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Sustainable development and Green Chemistry 

The environmental problems we have today and predict for the future are, at least 

in part, due to society’s collective pursuit of short term economic growth. 

The concept of the sustainable development was proposed by the United 

Nations/International Committee on Environment and Development(ICED, 1987) 

as  ‘’development which meets the needs of the present without compromising the 

ability of future generations to meet their own needs’’. This concept was gained 

acceptance at the United Nations Conference on Environment and Development 

(Rio-de-Janeiro, 1992) it lies not in the notion of a sustained character of the 

development but in an understanding of the development as a steadily and long 

existing and maintained process that is in advocating the stability of the 

development. Such an understanding of the development should be well 

represented in the action initiated in the framework of national and international 

state ecological policies. Since 1987 Government, society and industry have 

started to consider what sustainable development really means and how best to 

start to achieve it from their own standpoint.  

Two of most important aspect of sustainable development are develop a 

renewable forms of energy and reduce pollution: chemists and engineer engaged 

in development of chemical products and processes have not set out to cause 

damage to the environment or human health. 

In the twenty century there was a most challenge in chemical industry due to 

reduce the adverse environmental side effects and during the 1990s the EPA 

coined the concept of Green Chemistry as a chemistry able to promote innovative 

chemical technologies that reduce or eliminate the use or generation of hazardous 

substances in the design, manufacture and use of chemical products. 

P. C. Anastas (EPA) defined the 12 principles of Green Chemistry: 

1) Prevention 

It is better to prevent the waste than to treat or clean up waste after it has been 

created 

 

2) Atom Economy 
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Synthetic method should be designed to maximize the incorporation of all 

materials used in the process into the final product 

 

3) Less hazardous chemical syntheses; 

Wherever practicable, synthetic methods should be designed to use and generate 

substances that possesses little or no toxicity to human health and the 

environment 

 

4) Designing safer chemicals; 

Chemicals products should be designed to effect their desired function while 

minimizing their toxicity 

 

5) Safer solvents and auxiliaries; 

The use of auxiliary substances (e.g.solvents, separation agents, etc.)should be 

made unnecessary wherever possible and innocuous when used 

 

6) Design of energy efficiency; 

Energy requirement of chemical processes should b recognized for their 

environmental and economic impact and should be minimized. If possible, 

synthetic methods should be conducted at ambient temperature and pressure. 

 

7) Use of renewable feedstock; 

A raw materials or feedstock should be renewable rather than depleting whenever 

technically and economically practicable 

 

8) Reduce derivates; 

Unnecessary derivatization (use of blocking groups, protection/deprotection, 

temporary modification of physical/chemical processes) should be minimized or 

avoided if possible, because such steps require additional reagents and can 

generate waste 
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9) Catalysis; 

Catalytic reagents(as selective as possible) are superior to stoichiometric reagents 

 

 

10) Design of degradation; 

Chemicals product should be designed so that at the end of their function they 

break down into innocuous degradation products and do not persist in the 

environment 

 

11) Real-time analysis pollution prevention; 

Analytical methodologies need to be further develop to allow for real time, in-

process monitoring and control the prior to the formation of hazardous substances 

 

12) Inherently safer chemistry for accident prevention. 

Substances and the form of a substance used in a chemical process should be 

chosen to minimize the potential for chemicals accidents, including release, 

explosion. 

The Green Chemistry can be thought as a ‘reducing’ approach. In fact, application 

of the 12 principles reduce the environmental impact of a process, the costs, the 

waste, the energy, materials, volatile organic solvents, and risk and hazard as well 

depicted. In following figure. 
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The fundamental challenge for the chemical industry is to continue to provide the 

benefits to society without causing damage to the environment [1]. One of the 

most important parameters for the evaluation of green process is the E factor, 

introduced by Roger Sheldon [2][3] to calculate the amount of waste for Kg of 

product. Assumption on the solvent and other factors can be made or a total 

analysis can be performed. The E-factor calculation is defined by the ratio of the 

mass of waste per unit of product: 

 

E factor = Total waste (Kg) / Product (Kg) 

 

This is a simple method for to evaluate the environmental impact of a process. But 

the E-Factor ignore recyclable factors such as recycled solvent and re-used 

catalysts, which obviously increase the accuracy but ignores the energy involved 

in the recovery (these are often theoretically by assuming 90% solvent recovery) 
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Table 1 

Industry Sector Annual Productio (t) E Factor Waste produced (t) 

Oil refining 106-108 Ca. 0.1 105-107 

Bulk Chemicals 104-106 <1-5 104-5*106 

Fine Chemicals 102-104 5-50 5*102-5*105 

Pharmaceuticals 10-103 25-100 2.5*102-105 

 

The application of this metric in industrial field, is very simple and the 

measurement of the materials in and out is direct and accurate. In table 1 

are showed the E factor of chemical industry: the first important data is the 

low value of waste in oil refining, and the high value of pharmaceutical 

industry. This reflect the fact that the profit margins in the oil industry 

require them to minimize waste and find uses for products which would 

normally discarded as waste. By contrast the pharmaceutical sector is more 

focused on molecular manufacture and quality. Another aspect is the high 

volume of materials producted by oil industry, in comparison with the low 

tonnage of pharmaceutical industry. This table encouraged a number of 

large pharmaceutical companies to begin a green chemistry program. In 

fact in the last years this industry start to open their research opening to a 

new greener processes [4]  
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Sheldon introduced another factor to evaluated the environmental impact of 

industrial process: EQ (environmental quotient). In fact 1 kg of sodium chloride is 

quite different from  the same of 1 kg of Cr(VI). This parameters is assigned 

multiplying the E factor with an arbitrarily assigned unfriendliness quotient, Q. For 

example for NaCl, Q is 1,for heavy metal salts are 100-1000. 

 

Catalysis 

Catalysis played a fundamental role in chemical industry of 20th century. In fact 

catalysis reduce the environmental impact and for the future will can increase the 

success of Green Chemistry approach [5] Today it is estimate that 85% of 

chemicals used have come into contact with a catalyst at some stage in their 

manufacture. The parameters for to know the commercial viability and the 

greenness of a catalyst are: 

1) Selectivity; 

2) TON (turnover number), TOF (turnover frequency); 

Indeed, the formation of by-products inorganic or organic should be avoided and 

the catalyst lifetime long enough to reduce the cost and waste amount. For bulk 

chemical manufacture, catalysts play a huge role and they were largely used. 

Meanwhile in pharmaceutical and fine chemical industry the catalyst role ar, have 

increase the applications in more recent years. 
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There are three kind of catalysis: homogeneous, heterogeneous and biological. 

The first application of a catalyst in industrial chemistry was an heterogeneous 

catalyst, meanwhile the enzymatic catalysts was the more recent discipline and 

has developed explosively, being included in many commercial applications. 

Homogeneous catalysis started its life in industrial chemistry with nitrous oxides in 

the lead chamber process and thus prior to the recognition of the effects of 

heterogeneous catalysts. Now homogeneous catalysis is applied in 

hydroformilations, carbonylation, oxidations, metathesis, hydrocyanations, 

hydrogenations and for fine chemicals production. 

The differences between homogeneous catalysis and heterogeneous catalysis are 

showed in table 1. 

 

Table 2 

Heterogeneous Homogeneous 

Usually distinct solid phase Same phase as reaction medium 

Readily separated Often difficult to separate 

Readily regenerated and recycled Expensive / difficult to recycle 

Rates not usually as fast as homogeneous Often very high rates 

May be diffusion limited Not diffusion controlled 

Quite sensitive to poisons Usually robust to poisons 

Lower selectivity High selectivity 

Longer service life Short service life 

Often high-energy process Often takes place under mild conditions 

Poor mechanistic understanding Often mechanism well understood 

 

From the point of view of contribution of tonnage and dollars, heterogeneous 

catalysis have the major part of contribute: all the basic raw materials or building 

blocks for chemicals are manufactured by a small but very important set of 

heterogeneous catalytic processes [6]. 

Nickel was the first heterogeneous catalyst and it was used more than 100 years 

ago for hydrogenation of oils and fats  to produce margarine. Unfortunately 

unhealthy amounts of nichel contaminated the product. The issue of leaching and 
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the avoidance of trace of catalyst residue are still important aspects of research 

from both human health, economic and environmental point of view. 

In pharmaceutical and fine chemical industry heterogeneous catalysis is less used: 

out the increasing costs for disposal and treatment of waste and by-products are 

pushing toward a reduction of environmental impact. 

The most used catalysts are basic or acid, and the possibility to have 

heterogeneous catalysts with this properties can reduce the aqueous waste and 

the inorganic or organic salts contained into the aqueous solution due to 

neutralization processes. 

Many of the green benefits of homogeneous catalysts, especially high selectivity, 

arise from tailored made catalysts involving transition metals and appropriate 

ligands [7]. 

 

Immobilized catalysts 

 

One of the most important approach to realize new heterogeneous catalysts is the 

heterogeneization of active homogeneous catalyst to a solid support. The target is 

to combine the selectivity and rate of homogeneous catalyst with the simple 

recovery of heterogeneous catalyst [8]. Using this kind of catalyst the leaching in 

batch condition should be minimal and the separation can be obtained by a simple 

filtration and finally the catalyst can be reused. The heterogeneized catalysts can 

be used in continuous flow system in order to obtain a process with a minimal 

energy consumption [9]. 

Normally the heterogeneization caused a decrease of catalyst activity in 

comparison with the corresponding homogeneous catalyst for the problem 

connected to the diffusion of the substrate to the catalytic sites.  

There are four method for heterogeneize an homogeneous catalyst: 

1. Impregnation 

2. Steric hindrance-occlusion in porous system (ship in the bottle) 

3. Grafting or tethering (covalent bound) 

4. Ion pair formation 
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Methods 3 and 4 are the most used approaches, because the catalyst is anchored 

to the support with a chemical bound. 

For grafting or tethering approach the supports are organic polymers (linear, non 

cross-linked polymers in suitable solvent; swellable, slighty cross-linked polymers; 

highly cross-linked polymers), or ‘porous inorganic solids (amorphous oxides such 

silica, alumina, zirconia; clays or pillared clays; zeolites, MCM). 

When the grafting tecniques is applied [10], the catalytic site is directly anchored 

on the support. This procedure is used for supporting the organometallics 

complexes, in those cases by ligand anion exchange reaction, deprotonated Si-

OH complete the metal coordination first sphere. In tethering technique, a spacer 

is introduced between the support and catalytic site. The nature and the length of 

the spacer can be tuned in order to minimize the steric hindrance of the support. 

Furthermore the catalytic site is in similar condition to homogeneous phase, so the 

steric hindrance of the support is usually less important than in grafted catalyst. 

The nature of the support is a very important aspect: superficial area, polarity. The 

support can be a siliceous or organic polymeric material; in many cases, 

mesoporous and macroporous silica gel have been used as support. As far as the 

anchoring of catalytic moieties is concerned, the key step consist in the 

functionalization of silica surface, populated by silanols groups. This groups can 

be obtained by a pre-treatment of the silica, and than the functionalization of the 

silica can be obtained via  a pleiade of commercially available silylating agents. 

The versatility of functional groups for reaction with tethering groups on siliceous 

materials (surface silanols) is distinctly lower than that on the organic polymeric 

supports. With the advent of hierarchical ordered silica materials, however, such 

support show a wide variety in porosity [11]. Next to the nature of the support, its 

degree of loading and the nature of the solvent used, the length and the flexibility 

of the spacer require fine tuning to reach optimal catalytic behavior [12]. 

In this dissertation the tethering approach has been followed to immobilize 

different homogeneous catalysts on amorphous silica. Moreover another type of 

support was prepared and used, magnetite nanoparticles in order to obtain a 

magnetic catalyst recoverable by a simple magnetic decantation. 
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The obtained catalysts have been used for oxidation processes and for carbon-

carbon bond formation reactions. 
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1.1 Introduction 

 

Oxidation reactions are one of the most studied and important reactions in organic 

chemistry. The great problems with this kind of reaction is selectively, production 

of large amount of pollutant material. Traditionally oxidations were carried out with 

stoichiometric amount of metal salts such as Mn(VII), Cr(VI) and strong acids such 

as nitric acid. This processes involve an economical and processes problems for 

the waste’s elimination. In the last decades legislations call for the lowering of 

waste production and the use more of more friendly alternative reagent and 

catalysts. This goal can be achieved through the application of the principles of 

green Chemistry that provide a framework for designing more eco-compatible 

routes to fine chemicals production. In the our laboratory we focused the attention 

on two principles of Green Chemistry: use of heterogeneous catalysts and use of 

less hazardous synthesis process. For Chemistry industries the use of non-toxic 

solvents, non-toxic reagents, simple implants and green condition is a great 

attractive from an economical viewpoint. The use of heterogeneous catalysts in 

the liquid phase offers advantages over homogeneous ones, such as easy 

recovery and recycling, stability. 

Recently we have demonstrated the activity of decatungstate anion supported on 

silica for the sulfide oxidation [1]. Polyoxometallates (POMs) are a large and 

rapidly growing class of inorganic compound with significant applications in a 

range of areas. Such materials have been studied in detail over the past decades 

with some of them possessing interesting applications in catalysis [2]. Among 

them, decatungstate anion in one of the most promising examples. We 

investigated the oxidations of alcohol to corresponding aldehyde and ketones, and 

epoxidation of cycloottene to corresponding epoxide. 

The oxidation of alcohol to their corresponding aldehydes and ketones is of 

significant importance in organic chemistry, both for fundamental research and 

industrial manufacturing [3]. This kind of oxidation is carried out with stoichiometric 

amount of oxidants generating a lot of waste and pollutants. From an economical 
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and environmental viewpoint, catalytic processes are thus valuable, and those 

employing green oxidants such us hydrogen peroxide are particular attractive. 

In the present work we report about the reactivity of decatungstate grafted on silica 

and a study about decatungstate grafted on magnetite nanoparticles. 
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1.2 Results and Discussion 

 

1.2.1Catalyst preparation: silica bound decatungstate 

 

Following the procedure reported by our group [1] the preparation of the catalyst 

involved two main steps: a) silica functionalization anchoring ammonium salt to 

surface silanols and b) anion exchange with sodium decatungstate (scheme 1). 

