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Abstract

After suffering from a serious injury, illness or surgery, the patient usually needs

to follow a long and critical physical rehabilitation program to recover the former

strength, mobility and fitness. Procedures for monitoring patients’ movements are

widely used in this context and are mainly aimed at identifying and maximizing life

quality and movement potential. Many rehabilitation programs rely on classical treat-

ments based on physiotherapy, which requires trained specialists and their precious

experience. However, sometimes, these treatments lack standardized and objective

information for properly evaluating patients’ performance.

Creating non-invasive systems, using a low-power scheme at low cost, for moni-

toring the patients’ movements and interpreting properly the data acquired in order

to provide them with a useful feedback, is one of the current challenges and the main

aim of this PhD dissertation. As a contribution to the assessment of rehabilitation

exercises, a hardware and software suite is proposed, both for human motion acqui-

sition and tracking and data analysis.

Firstly, to capture human motion, a prototypical wearable sensing system, based

on a robust communication scheme and a data alignment algorithm, is developed

and tested. It is composed of a number of small modules that embed high-precision

accelerometers and wireless communications to transmit the information related to

the body motion to a workstation. The system includes a device for video acquisition

during the training sessions in order to provide, additionally, visual feedback to the

patient.

Afterwards, three different methods are investigated for the analysis of motion
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data. The first one is based on neural gas networks, which are considered in a im-

plementation of the Memory Prediction Framework theory. The Granular Linguis-

tic Model of a Phenomenon, which is based on the Computational Theory of Per-

ceptions, is used in combination with a Fuzzy Finite State Machine in the second

approach to develop a tool that analyses the exercise and provides a linguistic des-

cription of it. The last method proposes a hybrid neuro-fuzzy system which merges

the two previous schemes in order to join their advantages while compensating their

drawbacks.

From the experimental results obtained, it can be concluded that, both from a

practical and a theoretical point of view, the proposed suite can introduce improve-

ments in the current state of the art in the field of human motion monitoring for

rehabilitation.



Chapter 1

Introduction

Rehabilitation is to be a master word in medicine.

Dr. William Mayo

1.1 Motivation

Human motion monitoring and analysis can be an essential part of a wide spectrum

of applications ranging from entertainment and gaming to surveillance and medi-

cal diagnosis [1], including physical rehabilitation among other potential areas of

interest. The main aim of rehabilitation is to enable patients to regain the highest

possible level of motor functions and independence after a stroke or another kind

of accident [2]. There is strong evidence that after-stroke patients benefit from exer-

cise programmes in which functional tasks are directly and intensively trained [3]. To

achieve this objective, patients’ activities need to be monitored and consequently co-

rrected. Classical treatments, as physiotherapy, are mainly based on the experience of

the specialists and may lack objective information for a proper evaluation of patients’

performances. Applying motion sensors technology to these therapies involves accu-

rate identification [4], tracking and post-processing of movement, which can help to

improve the diagnosis and the rehabilitation process [5, 6], as they provide objective

and quantitative information which can be added to the expertise of the clinicians [7].



4 Chapter 1. Introduction

Among several ways available for recording patients’ activities, automatic hu-

man motion tracking systems are becoming more and more attracting because of

their potential, allowing to acquire a huge amount of information regarding the poses

or movements of the subjects [8]. However, at the same time, they still have major

practical limitations. Motion tracking systems, especially those where human move-

ments can be detected using on-body sensors, often include wires between them and

other unwieldy elements that have to be worn, as shown in Figure 1.1 (from [9]).

(a) Upper body monitoring. (b) Lower body monitoring.

Figure 1.1: Commercial system for human motion monitoring [9].

This shortcoming makes them unsuitable for certain types of therapies, like sports

rehabilitation, as they may limit the patient’s movements and negatively influence the

measures [10]. Additionally, existing systems are not easily affordable.

Therefore, in the context of an exercise session within a rehabilitation program

there are mainly two or three questions to be answered:

1. How to effectively monitor the patient’s movements?

2. How is the patient performing the exercise?

3. How to inform and make the patient aware of her/his performance to boost the

improvement?



1.2. Aim of the thesis and research approach 5

One of the most promising approaches in building wearable health monitoring

systems is based on emerging Wireless Body Area Networks (WBANs) [11], consis-

ting of multiple sensor nodes, placed strategically on the human body, each capable of

sampling, processing and communicating information related to the patient’s move-

ments. On the other hand, to answer the second question it is necessary to perform an

accurate analysis on the acquired data, while the answer to the last one is feedback.

1.2 Aim of the thesis and research approach

Creating non-invasive systems, using a low-power scheme at low cost, for monito-

ring the patients’ movements and interpreting properly the data acquired in order to

provide them with a useful feedback, is one of the current challenges and the main

aim of this thesis.

The work described in this dissertation has been funded by the European Co-

mmission under the MIBISOC project (Grant Agreement n. 238819), “Medical Ima-

ging using Bio-Inspired and Soft Computing”, within the action Marie Curie Initial

Training Network of the 7FP, being Henesis S.r.l. [12] the hosting partner. Within

the project requirements, it has been focused mainly on two research lines: the use of

Wireless Sensor Networks (WSNs) for human motion monitoring and the application

of Artificial Intelligence (AI) techniques to data analysis.

In order to answer the questions mentioned previously, the overall aims of this

multidisciplinary research are manifold, i.e., to: (i) investigate and conceive an effec-

tive and robust multimodal sensing system, (ii) investigate the application of bio-

inspired and soft computing techniques to motion data analysis, and (iii) step forward

in behavioural assessment for quantitative and qualitative monitoring of a rehabilita-

tion process. The project can be split into three phases:

1. Proposal: investigation of the state of the art, identifying the shortcomings of

the current approaches and the requirements to be fulfilled.

2. Technical research: development and implementation of the sensing system,
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including data fusion and its validation to determine its feasibility and useful-

ness for rehabilitation.

3. Applied research: investigation of various techniques for motion data analysis,

to be used for behaviour recognition and gesture evaluation.

The work carried out in this thesis has dealt with developing processes at diffe-

rent levels of abstraction, that can be represented as a hierarchy by the DIKW (Data-

Information-Knowledge-Wisdom) pyramid in Figure 1.2 (from [13]). At the lowest

level there is the data, i.e., the acceleration signals, the direct and objective observa-

tions of the phenomena. Over it, there is the information level, which is inferred from

the acquired data, making them useful by representing them by certain features, such

as reference angles. The upper level is reached as this information is processed, e.g.,

knowledge is acquired through pattern recognition techniques, allowing one to iden-

tify activities or poses. Gaining understanding from this knowledge, one steps up to

the superior level, wisdom, where complex abstract concepts are elaborated, making

it possible to provide a feedback to the patient about her/his performance.

In particular, the first step in this thesis has been focused, at the lowest level of

abstraction, on the development of a prototypical wearable sensing system to capture

human motion through accelerometer sensors. Designing a robust communication

scheme and a data alignment algorithm has permitted the integration of five small

wireless modules, to be worn by the subject, which can acquire data at high frequency,

synchronized by an external master device. This system additionally includes the

feature of video acquisition for providing visual feedback to the patient. Climbing up

the DIKW pyramid, several artificial intelligence methods have been then examined

for data interpretation.

Getting to the knowledge level, an initial approach to validate the sensing sys-

tem has been aimed at classifying three activities, standing, sitting and walking, by

using various standard classifiers implementing a supervised learning technique. Af-

terwards, human motion analysis has been focused on the Sun Salutation, a complex

yoga exercise that has been chosen as case study. This sequence, which involves the

movement of different parts of the body, is an interesting example of a phenomenon
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evolving in time and has important physical benefits, like improving the strength and

flexibility of the muscles and the alignment of the vertebral column. Reaching the

top level of wisdom, three different methods have been investigated for data analysis.

The first one is based on the Memory Prediction Framework, a paradigm inspired

on the working of the human brain, and studies a specific type of neural network.

The second technique is based on the Computational Theory of Perceptions and aims

to provide a linguistic description of the phenomenon, evaluating its quality by con-

sidering three particular features: symmetry, stability and rhythm. The last approach

proposes a hybrid system for postural balance assessment, which merges the two pre-

vious schemes in order to join their advantages while compensating their drawbacks.

All the methods compose a software suite that can provide a feedback to a subject

performing a complex physical exercise using the hardware suite described above.

Figure 1.2: Data representation at different levels of abstraction [13].
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1.3 Outline

The rest of the document is organized as follows. Chapter 2 introduces the current

state of the art of systems for human motion acquisition and tracking and their ap-

plication in rehabilitation. In Chapter 3, the development, implementation and vali-

dation of the proposed multimodal sensing system is described in detail. Chapter 4

is focused on three different methods for human motion data analysis. Finally, Chap-

ter 5 draws some conclusions summarising the research performed in this thesis and

introducing possible future research lines.

1.4 Publications

The research described in this thesis has produced the papers indicated below:

• Conference papers:

“Wireless human motion acquisition system for rehabilitation assessment”,

Lara González-Villanueva, Lorenzo Chiesi and Luca Mussi, in Procee-

dings of the 25th IEEE International Symposium on Computer-Based Me-

dical Systems (CBMS), pp. 1–4, June 2012.

“Computational model of human body motion performing a complex exercise

by means of a Fuzzy Finite State Machine”, Lara González-Villanueva,

Alberto Alvarez-Alvarez, Luca Ascari and Gracian Trivino, in Procee-

dings of the International Conference on Medical Imaging using Bio-

Inspired and Soft Computing (MIBISOC), pp. 245–251, May 2013.

“A framework to extract readiness potential in single trials of EEG”, Pouya

Ahmadian, Saeid Sanei, Lara González-Villanueva, M. Alessandra Umil-

tà and Luca Ascari, in Proceedings of the International Conference on

Medical Imaging using Bio-Inspired and Soft Computing (MIBISOC),

pp. 261–266, May 2013.
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• Journal papers:

“Design of a wearable sensing system for human motion monitoring in physi-

cal rehabilitation”, Lara González-Villanueva, Stefano Cagnoni and Luca

Ascari, in Sensors, 13(6), pp. 7735–7755, June 2013.

“Constrained blind source extraction of readiness potentials from EEG”,

Pouya Ahmadian, Saeid Sanei, Luca Ascari, Lara González-Villanueva

and M. Alessandra Umiltà, in IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 21(4), pp. 567–575, July 2013.

“A tool for linguistic assessment of rehabilitation exercises”, Lara Gonzá-

lez-Villanueva, Alberto Alvarez-Alvarez, Luca Ascari and Gracian Trivi-

no, in Applied Soft Computing, Volume 14, Part A, pp. 120–131, January

2014.





Chapter 2

State of the art

The greatest enemy of knowledge is not ignorance,

it is the illusion of knowledge.

Daniel J. Boorstin

2.1 Human motion tracking for rehabilitation

After suffering from a serious injury, illness or surgery, a patient typically must un-

dergo a long and critical physical rehabilitation program to recover her/his former

strength, mobility and fitness. Procedures for monitoring patients’ movements are

widely used in this context and are mainly aimed at identifying and maximizing life

quality and movement potential. Many rehabilitation centres rely on classical treat-

ments based on physiotherapy, which requires trained specialists and their precious

experience. Sometimes, these treatments lack standardized and objective information

that would be necessary for a proper evaluation of patients’ performances. Along

with the increased number of patients who suffer from motor function disability, this

is the main reason why, since the 1980s, human motion tracking for rehabilitation has

been an active research topic [5].

Stroke is considered the most common neurological disorder and has a high mor-

tality risk. It is caused by the interruption of the blood supply to the brain, usually
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because a blood vessel bursts or is blocked by a clot. This cuts off the supply of oxy-

gen and nutrients, causing damage to the brain tissue [14]. According to the World

Health Report published in 2002, 15 million people suffer stroke worldwide each

year. Of these, 5 million die and another 5 million are permanently disabled. The

World Health Organization estimated in 2008 the world average incidence of the di-

sease in about 200 new cases per 100.000 inhabitants [15]. In [16] it is estimated that

its incidence in Spain is between 200 and 250 cases per 100.000 inhabitants, while

a more detailed study published in [17] estimates its incidence between 120 and 350

annual cases per 100.000 inhabitants. This would be lower in women (169/100.000)

than in men (183-364/100.000), and it is 10 times higher in the population over 70

years. In a similar direction, a study done by the Italian Longitudinal Study on Age-

ing (ILSA) shows that, in the age group between 65 and 84 years, the prevalence rate

in the Italian population is of 6.5%, being the rate of the male subjects slightly greater

(7.4% with respect to 5.9%) [18].

People who suffer a stroke require intense rehabilitative treatments during their

stay in the hospital and afterwards, when they are dismissed. Treatments focused on

high-intensity and repetitive task-specific practice do show promise for improving

motor recovery after stroke [19]. In [20] strong evidence was found that patients with

stroke benefit from therapeutic exercise programmes, when the exercise training was

applied intensively and started as soon as possible after stroke occurred.

Physical rehabilitation is heavily based on the monitoring of body motion pa-

tterns. The objective of human motion tracking is to provide data that allows to obtain

the related information about the pose of the human body, or part of it. Later analy-

sis of these data may contribute significantly to the diagnostic process by processing

the motion patterns. There are several ways to perform human motion acquisition

and tracking [21]. The ones found in the literature can be divided mainly into three

different groups:

Non-visual tracking systems are based on the use of sensors attached to the body

in order to acquire human motion data. The sensors can be of several types as

inertial –accelerometers, gyroscopes–, magnetic or acoustic, among others.
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Visual tracking systems are based on the use of cameras to estimate the position.

The systems in this category can be visual marker-based or marker-free, de-

pending on whether they use or not markers attached to the body. When tal-

king about visual marker-based tracking systems, it must be pointed out that

“Vicon” [22], and “Optotrack” [23], are considered the golden standards due

to their reduced error for the position information, their high cost being their

main drawback.

Robot-aided tracking systems make use of therapeutic robots for specific tasks in

neuro-rehabilitation, actively engaging the patients for relearning the move-

ments.

[5] makes a performance comparison between the different groups of motion tra-

cking systems. According to it, the most efficient kind of tracking systems from a

computational point of view are the non-visual tracking ones, which have also the

lowest cost, being additionally highly compact and accurate when using inertial sen-

sors. For this reason, the rest of this chapter will be focused on the use of sensors for

monitoring, while the part related to data analysis will be discussed in its correspon-

ding chapter.

2.2 Using sensors for monitoring

Motion sensors technology makes it possible to accurately identify, track and analyse

movement. The data that can be acquired using such devices support the diagnosis

and the rehabilitation process [24] by allowing therapists to precisely assess the im-

pact of clinical interventions on the patients’ everyday life and recovery [25]. Among

the many different sensors that can be used for monitoring patients during rehabilita-

tion, MEMS (Micro-Electro-Mechanical Systems) inertial sensors have been shown

to have great potentials. The progress of miniaturization and their decreasing cost

allow to incorporate them in compact, non-obtrusive continuous monitoring devices

easily attachable to the body [26], empowering the development of Wireless Body

Area Networks (WBANs) [27, 28]. In particular, accelerometers can provide reliable
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information as well as objective and quantitative measurements when placed on di-

fferent parts of the body [29]. For this reason, several studies about their use for body

motion capture have been published recently.

In [30] it is stated that the use of accelerometers offers a practical and low-cost

method for monitoring human movements, while providing objective and reliable

measurements, including assessment of physical activity level and classification of

the movements performed by subjects. In their review of the state of the art, the

authors have found out that tri-axial accelerometers are able to provide valid and sta-

ble measurements of physical activity levels when compared to other indicators of

functional capacity. For this reason, accelerometers have been used to study physi-

cal activity in many different experiments. One important application of this kind of

sensors is within the tests of postural sway, which usually need to be set up and con-

ducted by an external observer, different from the patient, where these sensors have

shown to be a reliable tool for measuring balance while standing and walking. Even

more, the studies that have been undertaken demonstrated their utility for monitoring

human movements and quantitatively measuring important parameters of movement

in an unsupervised home environment. This implies some technical requirements, as

their usability, power supply and trustworthy wireless communications, for example.

[31] confirms that accelerometers have been widely accepted as useful and practi-

cal sensors for wearable devices to measure and assess physical activity. It concludes

that sensor-based measurement of human activities can provide quantitative assess-

ment of physical activity. The main advantage is that using these techniques enables

automatic, continuous and long-term activity measurement of subjects in a free-living

environment.

[32] makes use of a tri-axial accelerometer for posture sensing to be used in

activity recognition. Experiments were done for eight different activities –standing,

walking, running, climbing up stairs, climbing down stairs, sit-ups, vacuuming and

brushing teeth– showing that these can be recognized with fairly high accuracy. Any-

way, as expected, some of the activities, like brushing teeth, were comparatively

harder to recognize than others due to the fact that there was just one accelerome-

ter and that it was worn near the waist. In [33] an accelerometer attached to a belt,
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centered in the back of the person, is used for body posture recognition, while in [34]

vital body signals as posture, respiration rate, and body activities like walking and

running, are monitored by placing one of them in a t-shirt.

Due to the potential use of accelerometers in a clinical setting and considering

their reliability and low cost, the research performed in [35] is related to gait analy-

sis and balance evaluation for elderly people. Being able to assess the risk of falls

thanks to the quantitative measures of the gait provided by the accelerometers, the

24-hour ambulatory activity levels can be objectively quantified. Human gait mode-

lling for helping in the diagnosis of walking and movement disorders or rehabilitation

programs is also approached in [36] and [37]. The work presented in [38] goes in a

similar direction. It consists on a wearable platform intended for long-term ambula-

tory health monitoring with real-time data streaming and context classification. For

fall detection and the classification of other body movements, [39] and [40] use a

small module which contains a high resolution accelerometer. They demonstrate its

advantages for acquiring motion information due to its precision and size, as it is not

intrusive for the subject.

As said in [41], a significant application area is remote monitoring, more specifi-

cally home-based rehabilitation monitoring systems, already introduced by [5], both

for elderly people who live alone and are in need of additional support, and for people

with physical disabilities. It could allow to check whether the patient is able to per-

form her/his physical therapy exercises in the correct and most efficient manner, and

provide feedback to enable proper performance of the exercises. A portable patient-

monitoring system might facilitate patient rehabilitation out of the hospital environ-

ment, enabling faster recovery and decreasing number of injuries. Even more, having

a system that allows to bring the rehabilitation into their own house, might help the

patients to perform exercises much more comfortably in a known environment, pre-

venting them from getting stressed while being monitored in a rehabilitation centre

or similar.

In this direction, [42] proposes a portable physical rehabilitation monitoring sys-

tem for hip-and-knee-replacement rehabilitation, which makes use of accelerometers

for sensing the patient’s movements. It allows one to visualize selected data in real
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time on a PDA screen and to archive relevant data for later analysis by a specialist.

[43] proposes a prototypical WBAN implementation for computer-assisted physical

rehabilitation applications and ambulatory monitoring which provides guidance and

feedback to the user, by generating warnings based on the user’s state, level of ac-

tivity, and environmental conditions in real time. On the other hand, the purpose of

the study in [44] is to develop a motion tracking device that can be integrated within

a home-based rehabilitation system for stroke patients. In particular, it integrates the

measurements from the accelerometers and gyroscopes for acquiring the data related

to the upper limb movements in real time. This work has afterwards been extended

in [2], which presents an upper limb motion tracking system with two sensors near

the wrist and elbow joints which shows promising results in view of its integration in

a rehabilitation platform for describing the upper limb movements of a patient.

2.3 Summary of the reviewed systems

With the aim to sum up and be able to compare the characteristics of the specific

systems that have been proposed in the literature cited above, Table 2.1 contains

a relation with the principal features of each of them. It must be pointed out that

not in all the cases information, such as the range or the sampling frequency of the

accelerometers used, was provided.

Reference Main characteristics

- Two wearable inertial sensors placed near the wrist and the elbow.

- Each sensor contains a three-axial accelerometer, a three-axial

gyroscope and a three-axial magnetometer (not used).

- Gyroscopes improve accuracy of the estimates by accelerometers.

- Sampling frequency: 25 Hz.

- The modules are big, and for the elbow a wide band is needed.

- The battery, encapsulated in a big package, is worn in the waist.

[2]

- There are interconnection cables between the components.
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Reference Main characteristics

- One accelerometer attached on the front of the leg, near the ankle,

using the elastic medical bandages.

[29] - Range: ±2g, sampling frequency: 32Hz.

- Tested for five different activities: standing, walking, running,

climbing down stairs and climbing up stairs.

- Single three-axial accelerometer worn near the pelvic region.

- Range: ±4g, sampling frequency: 50Hz.

[32] - The data generated by the accelerometer was transmitted to an

HP iPAQ, carried by the subject, wirelessly over Bluetooth.

- Used for the recognition of eight activities.

- One three-axial accelerometer attached to a belt, centred in

the back of the person.

- Sampling frequency: 100Hz.
[33, 36, 37]

- Bluetooth capabilities for data transmission.

- Wearable t-shirt with one accelerometer placed on the chest.

- Range: ±2g.

[34] - The sensor, battery and other electronic components are mounted

with velcro on the t-shirt, including interconnection cables.

- Detection of walking and running activities.

- One three-axial accelerometer.
[38]

- It includes interconnection cables, bands, batteries and a PDA.

- One three-axial accelerometer worn on the chest.

[39, 40] - Range: ±2g, sampling frequency: 160Hz.

- Used for fall detection.

- Individual two-axial accelerometer sensor worn on the leg.

[42] - Range: ±2g.

- Used for thresholding preventing over-exercising and injuries.
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Reference Main characteristics

- Two two-axial accelerometers.
[43]

- It includes a bio-amplifier for ECG monitoring.

- Two three-axial accelerometers and gyroscopes.

- The sensors are attached to the elbow and the wrist.

- Bluetooth communication.
[44]

- It includes several interconnection cables and batteries.

Table 2.1: Main characteristics of the most relevant systems proposed in the literature.

Some of the mentioned works make use of commercial systems, being the most

referenced ones those provided by XSens [45] and Inertia Technology [46]. The fea-

tures of their main products are summarized in Table 2.2.

Xsens Inertia
Feature

[9] [47] [48] [49] [50]

Cordless power No Yes No Yes Yes

Wireless data

transmission
No Yes No Yes Yes

Usability Low High Low High Medium

Cost High High Very high Very high Medium

Data analysis

& feedback
No No No No No

Table 2.2: Feature comparison of available commercial systems for human motion

monitoring.

As can be seen, their main inconvenient, apart from their cost, is that they do

not provide a complete solution, including data analysis, that can be directly used by

clinicians and patients. For this reason, other studies and companies are focused com-

pletely on data analysis, using sensing systems provided by third parties. This is the

case of [51], a software for analysis and rehabilitation, which makes use of a MEMS-

based motion-sensing system provided by [52]. In addition to accurate motion analy-
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sis, this tool includes visual feedback, so that the range and quality of movement can

be checked and worked on with feedback. Similarly, the main contribution of [53]

has been the design of a gaming interface to support the physical rehabilitation of

orthopaedics patients.

2.4 Importance of feedback

As pointed out before, it is important to consider the role of feedback in rehabilitation

therapies. Providing information to the patient in response to the performance of the

exercises could definitely influence the treatment progress. Performance feedback is

generally accepted to be necessary for the learning process that underlies rehabilita-

tion [54]. Depending on the application, this feedback could be provided in graded

or absolute forms, e.g., indicating a score or just if the exercise has been done well or

not. In the same way, the information can be presented via different sensory modali-

ties, as audio, visual or tactile.

Several studies demonstrate the impact of feedback in physical therapies. Pro-

viding feedback on performance is among the recommendations for treatments given

by [19] for the alleviation of motor impairment and restoration of motor function

after a stroke. In [55] it is suggested to provide people engage in a novel exercise

with external feedback during training to ensure the highest level of performance is

attained during practice sessions.

In particular, visual feedback is widely reported as useful in this kind of thera-

pies. The study done in [56] shows that interacting with a game incorporating simple

visual feedback results in improved accuracy when performing therapeutic exercises.

