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1.1  Introduction 

Molecular chemistry has created a wide range of molecules and materials and 

has developed a variety of procedures for constructing them from atoms linked 

by covalent bonds.1 Beyond the molecules, supramolecular chemistry aims at 

developing highly complex chemical systems from different molecular 

components held together by non-covalent intermolecular forces.2 

Based on the principles of molecular recognition3 and self-assembly,4 the 

multidisciplinary domain of supramolecular chemistry is intrinsically dynamic 

which allows the spontaneous but information-directed generation of organized 

structures under equilibrium conditions. Thanks to a constant and continuous 

development, supramolecular chemistry has expanded the playground of the 

researchers in the material science field. In this regard, thanks to its capability to 

manipulate the non-covalent intermolecular forces that hold together different 

constituents, supramolecular chemistry is a powerful strategy for the creation of 

new materials with outstanding properties. In fact, by mastering molecular 

recognition processes, chemists can impart and finely tune new active functions 

leading to advanced functional materials that are hardly achievable with other 

methods. Simple system are replaced by even more complex ones, building 

blocks become more intricate, with respect to both structure and function. 

Nowadays supramolecular chemistry is even more an application oriented 

science,5 because has a central role in the generation of structures capable of 

advanced tasks. The aim of the present thesis is to synthesize new building 

blocks with specific functionalities in order to generate supramolecular 

polymers, fluorescent sensors, and supramolecular vesicles, exploiting the 

molecular recognition paradigm. 

1.2  Molecular Receptors 

Molecular recognition can be defined as the selective recognition of substrate 

molecules (guests) by synthetic receptors (hosts). Molecular receptors bearing 

specific recognition functions are the fundamental units that allow the assembly 

of supramolecular aggregates. Conventional approaches for designing 

molecular receptors have been made using the lock and key theory (a steric fit 

concept enunciated by Emil Fischer in 1894).6 Indeed, as for biological systems, 

the concepts of size, shape and chemical complementarity are crucial for 

successful molecular recognition processes in artificial host-guest systems. In 

the late 1960s, Pedersen,7 Lehn,2 Cram8 and others, reported on the synthesis of 
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numerous receptors, differently pre-organized, capable of binding specific 

substrates.  

Considerable attention has been paid to molecular receptors named cavitands. 

According to Cram, they are synthetic organic compounds having enforced 

cavities large enough to complex complementary organic molecules or ions.9 

The present thesis takes its place in this context, and it shows, by harnessing 

non-covalent interactions within different building blocks, how it is possible to 

generate functional materials. 

In the following paragraphs we will illustrate the synthesis, structural 

properties and molecular recognition features of two classes of molecular 

receptors: tetraphosphonate cavitands and cucurbit[n]urils. These two 

macrocyclic receptors will be exploited throughout the thesis as structural 

subunits to assembly advanced materials. 

1.2.1  Tetraphosphonate Cavitands 

A suitable scaffold for the synthesis of cavitands that can be exploited for 

recognition process is the resorcin[4]arene macrocycle, prepared by an acid 

condensation between resorcinol and an appropriate aldehyde.10 The choice of a 

different R group in the resorcinol or in the aldehyde (R1 or R2, Figure 1.1) 

provides different points for derivatizations both at the upper and at the lower 

rim. However, the resorcin[4]arene scaffold is too flexible to be used in host-

guest chemistry, whereas bridging the phenolic groups with a proper 

functionality leads to a rigid cavity, improving complexation capability. Among 

the possible bridging groups, phosphonate moieties impart special recognition 

features toward positively charged species such as alkaline-earth cations,11 N-

methylammonium or N-methylpyridinium species.12 

 

Figure 1.1  Resorcin[4]arene synthesis. 
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The presence of four stereogenic centers in the tetraphosphonate cavitands 

gives rise to six possible diasteroisomers, differing from each other for the 

orientation of the P=O moieties, inward (i) or outward (o) the cavity (Figure 1.2; 

for complete nomenclature see ref. 13). Stereochemistry is pivotal to determine 

the cavitand complexing capability. In particular, considering the ammonium 

salts class as target guests, the cavitand that presents the best recognition 

properties is the one with all the four P=O moieties oriented inward with 

respect to the cavity (Tiiii). 

 

Figure 1.2  Isomers of tetraphosphonate bridged cavitands. 

The main specific interactions responsible for its complexation ability, which 

can be activated either individually or in combination are: (i) multiple ion-

dipole interactions between the inward facing P=O and the positively charged 

species, (ii) single or multiple H-bonding involving the P=O groups and the 

nitrogen protons, and (iii) CH3-π interactions between an acidic N-methyl 

group of the guest and the π-basic cavity of the host. In Figure 1.3 are illustrated 

the complexation mode of tetraphosphonate cavitand towards N-

methylpyridinium (left) and N-alkylammonium salts (right). The interactions 

involved in the first case are two, namely  cation-dipole and CH-π interactions, 

while in the second case all the three interactions operate in a synergistic 
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fashion, causing the higher affinity of the N-methylammonium towards the 

cavity.14 

 

Figure 1.3  Complexation mode of tetraphosphonate cavitands towards N-

methylpyridinium salts (left) and N-alkylammonium salts (right). 

As already discussed, the stereochemistry of tetraphosphonate cavitand is 

fundamental to determine its complexation ability, demanding an appropriate 

synthetic path that can lead to the synthesis of the Tiiii stereoisomer as the 

major product. 

The group of Dutasta was the first able to synthesized the right stereoisomer, 

performing the reaction in toluene with P,P-dichlorophenylphosphine oxide 

and N-methylpyrrolidinium as templating agent (Figure 1.4).15 In this reaction 

the use of a less reactive P(V) reagent leads to a low yield of the desired isomer 

and the simultaneous formation of the Tiiio isomer, albeit in a low amount. 
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Figure 1.4  Tiiii isomer synthesis via template effect. 

These shortcomings have been addressed by employing a stereospecific 

synthesis. This reaction necessitates bridging the resorcin[4]arene scaffold with 

four P(III) units and then oxidizing them in situ with hydrogen peroxide (Figure 

1.5).16 The outcome of the one pot two steps reaction is the desired product in 

high yield (up to 90%). The stereospecificity of the reaction is related to the 

formation of an intermediate based on P(III), where all the electrons lone pairs 

point inside the cavity.17 

 

Figure 1.5  Tiiii isomer synthesis via P(III) intermediate. 

Cl2PPh H2O2 
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When the P=O moieties are replaced by the P=S ones, the structurally related 

tetrathiophosphonate cavitands18 are obtained (Figure 1.6). Those receptors 

have been synthesized via oxidation in situ of the tetraphosphonite cavitand 

with S8. The presence of four P=S groups shift the molecular recognition 

properties toward other guests like soft metals (Ag+, Hg2+ etc.).19 There is no 

recognition process with the ammonium and pyridinium guests because 

sulphur has lower electronic density with respect to the oxygen and 

consequently it is less prone to H-bonding interactions.20 

 

Figure 1.6  Top view of tetraphosphonate (left) and tetrathiophosphonate cavitands 

(right). 

The well known recognition properties of tetraphosphonate cavitands make 

this molecule a suitable host for the two basic research lines of supramolecular 

chemistry: molecular recognition and self organization processes. 

A clever application of the molecular recognition properties of Tiiii cavitand 

has been reported in a recent paper by Dalcanale et al.,21 demonstrating the 

specific detection of sarcosine, a methylated form of glycine, recently linked to 

the occurrence of aggressive prostate cancer forms,22 in water and urine. The 

recognition processes has been investigated in the solid state, in solution, and at 

the solid–liquid interface. The decisive step in this work has been grafting the 

receptor on a silicon wafer (Tiiii-Si), hence transferring the complexation 

features of Tiiii onto surface. The functionalized surface has been tested in 

urine with XPS and fluorescence guest displacement tests, that have 

demonstrated the selectivity of Tiiii-Si towards sarcosine. 

In this thesis the tetraphosphonate receptors will be exploited in Chapters 2 and 

3 for the construction of supramolecular soft materials. In particular in Chapter 

2 we will introduce a new class of host-guest supramolecular polymer 

responsive to chemical stimuli, while in Chapter 3 we will use 
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tetraphosphonate cavitands to manipulate the macroscopic properties of 

polymer blends. 

In Chapter 4 we will demonstrate the capability of these molecules to act as 

recognition unit in a fluorescent chemical sensor for illicit and designer drugs 

detection. 

1.2.2  Cucurbit[n]urils 

Cucurbit[n]urils (n = 5-8 and 10; CB[n]) are water soluble cyclic methylene-

bridged glycouril oligomers whose shape resemble a pumpkin. These receptors 

are symmetric and barrel like in shape with two identical portal regions laced 

by ureido-carbonyl oxygens.23 The number of glycouril determines the size of 

the CB[n] cavity without affecting the height of the molecular container 

(approximately 0.9 nm), similar to cyclodextrin family (Figure 1.7). 

 

 

Figure 1.7  CB[n] homologues. 

The synthetic protocol of CB homologues requires reacting glycouril with 

formaldehyde in mineral acids, such as 9 M H2SO4 or conc. HCl at 75-90 °C for 

24 hours. The reaction mixture contains a family of CB[n] mostly from pentamer 

to octamer, with typical contents being: 10-15% CB[5], 50-60% CB[6], 20-25% 

CB[7] and 10-15% CB[8]. These four homologues are separated in pure form 

using fractional crystallization and dissolution.24 
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CB[5] and CB[7] are quite soluble in water, while CB[6] and CB[8] are poorly 

soluble in water. However, all the CBs are soluble in acidic water, as well as in 

an aqueous solutions of alkali metals. The solubility of cucurbiturils in common 

organic solvents is less than 10-5 M, and therefore the host–guest chemistry of 

these macrocycles has mainly been studied in aqueous media. Several 

intermolecular interactions promote the binding of guests by cucurbiturils. 

First, a hydrophobic effect due to the release of “high-entropy water” upon 

inclusion of non polar organic residues.25 Second, ion-dipole interactions and 

hydrogen bondings may come into play with organic ammonium ions with any 

of the two ureido carbonyl rims (Figure 1.8). 

 

Figure 1.8  Non-covalent interactions driving the formation of CB[6]@diammine. 

Smaller homologues of the CB[n] family (i.e. CB[5], CB[6] and CB[7]) are able of 

binding single guests (cationic amines, ion metals, imidazolium ions or small 

drugs).26 In contrast to these receptors, CB[8] presents a larger cavity volume 

(479 Å)27 capable of accommodating two planar and hydrophobic guests in a π-

π stacking geometry (Figure 1.9).28 

 

Figure 1.9  Schematic of the two-step, three-component binding of cucurbit[8]uril in 

water. 

This host has been exploited mostly in a 1:1:1 ternary complex using an electron 

deficient first guest such as methyl viologen (MV) and an electron rich second 

guest such as naphthol, pyrene or dibenzylfuran.29 The formation of the hetero-

complex occurs in a stepwise binding process whereby the electron-poor guest 

enters first (Ka1) followed by the electron-rich guest (Ka2).  
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Therefore the ability of CB[8] host to act as dynamic handcuff along with its high 

binding constant in water makes it attractive for the constructions of: aqueous 

based materials such as multivalent receptors,30 supramolecular block 

copolymers31 and sensors for aromatic analytes.32 

A well-designed example of the exploitation of the molecular recognition 

properties of CB[8] in material science has been demonstrated by Scherman et 

al.33 They reported a thermo-sensitive supramolecular polymer hydrogel, which 

was designed by using as handcuff the macrocyclic host CB[8] to facilitate 

reversible cross-linking of multivalent copolymers, which contained either 

pendant methyl viologen (MV) units or naphthoxy (Np) moieties  with high 

binding constants (Ka > 1011–1012 M-2, Figure 1.10). 

 

Figure 1.10  a) Methyl viologen functionalized polymer; b) naphthoxy-functionalized 

polymer and cartoon representation of the formation of a 3D supramolecular network 

from them crosslinked by cucurbit[8]uril. 

