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ABSTRACT 

 

 
In the attempt to reduce time and costs of the drug discovery process, 
computational strategies have been looked as the possible solution. Despite 
still far from being the answer of all the problems, the use of computational 
approaches is now well established in the drug discovery pipeline. In the 
course of the years a lot of techniques have been developed and now are 
applied to several phases of drug discovery and development. In the present 
thesis is summarized the work conducted in three different projects carried 
out during my PhD, that allowed me to exploit different computational 
strategies.  

The goal of the main project was the optimization and the validation of 
the performance of a new drug discovery software, LiGen, result of the 
collaboration between the Italian pharmaceutical company Dompé, the 
Italian supercomputing center CINECA and our research group. LiGen was 
developed to perform protein surface analysis, molecular docking and de 
novo design; during this project we focused our attention mainly on the first 
two tools, LiGenPocket, aimed at the binding site analysis and structure-
based pharmacophore definition, and LiGenDock, the molecular docking 
engine. Even if seldom used in computational chemistry, we decided to 
apply the Design of Experiments (DoE) methodology to optimize 
parameters controlling LiGenPocket and LiGenDock. At first we applied a 
fractional factorial design to screen the set of user-adjustable parameters to 
identify those having the largest influence on the accuracy of the results and 
then we optimize their values, to ensure the best performance in pose 
prediction and in virtual screening. Afterwards the results have been also 
compared with those obtained by two popular docking programs, namely 
Glide and AutoDock, for pose prediction, Glide and DOCK6 for Virtual 
Screening.  

The second project was the investigation of the binding mode of a 
series of compounds based on the 2-aminonicotinic 1-oxide scaffold and 
developed by our synthetic laboratory, to inhibit the 3-hydroxyanthranilic 
acid dioxygenase (3-HAO), an enzyme of the kynurenine pathway. 3-HAO is 



responsible for the production of the neurotoxic tryptophan metabolite 
quinolinic acid (QUIN); elevated brain levels of QUIN has been connected to 
several neurodegenerative diseases therefore 3-HAO inhibition may be a 
useful strategy for Huntington’s diseases and Alzheimer’s diseases among 
the others. To predict the most probable binding mode, compounds and the 
binding site have been characterized at quantum mechanical level, due to 
the presence of a catalytic iron atom in the binding site. Molecular docking 
was then used to predict the binding mode of the compounds and to 
investigate the effects of the substituents at the pyridine ring.  

The third project was related to the creation of a database of functional 
groups to screen chemical libraries, in order to reject or to flag these 
functionalities in libraries used for virtual screening purposes, in relation to 
their potential toxicity. The functional groups have been collected from 
different sources and have been classified according to the type of risk they 
may be related. This collection of compounds has been enriched also with 
compounds that have been identified as “frequent hitters”, indicating 
compounds often interfering in vitro assays, especially in HTS. The final 
database is therefore divided in three group, one collecting the intrinsically 
reactive moieties, one with functional groups susceptible to 
biotransformation into reactive metabolites and one containing 
substructures frequently identified as false positives in experimental tests.  
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PREFACE 

 
 

Computational approaches are commonly used in drug discovery projects 
to assist the development of new bioactive molecules. Structure based and 
ligand based techniques have been used for a long time to help the 
discovery of new hit or lead compounds, through rational design or virtual 
screening. Nowadays the field of application of these approaches has 
definitely widen, flanking several other classical approaches of the drug 
discovery pipeline. Bioinformatics, that in the post-genomic era became an 
essential tool to analyze DNA and protein sequences, or computational 
toxicology, triggered by the discovery that ADMET profile was the main 
cause of drug failures, are just two of many possible examples.  

In this context, during my PhD I applied computational techniques in 
different projects, that are reflected by the main structure of the thesis, 
dived in three main chapters, one for each project. Every chapter starts with 
a brief introduction, introducing the reader into the topic of the project, 
followed by a declaration of the aims of the study. Afterwards the 
experimental section illustrates the main features of the adopted 
techniques; then the results achieved during the project are explained in the 
results section and summarized in the conclusions at the end of the chapter. 
The main project, presented here in Chapter 1, was the optimization and 
validation of a new docking program included in LiGen, a new drug 
discovery software, created by the collaboration of the pharmaceutical 
industry Dompé, the Italian supercomputing center CINECA and our 
research group. Chapter 2 is about the work done in the attempt to give a 
rational explanation of the activity of a series of 3-hydroxyanthranilic acid 
dioxygenase inhibitors developed by the synthetic chemists of our research 
group. The last chapter, Chapter 3, is dedicated to the project I carried on 
during the five months I spent at prof. Abagyan laboratory at University of 
California, San Diego, and concerns the building of a new database of 
filtering rules for chemical libraries.  
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1.1  INTRODUCTION 

 

 
The development of a new drug, from the identification of a new active 
compound to the final marketed product, is a multi-step process that can be 
roughly split into pre-clinical development and clinical trials (see Figure 1). 
The main goal pursued during the pre-clinical development is to optimize a 
newly discovered compound to improve its biological activity towards the 
pharmacologically relevant target and its safety. This requires the 
investigation of the pharmacodynamic and pharmacokinetic properties. But 
first of all a new chemical entity should be identified and the starting point 
is always more frequently an in silico study. In fact, starting from the 
beginning of the nineties, in the attempt to control the rise of times and 
costs, the use of computational techniques flanked the classical 
experimental research. Drug development is a long and expensive process. 
The average time from synthesis of a new chemical entity (NCE) to approval 
of a new drug application (NDA) has increased significantly, from an 
average 7.9 years in the 1960s to 12.8 years in the 1990s.1  Likewise the 
costs for the discovery and development have grown, and now the 
estimated cost to bring a NCE to market is approximately $1.2-1.8 USD. 
Therefore computational approaches are more and more often integrated 
into drug discovery programs, aiming at accelerating hit identification and 
lead optimization.2 At the beginning mainly ligand-based methods were 
used but then during the last twenty years the number of publicly available 
3D protein structures has greatly increased, surpassing ninety thousand 
structures in 2013, boosting the development of a plethora of structure-
based methods. The most widely used approach is molecular docking, 
which aims to predict the spatial arrangement assumed by a ligand in 
protein−ligand complexes, where the protein is a receptor or enzyme, but 
can also be a nucleic acid molecule.  
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Figure 1. The Drug Discovery Process is schematically represented here. The first step 
consists in the identification of the target, using in vitro target expression, knock-out 
experiments and bioinformatics; the second phase is dedicated to hit identification for 
example using combinatorial chemistry, structure based drug design, HTS and other 
in vitro and in vivo tests; the following step is the optimization of the hit previously 
discovered into a lead compound, by means of traditional medicinal chemistry 
techniques and rational drug design; the fourth step is the assessment of the ADMET 
properties of the lead compound; after that the clinical testing of the compound, 
together with the development of large-scale synthesis of the product starts, to 
conclude in the last step, during which all the documentation collected in the clinical 
phases is evaluated by FDA to decide if the product can reach or not the market. 

Moreover docking is a common tool exploited by many different 
computational techniques, of which the most frequently used in drug 
discovery are virtual screening, which aims to identify new active ligands 
among a chemical library, and de novo design.    

 

 

1.1.1  Molecular Docking  

In silico molecular docking is a valuable tool in drug discovery, 
attempting to predict the structure of a ligand, usually a small molecule, in 
complex with its biological target. Molecular docking simulations are used 
for reproducing in silico experimental data on protein-ligand interactions, 
to find a rational explanation for biological activity of compounds and build 
structure-activity relationships. From a theoretical perspective, molecular 
docking searches a global optimum in an energy landscape defined by the 
scoring function, protein, ligand, and degrees of freedom to be explored.3 To 
address this complex problem, all docking programs are divided into two 
main parts, namely, the search of the ligand disposition, guided by the 
docking algorithm, and the scoring function, that tries to make a prediction 
of the interaction energy between the ligand and the target, and thus also an 
estimation of the biological activity.4  
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Therefore a first challenge is the size of the search space, which grows  
exponentially with the number of degrees of freedom of the system. 
Sampling the degrees of freedom is not a trivial task because even relatively 
small organic molecules can contain many conformational degrees of 
freedom, and the process must be performed with a certain accuracy to 
identify the conformation that best matches the receptor active site.2 The 
first molecular docking programs treated proteins and ligand molecules as 
rigid bodies, fixing all the internal degrees of freedom, except for the three 
translations and three rotations.5 Within this concept, the only way to 
address the conformational flexibility of the ligands was to pre-generate a 
library of ligand conformations that were formally treated as separated 
molecular entities. Examples are the first versions of FRED6 and DOCK4.0.7, 8 
These approaches were quickly replaced by algorithms able to explicitly 
handle the conformational degrees of freedom during docking simulations. 
Several ligand flexibility algorithms have been proposed and can be divided 
into three main families according to the type of search: approaches derived 
from a so-called systematic search, stochastic methods and molecular 
dynamics simulation techniques.2, 9 Systematic search methods group 
together those algorithms that try to explore all the degrees of freedom in a 
molecule, as QXP, that carries out full conformational searches for flexible 
cyclic and acyclic molecules10 with extremely good results.11 The main issue 
of this kind of approach is the combinatorial explosion of ligand 
conformations number. Thus some approaches have been developed trying 
to overcome this problem, such as the combined use with filtering 
techniques, as in Glide,12 or the use of ligand fragmentation and subsequent 
incremental reconstruction within the binding site,13 as in FlexX,14 Surflex15 
and eHITS.16 Stochastic-based algorithms make random changes, generally 
with a limited physical basis, usually changing one degree of freedom at 
time;4 examples are Monte Carlo (MC) methods and evolutionary 
algorithms applied, for example, by ICM17 and AutoDock.18 The most used 
deterministic approach is molecular dynamic simulation. However, 
molecular dynamics are time consuming and often a main concern 
regarding this kind of method is that they are not able to cross high free-
energy barriers within accessible (usually short) simulation time; therefore, 
a possible risk is that the system gets trapped in local minima.2, 4 To avoid 
this problem, several attempts have been proposed, such as starting the 
simulation from different ligand positions or simulate the system at 
different temperatures; however, these efforts are quite expensive in terms 
of calculation time, limiting the application of molecular dynamic to docking 

7 
 



CHAPTER 1  Development and optimization of LiGen, a new drug  
design software 
 
only one or few compounds. Irrespective of the way the docking poses are 
generated, the evaluation, in terms of interaction energy, of the ligand 
conformations inside the binding site represents a second challenge, 
addressed by adopting a scoring function that tries to pinpoint the 
experimental (real) binding mode among all those that have been 
generated.   

Scoring functions are mathematical approximating methods for 
evaluating binding affinity. Using as input the atomic 3D coordinates of the 
ligand-target complex, scoring functions give an estimation of the free 
energy of binding or binding constant.19 The free energy of binding is 
obtained with the Gibbs-Helmhottz equation:  

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆 
where ΔG is the free energy of binding, ΔH is the enthalpy, T is the 
temperature in Kelvin and ΔS the entropy. The binding constant Ki is related 
to ΔG by the equation: 

∆𝐺 =  −𝑅𝑇𝑙𝑛𝐾𝑖 
Scoring functions can be classified into three families: empirical 

scoring functions, knowledge-based, and force field based scoring functions.  
Empirical scoring functions are weighted sum of several intermolecular 
interaction terms, where the weighting factors are calibrated through a 
linear regression procedure, in which theoretical values are fitted to be 
closest as possible to experimental data. The different terms reflect the 
different types of interaction established between ligand and target, such as 
hydrogen bonds, ionic and van der Waals interactions.20, 21 Knowledge 
based scoring functions  are based on statistical observations of 
intermolecular contacts identified from large datasets of experimental 3D 
structures.22, 23 

The last family of scoring functions uses non-bonded terms of classical 
mechanics force fields, summing the interaction energy and the internal 
energies of both partners, and ideally taking into account the solvent effect. 
These scoring functions are usually sensitive to atomic coordinates, limiting 
their applications in cross-docking experiments. Softened van der Waals 
potentials, in which the contribution of the repulsive term is limited to 
allow some steric clashes without penalizing too much the corresponding 
binding mode, have the advantage of being less sensitive to atomic 
coordinates, but suffer from being less selective. 24  

Unfortunately the perfect scoring function able to accurately estimate 
the protein-ligand binding energy, does not exist yet, in fact, most docking 
failures can be attributed to scoring functions.25 By accurate investigations, 
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it turned out that accurate prediction of binding affinities, especially for a 
diverse set of molecules,  is genuinely difficult. The problem of the 
unreliable calculation of ΔG arise from the inaccuracies made in the 
calculation of ligand and protein energies (very big numbers), that are 
subtracted to give the free energy of binding (usually a small number).26  
Moreover, Tirado-Rives and Jorgensen pointed out that another problem is 
the small “ window o activity”.27 In Virtual Screening experiments the free 
energy difference between the best active compound (around 50 nM) that 
one might expect to find and the experimental detection limits (100 μM) is 
only about 4.5 kcal/mol. Hence to provide a successful ranking of 
compounds, more accurate methods may be considered.  Some approaches 
to improve the ranking of the scoring function have been investigated. One 
method consists in using consensus scoring , i.e. to rank docking results 
with multiple scoring functions, that has been shown to definitely improve 
the docking results.28 Other approaches that aim to produce a more reliable 
estimation of protein–ligand binding free energies are Molecular  
Mechanics/Poisson−Boltzmann Surface Area (MM/PBSA) and the Molecular 
Mechanics/Generalized Born Surface Area (MM/GBSA) methods, which 
calculate binding free energies by combining molecular mechanics 
calculations and continuum solvation models. Both of them have been 
widely exploited, in particular MM/GBSA, in free energy calculations 
because of their computational efficiency if compared with rigorous 
methods such as free energy perturbation (FEP) and thermodynamic 
integration (TI) methods.29-31 But even MM/GBSA and MM/PBSA are not 
completely reliable, in fact they are useful mainly to compare the binding 
energies of close analogues.26    

A workflow representing the commons steps in molecular docking is 
represented in Figure 2 . A first essential step is protein preparation. For 
instance, the presence of crystal contacts in X-ray structures should be 
verified, as well as the impact of the presence/absence of other interacting 
partners such as cofactors and metal ions. Moreover, the quality of the 
structure should be verified at atomic level, for example to analyze the 
presence of unresolved atoms/residues and steric clashes in the binding 
region. Finally the assignment of the protonation state is a necessary step, 
because in PDB crystal structures hydrogen atoms are generally not solved. 
The latter step is common also to the ligand structures preparation.   
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Figure 2. Docking workflow. Schematic representation of the main common steps in a 
docking experiment.  

 

1.1.2   Virtual screening  

Probably the most popular application of molecular docking is virtual 
screening (VS), which aims to identify new active ligands from a chemical 
library collecting compounds of unknown activity for the target under 
investigation. Of course, VS should be used in combination with traditional 
HTS, as a biological assay is always needed to validate computational 
methods. However generally in retrospective VS a poor correlation between 
the accuracy of a binding mode and the enrichment has been noted.25, 26 This 
statement is consistent with the fact that the docking problem itself is not 
resolved yet, and that there are big issues to address in the prediction and 
recognition of a correct binding mode, as well as in the evaluation of the 
binding free energy. It is interesting to note that nearly all groups that 
reported successful examples of VS application,32-34 performed pre-filtering 
using two-dimensional similarity methods and shape or drug-like filters to 
reduce the number of database compounds for the time-consuming steps of 
flexible docking; they also reported complex scoring procedures and visual 
analysis, to overcome the limitation of simple molecular docking. 
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1.1.3   De novo drug design   
Another recurrent method that uses molecular docking is receptor-based de 
novo design, that is aimed at generating novel chemotypes endowed with a 
particular set of desired properties, generally biological or pharmacological 
properties.35 De novo design work starts with small molecular fragments, 
called building blocks, and attempts to find novel drug-like molecules 
expanding them (the so called “growing” process) by connecting one 
another directly (“joining”) or through a linker (“linking”).36 Several de novo 
drug design programs have been developed such as LUDI,37 LEGEND,38 
LeapFrog,39 LigBuilder,40, 41 SPROUT,42 HOOK,43 PROLIGANDS,44-46 and 
DOGS,47 which differentiate from each other for how they explore the 
chemical space, for how they assemble the candidate compounds and for 
the evaluation of the candidates quality (using a scoring function).   

A secondary but widespread application of de novo design is lead 
optimization. In this case, the binding mode of the core structure of the lead 
has usually already been validated and the scope of the de novo approach is 
to find the best substituents for the scaffold, to increase affinity and/or 
improve ADME properties.48 Therefore the number of compounds to 
generate is reasonably low, and the selection of the fragments is driven by 
the optimization process and not by the reagents accessibility, as in case of 
hits discovery.  

The main issue that all de novo design tools have to deal with, is the 
feasibility of the newly designed compounds, that should occupy useful 
chemical space.49 Furthermore other problems have been reported in 
recent reviews:35, 50, 51 i. low structural diversity;49 ii. low potential for 
parallel synthesis applications (except when combinatorial chemistry is 
directly addressed);52 iii. generally low throughput if compared to docking 
programs. As a result, these problems have prevented molecular de novo 
design approach to become an established tool in drug design, and, in fact, 
methods like virtual screening and molecular docking received higher 
attention, either in terms of routine use or successful examples, despite 
some fruitful applications having been reported also in case of de novo 
design.49, 53   

The problem of synthetic accessibility is the most concerning one, 
determining the usefulness of the results. This matter is heavily related to 
the library of building blocks and to the algorithm used in the growing 
process. Two approaches try to address the synthetic feasibility problem: 
the first one is to use a retrosynthetic analysis of the final ligand, and this is 
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generally done by the implementation of bond breaking rules. One example 
is represented by LigBuilder40, 54 which uses an internal database of building 
blocks. The second and most popular approach, is the use of a restricted 
sets of chemical rules, encoding for the most common chemical reactions. 
Some of the most relevant reaction driven de novo software programs with 
an extended set of chemical reactions are SYNOPSIS55 and DOGS.47 

 
 

1.1.4   Benchmarking 

Benchmarking of docking programs is a well established practice.25, 28, 

56, 57 However setting up a fair comparison between different docking 
software packages is not trivial58 and in the past there were no standard 
procedures or guidelines on how the evaluation should be conducted; thus 
every research group came up using its own  slightly different 
benchmarking protocol, making a genuine comparison of the results almost 
impossible.59 Recently several authors published some guidelines on how to 
compare docking programs.3, 59-61 and also some dataset prepared ad hoc for 
software benchmarking were made publicly available,62-64 encouraging 
scientist to use them. Of course, to ensure a fair programs comparison, the 
same number of poses and, in the evaluating the calculation time, also the 
same number of CPUs for all the softwares should be used.  Benchmarking 
of software should consider the two main applications of molecular 
docking, the prediction of the binding mode of compounds known to be 
active at the specific receptor and the identification of new active molecule 
from a chemical library.  

The first application is evaluated using the self-docking, also called 
cognate docking or re-docking, approach. In this process a ligand is 
extracted from a crystal structure in which it is bounded to its target 
protein and the program is challenged to pose the ligand as closely as 
possible to its experimentally identified structure. It may be argued that 
cognate re-docking is not a task commonly faced in the normal use of 
docking tools, since cross-docking (docking of a ligand into a structure with 
which it was not crystallized) is the actual application of a docking tool.65 
However the use of cross-docking is less common, due to the absence of a 
robust dataset, collecting different targets and several compounds with 
experimentally verified binding mode, to be used as a benchmark dataset. 
The  universal measure used in cognate-docking benchmarks is the RMSD 
(root mean square deviation) between the heavy atoms positions seen in 
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the crystal structure and those predicted with the docking simulation.65 
What changes among different studies is the way it is reported. A 
regrettably common method is to compare the average RMSDs across a set 
of structures; however it can be skewed by small number of poorly 
predicted poses with large RMSD values, leading to possible problems of 
interpretation of the results.61 The most accepted method is to report the 
proportion of successes at a particular threshold of RMSD, that is commonly 
set to 2 Å, but generally results at different thresholds are also reported.66, 67 
Comparing docking programs for their self-docking ability presents some 
difficulties, the most evident but often forgot one, is that is meaningless to 
compute a property with greater precision than the accuracy of the 
experiment that measured that property. In the specific case of cognate 
docking this perfectly applies to the attempts of predicting binding poses 
with greater accuracy than the crystal structure resolution, but 
unfortunately this is often ignored by scientists involved in benchmarking 
projects.3, 61  

The second task to be evaluated in benchmarking docking software is 
the virtual screening ability, measured in a retrospective examination of the 
ability to discriminate experimentally known active molecules from inactive 
compounds in a chemical library. The assessment of VS performances 
presents more hurdles than cognate docking, in terms of the method itself, 
datasets and metrics to report results.  The first issue is related to the 
inability of the scoring function to correctly predict the interaction energy, 
as highlighted before. In fact, in an ideal application of VS, all the active 
compounds of the chemical library show a more favorable score, i.e. binding 
energy, compared to the inactive ones, and therefore are ranked as firsts. 
However, due to the inaccuracy of the scoring functions, the correct ranking 
based on the compounds affinity is still a far goal.  

A second major problem concern the chemical library to be used. The 
active compounds included in the library should not be all chemically 
similar, because operationally finding chemically similar molecules as being 
potentially new active compounds is of little value and in real applications, 
where ligands that are obvious analogs of existing lead compounds will not 
be included in libraries to be screened for new possible leads.68 The choice 
of decoys, the “inactive” compounds of the dataset, is of extreme importance 
and greatly influence the results obtained in the software validation.65 First 
of all the decoys are supposed to be inactive at the specific target, but 
generally they have not been experimentally tested to verify the inactivity. 
In an ideal case the decoys are all experimentally verified inactive 
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compounds, but in real world it is impossible to retrieve this information,; 
therefore the fact that decoys are not real inactive compounds but only 
supposed to be not active should be always kept in mind. Secondly, 
molecules that are completely different from the active ones, bias the 
evaluation towards better performances than the real ones, whereas 
compounds too similar to actives can pose a challenge beyond the ability of 
differentiation of the scoring function. The most widely used dataset for VS 
assessment is now the Directory of Useful Decoys (DUD), collecting forty 
targets, with the corresponding sets of active compounds and decoys. In 
DUD decoys were selected to match the same simple molecular properties 
of the active compounds, so that the decoys are not trivially separable from 
the actives, in order to have a more realistic representation of the 
discriminating ability of the docking method.  

Another main issue concerning VS is about the best metric to use in the 
assessment of screening enrichment. Around this topic there is still a 
passionate debate and no definitive solution has been given.3, 59-61, 69, 70 The 
standard method has been for a long time the enrichment, defined to be the 
ratio of the observed fraction of active compounds in the top few percent of 
a virtual screen to that expected by random selection.59 It is still quite used 
because it is easy to calculate and promptly understandable, despite it 
presents some drawbacks, in particular its dependence on the ratio of 
actives to inactives, which makes enrichment a property of the method and 
the experimental set-up rather than just an intrinsic property of method.59 
Moreover it gives no weight to where in the ranked list a known active 
compound appears. Thus to calculate enrichment at 1% in a virtual screen 
of 10,000 compounds, the number of actives (N) in the top ranked 100 
compounds is needed. However the enrichment at 1% is the same whether 
the N active compounds are ranked at the very top of the list or at the very 
bottom of the top ranked 100.  A metric widely used to determine success in 
detecting a signal in a background of noise is the receiver operator 
characteristic (ROC). The ROC curve is derived by plotting noise (fraction of 
false positives) on the x-axis versus signal (fraction of true positives) on the 
y-axis. The area under the ROC curve (AUC) is a widely used measure in a 
variety of fields and in the case of VS shows the performance of a given tool 
when screening across the entire database is examined, not just at fixed, 
early points in the screen as enrichment does. The theoretically perfect 
performance of a virtual screening application gives the maximum area 
under a ROC curve (1.0), while random performance of a tool gives an AUC 
of 0.5. Areas under the curve of less than 0.5 imply a systematic ranking of 
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 Figure 3. Graphic representation of metrics used to evaluate VS results. In red is 
represented the ROC curve. A) In light red highlighted the area under the ROC curve. 
B) The red squares along the curve represent the points where the enrichment is 
evaluated. The straight green line along the vertical axis and on the top of the graph in 
both A) and B) represents  the ideal ROC curve, whereas the black one at 45° 
represents the random performance. 

 decoys higher than known actives. The AUC assesses virtual screening 
performance across the entire database, known as “global enrichment”, but 
many practitioners of virtual screening are, rightly, most concerned about 
early performance of the tools they use, since active compounds are 
supposed to be ranked better than decoys; moreover the common size of 
screened libraries is of some thousands to millions molecules, making 
impossible to visually inspect all the results. This is one reason why 
enrichment is still commonly used to measure success. The metric of early 
performance based on the ROC curve is the true positive rate at fixed false 
positive rates. The true positive rate at a false positive rate of, for example, 
1% is a much more robust measure than the enrichment at 1% and 
provides similar information about the early performance of a tool.59, 69 

Another important aspect is the use of an appropriate dataset, in terms 
of proteins and ligands. This is crucial not only for VS benchmark but also 
for cognate docking. The ideal test set should not be biased toward a given 
protein family. Instead, it should be large enough to span representative 
high-resolution complexes, ensure the absence of  errors such as steric 
clashes or crystal contacts; also complexes with missing residues or 
covalent bonds should be avoided. Binding data (such as KD or IC50) should 
be available for each complex, whenever it is possible. CCDC/Astex63, 
PDBbind64 and DUD62 are the most popular databases published with the 
intent of being used as standards for software benchmarking, the first two 
for molecular docking evaluation, the latter for VS. However even using 
these well-known datasets some differences in results occur, depending, for 
example, on the different procedures applied to prepare the dataset for 
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molecular docking, which were demonstrated to have a great impact on the 
results, as pointed out by Corbeil et al..71  
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1.2  LiGen 

 

 
LiGen (LIgand GENerator) is a suite of drug discovery programs, 

developed by Dompé, CINECA and our research group at University of 
Parma.72 Its main applications concern molecular docking and de novo 
design. LiGen consists of a set of tools which can be combined in a user-
defined manner to generate project-centric workflows (Figure 3). In a 
standard application, the modules work sequentially, from the generation of 
the input constraints (either structure-based, through active site 
identification, or ligand-based, through pharmacophore definition), to  

 

Figure 4. Representation of LiGen modules. LiGenSMILES reads files containing SMILES 
and generates 3D molecular structure of the molecules or of the fragments. LiGenSSS 
is the tool that tags the reactive groups of molecules, previously generated by 
LiGenSMILES or directly read from a mol2 or sdf file. LiGenMD minimizes the 
molecules or fragments. LiGenPASS analyzes the protein surface to find possible 
binding sites. LiGenPocket analyzes the binding sites building a grid of the pocket and 
a pharmacophore reflecting the pocket characteristics (hydrogen bond donor, 
acceptor and hydrophobic regions). LiGenDock is the tool responsible for molecular 
docking that uses the pharmacophore to drive the docking process. It is used to dock 
molecules and by LiGenBuilder to dock fragments, that are further combined 
according to chemical rules. 

17 
 



CHAPTER 1  Development and optimization of LiGen, a new drug  
design software 
 
docking and de novo generation. LiGen main functionalities are LiGenPass, 
that recognizes possible binding sites on protein surface, LiGenPocket, 
which is responsible for grid and pharmacophore generation, LiGenDock, 
the docking engine, and LiGenBuilder, the module in charge of the de novo 
design process. All of them will be described in the following paragraphs.   

.  

1.2.1   LiGenPass 

LiGenPass is based upon the algorithm used by PASS (putative active 
site with spheres), software developed by Brady et al.73  to identify cavities 
in target proteins. LiGenPass characterizes regions of buried volume in the 
target protein and identifies potential binding sites based upon the size, 
shape, and burial extent of these volumes (Figure 5). Briefly, it analyzes 
protein surface, and fills cavity with probes; if the cavity contains a number 
of probes greater than a predetermined threshold, the center of mass of the 
probes inside the cavity is calculated and is represented by an Active Site 
Point (ASP). The ASPs are then ranked according to the probability of being 
a drugable binding site.  

 

 

Figure 5 LiGenPASS. A) Protein surface is analyzed with probes. Every cavity on 
protein surface is filled with probes but only  those cavities big enough to contain a 
number of probes higher than the threshold value are considered in the end as 
possible binding sites. B) In figure B it is shown a that the big cavity is recognized as a 
possible binding site. Actually, given the elongated shape of the pocket, two different 
sets of probes identify the two sub-pockets forming the whole cavity. The center of 
mass of the two clusters of probes contained in the cavity is calculated and 
represented by ASPs (in blue). The two subpockets can be merged together in one 
bigger pocket by LiGenPocket.  
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1.2.2   LiGenPocket 

LiGenPocket computes volume, shape, and physicochemical properties 
(donor, acceptor, hydrophobic, etc.) of the binding pocket and proposes a 
pharmacophore model based on these characteristics. LiGenPocket accepts 
as input a three-dimensional structure of the protein of interest in PDB or 
MOL2 file format. The basic algorithm of LiGenPocket is a variant of the one 
proposed in 2000 by Wang et al.40 Briefly, LiGenPocket creates a regular 
Cartesian grid (grid spacing 0.5 Å) around the co-crystallized ligand, if there 
is one, or around the active site point (ASP) generated by LiGenPass, that 
indicates approximately the center of mass of the binding cavity. In the case 
of the co-crystallized ligand, the software first defines a sphere around the 
ligand (with a user defined radius) and then creates the grid inside it. In the 
first step, a hydrogen atom is used as a probe to check the accessibility of 
the grid points. If the probe bumps into the protein, that grid point will be 
labeled as “not free”; otherwise, it will be labeled as “free”. A bump is 
counted when the interatomic distance is less than the sum of the van der 
Waals radii reduced by 0.5 Å. In the second step, the possible interaction 
sites will be derived using three types of probes to map the main 
interactions usually occurring in binding sites: a positively charged sp3 
nitrogen atom (ammonium cation), representing a hydrogen bond donor; a 
negatively charged sp2 oxygen atom (as in a carboxyl group), representing 
a hydrogen bond acceptor; and a sp3 carbon atom (methane), representing 
a hydrophobic group. A score representing the binding energy between the 
probe and the protein will be calculated. To calculate the scores, LiGen uses 
an in-house developed scoring function based on the paper of Wang et al.54  
In this way, all the grid points are mapped and assigned three scores, 
representing the three binding energies of the interactions with the three 
kinds of probes (Figure 6). In general, however, not all of them would be 
worthy of being considered for the pharmacophore model definition. For 
this reason, only those grid points having at least one of the three score 
higher than the average score for that kind of interaction are retained. Then, 
the survived grid points are labeled as “H-bond donor”, “H-bond acceptor”, 
or “hydrophobic”,  according to the highest score reached. The number of 
“neighbors”, defined as the number of grid points with the same label falling 
within a certain user-defined distance, is computed for every survived grid 
point. The average number of neighbors of the same type is calculated for 
each grid point, and only those having a number of neighbors higher than 
the average are retained for the further step and defined as “key sites”.  
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Finally, the survived grid points forming the key sites are clustered, 
and the geometric center of each cluster represents a pharmacophoric 
feature. In the binding site analysis, several parameters can be tuned by 
users according to their own needs. For example, the minimal distance 
among the pharmacophoric features, or the grid spacing, can be modified 
through the grid accuracy parameter, selecting the desired degree of 
accuracy in the pocket description. All the user adjustable pocket 
parameters are reported in Table 1, along with a brief explanation of their 
functionalities. 

 

 

 

  

Figure 6. LiGenPocket. A)The binding site is analyzed using three types of probes, 
hydrogen bond donor, hydrogen bond acceptor and hydrophobic and regions with 
favorable interactions are mapped accordingly. B) Pharmacophore features are 
derived from the grid, clustering the probes into pharmacophore points, so that every 
point represents the center of mass of the probes.    
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Table 1. LiGenPocket parmeters. Parameters written in italics are those included in 
the experimental designs.  

Parameter Abbreviation Notes 

Minimal Feature 
Distance 

Min F dist Sets the minimal distance between the pharmacophore 
features identified in the binding pocket. (1 to 5 Å) 

Maximal Feature 
Number 

Max F num Maximal number of features that can be considered in the 
pharmacophore that describes the binding pocket. 

Distance Cutoff  Dist CO Sets the cut-off radius to search for pocket atoms around a 
ligand. (When pocket is computed around a co-crystallized 
ligand)  

Van der Waals 
Bumps 

Prot VDW B Defines how much the binding site surface is smoothed: it 
represents the fraction of the Van der Waals radius 
considered to tag the grid points. 

Grid accuracy Grid Acc This parameter specify the grid spacing used in grid 
generation through the expression : grid spacing = 1.0 Å / 
Grid accuracy  

Ligand neighbor 
threshold 

Lig Neig Thr Represents  the ligand-ligand distance threshold used to 
count ligand neighbor atoms. It is used to coarse graining 
ligand atoms. 

Score distance 
threshold  

Score Dist Thr This parameter is used to assign a score to the identified 
pharmacophore points. It specifies the maximum distance to 
take into account grid points around the pharmacophore 
point. The sum of each single grid point score gives the score 
of the pharmacophore point.  

Grid distance 
threshold 

Grid Dist Thr This value defines for every grid point the area where to 
count the number of grid points of the same type. The 
number of grid points found is used to compute the score of 
the grid point taken into account. 

Coarse Grain 
Ligand 

 If specified, enables  to apply a filter to coarse grain the ligand 
or the cluster of probes generated by LiGen-Pass, to speed-up 
the calculation. 

Include H bumps  If specified, allows to consider hydrogen atoms during the 
calculation of grid points that bumps the receptor.  

Include water  This keyword allows to include water molecules in the 
calculation of the receptor grid. 
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1.2.3   LiGenDock 

The main feature of LiGenDock is the use of the pharmacophore 
scheme generated by LiGenPocket as the driving force for the docking 
procedure, including a nonsystematic flexible docking algorithm. A simple 
description of the framework of the docking algorithm is the following:  

1. One ligand is taken into account, and ligand features (e.g., H-bond 
donor site) are computed.  

2. The docking process starts matching a ligand’s feature (i.e., a 
hydrogen bond donor site) with the previously identified 
pharmacophoric features of the same type. 

3. The docked ligand is rotated by an appropriate angle to match a 
second pharmacophore feature with a second ligand’s feature. 
Because it is unlikely that the second pair will overlap perfectly, a 
user defined tolerance cutoff is used to evaluate the goodness of the 
match. 

4. The ligand is then rotated by an appropriate angle around the axis 
passing between the two pharmacophore features trying to match a 
third feature (not necessary). Then torsional angles are unlocked, 
and ligand conformers are generated in situ trying to match as many 
features as possible (some torsional angles may be selectively 
locked by the user).  

5. At every step, the pose’s score, related to the estimated binding 
energy of the ligand-protein complex, is computed and compared 
with the scores of previously generated poses. If this actual score is 
better than the worst score of the already generated poses, the new 
pose is retained instead of the previous worst pose (the one with 
the lowest score). The risk of getting trapped in a local minimum 
can be minimized by imposing a high RMSD difference between two 
poses to be considered different and further processed. 
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Table 2. LiGenDock parameters. Parameters reported in italics are those included in 
the experimental designs. 

Parameter Abbreviation Notes 
Neighbor 
threshold 

Neig Thr Indicates the number of neighbors of grid points of the same 
type necessary for a pharmacophore point to be considered as a 
candidate for ligand docking. 

Distance 
threshold  

Dist Thr Is the maximum distance to consider a ligand  functional group 
superposing on a pharmacophore feature. 

Number of 
poses 

 Defines the number of output poses. 

Pose overlap Pose Over Represents the maximum degree of overlap  between two poses  
Pose 
diversity 

 Is used to set a limit to the number of poses of a molecule. 

Hydrophobic 
threshold  

Hyd Thr The value of atomic LogP above which an atomic site is 
considered hydrophobic. This parameter is used in scoring the 
interaction between the receptor and the ligand.  

Angle delta Ag Delta Defines the extent of the angle used to rotate the ligands inside 
the pocket around the axis of the two matched pharmacophoric 
features 

Conformer 
Van der 
Waals 
bumps 

Conf VDW B Defines the degree of ligand volume smoothing. It represents the 
fraction of the Van der Waals radius to be considered when 
computing bumping between fragment during conformer 
generation. 

Conformer 
angle delta 

Conf Ag Delta Defines the extent of the angle used to rotate rotable ligand 
bonds during conformer generation.  

 

Figure 7. LiGenDock uses the pharmacophore of the binding 
site as a guide for the docking process. Several ligand 
conformations inside the binding site are generated to match 
as many features as possible. 
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6. Finally, the score is optimized with a simple score minimization 
algorithm that treats the docked ligand as a rigid body inside the 
pocket. The ligand is rotated in space around the docking pose until 
a minimum score, representing the most favorable binding energy, 
is reached. This minimization is the steepest descendent 
minimization during which the ligand position inside the binding 
site is changed by a discrete value of 0.25 Å in seven directions of 
the three-dimensional space (3 axes and 4 quadrant bisectors), and 
then the direction of the diminishing score is taken.  

Several parameters allow users to tune the docking algorithm 
according to their needs. A complete list of the parameters with a brief 
explanation of their meaning is given in Table 2. The values of these 
parameters can have a large influence on the outcome of the docking 
process and a suitable set of parameters is necessary for gaining good 
results. Docking outputs are a collection of ligand poses in mol2, pdb, or sdf 
file format, and a table summarizing scores and ligand/pharmacophore 
feature matches. 

 

1.2.4   LiGenBuilder 

LiGenBuilder is the structures generator module of LiGen. 
LiGenBuilder first places fragments into the active site. Atoms potentially 
involved in structure generation are tagged and a set of chemical rules is 
applied to link fragments together. LiGenBuilder does not need a library of 
pre-tagged fragments. Rather, any arbitrary database of fragments can be 
used without need of user manipulation in the de novo process. A 
throughout explanation of the algorithm of LiGenBuilder is reported in the 
paper of Beccari et al.72  
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Figure 8. LiGenBuilder performs the de novo design step. A) and B) As a first step 
fragments are docked in the binding site. Further, they are assembled inside the 
binding site using real chemical reaction, stored in the chemical rules database.  C) 
Hence the poses generated are minimized inside the binding site and scored.  
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1.3   AIMS 

 

 
Computational chemistry is now a well-established approach used 

throughout all the drug discovery process, form hit identification, to lead 
optimization and ADMET prediction. Among all the diverse techniques 
grouped together by the computational chemistry definition, one of the 
most popular in the drug discovery pipeline is molecular docking, which 
aims to predict the interactions occurring between a ligand and a protein, in 
terms of spatial arrangement and energy variation.  

LiGen, is a new drug discovery software, based on a different docking 
approach compared to the classical docking algorithms. In fact it uses 
pharmacophore models of the binding pocket to guide the molecular 
docking process, limiting the number of calculations and conformations to 
be generated. Once the algorithm steering the docking process was written, 
as all new software, the need of parameters optimization became evident.  

In addition, all drug discovery softwares, regardless of their final aim 
and how they manage the problem, are controlled by the values of several 
user-adjustable parameters, and an appropriate choice of these parameters 
is a prerequisite to obtain meaningful results.74 However generally, users 
tend to adopt default settings, assuming that they will yield reasonably good 
results, regardless of the specific problem they are involved. Thus, 
providing the best ensemble of “default settings” is crucial for optimizing 
the program’s output under standard conditions. Furthermore, having an 
optimized set of default parameters enables benchmarking of the 
performance of the program at the best of its possibility. 

To find the optimal set of parameters for our new docking program we 
decided to use experimental designs. This kind of approach is very popular 
in other field of drug discovery, for example to optimize reaction conditions 
or excipients content during the formulation processes, however they are 
seldom apply in computational chemistry. As previously reported by others 
(see, for example, Andersson et al.), experimental designs are useful also to 
computational chemistry related matters, providing the best way to find the 
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optimal ensemble of parameters by changing all of them simultaneously in a 
controlled and systematic way.75, 76  

Therefore we decided to apply the Design of experiments (DoE) 
methodology to the LiGen case, to identify which user-adjustable 
parameters are influencing the results most and then to optimize their 
values.  

The whole project is hence divided into three main subsequent steps, 
reflected by the subdivision of the results section of the chapter:  

 
1) At first a DoE was set and performed to identify the parameters 

 having the greatest impact on the docking results. 
 
2) Afterwards, the values of the previously identify parameters were 

 optimized using another DoE.  
 
3) Finally a two-step validation was conducted: 

i) Performances of LiGen in predicting the binding pose 
  of a known active compound, i.e. self-docking, were  
  compared to those of Glide and AutoDock 

ii) LiGen ability to identify active compounds among  
  inactives, i.e. virtual screening, were compared to  
  published performances of DOCK6 and again of Glide.  

  
.  
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1.4   MATERIALS AND METHODS 

 

 
1.4.1   Data Set/Benchmark Composition.  

During this study, three different data sets were considered, one for 
each step of the study. For the optimization of the cognate docking, i.e., the 
reproduction of the crystallographic ligand conformation, we used as a 
training set 100 crystallographic complexes taken from the CCDC Astex 
clean data set, consisting of 224 entries.63 Trying to obtain a dataset the 
more representative as possible of the real situation, proteins were selected 
according to their relative family abundance in the PDB database.77 First, 
the 224 complexes were grouped according to the protein family they 
belong to, and then the percentage abundance of those families in the whole 
PDB database was calculated. Finally, in agreement with the family 
representation percentage in the PDB, a hundred protein were selected out 
of the 224.  

To test the optimized parameters for cognate docking, as well as to 
compare LiGen performance with those of commonly available docking 
software, we selected 171 complexes taken from the PDBbind CORE SET 
database (2010 release)64, 78 excluding entries containing a ligand with 
molecular weight higher than 500 Da, in agreement with the definition of 
drug-like molecules given by Lipinsky.79 

The third benchmark, used to optimize and test the VS ability of the 
LiGenDock algorithm, was obtained by selecting 36 high-quality crystal 
structures from the first version (the only one available at the beginning of 
the study) of directory of useful decoys (DUD).62 All complexes collected in 
this third dataset are listed in Table 3. In the present study, four targets 
originally present in DUD were excluded from the selection: i. the human 
vascular endothelial growth factor receptor 2 kinase domain (VEGFr2, PDB 
code: 1vr2) because it lacks a co-crystallized ligand that we used to center 
the binding site grid (even though we could have used LiGenPass to define 
the binding site location, we preferred to use the same approach, i.e., using 
the co-crystallized ligand to center all the binding site grids; therefore, we 
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Table 3: DUD complexes taken into account in this project. Underlined complexes 
are those randomly chosen for VS optimization  

Protein PDB code resolution Å no. Ligands no. Decoys  

Nuclear Hormone Receptors 
ERagonist 1l2i 1.9 67 2361 
ERantagonist 3ert 1.9 39 1399 
GR 1m2z 2.5 78 2804 
MR 2aa2 1.9 15 535 
PPARg 1fm9 2.1 81 2910 
PR 1sr7 1.9 27 967 
RXRa 1mvc 1.9 20 708 
Kinases     CDK2 1ckp 2.1 50 1780 
EGFr 1m17 2.6 416 14914 
FGFr1 1agw 2.4 118 4216 
HSP90 1uy6 1.9 24 861 
P38 MAP 1kv2 2.8 234 8399 
SRC 2src 1.5 162 5801 
TK 1kim 2.1 22 785 
Serine Proteases 
FXa 1f0r 2.7 142 5102 
Thrombin 1ba8 1.8 65 2294 
Trypsin 1bju 1.8 43 1545 
Metalloenzymes 
ACE 1o86 2.0 49 1728 
COMT 1h1d 2.0 12 430 
PDE5 1xp0 1.8 51 1810 
Folate Enzymes 
DHFR 3dfr 1.7 201 7150 
GART 1c2t 2.1 21 753 
Other Enzymes 
AChE 1eve 2.5 105 3732 
ALR2 1ah3 2.3 26 920 
AmpC 1xgj 2.0 21 734 
COX-1 1p4g 2.1 25 850 
COX-2 1cx2 3.0 349 12491 
GPB 1a8i 1.8 52 1851 
HIVPR 1hpx 2.0 53 1888 
HIVRT 1rt1 2.6 40 1439 
HMGR 1hw8 2.1 35 1242 
InhA 1p44 2.7 85 3043 
NA 1a4g 2.2 49 1745 
PARP 1efy 2.2 33 1178 
PNP 1b8o 1.5 25 884 
SAHH 1a7a 2.8 33 1159 
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excluded this complex); ii. the platelet-derived growth factor receptor 
kinase (PDGFrb) because it is an homology model; iii. the androgen receptor 
(AR, PDB code: 1xq2) because it was superseded in the PDB by 2ao6;  iv. the 
adenosine deaminase (ADA, PDB code: 1vdw) because there was a 
mismatch with the PDB code published in the original paper. 