Moreover, [57] reviews the potential use of visual feedback, in particular mirror vi-

sual feedback, for the treatment of many chronic neurological disorders, concluding

that it can accelerate recovery of function from several disorders, such as phantom

pain, hemiparesis from stroke or other brain injury or lesion. In the same direction,

[58] illustrates a case report, in which a person with a stroke demonstrated clinical

improvements after treatment with an exercise program, including balance activities

and postural control exercises, with visual feedback utilizing a mirror. On the other
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side, in [59] visual feedback manipulation is used in robotic therapies for hand re-

habilitation. [60] presents another application of visual feedback training, related to

the improvement of postural control in patients with chronic mechanical back pain.

One important field where to use visual feedback is balance training. In [61] it is

concluded that individuals with incomplete spinal cord injury improved substantially

the balance performance while training using visual feedback. Finally, the results

of the study done in [62] suggest that balance training with visual feedback, inclu-

ding weight-shifting tasks when standing, might be successfully used in children with

hemiplegia as the training improved gait symmetry and the tasks that were practised

during quiet and dynamical standing.

2.5 Summary

Although many publications describe effective body motion data collection systems

that rely on various multi-modal sensors, most of the proposed hardware devices or

tracking systems include sensor/peripheral interconnection cables, not always flexi-

ble, and other components that have to be worn. Because of this, such systems are

usually not so comfortably or easily wearable and hamper the patient’s movements,

making them unsuitable for certain types of activities, such as the training programs

in sports rehabilitation. While these inconveniences might be solved by some of the

current commercial systems, their cost made them unavailable for many rehabilitation

centres and home-based therapies. Moreover, none of the reported systems provide a

complete solution, which includes both a sensing system with vision, and a motion

data analysis platform for providing a feedback to the clinicians and the patient.
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Sensing system

Never mistake motion for action.

Ernest Hemingway

3.1 System development

As has been previously mentioned, one of the main aims of this thesis is to develop a

system for human motion acquisition and tracking, in order to use it in physical reha-

bilitation therapies. From the study of the state of the art, it has been stated that, when

designing a system of these characteristics, it is necessary to take into account seve-

ral requirements, as low cost, reduced size and weight, and easy use, among others.

Therefore, the research has been aimed at developing a wearable sensing system that

is comfortable to wear, easy to use, apply and re-apply, as well as non-limiting for the

body movements and acceptable to clinicians. Such a system has a wide range of ap-

plications in various fields. As a result, a prototypical system composed by wearable

sensors and a vision device, which has the following features, is proposed:

• Wireless communications: the IEEE 802.15.4 standard is used to transfer the

raw data from the sensors to the receiver.

• Easy manipulation: the sensors are easy to use and to apply and re-apply on

the body using elastic bands.
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• Correctness of data: the system represents the real situation with high mea-

surement accuracy.

• Operation: an analysis of sensors’ data can be performed to provide the patient

with an immediate feedback.

• Visual feedback: the system performs video acquisition and provides, addition-

ally to the sensor’s data, a visual feedback to the patient.

• Automation: the system collects and stores the patient’s motion data automati-

cally.

• Friendly Graphical User Interface (GUI): the system includes an intuitive and

simple user interface that makes it easy to use and displays the graphs of the

data that are being acquired in real time.

• Portability: the system components have limited size and weight, while being

robust and allowing good mobility. This is particularly important, especially in

the case of home-based therapies.

Figure 3.1 shows the architecture proposed for the system. It includes six low-

cost universal modules, one acting as a master and five as slaves. Considering the

great potential of inertial sensors, especially the accelerometers in this field, it was

decided to design a system formed by small electronic boards including this kind of

MEMS for tracking patients and monitoring their movements. In the scheme shown

in Figure 3.1, the slave modules are used to monitor the patient’s knees, being placed

one above and one below each knee, while the fifth module is placed on the back

waist of the patient, near the centre of mass, to provide additional information about

the patient’s movement. Thin elastic bands are used to fix them to the body for easy

wearability. Thanks to the system’s flexibility, any other part of the body, e.g., the

upper limbs, could be monitored just by changing the placement of the modules.

The slave modules transmit their data wirelessly to the master module, whose main

function is to keep the system synchronized while receiving the accelerometer data

from the slaves and to store them into a computer or a monitoring station via a USB

connection. The system is completed by using Kinect, the video device developed

by Microsoft, which includes both a RGB camera and a depth sensor, to be used for

providing visual feedback to the patient. A software application featuring a friendly
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GUI to control the sensing system has also been developed and can run under both

Windows and Linux.

Figure 3.1: Proposed system architecture for human motion monitoring.

It must be pointed out that for establishing the requirements of the sensing system

the Isokinetic Rehabilitation Centre of Milan [63] has collaborated allowing to meet

their doctors and physiotherapists in order to know how to fulfil the specific field

needs.

3.1.1 WiModule board

One of the products of Henesis S.r.l., the company with which collaboration this PhD

thesis has been developed, is the WiModule, shown in Figure 3.2, a small low cost

universal module that operates as a component of IEEE 802.15.4 wireless sensor

networks and which contains a high-performance three-axial precision accelerome-

ter [64]. It also includes digital buses and analog lines, allowing for future addition of

new external sensors. Taking into consideration the requirements cited above, it was

considered that using this board as the base of the architecture would allow to reach

the proposed objectives.

The dimensions of the board are 60 × 39 × 11 mm, which makes it a small wea-

rable module, as can be seen in Figure 3.3(a). Figure 3.3(b) shows how the electronic
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(a) Front side. (b) Rear side.

Figure 3.2: Henesis WiModule.

board has been packaged for applications in rehabilitation, in order to easily attach it

to an elastic band using a rear clip. It should be noticed that all modules are based on

the same hardware, and may be programmed to act either as master or slave.

(a) Size comparison. (b) Example of packaging.

Figure 3.3: Details of the Henesis WiModule.

The components of the Henesis WiModule that are more relevant to this work are

the high-performance three-axial accelerometer, a RF transceiver and an 8-bit PIC

microcontroller. Programming correctly the device and interconnecting these com-

ponents appropriately is critical for the final performance of the system. Figure 3.4

shows the generic architecture of the Henesis WiModule, with a basic interconnection

between these three components.

The accelerometer used is the LIS3LV02DQ from ST Microelectronics [65]. It is

a three-axial digital output low voltage linear accelerometer. It has a user selectable

full scale of ±2g / ±6g and it is capable of measuring acceleration over a band-

width of 640Hz for all axes. The small size and weight of its package make it ideal
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Figure 3.4: Generic architecture of the Henesis WiModule.

for handheld portable applications where size, weight and package performance are

required.

It is important to know how acceleration is measured. The accelerometer provides

the data using the g-force (gravitational force). One “g” is the acceleration due to

gravity at the Earth’s surface and it corresponds to the standard gravity (symbol: gn),

defined as 9.80665m/s2 . A three-axial accelerometer will output zero-g on all three

axes if it is dropped or otherwise put into a ballistic trajectory, also known as an

inertial trajectory, so that it experiences “free fall”.

In Figure 3.5 the direction of the detectable accelerations is shown with respect

to the encapsulated package, as provided by the manufacturer. These directions must

be taken into account when interpreting the data that has been sampled. Each sample

is composed by 6 bytes, i.e., 2 bytes for each one of the three accelerometer axis: x,

y and z.

Figure 3.5: Direction of the detectable accelerations.
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The RF transceiver used in the system is the MRF24J40 from Microchip [66]. Its

main characteristics are the following ones:

• General features:

– IEEE 802.15.4 2.4 GHz standard compliant RF transceiver.

– Small, 40-Pin Leadless QFN 6×6 mm2 package.

– Integrated 20 MHz and 32.768 kHz crystal oscillator circuitry.

– Supports ZigBee, MiWi, MiWi P2P and proprietary wireless networking

protocols.

– Low-current consumption: typical values of 19 mA in RX mode, 23 mA

in TX and 2 µA in sleep mode.

• RF/Analog features:

– ISM band 2.405-2.48 GHz operation.

– Data rate: 250 kbps.

– -95 dBm typical sensitivity with +5 dBm maximum input level.

– +0 dBm typical output power with 36 dB TX power control range.

– Differential RF input/output with integrated TX/RX switch.

• MAC/Baseband Features:

– Hardware CSMA-CA (Carrier Sense Multiple Access – Collision Avoi-

dance) mechanism, automatic acknowledgement response and FCS check.

– Independent beacon, transmit and GTS FIFO.

– Automatic packet retransmit capability.

Finally, the microcontroller mounted on the board corresponds to the Microchip

PIC18F87J11 family [67]. Specifically, the PIC used is the 18F67J11, a 64-Pin TQFP,

with the following characteristics:

• Device flash program memory: 128 kB.

• SRAM data memory: 3930 bytes.

• 29 interrupt sources.

• I/O ports: A, B, C, D, E, F, G.

• 10-bit Analog-to-Digital module: 11 input channels.

• 2 Capture/Compare/PWM modules.

• 3 Enhanced Capture/Compare/PWM modules.
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• 2 MSSP for serial communications, with SPI and Master I2C.

• 2 EUSART (Enhanced USART) for serial communications.

• 2 Comparators.

• 2 8-bit timers and 3 16-bit timers.

• No external bus.

• PMP/EPSP (Parallel Master Port/Enhanced Parallel Slave Port for parallel com-

munications).

The power consumption of the Henesis WiModule specified on its datasheet is

the following:

• 1 µA in sleep mode with external-trigger awakening.

• 19 µA in sleep mode with user-defined precise time awakening.

• 25 mA in active TX/RX modes.

The reported range of the wireless transmissions is up to 100 m outdoor, being in

line-of-sight, and up to 20 m under typical indoor conditions.

3.1.2 Configuration of the system

The clock frequency of the system, for both the master and the slaves, has been set to

the maximum allowed, i.e., 32 MHz by using a 8 MHz oscillator and a Phase Lock

Loop (PLL) frequency multiplier configured with a value of 4×.

A Transistor-Transistor Logic (TTL) level serial port is used for transmitting the

data from the master module to the computer; its transfer rate has been set to a high

value, 460,800 bauds. On the other side, for the communications with the console for

debugging, the RS232 level serial port has been used. The console speed has been

set to 19,200 bauds, although it has been tested that the maximum value that works

is 576,000 bauds. Even if this is the maximum value, the most common programs do

not allow to reach it, so the value of 19,200 bauds has been used for debugging.

The wireless communication section conforms the IEEE 802.15.4 standard [68].

It makes 16 channels available in the 2.4 GHz band, numbered from 11 to 26. Each

of them has a bandwidth of 2 MHz and a channel separation of 5 MHz. Channel 26

was selected for the system’s transmissions, as it is affected by fewer interferences

than the others.
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The accelerometer is capacitive since it guarantees higher stability than piezo-

electric ones and it is therefore more suitable for measuring human motion [69]. Ac-

cording to the application’s requirements and the clinicians’ recommendations, 30 Hz

is an adequate sampling rate. In fact, many of the products presented in [31] have this

configuration. However, in order to have more data for posterior analysis, and consi-

dering the available bandwidth, a higher frequency of 160 Hz has been selected. The

scale has been set to ±6g as the results of the first tests demonstrated that the range

±2g was not wide enough for measuring motion in activities like running. This can

be considered an adequate configuration according to [70], where it is shown that, for

assessing daily physical activity, accelerometers should be able to measure accelera-

tions up to ±6g. At the same time, this configuration extends the range reported by

similar systems for human activity recognition [32] and health monitoring [71].

Structure of the data packet

The structure of the data packet has been defined in compliance with the IEEE

802.15.4 standard. The latter defines four frame types, acknowledgement (ACK),

data, beacon and MAC command frame, along with two modes of operation, beacon-

enabled network (beacon-mode) or non-beacon-enabled network (non beacon-mode).

In a beacon-enabled network, beacons are transmitted periodically by the Personal

Area Network (PAN) coordinator and are mainly used to provide synchronization

services between all the devices in the PAN. Instead, a network that is non-beacon-

enabled does not transmit a beacon unless it receives a beacon request [66]. In order

to have more flexibility in the design, it was chosen to define a proprietary wireless

networking protocol using the non-beacon-enabled network and implementing later

the beacon internally.

Figure 3.6 shows the structure of the data packet as provided to the transceiver

of the module. The first byte indicates the packet length, including the header and

the payload. The header length is 21 bytes: two bytes for the IEEE-compliant frame

header that indicates, among other details, the type of packet; one byte for the se-

quence number; two bytes for the destination PAN; finally eight bytes for the desti-

nation address and eight more bytes for the source address.
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Figure 3.6: Structure of the data packet.

The payload includes sixteen samples of the accelerometer to take full advan-

tage of the packet size (filling the payload as much as possible reduces the proto-

col overhead). Each accelerometer sample is formed by 6 bytes, two for each of

the three accelerometer axes: x, y and z. Therefore, the payload length is 96 bytes,

and the packet that reaches the transceiver is composed by a total of 118 bytes. The

transceiver adds one byte at the beginning that specifies the header length, and two

additional bytes at the end specifying the Frame Check Sequence (FCS) by using

the Cyclic Redundancy Check (CRC). This final size of 121 bytes ensures the com-

pliance with the IEEE 802.15.4 standard, which allows the payload of the MAC Pro-

tocol Data Unit (PDU) to be variable, with the limitation that a complete MAC frame

cannot exceed 127 bytes. As mentioned previously, the beacon is implemented inter-

nally by using a MAC command frame (specified in the IEEE frame header) with no

payload, having a size of 23 bytes. On the other hand, the ACK frame, which is sent

automatically by the transceiver if requested, has a size of 5 bytes.

In the reception, the transceiver gets a packet with this structure plus 4 additional

bytes at the end: two of them for the CRC, one for the Link Quality Indication (LQI),

which is a characterization of strength or quality of a received packet, and the last

one for the Received Signal Strength Indicator (RSSI).
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3.1.3 Communication protocol

Taking the transmission medium into consideration, there would be high chances

of losing packets or having collisions between them in the absence of a protocol

that defines the system’s behaviour. Bearing in mind the target application, it is very

important that the monitoring station receives all slave boards’ data packets and in

the correct order. The custom communication protocol that has been designed, which

follows a Time Division Multiple Access (TDMA) approach and where data is sent

upon request, is described below. For better clarity, the diagram of the implemented

protocol is shown in Figure 3.7.

Figure 3.7: Communication protocol with data synchronization.

The synchronization between the different modules is one of the relevant fea-

tures of the system, whose structure, based on distributed sensors for data acquisi-

tion, brings up to a design where no implicit synchronization of the sensor nodes is

present, as all nodes have independent clock sources [72]. A traditional synchroniza-

tion scheme such as the Network Time Protocol (NTP) cannot be used because it is

not suitable for sensor networks due to computing limitations and energy issues [73].

The protocol developed and proposed here is inspired by the Reference-Broadcast
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Synchronization (RBS), first published in [74]. As opposed to traditional protocols

in which senders synchronize with receivers, in the RBS scheme nodes send refe-

rence beacons to their neighbours, synchronizing a set of receivers with one another.

Its fundamental property is that this reference broadcast does not contain an explicit

timestamp; instead, receivers use its arrival time as a point of reference for compa-

ring their clocks. The protocol proposed in this thesis merges both strategies, using

beacons for synchronizing implicitly the receivers among them and with the sender,

the master module. It is therefore the master module the one in charge of sending the

reference beacon to the slave modules. Unlike the RBS, in this proposal the receivers,

i.e., the slave modules, use the beacon arrival time not to compare or readjust their

clocks, but to start sampling a new data packet synchronously. As mentioned before,

the beacon mode is implemented internally, so the master board sends periodically a

beacon packet to the slaves to request their accelerometer data. The period is mainly

determined by the number of data samples included in a data packet. Considering

that there are sixteen samples in the packet and that the sampling frequency has been

set to 160 Hz, the beacon will be sent approximately every 100 ms, depending on the

jitter of the system, which will require a later study [75]. It must be pointed out that

both the master and the slaves use the same transmission channel. Their transceivers

have reception filters set, so that the master receives only data packets addressed to

it, and the slaves receive only command or ACK packets from the master.

The protocol described in Figure 3.7, represented also in Figure 3.8, operates as

follows: the master board sends a beacon packet, which is received by all the slaves at

the same time. At that moment, each slave gets ready to send its data packet and starts

acquiring a new one. If all the slaves started transmitting their data packets when

they receive the beacon, collisions would occur. To avoid this situation, a TDMA

scheduling algorithm has been implemented to share the transmission medium in

time, so each slave is assigned an ID number, which is used to distinguish and allocate

them to a determined time slot to send their packets. During these time slots, the

slaves send their data packets and wait till an ACK packet from the master is received.

Having the ACK request configured allows to assure data reception and increases the

robustness of the system. Another mechanism that has been implemented for this
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same reason is the Carrier Sense Multiple Access with Collision Avoidance (CSMA-

CA), which avoids data collision when accessing the communication channel and

improves communications reliability [76].

Figure 3.8: Communication protocol in normal conditions.

On the other side, when the master receives a data packet from a slave, it sends it

the corresponding ACK packet and sends the data to the monitoring station through

the serial port, so that the accelerometer samples are stored there. If the slave does

not receive this ACK, it tries to send the same data packet for up to three trials,

which is a native capability of the transceiver for packet retransmission. So, during

the 100 ms interval between beacons (termed frame), each slave sends its data packet,

waits for the ACK or retransmits the packet again if it has not been received. Anyway,

to reach this stable situation, the system has to be synchronized first. For further

comprehension, Figure 3.9 represents the communication considering just one slave

module.

Two screenshoots of the 4-channels oscilloscope taken while testing the system

are shown in Figure 3.10. In Figure 3.10(a), the master sends a beacon, represented

as the rising edge which gets to the highest peak in yellow, and when the three slaves
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Figure 3.9: Communication protocol in a normal situation with one slave.

receive it (smaller rising edges), they wait a certain amount of time depending on

their ID to send their data packets (corresponding falling edges), which, as can be

seen, are equally spaced between them. Figure 3.10(b) represents the same situation

with four slaves, and without the master, with more details.

(a) Beacon and data packets. (b) Synchronization of the slaves.

Figure 3.10: Beacon and data packets on the oscilloscope.
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Master module synchronization

When the system is first powered, the master starts an internal synchronization pro-

cess to set the ideal timing interval for sending the beacon packets. Initially this was

done directly every time it acquired 16 samples from its own on-board accelerometer.

However, this was not very precise and introduced an undesired deviation of the pe-

riod (jitter) in the system. To reduce it, a different strategy was implemented. During

synchronization, the master module calculates how much time it takes on average to

fill a data packet by using the accelerometer Interrupt Service Routine (ISR). When

this process finishes, it uses the value obtained to program a timer and enters the

normal operation mode. The ISR of this timer is responsible for sending the beacon

packet periodically. This strategy reduces the jitter in this part of the system, as the

hardware used to generate the time base for the timer, a crystal quartz, is very precise.

For a further explanation see Figure 3.11, where a comparison between both situa-

tions is shown. Figure 3.11(a) shows the beacon jitter when the packet has been sent

after acquiring sixteen samples from the master board’s accelerometer. On the other

side, Figure 3.11(b) shows the jitter when the beacon is sent considering the timer set

during the synchronization process.

(a) Using accelerometer timing. (b) Using programmed timer.

Figure 3.11: Beacon jitter with two different configurations.

Table 3.1.3 shows the standard deviation of the jitter and its maximum value for

both configurations. It can be observed that, when the programmed timer is used, the

standard deviation is reduced by almost 50%.
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Configuration jitterσ (µs) jittermax (µs)

Using accelerometer timing 20.76 93.67

Using programmed timer 11.70 67.17

Table 3.1: Standard deviation and maximum value of the beacon jitter with two di-

fferent configurations.

Slave modules synchronization and specific situations

On the slaves’ side, when one receives a beacon packet for the first time, it also

starts its own synchronization process, which is shown in Figure 3.12. This requires

that a certain number of consecutive beacon packets are received, so that the slave

can estimate the average time between them. When the required number of beacon

packets is received, the synchronization process finishes and the calculated average is

used for setting a timer to start saving the data acquired from the accelerometer. The

main goal of this approach is to synchronize the instant when all slaves start sampling

data for a new packet.

Figure 3.12: Communication protocol during the slave synchronization process.

The accelerometer ISR is programmed with high-priority to work independently,
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acquiring a sample every time one is ready, and keeping the mentioned timer in charge

of copying the last sample acquired from the accelerometer into the data buffer. It

is important to implement a buffering mechanism to avoid losing the samples that

are to be sent with the next packet while transmitting the current one. To solve this

problem, a double-buffer structure has been implemented, which makes it possible

to use one buffer for sending a full packet while new data are being stored into the

other buffer. To maintain data consistency it has also been specifically determined

how to exchange the buffers. In this flow, the possible loss of beacon packets must

also be checked. This is another task performed by the timer mentioned before. In

case the beacon has been lost, or if there is an unexpectedly long delay, and the data

buffer is full, this timer is responsible for exchanging the buffers and indicating that

the packet is ready to be sent. If not, this is normally done by the transceiver routine

when a beacon is received.

It is necessary to differentiate between the situations where a beacon is lost, but

the master is still awake (and, therefore, keeps receiving and saving data), or when

it has been powered off. To take this into account, the slaves feature an embedded

energy-saving mechanism that allows them to keep on sending their data packets only

until a threshold number of lost beacons is reached. If this happens, they enter into

the synchronization mode again, which requires that they receive a certain number of

beacons before they can start sending new data to the master.

If, instead, only one beacon has been lost, as shown in Figure 3.13, the slaves

check that the beacon has not arrived when it should have, send directly the data

packet that is ready and start sampling data for a new one. The possibility that the

beacon arrives with a delay just after the data packet has been sent is also considered.

In this case, and to maintain data synchronization, the samples that may have been

acquired up to then are discarded, and the creation of a new packet is started.

On the other hand, in Figure 3.14 the protocol when several beacons are lost is

shown. As has been said, this process continues till the maximum number of lost

beacons is reached.

Regarding the situations in which a packet is retransmitted, this might happen

because of two different events: the former occurs when the packet does not reach
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Figure 3.13: Communication protocol when a beacon is lost.

Figure 3.14: Communication protocol when several beacons are lost.
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the master, as shown in Figure 3.15 while the latter occurs when the master receives

the data packet, but the ACK is lost, as reflected in Figure 3.16. In both cases, which

the slave cannot distinguish, it will retransmit the data packet.

Figure 3.15: Communication protocol when a packet is lost.

Figure 3.16: Communication protocol when an ACK is lost.
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3.1.4 Data alignment

The previous section has explained how the communication of all the slave modules

is synchronized and how the time is set when the sampling of a new data packet is

started. The master module, just after receiving a data packet from a slave, transmits

it to the monitoring station sequentially. In order to minimize the chances of transmis-

sion errors, or of an incorrect separation of a packet from the next one in the computer,

start and stop delimiters are sent, too. Each of them is formed by 5 bytes and corres-

pond to the sequences TXSTR and TXEND, respectively. The data contained in the

packet is finally decoded and saved into the monitoring station. However, synchro-

nization issues arise again when merging the data from different sensors. Different

algorithms were designed but they all show situations in which their performance is

not adequate. Finally, a robust algorithm, described in Algorithm 1, was designed

and implemented in order to deal with all possible situations, as when beacon or data

packets are lost, when a packet arrives with delay, or when a slave module is tem-

porarily in synchronization mode. The main goal is to align the data from different

accelerometers, to establish an exact correspondence between each of their packets.

To facilitate the alignment task, every time a beacon is sent to the slave modules, the

master device sends also a small packet to the computer through the serial port, which

is detected thanks to the initial delimiter TXMST. This packet helps to divide the time

into frames and to fuse the data of multiple sensors.

The combination of two different algorithms for time and data synchronization,

named Multi-Data-Packaging and Slot-Data-Synchronization, is also used in the sys-

tem-based design described in [77]. As their Slot-Data-Synchronization algorithm,

the data alignment algorithm proposed here is implemented in the monitoring station.

This choice allows to reduce the computational load of the master module while

keeping the time synchronization through the beacon reference as its main task.
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Algorithm 1 Data alignment.