The resulting supramolecular hydrogels exhibited thermal reversibility because 

of the dynamic cross-links (1:1:1 supramolecular ternary complexes of 

CB[8]:viologen:naphthoxy), which can be qualitatively characterized by probing 

the hydrogel microstructures. Upon heating, the hydrogel undergoes a gel-to-

sol transition, which can reform upon cooling or adding more CB[8]. The 

fundamental methodology obtained from this study will facilitate the 

development of smart supramolecular polymeric materials. 

In Chapter 5 of this thesis, we will exploit the versatility of the CB[8] host for 

the synthesis of biologically relevant soft materials, specifically as building 

block for the self-assembly of peptide based supramolecular vesicles. 
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2.1  State of the Art 

Supramolecular polymer chemistry, the result of a close integration of 

supramolecular chemistry and polymer science, has garnered widespread 

attention for its capability of producing materials with new attractive functions. 

Polymers based on these concepts combine many attractive characteristics of 

conventional polymers with properties that result from the dynamic nature of 

non-covalent interactions. According to the definition proposed by E. W. 

Meijer, “supramolecular polymers are polymeric arrays of monomeric units held 

together by reversible and highly directional secondary interactions, resulting in 

polymeric properties in diluted and concentrated solution as well as in the bulk”.1 

Tuning the strength and directionality of interactions among molecular units is 

the key feature for designing supramolecular polymers. High association 

constants are required to obtain a significant polymerization degree. It must 

also be considered the lifetime of non covalent interactions. In fact, when the 

lifetime of these bonds is too short (τ < 1 μs) a robust 1D assembly that 

resembles a polymer does not exist, whereas too long lifetime (τ > 1 min) form 

materials without interesting dynamic behavior.2 In an intermediate range of 

bond lifetimes it is possible to modulate the dynamic properties of the materials 

such as: adaptability, self-repair and responsiveness. 

Hydrogen bonding is one of the most used weak interactions for constructing 

supramolecular polymers due to its tunable, directional bonds. Indeed, this 

system was cleverly used by Sijbesma et al.3 to construct a supramolecular 

polymer based on a self complementary ureido-pyrimidone  that form a 

quadruple hydrogen bonding unit (Figure 2.1). The formation of high molecular 

weight species due to the high association constant (Ka > 106) was demonstrated 

by viscosimetry, which revealed an exponential relationship between viscosity 

and concentration. 

 

Figure 2.1  Homodimer of ureido-pyrimidone units. 
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Another ideal multiple and cooperative non-covalent interaction is the host-

guest complexation. Molecular receptors are ideal candidates as components of 

supramolecular polymers thanks to their synthetic and binding versatility. So 

far many different hosts have been employed such as: ciclodextrins,4 

cucurbiturils,5 calixarenes6 and crown ethers.7 

A further class of molecular receptor that fulfill the requirement of high 

association constants between the host and the guest is that of cavitands. These 

molecules are appealing because they can be functionalized both at the upper 

and at the lower rim, allowing to embed multiple self-assembly motifs on the 

same molecule, thus leading to complex supramolecular architectures, featuring 

orthogonal switching modes. On the basis of structural considerations, cavitand 

monomers can be classified into four main classes (Figure 2.2). 

 

Figure 2.2  Supramolecular polymerization motifs in cavitands. 

In the first class heteroditopic A-B monomers can be found, in which A:A and 

B:B interactions are respectively complementary. In this case a single monomer 

is present, but two interaction modes are active, leading to the formation of A-
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B:B-A:A-B type polymers. A second class includes heteroditopic A-B 

monomers, in which A:B interaction is complementary in nature. Also in this 

case a single monomer is involved, but just one interaction mode is active, and 

A-B:A-B:A-B type polymers are formed. The third class collects the homoditopic 

A-A monomers, in which the A:A interaction is self-complementary. A single 

monomer and a single interaction are involved, leading to the formation of A-

A:A-A:A-A type polymers. Finally, the fourth class includes the A-A 

monomers, in which the A:A interaction is not self-complementary. In this case 

two different homoditopic monomers are required, namely A-A and B-B, and 

the polymerization process proceeds thanks to the complementarity of the A:B 

interaction, leading to A-A:B-B:A-A:B-B copolymers.8 

Tetraphosphonate cavitands are macrocyclic host molecules that have shown 

intriguing properties particularly in self assembled structures. Their 

noteworthy complexation and plasticity properties can be exploited to enrich 

polymers with some relevant qualities, including responsiveness to 

environmental stimuli, self-healing and adaptability. 

In a previous work,9 our research group has designed and synthesized a self- 

complementary heteroditopic monomer, that exploited the molecular 

recognition properties of tetraphosphonate cavitands toward N-

methylpyridinium guests to form a supramolecular array by isodesmic 

polymerization. In particular, the designed monomer was a cavitand bearing 

four inward facing P=O groups at the upper rim, and a single N-

methylpyridinium moiety at the lower rim (Figure 2.3). The corresponding 

polymer featured guest-triggered reversibility and template driven conversion 

from linear into star-branched form. 

 

Figure 2.3  A-B heteroditopic polymerization mode of cavitand A. 

A 
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2.2  Introduction 

To further expand the scope of tetraphosphonate cavitands as building blocks 

in supramolecular polymer chemistry we sought to design a new A-B 

heteroditopic monomer. Cavitands bridged with phosphonate groups present 

remarkable recognition properties not only toward N-methylpyridinium salts, 

but they complex even better N-methylammonium salts through three 

interaction modes: (i) N+•••O=P cation–dipole interactions, (ii) CH3-π 

interactions of the acidic +NH2-CH3 group with the π basic cavity, (iii) two 

simultaneous hydrogen bonds between two adjacent P=O bridges and the two 

nitrogen protons.10 These complexes exhibit an high association constant (≈ 4 × 

105 M−1, in methanol11 and even higher Ka in chlorinated solvents) making them 

ideal candidates for the self-assembly of supramolecular aggregates. Indeed, to 

obtain an high degree of polymerization the Ka of the supramolecular complex 

should be ≥ 105. Moreover the exploitation of this complex allowed the 

formation of responsive polymer towards simple chemical stimuli such as 

acid/base substances. 

Herein we report the synthesis and self-assembly process of a tetraphosphonate 

cavitand functionalized with a sarcosine moiety Tiiii [3 C3H7, 1 sarcosine, CH3, 

Ph] (I) at the lower rim (Figure 2.4). The protonation of sarcosine allowed the 

self-assembly of an A-B:A-B:A-B type homopolymer thanks to the interaction 

between the phosphonate groups and the methylammonium ion. The formation 

of the supramolecular polymers is controlled by simple chemical stimuli such 

as acid/base treatments. 

 

Figure 2.4  Tiiii [3 C3H7, 1 sarcosine, CH3, Ph], I. 
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The self-assembly process was monitored by 1H and 31P NMR spectroscopy, 

static and dynamic light scattering and TEM. All these techniques granted 

evidence for the formation of supramolecular oligomers in solution. 

2.3  Results and Discussion 

2.3.1  Synthesis of the Homopolymer 

The target cavitand Tiiii [3 C3H7, 1 sarcosine, CH3, Ph] (I) was synthesized in 

four steps and 22% overall yield (Scheme 2.1). The key step of the synthesis was 

the insertion of the sarcosine moiety (Boc protected) at the lower rim of the 

resorcinarene scaffold II under Steglich conditions.12  

 

Scheme 2.1  Synthesis of Tiiii [3 C3H7, 1 sarcosine, CH3, Ph], I: a) N-Boc-Sarcosine, 

DCC/DMAP, CHCl3, r.t., 12 h, 40%; b) TBAF, THF, r.t., 1 h, 60%; c) 1) PhPCl2, Py, 75 

°C, 3h; 2) H2O2, r.t., 1h, 92% (over two steps); d) TFA, DCM, r.t., 3h, quantitative. 

The carbamate protecting group allowed an orthogonal deprotection of the 

upper rim of III using tetra butylammonium fluoride. The four inward 

phosphonate groups were introduced by reacting the resorcinarene IV with 

dichlorophenylphosphine and oxidizing the tetraphosphonate intermediate in 

situ with hydrogen peroxide. Finally cavitand V was treated with trifluoro-
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acetic acid to remove the carbamate protecting group and protonate the amine 

functional group. This reaction provided the corresponding monomer I 

quantitatively. 

2.3.2  1H and 31P NMR Complexation Studies 

The self-assembly of the cavitand based monomer can be easily monitored by 
1H and 31P NMR spectroscopy. In Figure 2.5 is reported the proton NMR 

spectrum of the protected cavitand V before ( Figure2.5a) and after (Figure2.5b) 

the acidic treatment. 

 

Figure 2.5  1H NMR spectra (CDCl3, 400 MHz, 10 mM, 25 °C) of: a) monomer BOC 

protected V; b) homopolymer. 

As expected, removal of BOC protecting group and protonation of the amine 

caused the intermolecular inclusion process between the methylammonium 

moiety of one cavitand monomer and the cavity of another. In fact the proton of 

the methyl group of the sarcosine experienced a remarkable up-field shift, from 

3 to -0.6 ppm, due to the shielding effect of the cavity. 

The phosphorous signal of V is formed by two singlets because the four 

phosphorous of the cavitand are not magnetically equivalent (Figure 2.6). After 
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the acidic treatment the 31P signal of the phosphonate groups of the cavitand I 

experiences a down-field shift thanks to the inclusion of the cationic part of the 

guest in the cavity. 

 

Figure 2.6  31P{1H}NMR spectra (CDCl3, 400 MHz, 10 mM, 25 °C) of: a) monomer Boc 

protected V; b) homopolymer. 

Also MALDI-TOF spectrum highlighted the aggregation tendency of the 

monomer. In the spectrum, even under adverse conditions, the peak of the 

dimer was detected (see Experimental Section, Figure 2.7). 

 

Figure 2.7  MALDI-TOF spectrum of the homopolymer. 
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Tiiii V is able to respond to simple chemical stimuli such as an acid-base 

treatment, causing the assembly and disassembly of the homopolymer. 

Compound V was easily deprotonated with 3 eq. of 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) a non-nucleophic hindered base that 

when protonated does not fit into the cavity of the molecule. Additionally the 

deprotonated cavitand can be reconverted to the homopolymer upon 

subsequent exposure to 5 eq. of trifluoro-acetic acid (TFA). This process was 

followed by two complementary techniques: NMR spectroscopy and dynamic 

light scattering (paragraph 2.3.3). 

The 31P NMR spectroscopy records an high-field shift of the signal after the 

basic treatment and consequent reappearing of the characteristic pattern of the 

phosphorous signal similar to that of the protected monomer V (Figure 2.8b). 

The addition of TFA restored the phosphorous signal at low-field (Figure 2.8c). 

The reversible response of our system to chemical stimuli was also confirmed 

by 1H NMR spectroscopy: the spectra in Figure 2.9 show the shift of the methyl 

group of the secondary amine below and above 0 ppm during the acid-base 

treatment. 

 

Figure 2.8  31P{1H}NMR spectra (CDCl3, 400 MHz, 10 mM, 25 °C) of: a) homopolymer; 

b) homopolymer + 3 eq. DBU; c) homopolymer + 3 eq. DBU+ 5 eq. of TFA. 
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Figure 2.9  1H NMR spectra (CDCl3, 400 MHz, 10 mM, 25 °C) of: a) homopolymer; b) 

homopolymer + 3 eq. DBU; c) homopolymer + 3 eq. DBU+ 5 eq. of TFA. 

2.3.3  Light scattering Studies 

To obtain further insight into the self-assembly process a series of static and 

dynamic light scattering experiments were performed. These two types of 

methods are well-established for determination of molecular weight and 

hydrodynamic radius of macromolecules.13 

The static light scattering (SLS) measurement allows to obtain the weight-

average molecular weight (Mw) of the aggregates in solution by measuring the 

intensity of the scattered light, which is also related to the concentration of the 

macromolecules. In the case of Tiiii supramolecular polymer, SLS 

measurements were performed in chloroform in the concentration range of 9.0- 

40.0 mg mL-1.  
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Figure 2.10  Debye plot for the SLS analysis (chloroform, 25 °C) of Tiiii supramolecular 

polymer in the 9.2-14.1 mg mL-1 concentration range (Mw = 7 ± 1 KDa). 