Scheme 1 

a) Heterogenization of primary ammonium salt: 

OH

OH

Si NH2
EtO

OEt

OEt

O

O
Si NH2

OEt

O

O
Si NH3

+CF3SO3
-

OEt
Toluene, reflux

CF3SO3H

CH2Cl2
8h, r.t.  

b) decatungstate anchoring: 

O

O
Si NH3

+CF3SO3
-

OMe

Na4W10O32
O

O
Si NH3

+

OEt

W10O32

4  

Anchored primary ammonium salt was prepared by refluxing silica and 3-

(aminopropyl)-triethoxy silane in toluene, under stirring overnight. The cooled 

functionalized silica was filtered off, washed with toluene and dried under high 

vacuum to give the surface-bound alkylamine groups with a loading of 1,2 mmol/g. 

The resulting material were reacted with trifluoromethane sulfonic acid for 8 hours 

at r.t., filtered off, washed with DCM and dried under high vacuum. Elemental 

analysis revealed an organic loading of 0,9 mmol/g. The final catalyst was 

prepared disperding the anchored ammonium salt in water for 30 minutes at r.t. 

The catalyst was filtered off, washed with water, ethanol and diethyl ether and 

dried under high vacuum. Then the solid was washed in continuous with hot 

acetonitrile for 12 hours in a Soxhlet apparatus. After drying under high vacuum 

the catalyst was completely characterized. The final loading of W was 0,15 

mmol/g, as determined by ICP-AES analysis of the catalyst. 
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1.2.2 Alcohol oxidation 

 

The obtained catalyst was tested in oxidation of benzylic alcohol to the 

corresponding aldehydes and ketones. This oxidation is very studied and in 

literature numerous of procedure were reported. Recently was reported a 

procedure using a POM in heterogeneous conditions with hydrogen peroxide as 

oxidant.[4]. 

Oxidation of alcohol is important because the obtained products (aldehydes and 

ketones) are important intermediates for synthesis. 

The oxidation of phenyl ethanol to acetophenone was selected as the model 

reaction (scheme 2): 

Scheme 2 

OH O

+ 30%H2O2

CAT 1%

 

             1                                                                            2a 

For the preliminary study we tested the catalyst in refluxing methanol, overnight 

with ratio alcohol/hydrogen peroxide 1/1. In this condition the product was 

obtained in 30% yield. In table 1 there are the results obtained in different 

conditions (solvents, reagent ratio, time) 

Table 1 

Entry Solvent Ratio 1/H2O2 Time (h) Yield (%) Sel (%) 

1 MeOH 1 5 20 99 

2 MeOH 1 12 30 99 

3 MeOH 3 12 40 99 

4 t-BuOH 3 12 33 99 

5 H2O (0,3 ml) 3 3 80 99 

6 H2O (0,3 ml) 3 4 95 99 
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Reaction conditions: benzylic alcohol (1mmol), catalyst (1% mmol) in the solvent 

(3 ml otherwise stated) 

The first solvent used was methanol for its green properties, but the conversion of 

benzyl alcohol was low. 

Using water the reaction worked very well in concentrated conditions (entry 5) and 

with an excess of oxidant. But, in this condition, the ion pair of the catalyst could 

be disturbed by the dissociative property of water. In fact test of recycle (figure 1) 

showed the non-recyclability of the catalyst. 

 

Figure 1 

 

 

After 3 cycle the yield decrease to 53 %, and it was attributed to the high 

dissociating charactestics of water, that cause dissociation of ion pair of the 

heterogeneized catalyst. 

To overcome this problem we employed as acetonitrile, obtaining good results. In 

table 2 we reported the results: 
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Table 2 

Entry Acetonitrile (ml) cycle Yield 1 (%) Sel 1 (%) 

1 0,3 1 99 99 

2 0,3 2 93 99 

3 0,3 3 62 99 

4 0,5 1 90 99 

5 0,5 2 88 99 

6 0,5 3 89 99 

7 0,5 4 86 99 

Yield and selectivity was calculated using GC analysis with t-butyl phenol as 

internal standard. Reaction: 1mmol of alcohol, 1% of catalyst in acetonitrile, at 

85°C 

OH O

+ 3eq. H2O2 30%
0.5 CH3CN

85°C, 5h

98%  

Reacting 1 mmol of benzylic alcohol in 0.5 ml of refluxing acetonitrile in the 

presence of 1% of catalyst, after 5h we obtained the product in yield 98%and 99% 

selectivity. Moreover, the catalyst recyclability showed that the catalyst was used 

for at least 4 times without any loss of activity. 
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Figure 2 

 

 

To extend  the applicability of the reaction to others benzylic alcohol we applied 

the optimized conditions using ethyl-phenyl alcohol such a substrate (scheme 3). 

 

Scheme 3 

OH O

+ 3eq. H2O2 30%
0,5 CH3CN

85°C, 5h

93%

 

       3                                                                              2b 

Propiophenone was obtained in 70% yield and 99% selectivity. 

Then we studied the catalyst activity in the oxidation of primary benzylic alcohol to 

the corresponding aldehyde. In this reactions is more difficult to obtain the 

complete selectivity because the obtained aldehyde is sensitive to over oxidation. 

The reaction was carried out in the conditions optimized for secondary alcohol 
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giving benzaldehyde in good yield (78%), along with 5% of benzoic acid (scheme 

4): 

 

Scheme 4 

OH O

2 mmol H2O2 30%

0.4 ml CH3CN,85°C

+

O

OH

 

        4                                                           5a                         6a 

      1 mmol                                                   80%                       5% 

Operating at 85°C with 0,4 ml of acetonitrile we obtain a good yield but with a 5% 

of corresponding acid. Using p-chlorobenzyl alcohol as substrate, the 

corresponding aldehyde was obtained in 80% yield accompanied by a small 

amount (2%) of the corresponding acid (scheme 5): 

 

Scheme 5 

OH O

2 mmol H2O2 30%

0.4 ml CH3CN,85°C

+

O

OH

Cl Cl
Cl

         

              6                                                              5b                      6b 

           1 mmol                                                       80%                    2% 

 

We examined the recyclability of the catalyst in this last reaction (fig. 3): 
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Fig. 3 

 

 

The recycle test was conducted for three cycles: in the first cycle the aldehyde was 

obtained in good yield and 2% of corresponding acid was detected. In the second 

cycle the yield was good but a little increase of acid was observed. In the third 

cycle the yield decrease but conserving high selectivity. This partial deactivation of 

the catalyst could be attributed to the interaction of the acidic by-product with the 

catalyst, probably causing some leaching. The problem of benzoic acid formation 

was avoided carrying out the reaction in larger volume of solvent (i.e. 1 mmol in 5 

ml) and for shorter time (2 h), but the yield decrease (10%). On the basis of these 

results, we are planning to study this reaction in a continuous flow system. 
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1.2.3 Epoxidation of cis-cyclooctene 

 

In order to explore the catalytic activity of the supported decatungstate in other 

oxidation reactions, we tested the catalyst in alkene epoxidation.  

Epoxidation is an important reaction to synthetize intermediate for fine chemicals. 

In literature there are a lot of publication for this kind of reaction and in the last two 

decades some groups reported the reactivity of POMs for this process in 

homogeneous condition[5]. Interesting paper was published byR. Hajian et al 

using a POM in heterogeneous condition [6]. 

The preliminary study was performed using cis-cycloottene as a model substrate, 

in methanol, and the reaction’s condition are showed in scheme 6: 

 

Scheme 6 

solvent, reflux
+ 1,5 eq. H2O2 30% O

12 h, 1% CAT

1 mmol

         7                                                                                          8 

In methanol conditions the product was detected in traces, and we have recovered 

all cycloottene . We tested other solvents and the results are showed in table 3 
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Table 3 

Entry Solvent H2O2 

(mmol) 

Time (h) Yield 8 (%) Selectivity 8 

(%) 

1 MeOH 1,5 12 traces 99 

2 CH3CN 1,5 12 traces 99 

3 THF 1,15 3 30 99 

4* THF 1,15 3 30 99 

5 THF 1,5 24 60 99 

6 THF 3 6 72 99 

7 THF 3 12 82 99 

8 dimethoxyethane 1,5 6 45 99 

9 dimethoxyethane 2 6 95 99 

10** dimethoxyethane 2 6 95 99 

11 dioxolane 3 3 80 99 

Reaction conditions: 1 mmol of substrate, reflux condition, 1% of catalyst;  

Yield and selectivity was calculated using GC analysis with t-butyl phenol as 

internal standerd. *5% of catalyst;**recycle of entry 8. 

 

Using acetonitrile the reaction didn’t work, probably due to the low solubility of 

cyclooctene in CH3CN and in MeOH; the effort was to find a solvent which was 

able to dissolve the hydrogen peroxide and the cyclooctene. Using THF the 

product was detected after 3 hours in 30% of yield (entry 3), that did not change 

increasing the catalyst amount (entry 4) from 1% to 5%. In order to increase the 

yield we increased the reaction time to six hours and the amount of hydrogen 

peroxide obtaining a yield 72% with a complete selectivity. A further yield (82%) 

increase was obtained carrying out the reaction for 12 hours. We explore other 

solvents such as dimethoxyethane carrying out the reaction for 6 hours. The 

product was obtained in very good yield (95%) and excellent selectively. This 

solvent was able to dissolve the reagents, and has an high boiling point. Further in 

this conditions the catalyst was recyclable. However the real problem was the 

toxicity of dimethoxyethane: for a green synthesis is inacceptable to use this kind 
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of solvent. We tested the dioxolane, a special solvent for synthesis, that recently 

was considered an alternative green solvent of the toxic glymes. The reaction 

showed good yield and selectively, but in GC analysis we detected some amount 

of ethylene glycol evidencing some decomposition of the solvent in glycol and 

formaldehyde. This is not acceptable in a green synthesis. 

Aiming at finding a good medium able to dissolve both the reagents a mixture of 

acetonitrile and ethyl acetate was tested: 

Scheme 7 

 

         7                                                                                         8 

                                                                                                    99% 

Using this unusual solvent the reaction was carried out for 1,5 hours, and the 

product was obtained in excellent yield (99%) and selectively (99%). We tested the 

recyclability of the catalyst showed in figure 4: 

 

Fig. 4 
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As shown in figure 4, the catalyst is recyclable, giving only a slight yield decrease 

in the sixth cycle (90% yield). Work in progress to extend the applicability of the 

catalyst to other substrate. 

 

 

Study of a magnetic support: preparation of decatunstate supported on 

core-shell magnetite nanoparticles 

 

In the last decades numerous research groups have focused their attention to the 

preparation of nanoparticles, in particular to superparamagnetic nanoparticles. In 

literature it is possible to see a lot of publications, because magnetic nanoparticles 

(MNPs) have great potential for biological application such as hyperthermia, 

cancer therapy, drug delivery [7-9]. 

Another important application was the use of MNP as support for heterogeneous 

catalysts due to the easy separation of the catalyst from the reaction by a simple 

magnetic decantation [10].  

Therefore, we choose to explore this type of material as support to heterogenize 

decatungstate. In particular we choose to prepare nanoparticles of Fe3O4, since 

magnetite NP have good magnetic properties and different procedure for their 

synthesis and functionalization are reported in the literature. 

To synthetize the magnetite NPs we choose the modified Massart’s method [10] 

consisting in co-precipitation of the iron salts in aqueous solution, adding 

ammonia. 

 

Scheme 8 

 

 

The reaction was carried out under Ar atmosphere, using deionized water 

(previously deoxygenated) for four hours. After then the magnetite was cooled at 

FeCl2 4H2O+2 FeCl3 6H2O
NH3 conc Fe3O4
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room temperature, washed several times with distilled water and dried overnight 

under high vacuum. 

The obtained NPs were examined by TEM microscopy to study dimensional 

distribution and crystallinity. 

 

Fig 5 

 

 

In fig.5 was reported a TEM image that shows the small dimension of the NPs 

centered between 6-8 nm. A study of magnetic properties was performed. The 

saturation of magnetization and the results are showed in figure 6: 
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This kind of study was performed applying a magnetic field on the sample due to 

align the spin of the nanoparticles. After the field was eliminated and the spin 

return to original position. If the NP are superparamagnetic a residual 

magnetization must be not detected. In fact in figure 6 it is possible to see the total 

absence of hysteresis. We can conclude the superparamagnetic character of the 

synthetized magnetite NPs since any residue magnetization is absent. 

The next step was the functionalization of this NPs. We performed a study testing 

numerous procedures reported in literature to obtain core shell Fe3O4. The 

experimental conditions influence the formation of aggregate and the thickness of 

the coating. Indeed, using the NPs obtained by co-precipitation method, there is 

the problem of great aggregation. The better result was obtained following the 

procedure shown in scheme 9: 

 

Schema 9 

 

The reaction was carried out overnight using mechanical stirrer at 60°C. The ratio 

water/EtOH was 1/1 to obtain a good solvent for disperding the NPs. After then the 

functionalized NP were cooled to room temperature and decanted using a 

permanent magnete, washed several times with ethanol and dried overnight under 

high vacuum.  

The nanoparticle with silica coating and bearing amino groups was examined by 

TEM spectroscopy (fig. 7): 
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Fig. 7 

 

 

It is possible to observe the presence of very small and larger aggregate.  

Now the functionalized NPs were ready for the next step, that is the decatungstate 

anion anchoring. We followed the same procedure employed to support 

decatungstate on silica gel: 

 Reaction with trifluoromethansulfonic acid giving ammonium salt 

 Anion exchange in water to introduce decatungstate 

All the reactions were carried out with mechanical stirrer. 

The NPs were examined by TEM microscopy: 
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Fig. 8a                                                              Fig 8b 

                          

 

During the catalyst preparation, larger aggregates were obtained. In fig. 8a is 

showed the distribution of tungsten in the aggregate, and the distribution of iron 

(8b) in the same aggregate. On the basis of these images, we can state that 

decatungstate was successfully anchored and it was homogeneously distributed 

on the aggregate. 