 In the optimization phase, we randomly select 10 targets among those 
selected from the DUD to reduce the computational efforts needed (Table 3, 
underlined entries). To evaluate the improvements gained through the 
optimization procedure, the experiments were performed with default and 
optimized parameters, using all 36 targets selected from the DUD.   
 

1.4.2   Protein Preparation 

Protein preparation is a necessary step before every study involving 
PDB structures, due to the information missing in the PDB file but necessary 
for docking, for example hydrogen atoms,  Water molecules were removed 
from all the considered proteins. The protein protonation state of 
complexes taken from the CCDC Astex database was retained as provided 
by Astex. Protein structures of complexes taken from PDBbind and DUD 
were prepared using Protein Preparation Wizard,80 contained in the 
Maestro suite, undergoing the following preparation steps: (a) hydrogen 
atoms were added according to the protonation state at pH 7.0, (b) ions and 
crystallization cofactors were removed, (c) atom and bond types were 
assigned, and (d) an energy minimization in OPLS2005 was run to refine 
the structure. 
 
 

1.4.3   Ligands Preparation 

Ligand molecules were prepared using LigPrep of Maestro.81 Cognate 
docking involves the redocking of the co-crystallized ligand to see whether 
the docking process is able to reproduce the crystallographic conformation 
(also called self-docking). Using a starting conformation different from the 
co-crystallized one is therefore important to evaluate the ability of the 
software to reproduce the crystallographic ligand conformation. Hence, for 
every ligand of the selected CCDC Astex and PDBbind CORE SET complexes, 
a set of conformers, not containing the co-crystallized conformation, was 
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generated using ConfGen,82, 83 also included in Maestro suite. Then, a 
conformer was randomly chosen from this set as a starting conformation 
for docking. For rigid ligands, no conformers can be generated, so the only 
option was to assign 3D coordinates different from those in the PDB. 
 
 

1.4.4  Experimental Designs 

Experimental designs are tools used to systematically examine 
different types of problems, as  the identification of the variables affecting 
the results at most, or to find optimal values of some of the variables in 
order to obtain better results. Once selected the variables to be investigated 
(also called “factors”) and the response to be evaluated, experimental 
designs are used to plan the experiments to obtain the maximum of 
information from the minimum number of experiments. Several types of 
experimental designs are available, covering different types of problems. A 
throughout explanation of experimental designs can be found in references 
84-86. They can be roughly divided into two families, screening designs and 
optimization designs. To the first belong those design useful to explore the 
experimental variables, the interactions subsisting among them and their 
effect on the results, and the two most popular type of designs are full 
factorial designs (FDs) and fractional factorial designs (FFDs). In FDs the 
influence of all experimental variables and the interaction effects on the 
responses are investigated. If the combination of k factors is investigated at 
two levels, a factorial design will consist of 2k experiments. Therefore a 
design accounting for two 2 variables will contain 22 = 4 experiments, for 
three 23 = 8, for four 24 = 16 etc. Some center experiments “center points” 
should always be included to avoid the risk of not recognize non-linear 
relationships and to allow the determination of confidence intervals 
through their repetitions. FFDs are a subset (fraction) of the experimental 
runs of a FDs, and are used to reduce the number of experiments to perform 
compared with the original FDs. For example, if an experiment has eight 
variables, trying to explore all the effects of these variables with a FD, 
means that 256 (28) experiments should be performed. Generally in most 
investigations it is reasonable to assume that the influence of the 
interactions of third order or higher are very small or negligible and can 
then be excluded, and this is actual the purpose of using FFDs. The general 
expression of FFDs, defining the number of experiments to be performed,  
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Figure 9. Schematic representations of some experimental designs, in which every 
sphere represents an experiment. A) A 23 Full factorial design: the exponent 
represents the number of investigated variables (factors) and 2 is the number of 
levels (values) for each factor. B) A 23-1 Fractional Factorial Design, in which 2 is once 
again the number of levels for each factor, 3 is the total number of factors and -1 
represents the level of fractionation; the resulting number (23-1=A 22=4) is the number 
of the experiments to be performed. C) Faced Central Composite Design for two 
parameters with three levels.  

is 2k-p, where k is the number of variables and p the size of the fraction. The 
size of the fraction will, of course, define the number of effects and 
interactions between variables to be estimated and the number of  
experiments needed. The effects of variables interaction that are not 
estimated are called confounded. An important characteristic of a fractional 
design is the defining relation, i.e. the so-called generator, I,  which gives the 
set of interaction columns equal in the design matrix to a column of plus 
signs, I, that contains the information about how the different columns can 
be multiplied to obtain it. From the generator one can evince which 
interaction effects are confounded. The amount of confounded interaction 
effects defines   FFDs are characterized by a property called resolution, the 
is defined as the shortest “word” (derived from the combination of 
columns) in the set of generators. The most popular FFDs are:  

• Resolution III: the main effects are confounded with two-variables 
 interaction effects; this type of designs, that does not estimate the 
 interaction effects, are particularly useful in a first screening phase, 
 where the most significant set of factors are sought.84, 87  

• Resolution IV: the main effects are confounded with three-variable 
 interaction effects, and the two-variable interaction effects are 
 confounded with each other; 
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• Resolution V: the main effects are confounded with four-variable 
 interaction effects, and the two-variable interaction effects are 
 confounded with the three-variable interaction effects. 

The most popular type of optimization design is Response Surface 
Methodology (RSM). RSM is a collection of mathematical and statistical 
techniques based on the fit of empirical models to experimental data 
obtained in relation to the experimental designs.88, 89Studying  variables at 
least using three different values allows to determine first- and second-
order effects and possibly also critical points (maximum, minimum, or 
saddle). Two types of RSM exist, the Box-Wilson Central Composite Design 
(CCD) and the Box-Behnken design (BBD). BBD  is an independent 
quadratic design that does not contain an embedded factorial or fractional 
factorial design. In this design the treatment combinations are at the 
midpoints of edges of the process space and at the center. Conversely CCDs 
contain an imbedded factorial or fractional factorial design with center 
points that is augmented with a group of `star points' that allow estimation 
of curvature. There are three types of CCD, depending on where the points 
of the star design (“star points”) are located: (1) circumscribed, with star 
points located outside the factorial space, (2) inscribed, with star points 
located inside the factorial design space, used when points of the factorial 
design are real experimental limits, and (3) faced, with star points located 
on each face of the factorial space.84  

Different equation can be used to fit the models, the easiest one is 
Multiple linear regression (MLR), that is therefore the first choice, and in 
case it does not work, are applied more complicated equation, as quadratic 
or polynomial equation. Luckily, in our case MLR was able to explain the 
effects of the variables, therefore is was used to investigate the relationship 
between the docking parameters (independent variables or predictors) and 
the results (dependent variables or predictand). MLR is based on least 
squares90: the model is fitted such that the sum-of-squares of differences of 
observed and predicted values is minimized. The general equation of the 
model is : 

�
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in which yi is the response or dependent variable, xi is the input or 
independent variable and fj(xi) is a function of the input variable xi 

(sometimes the variable xi can be a function of the data).  The global 
response y is expressed as a linear combination of model terms fj(x) 
(j=1,…,p) at each of the observations (x1, y1), …, (xn, yn), β is the coefficient of 
the parameters and ε is the residual term associated to the experiments. 
The function f1(x)=1 is included among the fj, so that the model contains a 
constant term (the intercept). Coefficients resulting from the design model, 
were used to interpret parameters’ influence on the docking performance.  

During model fitting, some statistics of the models can be calculated. In 
our study to evaluate the accuracy of the model were computed:90 

 

• R2 value, which represents the explanatory power of the regression 
 model, computed from the sum-of-squares as  

𝑅2 =
𝑆𝑆𝑅
𝑆𝑆𝑇

= 1 −  
𝑆𝑆𝐸
𝑆𝑆𝑇

 

 
 where SST is the total sum of squares, SSE is the sum of error  

 squares and SSR is the sum of  squares due to the regression 
 computed respectively as 

 

𝑆𝑆𝑇 = �(𝑦𝑖 − 𝑦�)2
𝑛

𝑖=1

 

𝑆𝑆𝐸 = ��̂�𝑖2
𝑛

𝑖=1

 

𝑆𝑆𝑅 = �(𝑦�𝑖 − 𝑦� )2
𝑛

𝑖=1

 

 
• F-ratio expressed by  

F =  
MSR
MSE

 

 
   where MSR is mean squared regression and MSE the residual mean 

 square. F-ratio represents the explanatory power of the model but 
 the advantage over R2 is that F-ratio takes into account the degrees 
 of freedom, which depend on the sample size and the number of 
 predictors in the model. In this way F-ratio incorporates sample size 
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and number of independent variables in the assessment of significance of 
the relationship. 

 
• Adjusted R2 attempts to compensate for the fact that R2 for a 

 regression can be made arbitrarily high by including more 
 predictors in the model. Adjusted R2 is given by 

R�2 = 1 −  
MSE
MST

 

      where MST is total mean square. 
 
• P value  was calculated for each parameter, and its value represents 

 the level of significance of the parameter. A value smaller than 0.05 
 means that coefficient calculated by the model is significant with a 
 confidence interval of 95% 

 
 

1.4.5   Screening and Optimization Workflow 

In this study, we were interested in analyzing how the docking 
performance of LiGen is influenced by the different set of parameters and in 
finding an optimal set of parameters that allows to obtain the best results, 
both in pose prediction and virtual screening. Experimental designs 
represented a good solution for our needs because they offer the possibility 
to vary all the parameters under investigation at the same time. Our goal 
was first to find out which parameters affect the results most and then to 
establish the values for optimal docking performance. Therefore we needed 
at first to screen LiGen parameters to find out which of them were 
important for the outcome, and then we went into a second-phase of 
optimization, to assign the optimal values to the previously identified 
parameters. The general workflow applied is summarized in Figure 6. 
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As reported by Leach at al. 26 docking algorithms are generally used for 
pose prediction and for virtual screening. Pose prediction and virtual 
screening have different goals: the goal of the first one is to predict how a 
ligand may bind, assuming that ligand can bind, whereas the aim of the 
second one is to predict whether a ligand can bind or not.  Because they 
have different aims, the parameters to use can be slightly different; 
therefore, we decided to optimize parameters for the two main docking 
applications independently, after having verified that parameters optimized 
for pose prediction did not gain the sought improvement in VS results when 
compared with the starting parameters.  

Responses evaluated in the models were, for cognate docking, the 
number of poses with RMSD form the co-crystallized conformation less than 
2 Å, whereas for virtual screening, the early enrichment, assessed by the 
value of the area under the receiver operating characteristic curve (ROC) 
measured at 1% of the screened database (ROC(1%)).  

For our first aim, the identification of the most relevant parameters 
affecting the docking results, we applied a fractional factorial design (FFD) 
(Figure 2B). All experimental designs were prepared using MATLAB 
software.91 For every quantitative parameter (i.e., parameters for which a 

Figure 10.Flowchart of the main steps of the study. The first five blocks (in brown) 
represent the steps of the screening procedure to identify the parameters affecting  
the results at most. The second four blocks in cyan are the steps concerning the 
optimization phase.  
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numerical value can be assigned), high and low values were selected, 
together with a center point, representing the three levels in the design 
procedure. The range of values for the parameters’ intervals was selected in 
order to be large enough to be sure to capture the effect of the parameter, if 
there is one. We decided to exclude qualitative parameters (i.e., parameters 
for which on/off values can be assigned) from our analysis. After the key 
factors were identified, an optimization phase was performed using full 
factorial design FD (in the case of virtual screening optimization) or 
response surface method (RSM) design (in the case of cognate docking 
optimization; Figure 2A,C, respectively). For our work, we chose a faced 
CCD and not an inscribed or circumscribed CCD, because for some of the 
parameters only three levels were possible in the desired design space  and 
the other two type of CCD requires five levels(Figure 2C).  
 
 
1.4.6   Docking with Glide and AutoDock 

The performances of LiGenDock in cognate docking were compared to 
the ones of two commonly used programs, namely, Glide and AutoDock. In 
the comparison, both accuracy and speed were considered and analyzed. 
Docking with Glide was performed using standard precision (SP) mode, 
using the default set of parameters, except for the number of required 
poses, which was changed to 10, so that the same number of poses was used 
for all programs (Glide, LiGen, and AutoDock). AutoDock uses the 
Lamarkian version of the genetic algorithm to generate the ligand poses 
inside the protein active site.18 In our test, we used the default parameter 
set. Both in Glide and AutoDock, as well as with LiGen, the active site 
selection was based on the position of the native ligand in the 
crystallographic complex.   
 
 
1.4.7   Evaluation of Self-Docking and Virtual Screening 
Results 

 
 Along with the increased number of scientific papers reporting new 

docking software and/or docking software evaluation,13, 56, 67, 92, 93 
recommended guidelines for docking evaluation appeared3, 59in the past 
years. Consistent with those recommendations, we used as response during 
the optimization of pose prediction the percentage of best-predicted poses 
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with RMSD less than 2.0 Å from the experimentally-solved ligand structure. 
In comparing LiGen results with those of other software, we calculated also 
the percentage of poses with RSMD less than 3.0 Å, both for best-predicted 
pose (the one with the lowest RMSD, irrespective of the ranking position) 
and best scoring pose (the pose ranked first by the scoring function). 
Moreover, the computational time needed for docking was also calculated 
to better evaluate software performance. Among all the possible metrics 
previously illustrated to evaluate VS accuracy, we decided to use the area 
under the receiver operating characteristic (ROC) curve to measure the 
global enrichment; to evaluate the early enrichment, we applied the values 
of the AUC under the ROC curve at 1%, 2%, 5%, and 20% of the x-axis, 
referred to hereafter as ROC(1%), ROC(2%), ROC(5%), and ROC(20%), 
respectively, as suggested by Repasky et al.94BEDROC, with a value of 20 for 
parameter α, as suggested by other works69, 70 was also calculated.  

We decided also to evaluate the ability of LiGen to recognize different 
chemotypes in VS experiments, as the identification of diverse chemical 
series is extremely important in drug discovery. To assess the recognized 
chemotypes during VS experiments we used Typed Graph Triangle (TGT) 
fingerprints.95 Fingerprints are a very abstract representation of structural 
features, 2D and/or 3D, of a molecule, used to describe compound similarity 
or to retrieve a particular class of molecules from a large database.  TGT 
fingerprints are conformation-independent and can be calculated from a 
two-dimensional representation of the molecule. Each fingerprint is the set 
of all tuples of the form (u,v,w,d,e,f), where u, v and w are atom types 
and d, e and f are graph distances between the atoms. The graph distance is 
defined as the number of bonds in the shortest path between the atoms in 
the chemical graph. Each atom is assigned one of the following types: 1. D, 
Hydrogen bond donor or Base; 2. A, Hydrogen bond acceptor or Acid; 3. P 
Hydrogen bond acceptor and donor; 4. H Hydrophobic. Distances are 
binned into categories so that there is higher resolution in the smaller 
distances and less in the larger distances.  

TGT fingerprints were calculated for every active ligand of each target. 
Afterwards every set of active compounds was clustered according to TGT 
similarity using Tanimoto coefficient.  Structure were considering belonging 
to the same cluster if the similarity between fingerprints was higher than 
0.88. 
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1.5   RESULTS AND DISCUSSION 
 
 
 

LiGen, is a new drug discovery software that uses pharmacophore 
models of the binding pocket to guide the molecular docking process. As a 
new software, LiGen, its parameters, needed to be optimized. Instead f 
varying all the parameters one at a time, we decided to apply a different 
approach to the optimization. We used experimental designs first to identify 
which user-adjustable parameters are influencing the results most and then 
to optimize their values. Once completed the optimization procedure a two-
step validation was performed to assess LiGen performances in pose 
prediction and virtual screening.  
 
1.5.1   Pose Prediction Optimization 
 

As a first step before proceeding in the optimization, we assessed the 
original LiGen performance by using the set of parameters assigned during 
the code development. As shown in Table 4 (column “RMSD original 
results”), results with the original set of parameters were not very good. 
Only in six cases out of 100 the best predicted pose has an RMSD less than 2 
Å from the co-crystallized ligand. In 15 cases LiGen failed to find a pose. 
Visual inspection of results showed that many poses are located outside the 
binding site, for example for proteins 1bgo, 1bmq, 1cqp. Moreover in many 
cases also the pharmacophore models were not completely contained 
within the binding site, but pharmacophoric features were also present on 
the protein surface outside the cavity (1cbs, 1d4p, 1ett, 4tpi etc.), 
highlighting the need for “smoothing” molecular surface by scaling the Van 
der Waals radii of receptor atoms (tuning the value of the parameter Van 
der Waals bumps), to reduce penalties for ligand-protein close contacts 
(Figure 11A). In other experiments, for example for 2phh and 1fkg, we 
found that even if the pharmacophore was placed inside the binding site, 
the functional groups needed for binding were not  or not completely 
positioned correctly (Figure 11C).  

 
 

Table 4.Original results and after the optimization. Results for the 100 proteins taken 
from the Astex database. The RMSD here reported is the RMSD of the best predicted 

39 
 



CHAPTER 1  Development and optimization of LiGen, a new drug  
design software 
 
pose with respect to the co-crystallized ligand. At the bottom of the table results are 
summarized, and the average docking time is reported. 

PDB 
code 

RMSD 
Orig. 

RMSD 
After 
Optim. 

PDB 
code 

RMSD 
Orig. 

RMSD 
After 
Optim. 

PDB 
code 

RMSD 
Orig. 

RMSD 
After 
Optim. 

1a4g 5.61 2.37 1fkg 6.07 5.01 1tph 2.12 1.79 
1a9u 8.20 1.15 1frp 7.58 3.07 1tpp  0.73 
1acj  0.76 1ghb 10.65 5.03 1trk  4.31 
1acm 2.45 1.74 1glp 7.42 6.21 1tyl 4.50 1.16 
1apu  5.13 1gpy 5.16 2.37 1ukz 7.11 1.46 
1aqw 8.00 2.10 1hdc 13.99 2.18 1ulb 5.11 1.21 
1ase 6.29 1.24 1hfc 6.01 2.52 1ydr  1.26 
1b59 9.58 2.18 1imb 1.93 1.47 1yee 7.96 2.17 
1bgo 13.28 3.30 1ivb 4.98 2.1 2ak3 6.60 2.6 
1bl7 6.43 2.29 1ivq 12.83 5.84 2cht 1.98 0.98 
1blh 4.03 1.74 1ldm 5.45 0.92 2cmd 2.99 0.73 
1bmq 8.75 6.49 1mld 2.59 1.85 2cpp 1.47 1.09 
1byb  4.15 1mmq 4.87 3.02 2dbl 2.91 2.72 
1byg 9.63 0.71 1okl 4.22 2.27 2fox 6.09 1.99 
1cbs 10.99 1.41 1pbd 5.91 0.36 2h4n 9.53 1.83 
1cdg  3.90 1pdz 1.58 1.73 2phh 4.05 0.26 
1cil 6.1 2.16 1pgp 4.8 4.33 2qwk 9.61 2.53 
1cle 23.54 3.25 1phd 4.32 1.4 2r07 11.91 2.17 
1coy 1.12 1.15 1phg 5.78 0.72 2tsc 6.52 2.65 
1cqp 8.95 2.09 1ppi  4.87 2yhx 5.88 4.35 
1cvu  2.42 1pso 12.88 6.77 3cla 6.07 2.69 
1d4p 12.33 1.58 1qbr 14.35 4.28 3cpa 6.65 2.62 
1dd7 6.59 5.71 1rbp 12.62 2.22 3ert 11.25 1.82 
1dhf 7.83 2.40 1rds 7.87 3.00 3hvt  3.28 
1die 3.66 2.35 1rob 10.41 1.97 4aah  1.06 
1dy9 7.90 3.88 1rt2 12.16 1.42 4cox 10.41 4.14 
1ejn 11.42 6.71 1slt 4.99 1.9 4cts 1.04 1.05 
1elc 9.50 4.15 1snc 7.12 1.8 4er2 13.1 8.61 
1eta 4.77 2.33 1tdb 3.04 2.21 4fab 4.52 1.17 
1ets 8.35 5.10 1tka  2.42 4phv 14.25 1.53 
1ett 8.11 5.43 1tmn 9.45 5.08 4tpi 6.74 1.16 
1f0s 5.20 1.65 1tng  4.95 5abp 2.05 2.83 
1fen 12.32 2.09 1tni  2.94 7tim 10.07 1.39 
1fgi  1.96       
  RMSD < 

1 Å 
RMSD 
< 2 Å 

RMSD 
<3 Å 

missing 
results 

Time 
(s) 

ORIGINAL 
RESULTS 

0% 6% 12% 15 26.49 

AFTER 
OPTIMIZATION 

9% 41% 70% 0 27.23 
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All the quantitative LiGen’s parameters involved in the binding site 
characterization and in the docking process itself were selected to perform 
an experimental design to assess which among them had most impact on 
results. A total of 15 parameters, eight from LiGenPocket and seven from 
LiGenDock were selected. Selected parameters are those reported in italics 
in Table1 and Table 2. In building the binding site grid, non polar hydrogen 
atoms were not considered, therefore the parameter include H bumps was 
excluded from the experimental design, as well as the coarse grain ligand 
parameter, which allows to speed-up the grid-defining process (it was not 
included in the study because the investigation of the speed-up process was 
beyond the scope of this paper). The fifteen selected parameters were used 
to generate a fractional factorial design of resolution III, with 128 

Figure 11. Examples of improvements in pose prediction gained through the 
optimization protocol. A) Using the original parameters pose (in lime green) is placed 
outside the binding site with respect to the experimentally determined ligand pose (in 
blue, complex PDB code: 4tpi). B) With the optimized set of parameters, especially 
decreasing a little the Van der Waals volume of the protein atoms forming the binding 
site, it is possible to produce a pose (in orange) that overlaps quite well the 
crystallographic one. C) At the beginning pose (light green) is flipped respect to the 
crystal complex (in cyan, PDB code 2phh) due to a non optimal position of the H bond 
donor/acceptor features of the pharmacophore, whereas D) after the optimization the 
pharmacophore allows to generate a pose that completely overlaps the original one. 
Figures are prepared with PyMol 
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experiments, plus one center point. The parameter intervals were chosen in 
order to have the value of the central point set at the original value for all 
parameters, except for those having as original value the lowest or the 
highest possible value. The resulting experiments, with the set of 
parameters and results, are reported in Table II of Appendix A. We obtained 
a significant model, whose statistics are reported in Table 5. The model is 
not of outstanding quality, due to the fact that many combinations of 
parameters did not yield any results. A deeper analysis of these results 
correlates experiments with no or very poor results to the lowest  grid 
accuracy value. However, some important conclusions can be drawn from 
statistics in Table 5. It suggests that parameters that influence the cognate 
docking experiments most, are i) the minimal distance between two 
pharmacophoric features (minimal feature distance), ii) the maximal 
number of features identified in the binding site (maximal feature number), 
iii) how much the protein’s Van der Waals  volume is smoothed (Van der 
Waals bumps), iv) the grid spacing (grid accuracy) and v) the tolerance in 
considering a ligand functional group superposed to the feature (distance 
threshold). All these parameters have a p value lower  than 0.05 (Table 5). 
The p value for neighbor threshold, that indicates which pharmacophoric 
points should be considered during docking, is just a bit above 0.05, the 
threshold for being statistically meaningful, so since it is on a border line it 
should probably be taken into account. For this parameter and also for the 
other parameters having low influence according to the regression model, 
the experimental design was repeated investigating two extra-levels outside 
the values range of the first design, to ensure the low impact was not due to 
the previously selected ranges. The new parameters’ ranges were chosen by 
extending the previous extreme values by 25% of the difference between 
them. Results obtained from the two extended levels were compared to 
those obtained with the original high and low ones respectively, using the 
non parametric Kolmogorov-Smirnov test with a 0.05 level of significance 
(Table 6).96, 97 The test confirms that among the excluded values only 
neighbor threshold influences the quality of the results, as we already 
supposed, and should be considered for future analysis. 

The six parameters thus identified were then used to perform a RSM, 
to investigate additional value levels and to study the interaction effect 
between parameters. The other parameters, which the previous analysis 
showed to be less influential from the previous analysis, were assigned the 
central value of the screening design. A faced CCD was identified as the  
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Table 5.Designs statistics 

 
R2 R2 adjust F 

  Design 1 (FFD) 0.7113 0.6727 184.007 
 Design 2 (RSM) 0.9450 0.8971 197.258 
 

      Design 1(FFD) p 
value 

Design 2 (RSM) p  
value 

 P 
 value 

Min F Dist 2.63E-04 Min F Dist 0.607 
Vdw B Prot * Grid 
Acc 0.776 

Max F Num 3.02E-08 Max F Num 0.001 Vdw B Prot * Dist Thr  0.13 

Dist C.O. 0.984 Vdw B Prot 0.344 
Vdw B Prot * Neib 
Thr 0.89 

Vdw Bumps P 2.95E-05 Grid Acc 0.047 Grid Acc * Dist Thr  0.78 

Grid Acc 7.87E-28 Dist Thr  0.336 Grid Acc * Neib Thr 1.11E-12 

Lig Neib Thr 0.984 Neib Thr 0.157 Dist Thr * Neib Thr 0.89 

Score Dist Thr 0.953 
Min F Dist * Max F 
Num 0.002 

Min F Dist * Min F 
Dist 0.91 

Gris Dist Thr 0.116 
Min F Dist * Vdw B 
Prot 0.323 

Max F Num * Max F 
Num 0.01 

Hyd Thr 0.381 
Min F Dist * Grid 
Acc 0.396 

Vdw B Prot * Vdw B 
Prot 0.27 

Dist Thr 0.022 Min F Dist * Dist Thr  0.887 Grid Acc * Grid Acc 2.77E-03 

Pose Over 0.800 
Min F Dist * Neib 
Thr 0.125 Dist Thr * Dist Thr  0.67 

Ag Delta 0.521 
Max F Num * Vdw B 
Prot 0.396 

  
Conf Vdw B 0.953 

Max F Num * Grid 
Acc 0.479 

  
Neib Thr 0.066 

Max F Num * Dist 
Thr  0.054 

  
Conf Ag Delta 0.682 

Max F Num * Neib 
Thr 0.015 

   
 

design that best suits our needs. Parameters and results of this 
experimental design are given in Table III of Appendix A. With respect to 
the FFD, there was a significant enhancement in the percentage of poses 
with RMSD less than 2Å for all the experiments. Parameters having the 
greatest influence on results were: i) the maximal number of identified 
pharmacophoric features;  ii) grid accuracy, i.e. how fine is the grid spacing 
used in the analysis of the binding site and iii) the interaction between the 
previous two with neighbor threshold (the number of grid points needed to 
consider a pharmacophore feature suitable for docking). Best experiments 
produced poses with RMSD < 2Å in 43 cases (experiments 12, 34 and 37,  
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Table 6. Results of the Kolmogorov-Smirnov test from additional dockings using 
parameter values outside the design range (expanded setting) compared with the high 
and low parameter values in the design (design setting). Difference in docking results 
using the expanded settings compared to the designed ones was defined as 
Kolmogorov-Smirnov d value ≥ 0.240 which corresponds to a 0.05 level of significance 
for a sample size of 64 

Parameter 
settings 

D value 
design expanded 

ligand neighbor threshold 0.5 --- --- 

 3 3.875  
grid distance threshold 1 0.5 --- 

 3 3.5 0.167 
distance cut off 4 3.5 0.187 

 6 6.5 0.100 
score distance threshold 1 0.5 0.029 

 3 3.5 0.000 
conformer angle delta 3 1 0.111 

 10 12 0.167 
neighbor threshold 50 25 0.292 

 150 175 0.281 
hydrophobic threshold 0.1 0.05 0.000 

 0.3 0.35 0.222 
angle delta 10 --- --- 

 50 60 0.114 
conformer Van der Waals Bumps 0.5 0.125 0.081 

 1 --- --- 
pose overlap 0.5 0.125 0.220 

 1 --- --- 
 
 
Table III A), and with RMSD < 3Å for 70 complexes out of 100 (experiments 
10 and 28, Table III Appendix A). An exhaustive analysis of  
results revealed that bad results occur more frequently in cases of non-
drug-like ligands. As shown in the scatter plot reported in Figure 12, in most 
cases the poses with higher values of RMSD involve ligands with molecular 
weight higher than 500Da and more than ten rotatable bonds. Among the 
exceptions of  badly predicted drug like compounds, localized in the upper 
left part of the scatter plot, are ligands that feature bad  pharmacophore-
ligand matching due to unsampled binding conformations, as in the cases of  
1ejn and 4cox, or due to a binding site  partially exposed to the solvent, as in 
the cases of 1tng and 1mmq (Figure 13).  

These results indicate that this round of parameter optimization 
allowed us to significantly improve the performance of LiGenDock with 
respect to the initial set of parameters. Yet the obtained results may seem  
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Figure 12. Scatter plot 
of the RMSD of the best 
predicted poses of the 
best experiment of the 
RSM (experiment 28). 
Abscissa shows the 
molecular weight of the 
ligands. The color 
encodes the number of 
rotable bonds. The best 
results were observed 
for drug-like molecules.  
 

 

 

 
Figure 13. Examples of badly predicted drug like compounds with the optimized 
parameters. A) Unsampled ligand binding conformation (PDBcode:4cox, 
crystallographic ligand pose in blue). B) Partially solvent exposed binding site 
(PDBcode:1mmq,crystallographic ligand pose in pale green) 

 

not exceptional in terms of absolute metrics, given the number of poses 
predicted within 2Å from the co-crystallized ligand. 

However, it should be noticed that LiGenDock has been originally 
derived within a de novo design suite of programs, where the main objective 
is the identification of novel chemotypes able to interact with the partner 
macromolecule. The pharmacophore driven docking procedure used by 
LiGenDock, based on a non-systematic conformational sampling, results in 
very high speed, performing docking experiments in an average time of only 
27 seconds per protein. Apparently, the cost for speed is paid by a reduced 
accuracy, although deep visual inspection of the results strongly suggests 
that poses within  3A from the co-crystallized ligands are still quite  
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Table 7. Virtual Screening results of preliminary test with original parameters (on the left) and with parameters optimized for self docking 
(right) 

  Results with original parameters Results with parameters optimized for cognate docking 

PDB code ROC % ROC 
(1%) 

% ROC 
(2%) 

% ROC 
(5%) 

% ROC 
(20%) 

ROC % ROC 
(1%) 

% ROC (2%) % ROC 
(5%) 

% ROC 
(20%) 

1a7a 0.30 3.00 3.00 3.00 3.00 0.95 7.00 11.00 18.00 33.00 

1agw 0.55 0.00 1.70 4.20 11.90 0.63 0.00 2.00 4.00 33.00 

1b8o 0.82 8.00 20.00 28.00 64.00 0.77 0.00 0.00 1.00 12.00 

1f0r 0.67 2.80 3.50 10.60 45.10 0.62 6.00 7.00 11.00 36.00 

1hw8 0.55 0.00 2.90 2.90 17.10 0.76 1.00 1.00 3.00 13.00 

1kim 0.31 13.60 27.30 27.30 27.30 0.54 0.00 0.00 0.00 3.00 

1uy6 0.46 0.00 0.00 0.00 16.70 0.39 0.00 0.00 0.00 0.00 

1xgj 0.31 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 

3ert 0.58 0.00 0.00 2.60 23.10 0.68 2.00 2.00 5.00 20.00 

1m2z 0.30 1.30 1.30 1.30 1.30 0.20 0.00 0.00 0.00 0.00 

                      

mean  0.49 2.87 5.97 7.99 20.95  0.57 1.60 2.30 4.20 

median  0.51 0.65 2.30 2.95 16.90  0.63 0.00 0.50 2.00 

sd 0.17 4.30 9.07 10.23 19.35  0.24 2.54 3.55 5.65 
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accurate; the high RMSD value is due to a different position of some ligand 
functional groups respect to those of the crystallized ligand, however this 
slightly different orientation is justified by matching a pharmacophoric 
feature not matched by the ligand in the crystallographic complex. 
 
 
1.5.2   Virtual Screening Optimization 
 

Virtual screening experiments are conceptually different from pose 
prediction experiments, though they are both based on the same molecular 
docking approach. With a retrospective virtual screening experiment we 
want to discriminate ligands that can bind to a receptor from the decoys 
that are expected not to bind. When the docking process is guided by 
pharmacophore models, as in the case of LiGenDock, an important issue is 
the strictness of the pharmacophore model. Indeed, on the one hand, very 
strict settings would lead to poor structural diversity in the compounds 
retrieved from VS, whereas on the other a very fuzzy pharmacophore is 
more likely to return a large number of false positives.60 As previously done 
with the optimization of parameters involved in cognate docking, we sought 
a set of parameters, with optimized values for VS. Since a preliminary trial 
with parameters optimized for pose prediction gave modest results, 
performing slightly better than original parameters in terms of global 
enrichment but a little worse in case of early enrichment (Table 7), we 
performed a full factorial design (reported in Table V Appendix A) with 
parameters that were previously shown to be important: 1) grid accuracy 
(related with grid spacing), 2) the maximal number of pharmacophoric 
features, because these two parameters came out as the most important 
ones from the first part of this study, 3) the minimal distance between two 
features and 4) angle delta, the angle used in rotating ligand inside the 
binding site to match as many pharmacophoric features as possible. The 
maximum number of features was allowed to vary between 8 and 15, a 
range lower than the one used in the optimization of cognate docking; these 
values were chosen to avoid recognizing too many decoys as good binders; 
this choice was driven by the allowed partial ligand-pharmacophore match 
during virtual screening; in this sense a too large number of 
pharmacophoric features will have permitted to generate features also for 
less important characteristic of the binding site, or, for example, for the 
boundary regions of the pocket.   
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Table 8. VS results before and after the optimization for all the DUD complexes, using the entire DUD dataset.  

 

      ORIGINAL   AFTER OPTIMIZATION 
    PDB 

code 
ROC ROC 

(1%) 
ROC 
(2%) 

ROC 
(5%) 

ROC 
(20%) 

BEDROC    ROC ROC 
(1%) 

ROC 
(2%) 

ROC 
(5%) 

ROC 
(20%) 

BEDROC 
(α=20) (α=20) 

serine 
 

                            
  FXa  1f0r        0.67 2.8 3.5 10.6 45.1 0.1   0.56 1.4 2.1 2.1 17.6 0.03 
  thrombin  1ba8        0.63 0 0 6.2 27.7 0.06   0.67 1.5 1.5 4.6 35.4 0.07 
  trypsin  1bju        0.48 0 0 0 20.5 0.02   0.99 0 0 2.3 11.4 0.04 
kinase                             
  FGFr1  1agw        0.55 0 1.7 4.2 11.9 0.04   0.81 0.8 2.5 10.2 47.5 0.11 
  CDK2  1ckp        0.83 0 6 6 24 0.06   0.39 2 2 2 8 0.02 
  EGFr  1m17        0.64 0.2 0.5 1.1 32 0.04   0.95 2.3 5.6 41.7 87.4 0.32 
  HSP90  1uy6        0.46 0 0 0 16.7 0.01   0.51 0 0 0 12.5 0.01 
  SRC  2src        0.93 1.9 3.9 10.3 47.1 0.12   0.63 0 1.9 7.1 25.8 0.07 
  TK  1kim        0.31 13.6 27.3 27.3 27.3 0.23   0.71 0 0 4.5 27.3 0.04 
  p38 1kv2 0.8 5.1 10.2 13.7 30.9 0.13   0.81 12.1 21.1 37.1 62.9 0.3 
metalloenzym

 
                            

  ACE  1o86        0.9 0 2 4.1 16.3 0.05   0.73 2 2 2 22.4 0.04 
  COMT  1h1d        0.21 0 0 0 9.1 0.02   0.78 0 0 27.3 81.8 0.23 
  PDE5  1xp0        0.56 0 3.9 5.9 21.6 0.06   0.63 3.9 5.9 17.6 31.4 0.12 
nuclear hormone 

 
                          

  ERagonist  1l2i        0.89 0 0 6 67.2 0.1   0.92 4.5 19.4 52.2 85.1 0.37 
  ERantagonis

  
3ert        0.58 0 0 2.6 23.1 0.05   0.62 5.1 5.1 7.7 12.8 0.08 

  GR  1m2z        0.3 1.3 1.3 1.3 1.3 0.01   0.97 41 52.6 57.7 79.5 0.53 
  MR  2aa2        0.88 0 0 0 40 0.04   0.93 0 0 0 33.3 0.04 
  PPARg  1fm9        0.64 0 0 0 6.2 0.01   0.62 0 0 0 3.7 0.01 
  PR 1sr7 0 0 0 0 0 0   0.9 11.1 25.9 29.6 70.4 0.26 
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  RXR 1mvc 0 0 0 0 0 0   0.99 60 65 70 75 0.65 
folate enzyme                             
  DHFR  3dfr        0.27 0 0 0 5 0   0.48 0 0.5 1 12.9 0.02 
  GART  1c2t        0.14 0 0 0 0 0   0.68 4.8 4.8 14.3 28.6 0.1 
other enzyme                             
  COX-2  1cx2        0.77 0.9 1.1 1.1 1.1 0.01   0.88 22.4 37.9 49.7 74.4 0.43 
  PARP  1efy        0.6 3 3 3 33.3 0.08   0.73 9.1 18.2 24.2 54.5 0.23 
  AChE  1eve        0.63 0 1 1 10.5 0.02   0.62 0 0 5.7 37.1 0.06 
  HIVPR  1hpx        0.67 7.5 9.4 13.2 37.7 0.14   0.62 3.8 3.8 11.3 30.2 0.09 
  HMGR  1hw8        0.55 0 2.9 2.9 17.1 0.03   0.96 0 0 8.6 20 0.06 
  InhA  1p44        0.63 1.2 2.4 10.6 34.1 0.09   0.65 3.5 5.9 11.8 31.8 0.11 
  COX-1  1p4g        0.66 0 4 4 4 0.03   0.8 0 4 4 32 0.05 
  HIVRT  1rt1        0.54 0 0 2.5 10 0.03   0.64 0 0 2.5 27.5 0.04 
  AmpC  1xgj        0.31 0 0 0 0 0   0.37 0 0 0 0 0 
  SAHH  1a7a        0.3 3 3 3 3 0.03   0.98 45.5 66.7 93.9 97 0.73 
  GPB  1a8i        0.57 7.7 11.5 11.5 11.5 0.1   0.92 0 3.8 21.2 92.3 0.24 
  ALR2  1ah3        0.59 0 0 3.8 23.1 0.03   0.56 0 0 3.8 7.7 0.02 
  PNP  1b8o        0.82 8 20 28 64 0.26   0.85 0 0 28 72 0.22 
  NA 1a4g 0.98 4.1 6.1 18.4 38.8 0.14   0.9 2 12.2 36.7 83.7 0.31 
                                
mean 0.54 1.3 2.88 4.27 18.29 0.05   0.73 8.07 12.1 20.47 41.82 0.18 
median 0.58 0 1.1 2.6 16.3 0.03   0.73 2 3.8 10.2 31.8 0.09 
sd 0.26 2.9 5.33 5.87 16.59 0.05   0.17 14.91 19.17 23.9 28.01 0.2 
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Thus, in principle, some decoys matching only unimportant, or low-
important, features could have been retrieved. We decided to include also 
the minimum distance between the features, to assure the pharmacophore 
resembles in an accurate way the binding site. Angle delta was included in 
the design because we wanted to exclude the possibility that lack of 
recognition of some active compounds (as seen with the original  set of 
parameters) was due to a bad (not fine enough) ligand-pharmacophore 
match. Parameters not under investigation were set to the optimal values 
found before. Since the number of experiments to run with all the 
complexes of the DUD database would have required too much 
computational time, we randomly selected ten complexes, (underlines in 
Table 3) to run the optimization procedure, whereas for the evaluation of 
the improvements resulting from the optimization procedure, the optimized 
performance was assessed using all the 36 selected targets. Results of 
LiGen’s virtual screening performance, reported in Table 8 and Table VI 
Appendix A and summarized in Table9, with the original set of parameters 
were modest, especially regarding the early enrichment: the average 
ROC(1%) and ROC(5%) were respectively 1.30 % and 4.27%. Also the 
global AUC presents a mean value just above random (0.54 with respect to 
0.50 for random performance), with several structures showing very low 
ligand recognition and in two cases actives were completely discarded (PDB 
code 1sr7 and 1mvc).  Parameters and results of the 16 experiments of the 
full factorial design are listed in Table V Appendix A. Average ROC values 
have previously been used to assess virtual screening performance using 
the DUD database.57, 98 Thus, the average ROC(1%) was used to fit the 
design and design statistics are given in Table 10. A deep analysis of the 
results showed that the best results both in terms of global and early 
enrichment were obtained with parameters of experiment number 1. The 
high standard deviation is due to the very low values of some virtual 
screening experiments. In particular the AmpC β-lactamase (AmpC, PDB 
code: 1xgj) , the thymidine kinase (TK, PDB code: 1kim) and the Human 
Heat Shock Potein 90 (HSP90, PDB code: 1uy6) showed early enrichment 
(ROC(1%) and ROC(2%)) almost always equal to zero, regardless of the 
values assigned to parameters. Very poor enrichment for these structures 
was already reported in literature in a comparable experiment by Repasky 
and Murphy.94 Virtual screening experiments using parameters of the first 
experiment of the full factorial design were run also for the other structures 
selected from the DUD database against all the decoys and against self-
decoys (only decoys with scaffolds similar to active ligands), and the results  
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Table 9.  Comparison of VS results considering, in the first part, the entire DUD 
database and, in the second part of the table, the “own decoys” subset of DUD. Results 
are reported for the original set of parameters (on the left side of the table) and for 
the optimized ones (on the right) 

 original 

 ROC ROC 
(1%) 

ROC 
(2%) 

ROC 
(5%) 

ROC  
(20%) 

BEDROC  
α=20.0  

entire DUD      

mean 0.54 1.30 2.88 4.27 18.29 0.05 

median 0.58 0.00 1.10 2.60 16.30 0.03 

sd 0.26 2.90 5.33 5.87 16.59 0.05 

self-decoys      

mean 0.56 0.92 1.85 4.8 22.38 0.06 

mediana 0.61 0.00 0.75 3.00 22.80 0.05 

sd 0.24 1.45 2.36 5.15 16.84 0.07 

after optimization 

 ROC ROC 
(1%) 

ROC 
(2%) 

ROC 
(5%) 

ROC  
(20%) 

BEDROC 
(α=20.0 ) 

entire DUD      

mean 0.73 8.07 12.10 20.47 41.82 0.18 

median 0.73 2.00 3.80 10.20 31.80 0.09 

sd 0.17 14.91 19.17 23.90 28.01 0.20 

self-decoys      

mean 0.71 5.94 9.58 16.75 39.07 0.16 

mediana 0.69 1.70 3.05 8.05 33.95 0.12 

sd 0.16 11.27 16.73 21.6 25.18 0.15 

 
Table 10. Virtual Screening design statistics 

VIRTUAL SCREENING 
 R2 R2 adjust F 
Design 3 0.7929 0.7176 10.5281 
    
Parameters p value   
Grid accuracy 0.0397   
Maximal features number 0.2796   
Minimal features distance 0.0002   
Angle delta 0.0371   
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are reported in Table 7 and Table VI of Appendix A, respectively. The 
optimized set of parameters improved results for almost half of the 
structures of the dataset, both for early and global enrichment, as shown in 
Figure 14. Poor early enrichment are found in case of some kinases, like TK 
(PDB code 1kim), and HSP90 (PDB code 1uy6). In particular TK is reported 
to be a challenging target due to receptor flexibility, solvent exposed 
binding site and the importance of water bridge interactions,62 not taken 
into account in our experiments.  
 
 

 
Figure 14. Histogram plot to show the improvements of the ROC, ROC(1%) and 
ROC(5%) values for all the DUD complexes considered in the study. The bars 
represent the percentage of improvement gained through the optimization procedure. 
Complexes with missing bars are those for which no improvement was registered. 
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When looking for new inhibitors using VS experiments, one important 
aspect concerns the structural diversity of the possible new active ligands. 
VS hits sharing all the same scaffold are not particularly useful for drug 
discovery purposes, to identify new leads to develop new chemical series. 
To address LiGen ability of recognizing different chemotypes, we analyzed 
VS results also from this aspect. For each target, the active ligands were 
clustered using TGT fingerprints. Then the number of recognized clusters 
has been calculated for the original performance and for the optimized 
parameters. The number of recognized chemotypes in the first 1% and 2% 
of the ROC curve is generally quite low if compared to the total number of 
chemotypes (Table 11). However a slightly improvement is registered with 
the optimized parameters. Notably in the case of COX2 and EGFR ligands a 
great improvement from the original results was found. The not 
outstanding performance in terms of chemotypes has probably its main 
reason in the docking protocol and in the scoring process. LiGen does not 
consider receptor flexibility, whereas probably to recognize active ligands 
with different scaffold a certain degree of pocket flexibility is required. In 
fact rearrangement of the side chains  can allow a better accommodation of 
ligands with diverse scaffolds inside the pocket. therefore with the actual 
algorithm, that ignores the receptor flexibility, ligands, even if are 
recognized by the pharmacophore, are badly scored by the scoring function 
due to missing interaction with some of the key residues in the pocket. 
Nevertheless this problem is not only a LiGen problem but is common to all 
software packages not considering target flexibility while performing VS 
experiments. In fact taking into account receptor flexibility during VS 
terribly increases the calculation time, so that it could not be used to screen 
large compounds library, that is instead its main purpose.   
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Table 11. Number of chemotypes recognized at 1% and 2% of the ROC curve during VS 
experiments with original and optimized parameters.  