Due to the presence of complexation equilibria within the supramolecular 

polymer, Mw estimation by SLS measurements were made in quite narrow 

concentration windows, in order to have an approximate value of the average 

molecular weight in the considered concentration regime. In particular the 

Debye plots for the 9.2-14.1 mg mL-1 (Mw = 7 ± 1 KDa) and 25.5-36.7 mg mL-1 

(Mw = 11 ± 1 KDa) are reported in Figure 2.10 and 2.11. An incremental 

refractive index (dn/dC) of 0.152 mL g-1 and toluene as scattering standard 

were used for these measurements. The SLS experiments in the two 

concentration ranges show that the homopolymer presents a polymerization 

degree of about 7-10 monomers, confirming the formation of high 

supramolecular oligomers in solution. 
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Figure 2.11  Debye plot for the SLS analysis (chloroform, 25 °C) of Tiiii supramolecular 

polymer in the 25.5-36.7 mg mL-1 concentration range (Mw = 11 ± 1 KDa) 

The dynamic light scattering (DLS) is a popular technique for determining the 

size distribution profiles of small particles such as micelles, polysaccharides and 

supramolecular aggregates like supramolecular polymers. 

The DLS experiment at various concentration  shows a monodisperse system at 

room temperature (Figure 2.12). The one size population increases its 

hydrodynamic radius (ranging from 5 to 10 nm) as expected for a 

supramolecular polymer. Moreover we found a low and reproducible 

polydispersity index for all the concentration range. The size distribution of the 

supramolecular polymers found at various concentrations are in good 

agreement with the SLS data. 
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Figure 2.12  DLS analysis (chloroform, 25 °C): a) hydrodynamic radius of the 

homopolymer as function of concentration; b),c) examples of size intensity distributions. 

The size distribution of the supramolecular aggregates can be triggered by an 

acid-base stimuli, as previously demonstrated in the 1H and 31P NMR studies 

(paragraph 2.3.2). The dynamic light scattering spectrum presents a drop in the 

size distribution of the homopolymer after the basic treatment (Figure 2.13). The 

size of the aggregates observed is consistent with the dimension of one 

monomer. Subsequently, the addition of triflic acid restored the initial size 

distribution demonstrating the reproducible responsiveness of this system. 
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Figure 2.13  DLS reversibility (chloroform, 10.5 mM, 25 °C) : a) homopolymer; b) 

homopolymer + DBU (excess); c) homopolymer + DBU + triflic acid. 

The size distribution of the homopolymer was measured at various 

temperatures to assure the stability of the aggregates. The experiment was 

performed in 1,1,2,2-tetrachloroethane, which has an high boiling point, using 

two different concentrations (4.2 and 36.7 mg mL-1) and a wide range of 

temperature, from 1 °C to 80 °C. For both concentrations we observed from 20 

°C to 80 °C a stable PolyDispersity Index (PDI) and an hydrodynamic radius of 

about 10 nm. Interestingly, before 20 °C we noted a bimodal size distribution, 

one size distribution centered at about 10 nm and the other one centered at 

about 200 nm. Lowering the temperature until 2 °C promotes the formation of 

largest aggregates. For both concentrations the high size distribution increases 

reaching 230 and 300 nm, while the low size distribution disappears (Figures 

2.14 and 2.15). 

 

DBU 

Triflic   

Acid 
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Figure 2.14  DLS as function of temperature (1,1,2,2-tetrachloroethane), [Tiiii]= 4.2 mg 

mL-1. 

 

Figure 2.15  DLS as function of temperature (1,1,2,2-tetrachloroethane), [Tiiii]= 36.7 

mg mL-1. 

These results can be interpreted considering that the polymer chains interact 

longitudinally to form bundles. These large objects are composed by four 

polymeric chains held together by quadrupolar interactions between the chains 

and the counterions (Figure 2.16). The generation of this aggregates has been 

observed also for the supramolecular homopolymers based on 
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tetraphosphonate cavitands functionalized at the lower rim with a N-

methylpyridinium moiety.8  

 

Figure 2.16  Formation of bundles from quadrupole interactions between four polymeric 

chains and the counterions. 

The same behavior was not observed in chloroform. We measured the 

hydrodynamic radius of the homopolymer at low temperature in chloroform, in 

this case the aggregates present a size distribution that does not exceed 10 nm. 

 

Figure 2.16  DLS at low temperature (chloroform). 

With these experiments we demonstrated the ability of the supramolecular 

homopolymer to form large aggregates, that are temperature and solvent 

dependent. In fact the combination of lower temperature and the solvent assists 

the formation of these aggregates. To confirm our hypothesis other experiments 

like DOSY measurements are ongoing. 
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2.3.4  TEM Measurements 

In order to further study the supramolecular aggregates at low temperature we 

tried to obtain images using transmission electron microscopy (TEM). We took 

a solution 4.2 mg mL-1 at 2.2 °C in 1,1,2,2‐tetrachloroethane (dH= (110 ± 5) nm 

from DLS) and we deposited this solution on a copper/carbon grid, the solvent 

was evaporated under reduced pressure. The aggregates observed in the 

images seem to being formed by smaller sub-units which are organized in a 

linear fashion (Figure 2.17). Although temperature and evaporation of the 

solvent cannot be precisely controlled, the size of the aggregates observed in the 

experiment are in line with the size distribution obtained in solution with DLS 

at low temperature. Hence is an indirect proof of the assembly of large 

supramolecular aggregates. 

 

Figure 2.17  TEM (80 kV) images obtained on copper/carbon grid, staining effectuated 

with uranyl acetate 2% w/w in water. 
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2.4  Conclusions 

In conclusion, a new stimuli responsive supramolecular homopolymer has been 

designed and synthesized. The monomer based on the resorcinarene scaffold 

presents four P=O groups at the upper rim and a sarcosine moiety at the lower 

rim. The self-assembly properties of this supramolecular polymer have been 

investigated with several techniques (1H and 31P NMR spectroscopy, light 

scattering measurements, TEM). The combination of these experiments have 

provided numerous evidences on the formation of supramolecular 

homopolymer in solution. Furthermore, we have proved that the polymers 

assembly can be controlled by means of acid-base treatment demonstrating the 

reversibility of the system. Interestingly, we have found that our system is 

solvent and temperature dependent, in fact larger aggregates were observed in 

tetrachloroethane. 

This host-guest counterpart will be embedded in polymers in Chapter 3 to test 

its ability to promote polymer blending, and to investigate the responsiveness 

of this complex in truly polymeric materials. 
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2.6  Experimental Section 

N-Boc-sarcosine 

To a solution of sarcosine (0.4 g, 4.49 mmol) in acetonitrile, triethylamine (0.68 

mL, 4.94 mmol) and di-tert-butyl dicarbonate (1.13 mL, 4.94 mmol) were added. 

The solution was heated to reflux for 4 hours and the solvent removed in vacuo. 

The crude oil was dissolved in dichloromethane and extracted with water (2 x 

30 mL). Then the organic phase was dried with anhydrous CaCl2 and 

evaporated under reduced pressure to give the product as colorless oil (0.407 g, 

2.15 mmol, 48%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 9.56 (s, 1H, OH), 3.87 (d, J=33.4 Hz, 2H, 

NCH2), 2.83 (s, 3H, NCH3), 1.34 (s, 9H, C(CH3)3); ESI-MS: m/z 190.1 [M+H]+. 

 

N-Boc-sarcosine based silylcavitand (III) 

N-Boc-sarcosine (0.318 g, 1.68 mmol) DCC (0.346 g, 1.68 mmol) and DMAP 

(0.205 g, 1.68 mmol) were dissolved in dry chloroform with stirring for 15 

minutes. Following, monohydroxy footed silylcavitand II (0.8 g, 0.839 mmol) 

was added into the reaction mixture and stirred overnight at room temperature. 

Saturated NH4Cl solution was added and the organic phase was extracted with 

water (2 x 20 mL) dried with anhydrous Na2SO4, and the solvent removed in 

vacuo. Purification by silica gel column chromatography (hexane:ethyl acetate 

85:15) yielded the desired product as white solid (0.377 g, 0.336 mmol, 40%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 7.20 (s, 2H, ArH), 7.18 (s, 2H, ArH), 4.64 

(t, J=8 Hz, 4H, ArCH), 4.28-4.20 (m, 2H, CH2OC(O)), 3.96 (d, J= 40 Hz, 2H, N 

CH2), 2.85 (d, J=10.3 Hz, 3H, N CH3), 2.27-2.01 (m, 10H, CH2CH2CH2OC(O), 

CH2CH2CH3), 1.85 (s, 12H, Ar CH3); 1.67-1.14 (m, 17H, CH2CH2OC(O), C(CH3)3, 

CH2CH2CH3), 0.98-0.82 (m, 9H, CH2CH2CH3), 0.54 (s, 12H, Si CH3,out), -0.64 (s, 

12H, Si CH3,in); ESI-MS: m/z 1164.1 [M+K]+. 

 

N-Boc-sarcosine based resorcinarene (IV) 

To a solution of N-Boc-sarcosine based silylcavitand II (0.39 g, 0.347 mmol) in 

dry THF, TBAF (1.36 g; 5.2 mmol) was added under argon atmosphere at 0 °C. 

After 1 hour the reaction mixture was quenched by adding saturated NH4Cl 

solution. The crude was diluted with ethyl acetate and the organic phase 

extracted with sat. aq. NaHCO3 and water. The organic phase was dried with 

anhydrous Na2SO4 and the solvent removed in vacuo. Purification by silica gel 

column chromatography (hexane:ethyl acetate 1:1) afforded the pure product as 

yellow pale solid (0.188 g, 0.208 mmol, 60%). 
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1H NMR ((CD3)2CO, 300 MHz): δ (ppm) = 7.84 (s, 2H, OH), 7.46 (s, 2H, ArH), 

7.44 (s, 2H, ArH), 4.41 (t, J=9 Hz, 4H, ArCH), 4.24-4.11 (m, 2H, CH2OC(O)), 3.97 

(d, J=14.5 Hz, 2H, NCH2), 2.91 (d, J=9 Hz, 3H, NCH3), 2.45-2.00 (m, 20H, 

CH2CH2CH2OC(O), CH2CH2CH3, ArCH3), 1.71-1.55 (m, 2H, CH2CH2OC(O)), 

1.50-1.18 (m, 15H, C(CH3)3, CH2CH2CH3), 0.95 (t, J=9 Hz, 9H, CH2CH2CH3); 

ESI-MS: m/z 922.8 [M+Na]+, 939 [M+K]+. 

 

Tiiii [3 C3H7, 1 Boc-sarcosine, CH3, Ph] (V) 

To a solution of N-Boc-sarcosine based resorcinarene III (0.19 g, 0.21 mmol) in 

freshly distilled pyridine, dichlorophenylphosphine (0.13 mL, 0.882 mmol) was 

added slowly, at room temperature under argon atmosphere. After 3 hours of 

stirring at 75 °C, the solution was allowed to cool at room temperature and 2 

mL of aqueous H2O2 (30%) was added. The resulting mixture was stirred for 1 

hour at room temperature, then addition of water resulted in the precipitation 

of a white powder. The solid was recovered by suction filtration to give pure IV 

(0.45 g, 0.33 mmol, 92%). 
1H NMR (CDCl3/D2O, 400 MHz): δ (ppm) = 8.15-8.01 (m, 8H, P(O)ArHo), 7.72-

7.61 (m, 4H, P(O)ArHp), 7.61-7.47 (m, 8H, P(O)ArHm), 7.24-7.13 (m, 4H, ArH), 

4.85-4.72 (m, 4H, ArCH), 4.35-4.24 (m, 2H, CH2OC(O)), 3.97 (d, J=36 Hz, 2H, 

NCH2), 2.90 (s, 3H, NCH3), 2.44-2.21 (m, 8H, CH2CH2CH3, CH2CH2CH2OC(O)), 

2.14 (s, 12H, ArCH3), 1.82-1.69 (m, 2H, CH2CH2OC(O)), 1.50-1.21 (m, 15H, 

C(CH3)3, CH2CH2CH3), 1.12-0.98 (m, 9H, CH2CH2CH3); 31P{1H}NMR 

(CDCl3/D2O, 161.9 MHz): δ (ppm) = 8.44 (s, 1P, P=O) 8.34 (s, 3P, P=O); HR-ESI-

MS: m/z calcd. for C76H81NO16P4Na: 1410.4403; found: 1410.4398. 