Initialization;

while not at end of the received data do

Read current packet;

if it is a beacon then

if previous frame is not completed then

Set a missing packet for each slave that missed it;

end if

Start a new frame;

else

Extract the source (slave ID) and the sequence number;

if received source != expected source then

Set a missing packet for the expected source;

end if

if received sequence number != expected one then

{At least one packet from this slave was lost before}

Cancel the missing packet if the current frame has already been filled;

else

if the frame has just been filled then

Cancel the missing packet as the right one has arrived late;

end if

end if

if there is a new packet but its current frame has already been filled with real data

then

{The packet corresponds to a new frame}

if previous frame is not completed then

Set a missing packet for each slave that missed it;

end if

Start a new frame;

end if

Include the data packet in the frame and set it filled;

Update the expected source and sequence number;

end if

end while
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3.1.5 Flowcharts

In this part, the flowcharts corresponding to the code developed both for the master

and the slave modules are shown and explained.

Master device

As can be seen in Figure 3.17, the master board does not have a proper main function,

which means that it is totally controlled by the programmed interrupts. After the con-

figuration of the system, including the transceiver, timers, accelerometer and so on, it

just updates the state of the green LED to show whether it is in the synchronization

process or not.

Figure 3.17: Master’s main function.

Figure 3.18 shows how the transceiver interrupt service routine works. It is con-

figured as a low-priority interrupt, as its frequency is not very high, because it just

happens when a packet is received. When the system enters this routine, it first sets a

variable to indicate that the transceiver is being used, so that other routines will not

try to use it at the same time. Then, it checks if a packet has been received and, if

this is the case, it gets the incoming packet and sends the data through the serial port.

After finishing the transmission, the red LED blinks and the transceiver state is reset

to “not in use”.
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Figure 3.18: Master’s transceiver function.

The accelerometer interrupt service routine, shown in Figure 3.19, is quite com-

plex, as it controls the synchronization process. It is set as a high-priority interrupt,

as the accelerometer sampling frequency is set to 160 Hz and, consequently, it will

produce an interrupt every 6.25 ms, which is a high frequency, specially considering

the frequencies of the other interrupts of the system. When the program enters the

ISR, it is first checked if, considering the actual sample, the packet is full and the

synchronization mode is ON. If they are not, then the sample from the accelerometer

is read, which is a requirement of the sensor, even if afterwards it is not going to be

used, and then the ISR finishes. In the other case, using the timer 0, the timing since
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the last sample is taken and it is reset again. This timing is used to update the average

value of the time related to the acquisition of sixteen samples.

Figure 3.19: Master’s accelerometer ISR.
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If the synchronization process has finished after this step, the synchronization

mode is set to OFF, and then the CCPR1 is programmed for sending the beacon

packet. After that, or if the synchronization process has not finished, the sample

counter is reset to start counting for sixteen new samples for the next packet.

The CCPR1 is a capture-and-compare timer which is used as a high-priority in-

terrupt to count sixteen times in order to send the beacon packet to the slaves. Its

period, 6.25 ms, is the reason why it has been configured as a high-priority interrupt

–see Figure 3.20–.

Figure 3.20: Master’s CCPR1 ISR.
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On the other side, the timer 0 is used to count how many milliseconds are there

between sixteen samples of the accelerometer during the synchronization process.

In this case it has been configured as a low-priority interrupt, as can be seen in Fi-

gure 3.21.

Figure 3.21: Master’s timer 0 ISR.

Slave device

As shown in Figure 3.22, the main function of the slave also starts with the configu-

ration of the different parts of the system: timers, accelerometer, etc. Then, it enters

a loop waiting for the packet to be completed. Once it is filled with all the sixteen

samples, it programs timer 3 in order to wait till its assigned time slot. At that mo-

ment, it encodes the data and sends the packet using the transceiver. When the slave

is sending the packet, a variable indicates whether CSMA-CA is to be used or not,

and the acknowledge for the packet is requested. In the main program, the state of

the green LED is always updated to show if it is in the synchronization process or

following the normal execution.

Figure 3.23 shows the RF transceiver ISR, which is configured as a low-priority

interrupt, because it is supposed to be activated approximately every 100 ms, when

receiving a beacon. As mentioned before, a reception filter has been configured at

the transceiver in order to just receive the packets from the master module inside the

defined PAN. In the ISR, when a beacon packet has been received, the time that has

elapsed since the last beacon packet is saved using timer 0, whose ISR is shown in
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Figure 3.22: Slave’s main function.

Figure 3.24. A variable is set to indicate that it has been received, so there can be a

track of received beacons which can be used by the other ISRs. Then, it checks if a

beacon has been lost immediately before. If there was not a lost beacon before, it up-

dates the average value of the timing between beacon packets. If the synchronization

mode is ON, the beacon counter is increased and it is checked if the threshold has

been reached. In this case, the synchronization process has finished and the capture-
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and-compare timer, CCPR1, is programmed to allow to start acquiring data from the

accelerometer. In the case there was not a lost beacon before, it is checked again if

the synchronization mode is ON. If it is not ON, i.e., the system is in normal function,

it is checked if the buffers need to switched, and it is set that the packet is ready to be

sent. Then, the timer of CCPR1 is reset for the acquisition of the following samples.

The next packet is started by saving the last sample acquired from the accelerometer

on the buffer. Finally, a variable that indicates that a beacon has been lost is set to

False and the ISR finishes.
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Figure 3.23: Slave’s transceiver ISR.

The ISR corresponding to timer 0 is shown in Figure 3.24. As just said, it is used

as a counter for lost beacons. It is also responsible for switching to the synchroniza-

tion mode when the threshold established for lost beacons has been reached.

After switching to normal mode, CCPR1, whose ISR flowchart can be seen in

Figure 3.25, is programmed with the average time that it takes to acquire two ac-

celerometer samples and becomes active. When the program enters this ISR, defined

as a high-priority interrupt, it updates the value of the timer and copies the last sample

of the accelerometer in the buffer. In order to control the exchange of the data buffers,

it checks if a beacon has just been lost or has not been received in time. And, in this

case, if the packet has been completed, it is indicated that it is ready to be sent after

exchanging the buffers.
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Figure 3.24: Slave’s timer 0 ISR.
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Figure 3.25: Slave’s CCPR1 ISR.
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Figure 3.26 corresponds to the accelerometer ISR, which just gets the sample

from the accelerometer and saves it into a buffer. As the sampling frequency has

been set to 160 Hz, this interrupt takes place every 6.25 ms, being defined as a high-

priority interrupt.

Figure 3.26: Slave’s accelerometer ISR.

Timer 3 is used for each slave to know when to send its data packet after receiving

the beacon. This time depends on its ID, so it is programmed differently for each

slave. Its corresponding ISR is shown in Figure 3.27.

Figure 3.27: Slave’s timer 3 ISR.
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As the Henesis WiModule includes a push button, its functionality was imple-

mented in the slaves as an ON/OFF button in order to save energy while the system is

not being used. This was done by using the Port B Interrupt-On-Change, whose ISR

is shown in Figure 3.28. The value of the port is masked in order to know if the button

has been pressed or released. In case it has been pressed, it checks if the system is ON.

If it is, it turns it OFF by disabling the interrupts of the transceiver, the accelerometer

and the timers, and it puts the transceiver, the accelerometer and the microcontroller

in sleep mode. If the system is OFF, the microcontroller is awaken automatically. It

finishes turning the system ON completely by awaking the transceiver and the ac-

celerometer, resetting the variables of the system to the initial state and enabling the

corresponding interrupts.
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Figure 3.28: Slave’s PORTB Interrupt-On-Change ISR.

3.1.6 Slave’s batteries issues

K. Kunze, when giving an inspiring talk in the 3rd PerAda Summer School on Adap-

tive Socio-technical Pervasive Systems about the work presented in [78], everyday

activities recognition by using accelerometers, explained very clearly the problem of

the batteries when using wearable sensors. In Figure 3.29 two real examples of his

wearable system are shown. As can be seen, it includes, apart from several wires, a

quite big module on the waist which contains the system’s battery. The woman in the

left is K. Kunze’s grandmother. And, in his opinion, it was not acceptable that she

had to wear such a heavy and big module for the power supply when performing the

activities.

This has been taken into account when thinking about the design of the batteries

in the system. At the beginning, small 3.6V Li-SOCI2 disposable batteries were used,

as shown in Figure 3.30(a). However, they have some main inconveniences: their

size requires a bigger encapsulation module than expected, and the module has to

be opened every time the batteries are discharged to replace them with new ones, so

they are also not very environment-friendly. This is the reason why, afterwards, it was

decided to use 3.6V Li-Ion rechargeable batteries. They are much lighter and thinner

than the others, so they also allowed a smaller encapsulation, seen in Figure 3.30(b),
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Figure 3.29: Real examples of a wearable system [78].

which is more comfortable to wear. To enable their recharge with a standard mobile

phone charger, the board was modified to include a connector for it.

(a) Module with the 3.6V Li-SOCI2 dispo-

sable battery.

(b) Module with the 3.6V Li-Ion

rechargeable battery.

Figure 3.30: Modules with two different kinds of batteries.
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3.1.7 Including vision

Due to the importance of visual feedback in rehabilitation therapies, already dis-

cussed in the previous chapter in Section 2.4, it was decided to add vision to the

proposed system. This has been done by using Kinect, a motion sensing input device

developed by Microsoft for the Xbox 360 video game console, which includes both a

RGB camera and a depth sensor. The choice of using this device allowed to evaluate

the present proposal, providing visual feedback within the suite, while maintaining a

low-cost scheme.

Although instantaneous visual feedback may contribute to improved error reduc-

tion during task performance, it may be detrimental to learning, as subjects fail to at-

tend to intrinsic information in favour of the more concrete external information [79].

For this reason, video is recorded during the exercise session, but it is provided to the

subject afterwards.

Kinect calibration

Before proceeding to the video acquisition it is necessary to calibrate both cameras,

the RGB and the depth one, in order to enable a mapping between their outputs. This

calibration aims to improve the one provided by the device firmware.

The RGB camera intrinsics are calibrated using standard chessboard recognition,

as shown in Figure 3.31. In order to get a good calibration it is necessary to move

the chessboard around in the camera frame, especially checking for coverage of the

corners and edges of the field of view, detecting the chessboard at various angles with

respect to the camera, filling the entire field of view and tilted to the left, right, top

and bottom. On the other hand, to calibrate the depth camera intrinsics, the corners of

the chessboard on the depth images are extracted manually and saved. Finally, this is

also done on the colour images so that a standard stereo calibration can be performed.

Limitations

Initially, it was considered that Kinect could support the calibration of the wearable

sensors with respect to their position on the body, by recognizing a pattern, a small
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(a) (b)

(c) (d)

Figure 3.31: Calibration process for Kinect RGB camera intrinsics.

chessboard, attached to the front part of the modules packaging. Several dimensions

of chessboard were tested, as shown in Table 3.2. The second chessboard, with larger

edge length, was the one which gave better results.

Chessboard Internal Edge

ID
Squares

corners length

1 5 × 3 4 × 2 1.05 cm

2 5 × 3 4 × 2 1.50 cm

3 6 × 4 5 × 3 0.75 cm

4 7 × 4 6 × 3 0.90 cm

5 7 × 4 6 × 3 0.95 cm

6 10 × 6 9 × 5 0.50 cm

Table 3.2: Modules calibration chessboards.
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Figure 3.32 shows how the module with the chessboard on it appears both on

the colour and the depth views. Also, it shows how it was recognized on the window

“Result”. Several algorithms were tested for detecting the pattern, using the Harris

corner detection and Hough transform for line detection, among other techniques.

However, the tests made it clear that Kinect was not appropriate for calibrating the

position of the on-body sensors. This limitation was due to the size of the pattern,

which could not be increased due to the packaging size, and the distance needed

between the Kinect device and the user in order to cover all the scene while the

subject is performing the exercises.

Figure 3.32: Using Kinect to identify a pattern on the sensors.

Another feature that was tested was the skeleton tracking, as shown in Figure 3.33,

but it brought up several problems, not just in case of truncation and occlusion, but

also due to the required distance between the subject and the camera (between 1.5 m

and 2.0 m) and because the system did not show as much accuracy as required. For

example, from the leg, the following joints can be obtained: hip, knee and ankle. If

the lengths of the two segments of the leg (upper and lower part) are extracted from

these points, their values vary in the centimetre range while the subject is moving,
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which is not adequate for the application considered.

Figure 3.33: Skeleton tracking.

3.2 Graphical User Interface

A GUI (Graphical User Interface) has been developed in order to facilitate the use

the system, especially considering that it has been conceived to be used by doctors

and physiotherapists or directly by patients performing home-based rehabilitation

therapy. This GUI can run under both Windows and Linux.

The main windows of the GUI are shown in Figure 3.34. Figure 3.34(a) repre-

sents the part concerning the accelerometer sensor system. In the upper part of the

window, the type of experiment can be selected among several tags as running or

jumping. The central part allows to start or stop the acquisition and includes a status

window to inform the user about the task that is currently being developed. Below, the

displays indicate the accelerometers that are active at each moment. The lowest part

is composed by the plotting controls, that allow the user to show the graph with the

data that is being acquired at the moment, clear it, or reproduce the last session. Fi-

gure 3.34(b) shows the window which allows to manage the Kinect device, including

the views control, for both the colour and the depth cameras.

It is also possible to show independently any other saved accelerometer data se-

ssion or to obtain the statistics of a session in terms of lost and forwarded packets,
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(a) Window for the accelerometer system. (b) Window for Kinect.

Figure 3.34: Main windows of the GUI.

as shown in Figure 3.35, to perform the calibration or a basic data analysis, among

other options.

Figure 3.35: Window with the session statistics.
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The accelerometer data are shown in separated windows, one for each of the

sensors. The plot corresponding to one of them is shown in Figure 3.36, with a graph

where the three axes are represented, with the samples in the x axis and the amplitude,

the acceleration measured in g, in the y axis. In the upper right corner of the window

there is a zoom button, which allows to perform both zoom in and zoom out. It is

also possible to reset the zoom to get back to the initial state of the graph, or move it:

panning movement. One interesting feature is that the system allows to synchronize

the plots of all the accelerometers. So, if one selects the check box “Sync all”, any

zoom or panning that is made in one of the plots will be replicated on the other ones.

This is of particular interest when representing in detail a certain temporal window

in a session.

Figure 3.36: Plotting window of a single accelerometer sensor.

3.2.1 Calibration

The GUI includes a menu that controls the calibration of the sensors position. To pro-

ceed with the calibration process, it asks the user to pose for some seconds in four di-

fferent pre-established postures. Considering how the accelerometer is mounted –see

in Figure 3.37 the coordinate system of the accelerometer with respect to the human
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body reference axes– the system has the raw values of every axis and accelerometer

in those postures saved internally.

(a) Sensor coordinate

system.

(b) Human body reference axes.

Figure 3.37: Coordinate reference system.

After the acquisition, the results obtained are compared with the expected ones.

This information can be used to determine the position of the accelerometers when

being worn and to correct it, if necessary, before starting the exercises. Figure 3.38

shows the window for the system calibration, after finishing this procedure.

Figure 3.38: Calibration window for the sensors.
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Figure 3.39 shows the window that controls the calibration of the Kinect device,

which offers the possibility to load a file with the data from a previously performed

calibration.

Figure 3.39: Calibration window for Kinect.

3.3 System validation

During the development of the system, before getting to the final version, it was ne-

cessary to start testing and validating it in order to know if more modifications on the

architecture or the configuration were needed, or to choose the best approach among

different possibilities. This is the reason why here the results are presented sepa-

rately for two different configurations of the system. At the beginning, it was formed

just by four slaves instead of five, placed on the legs of the patient, and its perfor-

mance was tested with this configuration. The results obtained in this case allowed

to decide a particular feature of the system configuration, that is, if the slaves should

implement the Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA)

mechanism or not. This mechanism avoids data collision when accessing the com-

munication channel and improves communications reliability [76]. This first version
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of the system, which is described in detail below, has been published in [80], while

the final version including the five slave modules has been published in [81].

The validation process takes mainly into account three different aspects: data syn-

chronization, data loss and jitter. As pointed out before, synchronization is a key as-

pect of the proposed system for later data analysis. To assess it, the so called “wooden

bar experiment” was performed. The slave boards were fixed next to each other on

a wooden bar with the purpose of assuring rigid mechanical connection. Afterwards,

the bar was hit with a hammer with the aim to simulate a δ impulse. The main goal

was to detect the start of the vibration produced by the hammer and check that it was

consistently sensed by all modules. In Figure 3.40 the setup of the experiment can be

seen.

Figure 3.40: Experiment setup to check data synchronization.

Another important factor to be studied during the experiments was the number of

lost packets, which corresponds to the number of time intervals with no data when

reconstructing a sequence. As has been said, to assure the best performance of the

system, in its first version, with four slaves, the experiments were performed with

and without CSMA-CA in order to later choose the best configuration based on the

experimental results.

The other experiments were focused on the data packets transmission for mea-
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suring the time jitter, both with and without CSMA-CA in the first version. While

for the first two aspects, data synchronization and data loss, the analysis considered

the information stored in the computer by the master board containing all the data

packets received from the slaves, for the jitter measurements the data were analysed

from a different point of view, by using an external device, a packet sniffer, which is

illustrated below. Using this double-check mechanism gives the possibility of acqui-

ring data from different sources and therefore using more available information about

the system performance.

The ZENA tool, shown in Figure 3.41, is a wireless network analyser that gra-

phically displays wireless network traffic following the IEEE 802.15.4 specifications

on the 2.4GHz band [82]. In this case, it has been used for a non beacon-enabled

network, as explained in Section 3.1.2. Zena uses a USB mini-B cable to connect to

the PC and to power it, while a PCB trace antenna receives the packets on a specified

channel and sends the information over the USB to the PC.

Figure 3.41: Zena Analyser from Microchip.

Figure 3.42 shows the standard scenario seen with Zena’s GUI. The first packet

corresponds to the beacon, which is sent in order to let the slaves to start sending their

data packets and to start acquiring and creating a new packet. Afterwards, each slave

sends its own data packet and receives the corresponding ACK from the master. At

the end of the process, a new beacon is sent.

After performing an experiment, the data can be saved with Zena, that creates a

binary file with extension .zna. For later analysis it was necessary to write a small

script to read the data and transform it into a file with the information organized as

shown in Figure 3.43 (it represents the same situation shown before in Figure 3.42).
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Figure 3.42: Scenario represented by Zena.

Frame Time (us) Type Seq number Source

1 454304 1 0 0

2 474464 2 31 1

3 480928 0 31 0

4 487008 2 4 2

5 493472 0 4 0

6 500416 2 61 3

7 506880 0 61 0

8 511520 2 51 4

9 518000 0 51 0

10 526432 2 35 5

11 532896 0 35 0

12 555504 1 0 0

Figure 3.43: File with Zena’s information decoded.

Zena assigns a frame number to the packets in order of arrival. The time, in µs,

is the absolute time of arrival of a packet. The type of packet is an internal parameter

that has been set during the development for differentiating between the beacon (type

1), a data packet (type 2) and an ACK (type 3). The sequence number corresponds

to the one encoded by the board when it sent the packet. In case of a beacon, it is

always 0, the data packets have the sequence number set by the slave when sending
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them, and the ACK has always the sequence number corresponding to the data packet

which is being acknowledged. Finally, the source permits to identify unequivocally

each board. Number 0 corresponds to the master, and the numbers from 1 to 5 define

each slave ID. Once the information from Zena has been decoded as explained, it is

analysed to get the timing measurements.

3.3.1 Tests performed using four slave modules

This section includes the tests performed in the previous phase using four slave

modules. These preliminary tests allowed to check how the system performs using

CSMA-CA and without it. Considering the target application and the kind and du-

ration of the exercises that are performed in a rehabilitation centre, the experiments

carried out for data acquisition had a duration of 15 minutes, which corresponds to

the transmission of approximately 100,000 packets, considering beacon, ACK and

data packets.

Data synchronization

After performing the “wooden bar experiment”, the data was plotted and analysed.

The data sequence in Figure 3.44 –just the z axis, for the sake of clarity– shows the

beginning of the vibration produced by the hammer, sampled by all slave boards at

the same time. It was also checked that the maximum de-synchronization among the

four modules was one data sample, i.e., 6.25 ms.

Data loss

To assess data loss and timing measurements ten experiments have been performed,

five with each configuration, with and without CSMA-CA. The statistics are calcu-

lated taking into consideration all the data available. For example, in the case of the

lost packets, the average of all data received from all the slaves in all the experiments

was computed.

The statistics about data loss for each type of configuration are shown in Ta-

ble 3.3. They were measured by counting the time slots skipped, considering them as
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Figure 3.44: Zero sample difference with 4 slaves.

lost data packets, as there is a missing sample at a certain moment which cannot be

recovered. Comparing both cases, it can be seen that using CSMA-CA reduces drasti-

cally the amount of lost packets, therefore helping to increase the system robustness.

Statistic Without CSMA-CA With CSMA-CA

Average 0.12% 0.00%

Median 0.00% 0.00%

σ 0.23% 0.00%

Table 3.3: Lost packets.

Timing measurements

The last experiments were focused on studying the performance of the data transmis-

sion in the network.

Average time between packets Table 3.4 shows the statistics related to the measure-

ment of the timing between packets. In particular, for the master, the timings related

to the beacon are shown, while for the slaves the one corresponding to their data pa-
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ckets. As before, the results are shown for both configurations, using CSMA-CA and

not using it. The columns of the table display the average time between packets for

each module and the corresponding standard deviation. The rows indicate the statistic

used for all of the experiments.

Without CSMA-CA With CSMA-CA
Board Statistic

∆packet (µs) σpacket (µs) ∆packet (µs) σpacket (µs)

Average 99918.61 12.74 99929.44 13.02

Master Median 99919.44 12.74 99924.57 13.25

σ 7.77 0.46 11.14 0.38

Average 99900.45 461.17 99926.51 1059.14

Slaves Median 99914.01 313.95 99923.85 1049.28

σ 46.71 399.57 10.94 23.46

Table 3.4: Average time between packets.

To make things clearer, it is necessary to provide an explanation: for each experi-

ment and for each slave, the average time and the standard deviation between the data

packets corresponding to that slave were calculated. Afterwards, considering the re-

sults obtained by the other slaves the average, the median and the standard deviation

of those values were calculated and shown in the table.

As can be seen in Table 3.4, the master does not show any significant difference

between the two type of experiments. This was expected, as these configurations were

applied to the slaves and do not influence the master’s performance. On the other

hand, for the slaves, it is seen that, while the average time between packets does

not show a big difference, the standard deviation increments when using CSMA-

CA. Both for the master and for the slaves, the average time between packets is

approximately 100 ms, which corresponds to the acquisition of sixteen samples from

the accelerometer, that is, the number of samples included in a data packet.

Jitter measurements The time jitter of the beacon and data packets, both with and

without CSMA-CA, was also measured. The measurements are shown in Table 3.5.
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The average jitter is zero, which means that, in general, the packets were sent when

expected. jitterσ represents the deviation from the expected value of the timing be-

tween the packets, while jittermax corresponds to the maximum jitter. Both data help

to infer the minimum possible duration of a time slot and, hence, the maximum num-

ber of slaves in the system. Allowing for a wide safety margin (the maximum jitter

plus two times the standard deviation), that is having a time slot of approximately 13

ms, sets the maximum number of slaves that can be included in the system to five, as

proposed. It can also be seen that the jitter is minimal in the case of the master, which

validates the choice made for its configuration when sending the beacon packet.

Without CSMA-CA With CSMA-CA
Board Statistic

σ jitter (%) jittermax (%) σ jitter (%) jittermax (%)

Average 0.01 0.08 0.01 0.08

Master Median 0.01 0.08 0.01 0.08

σ 0.00 0.01 0.00 0.01

Average 0.41 9.70 1.05 8.65

Slaves Median 0.40 8.69 1.05 7.79

σ 0.27 6.43 0.02 3.87

Table 3.5: Jitter measurements.

Figures 3.45(a) and 3.45(b) show a comparison between two different configura-

tions for the transmission from the slaves to the master, with respect to the use of the

CSMA-CA technique. Figure 3.45(a) shows the data jitter with the first configuration.

