0.03 .
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Figure 3.9: The frequency spectra of the global activity field Y (t) for different
in–degree probability distributions. The black spectrum with stars has been ob-
tained for the HMF dynamics with M = 350, generated by the power law prob-
ability distribution P (

˜k) ⇠ ˜k�4.9 (see Eq.(3.15)), with ˜k
m

= 0.1: in this case there
is a unique family of locked neurons generating a periodic global activity field
Y (t). The red continuous line spectrum has been obtained for a random network
of N = 300 neurons generated by the double Gaussian distribution (see Eq.(3.16))
described in Fig.s 6 and 7: in this case two families of locked neurons are present
while, as reported in the inset, Y (t) exhibits a quasi–periodic evolution [71].

Notice that the plateaus of locked neurons extend over values of ˜k on
the left of p

1

and p

2

. In the inset of Fig. 3.9 we plot the global activity field
Y (t): the peaks of the signal represent the quasi-synchronous firing events
of the two groups of locked neurons. One can also observe that very long
oscillations are present over a time scale much larger than T

1

and T

2

. They
are the effect of the firing synchrony of the of two locked families. In
fact, the two frequencies !

1

= 2⇡/T

1

and !

2

= 2⇡/T

2

are in general not
commensurate, and the resulting global field is a quasi–periodic function.
This can be better appreciated by looking at Fig.3.9, where we report the
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frequency spectrum of the signal Y (t) (red continuous curve). We observe
peaks at frequencies ! = n!

1

+ m!

2

, for integer values of n and m. For
comparison, we report also the spectrum of a periodic Y (t), generated
by the HMF with power law probability distribution (3.15), with ↵ = 4.9

(black curve with stars): in this case the peaks are located at frequencies
multiples of the frequency of the locked group of neurons.

On the basis of this analysis, we can conclude that slow oscillations
of the global activity field Y (t) may signal the presence of more than one
group of topologically homogeneous (i.e. locked) neurons. Moreover, we
have also learnt that one can generate a large variety of global synap-
tic activity fields by selecting suitable in-degree distributions P (

˜

k), thus
unveiling unexpected perspectives for exploiting a sort of topological en-
gineering of the neural signals. For instance, one could investigate which
kind of P (

˜

k) could give rise to an almost resonant dynamics, where !

2

is
close to a multiple of !

1

.

3.3.3 HMF in sparse networks

In this section we analyze the effectiveness of the HMF approach for sparse
networks, i.e. networks where the neurons degree does not scale linearly
with N and, in particular, the average degree hki is independent of the
system size. In this context, the coupling term describing the membrane
potential of a generic neuron i, in a network of N neurons, evolves ac-
cording to the following equation:

v̇

i

= a� v

i

+

g

hki
X

j 6=i

✏

ij

y

j

, (3.17)

while the dynamics of y
i

is the same of Eq.s (1.10)–(1.12). The coupling
therm is now independent of N , and the normalization factor, hki, has
been introduced in order to compare models with different average con-
nectivity. The structure of the adjacency matrix ✏

ij

is determined by choos-
ing for each neuron i its in-degree k

i

from a probability distribution P (k

i

)

(with support over positive integers) independent of the system size.
On sparse networks the HMF model is not recovered in the thermo-

dynamic limit, as the fluctuations of the field received by each neuron of
in–degree k

i

do not vanish for N ! 1. Nevertheless, for large enough
values of k

i

, one can expect that the fluctuations become negligible in such
a limit, i.e. the synaptic activity field received by different neurons with
the same in-degree is approximately the same. Eq. (3.17) can be turned
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Figure 3.10: Comparison of the global synaptic activity field Y (t) from sparse
random networks with the same quantity generated by the corresponding HMF
dynamics. We have considered sparse random networks with N = 10

4 neu-
rons. In the upper panel we consider a Gaussian probability distributions
P (k) with different averages hki and variances �

k

, such that �
k

/hki = 0.06:
hki = 10, 20, 60, 100 correspond to the grey continuous curve, orange dots and
segments, red segments and blue dots, respectively. The black continuous line
represents Y (t) from the HMF dynamics (M = 10

3), where ˆP (

ˆk) is a Gaussian
probability distribution with hˆki = 1 and �

ˆ

k

= �
k

/hki = 0.06. In the lower panel
we consider the scale free case with fixed power exponent ↵ and different k

m

:
k
m

= 10, 30, 70 correspond to the grey continuous line, red segments and blue
dots, respectively. The black continuous line represents Y (t) from the HMF dy-
namics (M = 10

3), where ˆP (

ˆk) = (↵ � 1)

ˆk�↵ with cutoff ˆk
m

= 1. Notice that
in both cases decreasing hki decreases the peak of the curve with respect to the
HMF curve peak [71].
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into a mean–field like form as follows

v̇

i

= a� v

i

+

g

hkikiY , (3.18)

where Y (t) represents the global field, averaged over all neurons in the
network. This implies that the equation is the same for all neurons with
in–degree k

j

, depending only on the ratio ˆ

k

i

= k

i

/hki. Consequently, also
in this case one can read Eq. (3.18) as a HMF formulation of Eq. (3.17),
where each class of neurons ˆk evolves according to to Eq.s (3.3)–(3.5), with
ˆ

k replacing ˜

k, while the global activity field is given by the relation Y (t) =R1
0

ˆ

P (

ˆ

k)y

ˆ

k

(t)d

ˆ

k.
In order to analyze the validity of the HMF as an approximation of

models defined on sparse networks, we consider two main cases: (i) ˆ

P (

ˆ

k)

is a truncated Gaussian with average hˆki = 1 and standard deviation �

ˆ

k

;
(ii) ˆ

P (

ˆ

k) = (↵ � 1)

ˆ

k

�↵ is a power–law (i.e., scale free) distribution with
a lower cutoff ˆk

m

= 1. The Gaussian case (i) is an approximation of any
sparse model, where P (k

j

) is a discretized Gaussian distribution with pa-
rameters hki and �

k

, chosen in such a way that �
ˆ

k

= �

k

/hki. The scale free
case (ii) approximates any sparse model, where P (k

j

) is a power law with
exponent ↵ and a generic cutoff. Such an approximation is expected to
provide better results the larger is hki, i.e. the larger is the cutoff k

m

of the
scale free distribution. In Fig. 3.10 we plot the global field emerging from
the HMF model, superposing those coming from a large finite size realiza-
tion of the sparse network, with different values of hki for the Gaussian
case (upper panel) and of k

m

for the scale free case (lower panel). The
HMF equations exhibit a remarkable agreement with models on sparse
network, even for relatively small values of hki and k

m

. This analysis in-
dicates that the HMF approach works also for non–massive topologies,
provided the typical connectivities in the network are large enough, e.g.
hki ⇠ O(10

2

) in a Gaussian random network with N = 10

4 neurons (see
Fig. (3.10)).