      
ORIGINAL 

  
OPTIMIZED 

  
PDB  

Numer of 
ligands 

Number of 
chemotypes 

Chemot.. 
ROC1% 

Chemot 
ROC 2% 

 

Chemot.. 
ROC1% 

Chemot 
ROC 2% 

serine proteasi 
       

 
FXa  1f0r        146 67 

 
2 4 

 
2 3 

 
thrombin  1ba8        72 17 

 
0 1 

 
1 1 

 
trypsin  1bju        49 11 

 
0 0 

 
2 2 

kinase 
         

 
FGFr1  1agw        120 46 

 
0 3 

 
2 3 

 
CDK2  1ckp        72 38 

 
0 0 

 
1 1 

 
EGFr  1m17        475 180 

 
2 2 

 
7 16 

 
HSP90  1uy6        37 8 

 
0 0 

 
0 0 

 
SRC  2src        159 68 

 
3 5 

 
2 2 

 
TK  1kim        22 9 

 
0 0 

 
0 0 

 
p38 1kv2 454 116 

 
11 19 

 
19 26 

metalloenzyme 
         

 
ACE  1o86        49 21 

 
1 2 

 
1 1 

 
COMT  1h1d        11 9 

 
0 0 

 
0 0 

 
PDE5  1xp0        88 49 

 
0 2 

 
2 3 

nuclear hormone receptor 
       

 
ERagonist  1l2i        67 24 

 
0 0 

 
3 5 

 
ERantagonist  3ert        39 9 

 
0 0 

 
2 2 

 
GR  1m2z        78 17 

 
1 1 

 
7 9 

 
MR  2aa2        15 8 

 
0 0 

 
2 4 

 
PPARg  1fm9        85 9 

 
0 0 

 
0 0 

 
PR 1sr7 27 7 

 
0 0 

 
3 4 

 
RXR 1mvc 20 5 

 
0 0 

 
4 4 

folate enzyme 
         

 
DHFR  3dfr        410 173 

 
0 0 

 
0 1 

 
GART  1c2t        40 3 

 
0 0 

 
0 0 

other enzyme 
         

 
COX-2  1cx2        349 60 

 
2 3 

 
12 18 

 
PARP  1efy        35 17 

 
1 1 

 
2 3 

 
AChE  1eve        107 33 

 
1 1 

 
1 2 

 
HIVPR  1hpx        62 21 

 
2 3 

 
2 2 

 
HMGR  1hw8        35 10 

 
1 1 

 
0 0 

 
InhA  1p44        86 28 

 
0 2 

 
3 3 

 
COX-1  1p4g        25 12 

 
0 1 

 
1 1 

 
HIVRT  1rt1        43 31 

 
0 0 

 
0 2 

 
AmpC  1xgj        21 7 

 
0 0 

 
0 0 

 
SAHH  1a7a        33 8 

 
1 1 

 
3 4 

 
GPB  1a8i        52 30 

 
0 1 

 
0 2 

 
ALR2  1ah3        26 16 

 
1 1 

 
1 1 

 
PNP  1b8o        50 14 

 
1 1 

 
0 0 

 
NA 1a4g 49 19 

 
3 3 

 
1 3 

 
                    

    
ROC 1%  

  
ROC 2% 

  

 

Improved with optimized 
parameters  15 

  
19 

   

 

Not changed with optimized 
parameters 18 

  
11 

   

 

Worsened with optimized 
parameters 3 

  
6 
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1.5.3   Pose Prediction Validation  
 

To further test the performance of LiGenDock with an optimized set of 
parameters, we decided to validate on a different dataset the set of 
parameters from experiment number 28 of the RSM (Table III , Appendix 
A). The choice of this set of parameters was due to the following reasons: i) 
it is one of the few sets of parameters for which we were able to  obtain 
poses for all the complexes, thus indicating it is suitable for complexes 
having different characteristics, for example it is good both for very small 
(1pbd, ligand MW 137.38, RMSD 0.36) and big ligand size (1eta, ligand MW 
776.87, RMSD 2.33) (Figure 15); ii) with this set we were able to obtain the 
highest number of poses with RMSD less than 3Å (70%). The number of 
poses with RMSD less than 2Å was a little smaller than with other best 
performing set of parameters, but visual inspection of results suggested that 
the small differences among best performing experiments in terms of RMSD 
< 2Å and < 3Å should not be emphasized too much, and the ability of 
producing an higher number of poses was the consideration that guided our 
choice. The validation was carried out by using the CORE PDBbind database 
as an external dataset (not used during the optimization study), excluding 
those complexes with a ligand molecule with molecular weight higher than 
500. The same test set was also used to perform docking with two other 
docking programs, namely Glide and AutoDock. Results are detailed in 
Table IV of Appendix A and summarized in Table 12. Poses predicted within 
a RMSD range of 3 Å from the crystallographic pose are  85%, more than 
AutoDock and only one point less than Glide. As expected the number of 
poses with a RMSD within 2Å is smaller for LiGen with respect to the others 
(55.3%, LiGen, 64.1% AutoDock, and 75.3% Glide, respectively). The same 
trend of results can be observed if we consider the best scoring pose. 
However it is worth mentioning that the best pose corresponds to the best 
scoring pose in 26% of the experiments in the case of LiGenDock, in the 
30% of the experiments performed with Glide but only in 12% in the case of 
AutoDock. Analysis of the poses with RMSD higher than 3Å from the 
experimentally solved ligand revealed that in many cases they involve 
ligands with more than 10 rotable bonds, as in the cases of 1b11 and 1gni 
(Figure 16A); in other cases LiGen failed in defining a good pharmacophore, 
especially for those proteins presenting a solvent exposed binding site, as 
for example in the case of 1nhu, 1tyr, 1v2o and 2g8r (Figure 16B); other 
badly predicted  
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Figure 15 Parameters of experiment 28 of RSM allows a good prediction of ligand 
binding conformation with different types of ligand. Here we reported two examples, 
one (A) of a very small ligand (PDBcode:1pbd, crystallographic ligand pose in blue, 
cofactor FAD in gray) and one (B) of a ligand with drug-like size. 
(PDBcode:1eta,crystallographic ligand pose in blue) 

 
Table 12. Comparison of LiGen, AutoDock and Glide results using the PDBbind dataset 

 best predicted pose  best scoring pose 
 LiGen AutoDock Glide  LiGen AutoDock Glide 
n results 170 170 170  170 170 170 
n RMSD <2 Å 95 109 128  56 69 98 
n RMSD <3 Å 145 139 146  96 96 117 
        
% rmds < 2 54.7 64.1 75.3  32.9 40.6 57.6 
% rmsd < 3 84.7  81.8 85.9  56.5 56.5 68.8 
 LiGen AutoDock Glide 
%  (number) 
best predicted pose = best 
scoring pose 

26 % 
(44) 12% (21) 30% (51) 

Pocket time (s) 5.46 9.83 161.42 
Dock time (s) 20.30 397.08 18.24 
Total time (s) 25.76 407.63 179.66 

 
 
poses are found for Zinc dependent metalloproteins, as 1ndy, 1zs0, 1zvx or 
8cpa, indicating that some improvement must be introduced for scoring 
ligand-metal interactions (Figure 16C).  

From the comparison reported in Table 12, it is clear that Glide 
performs better than LiGen and AutoDock; the LiGen performance is very 
similar to AutoDock in terms of poses predicted within an RMSD of 3Å. It 
should be noted, however, another interesting aspect coming out from 
Table 12, i.e. the difference on the average speed of the three programs. 
This is not particularly relevant for pose prediction, but can be for virtual  
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Figure 16. Examples of problems found in LiGenDock validation using complexes from 
PDBbind. A) Ligand with more than 10 rotable bonds (PDBcode:1b11, crystallographic 
ligand pose in blue). B) Solvent exposed binding site (PDBcode:1tyr, crystallographic 
ligand pose in blue). C) Interaction with Zn (PDBcode:1ndy, crystallographic ligand 
pose in blue) 

 

 
screening, and makes LiGenDock attractive for this kind of application. In 
particular,  LiGen requires less than 30 seconds on average to produce ten 
poses, whereas Glide needs roughly 3.5 min on average and AutoDock about 
7 min on average.   

Small differences in times and RMSD values with respect to those 
reported elsewhere in the literature94, 99 are due to different starting 
conformations in our test conditions with respect to the ones used by 
others. Given the good performance in predicting poses with RMSD less 
than 3Å in very short time, this parameters set used during self docking 
validation was also chosen as default setting for routine pose prediction 
experiments. 
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1.5.4   Virtual Screening Validation 
 

To complete LiGenDock validation, we report in Table 13 the 
comparison of the VS performances between LiGen, Glide and DOCK6, using 
data published in other papers, appeared when this study was being 
performed, for the other two programs.94, 98 As shown in Table 13, the 
global enrichment of the three programs is good, performing all better than 
random.  Glide is the best one, having the average and the median AUC value 
of 0.80 and 0.82 respectively. LiGenDock, with average and median AUC 
values of 0.73 in both cases, performs slightly worse than Glide, but better 
than DOCK6, which average and median AUC are 0.60 and 0.56. The last two 
columns of Table 13 report the average percentage of ROC(1%) and 
ROC(2%). As it is evident from this table, Glide is the best performing 
program. LiGenDock performance is better than DOCK6 in the first 1% of 
the screened database (ROC(1%) value), and definitely better than random 
performance (random performance at 1% of the screened database is 
0.5%), confirming the goodness of LiGen approach also for VS. Notably, 
even though also after the optimization the average early enrichment 
(ROC(1%)) is not outstanding, there was a significant improvement with 
respect to the original set of parameters, corroborating the application of 
the optimization protocol. A large enhancement was also registered for 
global enrichment (AUC) for ROC(5%). For us, values of the early 
enrichment metrics were not a surprising outcome. LiGen docking process 
is driven by the pharmacophore generated inside the binding site, so the 
suggested binding pose should not be seen as a results of an extensive 
conformational search for the global energy minimum, but as a result of a  
reduced/constrained conformational search to match the highest number of 
pharmacophoric features. In this sense a higher number of decoys can be 
recognized during the docking/virtual screening process. Moreover, in a 
real application of virtual screening this can be an advantage since it allows 
for the recognition of possibly new and diverse scaffolds. An example of 
poor benchmarking results but good outcomes in a real life application can 
be found in the work of Löwer et al. .100 The LiGen docking algorithm has 
been also developed for use in fragment docking in de novo design, so the 
recognition of new scaffolds is of primary importance, definitely more than 
high enrichment in recognition of already know ligands. 
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Table 13. Comparison between LiGen, Glide and DOCK6 VS results. With ROC is 
indicated the AUC of the ROC curve, SD is the standard deviation, Max is the highest 
ROC value and  Min is the lowest ROC value found. 

 ROC  SD Median Max Min ROC(1%) ROC(2%) 
LiGen 0.73 0.17 0.73 0.99 0.37 8.07 12.10 
Glide 0.80 0.14 0.82 0.98 0.42 25.18 33.64 
DOCK6 0.60  0.17 0.56 0.96 0.29 4.99 20.19 

 
The high speed of LiGen’s code allows Virtual Screening with the entire DUD 
database in less than 105 hours, that means about 3s for each ligand. This 
represents a very good results in term of times needed to screen large 
databases, since for example for Glide, are reported times of 10s per 
ligand.94 
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1.6   CONCLUSIONS 

 

 
The primary goal of this project was the optimization of LiGen docking 

performance using a procedure based on experimental designs. LiGen is a 
de novo design suite of programs, presented by Beccari et al. ,72 consisting of 
a set of modules: LiGenPass for binding site recognition, LiGenPocket for 
binding site analysis and structure-based pharmacophore definition, 
LiGenDock for docking and virtual screening and LiGenBuilder for de novo 
design. In this study we focused on LiGenPocket and LiGenDock, which 
constitute the docking engine of the program. A number of parameters 
controlling the docking procedure were varied according to statistical 
experimental designs. First, the most influential parameters were identified 
through a fractional factorial design, yielding parameter sets that covered 
the selected interval of parameter values. The parameter sets thus designed 
were then applied in a docking study using a set of 100 protein-ligand 
complexes taken from the CCDC Astex dataset. The number of poses 
presenting an RMSD less than 2Å between the best predicted docking poses 
and the corresponding crystallographic ligands was considered as response 
for fitting the design. A significant regression model between the docking 
runs using the designed parameter sets and the docking results (number of 
poses with RMSD less than 2 Å) was established, thus shedding light on the 
parameters with large influence on docking results. The most relevant 
parameters were the minimum distance between two pharmacophoric 
features (minimum feature distance), the maximum number of features 
identified in the binding site (maximum feature number), the degree of 
smoothing of the protein’s Van der Waals volume (Van der Waals bumps), 
the grid spacing (grid accuracy), the tolerance in considering a ligand 
functional group superposed on the pharmacophoric feature (distance 
threshold) and the threshold indicating which pharmacophoric points 
should be considered during docking (neighbor threshold). Furthermore a 
response surface model was developed using these parameters to find the 
optimal parameters’ set. As shown in Table 3, with the optimized set of 
parameters we obtained a number of poses with RMSD less than 2 Å almost 
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seven-times higher compared to the original set (41% of the optimized set 
with respect to the 6% of the original parameters’ set). This gain in the 
accuracy of pose prediction was not followed by an increment in time 
consumed by the docking process, since the difference of the average time 
spent is less than 1 second. It should be noticed that the LiGenDock 
algorithm has been originally derived within a de novo design suite of 
programs, where the main objective is the identification of novel 
chemotypes able to interact with the partner macromolecule. Thus the 
LiGen’s pharmacophore based approach partially suffers in terms of 
precision in exactly reproducing experimental binding poses, although a 
deep visual inspection of the results suggests that poses within 3A from the 
co-crystallized ligands are still quite accurate. Moreover the comparison 
between LiGen docking results with AutoDock and Glide using a dataset 
extracted from the PDBbind database, confirms the quality of LiGen 
approach, even though Glide was the best performing program. As reported 
in Table 7, the number of LiGen’s predicted poses within 3 Å from the co-
crystallized ligand is similar to those predicted by Glide and a little better 
than by AutoDock (poses within 3Å from the crystallized ligands: LiGen 
84.7%, AutoDock 81,%, Glide 85.9%).   

Investigation of the influence of parameters on the VS results was also 
performed using experimental design, to find an optimal parameters set for 
virtual screening experiments. Global enrichment, represented by the mean 
ROC values of 0.73 after the optimization procedure, is consistent with 
values obtained with other software and reported in literature.57, 94, 98 and 
also summarized in Table 11. The not particularly excellent performance in 
terms of early enrichment should not be considered as a negative result, 
since in other cases reported in literature the DUD dataset demonstrated to 
be very challenging.94, 98 Moreover there are already examples in literature 
of pharmacophore-based virtual screening studies with modest 
benchmarking results but good outcomes in real life applications, as shown 
by the paper by Löwer and coworkers 100. Furthermore the high speed 
reached, screening the entire DUD database in about 105 hours, makes 
LiGen very attractive for virtual screening applications.  It should be 
commented that simultaneous optimization of both virtual screening and 
pose prediction performance would mean to carry out a two-properties 
optimization, possibly through the definition of a desiderability function. 
This can be done, but we can anticipated that the results cannot be better  
than those described in the paper. The resulting set of parameters might 
possibly be seen as ‘general purposes’ parameters, but our data, clearly 
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indicate that the optimization of the two properties diverges, so that 
optimization of an ‘averaged’ desiderability function must necessarily afford 
‘averaged’ results. 

Finally, the results obtained with the optimization of LiGen highlighted 
the usefulness of experimental designs for optimization purposes also in the 
field of computational drug discovery.  
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2.1   INTRODUCTION 

 

 
2.1.1   Kynurenine pathway 

Tryptophan is one of the essential amino acid but it is also the precursor of 
serotonin and almost the 95% of it is metabolized through the kynurenine 
pathway, both in periphery and in the brain.1 In the central nervous system 
(CNS), an imbalance of the intermediate metabolites of this pathway has 
been related to several neurodegenerative diseases,2 as it will be discussed 
further in this chapter.  

The first step of the kynurenine pathway (Figure 1) is the conversion 
of tryptophan to N-formyl-L-kynurenine by tryptophan 2,3-dioxygenase 
and indoleamine 2,3-dioxygenase 1 and 2 (IDO-1 and IDO-2). N-formyl-L-
kynurenine is then hydrolyzed by formamidase to L-kynurenine (KYN). 
Kynurenine is a key metabolite of this pathway, because it can be 
metabolized through three distinct pathway: 1) it can be converted into 
anthranilic acid by kynureninase, 2) it can be metabolized by kunurenine 
aminotransferase I, II and III(KAT) into kynureninc acid (KYNA)  or 3) KYN 
can be transformed  into 3-hydroxykynurenine (3-HK) by kynurenine-3-
hydroxylase (KMO). The three possible branches of the pathway also seem 
to have a different localization in the brain: KAT, that catalyzes the 
formation of KYNA is more present in astrocytes, whereas kynureninase 
and kynurenine-3-hydroxylase are prevalent in microglial cells.3 Both their 
products, 3-HK and  anthranilic acid, can be further metabolized into 3-
hydroxyanthranilic acid, that is the substrate of 3-hydroxyanthranilic acid 
3,4-dioxygenase (3-HAO), which catalyzes the oxidative ring-opening to 
form the reactive intermediate 2-amino-3-carboxymuconic-6-
semialdehyde, that preferentially converts to quinolinic acid (QUIN) by a 
non-enzymatic cyclisation.  

QUIN is the precursor of NAD+ and NADP+, but it is also an important 
endogenous neurotoxin, that has been related to several neurological 
disorders such as Huntington’s disease (HD),4 Alzheimer’s disease,5 
amyotrophic lateral sclerosis6 and also major depressive disorders.7 It acts 
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through different mechanism, but most importantly it is a weak but specific 
competitive agonist of the NMDA (N-methyl-D-aspartate) receptors.8, 9 
NMDA receptors are glutamate- 

 

Figure 1 The kynurenine pathway of tryptophan metabolism. Trp: L-tryptophan; IDO: 
indoleamine 2,3-dioxygenase; TDO: tryptophan 2,3-dioxygenase; KYN: L-kynurenine; KATs: 
kynurenine aminotransferases; KYNA: kynurenic acid; KMO: kynurenine 3-monooxygenase; 
ANA: anthranilic acid; 3-HK: 3-hydroxykynurenine; XA: xanthurenic acid; 3-HANA: 3-
hydroxyanthranilic acid; CINA: cinnabarinic acid; 3-HAO: 3-hydroxyanthranilic acid 3,4-
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dioxygenase; ACMS: 2-amino-3-carboxymuconic-6-semialdehyde; ACMSD: 2-Amino-3-
carboxymuconic-6-semialdehyde decarboxylase; PA: picolinic acid; QUIN: quinolinic acid; 
QPRT: quinolinic acid phosphoribosyltransferase. 

gated ion channels with a pivotal role in the regulation of synaptic function 
in the CNS.10 In fact it is well known that the modulation of their function 
and signaling is crucial in neurodevelopment and synaptic plasticity.11 
NMDA receptors dysfunction and misregulation are related to a several 
number of neurodegenerative diseases, in particular they can promote 
neuronal death under exicitotoxic pathological conditions, as such mediated 
by QUIN excess.12 NMDA receptors are multimeric complexes of different 
subunits, NR1, NR2 and NR3, with different physiological and 
pharmacological properties and also distinct patterns of synaptic 
distribution.13 NR2 subunit is particularly important for NMDA receptor 
functions, and determines many biophysical and pharmacological 
properties of the receptor.10 There are four different types of NR2 subunit: 
NR2A, with lower affinity for glutamate, fast kinetics, greater open 
probability (the fraction of time a single channel remains open when 
activated) and prominent Ca2+-dependent desensitization; NR2B is less 
sensitive to Ca2+-dependent desensitization, which determines slow 
channel kinetics and a reduced open probability; NR2C and NR2D are both 
characterized by low conductance openings and reduced sensitivity to 
Mg2+ block.11 The other subunit NR1 is present in eight different subutypes 
whereas NR3 in two (A and B); in both NR1 and NR3 the agonist binding 
domain (ABD) binds glycine, whereas in the NR2 subunits ABD binds 
glutamate.14, 15 In CNS most NMDA receptors are usually tetramers 
constituted of  two NR1 and two NR2 subunits, and to activate the receptor, 
the simultaneous binding of the two different co-agonists is required.  More 
recently, it has been observed that central NMDA receptors are mobile in 
the neuronal plasma-membrane and that they can laterally diffuse between 
synaptic and extrasynaptic sites.16 The balance between synaptic and 
extrasynaptic NMDA receptors has been shown to be crucial for their 
activity and  the two receptor populations can differentially signal to cell 
survival or apoptotic pathways; this has been suggested to possibly 
contribute to early cognitive dysfunction and onset of pathogenesis in 
neurodegenerative disorders such as Huntington's disease,17, 18 which is 
associated with an increased NMDA receptor distribution from synaptic 
plasma-membrane to extrasynaptic sites.11, 19 QUIN is a selective agonist for 
NMDA receptors subtypes containing NR2A and NR2B subunits.20 Although 
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it is only one quarter as active as NMDA and approximately as active as 
glutamate in stimulating NMDA receptors,21 QUIN exicitotoxicity is 
increased by its rapidly saturated uptake system, that prolongs its 
stimulation in cases of increased QUIN production.22 Quinolinate 
phosphoribosyl transferase (QPRT) is the enzyme responsible for QUIN 
catabolism into NAD+ and it has been noticed  

 
that there are more cells containing 3-HAO than those containing QPRT.23 
Kinetic studies indicated that the two enzymes have similar Km values, 
however 3-HAO reaction velocity is 80-fold higher than QPRT,24 leading to 
QUIN accumulation under certain pathological conditions. Interestingly, 
QPRT has also a different brain localization compared to 3-HAO. For this 
reason QUIN, once produced by 3-HAO in microglial cells, must exit these 
cells to be metabolized by QPRT, present in astrocytes and neurons.21 

Apart from activating NMDA receptors, QUIN induces neurotoxicity 
through other different but equally important mechanisms: it can increase 
glutamate release and inhibit its reuptake by astrocytes;25 QUIN induces 
also metabolic impairment through inhibition of B  monoamine oxidase 
(MAO-B) in mitochondria, that leads to progressive mitochondrial 
dysfunction;26 oxidative stress due to increased free radical generation has 
also been noticed;27, 28 the increased radical production is in part dependent 
of its activity on NMDA receptors and in part independent, probably related 
to the stimulation of NOS activity in astrocytes and neurons.29  

However QUIN is not the only neurotoxic kynurenine metabolite. 
Impairment in the balance between the production of KYNA in astrocytes, 
that has a neuroprotective role,30 and 3-HK in microglia, that mediates 
neurotoxicity by increasing the levels of free radicals,31 has been proposed 
to be involved in several neurological disorders (Table 1), together with 
QUIN-induced toxicity. KYNA is considered neuroprotective, because it acts 
as an antagonist on the strychnine-insensitive glycine-binding site and on 
the glutamate binding  site in NMDA receptors,9 and because of its action on 
α7 nicotinic acetylcholine receptors (nAchRs), that suppresses the 
presynaptic release of glutamate.32 Free radical-mediated 3-HK 
neurotoxicity is also increased by its metabolite 3-hydroxyanthranilic acid, 
which can undergo auto-oxidation generating superoxide anions.9 

Alterations in tryptophan metabolism have been reported in several 
neurological diseases as reported in Table 1. The most relevant example of 
these is Huntington’s disease. In fact a growing body of evidence 
demonstrates that the kynurenine pathway is altered in HD: elevated levels 

74 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

of QUIN and 3-HK  are registered in patients,33 together with an increased 
activity of 3-HAO,34 a decreased level of KYNA and also decreased activity of 
KATs; finally a recent study in animal models revealed also increased KMO 
and decreased  kynureninase activity.30 Moreover it has been shown in rats 
that QUIN is able to induce the expression  of huntingtin gene.35 Abnormal 
levels of kynurenine metabolites are also found in patient suffering from 
AIDS-dementia complex,  
Figure 2. Schematic representation of central aspects of kynurenine pathway  in the 

brain 

 

together with an increased IDO activity;36 elevated QUIN concentrations in 
cerebrospinal fluid have been correlated with virus load and 
symptomatology, and with neuronal loss in several brain regions. After a 
cerebral insult, for example in case of ischaemia, glial cells are activated to 
produce and secrete cytokines and kynurenines, and elevated levels of all 
the enzymes of the kynurenine pathway expcept for KAT are registered in 
these patients.37 In many other neurological pathologies such as 
schizophrenia, Parkinson’s disease, and epilepsy among the others (see 
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Table 1), brain levels of kynurenines are altered but a direct correlation 
between kynurenines and the ethiology is still under investigation 

 

Table 1. Kynurenine metabolites alterations in neurological disorders 

Huntington’s disease 

• Decreased KYNA levels in the cortex, striatum and CSF38-40 
• Decreased KAT activity in the striatum39 
• Elevated 3-HAO activity in the brain33 
• Increased 3-HK and QUIN kevels in the brain41 
• Decreased KYNA/QUIN and KYNA/3-HK ratios in the striatum at early stages of the 

disease34 
Alzheimer’s disease 

• Elevated KYNA levels in the striatum and hippocampus and decreased KYNA levels 
in the blood and CSF42 

• Elevated KAT activity in the striatum42 
• Elevated IDO and QUIN immunoreactivity in the hippocampus in association with 

senile plaques5 
Cerebral ischaemia 

• Elevated activity of IDO, kynureninase, KMO and 3-HAO but unaffected KAT 
activity43, 44 

Multiple sclerosis 

• Elevated levels of KYNA in CSF during acute relapse but decreased KYNA levels in 
chronic remission45, 46 

Amyothrophic lateral sclerosis 

• Elevated KYN and QUIN levels in the CSF and serum6 
• Elevated microglia and neuronal IDO expression in the motor cortex and spinal 

cord6 
• Elevated IDO activity in CSF6 

Parkinson’s disease 

• Decreased KYNA levels in the frontal cortex, SNpc and putamen47 
• Increased levels of 3-HK in the SNpc and putamen47 

Schizofrenia 

• Increased KYNA levels in the CSF48 
Epilepsy 

• Decreased levels of KYNA and KYN in CSF in infantile spasms and West syndrome49, 

50 
• Elevated 3-HK levels in CSF in infantile spasms49 

.  
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2.1.2   Targeting the kynurenine pathway in the brain 

 Kynurenine metabolism is altered in several neurological disorders 
and small changes in kynurenines concentration in CNS have a 
disproportionately large effect on neuronal function. Therefore, some 
strategies have been explored in the course of years to target the enzymes 
of this pathway.30 The first strategy is to exploit the neuroprotective effect 
of KYNA, trying to increase its level in the CNS.51 However direct 
administration is not a feasible route, due to its poor ability to penetrate the 
blood brain barrier (BBB). Some halogenated KYN derivatives have been 
studied as BBB-penetrant precursors of KYNA. Systemic administration in 
animal models of 4-chlorokynurenine or 4,6-dichlorokynurenine result in 
the production of halogenated KYNA in the brain, in particular 4,6-
dichlorokynurenine (Figure 3), that is converted into 5,7-dichlorokynurenic 
acid, is the most active one, exhibiting a IC50 of 80nM against strychnine-
resistant glycine binding site; 4-chlorokynurenine also completed the Phase 
I clinical safety trial, but then failed in demonstrating activity as 
neuroprotective agent.30  

Analogues of KYNA able to cross the BBB and exhibiting 
neuroprotective activity have also been developed.52 Halogenated and thio-
substituted KYNA derivatives showed increased selectivity and affinity for 
the strychnine-insensitive glycine-binding site in NMDA receptors 
compared to KYNA. Also other scaffolds, such as indole derivatives or 
benzazepindione compounds, demonstrated to be active as antagonist on 
the glycine binding site of NMDA receptors. One of these derivatives, the 3-
[(E)-3-anilino-3-oxoprop-1-enyl]-4,6-dichloro-1H-indole-2-carboxylic acid, 
known as gavestinel (Figure 3), reached the Phase II of clinical trials in 
stroke but then failed in demonstrating efficacy.9, 53  

Another strategy is to block the branch of the kynurenine pathway 
leading to the production of neurotoxic metabolites, promoting 
simultaneously the production of endogenous KYNA. In the previous years, 
some inhibitors targeting KMO, kynureninase or 3-HAO have been 
developed, and the most relevant ones are summarized in Figure 3. 

 Nicotinylalanine increases the production of KYNA while inhibiting 
both kinureninase and KMO, and has been shown to prevent the induction 
of seizures.54 The most potent KMO inhibitor developed so far is Ro61-8048, 
that shows a IC50 of 37nM and is also orally active.55 Ro61-8048 does not 
reduce QUIN acid in normal mice, but suppresses KMO activity and QUIN 
formation when IDO activity is induced by immune mediators.56 With the  
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Figure 3. Compounds active as kynurenine pathway inhibitors or competitive 
inhibitors of kynurenines action on NMDA receptors. 

 

 

goal of increasing KYNA levels, a peripherally active KMO pro-drug inhibitor 
(JM6 or 2-(3,4-dimethoxybenzenesulphonylamino)-4-(3-nitrophenyl)-5-
(piperidin-1-yl)methylthiazole) was developed,which is supposed to act by 
increasing the blood levels of KYN. However recent findings questioned its 
activity as a prodrug for Ro61-8048.57 

Another strategy to reduce QUIN formation and shifting the 
kynurenine pathway to the production of the neuroprotective KYNA, is to 
block the last step, catalyzed by 3-HAO. The first class of inhibitors is 
represented by the mono-, di-,  and trisubstituted derivatives of the enzyme 
substrate 3-hydroxyanthranilic acid.58, 59 Most of these analogs are 
extremely potent in vitro, the most potent one is the 4,6-dibromo-
derivative, with IC50 values in the low nanomolar range.60 However the 
experimental use in vivo is severely limited by their instability under 
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physiological conditions, due to the tendency of the o-aminophenol nucleus 
to auto-oxidize and generate reactive radical species.61 
2.1.3   3-HAO 

One useful approach in trying to change the balance between QUIN and 
KYNA and thus to influence synaptic transmission and reduce 
exicitotoxicity, is to inhibit 3-HAO, the last enzyme of the kynurenine 
pathway that catalyzes the transformation of 3-hydroxyanthranilic acid to 
2-amino-3-carboxymuconic-6-semialdehyde, which spontaneously 
rearranges into QUIN. 3-HAO is a type III  non-heme Fe2+ dependent 
extradiol dioxygenase, that  has been conserved during the evolutionary 
process from bacteria to higher species.62 Dioxygenases are classified as 
intradiol or extradiol dioxygenases. Intradiol dioxygenases cleave the bond 
situated between the two hydroxyl groups, whereas extradiol dioxygenases 
cleave a bond adjacent to one of the two hydroxyl group.63 Generally these 
enzymes both depend on mononuclear non-heme Fe(II), and although at a 
first sight they may seem similar, they have completely different structures 
and use a completely different catalytic mechanism.64 Extradiol 
dioxygenases are divided into three evolutionary independent families: type 
I contains extradiol dioxygenases  belonging to the vicinal oxygen 
superfamily, characterized by one or two domains (e.g. 2,3-
dihydroxybiphenyl 1,2-dioxygenase II). To the second family (type II) 
belong multimeric extradiol dioxygenases (e.g. protocatechuate 4,5-
dioxygenase.  Type III extradiol dioxygenases are characterized by a cupin 
barrel fold, and thus belong to the cupin superfamily, that includes also 
enzymes such as the gentisate, homogentisate dioxygenase.65 The name 
cupin derives from Latin cupa, that was used to indicate a small barrel, the 
shape resembled by the spatial disposition of the antiparallel ß-sheets 
fragments. Catecholic extradiol dioxygenases utilize Fe2+ and dioxygen  to 
cleave the bond adjacent to one of the two ortho-hydroxyl groups, and 
residues forming the binding site are highly conserved among all the 
species.64 3-HAO presents the same conserved residues and shares the same 
mechanism of other extradiol dioxygenases to catalyze  the cleavage of the 
bond adjacent to the hydroxyl group of 3-hydroxyanthranilic acid. Four 
prokaryotic 3-HAO crystal structures from Ralstonia metallidurans and 
three eukaryotic structures (yeast, bovine and human) have been 
crystallized, providing useful information to study this enzyme. 
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Figure 4. Secondary structure of bacterial 3-HAO. As evident from the picture of the 
monomeric form of the enzyme, two iron site are present.   

 

2.1.3.1 Crystal structures 

Bacterial 3-HAO was the first to be crystallized. It is available in its apo 
and holo forms, and in complex with the inhibitor 4-chloroanthranilic acid 
(4ClHAA) in two structures, one with dioxygen and the other  with nitric 
oxide.62 Crystal structures with substrate and inhibitor are of particular 
importance because are the only bounded forms of 3-HAO available, 
revealing the binding modes and the changes occurring upon ligand 
binding. The prokaryotic form  of the enzyme is a homodimer and each 
monomer, consisting of 174 residues, contains two iron binding sites: the 
catalytic site, buried inside the cupin barrel, and a rubredoxin-like site of 
unknown function, 24 Å away from the catalytic one. This second iron 
binding site is located in the C-terminal region and the iron ion is 
coordinated by four cysteine residues, forming a tetrahedral FeS4 center.  

The core motif of each monomer is the jellyroll ß-barrel formed by two 
antiparallel ß-sheets constituted of six strands. In addition to the cupin 
barrel, each monomer contains also a 310 helix and two α-helices. The 
catalytic site is formed by a cluster of  buried hydrophilic residues, Arg47, 
His51, Glu57, His95, Arg99, Glu110,  forming a hydrogen bonding network 
around the ferrous ion. 
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Fe(II) in the apo form of the enzyme presents a distorted octahedral 
geometry and is coordinated by two histidine residues, His51 and His95, a 
glutamate residue, Glu57, and two water molecules (Figure 6). 
Figure 5. A) Crystal complex of the substrate 3-hydroxyanthranilic acid and bacterial 
3-HAO. B) Crystal complex of the inhibitor 4ClHAA and bacterial 3-HAO 

 

 

 
In the inhibitor-bounded crystal structures (Figure 5B) , the catalytic 

iron shows the same octahedral geometry and is coordinated to His51, 
bidentate Glu57, His95, 4ClHAA and O2/NO molecule. The crystal structures 
showed that the inhibitor acts as monodentate ligand, with the 2-amino 
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group involved in a hydrogen bond with Glu57. The carboxylate group of 
4ClHAA forms an hydrogen bond with Arg99, whereas the 3-hydroxy group 
is involved both in the coordination of the iron atom and in a hydrogen 
bond with Glu110. The  

hydrophobic portion of 4ClHAA is accommodate in the hydrophobic pocket 
formed by Val25, Phe121, Ile 142 and Leu 146.  

The crystal structure with the substrate 3-hydroxyanthranilic acid 
(Figure 5A) was solved at lower resolution (3.2Å ) if compared to the 
structures with the inhibitor. However a different binding mode of the 
substrate, compared with the inhibitor 4ClHAA, can be appreciated: 3-
hydroxyanthranilic acid seems to bind as a bidentate ligand to the Fe(II), 
probably facilitating the subsequent dioxygen binding and the ring-opening 
reaction.  

Comparing the crystal structures of 3-HAO in its bounded and 
unbounded form, some conformational changes are evident in the 
neighborhood of the binding site. The loop containing residues 21-27 moves 
towards the center of the ß-barrel, bending on the top of the binding site as 
to close it, and also the α2 helix unwinds one helical turn and moves 
towards the catalytic site. This latter step is favored by the presence of two 
consecutive proline residues, Pro147 and Pro148, in the α2 helix, that 
disrupts the normal hydrogen bonding interactions within α helix. 
Therefore to unwind one helical turn only one hydrogen bond, between 
Ile142 and Leu146, needs to be broken, that is compensated by the a newly 
formed hydrogen bond visible in the bounded structures between Ile142 
and Asn27, diminishing the energetic barrier required by the 
conformational change. Another important conformational change 
happening upon ligand binding involves Arg47, that moves towards the 

 Figure 6. On the left the superposition of two crystal structure of bacterial 3-HAO; 
loops that move upon ligand binding are colored, in yellow is represented the open-
apo form whereas in green-cyan the closed form 
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catalytic iron, making a hydrogen bond with the molecular oxygen and a 
cationic-π interaction with the aromatic ring of the ligands.  

The first crystal structure of eukaryotic 3-HAO was the one from S. 
cervisiae.66 The enzyme, consists of 176 residues and is functionally 
organized as a homodimer, as the prokaryotic one. The secondary structure 
and the overall fold are very similar to those of the bacterial 3-HAO. As the 
ralstonia metallidurans enzyme, each monomer has two metal binding sites, 
the catalytic site and the rubredoxin-like site of unknown function. However 
the yeast structure contains nickel ions not iron, as a result of the 
purification protocol. The  sequence identity between yeast 3-HAO and 
bacterial 3-HAO is 38%, with an higher degree of conservation for the 
amino acid residues lining the binding site. The only substitution in active 
site residues occurs at position 51, where an Asn residue replaces a Glu 
residue present in the prokaryotic structure. Other two structural 
differences are found in the intervening loop ß5-ß6 and  in the loop ß11-α2, 
that are longer in the yeast enzyme (Figure 7, at top). In particular the loop 
ß11-α2 is the one that the bacterial structures showed to undergo a 
conformational change, unwinding the first helical turn and moving 
towards the active site upon ligand binding. In yeast structure this loop is 
three residue longer and α2 helix is two residue shorter, making it more 
loose than the bacterial one. The small loop α1-ß1 shows in the yeast 
structure in one monomer the open conformation as in the  
bacterial apo structure, whereas in the other monomer it adopts the closed 
conformation, suggesting that the two forms are in equilibrium in apo 
enzymes and the equilibrium is shifted towards the closed conformation 
upon ligand binding. 

Two mammalian crystal structure of 3-HAO have been resolved, 
bovine67 and human 3-HAO. The human structure does not contain Fe2+ but 
Ni2+ due to the purification protocol, and has not be accompanied by any 
paper, corroborating the crystal structure with further details on the 
experiments performed. 

Conversely respect to bacterial and yeast structures, mammalian 3-
HAO is no longer a homodimer but it has evolved to a bi-cupin monomer of 
286 residues. Moreover the rubredoxin-like iron binding site, with four 
cystein residues coordinating the Fe2+ atom is no longer present. 
Mammalian structures are characterized by two ß-barrel domains linked by 
a long stretch, but only one of them contains the catalytic site(Figure 7, at 
bottom). The domain containing the catalytic site is very similar and can be 
superposed very well with the ß-barrels of the bacterial and yeast  
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Figure 7. At the top, athe superposition of bacterial and yeast 3-HAO highlights the 
differences between the two structures (bacterial in bright green, yeast in dark red); 
on the bottom is reported the structural alignment between mammalian (pale orange) 
and bacterial 3-HAO in its dimeric form (green and lightblue represent chain A and B). 
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structures, whereas the other domain present in the mammalian structure 
is smaller. The spatial organization of the two domains resemble the one of 
the homodimers, with the two monomers related by a twofold axis, and the 
smaller domain almost superposed to the second monomer. The function of 
the second ß-barrel domain is completely unknown and deserves further 
investigation. Human and bovine 3-HAO are very similar, presenting the 
86.7% of identical amino acids. The main differences are related to the loop 
connecting α2 (α1 in bacterial and yeast structures, residues 18-24) and ß1, 
the one that acts as a lid on the top of the binding site, that is in open 
conformation in human structure but in closed conformation in the bovine 
one, even if both the structures were solved in their apo form. Another 
minor but relevant difference is present in loop ß11-α3(α2 in bacteria and 
yeast): in the human structure it assumes the conformation of the apo form, 
whereas in the bovine structure the first helical turn is unwind, as in the 
complexes with inhibitor and substrate. Despite the evolutionary change 
from a homodimer to a monomer, the catalytic mechanism of mammalian 3-
HAO is supposed to be the same of the one proposed for Ralstonia 
metallidurans, presenting fully conserved catalytic residues and only minor 
changes in the amino acids surrounding the catalytic portion of the binding 
site.  
 

2.1.3.2 Binding site analysis 

The iron-containing binding site is highly conserved in all the organisms 
expressing 3-HAO. Fe2+ is  bound deep inside the ß-barrel and presents a 
distorted octahedral geometry; it is coordinated with two His residues (Nδ1 
of His51 and Nε2 of His95 in bacterial 3-HAO, Nδ1 of His49 and Nε2 of 
His97 in yeast, Nε2 of both His47 and His91 in mammalian enzymes), a 
bidentate Glu residue (Glu57, Glu 55 and Glu53 in bacterial, yeast  and 
mammal 3-HAO respectively), although one of the Fe-O bond is longer (2.8 
Å) than typical iron-oxygen bonds, and with two water molecules, substrate 
or inhibitor and dioxygen. Upon ligand binding, the two water molecules are 
replaced either by the 3-hydroxyanthranilic acid, that coordinates iron in a 
bidentate manner, or by the inhibitor. 4ClHAA binds to the metal as a 
monodentate ligand, with the amino group forming an hydrogen bond with 
Glu instead of coordinating iron. The coordination sphere in 3-HAO 
complexed with inhibitor is completed by the molecular dioxygen or by the 
nitric oxide in the other available structure. In the binding site are present 
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also other important hydrophilic residues, highlighted by the comparison 
among bounded and unbounded structure from Ralstonia metallidurans: 
Arg99 (Arg101 in yeast, Arg95 in mammals) that interacts with the 
carboxylate group of the 3-hydroxyanthranilic acid; Glu 110 (Glu111 in 
yeast, Glu105 in mammals) that forms a  strong hydrogen bond with the 
substrate, and experimental evidences suggested that the hydroxyl group of 
3-hydroxyanthranilic acid binds to iron in its deprotonated form, 
corroborating the hypothesis that Glu is able to tear the hydrogen atom 
from the hydroxyl group, a crucial step in 3HAO mechanism of action. The 
importance of this interaction with Glu110 is also confirmed by 
mutagenesis studies performed with Ralstonia metallidurans,62 showing a 
kcat reduction of more than 2000-fold in the mutant E110A. Asn27 (Asn26 in 
yeast, Ans24 in mammals) is  structurally and functionally important, 
forming a new hydrogen bond with Ile142, after the unwind of the first 
helical turn in the α2 helix, stabilizing the closed conformation. Arg47 
(Arg45 in yeast, Arg43 in mammals) is another key residue, forming a 
cationic-π interaction with the aromatic ring of the substrate and a 
hydrogen bond with the molecular dioxygen. This residue undergoes a wide 
conformational change, moving 0.9Å towards the active site upon ligand 

 

Figure 8. Binding site residues in the bovine crystal structure. In pink are highlighted 
the hydrophobic residues.  

 

binding. The catalytic significance of this residue is also confirmed by the 
reduction of kcat of more than 1000-fold in the mutant R47A of Ralstonia 
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metallidurans. The conformational rearrangement is accompanied by the 
movement of Asp49 (Asp47 in yeast, Asp45 in mammals), that is involved in 
hydrogen bonds with Arg47, of about 0.7Å. The binding site is completed by 
some hydrophobic residues (yeast and mammalian in brackets, 
respectively): Val25(Val24, Val22), Val41 (Val39, Val37), Phe59 (Phe57, 
Phe55), Leu89 (Leu91, Leu85), Phe87 (Tyr89,Phe83),Phe121 
(Ile122,Leu116), Ile142 (Leu143,Leu137), Leu146 (Val147,Leu141). Proline 
residues at the beginning of α2 helix, residues creating the loop α2-ß11 and 
residues constituting the small loop α1-ß1 are also conserved among all 
species, highlighting the importance of their role in facilitating the 
conformational changes of the structure. Notably the second water 
molecule coordinating the iron atom in the apo form of bacterial 3-HAO 
showed an elongated electron density, as in the bovine structures, in which 
the authors preferred not to model this electron density as a water 
molecule, and suggested and that it could possibly represent the molecular 
dioxygen, although the oxygen binding is not predicted to happen before the 
ligand binding.62, 68 

 

2.1.3.3 Proposed mechanism of action and inhibition 

In vitro studies and the available crystal structures gave the opportunity to 
make some hypothesis on the mechanism of action and of inactivation of 3-
HAO. Even if it belongs to the extradiol family, 3-HAO represents a peculiar 
subgroup, catalyzing the cleavage of an ortho-aminophenol compound. 
Other two examples of extradiol dioxygenases cleaving ortho-aminophenol 
are known: the 2-aminophenol 1,6-dioxygenase that belongs to type II 
extradiol dioxygenases69 and the 4-amino-3-hydroxybenzoate 2,3-
dioxygenase from Bordetella sp 10d.70 This last enzyme has 30% and 24% 
identities with yeast and human  3-HAO respectively, presenting the same 
catalytic residues and a high degree of similarity in the surrounding amino 
acids, but curiously no identities with other extradiol dioxygenases; as 3-
HAO, it exhibits high substrate specificity for its natural ligand, that differs 
from 3-hydroxyanthranilic acid only for the position of the amino group. 
Differences in residues lining the binding site should be involved in 
determining substrate specificity, differentiating the two enzymes and the 
reaction catalyzed. Only three residues are different: Arg99 (Arg101 in 
yeast, Arg95 in mammals)is replace by a phenylalanine in Bordetella, Phe59 
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(Phe57, Phe55) by a glutamine residue and finally Gln61 (Gln59, Gln57) by 
a serine, suggesting the importance of these residues in determining 
substrate specificity, in particular of the first two.   