In this case, the standard deviation of the jitter is 1017.37 µs while the maximum is

up to 7284.86 µs. On the other side, Figure 3.45(b) shows the data jitter when not

using CSMA-CA. Due to the direct implications of this approach, the standard devia-

tion of the jitter is reduced to 149.78 µs, while the maximum jitter is still quite high,

6403.69 µs.
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(a) Using CSMA-CA. (b) Not using CSMA-CA.

Figure 3.45: Data jitter with two different configurations.

Evaluation of the results

A considerable amount of results has been presented with different kind of statistics

for both methods, using CSMA-CA or not using it. However, for helping to decide

which system configuration is best, the Wilcoxon signed-rank test has been applied

[83]. It is a non-parametric statistical hypothesis test that permits to compare two re-

lated samples or repeated measurements on a single sample to assess whether their

population medians differ. It does not assume that the population is normally dis-

tributed, as the paired Student’s t-test does.

It has been applied to the maximum jitter and its standard deviation, to select

the method with the smallest ones. The test has been performed with a typical sig-

nificance level α = 0.05 and for the null hypothesis “the median difference between

pairs of observations is zero”. The Wilcoxon signed-rank test returns a p-value, a

probability, which is compared with α in order to see if the null hypothesis is to be

rejected. The results are shown in Table 3.6. The null hypothesis was not rejected,

as expected, for the master. This happens because the choice of the slaves configura-

tion does not affect its performance. In the case of the slaves, the null hypothesis has

neither been rejected for the maximum jitter, i.e., it does not matter which method is

used because the difference between them is not significant. However, it was rejected

for the standard deviation of the jitter.

To decide which method is the best, it is necessary to check the medians of the
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Board p-value Rejection of the null hypothesis

Master 6.25e−1 0
jittermax

Slaves 6.27e−1 0

Master 1.88e−1 0
σ jitter

Slaves 2.19e−4 1

Table 3.6: Applying Wilcoxon signed-rank test.

standard deviation, which have already been shown in Table 3.5. For the sake of

clarity, only these values of interest are shown again in Table 3.7. As can be seen,

the lowest median corresponds to the configuration without using CSMA-CA. This

means that when not using it in the communication protocol, the packets would be

placed more precisely in their time slot. However, it also has to be considered that,

since the approach followed in the communication protocol consists in dividing the

time in slots, so that each slave knows exactly when to send its packet, it is not ex-

pected that the channel is occupied in that moment. Even if this is not relevant for

data synchronization, which is governed by the master’s beacon, it could be interes-

ting in other schemes, fitting more slaves in the configuration but getting worse data

loss statistics.

Without CSMA-CA With CSMA-CA

Median of σ jitter (%) 0.40 1.05

Table 3.7: Comparison of the median of the standard deviation of the jitter.

Taken into account the results related to data loss, shown in Table 3.3, it must be

pointed out that when using CSMA-CA there were no lost packets. And, as pointed

out before, it is very important for this application to receive all of the data packets, or

at least, as many as possible. For this main reason, in order to assure data correctness,

the configuration with CSMA-CA was selected to be used in the communication

protocol.
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3.3.2 Final results using five slave modules

Once the system was developed to its final configuration, using five slave modules,

it was necessary to repeat the test sessions in order to verify its performance. The

assessment of the communication performance takes into account four different as-

pects: data synchronization, data loss, timing measurements and battery life. As in

the previous part, the experiments carried out for data acquisition to assess data loss

and timing measurements had a duration of 15 minutes.

Data synchronization

Figure 3.46 shows the accelerations along the y axis of the five slave modules, for the

sake of clarity, acquired while performing the “wooden bar experiment”. The peaks

on the data correspond to the moments in which the bar was hit with the hammer with

the aim to create these δ impulses.

Figure 3.46: Data of the whole experiment for the synchronization test.

Figure 3.47(a) shows the data when zooming into one of these peaks. It can be

seen see that the beginning of the impulse is sampled simultaneously by all the acce-

lerometers. The maximum de-synchronization among the modules corresponds to
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two data samples, i.e., 12.5 ms, as shown in Figure 3.47(b). This was expected since

the accelerometer sampling process relies on its own internal clock, which cannot be

synchronized with the board’s clock signal. This result represents an improvement

with respect to the maximum error for data synchronization of a similar system made

up of three sensors, proposed in [77], which was 24 ms.
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(b) Worst case: de-synchronization of two data

samples.

Figure 3.47: Zoom of the data for the synchronization test.

Data loss

Table 3.8 shows the performance related to data loss (average, median and standard

deviation) in two different environments, considering both ideal conditions in the

lab (15 experiments) and real experiments while wearing the sensors (48 acquisi-

tions from 10 different people). Although the number of lost packets increases in

free-living environments, the high sampling frequency used allows to interpolate the

missing information in the monitoring station without any noticeable degradation in

the signal.

Timing measurements

The last results are focused on the study of the performance of the data transmission

in the network.
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Environment Statistic Lost packets

Average 0.000%

Lab-controlled Median 0.000%

σ 0.001%

Average 3.160%

Free-living Median 3.380%

σ 1.580%

Table 3.8: Performance related to data loss in the final system.

Average time between packets Table 3.9 shows the experimental results correspon-

ding to the time between packets, beacon in the case of the master, and data packets

in the case of the slaves. As can be seen, the average time is approximately 100 ms

and the standard deviation has minimum values for the master board and acceptable

ones for the slaves having the CSMA-CA configuration.

Board Statistic ∆packet (µs) σpacket (µs)

Average 101203.33 12.58

Master Median 101202.32 12.61

σ 5.57 0.40

Average 101196.89 1101.80

Slaves Median 101199.25 1079.73

σ 11.94 75.09

Table 3.9: Average time between packets in the final system.

Jitter measurements Finally, Table 3.10 shows the results of the jitter measure-

ments. The experimental values obtained confirm the ones calculated previously for

the initial system with four slaves. It should be mentioned that using the CSMA-CA

mechanism slightly increases the jitter on the slaves, as explained in [80], while, on

the other hand, it reduces data loss significantly.
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Board Statistic σ jitter (%) jittermax (%)

Average 0.01 0.07

Master Median 0.01 0.08

σ 0.00 0.01

Average 1.09 8.56

Slaves Median 1.07 8.83

σ 0.07 2.65

Table 3.10: Jitter measurements in the final system.

Battery life

The battery life of the 3.6V Li-Ion rechargeable batteries used in the slave modules

was also tested. Experiments have shown that they allow up to 12 hours of continuous

operation, which is adequate for daily monitoring, improving additionally the 3-4

hours of operating time reported by [9, 47, 48, 49].

3.3.3 Use of the proposed system

The prototypical hardware setup corresponding to the accelerometer sensing system

is shown in Figure 3.48. In the upper part of the image, there are the five slaves to be

worn (as can be seen, in one of them there is a clip in the back part of the package

that permits to attach the module to the elastic band shown below) and the master

module, which is the one with the USB connection cable.

The size of the master module, once it has been packaged, is 90 × 55 × 22 mm,

while the size of the slave modules is 84 × 52 × 16 mm. The package chosen for

the slave modules made it possible to include light 3.6 V lithium ion rechargeable

batteries, making them small self-powered and comfortably wearable modules. The

weight of the slave modules, including battery, is 60 g. This solution overcomes

the inconvenience of other systems, which require wearing a larger additional mo-

dule on the waist containing the battery as well as several wires connected to the

sensors, as described in [78]. This approach is also used in the commercial sys-
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Figure 3.48: Hardware corresponding to the accelerometer sensing system.

tem described in [9]. The Xbus Master is a portable device, worn on the waist,

which connects up to 10 inertial sensors and supplies power to them. Its size is

110 × 150 × 40 mm and its weight is 330 g, including batteries. On the other hand,

this scheme allows the sensors to be smaller (38 × 53 × 21 mm) and lighter (30 g).

The images in Figure 3.49 show a person wearing the slave modules as proposed

in Figure 3.1. The IDs of the sensors help to place them always in the same position

of the body, which is very important for data analysis. Sensor 1 is placed in the upper

part of the right leg, while sensor 2 is placed below the knee. Sensor 3 is placed above

the knee of the left leg and sensor 4 below it. As an example, Figure 3.50 shows the

GUI with the graph of the waveforms corresponding to the three axes of the four

modules on the legs, acquired while the subject was walking: one can see that there

is a pattern in the movement performed, as expected.

On the other hand, Figure 3.51 shows the computer with the whole system acqui-

ring data while a person is performing an exercise. On right part of the monitor there

is the window corresponding to the accelerometer acquisition, where it can be seen
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(a) (b)

Figure 3.49: Subject wearing the sensors.

Figure 3.50: Plot of the four slaves on the legs while walking.
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that all five sensors are active. On the left part, it is shown that Kinect is also cap-

turing the scene for providing afterwards a visual feedback. The figures shown in

this section demonstrate the use of the system in a real environment, the wireless

connectivity between the slaves and the master module and how this kind of sensors

makes it possible to capture body motion while Kinect is acquiring simultaneously

the scene while the subject is performing an exercise, so that both sources of data can

afterwards be analysed together.

Figure 3.51: Computer display while the system is acquiring data.

Validation of the system for classification

The aim of this experiment was to demonstrate that the data obtained from the pro-

posed system were meaningful. One person was asked to wear the slave modules as

shown in Figure 3.49 and perform three different activities for 45 minutes: standing,

sitting and walking. The acquired data was then separated into a training and a test set

(60% and 40%, respectively). Afterwards, various classifiers were trained with the co-

rresponding training set. Weka [84], a collection of machine learning algorithms for

data mining tasks, was chosen for the analysis of the data. The supervised methods

selected for validating the system are: J48, a decision tree classifier [85], SMO (Se-
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quential Minimal Optimization), a non-probabilistic linear binary classifier [86], and

a probabilistic classifier, Naive Bayes [87]. All the classifiers implement a supervised

learning algorithm. In this technique, the training samples are formed by the input

data and their labels, that must be associated to them. When analysing these data, the

algorithm deduces a function which allows it to correctly determine afterwards the

class labels corresponding to unseen instances.

It was necessary to take into account the system altogether, so the information

obtained, without being pre-processed, was considered as a whole, i.e., the classifiers

were fed with all 15 channels, 3 axes for each of the 5 accelerometers, at the same

time. The data saved in the computer by the master was transformed to the format re-

quired by Weka, .arff files. with information organized as indicated in Figure 3.52,

where only one sample of the data is shown, for simplicity.

The results on the test set (over a total of 52,616 instances) are shown in Ta-

ble 3.11. They demonstrate that the data obtained by the different sensors are mea-

ningful and can be effectively used for activity classification.

Combining the system with EEG

Many of everyday human works and actions are considered voluntary. There are evi-

dences from Electroencephalography (EEG) data which show that the human brain

is active even before the beginning of the voluntary movement. One of the changes

seen in these data preceding human voluntary movement is a cortical potential called

Readiness Potential (RP). Detection of this potential can benefit researchers in cli-

nical neurosciences for rehabilitation of malfunctioning brain and those working on

brain computer interfacing to develop a suitable mechanism to detect the intention of

movement.

The objective of the research published in [88] is to determine whether this brain

potential exists in single trials of the EEG. With that aim an experiment setup was

designed including the necessary software and hardware to evoke the RP in EEG of

the subjects. In this experiment, the subjects were asked to move their hands and

press a button on the pad whenever they wanted; no specific cues were given and the

subject had complete freedom for the movement time. After data acquisition, first,
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@relation ’Accelerometer_data_for_training’

@attribute source_1 numeric

@attribute x_axis_1 numeric

@attribute y_axis_1 numeric

@attribute z_axis_1 numeric

@attribute source_2 numeric

@attribute x_axis_2 numeric

@attribute y_axis_2 numeric

@attribute z_axis_2 numeric

@attribute source_3 numeric

@attribute x_axis_3 numeric

@attribute y_axis_3 numeric

@attribute z_axis_3 numeric

@attribute source_4 numeric

@attribute x_axis_4 numeric

@attribute y_axis_4 numeric

@attribute z_axis_4 numeric

@attribute source_5 numeric

@attribute x_axis_5 numeric

@attribute y_axis_5 numeric

@attribute z_axis_5 numeric

@attribute activity {Sitting,Standing,Walking}

@data

1,0.087890625,-0.3896484375,-0.9404296875,

2,-0.12890625,-1.001953125,0.140625,

3,0.0,-0.41015625,-0.9052734375,

4,0.052734375,-1.0078125,0.140625,

5,-0.0556640625,-1.0224609375,-0.0849609375,Sitting

Figure 3.52: File for data analysis with Weka.

the EEG data needed to be segmented based on the start of hand movement.

The acquisition framework used E-Prime and EGI’s NetStation software to ac-

quire EEG data from a 128-channel Sensor Net (Electrical Geodesic, Eugene, USA)

helmet, shown in Figure 3.53, where one of the subjects is being prepared to parti-

cipate in the experiment. The E-Prime software was used for experimental paradigm

and stimuli delivery. The main feature of this setup was the possibility to mark on-line
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Predicted activity (%) Total
J48

Standing Sitting Walking accuracy

Standing 100.00 0.00 0.00
Actual

Sitting 0.00 100.00 0.00 99.98%
activity

Walking 0.09 0.00 99.91

Predicted activity (%) Total
SMO

Standing Sitting Walking accuracy

Standing 100.00 0.00 0.00
Actual

Sitting 0.00 100.00 0.00 99.89%
activity

Walking 0.57 0.00 99.43

Predicted activity (%) Total
Naive Bayes

Standing Sitting Walking accuracy

Standing 98.77 0.00 1.23
Actual

Sitting 0.00 99.98 0.02 99.49%
activity

Walking 0.00 0.00 100.00

Table 3.11: Activity classification results on the test set.

the beginning of the hand movement, which made it possible, after data acquisition,

to segment the EEG data before processing it. This was allowed by the use of one of

the sensor modules, which was configured for this specific situation, both regarding

hardware and software.

The module was attached to the hand of subjects during the experiment, so it was

internally programmed to detect the beginning of the movement. An algorithm based

on thresholding and the Exponential Moving Average (EMA) was implemented.

Using this technique in time series smooths out the short-term fluctuations and high-

lights longer-term trends. For each sample of the accelerometer, the energy is cal-

culated considering the data in its three axis. Afterwards, it is filtered, giving more

weight to the latest data. This filtered value is the one compared with the set thres-
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Figure 3.53: Subject being prepared for EEG experiment

hold. When a small hand movement is done, e.g. just when the subject starts to rise

his/her hand, the given threshold is exceeded and the module triggers an event send-

ing a signal through a wired connection to E-Prime, the workstation where EEG data

is being recorded, allowing to mark these data. Choosing the correct threshold is of

the utmost importance because, if it is too low, any minimal movement done by the

subject would be caught while, if it is too high, the beginning of the movement would

not be marked properly, but later in the data sequence. Several experiments were car-

ried out by different subjects in order to choose the correct threshold for the given

movement, “raising the hand and pressing a button on a pad”.

The work accomplished showed that using an ad-hoc modified part of the pro-

posed sensing system for complementing the EEG acquisition was useful and nece-

ssary for marking the EEG data online, enabling later analysis for detection of RP, as

described in [89].
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3.4 Summary

In this chapter, the prototypical system developed for human motion monitoring,

which can be used in rehabilitation therapy, has been described. The integration of

five small wireless modules, worn by the subject, which can acquire accelerometer

data at high frequency, synchronized by an external master device, makes the system

ideal for patient monitoring, since it is easily wearable and does not interfere with

the movements. Furthermore, it provides significant flexibility, allowing monitoring

different parts of the body with the same modules by just changing the placement

of the elastic bands. Some exercises, such as monitoring a single arm during reha-

bilitation therapy, could require fewer modules, which makes it possible to use the

system in a simpler configuration without affecting its capabilities. In addition, it in-

cludes Kinect for providing visual feedback to the user, which is of great importance

in physical therapies.

The resulting system operates in real time and in a wireless network, guarantee-

ing data correctness while being portable and easy to manipulate, which are crucial

factors for the target application. A software with a GUI for easy management of the

sessions is also provided.

The successful working of the system has been demonstrated during the expe-

riments carried out to assess the communication performance, which have been fo-

cused on data synchronization, data loss, jitter measurements and battery life. Fur-

thermore, the system functionality has been tested analysing the data acquired with

it in the task of activity classification by using three different standard classifiers and

in combination with an EEG data acquisition machine for marking on-line the be-

ginning of the hand movement. The results obtained show the potential of using the

proposed system for human motion monitoring in rehabilitation.
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Data analysis

It is a capital mistake to theorize before one has data.

Sherlock Holmes, Arthur Conan Doyle

4.1 Introduction

In this chapter, human motion analysis is performed by modelling a complex physical

exercise. One of the oldest yoga exercises, the Sun Salutation (see Fig. 4.1), with

physical benefits as improving the strength and flexibility of the muscles and the

alignment of the spinal column, is taken as an example of a rehabilitation exercise. It

is a sequence formed by twelve postures, each of them counteracting the preceding

one, producing a balance between flexion and extension. The reason for choosing this

practice is that it provides a very well established sequence of movements, involving

different parts of the body, which can be performed by any person in a limited frame

of time and space without needing any additional equipment. The work done can

however be extended to any other activity or exercise.

Empirical studies show the beneficial effects of yoga poses, not just by improving

muscular strength and flexibility through stretching, but also on psychological con-

ditions including anxiety and depression, and on pain syndromes and cardiovascular

conditions, through, e.g., body-and-breath control [90, 91]. Other studies are focused

on the potential use of yoga in rehabilitation programs [92, 93, 94], and more speci-
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Figure 4.1: The twelve poses of the Sun Salutation sequence.

fically in physical therapies [95, 96], where the effects of practising yoga on motor

variability, i.e., strength, steadiness and balance, are assessed.

Some work has already been done regarding motion analysis of the Sun Saluta-

tion. In [97] a study, afterwards extended in [98], was made on the transition phase

during motion of such an exercise in terms of grace and consistency by using one

sensor attached to the lower back, but without providing a feedback to the user about

how the exercise had been performed. This work was complemented in [99] study-

ing the effects on specific joints during this practice. This particular sequence has

also been used in [100, 101] for testing a virtual rehabilitation system which guides

the user through a therapeutic exercise program. In [100] feedback on performance

is provided in terms of scores. Based on these results, [101] is able to provide co-

rrective advices stating the part of the body needing adjustment to achieve the pose.

At the physical level, the main inconvenient of these systems is the use of a motion

tracking suit which includes several wires. At the level of text generation, there is a

clear necessity of new computational systems able to generate performance reports
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and linguistic advice more complex than the current ones.

For this thesis, the temporal series of measures that contains a numerical descrip-

tion of this exercise have been obtained by using the sensing system proposed in the

previous chapter, as shown in Figure 4.2.

Figure 4.2: System architecture for the Sun Salutation motion acquisition.

In order to acquire meaningful data to model the movement appropriately, the

postures assumed during the Sun Salutation were taken into consideration. The sen-

sors were therefore placed as follows:

• Sensor 1: on the right forearm, above the hand.

• Sensor 2: on the left forearm, above the hand.

• Sensor 3: on the back waist, near to the centre of mass of the body.

• Sensor 4: on the right lower part of the calf, over the Achilles tendon.

• Sensor 5: on the left lower part of the calf, over the Achilles tendon.

The selected locations allow, in addition, to avoid the problems related to placing

the sensors and the influence of the user’s height. As the accelerometers provide mea-

surements with a sampling frequency fs = 160Hz, for each time instant, i.e., every

6.25 ms, the record contains the following information: (x1,y1,z1,x2,y2,z2,x3,y3,z3,

x4,y4,z4,x5,y5,z5), fifteen channels which correspond to the three axes of each of the

five slave modules.

During the Sun Salutation, the movements of the body mainly occur along the

antero-posterior and superior-inferior axes, as shown in Figure 4.3(a). Considering
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how the exercises are performed in space, it was realized that the movements could

be modelled by considering the angle of the sensors with respect to the vertical axis

as a relevant feature. Therefore, it was decided to switch from the Cartesian to the

spherical coordinate system (see Figure 4.3(b)), obtaining the vector representation

of each accelerometer and then extracting the angle, θ , with respect to the vertical

axis, Z. This angle proves to be a relevant attribute with an adequate resolution de-

gree to describe the human body movements while performing this sequence of poses.

Analysing the data within this reference frame allowed to reduce their dimensionality,

decreasing the record to five channels related to the angles: (θ1,θ2,θ3,θ4,θ5). In ad-

dition, in order to recognize the transitions between the different poses of the exercise

more accurately, five extra signals were considered, corresponding to the derivatives

of the angles:
(

dθ1/dt ,
dθ2/dt ,

dθ3/dt ,
dθ4/dt ,

dθ5/dt
)

. Each of these channels allows

one to know if the corresponding angle is decreasing, increasing or constant at each

instant of time.

(a) Human body reference axes. (b) Spherical coordinate system.

Figure 4.3: Reference coordinate system.

For this specific application, a custom calibration method was defined to align the

axes of the accelerometers to the coordinate reference system, shown in Figure 4.3.

At the beginning of the exercise, once the sensors are worn, the subject must stay in a
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pre-defined position, just standing with the arms in a relaxed position along the body

and the legs aligned together, for a few seconds. In the proposed convention, the Z

axis is aligned with the gravity and is positive in the upper half-plane. Computing

the corresponding rotation matrix and applying it to the data acquired, in this static

position, all the accelerometers’ vectors point to the floor, due to the gravity, with

θ = 180◦. These angles are referred afterwards to the horizontal plane, ranging from

−90o to 90o (in the calibration pose).

In order to assess the quality of execution of the Sun Salutation exercise, the

acceleration signals of a set of 10 healthy participants, who voluntarily took part in the

evaluation, were collected. The subjects involved in the experiments were 7 men and

3 women with physical characteristics specified in Table 4.1. Each subject was asked

to perform the Sun Salutation exercise 4 times, producing a total of 4 datasets per

subject, except for the first subject who performed the exercise 10 times (where the

additional six datasets were intensively used during the initial stage of interpretation

of the data in order to be able to tune the model parameters appropriately).

Age Height Weight Body Mass
Gender

(years) (cm) (kg) Index (kg/m2)

Male 27.86 (2.12) 182.71 (8.54) 82.71 (12.87) 24.69 (2.66)

Female 28.67 (2.08) 162.33 (9.24) 53.33 (2.31) 20.30 (1.38)

Table 4.1: Subject characteristics (mean and, in parenthesis, standard deviation).

The subjects were told to hold each position for 5 seconds while performing the

exercise. The first two subjects had almost no external guidance, while the other ones

were performing the exercise following an expert who was doing the same exercise

and another person modulating the pose execution and cadence. At the same time, the

scene was being captured by Kinect in order to provide them with visual feedback.

Figure 4.4 shows one reference frame of each pose (both the RGB and depth views),

acquired while Subject 6 was performing his first sequence.



90 Chapter 4. Data analysis

(a) Pose 0 (b) Pose 1

(c) Pose 2 (d) Pose 3

(e) Pose 4 (f) Pose 5

(g) Pose 6 (h) Pose 7

(i) Pose 8 (j) Pose 9
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(k) Pose 10 (l) Pose 11

(m) Pose 12 (n) Pose 0

Figure 4.4: Sun Salutation video acquisition with Kinect (RGB and depth views).

The next sections describe three different methods investigated for analysing

these data. The first one is based on how the brain works and studies a specific type

of neural network; the second one aims to provide a linguistic description of the exer-

cise; and the last one proposes an hybrid system merging the two previous schemes

in order to join their advantages while compensating their drawbacks.
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4.2 Henesis Memory Prediction Framework (hMPF)

Mimicking the efficiency and robustness by which the human brain represents infor-

mation has been a core challenge in artificial intelligence research for decades [102].

“hMPF” is the name given to the architecture developed within the research group of

Henesis based on the Memory Prediction Framework (MPF), firstly proposed by Jeff

Hawkins in [103]. The theory is based on how the brain works. In particular, most of

the attention is focused on the neocortex, which is part of the brain of mammals, as

it is stated that almost everything we think of as intelligence –perception, language,

imagination, mathematics, art, music, and planning– occurs there. Two other brain re-

gions which are considered within the theory are the thalamus and the hippocampus.

The former is indispensable to normal living, receiving many axons from every part

of the cortex and sending axons back to those same areas, while the latter is essential

to the formation of new memories.