Finally, let us point out again that a real network, i.e. the reference
finite size sample one wants to address, is neither sparse or massive as
its size N is fixed. Accordingly, the use of massive or sparse graphs to
construct networks at increasing size represents just two different possi-
bilities. The rescaling factor hki or N in the real network is a fixed number
and can be seen as a rescaling of the coupling g. The only difference is
that for the massive construction the HMF is exact in the limit N ! 1
while in the sparse case the HMF equations are always an approximation.
On the other hand, the analysis of the sparse construction shows that the
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mean field hypothesis is satisfied also for quite small values of neurons
connectivities.

3.4 HMF: global inverse problem, from synaptic activity
to network topology

A central problem in the contest of neural network dynamics is the recon-
struction of neural connectivities from experimental observations. This
is a typical inverse problem and has been mainly addressed through in
local approaches [9, 10, 11, 12]. In this way the network is reconstructed
through the knowledge of long time series of single neuron dynamics, a
methods that applies efficiently to small systems only. Actually, the sig-
nals emerging during neural time evolution are often records of the aver-
age synaptic activity from large regions of the cerebral cortex – a kind of
observable likely much easier to be measured than signals coming from
single neuron activities [14, 15, 13]. Inferring the topological properties
of the network from global signals is still an open and central problem
in neurophysiology. In this section we investigate the possibility of for-
mulating and solving such a global version of the inverse problem, re-
constructing the network topology that has generated a given global (i.e.
average) synaptic-activity field. The solution of such an inverse problem
could also imply the possibility of engineering a network able to produce
a specific average signal.

3.4.1 Formulation and solution to the global inverse problem

The HMF approach allows to implement the inverse problem and leads
to the reconstruction of the distribution P (

˜

k) from the knowledge of Y (t).
If the global synaptic activity field Y (t) is known, each class of neurons of
in-degree ˜

k evolves according to the equations:

˙v
˜

k

(t) = a� v
˜

k

(t) + g

˜

kY (t) (3.19)

˙y
˜

k

(t) = �y
˜

k

(t)

⌧in
+ u(1� y

˜

k

(t)� z
˜

k

(t))

˜

S

˜

k

(t) (3.20)

˙z
˜

k

(t) =

y
˜

k

(t)

⌧in
� z

˜

k

(t)

⌧r
. (3.21)

Notice that the variable v(t), y(t), z(t) can take values that differ from the
variables generating the field Y (t), i.e. v(t), y(t), z(t), as they start from
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different initial conditions. However, the self consistent relation for the
global field Y (t) implies:

Y (t) =

Z
1

0

P (

˜

k)y
˜

k

(t)d

˜

k . (3.22)

If Y (t) and y
˜

k

(t) are known, this is a Fredholm equation of the first kind in
P (

˜

k) [72]. In the general case of Eq. (3.7), calling E(t) the global measured
external field, the evolution equations corresponding to Eq.s (3.19)–(3.21)
read

˙w
˜

k

= F
⇣
w

˜

k

, g

˜

kE(t)

⌘
(3.23)

and the Fredholm equation for the inverse problem is

E(t) =

Z
1

0

P (

˜

k)G(w
˜

k

(t))d

˜

k . (3.24)

In the case of our LIF model, as soon as a locked component exists, Eq.
(3.22) can be solved by a functional Montecarlo minimization procedure
applied to a sampled P (

˜

k). At variance with the direct problem, P (

˜

k)

is the unknown function and, accordingly, we have to adopt a uniform
sampling of the support of ˜k. A sufficiently fine sampling has to be used
for a confident reconstruction of P (

˜

k) (See Appendix A).
To check our inverse method, we choose a distribution P (

˜

k), evolve
the system and extract the global synaptic field Y (t). We then verify if the
procedure reconstructs correctly the original distribution P (

˜

k). In panels
(a), (b) and (c) of Fig. 3.11 we show examples in which Y (t) has been
obtained from the simulation of the HMF with different P (

˜

k) (Gaussian,
double peak Gaussian and power law). We can see that the method deter-
mines confidently the original distribution P (

˜

k). Notice that the method
fails as soon as the locked component disappears, as explained in the
methods section. Remarkably, the method can recognize the discontinu-
ity of the distribution in ˜

k =

˜

k

min

and the value of the exponent of the
power law ↵ = 4.9.

This test means that for the HMF model the global inverse problem can
be formulated and solved for global fields showing collective oscillations.
Nevertheless, the HMF is a good representation of the dynamics of a finite
size sample characterized by a distribution P (

˜

k). Accordingly, in panel (d)
of Fig.3.11, we show the result of the inverse problem for the distribution
P (

˜

k) obtained from a global signal generated by a finite size realization
with N = 500 and hki = 350. The significant agreement indicates that the
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Figure 3.11: Inverse problem for P (

˜k) from the global field Y (t). Panels (a),
(b) and (c) show three distributions of the kind considered in Fig. (4) (black
continuous curves) for the HMF equations and their reconstructions (circles) by
the inverse method. The parameters of the three distributions are �

˜

k

= 0.043,
˜k
2

= 0.7 and ↵ = 4.9. In panel (d) we show the reconstruction (crosses) of P (

˜k)
(black continuous line) by the average field Y (t) generated by the dynamics of a
finite size network with N = 500 [70].

HMF and its inverse problem are able to infer the in–degree probability
distribution P (

˜

k) even for a realistic finite size network. This last result is
particularly important, as it opens new perspectives for experimental data
analysis, where the average neural activity is typically measured from
finite size samples with finite but large connectivity.

Finally, let us point out that in many experiments one has access to the
global field V (t). Nevertheless, integrating over k Eq. (3.3) one has

Y (t) =

a� ˙

V (t)� V (t)

ghki . (3.25)

Thus, again, one can write a self consistency equation with the unknown
distribution P (k).