Zhang et al. in their detailed biochemical study proposed a catalytic 
mechanism for 3-HAO.62, 68 The first step involves the displacement by the 
substrate of one water molecule and Oε1 of the bidentate Glu57; the 
substrate also loses an hydrogen atom from the hydroxyl group in favor of 
Glu110, to form a chelated monoanionic 3-hydroxyanthranilate; proton 
abstraction by Glu110 is facilitated by the complex hydrogen bond network 
formed by residues in proximity of the iron atom. Glu57 make an hydrogen 
bond with the 2-amino group of the substrate, probably pulling out an 
hydrogen atom from it. Substrate binding is also stabilized by the 
interaction of the carboxylic group with Arg99 and by hydrophobic 
interactions. The second step is the displacement of the second water 
molecule and the binding of the molecular oxygen to the vacant iron  

 
Figure 9. Schematic representation of the mechanism of action of 3-HAO proposed by 
Zhang et al.62 

 
coordination site; oxygen binding is stabilized by hydrogen bond with 
Arg47 and Asp49; at this stage the bound dioxygen acquires a negative 
charge due to electron transfer from the metal center, forming a diradical 
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intermediate imine-Fe2+-superoxide. At this point the activated dioxygen 
molecule attacks the radical C3 atom of the substrate, forming an 
alkenylperoxo intermediate, that undergoes a Criegee rearrangement with 
the cleavage of the peroxide bond to form an unsaturated  seven-membered 
lactone intermediate; hydrolysis of the lactone gives then the product 2-
amino-3-carboxymuconic-6-semialdehyde. In his study, Zhang proposed a 
transient  oxidation of the Fe2+ to Fe3+, but this hypothesis has been ruled 
out by following mechanistic studies on extradiol dioxygenases, that 
demonstrated that electron density is transferred from the aromatic ring of 
the substrate to the bound oxygen via the iron, thereby giving them both 
radical character and activating them for reaction with each other.71 
However some recent studies proposed again the formation of the oxidized 
iron atom, re-opening the debate on which species is formed during the 
reaction.72 

In the same study of Zhang et al., two hypothesis were proposed to 
explain the mechanism of inhibition of 3-HAO by the halogen derivatives of 
the 3-hydtroxyanthranilic acid.62, 68 They excluded the possibility of a 
covalent adduct of 4ClHAA by using mass spectrometry, and proposed that 
the inhibition can be ascribed either to an unproductive positioning of the 
inhibitor in the active site or because the electron withdrawing chlorine 
substituent makes the electron transfer from the substrate to the oxidized 
iron atom more difficult to happen. The unfavorable binding of the 4ClHAA 
to the active site is suggested to be caused by a steric clash between the 
chlorine atom and the Ile142 residue, that moves toward the bonding site 
upon ligand binding, forcing the inhibitor to bind to the iron atom as a 
monodentate ligand; the distance between C3 atom and the superoxide is 
thus too long to allow the Criegee rearrangement, preventing the reaction to 
proceed.   
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2.2   AIMS 

 

 
3-HAO is  the enzyme responsible for the production of QUIN, a neurotoxic 
metabolite of the kynurenine pathway. Elevated brain levels of QUIN are 
observed in several neurodegenerative diseases such as Huntington’s 
disease, Alzheimer’s disease, ichaemia and others. However before our 
synthetic laboratory discovered a new class of 3-HAO inhibitors, only a class 
of compounds, halogen derivatives of the substrate 3-hydroxyanthranilic 
acid, was available; unfortunately their experimental use is seriously 
limited by the lack of stability under physiological condition, due to the 
tendency of the o-aminophenol nucleus to undergo spontaneous auto-
oxidation and to generate reactive radical species. Our new class of 3-HAO 
inhibitors is  based on the 2-aminonicotinic 1-oxide nucleus and 
characterized by an increased stability, that could help to investigate the 
roles of QUIN in physiological and pathological conditions. To gain further  
insights into the mode of action of the 2-aminonicotinic 1-oxide derivatives, 
we decided to undertake a molecular modeling study. 3-HAO is an iron-
dependent enzyme that catalyzes the ring opening of the 3-
hydroxyanthranilic acid to form 2-amino-3-carboxymuconic-6-
semialdehyde that then re-arranges into QUIN. Several crystal structures of 
3-HAO are available in the PDB.73 Analysis of these structures highlighted 
that the enzyme undergoes minor but important conformational changes 
upon ligand binding. Moreover the target under investigation deserves 
special cares, since in the binding site is present an iron atom, that cannot 
be appropriately treated with classical molecular mechanic approximations. 
Therefore, paying particular attention to two aforementioned aspects, we 
developed a protocol to perform molecular docking studies to provide a 
rational explanation for the activity and inactivity of the synthesized 
compounds.    
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2.3   MATERIALS AND METHODS 

 

 
2.3.1   Compounds 

In our synthetic laboratory a new class of 3-HAO inhibitor, based on the 2-
aminonicotinic acid 1-oxide nucleus, has recently been identified. To escape 
from the unstable o-aminophenol moiety of reported inhibitors, while 
retaining most of its relevant structural and electronic features, the 2-
aminonicotinic acid 1-oxide scaffold was proposed and several derivatives 
with different substituent were synthesized. The complete list of derivatives 
is reported in Table 1,whereas the complete synthetic procedure and the 
details of the in vitro experiments are available in the paper of Vallerini et 
al.61 Briefly mono- and disubstituted 2-aminonicotinic acid 1-oxide 
derivatives were synthesized; substituents were generally small alkyl 
groups or halogens, except for the derivative 14 with a phenyl group 
attached to C4. Biological tests were performed in both rat and human brain 
homogenate, measuring the production of 14C-QUIN after incubation with 
14C-3-HANA and different concentrations of test compounds. Activities 
reported in Table 1 are expressed as percentage of inhibition of 3-HAO, with 
standard errors of triplicate experiments. The IC50 of the most potent 
compound (derivative 3) was evaluated in rat and human brain 
homogenate, yielding 2.8 and 1.1 μM respectively; compound 3 was also 
tested in vivo, in lesioned rat striatum, showing  a reduction in QUIN 
production an increase in KYNA levels (Figure 10). 
 

 
  

Figure 10. Acute conversion 
of 3H-kynurenine to 3H-
QUIN and 3H-KYNA in the 
excitotoxically lesioned rat 
striatum in vivo. Data are 
the mean ± SEM of 4 
(control) and 5 (compound 
6) rats, respectively. 
**p<0.01, *p<0.05 vs. 
controls (unpaired 
Student’s t-test). See text for 
experimental details. 
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Table 1. Results of the in vitro 3-HAO inhibition test for all the synthesized compounds 

Cpd Structure Rat Brain % Inhibition Human Brain % Inhibition 
10 µM 100 µM 1 mM 10 µM 100 µM 1 mM 

1 N
O

NH2

CO2H

 

47.6 ± 8.4 84.9 ± 6.1 92.4 ± 4.0 74.0 ± 7.3 88.8 ± 5.5 94.0 ± 2.6 

2 N
O

NH2

CO2H

Cl

 

67.3 ± 
16.2 84.0 ± 4.5 95.2 ± 4.2 72.9 ± 

13.8 89.6 ± 3.4 95.2 ± 4.2 

3 N
O

NH2

CO2H

 

76.9 ± 
11.0 94.1 ± 5.2 96.0 ± 3.6 85.5 ± 6.3 92.3 ± 4.8 94.4 ± 5.1 

4 
N NH2

CO2H

 

-2.1 ± 2.2 5.1 ± 4.5 42.5 ± 
20.7 -3.6 ± 4.6 0.7 ± 4.4 24.8 ± 5.7 

5 N
O

CO2H

Cl

 

2.9 ± 2.9 11.4 ± 
12.7 37.0 ± 9.5 -5.4 ± 

12.3 
-3.0 ± 
11.9 

30.4 ± 
17.2 

6 N
O

NH2

CO2CH3

 

1.0 ± 2.7 1.2 ± 5.0 9.3 ± 9.0 -7.9 ± 7.5 -5.8 ± 6.4 6.0 ± 3.4 

7 N
O

NH2

CONH2

 

-1.1 ± 3.5 -2.0 ± 3.0 11.5 ± 3.0 1.7 ± 0.9 1.3 ± 0.9 20.1 ± 2.0 

8 N
O

NH2

CN

 

-2.4 ± 4.1 -0.6 ± 6.9 2.4 ± 6.7 -2.9 ± 3.4 -0.5 ± 7.8 5.6 ± 6.5 

9 
N N

NH

O

O

 

0.6 ± 3.6 6.4 ± 1.4 46.9 ± 8.6 5.5 ± 1.7 13.0 ± 1.6 44.3 ± 4.0 

10 N
O

NH2

CO2H

 

69.9 ± 1.8 90.7 ± 0.9 94.2 ± 1.8 76.6 ± 3.7 88.4 ± 2.8 90.4 ± 2.5 
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11 N
O

NH2

CO2H

 

-0.8 ± 3.9 4.3 ± 5.4 46.6 ± 1.9 0.7 ± 4.0 16.3 ± 2.5 69.5 ± 2.6 

12 
N
O

NH2

CO2H

 

2.8 ± 3.7 3.1 ± 0.6 23.0 ± 2.3 8.5 ± 6.7 10.9 ± 4.7 20.0 ± 9.6 

13 
N
O

NH2

CO2H

 

1.1 ± 1.6 2.2 ± 3.0 25.7 ± 0.7 4.0 ± 10.7 10.2 ± 
11.0 

24.1 ± 
15.9 

14 

N
O

NH2

CO2H

 

2.4 ± 1.9 5.5 ± 2.5 14.8 ± 3.1 -2.8 ± 2.2 4.1 ± 3.9 7.4 ± 7.0 

15 
N
O

NH2

CO2H

 

1.2 ± 2.4 2.9 ± 3.0 14.6 ± 1.6 -5.4 ± 2.3 1.5 ± 7.3 10.6 ± 2.2 

16 N
O

NH2

CO2H

 

17.6 ± 2.7 61.6 ± 3.8 85.8 ± 2.8 31.3 ± 9.7 76.3 ± 3.4 89.1 ± 3.0 

17 N
O

NH2

CO2H

 

8.7 ± 2.6 30.7 ± 9.5 67.6 ± 
15.0 16.3 ± 9.5 52.6 ± 

11.3 80.1 ± 8.6 

18 N
O

NH2

CO2HCl

 

9.1 ± 6.8 42.6 ± 6.7 74.4 ± 6.9 24.8 ± 2.5 68.6 ± 3.9 85.9 ± 4.9 

19 N
O

NH2

CO2HBr

 

14.5 ± 5.7 55.2 ± 6.2 83.7 ± 3.3 22.9 ± 
17.2 

67.2 ± 
17.0 89.1 ± 6.7 
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2.3.2   Docking to Metalloproteins  

 
Molecular docking is one of the most important techniques in drug 
discovery, as described in the previous chapter. Metalloproteins play an 
important role in physiological processes, however, unfortunately, docking 
studies involving metalloproteins pose a serious challenge because the 
ligand interaction with the transition metal can be treated appropriately 
only at the quantum mechanical (QM) level.74 Molecular mechanics 
approximation commonly used for docking and  molecular dynamic 
simulations (MD), do not handle properly polarization and electron 
transfer. Actually, it is well known that force field charges for metal ions are 
not optimized as real partial charges, and usually the formal charge values 
are also used for partial charges, without any modification. Instead QM 
approach accurately estimates the atomic partial charges However QM 
calculations for extended number of atoms in protein-ligand complexes 
require big computational efforts in terms of computing hours, and are 
generally not suitable for docking purposes. Therefore quantum 
mechanical/molecular mechanics (QM/MM) technique has been developed, 
that treats the catalytic site of the protein at QM level, and the remaining 
part of the system at molecular mechanics level.75, 76 The equation for the 
energy in a QM/MM treated system is   
 

EQM/MM =  EMM(o) + EQM(i) + EQM-MM(i+o) 
 

where  
 

EQM-MM(i+o) = EbQM/MM + EvdWQM/MM + EelQM/MM 
 
Some approaches have been proposed in the past years to efficiently deal 
with docking using a  metalloprotein as target, combining  QM, QM/MM, 
molecular dynamic simulations and docking. Attempts have been made to 
improve the docking accuracy for zinc-dependent enzymes, by 
reparametrization of the the metal ion force field. Sternberg published a 
study on zinc proteins in which he used a fluctuating atomic charge model 
of force field, parametrized by semi-empirical QM method.77 Khandekwal et 
al proposed a method for predicting binding affinities of metalloproteins by 
combining a series of QM/MM and force field based MD calculations.78 Cho 
and Rinaldo made the first attempt to combine QM/MM and docking, 
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treating at QM levels only the ligand docked into the active site and the 
metal atom.74 In a following study they extended this approach to include in 
the QM region also the atoms surrounding the binding site, along with the 
metal ion and the ligand atoms already considered. This determined an 
increase in computing time of almost 20-fold, but consistently improved the 
results obtained. A useful example from their study, to suggest a protocol 
for the treatment of 3-HAO, is represented by the prediction of the binding 
mode of 4-hydroxybenzoate to protocatechuate 3,4-dioxygenase (PDB ID: 
2BUR): with traditional docking approach and also considering only ligand 
and metal atoms in the QM region, the binding pose was wrongly predicted, 
with the carboxylic group oriented towards the iron atom. Including also 
the surrounding protein atoms in the QM region, they were able to predict 
correctly the binding mode with the following docking run. The authors also 
pointed out that, because the transfer of charge from the metal is 
predominantly to surrounding protein atoms, it is conceivable to devise a 
protocol in which such calculation is performed before the docking process 
itself.  
 
 
2.3.3   Workflow  

 
Accordingly with the previously reported literature example, we 

applied the following protocol to elucidate the binding mode of the 2-
aminonicotinic acid 1-oxide derivates to 3-HAO.  

 
- Preparation of the protein structure. The Protein Preparation 

Workflow79  contained in the Maestro program suite  was used to add 
hydrogen atoms,  assign bond orders, create zero-order bonds to the 
iron ion, optimize the  hydrogen bonding network and, finally, to refine the 
protein structure  with a maximum RMSD of tolerance of 0.3 Å.  

 
- Assignment of partial charges using QM/MM approach. Partial 

charges  were assigned with the single-point energy calculation of 
Qsite to ensure a  more accurate charge assignment to the iron atom 
and the surrounding  binding site residues. We used DFT-B3LYP, lacvp++** 
as basis set and  continuum salvation model for the QM region. In the 
QM region were  included the Fe2+ atom and atoms belonging to 
residues Arg43, His47,  Glu53, His91, Arg95, and Glu105 (mammalian 
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structure numeration). For  the MM treated region we used OPLS2005 as 
forcefield. 

 
- Preparation of the ligands. Molecular models of compounds were 

built  using Maestro; tautomerization and protonation state at pH 7.0 ± 1 
were  assigned with LigPrep. Ligands geometry optimization and partial 
charges  were calculated with Jaguar, using DFT-B3LYP, lacvp++** as 
basis set, a  maximum number of 100 steps, and using the 
Poisson−Boltzmann solver  as solvent model for water.  

 
- Ligand docking. Docking simulations were performed using 

Glide5.6. The  binding site grid box was centered on the centroid of the 
following  residues: Fe2+, Arg43, His47, Glu53, Phe55, His91, 
Arg95,and Glu105  (mammalian numeration). During grid generation, 
the previously  calculated protein partial charges were retained. Standard 
precision (SP)  mode was applied in the docking process. Two constraints 
were defined to  avoid the generation of poses not in agreement with 
experimental data,  the iron−ligand interaction and the hydrogen bond 
between ligand and  Arg95 residue, and at least one of them was imposed 
to be satisfied during  docking. Ten poses for each ligand were required. 

 
At first to elucidate the binding mode of  the 2-aminonicotinic acid 1-

oxide derivates to 3-HAO, we decided to use the human crystal structure. 
Preliminary docking studies using the human crystal  structure and the 
aforementioned protocol, were entirely unable to explain the lack of activity 
showed in the experimental assays by some of the synthesized compounds 
compared to the active ones. Therefore we decided to build a comparative 
model of the human structure using the bovine one as template to adopt the 
closed conformation showed by the bounded bacterial and by bovine crystal 
structure. Human and bovine 3-HAO share the same secondary structure, 
and residues are almost fully conserved (86% and 93% of identical and 
similar residues, respectively), making the building of the model an easy 
task. The model was build using Prime software available in Maestro suite. 
The docking protocol was then applied to the human model.  
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2.4 RESULTS AND DISCUSSION 

 

 
A new series of 3-HAO inhibitors has been developed by our synthetic 

laboratory, and to gain further insight into the mode of action of the 2-
aminonicotinic acide 1-oxide derivatives we decided to performed some 
molecular modeling studies. In vitro experimental assays were performed 
on rat and human brain homogenates. 

Human 3-HAO crystal structure was the initial choice to performed 
docking studies. However this study did not provide the expected results, 
being the human 3-HAO crystal structure entirely unable to discriminate 
between active and inactive compounds (Figure 11). The reason of this 
failure was easily identified in the open conformation assumed by the 
human 3-HAO crystal structure, whereas the three bacterial structures with 
4ClHAA and 3-hydroxyanthranilic acid presented a closed conformation. 
Moreover the human crystal structure has so far not been corroborated by 
further experimentation (for example by restoring activity after 
purification) and the number of co-crystallized water molecules is just 
above the value considered the cut-off between a good and a bad crystal 
structure.80 Human and bovine 3-HAO share the same secondary structure, 
and residues are almost fully conserved (86% and 93% of identical and 
similar residues, respectively). Therefore we decided to use the bovine 
crystal structure, that presents a closed conformation despite the fact it is in 
its apo-form, as a template to build a comparative model of the human 
enzyme. The alignment between the human and the bovine protein 
sequences, together with the Ralstonia metallidurans one, is reported in 
Figure 12. Within the binding region around the co-crystallized 4ClHAA in 
the bacterial 3-HAO, only three residues are not fully conserved between 
the bacterial and the mammalian structures: Thr39 and has been replaced 
in the mammalian structures by Met35, Ile142 is changed in mammalian 
structures into Leu137 and finally Val41 is conserved in the bovine 
structure as Val37 but substituted by Ile37 in the human structure. The last 
two mutations preserve the characteristics of the bacterial residues, 
maintaining the hydrophobic character of this part of the pocket.  
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Figure 11. Pose of an inactive compound (compound 14) in the binding site of human 
crystal structure. As it can be appreciated from the picture, the open conformation of 
the small loop (in dark red) together with the conformation of Arg43 (in bright green) 
that points towards the top of the cavity instead of pointing towards the center, 
increases the volume of the pocket, allowing the binding of bigger compounds. 

 

Conversely the substitution of the threonine residue with a methionine one 
not only impact the shape of the pocket, being the last one more bulky and 
elongating towards the center of the binding pocket, but also changing the 
electronic properties from hydrophilic to hydrophobic. Considering a wider 
binding site region of 6Å around the co-crystallized inhibitor, no other 
differences can be appreciated between human and bovine sequences, 
while other differences between mammalian and bacterial sequences occur: 
Asp53 is mutated into Glu49, conserving the same electronic properties;  
Gly26 and Leu139 are substituted by two cysteine residues, Cys23 and 
Cys134; Ala66 and Val143 are changed into Met62 and Gly138 respectively, 
maintaining almost the same hydrophobic features; Phe121 and Val137 are 
mutated respectively into Leu116 and Phe132. This substitution impacts 
the shape of the pocket, as can be seen in Figure 9: the spatial arrangement 
of the two mutated residues in mammalian structures seems to open a 
small sub-cavity, compared to bacterial structure; however the small pocket 
seems difficult to be exploited for designing compounds targeting also this 
portion of the binding site, because it is located just behind and slightly 
above the iron atom.  
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Figure 12. Sequence alignment between bovine, bacterial and human 3-HAO 
structures. Residues within 4Å from the binding site are highlighted in green, while in 
cyan are those within 6Å. Amino acid differences are represented in bold.  

3FE5    ----ERPVRVKAWVEENRGSFLPPVCCNKLLHQKQ-
LKIMMFVVGGPNTRKDYHIEEEGEEVFY 
1YFW    
MLTYGAPFNFPRWIDEHAHLLKPPVGGNRQVWQDSDFIVTTVVVGGPNHRTDYHDDDPLEEFFY 
2QNK    ---SERRLGVRAWVKENRGSFQPPVCCNKLMHQEQ-
LKVMMFIIGGPNTRKDYHIEEEGEEVFY 
 

3FE5    QLEGDMMLLRVLERGKHRDVVIRQGEIFLLPAGVPHSPQR-
FANTVGLVIERRRLKTELDG 
1YFW    
QLRGNAAYLNLWVDGRRERADLKEGDIFLLPPHVRHSPQRPEAGSACLVIERQRPAGMLDG 
2QNK    QLEGDMMVLRVLEQGKHRDVVIRQGEIFLLPARVPHSPQR-
FANTVGLVVERRRLETELDG 
 

3FE5    
LLRYYVGDTTDVLFEKWFFYCCEDLLGGTQLAPIIQEFFSSEQYRTGKPNPDQLLKEPPFPLSTR 
1YFW    FFEWYCDACGHLVHRVEVVQLLKSIVVTDLPPLFESFYASEDKRRCPHCGQVHPGRAA----
-- 
2QNK    
LLRYYVGDTMDVLFEKWFFYCCKDLGGTQLAPIIQEFFSSEQYRTGKPIPDQLLKEPPFPLSTR 
 

3FE5    
SVMEPMCLEAWLDGHRKELQAGTPLSLFGDTYESQVMVHGQGSSEGLRRDVDVWLWQLEG 
1YFW    ----------------------------------------------------------
-- 
2QNK    
SIMEPMSLDAWLDSHHRELQAGTPLSLFGDTYETQVIAYGQGSSEGLRQNVDVWLWQLEG 
 

3FE5    SSVVTMEGQRLSLTLDDSLLVPAGTLYGWERGQGSVALSVTQDPACKKS-- 
1YFW    --------------------------------------------------- 
2QNK    SSVVTMGGRRLSLAPDDSLLVLAGTSYAWERTQGSVALSVTQDPACKKPLG 

 Figure 13 . Comparison volumes binding sites. A) Bacterial apo 3-HAO crystal 
structure. B) Bacterial closed 3-HAO conformation. C)  Mammalian (bovine) crystal 
structure 
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Once analyzed the protein 3D structures and the human model just 
built, we proceeded with the docking of the synthesized compounds using 
the human model, trying to find an explanation for the behavior of the 
compounds in the experimental assays. Before applying the protocol 
illustrated in the experimental section we made an attempt to dock the 
compounds treating both small molecules and protein using only molecular 
mechanics approximations. However as expected the results obtained were 
not satisfactory, showing distorted geometries in iron coordination or not 
taking into account the coordination. The correct assignment of atomic 
partial charges is indeed crucial for metalloproteins docking and cannot be 
fulfilled using molecular mechanics. At this point we applied the 
aforementioned protocol.  

QM methods take into account polarization and charge transfer that 
are overlooked by classical MM methods. A comparison between binding 
site partial charges assigned using molecular mechanics and quantum 
mechanics is reported in Figure 14 and makes immediately clear the reason 
for using QM assigned partial charges for the binding site. Iron partial 
charge with molecular mechanics is considered equal to the formal charge 
+2.000 whereas QM takes into account the influence of the surrounding 
atoms and assigns a partial charge of +1.384 to the iron atom. Minor 
changes involves residues atoms directly coordinating the metal ion. A 
major difference concerns the partial charges of the carboxylic group of  
Glu105, the residue that, according to mechanistic studies, is responsible for 
the deprotonation of the hydroxyl group of 3-hydroxyanthranilic acid. MM 
approach treats all the carboxylic groups  at the same manner, thus assigns 
partial charges of -0.800 to the two oxygen atoms and +0.700 to the carbon 
atom. Treating the region from a QM point of view, allows to recognize the 
peculiarity of this binding site region. In fact QM approach assigns a partial 
charge of -1.118 to the oxygen atom of Glu105 that takes the hydrogen atom 
of the substrate, to the other carboxylic oxygen atom a partial negative 
charge of -0.892 and to the carbon atom a partial charge of +1.017. 
Therefore the higher nucleophilic character of the Glu105 that is able to 
remove the hydrogen atom from the substrate can be modeled by using QM 
partial charges. Moreover the QM partial charges of the two arginine 
residues present in the binding site are substantially different from the MM 
ones. Accordingly with MM approximation in the two arginine residues Nη1  
and Nη2 have a partial charge of -0.800 and Nε of -0.700. Conversely QM 
method assign to nitrogen atoms of Arg43, the residue coordinating the 
molecular oxygen, a value of -1.068, -0.783 and -0.245 to Nη1, Nη2 and Nε 
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respectively, whereas to nitrogen atoms of Arg95, the one coordinating the 
carboxylic group of the substrate, a value of -1.209, -1.095 and -1.310 to 
Nη1, Nη2 and Nε respectively, and an increased positive partial charge to 
the hydrogen atoms bounded to Nη1.  

QM charges have also been assigned to the compounds to be docked. 
Some minor differences compared to the MM charges are present: the two 
carboxylic oxygen atoms and the secondary amino nitrogen present an 
increased negative charge and in most of the compounds the slightly 
positive partial charge of pyridine nitrogen is almost halved compared to 
the MM assigned atomic charges.  
After having assigned the correct charges to protein and compounds, we 
performed some docking studies using Glide SP. Previous studies showed 
that molecular dioxygen binding happens only after ligand binding, thus it 
was not considered in our docking experiments. Results suggested a 
binding mode of compound 3, the most potent one, consistent with the 
crystallographic binding mode of 4ClHAA to bacterial 3-HAO (Figure 5B and 
15A), i.e. the 1-oxide portion coordinates the Fe2+, and the carboxylic acid 
moiety at position C3 interacts with Arg95. The 2-amino portion is not 
involved in iron coordination, as for 4ClHAA, but interacts with the free 
oxygen of Glu53, that upon ligand binding, acts as monodentate ligand in 
coordinating the iron atom. The 2-aminonicotinic acid 1-oxide scaffold is 
well accommodated in the 3-HAO binding site, making further hydrophobic 
interactions with residues shaping the binding cavity, Met35, Iso37, Phe55, 
Val103.  

Since we kept the receptor rigid during docking, Arg43 is posed as it 
was solved in the bovine 3-HAO crystal structure, pointing towards the 
active site. This arginine conformation is the same of the one assumed in 
bacterial crystal complexes with 3-hydroxyanthranilic acid and 4ClHAA, 
where Arg43 was coordinating the molecular oxygen and may have formed 
a π-cationic interaction with the ligand ring.  In this case, however, it is 
pointing towards the electron deficient pyridine N-oxide ring, thus 
questioning whether the proposed interaction is actually significant in 
stabilizing the complex.  

Therefore we calculated the Glide Score per residue, to have an idea of 
the interaction energy  between Arg43 and compound 3, and comparing the 
results to those obtain by docking 4ClHAA, and 3-hydroxyanthranilic acid, 
to better evaluate how this interaction is considered. As can be seen in 
Figure 16, the relative interaction of compound 3 with Arg43 is slightly 
smaller (less favorable) than for the other two compounds. However, the 
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Figure 14. A) Partial charges assigned using MM approximation. B) Partial charges 
assigned using QM method 

 
 

Glide score per residue only provides a qualitative trend, and in our 
opinion cannot be used to draw quantitative conclusions. Moreover it 
represents a score of the force field based scoring function, that cannot 
represent accurately this type of ligand-protein interaction that includes 
iron chelation.  
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Docking poses show that small substituents at position C6 of the 
aromatic ring (compounds 2, 3 and 10) are generally tolerated since they 
can be accommodated in the small sub-pocket delineated by Arg108, 
Cys134, Leu137, Leu141 and His147. These results are in agreement with 
the activity displayed by the compounds in the experimental assays.  

The smallest active compound, compound 1, do not have any 
substituent. Molecules from  4 to 9  were synthesized to investigate the 
essential of the inhibitory activity of 2-amino nicotinic acid derivatives. 
Removal of the amino group or of the N-oxide moiety resulted in completely 
inactive compounds; modification of the carboxylic group into an ester, a 
amide or into a cyano group produced inactive compounds as well. In 
compound 9 the amino and carboxylic moieties were fused together into a 
bi-cyclic lactam derivatives but also in this case the compound resulted 
completely inactive in the experimental assays.    

Compounds presenting di-substitution at positions C4 and C6 of the 
pyridine ring and compounds mono-substituted at position C5 or di-
substituted at positions C5 and C6 resulted inactive or weakly active as 3-
HAO inhibitors. From the analysis of the docking studies it can be proposed 
that the main reason of this lack of activity could be steric clashes with 
binding site residues. In fact, like the bacterial enzyme, mammalian 3-HAO 
has on one side a small flexible loop that acts as a lid, moving from an open 
to a closed conformation above the binding site especially upon ligand 
binding, together with the unwinding of the first helical turn of the α3 helix 
that partially covers the binding site on the other side of the cavity. In our 
docking studies we used an almost closed conformation, as in the bovine 3-
HAO crystal structure, because dockings using the open conformation of the 
human 3-HAO structure were not in agreement with the experimental data. 
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Figure 15. A)Pose of compound 3. B) Pose of compound 2.  

 

Figure 16.  Graph showing the different contributions to Glide Score of the interaction 
of 3-hydroxyanthranilic acid, 4ClHAA and compound 3 with the main residues of the 
human model of 3-HAO. In purple-blue are reported the contribution of the 
interaction between 3-hydroxyanthranilic acid and 3-HAO, in light blue and in green 
those of 4ClHAA and compound 3, respectively.  Residue numeration is relative to 
mammalian 3-HAO 
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Docking poses generated for compounds with di-substitution at 
positions C4 and C6 of the pyridine ring (compounds 11-15) present steric 
clashes with residues surrounding substituents at position C4, Val22 and  
Arg43, as shown in Figure 17.  

Compounds 16-19 (substituted at position C5 or di-substituted at 
positions C5 and C6) displayed low inhibitory activity at 10 µM, whereas at 
100 µM the inhibition was generally higher than 60%. A possible 
explanation for the poor activity may be related to the unfavorable contact 
of the compounds in the binding site that generate some small steric 
clashes.  
These results, although in agreement with the small volume of the binding 
pocket, revealed a different behavior of the 2-amino nicotinic acid 
derivatives compared with the previously reported anthranilic derivatives. 
In fact, Anthranilic inhibitors with small alkyl substituents or halogens at 
positions C5 and C6 of the o-aminophenol ring,15 equivalent to positions C4 
and C5 of the 2-aminonicotinic acid 1-oxide nucleus, were reported to be 
active. This different behavior of the two series of compounds may be 
ascribed to a different mechanism of inhibition, although sharing the same 
binding mode. 

On the basis of the mechanism of dioxygenation proposed by Zhang et 
al., one can speculate that the introduction of electron-withdrawing 
substituents in the anthranilic acid nucleus has the effect of blocking the 
single electron transfer from the electron-rich substrate to the catalytic 
iron, resulting in the production of a radical at position C3 and in the 
restoration of the oxidation state of the metal atom, thus trapping the 
system in an unproductive oxidized state of the iron ion. Halogen 
substituents, in particular, can lower the HOMO energy of the o-
aminophenol moiety, thus blocking this oxidation reaction. Moreover 
halogenated anthranilic derivatives are very reactive molecules, and may 
chelate the catalytic iron with high efficiency, allowing the accommodation 
of bulkier substituents by 

 
Figure 17. A) Pose of compound 14and B) pose of compound 21. Steric clashes 

are evident for compound 14, whereas probably also an electronic component 
determines the unfavorable interaction of compound 21, which presents less evident 
steric clashes with the surrounding residues 
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forcing the equilibrium towards the open or to a partially open 
conformation of the enzyme. 

In contrast, our 2-aminonicotinate 1-oxide derivatives are inherently 
unsusceptible to oxidation at the pyridine nitrogen (formally equivalent to 
carbon 3 of the o-aminophenol moiety), and thus less sensitive to electronic 
effects. Therefore the driving force that shifts the equilibrium towards a 
more open conformation of the enzyme, able to accommodate bulkier 
subtituents, is missing in our case, resulting in experimental inactivity for 
compounds presenting substituents at positions C4 and C5 of the 2-
aminonicotinic acid 1-oxide nucleus.  
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2.5   CONCLUSIONS 

 

 
In this study, we provided a rational explanation for the activity of a 

series of 2-aminonicotinic acid 1-oxide derivatives. Several compounds 
showed activity in human and rat brain homogenates, the most potent one, 
compound 3, was also tested in a rat model of a neurodegenerative 
condition, where it was able to acutely shift the balance between neurotoxic 
(QUIN) and neuroprotective (KYNA) kynurenine metabolites towards the 
latter.  

The adopted protocol that applies classical docking using QM assigned 
partial charges for compounds and binding sites, revealed to be efficient. 
Using QM/MM to assign QM approximated atomic charges to binding site 
and treating the rest of the protein with classical MM approximation, 
allowed us to have a more realistic picture of the actual charge distribution 
in the binding site. All the experimentally active compounds share the same 
binding mode, whereas part of the bulkiest derivative, do not fit into the 
binding site or fail to produce the correct binding pose, with the carboxylic 
moiety and the N-oxide group pointing towards the arginine residue and 
the iron atom respectively. The equilibrium between the open and the close 
conformation of the small loop on the top of the binding site is shifted 
towards the closed form upon ligand binding. The strong metal chelation 
exerted by the anthranilic derivatives is enough to force the equilibrium 
towards the open form to accommodate some relatively bulky substituents. 
However, in the case of the 2-aminonicotinic acid derivatives, the metal 
chelation is probably weaker than for the anthranilic derivatives, is not 
sufficient to ensure the accommodation of substituents at positions C5 and 
C6 of the pyridine ring, preventing these compounds to efficiently bind to 
the enzyme. At a visual inspection, the other inactive molecules that are 
correctly docked into the binding site, show steric clashes with the 
surrounding residues that probably are the cause of the loss of activity 
compared to smaller derivatives.  

Analysis of the activity profile of the compounds can only be 
qualitative, due to the available activity data. IC50 data was only available 
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for the most active compound whereas for all the other compounds only the 
percentage of inhibition at 1mM, 100µM and 10 µM was available. 
Moreover, inhibitory activity has been measured with brain homogenate 
and not with the purified protein, so direct correlation would have been 
imprecise. 

Clearly, several issues must be carefully considered for the further 
development of the described compounds described. Given the low 
molecular weight, the presence of the N-oxide, and the high value of the 
polar surface area, it can be expected that blood-brain barrier penetrability, 
as well as metabolic liability, will need extensive rounds of optimization. 
Tolerated substituents at position C6 of the pyridine ring can be further 
explored to ensure another point of anchorage to the enzyme, for example 
interacting with Cys134 or Arg108, and possibly stabilizing a more open 
conformation of the active site, allowing the substitution at the other 
positions of the pyridine ring.  
 

  

108 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

BIBLIOGRAPHY 

 

 
1. Wolf, H., The effect of hormones and vitamin B6 on urinary excretion of 
metabolites of the kynurenine pathway. Scandinavian journal of clinical and 
laboratory investigation. Supplementum 1974, 136, 1-186. 
2. Costantino, G., New promises for manipulation of kynurenine pathway 
in cancer and neurological diseases. Expert Opinion on Therapeutic Targets 
2009, 13, 247-258. 
3. Amori, L.; Guidetti, P.; Pellicciari, R.; Kajii, Y.; Schwarcz, R., On the 
relationship between the two branches of the kynurenine pathway in the rat 
brain in vivo. J. Neurochem. 2009, 109, 316-325. 
4. Giorgini, F.; Guidetti, P.; Nguyen, Q. V.; Bennett, S. C.; Muchowski, P. J., 
A genomic screen in yeast implicates kynurenine 3-monooxygenase as a 
therapeutic target for Huntington disease. Nature Genetics 2005, 37, 526-531. 
5. Guillemin, G. J.; Brew, B. J.; Noonan, C. E.; Takikawa, O.; Cullen, K. M., 
Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in 
Alzheimer's disease hippocampus. Neuropathology and Applied Neurobiology 
2005, 31, 395-404. 
6. Chen, Y.; Stankovic, R.; Cullen, K. M.; Meininger, V.; Garner, B.; Coggan, 
S.; Grant, R.; Brew, B. J.; Guillemin, G. J., The Kynurenine Pathway and 
Inflammation in Amyotrophic Lateral Sclerosis. Neurotoxicity Research 2010, 
18, 132-142. 
7. Maes, M.; Verkerk, R.; Bonaccorso, S.; Ombelet, W.; Bosmans, E.; 
Scharpé, S., Depressive and anxiety symptoms in the early puerperium are 
related to increased degradation of tryptophan into kynurenine, a 
phenomenon which is related to immune activation. Life Sci. 2002, 71, 1837-
1848. 
8. Stone, T. W.; Perkins, M. N., Quinolinic acid: A potent endogenous 
excitant at amino acid receptors in CNS. Eur. J. Pharmacol. 1981, 72, 411-412. 
9. Stone, T. W.; Darlington, L. G., Endogenous kynurenines as targets for 
drug discovery and development. Nat. Rev. Drug Discovery 2002, 1, 609-620. 
10. Cull-Candy, S. G.; Leszkiewicz, D. N., Role of distinct NMDA receptor 
subtypes at central synapses. Science's STKE [electronic resource] : signal 
transduction knowledge environment 2004, 2004. 
11. Lau, C. G.; Zukin, R. S., NMDA receptor trafficking in synaptic plasticity 
and neuropsychiatric disorders. Nature Reviews Neuroscience 2007, 8, 413-426. 

109 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

12. Paoletti, P.; Neyton, J., NMDA receptor subunits: function and 
pharmacology. Curr. Opin. Pharmacol. 2007, 7, 39-47. 
13. Carroll, R. C.; Zukin, R. S., NMDA-receptor trafficking and targeting: 
Implications for synaptic transmission and plasticity. Trends in Neurosciences 
2002, 25, 571-577. 
14. Furukawa, H.; Singh, S. K.; Mancusso, R.; Gouaux, E., Subunit 
arrangement and function in NMDA receptors. Nature 2005, 438, 185-192. 
15. Yao, Y.; Mayer, M. L., Characterization of a soluble ligand binding 
domain of the NMDA receptor regulatory subunit NR3A. J. Neurosci. 2006, 26, 
4559-4566. 
16. Groc, L.; Heine, M.; Cousins, S. L.; Stephenson, F. A.; Lounis, B.; Cognet, 
L.; Choquet, D., NMDA receptor surface mobility depends on NR2A-2B subunits. 
Proceedings of the National Academy of Sciences of the United States of 
America 2006, 103, 18769-18774. 
17. Levine, M. S.; Cepeda, C.; André, V. M., Location, Location, Location: 
Contrasting Roles of Synaptic and Extrasynaptic NMDA Receptors in 
Huntington's Disease. Neuron 2010, 65, 145-147. 
18. Milnerwood, A. J.; Gladding, C. M.; Pouladi, M. A.; Kaufman, A. M.; 
Hines, R. M.; Boyd, J. D.; Ko, R. W. Y.; Vasuta, O. C.; Graham, R. K.; Hayden, M. 
R.; Murphy, T. H.; Raymond, L. A., Early Increase in Extrasynaptic NMDA 
Receptor Signaling and Expression Contributes to Phenotype Onset in 
Huntington's Disease Mice. Neuron 2010, 65, 178-190. 
19. Kudryashova, I. V., Synaptic and extrasynaptic NMDA receptors: 
Problems and prospects. Neurochemical Journal 2007, 1, 275-280. 
20. Guillemin, G. J., Quinolinic acid, the inescapable neurotoxin. Febs 
Journal 2012, 279, 1356-1365. 
21. Lugo-Huitrón, R.; Ugalde Muñiz, P.; Pineda, B.; Pedraza-Chaverrí, J.; 
Ríos, C.; Pérez-De La Cruz, V., Quinolinic acid: An endogenous neurotoxin with 
multiple targets. Oxidative Medicine and Cellular Longevity 2013. 
22. Rahman, A.; Ting, K.; Cullen, K. M.; Braidy, N.; Brew, B. J.; Guillemin, G. 
J., The Excitotoxin Quinolinic Acid Induces Tau Phosphorylation in Human 
Neurons. PLoS One 2009, 4. 
23. Kohler, C.; Eriksson, L. G.; Flood, P. R.; Hardie, J. A.; Okuno, E.; 
Schwarcz, R., Quinolinic acid metabolism in the rat brain. Immunohistochemical 
identification of 3-hydroxyanthranilic acid oxygenase and quinolinic acid 
phosphoribosyltransferase in the hippocampal region. J. Neurosci. 1988, 8, 975-
987. 
24. Foster, A. C.; Okuno, E.; Brougher, D. S.; Schwarcz, R., A radioenzymatic 
assay for quinolinic acid. Anal. Biochem. 1986, 158, 98-103. 
25. Tavares, R. G.; Tasca, C. I.; Santos, C. E. S.; Alves, L. B.; Porciúncula, L. O.; 
Emanuelli, T.; Souza, D. O., Quinolinic acid stimulates synaptosomal glutamate 

110 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

release and inhibits glutamate uptake into astrocytes. Neurochem. Int. 2002, 
40, 621-627. 
26. Naoi, M.; Ishiki, R.; Nomura, Y.; Hasegawa, S.; Nagatsu, T., Quinolinic 
acid: an endogenous inhibitor specific for type B monoamine oxidase in human 
brain synaptosomes. Neuroscience Letters 1987, 74, 232-236. 
27. Santamaría, A.; Jiménez-Capdeville, M. E.; Camacho, A.; Rodríguez-
Martínez, E.; Flores, A.; Galván-Arzate, S., In vivo hydroxyl radical formation 
after quinolinic acid infusion into rat corpus striatum. NeuroReport 2001, 12, 
2693-2696. 
28. Behan, W. M. H.; McDonald, M.; Darlington, L. G.; Stone, T. W., 
Oxidative stress as a mechanism for quinolinic acid-induced hippocampal 
damage: Protection by melatonin and deprenyl. British Journal of 
Pharmacology 1999, 128, 1754-1760. 
29. Braidy, N.; Grant, R.; Adams, S.; Guillemin, G. J., Neuroprotective effects 
of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in 
human neurons. FEBS Journal 2010, 277, 368-382. 
30. Vécsei, L.; Szalárdy, L.; Fülöp, F.; Toldi, J., Kynurenines in the CNS: 
Recent advances and new questions. Nat. Rev. Drug Discovery 2013, 12, 64-82. 
31. Szalardy, L.; Klivenyi, P.; Zadori, D.; Fueloep, F.; Toldi, J.; Vecsei, L., 
Mitochondrial Disturbances, Tryptophan Metabolites and Neurodegeneration: 
Medicinal Chemistry Aspects. Current Medicinal Chemistry 2012, 19, 1899-
1920. 
32. Hilmas, C.; Pereira, E. F. R.; Alkondon, M.; Rassoulpour, A.; Schwarcz, R.; 
Albuquerque, E. X., The brain metabolite kynurenic acid inhibits α7 nicotinic 
receptor activity and increases non-α7 nicotinic receptor expression: 
Physiopathological implications. J. Neurosci. 2001, 21, 7463-7473. 
33. Schwarcz, R.; Okuno, E.; White, R. J.; Bird, E. D.; Whetsell Jr, W. O., 3-
Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington 
disease victims. Proceedings of the National Academy of Sciences of the United 
States of America 1988, 85, 4079-4081. 
34. Guidetti, P.; Luthi-Carter, R. E.; Augood, S. J.; Schwarcz, R., Neostriatal 
and cortical quinolinate levels are increased in early grade Huntington's 
disease. Neurobiology of Disease 2004, 17, 455-461. 
35. Carlock, L.; Walker, P. D.; Shan, Y.; Gutridge, K., Transcription of the 
Huntington disease gene during the quinolinic acid excitotoxic cascade. 
NeuroReport 1995, 6, 1121-1124. 
36. Heyes, M. P.; Rubinow, D.; Lance, C.; Markey, S. P., Cerebrospinal fluid 
quinolinic acid concentrations are increased in acquired immune deficiency 
syndrome. Annals of Neurology 1989, 26, 275-277. 
37. Heyes, M. P.; Nowak Jr, T. S., Delayed increases in regional brain 
quinolinic acid follow transient ischemia in the gerbil. Journal of Cerebral Blood 
Flow and Metabolism 1990, 10, 660-667. 