Hawkins’ theory of intelligence is rooted in the assumptions of biology, but also

makes sense from a computational point of view. It emphasizes the primacy of pa-

ttern recognition in the neocortex, able to both recognize invariant sequences in real

time and elaborate feedback mechanisms that generate predictive patterns. The key

to understanding the neocortex is understanding its hierarchical structure. Figure 4.5

shows a conceptual diagram of the cortical regions with different levels, being the

lower related to various forms of perception (touch, audition and vision). The data

sensed at this level, which might correspond to a spatial and/or temporal pattern, is

processed and passed to the higher levels. While the pattern propagate through sen-

sory regions, the system learns and forms invariant memories and predictions about

it. The cortex takes the detailed, highly specific input and converts it to an invariant

form, capturing the essence of relationships, not the details of the moment or ob-

ject. Memory storage, memory recall, and memory recognition occur at the level of

invariant forms.

[104] proposes a first implementation of this theory, new algorithms, named co-

llectively Hierarchical Temporal Memory (HTM), that can be used to learn hierar-

chical-temporal models of data. It summarizes well the main points of the Memory
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Figure 4.5: Forming invariant representations in the hierarchical structure.

Prediction Framework as follows:

1. The neocortex is constructing a model for the spatial and temporal patterns that

it is exposed to. The goal of this model construction is the prediction of the next

pattern on the input.

2. The cortex is constructed by replicating a basic computational unit known as

the canonical cortical circuit. From a computational point of view, this canoni-

cal circuit can be treated as a node that is replicated several times.

3. The cortex is organized as a hierarchy. This means that the nodes, which are

the basic computational units, are connected in a tree shaped hierarchy.

4. The function of the cortex is to model the world that it is exposed to. This

model is built using a spatial and temporal hierarchy by memorizing patterns

and sequences at every node of the hierarchy. This model is then used to make

predictions about the input.

5. The neocortex builds its model of the world in an unsupervised manner.

6. Each node in the hierarchy stores a large number of patterns and sequences.

The pattern recognition method employed by the cortex is largely based on

storing lots of patterns.
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7. The output of a node is in terms of the sequences of patterns it has learned.

8. Information is passed up and down in the hierarchy to recognize and disam-

biguate information and propagated forward in time to predict the next input

pattern.

Whether it has been previously investigated the use of the Hierarchical Tempo-

ral Memories within the hMPF, their limitations, both during the learning and the

inference phases, promoted the research on finding other algorithms for the imple-

mentation of the MPF theory [105]. Part of the data analysis of this thesis has been

focused on the investigation of the use of neural gas algorithms, which will be ex-

plained in depth in the following sections, and their potential when analysing motion

data.

4.2.1 State of the art of neural gas algorithms

Vector quantization, as a technique for data compression, is the process of modelling

a probability density function using a distribution of discrete elements, often called

codebook vectors, and a number of algorithms exist that perform this function [106].

One widely used is Kohonen’s Self Organizing Map (SOM) [107], a type of neural

network where, with no supervision, the neural units, which have certain neighbour-

hood relations to all other neural units, attempt to map their weights to conform to

the given input data. However, it does not fulfilled two desirable capabilities: quan-

tizing topologically heterogeneously structured manifolds and learning the similarity

relationships among the input signals without the necessity of pre-specifying a net-

work topology. [108], published in 1991, describes the first proposal of the neural gas

(NG) as a neural network algorithm for vector quantization of topologically arbitrar-

ily structured manifolds of input signals. This approach deals with the two aspects

previously mentioned by presenting synaptic weights which are adapted indepen-

dently of any topological arrangement of the neural units, also called neurons, within

the net. Algorithm 2 describes the pseudo-code of the proposed algorithm.

The main parameters that influence the algorithm’s performance are the number

of neurons in the net; the adaptation step size, ε ; λ , determining the neighbourhood
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Algorithm 2 Neural Gas (NG)

Parameters initialization.

for each given input vector do

Step 1: Update the internal parameters of the algorithm: the adaptation step size ε , the

neighbourhood range λ and the maximum connection’s age T .

Step 2: Compute the distances of the neurons in the net, by considering their weights,

to the given input vector and get the first and second winning neurons, i.e. the nearest

ones.

Step 3: Modify all the neurons in the net by adapting their weights.

Step 4: Initialize or update the connection between the first and the second winning

neurons.

Step 5: Increase the age of all the other connections in the neighbourhood of the winning

neuron.

Step 6: Remove the lateral connections between the winning neuron and the neurons in

its neighbourhood with age greater than the maximum connection’s age, T .

end for

range, i.e. the number of neural units changing their synaptic weights with each adap-

tation step; and T , which defines the maximum connection’s age. Both ε and λ are

reduced as iterations increase. After sufficiently many adaptation steps the feature

vectors cover the data space with minimum representation error. The resulting graph

at the end of the training procedure represents the similarity, the neighbourhood re-

lationship, among the input data. It can be considered that the main inconvenient of

this approach is the need to pre-specify the network size, the number of neurons in

it, without knowing if it will be sufficient for the current problem or if it will exceed

the needs, being computationally very expensive to compute the distances of all the

neurons in the net to each given input vector.

Some of the applications of neural gas include: clustering [109, 110], charac-

ter recognition [111], fuzzy modelling [112], compression [113], segmentation [114,

115], classification [116] and robotics [117]. It has also been used in medical appli-

cations [118, 119, 120, 121], to guide the acquisition of deformable objects [122], to

simplify the learning of a Self-Organizing Relationship (SOR) network [123] and for
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mapping high-dimensional data into a low-dimensional space [124, 125, 126, 127,

128], among others [129, 130, 131].

Having a great impact in the scientific field, several publications have been fo-

cused on a further study on the characteristics of the algorithm, as the the quality of

quantization and visualization of vectors obtained with it [132], the importance of

sorting [133] or the analysis of the learning dynamics [134, 135]. On the other hand,

[136, 137] are focused on the hardware parallel implementation of NG, or a modi-

fied version of it [138]. Many studies have proposed improvements in the original

algorithm [139, 140, 141, 142, 143, 144, 145, 146], from speeding it up [147, 148]

to including modifications in the cost function [149] or developing a plastic model of

it [129].

Many others publications propose modifications of NG which lead to new algo-

rithms based on it. [150] first studies growing neural networks by using controlled

growth process that also includes occasional removal of units, and then [151] pro-

poses the “Growing Neural Gas” (GNG) algorithm, which will be described in detail

later. Afterwards, [152] proposes an on-line criteria for removal of units which re-

sults in GNG-U (Growing Neural Gas with Utility criterion) for closely tracking of

non stationary distributions. Other algorithms found on the literature are: “Recur-

rent Neural Gas” [153], “Hierarchical Overlapped Neural Gas” [154], “Recruiting

Neural-Gas” [155], “Supervised Neural Gas” [156], “Neural Gas Attraction with EN”

(Evolution strategy with Neighbourhood attraction) [157], “Robust Neural Gas” [158,

159], “ Supervised Relevance Neural Gas” [160, 161], “Kernel Neural Gas” [162],

“Enhanced Neural Gas” [163], “Batch Neural Gas” and “Median Neural Gas” [164,

165], “Supervised Batch Neural Gas” [166], “Topographic Neural Gas” [167], “Evo-

lutionary Neural Gas” [168], “Fusion-NG” [169], “Hierarchical HyperEllipsoidal

Neural Gas” [170], “Sparse Coding Neural Gas” [171] afterwards used in [172,

173, 174, 175], “Energy Supervised Relevance Neural Gas” [176], “Matrix Neural

Gas” [177], “Neural Gas based Cluster Ensemble Algorithm” [178], and the most

recent “Contextual Neural Gas” [179].

Several studies are related with the extension of the neural gas vector quantiza-

tion method to local Principal Component Analysis (PCA), named NG-PCA, PCA-
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NG or NG-LPCA [180, 181, 182, 183]. And, similarly to what happened with the

original NG, improvements were proposed to the modified versions of the algo-

rithm [184, 185, 186, 187], e.g., for “Batch Neural Gas” [188, 189] and “Median

Neural Gas” [190].

[191, 192] compare the NG with SOM, while in [193] several algorithms are

tested, including NG and GNG, for clustering, both with real and simulated data sets.

Growing Neural Gas, GNG

As mentioned previously, in order to overcome the main limitation of the NG a-

pproach, which is having a pre-determined size of the net, [151] proposes the “Gro-

wing Neural Gas” (GNG) algorithm, influenced also by the “Competitive Hebbian

Learning” (CHL), deepened in [194], and Fritzke’s previous work on growing cell

structures [150]. Its main advantage over the NG is the incremental character of

the model, having a dimensionality that depends on the input data and can vary lo-

cally [195]. The GNG algorithm starts with two neurons at random positions in the

input space. Periodically new neurons are added by evaluating local statistical mea-

sures gathered during previous adaptation steps. The proposed insertion criterion is

to introduce a new neuron every λ input samples between the neuron that has accu-

mulated the highest local error and its neighbour with the highest error. Algorithm 3

shows the pseudo-code of the proposed GNG algorithm.

In this case, the parameters of interest are: the maximum number of neurons in

the net, which could be considered as a stopping criterion; εb and εn, which affect

the movement of the winning neuron and of its neighbourhood, respectively; T , the

maximum connection’s age; λ , parameter that defines the step that determines when it

is possible to include a new neuron in the net; and α and d, constants that influence the

decrement of the error variables. The adequate definition of their values determines

the algorithm’s performance.

Some of the applications of GNG are clustering [196, 197, 198, 199, 200, 201,

202, 203], even large amounts of data as air-photography data [204], classification

[195, 205, 206, 207], modelling, representation and compression [208, 209, 210,

211, 212, 213, 214], and specifically hand modelling [215, 216], image segmenta-
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Algorithm 3 Growing Neural Gas (GNG)

Parameters initialization. Start with two neurons at random positions in the space.

for each given input vector do

Step 1: Compute the distances of the neuron weights in the net to the given input

vector and get the first and second winning neurons, i.e., the nearest ones.

Step 2: Increase the age of all the connections emanating from the winning

neuron.

Step 3: Update the local accumulated error of the winning neuron.

Step 4: Move the weights of the winning neuron and of its direct topological

neighbours towards the given input vector considering εb and εn, respectively.

Step 5: Initialize or update the connection between the first and the second win-

ning neurons.

Step 6: Remove the lateral connections between the winning neuron and the

neurons in its neighbourhood with age greater than the maximum connection’s

age, T . In case a neuron remains without connections, remove it as well.

if it is a λ step then

Step 7: Add a new neuron between the neuron having the maximum accu-

mulated error and its neighbour with the largest error. Update the connections

among these three neurons and their error variables (multiplying them with a

constant α).

end if

Step 8: Decrease all error variables (multiplying them with a constant d).

if a stopping criterion is not yet fulfilled then

Step 9: Go to Step 1.

end if

end for

tion [217, 218, 219], automatic landmark extraction in medical images [220, 221], ob-

ject categorization and recognition [222, 223], robotics [224, 225, 226, 227], learning

the turbine characteristic surface torque versus wind speed and machine speed [228,
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229, 230, 231, 232], or security-related applications [233, 234], among others [235,

236, 237, 238, 239, 240, 241, 106].

Some modifications proposed for the GNG regard the growing, update or stop-

ping criteria [242, 243], the creation of a more biologically-plausible algorithm, an

hybrid between NG and GNG [244], or a hierarchical extension [245] or overlapped

architecture [246, 247] combining the unsupervised and supervised learning schemes

in GNG.

New algorithms derived from the GNG are: “Double Growing Neural Gas” [248],

“Self-Growing Neural Gas Network” [249], “Grow When Required” [250], “Robust

Growing Neural Gas” [251], “Incremental Growing Neural Gas” [252] with pos-

terior improvements [253, 254, 255], “TreeGNG” [256], “Adaptive Growing Neural

Gas” [257], “Lifelong Growing Neural Gas” [258], “GNG with Post-Pruning” [259],

“Supervised Growing Neural Gas algorithm” [260] used later in [261], “Growing

Neural Gas Clustering” [262], “Meshing Growing Neural Gas” [263], “GNG with

Targeting” [264], “GNG-UF” [265] and “fast Autonomous Growing Neural Gas”

[266].

Some of the papers in the literature present a comparison of different algorithms

[267]. [268], for example, studies the performance of three incremental neural net-

work based algorithms: fuzzy ARTMAP (FAM), Growing Neural Gas (GNG) and

growing cell structures, while [269] is focused on the study of different variations of

GNG to quantify topology preservation. Some experiments are performed in [270]

for comparing GNG, GNG with Utility and Supervised GNG, and [271] presents the

implementation of the GNG algorithm on a GPU with CUDA.

Self-Growing and Self-Organized Neural Gas, SGONG

The “Self-Growing and Self-Organized Neural Gas”, also known as SGONG, was

first presented in 2005 in [272, 273]. This approach combines the growing mecha-

nism of the “Growing Neural Gas” and the learning adaptation mechanism of the

Kohonen’s Self Organizing Map. The innovation introduced by the algorithm in the

growing procedure is that, at the end of each epoch, three different criteria are ap-

plied to ensure the fast convergence of the neural network, detecting the isolated
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classes and automatically including or deleting neurons, determining adaptively the

final number of neurons. With respect to the learning scheme, the learning rate and

the radius of the neighbourhood of the winning neuron are monotonically decreased

during the training procedure, each neuron having two learning rates: ε1i and ε2i .

Additionally, a local counter is defined for each neuron, Ni, which depends on the

number of input vectors that are classified through that neuron, that is incremented

every time that it becomes the winning neuron. The pseudo-code corresponding to

the SGONG algorithm is shown in Algorithm 4.

The parameters that mainly influence the algorithm’s performance are indicated

below:

• Nidle, threshold that determines the possibility of the local learning rates to

update their values, when being compared with the local counter of the neuron

Ni.

• ε1: its initial and final values determine the learning rates of the winning neu-

ron, as it is applied to its weights.

• rmax is referred to the maximum ratio between ε1 and ε2; ε2 being the learning

rate applied to the weights of the neurons that belong to the neighbourhood of

the winning neuron.

• T defines the maximum connections’ age.

• β defines the number of consecutive epochs that determine an inactive neuron.

• m1 regulates new neurons’ insertion.

• m2 regulates neurons’ removal.

The main advantage of this algorithm is that it automatically adapts the size of

the network and its topology depending on the input data used during the training

phase. This is done by applying three criteria that influence the growing of the output

lattice of neurons and the final number of obtained classes, having a convergence

speed comparable to the GNG and a stability comparable to that of the SOM. The

procedure for removing inactive neurons can be considered as a memory function for

the neural network, as the inactive neurons remain only for β consecutive epochs in

the output lattice. On the other hand, new neurons are added just if they satisfy the

condition for efficiently decreasing the sum of accumulated errors from one epoch to
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Algorithm 4 Self-Growing and Self-Organized Neural Gas (SGONG)

Parameters initialization. Start with two neurons at random positions in the space.

for each given input vector do

if it is the beginning of an epoch then

Step 1: Set the accumulated errors of each neuron, AE(1)
i and AE(2)

i , to zero.

end if

Step 2: Compute the distances of the neurons in the net to the given input vector and get

the first and second winning neurons, i.e., the nearest ones.

Step 3: Update the local variables of the winning neuron: the accumulated errors AE(1)
w1 ,

AE
(2)
w2 , and the local counter Nw1.

Step 4:

if Nw1 ≤ Nidle then

Update the local learning rates, ε1w1 and ε2w1 , and the ratio rw1 of the winning neuron.

end if

Step 5: Update the weights of the winning neuron and its neighbourhood considering

their respective learning rates.

Step 6:

· Update the connection between the first and the second winning neurons.

· Increase the age of all the other connections in the neighbourhood of the winning

neuron.

·Remove the lateral connections between neuronswith age greater than the maximum

connections’ age, T .

if it is the end of an epoch then

Step 7: Apply three criteria which might modify the number of output neurons:

· Removing of inactive neurons, those that have not become the first winning neu-

ron for a number of β consecutive epochs.

· Check for adding a new neuron near the one with the maximum contribution in

quantization error.

· Check for removing the neuron which is close enough to its neighbours.

end if

end for
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another. Finally, the scope of the third criteria is to remove the classes that are closer

to their neighbouring classes, while the isolated classes are retained.

The initial work done using SGONG was associated to colour reduction and es-

timation of the number of dominant colours in an image [274]. Afterwards, it was

tested on hand gesture recognition [275], while later work is related to classifying

video frames into clusters [276].

Time series analysis

Till now, the algorithms presented for data analysis consider just the spatial context

of the input data. However, one important dimension to consider is the time, as the

temporal evolution of a signal might be of the utmost importance in a vast number of

applications, e.g., when analysing human motion in rehabilitation therapies. The two

main aims of time series analysis are the identification of the nature of the observed

phenomenon and the prediction of future values.

In [277] a neural gas network is used to represent the attractor of the Mackey

Glass equation and to predict its time series. However, in its original formulation, both

NG and SOM have been proposed for processing real-valued vectors, not sequences.

In the mentioned work, the temporal context within the time series is realized by

means of a data window which considers the four past values of the input signal and

the forecast is implemented iteratively. [278] investigates the “Merge Self-Organizing

Map” (MSOM) approach for unsupervised sequence processing. The MSOM net-

work is formed by neurons which are equipped with a tuple including a weight and a

context, considered during the training process. When combining the context model

with neural gas for accurate quantization the “Merge Neural Gas” (MNG) is obtained.

This model approach is extended in [279] to an incremental network by using the

GNG, proposing the “Merge Growing Neural Gas” (MGNG) as a recursive growing

self-organized neural network for time series analysis which does not require any a-

priori knowledge. In MGNG each neuron comprises a weight vector wn representing

the current time step and a context vector cn representing all past time steps of a se-

quence. When calculating the distance between the neurons and the input sequence a

parameter α allows to weight the importance of the current input signal over the past
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and also takes into consideration a global temporal context Ct , computed as a linear

combination (merge) of both the weight and context vector of the winning neuron

in the previous step. Moreover, in Ct the parameter β controls the influence of the

far over the recent past, constituting an exponentially decayed sum of all past win-

ning neurons’ weight vectors beside the current. Experimental results demonstrated

reduced time complexity while retaining accuracy in time series representation.

4.2.2 Experimentation

Different neural gas algorithms were selected to be included within the hMPF: the

original “Neural Gas” (NG), the “Growing Neural Gas” (GNG), the “Double Gro-

wing Neural Gas” (DGNG), the “Growing Neural Gas with Utility” (GNG-U), the

“Incremental Growing Neural Gas” (IGNG), the “Self-Growing and Self-Organized

Neural Gas” (SGONG) and the “Merge Growing Neural Gas” (MGNG).

Several datasets have been used both for training and testing the different neural

gas algorithms. With respect to the spatial algorithms, the dataset used in the first

proposal of NG described in [108] has been used. The data manifold consists of a

3D, a 2D and a 1D subsets connected among them. A 2D spatial distribution known

as “Circles and Squares” formed by several separated subsets and the Fundamental

Clustering Problems Suite (FCPS) [280] have also been used. When analysing the

performance of the temporal neural gas, the Mackey Glass time series and the Noisy

Automata dataset have been considered.

After an initial experimental phase, the algorithms which have shown to be more

relevant for this thesis are the GNG, the SGONG and the MGNG for its capacity

of considering the temporal context. Figure 4.6 shows some different structures that

have been considered to analyse the motion while performing the Sun Salutation se-

quence using neural gas algorithms within the hMPF hierarchy. Figure 4.6(a) shows

how one single node with one of these algorithms on it (SS meaning Sun Saluta-

tion) analyses the input signals coming from all sensors, consisting on the angles

related to the five on-body accelerometers (θ1,θ2,θ3,θ4,θ5), as explained before. In

Figure 4.6(b) each of these signals is analysed independently (RF meaning Right

Forearm, LF for Left Forearm, BW for Back Waist, RC for Right Calf and LF for
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Left Calf) and afterwards a top node collects and analyses their outputs for providing

a higher level interpretation. Finally, in Figure 4.6(c) an intermediate level is included

for a previous analysis of the information related to the forearms, the back waist and

the calves before getting to the top level. Other options considered during this thesis

included, additionally, the information related to the derivatives of the five angles.

The architectural options shown consider, generally, that the nodes include spatial

neural gas algorithms. However, these options have also been tested including a final

top node with a temporal neural gas or even using the architecture with just one node

following the approach shown in option 1.

(a) Option 1. (b) Option 2. (c) Option 3.

Figure 4.6: Different hierarchical structures of the hMPF using neural gas algorithms.

It should be mentioned that the training process of the networks might be very

expensive computationally and time consuming due to the fact that a large amount of

data is needed for the algorithm to learn. This complexity, which increases when the

network grows and has several levels or layers, is added to the difficulty of finding

the right parametrization of the algorithms in order to boost their performance.

In order to provide an idea of the potential of using this kind of algorithms within

the hMPF, here the three architectures tested which have provided the most significant

results are shown. The initial experiments done using spatial neural gas algorithms

were aimed at recognizing the poses forming the Sun Salutation sequence. Follo-

wing the approach shown in Figure 4.6(a), a significantly reduced GNG network was

trained to this purpose. For the training process, four datasets of the Sun Salutation
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performed adequately were selected, so that the network could learn how the se-

quence is correctly executed by being exposed intensively to these data. Figure 4.7

shows its topological graph along with the input data which is mapped during the test

process, (θ1,θ2,θ3,θ4,θ5). The topological graph shows the structure of the network,

how the neurons are distributed in the space and how are they are connected to each

other, aiming to closely reflect the topology of the data distribution.

Figure 4.7: Topological graph of a GNG network trained for pose recognition.

Instead, Figure 4.8 shows the result produced by this network when exposed to

the same input data during the inference process. “FF In” is the feedforward input

signal to the network, while “FF Out” is the corresponding output in the feedforward

direction. This output contains the degree of activation of each neuron in the network

for each given input sample. The number in the upper part of the “FF Out” signals is

the ID of the winner neuron, which also determines the colour of the vertical stripe for

easy visual differentiation of the classification performed, which allows to recognize

the pose at any time. As can be seen, the poses are recognized as follows:

• Pose 0 (calibration) ↔ Neuron ID: 4.

• Poses 1 and 12 ↔ Neuron ID: 9.

• Poses 2 and 11 ↔ Neuron ID: 3.
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• Poses 3 and 10 ↔ Neuron ID: 5.

• Pose 4↔ Neuron ID: 7.

• Pose 5↔ Neuron ID: 11.

• Pose 6↔ Neuron ID: 12.

• Pose 7↔ Neuron ID: 0.

• Pose 8↔ Neuron ID: 10.

• Pose 9↔ Neuron ID: 6.

Figure 4.8: Pose recognition performed by using a GNG network.

One of the limitations of this model is that, not considering the temporal context,

it is not able to differentiate between the poses that are the same, but being performed

at the beginning and at the end of the Sun Salutation sequence. On the other side, it

is not capable of analysing the transition phases between one pose and the next one.

Within the available GUI a feedback is given to the subject in form of a level

bar which, considering the “coverage” of the input signal, i.e., how well it can be
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represented or matched to a neuron or group of neurons in the network, changes its

level and colour from green, in case of a good coverage (good performance of the

current pose), to red, when the network is not able to map it due to a bad execution.

Afterwards, a node including a temporal gas network was added on top of the

one corresponding to the GNG network for getting additional knowledge about the

sequence and consider the temporal context. This algorithm has as input signals the

outputs of the node below. Figure 4.9 shows the temporal graph corresponding to

that network. Unlike the topological graph, the temporal graph takes into considera-

tion the temporal context of each of the neurons, being the connections among them

established depending on this criterion. This means that neurons adjacent in the tem-

poral graph are activated in moments close in time. Therefore, neurons in a chain

would be activated serially to describe data that follows a sequence.

(a) Path followed in the temporal graph. (b) Activations in the temporal graph.

Figure 4.9: Temporal graph of the top node of a hMPF hierarchy.