3.4.2 Robustness with respect to noise

In this section we want to study the robustness of the HMF equations
and of the corresponding inverse problem procedure in the presence of
noise. This is quite an important test for the reliability of the overall HMF
approach. In fact, a real neural structure is always affected by some level
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of noise, that, for instance, may emerge in the form of fluctuations of ionic
or synaptic currents.

For the sake of simplicity, here we introduce noise by turning the ex-
ternal current a, in Eq. (3.3), from a constant to a time and neuron depen-
dent stochastic processes a

˜

k

(t). Precisely, the a

˜

k

(t) are assumed to be i.i.d.
stochastic variables, that evolve in time as a random walk with bound-
aries, a

min

and a

max

(the same rule adopted in Sec. 2.2). Accordingly, the
average value, ā of a

˜

k

(t) is given by the expression ā = (a

min

+ a

max

)/2,
while the amplitude of fluctuations is � = a

max

� a

min

. At each step of
the walk, the values of a

˜

k

(t) are independently updated by adding or
subtracting, with equal probability, a fixed increment �a. Whenever the
value of a

˜

k

(t) crosses one of the boundaries, it is reset to the boundary
value.

Since the dynamics has lost its deterministic character, its numerical
integration cannot exploit an event driven algorithm, and one has to in-
tegrate Eq.s (3.3) –(3.5) by a scheme based on explicit time discretiza-
tion. The results reported hereafter refer to an integration time step �t =

9 · 10�4, that guarantees an effective sampling of the dynamics over the
whole range of parameter values that we have explored. We have as-
sumed that �t is also the time step of the stochastic evolution of a

˜

k

(t).
Here we consider the case of uncorrelated noise, that can be obtained

by a suitable choice of �a (see Fig. 2.8). In our simulations �a = 10

�2,
that yields a value O(10

�2

) of the correlation time of the random walk
with boundaries. This value, much smaller than the value O(1) typical
of T isi, makes the stochastic evolution of the external currents, a

˜

k

(t), an
effectively uncorrelated process with respect to the typical time scales of
the neural dynamics. In Fig. 3.12 we show Y (t), produced by the dis-
cretized HMF dynamics with M = 4525 and for a Gaussian distribution
P (

˜

k), with h˜ki = 0.7 and �

˜

k

= 0.0455. Curves of different colors corre-
spond to different values of �. We have found that up to � ' 0.1, i.e. also
for non negligible noise amplitudes (ā = 1), the HMF dynamics is practi-
cally unaffected by noise. By further increasing �, the amplitude of Y (t)

decreases, as a result of the desynchronization of the network induced by
large amplitude noise.

Also the inversion procedure exhibits the same robustness with re-
spect to noise. As a crucial test, we have solved the inverse problem to
recover P (

˜

k) by injecting the noisy signal Y (t) in the noiseless equations
(3.19)–(3.21), where a = ā (see Fig.3.12). The reconstructed distributions
P (

˜

k), for different �, are shown in Fig. 3.13. For relatively small noise am-
plitudes (� < 0.1) the recovered form of P (

˜

k) is quite close to the original
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Figure 3.12: The global activity field Y (t) of the HMF dynamics, sampled by
M = 4525 classes of neurons, for a gaussian probability distribution P (

˜k), with
h˜ki = 0.7 and �

˜

k

= 0.0455. Lines of different colors and style correspond to
different values of the noise amplitude, �, added to the external currents a

˜

k

(t).
Notice that increasing � decreases the peak of the curve. In particular, � = 0

(black continuous line), � = 0.1 (red dots), � = 0.15 (green segments), � = 0.2
(blue dots and segments) and � = 0.3 (grey continuous line) [71].

one, as expected because the noisy Y (t) does not differ significantly from
the noiseless one. On the contrary, for relatively large noise amplitudes
(� > 0.1), the recovered distribution P (

˜

k) is broader than the original one
and centered around a shifted average value h˜ki. The dynamics exhibits
much weaker synchrony effects, the same indeed one could observe for
the noiseless dynamics on the lattice built up with this broader P (

˜

k) given
by the inversion method.

As a matter of fact, the global neural activity fields obtained by exper-
imental measurements are unavoidably affected by some level of noise.
Accordingly, it is worth investigating the robustness of the inversion method
also in the case of noise acting directly on Y (t). In order to tackle this prob-
lem, we have considered a simple noisy version of the global synaptic ac-
tivity field, defined as Y

�

(t) = (1 + ⌘(t))Y (t), where the random number
⌘(t) is uniformly extracted, at each integration time step, in the interval
[� �

2

,

�

2

].
In Fig. 3.14 we show the distributions P (

˜

k) obtained for different val-
ues of �. We can conclude that the inversion method is quite stable with
respect to this additive noise. In fact, even for very large signal–to–noise
ratio (e.g. low–right panel of Fig. 3.14, where � = 0.8) the main features of
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Figure 3.13: Solution of the inverse problem by the HMF equations in the pres-
ence of noise added to the external currents. We consider the same setup of
Fig. 9 and we compare, for different values of the noise amplitude �, the re-
constructed probability distribution P (

˜k) (red circles) with the original gaussian
distribution (black line): the upper–left panel corresponds to the noiseless case
(� = 0), while the upper–right, the lower–left and and the lower–right corre-
spond to � = 0.1, 0.2, 0.3, respectively [71].

the original distribution are still recovered, within a reasonable approxi-
mation.
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Figure 3.14: Solution of the inverse problem by the HMF equations in the pres-
ence of noise added to the activity field. We consider the same setup of Fig. 9,
where now a = 1 and Y

�

(t) = (1�⌘(t))Y (t) (the random variable ⌘(t) is extracted
from a uniform probability distribution in the interval [��/2, �/2]). We compare,
for different values of the noise amplitude �, the reconstructed probability dis-
tribution P (

˜k) (red circles) with the original gaussian distribution (black line):
the upper–left, the upper–right, the lower–left and and the lower–right panels
correspond to � = 0.1, 0.4, 0.8, 1.2, respectively [71].