 

Tiiii [3 C3H7, 1 sarcosine, CH3, Ph] (I) 

V (20 mg, 0.014 mmol) was treated with 10 equivalent of trifluoroacetic acid in 

CHCl3. After 3 hours the solvent was removed in vacuo and the crude was dried 

under reduced pressure (quantitative yield). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.15-8.01 (m, 8H, P(O)ArHo), 7.72-7.61 

(m, 4H, P(O)ArHp), 7.61-7.47 (m, 8H, P(O)ArHm), 7.24-7.13 (m, 4H, ArH), 4.85-

4.72 (m, 4H, ArCH), 4.35-4.24 (m, 2H, CH2OC(O)), 3.97 (d, J=36 Hz, 2H, NCH2), 

2.90 (s, 3H, NCH3), 2.44-2.21 (m, 8H, CH2CH2CH3, CH2CH2CH2OC(O)), 2.14 (s, 

12H, ArCH3), 1.82-1.69 (m, 2H, CH2CH2OC(O)), 1.50-1.21 (m, 15H, C(CH3)3, 

CH2CH2CH3), 1.12-0.98 (m, 9H, CH2CH2CH3); 31P{1H}NMR (CDCl3, 161.9 MHz): 

δ (ppm) = 11.01 (s, P=O); MALDI TOF-TOF: calcd. for C71H74NO14P4 1288.4054 

Da, found: 1288.3879 Da. The dimer was observed in the MS spectrum, calcd. 

for C142H146N2O28P8 2574,7957 Da, found 2574.7963. 
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Light scattering measurements 

SLS and DLS measurements were performed using a Malvern Nano ZS 

instrument, equipped with a 633 nm laser source. All the solution were filtered 

with PTFE filters (4 mm x 0.2 μm, Supelco). 

  



Chapter 2  

36 

 

2.7  References and Notes 

 
1 L. Brunsveld, J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev. 2001, 101, 

4071-4097. 

 
2 T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813-817. 

 
3 R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, 

R. F. M. Lange, J. K. L. Lowe, E. W. Meijer, Science 1997, 278, 1601-1604. 

 
4 K. Ohga, Y. Takashima, H. Takahashi, Y. Kawaguchi, H. Yamaguchi, A. 

Harada, Macromolecules 2005, 38, 5897-5904; (b) M. Miyauchi, Y. Takashima, H. 

Yamaguchi, A. Harada, J. Am. Chem. Soc. 2005, 127, 2984-2989; (c) M. Miyauchi, 

T. Hoshino, H. Yamaguchi, S. Kamatori, A. Harada, J. Am. Chem. Soc. 2005, 127, 

2034-2035. 

 
5 J. del Barrio, P. N. Horton, D. Lairez, G. O. Lloyd, C. Toprakcioglu, O. A. 

Scherman, Angew. Chem. Int. Ed. 2013, 135, 11760-11763. 

 
6 S. Pappalardo, V. Villari, S. Slovak, Y. Cohen, G. Gattuso, A. Notti, A. 

Pappalardo, I. Pisagatti, M. F. Parisi, Chem. Eur. J. 2007, 13, 8164-8173. 

 
7 F. Wang, J. Zhang, X. Ding, S. Dong, M. Liu, B. Zheng, S. Li, L. Wu, Y. Yu, H. 

W. Gibson, F. Huang, Angew. Chem. Int. Ed. 2010, 49, 1090-1094. 

 
8 F. Tancini, E. Dalcanale in Supramolecular Polymer Chemistry, Ch. 4, 2011, 

Wiley-VCH. 

 
9 R. M. Yebeutchou, F. Tancini, N. Demitri, S. Geremia, R. Mendichi, E. 

Dalcanale, Angew. Chem. Int. Ed. 2008, 47, 4504-4508. 

 
10 a) P. Delangle, J. C. Mulatier, B. Tinant, J. P. Declercq, J. P. Dutasta, Eur. J. Org. 

Chem. 2001, 3695-3704; b) E. Kalenius, D. Moiani, E. Dalcanale, P. Vainiotalo, 

Chem. Commun. 2007, 43, 3865-3867; c) M. Melegari, M. Suman, L. Pirondini, D. 

Moiani, C. Massera, F. Ugozzoli, E. Kalenius, P. Vainiotalo, J. C. Mulatier, J. P. 

Dutasta, E. Dalcanale, Chem. Eur. J. 2008, 14, 5772-5779. 

 



Host-Guest Homopolymer 

37 

 

 
11 M. Dionisio, G. Oliviero, D. Menozzi, S. Federici, R. M. Yebeutchou, F. P. 

Schmidtchen, E. Dalcanale, P. J. Bergese, J. Am. Chem. Soc. 2012, 134, 2392-2398. 

 
12 B. Neises, W. Steglich, Angew. Chem. Int. Ed. 1978, 17, 522-524. 

 
13 Y. Liu, Z. Wang, X. Zhang, Chem. Soc. Rev. 2012, 41, 5922-5932. 



 

 



 

Chapter 3 

 

 

Morphological Studies of Host-

Guest Polymer Blends 

  



Chapter 3 

40 
 

3.1  State of the Art 

Challenges in polymer science has increased in recent years thanks to a growing 

demand of new functional materials that have the ability to reversibly adapt to 

the environmental stimuli and possess a wide range of responses ranging from 

self-healing to mechanical work.1 Supramolecular polymer chemistry, a field 

based on the synergistic combination of non covalent interactions and polymer 

chemistry,2 addresses adequately the multifaceted tasks of designing smart 

materials and further expand applications of polymers in different research 

areas. 

The nature of the secondary weak interactions and the types of building blocks 

involved in the supramolecular polymer systems are pivotal to determine the 

responsiveness of the materials.  

An interesting feature of supramolecular polymers is the capability to form 

reversible non-covalent cross-linked polymers. Polymer cross-linking is one of 

the most important features for the development of new materials because it 

strongly influences the physical-mechanical properties of the polymers. For 

instance a very high cross-link density can gives rise to materials alternatively 

rigid when cross-linked and flexible when polymer chains are disconnected. 

Although conventional cross-linking has been based on covalent chemistries, 

the supramolecular cross-linking approach offers a new route towards 

materials that are otherwise not accessible. In fact, molecular recognition 

processes present many advantages such as reversibility and a greater control 

of the network architecture. Additionally, the combination of orthogonal 

molecular recognition units for non-covalent cross-linking can generate multi-

responsive materials. 

Polymer blending is an attractive route to develop new materials that combine 

the desirable properties of more than one polymer.3 Another reasons to employ 

polymer blending is to save costs by blending an high performance polymer 

with cheaper materials. Although this approach has relevant practical 

implications, the microscopic segregation observed in most polymer blends 

jeopardize their use. Indeed blending two immiscible polymers lead to an 

heterogeneous structure, in which there are regions of one polymer alternated 

to regions of the other polymer, with little adhesion between the areas. Many 

efforts have been made to solve the phase segregation issue using both physical 

and chemical compatibilization. For example the addition of a third component 

like a block copolymer, that is partially miscible with both constituents of the 

blend, can minimize the interfacial energy. Otherwise another option is the 
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introduction of reactive functional groups in the side chain of the polymers, 

which can covalently connect the macromolecules within the blend. 

Recently, Zimmerman et al.4 reported the use of hydrogen bonding to tackle the 

miscibility problem in polymer blends. In their work, two immiscible 

polymers,5 polystyrene and poly(butyl)methacrylate, were functionalized with 

2,7-diamido-1,8-naphthyridine (DAN) and guanosine urea (UG) respectively; 

the strong heterocomplex formation between the two recognition units driven 

the polymer blending of the immiscible polymers (Figure 3.1). This result was 

proved by several and complementary techniques, such as 1H NMR, AFM and 

viscosity studies. Interestingly, this approach was further improved by 

introducing redox sensible molecular recognition units for the control of 

supramolecular polymer network.6 

 

Figure 3.1  a) Photographs of the PS-PBMA before and after functionalization; b) AFM 

images of PS-PBMA before and after functionalization. 

These noteworthy results inspired us to explore the potential of host-guest 

interactions to induce polymer blending, exploiting the molecular recognition 

properties of tetraphosphonate cavitand towards the N-methylpyridinium 

moiety. Our group already demonstrated that this interaction can lead to 

supramolecular polymers7 or hybrid inorganic-organic materials.8 In a recent 

paper Dalcanale et al.9 modified the structure of polystyrene (PS) with 

tetraphosphonate cavitand host (PS-Host) and poly(butyl)methacrylate (PBMA) 

with N-methylpyridinium motif guest (PBMA-Py, Figure 3.2).  
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Figure 3.2  PS-Host and PBMA-Py. 

The formation of a supramolecular polymer architecture was demonstrated in 

solution by 31P NMR, and in solid state by atomic force microscopy (AFM) and 

differential scanning calorimetry (DSC). The AFM image of PS-Host:PBMA-Py 

1:1 molar mixture showed no phase separation in accordance with the 

formation of a supramolecular network. A DSC study of the blend showed a 

single Tg (glass transition temperature) at temperature intermediate between the 

Tg of the two starting polymers. Moreover, segregation has been chemically 

induced by addition of a competitive guest (N-methylbutylammonium 

chloride) which replaced the N-methylpyridinium moiety in the cavitand 

binding. 

3.2  Introduction 

Compatibilization of an immiscible pair of polymers confirmed that host-guest 

interactions between Tiiii and N-methylpyridinium can be exploited to 

construct blends that are homogenous at the microscopic scale. In the first part 

of this work (paragraphs 3.3.1 and 3.3.2) we embedded the supramolecular 

complex studied in Chapter 2 (Tiiii@sarcosine) in real polymers (PS and 

PBMA) in order to form an homogenous blends (PS-Host/PBMA-Sarc, Figure 

3.3) and further expand the scope of this host-guest counterpart in material 

science. 
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Figure 3.3  PS-Host/PBMA-Sarc blend. 

Being connected by dynamic bonds, this materials is reversible because it can be 

segregated in solution by adding a competitive guest, as demonstrated for the 

PS-Host/PBMA-Py blend.9 In this context, a special challenge is inducing the 

reversibility towards external stimuli directly in the solid state. In the second 

part of the chapter (paragraphs 3.3.3 and 3.3.4) we describe the responsiveness 

of the two supramolecular polymer blends (PS-Host/PBMA-Py, Figure 3.2 and 

PS-Host/PBMA-Sarc, Figure 3.3) towards external stimuli in the solid state.  

As previously explained the supramolecular blends are held together by host-

guest interactions. In fact the PS functionalized with tetraphosphonate 

cavitands can complex the methylpyridinium and methylammonium moieties 

embedded in the poly(butyl)methacrylate (PBMA-Py and PBMA-Sarc). These 

two blends are compatibilized and fully miscible in the solid state, hence a 

reduction of the methylpyridinium unit or a deprotonation of the 

methylammonium moiety can remove the interactions between the host-guest 

counterpart and in turn decompatibilize the blends causing a phase 

segregation. We investigated this process at the solid state studying through 

AFM the morphology of the two blends upon application of external stimuli.  

To what concerns the PS-Host/PBMA-Py blend, the reversible 

compatibilization/decompatibilization processes can be induced at the solid-

liquid interface through an electrochemical reduction of the N-

methylpyridinium unit to a radical species (Figure 3.4), that being uncharged 

cannot be complexed by the tetraphosphonate cavitand.10 
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Figure 3.4  Reversible decomplexation driven by electrochemical reduction of N-methyl 
pyridinium. 