111 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

38. Beal, M. F.; Matson, W. R.; Storey, E.; Milbury, P.; Ryan, E. A.; Ogawa, 
T.; Bird, E. D., KYNURENIC ACID CONCENTRATIONS ARE REDUCED IN 
HUNTINGTONS-DISEASE CEREBRAL-CORTEX. Journal of the Neurological 
Sciences 1992, 108, 80-87. 
39. Jauch, D.; Urbańska, E. M.; Guidetti, P.; Bird, E. D.; Vonsattel, J. P. G.; 
Whetsell Jr, W. O.; Schwarcz, R., Dysfunction of brain kynurenic acid 
metabolism in Huntington's disease: Focus on kynurenine aminotransferases. 
Journal of the Neurological Sciences 1995, 130, 39-47. 
40. Heyes, M. P.; Saito, K.; Crowley, J. S.; Davis, L. E.; Demitrack, M. A.; Der, 
M.; Dilling, L. A.; Elia, J.; Kruesi, M. J. P.; Lackner, A.; Larsen, S. A.; Lee, K.; 
Leonard, H. L.; Markey, S. P.; Martin, A.; Milstein, S.; Mouradian, M. M.; 
Pranzatelli, M. R.; Quearry, B. J., Quinolinic acid and kynurenine pathway 
metabolism in inflammatory and non-inflammatory neurological disease. Brain 
1992, 115, 1249-1273. 
41. Guidetti, P.; Reddy, P. H.; Tagle, D. A.; Schwarcz, R., Early kynurenergic 
impairment in Huntington's Disease and in a transgenic animal model. 
Neuroscience Letters 2000, 283, 233-235. 
42. Baran, H.; Jellinger, K.; Deecke, L., Kynurenine metabolism in 
Alzheimer's disease. Journal of Neural Transmission 1999, 106, 165-181. 
43. Gold, A. B.; Herrmann, N.; Swardfager, W.; Black, S. E.; Aviv, R. I.; 
Tennen, G.; Kiss, A.; Lanctot, K. L., The relationship between indoleamine 2,3-
dioxygenase activity and post-stroke cognitive impairment. Journal of 
Neuroinflammation 2011, 8. 
44. Saito, K.; Nowak, T. S.; Markey, S. P.; Heyes, M. P., MECHANISM OF 
DELAYED INCREASES IN KYNURENINE PATHWAY METABOLISM IN DAMAGED 
BRAIN-REGIONS FOLLOWING TRANSIENT CEREBRAL-ISCHEMIA. J. Neurochem. 
1993, 60, 180-192. 
45. Rejdak, K.; Petzold, A.; Kocki, T.; Kurzepa, J.; Grieb, P.; Turski, W. A.; 
Stelmasiak, Z., Astrocytic activation in relation to inflammatory markers during 
clinical exacerbation of relapsing-remitting multiple sclerosis. Journal of Neural 
Transmission 2007, 114, 1011-1015. 
46. Rejdak, K.; Bartosik-Psujek, H.; Dobosz, B.; Kocki, T.; Grieb, P.; 
Giovannoni, G.; Turski, W. A.; Stelmasiak, Z., Decreased level of kynurenic acid 
in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. 
Neuroscience Letters 2002, 331, 63-65. 
47. Ogawa, T.; Matson, W. R.; Beal, M. F.; Myers, R. H.; Bird, E. D.; Milbury, 
P.; Saso, S., KYNURENINE PATHWAY ABNORMALITIES IN PARKINSONS-DISEASE. 
Neurology 1992, 42, 1702-1706. 
48. Erhardt, S.; Blennow, K.; Nordin, C.; Skogh, E.; Lindström, L. H.; Engberg, 
G., Kynurenic acid levels ae elevated in the cerebrospinal fluid of patients with 
schizophrenia. Neuroscience Letters 2001, 313, 96-98. 

112 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

49. Yamamoto, H.; Shindo, I.; Egawa, B.; Horiguchi, K., KYNURENIC ACID IS 
DECREASED IN CEREBROSPINAL-FLUID OF PATIENTS WITH INFANTILE SPASMS. 
Pediatric Neurology 1994, 10, 9-12. 
50. Yamamoto, H.; Murakami, H.; Horiguchi, K.; Egawa, B., STUDIES ON 
CEREBROSPINAL-FLUID KYNURENIC ACID CONCENTRATIONS IN EPILEPTIC 
CHILDREN. Brain & Development 1995, 17, 327-329. 
51. Nozaki, K.; Beal, M. F., NEUROPROTECTIVE EFFECTS OF L-KYNURENINE 
ON HYPOXIA ISCHEMIA AND NMDA LESIONS IN NEONATAL RATS. Journal of 
Cerebral Blood Flow and Metabolism 1992, 12, 400-407. 
52. Stone, T. W., Development and therapeutic potential of kynurenic acid 
and kynurenine derivatives for neuroprotection. Trends in Pharmacological 
Sciences 2000, 21, 149-154. 
53. Cugola, A.; Gavaraghi, G., Indole antagonists of excitatory amino acids. 
1993. 
54. Connick, J. H.; Heywood, G. C.; Sills, G. J.; Thompson, G. G.; Brodie, M. 
J.; Stone, T. W., Nicotinylalanine increases cerebral kynurenic acid content and 
has anticonvulsant activity. General Pharmacology 1992, 23, 235-239. 
55. Rover, S.; Cesura, A. M.; Huguenin, P.; Kettler, R.; Szente, A., Synthesis 
and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as 
high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem. 1997, 40, 
4378-4385. 
56. Chiarugi, A.; Moroni, F., Quinolinic acid formation in immune-activated 
mice: Studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(-
3-nitrophenyl) thiazol-2yl]-benzenesulfonamide (Ro 61-8048), two potent and 
selective inhibitors of kynurenine hydroxylase. Neuropharmacology 1999, 38, 
1225-1233. 
57. Beconi, M. G.; Yates, D.; Lyons, K.; Matthews, K.; Clifton, S.; Mead, T.; 
Prime, M.; Winkler, D.; O'Connell, C.; Walter, D.; Toledo-Sherman, L.; Munoz-
Sanjuan, I.; Dominguez, C., Metabolism and pharmacokinetics of JM6 in mice: 
JM6 is not a prodrug for Ro-61-8048. Drug Metabolism and Disposition 2012, 
40, 2297-2306. 
58. Walsh, J. L.; Todd, W. P.; Carpenter, B. K.; Schwarcz, R., 4-halo-3-
hydroxyanthranilic acids: Potent competitive inhibitors of 3-hydroxy-anthranilic 
acid oxygenase in vitro. Biochem. Pharmacol. 1991, 42, 985-990. 
59. Linderberg, M.; Hellberg, S.; Bjork, S.; Gotthammar, B.; Hogberg, T.; 
Persson, K.; Schwarcz, R.; Luthman, J.; Johansson, R., Synthesis and QSAR of 
substituted 3-hydroxyanthranilic acid derivatives as inhibitors of 3-
hydroxyanthranilic acid dioxygenase (3-HAO). Eur. J. Med. Chem. 1999, 34, 729-
744. 
60. Schwarcz, R.; Bruno, J. P.; Muchowski, P. J.; Wu, H.-Q., Kynurenines in 
the mammalian brain: when physiology meets pathology. Nature Reviews 
Neuroscience 2012, 13, 465-477. 

113 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

61. Vallerini, G. P.; Amori, L.; Beato, C.; Tararina, M.; Wang, X. D.; Schwarcz, 
R.; Costantino, G., 2-Aminonicotinic acid 1-oxides are chemically stable 
inhibitors of quinolinic acid synthesis in the mammalian brain: A step toward 
new antiexcitotoxic agents. J. Med. Chem. 2013, 56, 9482-9495. 
62. Zhang, Y.; Colabroy, K. L.; Begley, T. P.; Ealick, S. E., Structural studies on 
3-hydroxyanthranilate-3,4-dioxygenase: The catalytic mechanism of a complex 
oxidation involved in NAD biosynthesis. Biochemistry 2005, 44, 7632-7643. 
63. Siegbahn, P. E. M.; Haeffner, F., Mechanism for catechol ring-cleavage 
by non-heme iron extradiol dioxygenases. J. Am. Chem. Soc. 2004, 126, 8919-
8932. 
64. Bugg, T. D.; Ramaswamy, S., Non-heme iron-dependent dioxygenases: 
unravelling catalytic mechanisms for complex enzymatic oxidations. Curr. Opin. 
Chem. Biol. 2008, 12, 134-140. 
65. Vaillancourt, F. H.; Bolin, J. T.; Eltis, L. D., The ins and outs of ring-
cleaving dioxygenases. Crit. Rev. Biochem. Mol. Biol. 2006, 41, 241-267. 
66. Li, X.; Guo, M.; Fan, J.; Tang, W.; Wang, D.; Ge, H.; Rong, H.; Teng, M.; 
Niu, L.; Liu, Q.; Hao, Q., Crystal structure of 3-hydroxyanthranilic acid 3,4-
dioxygenase from Saccharomyces cerevisiae: A special subgroup of the type III 
extradiol dioxygenases. Protein Sci. 2006, 15, 761-773. 
67. Dilović, I.; Gliubich, F.; Malpeli, G.; Zanotti, G.; Matković-Čalogović, D., 
Crystal structure of bovine 3-hydroxyanthranilate 3,4-dioxygenase. Biopolymers 
- Peptide Science Section 2009, 91, 1189-1195. 
68. Colabroy, K. L.; Zhai, H. L.; Li, T. F.; Ge, Y.; Zhang, Y.; Liu, A. M.; Ealick, S. 
E.; McLafferty, F. W.; Begley, T. P., The mechanism of inactivation of 3-
hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3-hydroxyanthranilate. 
Biochemistry 2005, 44, 7623-7631. 
69. Lendenmann, U.; Spain, J. C., 2-Aminophenol 1,6-dioxygenase: A novel 
aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes 
JS45. J. Bacteriol. 1996, 178, 6227-6232. 
70. Murakami, S.; Sawami, Y.; Takenaka, S.; Aoki, K., Cloning of a gene 
encoding 4-amino-3-hydroxybenzoate 2,3-dioxygenase from Bordetella sp. 10d. 
Biochem. Biophys. Res. Commun. 2004, 314, 489-494. 
71. Kovaleva, E. G.; Lipscomb, J. D., Crystal structures of Fe2+ dioxygenase 
superoxo, alkylperoxo, and bound product intermediates. Science 2007, 316, 
453-457. 
72. Mbughuni, M. M.; Chakrabarti, M.; Hayden, J. A.; Bominaar, E. L.; 
Hendrich, M. P.; Münck, E.; Lipscomb, J. D., Trapping and spectroscopic 
characterization of an FeIII-superoxo intermediate from a nonheme 
mononuclear iron-containing enzyme. Proceedings of the National Academy of 
Sciences of the United States of America 2010, 107, 16788-16793. 
73. Protein Data Bank (PDB). http://www.rcsb.org/pdb/home/home.do  

114 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

74. Cho, A. E.; Rinaldo, D., Extension of QM/MM docking and its 
applications to metalloproteins. J. Comput. Chem. 2009, 30, 2609-2616. 
75. Burger, S. K.; Thompson, D. C.; Ayers, P. W., Quantum 
mechanics/molecular mechanics strategies for docking pose refinement: 
Distinguishing between binders and decoys in cytochrome c peroxidase. J. 
Chem. Inf. Model. 2011, 51, 93-101. 
76. Hayik, S. A.; Dunbrack, R.; Merz, K. M., Mixed quantum 
mechanics/molecular mechanics scoring function to predict protein-ligand 
binding affinity. Journal of Chemical Theory and Computation 2010, 6, 3079-
3091. 
77. Sternberg, U.; Koch, F. T.; Brauer, M.; Kunert, M.; Anders, E., Molecular 
mechanics for zinc complexes with fluctuating atomic charges. J. Mol. Model. 
2001, 7, 54-64. 
78. Khandelwal, A.; Lukacova, V.; Comez, D.; Kroll, D. M.; Raha, S.; Balaz, S., 
A combination of docking, QM/MM methods, and MD simulation for binding 
affinity estimation of metalloprotein ligands. J. Med. Chem. 2005, 48, 5437-
5447. 
79. Protein Preparation Wizard; Epik version 2.0; Impact version 5.5; Prime 
version 2.1., Schrödinger, LLC, New York, NY, 2009. 
80. Kleywegt, G. J., Validation of protein crystal structures. Acta 
Crystallographica Section D-Biological Crystallography 2000, 56, 249-265. 

 

 

  

115 
 



CHAPTER 2 – Elucidation of the binding mode of a series of 3-HAO inhibitors 
 

 

116 
 



CHAPTER 3: 

 

 

Creation of a new database of 
Structural Alerts 

 

  



CHAPTER 3 – Creation of a new database of Structural Alerts 
 

 

  

118 
 



CHAPTER 3 – Creation of a new database of Structural Alerts 
 

3.1   INTRODUCTION 

 

 
An important issue in the very early stages of drug discovery is the 
identification of potentially reactive and toxic compounds.1 Highlighting 
safety risks only in later stages of drug discovery is an incredible waste of 
money throughout the preceding steps.2 Moreover Idiosyncratic Adverse 
Drug Reactions (IADRs),  rare and bizarre side effects, probably induced by 
multiple different mechanisms, 3, 4 are usually noticed only after the drug 
has been introduced into the market and reached a wider number of people, 
representing a even bigger  problem, both for patients and pharmaceutical 
industries.2 Of the 454 new chemical entities approved in US and Canada 
between 1992 and 2011, the 30.7% received a black box warning or was 
either withdrawn from the US market by the FDA due to adverse reactions.5 
Given these data, it is clear that assessing the potential toxicity of a drug 
candidate as early as possible along the drug discovery/development 
pipeline, has several advantages. 

Nevertheless understanding the cause of toxicity of a chemical entity to 
improve its safety profile is anything but easy. Adverse Drug Reactions 
(ADRs) are often associated with the primary pharmacology of the drug; 
these type of reactions  can easily be detected with pharmacology-
toxicology studies and usually exhibit a dose-response relationship.6 More 
difficult to notice are instead those ADRs, and especially IADRs, related to 
drug metabolites, produced by drug biotransformations.7 In a study of 2007, 
Guengerich and MacDonald reported a statistical analysis of Bristol-Myers 
Squibb on the causes of toxicity in animal models, underlying that in almost 
the 30% of the cases, the cause was target-related, but the same number of 
cases was found also for biotransformation-related toxicity. They also 
reported that channel inhibition counted for the 18% of the toxicity reports 
and immune-mediated toxicity in another 7% of the cases. 2  

Nowadays there is a huge interest in predicting drug metabolism, to 
avoid metabolic liabilities in new drug candidates reducing the percentage 
of failures due to drug bioactivation, on the grounds that reactive 
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metabolites can be involved in drug-drug interactions, genotoxicty, 
hepatotoxicity  and immune-mediated adverse drug reactions.8 

The main route of toxicity of these reactive metabolites is unspecific 
covalent binding to proteins, nucleic acids and other macromolecules. In 
particular the covalent binding to GSH(glutathione), while being a 
detoxifying mechanism to reduce the reactivity of the metabolites, can lead 
to the depletion of the GSH levels in cells, leading to oxidative stress 
toxicity.9-11 DNA modifications due to covalent binding have been 
established being the cause of toxicity for some drugs, for example in 
acetaminophen induced IADRs.12, 13 Also intrinsically electrophilic 
compounds may react with tissue nucleophiles, leading to toxicity14. 
However, the events following protein covalent modifications and leading 
to the relevant toxic biological events are difficult to delineate in many 
cases. Another aspect highlighting the difficulties in understanding the 
causes of toxicity, is that, despite several attempts made, none of the studies 
on covalent binding have revealed a target that can explain the biology 
underlying the toxic events.15  

Even if a lot of efforts have been undertaken in the field of predicting 
the toxicological profile of new drug candidates, we are still far from the 
goal. One of the main reasons is that toxicity is a complex physiological and 
pathological event and in silico tools developed so far cannot deal with all 
the possible aspects, just with one or few of them.16, 17  

One approach that has been widely used in past fifteen years is 
represented by quantitative structure-activity relationship (QSAR) models, 
that try to correlate structural properties of the compounds with their 
toxicity. However two main issues, the applicability domain and the 
interpretability of the models, have limited the use of QSAR.17 The first 
drawback is intrinsically related to the QSAR approach, because we can only 
try to predict the toxicological profile of chemicals that are similar to the 
compounds used to build our model, for which we already have toxicity 
data. The second limitation can be viewed from two sides: one related to the 
type of descriptors used to built the model, sometimes not easy to be 
understood, the other related to the confidence in using our model, tightly 
connected to the type of data that are available to build the models. In fact, 
most of the available data are results of in vitro experiments, whereas a 
smaller amount of data is about in vivo (animal) toxicity tests, and even less 
data are available on human toxicity. However the aim of the models is to 
predict human toxicity, so predictions are not always straightforward.18  
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In the attempt to predict the ADMET (Absorption, Distribution, 
Metabolism, Excretion and Toxicity) profile of drug candidates also protein 
3D structures have been used.19 Several crystal structures of cytochromes 
and other proteins related with drug metabolism have become available in 
the past ten years, increasing the number of structure based studies in this 
field.20 Cytochromes P450 (CYPs) are the most studied metabolizing 
enzymes, however these protein are difficult to investigate, in part because 
of the presence of large and flexible binding sites, sometimes also able to 
accommodate more than one ligand simultaneously. Previous studies 
suggested that modeling small molecules binding to CYPs without 
considering protein flexibility, can lead to artifacts and erroneous 
predictions. The same problems occur in predicting ligand binding to P-
glycoprotein (P-gp), the most studied ATP-binding cassette (ABC) 
transporters; moreover P-gp can recognize a broad spectrum of ligands, 
charged, neutral, linear, cyclic and aromatic compounds, and seems to have 
up to seven binding sites.19 Given the complexity of the problem, prediction 
using 3D structures of the proteins is challenging and  time consuming, 
therefore limiting this kind of approach to the analysis of a small number of 
compounds.  

Other types of computational approaches have been used together or 
instead of the previous ones, in trying to give the best picture of the possible 
drug biotransformation processes. Reactivity-based techniques have been 
developed to predict compound liabilities using descriptors derived from 
the electronic structure of the molecule, applying semi-empirical quantum 
mechanical methods.16 Molecular interaction fields (MIFs), that encode the 
variation of the interaction energies between a target molecule and 
chemical probes in 3D space, can be used to build 3D-QSAR models; this is 
the approached followed by MetaSite, however it predicts only cytochrome-
mediated metabolism.21 

The structural alerts (SAs) or “toxicophores” are another kind of 
approach that is used to address potential reactivity and toxicity of 
compounds. SAs directly associate molecular patterns of the compounds 
with toxicity, giving us qualitative information about the intrinsic chemical 
reactivity or the tendency to form chemically reactive metabolites upon 
biotransformation.7 The efficiency of this approach is confirmed by some 
literature examples, even though SAs cannot be consider alone as predictors 
of toxicity, because they cannot by themselves predict the type and the 
frequency of ADRs that may arise, but should be used as complementary 
technique with other approaches, for example with QSAR models previously 
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described. However toxicophores are a valuable tool to screen databases of 
compounds. For example, it is a well established practice to apply reactivity 
filters before running virtual screening experiments and SAs can also be 
used to reduce the number of molecules to test before HTS assays. 
Functional groups susceptible to bioactivation reactions have been review 
for the first time by  S.D. Nelson in 199422 and it is the basis of all SAs 
regarding bioactivation that have been published later.  

Recently, as High Troughput Screening (HTS) established as the main 
discipline in early drug discovery in  pharmaceutical industries, new SAs  
have been proposed. These structural alerts identify substructural features, 
not related to toxicity and therefore not recognized by common filters, that 
have been connected to false positive results in vitro assays.23 A compound 
may act as a false positive for several reasons, through aggregate 
formation,24 interference with detection methods25 (e.g. fluorescent 
compounds) or with the assay media, or by reacting in an unspecific 
manner with the target protein or with multiple proteins26, 27.  While 
aggregation can be prevented or minimized by adding a surfactant to the 
assay media, unspecific protein binding, operated by the so called “frequent 
hitters” due to the high frequency with which they are found as hits in HTS, 
is more difficult to understand and to prevent. In 2010 Baell J.B  and 
Holloway G.A. published new substructure filters to reject compounds 
displaying this type of assay- interfering behavior, basing their study on the 
analysis of the large screening campaign results started in 2003 at their 
institution.27 Among compounds displaying unspecific protein binding, are 
also included chemicals establishing strong non-covalent interactions, such 
as metal chelation mediated by hydroxamate derivatives in 
metalloproteinase assays.28  Of course this class of SAs has little meaning in 
case of other type of experimental assays compared to the important role 
they can play in HTS to avoid or identify false positive results.   

On the basis of experimental evidences, it is clear that SAs are a useful 
tool in early drug discovery to prioritize compounds, when the number of 
molecules considered is huge and more accurate approaches as QSAR or 
structure-based techniques cannot be applied. However it is important to 
underline that information conveyed by SAs should not be over-interpreted: 
for example some authors report phenyl ring as being a substructure prone 
to be bioactivated into an epoxide metabolite and therefore should be 
excluded1; even if this information is in its own right, almost all of the drug 
on the market present this feature, but only some of them present severe 
ADRs related to this metabolite. Thus, SAs information should be used 
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wisely and not to exaggerate the safety hazard associated with a compound 
presenting a potentially reactive substructure feature.   
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3.2   AIMS 

 

 
SAs are very important in early drug discovery projects to identify 
intrinsically reactive or compounds prone to bioactivation. Several authors 
in the past years published SAs for different endpoints, for example for 
genotoxicity29, hepatotoxicity, 30, 31or simple list of reactive groups32 etc. The 
aim of the project was to build a SAs database to be included in ICM 
software33 and  to be also freely available as a webpage on the laboratory 
website, to filter or  simply to flag compounds presenting a functional group 
recognized by one of the SAs. Our idea was to include in the SAs database all 
the meaningful SAs previously published, evaluating their relevance on the 
basis of the data available in the literature, excluding those too stringent or 
not supported with significant examples in literature. We decided to group 
the database entries in three different categories, according to the three 
types of SAs we collected: functional groups of intrinsically reactive 
molecules, structural features of chemicals susceptible to bioactivation and 
finally substructures related to assay interfering compounds. For each entry 
in the database, an in-depth analysis is reported on the webpage. 
Explanation of the reason of the alert creation, references to papers and 
ToxAlerts database, will be available on the webpage and are provided here 
in Appendix B.  
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3.3   MATERIALS AND METHODS 

 

 
3.3.1.  Source of Information 

Scientific literature on structural alerts and toxicity endpoints has been 
examined together with two publicly available databases of SAs. The first 
one is the internet database ToxAlerts.1 This database is very 
comprehensive, but with lot of redundant information and with several 
alerts not supported by experimental data but referring to filters of vendors 
catalogs. The second database is a collection of filtering rules used at Ely-
Lilly and published in 2012.34 These rules, even if containing several useful 
SAs, contain also other entries to exclude compounds without rings or with 
more than three rings, that are beyond the scope of this database.  These 
filtering rules are associated with a penalty score, and compound are 
excluded only after a certain score, limiting in this way the influence of less 
important SAs. Penalty scores are also assigned to compounds according to 
their molecular weight, or to not-neutral compounds, preferring drug-like 
compounds. Conversely, our database is meant to simply consider the 
presence of liabilities in molecular structures possibly leading to toxicity or 
to HTS assays interference, without taking into account the drug-like 
concept that is nowadays called into question, contesting its suitability 
especially in the early stages of the drug discovery process35.       
 
 
3.3.2  Structural Alerts definition using SMARTS 

Smiles Arbitrary Target Specification (SMARTS) strings were used to 
represent the structural alerts contained in the database. SMARTS strings 
are a common representation for molecular substructures, because they can 
easily be applied in database screening and filtering. SMARTS strings are 
based on SMILES (Simplified Molecular-Input Line-Entry System)36, a line 
notation used to represent molecular structures using ASCII strings, but are 
specifically developed to represent molecular substructures, adding to 
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SMILES codification wildcards, connectivity descriptors and  logical 
operators. For the creation of the SAs database the SMARTS notations 
available in ICM software suite have been used(available in table 1), which 
along with canonical SMARTS present some extensions: 

• ^n: that indicates the hybridization of the atom, e.g.: [C; ^2] 
indicates an sp2 hybridized carbon atom.; 

• yn: that represents the number of the ring in the molecular 
substructure representation the atom belongs to, e.g.: [C;y1] 
indicates a carbon atom belonging to the first ring; 

• Yn: is used to indicate the minimum number of hydrogen atoms 
bonded to the considered atom, e.g.:[N,Y2]represents a nitrogen 
atom with at least two hydrogen atoms attached. 

 
 
Table 1. SMILES and SMARTS symbol used in the database 

Symbol Description Examples 
* any atom * 
a Aromatic atom aN(=O)O 
A Aliphatic atom AAA 
C aliphatic carbon  
c aromatic carbon  
[#n] Atomic number [#6] any carbon atom 
Dn the number of heavy neighbors [*;D2] any atom with two non-H 

connections 
Hn Precise number of attached hydrogens [*;H2]  
Rn the number of rings the atom belongs to [#6;R2] any carbon in two rings 
rn the size of smallest ring the atom belongs to [*;r6] 
vn valence, sum of bond orders of all neighbors  
Xn Total number of neighbors including heavy 

atoms and hydrogens 
 

-n negative charge [--], [-2] 
+n positive charge [++], [+2] 
^n sp1,sp2,sp3 hybridization [C;^2] sp2 carbon  
yn ring number in SSSR [*;y1] any atom which belongs to the 

first ring  
Yn number of at least attached hydrogens [*;Y2] atom with two or more 

hydrogens 
@ anticlockwise chirality C[C@H](F)O 
@@ clockwise chirality  
~ any bond C~C 
: aromatic bond c:c 
-,=,# single, double and triple bonds C#C 
=&!@ bond SMART notation for double, not in ring acC=&!@Cca 
!primitive negation [!C] non-aliphatic carbon, [*;!R] any 

atom not in a ring 
expr1&expr2 logical and (high precedence) [c,n&H1] any arom carbon OR H-

pyrrole nitrogen 
expr1,expr2 logical or [C,N,O] C or N or O 
expr1;expr2 logical and (low precedence) [c,n;H1] arom carbon OR nitrogen with 

one hydrogen 
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3.3.3   Database Structure 

Database entries are divided into three categories according to the type of 
structural alert they represent, and each group is assigned a different level 
of hazard (“Rank”):  

 the first group contains intrinsically reactive functional groups, 
mainly electrophiles that can react with protein nucleophiles giving 
covalent adducts; this group contains the most dangerous SAs and 
are collected in “Rank 3” group; 

 the second category contains  substructure susceptible to metabolic 
activation; in this group are present those substructure that can 
potentially evolve in a reactive metabolite but are not toxic per se 
(“Rank 2” group); 

 the less dangerous group is the one called “Rank 1” that put together 
features of promiscuous compounds and other SAs with contrasting 
or ambiguous reports.  

Generally when a structural alert can be ascribed to more than one 
category, it is reported in the one related to the higher level of risk.  

Each entry in the database is characterized by the following 
information, corresponding to different fields of the database: 
 ID: a unique identification string for each entry, constituted by four 

characters; 
 NA: the name of the functional group of substructure; 
 SM: the SMARTS string representing the structure; 
 RK: the Rank, i.e. the subgroup belonging to (Rank 1, 2 or 3); 
 DE: the description of the structural alert, that is the type of 

problem it represents, i.e. covalent binding, reactive metabolites 
formation etc. and, if available, also an explanation of the 
mechanism of action of the functional group; 

 DR: database reference, the reference to ToxAlerts ID code and to 
Wikipedia; 

 RF: reference to papers reporting the alert; 
 RE: for Rank 3 alerts, the amino acidic residues usually involved in 

the covalent modification; 
 KW: keywords useful for searching through the database; 

The database will be made available as an HTML webpage.  
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Figure 1. Snapshot of the webpage of database (still under construction).  
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3.4   RESULTS AND DISCUSSION 

 

 
SAs represent a valuable and well established tool in early drug discovery. 
After the analysis of the available literature, the newly created database 
contains 144 entries, organized into three different categories 
corresponding to the different level of danger represented by the molecular 
liabilities: into the “Rank 3” subgroup are included 42 molecular patterns 
responsible for covalent protein binding, “Rank 2” contains 28 SAs referring 
to substructures that can potentially be bioactivated into reactive 
metabolites, resulting in covalent adducts with proteins or in oxidative 
stress due to depletion of GSH levels in cell. Finally “Rank 1” grouped 74 
molecular substructures related with assays interference and SAs that do 
not present a completely clear correlation with a toxicity event. Appendix B 
contains a printed version of the database, before its elaboration into a 
webpage, listing all the entries and reporting the information in the fields 
previously described. A more in depth description of the three categories of 
the database is reported in the following paragraphs, in particular analyzing 
those entries providing a high number of matches when profiled against 
DrugBank (version 3.0) database37. DrugBank is a public database 
containing comprehensive information about  approved, experimental, 
withdrawn drugs. Version 3.0 collects 6515 entries of experimental and 
approved small molecule drug entries that we used to profile our database.  

 

3.4.1   Rank 3 

Almost all the entries of this subgroup of the database are electrophiles 
exerting their toxicity through protein covalent binding. DrugBank vs.3 
contains 429 entries that are recognized by these class of structural alerts. 
The highest number of DrugBank entries is recognized by the aldehyde, 
thiol, michael’s acceptor and epoxide structural alerts (Table 2 and Figure 
1). For all the entries of this category, several reports relating these 
functional groups with toxicity endpoints, are available in literature and are 
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listed in the RF field of the database. Aldehydes can react with active site 
serine or cysteine residues forming hemiacetals, and, even if the reaction is 
usually reversible, the time scale can vary greatly.14 Aliphatic aldehydes and 
a small number of aromatic aldehydes may also interact with protein amino 
groups, for example with lysine residues, forming a Schiff-base adducts 
through a nucleophilic addiction reaction.38, 39 

Thiols have the potential to undergo a SN2 reaction with cysteine 
residues in proteins, creating a disulfide bridge. If the shape and size of 
thiol-compound are compatible with the catalytic site of metalloenzymes 
(generally in case of small thiol-containing derivatives), it may also 
nonspecifically interact with the catalytic metal ion, forming a coordination 
complex that block the enzyme activity.14, 28 

Michael’s acceptors are α-β unsaturated carbonyl compounds. In this 
category are group together α-β unsaturated  ketones, acrylates and 
acrylamides given the similarity in reactions and endpoints. All these 
functional groups can behave as acylating agents, reacting with biological 
nucleophiles, in proteins and/or nucleic acids, upon the electron deficient β-
carbon atom.38 The lower is the electron density at the β-carbon, the greater 
is the likehood of undergoing nucleophilic attack. An example of Micheal’s 
acceptors reaction is represented by α-β unsaturated  ketones reacting with 
active serine or cysteine of serine or cysteine hydrolases respectively, 
irreversibly inhibiting the enzyme or with slow recovery rate.40, 41 In 
literature are also reported  some evidences that some polarized alkenes do 
not act directly as acylating agents, but are metabolically activated by 
conversion to their epoxides, and then the epoxide derivatives form the 
protein or DNA adducts.  

Epoxides are unstable strained heterocycles, highly reactive and prone 
to ring opening at C-O bond, forming covalent adducts with biological 
nucleophiles through a SN2 reaction;12, 14, 41 due to their high reactivity 
epoxides have been shown to act as alkylating agents and often adducts 
formed by reaction with epoxides are more stable than those formed by 
Michael’s acceptors, thus with less chances of being hydrolyzed to recover 
the functional form of the enzyme. 

The fifth category is represented by β-halo amines, a class of 
derivatives used as anticancer agents, in particular di(haloethyl)amines, 
also known as N-mustard.13 Nitrogen mustards first undergo an intra-
molecular cyclization forming an aziridinium intermediate, that then react 
with nucleophilic centre on guanine bases in DNA strands;12 they can also 
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react with cysteine (and lysine) residues through an SN2 reaction to form a 
covalent adducts.38  

Another group is the one constituted by disulfide-containing 
derivatives. The disulfide bridge in physiological  environment can break, 
forming two thiol-derivatives that can undergo the same reactions 
highlighted for thiol-containing compounds.14, 42 With this alert we decided 
to address only linear   

 

 

Figure 2. Pie chart representing the distribution of the recognized functional groups.  

 

Table 2 Number of recognized entries in DrugBank by Rank3 subgroup.  

RANK 3 n of matches 

Aldehydes 110 
thiols  94 
michael's acceptors 81 
Epoxides 38 
β-halo amines 16 
Disulfides 16 
Peroxides 12 
Vinyl-cyano derivatives 11 
quinones  10 

aldehydes 

thiols  

michael's acceptors 

epoxides 

β-halo amines 

disulfides 

peroxides 

vinyl ciano derivatives 

quinones  

azides 

aziridines 

α-halo carbonyls 

others 

131 
 



CHAPTER 3 – Creation of a new database of Structural Alerts 
 

Azides 8 
Aziridines 6 
α-halo carbonyls 6 
Others 21 

 

 

disulfide bridges, given the higher degree of stability of those embedded in 
a ring system.  

Peroxides are generally unstable, and peroxide-containing molecules 
are susceptible to form oxygen radicals, that can eventually cause protein, 
lipid and DNA oxidation38. Even if examples of stable peroxide bridges are 
available,43 to avoid the possibility of radical-mediated toxicity, they are 
commonly unwanted in lead candidate compounds, therefore we decided to 
consider them in our SAs.  

Vinyl-cyano derivatives, or acrylonitriles, are a very reactive class of 
Michael’s acceptors, that can undergo Michael addition due to the attack of a 
biological nucleophile upon the electron deficient beta-carbon.  

Quinones are another important class of SAs, because they can undergo 
a Michael’s addition reaction  with biological nucleophiles. The possibility of 
being metabolized, forming potential reactive epoxide-containing 
intermediates, increases the potential toxicity of quinones.34, 42  

Also azide, aziridine-containing and α-halo carbonyl compounds are 
common SAs in drug discovery. Some azide derivatives are mutagens and 
are listed as carcinogenic compounds.41 Aziridines are strained three-
membered rings, that behave like epoxides, reacting as alkylating agents 
after ring opening.12, 14 Finally,  in α-halo carbonyls the reactivity of the sp3 
carbon bound to the halogen atom is increased by the carbonyl moiety in α 
position. Thus, the sp3 carbon atom undergos a nucleophilic attack by an 
endogenous nucleophile, forming a new covalent bond through a SN2 
reaction.  
 

3.4.2    Rank 2 

Entries in this category are related with the possibility of reactive 
metabolites formation due to bioactivation. Drug metabolism is a crucial 
step, that can determine the length of drug action, prodrug activation, drug-
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drug interactions and can limit or increase drug-related toxicity. In fact, 
several drugs have been withdrawn from market or acquired a black box 
warning due to ADRs or IADRs mediated by one, or more than one, reactive 
metabolite.  

As previously discuss, we decided to not include phenyl rings as 
structural alerts, even if the metabolism of the phenyl ring proceeds 
through the formation of an epoxide intermediate, with the idea to not 
exaggerate the hazard possibility related to drug bioactivation. 

The two subgroups that recognize almost two thirds of all the 
compounds matched by this type of SAs in DrugBank are thiophene/furan 
and aniline.  

Five-membered heteroaromatic rings such as thiophenes, furans, 
pyrroles and their benzo-fused derivatives are widely used in medicinal 
chemistry. However they are susceptible to biotransformation into reactive 
metabolites involved in drug toxicity. For the same reason we excluded 
phenyl rings from our alerts, we decided to limit the SA for five-membered 
heterocycles to furans and thiophens, which have been clearly related to 
toxicity endpoints, excluding pyrroles and all their benzo-fused derivatives. 
Thiophene rings are bioactivated by CYP2C9, and can either form an S-oxide 
or an epoxide intermediate (as shown in Figure 3). S-oxide intermediates 
are unstable and react easily with biological nucleophiles, often with 
nucleophilic residues present in CYP2C9 catalytic site, leading to 
inactivation of the cytochrome. The epoxide intermediate can follow two 
different routes: or an immediate reaction with glutathione, or the epoxide 
can hydrolyze forming an hydroxyderivative, that in cases of electron-
deficient thiophene rings can lead to ring opening, forming the 
corresponding α-β-unsaturated aldehyde.44 To this category belongs 
Tienilic acid, a diuretic drug that was withdrawn from the market due to 
several cases of hepatoxicity, caused by CYP2C9-mediated bioactivaiton of 
the thiophene ring.45 

The second group is constituted by aniline derivates, that, although 
commonly used as functional groups in drugs and drug candidates, have 
long been associated with chemical carcinogenesis. Their possible genotoxic 
effect is mediated by a reactive metabolite originated by CYP-mediated 
biotransformation. Primary arylamines can either undergo N-hydroxylation 
or  ortho para hydroxylation, both operated by cytochromes. The unstable 
N-hydroxylamine can immediately be conjugated to sulphate or acetate, 
leaving groups that can later lead to the formation of a nitrenium ion, or be 
further oxidized to a nitroso intermediate. The orto or para hydroxylated 
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derivative can be subsequently oxidized to a reactive quinone-imine 
metabolite. Both nitroso and quinone-imine derivatives can be trapped by 
GSH, but it is also possible a reaction with protein nucleophiles, leading to 
hepatotoxicity.46  

Catechols, p-hydroquinones and o/p-quinone imine or methide are all 
quinone-related SAs. Quinones, quinone-methides or quinone-imines are 
reactive compounds that may react with biological nucleophiles. When they 
are formed in liver during drug biotransformation they react with GSH, 
forming stable adducts, that can lead to depletion of GH level in hepatocytes. 
Compounds presenting a catechol moiety can be conjugated with glucuronic 
acid or oxidized by CYP to o-quinone derivatives, whereas p-hydroquinones 
can be activated to p-quinone metabolites.  Ortho or para quinone-imines or 
quinone-methides can also react with  GSH and protein nucleophiles; their 
precursors, after being oxidized by CYP, undergo the same type of 
reactions.47 
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Figure 3. Representation of the functional groups undergoing biotransformation in 
human liver. 1) thiophene; 2) aniline; 3) o-hydroxyphenol 4) anilide; 5) p-
hydroxyphenol; 6) thiazolidinedione; 7) hydrazine; 8) aryl-acetic acid. 
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Figure 4 . Pie chart representing the distribution of the recognized functional groups 
by alerts collected in Rank2 subgroup. 

 

Table 3 Number of recognized entries in DrugBank by Rank2 subgroup.  

RANK 2 n of matches 

Thiofens/furan 168 
Anilines 128 
Catechols 25 
Aryl-acetic acids 24 
Anilides 22 
p-hydroquinones 16 
pyrrole-2,5-diones 12 
Hydrazines and hydrazide 19 
thiazolidine-diones 7 
Nitroso grous 6 
ortho-quinone imine/methide 6 
Others 23 
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Aryl-acetic acid derivatives are widely use in NSAIDs (Non Steroidal 
Anti Inflammatory Drugs). However the aryl-acetic portion of these 
molecules have been related to the hepatotoxicity potential of these drugs, 
and some of them have also been withdrawn from the market. The 
hepatotoxic effect is believed to be immune-mediated and ascribed to the β-
1-O-acyl glucuronide metabolites,48, 49 as shown in Figure 3, that is the main 
metabolites of many NSAIDs, also of the non-toxic ones. The difference 
between toxic and non-toxic derivatives has been shown to be related to the 
substitution on the α-carbon: aryl-acetic derivatives with an alkyl 
substituent on the α-carbon (for example aryl-propionic acid derivatives) 
are less reactive against protein nucleophiles than the unsubstituted ones, 
suggesting both an electronic and steric effect of the substituent. The 
unsubstituted glucuronide derivatives have been shown to modify proteins 
through a simple transacylation reaction, forming  a covalent adduct.50 
Therefore, given the safety profile of 2-substituted aryl-acetic acid 
derivatives as ibuprofen, this entry of SAs database clearly refers only to the 
unsubstituted moieties.  

Other two entries of the database that have been highlighted to 
possibly be transformed into reactive metabolites are thiazolidinediones 
and hydrazine and hydrazides. The first ones can be oxidized by CYP3A4 on 
the sulfur atom, causing an immediate opening of the thiazolidine ring  to 
form S-hydroxyl-isocyanate metabolites, that can react with GSH either on 
the sulfur atom or on the isocyanate moiety.51 The latter conjugate also 
leads to the oxidation of the sulfur atom into a sulfate derivative. This type 
of derivatives is, the main metabolite of the thiazolidinedione-containing 
anti-diabetic drugs (rosiglitazone, pioglitazone and troglitazone) and has 
been shown to be able to inhibit the ATP-binding cassette transporter bile 
salt export pump (BSEP) for all these drugs.52 In the specific case of 
troglitazone, that has been withdrawn from the USA market by FDA in 2000 
three years later having been introduced, there are also other metabolites of 
the o-alkylphenyl portion that contribute to the hepatotoxic effect, together 
with an higher daily dosage, if compared with the other two compounds of 
the same class.53  Hydrazines and hydrazides are metabolized by CYP and 
then further conjugated with acetyls. However CYP-mediated oxidation may 
lead to the production of radicals, especially in case of not fully-substituted 
nitrogen atoms.54, 55 In this case an hydrazonium ion can be formed, that can 
easily react with proteins to form covalent adducts.56 Since the safety 
concerns are mainly related to the partially unsubstituted hydrazines and 
hydrazides, fully substituted derivatives are not considered by the SA entry.  
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3.4.3 Rank 1 

In this category containing 74 entries are listed all those entries related 
with minor intrinsically or bioactivation-related safety problems and with 
assay interference. The highest number of entries is retrieved by the 
undesired atoms alert, filtering atoms such as silicon or boron, that 
sometimes are used as carbon bioisosteric replacement but are generally 
unwanted in lead compounds.  

The second largest group is represented by ammonium quaternary 
salts. The elevated number of matches is  explained by their widespread use 
in anticancer drugs, due to their ability to directly interact with DNA, and 
particularly aryl compounds with quaternary nitrogen are often involved 
with DNA intercalation.34 Moreover quaternary amines usually do not cross 
the gastro intestinal barrier, therefore are unsuitable for oral 
administration of systemic drugs.  

Four-membered lacton and lactam rings or their thio-analogs are very 
common in antibacterial drugs, constituting the active part of penicillin and 
cephalosporine antibiotics. They contain a strained ring system that can 
easily undergo ring opening reactions, leading to instability problems.34 
Furthermore even if β-lactamic antibacterial drugs are generally well 
tolerated, they are frequently associated with drug allergies and 
anaphylaxis reactions.57, 58  

Another category of SAs is hydroxamic acids, that are connected with 
problems in metal ions chelation as well as reaction with biological thiols; 
metal ion chelation also represents a common artifacts in biological 
screening, therefore in vitro assays of hydroxamic acids should properly 
handle this possibility.28  

Hydrazones are electrophilic functional groups that can bind to 
proteins in an unspecific way, especially forming aggregates in in-vitro 
assays consequently giving false positives results;27, 34, 38 some hydrazones 
derivatives gave positives results in AMES assay for genotoxicity, however 
many others did not, making it difficult to directly relate the genotoxic 
outcomes to the hydrazone functionality.59, 60  

Polyhalogenated aromatic and heteroaromatic rings have been related 
to different toxicity outcomes and also been linked to interference in HTS 
assays. Aromatic rings with two or more activating groups as halogens or 
nitrogroups, are prone to undergo SNAr  with protein nucleophiles.14, 34, 38  

Compounds containing thioureas have been reported by some authors 
to undergo metabolic bioactivation into reactive metabolites, but this point 
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of view is not well established and some authors do not consider thioureas 
as source of safety concerns.2, 61 An example of thioureas undergoing 
metabolic bioactivation is Propylthiouracil, an antithyroid drug used in 
treatment of Graves’s disease, that is associated with several reactive 
metabolites, probably generated from the oxidation of the thiourea 
However the connection between toxic effect and reactive metabolites 
formation has not been clearly assessed yet, and deserves further 
investigations.13, 62, 63 

Table 4. Number of recognized entries in DrugBank by each entry. 