CHAPTER 4

Extension of HMF and inverse problem:
bursting behavior and inhibitory neurons

The heterogeneous mean field presented in previous section has turned
to bee quite useful, specially for the possibility to solve a global inverse
problem. The main idea is to keep track of the inhomogeneity responsible
for the overall dynamics. Accordingly, this technique can be applied to
different kinds of models of dynamical units on extended graphs. For ex-
ample, Eq.(3.9) shows how one can follow the same method for different
models in a similar setup where neurons are identical apart from diver-
sity induced by disorder in network structure. Nevertheless, the idea can
be used in different setups, where neurons are different because of non–
topological inhomogeneities. In this Section we report two main exam-
ples, whose derivation comes from experimental observations of neural
ensembles. The first one is the introduction of inhibitory neurons, that
have been observed to play a crucial role in the dynamics of groups of
neurons [73]. In this case the main difficulty to overcome is the dynami-
cal role of synaptic plasticity that turns to be much more complicated (see
Eq.s (1.17)–(1.20)). Nevertheless, even in this case a heterogeneous mean
field approach can be applied and the resulting HMF model permits the
formulation and solution of a global inverse problem. In this case the
fraction of inhibitory neurons, the probability distribution of excitatory
and inhibitory in degrees are reconstructed form the average signal of the
overall network. Another example hereafter reported is the application of
this method to the model described in Sec. 2.2. In this case the finite size
dynamics is strongly influenced by statistical fluctuations and the overlap
between HMF and finite size dynamics is not straightforward. Neverthe-
less, its application and the formulation of the inverse problem permits
the reconstruction of the probability distribution of the disorder present
in the network.

63
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Accordingly, this chapter is divided in two man sections: Sec. 4.1 re-
ferring to the model with inhibitory neurons and Sec. 4.4 relative to the
case of disorder on the excitability of neurons.

4.1 HMF for networks of inhibitory and excitatory neu-
rons

Many of the brain activities emerge as the combined effect of excitatory
and inhibitory components associated to synaptic plasticity [74]. In fact,
neural networks in cortical area exhibit quite complex scale-free struc-
tures, where, typically, inhibitory neurons play the role of hubs [73], that
control and moderate the action of excitatory neurons. It is well known
that in mammalian brains the fraction of inhibitory neurons is close to
10-30%: it seems plausible to conjecture that such number should have
been determined by evolutionary constraints, aiming at the effectiveness
of brain functions. On the other hand, only recently it has been proposed
a possible explanation of how such a rate between inhibitory and exci-
tatory neurons is able to optimize the performances of a neural network
[75]. All of these considerations indicate that models of neural networks
aiming at reproducing a great deal of brain functions should take into ac-
count the presence of a proper fraction of excitatory and inhibitory neu-
rons, organized on a suitable topological structure of the network. In this
Section it is shown how one can generalize the HMF technique developed
in previous chapter in test examples of network structures with inhibitory
neurons. The finite size model needs to take under consideration the pres-
ence of a facilitation mechanism when inhibitory neurons are present in
the network as described in Eq.s (1.17)–(1.20).

Let us define, also in this case, ˜k = k/N the rescaled in–degree, where
k 2 [0, N � 1]. In general, inhibitory and excitatory neurons may have
different in–degree connection distributions, namely P

I

(

˜

k), P
E

(

˜

k). In par-
ticular, P

I

(

˜

k) or P
E

(

˜

k) is the probability that an inhibitory or an excitatory
neuron receives ˜

k inputs from the other neurons of the network. In this
setup we are making the assumption that inhibitory and excitatory neu-
rons have typically the same number of outputs.

A possible way to construct realizations at size N with the determined
probability distributions is the following. The network is composed by
f

I

N inhibitory and f

E

N excitatory neurons, where f

I

and f

E

are the frac-
tions of inhibitory and excitatory neurons in the network. For each neuron
i, if it is excitatory we extract its rescaled in–degree from the distribution
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P

E

(

˜

k) and we assign randomly these ˜

k

E

N inputs. If it is inhibitory we use
the same procedure using the distribution P

I

(

˜

k).

For massive uncorrelated networks, we can generalize the result of
the previous Chapter, so that the system in the thermodynamic limit is
described by an heterogeneous mean field (HMF) model. In this case,
anologously to the pure excitatory network, where the dynamics of each
neuron only depend on its in-degree, we can expect the dynamics of a
single neuron to be determined by two parameters only, namely its two
in–degrees, received by inhibitory and excitatory neurons respectively (in
Fig. 4.1 we will show that this is the case and the finite size dynamics can
be well reproduced by the HMF model). These in-degrees encode all the
relevant information on the adjacency matrix ✏

ij

. Even if obtained in the
thermodynamic limit and for massive networks, the results of the HMF
approach have been shown to hold in a much wider regime, and they
are able to reproduce effectively the dynamics of a sparse uncorrelated
network of large but finite size, as soon as the average degree is large
enough, i.e. k

i

& 50.

Due to the randomness of the topology, the field received by a in-
hibitory neuron for N ! 1 converges to g

˜

k(�f

I

Y

II

(t) + f

E

Y

IE

), where
Y

II

and Y

IE

are the average fields produced respectively by inhibitory
neurons on a generic inhibitory neuron, and by excitatory neurons on a
generic inhibitory neuron. Consistently, the field received by a generic ex-
citatory neuron converges to g

˜

k(�f

I

Y

EI

+ f

E

Y

EE

). Thus, the dynamics of
a neuron is characterized by its rescaled degree ˜

k and its type, inhibitory
I or excitatory E. Accordingly, its membrane potential dynamical equa-
tions read

v̇

E

˜

k

= a� v

E

˜

k

+ g

˜

k(�f

I

Y

EI

(t) + f

E

Y

EE

) (4.1)

v̇

I

˜

k

= a� v

I

˜

k

+ g

˜

k(�f

I

Y

II

(t) + f

E

Y

IE

). (4.2)

These equations determine the spike train of the considered class of neu-
rons SI/E

˜

k

. From this spike train, by denoting (·, ⇤) one of the four ordered
Ivs.E pairs, we can write the synaptic activity for each (·, ⇤), where the
presynaptic class ⇤ has degree ˜

k. In this case we need to write dynamical
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equations for each pair (·, ⇤)

ẏ

(·,⇤)
˜

k

= �y

(·,⇤)
˜

k

⌧

in

+ u

(·,⇤)
˜

k

x

(·,⇤)
˜

k

S

⇤
˜

k

(4.3)

ẋ

(·,⇤)
˜

k

=

z

(·,⇤)
˜

k

⌧

·
r

� u

(·,⇤)
˜

k

x

(·,⇤)
˜

k

S

⇤
˜

k

(4.4)

x

(·,⇤)
˜

k

+ y

(·,⇤)
˜

k

+ z

(·,⇤)
˜

k

= 1, (4.5)

(4.6)

where u

(·,⇤)
˜

k

= U if · is excitatory, otherwise

u̇

(·,⇤)
˜

k

= �u

(·,⇤)
˜

k

⌧

f

+ U

f

⇣
1� u

(·,⇤)
˜

k

⌘
S

⇤
˜

k

. (4.7)

Notice that the value of ⌧

·
r

depends from the · type of the postsynaptic
terminal as well. The equations are closed by the global fields consistency:

Y·,⇤ =

Z
1

0

P⇤(˜k)y
(·,⇤)
˜

k

d

˜

k. (4.8)

We introduce two global fields useful in the rest of the paper, i.e. the
global field received by inhibitory neurons Y

I

= �f

I

Y

II

(t) + f

E

Y

IE

, and
that received by excitatory neurons Y

E

= �f

I

Y

EI

(t) + f

E

Y

EE

.