The obtained magnetic catalyst was tested in the sulfide oxidation as a model 

reaction employing the same condition previously reported for decatungstate 

bound to silica gel. 

Scheme 10: 

 

                                                               90%                                5% 

The catalyst showed the same reactivity of silica supported decatunstate, but with 

the advantage of catalyst recovery by magnetic decantation. 

The studies for extend the applicability of this catalyst in others reaction are in 

progress in the our laboratory. 

 

 

S CAT 0.1%,
 H2O2 30%

r.t. 1,5h

S

O

+ Sulfone



Chapter 1 

31 
 

1.3 Experimental section 

 

1.3.1 Materials 

All materials purchased were used as such unless otherwise stated. Starting 

materials for catalyst preparation: silica gel KG60 for column chromatography 

(Merk) (size 0.040-0.063 mm; surface area 480-530 m2/g; pore volume 0.74-0.84 

cm3/g). The starting material of alcohol oxidation were hydrogen peroxide (30% 

Carlo Erba), methyl-phenyl alcohol (99%, Aldrich), ethyl-phenyl alcohol (99% 

Aldrich), Benzyl alcohol (99% Aldrich), p-Chloro-benzyl alcohol (99% Aldrich), 

methyl benzyl alcohol (99% Aldrich). 

The starting material of cyclooctene epoxidation were hydrogen peroxide (30% 

Carlo Erba), cyclooctene (95%, Aldrich). 

APTES (97% Aldrich), Na2WO4*2H2O (98% Aldrich) 

 

1.3.2 Synthesis of Sodium tungstate 

 

Na4W10O32 was prepared following a literature procedure [12],adding 260 ml of 

boiling aqueous 1M HCl solution to a boiling solution containing Na2WO4*2H2O (44 

g) in distilled water. The resulting solution was allowed to boil for 40 seconds, after 

which it was transferred into a 2L beaker and rapidly cooled to 0°C in a liquid 

nitrogen/acetone bath under stirring. 

Solid NaCl was added to saturation while the temperature was maintained at 0°C. 

A precipitate formed that was collected on a fritted funnel; washed with a small 

amount of cool water, ethanol and diethyl ether and transferred to a 250 ml 

beaker. The of non-metallic spatula is recommended to avoid the formation of a 

blue color. The precipitate was suspended in hot acetonitrile (130 ml); then the 

suspension was filtered, and the filtrate was placed in a freezer overnight. Large 

pale-lime crystal of sodium decatungstate were collected on a fritted funnel and 

dried under vacuum (9,4 g). From the mother liquor, it was possible to obtain more 

crystals on concentration. The absorbance spectrum in acetonitrile or in water 

showed characteristic well-defined maximum at 324 or 323 nm, respectively. 
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1.3.3 Catalyst preparation 

 

The preparation of catalyst involved two main steps: (a) silica functionalization 

anchoring ammonium salts to surface silanols and (b) anion exchange with sodium 

decatungstate. Silica was activated by refluxing in HCl conc. For 4 h, followed by 

washing until neutral with distilled water and then drying. Anchored primary 

ammonium salt was prepared by refluxing activate silica (5 g) and 3-

(aminopropyl)-triethoxysilane  (10 mmol) in toluene (30 ml) under stirring 

overnight. The cooled functionalized silica was filtered off, washed with toluene, 

diethyl ether and dichlomethane (2x25 ml each) and dried under high vacuum 

overnight. The loading of amino group was detected by elemental analysis (0,8-1,2 

mmol/g). The resulting material in dry dichloromethane (5 g in 25 ml)were reacted 

with trifluoromethane sulfonic acid (two equivalents with respect the supported 

amino group) for 8 h at room temperature, filtered off, washed successively with 

dichloromethane, ethanol and diethyl ether (2 x 25 ml each).Then it was dried 

under high vacuum overnight.  The loading was detected by elemental analysis 

(0,8-0,9mmol/g). 

The catalyst was prepared stirring the surface bound ammonium salt in distilled 

water with sodium decatungstate at room temperature for 30 min. After stirring the 

white solid was filtered off, carefully washed with 700 ml of distilled water, 50 ml of 

ethanol and 50 ml of diethyl ether. Then it was washed in continuous with hot 

acetonitrile for 12 hours using a Soxhlet apparatus. After drying under high 

vacuum the catalyst was ready to use. 

The loading of W was determined by ICP-AES analysis (0.15 mmol/g) 

 

 

1.3.4 Synthesis of magnetite nanoparticles 

 

I step: synthesis of magnetite nanoparticles 

In a 500 ml 3 necked round bottom flask 11g of FeCl3 *6H2O (40.7 mmol) was 

dissolved in 120 ml of deionized water. Then 4 g of FeCl2*4H2O (20.1 mmol) was 
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added and the solution was heated at 85 °C under argon atmosphere. The pH 

value of the solution was adjusted to 10 by the addition of concentrated aqueous 

ammonia. The magnetite formation started immediately. After stirring for 4 hours 

under argon atmosphere the reaction was cooled. The nanoparticles were washed 

several times with deionized water to pH=7, removing the excess of ammonia. The 

black precipitate was collected by magnetic decantation and dried under high 

vacuum overnight. 

 

 

1.3.5 Functionalization of magnetite nanoparticle 

In two neck round bottom flask 0.5 g of magnetite nanoparticles was dispersed in 

100 ml of a mixture EtOH/H2O 1/1, sonicating for 10 minutes. After then the 

mixture was stirred with mechanical stirrer and heating at 60°C. After 5 minutes a 

mixture of APTES/TEOS 9/1 was added. The reaction was carried out overnight. 

After than the mixture was cooled and the nanoparticles were washed for several 

times with EtOH and dried under high vacuum. 

The resulting material in dry dichloromethane (0.5 g in 50 ml) were reacted with 

trifluoromethane sulfonic acid (two equivalents with respect to the supported 

amino group) for 8 h at room temperature, magnetically decanted, washed several 

times successively with ethanol. Then it was dried under high vacuum overnight 

The catalyst was prepared stirring the surface bound ammonium salt in distilled 

water with sodium decatungstate at room temperature for 30 min. After stirring the 

brown solid was magnetically decanted, carefully washed with distilled water, 50 

ml of ethanol. After drying under high vacuum the catalyst was ready to use. 

The loading of W was determined by ICP-AES analysis (0,08 mmol/g) 

 

The identity of the produced aldehydes and ketones were attribute by comparison 

of spectra with authentic samples or with data reported in the literature. 
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Chapter 2 

Decatungstate supported on magnetite nanoparticles for 

hydroquinone oxidation 
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2.1 Introduction 

 

The oxidation is one of the most important reaction in industrial chemistry. In the 

last decades new green legislations call for the lowering of waste production and 

the use more of more friendly alternative reagents and catalysts. This goal can be 

achieved through the application of the principles of Green Chemistry that provide 

a framework for designing more eco-compatible routes to fine chemicals 

production [1].  

Oxidation of phenols and hydroquinones affords quinones which are found as 

structural unit  in a great variety of natural compounds, showing antifungal, 

antibacterical, antiviral activity. Furthermore, benzoquinones are important as 

intermediates for preparation of fine chemicals and pharmaceuticals [2-4]. 

Oxidation of hydroquinones to their corresponding benzoquinones can be 

achieved by a variety of methods: with Fremy’s salt (potassium dinitrosulfonate [5], 

sodium dichromate/sulfuric acid mixtures[6], benzyltrimethylammonium tribromide 

[7], iodine or hydroiodic acid/hydrogen peroxide mixtures [8], diphenyl 

diselenide/hydrogen peroxide mixtures [9] ammonium ceric nitrate/Montmorilonite 

K10 mixtures[9], phenyl iodose acetate on alumina under microwawe irradiation 

[10], and a variety of metal derivates [11] have been exploited. 

Recently, our group have demonstrated the ability of polyoxoanion decatungstate 

bound to silica to activate hydrogen peroxide as green oxidant in the oxidation of 

sulfides to sulfoxides with high yields and selectivity [12]. The catalyst was 

demonstrated to be completely recyclable for at least six times without loss of 

activity. 

In this PhD thesis we planned to heterogenize the polyoxoanion decatungstate by 

anchoring to magnetic nanoparticles as support. 

In the last years nanoparticles were increasingly studied for their potential use in 

biomedical applications and also for their use such a support for catalysts in order 

to increase the superficial area. The most studied nanoparticles were magnetite 

nanoparticles for their magnetical property and their compatibility in biological 

systems, and also for their simple preparation. 
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In addition, magnetite nanoparticles (Fe3O4) of small size (< 20 nm) are 

superparamagnetic. It means that they respond to an external magnetic field 

without retaining any magnetization when it is removed. This behavior adds a 

further advantage to heterogeneous catalysis since the catalyst can be easily 

separated from crude reaction by magnetic decantation, recovered and 

immediately reused. 

In this work we present the preparation of decatungstate bound to 

superparamagnetic magnetite nanoparticles and the use of this catalyst in the 

reaction of hydroquinone oxidation with hydrogen peroxide aq. 30%. 
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2.2 Results and discussion 

2.2.1 Preliminary study 

 

The goal to reach hydroquinone oxidation is to obtain a selective oxidation without 

any by-product. In fact the formation of by-product due to coupling between 

reagent and product is very easy to occur. Also oligomers can be formed with the 

progress of the reaction. 

A preliminary study was performed using the POM decatungstate anchored on 

silica support described in chapter 1 (1.2.1). The reaction was carried out with 1% 

mmol of catalyst in methanol at room temperature (scheme 1): 

Scheme 1 

OH

OH O

O

H2O2, 1% cat W/SiO2

MeOH

 

                                       1a                                         2a 

In this condition the product was obtained in 50% of yield after 6 hours, but the 

selectivity was low: in fact the conversion was quantitative. At short time (2 hours) 

the selectivity was quantitative but yield was unsatisfactory (50%). Increasing the 

reaction time the conversion increased but selectivity drop down. Similary results 

were obtained using other solvents and higher amount of catalyst. 

Then we employed the decatungstate anchored on core-shell magnetite 

nanoparticle (W/MNP/SiO2) previously functionalized with primary ammonium 

cation: in chapter 1 (1.2.4) we have shown the reactivity of this catalyst in 

oxidation of sulphides. The reaction was carried out with 1% mmol of 

W/SiO2catalyst in methanol at room temperature (scheme 2): 
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Scheme 2 

OH

OH O

O

H2O2, 1% cat W/MNP/SiO2

MeOH

 

                                  1                                                     2a 

In this conditions the product was obtained in 50% yield and 50% selectivity, but 

the reaction time was shorter, 30 minutes. In order to modulate the polarity of the 

support to limit the formation of polar by-products we changed the counter ion of 

the catalyst. We decided to anchor a tetralkyl phosphonium salt on magnetite 

nanoparticles. 

 

2.2.2 Synthesis of catalyst 

 

The catalyst preparation involves three steps: 1) Synthesis of magnetite 

nanoparticles; 2) Synthesis of ionic liquid; 3) anchoring the ionic liquid on 

magnetite nanoparticles; 4) anion exchange. 

 

1) Magnetite nanoparticles were synthetized via co-precipitation procedure, 

applying a modified Massarth method (1); 

 

FeCl2*4H2O + FeCl3*6H2O

H2O

pH >10

NH3
Fe3O4

 

 

2) The ionic liquid was synthetized in solvent free condition at 120°C 

overnight, under nitrogen atmosphere reacting choropropyltrimethoxy 

silane and trihexylphosphine; 
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Si Cl
O

O

O
+ P

Si P

Cl

O

O

O

 

3) For ionic liquid anchoring 0,5 g of magnetite nanoparticles was sonicated 

for 10 minutes in 10 ml of water; 90 ml of ethanol was added and the 

suspension was sonicated for 5 minutes. After then the ionic liquid was 

added. The solution was heated at 60°C in oil bath and was stirred 

overnight by mechanical stirrer. 

Si P

Cl

O

O

O
+

Si P

Cl
O

O

OEtOH/H2O

1/1

60°C

Fe3O4
Fe3O4

 

 

4) For the anion exchange the functionalized magnetite was sonicated for 5 

minutes in methanol and the solution was stirred by mechanical stirrer. 

Na4W10O32 was added and the reaction was carried for 1 h at room 

temperature. After washing with deionized water (to eliminate the 

unreacted decatungstate) and methanol, the catalyst was dried under high 

vacuum. 

Si P

Cl
O

O

O

Na4W10O32

Si P

W10O32
4-

O

O

O

Fe3O4 Fe3O4
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In collaboration with institute IMEM (CNR) the catalyst supported on MNP was 

characterized by magnetic and spectroscopy measures. The catalyst was 

characterized by TEM microscopy to determine the nanoparticle size distribution 

and to study the composition of the catalyst by microanalysis.  

Fig 1 

 

 

In figure 1 a TEM image of magnetite nanoparticles obtained is shown. The 

obtained MNP are crystalline with size distribution centred at 6-8 nm. 

Fig 2 
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Obviously there are large aggregates because this MNPs were not stabilized and 

aggregation occurs also during distribution of the sample on the supporte gride.  

To complete the characterization, magnetic measurement were performed: 

Figure 3 

 

In figure 3 is shown the magnetization of saturation of the synthetized NPs and the 

graphic evidenced the superparamagnetic property of the magnetite. When the 

nanoparticles were exposed on magnetic field, and that field was successively 

removed, there is not a residue magnetization. In fact hysteresis isn’t observed. 

After the decatungstate anchorage on the MNP, the resulting catalyst was 

examined by TEM (figure 4). 

Fig. 4 
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The catalyst presents large aggregate (100-500 nm), and the TEM microanalysis 

(figure 6) revealed the presence of W, even if in small amount, confirming the W 

anchorage. This result was confirmed by ICP-AES analysis, that gave a W catalyst 

loading of 0,003 mmol/g.  