In Figure 4.9(a) the path that is followed while analysing the input signal of an

unknown sequence is specified to show how and in which order the neurons are acti-

vated while seeing it. The image in Figure 4.9(b) illustrates to which pose each part of

the path corresponds. As can be seen, poses 0, 4, 5, 6, 7, 8 and 9 are recognized une-

quivocally. Poses 3 and 10, which are at the beginning and at the end of the exercise,

respectively, are also recognized appropriately, although there is some reminiscent

activation of the other pose. On the other hand, poses 1 and 12 and poses 2 and 11

are found in the same zone of the graph due to the characteristics of the Sun Salu-
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tation sequence, that is, the mountain pose (which corresponds to 1 and 12) is at the

beginning of the exercise before the bending backward pose (corresponding to 2 and

11), while it is after it at the end. The important feature of this architecture having the

temporal node at the top is its capacity to recognize the sequence and, therefore, to

anticipate which is the following pose that it expects to see, including some kind of

prediction capability within its characteristics.

One interesting approach followed was using option 1 of the hMPF in Figure 4.6,

an architecture with just one node, but including a temporal neural gas in this case.

This neural gas was intensively trained with sequences of two different subjects,

forming the temporal graph shown in Figure 4.10, where the different colours iden-

tify the poses, from dark red related to the calibration pose, to increasingly colder

colours up to the last poses. The darkest blue has been used to identify the transitions

among the poses. The graph allows to see how the network is well self-structured to

differentiate between the poses of the sequence. It can also be seen how some poses,

as the ones in light blue, need just few neurons to be recognized adequately, while

others, as the previous ones in green, require many more neurons.

Figure 4.10: Temporal graph of a temporal node.

This could mean that the neural gas has not been able to generalize appropriately,

which might be due to the need of seeing a larger amount of data during the training

process. The GUI allows one to see if a neuron or a group are sufficiently generalized
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or not or to see which poses are associated to them or they are able to recognize.

Figure 4.11 shows two different situations. In this case, on the x axis, poses are num-

bered from 0 to 13 (being poses 0 and 13 related to the calibration one), while the

transitions are numbered from 14 to 26. Figure 4.11(a) shows neuron #90, which

belongs to group #7, that gets active when seeing the input signal corresponding to

transition 26 (the one between the last two poses of the sequence). As can be seen, the

group also is activated practically just during this transition. Instead, Figure 4.11(b)

shows the graphs corresponding to neuron #118, belonging to group #9. While the

neuron correctly identifies pose 0, the corresponding groups are activated, not just by

the input corresponding to this pose, but also by the following transition, 14.

(a) Neuron and group specialized in recognizing the transition between the last two poses.

(b) Neuron specialized in Pose 0 and group recognizing also the following transition.

Figure 4.11: Neuron and belonging group associated to the pose and transition that

they recognize.

The results obtained using this approach, which includes neural gas algorithms

within the hMPF architecture, show that it can effectively be used for analysing mo-

tion data, both for classification in pose recognition and to include the temporal con-

text for adding prediction capabilities. Additionally, an initial feedback is provided

to the subject related to the performance of the exercise considering how well the

current pose matches the pose learnt during the previous training process.
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4.3 Linguistic modelling of complex phenomena

The main contribution to the quality analysis of the Sun Salutation exercise in this

section is made by providing a new technique for modelling this type of phenomenon.

A computational application which generates linguistic descriptions for assessing the

subject’s performance, after the analysis of the acquired data, has been developed and

published in [281].

In order to face the complexity of the exercise, the Granular Linguistic Model of

a Phenomenon (GLMP), including a Fuzzy Finite State Machine (FFSM), is used for

modelling the different poses of the user and merging information from several sen-

sors. First, the relevant poses of the Sun Salutation are identified based on the acce-

lerations produced during the process, performing the analysis involving body parts.

Once the poses are recognized by the FFSM, the symmetry, stability and rhythm of

the movements produced are analysed for evaluating the Sun Salutation quality co-

rresponding to a specific exercise. Finally, a method for producing a linguistic report

about the quality of the execution, in terms of the relevant features, is used. This type

of reports could be used to analyse the temporal evolution of the Sun Salutation exer-

cise, e.g., while learning and improving its execution during physical rehabilitation

therapies.

The GLMP has demonstrated to be useful for implementing complex assessment

criteria using inference systems based on linguistic rules [282]. This technique is

based on fuzzy logic and the Computational Theory of Perceptions (CTP). This field

was first introduced in Zadeh’s seminal paper “From computing with numbers to

computing with words – From manipulation of measurements to manipulation of

perceptions” [283] and further developed in subsequent papers. The Computational

Theory of Perceptions provides a framework to develop computational systems with

the capacity of computing with the meaning of Natural Language (NL) expressions,

i.e., with the capacity of computing with imprecise descriptions of the world in a

human-like way.

In the Computational Theory of Perceptions, a granule is a clump of elements

which are drawn together according to criteria like indistinguishability, similarity,
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proximity or functionality [284]. The boundary of a granule is fuzzy, which allows

one to model the way in which human concepts are formed, organized and ma-

nipulated in an environment characterized by imprecision, uncertainty, and partial

truth [285]. A granule underlies the concept of a linguistic variable [286], i.e., a vari-

able whose values are words or sentences in NL [287, 288, 289].

The contributions to the field of quality assessment of rehabilitation exercises are

both theoretical and practical and derive from the design and development of a tool

for linguistic assessment of a physical rehabilitation exercise such as the Sun Saluta-

tion sequence. The tool includes a computational model able to describe the exercise

execution at different levels of granularity by giving insights about its symmetry, sta-

bility and rhythm. The theoretical contribution consists of exploring the possibility of

creating linguistic descriptions about how phenomena evolve in time. It is analysed

not only the current state of phenomena, but also their intermediate states, to generate

a new type of linguistic descriptions.

4.3.1 Linguistic description of phenomena evolving in time

The approach followed to define a computational model of phenomena is based on

subjective perceptions of a domain expert, called from now on the “designer”. The

more experienced the designer, with better understanding and use of NL in the appli-

cation domain, the richer the model with more possibilities of achieving and respon-

ding to final users’ needs and expectations. The designer uses the available resources,

e.g., sensors, to acquire data about a phenomenon and uses her/his own experience to

interpret these data and to model it. Then, the designer uses a computer to produce

the needed linguistic utterances.

In the current project, the designer is a person experienced with the motion of

the body while performing the Sun Salutation sequence, being able of modelling the

exercise by using the data available from several on-body sensors. Furthermore, the

designer takes into consideration the relevant information to be extracted during the

analysis in order to provide a useful feedback for rehabilitation purposes.

In this section, the components of the Granular Linguistic Model of a Phenomenon

(GLMP), the approach based on the Computational Theory of Perceptions followed
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for developing computational systems able to generate linguistic descriptions of phe-

nomena [37, 290], are presented.

Computational perception (CP)

A CP is the computational model of a unit of information acquired by the designer

about the phenomenon to be modelled. In general, CPs correspond to particular de-

tails of the phenomenon at certain degrees of granularity. A CP is a couple (A,W )

where:

A= (a1,a2, . . . ,an) is a vector of n linguistic expressions (words or sentences in NL)

that represents the whole linguistic domain of the CP. Each ai describes the

value of the CP in each situation with specific granularity degree. These sen-

tences can be either simple, e.g., ai =“The angle of the sensor is negative.” or

more complex, e.g., ai =“The symmetry of the calves during the first pose is

high.”.

W = (w1,w2, . . . ,wn) is a vector of validity degrees wi ∈ [0,1] assigned to each ai in

the specific context. The concept of validity depends on the application, e.g., it

is a function of the truthfulness of each sentence in its context of use.

Perception mapping (PM)

PMs are used to create and aggregate CPs. A PM is a tuple (U,y,g,T ) where:

U is a vector of input CPs,U = (u1,u2, . . . ,un), where ui = (Aui ,Wui) and n is the

number of input CPs. In the special case of first-order perception mappings

(1-PMs), these are the inputs to the GLMP and they are values z ∈ R being

provided either by sensors or obtained from a database.

y is the output CP, y= (Ay,Wy).

g is an aggregation function employed to calculate the vector of validity degrees

assigned to each element in y, Wy = (w1,w2, ...,wny). It is an aggregation of

input vectors, Wy = g(Wu1 ,Wu2 , ...,Wun ), whereWui are the degrees of validity
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of the input perceptions. In fuzzy logic, many different types of aggregation

functions have been developed. For example, g might be implemented using a

set of fuzzy rules. In the case of 1-PMs, g is built using a set of membership

functions as follows:

Wy = (µa1(z),µa2 (z), . . . ,µany
(z)) = (w1,w2, . . . ,wny)

whereWy is the vector of degrees of validity assigned to each ay, and z ∈R is

the input data.

T is a text generation algorithm that allows generating the sentences in Ay. In

simple cases, T is a linguistic template, e.g., “The calves symmetry is {low |

medium | high}”.

Granular Linguistic Model of a Phenomenon

The GLMP consists of a network of PMs. Each PM receives a set of input CPs and

transmits upwards an output CP. It is said that each output CP is explained by the

PM using a set of input CPs. In the network, each CP covers specific aspects of the

phenomenon with a certain level of granularity. Figure 4.12 shows an example of a

GLMP, where the phenomenon can be described at a very basic level in terms of two

variables providing two values, z1 and z2, at a certain instant of time.

As mentioned above, first-order perception mappings (1-PM) are those which are

input to the GLMP. These 1-PMs produce first-order computational perceptions (1-

CP). On the other side, PMs whose inputs areCPs are called second-order perception

mappings (2-PM) and their outputs are named 2-CPs.

Using different aggregation functions and linguistic expressions, the GLMP pa-

radigm allows the designer to model computationally her/his perceptions. In the case

of Figure 4.12, the second order perception mapping 2-PM3 indicates that 2-CP3 can

be explained in terms of the first order computational perceptions 1-CP1 and 1-CP2,

i.e., how the validity of each item in 2-CP3 is explained by those of 1-CP1 and 1-CP2.

Finally, the highest-order description of the phenomenon is provided, at the highest
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Figure 4.12: Example of a Granular Linguistic Model of a Phenomenon.

level of abstraction, by 2-CP4, explained by 2-PM4 in terms of 2-CP3 and 1-CP2. No-

tice that, by using this structure, one can provide not only a linguistic description of

the phenomenon at a certain level, but an explanation in terms of linguistic expres-

sions at a lower level.

Report generation

Once the GLMP is fed with input data, the aggregation functions are used to calcu-

late the validity degrees corresponding to potentially hundreds of linguistic expres-

sions. The input data depends on each particular application. In this case, it is motion

data acquired by the proposed wearable sensing system. Now, the challenge consists

of choosing the most adequate combination of these sentences to generate a useful

linguistic description of the phenomenon evolution including the current state. The

design of this report requires a deep analysis of the application domain of language

and, therefore, the collaboration of an experienced final user.

For the proof of concept, here a simple report is used, made by choosing the lin-

guistic expressions with the highest validity degree and including detailed explana-

tions of a perception by using the conjunction “because”. In [291] other two different
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types of report templates are developed.

4.3.2 Linguistic assessment of the Sun Salutation exercise

Figure 4.13 shows the GLMP designed for the linguistic description of the Sun Salu-

tation exercise quality. The grey speech bubbles show different examples of linguistic

expressions associated to severalCPs. Three main features to assess the patient’s per-

formance have been selected: the symmetry, the stability and the rhythm. People with

disabilities, such as people who suffered a stroke, are generally affected by weakness

or paralysis on one side of their bodies, which results in an asymmetrical posture.

Working on postural symmetry in the early stages of rehabilitation creates awareness

of body position. On the other hand, being able to stabilize the movement determines

the postural balance control. Evaluation of postural stability is important for clini-

cians to diagnose balance problems early and to evaluate the effects of interventions

to treat these problems [292]. Finally, the study of the rhythm reflects the pace of

the movement of the patient, which is particularly relevant for Parkinson’s disease

patients [293].

The GLMP is organized into three levels. The lowest one corresponds to the

time instant and it is divided into three different sub-levels (entry, pose elements, and

pose recognition), the medium level is related to the pose and the highest one to the

whole Sun Salutation sequence. It is worth noting that linguistic expressions can be

generated for each level of granularity.

On the entry level, the angles related to the five accelerometers (θ1,θ2,θ3,θ4,

θ5) and their derivatives
(

dθ1/dt ,
dθ2/dt ,

dθ3/dt ,
dθ4/dt ,

dθ5/dt
)

are used to identify the

poses and movements of the forearms, the back waist and the calves for the pose ele-

ments level. Afterwards, in the pose recognition level, the corresponding CPs allow

to identify the pose that is being performed at each instant.

In the intermediate level related to the pose, the symmetry of the forearms and

the calves is analysed for each pose, by considering the data provided by the accele-

rometers worn on them. The stability during each pose is also obtained by analysing

how well it is maintained without trembling.

These measures are aggregated at the Sun Salutation sequence level to evaluate



116 Chapter 4. Data analysis

Figure 4.13: GLMP for the linguistic description of the Sun Salutation quality.
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the symmetry and the stability during the whole exercise. Moreover, the duration of

each pose and its variability are taken into account. These measures make it possible,

afterwards, to evaluate the rhythm of the execution of the exercise. Finally, the total

symmetry, stability and rhythm of the Sun Salutation execution are used to estimate

its quality in order to provide a feedback to the patient and the clinicians by a lin-

guistic description. “The quality of the Sun Salutation execution is medium because

the symmetry is medium, the stability is low and the rhythm is adequate” could be an

example of a final report.

In this section, each of the PMs is described. For the sake of simplicity, the set of

poses of the Sun Salutation to be considered is reduced to the first three and the last

two poses (which correspond to poses 1, 2, 3, 11 and 12 in Figure 4.1, respectively),

including an additional one at the beginning and at the end for sensors calibration.

Time instant level – Entry level

The entry level is formed by 1-PMs which collect information directly from the sen-

sors. They are of two different types: the former related to the angle of the sensors,

and the latter related to the corresponding derivatives.

Angle of the sensor (PMθi) It is a 1-PM whose input is the numerical value of

the angle formed by the vector given by the sensor i and the Z axis (θi ∈ [0o,180o] ,

i ∈ [1,5]). The output CP yθi , gives a fuzzy description of the angle formed by the

vector given by the sensor i and the horizontal plane (θ
′

i ∈ [−90o,90o] , i ∈ [1,5]). It

includes the following set of NL sentences:

a1θi
→ “The angle of the sensor ‘i’ is very negative.”

a2θi
→ “The angle of the sensor ‘i’ is negative.”

a3θi
→ “The angle of the sensor ‘i’ is zero.”

a4θi
→ “The angle of the sensor ‘i’ is positive.”

a5θi
→ “The angle of the sensor ‘i’ is very positive.”
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which can be described by the following template:

a[1:5]θi
→ “The angle of the sensor ‘i’ is {very negative | negative | zero | positive

|very positive}.”

The validity degrees are obtained from trapezoidal membership functions (see Fi-

gure 4.14) that were designed empirically after an important experimental effort, and

were tuned according to the criteria of the specific final application. The same ha-

ppened for the definition of the most suitable set of sentences for describing each

CP.
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Figure 4.14: Trapezoidal membership function used to calculate the validity degree

of the angles.

Derivative of the angle of the sensor (PMdθi) It is a 1-PM whose input is the nu-

merical value of the derivative of the angle θi of the sensor i: dθi/dt , which is negative

when the angle is decreasing, positive when it is increasing and zero when it is kept

constant. The output CP ydθi gives information about this derivative. The correspon-

ding set of NL sentences is described by the following template:
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a[1:3] dθi
dt

→ “The angle of the sensor ‘i’ is {decreasing | not varying | increasing}.”

The validity degrees are also calculated by means of trapezoidal membership func-

tions, shown in Figure 4.15.

-7.5 -5.0 -1.5 0 1.5 5.0 7.5
dθ/dt

0.0

0.2

0.4

0.6

0.8

1.0

M
em

b
er
sh

ip
d
eg
re
e

Decreasing

Keeping constant

Increasing

Figure 4.15: Trapezoidal membership functions used to calculate the validity degree

of the derivative of the angles.

Time instant level – Pose elements level

It was decided to aggregate the information from the sensors in such a way that

the pose of different parts of the body (forearms, back waist and calves) and their

movement could be described. This level is formed by 2-PMs whose inputs are the

outputs of the 1-PMs of the level below: CPθ1 , CPθ2 , CPθ3 , CPθ4 , CPθ5 , CPdθ1 , CPdθ2 ,

CPdθ3 ,CPdθ4 and CPdθ5 . In particular, PMF , PMB and PMC use the CPs related to the

angles to describe the poses of the forearms, the back waist and the calves. On the

other side, PMFM, PMBM and PMCM have as inputs the CPs related to the derivatives

of the angles of the sensors to describe the movements of these parts of the body.

These PMs allow to specify intermediate fuzzy variables that will simplify later the

rules of the FFSM in the upper level.
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Forearms pose (PMF ) The PMF has two inputs: the two CPs corresponding to the

angles of the sensors on both forearms which provide an output CP yF with informa-

tion about the forearms pose, as shown in Table 4.2. Next to each NL description, the

associated variable is indicated.

Sentence Forearms pose Associated variables

a1F Straight a5θ1
AND a5θ2

a2F Mountain a2θ1
AND a2θ2

a3F Overhead (a1θ1
OR a2θ1

) AND (a1θ2
OR a2θ2

)

Table 4.2: Forearms poses for the output CP yF and related variables.

These conditions result in the following set of sentences:

a1F → “The forearms are in straight pose.”

a2F → “The forearms are in mountain pose.”

a3F → “The forearms are in overhead pose.”

Being the associated template:

a[1:3]F → “The forearms are in {straight | mountain | overhead} pose.”

Figure 4.16 shows the space where the forearms poses are defined considering the

membership functions of the angles of sensors 1 and 2.

Back waist pose (PMB) The PMB has just one input, the CP corresponding to the

angle of the sensor in the back waist. Its main purpose is to provide a more descriptive

output, CP yF , indicating the back waist pose, as shown in Table 4.3. The correspon-

ding set of NL sentences is described by the following template:

a[1:3]B → “The back waist is in {straight | bending backward | bending forward}

pose.”
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Figure 4.16: Space where the forearms poses are defined.

Sentence Back waist pose Associated variables

a1B Straight a5θ3

a2B Bending backward a4θ3
OR a5θ3

a3B Bending forward a2θ3
OR a3θ3

Table 4.3: Back waist poses for the output CP yB and related variables.

Calves pose (PMC) Table 4.4 shows the NL description of the calves pose and the

corresponding intermediate variables, provided by the PMC by using the CPs corres-

ponding to the angles of the sensors on both calves.

The associated template for its NL sentences is the following one:

a[1:2]C → “The calves are in {straight | bending backward} pose.”

Forearms movement (PMFM) By combining the information of the derivatives of

the angles corresponding to the sensors of the forearms, PMFM provides an output

CP describing their movement, as shown in Table 4.5.
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Sentence Calves pose Associated variables

a1C Straight a5θ4
AND a5θ5

a2C Bending backward (a4θ4
OR a5θ4

) AND (a4θ5
OR a5θ5

)

Table 4.4: Calves poses for the output CP yC and related variables.

Sentence Forearms movement Associated variables

a1FM Not moving a2dθ1
AND a2dθ2

a2FM Moving up a1dθ1
AND a1dθ2

a3FM Moving down a3dθ1
AND a3dθ2

Table 4.5: Forearms movement for the output CP yFM and related variables.

Its template for the NL sentences is:

a[1:3]FM → “The forearms are {not moving | moving up | moving down}.”

Back waist movement (PMBM) PMBM provides a description of the movement of

the back waist by interpreting the CP related to the derivative of the angle of the

sensor attached to it. Table 4.6 shows its output CP yBM and the variables related to

it.

Sentence Back waist movement Associated variables

a1BM Not moving a2dθ3

a2BM Moving backwards a2dθ3
OR a3dθ3

a3BM Moving forwards a1dθ3

Table 4.6: Back waist movement for the output CP yBM and related variables.

This results in the following template:

a[1:3]FM → “The back waist is {not moving | moving backwards | moving for-

wards}.”
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Calves movement (PMCM) The last PM in this level provides information of the

calves movement, as shown in Table 4.7.

Sentence Calves movement Associated variables

a1CM Not moving a2dθ4
AND a2dθ5

Moving to
(a1dθ4

OR a2dθ4
)

a2CM
“bending backward pose”

AND

(a1dθ5
OR a2dθ5

)

Table 4.7: Calves movement for the output CP yCM and related variables.

The template below describes its set of NL sentences:

a[1:2]CM → “The calves are {not moving | moving to “bending backward pose”}.”

Time instant level – Pose recognition level

This level allows to recognize the pose at each time instant by using a special PM,

based on a FFSM, described below.

Pose (PMpose) This 2-PM, whose inputs are the outputs of the PMs of the level be-

low it (PMF , PMB, PMC, PMFM, PMBM and PMCM), defines the elements of a pose.

The output CP ypose includes the following set of NL sentences:

a0pose → “The current pose is 0: standing with arms falling in relaxed position.”

a1pose → “The current pose is 1: standing with hands in mountain pose.”

a2pose → “The current pose is 2: standing raising hands overhead.”

a3pose → “The current pose is 3: standing forward fold, hands next to feet.”

a4pose → “The current pose is 4: standing raising hands overhead.”

a5pose → “The current pose is 5: standing with hands in mountain pose.”

The aggregation function (gpose) calculates, at each time instant, the next value

of the validity degrees for each sentence based on the previous validity degrees and
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current inputCPs, the intermediate fuzzy variables described above. The aggregation

function is, therefore, an expert knowledge-based FFSM.

The two main techniques used for human activity or behaviour recognition are

template matching approaches [294] and state-space models [295]. The main advan-

tage of using the template matching technique is its low computational cost. Howe-

ver, it is sensitive to noise and the time interval of the movements. On the other hand,

state-space approaches overcome these drawbacks by defining each static posture as

a state, although involving iterative computation, to predict, estimate and detect time

series over a long period of time [1]. Following this technique, the application of

FFSMs to model a series of poses corresponding to the Sun Salutation exercise is

explored.

The concept of the traditional Finite State Machines (FSMs) can be extended

using fuzzy logic [296], therefore, the FFSMs instead of processing crisp symbols,

use fuzzy values both in the input and the output. This technique was first used for

the analysis of quasi-periodic signals in [297] and, afterwards, applied to human body

posture recognition [33] and human gait modelling [36]. Here, the complexity is in-

creased by fusing information from various sensors to model an exercise which in-

volves the movement of several body parts. A more detailed description of this para-

digm and its applications can be found in [298, 299]. In general, a FFSM is described

as a tuple {Q,S,U,Y, f ,g} where:

• Q= {q0,q1,q2, . . . ,qn} is the set of n fuzzy states of the system.

• S= {s0,s1,s2, . . . ,sn}, with si ∈ [0,1], is the state activation vector which repre-

sents the state of the FFSM. It stores, in each of its components, the activation

degree of the different states, considering that the system is always in a known

state (see Equation 4.1).
n

∑
i=0

si = 1 (4.1)

• U = {u0,u1,u2, . . . ,un} is the input vector of the system, i.e., the set of fuzzy

input variables.

• Y = {y0,y1,y2, . . . ,yn} is the output vector. It is a summary of the relevant

characteristics of the system while it remains in each state.
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• f is the state transition function that calculates, at each instant of time, the next

value of the state activation vector: S[t+1] = f (U [t],S[t]).

• g is the output function that calculates the set of output vectors of the system:

Y [t] = g(U [t],S[t]).

Both the state transition function and the output function can be represented using

fuzzy rules.

Figure 4.17 represents the state diagram of the FFSMdesigned for the reduced cy-

cle of the Sun Salutation (an initial version of this FFSM has been published in [300]).

This state diagram allows one to recognize the different poses depending on the PMs

aggregated on PMpose.

Figure 4.17: State diagram of the FFSM for the reduced cycle of the Sun Salutation.