4.2 The dynamical effects of inhibition

The different dynamics of synaptic activity, when postsynaptic neurons
are inhibitory or excitatory, play a crucial role for the emergent collective
behavior of the network. An interesting first insight on the global dynam-
ics can be grasped directly from a simplified version of HMF equations.
In particular, if the dynamics of the two types of synapses were the same,
the presence of a certain fraction of f

I

inhibitory neurons would have the
same effect of 2f

I

random cuts in the network links.
In fact, as the same presynaptic neuron would produces identical fields,

both towards inhibitory or excitatory postsynaptic neurons, we would
have y

E

˜

k

= y

I

˜

k

= y

˜

k

, where y

E/I

˜

k

is the field produced by the class of neu-
rons with degree ˜

k towards a postsynaptic neuron of type E/I . Thus, the
field received from inhibitory and excitatory neurons would be the same.
Then, the field received by a neuron with degree ˜

k is g

˜

k

R
1

0

h
f

E

P

E

(

˜

k) �
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Figure 4.1: Average inter spike interval for a network of N = 5000 neurons (black
dots) with f

I

= 0.1 and related HMF dynamics ( continuous line). The distri-
butions P

I

and P
E

are Gaussians with h˜k
I

i = 0.5, h˜k
E

i = 0.7, �̃
I

= 0.04 and
�̃
E

= 0.056. In the inset it is reported the raster plot for the HMF dynamics, no-
tice that indexes such that s � 2000 represent inhibitory neurons. Furthermore,
for each subgroup of inhibitory or excitatory neurons, neural indexe s has been
ordered according to their connectivity ˜k.

f

I

P

I

(

˜

k)

i
y

˜

k

(t)d

˜

k. If the term in square brackets has a definite sign, one can
see that the network is equivalent to a completely inhibitory or excitatory
(depending on the sign) network with an effective probability distribu-
tion F (

˜

k) =

���f
E

P

E

(

˜

k)� f

I

P

I

(

˜

k)

���. In particular, if P
E

= P

I

the introduction
of a fraction of inhibitory neurons f

I

is equivalent to an effective dilution
in the network, i.e. to perform 2f

I

cuts of the links. If the term in square
brackets has no definite sign, F (

˜

k) is not a probability distribution so that
the real dynamics does not correspond to an equivalent model on a net-
work of only excitatory or inhibitory neurons.

The global dynamics is much richer when the difference between ex-
citatory and inhibitory neurons is fully taken into account, and this dy-
namics is well reproduced by the HMF approach. In Fig. 4.1 we report
the comparison between finite size and mean field dynamics in a network
with 10% of inhibitory neurons. In particular, we plot the average inter-
spike interval ISI of each neuron as a function of the neuron in-degree ˜

k

i

.
Henceforth we fix the parameters of the model at phenomenological val-
ues [5]: ⌧

in

= 0.2, ⌧
f

= 33.25, g = 30 and a = 1.3. Excitatory neurons split
in two families, namely periodic (locked) neurons, observed for ˜

k < h˜ki,
and aperiodic ones (unlocked) for ˜

k > h˜ki. Inhibitory neurons fire with a
higher frequency and are not periodic. Nevertheless, the global activity
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Figure 4.2: Maximum (black dots) and minimum (red squares) values of the
global field Y

E

(t) as a function of the fraction on inhibitory neurons f
I

. The
distributions P

E/I

are the same of Fig. 4.1.

fields Y

E

and Y

I

show periodic oscillations, giving evidence of a level of
synchrony supported by the presence of locked neurons [73]. In the inset
we report the raster plot of the dynamics, putting into evidence the micro-
scopic organization of neurons. On the ordinates it is reported the index
of the firing neuron at time t and in abscissa the time t. Notice that the
first half of indexes are excitatory and the second half are inhibitory. In
both groups the indexes of neurons have been ordered according to their
in–degree.

Let us now study the behavior of the model as a function of the frac-
tion f

I

of inhibitory neurons. At increasing f

I

, the level of synchrony
of the network decreases. In Fig. 4.2 we show that the global field Y

E

tends to have a smaller excursion from its average. In fact, the more in-
hibitory neurons are present in the network, the more neurons are unsyn-
chronized. In particular in Fig. 4.2 we plot the maximum (black dots)
and minimum (red squares) values of the global field Y

E

as a function
of f

I

. From this picture the dynamical phases of the model can be di-
vided in three main regimes. In the first regime (regime I) the network
is dominated by excitatory neurons. In first panel of Fig. 4.3 we plot the
average inter spike interval as a function of ˜

k for f

I

= 0.2. We see that
a great part of excitatory neurons are locked in phase yielding the QSE
that one can see also in the inset of Fig. 4.1. The inhibitory neurons are
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Figure 4.3: Network organization with different inhibitory fractions. In the up-
per panel it is reported the average inter spike interval for the HMF dynamics
in presence of a fraction of 20% (black circles) of inhibitory neurons. In the inset
we show the field received by an inhibitory neuron (red dashed curve) and by
an excitatory neuron (black continuous curve). In the lower panels we observe
the same plot for a network with a fraction f

I

= 0.6 and f
I

= 0.5 of inhibitory
neurons. The raster plot of the dynamics is reported for the case f

I

= 0.5 on
the left inset of the last panel. The distributions P

I

and P
E

are Gaussians with
h˜k

I

i = 0.5, h˜k
E

i = 0.7, �̃
I

= 0.04 and �̃
E

= 0.056.
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mainly unlocked in phase and fire at a lower frequency. In the inset we
plot the global field received by an excitatory and a inhibitory neuron,
where we can see that the two fields are both positive and that the field
received by inhibitory neurons is higher as a direct consequence of the
facilitation mechanism that increases the synaptic efficiency during fast
firing activity. When the network is dominated by inhibitory neurons one
observes two dynamical phases. For very high values of f