Instead, for the PS-Host/PBMA-Sarc blend, the segregation can be performed 

using a simple acid-base reaction. At the solid-gas interface a proper base can 

permeate in the structure of the blend deprotonating the secondary amine thus 

decreasing the affinity of the guest towards the receptor (Figure 3.5). 

 

Figure 3.5  Reversible decomplexation driven by deprotonation of sarcosine. 

3.3  Results and Discussion 

3.3.1  Synthesis of PBMA-Sarc 

The PS-Host and PBMA-Py were synthesized according to protocols outlined 

by Dalcanale et al.9 

The PBMA-Sarc was synthesized by copolymerization of butyl methacrylate 

with the corresponding sarcosine-functionalized monomer: 6-

((methylglycyl)oxy)hexyl methacrylate (IV). The monomer was easily prepared 

in three steps (Scheme 3.1). At first, monoesterification of 1,6-hexanediol with 

methacryloyl chloride introduced a single methacrylate group, then the 

monoester II was reacted with N-Boc-sarcosine using DCC/DMAP coupling 

procedure affording the diester III. Subsequently, the Boc protecting group was 

removed by treating III with trifluoroacetic acid, giving the monomer IV in 

32% overall yield. 
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Scheme 3.1  Synthesis of monomers III and IV: a) methacryloyl chloride, DMAP, Et3N, 

DCM, r.t., 12 h, 48%; b) N-Boc-sarcosine, DCC/DMAP, DCM, r.t., 12 h, 67%; c) TFA, 

DCM, r.t., 3 h, quantitative. 

The free radical copolymerization of IV with butyl methacrylate followed by 

treatment with hydrochloric acid afforded the copolymer V (Scheme 3.2). 

 

Scheme 3.2  Synthesis of PBMA-Sarc V: d) 1) AIBN, toluene, 24 h, 70 °C, 70%; 2) HCl. 

The polymer was fully characterized by several techniques: elemental analysis, 

GPC, FT-IR and 1H NMR. The ratio between IV and butyl methacrylate in the 

reaction was maintained 4:96 as in the PBMA-Py synthesis. We used this 

percentage of the guest because it assures a strong interaction with the host that 

will lead to the copolymer blending, without altering the main features of the 

pristine polymers. The percentage of the guest was estimated with elemental 

analysis and 1H NMR integration. With the first technique a 2.8% of the guest 

was found in the copolymer. This data was confirmed from 1H NMR 
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integration ratio of the methyl group of sarcosine (2.29 ppm) and OCH2 groups 

(3.96 ppm). 

3.3.2  Complexation Properties of PS-Host/PBMA-Sarc in Solution 

and at the Solid State 

The 31P NMR analysis demonstrated the association between the PS-Host and 

PBMA-Sarc, in fact a down-field shift of the phosphorous signal of the cavitand 

was observed (Figure 3.6).  

 

Figure 3.6  31P NMR spectra in CDCl3 a) PS-Host (0.5 mM), b) PS-Host:PBMA-Sarc 

1:1 (0.5 mM), c) PS-Host:PBMA-Sarc 1:1 + DBU. 

The signal at about 11.7 ppm is diagnostic of the 1:1 complex formed between 

the tetraphosphonate cavitand and the sarcosine moiety. Upon the addition of 

an excess of DBU the phosphorous signal returned to 8 ppm, proving the 

system reversibility in solution.  

The miscibility of the blend between the two polymers was assessed with two 

different methods namely: differential scanning calorimetry (DSC) and atomic 

force microscopy (AFM). 

Materials formed by a single phase structure exhibit only one glass transition 

temperature (Tg) that can be easily found by DSC.11 The 1:1 molar mixture of 
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PS-Host and PBMA-Sarc shows one endothermic relaxation peak, in between 

the Tg of the two functionalized polymers, that correspond to an homogeneous 

blend (Table 3.1 and Figure 3.7). 

Polymers Tg 

PS-Host 97.1 °C 

PBMA-Sarc 14.6 °C 

PS-Host + PBMA-Sarc 37.3 °C 

 

Table 3.1  Glass transition temperatures. 

 

Figure 3.7  DSC thermogram of 1:1 molar mixture PS-Host/PBMA-Sarc. 

In order to confirm the miscibility of the blend at the solid state an AFM 

experiment was performed. A thin film was prepared from a 0.5 mM solution of 

a 1:1 molar mixture of PS-Host and PBMA-Sarc which was deposited on silicon 

surface by spin coating (1500 rpm for 30 sec). The AFM topography shows a flat 

surface without phase separation (Figure 3.8). 
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Figure 3.8  AFM images of 1:1 molar mixture PS-Host/PBMA-Sarc. 

The studies of this material at the solid state indicated that the interactions 

between the cavitand and the sarcosine moiety drives the compatibilization of 

the two immiscible polymers and the formation of an homogenous blend. 

3.3.3  Reversibility Studies of PS-Host/PBMA-Sarc Blend in the 

Solid State 

In the case of the blend that contains the secondary amine, a series of 

segregation experiments with base vapors were carried out. The deprotonation 

of the amine although similar to the process that occur in solution, is more 

complicated in the solid state. The base has to permeate into the polymers in 

order to reach the reaction site, moreover the basicity of a substance changes at 

the solid-gas interface. To tackle these issues we expose the polymer blend to 

different base vapors. 

Another problem is the mobility of the polymer chains. The decompatibilization 

of the blends have the purpose to induce a phase segregation in the polymeric 

films. Segregation requires mobility of the polymeric chains in the solid state. In 

order to enhance this parameter all the decompatibilization tests were carried 

out above the glass transition temperature of the blend. In fact at this 

temperature the polymer is in a rubber state and the polymer chains are more 

flexible and can rearrange in the solid state. 

Polymer films were prepared by spin coating (1500 rpm for 30 sec.) 0.5 mM 

solution (CHCl3) of the polymer blend onto a silicon slice.  

Before starting the decompatibilization experiments, a control test without base 

was performed to study the annealing effect on the morphology of the blend 

surfaces. AFM images upon annealing at 110 °C show an homogeneous blend, 
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moreover the surface roughness decrease after being heated (before the 

treatment 3.42 nm, after the treatment 2.31 nm, Figure 3.9). This effect is due to 

the greater mobility of the polymer chains of the blend that homogenize the 

structure of the film. 

 

Figure 3.9  AFM images 1:1 molar mixture PS-Host/PBMA-Sarc upon annealing at 110 

°C. 

Then the films were exposed to vapors of different bases at various 

temperatures for 24 hours (see Experimental Section for procedure details and 

Table 3.2 for the segregation results). 

Bases 
Temperature of the 
polymer blend (°C) 

Segregation 

Control 110 NO 

Ammonia 
70 
110 

NO 
NO 

Triethylamine 
70 
110 

NO 
NO 

DBU 110 NO 

N-methyl 
pyrrolidine 

110 NO 

 

Table 3.2  Segregation experiments. 

As summerized in Table 3.2 all the decompatibilization experiments carried out 

using four different bases did not induce surface segregation, or a significative 

change in the roughness of the surface. As an example, the treatment with 

triethylamine for 24 h at 110 °C is reported. The AFM images after the 
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decompatibilization process do not present the typical islands and depressions 

of a non-homogeneous blend (Figure 3.10). 

 

Figure 3.10  AFM images of PS-Host/PBMA-Sarc before and after the basic treatment. 

The segregation experiments failure in the solid state can be due to different 

causes: i) the first one is probably the lack of permeability of the gaseous bases 

into the network structure of the blend; ii) another possible cause is that the 

deprotonating molecule is not basic enough (this is not the case for DBU) to 

remove the proton from the secondary amine embedded in the polymeric chain 

of the PBMA, because at the solid-gas interface the basicity of a substance can 

change dramatically; iii) the mobility of the polymer chains is not sufficient to 

trigger segregation. 

3.3.4  Reversibility Studies of PS-Host/PBMA-Py Blend in the 

Solid State 

The segregation of the PS-Host/PBMA-Py blend was studied through an 

electrochemical reduction of the methylpyridinium group at the solid-liquid 

interface. We reported earlier that in solution the pyridinium guest can be 

released from the cavity of the tetraphosphonate receptor after one-electron 

reduction of the pyridinium moiety.10 The supramolecular complex can be 

restored upon removal of the extra electron of the guest, thanks to the 

reversibility of the redox process. 
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We investigated the voltammetric properties of the guest in the solid state using 

cyclic voltammetry (CV). The experiments were performed at room 

temperature and 60 °C in order to operate below and above the Tg of the blend 

in the electrochemical process. 

The voltammetric measurements at room temperature showed the presence of 

cathodic peak between -0.7 and -0.8 V, this signal is attributable to the mono-

electronic reduction of the N-methylpyridinium group (Figure 3.11). 

Interestingly, we observed a positive shift of the cathodic peak for repeated 

reduction cycles, whose magnitude is proportional to the scan rate of the cyclic 

voltammetry.  

This behavior can be explained considering the host-guest properties of the 

supramolecular complex. In the first cycle of the CV the mono-electronic 

reduction of the N-methylpyridinium moiety affords a neutral species that has 

no affinity towards the host with resulting withdrawal from the cavity. At the 

beginning of the second cycle, if the scan rate is too high, the guest has not time 

enough to return into the cavity of the receptor, resulting in a positive shift of 

the cathodic peak (Figure 3.11b). 

 

Figure 3.11  Cyclic voltammogram at r.t.: a) scan rate 50 mV min-1; b) scan rate 1 V 
min-1. 

Furthermore the data collected indicated a linear relationship between the 

cathodic intensity values and the scan rates (Figure 3.12). This result proves that 

the electrochemical process is governed by electro-active immobilized species 

and it is not related to diffusion. 
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Figure 3.12  Cathodic peak intensity vs. scan rate. 

Also the CV measurement performed at 60 °C shows the presence of a cathodic 

peak in the same regions of the previous experiment, and confirmed the 

presence of a reductive process (Figure 3.13). 

 

Figure 3.13  Cyclic voltammogram at 60 °C, scan rate 200 mV min-1. 

The decompatibilization experiments were conducted applying a reduction 

potential of -0.8 V to the polymeric films dipped in the electrochemical cell. The 

electrolysis experiments were monitored through coulombometric 

measurements at 60 °C, above the Tg of the polymer blend (see Figure 3.14). At 

the beginning of the experiment, the charge follows an exponential behavior but 

after few second, rather than reach a stable value, it follows a linear 

relationship. This is probably due to the reduction of the proton ions of the 

water. 
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Figure 3.14  Coulombometer experiment at 60 °C. 

The AFM images of the blend treated with an electrochemical stimulus show a 

change in the morphology surface, probably due to a phase segregation that 

occurred in the polymeric film in response to the immiscibility of the 

decompatibilized polymers. This alteration of the morphology can be 

appreciated observing an enlargement image of the film (Figure 3.15,  0.1 μm 

bar scale). 

 

Figure 3.15  AFM images (contact mode) of PS-Host/PBMA-Py before and after the 

electrochemical stimulus. 
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However the study of the morphology with AFM in contact mode does not 

justify the presence of domains of different materials. To confirm our 

hypothesis of phase segregation we carried out an AFM experiment in non 

contact mode. In this technique the tip of the cantilever does not touch the 

surface of the sample, instead it oscillates close to its resonance frequency. An 

electronic feedback loop ensures that the oscillation amplitude remains 

constant, such that a constant tip-sample interaction is maintained during 

scanning. Forces that act between the sample and the tip will not only cause a 

change in the oscillation amplitude, but also change in the resonant frequency 

and phase of the cantilever. Different components of the sample which exhibit 

difference adhesive and mechanical properties will show a phase contrast and 

therefore allow a discrimination between different type of materials on the 

surface. 

In Figure 3.16 are reported the topography and the phase lag images of the 

decompatibilized blend. 

 

Figure 3.16  AFM images (non contact mode) of PS-Host/PBMA-Py: a) topoghrapy, b) 

phase lag of the cantilever. 