Figure 6 

 

2.2.3 Catalytic test 

 

The catalytic activity of the above described catalyst was tested in hydroquinones 

oxidation to afford the corresponding benzoquinones, important intermediates for 

fine chemicals synthesis. One of most important benzoquinone is 

trimethylbenzoquinone, a precursor of the vitamin K. Methyl hydroquinone 

oxidation was studied as a model reaction. The reaction conditions was illustrated 

in scheme 3: 
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Scheme 5 

 

                  1    0.5 mmol                                                              2a    99% 

The reaction was carried out for 45 minutes in methanol at room temperature 

using 3 equivalents of H2O2, under mechanical stirring. It is noteworthy that the 

catalyst is very active and selective. Indeed, a very small amount of catalyst 

(0.0004%) was able to afford the methyl quinone in quantitative yield. 

Taking into account that iron oxide itself could activate hydrogen peroxide, we 

examined the activity of the nude nanoparticles. 

The reaction was carried out in the same condition employed for the supported 

catalyst (scheme 6) 

Scheme 6 

 

                     1                                                                            2a 

                 0.5 mmol                                                       

After 45 minutes the product was obtained in lower yield (i.e 70%) and 99% of 

selectivity. 

We examined the recyclability of nude magnetite NPs in this reaction (fig 7) 

Fig 7 

OH

OH
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20 mg of cat
(0,0004% of W)

r.t. MeOH
3eq.H2O2 30%+

OH

OH

O

O

20 mg of Fe3O4

r.t. MeOH
3eq.H2O2 30%+
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The magnetite nanoparticles showed a progressive loss of activity in any cycle, 

probably due to modification of the iron oxide. 

The supported catalyst recyclability was studied in the model reaction under the 

optimized reaction conditions (20 mg of cat, 7 ml of methanol, r.t, 45 min). After 

any cycle the catalyst was recovered by magnetic decantation, washed with 

methanol, dried under vacuum and immediately reused in the following cycle in the 

same round bottom flask. The good results obtained are shown in figure 8: 
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For three cycle 99% of yield and selectivity were obtained; in the fourth cycle was 

obtained 95% yield and 99% of selectively, evidencing the perfect recyclability of 

catalyst It is not possible to exclude a combined effect of magnetite support and 

decatungstate, but we can state that the presence of W is fundamental to obtain a 

highly active, and recyclable catalyst. To evaluate the contribution of a radical 

mechanism, we will examine the reaction in presence of a radical scavenger, such 

as BHT. 

The general applicability of the reaction was then studied and the results were 

showed in table 2: 

Table 2:  

 

 

                 1                                                                                    2 
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O
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(0,0004% of W)

MeOH, rt, 45 min

+ 3eq. H2O2 30%
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Entry R R1 R2 Time (min) Yield 2(%) Sel. 2(%) 

1 Me H H 45 99 99 

2 Me Me Me 45 98 99 

3 OMe H H 45 98 99 

4 t-Bu H H 120 99 98 

5 H H H 45 93 98 

Rection conditions: 0.5 mmol of hydroquinone, 1.5 mmol of H2O2, in 6 ml of 

methanol, 20 mg of catalyst 

1 Yield determined by GC using method of internal standard; 

2 Isolated yield; 

 

As evidenced by the results shown in table 2 the supported phosphonium 

decatunstate was a catalyst able to promote the oxidation of hydroquinones 

bearing various substituents with high yields and selectivities. The most important 

quinone, trimethylhydroquinone (entry 2) was obtained with excellent yield(98%) 

and selectivity (99%). This results are comparable or superior with the data 

reported in literature. 

In figure 9 we show the further advantage of supeparamagnetic catalyst, magnetic 

decantation: 
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1) This picture shows a round bottom flask containing methylhydroquinone, H2O2, 

solvent and catalyst (colourless solution); 2) the same flask after sonication; 3) at 

the end of reaction the product was in solution and the catalyst was magnetically 

decanted (yellow solution, for the presence of methylbenzoquinone) and easily 

separated. After the separation the catalyst was washed with methanol, dried 

quickly and reused in the same flask. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) 2) 3) 
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Experimental section 

2.3 General information 

2.3.1 Materials 

 

All materials purchased were used as such unless otherwise stated. Starting 

materials for catalyst preparation: FeCl2 *4H2O, FeCl3 *6H2O, (3-chloropropyl) 

trimethoxysilane (97% Aldrich), trihexyl phosphine (>90% TCI), Sodium tungstate 

dehydrate (Aldrich), ammonia solution 30% (Carlo Erba reagenti). The starting 

material for hydroquinone oxidation were hydrogen peroxide (30% Carlo Erba), 2-

methyl-1,4-hydroquinone (98%, Aldrich) recrystallized from toluene, trimethyl-1,4-

hydroquinone, tert-butyl-1,4-hydroquinone (97%, Aldrich), 2-methoxy-1,4-

hydroquinone (97%, Aldrich), 1,4-hydroquinone (97% Aldrich). 

 

2.3.2 Synthesis of catalyst  

2.3.2.1 Sodium decatungstate 

 

Na4W10O32 was prepared following a literature procedure. Adding 260 ml of boiling 

aqueous 1M HCl solution to a boiling solution containing Na2WO4*2H2O (44 g) in 

distilled water. The resulting solution was allowed to boil for 40 second, after which 

it was transferred to a 2L beaker and rapidly cooled to 0°C in a liquid 

nitrogen/acetone bath under stirring. 

Solid NaCl was added to saturation while the temperature was maintained at 0°C. 

A precipitate formed and that was collected on a fritted funnel; washed with a 

small amount of cool water, ethanol and diethyl ether and transferred to a 250 ml 

beaker. The use of non-metallic spatula is recommended to avoid the formation of 

a blue colour. The precipitate was suspended in hot acetonitrile (130 ml); then 

suspension was filtered, and the filtrate was placed in a freezer overnight. Large 

pale-lime crystal of sodium decatungstate were collected on a fritted funnel and 

dried (9,4 g). From the mother liquor, it was possible to obtain more crystal on 

concentration. The absorbance spectrum in acetonitrile or in water comprised a 

characteristic well-defined maximum at 324 or 323 nm, respectively. 
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2.3.2.2 Anchoring of decatungstate 

 

I step: synthesis of magnetite nanoparticles 

In a 500 ml 3 neck round bottom flask 11g of FeCl3 *6H2O (40.7 mmol) was 

dissolved in 120 ml of deionized water. Then 4 g of FeCl2*4H2O (20.1 mmol) was 

added and the solution was heated at 85 °C under argon atmosphere. The pH 

value of the solution was adjusted to 10 by the addition of concentrated aqueous 

ammonia. The magnetite formation started immediately. After stirring for 4 hours 

under argon atmosphere the reaction was cooled. The nanoparticles were washed 

several time with deionized water to pH=7 removing the excess of ammonia. The 

black precipitate was collected by magnetic decantation and dried under high 

vacuum overnight. 

 

II step: Syntesys of phosphonium salt; 

 

In 25 ml Schlenk the 3-(chloropropyl) trymethoxy silane and trihexyl phosphine 

were added under nitrogen atmosphere. The mixture was heated in solvent free 

condition for 4 h. The crude product was characterized by ESI-MS and used in the 

next step. 

 

III step: Anchorage of phosphonium salt 

 

In a 250 ml round bottom flask 0.5 g magnetite nanoparticles was sonicated for 15 

minute into the solvent reaction, and 10 mmol of phosphonium salt were added. 

The mixture was stirred by mechanical stirrer and heated at 60°C overnight. After 

then the magnetic supported phosphonium salt was magnetically decantedl and 

washed with methanol several times using the magnetic decantation. The 

functionalized MNP was dried under high vacuum and the loading of organic group 

was determined by elemental analysis (in progress). 
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IV step: Anion exchange 

 

In 250 ml of round bottom flask, 0.5 g of supported phosphonium salt was 

suspended in 150 ml of MeOH. The sodium decatungstate was added in ratio 4/1 

respect to the mmol of supported salt, and the mixture was stirred for 2 h at r.t. 

After then the catalyst was washed with MeOH for several times using magnetic 

decantation in order to eliminate the unreacted sodium salt. The powder was dried 

under high vacuum and the loading of organic group was determined by elemental 

analysis, and the W loading was determined by ICP-AES (0.002 mmol/g). 

Magnetite nanoparticles 

 

This picture shows the magnetite nanoparticles. 
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The istogram shows the size distribution of magnetite nanoparticles (centered on 

6-8 nm) 

 

 

Magnetic Catalyst 

Si P *
Na4-yW10O32

4-

Fe3O4
O

O

OMe

y
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The final catalyst present large aggregates (100-500 nm). 
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Elemental analysis detect a loading of W 0.004 mmol/g. This is in accordance with 

the microanalysis TEM: this graphic shows the presence in low amount of W in the 

analyzed aggregate. Some signals are high for the overlap of L line of silica. 

 

2.3.3 Reaction procedure for hydroquinone oxidation 

 

Typical oxidation of methyl hydroquinone with hydrogen peroxide as model 

reaction was performed using a 100 ml round bottomed flask. The catalyst (the 

amount of which was evaluated on the basis of loading values for introducing the 

specified amount of decatungstate) and 30% H2O2 (1.5 mmol, 0,15 ml) were 

added to methanol (6 ml) sonicated for 5 minutes and stirred by mechanical stirrer. 

The hydroquinone was added after 5 minutes. 

The reaction was stirred for 45 minutes. The progress of oxidation reaction was 

monitored by GC and TLC. After 45 minutes, the mixture was magnetically 

decanted using a permanent magnete (Nd-Fe-B). The solid catalyst was washed 

with 5 ml of methanol and recovered. The solution was examined by GC. The GC 

analysis were performed on a Trace GC ThermoFinnigan instrument with a 

Supelco SPB-20 fused silica capillary column (30 mx0.25 mm) with helium as a 

carrier, adding 4-tert-butyl phenol as internal standard. The model reaction of 
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methyl hydroquinone was monitored between 15 and 60 min. Samples were 

obtained periodically, and the course of reaction was followed by GC using 4-tert-

butyl phenol as internal standard added to the samples. The same methodology 

was followed in the synthetic application to different hydroquinone the different 

catalysts. The product was purified by  extraction adding 30 ml of diethyl ether to a 

methanolic solution, and washed with distilled water two times. The organic phase 

was evaporated on rotavapor and the solid was examined by NMR. 

 

 

The identity of the produced and benzoquinones were attribute by comparison of 

spectra with authentic samples or with data reported in the literature. 
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Chiral complex anchored on silica gel for enantioselective 

sulfide oxidation 
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3.1 Introduction 

 

Development of new catalytic processes for enantioselective synthesis is one of 

the most important objective in synthetic chemistry. Catalysis play a fundamental 

role for ecocompatible processes and heterogeneous catalysis is widely applied in 

industrial synthesis for the simple separation of the catalyst, recover and reuse 

and adaptability in continuous flow processes. 

Chiral sulfoxides are used as auxiliaries in asymmetric synthesis and as a ligand in 

enantioselective catalysis.[1]. The use of sulfinyl group as a chiral controller is 

based on the high optically stability (200°C are necessary for the stereomutation), 

accessibility in both enantiomeric form, and high efficiency as a carrier of chiral 

information. The large stereoelectronic differences between the three substituents 

at the sulfinyl sulphur (the lone pair of electrons, the oxygen atom and the two 

alkyl groups) allow the creation of a well-defined chiral environment around the 

sulfur atom. Additionally, the polarized S-O bond, with a net positive charge on 

sulfur, allow both the oxygen and the sulfur atoms to coordinate Lewis acids and 

transition metals, leading higly rigid and ordered transition-state geometries that 

permit effective transfer of the chiral information to the alkyl or the aryl groups or 

more distant positions. [1]. 

Some pharmaceutically important drugs contain asymmetric sulfynil moieties [2]: 

esomeprazole(fig 1) is the most important one. 

Fig.1 

 

Enantioselective oxidations of sulfides can be performed by biocatalysis [3] or by 

chemical oxidation, the latter occurring in the presence of chiral oxidizing species, 

or by using a chiral oxidants and chiral metal complexes [4]. 
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For the chemical oxidation, the most studied catalysts was based on titanium and 

vanadium complexes. An example is titanium (IV) isopropylate with optically active 

diethyl tartrate and an oxidant such as tert-butyl hydroperoxyde [5-6]. In those 

works, dry atmosphere is request in order to avoid humidity.  

Complexes of VO(acac)2  with chiral Schiff bases work in asymmetric oxidation 

with hydrogen peroxide such as oxidant, the humidity is not a problem, but the 

enantioselectivity is not very high [7]. 

The good results obtained using tungsten-based catalyst in hydrogen peroxide 

activation [8] have prompted our group, in collaboration with prof. Seddon’s group 

of QUILL centre at Belfast University, to prepare new chiral ionic liquids containing 

a chiral complex of tungsten as anion. In particular, the ionic liquid formed by a 

tetralkyl phosphonium cation and tungsten (S)-mandelate as chiral anion (fig. 2), 

was able to promote the enantioselective oxidation of tioanisole to the 

corresponding sulfoxide with high e.e (up 96%). and moderate yield, using UHP as 

a oxidant. [9] (fig 2) 

 

However the enantioselectivity drop after 1 hour of reaction and it was not possible 

to increase the yield over 50% without observing a drop of enantioselectivity. 

On the basis of those results we decided to anchor the tungsten complex with 

mandelate as ligand, on a silica support in order to obtain a heterogeneous 

catalyst for enantioselective oxidation of sulfide. 
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3.2 Results and discussion 

 

Asimmetric oxidation in heterogeneous catalysis is one more interesting field in 

industrial chemistry. 

There are numerous papers in literature which show that tungsten is able to 

activate hydrogen peroxide for oxidation of sulfides. Recently some papers with 

chiral catalysts based on tungsten were published.  

In one case the catalyst was a chiral polyoxotungstophosphonate, 

derivated by the reaction between polyoxotungstate and a chiral 

phosphonate [10]. This catalyst was used in sulfide oxidation showing high 

activity but low enantioselectivity (e.e. <8%).  

Another work shown the activity of dendrimeric polyoxometallate [11] tesi 

angelica): the model reaction was the thioanisole oxidation, using hydrogen 

peroxide such a oxidant in bifasic system. The e.e. obtained was <14%. 