The state transition function of the FFSM is implemented by using a set of zero-

order Takagi-Sugeno-Kang (TSK) inference rules [301], distinguishing between rules

to remain in each pose i (Ri→i) and rules to change from one pose i to another pose j

(Ri→ j). Due to the characteristics of the reduced Sun Salutation exercise and accord-

ing to the state diagram previously shown in Figure 4.17, there are 12 fuzzy rules
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in total in the system, 6 rules to remain in each pose and other 6 to change between

poses. The pose 0 was chosen as the initial one, i.e.,w0pose has initially a value equal to

1. In this way, the FFSM will synchronize with the Sun Salutation exercise when the

requirements for being in that pose are fulfilled, without the need of doing any pre-

vious segmentation of the signal. In this work, the set of fuzzy rules of the FFSM has

been set up experimentally using the available expert knowledge about the Sun Salu-

tation sequence. However, it is interesting to mention that in [33, 36] an automatic

method for learning the model parameters is described, based on the hybridization of

Fuzzy Finite State Machines and Genetic Algorithms leading to Genetic Fuzzy Finite

State Machines. The rule base of gpose is as follows:

R0→0: IF a0pose AND a1F AND a1B AND a1C AND a1FM AND a1BM AND a1CM THEN a0pose

R1→1: IF a1pose AND a2F AND a1B AND a1C AND a1FM AND a1BM AND a1CM THEN a1pose

R2→2: IF a2pose AND a3F AND a2B AND a2C AND a1FM AND a1BM AND a1CM THEN a2pose

R3→3: IF a3pose AND a1F AND a3B AND a1C AND a1FM AND a1BM AND a1CM THEN a3pose

R4→4: IF a4pose AND a3F AND a2B AND a2C AND a1FM AND a1BM AND a1Cm THEN a4pose

R5→5: IF a5pose AND a2F AND a1B AND a1C AND a1FM AND a1BM AND a1CM THEN a5pose

R0→1: IF a0pose AND a2F AND a1B AND a1C AND a2FM AND a1BM AND a1CM AND Tmove0(d0)

THEN a1pose

R1→2: IF a1pose AND a3F AND a2B AND a2C AND a2FM AND a2BM AND a2CM AND Tmove1(d1)

THEN a2pose

R2→3: IF a2pose AND a1F AND a3B AND a1C AND a3FM AND a3BM AND a1CM AND Tmove2(d2)

THEN a3pose

R3→4: IF a3pose AND a3F AND a2B AND a2C AND a2FM AND a2BM AND a2CM AND Tmove3(d3)

THEN a4pose

R4→5: IF a4pose AND a2F AND a1B AND a1C AND a3FM AND a1BM AND a1CM AND Tmove4(d4)

THEN a5pose

R5→0: IF a5pose AND a1F AND a1B AND a1C AND a3FM AND a1BM AND a2CM AND Tmove5(d5)

THEN a0pose

where:

• The first term in the antecedent computes the previous validity degree of the

sentence aipose , i.e., wipose . With this mechanism, the FFSM is only allowed to
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move from the pose i to the pose j (or to remain in pose i, when i = j). For

example, R0→0 computes the validity degree of the sentence “The current pose

is 0: standing with arms falling in relaxed position” (w0pose).

• The second, third and fourth terms in the antecedents describe the constraints

imposed on the positions of the forearms, the back and the calves, respectively.

For example, in the case of the second antecedent, related with the position

of the forearms, it computes the validity degree of one or various of the three

possible sentences that this CP (uF ) has, e.g., “The forearms are in mountain

pose” (w2F ).

• The fifth, sixth and seventh terms in the antecedents describe the constraints

imposed on the movement of the forearms, the back and the calves, respec-

tively. For example, in the case of the fifth antecedent, related with the move-

ment of the forearms, it computes the validity degree of one or various of the

three possible sentences that thisCP (uFM) has, e.g., “The forearms are moving

down” (w2FM ).

• The eighth term in the antecedent, if present, describes the conditions that cons-

train the poses duration. To control the duration di of each pose a linguistic la-

bel is defined for each pose i: Tmovei (which is the minimum time that the pose

i is expected to lasts before changing to pose j). For example, in R1→2, the

membership degree of d1 to the linguistic label Tmove is calculated. To calculate

the duration of each pose di, Equation 4.2, which weights the duration of each

pose with its validity degree wipose , is used:

di[t] =

{

0 if wipose [t] = 0

di[t−1]+wipose[t] ·Ts otherwise
(4.2)

being Ts =
1/ fs the inverse of the sampling frequency (160Hz), which corres-

ponds to the sampling period, 6.25ms.

Figure 4.18 shows an example of the linguistic label Tmove used to define the

temporal constraints for moving from one state to another. In agreement with

the knowledge about the Sun Salutation, each pose is assigned a duration be-

tween 3 s and 15 s.
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Figure 4.18: Temporal condition for Tmove.

• Finally, the consequent of the rule defines the next pose. To calculate the vali-

dity degrees of the sentences associated with each pose j (w jpose), a weighted

average using the firing degree of each rule Ri j (φi j) is computed as defined in

Equation 4.3:

w jpose =

5
∑
i=0

φi j

5
∑
i=0

5
∑
j=0

φi j

(4.3)

where (φi j) is calculated using the minimum for the AND operator and the

bounded sum of Łukasiewicz [302] for the OR operator.

Note that each rule of this set is a complete linguistic expression as can be seen in

the following expanded expression of the rule R44 to remain in pose 4: “If the previous

pose is 4, standing raising hands overhead, and the forearms are in overhead pose,

and the back and the calves are bending backward, and none of them are moving,

then the current pose is 4, standing raising hands overhead”.

The output of the FFSM contains the activation degree of every state at each ins-

tant in time, which means providing information related to pose recognition. As an

example of the performance of the proposal for the reduced Sun Salutation sequence,

Figure 4.19 represents the validity degrees of the sentences associated to each pose

together with the angles and their derivatives of each sensor (θi and dθi/dt , respec-
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tively). It shows how this set of fuzzy rules is able to model and recognize the six

poses of the selected sequence of positions.
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Figure 4.19: Graphical representation of the validity degrees of each sentence to-

gether with the evolution of angles and their derivatives for each one of the sensors

(θi and dθi/dt , respectively).

From this analysis, a preliminary feedback can be given to the user, with informa-

tion about the duration of the poses and the whole exercise [81]. The duration refers

to the amount of time during which each pose is recognized by the FFSM as the ac-

tive pose. Table 4.8 shows the results obtained for each subject, reporting the average

values and the corresponding standard deviation computed over the four datasets, for

each of the sun salutation poses (state q0 is not included as it is related to the calibra-

tion pose). The last two columns summarize the average and standard deviation for

the duration of all the poses and of the whole exercise. As can be seen, in general,

the duration of state q4 is significantly shorter than that of the other states. This pose

is considered the most complex of the sequence and, therefore, it is more difficult to

maintain for a long period of time. The average duration of the poses and its stan-

dard deviation measure how uniformly the subject is performing the exercise, while
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the values referred to the whole exercise measure the homogeneity among different

exercises performed by the same user. For example, Subject 2 performs the exercise

at a smooth pace, but there are significant differences between the executions and

even among the poses. Instead, Subject 6 performs the Sun Salutation with a more

uniform duration of the poses and the various sequences present small differences in

duration. The statistics show that the external feedback, given to all of the subjects

except the two first ones, improves exercise performance because of the unfamiliarity

of the subjects with developing a pacing strategy, as suggested in [55].

Pose level

The PMs here belong to an upper level of granularity (pose level). Their output CPs

are calculated for each pose instead of being calculated at each time instant.

Forearms symmetry during the current pose (PMFS) As can be seen in Figure 4.13,

PMFS has three CPs as inputs: the angle of the sensors on the forearms, 1 and 2, and

the current pose, i.e.,U = (uθ1 ,uθ2 ,upose). The output CP yFS includes the following

set of NL sentences:

a[1:3]FS → “The forearms symmetry in pose {i} is {low | medium | high}.”

The validity degrees (w1FS , w2FS ,w3FS) are obtained by means of the aggregation func-

tion gFS. This function makes use of the Jaccard index [303] as similarity function,

which is defined using Equation 4.4, in order to compare the angles of both fore-

arms during the pose. This is done for each instant of time and then averaged over its

duration.

J(x,y) =

{

1 if x = 0 and y = 0
min(x,y)
max (x,y) otherwise

(4.4)
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Table 4.8: Analysis of poses and exercise duration (mean and, in parenthesis, standard

deviation, in seconds).
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Calves symmetry during the current pose (PMCS) This PM is equivalent to the pre-

vious one, but it takes into consideration the angle of the sensors in the calves, sensors

4 and 5, to calculate their symmetry for each pose. Therefore, its threeCPs inputs are:

the angles of the sensors 4 and 5, and the current pose, i.e.,U = (uθ4 ,uθ5 ,upose). The

output CP yCS includes the following set of NL sentences:

a[1:3]CS → “The calves symmetry in pose {i} is {low | medium | high}.”

Following the same criteria as in the previous PM, the aggregation function gCS

makes use of the Jaccard index for comparing the angles of both calves during each

pose.

Stability during the current pose (PMPST ) In order to give information about the

stability, this PM considers the fluctuation of the validity degree of each sentence

related to the pose. It is calculated as the average value of the validity degree for the

current pose i along its duration (Ti) as shown in Equation 4.5.

wiPST =

Ti

∑
t=0

wipose [t]

Ti
(4.5)

The output CP yPST includes the following set of NL sentences:

a[1:3]PST → “The stability in pose {i} is {low | medium | high}.”

Sun Salutation sequence level

In Figure 4.13, theseCPs are calculated for a complete sequence of the Sun Salutation

instead of being calculated for each pose.

Forearms symmetry during the Sun Salutation sequence (PMAFS) This perception

mapping is in charge of analyzing the forearms symmetry during the Sun Salutation

sequence. It has just one input CP, which corresponds to the lower level forearms

symmetry for each pose, so the set isU = (uFS). This PM includes a set of three NL
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sentences in its output CP (yAFS) following the template below:

a[1:3]AFS → “The forearms symmetry during the Sun Salutation is {low | medium |

high}.”

The aggregation function (gAFS) calculates the validity degree (wiAFS) of each sen-

tence as shown in Equation 4.6:

wiAFS =

P

∑
k=1

wiFS [k]

P
(4.6)

where P is the total number of poses, six in the case of the reduced version of the Sun

Salutation sequence.

Calves symmetry during the Sun Salutation sequence (PMACS) This PM is equi-

valent to the previous one, but it analyses the calves symmetry during the Sun Salu-

tation sequence, instead of the forearms symmetry. The input CP included in its set,

U = (uACS), corresponds to the calves symmetry for each pose. Its set of three NL

sentences in its output CP (yACS) is described by the following template:

a[1:3]ACS → “The calves symmetry during the Sun Salutation is {low | medium |

high}.”

Similarly to the previous PM, the equivalent aggregation function gACS calculates the

validity degree of each sentence.

Duration of the Sun Salutation sequence (PMD) This PM makes use of the du-

ration of each pose (di) calculated using Equation 4.2 to estimate the total duration

of the exercise, its output CP (yD) being a set of three NL sentences defined by the

template below:

a[1:3]D → “The Sun Salutation has a {low | medium | high} duration.”
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Variability of the duration of the Sun Salutation sequence (PMσD
) On the other

hand, this PM provides information of the variability of the duration of the Sun Salu-

tation sequence by considering the standard deviation of the duration of the individual

poses. Its output is defined as follows:

a[1:3]σD
→ “The variability of the duration of the Sun Salutation is {low | medium

| high}.”

Symmetry during the Sun Salutation sequence (PMS) This PM has two CPs as

inputs: the symmetry of the forearms and the symmetry of the calves. Therefore, the

set of inputCPs isU = (uAFS,uACS). This PM includes a set of three NL sentences in

its output CP (yS) following the template below:

a[1:3]S → “The symmetry of the Sun Salutation is {low | medium | high}.”

The aggregation function (gS) calculates the validity degrees (wiS ) for each sentence.

This function is defined by Equation 4.7, which calculates the average value of each

pair of validity degrees of the input CPs associated with a low, medium, and high

symmetry:

wiS =
wiAFS +wiACS

2
(4.7)

Stability during the Sun Salutation sequence (PMST ) This PM has one CP as in-

put: the stability of the poses along the Sun Salutation sequence. Therefore, the set of

inputCPs isU = (uPST ). This PM has a set of three NL sentences as output CP (yST )

which are defined by the template below:

a[1:3]ST → “The stability during the Sun Salutation is {low | medium | high}.”

The aggregation function (gST ) calculates the validity degrees (wiST ) for each sen-

tence. This function is defined by Equation 4.8, which calculates the average value of
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the three validity degrees of the input CPs associated with a low, medium, and high

stability considering the values obtained previously for each of the poses:

wiST =

P

∑
k=1

wiPST [k]

P
(4.8)

being P the total number of poses of the reduced version of the Sun Salutation se-

quence.

Rhythm during the Sun Salutation sequence (PMR) This PM makes use of the

CPs corresponding to the duration of the Sun Salutation exercise and its variability

between the poses. The output CP (yR) of this PM includes a set of three NL sen-

tences defined by the template below:

a[1:3]R → “The rhythm of the Sun Salutation is {variable | adequate | optimal}.”

The aggregation function (gR) is an expert knowledge based Fuzzy Rule-Based Sys-

tem (FRBS). Considering the three different sentences for each of the inputs, there

are 9 different rules obtained when combining them:

R1: IF a1D AND a1σD
THEN a2R

R2: IF a2D AND a1σD
THEN a3R

R3: IF a3D AND a1σD
THEN a2R

R4: IF a1D AND a2σD
THEN a1R

R5: IF a2D AND a2σD
THEN a2R

R6: IF a3D AND a2σD
THEN a1R

R7: IF a1D AND a3σD
THEN a1R

R8: IF a2D AND a3σD
THEN a1R

R9: IF a3D AND a3σD
THEN a1R

Quality of the Sun Salutation sequence (PMQ) The top PM, PMQ, has three CPs

as inputs: the symmetry, the stability and the rhythm obtained from the Sun Saluta-

tion performance. Therefore, the set of input CPs isU = (uS,uST ,uR). Five different
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levels of quality are defined: very low, low, medium, high, and very high. Therefore,

the outputCP yQ is a set of five possible sentences defined by the following template:

a[1:5]Q → “The quality of the Sun Salutation execution is {very low | low | medium

| high | very high}.”

The aggregation function (gQ) in this case is also an expert knowledge FRBS. The

combination of all possible values for each input would give a total of 33 = 27 rules.

After a rule simplification process according to [304, 305], the following 19 ones

were obtained:

R1: IF a1S AND a1ST AND NOT a3R THEN a1Q

R2: IF a1S AND a2ST AND a1R THEN a1Q

R3: IF a2S AND a1ST AND a1R THEN a1Q

R4: IF a1S AND a1ST AND a3R THEN a2Q

R5: IF a1S AND a3ST AND a1R THEN a2Q

R6: IF a3S AND a1ST AND a1R THEN a2Q

R7: IF NOT a3S AND a2ST AND NOT a1R THEN a3Q

R8: IF NOT a3S AND a3ST AND a2R THEN a3Q

R9: IF a2S AND a1ST AND NOT a1R THEN a3Q

R10: IF a2S AND NOT a1ST AND a1R THEN a3Q

R11: IF a3S AND a1ST AND a2R THEN a3Q

R12: IF a3S AND a2ST AND a1R THEN a3Q

R13: IF a1S AND a3ST AND a3R THEN a4Q

R14: IF a3S AND a1ST AND a3R THEN a4Q

R15: IF a3S AND a2ST AND a2R THEN a4Q

R16: IF a3S AND a3ST AND a1R THEN a4Q

R17: IF NOT a1S AND a3ST AND a3R THEN a5Q

R18: IF a3S AND a2ST AND a3R THEN a5Q

R19: IF a3S AND a3ST AND a2R THEN a5Q

The consequents of the rules define the Sun Salutation quality. To calculate the vali-

dity degrees of the sentences associated to the different levels of the Sun Salutation
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quality (wiQ), a weighted average using the firing degree of each rule Ri (φi) is com-

puted as defined in Equation 4.9:

wiQ =
φi
5
∑
i=1

φi

(4.9)

Each rule of this set is a complete linguistic expression as can be seen in the follo-

wing expanded expression of the rule R19 that predicts a very high value of the Sun

Salutation quality: “If the symmetry is high, the stability is high and the rhythm is

optimal, then the Sun Salutation quality is very high”.

4.3.3 Experimentation

This section presents the experimental results obtained with this approach. Table 4.9

shows the validity degrees of the sentences associated to the quality of one exercise

randomly chosen from each person’s among the four test samples. It also shows the

validity degrees associated to the symmetry, stability and rhythm. The report pro-

vided by the proposed system is generated by using the sentences corresponding to

the maximum validity degrees, which are boldfaced. As an example, three different

sentences that have been generated are as follows:

• “The quality of the Sun Salutation execution of subject 5 is medium because

the symmetry is high, the stability is high and the rhythm is variable.”

• “The quality of the Sun Salutation execution of subject 7 is high because the

symmetry is high, the stability is high and the rhythm is variable.”

• “The quality of the Sun Salutation execution of subject 10 is very high because

the symmetry is high, the stability is high and the rhythm is adequate.”

It can be seen from the results that the quality of the Sun Salutation execution

is always medium or greater, being high for three subjects and very high for six

subjects. Their performance is mainly influenced by the rhythm that they maintain

during the exercise. Thanks to the hierarchical structure of the GLMP, reports can

be provided with a higher level of detail. As an example, in Table 4.10 the validity
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Subject
Sentence

1 2 3 4 5 6 7 8 9 10

w1Q 0.10 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00

w2Q 0.10 0.00 0.00 0.14 0.07 0.06 0.09 0.00 0.00 0.00

w3Q 0.30 0.15 0.34 0.31 0.47 0.08 0.28 0.09 0.09 0.22

w4Q 0.50 0.25 0.30 0.23 0.31 0.86 0.59 0.45 0.00 0.17

w5Q 0.00 0.60 0.36 0.32 0.08 0.00 0.04 0.46 0.91 0.61

w1S 0.00 0.00 0.00 0.26 0.01 0.06 0.10 0.00 0.00 0.00

w2S 0.28 0.09 0.26 0.15 0.21 0.08 0.23 0.05 0.11 0.14

w3S 0.72 0.91 0.74 0.58 0.78 0.86 0.67 0.95 0.89 0.86

w1ST 0.14 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00

w2ST 0.08 0.29 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00

w3ST 0.78 0.71 1.00 1.00 0.66 1.00 1.00 1.00 1.00 1.00

w1R 1.00 0.00 0.45 0.42 0.77 1.00 0.96 0.49 0.00 0.22

w2R 0.00 1.00 0.55 0.58 0.23 0.00 0.04 0.51 0.87 0.78

w3R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00

Table 4.9: Validity degrees of the sentences associated to the quality of one Sun Salu-

tation sequence performed by the healthy participants.

Subject 5

Sun Salutation sequence lower level

Sentence 1 2 3

wAFS 0.03 0.41 0.56

wACS 0.00 0.00 1.00

wD 1.00 0.00 0.00

wσD
0.23 0.77 0.00

Table 4.10: Validity degrees of the sentences associated to the Sun Salutation se-

quence partial level for the exercise performed by Subject 5.
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degrees associated to the Sun Salutation sequence partial level performed by Subject

5 are shown. The sentences that explain the symmetry and the rhythm of Subject 5

are as follows:

• “The symmetry is high because the forearms symmetry is high and the calves

symmetry is high.”

• “The rhythm is variable because the duration of the Sun Salutation is low and

the variability of the duration is medium.”

To check why the symmetry of the forearms does not have a very high value for

the validity degree, one can descend to the pose level, whose validity degrees are

shown in Table 4.11: “The forearms symmetry is high because the symmetry of poses

0, 1, 2 and 3 is high and the symmetry of poses 4 and 5 is medium”. At this level, the

information of the stability of each pose could also be checked: “The stability is high

because the stability of poses 0, 1, 2 and 3 is high, the stability of pose 4 is medium

and the stability of pose 5 is low.”.

Subject 5

Pose level

wFS wCS wPST
Pose

1 2 3 1 2 3 1 2 3

0 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

1 0.00 0.34 0.66 0.00 0.00 1.00 0.00 0.00 1.00

2 0.00 0.31 0.69 0.00 0.00 1.00 0.00 0.00 1.00

3 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

4 0.15 0.85 0.00 0.00 0.00 1.00 0.00 1.00 0.00

5 0.00 0.97 0.03 0.00 0.00 1.00 1.00 0.00 0.00

Table 4.11: Validity degrees of the sentences associated to the pose level for the exer-

cise performed by Subject 5.

As can be seen, the tool developed provides a useful linguistic assessment of the

selected exercise thanks to the interpretability of the computational model created to

evaluate its quality, based on its symmetry, stability and rhythm, at different levels of

granularity.
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4.4 Hybrid neuro-fuzzy system

The artificial intelligence techniques based on fuzzy logic and artificial neural net-

works may be applied together in order to come out of the difficulties and inherent

limitations of each of them [306]. While the fuzzy systems are able to represent in-

herent uncertainties of the human knowledge with linguistic variables and provide

an easy interpretation of the results, they first depend on an expert to determine the

inference logical rules, then they are not capable of generalizing. On the other hand,

the main advantages of neural networks are their learning and generalization capac-

ity, while causing a more difficult interpretation of the results. When used together in

a combined way, they are called neuro-fuzzy systems.

Neuro-fuzzy systems have already been used in the medical field: for the charac-

terization of movements [307], for designing a decision-support system for prognosis

in stroke rehabilitative therapy [308], for extraction of angular information to predict

ankle trajectories [309] and to “discover” relationships between fluctuation, treatment

and disease severity in Parkinson [310], among other applications.

The approach to data analysis presented in this section is based on a neuro-fuzzy

system for providing a linguistic description of the postural balance. Balance is de-

fined as the ability of the body to statically and dynamically stabilize against resisting

intrinsic and extrinsic forces. This system is focused on postural balance assessment

due to its importance in physical therapies. For instance, in [79], balance retraining

is included in conventional physical therapy following acute stroke. Deficits in ba-

lance and postural control are highly correlated with falls risk in elderly adults, since

stroke patients are prone to particularly high risk of falling, too. This is the reason

why several studies are focused on balance training and postural response assess-

ment [311, 312, 313]. In [314], the results showed that balance training was benefi-

cial for patients after hemiplegic stroke. In addition, it was found that the dynamic

balance function showed significant improvements in patients with visual feedback

training when compared with those receiving conventional therapy only. Similarly,

the study done in [315] suggests that subjects receiving visual feedback within the

rehabilitation program showed after 2 weeks better postural control than those re-
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ceiving standard physiotherapy rehabilitation, while in [316] it is also concluded that

visual feedback can enhance patients’ balance performance.

The architecture of the proposed neuro-fuzzy system for assessing postural ba-

lance during the performance of the Sun Salutation exercise is shown in Figure 4.20.

Figure 4.20: Proposed hybrid neuro-fuzzy system for postural balance assessment.

The artificial neural network has been implemented by using a neural gas for low-
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level perception and signal integration, exploiting its ability to recognize patterns,

while the higher levels of the proposed network are based on the Granular Linguistic

Model of a Phenomenon (GLMP), already introduced before, used for the reasoning

aspects, since it is good at dealing with imprecision and at explaining the phenomena.

Combining both techniques in an intelligent hybrid system allows one to over-

come their individual limitations while merging their advantages. In the proposed

scheme both systems work independently, i.e., the interaction between them occurs

through data transfer. It is not a cooperative model, as in the case of cooperative

neuro-fuzzy system where the artificial neural networks are used during a pre-pro-

cessing phase to determine membership functions or fuzzy rules of the fuzzy infer-

ence system [317], but it could rather be considered a concurrent neuro-fuzzy system

where both parts work continuously together with the neural network pre-processing

the inputs of the fuzzy system.

The data input to the system include both the angle of the sensors with respect to

the Z axis (θ1,θ2,θ3,θ4,θ5), and the corresponding derivatives
(

dθ1/dt ,
dθ2/dt ,

dθ3/dt ,
dθ4/dt ,

dθ5/dt
)

. During the initial phase of a rehabilitation therapy, it is not expected

that the subject performs perfectly a specific posture, but, in the case of analysing

her/his postural balance it is sufficient to see if she/he is capable of maintaining a

pose for a few seconds. This is the reason why the neural gas network is trained here

just with the derivatives, to recognize and differentiate between the poses and the

transitions, without identifying each specific pose, which can be however correlated

with the information provided by the video captured with Kinect. This network feeds

the higher level with the information about the poses, their location in the sequence

of data. The upper level, based on the GLMP, has been designed to take into consi-

deration these data, plus the angles, fusing and interpreting them in order to provide

a linguistic description of the postural balance while the person is performing the

exercise.