A direct correlation between the two images can be observed, in other words all 

the domains detected on the morphology are composed to a material that has a 

different elasticity respect the rest of the sample, indicating a partial 

decompatibilization of the blend. 
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3.4  Conclusions 

In this chapter we have successfully blended two immiscible polymers, namely 

PS and PBMA via Tiiii@sarcosine host-guest interactions. The formation of an 

homogeneous polymer blend was unambiguously confirmed by several and 

complementary analytical tools, namely NMR, DSC and AFM. Then we have 

investigated the responsiveness to external stimuli of two homogenous polymer 

blends at the solid state. The first blend composed by PS-Host/PBMA-Sarc has 

been treated with different gaseous bases at the solid-gas interface. All the 

experiments carried out have not shown a segregation of the two polymers, 

proving that the base does not permeate inside the tridimensional structure of 

the blend. A possible solution of this problem could be to transfer the 

deprotonation process from a solid-gas to a solid-liquid interface. 

Regarding the second blend composed by PS-Host/PBMA-Py, we have gained 

new insights about the electrochemical behavior of the N-methylpyridinium 

moiety in the solid state. Moreover a change in the morphology of the blend has 

been found after the electrochemical experiment at the solid-liquid interface, 

our hypothesis was supported by an AFM non contact mode experiment. 

Although other experiments have to be performed in order to confirm the 

reversibility of this blend, we have demonstrated that a molecular modification 

of the host-guest interactions can promote a macroscopic modification of the 

properties of the materials such as the morphology. 

3.5  Acknowledgments 

Special thanks to Dr. Marco Dionisio, Dr. Federico Fanzini from Department of 

Chemistry and Dr. Tiziano Rimondi, Prof. Luigi Cristofolini from Department 

of Physics, University of Parma for AFM measurements. Thanks to Dr. Lucia 

Ricci and Prof. Giacomo Ruggeri from Department of Chemistry, University of 

Pisa for preparation of the polymers. Thanks to Prof. Alberto Credi and Dr. 

Monica Semeraro from Department of Chemistry, University of Bologna for 

electrochemical experiments. 

  



Chapter 3 

56 
 

3.6  Experimental Section 

The PS-Host and PBMA-Py were synthesized following reported procedures.9 

N-Boc-sarcosine was prepared following procedure described in Chapter 2. 

6-hydroxyhexyl methacrylate (II) 

To a solution of 1,6-hexanediol I (5.6 g, 48 mmol) in dichloromethane, DMAP 

(0.46 g, 4 mmol) and triethylamine (3.96 ml, 29 mmol) were added. The mixture 

was cooled at 0 °C and methacryloyl chloride (1.85 ml, 20 mmol) was added 

dropwise. The solution was warmed at room temperature and stirred 

overnight. The reaction was quenched with water, the organic phase was 

separated and evaporated under reduced pressure. The crude was purified by 

silica gel column chromatography (hexane:dichloromethane 7:3) to give II as 

colorless oil (1.86 g, 9.7 mmol, 48 %). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 6.05 (s, 1H, HTRANSHC=C), 5.51 (s, 1H, 

HCISHC=C), 4.10 (t, 2H, J= 6.6 Hz, (C=O)OCH2CH2), 3.58 (t, 2H, J= 6.6 Hz, 

CH2CH2OH), 2.39 (s, 1H, CH2OH), 1.90 (s, 3H, CH3), 1.65 (m, 2H, 

(C=O)OCH2CH2), 1.54 (m, 2H, CH2CH2OH), 1.37 (m, 4H, CH2CH2CH2CH2); 

ESI-MS: m\z 209.2 [M+Na]+. 

 

6-((N-(tert-butoxycarbonyl)-N-methylglycyl)oxy)hexyl methacrylate (III) 

To a solution of II (0.53 g, 2.80 mmol) in dichloromethane, DCC (0.58 g, 2.80 

mmol) and DMAP (0.102 g, 0.841 mmol) were added. After 10 min. of stirring 

N-Boc-sarcosine (0.58 g, 3.08 mmol) was added. The reaction mixture was 

stirred for 12 h at room temperature and quenched adding saturated NH4Cl 

solution. The organic phase was extracted twice with water, dried with MgSO4 

and evaporated under vacuo. Purification by silica gel column chromatography 

(hexane:ethyl acetate 8:2) yielded the desired product III as colorless oil (0.671 

g, 1.88 mmol, 67%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 6.11 (bs, 1H, HCISHC=C), 5.57 (bs, 1H, 

HTRANSHC=C), 4.17-4.13 (m, 4H, CH2O), 3.95 (d, 2H, J= 32 Hz, NCH2C(O)), 2.94 

(d, J= 8 Hz, 3H, NCH3), 1.96 (s, 3H, CH3), 1.69-1.43 (m, 18H, alkyl chain, 

C(CH3)3); ESI-MS: m/z 380 [M+Na]+. 

 

2-((6-(methacryloyloxy)hexyl)oxy)-N-methyl-2-oxoethan-1-aminium2,2,2-

trifluoroacetate (IV) 

III (0.33 g, 0.92 mmol) was dissolved in dichloromethane and an excess of 

trifluoroacetic acid was added slowly. The solution was stirred at room 

temperature for 3 h. The reaction mixture was evaporated under reduced 
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pressure to give the product IV as colorless oil (0.246 g, 0.92 mmol, quantitative 

yield). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 6.11 (s, 1H, HCISHC=C), 5.56 (s, 1H, 

HTRANSHC=C), 4.17-4.13 (m, 4H, CH2O), 3.41 (s, 2H, NCH2C(O)), 2.48 (s, 3H, 

NCH3), 1.96 (s, 3H, CH3), 1.74-1.64 (m, 4H, CH2CH2O), 1.47-1.37 (m, 4H, 

CH2CH2CH2O); ESI-MS: m/z 258 [M+H]+. 

 

Copolymerization between n-butyl methacrylate and 6-

((methylglycyl)oxy)hexyl methacrylate (IV) (PBMA-Sarc) (V)  

In a Schlenk with magnetic stirrer n-butyl methacrylate (3.9 mL, 24.84 mmol) 

and IV (0.266 g, 1.03 mmol) were dissolved in toluene under inert nitrogen 

atmosphere. The solution was purged with nitrogen for 30 minutes and heated 

to 70 °C, then AIBN was added (85 mg) and the polymerization mixture kept 

for 24 h in these conditions. At the end of the reaction, the copolymer was 

purified by twice precipitation in 500 mL of cold methanol and after filtration, 

copolymer was dried under vacuum at room temperature (70%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 3.96 (NCH2C(O), C(O)OCH2CH2), 2.29 

(NCH3), 1.9-1.8 ([CH2C(CH3)(C(O)OC4H9)]n), 1.63 (C(O)OCH2CH2), 1.43 

(CH2CH2CH3), 1.1-0.8 (CH2CH2CH3, [CH2C(CH3)(C(O)OC4H9)]n); IR (solution 

casting on KBr plate): 3410 (νN-H), 2960 (asym νC–H CH3), 2936 (asym νC–H CH2), 

2875 (sym νC–H CH3), 1728 (νC=O), 1466 (asym δCH3), 1385 (sym δCH3), 1268, 1242, 

1177, 1154 (νC-O-C), 750 (ρCH2), 666 (Wagging N-H) cm–1; Elemental analysis: 

theoretical C 66.41, H 9.81, N 0.38 %; found C 68.32, H 10.09, N 0.27 %; GPC 

(CHCl3):       : = 23200 Da,         = 36600 Da, PDI = 1.58. 

 

Film deposition 

A 0.05 mM solution of 1:1 molar mixture of PS-Host and PBMA-Sarc/PBMA-Py 

in CHCl3 was prepared. 100 μL of the resulting solution was filtered over 0.45 

μm polypropylene filter and spin-coated on a silicon slice at 1500 rpm for 30 

seconds. 

 

Reversibility experiments of PS-Host/PBMA-Sarc blend in the solid state 

The polymer blend films were positioned in Schlenk flasks, the base vapors 

were put into the flasks at room temperature. Then the flasks were heated with 

an oil bath for 24 hours at the temperature chosen for the experiment. 
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FT-IR 

FT-IR spectra were recorded on a Perkin Elmer FT-IR Spectrum One 

Spectrometer on films obtained by solution casting onto KBr windows of 

polymers diluted CHCl3 solution. 

 

GPC measurements  

GPC System apparatus equipped with Jasco PU-2089 Plus pump, Jasco RI 2031 

Plus as Refractive Index Detector, Jasco CO_2063 Plus column oven (set at 30 

°C) and 2 polymer laboratories PLgel MIXED D columns and PL gel guard 

column poly(styrene-co-divinylbenzene) (linear range 100 - 600000 Da), was 

used for determination of Molecular Weight of chloroform diluted solutions of 

samples (eluted at 1 ml/min). The calibration curve was made with polystyrene 

standards and calculations were carried out with software Borwin 1.21.61 

(JMBS DEVELOPMENT). 

 

AFM measurements 

Surface topography was examined using an atomic force microscope 

Thermomicroscope Autoprobe CP Research. All measurements were performed 

either in contact mode or in tapping mode employing respectively Silicon 

Nitride probes (Veeco OTR4-35, typical spring constant 0.05 N/m) or silicon 

probes (Bruker, MPP-12100, typical spring constant 3 N/m). The collected 

images were analyzed using the proprietary software or Gwyddion, an Open 

Source software, covered by GNU General Public License. (Gwyddion.net) 

 

DSC measurements 

DSC thermograms were recorded by using a Mettler Toledo Stare System, 

model DSC 822e differential scanning calorimeter equipped with a Stare 

software. 

 

Electrochemical experiments 

Cyclic voltammetric (CV) experiments were carried out in argon-purged water 

(Romil Hi-Dry) at room temperature and 60 °C with an Autolab 30 

multipurpose instrument interfaced to a PC. The working electrode was a 1:1 

molar mixture of PS-Host/PBMA-Py blend deposited by spin coating on a Au 

surface, the counter electrode was a Pt wire, separated from the solution by a 

frit, and an Ag wire was employed as a quasi-reference electrode. Sodium 

chloride 0.1 M was added as supporting electrolyte. 
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4.1  State of the Art 

The main stream in supramolecular chemistry is the design of artificial 

synthetic receptors that can recognize selectively a compound of interest. A 

significant application of these receptors is the development of chemical 

sensors, which can monitor different chemical environments, such as urban 

indoor and outdoor atmospheres, food aromas, explosives and so forth.1 

Generally a chemical sensor is a device able to transform chemical information 

into an analytically useful signal.2 In fact, a sensing effort requires not only the 

ability to bind the target analytes, but also the generation of a related readable 

signal. On this basis the chemical sensing process can be divided in two distinct 

steps: recognition and transduction. The sensing material responsible for 

recognition, interacts with the analytes, while the transducer produces a 

physical signal related to the binding process. 

Molecular recognition impacts heavily the three main properties of a 

chemosensor indicated below: sensitivity, selectivity and reversibility.  

 Sensitivity is defined as the slope of the analytical calibration curve, 

which is correlated with the magnitude of the change in the sensor 

signal upon a certain change in the analytical concentration.3 Strongly 

complexing receptors are sensitive to analyties at very low 

concentration; 

 selectivity is the ability of a sensor to respond to only one chemical 

species in the presence of other species (called interferents).4 An highly 

selective receptor boosts selectivity; 

 reversibility is the sensor’s ability to return to its initial state after it has 

been exposed to chemical species. Weak interactions guarantee 

reversibility under normal operating conditions. 

Supramolecular chemistry, the science that studies dynamic non covalent 

interactions, is best placed to maximize these three basic features of a chemical 

sensor. The exploitation of the guiding principles toolbox for receptor design, 

represented by the principle of complementarity and preorganization, allows the 

development of chemical sensors bearing high sensibility, selectivity and 

reversibility. 