In this work we studied the anchorage of the chiral tungsten mandelate complex 

on silica support in order to obtain an heterogeneous catalyst for enantioselective 

oxidation of sulfide to sulfoxide. 

For the synthesis of the tungsten complex we followed a procedure reported in 

literature: 

Scheme 1 

2
COOH

OH

H
O

O

O

O

O

O

W

O
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2-

K2

H2O
K2WO4 +

 



Chapter 3 
 

61 
 

For the sodium salt of this complex [11] that was characterized by Zhou and co-

workers [12]. We synthetized the potassium salt using tungstate/ mandelic acid 

ratio of 1/2 in water at 85°C. 

We choose the potassium salt because the crystallization of the sodium complex 

required several days. The crude complex was analyzed with 1H-NMR 

spettroscopy showing the formation of the complex in high yield; the benzylic 

proton was monitored and a low residue of free mandelic acid (3-5%) was 

detected. The complex was purified by crystallization and crystals obtained in 

methanol were suitable for RX analysis. The crystal structure is shown in figure 3: 

 

Fig. 3 

 

The XRD analysis was performed at low temperature in order to preserve the 

crystal (the solid was deliquescent). A dimeric structure was evidenced , and metal 

centre and ligands shown a Λ and S configuration respectively. W(1) and W(2) 

showed octahedric distorted coordination, with the two oxygen were in cis 

positions. 

In figure 4 the FT-IR of the complex is reported: 
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Fig. 4 

 

 

It is possible to see the signal of carboxylate groups, vas at 1653 cm-1 and vsym at 

1352 cm-1, double bond W-O at 926 and 880 cm-1, in accordance with results 

reported for sodium complex [12]. 

The 1H NMR showed two signals at 5.78 and 5.93 ppm due to the benzylic carbon 

CH(O) group. 

Also in the 13C NMR spectrum there are two signals at 89.8 and 88.5 ppm due to 

the benzylic carbon. This signals could be attributed to equilibrium between the Λss 

and Δs,s form of the complex. This hypothesis was supported by the 1H-NMR study 

at increasing temperature shown in figure 5: 
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Fig. 5 

 

Increasing the temperature, the two signals gave coalescence, and a single signal 

was observed at 85°C. It was not possible to reach higher temperature to have a 

sharp signal, expected for a very fast exchange equilibrium, for technical reasons, 

and also taking into account that the solvent was D2O. 

 

 

 

 

 

Fig. 6 
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3.2.1 Synthesis of catalysts 

 

The first step was the functionalization of silica support with the appropriate 

alchoxy silane: to obtain tetralkyl ammonium salt or tetra alkyl phosphonium salt, 

the silica was functionalized using 3-(bromopropyl)trimethoxy silane. For the 

primary ammonium salt we used the 3-(aminopropyl)triethoxy silane. 

 

Scheme 2 

OH

OH

Si
RO

RO

RO

X O

O

Si

OR

X

X = Br, R = OMe

X = NH2 R = OEt  

 

The second step was the formation of ammonium salts. The quaternary salts were 

obtained reacting the alkyl bromide with a tertiary amine, in particular tripentyl 

amine. 

 

Scheme 3 
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Toluene, reflux

The primary ammonium salt was prepared by protonation of the anchored amine 

with trifluoromethane sulfonic acid in dicholomethane (scheme 4): 

 

Scheme 4 
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The anchored phosphonium salt was prepared in two steps (scheme 5): 

Scheme 5 

I Synthesis of phosphonium ionic liquid: 

 

II Anchorage on silica: 

OH

OH
Toluene, reflux, overnight

O

O

Si

OR

P
+

Cl-P

(CH2)5CH3

(CH2)5CH3

H3C(H2C)5

Si

MeO

OMe

OMe

Cl-

+

 

The last step was the anion exchange to introduce the chiral tungstate; the 

reaction was carried out in water at room temperature for 2 hours. 

 

Scheme 6 

O

O
Si NH3

+CF3SO3
-

OEt

K2WO2L*2
O

O
Si NH3

+

OEt

WO2L*2

2

H2O, rt, 2h

 

The loading of organic parts was determined by elemental microanalysis, and the 

W amount was detected by ICP-AES (0.36 mmol/g). 
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3.2.2 Catalytic test 

 

The catalysts reactivity was tested in the oxidation of thioanisole as a model 

reaction. 

 

Scheme 7 

S

CAT1, H2O2 30%

r.t. 1,5h

S

O

+
Sulfone

 

                 1                                                            2a 

The first reaction was carried out in homogeneous conditions using the potassium 

chiral complex (K2WO2L*2), with methanol as a solvent, 1,15 meq. of H2O2  at room 

temperature with 5% mol of catalyst. The yield was 75% and the e.e. 30%. 

Using the supported catalyst with the primary ammonium salt (CAT1) we obtained 

the results showed in table 1 

 

Table 1 

Entry Solvent CAT1 (%) Yield (%) Sel. (%) e.e. (%) 

1 MeOH 5 77 78 16 

2 CH2Cl2/MeOH 

8/2 

5 83 91 18 

3 CH3CN 5 64 88 4 

4 CH2Cl2/CH3CN 

6/4 

5 53 69 13 

5 CH2Cl2/H2O 

1/1 

2 8 82 12 

Reaction conditions: o.5 mmol of thioanisole, o.575 of H2O2 , 3 ml of solvent, 1.5 h, 

r.t. 
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Yield and selectivity were determined by 1H NMR analysis using p-tert butyl phenol 

as a internal standard. Enantiomeric excess was detected by HPLC analysis. 

 

Using a mixture CH2Cl2/MeOH 8/2 as solvent good a yield (83%) and selectivity 

(91%) were obtained,.but e.e. value was modest. The choise of the reaction 

solvent is restricted due to miscibility problems with aqueous H2O2. In order to 

increase the e.e. we decided to decrease the amount of protic solvent, but using a 

CH2Cl2/MeOH 9/1 ration hydrogen peroxide was not soluble. Acetonitrile was not a 

good solvent to obtain high asymmetric induction. (entry3, 5). The problem in 

bifasic  system (entry5) was the compatibility of the catalyst in aqueous phase, 

and in this case the real solvent of the oxidation was water. 

We decided to study another oxidant and other solvent in order to obtain higher 

e.e. 

 

Scheme 8 

S

CAT1, CH2Cl2/MeOH

r.t. 1,5h

S

O

+ Sulfone

 

      1                                                                           2a 

Table 2 

Entry Solvent oxidant Yield (%) Sel (%) e.e. 

1 CH2CL2/MeOH 

8/2 

H2O2 83 91 18 

2 CH2CL2/MeOH 

95/5 

UHP 72 85 15 

Reaction conditions: o.5 mmol of thioanisole, o.575 of H2O2 , 3 ml of solvent, 1.5 h, 

r.t. 

Yield and selectively was determined by 1HNMR analysis using p-tert butyl phenol 

as a internal standard. Enantiomeric excess was evaluated by HPLC analysis. 
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The use of UHP, complex between H2O2 and urea, was suggested by the good 

results reported for the chiral ionic liquid [9]. But with the supported catalyst CAT1 

UHP did not gave better results. 

We extended the reaction to other tioanisoles (Table 3): 

Table 3 

Entry Substrate Yield (%) Sel (%) e.e. 

1 S

2a 

83 91 18 

2 S

MeO 2b 

75 99 15 

3 S

NO2 2c 

51 87 12 

4 S

Br 2d 

70 87 14 

Reaction conditions: o.5 mmol of thioanisole, o.575 of H2O2 , 3 ml of solvent, 1.5 h, 

r.t. 

Yield and selectively was determined by 1HNMR analysis using p-tert butyl phenol 

as a internal standard. Enantiomeric excess was detected by HPLC analysis. 

 

We studied the effect of counter ion of the catalyst. In fact we used tetralkyl 

ammonium (CAT 2) or phosphonium salt (CAT 3) such a cation in order to modify 

the polarity of the catalyst. 
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Scheme 9 

S

CAT,

r.t. 1,5h

S

O

+ Sulfone+
H2O2

0.5 mmol 0.575 mmol

2a1

 

 

Table 4 

Entry Cat Solvent Yield (%) Sel (%) e.e. (%) 

1 K2[WO2-

(L*2)] 

MeOH 75 82 30 

2 CAT1 CH2Cl2/MeOH 

8/2 

83 91 18 

3 CAT2 CH2Cl2/MeOH 

8/2 

65 95 11 

4 CAT3 CH2Cl2/MeOH 

8/2 

22 99 10 

Reaction conditions: o.5 mmol of thioanisole, o.575 of H2O2 , 3 ml of solvent, 1.5 h, 

r.t. 

Yield and selectivity were determined by 1HNMR analysis using p-tert butyl phenol 

as a internal standard. Enantiomeric excess was evaluated by HPLC analysis. 

 

With quaternary catalysts the yield decreased probably because the steric 

inderance of the counter ion cause the difficulty for the access of the substrate to 

the catalyst. The e.e. decrease too. 

The last study was the catalyst recyclability. We use the CAT1 such a catalyst for 

the model reaction and the results are showed in figure 4  

 

 

 



Chapter 3 
 

71 
 

Figure 4 

 

The figure 4 shows the perfect recyclability of the CAT1, but the e.e. slightly 

decreased (18-15%). To understand the reason, we analyzed the catalyst after 

three uses. The loading of W remain constant after the catalyst reuse. This explain 

the yield reproducibility during reuse. Probably the problem was the water 

adsorbed to the support that could modify the coordination around the metal. 
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3.3 Experimental section 

3.3.1 General informations 

 

All materials purchased were used as such unless otherwise stated. Starting 

materials for catalyst preparation: silica gel KG60 for column chromatography 

(Merk) (size 0.040-0.063 mm; surface area 480-530 m2/g; pore volume 0.74-0.84 

cm3/g). The starting material of alcohol oxidation were hydrogen peroxide (30% 

Carlo Erba), thioanisole (99% Aldrich), p-bromo thioanisole (99% Aldrich), p-nitro 

thioanisole (98% Aldrich), p-methoxy thioanisole (99% Aldrich). 

 

3.3.2 Catalyst preparation 

 

3.3.2.1 Preparation of complex K2WO2L2 

2
COOH

OH

H
O

O

O

O

O

O

W

O

O

2-

K2

H2O
K2WO4 +

 

In a one neck round bottom flask 8,5 mmol of potassium tungstate was dissolved 

in 7,5 ml of deionized water and successively 17 mmol of (S)-(+)-mandelic-acid 

were added. The reaction was carried out at 85°C overnight under magnetical 

stirrer. After then the solvent was removed under vacuum and the obtained solid 

was checked on NMR. This analysis show a residual of mandelic acid(3%). 

 

 

 

 



Chapter 3 
 

73 
 

Characterization of Complex K2[WO2(S-MANDELATE)2] 

O

O

W

O

O

O

O

O

O

K2

 

 

1H NMR (D2O, 400 MHz) 

δ(ppm) 

5.95, 5.81 d, 1H, CH 

7.36-7.64, 5H, Ph 

 

 

13C NMR (D2O) 

δ(ppm) 

89.77, 88.49 (HCO-) 

143.3, 131.95, 131.73, 131.56, 130.95, 130.01 (Ph) 

187.59 (C=O) 
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IR (KBr) 

 

 

1653 cm-1 νas (C=O) 

1352 cm-1 νsim (C=O) 

926 and 880 ν (W=O) 

 

XRD: (figure 5) 
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(figure 5) ORTEP drawing of K4{[W(L)2O2]}2
.5CH3OH, with thermal ellipsoids at the 

30% probability level. The asymmetric unit is represented by two [W(L)2O2]
2- 

complex anions linked by K+ and methanol molecules. The W atoms and the 

ligands exhibit the Λ and S configurations, respectively. The metal geometry of 

W(1) and W(2) is distorted octahedral with the two oxo group in cis position. The 

ligands behave as O,O bidentate with the oxygen atoms of the deprotonated 

carboxylic and alcoholic functions. 

 

Figure 6 
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(figure 6) Coordination environment of the W(1) atom. Thermal ellipsoids at drawn 

at the 30% probability level. The complex molecule containing the W(2) atom 

exhibits a similar geometry. The metal geometry of W(1) and W(2) is distorted 

octahedral with the two oxo group in cis position. The ligands behave as O,O 

bidentate with the oxygen atoms of the deprotonated carboxylic and alcoholic 

functions 

 

Figure 7 

 

Figure 7: coordination sphere of cation K+. Symmetry code: ‘-x, y+1/2, -z; ‘’=1-

x,y+1/2,-z; ‘’’=-x, y-1/2, -z; ‘’’’=x-1, y,z. 

 

Empirical formula                 C37 H44 K4 O21 W2 

Formula weight                    1348.82 

Temperature                       205(2) K 

Wavelength                        0.71073 A 

Crystal system, space group       Monoclinic,  P21 

Unit cell dimensions              a = 10.489(2) A   alpha = 90 deg. 

b = 16.938(4) A    beta = 106.05(1) deg. 

c = 13.790(3) A   gamma = 90 deg. 

Volume                            2354.5(9) A^3 

Z, Calculated density             2,  1.903 Mg/m^3 

Absorption coefficient            5.312 mm^-1 
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F(000)                            1316 

Crystal size                      0.41 x 0.37 x 0.21 mm 

Theta range for data collection   1.95 to 26.24 deg. 

Limiting indices                  -13<=h<=5, -13<=k<=19, -16<=l<=17 

Reflections collected / unique    6363 / 5726 [R(int) = 0.0288] 

Completeness to theta = 26.24     93.1 % 

Absorption correction             Semi-empirical from equivalents 

Max. and min. transmission        1.000 and 0.151 

Refinement method                 Full-matrix least-squares on F^2 

Data / restraints / parameters    5726 / 1 / 576 

Goodness-of-fit on F^2            1.001 

Final R indices [I>2sigma(I)]     R1 = 0.0531, wR2 = 0.1404 

R indices (all data)              R1 = 0.0560, wR2 = 0.1429 

Absolute structure parameter      0.004(14) 

Largest diff. peak and hole       4.004 and -3.231 e.A^-3 

R1 = Σ││F0│-│Fc││/Σ│F0│. wR2 = [Σ[w(F0
2-Fc

2)2]/Σ[w(F0
2)]] 
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3.3.2.2 Synthesis of catalysts 

Silica activation 

OH
OH

OHO
OH

HCl conc.

reflux

 

In a 250 ml round bottom flask, 5 g of silica KG60 was added to 150 ml 

concentrated of HCl at 37%. The suspension was heated at reflux for 4 hours 

under vigorous stirring. The obtained silica was filtered off, washed to neutrality 

and dried under high vacuum and heated to 350 °C for 24 hours. 