4.4.1 Neural gas network for pose segmentation

The Self-Growing and Self-Organized Neural Gas (SGONG) has been chosen as neu-

ral gas algorithm to be part of the network due to its capacity to automatically adapt
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the number of output neurons to represent the input data. The architecture chosen for

this reduced hMPF scheme is the one shown previously in Figure 4.6(a). But, in this

case, it has been trained with data from the derivatives of the angles of the sensors

acquired while the person was performing the Sun Salutation. The neural gas was

intensively trained by using 8 different datasets. At the end of the training process,

the network had 15 neurons aimed at describing the input data. Figure 4.21 shows,

on the bottom left side, the input data provided during the test process, and, on the

top right side, the output provided by the neural gas. The numbers, corresponding to

the winner neuron ID, allows one to classify if the sample data corresponds to a tran-

sition or a pose (ID = 10). The right part of the figure shows the spatial topology of

the network, where the colours of the neurons are associated to their corresponding

activation degrees for the current data sample.

Figure 4.21: Input and output data with the network topology.

Figure 4.22 shows the input data together with the segmentation provided by the

neural gas algorithm for one of the Sun Salutation sequences performed by Subject

8. This segmentation of the signals allows to indicate to the GLMP where to find the

poses within the data in order to analyse them without taking into consideration the

transitions, as this study is based on the capacity of the subject to stabilize a position

for a few seconds.

In order to evaluate if the poses had been correctly segmented by using this
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Figure 4.22: Input data with the segmentation given by the neural gas for Subject 8.

approach, the results were compared to three manually segmented sequences of data.

Table 4.12 shows the comparison for each of the three datasets with respect both to

the poses and the transitions.

Neural gas segmentation (%)
Expert

Dataset 1 Dataset 2 Dataset 3
segmentation

Pose Trans. Pose Trans. Pose Trans.

Pose 100.00 0.00 100.00 0.00 100.00 0.00

Transition 24.66 75.34 22.15 77.85 37.05 62.95

Table 4.12: Segmentation comparison among the results of the neural gas and the

expert manual segmentation.

As can be seen, the poses were correctly identified in the 100% of the instances.

The transitions, however, had a recognition rate among 62.95% and 75.34%. This

means that this model is more restrictive than the expert classification, i.e., it consi-
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ders that the transitions are shorter by taking into account the derivatives information

with a lower “virtual” threshold. However, this approach is still valid for being used

in the current proposal. Once the poses are segmented, with the aim to analyse just

that part of the signal in order to assess at the highest level the postural balance of

the subject, the data taken into consideration will correspond to the central 80% of

the poses segmented, giving the subject the required time to stabilize the acquired

posture.

4.4.2 GLMP designed for postural balance assessment

In this section, each of the PMs which conform the GLMP designed for postural

balance assessment is explained. In this approach, the analysis of the postural balance

is based on the stability of the forearms, the back waist and the calves. While in

the previous approach the stability during a pose considered the fluctuation of the

validity degree of each sentence related to the pose by calculating its average value

along the duration, here it is analysed at the lowest level on the variance of the signals

corresponding to the angle of each of the sensors during the poses while performing

the Sun Salutation. The variance provides a measure of how much a set of values is

spread, which means that, if it is low, the signal is quite stable, while, if it is high,

then the signal fluctuates significantly, meaning that the subject is not maintaining

the pose appropriately.

Variance of the angle of the sensor (PMθi)

It is a 1-PM whose inputs are the corresponding pose and the numerical values of

the angle formed by the vector given by the sensor i and the Z axis (θi ∈ [0o,180o],

i ∈ [1,5]). The output CP yθi , gives a fuzzy description related to the variance of the

angle during the pose. It includes the following set of NL sentences:

a1θi
→ “The variance of the angle of sensor ‘i’ in pose {j} is low.”

a2θi
→ “The variance of the angle of sensor ‘i’ in pose {j} is medium.”

a3θi
→ “The variance of the angle of sensor ‘i’ in pose {j} is high.”
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which can be described by the following template:

a[1:3]θi
→ “The variance of the angle of sensor ‘i’ in pose {j} is {low | medium |

high}.”

The validity degrees are obtained from the trapezoidal membership functions shown

in Figure 4.23, which were designed empirically.
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Figure 4.23: Trapezoidal membership functions for the variance of the angle.

Variance of the angle of the sensor during the exercise (PMRF , PMLF , PMPBW ,

PMRC, PMLC)

PMRF , PMLF , PMPBW , PMRC and PMLC (where RF, LF, PBW, RC and LC stand for

Right Forearm, Left Forearm, Partial Back Waist, Right Calf and Left Calf) are 2-

PMs which describe the variance of the angle of the sensors while performing all

the poses. The aggregation functions calculate the corresponding validity degrees as
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shown in Eq. 4.10:

wiRF =

Ti

∑
t=0

wiθ1
[t]

Ti
, wiLF =

Ti

∑
t=0

wiθ2
[t]

Ti
, wiPBW =

Ti

∑
t=0

wiθ3
[t]

Ti

wiRC =

Ti

∑
t=0

wiθ4
[t]

Ti
, wiLC =

Ti

∑
t=0

wiθ5
[t]

Ti
(4.10)

The output CPs are described by the following templates:

a[1:3]RF → “The variance of the angle of the sensor on the right forearm during

the exercise is {low | medium | high}.”

a[1:3]LF → “The variance of the angle of the sensor on the left forearm during the

exercise is {low | medium | high}.”

a[1:3]PBW → “The variance of the angle of the sensor on the back waist during the

exercise is {low | medium | high}.”

a[1:3]RC → “The variance of the angle of the sensor on the right calf during the

exercise is {low | medium | high}.”

a[1:3]LC → “The variance of the angle of the sensor on the left calf during the

exercise is {low | medium | high}.”

Stability of the forearms and the calves during the exercise (PMF , PMC)

These PMs merge the data corresponding to the variance of the forearms and the

calves in order to provide information about the stability of the limbs. The aggrega-

tion functions calculate their validity degrees as shown in Eq. 4.11:

wiF =
w(3−i+1)RF

+w(3−i+1)LF

2
, wiC =

w(3−i+1)RC
+w(3−i+1)LC

2
(4.11)
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The outputCP of PMF , for example, would include the following set of NL sentences:

a1F → “The stability of the forearms during the exercise is low.”

a2F → “The stability of the forearms during the exercise is medium.”

a3F → “The stability of the forearms during the exercise is high.”

While dealing with the pure linguistic system described in the previous section,

it was noticed that, depending on the values obtained for the validity degrees, the NL

sentences provided by the output CPs would be more or less meaningful. For exam-

ple, considering two different sets of validity degrees for the current PM: w1F = 0.94,

w2F = 0.06, w3F = 0.00 and w1F = 0.52, w2F = 0.48, w3F = 0.00, and taking the sen-

tence corresponding to the maximum validity degree, the output would correspond

in both cases to a1F : “The stability of the forearms during the exercise is low.”. Ho-

wever, it is obvious that the “relevance” or “importance” of this sentence, or how it

could be perceived by a clinician or a patient, is not the same for the two sets. In

the first one, w1F is clearly the maximum validity degree with a significant difference

from the others (0.94 with respect to 0.06), while in the second set, this difference is

much smaller (0.52 with respect to 0.48). With the aim to provide a more meaningful

description of the phenomenon and to improve the usability of texts, it is proposed

to include a modifier of intensity, as commonly done in human discourse [318]. The

quantifier chosen to be considered when the maximum validity degree corresponds

to the first or the third sentence (therefore to modify the adjectives “low” or “high”,

while it would not have much sense in natural language applying it to the adjective

“medium”) is quite.

In this context, the standard deviation among the weights provided by the PM is

taken into consideration. If the standard deviation calculated is below a determined

threshold, fixed experimentally at 0.2, which means that there is not a large difference

among the weights, this quantifier is included in the text. Considering this, the output

CP of PMF includes the following set of NL sentences:

a1F → “The stability of the forearms during the exercise is (quite) low.”
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a2F → “The stability of the forearms during the exercise is medium.”

a3F → “The stability of the forearms during the exercise is (quite) high.”

Equivalently, the output CP of PMC is expressed by the following sentences:

a1C → “The stability of the calves during the exercise is (quite) low.”

a2C → “The stability of the calves during the exercise is medium.”

a3C → “The stability of the calves during the exercise is (quite) high.”

Stability of the back waist during the exercise (PMBW )

The other PM in this level transforms the variance of the angle of the sensor in the

back waist in order to obtain its stability by calculating the corresponding validity

degrees as described in Equation 4.12.

wiBW = w(3−i+1)PBW
(4.12)

The template of the output CP is:

a[1:3]BW → “The stability of the back waist during the exercise is {low | medium |

high}.”

Postural balance during the exercise (PMPB)

The PM at the highest level provides the outputCP yPB with a description of the pos-

tural balance based on the stability of each part of the body. The aggregation function

(gPB) calculates the validity degree (wiPB) of each sentence as shown in Eq. 4.13:

wiPB =
wiF +wiBW +wiC

3
∑
j=1

w jF +w jBW +w jC

(4.13)
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Considering the use of the quantifier quite as before, the output CP yPB includes

the following set of NL sentences:

a1PB → “The postural balance while performing the Sun Salutation is (quite)

low.”

a2PB → “The postural balance while performing the Sun Salutation is medium.”

a3PB → “The postural balance while performing the Sun Salutation is (quite)

high.”

4.4.3 Experimentation

Table 4.13 shows the validity degrees of the sentences associated to the postural ba-

lance of one exercise randomly chosen from each subject’s among the test samples.

It also shows the validity degrees associated to the stability of the forearms, the back

waist and the calves. The report provided by the proposed system is generated by

using the sentences corresponding to the maximum validity degrees, which are bold-

faced, taking into account the consideration introduced previously about the standard

deviation of the weights, also shown in the table. As an example, four different gene-

rated sentences are as follows:

• “The postural balance of subject 1 while performing the Sun Salutation is quite

high because during the exercise the stability of the forearms is quite high, the

stability of the back waist is quite high and the stability of the calves is high.”

• “The postural balance of subject 5 while performing the Sun Salutation is

medium because during the exercise the stability of the forearms is medium, the

stability of the back waist is medium and the stability of the calves is medium.”

• “The postural balance of subject 8 while performing the Sun Salutation is quite

high because during the exercise the stability of the forearms is medium, the

stability of the back waist is quite high and the stability of the calves is high.”

• “The postural balance of subject 9 while performing the Sun Salutation is high

because during the exercise the stability of the forearms is high, the stability of

the back waist is high and the stability of the calves is high.”
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Subject
Sentence

1 2 3 4 5 6 7 8 9 10

w1B 0.13 0.09 0.01 0.01 0.18 0.08 0.05 0.09 0.00 0.02

w2B 0.34 0.53 0.35 0.57 0.49 0.31 0.52 0.43 0.35 0.53

w3B 0.53 0.38 0.64 0.42 0.33 0.61 0.43 0.48 0.65 0.45

σB 0.16 0.18 0.25 0.24 0.12 0.22 0.21 0.17 0.27 0.23

w1F 0.18 0.09 0.02 0.02 0.23 0.07 0.00 0.14 0.00 0.00

w2F 0.36 0.63 0.41 0.84 0.39 0.54 0.67 0.44 0.35 0.53

w3F 0.46 0.28 0.57 0.14 0.38 0.39 0.33 0.42 0.65 0.47

σF 0.12 0.22 0.23 0.36 0.08 0.20 0.27 0.13 0.26 0.23

w1BW 0.14 0.12 0.00 0.00 0.22 0.14 0.07 0.07 0.00 0.01

w2BW 0.35 0.45 0.40 0.42 0.64 0.10 0.62 0.46 0.43 0.54

w3BW 0.51 0.43 0.60 0.58 0.14 0.76 0.31 0.47 0.57 0.45

σBW 0.15 0.15 0.25 0.25 0.22 0.30 0.22 0.19 0.24 0.23

w1C 0.07 0.06 0.03 0.00 0.11 0.04 0.07 0.07 0.00 0.03

w2C 0.29 0.51 0.23 0.46 0.43 0.27 0.29 0.38 0.27 0.52

w3C 0.64 0.43 0.74 0.54 0.46 0.69 0.64 0.55 0.73 0.45

σC 0.23 0.19 0.30 0.24 0.16 0.27 0.24 0.20 0.30 0.21

Table 4.13: Validity degrees of the sentences associated to the postural balance during

the Sun Salutation sequence performed by the healthy participants.

Taking for instance Subject 8 and going into a lower level, in Table 4.14 the

validity degrees of the sentences associated to the variance of the angle of the sen-

sors during the whole exercise are shown. From them, the following sentences are

extracted for the report:

• “The forearms stability is medium because the variance of the angle of the

sensor on the right forearm during the exercise is low and the variance of the

angle of the sensor on left forearm during the exercise is medium.”

• “The back waist stability is quite high because the variance of the angle of the

sensor on the back waist during the exercise is low.”

• “The calves stability is high because the variance of the angle of the sensor
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on the right calf during the exercise is low and the variance of the angle of the

sensor on the left calf during the exercise is low.”

Perception Mapping
Sentence

RF LF PBW RC LC

w1 0.43 0.41 0.47 0.57 0.53

w2 0.43 0.45 0.46 0.36 0.40

w3 0.14 0.14 0.07 0.07 0.07

Table 4.14: Validity degrees of the sentences associated to the variance of the angle

of the sensors during the whole exercise for Subject 8.

Table 4.15 shows the validity degrees associated to the variance of the angle of

the sensors on the forearms, θ1 and θ2, for the the analysis done at the pose level.

The following sentences explain the variance of these angles for the whole exercise

depending on the variance for each pose:

• “The variance of the angle of the sensor on the right forearm for the whole

exercise is low because it is low for poses 0, 1, 5, 8, 10 and 13, it is medium for

poses 2, 4, 6, 7, 11 and 12 and it is high for poses 4 and 9.”

• “The variance of the angle of the sensor on the left forearm for the whole exer-

cise is medium because it is low for poses 0, 1, 7, 8 and 13, it is medium for

poses 2, 3, 5, 9, 10, 11 and 12 and it is high for poses 4 and 6.”

The proposed approach allows to provide a feedback on the postural balance

through the use of the Granular Linguistic Model of a Phenomenon theory, while

simplifying the lower level perception considering the use of a neural gas within the

hMPF architecture.
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Perception Mapping

Pose θ1 θ2

w1θ1
w2θ1

w3θ1
w1θ2

w2θ2
w3θ2

0 1 0 0 1 0 0

1 1 0 0 1 0 0

2 0 1 0 0 1 0

3 0 1 0 0 1 0

4 0 0 1 0 0 1

5 1 0 0 0 1 0

6 0 1 0 0 0 1

7 0 1 0 1 0 0

8 1 0 0 1 0 0

9 0 0 1 0 1 0

10 1 0 0 0 1 0

11 0 1 0 0 0.75 0.25

12 0 1 0 0 1 0

13 1 0 0 1 0 0

Table 4.15: Validity degrees of the sentences associated to the variance of the angle

of the sensors on the forearms for each pose for Subject 8.
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4.5 Summary

Three different methods have been presented for the analysis of motion data, each

of which has its advantages and its inconveniences, which could be summed up as

follows.

In Section 4.2 the Memory Prediction Framework has been introduced and neural

gas algorithms have been investigated within its implementation by Henesis. Having

the advantage of an unsupervised learning and the capacity of generalization, the pre-

liminary results encourage to continue the research on this direction, e.g., including

feedback connections within the architecture for providing information to the lower

levels about the current interpretations of the higher levels, as the actual brain does.

Some of the inconveniences related to this approach are, on the one hand, the large

amount of data needed during the training phase (becoming both a time consum-

ing and computationally expensive process, even more when the network has several

levels or layers) and the complexity of finding the right parameters for the correct

performance of the chosen algorithms and, on the other hand, the difficulty of inter-

preting the results and providing an adequate feedback to the subject.

Section 4.3 introduced the Granular Linguistic Model of a Phenomenon, based on

which and in combination with a Fuzzy Finite State Machine, an application which

generates linguistic descriptions for assessing the subject’s performance, considering

symmetry, stability and rhythm, has been developed. While this approach solves the

problem of interpreting the results easily and providing a useful feedback to the pa-

tient, the definition of the whole system, i.e., which levels of the signals should be

considered during the fuzzification process or how the information is analysed in

each node, are defined manually by the designer.

Finally, Section 4.4 proposed a hybrid neuro-fuzzy system for postural balance

assessment, combining the technologies used in the previous approaches, in order

to merge their advantages and trying to reduce their drawbacks. Thus, the neural

part of the system learns how to differentiate the poses from the transitions without

supervision, while the fuzzy sector provides a linguistic description of the exercise

based on the stability of the subject during the duration of the poses. Additionally, in
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this approach, the inclusion of a modifier of intensity in the sentences for improving

the usability of texts when providing a feedback is proposed.





Chapter 5

Conclusions and Future Work

A story has no beginning or end: arbitrarily one chooses that

moment of experience from which to look back or from which to look ahead.

Graham Greene

5.1 Conclusions

The work done in this thesis contributes to the field of assessment of rehabilitation

exercises by proposing a hardware and software suite, both for human motion acqui-

sition and tracking and data analysis.

Firstly, to capture human motion, a prototypical wearable sensing system, based

on a robust communication scheme and a data alignment algorithm, has been develo-

ped. The integration of five small wireless modules, worn by the subject, which can

acquire accelerometer data at high frequency, synchronized by an external master de-

vice, makes the system ideal for patient monitoring since it is easily wearable and

does not interfere with the movements. Moreover, it provides significant flexibility,

allowing to monitor different parts of the body with the same modules just by chan-

ging the placement of the elastic bands. While some exercises might require the use

of the five slave modules for the correct monitoring of both the inferior and superior

limbs, having a reference point next to the centre of mass of the body, other exercises,

such as monitoring a single arm during a rehabilitation therapy, could require fewer
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modules. Thanks to the versatility of the system, it could be used in this case in a

simpler configuration without affecting its capabilities.

The successful working of the system has been demonstrated during the experi-

ments carried out to assess the communication performance, which has been focused

on data synchronization, data loss, jitter measurements and battery life. Furthermore,

the system functionality has been tested analysing the data acquired with it in the task

of activity classification using standard classifiers.

The resulting system operates in real time and in a wireless network, guarantee-

ing data correctness while being portable and easy to manipulate, which are crucial

factors for the target application. The system also includes Kinect for video acquisi-

tion during the training sessions in order to provide additional visual feedback to the

patient, which is considered to have a great impact in the therapy. A software with a

GUI for easy management of the sessions is included in the suite.

Human motion analysis is then performed by modelling a physical complex exer-

cise. The case study chosen is the Sun Salutation sequence, which is an interesting

example of a phenomenon evolving in time, a yoga exercise which involves the move-

ment of different parts of the body. Three different methods have been considered for

analysing the temporal series of measures that contains a numerical description of

this exercise.

The first method is based on the Memory Prediction Framework, and neural gas

algorithms have been investigated to be included in its implementation. The results

obtained show that this type of algorithms can effectively be used for analysing mo-

tion data, for classification doing pose recognition and for adding prediction capa-

bilities by taking into consideration the temporal context. The second approach is

based on the Computational Theory of Perceptions. The Granular Linguistic Model

of a Phenomenon in combination with a Fuzzy Finite State Machine have been used

to develop a tool able to analyse the exercise and provide a linguistic assessment of

it. A computational model which evaluates the quality of the exercise based on its

symmetry, stability and rhythm during the movements at different levels of granula-

rity, being highly interpretable, has been created. The last method proposes a hybrid

neuro-fuzzy system for postural balance assessment which merges the technologies
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used in the previous approaches in order to exploit the learning and generalization

capacity of neural networks and the easiness of the interpretation of the results of the

fuzzy system. Additionally, in order to improve the usability of the texts used when

providing a feedback to the patient, the use of a modifier of intensity, a quantifier, is

suggested.

From the experimental results obtained, it can be concluded that, both from a

practical and a theoretical point of view, the proposed suite can introduce improve-

ments in the current state of the art in the field of human motion monitoring for

rehabilitation.

5.2 Future work

Due to the multidisciplinary character of this thesis, a wide range of future steps and

research lines has been opened.

First, in order to complete the field validation of the system, the assessment of

the clinicians is needed. Thus, the next steps should involve testing the suite in a

rehabilitation centre with a patient wearing the sensors while doing the exercises.

This would allow to interact directly with the people involved in the rehabilitation

environment, the subject and the doctors, by providing them with the results obtained

with the different methods proposed and the visual feedback. Clinicians could then

evaluate the patient’s performance both subjectively and making use of the objective

results given by the system for assessing her/his achievement during the physical

therapy.

On the other hand, the prototype of the wearable system can be further developed

and improved working on its miniaturization, by re-engineering the base module used

in the architecture. This would allow to reduce the size and weight of the sensors.

While the actual characteristics and configuration of the system allow a maximum of

five slave modules because just one communication channel is being used, creating

a multi-channel system would consent to introduce more sensors and, therefore, to

have more motion data available.

With respect to the data analysis, future work could be focused on the automatic
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configuration of neural gas algorithms, e.g., using the iterated racing procedure to find

the most appropriate settings for optimizing the parametrization. Deepening on the

use of the temporal context and the addition of feedback connections between diffe-

rent levels of the Memory Prediction Framework implementation is recommended. In

order to make data more accessible to people, within the Granular Linguistic Model

of a Phenomenon the concept of relevancy of a Computational Perception could be

explored for providing descriptions highlighting the relevant and hiding the irrelevant

data according to the subject’s specific goals. Further study on hybrid neuro-fuzzy

systems would allow to boost the potentiality demonstrated in this field as they join

the advantages of two different methods while compensating their drawbacks.

In addition, considering that the proposed system also includes video acquisition,

this type of data could be considered for future analysis through computer vision

techniques, which would allow to complement the analysis done on the accelerometer

data.

Finally, it should be pointed out that even if this thesis has been focused on the

development of a suite for application in rehabilitation, virtual training and gaming

could be other potential fields of interest.
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Puedo escribir los versos más tristes esta noche.

Escribir, por ejemplo: “La noche está estrellada,

y tiritan, azules, los astros, a lo lejos.”

El viento de la noche gira en el cielo y canta.

Puedo escribir los versos más tristes esta noche.

Yo la quise, y a veces ella también me quiso.

En las noches como ésta la tuve entre mis brazos.

La besé tantas veces bajo el cielo infinito.

Ella me quiso, a veces yo también la quería.

Cómo no haber amado sus grandes ojos fijos.

Puedo escribir los versos más tristes esta noche.

Pensar que no la tengo. Sentir que la he perdido.

Oír la noche inmensa, más inmensa sin ella.

Y el verso cae al alma como al pasto el rocío.

Qué importa que mi amor no pudiera guardarla.

La noche está estrellada y ella no está conmigo.

Eso es todo. A lo lejos alguien canta. A lo lejos.

Mi alma no se contenta con haberla perdido.

Como para acercarla mi mirada la busca.

Mi corazón la busca, y ella no está conmigo.

La misma noche que hace blanquear los mismos árboles.

Nosotros, los de entonces, ya no somos los mismos.

Ya no la quiero, es cierto, pero cuánto la quise.

Mi voz buscaba el viento para tocar su oído.



202 Acknowledgements

De otro. Será de otro. Como antes de mis besos.

Su voz, su cuerpo claro. Sus ojos infinitos.

Ya no la quiero, es cierto, pero tal vez la quiero.

Es tan corto el amor, y es tan largo el olvido.

Porque en noches como ésta la tuve entre mis brazos,

Mi alma no se contenta con haberla perdido.

Aunque éste sea el último dolor que ella me causa,

y éstos sean los últimos versos que yo le escribo.

Pablo Neruda

Veinte poemas de amor y una canción desesperada, Poema 20
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