RANK 1 n of matches 

Undesired atoms 128 
Ammonium quaternary salts 82 
Lactons, lactams and thiolactons 75 
Hydroxamic acid 59 
Hydrazones 19 
2-halopyrimidine; 2-nitropyrimidine 14 
Thioureas 12 
others 43 

Undesired atoms 

Ammonium quaternary salts 

Lactons, lactams and 
thiolactons 

Hydroxamic acid 

Hydrazones 

2-halopyrimidine; 2-
nitropyrimidine 
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Figure 5. Pie chart representing the distribution of the recognized functional groups recognized 
by SA in DrugBank   
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3.4.4   Profiling Of Best Selling Drugs  

Out of a set of 136 drugs taken from the list of the top 200 best selling drugs 
in US in 2012(excluding duplicates and biological drugs)64 a total of 19 
drugs failed to pass the SAs rules, representing the 15.44 % of the marked 
small molecule drugs. The complete list of drugs failing the rules is available 
in table 4. β-lactamic antibiotics matched the SA for lactons and lactams. 
Aniline is the reason of three rejections, even though no reactive 
metabolites have been found for Darunavir and Mesalazine, while the epatic 
metabolism of Lenalidomide has not been studied. Tiotropium is recognized 
by three SAs: epoxide, quaternary nitrogen and thiophene; since it is mainly 
use topically by inhalation, the absorbed and metabolized fraction is very 
low, thus avoiding the possible formation of reactive metabolites. 
Colesevelam is not absorbed but acts directly in the gut, and the SA 
quaternary nitrogen is useful in preventing the drug from being absorbed. 
The same reasoning is valid also for ipratropium, but applied to lungs. Also 
sevalamer, with an epoxide SA, is not absorbed, thus do not present any 
problem of protein alkylation due to ring opening. It is interesting to notice 
that atorvastatin presents an alkyl-pyrrole moiety, that has been reported 
to cause HTS assay interference, even if the mechanism of this interfering 
action has not been clarified yet.  
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Table 5 results of the profiling of the best selling drugs in US using the SA database. 

Drug Indication SA  

Bortezomib multiple mieloma undesired atoms  
Darunavir anti HIV Aniline 
Lenalidomide Anemia Aniline 
mesalazine Antinflamamtory Aniline 
acetaminphen antipyretic and analgesic Anilide 
sevelamer Hyperphosphatemia Epoxide 
tiotropium Bronchodilator epoxide; quaternary alkyl nitrogen; 

thiophene 
pioglitazone Antidiabetic Thiazolidinedione 
atazanavir Antiretroviral hydrazine 
colesevelam antihypercholesterolemia quaternary alkyl nitrogen 
ipratropium bromide Bronchodilator quaternary alkyl nitrogen 
mometasone Asthma α-halo carbonyl 
rosuvastatin antihypercholesterolemia 4-vinylpyrimidine 
duloxetine Antidepressive thiophene 
ezetimibe antihypercholesterolemia β-lactam 
piperacillin Antibiotic β-lactam 
tazobactam Antibiotic β-lactam 
atorvastatin antihypercholesterolemia alkyl-pyrrole 
Bendamustine Antineoplastic β-halo amine 
Rilpivirine  Anti HIV Vinyl ciano 

 

 

Table 6. comparison of our SA, ElyLilly Rules and ToxAlert DB.  

SAs DATABASE Number of Structures of 
Top 200 Selling Drugs 

% Matches 

Our database 136 15.44 
Ely Lilly Rules  
(data from ref 34) 

123 30.08 

ToxAlerts* 136 98.53 
*Data from ToxAlerts were obtained using all the available entries in the website 
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3.5   CONCLUSIONS 

 

 
SAs are a widely used approach in drug discovery to avoid reactive 
chemicals or compounds susceptible to bioactivation.  Different sets of SAs 
are available in literature or from various websites, handling different levels 
of structure liabilities. Some collections of different types of SAs are 
available, sometimes containing redundant information or in other cases 
SAs without any clear explanation for all of them. Our intent was to 
assemble the various available SAs in one database, considering only the 
SAs with a well-established bodies of evidences, while rejecting the 
ambiguous or not fully verified ones. In fact a common risk is to 
overestimate the danger linked with SAs, creating a set of filters that really 
narrows the chemical space for drug discovery without any concrete 
reason. Our final database contains 142 entries, divided in three categories 
representing three different degrees of alert for chemicals: SAs classified as 
Rank3 are those meant to match intrinsically reactive portion of molecules, 
Rank2 collects SAs related to metabolic instability and Rank1, SAs related 
with interferences in chemical assays and known SAs with a not-yet fully 
clarified mechanism of toxicity. The final database will be available on line 
and integrated in ICM software suite. Number of SAs within the top 200 
marketed drugs in line with numbers previously reported by authors who 
did a similar work, in comparison with the really high and exaggerated 
number of SAs found using redundant and not completely verified 
collection of SAs (Table 5). We find that the application of our rules can be 
used to identify drug candidate presenting structural liabilities, without 
exaggerating the risk connected to reactivity and biotransformation. The so-
flagged compound should then be analyzed whether to introduce structural 
modification to reduce the reactivity or to mask the metabolically-unstable 
site, to discard the molecules or to ignore the possible liability.     
.  
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Table I.  Molecular weight and number of rotatable bonds for complexes used for the optimization 
process.  
 
 

PDB 
code 

Rotatable 
bonds 

Molecular 
weight 

PDB 
code 

Rotatable 
bonds 

Molecular 
weight 

PDB 
code 

Rotatable 
bonds 

Molecular 
weight 

1a4g 7 332.31 1fkg 9 449.59 1tph 6 171.05 
1a9u 1 377.44 1frp 13 340.12 1tpp 4 212.25 
1acj 1 200.29 1ghb 4 246.27 1trk 12 428.34 
1acm 7 253.11 1glp 14 357.34 1tyl 2 157.21 
1apu 16 485.66 1gpy 9 260.14 1ukz 8 347.22 
1aqw 11 306.32 1hdc 6 568.76 1ulb 1 151.13 
1ase 8 265.16 1hfc 10 349.43 1ydr 2 291.37 
1b59 7 313.39 1imb 9 260.14 1yee 11 360.26 
1bgo 12 481.61 1ivb 4 240.17 2ak3 8 347.22 
1bl7 1 338.39 1ivq 16 613.84 2cht 3 228.2 
1blh 6 245.17 1ldm 1 89.05 2cmd 6 192.13 
1bmq 11 546.64 1mld 6 189.1 2cpp 0 152.24 
1byb 24 666.58 1mmq 7 456.58 2dbl 5 417.57 
1byg 2 485.7 1okl 3 250.32 2fox 12 456.35 
1cbs 9 300.44 1pbd 2 137.14 2h4n 3 222.24 

 



1cdg 12 342.3 1pdz 5 156.03 2phh 2 138.12 
1cil 4 324.43 1pgp 13 276.14 2qwk 7 284.36 
1cle 24 649.11 1phd 0 144.18 2r07 7 326.39 
1coy 1 288.43 1phg 3 226.28 2tsc 12 477.48 
1cqp 7 404.55 1ppi 28 808.77 2yhx 7 297.31 
1cvu 14 304.47 1pso 24 684.9 3cla 7 323.13 
1d4p 5 375.58 1qbr 14 758.91 3cpa 7 238.24 
1dd7 4 479.49 1rbp 9 286.46 3ert 10 387.52 
1dhf 10 441.4 1rds 12 590.42 3hvt 0 266.3 
1die 5 163.17 1rob 8 323.2 4aah 3 330.21 
1dy9 16 525.51 1rt2 7 364.44 4cox 4 357.79 
1ejn 6 348.52 1slt 6 383.36 4cts 3 132.07 
1elc 13 506.57 1snc 9 402.19 4er2 24 685.9 
1eta 7 776.87 1tdb 6 326.18 4fab 3 334.33 
1ets 11 538.78 1tka 8 425.34 4phv 15 618.77 
1ett 8 441.66 1tmn 13 479.58 4tpi 6 216.28 
1f0s 5 427.5 1tng 2 113.2 5abp 6 180.16 
1fen 7 270.46 1tni 5 149.24 7tim 6 171.05 
1fgi 5 296.33       

 



Table II. Experimental design 1, fractional factorial design.  

Exp 
num. 

Min 
F 
Dist 

Max 
F 
Num 

Dist 
Co 

Prot 
Vdw 
B 

Grid 
Acc 

Lig 
Neig 
Thr 

Score 
Dist 
Thr 

Grid 
Dist 
Thr 

Hyd 
Thr 

Dist 
Thr 

Pose 
Over 

Ag 
Delta 

Conf 
Vdw 
B 

Neig 
Thr 

Conf 
Ag 
Delta 

% 
poses 
RMSD 
< 2Å 

1 1 5 4 0.6 1 0.5 1 1 0.1 1 0.5 10 0.5 50 3 0 
2 1 5 4 0.6 1 0.5 3 3 0.3 3 1 50 1 150 10 0 
3 1 5 4 0.6 1 3 1 3 0.3 3 1 50 1 150 10 0 
4 1 5 4 0.6 1 3 3 1 0.1 1 0.5 10 0.5 50 3 0 
5 1 5 4 0.6 4 0.5 1 3 0.3 3 1 50 1 150 10 14 
6 1 5 4 0.6 4 0.5 3 1 0.1 1 0.5 10 0.5 50 3 9 
7 1 5 4 0.6 4 3 1 1 0.1 1 0.5 10 0.5 50 3 9 
8 1 5 4 0.6 4 3 3 3 0.3 3 1 50 1 150 10 14 
9 1 5 4 1 1 0.5 1 3 0.3 3 1 10 0.5 50 3 0 
10 1 5 4 1 1 0.5 3 1 0.1 1 0.5 50 1 150 10 0 
11 1 5 4 1 1 3 1 1 0.1 1 0.5 50 1 150 10 0 
12 1 5 4 1 1 3 3 3 0.3 3 1 10 0.5 50 3 0 
13 1 5 4 1 4 0.5 1 1 0.1 1 0.5 50 1 150 10 1 
14 1 5 4 1 4 0.5 3 3 0.3 3 1 10 0.5 50 3 9 
15 1 5 4 1 4 3 1 3 0.3 3 1 10 0.5 50 3 9 
16 1 5 4 1 4 3 3 1 0.1 1 0.5 50 1 150 10 1 
17 1 5 6 0.6 1 0.5 1 3 0.3 1 0.5 50 1 50 3 7 
18 1 5 6 0.6 1 0.5 3 1 0.1 3 1 10 0.5 150 10 0 

 



19 1 5 6 0.6 1 3 1 1 0.1 3 1 10 0.5 150 10 0 
20 1 5 6 0.6 1 3 3 3 0.3 1 0.5 50 1 50 3 7 
21 1 5 6 0.6 4 0.5 1 1 0.1 3 1 10 0.5 150 10 11 
22 1 5 6 0.6 4 0.5 3 3 0.3 1 0.5 50 1 50 3 4 
23 1 5 6 0.6 4 3 1 3 0.3 1 0.5 50 1 50 3 4 
24 1 5 6 0.6 4 3 3 1 0.1 3 1 10 0.5 150 10 11 
25 1 5 6 1 1 0.5 1 1 0.1 3 1 50 1 50 3 0 
26 1 5 6 1 1 0.5 3 3 0.3 1 0.5 10 0.5 150 10 0 
27 1 5 6 1 1 3 1 3 0.3 1 0.5 10 0.5 150 10 0 
28 1 5 6 1 1 3 3 1 0.1 3 1 50 1 50 3 0 
29 1 5 6 1 4 0.5 1 3 0.3 1 0.5 10 0.5 150 10 5 
30 1 5 6 1 4 0.5 3 1 0.1 3 1 50 1 50 3 4 
31 1 5 6 1 4 3 1 1 0.1 3 1 50 1 50 3 4 
32 1 5 6 1 4 3 3 3 0.3 1 0.5 10 0.5 150 10 5 
33 1 15 4 0.6 1 0.5 1 3 0.1 3 0.5 50 0.5 150 3 0 
34 1 15 4 0.6 1 0.5 3 1 0.3 1 1 10 1 50 10 0 
35 1 15 4 0.6 1 3 1 1 0.3 1 1 10 1 50 10 0 
36 1 15 4 0.6 1 3 3 3 0.1 3 0.5 50 0.5 150 3 0 
37 1 15 4 0.6 4 0.5 1 1 0.3 1 1 10 1 50 10 23 
38 1 15 4 0.6 4 0.5 3 3 0.1 3 0.5 50 0.5 150 3 25 
39 1 15 4 0.6 4 3 1 3 0.1 3 0.5 50 0.5 150 3 25 
40 1 15 4 0.6 4 3 3 1 0.3 1 1 10 1 50 10 23 
41 1 15 4 1 1 0.5 1 1 0.3 1 1 50 0.5 150 3 0 
42 1 15 4 1 1 0.5 3 3 0.1 3 0.5 10 1 50 10 0 

 



43 1 15 4 1 1 3 1 3 0.1 3 0.5 10 1 50 10 0 
44 1 15 4 1 1 3 3 1 0.3 1 1 50 0.5 150 3 0 
45 1 15 4 1 4 0.5 1 3 0.1 3 0.5 10 1 50 10 25 
46 1 15 4 1 4 0.5 3 1 0.3 1 1 50 0.5 150 3 15 
47 1 15 4 1 4 3 1 1 0.3 1 1 50 0.5 150 3 15 
48 1 15 4 1 4 3 3 3 0.1 3 0.5 10 1 50 10 25 
49 1 15 6 0.6 1 0.5 1 1 0.3 3 0.5 10 1 150 3 0 
50 1 15 6 0.6 1 0.5 3 3 0.1 1 1 50 0.5 50 10 8 
51 1 15 6 0.6 1 3 1 3 0.1 1 1 50 0.5 50 10 8 
52 1 15 6 0.6 1 3 3 1 0.3 3 0.5 10 1 150 3 0 
53 1 15 6 0.6 4 0.5 1 3 0.1 1 1 50 0.5 50 10 16 
54 1 15 6 0.6 4 0.5 3 1 0.3 3 0.5 10 1 150 3 28 
55 1 15 6 0.6 4 3 1 1 0.3 3 0.5 10 1 150 3 28 
56 1 15 6 0.6 4 3 3 3 0.1 1 1 50 0.5 50 10 16 
57 1 15 6 1 1 0.5 1 3 0.1 1 1 10 1 150 3 0 
58 1 15 6 1 1 0.5 3 1 0.3 3 0.5 50 0.5 50 10 0 
59 1 15 6 1 1 3 1 1 0.3 3 0.5 50 0.5 50 10 0 
60 1 15 6 1 1 3 3 3 0.1 1 1 10 1 150 3 0 
61 1 15 6 1 4 0.5 1 1 0.3 3 0.5 50 0.5 50 10 15 
62 1 15 6 1 4 0.5 3 3 0.1 1 1 10 1 150 3 10 
63 1 15 6 1 4 3 1 3 0.1 1 1 10 1 150 3 10 
64 1 15 6 1 4 3 3 1 0.3 3 0.5 50 0.5 50 10 15 
65 3 5 4 0.6 1 0.5 1 3 0.1 1 1 10 1 150 3 0 
66 3 5 4 0.6 1 0.5 3 1 0.3 3 0.5 50 0.5 50 10 0 

 



67 3 5 4 0.6 1 3 1 1 0.3 3 0.5 50 0.5 50 10 0 
68 3 5 4 0.6 1 3 3 3 0.1 1 1 10 1 150 3 0 
69 3 5 4 0.6 4 0.5 1 1 0.3 3 0.5 50 0.5 50 10 8 
70 3 5 4 0.6 4 0.5 3 3 0.1 1 1 10 1 150 3 11 
71 3 5 4 0.6 4 3 1 3 0.1 1 1 10 1 150 3 10 
72 3 5 4 0.6 4 3 3 1 0.3 3 0.5 50 0.5 50 10 8 
73 3 5 4 1 1 0.5 1 1 0.3 3 0.5 10 1 150 3 0 
74 3 5 4 1 1 0.5 3 3 0.1 1 1 50 0.5 50 10 0 
75 3 5 4 1 1 3 1 3 0.1 1 1 50 0.5 50 10 0 
76 3 5 4 1 1 3 3 1 0.3 3 0.5 10 1 150 3 0 
77 3 5 4 1 4 0.5 1 3 0.1 1 1 50 0.5 50 10 8 
78 3 5 4 1 4 0.5 3 1 0.3 3 0.5 10 1 150 3 3 
79 3 5 4 1 4 3 1 1 0.3 3 0.5 10 1 150 3 3 
80 3 5 4 1 4 3 3 3 0.1 1 1 50 0.5 50 10 8 
81 3 5 6 0.6 1 0.5 1 1 0.3 1 1 50 0.5 150 3 0 
82 3 5 6 0.6 1 0.5 3 3 0.1 3 0.5 10 1 50 10 1 
83 3 5 6 0.6 1 3 1 3 0.1 3 0.5 10 1 50 10 1 
84 3 5 6 0.6 1 3 3 1 0.3 1 1 50 0.5 150 3 0 
85 3 5 6 0.6 4 0.5 1 3 0.1 3 0.5 10 1 50 10 10 
86 3 5 6 0.6 4 0.5 3 1 0.3 1 1 50 0.5 150 3 4 
87 3 5 6 0.6 4 3 1 1 0.3 1 1 50 0.5 150 3 4 
88 3 5 6 0.6 4 3 3 3 0.1 3 0.5 10 1 50 10 10 
89 3 5 6 1 1 0.5 1 3 0.1 3 0.5 50 0.5 150 3 0 
90 3 5 6 1 1 0.5 3 1 0.3 1 1 10 1 50 10 0 

 



91 3 5 6 1 1 3 1 1 0.3 1 1 10 1 50 10 0 
92 3 5 6 1 1 3 3 3 0.1 3 0.5 50 0.5 150 3 0 
93 3 5 6 1 4 0.5 1 1 0.3 1 1 10 1 50 10 4 
94 3 5 6 1 4 0.5 3 3 0.1 3 0.5 50 0.5 150 3 7 
95 3 5 6 1 4 3 1 3 0.1 3 0.5 50 0.5 150 3 7 
96 3 5 6 1 4 3 3 1 0.3 1 1 10 1 50 10 4 
97 3 15 4 0.6 1 0.5 1 1 0.1 3 1 50 1 50 3 0 
98 3 15 4 0.6 1 0.5 3 3 0.3 1 0.5 10 0.5 150 10 0 
99 3 15 4 0.6 1 3 1 3 0.3 1 0.5 10 0.5 150 10 0 
100 3 15 4 0.6 1 3 3 1 0.1 3 1 50 1 50 3 0 
101 3 15 4 0.6 4 0.5 1 3 0.3 1 0.5 10 0.5 150 10 10 
102 3 15 4 0.6 4 0.5 3 1 0.1 3 1 50 1 50 3 21 
103 3 15 4 0.6 4 3 1 1 0.1 3 1 50 1 50 3 20 
104 3 15 4 0.6 4 3 3 3 0.3 1 0.5 10 0.5 150 10 11 
105 3 15 4 1 1 0.5 1 3 0.3 1 0.5 50 1 50 3 0 
106 3 15 4 1 1 0.5 3 1 0.1 3 1 10 0.5 150 10 0 
107 3 15 4 1 1 3 1 1 0.1 3 1 10 0.5 150 10 0 
108 3 15 4 1 1 3 3 3 0.3 1 0.5 50 1 50 3 0 
109 3 15 4 1 4 0.5 1 1 0.1 3 1 10 0.5 150 10 6 
110 3 15 4 1 4 0.5 3 3 0.3 1 0.5 50 1 50 3 6 
111 3 15 4 1 4 3 1 3 0.3 1 0.5 50 1 50 3 6 
112 3 15 4 1 4 3 3 1 0.1 3 1 10 0.5 150 10 6 
113 3 15 6 0.6 1 0.5 1 3 0.3 3 1 10 0.5 50 3 3 
114 3 15 6 0.6 1 0.5 3 1 0.1 1 0.5 50 1 150 10 0 

 



115 3 15 6 0.6 1 3 1 1 0.1 1 0.5 50 1 150 10 0 
116 3 15 6 0.6 1 3 3 3 0.3 3 1 10 0.5 50 3 3 
117 3 15 6 0.6 4 0.5 1 1 0.1 1 0.5 50 1 150 10 9 
118 3 15 6 0.6 4 0.5 3 3 0.3 3 1 10 0.5 50 3 19 
119 3 15 6 0.6 4 3 1 3 0.3 3 1 10 0.5 50 3 19 
120 3 15 6 0.6 4 3 3 1 0.1 1 0.5 50 1 150 10 9 
121 3 15 6 1 1 0.5 1 1 0.1 1 0.5 10 0.5 50 3 0 
122 3 15 6 1 1 0.5 3 3 0.3 3 1 50 1 150 10 0 
123 3 15 6 1 1 3 1 3 0.3 3 1 50 1 150 10 0 
124 3 15 6 1 1 3 3 1 0.1 1 0.5 10 0.5 50 3 0 
125 3 15 6 1 4 0.5 1 3 0.3 3 1 50 1 150 10 6 
126 3 15 6 1 4 0.5 3 1 0.1 1 0.5 10 0.5 50 3 11 
127 3 15 6 1 4 3 1 1 0.1 1 0.5 10 0.5 50 3 11 
128 3 15 6 1 4 3 3 3 0.3 3 1 50 1 150 10 6 
129 2 10 5 0.8 2.5 1.75 2 2 0.2 2 0.75 30 0.75 100 6.5 20 

Parameters set of all the tests of the screening design. In the last column is reported the 
percentage of predicted poses with an RMSD than 2Å respect to the co-crystallized ligands.  

 



Table III. Response Surface Model.  

 Min 
F 
Dist 

Max F 
Num 

Prot Vdw 
B  

Grid 
Acc 

Dist 
Thr 

Neig 
Thr 

Numbe
r of 
results 

% RMSD 
<2Å 

% RMSD <3 
Å 

best 
scoring 
poses: 
% 

 
exp01 1.5 12 0.6 2 2 25 95 32 57 17 
exp02 1.5 12 0.6 2 3 75 85 22 45 15 
exp03 1.5 12 0.6 4 2 75 95 34 58 18 
exp04 1.5 12 0.6 4 3 25 96 38 60 20 
exp05 1.5 12 0.8 2 2 75 65 17 35 11 
exp06 1.5 12 0.8 2 3 25 92 33 51 19 
exp07 1.5 12 0.8 4 2 25 91 25 46 13 
exp08 1.5 12 0.8 4 3 75 93 33 57 21 
exp09 1.5 20 0.6 2 2 75 81 25 48 12 
exp10 1.5 20 0.6 2 3 25 99 41 70 21 
exp11 1.5 20 0.6 4 2 25 99 39 66 23 
exp12 1.5 20 0.6 4 3 75 99 43 68 26 
exp13 1.5 20 0.8 2 2 25 96 42 67 22 
exp14 1.5 20 0.8 2 3 75 70 20 36 11 
exp15 1.5 20 0.8 4 2 75 95 39 68 19 
exp16 1.5 20 0.8 4 3 25 95 38 66 24 
exp17 2 12 0.6 2 2 75 81 19 38 12 

 



exp18 2 12 0.6 2 3 25 98 41 60 25 
exp19 2 12 0.6 4 2 25 99 36 58 18 
exp20 2 12 0.6 4 3 75 99 42 66 23 
exp21 2 12 0.8 2 2 25 93 32 56 23 
exp22 2 12 0.8 2 3 75 68 19 36 10 
exp23 2 12 0.8 4 2 75 95 36 59 22 
exp24 2 12 0.8 4 3 25 99 31 58 18 
exp25 2 20 0.6 2 2 25 98 41 69 18 
exp26 2 20 0.6 2 3 75 82 22 40 11 
exp27 2 20 0.6 4 2 75 100 38 67 22 
exp28 2 20 0.6 4 3 25 100 40 70 21 
exp29 2 20 0.8 2 2 75 64 12 26 8 
exp30 2 20 0.8 2 3 25 96 38 62 21 
exp31 2 20 0.8 4 2 25 99 38 61 19 
exp32 2 20 0.8 4 3 75 99 34 63 17 
exp33 1.5 16 0.7 3 2.5 50 96 37 64 18 
exp34 2 16 0.7 3 2.5 50 99 43 69 18 
exp35 1.75 12 0.7 3 2.5 50 95 29 62 16 
exp36 1.75 20 0.7 3 2.5 50 99 42 69 21 
exp37 1.75 16 0.6 3 2.5 50 98 43 66 22 
exp38 1.75 16 0.8 3 2.5 50 95 41 62 27 
exp39 1.75 16 0.7 2 2.5 50 93 34 57 20 

 



exp40 1.75 16 0.7 4 2.5 50 98 36 67 20 
exp41 1.75 16 0.7 3 2 50 97 38 63 19 
exp42 1.75 16 0.7 3 3 50 99 41 63 25 
exp43 1.75 16 0.7 3 2.5 25 98 41 67 21 
exp44 1.75 16 0.7 3 2.5 75 97 41 67 21 
exp45 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp46 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp47 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp48 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp49 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp50 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp51 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp52 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp53 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp54 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp55 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp56 1.75 16 0.7 3 2.5 50 98 41 67 12 
exp57 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp58 1.75 16 0.7 3 2.5 50 98 41 67 21 
exp59 1.75 16 0.7 3 2.5 50 96 41 67 26 

 



Parameters set used in the RSM design together with the number of results obtained for each 
parameter set out of the 100 protein tested, the percentage of predicted poses with RMSD less than 2 
and 3 Å, the percentage of the best scoring poses with RMSD less than 2Å.  

 

  

 



Table IV. LiGen, AutoDock and Glide docking results with the PDBbind complexes . In table A) 
are reported the RMSD of the best predicted pose respect to the co-crystallized ligand for LiGen, 
AutoDock and Glide respectively. In table B) are reported the RMSD of the best scoring pose 
respect to the co-crystallized ligand for LiGen, AutoDock and Glide respectively.  

A) 

PDB 
code 

LiGe
n 

AutoDoc
k 

Glid
e 

  PDB 
code 

LiGe
n 

AutoDoc
k 

Glid
e 

  PDB 
code 

LiGe
n 

AutoDoc
k 

Glid
e 

1e66 0.99 0.51 0.46   1l2s 1.76 1.02 0.45   1vzq 2.86 0.7 0.29 

10gs 2.82 3.8 1.35   1l83 0.36 1.15 0.35   1x1z 1.39 0.45 0.3 

1a69 1.11 2.19 0.97   1li3 2.22 0.99 0.43   1xgj 2.43 2.22 5.89 

1abf 0.82 0.29 0.32   1li6 2.53 3.35 1.69   1y1m 0.82 0.51 0.33 

1ai5 1.1 1.35 0.92   1lol 2.06 0.53 2.47   1y6q 6.16 0.69 0.64 

1ajp 2.83 4.47 0.63   1loq 1.65 0.67 0.45   1ydt 2.85 1.04 0.61 

1ajq 1.18 1.02 0.34   1m0n 1.95 0.81 0.72   1zc9 2.36 2.87 3.04 

1avn 2.64 5.01 2.43   1m0q 2.1 0.68 0.81   1zoe 1.28 5.55 2.73 

1ax0 2.49 0.59 0.47   1m2q 3.7 3.71 1.31   1zs0 3.99 1.32 0.5 

1axz 1.1 0.61 0.57   1n2v 0.92 2.74 0.47   1zvx 5.91 0.94 0.55 

1b11 5.31 5.13 1.14   1nc1 2.1 0.93 0.73   2aou 3.21 1.13 2.3 

1b7h 2.89 1.86 0.51   1ndw 1.59 1.19 1.27   2b1v 0.95 0.8 0.63 

1b8o 2.77 2.33 1.08   1ndy 4.16 1.55 2.42   2baj 3.27 0.64 0.43 

1b9j 1.9 1.63 0.64   1ndz 3.31 2.29 1.8   2bok 1.53 0.53 0.52 

1bcu 1.13 2.28 0.32   1nfy 1.75 0.69 1.42   2brb 1.35 1.04 0.71 

 



1bra 1.53 0.47 0.44   1nhu 3.24 4.91 5.22   2brm 1.69 1.09 4.39 

1c84 1.62 0.26 0.32   1nja 1.29 1.62 1.62   2bz6 2.07 0.62 0.81 

1d09 1.31 0.45 0.41   1nje 2.07 1.66 4.32   2c02 3.37 2.58 2.81 

1d7j 1.74 1.37 1.78   1nvq 0.75 3.31 0.56   2ceq 0.7 3.16 1.44 

1det 2.73 0.74 0.75   1nwl 2.78 2.76 3.24   2cer 2.08 3.19 3.43 

1df8 1.05 0.39 0.18   1o0h 1.72 1.11 2.33   2cet 0.81 3.31 3.66 

1dhi 2.24 1.3 2.78   1o3f 1.44 0.64 0.63   2cgr 1.1 1.62 0.74 

1e1v 1.46 8.66 4.99   1o3p 1.25 1.26 1.66   2ctc 0.75 0.53 0.35 

1e5a 0.65 0.84 0.53   1ols 2.93 1.53 0.39   2d0k 2.33 1.01 2.39 

1ela 1.94 2.04 2.36   1olu 2.81 0.88 2.43   2d1o 2.42 1.8 0.75 

1elb 2.94 2.62 4   1om1 0.95 1.08 0.35   2d3u 1.09 0.78 0.56 

1f4e 0.78 2.31 1.66   1p1q 2.59 1.46 0.68   2d3z 1.26 0.72 0.38 

1f4f 1.78 2.02 2.91   1pb9 0.37 0.22 0.27   2drc 2.46 1.29 2.86 

1f4g 2.86 1.59 1.07   1pbq 0.64 0.41 0.3   2f01 1.22 0.34 0.29 

1f5k 0.61 0.24 0.47   1pr5 2.26 2.14 1.72   2fai 1.14 0.55 0.32 

1fcx 0.57 0.52 0.25   1pxo 1.9 2.34 2.39   2flb 1.15 1.46 0.72 

1fcz 1.28 0.48 0.25   1q7a 0.83 2.26 1.13   2fzc 2.37 3.79 4.16 

1fd0 0.8 0.62 0.27   1q8t 1.11 1.38 0.88   2g5u 0.59 0.5 0.51 

1fh7 1.43 0.48 0.37   1rdi 1.17 2.37     2g8r 3.42 6.68 6.28 

1fh8 2.28 1.76 0.27   1rdj 2.86 1 13.7
7 

  2gss 2.91 2.04 2.63 

1fh9 2.33 2.04 0.71   1rdl 1.23 3.24 0.49   2h3e 1.03 0.62 0.34 

1fki 2.08 4.63 1.1   1re8 2.84 2.63 0.87   2hdq 0.51 1.2 0.66 

 



1flr 0.5 0.26 0.31   1rnt 2.82 2.92 3.11   2j77 0.87 0.29 0.8 

1ftm 0.91 0.81 0.52   1s39 0.39 0.32 0.38   2j78 1.81 3.35 3.37 

1gni 3.24 1.65 1.85   1sqa 1.29 1.3 0.97   2qwb 4.2 2.89 1.8 

1gpk 1.48 4.86 0.33   1sv3 1.33 4.74 1.45   2qwd 1.67 0.64 0.4 

1gz9 1.37 2.94 0.3   1syh 1.66 0.22 0.14   2qwe 1.2 0.74 0.29 

1h23 2.15 2.22 3.4   1tmn 2.27 3.69 1.78   2rkm 2.36 1 0.33 

1ha2 1.01 0.86 0.68   1toi 0.71 1.41 0.63   2std 2.38 0.75 0.55 

1hi4 4.11 1.82 3.69   1toj 0.92 0.71 0.27   2usn 4.3 2.7 1.84 

1if7 2.04 3.53 1.13   1tok 0.82 0.34 0.25   3pce 2.81 4.72 4.3 

1j16 0.35 0.44 0.21   1trd 1.42 0.66 0.61   3pch 0.7 0.85 0.51 

1j17 5.52 1.22 1.98   1tsy 1.58 3.85 1.28   3pcj 2.46 1.88 0.38 

1jaq 3.04 3.42 5   1ttm 2.7 1.58 1.27   3std 1.26 6.03 0.64 

1jqd 3.1 1.75 1.02   1tyr 3.77 3.69 3.39   4tim 1.55 0.89 0.63 

1jqe 5.03 0.93 0.89   1u2y 1.52 3.79 3.63   4tln 1.45 2.46 1.8 

1jys 0.66 0.7 0.79   1utp 3.25 2.13 1.42   5abp 0.72 0.27 0.35 

1k4g 1.96 1.33 0.98   1uwt 1.3 3.35 3.44   6fiv 5.86 2.5 1.4 

1k9s 1.49 1.07 0.7   1v16 2.62 2.29 2.1   6rnt 2.25 4.4 5.2 

1kv1 1.49 0.6 0.57   1v2o 4.09 7.84 2.83   6std 2.62 0.9 0.86 

1kv5 1.01 0.62 0.4   1v48 1.91 0.79 0.46   8abp 0.77 0.12 0.22 

          1vfn 2.64 2.43 0.54   8cpa 3.65 1.61 2.98 

                            

 

 



B) 

 

 PDBcod
e 

LiGe
n 

AutoDoc
k 

Glid
e 

   PDBcod
e 

LiGe
n 

AutoDoc
k 

Glid
e 

   PDBcod
e 

LiGe
n 

AutoDoc
k 

Glid
e 

1e66 1.03 0.53 3.91   1l2s 1.76 1.02 0.45   1vzq 8.05 0.75 0.29 

10gs 3.87 7.91 2.43   1l83 1.06 1.15 0.97   1x1z 1.88 0.66 0.52 

1a69 1.11 2.36 1.95   1li3 3.27 0.99 0.43   1xgj 3.13 7.9 7.81 

1abf 1.52 0.32 0.32   1li6 2.77 3.35 2.38   1y1m 1.17 0.52 0.47 

1ai5 4.54 1.37 0.92   1lol 2.09 0.53 2.54   1y6q 6.64 0.85 0.72 

1ajp 4.23 4.47 4.11   1loq 2.26 0.67 0.6   1ydt 2.85 2.66 0.88 

1ajq 1.82 1.68 1.46   1m0n 1.99 0.81 0.73   1zc9 2.92 3.21 3.3 

1avn 4.65 6.03 3.62   1m0q 4.71 0.68 5.51   1zoe 4.57 5.58 5.06 

1ax0 4.74 5.27 0.47   1m2q 4.77 3.71 1.31   1zs0 3.99 4.21 1.63 

1axz 4 4.15 0.57   1n2v 4.08 2.74 0.62   1zvx 6.8 4.63 0.58 

1b11 8.66 5.51 1.29   1nc1 5.65 0.93 0.77   2aou 8.17 1.83 2.6 

1b7h 6.66 6.3 0.51   1ndw 4.07 1.19 7.33   2b1v 2.52 0.81 0.63 

1b8o 2.77 2.33 2.51   1ndy 6.51 1.94 6.79   2baj 4.26 0.68 1.66 

1b9j 7.97 7.4 0.65   1ndz 3.31 7.69 7.66   2bok 8.24 0.56 0.52 

1bcu 1.13 2.88 0.32   1nfy 8.19 0.74 2.74   2brb 5.67 1.41 0.91 

1bra 2.51 1.72 0.59   1nhu 6.61 7.29 6.51   2brm 1.99 6.92 4.43 

1c84 1.78 0.89 1.01   1nja 2.22 3.52 1.62   2bz6 2.07 1.33 1.04 

 



1d09 1.87 0.82 0.54   1nje 2.21 1.82 6.41   2c02 5.08 2.98 3.72 

1d7j 1.89 2.3 2.03   1nvq 0.83 3.33 0.56   2ceq 0.7 3.32 8.03 

1det 4.59 2.61 1.34   1nwl 7.5 7.5 7.08   2cer 2.08 8.32 6.48 

1df8 1.05 0.46 0.18   1o0h 1.77 3.55 9.07   2cet 0.81 3.93 7.6 

1dhi 7.72 5.78 4.83   1o3f 1.44 1.7 1.23   2cgr 1.1 2.41 3.06 

1e1v 2.87 9.22 7.22   1o3p 2.07 2 1.77   2ctc 0.76 0.53 0.35 

1e5a 1.09 5.62 5.69   1ols 2.93 4.47 0.39   2d0k 2.33 1.1 3.22 

1ela 1.98 5.26 2.36   1olu 2.81 0.88 2.43   2d1o 2.42 4.06 1.26 

1elb 2.94 2.62 4.41   1om1 1.23 1.22 0.35   2d3u 1.11 0.8 1.44 

1f4e 1.99 2.39 1.66   1p1q 4.73 2.96 1.74   2d3z 3.13 0.72 0.42 

1f4f 9.01 3.42 3.39   1pb9 0.37 0.25 0.27   2drc 3.64 1.3 4.68 

1f4g 9.69 3.84 1.07   1pbq 0.64 0.61 0.3   2f01 2.39 0.34 0.67 

1f5k 0.61 0.31 0.47   1pr5 3.21 2.22 6.41   2fai 2.73 2.21 1.44 

1fcx 0.57 0.55 0.31   1pxo 1.9 2.59 2.83   2flb 2.52 1.63 0.72 

1fcz 1.28 0.5 0.25   1q7a 0.94 5.56 4.42   2fzc 4.33 4.77 4.52 

1fd0 0.8 0.62 0.27   1q8t 1.47 1.71 0.88   2g5u 4.2 0.52 0.51 

1fh7 1.43 1.96 0.42   1rdi 2.85 2.37 6.2   2g8r 7.44 7.18 6.28 

1fh8 5.65 2.6 0.27   1rdj 4.24 5.18 13.7
7 

  2gss 3.18 7.49 2.8 

1fh9 6.36 2.82 0.71   1rdl 4.07 3.32 3.74   2h3e 1.55 0.62 0.65 

1fki 4.02 4.64 1.1   1re8 2.84 3.84 0.87   2hdq 2.18 1.23 1.55 

1flr 2.49 0.26 0.82   1rnt 3.57 3.33 3.64   2j77 1.9 2.46 0.8 

1ftm 0.91 2.21 0.52   1s39 0.52 0.33 0.38   2j78 3.65 3.82 3.85 

 



1gni 5.96 5.52 1.88   1sqa 1.29 1.52 0.97   2qwb 5.04 5.02 1.8 

1gpk 4.95 4.87 4.84   1sv3 2 4.74 1.76   2qwd 2.8 1.34 0.4 

1gz9 1.37 2.94 0.74   1syh 1.66 0.22 0.14   2qwe 1.2 1.76 0.29 

1h23 5.9 4.6 4.24   1tmn 2.27 8.02 2.67   2rkm 2.36 1 0.74 

1ha2 1.01 0.86 0.76   1toi 1.35 4.36 1.34   2std 2.48 0.75 2.51 

1hi4 4.67 3.66 4.72   1toj 0.92 4.38 0.27   2usn 4.71 6.64 9.84 

1if7 2.39 9.57 2.01   1tok 1.48 0.4 0.25   3pce 4.41 5.04 4.68 

1j16 0.35 3.08 0.53   1trd 1.42 1.07 1.09   3pch 4.07 1 4.2 

1j17 8.15 1.22 2.46   1tsy 2.76 4.63 1.35   3pcj 3.24 2.51 4.05 

1jaq 6.23 5.24 5.39   1ttm 3.27 3.88 2.96   3std 8.5 6.03 0.87 

1jqd 3.53 8.6 1.02   1tyr 7.93 5.68 4.19   4tim 4.14 0.95 1.11 

1jqe 5.19 5.24 1.62   1u2y 2.2 3.85 3.63   4tln 2.41 3.33 2.29 

1jys 0.75 2.5 3.14   1utp 3.25 3.71 2.16   5abp 0.75 0.36 0.5 

1k4g 4.24 1.37 1.39   1uwt 3.7 3.45 4.14   6fiv 8.08 4.19 5.36 

1k9s 2.36 2.4 0.7   1v16 2.62 2.29 2.1   6rnt 6.86 4.4 6.67 

1kv1 7.36 0.65 0.59   1v2o 4.89 8.73 3.35   6std 2.88 2.56 0.86 

1kv5 1.44 0.62 0.43   1v48 2.71 0.89 1.33   8abp 0.94 3.95 0.51 

          1vfn 2.87 2.43 4.63   8cpa 3.65 4.21 3.72 

                            

 

 



Table V. Parameters and results of the full factorial design performed for the optimization of the 

VS protocol.  

 Exp 
01 

Exp 
02 

Exp 
03 

Exp 
04 

Exp 
05 

Exp 
06 

Exp 
07 

Exp 
08 

Exp 
09 

Exp 
10 

Exp 
11 

Exp 
12 

Exp 
13 

Exp 
14 

Exp 
15 

Exp 
16 

Grid 
Acc 

3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 

Max F 
Num 

8 8 8 8 15 15 15 15 8 8 8 8 15 15 15 15 

Min F 
Dist 

2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 

Ag 
Delta 

10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 

ROC                                 
Mean 0.73 0.76 0.66 0.69 0.66 0.69 0.67 0.66 0.75 0.77 0.67 0.49 0.67 0.69 0.64 0.65 
Media
n  

0.78 0.75 0.62 0.64 0.67 0.69 0.67 0.67 0.77 0.74 0.61 0.58 0.63 0.64 0.64 0.63 

SD 0.20 0.19 0.22 0.23 0.23 0.23 0.19 0.24 0.18 0.18 0.22 0.26 0.24 0.22 0.20 0.20 
ROC 
(1%) 

                                

Mean 9.38 7.75 5.19 4.24 8.64 6.38 6.50 4.74 8.02 5.27 4 0.00 6.57 8.88 4.62 3.40 
Media
n 

0.40 0.35 0.00 1.05 0.40 0.40 1.75 2.85 0.40 0.00 0.00 0.00 0.40 0.85 0.00 0.00 

SD 17.0
3 

14.1
9 

9.45 7.51 14.5
1 

12.3
7 

10.3
0 

7.39 16.3
9 

13.0
6 

8.82 0.00 11.7
7 

15.7
7 

8.85 5.72 

ROC 
(2%) 

                

 



Mean 12.9
0 

11.0
0 

8.17 6.12 12.0
6 

9.01 8.30 7.29 9.89 10.1
4 

4.80 0.00 11.8
1 

12.3
8 

5.80 5.43 

Media
n 

1.05 1.90 3.50 3.65 0.85 1.25 2.80 5.90 2.65 0.35 0.00 0.00 3.70 0.85 0.00 1.50 

SD 23.6
4 

19.7
9 

10.5
5 

8.55 19.6
3 

16.5
2 

11.6
2 

8.34 17.4
9 

18.8
6 

8.83 0.00 19.7
2 

20.8
6 

9.54 7.37 

ROC 
(5%) 

                

Mean 21.2
7 

19.3
7 

16.4
4 

12.6
5 

17.6
9 

16.6
3 

12.8
6 

13.0
4 

20.6
1 

19.0
8 

13.7
1 

0.00 16.8
9 

18.1
3 

11.7 10.5
6 

Media
n 

8.15 4.25 9.20 5.10 9.10 2.75 8.15 11.7
0 

10.8
5 

5.40 8.55 0.00 6.55 7.50 5.80 4.50 

SD 29.4
4 

29.5
5 

17.1
1 

12.8
8 

23.2
8 

24.2
3 

14.8
0 

11.5
1 

25.4
5 

25.4
3 

15.2
3 

0.00 23.2
8 

24.5
4 

13.9
5 

13.2
6 

ROC 
(20%) 

               

Mean 38.6
2 

37.3
6 

33.9
1 

38.8
9 

39.1
8 

40.2
4 

34.4
5 

41.7
4 

41.1
2 

38.3
2 

34.5
8 

7.23 39.4
6 

38.6
4 

29.3
6 

29.5
0 

Media
n 

23.6
5 

24.4
5 

25.7
0 

25 30.1
0 

29.7
0 

34.0
5 

36.5
0 

27.2
5 

29.8
0 

27.3
0 

0.00 28.9
5 

27.2
5 

25.3
0 

24.8
5 

SD 31.6
7 

32.6
7 

25.2
7 

32.1
7 

32.2
9 

34.0
8 

25.9
7 

29.9
9 

29.7
8 

26.5
0 

29.2
3 

20.8
4 

32.8
0 

32.9
8 

26.9
3 

24.0
8 

BEDR
OC α= 
20.0 

                                

Mean 0.18 0.17 0.14 0.13 0.17 0.15 0.13 0.14 0.18 0.15 0.11 0.00 0.17 0.17 0.11 0.10 
Media
n 

0.07 0.05 0.08 0.08 0.10 0.06 0.09 0.11 0.10 0.05 0.06 0.00 0.10 0.07 0.06 0.06 

SD 0.24 0.23 0.14 0.12 0.20 0.19 0.13 0.11 0.20 0.19 0.12 0.01 0.19 0.21 0.12 0.11 

 

 



Table VI. Comparison of VS results considering only the “own decoys” subset of DUD, with the 

original set of parameters (on the left side of the table) and the optimized ones (on the right). 