Complementarity encompasses the principle introduced by E. Fischer, the Lock 

and Key Principle, and according to Cram: “to complex, hosts must have binding 

sites which can simultaneously contact and attract the binding sites of the 

guests without generating internal strains or strong non-bonded repulsions.”5 
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Although complementarity is necessary for structural recognition between 

molecules, it is in many cases not sufficient. Cram enounced another principle 

defined as follows: “the more highly hosts and guests are organized for binding 

and low solvation prior to their complexation, the more stable will be their 

complexes”(preorganization principle).5 Consider two hosts, both of which 

present a single conformation that is complementary to a specific guest, but one 

host is rigid and can adopt a single low-energy conformation, while the second 

host is flexible and it has numerous conformations. In order to form a complex 

the flexible host must overcome the energetic costs associated with restricting 

itself to a single conformation which reduces the overall binding free energy.6 

The principles of complementarity and preorganization operate in concert 

generating high-affinity and high-selectivity hosts that can be exploited in 

specific sensing.7 This type of sensing aims to detect a class (or a single) analyte 

in a given environment. Usually, receptors design for specific sensing involves 

the identification of the correct recognition units that have to be incorporated 

into the host in order to bind each particular binding sites of the guest (Figure 

4.1 top). Then these recognition units are pre-organized on the receptor scaffold 

(Figure 4.1 down), studying the best position and geometry exploiting other 

processes such as computer modeling and, trial and error testing in order to 

optimize the sensing ability of the receptor.8 

 

Figure 4.1  Example of a selective synthetic receptor: design (top) and process (down). 
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However the strict adherence of the basic principles of complementarity and 

preorganization can be detrimental for other types of chemical sensing such as 

differential sensing.9 In this approach the procedure consists in the 

simultaneous detection of multiple analytes within a complex mixture. Inspired 

by the human sensory system (e.g. nose or tongue) researchers have built array 

of cross-reactive receptors that bind a variety of species with different affinity 

and selectivity profiles. These kind of synthetic receptors are cross-reactive 

because they may bind a number of analytes, but each of them binds the 

analytes differently than all other (Figure 4.2).10 The use of these non-selective 

recognition sensor elements have promoted the growth of the so-called 

electronic noses,11 tongues,12 etc. 

 

Figure 4.2  Array-based sensor utilizing analyte binding by differential receptors. 

Regardless of whether the analyte is a single- or multicomponent analyte, receptors bind a 

number of analytes, but each receptor binds the analytes differently thus providing a 

differential response.9 

The other part of the sensors that must be carefully designed is the transducer 

element. This element transforms and amplifies the perturbation of the receptor 

unit, into an analytical useful signal. The selection of an high fidelity signal 

transduction mode is pivotal for the success of the sensing effort. 

Commonly used detection methods are: fluorescence, colorimetry, 

electrochemistry, surface plasmon resonance (SPR) and quartz crystal 

microbalance (QCM). Each of them have many advantages, but fluorescence 

occupies a special role in chemical sensing because is an highly versatile and 
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low cost method that can be used in real time, at very low concentrations.13 The 

versatility of fluorescence-based sensors originates from the wide number of 

parameters that can be tuned in order to optimize the convenient signal. Even 

very complex analytical problems can be solved by controlling the excitation 

and emission wavelengths, the time window of signal collection, and the 

polarization of the excitation beam or the emitted light. In most cases, 

luminescence intensity changes represent the most directly detectable response 

to target recognition; more recently, however, other properties such as excited 

state lifetime and fluorescent anisotropy have also been chosen as diagnostic 

parameters, since they are less affected by the environmental and experimental 

conditions.14 

Mechanisms which control the response of a fluorophore to the substrate 

binding include: photoinduced electron transfer (PET),15 photoinduced charge 

transfer (PCT),16 fluorescence (Förster) resonance energy transfer (FRET),16 and 

excimer/exciplex formation or extinction.16 Obviously all these photophysical 

effects are dependent on the characteristics of the analyte and how the signaling 

unit (the fluorophore) is linked to the receptor moiety. 

Fluorescent transducers of particular interest and widely employed are based 

on polyaromatic species such as those deriving from pyrene and naphthalene. 

These molecules are extensively used not only because they show a strong 

luminescence in the near UV, but they also own the unique property of excimer 

fluorescence. 

Excimers are dimers in the excited state (the term excimer results from the 

contraction of ‘excited dimer’). They are formed by collision between an excited 

molecule and an identical unexcited molecule.17 The fluorescence band 

corresponding to an excimer is located at wavelengths higher than that of the 

monomer and does not show vibronic bands (Figure 4.3).18  
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Figure 4.3  Excimer formation, with the corresponding monomer and excimer bands. 

An excimer that has been extensively studied is that of pyrene (Figure 4.4).19 

The monomer band appears at 370-420 nm with well resolved vibronic features 

(M, M*), while the broad featureless excimer emission band is centered at about 

450 nm (E). Another useful parameter is the intensity ratio of the excimer and 

the monomer (IE/IM), used to measure the efficiency of the excimer formation. 

In fact, contrary to the wavelength of the excimer λE, the ratio IE/IM is sensitive 

to the environmental factors that control excimer formation such as solvent 

polarity, viscosity or temperature.20 

 

Figure 4.4  Pyrene excimer formation. 

During the years a plethora of sensors based on the monomer-excimer dual 

luminescence of the pyrene unit have been prepared to detect cations, anions,21 

and biological target, such as oligonucleotides or ribonucleases.20 The idea to 

exploit the excimer as transducer moiety is particularly interesting because one 
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can, using supramolecular interactions, bring the pair of fluorophores together 

or push them apart, modulating the IE/IM ratio. In the ideal situation, the sensor 

shows predominant monomer (or excimer) fluorescence in the absence of the 

analyte, and the opposite situation in the presence of the target molecule.22 

4.2  Introduction 

The need to develop a chemical sensor to detect small molecules bearing N-

methylated moiety is a key topic because this functionality is present in many 

organic molecules that have a significant role in biology such as: drugs,23 

neurotransmitters24 and cancer biomarkers.25 In particular two classes of illicit 

drugs have drawn the attention of researchers in chemical sensing: 

amphetamine-type-stimulant (from now onward as ATS) and cocaine. 

In the last decades the consumption of ATS has become a worldwide social 

problem, in fact the 2012 World Drugs Report26 shows that after cannabinoids, 

the ATS (including MDMA also called ecstasy) is the second group of drugs 

most widely used globally, followed by opioids, opiates and cocaine. 

Amphetamines, methamphetamines and their methylenedioxy-derivatives are a 

class of psychoactive synthetic drugs that belongs to the ATS group (Figure 4.5). 

Usually these substances are synthesized and sold not as free base but in the 

hydrochloride salt form, to enhance their bioavailability. They have a stimulant 

effect on the central nervous system, being able to increase the levels of 

neurotransmitters. Cocaine, a tropane alkaloid derived from the coca plant, is a 

powerful nervous system stimulant,27 in 1970 this drug was declared illicit 

except for pharmaceutical purposes in the Controlled Substances Act.28 

 

Figure 4.5  Illicit drugs structures. 
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So far a large variety of analytical methods have been developed to detect ATS 

including thin layer chromatography,29 HPLC,30 GC-MS,31 immunoassay 

methods32 and SERS.33 For what concern cocaine detection the most valid 

methods are: HPLC,34 GC-MS,35 aptamers,36 enzyme-based immunoassays like 

enzyme multiplied immunoassay technique (EMIT)37 and enzyme-linked 

immunosorbent assay (ELISA).38 The main drawbacks of these techniques are: 

long operation time, sosphisticated experimental procedures like sample pre-

treatment and precautions from prior analysis. 

Moreover, other two hurdles should be overcome to design a sensitive, selective 

and rapid on-site chemosensor for illicit drugs: the issue of the designer drugs 

and the problem of the interferents. 

The first challenge is related to the identification of ‘designer drugs’ also called 

synthetic highs. A designer drug is the result of minor modifications in the 

chemical structure of an existing and controlled drug (Figure 4.6). They are 

produced in clandestine laboratories in an attempt to find loopholes in the 

chemical control regulations. 

 

Figure 4.6  Scheme of an ATS structure with all the possible structural modifications. 

These types of psychoactive molecules are alarming both authorities and health 

organizations because they show similar pharmacological effect with respect to 

its archetype, but they are sold openly since formally out of the ‘black list’ of 

illicit/controlled substances. Theoretically, the number of potential synthetic 

analogs that can be manufactured and distributed is very large. For this reason, 

ability to detect chemical similarity of the sample with controlled drugs is a 

fundamental asset for a chemosensor.  

Another issue when trying to design a new drug detector device is that the 

"street samples", the real substances that are sold on the streets, are "cut" with 

excipients. The active principle content can vary from a minimum of 5% to a 

maximum of 60%. These auxiliary substances can act as interfering agents in the 

molecular recognition process, altering the response of the chemosensors. In the 
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case of the street samples in theory a large number of excipients can be chosen 

and the quantities can differ a lot depending also from the type of active 

principle. Despite this large option, the most common and used excipients are: 

glucose, lactose, paracetamol and caffeine. An effective drug sensor should not 

be affected by those interferents recording only the presence of the drug. 

4.3  Results and Discussion 

In this work we synthesized and tested a new fluorescent chemosensor based 

on tetraphosphonate cavitand able to detect not only illicit drugs like ATS and 

cocaine hydrochlorides but also their designer drugs, in the presence of 

interferents. The main properties of the chemosensor, molecular recognition 

unit and transducer element, were designed studying the binding site elements 

that characterize the target analytes. 

4.3.1  Design of the Chemosensor 

Bearing N-methyl ammonium moiety illicit drugs are well-suited to be 

recognized by tetraphosphonate cavitands (Tiiii from now onward). In 

solution, Tiiii has remarkable molecular recognition properties toward N-

methylammonium salts, due to the presence of three interaction modes: (i) 

N+•••O=P cation–dipole interactions, (ii) CH3–π interactions of the acidic 
+NH2–CH3 group with the π basic cavity, (iii) two simultaneous hydrogen 

bonds between two adjacent P=O bridges and the two nitrogen protons (Figure 

4.7). 

 

Figure 4.7  X-Ray structure of the complex Tiiii@N-methylbutylammonium salt. 

The ability of the cavitand receptor Tiiii to recognize selectively the N-

methylammonium hydrochloride group has been demonstrated in several 

works including the complexation of the series of N-alkylammonium salts39 and 

a) b)
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for molecules of biological interest like sarcosine40 (see Chapter 1 for details) 

and antitumor drug procarbazine (PCZ) hydrochloride.41 This property makes 

the cavitand able to detect ATS, cocaine and their designer drugs but also 

interferents such as N-methylammonium guest like sarcosine hydrochloride. 

In order to differentiate molecules bearing the same functionality recognized by 

our cavitand receptor, we considered the bulky group that is present in the 

skeleton of ATS and cocaine molecules, but absent in other N-methylated 

ammonium molecules. To detect the presence of bulky substituents we turned 

the Tiiii cavitand into a fluorescent chemosensor tethering two pyrene moieties 

in distal position on the top of the cavity. As illustrated in Figure 4.8 the two 

pyrenes were connected to the two phosphonate groups by an alkyl spacer in a 

distal position. The pyrene moieties were attached on the phosphonate groups 

for synthetic reasons because the apical position of the cavity is difficult to 

functionalize. Distal functionalization guarantees the optimal overlap of 

pyrenes for excimer formation. 

 

Figure 4.8  The designed fluorescent chemosensor. 

 

Figure 4.9  Transduction mechanism. 



Fluorescent Cavitand for Illicit Drugs Sensing  

71 

 

We envisaged that in the distal configuration the two pyrene moieties can act as 

transducer element forming an excimer. In absence of target analytes the 

molecule showed predominant excimer fluorescence while the presence of a 

proper bulky N-methyl ammonium guest can perturb the excimer formation 

causing the monomer emission (Figure 4.9). 

The exploitation of the excimer-monomer dual luminescence allows to boost the 

selectivity of the chemosensor towards a specific class of molecules like ATS 

and cocaine guests that present a N-methylammonium group and a bulky part 

in their skeleton. By contrast the chemosensor is insensitive to interferents like 

sarcosine that are complexed by the cavitand but not reported by the transducer 

element. 

4.3.2  Synthesis of the Fluorescent Tetraphosphonate Cavitands 

The choice of the length of the tethers is pivotal for the selectivity of the 

chemosensor. With too long tethers the excimer cannot be perturbed by the 

guest and therefore the molecular recognition is not correctly translated into a 

signal. Instead too short tethers prevent the formation of the excimer. 