I

(regime III)
one observes an asynchronous phase where the global fields do not show
oscillations. For sufficiently low fraction of inhibitory neurons (regime
II) one still observes partial synchronization with QSE. Nevertheless, see
second panel of Fig. 4.3, the microscopic organization is different from re-
gion I. By looking at the inset it can be seen that inhibitory neurons receive
a more intense field at each time t but now this field has great excursion
to negative values. Accordingly inhibitory neurons are not faster then
excitatory neurons anymore. In particular, some inhibitory neurons lock
at the same frequency of excitatory neurons but the unlocked group of
inhibitory neurons fires now at a lower frequency (just compare the two
first panels of Fig. 4.3). At the edge between these different phases there
is a optimal balance between excitatory and inhibitory neurons where the
dynamics is different. The dynamical phase of this region (dashed in Fig.
4.2) is summerized in the third panel of Fig. 4.3. We can see in the inset
the Y

E

and Y

I

are mostly fluctuating around zero apart from very nar-
row peaks of activity. In this regime all neurons, either excitatory and
inhibitory, are pririodic with the same firing frequency. Nevertheless the
organization of the spiking time of neurons is non trivial (see the raster
plot inside the third panel of Fig. 4.3). There are some neurons firing in
a short time interval, i.e. their phases differ for a short time lapse. These
neurons give rise to a QSE that appears when we observe the peaks of the
field Y

E

and Y

I

. Other neurons fire in between two consecutive QSE but,
at variance to the cases before examined, are still periodic of the same pe-
riod of the neurons taking part to the QSE. Accordingly in this balanced
case, collective oscillations arise thanks to a complex organization of the
phases of periodic neurons.

4.3 A relation between global excitatory and inhibitory fields

As we have seen, due to the different dynamics of inhibitory and excita-
tory synapses, the spike train emitted by inhibitory and excitatory neu-
rons is different, as they receive different fields. As a consequence, the
field generated by excitatory and inhibitory neurons is different, even if
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Figure 4.4: Time evolution of Y
I

(t) (red continuos line) and Y
E

(t) (black dashed
line). In the inset on the left the field Y

I

(t) has been rescaled using the common
period of the global fields and the factor obtained analytically (see text). In the
inset on the right we show the comparison between the scale factor deduced
from simulations (black circles) and that obtained analytically (red stars).

the postsynaptic terminal is of the same type. Thus, one has to consider
the four different fields Y

EI

(t), Y
IE

(t), Y
II

(t) and Y

EE

(t).
Nevertheless, we can consider two main global fields received by neu-

rons with a certain degree, namely Y

E

and Y

I

, that are the global fields
received by excitatory and inhibitory neurons respectively.

Fig. 4.4 displays such fields, as obtained from a simulation of the HMF
model. We observe that, apart from fluctuations, these fields have the
same shape once rescaled by a factor (see the inset in Figure). Neurons
taking part in the generation of these two fields are the same, namely all
neurons with certain degree ˜

k, properly weighted with the distributions
P

E

and P

I

. The difference lies in the different synaptic dynamics of u,
that comes into play at the firing event when the postsynaptic neuron is
inhibitory or excitatory. Thus, in between two spikes of the network, the
fields Y

I

and Y

E

follow the same dynamics, i.e. an exponential decay with
the same time constant ⌧

in

. With these observations, it is possible to obtain
a scaling of the two fields with an heuristic argument, based on the dif-
ferent dynamical equations of the synaptic coupling when postsynaptic
terminal is inhibitory or excitatory.

Let us consider a specific neuron (excitatory or inhibitory) that, ruled
by its spike train, generates postsynaptic fields y

E

(t) or y

I

(t) depending
on postsynaptic terminal. Suppose this neuron emits spikes at a constant
piece as locked neurons do (actually with the same period of the global
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fields), i.e. its synaptic activity fields are periodic of period T . By look-
ing at Eq.s (4.3)–(4.7) one can impose the periodic solution and find out
the relative field y

E/I,⇤
(t). The dynamics of yE,⇤

(t) and y

I,⇤
(t) is the same

apart from a rescaling as, by construction y

E/I,⇤
(t) = y

E/I,⇤
(t + T ) and

in between two consecutive spikes the dynamics is just an exponential
decay with the same exponent ⌧

in

. The solution can be obtained by in-
tegrating the equations over time T and imposing the existence of fixed
point (ỹE/I,⇤

, z̃

E/I,⇤
, ũ

E/I

). The resulting equations are:
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ũ
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= U
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e
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⌧f

1� e

� T
⌧f

+ U

f

e

� T
⌧f

. (4.11)

For locked neurons displaying the same periodicity T of the global
fields, Equations (4.9-4.11) provide the proportionality constant relating
the local fields yE/I,⇤

˜

k

(t); since the main contribution to the global signals is
given by locked neurons, we expect that the global fields Y E

(t) and Y

I

(t)

display the same proportionality relation. The panels of Fig. 4.4 show in-
deed that numerical simulations confirm the estimated prediction for the
ratio between Y

E

(t) and Y

I

(t). We point out that this argument applies in
the regimes of collective oscillations studied in this paper, where neurons
are typically periodic or quasi–periodic.

4.3.1 Inverse problem

The HMF model permits the formulation and the solution of a global
inverse problem. In general, in experiments one has more easily access
to global fields. Accordingly we suppose to measure the global field re-
ceived by neurons, i.e. Y (t) = f

E

Y

E

(t)+f

I

Y

I

(t). The unknown parameters
are the distributions P

E

(

˜

k), P
I

(

˜

k) and f

I

.
Using the proportionality constant evaluated in the previous section

one can, by evaluating the periodicity of Y (t), write the fields Y

E

(t) and
Y

I

(t) as a function of Y (t) and of the unknown fraction f

I

. Therefore, for
each value of f

I

one obtains a local field y(⇤,·)
˜

k

(t, f

I

) by solving the equa-
tions (4.1)–(4.7).
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Figure 4.5: Reconstruction of P
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(

˜k) and P
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(

˜k) for the network of Fig. 4.1. Con-
tinuous curves are the expected distributions while red circles (excitatory neu-
ronss) and blue stars (inhibitory neurons) are the reconstruction obtained with
the self–consistent equation.