Silica functionalization 

OH

OH
OH

Si

OR

RO

OR

X

O

O
OH

Si

OR

X

+ ROH

 

R= Me, X = Br 

R = Et, X = NH2 

In a 100 ml round bottom flask 5 g of activated silica was suspended in30 ml of 

toluene, and 10 mmol of silane was added. The mixture was stirred and heated at 

reflux overnight. After then the solid was filtered by Buchner funnel and washed 

with 30 ml of toluene. The functionalized silica was dried under high vacuum and 

the loading of organic group was determined by elemental analysis (0.9 mmol/g). 

 

Synthesis of quaternary ammonium salt 

O

O

Si

OR

Br (Pentyl)3N

Toluene, reflux, overnight

O

O

Si

OR

N
+

Br-
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In a 100 ml round bottom flask 5 g of bromo-propylated silica was suspended in30 

ml of toluene, and 50 mmol of tripentylamine was added.The mixture was stirred 

and heated at reflux overnight. After then the supported ammonium salt was 

filtered by Buchner funnel and washed with 30 ml of toluene. The functionalized 

silica was dried under high vacuum and the loading of organic group was 

determined by elemental analysis. 

 

Synthesis of primary ammonium salt 

O

O

Si

OR

NH2

CH2Cl2, 8h, r.t.

O

O
OH

Si

OR

NH3
+ CF3SO3

-CF3SO3H

 

In a 100 ml round bottom flask 5 g of amino-propylated silica was suspended in30 

ml of toluene, and 10 mmol of trifluoromethansulfonic acid was added. The mixture 

was stirred for 8 hours a room temperature. After then the obtained solid was 

washed with 30 ml of dichloromethane. The supported primary ammonium salt 

functionalized silica was dried under high vacuum and the loading of organic group 

was determined by elemental analysis. 

 

Preparation of anchored phosphonium salt 

Si

OMe

MeO

OMe

Cl

Hexyl3P

120°C, 4 h, solvnt free

Si

OMe

MeO

OMe

P

+

Cl-
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In 25 ml schlenk the 3-(chloropropyl) trymethoxy silane and trihexyl phosphine was 

added under nitrogen atmosphere. The mixture was heated in solvent free 

condition for 4 h. After the crude product was checked by ESI-MS. 

ESI-MS 

(Esi+) m/z : 450 (P4-Br-); 551 (P4+Na+); 567 (P4+K+) 

(Esi-) m/z : 607, 609, 611, 613, (M+2Br-); 78,80(Br-) 

 

Sopporting of phosphonium salt 

OH

OH
Toluene, reflux, overnight

O

O

Si

OR

P
+

Cl-P

(CH2)5CH3

(CH2)5CH3

H3C(H2C)5

Si

MeO

OMe

OMe

Cl-

+

 

In a 50 ml round bottom flask 5 g of activated silica was suspended in30 ml of 

toluene, and 50 mmol of phosphonium salt was added.The mixture was stirred and 

heated at reflux overnight. After then the supported phosphonium salt was filtered 

by Buchner funnel and washed with 30 ml of toluene. The functionalized silica was 

dried under high vacuum and the loading of organic group was determined by 

elemental analysis. 

 

Anion exchange 

O

O

Si

OR1

XR2
3

H2O, 24h, r.t.

O

O
OH

Si

OR1

XR2
3

Kx(WO2)L2
K2WO2L2

+

A-

y

+

 

X= N, R2= pentyl, R1 = Me 

X = N, R2 = H, R1 = Et 

X= P, R2= Hexyl, R1 =Me 
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In 50 ml of round bottom flask, 5 g of supported ammonium or phosphonium salt 

was suspended in 50 ml of deionized water. The complex was added in ratio 

1/1,15 respect to the mmol of supported salt, and the mixture was stirred for 24 h 

at r.t. After then the catalyst was washed with 30 ml of water, 30 ml of ethanol and 

15 ml of diethyl ether in order to remove the water. The powder was drien under 

high vacuum and the loading of organic group was determined by elemental 

analysis. The W loading was determined by ICP-AES (0.36 mmol/g). 
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CAT 1 

O

O
OH

Si

OEt

NH3
K2-x(WO2)L2

x

+

 

ICP-AES (W) 

Loading W: 0,36 mmol/g 

 

IR KBr 

 

 

In order: IR of silica gel, IR of potassium complex, IR of CAT1 

 

For CAT1  

1653 cm-1 νas (C=O) 
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CAT 2 

O

O
OH

Si

OMe

N K2-x(WO2)L2

x

+

(CH2)4CH3

(CH2)4CH3

(CH2)4CH3

 

ICP-AES (W) 

Loading W: 0,11 mmol/g 

 

IR (KBr) 

 

 

 

 

1654 cm-1 νas (C=O) 
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CAT 3 

O

O
OH

Si

OMe

P K2-x(WO2)L2

x

+

(CH2)5CH3

(CH2)5CH3

(CH2)5CH3

 

ICP-AES (W) 

Loading W: 0,16 mmol/g 

 

IR (KBr) 

 

 

1652 cm-1 νas (C=O) 

 

 

 

3.3.3 Reaction procedure for sulfide oxidation 

 

Typical oxidation of methyl phenyl sulfide with hydrogen peroxide as model 

reaction was performed using a 25 ml round bottomed flask. The selected catalyst 



Chapter 3 
 

85 
 

(the amount of which was evaluated on the basis of loading values for introducing 

the specified amount of chiral tungstate) and 30% H2O2 (0,575 mmol, 0,058 ml) 

were added to the specified solvent (3 ml). The thioanisole was added (0.06 ml 0.5 

mmol) after 5 minutes. 

The reaction was stirred for 1,5 h. The progress of oxidation reaction was 

monitored by GC and TLC. After 1,5 h, the mixture was filtered on Buchner funnel. 

The solid catalyst was washed with 5 ml of methanol and recovered. The solution 

of crude reaction was examined by GC ; Na2S2O3 was added to the solution to 

consume the excess of hydrogen peroxide and filtered off. The GC analysis were 

performed on a Trace GC ThermoFinnigan instrument with a Supelco SPB-20 

fused silica capillary column (30 m 0.25 mm) with helium as a carrier, adding 4-

tert-butyl phenol as a internal standard. The model reaction of methyl phenyl 

sulfide was monitored between 30 and 90 min. Samples were obtained 

periodically, and the course of reaction was followed by GC using 4-tert-butyl 

phenol as a internal standard added to the samples. The same methodology was 

followed in the synthetic application to different sulfides and using the different 

catalysts. The product was purified by preparative silica plates, using hexane/ethyl 

acetate 1/1 as eluants. The pure product was analyzed by HPLC Agilent 1100 

series with chiral column Chiralcel OD-H using hexane/isopropanol as eluants, in 

order to determine the enantiomeric excess. For determine the enantiomeric purity 

the pure products was analyzed on a spettrometer Perkin-elmer model 341 with 

Na and Hg lamp with polarimetre Glan-Taylor. 
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Characterization of methyl phenyl sulfoxide (2a) 

S

O

a

a'

b'

b

c

 

Transparent oil at 25°C, m.w. 140.21, C7H8S. 

 

1H NMR (CDCl3, 300 MHz) δ(ppm): 3.06 s, 3H, (CH3), 7.55-7.60 m, 2H (Ha and 

Ha’), 7.64-7.66, 1H (Hc), 7.94-7.96, 2H (Hb and Hb’). 

 

MS-EI (m/z): 140 M+ (98%), 125 (100%), 97 (45%) 

 

 

Characterization of 4-methoxy-methyl phenyl sulfoxide (2b) 

S

O

a

a'

b'

b

MeO

 

Transparent oil, m.w. 170.23, C8H10S. 

 

1H NMR (CDCl3, 300 MHz) δ(ppm): 2,67 s, 3H (CH3); 3.82 s, 3H (OCH3); 7.00 d, 

2H (Hb and Hb’) ½ para system, J=8.8; 7.56 d, 2H (Ha and Ha’) ½ para system, 

J=8,8 

 

MS-EI (m/z): 170 M+ (20%), 155 (100%), 139 (10%) 
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Characterization of 4-nitro-methyl phenyl sulfoxide (2c) 

S

O

a

a'

b'

b

O2N

 

Transparent oil, m.w. 185, C7H7SNO2. 

 

1H NMR (CDCl3, 300 MHz) δ(ppm): 2,83 s, 3H (CH3);  7.87 d, 2H (Hb and Hb’) ½ 

para system, J=8.8; 8.19 d, 2H (Ha and Ha’) ½ para system, J=8,8 

 

Characterization of 4-bromo-methyl phenyl sulfoxide (2d) 

S

O

a

a'

b'

b

Br

 

Transparent oil, m.w. 220, C7H7SBr. 

 

1H NMR (CDCl3, 300 MHz) δ(ppm): 2,76 s, 3H (CH3); 7.52 d, 2H (Hb and Hb’) ½ 

para system, J=8.8; 7.53 d, 2H (Ha and Ha’) ½ para system, J=8,8 
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Chapter 4 

Heterogenized basic ionic liquid as a catalyst for nitro-

Michael reaction and synthesis of 4-H-pyrans 

 

 

 

 

 

 

 

 



Chapter 4 
 

90 
 

4.1 Introduction 

 

Environmental concern associated with chemical synthesis has posed stringent 

and compelling demands for greener processes, and development of cost-

effective and environmentally benign catalytic systems has become one of main 

themes of contemporary synthetic chemistry. In this context, development of highly 

active and selective catalyst is of prime importance. Heterogeneous catalysis is 

preferred in industrial processes to homogeneous catalysis because the extraction 

of the product and recovery of the catalyst is relatively easier. However mass or 

heat transfer limitations in the solid catalyst may lead to decreased activity. 

Furthermore, lower chemo- and stereoselectivities are often obtained compared to 

homogeneous catalysis. Obviously, a catalytic system, which makes to secure the 

advantages of both heterogeneous and homogeneous catalysis (i.e. good activity, 

high selectivity, easy extraction of the product and recovery of the catalyst) would 

greatly enhance the interest of industry in catalysis. 

In the past two decades, ionic liquids (ILs) have gained great attention due to their 

unique properties, as evidenced by their increasing popularity as innovative and 

environmentally benign reaction media as well as by their use as new vehicles for 

the immobilization of transition metal-based catalysts. From a chemical point of 

view, some characteristics of ILs, such as thermal stability and very low vapor 

pressure, address the problem of emission of volatile organic solvents (VOCs) in 

the atmosphere, thus making this liquids environmentally attractive alternative to 

classical organic solvents. Moreover, the physical properties of ILs can be finely 

tuned by changing either the anion, the cation or the attached substituents. Thus 

ILs exhibit an excellent ability to dissolve polar and non-polar organic, inorganic 

and polymeric compounds, allowing substantial application of ILs in various type of 

catalytic and synthetic reactions. There are many review in the literature which 

give comprehensive overviews about the topics related to ILs such as synthesis in 

ILs, catalysis with ILs, and no-solvent utilization of ILs [1]. Numerous chemical 

reactions, such as polymerization, hydrogenations, regioselctive alkylations, 

Friedel-Crafts reactions, dimerizations of alkenes, Diels-Alder reactions, Michael 
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reactions, cross-coupling reactions and some enzymatic reactions can be carried 

out in ionic liquid or using ionic liquid as catalyst [2]. 

However, in homogeneous catalysis there are many problems when ILs as used 

as reaction media: a large amount of ILs are required, (ILs are still expensive), 

there are problem for the extraction of the product from the ionic phase, , the 

viscosity of ILs caused diffusion problem of substrate, for optimal use of ILs 

maximal purity are request moreover the biodegradability of ILs and their toxicity is 

not clear. Another approach is to use ionic liquid such a catalyst of reaction: in fact 

is possible to realize a new classes of ionic liquid with a functional group tethered 

to the cation or anion. The incorporation of this functionally should imbue the ionic 

liquid with a capacity to behave not only as a reaction medium but also as a 

reagent or catalyst in some reaction or processes [20]. 

A particular promising concept is represented by supported ionic liquids. This 

involves  coating a solid support with a thin layer of ionic liquid. The solid support 

locks the ionic liquid into position and stabilizes a large interphase area between 

the ionic liquid and the reactant phase. As each component (ionic liquid, catalyst, 

additives and support) can be chosen independently, concept allows assembling a 

catalyst readly from predefined building blocks [3]. Solid catalysis with ILs appears 

to be an ideal choice because of the fact that ILs here are used in small amount, 

while their efficiencies are as good as for the utilizations of bulk solvent. 

Many basic transformations such as esterification, Knoevenagel condensations, 

Michael additions are carried out under basic conditions, some using aqueous 

base and other strong soluble organic bases such as Guanidine. The base is not 

usually recovered, producing either salt or organic waste. Recently, guanidine 

basic ionic liquid have been developed and employed as catalyst in the aldol [4], 

Henry [5], and Knoevenagel condensation[6] reaction without any loss activity after 

15 runs.  Recently Hardacre and co-workers [7]reported a new class of ionic liquid 

derivates of the non-nucleophilic Hunig’s base tethered to an alkyl ammonium side 

chain. One of the ionic liquid is shown in Figure 1 and in each case the counter ion 

used was bis[(trifluoromethyl)sulfonyl]imide (NTf2). 
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N

O

N

NTf2

 

These ionic liquid were employed for promoting Knoevenagel reaction. That basic 

ionic liquid (BIL) was reported to have similar activity to Hunig’s base. Carring the 

reaction without solvent 89% of conversion has been reported after 20 minutes of 

reaction between benzaldehyde and ethyl cyaneacetate. But many problems were 

found in the product extraction. Using cyclohexene as solvent the products were 

extracted with a facile method but only aldehyde soluble in cyclohexene could be 

used. Hardacre’s group tested the catalyst adsorbed on silica but the product was 

obtained in 70% of yield and there was release of active phase in solution. 