Original parameters – “own decoys” subset   Optimized parameters - “own decoys” subset 

    PDB 
code 

RO
C 

ROC 
(1%) 

ROC 
(2%) 

ROC 
(5%) 

ROC 
(20%) 

BEDR
OC  

  RO
C 

ROC 
(1%) 

ROC 
(2%) 

ROC 
(5%) 

ROC 
(20%) 

BEDR
OC  

α=20.
0  

α=20.
0  

serine 
proteasi 

                            

FXa  1f0r        0.6
4 

1.4 2.8 3.5 38.7 0.09   0.5
4 

1.4 2.1 2.1 17.6 0.04 

thrombin  1ba8        0.6
3 

0 3.1 12.3 50.8 0.06   0.7
5 

1.5 1.5 4.6 56.9 0.12 

trypsin  1bju        0.4
7 

0 0 2.3 22.7 0.02   1.0
1 

9.1 9.1 11.4 11.4 0.12 

kinase                             

FGFr1  1agw        0.5
9 

0 3.4 6.8 15.3 0.07   0.8
5 

0.8 2.5 10.2 47.5 0.26 

CDK2  1ckp        0.8
3 

0 0 6 12 0.06   0.3
7 

0 2 2 8 0.03 

EGFr  1m17        0.6
3 

0.5 0.5 2.3 32.9 0.04   0.9
5 

2.3 3.4 32.9 87.4 0.33 

HSP90  1uy6        0.4
5 

0 0 0 33.3 0.02   0.5
5 

0 0 0 12.5 0.05 

SRC  2src        0.9
3 

1.9 3.2 9.7 53.5 0.11   0.6
7 

1.3 3.2 8.4 40 0.11 

 



TK  1kim        0.3
1 

0 0 0 27.3 0.05   0.6
5 

0 0 4.5 27.3 0.05 

p38 1kv2 0.8 2 3.9 10.9 23.8 0.13   0.6
3 

2.3 7.8 15.6 38.3 0.17 

metalloenz
yme 

                            

ACE  1o86        0.9 2 4.1 8.2 28.6 0.05   0.6
6 

2 2 2 22.4 0.05 

COMT  1h1d        0.2 0 0 9.1 9.1 0.02   0.6
9 

0 0 0 45.5 0.07 

PDE5  1xp0        0.5
6 

0 5.9 5.9 27.5 0.06   0.6
5 

3.9 3.9 13.7 35.3 0.15 

nuclear hormone 
receptor 

                          

ERagonist  1l2i        0.8
9 

0 0 3 35.8 0.1   0.8
8 

3 14.9 38.8 76.1 0.37 

ERantagon
ist  

3ert        0.5
2 

0 0 0 23.1 0.06   0.5
9 

5.1 5.1 7.7 12.8 0.06 

GR  1m2z        0.3 1.3 1.3 1.3 1.3 0.02   0.9
1 

41 52.6 57.7 79.5 0.38 

MR  2aa2        0.8
6 

0 0 0 40 0.36   0.9
5 

0 0 0 33.3 0.05 

PPARg  1fm9        0.6
3 

0 0 1.2 6.2 0.01   0.7
9 

0 0 2.5 13.6 0.04 

PR 1sr7 0 0 0 0 0 0   0.6
9 

3.7 7.4 11.1 29.6 0.16 

RXR 1mvc 0 0 0 0 0 0   0.9
9 

35 60 70 75 0.63 

folate 
enzyme 

                            

DHFR  3dfr        0.2
6 

0 0 0 6 0   0.5
4 

0.5 1.5 6 21.9 0.07 

 



GART  1c2t        0.1
3 

0 0 0 9.5 0   0.5
5 

0 0 4.8 14.3 0.07 

other 
enzyme 

                            

COX-2  1cx2        0.7
7 

0.9 1.1 1.1 1.1 0.01   0.8
4 

21 33.6 46 68.4 0.45 

PARP  1efy        0.5
9 

3 3 3 18.2 0.07   0.5
8 

12.1 18.2 21.2 48.5 0.27 

AChE  1eve        0.6
3 

1 1 1.9 22.9 0.02   0.5
8 

1 2.9 6.7 29.5 0.08 

HIVPR  1hpx        0.6
6 

5.7 9.4 20.8 54.7 0.13   0.6
9 

1.9 3.8 11.3 35.8 0.13 

HMGR  1hw8        0.7
4 

2.9 2.9 8.6 48.6 0.12   0.9
9 

0 0 8.6 20 0.13 

InhA  1p44        0.6
2 

0 2.4 7.1 34.1 0.09   0.7
3 

3.5 5.9 9.4 35.3 0.12 

COX-1  1p4g        0.6
6 

0 4 4 4 0.03   0.7
4 

4 4 4 20 0.07 

HIVRT  1rt1        0.5
4 

0 0 5 22.5 0.02   0.6
6 

0 2.5 7.5 32.5 0.09 

AmpC  1xgj        0.4
7 

0 0 0 0 0   0.3
6 

0 0 0 0 0 

SAHH  1a7a        0.3 3 3 3 3 0.04   0.8
9 

45.5 66.7 93.9 97 0.36 

GPB  1a8i        0.5
7 

0 0 5.8 11.5 0.1   0.7
1 

0 1.9 3.8 23.1 0.07 

ALR2  1ah3        0.5
8 

3.8 3.8 15.4 30.8 0.03   0.6
4 

3.8 3.8 7.7 34.6 0.13 

PNP  1b8o        0.6
7 

4 8 16 36 0.16   0.5
6 

0 0 28 72 0.02 

NA 1a4g 0.9
8 

10.2 10.2 18.4 38.8 0.14   0.8
7 

8.2 22.4 49 83.7 0.44 

 



                                

mean 0.5
6 

0.92 1.85 4.8 22.38 0.06   0.7
1 

5.94 9.58 16.75 39.07 0.16 

mediana 0.6
1 

0 0.75 3 22.8 0.05   0.6
9 

1.7 3.05 8.05 33.95 0.12 

sd 0.2
4 

1.45 2.36 5.15 16.84 0.07   0.1
6 

11.27 16.73 21.6 25.18 0.15 

 

 



Appendix B 

 

 
In the following pages is reported a printable version of the 
database discussed in CHAPTER 3. Every row corresponds to one 
database entry and columns are database fields. 

• ID: unique identification code of the entry; 
• NA: common name  of the entry; 
• SM: SMARTS notification that represents the structural 

alert 
• RK: rank 
• DE: description of the entry 
• RF: literature references 
• DR: references to other databases or websites 
• KW: keywords to search through the database 
• RE: residues target of the covalently binding SAs.  

  



ID NA SM RK DE RF DR KW RE 
HL
AC 

Acyl 
Halide 

CC([F,Cl,Br,I])=O 3 Acyl halides are electrophilic agents 
that can covalently and unspecifically 
bind to biological nuclophiles in 
proteins and DNA; acyl halide 
derivatives are considered genotoxic 
carcinogens as they give positive 
results in AMES test, skin sensitizers 
as they can also covalently bind to skin 
proteins. Acyl halide derivates have 
also been reported as possibly causing 
acute aquatic toxicity due to their 
electrophilic nature. They act 

PMID:23061697; 
PMID:20693071; 
PMID:15656773; 
PMID:8144710; 
PMID:18621573; 
PMID:15935536;  
PMID:2269228; 
PMID:21809939;  
PMID:12565011; 

ToxAlerts:TA358;T
oxAlerts:TA577; 
ToxAlerts:TA704; 
wiki:Acyl_halide 

acid 
halide; 
acylating
; skin; 
genotox; 
aquatic 
toxicity; 

CYS; 
NH2; 
LYS 

AC
IZ 

Acylimidaz
oles; N-
acetylimid
azole 

N(C=NC1)(C=1)!@
C(!@C)=O 

2 N-acetylimidazoles (NAI) are tyrosine-
selective acylating agents used in 
protein chemical modification to 
clarify structure-function relationships 
of this type of residue. Hence the 
presence of this type of moiety in a 
molecule could lead to selective 
modification of tyrosine residues, in 
particular solvent exposed ones, in the 
target protein; acylation of threonine 
and serine residues is also possible, 
even if less common. 

PMID:23061697; 
PMID:5870321; 
SARF:2; 
PMID:20131845; 

ToxAlerts:TA1736; acylating
; 
acylimid
azole; 

TYR; 
SER; 
THR; 
NH2 

AT
RZ 

Acyltriazol
es; N-
Acyltriazol
e 

c1nnn(C(=O))c1.c
1n(C(=O))cnn1 

2 Acyltriazole are acylating agent; they 
have been reported to interfere in HTS 
assays, forming unspecific covalent 
bond with proteins. 

PMID:20131845; 
PMID:16711725; 

ToxAlerts:TA1761; 
ToxAlerts:TA1799; 
ToxAlerts:TA2239; 

 TYR; 
SER; 
THR; 
NH2 

AN
HY 

Anhydride
s 

CC([O,S]C(C)=[O,S
])=[O,S] 

3 Acyclic anhydrides and cyclic acid 
anydride are electrophilic acylating 
agent; they can react with biological 

PMID:15656773; 
PMID:23061697; 
PMID:20693071; 

ToxAlerts:TA226; 
ToxAlerts:TA267; 
ToxAlerts:TA286; 

acylating
; 
anhydrid

NH2, 
CYS 



nucleophiles present in proteins, 
forming covalent adducts that may 
result in skin sensitization reaction in 
humans and animal models, HTS assay 
interference and acute aquatic toxicity; 

PMID:8144710;  
PMID:2269228;  
PMID:21809939; 
PMID:18853302; 
PMID:12565011; 
PMID:16711725; 

ToxAlerts:TA476; 
ToxAlerts:TA580; 
ToxAlerts:TA585; 
ToxAlerts:TA607; 
ToxAlerts:TA672; 
ToxAlerts:TA706; 
ToxAlerts:TA715; 
wiki:Acid_anhydrid
e; 
ToxAlerts:TA1810; 

e; 

SIS
N 

Si (silicon) 
or Sn (tin) 

[Si,Sn,B,Se] 1 unstable, form toxic phospho-organics, 
nonspecific binder to -N-H, -O-H or 
similar group. Not allowed atom (RF 1) 

PMID:23061697; 
PMID:20131845; 

ToxAlerts:TA1871; 
ToxAlerts:TA1733; 
ToxAlerts:TA1780; 
ToxAlerts:TA701 

Si; 
silicon; 
silicium 

CYS; 
NH2; 
LYS; 

SU
HA 

Sulfonylha
lides; 
sulphonyl
halide; 
sulphonyl 
halide; 
sulfonyl 
halide 

S([F,Cl,Br,I])(C)(=
O)=O 

3 Sulfonyl halides are considered 
acylating agent; they can react with 
endogenous nuclophiles, that can 
attack the sulfonyl halide at the sulfur 
atom, forming a tetrahedral 
intermediate and causing the release 
of the halogen leaving group; sulfonyl 
halide are considered akin sensitizer 
agents as they can react with protein 
nucleophiles producing chemically 
modified proteins that can lead to T-
cell-mediated allergic response; 

PMID:23061697; 
PMID:20693071; 
PMID:8144710;  
PMID:21809939; 
PMID:12565011; 
PMID:21401043; 

ToxAlerts:TA224; 
ToxAlerts:TA708; 
ToxAlerts:TA1860; 
wiki:Sulfonyl_halid
e; 

sulfonyl 
halide; 
sulphony
l halide; 
acylating 

CYS; 
NH2 

SU
AH 

Sulfonylan
hydrides 

S(OS(=O)(=O)C)(C
)(=O)=O 

2 sulfonylanhydride may act as acylating 
agent by itself or after hydrolysis; it 
can bind to nucleophilic protein 
groups as sulfonyl halide do, but there 
are no reports of causing skin 
sensitization, only evidences of 

PMID:21809939; 
PMID:20131845; 
PMID:16711725; 

ToxAlerts:TA1783; sulphony
lanhydri
de; 
sulfonyla
nhydride
; 

CYS; 
A; G; 



interfering with HTS assays; 
AK
SN 

Alkylsulfo
nates 

S(O[C;^3])(C)(=O)
=O 

3 Alkylsulfonate have been reported to 
act as alkylating agent undergoing a 
SN2 reaction on the sp3 carbon atom; 
if the carbon atom directly bound to 
the sulfur atom is involved in a carbon-
carbon double or triple bond, so in 
case of alpha-beta usaturated 
sulphonate they can also undergo a 
micheal addiction reaction to form a 
covalet bond with protein nucleophilic 
residues; alkylsulfonated are reported 
to be skin sensitizers; severa 

PMID:20693071; 
PMID:21809939; 
PMID:8144710; 

wiki:Alkyl_sulfonat
e;  
ToxAlerts:TA234;  
ToxAlerts:TA281;  
ToxAlerts:TA727;  
ToxAlerts:TA775; 

alkylsulf
onate; 
alkylsulp
honate; 

CYS; 

AL
SU 

Alkylsulfat
es 

S(O[C;^3])(O[C;^3
])(=O)=O 

1 Alkylsulfates can in principle be 
considered alkylating agent reacting 
via SN2 mechanism because they have 
a reactive carbon sp3 atom; however 
skin sensitization has been reported 
only at high concentrations only for 
some derivatives; no mutagenic, 
genotox or carcinogenic effect has 
been related to alkylsulfate use; 

PMID:23061697; 
PMID:20693071; 
PMID:21809939;  
PMID:8144710; 

ToxAlerts:TA234;  
ToxAlerts:TA282;  
ToxAlerts:TA774; 
wiki:Organosulfate; 

alkylsulf
ate; 
alkylatin
g; 

CYS; 
NH2; 
LYS; 
A; G; 

ICY
N 

Isocyanate
s 

N(C)=C=O 3 isocyanates are electrophilic 
functional groups that behaves as 
acylating agent; isocyanate can reat 
with nucleophilic site on protein and 
nucleic acid, causing skin sensitization 
reaction, DNA and RNA mutation 
leading to genotoxicity; acute aquatic 
toxicity has also been reported; 

PMID:23061697; 
PMID:20693071; 
PMID:8144710;  
PMID:2269228; 
PMID:21809939; 
PMID:18621573; 
PMID:15935536; 

wiki:Isocyanate;  
ToxAlerts:TA229;   
ToxAlerts:TA315;  
ToxAlerts:TA372;  
ToxAlerts:TA423;  
ToxAlerts:TA609;  
ToxAlerts:TA678;  
ToxAlerts:TA716; 

isocyana
te; 
acylating
; 
genotox; 

CYS; 
NH2; 
LYS; 
A; G; 

IT
CN 

Isothiocya
nates 

N(C)=C=S 3 Isothiocyanate are strong electrophilic 
groups reacting with nucleophilic 

PMID:20693071; 
PMID:8144710;  

wiki:Isothiocyanat
e;  

isothiocy
anate; 

CYS; 
NH2; 



group in protein residues, DNA and 
RNA; they act through acylating 
reaction mechanism that can be also 
considered a Schiff base formation 
reaction; isothiocyanate derivatives 
are reported to cause skin 
sensitization and acute aquatic 
toxicity; even though several papers 
reported genotoxic effects for 
thiocyanate derivatives, their 
genotoxicity is controversi 

PMID:2269228; 
PMID:21809939; 
PMID:17317210; 
PMID:8159717; 
PMID:19402170; 
PMID:21461351; 
PMID:21241062; 
PMID:21401043; 
PMID:18621573; 
PMID:15935536; 

ToxAlerts:TA230;  
ToxAlerts:TA316;  
ToxAlerts:TA372;  
ToxAlerts:TA424;  
ToxAlerts:TA610;  
ToxAlerts:TA680;  
ToxAlerts:TA717; 

acylating
;  
genotox 

LYS; 

CB
DI 

Carbodiimi
des 

N(C)=C=NC 1 Carbodiimides are electrophilic group 
reacting with nucleophilic group in 
protein residues, through acylation; 
they hydrolize to form ureas; 

PMID:21809939; 
PMID:20131845; 

ToxAlerts:TA718; 
wiki:Carbodiimide; 
ToxAlerts:TA1865; 

carbodii
mide; 
acylating 

CYS; 

TH
CY 

Thiocyanat
es 

CSC#N 2 Thiocyanate are alkylating agent that 
may undergo SN2 reaction with 
cysteine residues, forming a covalent 
disulfide bridge; thiocyanate 
derivatives have been reported to give 
positives results in acute aquatic 
toxicity tests; 

PMID:23061697; 
PMID:2269228; 
PMID:21809939; 

wiki:Thiocyanate; 
ToxAlerts:TA653; 
ToxAlerts:TA679; 
ToxAlerts:TA799; 

thiocyan
ate; 
alkylatio
n; 
cysteine; 
disulfur 
bridge 

CYS; 

HY
DA 

Hydroxami
c acid 

C!@C(=O)!@[N;H]
[O;H] 

1 hydroxamate functional group has 
been shown to act as metal chelator; 
they may chelate metal ions present in 
metalloproteinases as well as react 
with thiols; metal ion chelation 
represents a common artifacts in 
biological screening; several 
compounds targeting histone 
deacetylase carring hydroxamate 
functional group are under 

PMID:23061697; 
PMID:22837956; 
PMID:23701657; 
PMID:19239360; 
PMID:21139608; 
PMID:12565011; 

wiki:Hydroxamic_a
cid; 
ToxAlerts:TA1723; 

hydroxa
mic acid; 
hydroxa
mate; 

CYS; 



development as anticancer and anti-
HIV drugs; 

ET
CA 

Ethylcarba
mates 

[C;H3][C;H2]OC(=
O)NC 

1 carbamates are useful functional 
groups in drug discovery, they are 
used in cholineasterase inhibitors such 
as rivastigmine,that covalently 
modifies S200 in acetylcholinesterase, 
in the anti-epileptic drug felbamate 
and in other approved drugs;  however 
some derivatives have been related to 
cancer; in particular ethylcarbamate, 
used in the past as antineoplastic drug, 
has been added by IARC to group 2A 
carginogen, that means it is 

PMID:20205516; 
PMID:20529350; 
PMID:18621573; 

wiki:Ethyl_carbam
ate; 
wiki:Carbamate; 
ToxAlerts:TA373; 
ToxAlerts:TA440; 
ToxAlerts:TA690; 

ethylcar
bamate; 
carbama
te; 

 

AZ
ID 

Azides [N-]=[N+]=NC 3 Azides are classified as genotoxic 
carcinogens, mutagens, and skin 
sensitizers; azide can be bioactivated 
to produce highly electrophilic 
compound, that may react with 
nucleophilic site in DNA,RNA and 
proteins; 

PMID:20693071; 
PMID:18621573; 
PMID:16922655; 
PMID:16711725; 

wiki:Azide; 
ToxAlerts:TA223; 
ToxAlerts:TA225; 
ToxAlerts:TA336; 
ToxAlerts:TA379; 
ToxAlerts:TA825; 
ToxAlerts:TA1775; 

azide; 
Idiosync
ratic 
toxicity; 
genotoxi
city 

 

TH
NE 

Thione 
esters 

C([$(C=C),$(C#C),
$(a)])OC(=S)([H,C
]) 

1 Thione esters of aromatic derivatives 
or deriving from unsaturated alcohol 
have been suggested to act as skin 
sensitizers; 

PMID:18853302; 
PMID:23061697; 

ToxAlerts:TA462; thione 
ester; 

 

DT
HN 

dithione CC(=S)C(=S)C 2 Dithiones have been reported to 
induce skin sensitization that can react 
with protein hard nucleophiles 
through a Schiff base formation 
reaction; 

PMID:23061697; 
PMID:18853302; 
PMID:20131845; 

ToxAlerts:TA454; 
ToxAlerts:TA455; 
ToxAlerts:TA1958; 

dithione  

PE
RO 

Peroxides OO 3 peroxides are functional group with an 
redox-unstable oxygen-oxygen single 

PMID:20693071; 
PMID:8144710; 

wiki:Peroxide; 
Toxalerts:TA227; 

peroxide
; radical; 

 



bond, that can split into reactive 
radicals; radicals just formed may 
causes toxicity via protein, lipids and 
DNA oxidation; peroxides and 
peroxide-radicals are related to skin 
sensitization reaction, genotoxicity 
and artifacts in biological and 
biochemical assaysd; 

PMID:12565011; 
PMID:16711725; 

Toxalerts:TA303; 
Toxalerts:TA304; 
Toxalerts:TA305; 
Toxalerts:TA307; 

AC
DS 

Acyclic 
disulfides 

[S;R0][S;R0] 3 acyclic disulfide can be hydrolized into 
thiols, and subsequently undergoing 
SN2 reaction with cysteines exposed 
on protein surface to form covalent 
disulfide bridges; compounds 
containing disulfide bridges have been 
related to skin sensitization, acute 
aquatic toxicity and to idiosyncratic 
toxicity; disulfide derivatives may also 
cause assay interferences, reaction 
aspecifically with proteins and with 
sulfur-containing media comp 

PMID:23061697; 
PMID:8144710; 
PMID:2269228; 
PMID:21809939; 
PMID:16922655; 
PMID:12565011;  
PMID:20131845; 

ToxAlert:TA301; 
ToxAlert:TA648; 
ToxAlert:TA649; 
ToxAlert:TA651; 
ToxAlert:TA795; 
ToxAlert:TA797; 
ToxAlert:TA839; 
wiki:Disulfide; 
ToxAlert:TA1870; 

disulfide
; sulfur 
bridges; 

CYS; 

NI
TS 

Nitroso O=[N;D2]C 2 alkyl and aryl nitroso derivatives can 
react with a broad spectrum of 
biological nucleophiles through Schiff 
base formation reaction; nitroso 
derivatives have been related to 
genotoxic carcinogenicity, 
mutagenicity; the degree of hazard 
related to nitroso derivatives depends 
on substituents, that can enhance or 
mitigate the electrophilic potential of 
the nitroso group, making it more 
prone to react with nucleophilic site; 

PMID:18621573; 
PMID:15935536; 
PMID:15634026; 

wiki:Nitroso; 
Toxalerts:TA324; 
ToxAlerts:TA331; 
ToxAlerts:TA382; 
ToxAlerts:TA397; 
ToxAlerts:TA456; 

nitroso;  



AN
IL 

Aniline c1ccccc1[N;H2] 2 Aniline derivatives are reported as 
structural alerts for bioactivation: the 
phenil ring might be oxidated to 
produce a reactive quinone-imine 
metabolite. Several marketed drug 
containing an alanine moiety received 
a black box warning from FDA due to 
idiosyncratic adverse drug reactions; 

PMID:16922655; 
PMID:21702456; 
PMID:17302443; 
PMID:21455238; 

wiki:Aniline aniline;  

AN
LD 

Anilides c1ccccc1[N;H]C(=
O)[C;H3] 

2 Anilide derivatives are reported as 
structural alerts for bioactivation: the 
phenil ring might be oxidated to 
produce a reactive quinone-imine 
metabolite. Several marketed drug 
containing an alanine moiety received 
a black box warning from FDA due to 
idiosyncratic adverse drug reactions; 

PMID:16922655; 
PMID:21702456; 
PMID:17302443; 
PMID:21455238; 

wiki:Aniline anilide;  

NN
IT 

N-nitro O=[N+](N)[O-] 3 Compounds presenting N-nitro groups 
are metabolic unstable; due to their 
high electophilicity they can react with 
highly nuclophilic site on DNA, RNA 
and proteins; they give positive results 
in AMES assay to assess genotoxicity, 
in particular aliphatic N-nitro 
derivatives; 

PMID:23061697; 
PMID:18621573; 

ToxAlerts:TA350; 
ToxAlerts:TA380; 

N-nitro A; G; 
CYS; 
LYS; 

NN
IS 

N-nitroso, 
nitrosamin
e 

O=[N;D2]N 3 nitrosamines, especially nitrosoureas 
and nitrosoguanidine,may react via 
SN2 mechanism to add a nitroso group 
to cysteine (and/or lysine) residues 
exposed on protein surface, in the so 
called "nitrosation reaction"; due to 
their ability of alkylate proteins they 
have been related to genotoxic 

PMID:23061697; 
PMID:21809939; 
PMID:18621573; 
wiki:Nitrosamine; 

ToxAlerts:TA378; 
ToxAlerts:TA399; 
ToxAlerts:TA400; 
ToxAlerts:TA401; 
ToxAlerts:TA402; 
ToxAlerts:TA403; 
ToxAlerts:TA404; 
ToxAlerts:TA464; 

N-
nitroso; 
nitrosam
ine; 

 



carcinogenicity, mutagenicity; n-
nitroso compounds are also metabolic 
unstable; 

ToxAlerts:TA790; 
ToxAlerts:TA971 

AZ
O 

Azo, Diazo 
compound
s 

C/[N;D2]!@=[N;D
2]/C 

3 the stability of the azo-compound 
depend on the subtituents attached to 
the nitrogen atoms; the most stable 
are those bearing two aryl groups, 
whereas alkyl derivatives are less 
stable; however under reductive 
conditions azo-compounds bearing 
aromatic rings as substituents, break 
down into two aromatic amines; azo-
groups with aromatic substituents are 
frequent in dyes and pigments and 
some derivatives, used as dye, have 
been found 

PMID:23061697;  
PMID:21809939; 
PMID:15634026; 
PMID:12565011; 

wiki:Azo_compoun
d; 
ToxAlerts:TA258; 
ToxAlerts:TA262; 
ToxAlerts:TA326;T
oxAlerts:TA337; 
ToxAlerts:TA339; 
ToxAlerts:TA351; 
ToxAlerts:TA371; 
ToxAlerts:TA388; 
ToxAlerts:TA425; 
ToxAlerts:TA428; 

azo; 
diazo; 
genotox 

 

AZ
OX
; 

Azoxy C/N=[N+](/!@C)O 3 Azoxy compounds are oxidate azo 
derivatives also called N-oxide; azoxy 
compounds give positive results in 
AMES genotoxicity assay; 

PMID:18621573; 
PMID:15935536; 

wiki:Azoxy;  
ToxAlerts:TA371;  
ToxAlerts:TA406; 

azoxy;  

NI
TR 

Nitroso 
dimers 

C/[N+](=[N+](/C)
O)O 

3 unstable, nonspecific binder, breaks by 
N=N and forms mutagenic and 
cancerogenic nitroso-like compounds 

    

HL
AM 

Haloamine
s 

CN([F,Cl,Br])[C;R] 3 Haloamines are functional groups 
containing an halogen atom directly 
bound to a nitrogen atom; linear 
haloamines are quite reactive, 
particularly prone to oxidation, and 
they have been shown to be genotoxic 
in in vitro assays; haloimides 
(RC(=O)N(X)(C=O)R) have been 
reported to be genotoxic as well, and 

PMID:23061697; 
PMID:20693071; 
PMID:21809939; 
PMID:15935536; 

ToxAlerts:TA417 
(haloamine); 
ToxAlerts:TA250; 
ToxAlerts:TA804; 

haloami
ne; 
haloimid
e; 
oxidizer; 
genotox 

 



to induce skin sensitization; there are 
no clear evidences of the mechanism, 
however an hypothetical mechanism 
involving a SN2 re 

SF
EH 

Sulfenyl 
halides 

[F,Cl,Br,I][S;D2]C 2 Sulfenyl halides have ah halogen atom 
directly bound to a sulfur atom; as 
haloamine, they are unstable and can 
form RCS+, that act as oxidizers; due to 
the electrophilic nature, sulfenyl 
halides can react with cysteine 
residues, via SN2 reaction mechanism, 
forming a covalent disulfide bridge 
and leading to the final alkylated 
protein adduct; compounds carrying 
this functional group gave positive 
results in acute aquatic toxicity t 

PMID:23061697; 
PMID:2269228; 
PMID:21809939; 

wiki:Sulfenyl_chlor
ide; 
ToxAlerts:TA654; 
ToxAlerts:TA798; 

sulfenyl 
halides; 
oxidizer; 
disulfide 
bridge 

 

SFI
H 

Sulfinyl 
halides 

[F,Cl,Br,I][S;D3](C
)=O 

3 unstable, nonspecific binder to 
hydroxy- or amino-group 

    

C2
C2 

1,2 dienes 
(allenes) 

CC=C=C 2 Allenes are strong acylating agents, 
that can react via Michael type 
addition reaction to form a covalent 
adduct with the protein; due to the 
two double bond they are more 
reactive than simple alkenes; 
moreover the reactivity can be further 
increased by the presence of 
electrowithdrawing substituents like 
NO2, C=O, C#N, S=O; 

PMID:23061697; 
PMID:18853302; 

wiki:Allene;  
ToxAlerts:TA471 

allene; 
diens 

 

R3
O 

Oxiranes; 
epoxide 

C(O1)C1 3 Epoxides are unstable strained 
heterocycles, highly reactive and 
prone to ring opening at C-O bond, 
forming covalent adducts with 

PMID:23061697; 
PMID:21809939; 
PMID:18621573; 
PMID:15935536;  

wiki:Oxirane; 
ToxAlerts:TA409; 
ToxAlerts:TA254; 
ToxAlerts:TA271; 

oxirane; 
alkylatin
g; 
epoxide; 

CYS; 
NH2; 
LYS; 



biological nucleophiles through a SN2 
reaction; due to their high reactivity 
epoxides have been shown to act as 
alkylating agents, skin sensitizers and 
genotoxic carcinogens and to induce 
acute aquatic toxicity; 

PMID:2269228;  
PMID:20693071;  
PMID:15656773; 
PMID:8144710; 
PMID:15634026; 
PMID:12565011; 

ToxAlerts:TA283; 
ToxAlerts:TA334; 
ToxAlerts:TA364; 
ToxAlerts:TA442; 
ToxAlerts:TA613; 
ToxAlerts:TA666; 
ToxAlerts:TA785; 

R3
S 

Thiiranes; 
thiorane 

C(S1)C1 3 Thiirane are strained sulfur-containing 
ring systems; they can undergo a ring 
opening reaction at C-S bond, give SN2 
reaction with biologial nucleophiles, in 
particular S-containing ones, forming 
an alkylated adduct via SS bridge; 

PMID:23061697; 
PMID:21809939; 

ToxAlerts:TA787; 
wiki:Thiirane; 

thiorane; 
thiirane 

CYS; 

R3
N 

Aziridines C(N1)C1 3 Aziridines are three-membered ring 
systems, highly unstable; due to their 
strong electrophilic nature their are 
subject to be attacked by endogenous 
nucleophiles that causes the opening 
of the ring system and the formation of 
a covalent adduct with the 
nucleophiles via SN2 reaction 
mechanism; given their high reactivity 
aziridines react with several 
nucleophiles, present in DNA, RNA and 
proteins, causing DNA and RNA 
mutations that 

PMID:23061697; 
PMID:2269228; 
PMID:21809939; 
PMID:18621573;  
PMID:12565011; 

wiki:Aziridine; 
ToxAlerts:TA335; 
ToxAlerts:TA364; 
ToxAlerts:TA409; 
ToxAlerts:TA614; 
ToxAlerts:TA786; 

aziridine
s; 
genotox; 

CYS; 
A; G; 
NH2; 
LYS; 

TH
AD 

Thiazolidi
nedione 

C1SC(=O)NC1(=O) 2 The thiazolidinedione moiety present 
in some drugs withdrawn from the 
market or with black box warning is 
considered a possible cause of the 
IADR; CYP3A can catalize the opening 
of the thiazolidinedione ring, 

PMID:16922655; 
PMID:21702456; 
PMID:17302443; 
PMID:21455238; 

ToxAlerts:TA849; thiazolid
inedione
; 

 



producing a sulfur-containing 
metabolite that, in case of troglitazone, 
pioglitazone and rosiglitazone, all 
containing the thiazolidinedione 
moiety, has been related to BSEP 
inhibition; 

TE
RT 

tertial 
alkyl 
halides 

CC([C;R0])([C;R0]
)[Cl,Br,I] 

3 alkyl halides are potential electrophilic 
agents that can undergo SN2 reaction 
with biological nucleophiles producing 
protein alkylation. Some studies report 
genotoxicity (RF11), acute aquatic 
toxicity (RF 6), skin sensitization (RF 
2,3,4) and the possibility of 
idiosyncratic toxicity due to formation 
of reative metabolites (RF12) 

PMID:20693071; 
PMID:2269228; 
PMID:21809939; 
PMID:15634026; 
PMID:16922655; 
PMID:12565011; 

wiki:Haloalkane; 
ToxAlerts:TA439;  
ToxAlerts:TA634;  
ToxAlerts:TA635; 
ToxAlerts:TA327; 
ToxAlerts:TA342; 
ToxAlerts:TA655; 
ToxAlerts:TA856 

tertial 
alkyl 
halides; 
alkylatin
g 

 

SE
CO 

secondary 
alkyl 
halides 

[C;^3]!@[C;H][C;H
2][Cl,Br,I] 

2 alkyl halides are potential electrophilic 
agents that can undergo SN2 reaction 
with biological nucleophiles resulting 
in protein alkylation; some studies 
report genotoxicity, acute aquatic 
toxicity, skin sensitization reaction and 
the possibility of idiosyncratic toxicity 
due to the formation of reative 
metabolites; 

PMID:20693071; 
PMID:2269228; 
PMID:21809939; 
PMID:15634026; 
PMID:15935536; 
PMID:16922655; 
PMID:12565011; 

wiki:Haloalkane;  
ToxAlerts:TA772; 
ToxAlerts:TA439;  
ToxAlerts:TA634;  
ToxAlerts:TA635; 
ToxAlerts:TA327; 
ToxAlerts:TA342; 
ToxAlerts:TA407; 
ToxAlerts:TA655; 

secondar
y alkyl 
halide; 
alkylatin
g 

CYS; 
NH@; 

AL
DE 

aldehydes [c;C][C;H](=O) 3 aldehyde are quite reactive functional 
groups that can act as non-specific 
binders forming covalent bonds with 
serine or cysteine residues on protein 
surfaces, resulting in hemiacetal 
derivatives; they can also react with 
free -NH2 (lys and arg + protein 
terminal NH2) via Schiff base reaction 

PMID:23061697; 
PMID:20693071; 
PMID:2269228; 
PMID:21809939; 
PMID:18621573; 
PMID:18853302; 
PMID:12565011; 
PMID:21401043; 

ToxAlerts:TA244; 
ToxAlerts:TA264; 
ToxAlerts:TA290; 
ToxAlerts:TA368; 
ToxAlerts:TA432; 
ToxAlerts:TA449; 
ToxAlerts:TA450; 
ToxAlerts:TA451; 

aldehyde
; 

CYS; 
SER; 
NH2; 
LYS; 
ARG; 



to form imines; endpoints reported as 
consequences of these chemical 
reactions are skin sensitization, 
genotoxic carcinogencity, skin sensti 

ToxAlerts:TA611; 
ToxAlerts:TA677; 
ToxAlerts:TA762; 
wiki:Aldehyde; 

AR
AC 

Arylacetic, c1ccccc1[C;H2]C(=
O)[O;H] 

2 arylacetic derivatives are a common 
scaffold in NSAIDs, however some 
marketed drug have been withdrawn 
from the market or received a black 
box warning due to IADRs; these 
idiosyncratic ADRs are  believed to be 
immune-mediated responses linked to 
the beta-1-O-acyl glucuronide 
metabolites, that can covalently 
modify proteins via transacylation 
reaction or through acyl migration 
within the beta-O-glucoronide to a 
reactive alpha-hydro 

PMID:16922655; 
PMID:21702456; 
PMID:17302443; 
PMID:21455238; 

wiki:Non-
steroidal_anti-
inflammatory_grug 

arylaceti
c acid, 
nsaid 

LYS; 
NH2; 

HY
ZI 

hydrazines 
and 
hydrazides 

[N;D3](C)(C)!@N!
@[C] 

2 hydrazines are nucleophiles 
derivatives and, if the nitrogen atoms 
are not fully sibstituted, they can be 
highly unstable, leading to breakage of 
the N=N bond and to the formation of 
hydrazonium ion, that easily react 
with proteins, forming covalent 
adducts and breaking peptide bonds; 
hydrazine derivatives have been 
shown to cause skin sensitization, 
genotoxic carcinogenicity, and are also 
source of promiscuity in experimental 
ass 

PMID:23061697; 
PMID:15656773; 
PMID:18621573; 
PMID:21809939; 
PMID:16922655; 

wiki:Hydrazine; 
ToxAlerts:TA262; 
ToxAlerts:TA318; 
ToxAlerts:TA354; 
ToxAlerts:TA370; 
ToxAlerts:TA405; 
ToxAlerts:TA431; 
ToxAlerts:TA668; 
ToxAlerts:TA825; 
ToxAlerts:TA1794; 

genotox; 
hydrazin
e; 
hydrazid
es 

 

HY
ZO 

hydrazone
s 

N(!@N)=C 1 hydrazones are electrophilic 
functional group that can bind to 

PMID:23061697; 
PMID:20131845; 

wiki:Hydrazone; 
ToxAlerts:1905; 

hydrazo
ne; 

 



proteins in an unspecific way, 
especially forming aggregates in in-
vitro assays consequently giving false 
positives results; some hydrazones 
derivatives gave positives results in 
AMES assay for genotoxicity, however 
many others did not, making it difficult 
to directly relate the genotoxic 
outcomes to the hydrazone 
functionality alone; 

PMID:21401043; ToxAlerts:1911; 
ToxAlerts:1934; 
ToxAlerts:1935; 

HY
AM 

hydroxyla
mines 

c[N;D2][O;H] 3 hydroxylamines are nucleophiles 
functional groups, whose 
nucleophilicity is increased by lone 
pair electrons on the alpha atom; they 
are highly reactive, mostly through the 
oxigen atom and expecially towards 
phosphorus atoms; due to their 
reactivity they can act as unspecific 
binders: and induce random mutations 
in DNA and RNA; several 
hydroxylamine derivatives bind to 
oxyhemoglobin leading to the 
formation of hematotoxic radical 

PMID:23061697; 
PMID:21809939; 
PMID:15935536; 
PMID:15634026; 
PMID:12565011; 
PMID:16984161; 
PMID:10087986; 
PMID:9821018; 

wiki:Hydroxylamin
e;  
ToxAlerts:TA341; 
ToxAlerts:TA398; 
ToxAlerts:TA356; 
ToxAlerts:TA404; 

hydroxyl
amine; 
alkylatin
g; 
genotox; 

 

NO
XD 

N-oxides [O-
][N+]1=CC=CC=C1 

1 aromatic N-oxides are both more 
electrophilic and nucleophilic 
compared to pyridine; they can 
undergo both electrophilic or 
nucleophilic attack at the oxigen atom 
and at the 2- or 4-position; some 
already approved or under 
development drugs contain the 
pyridine n-oxide moiety; some 

PMID:18621573; 
PMID:3277047; 

wiki:Amine_oxide; 
ToxAlerts:TA383; 
ToxAlerts:TA429; 

genotox; 
pyridine 
n-oxide; 
n-oxide; 

 



pyridine n-oxide derivatives were 
shown to be genotoxic; 

AM
MO 

Ammoniu
m alkyl 
quaternar
y salts 

[N+](C)(C)(C)C 1 alkyl quaternary ammonium salts are 
reported being skin sensitizers and to 
provoke acute aquatic toxicity; some of 
them cause toxicity due to DNA 
intercalation, as ethidium bromide; 
ammonium salts with reactive 
substituent, like epoxide, have been 
reported to be genotoxic; moreover 
the positive charge makes more 
difficult to cross the intestinal wall in 
case of the development of oral drugs; 

PMID:20693071; 
PMID:2269228; 
PMID:16084005; 
PMID:23061697; 
PMID:5859041; 

wiki:Ammonium_s
alt; 
ToxAlerts:TA259; 
ToxAlerts:TA642; 

ammoni
um 
quaterna
ry salt; 
ammoni
um salt; 
quaterna
ry salt; 

 

TH
IO 

thiol [C;Y1][S;H] 3 Thiols can easily react with solvent 
exposed cysteine residues on protein 
surface and with reducing agent DTT 
often used in biochemical assay media; 
moreover thiols may chelate metal 
ions during in-vitro assays and 
interact with endogenous 
metalloproteinases or others metallo-
dependent enzymes; thiol derivatives 
have been related to skin sensitization 
reaction and production of reactive 
metabolites leading to idiosyncratic 
toxicit 

PMID:16711725; 
PMID:8144710; 
PMID:21809939; 
PMID:12565011; 

ToxAlerts:TA300; 
ToxAlerts:TA794; 
ToxAlerts:TA838; 
ToxAlerts:TA1724; 

thiol; CYS 

SU
LF 

Sulfonium 
salts 

[S+](C)(C)C 1 sulfonium salts have been reported to 
cause acute aquatic toxicity and to 
cause assay interference, probably due 
to protein alkylation; 

PMID:2269228; 
PMID:23061697; 
PMID:16711725; 
PMID:21401043; 

wiki:Sulfonium_salt
; ToxAlerts:TA643; 
ToxAlerts:TA1817; 

  

AH
LC 

a-
halocarbo

C([C;R0][Cl,Br,I])(
=O)C 

3 In a-halocarbonyl the reactivity of the 
sp3 carbon bound to the halogen atom 

PMID:21809939; 
PMID:12565011; 

Toxalerts:TA273; 
Toxalerts:TA416; 

a-
halocarb

 



nyl is increased by the carbonyl moiety in 
alpha position. The sp3 carbon atom 
undergo a nucleophilic attack, forming 
a new covalent bond with the 
endogenous nucleophilic group 
through a SN2 reaction; alpha-
halocarbonyls have been related to 
genotoxicity and skin sensitization 
reaction; alpha-(poly)halogenated 
carbonyls have been shown to possibly 
cause inter 

PMID:16711725; 
PMID:15935536; 
PMID:15656773; 

Toxalerts:TA779; 
wiki:Haloketone; 
ToxAlerts:TA1746; 

onyl; a-
haloketo
n; alpha-
halocarb
onyl; 

BH
LA 

b-
haloamine
s; 
haloethyla
mine, N-
mustard 

[C;Y1](!@[C;H2][C
l,Br,I])!@N 

3 beta-haloamine also called N-mustard 
are non-specific DNA alkylating agents, 
that have been used as anticancer 
agents; they act undergoing first an 
intramolecular cyclization that forms 
an aziridinium intermediate, and then 
reacting with nucleophilic centre on 
guanine base in DNA strands; they can 
also react with cysteine (and lysine) 
residues through an SN2 reaction to 
form a covalent adducts; some 
haloethylamine derivatives have 

PMID:18621573;  
PMID:21809939; 
PMID:15634026; 
PMID:2269228; 

ToxAlerts:TA414;  
ToxAlerts:TA624; 
ToxAlerts:TA344; 
ToxAlerts:TA362; 
ToxAlerts:TA435; 
ToxAlerts:TA687; 
ToxAlerts:TA810; 
wiki:Nitrogen_mus
tard; 

haloami
nes; 
haloethy
lamine; 
N-
mustard, 
genotox 
(N-
mustard
) 

 

BH
LS 

b-
halosulfide
s, S-
mustard 

C(!@C[Cl,Br,I])!@
S 

2 beta-halosulfides or S-mustard are 
highly reactive and cytotoxic agents; 
they  undergo an intramolecular 
cyclizationn, forming an episulfonium 
intermediate that with guanidine in 
DNA strand to form a covalent adduct; 
the damage in DNA strand can lead to 
cell death as well as to uncontrolled 
cell replication, leading to cancer 

PMID:21809939;  
PMID:18621573;  
PMID:15634026; 
PMID:2269228; 

ToxAlerts:TA344; 
ToxAlerts:TA362; 
ToxAlerts:TA435; 
ToxAlerts:TA623; 
ToxAlerts:TA688; 
ToxAlerts:TA810; 
wiki:Sulfur_mustar
d; 

genotox 
(S-
mustard
) 

 



development; beta-halosulfide 
derivatives are strongly lipophilic and 
can be easily absorbed by skin; they 

AC
RL 

acrylates; 
alpha-beta 
usaturated 
carboxylic 
esters 

C(=O)(!@C!@=C([
H]))O 

2 carboxylic acid and esters alpha-beta 
usaturated are considered Michael 
acceptors because they can undergo 
Micheal addition reaction after the 
attack of a nucleophile upon the 
electron deficient beta-carbon; di-
substitution at the beta-carbon may 
prevent Michael addition due to 
sterical hindrance; acrylate derivatives 
have been reported to cause acute 
aquatic toxicity, skin sensitization 
reaction; given their Michael acceptor 
natu 

PMID:2269228; 
PMID:21809939; 
PMID:16711725; 
PMID:20693071; 
PMID:18621573; 
PMID:15935536; 