One can then reconstruct the global filed

˜

Y·⇤(t) =

Z
1

0

P⇤(˜k)y
(·,⇤)
˜

k

(t, f

I

)d

˜

k, (4.12)

then ˜

Y⇤(t) = �f

I
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Y⇤E and ˜

Y (t) = f

E

˜
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(t)+f
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˜

Y
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(t). Clearly the field
˜

Y (t) depends on the choice of the parameters to be inverted, i.e. the dis-
tributions P

E

(

˜

k), P
I

(

˜

k) and f

I

. Therefore one can obtain the best estimate
for P

E

(

˜

k), P
I

(

˜

k) and f

I

by minimizing the quantity

1

t

1

� t

0

Z
t1

t0

(

˜

Y (t)� Y (t))

2

dt (4.13)

where [t

0

, t

1

] is the time interval where Y (t) is known and the minimiza-
tion procedure can be achieved by means of a zero temperature Monte-
carlo algorithm (as in the purely excitatory case, see Appendix A). In Fig.
4.5 we show the reconstruction of the two distributions in the case of Fig.
4.1. The procedure reconstructs pretty well the distributions and the frac-
tion of inhibitory neurons f

I

= 0.1.
This analysis shows how one can invert global signals in the case of

network with inhibitory neurons. Nevertheless, this method can be ap-
plied to more realistic situations where inhibitory neurons are the hubs of
a scale free distribution of connectivities, as observed in experiments [73].
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4.4 Bursting regime dynamics

In this last section we discuss the possibility to apply the heterogeneous
mean field approach to the model presented in Sec. 2.2 where disorder is
present on the leakage currents a. In this regime neurons are not periodic
and the dynamics is characterized by quite long silent periods separated
by bursts where all neurons fire more then once in short time intervals.
The time interval between two consecutive bursts do not show any regu-
larity and is distributed according to a long tail distribution. Let us con-
sider a globally excitatory coupled network where the excitability a of
neurons is distributed according to a distribution P (a). As done for the
HMF for random networks, where disorder was set on the specific con-
nectivity ˜

k of neurons, also in this case we can write a dynamical equation
for every class of neurons sharing the same excitability a. Accordingly, the

0.6 0.8 1 1.2 1.4 1.6
a

0

5

10

P(a)

Figure 4.6: Reconstruction of P (a) from a network of N = 500 neurons. Red
curve is the original uniform distribution of P (a) with a 2 [0.9005, 1, 0006] and
black dots are the reconstruction. The network is globally coupled and the pa-
rameters are the same of Fig. 2.11.



HMF model in this case reads
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Y =

Z
P (a)y

a

da, (4.17)

where a is a continuous variable defined in the set of real numbers (then
the distribution P (a) selects the values of a to take into account).

In order to observe the PB dynamical phase we are interested in, let us
choose a uniform distribution in the interval [0.9005, 1.006], where the net-
work dynamics is described in Fig. 2.11. Even if the HMF model is able
to reproduce qualitatively the finite size dynamics (i.e. the presence of PB
alternating seconds of silence), finite size fluctuations are fundamental for
the exponent characterizing the distribution of the IPBI (i.e. the time in be-
tween two consecutive peaks of global activity Y , see Fig. 2.11). This point
is still under investigation and needs further improvements that will be
reported in future works. Nevertheless, the HMF formulation permits us
to formulate the inverse problem, i.e. the reconstruction of P (a) given the
global field Y (t) deriving from finite size network dynamics. The proce-
dure works in the same way described for the reconstruction of P (

˜

k) in
the fully excitatory case (see Sec.3.4 and Appendix A). In Fig. 4.6 we show
the reconstruction from a series of around 100 seconds, where three peaks
of activity appear. We see that the inversion procedure, based on the HMF
equations is able to reconstruct confidently the distribution. From this re-
sult it seems that the information relying in few peaks of the global signal
is sufficient for the self consistency equation 4.17 to produce the exact re-
sult. This point needs to be further investigated but these results confirm
the power of the HMF to reconstruct the distribution of network disorder.
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General Conclusions

In this thesis we have investigated a model for neural dynamics that turned
out to be able to generate a rich variety of dynamical phases. The mini-
mal model taken under consideration, made up of purely excitatory neu-
rons, yields non trivial synchronization patterns typically observed in ex-
perimental setups. In fact, the only introduction of disorder in neurons
connections is sufficient to generate a dynamical phase where collective
oscillations arise as a result of specific microscopic organization. Neu-
rons divide in two families, mainly on the basis of their in–degree, show-
ing different dynamical behavior. Locked neurons are periodic and emit
spikes almost synchronously while unlocked neurons are aperiodic and
not synchronized with the rest of the network. Furthermore, the intro-
duction of disorder on excitability of neurons is able to yield a completely
different dynamical regime observed in in–vitro setups where bursts of
spiking neurons alternate with very long periods of silence. The collec-
tive field does not show any regularity anymore and the time lapse in
between two consecutive bursts is distributed according to a long tail dis-
tribution. Taking first under consideration the model with disorder on
network topology made up of excitatory neurons, it has been proposed
a mean field model able to capture the finite size dynamics that repre-
sents the time evolution of a real sample. Such a mean field model, called
heterogeneous mean field as it keeps track of the disorder present in the
neural ensemble, permits a clearer understanding of the overall dynam-
ics. In particular, a stability analysis, impossible on the finite size model,
provides a quite clear picture on the microscopic level. The neurons in–
degree plays the role of a bifurcation parameter determining the dynam-
ics of single units that organize in such a way to give rise to global os-
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cillations. Furthermore, the probability distribution of in–degrees deter-
mines the synchronization pattern of the network and, accordingly, the
dynamics of the global activity field. In particular, when the distribution
is too broad, the network falls in an asynchronous regime where the aver-
age electric field does not show oscillations anymore. The heterogeneous
mean field applied to the model we have taken under consideration is
quite complex to be solved analytically and it has not permitted us a ana-
lytical picture of the dependence of the global field on the distribution of
in–degrees. This point is going to be addressed in future works, applying
this approach to different models where the dynamical equations can be
solved analytically [61].

The generality of the method makes this mean field procedure able
to be applied to different models. Accordingly, in the last chapter, we
have shown how this procedure applies to network of excitatory and in-
hibitory neurons and to ensembles where disorder is applied on excitabil-
ity of neurons.