In collaboration with Seddon’s group of QUILL centre of Belfast, we planned to 

anchor the ionic liquid on the silica support by the tethering technique, in order to 

improve the catalytic activity of these basic ionic liquids. 

The catalytic activity of the obtained supported ionic liquid was studied  in Michael 

reactions. Coniugate addition of carbon nucleophiles to electron poor alkenes is of 

great importance among the large body of synthetic processes devoted to carbon-

carbon bond formation.[9] This process is usually referred as Michael addition, and 

ever since the number of carbanionic species that have been used for conjugate 

has considerably increasing to includes various enolate systems and strong 

nucleophilic species such as organometallic reagents. 

Nitroalkanes are a valuable source of stabilized carbanions since the high 

electron-withdrawing power of the nitro group provides an outstanding 

enhancement of the hydrogen acidity at the α position [10-13]. The final product of 

nitro-Michael reaction can be transformed thank to the versatility of nitro group 

because it is simple to remove, to reduce to primary amine, to convert a carbonyl 

group [14]. We also tested the catalyst in Michael reaction to obtain 4-H-

benzopyrans In recent years, 4H-benzopyran and its derivates have attracted 

strong interest due to their useful biological and pharmacological properties, such 
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as anticoagulant, spasmolytic, diuretic, anticancer, antianaphylactin agents. 

Substituted 4H-pyrans constitute a structural unit of a series of natural products 

[15]. 

Recent works has been reported using DBU[17], TBAB[18] or heteropoly 

acids[19]. Water has been applied to organic reactions as a solvent, and it has 

several advantages such as its low costs, safety, non-polluting nature and 

operational simplicity. Ten years ago we discovered that the Knoevenagel 

condensation between malononitrile and aldehydes can be performed in water 

without catalyst or additive. To date, many more organic reactions have been 

carried out in water. 

We also tested the catalyst in a one pot reaction to obtain the same products. 
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4.2 Results and discussion 

4.2.1 Catalyst preparation 

 

In a previous PhD thesis the anchorage of the basic ionic liquid on silica support 

has been realized. To compare the activity of the anchored catalyst with the 

results reported in the literature for the ionic liquid in homogeneous phase or 

adsorbed on silica, NTf2 was introduced as anion. The basic ionic liquid bound to 

silica revealed to give better results in Knoevenagel condensation, than those 

published 

In the present work we studied the effect of the anion on the activity. 

The preparation of the cataltst involves two main steps: a) silica functionalization 

anchoring the spacer 3 bromopropyl silane  group to surface silanols; b) nucleofilic 

substitution between the supported propyl bromine and the tertiary amine and 

subsequent anion exchange. 

a) Anchorage of bromo-propyl group: 

scheme 1 

 

                                                                               Loading 0.9mmol/g 

b) Nucleophilic substitution with pre-synthetized diamine: 

Scheme 2 

 

                                                                                                      SIL Br 

                                                                                        Loading 0.64-0.75 mmol/g 

 

In the first step (3-bromopropyl)trimethoxysilane was condensed with silica silanols 

by refluxing in toluene under stirring. The cooled functionalized silica was filtered 

OH

OH

Si
MeO
MeO
MeO

Br O

O
Si

OMe

Br
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off, washed and dried under high vacuum to give the surface-bond alkyl bromide 

groups with a loading of 0.9 mmol/g. The bromide loading was determined by 

Volhard method, obtaining 0.83 mmol/g. In the second step the bromopropylated 

silica was treated with the suitable amine, in refluxing toluene for 24 h, affording 

the corresponding supported quaternary ammonium salt. After cooling, the solid 

was filtered off and throughly washed with toluene, then dried at 60°C under high 

vacuum. Then the solid was washed in continuous with hot acetonitrile in a 

Soxhlet apparatus. 

The amount of bromide ions present on the functionalized silica at this step was 

determined by titrations according to the Volhard method, giving a bromide loading 

of 0,62 mmol/g. 

The catalyst activity was tested in Knoevenagel condensation of benzaldehyde 

and ethyl cyanoacetate, following the procedure previously employed, that is 

operating in solvent-free conditions, at 60°C (scheme 3) 

Scheme 3 

O

+

CN

COOEt

CN

COOEt

+ H2O

no solv,
 60°C, 6h

  

In this condition the product was obtained in 97% yield and 99% selectivity. 

Moreover we examined the recyclability of the catalyst and we obtained perfect 

recyclability in four cycle without any loss of activity. These results indicated that it 

is not necessary to exchange the Br- with NTf2
- to obtain a very active catalyst. 

Thus we decided to explore the activity of this basic supported catalyst (BIL-Br) in 

other reactions. In particular, the reactions examined were the coniugate addition 

of nitro-alkanes to electronwithdrawing olefins and the addition of ethyl 

acetoacetate to pre-sythetized electronpoor olefins for synthesis of 4-H-pyrans. 

 

4.2.2 Catalytic test 

4.2.2.1 Nitro Michael addition 
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The activity of SIL Br in promoting C-C bond formation reactions was studied as 

well in nitro-Michael addition. The reaction between nitroethane and methyl vinil 

ketone was chosen as model (scheme 4) 

O

+

NO2
O

NO2

5% BILBr

no solv.,r.t.8h

 

                  1                          2                                                 3a 

Indeed preliminary reaction carried out using 1:1 ratio of reagents 1 and 2, 5% mol 

of SIL Br for 8 h at room temperature gave high conversion but unsatisfactory 

selectivity mainly due to of double attack. Then we carried out the reaction using a 

slight excess of nitroalkane (5 eq.) without any solvent and we obtained the 

product in high yield (81 %) and selectivity 99%. 

Scheme 5 

O

+

NO2
O

NO2

3a 81%

5% BILBr

r.t. 8h

1 2  

The obtained crude reaction was treated with ethyl acetate and the catalyst was 

recovered by filtration and reused. The purification of the obtained product was 

performed with a simple distillation in low vacuum, in order to eliminate the excess 

of nitroalkane and the unreacted methyl vinyl ketone. 

We examined the general applicability of the reaction to other nitroalkanes and the 

results are shown in table 1. 

Table 1 

Entry Nitroalkane (2) Yield (%) Sel. (%) 

1  81 3a 99 

2 

 

83 3b 99 

3  90 3c 99 

4 
 

90 3d 99 
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Reaction  condition: room temperature 1/2 ratio= 1:5; yield and conversion were 

determined by GC analysis with internal standard. 

 

The last study concerned the catalyst recyclability in the model reaction under the 

optimized conditions (5% SIL, solvent less, r.t., ration methyl vinil 

ketone:nitroalkane 1:5). The results reported in figure 1 clearly show the 

recyclability of the catalyst, which can be used for at least four times without any 

loss of yield (81%), and selectivity (99%) 

 

Fig. 1 (recyclability of the catalyst BILBr in model reaction 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

I
II

III
IV

81 81 81 
81 

99 99 99 99 

%
 

Cycle 

Yield (%)

Sel. (%)



Chapter 4 
 

98 
 

4.2.2.2 Synthesis of 4-H-pyrans 

 

We tested the catalyst in another Michael reaction affording 4-H-pyrans, important 

compounds which showed a biological activity and activity such as erbicide and 

fungicide.[15]. In a previous study performed in our laboratory, this reaction was 

carried out using Na-Montmorillonite as catalyst following or two steps synthesis 

(scheme 6 and 7) or the one-pot synthesis (scheme 8) 

Scheme 6 

R

O

+

CN

CN

CN

CN

R

H2O, 90°C

 

This reaction was accomplished without catalyst, according with our published 

procedure.[16] 

Scheme 7 

CN

CN
+

O

O

O

R

R

O

CN

NH2

Na-Mont

H2O, 90°C EtOOC
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One-pot synthesis 

Scheme 8 

R

O

+

CN

CN

O

O

O

Na-Mont

H2O, 90°C

+

R

O

CN

NH2

EtOOC

 

In the two-step synthesis the product was obtained in 50-97% depending on the R 

subsituent, meanwhile in one pot synthesis the yields were lower. 

We tested the supported catalyst BILBr in this synthesis examining the Michael 

addition. 

The preliminary study was performed using water as solvent, 90°C, for 2 hours. 

The results are showed in scheme 9: 

Scheme 9 

CN

CN

+

O

O

O

O

CN

NH2

BILBr 5%

H2O, 90°C

Cl

EtOOC

Cl

 

                                                                                        72% 

After two hours the product was obtained in 72% yield, and the selectively was 

quantitative since only the reagent and the product were detected. In order to 

increase the yield the reaction was carried out for 3 hours and the product was 

obtained in 97% yield. We extend the reaction to other alkenes: 
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Table 2 

Entry R Yield 4 (%) Sel. 4 (%) 

1 

CN

CN

Cl 4a 

97 99 

2 CN

CN

4b 

65 99 

3 

O2N

CN

CN

4c 

97 99 

4 

MeO

CN

CN

4d 

35 99 

Reaction: 5% of BILBr in H2O, 3h, yield and sel. was determined by 1H-NMR 

analysis using t-butyl phenol as standard 

 

Using different substrate the yield was from good to very high depending on the 

with presence of electron withdrawing or electron donor group.  

We tested the recyclability of the catalyst as shown in figure 2: 

Fig. 2 
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In at least four cycle the catalyst was able to promote the reaction without loss of 

activity. In figure 3 the 1H-NMR spectra of the crude reaction after 4 h first cycle 

(A) and the fourth are showed (B): 

Yield. %

Sel. %0

20

40
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80

100
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Yield. %

Sel. %
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A

C

B 
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The 1H-NMR spectra of the crude reactions revealed the absence of the catalyst’s 

signals (fig C), evidencing the robustness of the catalyst since any leaching does 

not occur. Further it is possible to observe the complete conversion and selectivity 

of the reaction since only the product signals (except signals of the standard) are 

present. 

Taking into account that reduction of the reaction steps increases the 

environmental acceptability of a process, we studied the three component 

reaction, (scheme 10). 

Scheme 10 

O

+

CN

CN

O

O

O

BIL 5%

H2O, 90°C

+

O

CN

NH2

EtOOC

Cl

Cl

 

The reaction was first carried out in water at 90°C. In these conditions the product 

was obtained in lower yield (<60%) even if the aldehyde reacted completely with 

malononitrile. Indeed, the product was accompanied by large amount of unreacted 

alkene intermediate, that is not soluble in water. The core of the aggregates is not 

accessible to the reagent and catalyst, therefore unreactive. Then the reaction was 

carried out in i-PrOH, a green solvent who was able to dissolve both the 

intermediate and the product: 

Scheme 11 

O

+

CN

CN

O

O

O

BIL 5%

i-PrOH, Reflux°C

+

O

CN

NH2

EtOOC

Cl

Cl
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The reaction was carried out for 6 hours, in refluxing i-PrOH with 5% of catalyst. In 

this conditions the product was obtained in 97% yield. We tested the catalyst 

recyclability also in this one-pot condition (figure 4): 

Fig 4  

 

 

Progressive yield decrease was observed. Further studies are required to optimize 

this three component reaction, such as to find a way to well disperse the 

intermediate in water. 
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4.3 Experimental section 

4.3.1 General informations 

 

All materials purchased were used as such unless otherwise stated. Starting 

materials for catalyst preparation: silica gel KG60 for column chromatography 

(Merk) (size 0.040-0.063 mm; surface area 480-530 m2/g; pore volume 0.74-0.84 

cm3/g). The starting material for catalyst preparation were 3-(bromopropyl)-

trimethoxy silane (97% Aldrich), and diamine that was prepared following the 

reported literature procedure[7]. For two step synthesis, the staring material were 

benzaldehyde (99% Aldrich), p-chloro-benzaldehyde (97% Fluka), p-

nitrobenzaldehyde (97% Fluka), p-methoxybenzaldehyde (98% Fluka), 

malononitrile (Aldrich), ethyl acetoacetate (Riedel DeHaen). 

For synthesis of γ-nitroalkane the starting material were: methyl vinil ketone (97% 

Aldrich), nitroethane (Fluka 98%), 2-nitropropane (Aldrich 98%), nitrobutane 

(Aldrich 99%), nitrohexane (Aldrich 99%) 

 

4.3.2Catalyst preparation 

Heterogeneous catalyst preparation 

I step: silica functionalization 

 

In a 100 ml round bottom flask 5g of silica was heated to reflux in 30 ml of toluene 

two hours in order to remove the adsorbed water. After changing the condenser, 

(3-bromopropyl) trimethoxysilane (2,43g, 10 mmol) was added. The mixture was 

refluxed for 12 hours. The cooled functionalized silica was filtered off, washed with 

toluene, diethyl ether, and dichloromethane, (2x25 ml each); then it was dried 

under high vacuum at 60 °C for 3 hours to give the surface bond bromopropylic 

group. The loading of the organic moieties was determined by elemental analysis 

(-0,9 mmol/g), the bromide group was determined by Volhard method (0,83 

mmol/g). 
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II step: anchoring of the Hunig’s base 

 

The bromopropylated silica (2,5g, 0,9 mmog/g loading) was treated with the 

depicted tertiary amine (2,16g 10 mmol) in 30 ml of refluxing toluene for 24 hours, 

affording the correspondent supported quaternary ammonium bromide. After 

cooling, the solid was filtered on a Buchner funnel and carefully washed with 

toluene (5x20 ml), then dried at 60°C under high vacuum. The loading determined 

by elemental analysis was in the range 0,64-0,75 mmol/g. The amount of bromide 

ions was determined by titration according to the method described by Volhard. 