Toxalerts:TA240; 
Toxalerts:TA630; 
Toxalerts:TA631; 
ToxAlerts:TA292; 
ToxAlerts:TA723; 
Toxalerts:TA467; 
Toxalerts:TA468; 
Toxalerts:TA1815; 
Toalerts:TA1821; 
wiki:Acrylate; 
ToxAlerts:TA367; 
ToxAlerts:TA418 

acrylate; 
acrylate 
ester; 
alpha-
beta 
unsatura
ted 
carbonyl
; 

CYS; 
NH2; 

AC
RA 

acrylamide
s; alpha-
beta 
usaturated 
amide 

C(=O)(!@C!@=C([
H]))N 

3 acrylamide  esters alpha-beta 
usaturated are considered Michael 
acceptors because they can undergo 
Micheal addition reaction after the 
attack of a nucleophile upon the 
electron deficient beta-carbon; di-
substitution at the beta-carbon may 
prevent Michael addition due to 
sterical hindrance; acrylate derivatives 
have been reported to cause acute 
aquatic toxicity, skin sensitization 
reaction; given their Michael acceptor 
nature they 

PMID:21809939; 
PMID:20693071; 
PMID:18621573; 
PMID:15935536; 
PMID:2269228; 

wiki:Acrylamide; 
ToxAlerts:TA367; 
ToxAlerts:TA240; 
ToxAlerts:TA625; 
ToxAlerts:TA242; 
ToxAlerts:TA292; 
ToxAlerts:TA724; 
ToxAlerts:625; 
ToxAlerts:TA367; 
ToxAlerts:TA418; 

acrylami
de; 
alpha-
beta 
unsatura
ted 
carbonyl
; 

CYS; 
NH2; 

VI
NK 

vinylketon
es; alpha-
beta 

C(=O)(!@C!@=C([
H]))C 

3 alpha-beta unsaturated carbonyl 
derivatives are Micheal acceptors, 
hence are prone to Micheal addition by 

PMID:21809939; 
PMID:12565011; 
PMID:20693071; 

ToxAlerts:TA240; 
ToxAlerts:TA242; 
ToxAlerts:TA292; 

vinylket
one; 
alpha-

CYS; 
NH2; 



unsaturate
d ketone 

reacting with endogenous 
nucleophiles, forming a covalent 
adduct after attacking the electron 
deficient beta carbon; like all other 
Micheal acceptors, double substitution 
on the beta carbon atom can prevent 
or even avoid the reaction; vinyl 
ketone derivatives were found to be 
skin sensitizers ans irritants, 
especially for the 

PMID:18853302; 
PMID:15935536; 
PMID:2269228; 

ToxAlerts:TA367; 
ToxAlerts:TA453; 
ToxAlerts:TA722; 
ToxAlerts:TA418; 
ToxAlerts:TA632; 
wiki:Methyl_vinyl_
ketone; 

beta 
unsatura
ted 
ketone; 

VI
NS 

vinylsulfon
es; alpha-
beta 
unsaturate
d sulfone 

S(=O)(C!@=C([H])
)(=O)[H] 

3 vinylsulfones are alkenes presenting 
an electron withdrawing group that 
makes the carbon atom in beta 
position with respect to the 
substituent very electrophilic, and 
subsequently reacting with 
endogenous nucleophiles on protein 
residues, causing skin sensitization 
reactions and acute aquatic toxicity; as 
well as for other Micheal acceptors, the 
Michael addition reaction can be 
prevented by double bulky 
substituents on the beta ca 

PMID:21809939; 
PMID:23061697;  
PMID:2269228; 
PMID:18853302; 

ToxAlerts:TA629; 
ToxAlerts:TA728; 

vinylsulf
one; 
alpha-
beta 
unsatura
ted 
sulfone; 
alpha-
beta 
unsatura
ted 
sulphone
; 

CYS; 
NH2; 

NT
RV 

nitrovinyl; 
alpha-beta 
unsaturate
d nitro 
compound
s 

N(=O)(C!@=C([H]
))=O 

3 compounds presenting a nitrovinyl 
moiety are Michael's acceptor, that 
react with biological nucleophiles 
forming covalent adducts; they have 
been shown to give positive results in 
acute aquatic toxicity tests; di-
substitution at the beta-carbon can 
sterically hinders the Michael addition; 
formation of reactive metabolites has 

PMID:23061697;  
PMID:21809939; 
PMID:2269228;   
PMID:16922655; 

ToxAlerts:TA628; 
ToxAlerts:TA725; 

nitroviny
l; alpha-
beta 
unsatura
ted nitro 
compou
nds; 

 



also been pointed out for compounds 
carrying this functional group; 

AC
RN 

acrylonitri
les; vinyl 
ciano 
compound
s; 

C(#N)C!@=C 3 acrylonitriles are highly reactive 
Michael's acceptor that can undergo 
Michael addition due to the attack of a 
biological nucleophile upon the 
electron deficient beta-carbon; 
acrylonitrile derivatives are reported 
to be skin sensitizers and to induce 
acute aquatic toxicity; acrylonitrile 
itself is listed in IARC classification 
among compounds possibly 
carcinogenic for humans; 

PMID:21809939; 
PMID:23061697; 
PMID:18853302; 
PMID:2269228;  
PMID:16922655; 

wiki:Acrylonitrile; 
ToxAlerts:TA726; 
ToxAlerts:TA743; 
ToxAlerts:TA726; 

acrylonit
rile; 
vinyl 
ciano 
compou
nd; 

CYS; 
NH2; 

PD
A1 

pyrimidine 
acrylates 

N(=C(N=CC1)C!@
=C([H]))C=1 

3 pyrimidine acrylate derivatives can 
behave as Michael's acceptor, hence 
reacting with biological nucleophiles 
upon the electron deficient beta-
carbon to form a covalent adduct; as 
all Micheal's acceptors di-substitution 
at the beta-carbon can sterically 
hinders the Michael addition reaction; 
pyrimidine acrylate derivatives have 
been reported to be skin sensitizer 
agents; 

PMID:21809939; 
PMID:18853302; 

ToxAlerts:TA733; 
ToxAlerts:TA467; 
ToxAlerts:TA468; 

pyrimidi
ne 
acrylate; 

CYS; 
NH2; 

PD
A2 

pyrimidine 
acrylates 

N(=CN=C(C1)C!@
=C([H]))C=1 

3 pyrimidine acrylate derivatives can 
behave as Michael's acceptor, hence 
reacting with biological nucleophiles 
upon the electron deficient beta-
carbon to form a covalent adduct; as 
all Micheal's acceptors di-substitution 
at the beta-carbon can sterically 
hinders the Michael addition reaction; 

PMID:21809939; 
PMID:18853302; 

ToxAlerts:TA733; 
ToxAlerts:TA467; 
ToxAlerts:TA468; 

pyrimidi
ne 
acrylate; 

CYS; 
NH2; 



pyrimidine acrylate derivatives have 
been reported to be skin sensitizer 
agents; 

PD
A3 

pyrimidine 
acrylates 

N(=CN=CC1C!@=C
([H]))C=1 

3 pyrimidine acrylate derivatives can 
behave as Michael's acceptor, hence 
reacting with biological nucleophiles 
upon the electron deficient beta-
carbon to form a covalent adduct; as 
all Micheal's acceptors di-substitution 
at the beta-carbon can sterically 
hinders the Michael addition reaction; 
pyrimidine acrylate derivatives have 
been reported to be skin sensitizer 
agents; 

PMID:21809939; 
PMID:18853302; 

ToxAlerts:TA733; 
ToxAlerts:TA467; 
ToxAlerts:TA468; 

pyrimidi
ne 
acrylate; 

CYS; 
NH2; 

PY
RR 

pyrrole-
2,5-dione 

C(C(NC1=O)=O)=C
1 

2 pyrrole-2,5-dione also called acid 
imide, is an alkylating agent that acts 
via Micheal type addition reactions 
with biological nucleophiles; acid 
imide derivatives have been reported 
to cause skin sensitization reaction 
and they also gave positives results in 
acute aquatic toxicity tests; as being 
cyclic alpha-beta insatured carbonyls, 
they have been also reported among 
genotoxic carcinogen compounds and 
among promiscuous deirvati 

PMID:15656773; 
PMID:21809939; 
PMID:8144710; 
PMID:15935536; 
PMID:18853302;  
PMID:2269228; 
PMID:16711725; 

ToxAlerts:TA272; 
ToxAlerts:TA761; 
ToxAlerts:TA292; 
ToxAlerts:TA418; 
ToxAlerts:TA467; 
ToxAlerts:TA625; 
ToxAlerts:TA632; 
ToxAlerts:TA1855; 

pyrrole-
2,5-
dione; 
acid 
imide; 

CYS; 
NH2; 

KE
TE 

Ketenes CC=C=O 3 Ketenes are reactive electrophilic 
derivatives that can react with protein 
nucleophiles to form acylated adducts; 
this potentially reactive specie has 
been shown to induce acute aquatic 
toxicity; 

PMID:23061697;  
PMID:21809939; 

wiki:Ketene; 
ToxAlerts:TA605; 
ToxAlerts:TA676; 
ToxAlerts:TA720; 

ketene; CYS; 
NH2; 



OP
HN 

o,p-
dinitro-
haloarenes
; o,p-
dinitrohal
obenzen 

c1([Cl,Br,F,I])c([N]
([O])=O)cc([N]([O
])=O)cc1 

3 o,p-dinitrohalobenzens as well as 
o,o,p-trinitrohalobenzens have been 
reported to be able to undergo a SNAr 
reaction, forming protein adducts; 
they have also been reported to be 
skin sensitizer agents, possibly 
mutagenic and causing aquatic 
toxicity; 

PMID:21809939; 
PMID:20693071; 
PMID:18853302; 
PMID:16084005; 
PMID:2269228;  
PMID:15656773; 

ToxAlerts:TA236; 
ToxAlerts:TA443; 
ToxAlerts:TA639; 
ToxAlerts:TA664; 
ToxAlerts:TA265; 

o,p-
dinitro-
haloaren
es; o,p-
dinitroh
alobenze
ne 

CYS; 
NH2; 
G; 

OO
HN 

o,o-
dinitro-
haloarenes
; o,o-
dinitrohal
obenzen 

c1c(N([O])=O)c([C
l,Br,F,I])c(N([O])=
O)cc1 

3 o,o-dinitrohalobenzens as well as 
o,o,p-trinitrohalobenzens have been 
reported to be able to undergo a SNAr 
reaction, forming protein adducts; 
they have also been reported to be 
skin sensitizer agents, possibly 
mutagenic and causing aquatic 
toxicity; 

PMID:21809939; 
PMID:20693071; 
PMID:18853302; 
PMID:16084005; 
PMID:2269228;  
PMID:15656773; 

ToxAlerts:TA236; 
ToxAlerts:TA443; 
ToxAlerts:TA639; 
ToxAlerts:TA664; 
ToxAlerts:TA265; 

o,p-
dinitro-
haloaren
es; o,p-
dinitroh
alobenze
ne 

CYS; 
NH2; 
G; 

AH
P1 

activated 
2,5-halo-
nitropyridi
ne 

n1c([Cl,F,Br,I,$([N
+](=O)O)])ccc([Cl,
F,Br,I,$([N+](=O)O
)])c1 

3 activated 2,5-halo-nitropyridine have 
been reported to be able to undergo a 
SNAr reaction, forming protein 
adducts; they have also been reported 
to be skin sensitizer agents; 

PMID:21809939;  
PMID:18853302; 

ToxAlerts:TA444; 
ToxAlerts:TA818; 

2,5-halo-
nitropyri
dine 

CYS; 
NH2; 

AP
H2 

activated 
2,3-halo-
nitropyridi
ne 

n1c([Cl,F,Br,I,$([N
+](=O)O)])c([Cl,F,
Br,I,$([N+](=O)O)]
)ccc1 

3 activated 2,3-halo-nitropyridine have 
been reported to be able to undergo a 
SNAr reaction, forming protein 
adducts; they have also been reported 
to be skin sensitizer agents; 

PMID:21809939; 
PMID:18853302; 

ToxAlerts:TA444; 
ToxAlerts:TA818; 

2,3-halo-
nitropyri
dine; 

CYS; 
NH2; 

BZ
HL 

Benzylhalo
genides; 
alpha-
halobezyls
; 

C(=CC=C(C1)[C;^3
][Cl,Br,I])C=1 

3 alpha-halobenzyls present an reactive 
sp3 carbon atom that can undergo a 
SN2 reaction with biological 
nucleophiles; benzylic halides have 
shown in experimental assyas 
genotoxicity, acute aquatic toxicity and 

PMID:21809939; 
PMID:2269228; 
PMID:15935536; 
PMID:3277047; 

ToxAlerts:TA408; 
ToxAlerts:TA638; 
ToxAlerts:TA783; 
ToxAlerts:TA439; 
ToxAlerts:TA700; 

Benzylha
logenide; 
alpha-
halobezy
l; 
benzylic 

CYS; 
NH2; 



skin sensitization reactions; halide; 
H
ME
O 

halomethy
l ethers; 
alpha-
haloethers 

[C;^3]O!@C([F,Cl,
Br,I]) 

3 alpha-haloethers present an reactive 
sp3 carbon atom that can undergo a 
SN2 reaction with biological 
nucleophiles; positive results have 
been reported for acute aquatic 
toxicity tests with halomethyl ether 
derivatives and the possibility of 
idiosybcratic toxic reaction has also 
been pointed out; 

PMID:21809939; 
PMID:2269228; 
PMID:16922655; 

ToxAlerts:TA622; 
ToxAlerts:TA784; 
ToxAlerts:TA856; 

alpha-
haloethe
r; 
halomet
hyl 
ethers; 

CYS; 
NH2; 

TH
FU 

Thiophene
, Furan 

[s,o]1[c;R1][c;R1][
c;R1]c1 

2 thiophene and furan heterocycles have 
been reported to possibly induce 
idiosyncratic adverse drug reaction; 
some thiophene derivatives are 
reported to act as interfering 
compunds in vitro biochemical tests; 

PMID:16922655; 
PMID:21702456; 
PMID:17302443; 
PMID:21455238; 

ToxAlerts:TA847; 
ToxAlerts:TA1955; 
ToxAlerts:TA2216; 
ToxAlerts:TA846; 

thiophen
e, furan 

 

4H
PM 

4-
halopyrimi
dine; 4-
nitropyrim
idine 

c1([F,Cl,Br,I,$(N(=
O)O)])ncncc1 

1 4-halopyrimidine and  4-
nitropyrimidine are potential 
electrophilic agents that can react with 
biological nucleophiles; they have also 
been reported to be skin sensitizers 
and to induce acute aquatic toxicity; 

PMID:21809939; 
PMID:18853302; 
PMID:2269228; 

ToxAlerts:TA446; 
ToxAlerts:636; 

4-
halopyri
midine; 
4-
nitropyri
midine; 

 

2H
PM 

2-
halopyrimi
dine; 2-
nitropyrim
idine 

n1c([F,Cl,Br,I,$(N(
=O)O)])nccc1 

1 2-halopyrimidine and  2-
nitropyrimidine are potential 
electrophilic agents that can react with 
biological nucleophiles; they have also 
been reported to be skin sensitizers 
and to induce acute aquatic toxicity; 

PMID:21809939; 
PMID:18853302; 
PMID:12565011; 
PMID:2269228; 

ToxAlerts:TA445; 
ToxAlerts:636; 

2-
halopyri
midine; 
2-
nitropyri
midine; 

 

CY
AN 

cyanohydr
ines; 
alpha-
hydroxy 

CC([O;H])C#N 1 cyanohydrines have been reported as 
agents causing aquatic toxicity and 
false positive results in HTS assyas. 

PMID:23061697;  
PMID:16711725; 

ToxAlerts:TA761; 
wiki:Cyanohydrin; 
ToxAlerts:TA1750; 

  



nitriles 
LT
HU 

Linear 
thioureas 

N!@C(=S)!@N 1 Thioureas were reported to induce the 
formation of reactive metabolites and 
causing idiosyncratic toxicity; they 
have been also listed among 
derivatives able to induce non-
genotoxic cancer in experimental 
assays; thioureas with electron-rich 
substituents have also been reported 
to possibly cause HTS assay 
interference; 

PMID:16922655; 
PMID:18621573; 
PMID:20131845; 

ToxAlerts:TA836; 
wiki:Thiourea; 

thiourea
s; 

 

LD
TC 

Linear 
dithiocarb
amates; 

N!@C(=S)!@SC 1 Dithiocarbamates are possible 
acylating agent and skin sensitizers 
(RF 4); some thiocarbamate 
derivatives are listed as genotoxic 
compounds and aquatic toxicants 

PMID:23061697; 
PMID:8144710; 
PMID:18621573; 

wiki:Dithiocarbam
ates;  
ToxAlerts:TA317; 
ToxAlerts:TA373; 
ToxAlerts:TA690; 

dithiocar
bamate; 

NH2; 
CYS; 

PH
C3 

polyhaloge
nated 
compound 

*([Cl,Br,I])([Cl,Br,I
])([Cl,Br,I]) 

1 compounds containing too many 
halogens, the general idea is more than 
3 or 4 halogen atom per molecule, 
have been pointed out to be involved 
in biochemical assay interference, in 
particular aromatic derivatives; but 
also in promoting toxicity: 
cycloalkanes with three or more 
halogen atoms have been related to 
non genotoxic carcinogenicity, 

PMID:18621573; 
PMID:23061697; 
PMID:16711725; 

wiki:Polyhalogenat
ed_compound; 
ToxAlerts:TA1779; 
ToxAlerts:1787; 
ToxAlerts:1852; 

polyhalo
genated; 

 

DT
HE 

Dithioeste
r 

CC(=S)SC 1 dithioester derivatives have been 
reported as skin sensitizers and as 
promiscuous agents in HTS assys, 
probably due to hydrolisis of the 
thioester bond releasing a thiol 
derivative that can interact with sulfur 

PMID:23061697; 
PMID:20693071; 
PMID:21809939; 

wiki:Thioester; 
ToxAlerts:TA232; 
ToxAlerts:TA289; 
ToxAlerts:TA1828; 

thioester
; 
dithioest
er; 

 



containing biological nucleophiles or 
sulfur containing nucleophiles in the 
assay media; 

OQ
UI 

o-
Quinones 

C(C=CC(C1=O)=O)
=C1 

3 o-quinones derivatives may induce 
toxic reactions in two different ways: 
they can undergo a Micheal addition 
reaction: a biological nucleophile may 
attack the beta C respect to one 
carbonilic group, causing the loss of an 
hydrogen atom and the formation of a 
covalent adduct; but quinones can also 
give induce unwanted responses by 
intercalating into double stranded 
DNA; independently of the mechanism, 
skin sensitization, idiosyncra 

PMID:23061697; 
PMID:16922655; 
PMID:21809939; 
PMID:18621573; 
PMID:16922655; 
PMID:20693071; 
PMID:15656773; 
PMID:20131845; 
PMID:8144710; 
PMID:16711725; 

ToxAlerts:TA237; 
ToxAlerts:TA291; 
ToxAlerts:TA369; 
ToxAlerts:TA752; 
ToxAlerts:TA276; 
ToxAlerts:TA2286; 
ToxAlerts:TA841; 
ToxAlerts:TA1781; 
ToxAlerts:TA2286; 
wiki:Quinone; 

ortho-
quinone; 

 

PQ
UI 

p-
Quinones 

C(C(C=CC1=O)=O)
=C1 

3 o-quinones derivatives may induce 
toxic reactions in two different ways: 
they can undergo a Micheal addition 
reaction: a biological nucleophile may 
attack the beta C respect to one 
carbonilic group, causing the loss of an 
hydrogen atom and the formation of a 
covalent adduct; but quinones can also 
give induce unwanted responses by 
intercalating into double stranded 
DNA; independently of the mechanism, 
skin sensitization, idiosyncra 

PMID:15656773; 
PMID:16922655; 
PMID:18621573; 
PMID:16922655; 
PMID:20131845; 
PMID:16711725; 
PMID:20693071; 
PMID:8144710; 
PMID:2269228; 

ToxAlerts:TA237; 
ToxAlerts:TA291; 
ToxAlerts:TA369; 
ToxAlerts:TA752; 
wiki:Quinone; 
ToxAlerts:TA2286: 
ToxAlerts:TA1906; 
ToxAlerts:TA1869; 
ToxAlerts:TA1825;
ToxAlerts:TA633; 
ToxAlerts:TA841; 

para-
quinone; 

 

AL
AC 

allyl 
acetate 

CC(=O)O!@C!@C=
[C;H2] 

1 allyl acetate group presents a reactive 
sp3 carbon atom that can undergo a 
SN2 reaction with biological 
nucleophiles (rf 7); allyl acetate and 
their thio analogs have been listed 

PMID:21809939; 
PMID: 16084005; 
PMID:18853302; 

ToxAlerts:TA462; 
ToxAlerts:TA778; 

allyl 
acetate; 
alkylatin
g agent; 

CYS; 
NH2; 



among skin sensitizers agents; 
genotoxicity has been reported for 
allyl acetate derivatives, however it is 
still not well-established; 

LA
CT 

lactones; 
thiolacton
es; lactams 

C1C(=O)[O,S,N]C1 1 lactones and lactams and their thio-
analogs are four terms strained ring 
systems, that can undergo a ring 
opening acylation reaction involving 
nucleophilic attack at the carbonyl 
group; beta propiolactone, lactams and 
thio derivatives have been reported to 
be genotoxic, to induce skin 
sensitization in experimental assyas, 
and to induce acute aquatic toxicity; 
beta-lactams are a common functional 
group in antibiotic drugs but it is 

PMID:21809939; 
PMID:15634026; 
PMID:18621573; 
PMID:15935536; 
PMID:18853302; 
PMID:2269228;  
PMID:16711725; 

ToxAlerts:TA352; 
ToxAlerts:TA363; 
ToxAlerts:TA410; 
ToxAlerts:TA437; 
ToxAlerts:TA461; 
ToxAlerts:TA582; 
ToxAlerts:TA612; 
ToxAlerts:TA673; 
ToxAlerts:TA712; 
ToxAlerts:TA788; 
ToxAlerts:TA1844; 
wiki:Lactone; 

lactone; 
thiolacto
ne ; 
lactam 

CYS; 
NH2; 

CY
PP 

Cycloprop
enone 

C1=CC1(=O) 1 Cyclopropenones are three terms 
strained ring system, that can undergo 
a ring opening acylation reaction 
involving nucleophilic attack at the 
carbonyl group. However, due to their 
instability their are not common as 
functional group in compounds 
collections; 

PMID:21809939; ToxAlerts:TA710  CYS; 
NH2; 

AZ
LC 

Azlactone C1C(=O)OC=N1 1 Azlactones are five-members strained 
ring system, that can undergo a ring 
opening acylation reaction involving 
nucleophilic attack at the carbonyl 
group. They are not common 
functional groups dut to teh instability 
of the ring that tends to open quite 
easily; 

PMID:21809939; ToxAlerts:TA714  CYS; 
NH2 



HO
QU 

ortho-
hydroquin
one; 
catechol 

c1c(O[H])c(O[H])c
cc1 

2 orthohydroquinones or catechols are 
orthoquinone precursors that can be 
activated into quinones by epatic 
metabolism. In particular after 
bioactivation they can undergo 
Michael addition reactions; ortho-
hydroquinones are classified as skin 
sensitizers and inducers of 
idiosyncratic reaction due to reactive 
metabolites generation; due to their 
reactivity also false positive results un 
HTS assays has been highlighted; 

PMID:21809939; 
PMID:20693071; 
PMID:15656773; 
PMID:16922655; 
PMID:8144710; 
PMID:20131845; 

ToxAlerts:TA277; 
ToxAlerts:TA278; 
ToxAlerts:TA755; 
ToxAlerts:TA840; 
ToxAlerts:TA239; 
ToxAlerts:TA294; 
ToxAlerts:TA298; 
wiki:Catechol; 
ToxAlerts:TA1918; 
ToxAlerts:TA2375; 

o-
hydroqui
none; 
catechol; 

CYS; 
NH2; 

HP
QU 

para-
hydroquin
one 

c1c(O[H])ccc(O[H]
)c1 

2 parahydroquinones are p-quinone 
precursors that can be activated into 
quinone by epatic metabolism. AS all 
quinones, they can undergo micheal 
addition reaction; p-hydroquinones 
are reported to be skin sensitizers and 
inducers of idiosyncratic reaction due 
to reactive metabolites generation; 
due to their reactivity also false 
positive results un HTS assays has 
been highlighted; 

PMID:21809939; 
PMID:20693071; 
PMID:15656773; 
PMID:8144710; 
PMID:16922655; 

ToxAlerts:TA238; 
ToxAlerts:TA277; 
ToxAlerts:TA278; 
ToxAlerts:TA293; 
ToxAlerts:TA296; 
ToxAlerts:TA755; 
ToxAlerts:TA840; 
ToxAlerts:TA1791; 
ToxAlerts:TA1854 

p-
hydroqui
none; 

CYS; 
NH2; 

OQ
IM 

ortho-
quinone 
imine; 
ortho-
quinone 
methide 

C1=CC(=O)C(=[N,
C])C=C1 

2 ortho-quinone imine and  ortho-
quinone methide can be metabolized 
into o-quinones, inducing the same 
type of toxicity as o-quinones; 

PMID:21809939; 
PMID:16922655; 

ToxAlerts:TA753;  
ToxAlerts:TA843;  
ToxAlerts:TA758; 

 CYS; 
NH2; 

PQ
IM 

para-
quinone 
imine; 

C1=CC(=O)C=CC1(
=[N,C]) 

2 para-quinone imine and para-quinone 
methide can be metabolized into p-
quinones, and so inducing the same 

PMID:21809939; 
PMID:16922655; 

ToxAlerts:TA753;  
ToxAlerts:TA843;  
ToxAlerts:TA758; 

 CYS; 
NH2; 



para-
quinone 
methide 

type of toxicity; 

OA
PH 

ortho-
aminophe
nol 

c1c(O[H])c([N;H2]
)ccc1 

2 ortho-aminophenol can be 
metabolized into o-quinones by epatic 
metabolism. It has also been classified 
as a skin sensitizer agent. Several 
ortho-aminophenol derivatives are 
reported to be genotoxic; 

PMID:15634026; 
PMID:21809939; 
PMID:18853302; 

ToxAlerts:TA589; 
ToxAlerts:TA756; 

ortho-
aminoph
enol; o-
aminoph
enol; 

CYS; 
NH2; 

OQ
DI 

ortho-
quinone 
diimine 

C1=CC(=N)C(=[N,
C])C=C1 

2 ortho-quinone diimine can be 
metabolized into o-quinones, 
determining the same type of michael 
addition reactions; 

PMID:21809939; 
MID:16711725; 

ToxAlerts:TA754; 
ToxAlerts:TA1781; 

 CYS; 
NH2; 

PQ
DI 

para-
quinone 
diimine 

C1=CC(=N!@C)C=
CC1(=[N,C;R0]) 

2 para-quinone diimine can be 
metabolized into p-quinones and so 
giving the same Micheal addition 
reaction, especially in experimental 
assays; 

PMID:21809939; 
PMID:16711725; 

ToxAlerts:TA754; 
ToxAlerts:TA1788; 
ToxAlerts:TA1886; 

para-
quinone 
diimine 

CYS; 
NH2; 

PY
RA 

pyranone C1=COC=CC1(=O) 1 pyranones can react with nucleophiles 
and give macheal addition reaction 

PMID:21809939; ToxAlerts:TA759; 
wiki:Pyrone; 

pyranon
e 

 

PO
AR 

polyaroma
tic 
hydrocarb
ons 

c1c2ccccc2cc3cccc
c13 

2 linear (not fused ring with 
indentation) polyaromatic 
hydrocarbons can be metabolically 
activated by CYP450 into quinones 
and after that undergo micheal 
addition reactions, with DNA or 
proteins, or they can intercalate as 
they are into double strand DNA; for 
this reason several studies report 
these compounds as genotoxic; 
accounts for skin sensitization 
reactions and acute aquatic toxicity 

PMID:21809939; 
PMID:18621573; 
PMID:15935536; 
PMID:15634026; 
PMID:18853302; 

ToxAlerts:TA375; 
ToxAlerts:TA422; 
ToxAlerts:TA760; 
ToxAlerts:TA465; 
ToxAlerts:TA656; 
ToxAlerts:TA328; 

polyaro
matic; 
hydrocar
bon; 

CYS; 
NH2; 



(due to excessive lipophilicity) have 
als 

IT
AZ 

isothiazol-
3-one 

C1=CSNC1(=O) 2 isothiazol-3-ones have been shown to 
react with sulfur atom of cysteine 
residues, undergoing a SN2 reaction 
that finally produce the formation of 
the protein adduct after ring opening; 
some studies classify them as skin 
sensitizers. 

PMID:21809939; 
PMID:15656773; 
PMID:18853302; 

ToxAlerts:TA269; 
ToxAlerts:TA575; 
ToxAlerts:TA801; 
ToxAlerts:TA802; 

isothiazo
l-3-one; 

CYS; 

HL
AK 

polarized 
haloalkene 

C([H,C])([C;R0,H,!
F,!Cl,!Br,!I])=!@C([
Br,Cl,F,I])([C;R0,H,
F,Cl,Br,I]) 

2 Alkene with halogen substituents are 
susceptible to a SN2 reaction at the 
sp2 carbon atom. Monohaloalkenes (as 
the SMARTS definition) have been 
reported to cause genotoxic effects 
whereas geminal dihaloalkenes have 
been shown to cause skin sensitization 

PMID:21809939; 
PMID:18621573; 
PMID:18853302; 

ToxAlerts:TA805; 
ToxAlerts:TA361; 
ToxAlerts:TA434;  
ToxAlerts:TA472; 

haloalke
ne; 

CYS; 
NH2; 

IN
CI 

1,3-
Bis(hydrox
ymethyl)-
5,5-
dimethyl-
imidazolid
ine-2,4-
dione; 
DMDM 
hydantoin 

C1(=O)N(CO[H])C
(=O)N(CO[H])C1([
C;^3])([C;^3]) 

1 DMDM hydantoin is a preservative 
used in skin formulations, able to 
release formaldehyde, a know skin 
sensitizer, that react with biological 
NH2 groups through a Schiff base 
formation reaction, resulting in cross-
link between protein chains; some 
studies suggested it is able to induce 
skin allergies; particular attention 
should be paid in the development of 
derivatives of this scaffold, especially 
in case of drug for local adminis 

PMID:21809939; 
PMID:20693071; 
PMID:8144710; 

ToxAlerts:TA820; DMDM 
hydantoi
n; 

NH2; 

CR
W
1 

crown 
ether 

C1O[C;H2]O[C;H2]
[C;H2]OC1 

1 crown ethers can chelate metal ions 
present in human body but also with 
ions present in the media during 
experimental assays; 

PMID:23061697; wiki:Crown_ether; 
ToxAlerts:TA1758; 

crown 
ether; 

 



CR
W
2 

crown 
ether 

C1N[C;H2][C;H2]N
[C;H2][C;H2][C;H2
]N[C;H2][C;H2]NC
1 

1 crown ethers can chelate metal ions 
present in human body but also with 
ions present in the media during 
experimental assays; 

PMID:23061697; wiki:Crown_ether; 
ToxAlerts:TA1758; 

crown 
ether; 

 

CR
W
3 

crown 
ether 

C1N[C;H2][C;H2][
C;H2]N[C;H2][C;H
2][C;H2]N[C;H2]C
1 

1 crown ethers can chelate metal ions 
present in human body but also with 
ions present in the media during 
experimental assays; 

PMID:23061697; wiki:Crown_ether; 
ToxAlerts:TA1758 

crown 
ether; 

 

PH
C1 

polyhaloge
nated 
compound 

*([Cl,Br,I])*([Cl,Br,
I])([Cl,Br,I]) 

1 compounds containing too many 
halogens, the general idea is more than 
3 or 4 halogen atom per molecule, 
have been pointed out to be involved 
in biochemical assay interference, in 
particular aromatic derivatives; but 
also in promoting toxicity: 
cycloalkanes with three or more 
halogen atoms have been related to 
non genotoxic carcinogenicity, 

PMID:18621573; 
PMID:23061697; 
PMID:16711725; 

wiki:Polyhalogenat
ed_compound; 
ToxAlerts:TA1779; 
ToxAlerts:1787; 
ToxAlerts:1852; 

polyhalo
genated; 

 

PH
C2 

polyhaloge
nated 
compound 

*([Cl,I,Br])*([Cl,Br,
I])*([Cl,Br,I])([$(c(
[Cl,Br,I])),n]) 

1 aromatic compounds containing too 
many halogens, the well-esteblished 
idea is more than 3 or 4 halogen atom 
per molecule, have been pointed out to 
be involved in biochemical assay 
interference ; 

PMID:18621573; 
PMID:23061697; 
PMID:16711725; 

wiki:Polyhalogenat
ed_compound; 
ToxAlerts:TA377; 
ToxAlerts:1852; 

polyhalo
genated; 

 

PL
FC 

activated 
polyfluorin
ated 
compound 

*(F)*(F)*(F)*([$([
N+](=O)(O)),$([N]
(=O)(=O)),$(C(=O)
),$(C(=O)[CH3]),$(
C#N),$(OC(=O))]) 

1 compounds containing five or more 
fluorine atoms; 

PMID:21809939; 
PMID:16711725; 
PMID:23061697; 

ToxAlerts:TA816; 
ToxAlerts:TA817; 

polyfluor
inated 

 

RH
D1 

rhodanine C1(=O)NC(=S)SC1
(=C) 

1 Rhodanines and rhodanine-like 
compounds have been reported to be a 
recurrent scaffold coming out from 

PMID:23061697; 
PMID:20131845; 
PMID:16711725; 

ToxAlerts:TA1774; 
ToxAlerts:TA1910; 
ToxAlerts:TA2139; 

rhodanin
e; 

 



HTS assay campaigns, suggesting that 
these derivatives are probably false 
positives and/or unspecific binders; 
rhodanines can interfere with 
photometric detection methods where 
light absorption is in the range of 570-
620 nm and some derivatives are also 
highly colored, interfering with 
colorimetric detection method; there 
are also 

wiki:Rhodanine; 

RH
D2 

rhodanine-
like 

C1(=O)N=C(N[H])
SC1(=C) 

1 Possible equilibrium form for 
rhodanine-like compounds presenting 
a double bond with nitrogen instead of 
sulfur; rhodanine-like compounds 
have been reported to be a recurrent 
scaffold coming out from HTS assay 
campaigns, suggesting that these 
derivatives are probably false 
positives and/or unspecific binders; 
rhodanines can interfere with 
photometric detection methods where 
light absorption is in the range of 570-
620 nm and some d 

PMID:23061697; 
PMID:20131845; 
PMID:16711725; 

wiki:Rhodanine; 
ToxAlerts:TA2139; 
ToxAlerts:TA2140; 

rhodanin
e; 
rhodanin
e-like; 

 

AD
C1 

alkylidene 
subsituted 
with 5 
membered 
heterocycl
e ring 

C1(=C)C(=O)[N,O,
S]N=C1 

1 this type of 5 membered heterocycle 
ring has been reported being an 
interfering compound in experimental 
assays; the mechanism is unknown, 
however it is probably due to the 
ability of reacting with protein 
nucleophiles, because this kind of 
compound present an alpha-beta 
unsatured carbonyl group, together 

PMID:20131845; ToxAlerts:TA1903;   



with anoter unsatured bond in a 
heterocycle ring, that makes molecule 
more reactive and the beta carbon on 
first double bond ca 

AD
C2 

alkylidene 
subsituted 
with 5 
membered 
heterocycl
e ring 

C1(=C)C(=O)NC=S
1 

1 this type of 5 membered heterocycle 
ring has been reported being an 
interfering compound in experimental 
assays; the mechanism is unknown, 
however it is probably due to the 
ability of reacting with protein 
nucleophiles, because this k 

PMID:20131845; ToxAlerts:TA1921;   

AD
C3 

alkylidene 
subsituted 
with 5 
membered 
heterocycl
e ring 

C1(=C)C(=[O,N,S])
[O,N,S]C=C1 

1 this type of 5 membered heterocycle 
ring has been reported being an 
interfering compound in experimental 
assays; the mechanism is unknown, 
however it is probably due to the 
ability of reacting with protein 
nucleophiles, because this k 

PMID:20131845; ToxAlerts:TA1922;   

AD
C4 

alkylidene 
subsituted 
with 5 
membered 
heterocycl
e ring 

C1(=C)C(=O)NNC1
(=O) 

1 this type of 5 membered heterocycle 
ring has been reported being an 
interfering compound in experimental 
assays; the mechanism is unknown, 
however it is probably due to the 
ability of reacting with protein 
nucleophiles, because this k 

PMID:20131845; ToxAlerts:TA1923;   

AC
D5 

alkylidene 
subsituted 
with 5 
membered 
heterocycl
e ring 

C1(=C)C(=O)[N,O,
S]C=N1 

1 this type of 5 membered heterocycle 
ring has been reported being an 
interfering compound in experimental 
assays; the mechanism is unknown, 
however it is probably due to the 
ability of reacting with protein 
nucleophiles, because this k 

PMID:20131845; ToxAlerts:TA1924;   



AC
D6 

alkylidene 
subsituted 
with 5 
membered 
heterocycl
e ring 

C1(=C)C(=S)NN=C
1 

1 this type of 5 membered heterocycle 
ring has been reported being an 
interfering compound in experimental 
assays; the mechanism is unknown, 
however it is probably due to the 
ability of reacting with protein 
nucleophiles, because this k 

PMID:20131845; ToxAlerts:TA2128;   

FT
HQ 

fused 
tetrahydro
quinoline 

C1Nc2ccccc2C3C=
CCC13 

1 they have been reported as interfering 
compounds in library screening, 
however the mechanism of 
interference is unknown; 

PMID:20131845; 
PMID:23061697; 

ToxAlerts:TA1946;   

AA
P1 

1,2,3-
aralkyl 
pyrrole 

[c;h]1c(C)n(c2cccc
c2)c(C)[c;h]1 

1 aralkyl pyrroles have been pointed out 
as possible interfering in HTS assays, 
but the mechanism of interference was 
not clarified; 

PMID:20131845; ToxAlerts:TA1916;   

AA
P2 

1,2,3-
aralkyl 
pyrrole 

[c;h]1c(C)n(C)c(c2
ccccc2)[c;h]1 

1 aralkyl pyrroles have been pointed out 
as possible interfering in HTS assays, 
but the mechanism of interference was 
not clarified; 

PMID:20131845; ToxAlerts:TA2269;   

BZ
FU 

benzofura
zan 
sulfonam
mide 

c1ccc(S(=O)(=O)N
(c3ccccc3))c2n[o,s
]nc12 

1 his type of aromatic compounds are 
quite reactive and can react with 
protein nucleophiles and nucleophiles 
in the assay media, giving false 
positive results; 

PMID:20131845;    

AC
T1 

2-amino-
3-
carbonyl-
thiophene 

c1([C,N,O,Cl,Br,I,F,
S,P])c([C,N,O,Cl,Br,
F,S,I,P])sc(N([H])[
H])c1(C(=O)) 

1 2-amino-3-carbonyl thiophene 
derivatives have been pointed out as 
possible assay interfering compounds 

PMID:20131845; ToxAlerts:TA1953;   

AC
T2 

2-amide-3-
carbonyl-
thiophene 

c1([a,C,H])csc(N(
H)C(=O)C)c1(C(=
O)) 

1 2-amide-3-carbonyl thiophene 
derivatives have been pointed out as 
possible assay interfering compounds 

PMID:20131845; ToxAlerts:TA1954;   

PR  c1(c2ccc(Cl)cc2)n 1 compound highlighted as promiscuous PMID:12565011;    



01 c(c3ccc(S(c4ccc(Cl
)cc4))cc3)cc(C(=O
)O)c1 

in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PR
02 

 c1(c2cc(Cl)c(Cl)cc
2)nc(c3ccc(C(C)(C
)C)cc3)cc(C(=O)O)
c1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
03 

 c1(c2ccc(Cl)cc2)n
c(c3ccc(c4ccccc4)
cc3)cc(C(=O)O)c1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
04 

 c1(c2ccc(Cl)cc2)n
c(c3ccc(CCCC)cc3)
cc(C(=O)O)c1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
05 

 c1(c2ccc(Cl)cc2)n
c(c3ccc(Cl)cc3)cc(
C(=O)O(c4ccc(OC(
C(=O)O)CC(C)C)cc
4))c1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
06 

 c1(c3nc(c4ccc(C)c
c4)cc(C(=O)O)c3)
cccc2ccccc12 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
07 

 C1Cc2cc(OC)ccc2C
3CCC4(C)[C@H](N
CCN(c5ncc(N(=O)
~O)cc5))CCC4C13 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
08 

 C1Cc2cc(OC)ccc2C
3CCC4(C)[C@H](N
CCN(c5ccccc5))CC
C4C13 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    



PR
09 

 [H][C@@]1(CC(O
C)CC[C@@]1(C2[
C@H](C[C@@]34
C)O)C)CCC2C3CC[
C@@H]4NCCN 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
10 

 O=C1NC2=CC=CC
=C2/C1=C/C3=CC
=C(C4=CC=CS4)S3 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
11 

 CC(C)(C)C1=C(O)C
(C(C)(C)C)=CC(/C
=C2C(C=CC=N3)=
C3NC\2=O)=C1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
12 

 O=C1NC2=C(C=CC
=C2)/C1=C\C3=C
C=C(N(C)C)C=C3 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
13 

 O=C1NC2=C(C=CC
=C2)/C1=C\C3=C
C=C(CCCC4)C4=C
3O 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
14 

 O=C(C1=CC=CS1)
NC2=NN=C(S2)SC
3=[SH]C4=CC=C(C
l)C=C4N3 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
15 

 OC(C=C1)=CC=C1
/N=N/C2=CC=CC(
Br)=C2 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
16 

 O=C1C2=C(C)C=C(
Cl)C=C2S/C1=C3C
(C(C(C)=CC(Cl)=C

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 

PMID:12565011;    



4)=C4S/3)=O noncompetitive enzyme inhibition; 
PR
17 

 BrC1=CC(S(=O)([
O-
])=O)=C(/N=N/C2
=C(S(=O)([O-
])=O)C=C(C=C(S(=
O)([O-
])=O)C(/N=N/C3=
CC=C(Br)C=C3S(=
O)([O-
])=O)=C4O)C4=C2
O)C=C1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
18 

 OC1=C(/N=N/C2=
CC=C(OCC(O)=O)C
=C2)C=CC3=C1C=
CC(Br)=C3 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
19 

 O=S(C(C=C1)=CC=
C1OCC2=CC=CC=C
2)(C3=CC=C(OC(C
CCCCC)C(C)=O)C=
C3)=O 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
20 

 C1(C(C=CC=C2)=C
2/C3=C/C4CNCCC
4)=C3C=CC=C1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:12565011;    

PR
21 

 C(=C1c2ccccc2C(=
O)O1)Nc1ccc(cc1)
Oc1ccccc1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    

PR
22 

 C(c1ccccc1O)=NN
C(C(NN=Cc1ccccc
1O)=O)=O 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 

PMID:11931626;    



noncompetitive enzyme inhibition; 
PR
23 

 c1ccc2c(c1)ccc(c2
N=Nc1c(cc(c2cccc
c12)S([O-
])(=O)=O)O)O 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    

PR
24 

 c1ccc2c(c1)ccc(c2
O)N=Nc1c(cc(c2cc
ccc12)S([O-
])(=O)=O)O 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    

PR
25 

 C1=[C-
](C(C(=CC1=C(c1c
c(c(c(c1)I)[O-
])I)c1ccccc1C([O-
])=O)I)=O)I 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    

PR
26 

 c1[c-
]2C(c3cc(c(c(c3Oc
2c(c(c1I)[O-
])I)I)[O-
])I)c1c(C(O)=O)c(
c(c(c1[Cl])[Cl])[Cl]
)[Cl] 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    

PR
27 

 CC(C)c1ccc(C=C2C
(Nc3ccccc23)=O)c
c1 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    

PR
28 

 c1cc(c(cc1[N+]([O
-])=O)[N+]([O-
])=O)NN1C([C@H]
2[C+](C1=O)[C@
@]1(C(=C([C@]2(
[C@@]1([Cl])[Cl])
[Cl])[Cl])[Cl])[Cl])

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    



=O 
PR
29 

 c1cc(c(cc1c1csc(N
c2ccc(cc2F)F)n1)
O)O 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    

PR
30 

 c1ccc2c(c(cc(c2c1
)S([O-
])(=O)=O)[N-
]=Nc1ccc(cc1)c1cc
c(cc1)N=Nc1cc(c2
ccccc2c1N)S([O-
])(=O)=O)N 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    

PR
31 

 c1cc(c(cc1C1=C(C
(c2c(cc(cc2O1)O)
O)=O)O)O)O 

1 compound highlighted as promiscuous 
in screening assays, due to aggregation 
and maybe also unspecific 
noncompetitive enzyme inhibition; 

PMID:11931626;    
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