A great advantage of the heterogeneous mean field has been the pos-
sibility to recover the disorder probability distributions from the knowl-
edge of the global activity field, that is the observable more easily mea-
sured in experiments. Its robustness with respect to different neural model
is a natural continuation of this work and is functional in order to com-
pare our results with experimental data. Nevertheless, as the inversion
is based on the knowledge of global signals, one can expect that the re-
sult does not depend crucially on the detail of the single unit dynam-
ics, at variance with local approaches to inverse problem where the exact
network structure of the network is reconstructed from single neurons
records.
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APPENDIX A

Inversion procedure for excitatory neurons

In this appendix we provide details of the algorithmic procedure adopted
for solving the inverse problem, i.e. reconstructing the distribution P (

˜

k)

from Eq. (3.22). In the HMF formulation, the field Y (t) is generated by an
infinite number of neurons and ˜

k is a continuous variable in the interval
(0, 1]. In practice, we can sample uniformly this unit interval by L disjoint
subintervals of length 1/L, labelled by the integer i. This corresponds
to an effective neural index i, that identifies the class of neurons with in-
degree ˜

k

i

= i/L. In this way we obtain a discretized definition converging
to Eq.(3.22) for L ! 1:

Y (t) =

Z
1

0

P (

˜

k)y
˜

k

(t)d

˜

k ' 1

L

L�1X

i=0

P (

˜

k

i

)y
˜

ki
(t) . (A.1)

In order to improve the stability and the convergence of the algorithm by
smoothing the fluctuations of the fields y

˜

ki
(t), it is convenient to consider

a coarse–graining of the sampling by approximating Y (t) as follows

Y (t) =

1

L

0

L

0�1X

i=0

P (

˜

k

i

)hy
˜

ki
(t)i. (A.2)

where hy
˜

ki
(t)i is the average of L/L0 synaptic fields of connectivity ˜

k 2
[

˜

k

i

,

˜

k

i+1

]. This is the discretized Fredholm equation that one can solve to
obtain P (

˜

k

i

) from the knowledge of hy
˜

ki
(t)i and Y (t). For this aim we use

a Monte Carlo (MC) minimization procedure, by introducing at each MC
step, n, a trial solution, P

n

(

˜

k

i

), in the form of a normalized non-negative
in-degree distribution. Then, we evaluate the field Y

n

(t) and the distance
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�

n

defined as:

Y

n

(t, P

n

(

˜

k

i

)) =

1

L

0

L

0�1X

i=0

P

n

(

˜

k

i

)hy
˜

ki
(t)i (A.3)

�

n

(P

n

(

˜

k

i

))

2

=

1

t

2

� t

1

Z
t2

t1

h
Y

n

(t, P

n

(

˜

k

i

))� Y (t))

i
2

Y

2

(t)

dt . (A.4)

The time interval [t

1

, t

2

] has to be taken large enough to obtain a reli-
able estimate of �

n

. For instance, in the case shown in Fig.3.2, where
Y (t) exhibits an almost periodic evolution of period T ⇡ 1 in the adi-
mensional units of the model, we have used t

2

� t

1

= 10. The overall
configuration of the synaptic fields, at iteration step n + 1, is obtained by
choosing randomly two values ˜

k

j

and ˜

k

l

, and by defining a new trial so-
lution ¯

P

n+1

(

˜

k) = P

n

(

˜

k)+ ✏�

˜

k,

˜

kj
� ✏�

˜

k,

˜

kl
, so that, provided both ¯

P

n+1

(

˜

k

j

) and
¯

P

n+1

(

˜

k

l

) are non-negative, we increase and decrease P

n

(

˜

k

j

) of the same
amount, ✏, in ˜

k

j

and ˜

k

l

respectively. A suitable choice is ✏ ⇠ O(10

�4

).
Then, we evaluate �

n+1

(

¯

P

n+1

(

˜

k

i

)): If �
n+1

(

¯

P

n+1

(

˜

k

i

)) < �

n

(P

n

(

˜

k

i

)) the step
is accepted i.e. P

n+1

=

¯

P

n+1

, otherwise P

n+1

= P

n

. This MC procedure
amounts to the implementation of a zero temperature dynamics, where
the cost function �

n

(P

n

(

˜

k

i

)) can only decrease. In principle, the inverse
problem in the form of Eq.(A.2) is solved, i.e. Y

n

(t, P

n

(

˜

k

i

)) = Y (t), if
�

n

(P

n

(

˜

k

i

)) = 0. In practice, the approximations introduced by the coarse-
graining procedure do not allow for a fast convergence to the exact solu-
tion, but P

n

(

˜

k

i

) can be considered a reliable reconstruction of the actual
P (

˜

k) already for �

n

< 10

�2. We have checked that the results of the MC
procedure are quite stable with respect to different choices of the initial
conditions P

0

(

˜

k

i

), thus confirming the robustness of the method. We give
in conclusion some comments on the very definition of the coarse-grained
synaptic field hy

˜

ki
(t)i. Since small differences in the values of ˜

k

i

reflect
in small differences in the dynamics, for not too large intervals [

˜

k

i

,

˜

k

i+1

]

the quantity hy
˜

ki
(t)i can be considered as an average over different initial

conditions. For locked neurons the convergence of the average procedure
defining hy

˜

ki
(t)i is quite fast, since all the initial conditions tend to the

stable fixed point, identified by the return map described in the previous
subsection. On the other hand, the convergence of the same quantity for
unlocked neurons should require an average over a huge number of initial
conditions. For this reason, the broader is the distribution, i.e. the bigger
is the unlocked component (see Fig.3.7), the more computationally expen-
sive is the solution of the inverse problem. This numerical drawback for
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broad distributions emerges in our tests of the inversion procedure de-
scribed in Fig. 3.11. Moreover, such tests show that the procedure works
insofar the QSE are not negligible, but it fails in the absence of the locking
mechanism. In this case, indeed, the global field Y (t) is constant and also
hy

˜

ki
(t)i become constant, when averaging over a sufficiently large number

of samples. This situation makes Eq.(A.2) trivial and useless to evaluate
P (

˜

k

i

). We want to observe that, while in general y
˜

ki
(t) 6= y

˜

ki
(t), one can

reasonably expect that hy
˜

ki
(t)i is a very good approximation of hy

˜

ki
(t)i.

This remark points out the conceptual importance of the HMF formula-
tion for the possibility of solving the inverse problem.
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