Starting from a 0,30 g f immobilized salt in 10 ml of ethanol, 10 ml of 0,1 N AgNO3 

solution, and 5 ml of HNO3 6N were added, and the suspension was stirred in the 

dark room for 0,5 h at room temperature. Then the solid was filtered off, and the 

excess of AgNO3 was  titrated with ammonium thiocyanate, giving a bromide 

loading of 0,62 mmol/g. 

 

4.3.3 General procedure for nitro-Michael addition 

In two ml round bottom flask the catalyst was added and stirred with 5 equivalents 

of nitroalkane. After 5 minutes the methyl vinil ketone (1 equivalent) was added 

and the reaction was stirred for 8 h at room temperature. At the end, the catalyst 

was filtered off with a Buchner funnel and washed with 15 ml of ethyl acetate. The 

yield was calculated with internal standard method by GC analysis. The pure 

product was obtained with distillation under vacuum by the residue reagents. 

 

4.3.4 General procedure for synthesis of 4-H-pyrans 

In a two ml round bottom flask the catalyst was dissolved in 2 ml of distilled water 

and the two reagents (1 mmol) was added. The suspension was vigorous stirred 

for 3 hours at 90°C. After then the solution was cooled at room temperature and 

methanol was added in order to dissolve the water insoluble product. The catalyst 

was filtered by Buchner funnel and washed with 20 ml of methanol. NMR was 

used to calculate the yield and t-butyl-phenol was used as internal standard. The 
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pure product was obtained with chromatographic separation using silica plates 

with 8/2 hexane/acetate mixture preparative eluted. 

 

One pot synthesis of 4-H-pyrans 

In 25 ml round bottom flask the catalyst was suspended in i-PrOH and the 

reagents were added in order: malononitrile (1 mmol), aldehyde 1 mmol), ethyl 

acetoacetate (1 mmol). The reaction was stirred for 6 hours. At the end of reaction 

the crude was cooled and filtered by Buchner funnel and the catalyst was washed 

with 15 ml of ethyl acetate. 

The product was purified by silica plates using ethyl acetate/hexane 2/8 mixture 

preparative. 

 

 

Characterization of 6-amino-5-cyano-4-(4-chlorophenyl)-2-ethyl-4H-pyrane-3-

carboxylic acid methyl ester (4a) 

 

O

CN

NH2

O

O

Cl

 

White solid. m.w. 318.76 

1H NMR (CDCl3, 400 MHz), δ(ppm): 7.26, d, 2H, (Hb, Hb’), 7.15, d, 2H, (Ha, Ha’), 

4.55, br, s,1H (NH2) 4.42, br s, (1H H-4pyran), 4.06, dq, (½ CH2 AB system)J = 

10.9 and 7.1 MHz,2.58, 4.01, dq, (½ CH2 AB system) J = 10.9 and 7.1 MHz,2.36, 

s, 3H, (CH3), 1.10, t, (CH3-CH2). 
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Characterization of 6-amino-5-cyano-4-phenyl-2-methyl-4H-pyrane-3-

carboxylic acid ethyl ester (4b) 

 

O

CN

NH2

O

O

 

White solid. m.w. 318.76 

1H NMR (CDCl3, 400 MHz), δ(ppm): 7.30-7.34, m, 2H, (H2, H6), 7.18-7.27, m, 3H, 

(H3’, H4’, H5’), 4.54, br, s,1H (NH2) 4.44, br s, (1H H-4pyran), 4.06, dq, (½ CH2 AB 

system)J = 10.9 and 7.1 MHz,2.58, 4.00, dq, (½ CH2 AB system) J = 10.9 and 7.1 

MHz,2.36, s, 3H, (CH3), 1.08, t, (CH3-CH2). 
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Characterization of 6-amino-5-cyano-4-(4-nitrophenyl)-2-methyl-4H-pyrane-3-

carboxylic acid ethyl ester (4c) 

 

 

O

CN

NH2

O

O

NO2

 

Yellow solid. m.w. 329.31 

1H NMR (CDCl3, 400 MHz), δ(ppm): 7.37, d, 2H, (Hb, Hb’), 7.26, d, 2H, (Ha, Ha’), 

4.64, br, s,1H (NH2) 4.55, br s, (1H H-4pyran), 4.03, dq, (½ CH2 AB system)J = 

10.9 and 7.1 MHz,2.58, 4.01, dq, (½ CH2 AB system) J = 10.9 and 7.1 MHz,2.41, 

s, 3H, (CH3), 1.10, t, (CH3-CH2). 

 

Characterization of 6-amino-5-cyano-4-(4-methoxyphenyl)-2-methyl-4H-

pyrane-3-carboxylic acid ethyl ester (4d) 

 

O

CN

NH2

O

O

O
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White-yellow solid. m.w. 314.34 

1H NMR (CDCl3, 400 MHz), δ(ppm): 7.10, d, 2H, (Hb, Hb’), 6.81, d, 2H, (Ha, Ha’), 

4.38, br, s,1H (NH2) 4.05, br s, (1H H-4pyran), 4.00, dq, (½ CH2 AB system)J = 

10.9 and 7.1 MHz,2.58, 4.01, dq, (½ CH2 AB system) J = 10.9 and 7.1 MHz, 3.76, 

s, £H (OCH3), 2.33, s, 3H, (CH3), 1.11, t, (CH3-CH2). 

 

 

The identity of the produced γ-nitroketones were attribute by comparison of 

spectra with authentic samples or with data reported in the literature. 
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5.1 Introduction 

 

This chapter present the work performed during my stage at QUILL center of the 

Queen University of Belfast. 

It deals with the preparation and use of task specific ionic liquid in homogeneous 

catalysis. 

In recent years, significant progress has been made in the application of room 

temperature ionic liquids in catalytic processes. Ionic liquids (ILs) are organic salts 

which melt below  100 C. 

In the past ILs were introduced and received great attention as the solvents for 

their advantages respect to volatile organic solvents (VOCs): 

1) A wide liquid range of about 300°C with a melting point around room 

temperature 

2) A wide range of materials (including inorganic, organic and even polymeric 

materials) are soluble in ionic liquids 

3) Excellent Lewis/Bronsted acidity 

4) High polarity 

5) Negligible vapor pressure 

6) Potential to be reused and recycled. 

However, in homogeneous catalysis, there are many problems when ILs are used 

as reaction media: (i) a large amount of IL is required, this makes them 

unattractive based on economic considerations since ILs are stillexpensive; (ii) 

separation of IL by the crude reaction is very difficult; (iii) using IL as a solvent will 

generate inevitably a large amount of waste at the end of their valid life, however 

their potential toxicity and the lack of data about their biodegradability will render 

the disposal of waste ILs very difficult especially under the pressure of 

environmental protection; (iv) diffusion problems for the viscosity of ILs; generally 

the ILs must be pure, without any impurity for their application. 

A more recent field of application of some ILs is the catalysis. 

In collaboration with Prof. Seddon’s group at QUILL centre of Queen’s University 

of Belfast, we have study the synthesis and application of a new IL with two basic 
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functional group (figure 1). Indeed it contains a tertiary amine, the Hunig’s base, 

and a primary amine: 

N

O

O

N

+

NH2

Br-

 

The choose of the anion and cation was decided in order to obtain a IL active as 

catalyst and with the feature to be easily separated by extraction: the counter 

anion is Br-, and the cation contains two atoms of oxygen in addition to the two 

atoms of nitrogen. This kind of ionic liquid is hydrophilic and it is insoluble in the 

major parts of organic solvent. In chapter 4 we presented the catalytic activity of 

supported basic ionic liquid (SILBr) in heterogeneous phase to promote both 

Knoevenagel and Michel reaction. The activity of IL containing Hunig’s base in the 

Knoevenagel reaction was published [1]. In that work the products was extracted 

by the crude reaction with cyclohexene, but in the case of aromatic aldehyde the 

extraction was very difficult. Some products were distilled but in some cases the 

distillation was difficult. The aim of the present work is to combine the activity of 

two different amine linked in the same IL to improve the activity of previous basic 

IL and to make easier the catalyst separation. 

As model reaction we choose a three component reaction involving aromatic 

aldehyde, activated methylene compound and a nitroalkane. The product 

expected by subsequent Knoevenagel and Michael additions presents 

multifunctional groups, which can be transformed make it a usefull intermediate for 

fine chemicals and pharmaceutical compounds [2]. 
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CO2ET

CN

NO2

R  

In the literature this kind of reaction was catalyzed by triethylamine [2], and the 

product was obtained in modest yield (47%). Michaud et al. [3] reported this 

reaction using various organic bases under microwaves irradiations and the 

results were not good. 

Other strategy reported was to carrying out the reaction in two separate steps, the 

Knoevenagel and Michael reaction, with intermediate isolation and purification. 

Our approach is to perform a one-pot reaction using the IL aiming to obtain a 

selective reaction without by-products and a facile separation of IL from the crude 

reaction. 
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5.2 Results and discussion 

 

To synthetize this new ionic liquid we a followed procedure reported in literature[4] 

Scheme 1 

 

The diamine was synthetized with a published [1]. This reaction was carried out in 

EtOH at reflux overnight. Then the obtained ionic liquid was treated with a small 

portion of KOH in order to eliminate the HBr following a reported procedure [4]. 

The ionic liquid was dried overnight at 60°C degree under high vacuum and after 

that was ready to use. 

 

5.2.2Catalytic test 

 

To test the activity of this basic IL we studied the reaction between p-

methoxybenzaldehyde, ethyl cynoacetate and nitromethane. The reaction was 

carried out at room temperature, for 6 hours, using 10% in mol of catalyst and a 

small excess of nitromethane. 

Scheme 2: 

O

O

+

CN

COOEt

+ CH3NO2

IL 10%

r.t. 6h

O

CN

COOEt

NO2

 

         1a                       2                   3                              4a  (93%) 
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The product was obtained in high yield (93%) and complete selectively. The 

reactants were added in this order: nitromethane, activated methylene compound 

and aldehyde at last. The excess of nitromethane helps the mixing of the mixture. 

In fact the Knoevenagel reaction occurs in only 20 minutes, and the viscosity of 

the crude reaction increases. The treatment of the crude was a simple extraction 

with diethyl ether and water: in the organic phase we recovered the product and in 

the aqueous phase the ionic liquid. We checked the organic phase, after solvent 

removal, with 1H NMR analysis and only the presence of the product was 

detected. Both the possible diastereoisomers were observed in similar amount. It 

is important to note the complete absence of the signals of the ionic liquid 

evidencing that the catalyst was completely removed. The aqueous phase was 

examined at 1H-NMR and only the ionic liquid signals were detected. 

We tested the catalytic activity using benzaldehydes of different reactivity i.e. with 

electronwithdrawing or electrondonor substituent. 

 

Scheme 3 

O

+

CN

COOEt

+

COOEt

CN

NO2

O2N

O2N

2 eq. CH3NO2

r.t., 3 h

no solv.

              1b                    2               3                                          4b 93% 

In the case of 4-nitrobenzaldehyde, the same high yield (93%) was reached in 

shorter time (3 h). 

We extend the applicability of the reaction to other aromatic aldehydes. 

Scheme 4 
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ArCHO +

COOEt

CN

+ CH3NO2

Ar

COOEt

CN

NO2

 

 

Table 1 

Entry Ar Time (h) BIL(%) Yield (%) Sel. (%) 

1 

MeO  

3a 

6 10 93 99 

2 

O2N  

4b 

3 10 93 99 

3 

 

4c° 

6 10 90 99 

4 

Cl  

4d 

6 10 90 99 

5 

F  

4e 

6 10 91 99 

Yield and selectivity are obtaining isolating the products with silica column using 

hexane/acetate 9/1 as eluant 

 

In all the cases the conversion of aldehyde and activated methylene compound 

was complete, and the only by-product observed was the unreacted Knoevenagel 
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intermediate. Another important aspect was the selectivity: in fact the addition of 

nitromethane to aldehyde or double nitromethane addition were not detected. The 

only by-product is the alkene formed by Knoevenagel, evidencing that first occurs 

the reaction with cyanoacetate and then the reaction with nitromethane. 

We examined the possibility to extend the reaction to others nitroalkanes. As 

reported in scheme 4 nitroethane was employed: 

 

Scheme 4 

O

+

CN

COOEt

NO2

+

COOEt

CN

NO2

Cl

O2N

r.t., 6 h

no solv

 

            1d                     2                5                                 6 70% 

Carrying out the reaction in slight excess of nitroethane the IL catalyst afforded the 

expected product in good yield (70%) and complete selectivity. 

This compound has three stereogenic centres, thus four diastereoisomers appears 

in 1H-NMR spectra. 

Using the BIL reported in literature [1] in the same conditions the reaction was less 

selective and the yield was lower. 

Studies are in progress to extend the applicability of the catalyst to others activate 

methylene compounds. 
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5.3 Experimental section 

5.3.1General informations 

 

All materials purchased were used as such unless otherwise stated. Starting 

materials for catalyst preparation: silica gel KG60 for column chromatography 

(Merk) (size 0.040-0.063 mm; surface area 480-530 m2/g; pore volume 0.74-0.84 

cm3/g). The starting material for catalyst preparation were bromo ethanamine 

(98% Aldrich) and diamine that prepared following the reported literature 

procedure[7]. For one pot synthesis, the staring material were benzaldehyde (99% 

Aldrich), p-chloro-benzaldehyde (97% Fluka), p-nitrobenzaldehyde (97% Fluka), p-

methoxybenzaldehyde (98% Fluka), p-fluoro benzaldehyde (98% Aldrich), 

nitromethane (Aldrich 95%), nitroethane (Fluka 98%), 

 

General procedure 

In 10 ml round bottom flask the reagents were introduced in this order: catalyst 

(10% in mol), nitrocompound (6 mmol), aldehyde (3 mmol) and ethyl cyanoacetate 

(3 mmol). The reaction was carried out for 6 hours (in case of p-nitro 

benzaldehyde 3 hours). After then dichoromethane was added and the catalyst 

was extracted with water. The product was purified by column cromatographic 

using hexane/ethyl acetate 9/1 as eluant. 

 

 

The identity of the produced products were attribute by comparison of spectra with 

authentic samples or with data reported in the literature. 
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