Following molecular modeling, the first target molecule was designed with a 

butyl alkyl chain as tether (Figure 4.10).  

 

Figure 4.10  Tiiii [C3H7, H, (2 Ph, 2 butyl-pyrene)], IX. 

The preparation of the tetraphosphonate cavitand Tiiii [C3H7, H, (2 Ph, 2 butyl-

pyrene)] (IX) required a convergent synthesis; in fact two fragments were 

synthesized, diphosphonate resorcinarene (VIII) and the phosphonic dichloride 
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bridging reagent (VI), that were joined together through a stereoselective 

reaction using as templating agent N-methyl pyrrolidine.42 

The phosphonic dichloride (VI) was prepared in five steps and 85% overall 

yield (Scheme 4.1). The hydroxyl group of I was substituted with an iodine 

group (steps a and b), allowing an Arbuzov reaction with triethyl phosphite 

that led to diethyl (6-(pyren-1-yl)hexyl)phosphonate (IV). After hydrolysis 

under acidic conditions, chlorination of V with oxalyl chloride afforded the 

desired product (4-(pyren-1-yl)butyl)phosphonic dichloride VI. Due to its 

reactivity, the product was not isolated but used directly as bridging reagent 

with resorcinarene VIII. 

 

Scheme 4.1  Synthesis of (4-(pyren-1-yl)butyl)phosphonic dichloride, VI: a) MsCl, 

NEt3, DCM, r.t., 4 h; b) NaI, Acetone, reflux, 4 h, quantitative; c) P(OEt)3, 2 h, 

microwave power 300 W, 200 °C , 90%; d) HCl 12 N, 2 h, microwave power 300 W, 

95%; e) Oxalyl chloride/DMF, CHCl3, 60 °C, 4 h.  

The diphosphonate resorcinarene VIII was synthesized from the 

tetraphosphonate cavitand VII by using an excision reaction with two 

equivalents of catechol and potassium carbonate in DMF (Scheme 4.2). The 

reaction afforded selectively the constitutional isomer with two phosphonate 

groups in distal position (AC isomer).43 

The last step of the synthesis was the introduction of the phosphonate groups in 

the scaffold, bridging resorcinarene VIII with VI using N-methylpyrrolidine as 

both templating agent and base. The reaction gave mainly the cavitand Tiiii 

[C3H7, H, (2 Ph, 2 butyl-pyrene)] (IX) with a 10% yield. The low yield obtained 

is due to the limited reactivity of the phosphonic dichloride bridging reagent. 

Among characterization technique, 31P NMR showed to be particularly 
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diagnostic. As expected the 31P NMR spectra shows two singlet peaks at 25.1 

and 10.5 ppm that confirm the presence of P=O groups linked to alkyl and 

phenyl groups respectively, both of them oriented inward with respect to the 

cavity. 

 

Scheme 4.2  Synthesis of Tiiii [C3H7, H, (2 Ph, 2 butyl-pyrene)], IX: g) Catechol, 

K2CO3, DMF, 85 °C, 5 h,75%; h) VII, N-methylpyrrolidine, toluene/CHCl3, 80 °C, 48 h, 

10%. 

Cavitand IX was submitted to fluorescent measurements (λexc 330 nm) in 

various solvents to show the formation of the excimer as depicted in Figure 

4.11. In all the solvents tested the fluorescent spectra show only the monomer 

emission band and total absence of the excimer band between 450 and 550 nm. 

We concluded that the tether length is not sufficient long to promote the π-

stacking of the pyrene groups and the consequent formation of the excimer. 

 

Figure 4.11  Fluorescent spectra of IX (c = 2 x 10-6 M).  
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To solve the problem we decided to extent the length of the tethers to six carbon 

atoms (hexyl chain). Hence the new tetraphosphonate cavitand Tiiii [C3H7, H, 

(2 Ph, 2 hexyl-pyrene)] (XVII) target was synthesized (Figure 4.12). 

 

Figure 4.12  Tiiii [C3H7, H, (2 Ph, 2 hexyl-pyrene)], XVII. 

The bridging reagent XVI was prepared in seven steps and 50% overall yield 

(Scheme 4.3). The multistep synthesis started from a Sonogashira cross-

coupling reaction between the bromo-pyrene and 5-hexyn-1-ol. Then the alkyne 

group was reduced and the hydroxyl group was replaced with the phosphonate 

group as reported previously. The chlorination of the phosphonic acid XV was 

carried out with oxalyl chloride and the product (6-(pyren-1-

yl)hexyl)phosphonic dichloride (XVI) was used directly without further 

purification. 
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Scheme 4.3  Synthesis of (6-(pyren-1-yl)hexyl)phosphonic dichloride, XVI: a) 

Pd(PPh)4, CuI, THF/DIPEA, 50 °C, 12 h, 68%; b) H2 (2 atm), Pd/C, AcOEt, r.t., 12 h, 

94%; c) MsCl, NEt3, DCM, r.t., 3 h; d) NaI, acetone, reflux, 4 h, quantitative; e) 

P(OEt)3, 2 h, microwave power 300 W, 200 °C , 85%; f) HCl 12 N, 2 h, microwave power 

300 W, 96%; g) Oxalyl chloride/DMF, CHCl3, 60 °C, 4 h. 

The target product XVII was synthesized reacting the phosphonic dichloride 

XVI and the resorcinarene VIII under the same conditions described before in 

4.5% overall yield (Scheme 4.4). Also in this case the 31P NMR spectrum shows 

two diagnostic singlet resonances at 24.4 and 9.3 ppm, attributed to the 

phosphonate moieties linked to the alkyl and phenyl groups respectively. 

MALDI mass spectrometry confirms the presence of the molecular ion of the 

product XVII (calculated for: C96H92O12P4 1560.5539 Da, found: 1560.5441 Da). 
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Scheme 4.4  Synthesis of Tiiii [C3H7, H, (2 Ph, 2 hexyl-pyrene)], XVII: h) VIII, N-

methylpyrrolidine, toluene/CHCl3, 80 °C, 48 h, 12%. 

4.3.3  Fluorescence Spectroscopy Experiments 

The fluorescence spectra in dichloromethane (λexc 330 nm, Figure 4.13) of 

compound XVII validated our new design, in fact an excimer emission band 

can be observed centered at about 480 nm. 

 

Figure 4.13  Fluorescence spectrum of XVII in dichloromethane (c = 2 x 10-6 M). 

The sensor for illicit drugs sensing detection must operate at the solid-water 

interface. The multi-aromatic cavity of the tetraphosphonate receptor and the 

two pyrene moieties attached at the top of the molecule make our receptor 

extremely hydrophobic. In water XVII is thus not soluble, forming a dispersion 

of aggregates with a diameter of ca. 100 nm. To overcome this issue, we used 
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the strategy to load the cavitand molecules in silica nanoparticles having an 

outer PEG shell (Pluronic-Silica NanoParticles -PluS NPs), a strategy that was 

conveniently used with other chemical sensors.44 In this case, we modified the 

synthesis of the NPs using a modified silica precursor (1,2-

bis(triethoxysilyl)ethane, Figure 4.14b) in place of the commonly used 

tetraethoxysilane (TEOS, Figure 4.14a), in order to increase the loading ability of 

the NPs structure (L. Petrizza, unpublished results). 

 

Figure 4.14  a) TEOS; b) 1,2-Bis(triethoxysilyl)ethane.  

In addition, the use of a confined environment was conceived also to increase 

the formation of an intramolecular excimer as observed in other system like 

micelles,45 bilayers,46 zeolites,47 sol-gel materials and glasses.48  

 

Figure 4.15  Fluorescence spectrum (λexc 330 nm) of XVII + nanoparticles in H2O (c= 2 

x 10-6 M). 

Interestingly, dynamic light scattering measurements of equimolar solutions of 

XVII and PluS NPs show only the typical, very narrow peak of the 
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nanoparticles, indicating the absence in these conditions of self-aggregation of 

XVII due to their loading into the structure of the nanoparticles. The 

fluorescence spectrum of the cavitand loaded nanoparticles in water (Figure 

4.15) clearly shows, as expected, a large contribution from the excimeric 

emission, indicating that, by large, the major part of the excited states of pyrene 

decay to their ground state through the formation of excimers. NPs thus play 

here a major role in providing the best starting condition for fluorescence 

sensing: aggregation of the chemosensor is satisfactorily avoided, and we 

obtain stable and intense excimer emission. 

We chose four different guests to test our chemosensor in aqueous solution: 

amphetamine, MDMA, cocaine and 3-fluoro-methamphetamine (FMA, a 

designer drug) all of them hydrochloride salts. Such guests were selected as 

representatives of the ATS and natural illicit drugs classes. FMA, in particular, 

is a representative of a so called “designer drugs”. We then selected several 

control compounds in order to rule out possible interferences in the sensing 

procedures: glucose since it is commonly used as the excipient in street 

samples, glycine as an amine which is not hosted by the cavitand, and, 

sarcosine as control because, although it presents affinity towards the receptor, 

it does not have a bulky unit such as the illicit drugs, therefore it should not 

trigger any response. 

 

Figure 4.16  Fluorescence intensity in the excimer band (λexc = 330 nm; λem = 475 nm) of 

XVII + nanoparticles in H2O (c = 2 x 10- 6 M) upon addition of increasing amounts of 

guests. 
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Interestingly, we observed large spectral changes upon addition of MDMA, 

amphetamine, cocaine, and FMA hydrochloride salts while control compounds 

sarcosine, glucose and glycine did not substantially affect the emission signal of 

the pyrene moieties, and in particular of the excimer (Figure 4.16).  

The excimer emission of XVII loaded in NPs was indeed strongly depleted by 

the addition of MDMA, cocaine and FMA. This can be attributed to the sterical 

hindrance of these drugs which, hosted in the cavity, prevent the formation of 

excimers or, at least, significantly decrease the probability of their formation, as 

envisaged in designing this chemosensor. 

Noteworthy, MDMA has a much stronger effect than any other guest in 

depleting the excimer emission (Figure 4.17).  

 

Figure 4.17  Fluorescence spectrum (λexc = 330 nm) of XVII + nanoparticles in H2O (c = 

2 x 10-6 M) upon addition of increasing amounts of MDMA (0 – 0,0025 M). 

Furthermore, a dramatic decrease of the luminescence lifetime is observed both 

on the excimer and on the monomer emissions. Such observations prove the 

occurrence of an additional decay pathway that increases the rates of relaxation 

of both the excimer and monomer excited states. Such pathway can be 

attributed, since the energy transfer process from pyrene to MDMA is 

thermodynamically forbidden, to an efficient electron-transfer process 

involving the aromatic unit present in the MDMA molecule. 
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As far as the monomeric-type emission is concerned, we observed in all cases, 

as expected, an increase of the intensity of the monomeric emission, with a 

lower enhancement in case of sarcosine, and a subsequent decrease, after the 

initial steep increase, in case of MDMA (due to the onset of the electron-transfer 

quenching).  

It is worth noticing that the presence of two different signals increase the 

possible information content that can be obtained from the analysis of 

fluorescence spectra, since the monomer-type emission responds to the 

presence in the analytic sample of this class of guests, while the decrease of the 

emission of the excimer-type emission can allow to discriminate the presence of 

MDMA among the other possible interferences.  

Interestingly, the association constants that can be evaluated among the 

cavitand in the NPs (that can have, as previously described, a profound effect 

on the affinity for the analyte of a chemosensor) and the different species 

presents the following trend: MDMA > FMA > cocaine > amphetamine (Figure 

4.18, sarcosine could not be evaluated due to the low signal variation). This 

trend is in agreement with the molecular recognition ability of the 

tetraphosphonate cavitand as demonstrated in a recent paper by isothermal 

titration calorimetry (ITC).39 Most important, cavitand XVII does not respond to 

sarcosine, which is strongly bonded by tetraphosphonate cavitands.40 These 

results strongly supports the proposed mechanism of detection, depicted in 

Figure 4.9.  

 

Figure 4.18  Association constants in water solutions for the different analytes of 

XVII@NPs estimated from the titration curves reported in Figure 4.16. 



Fluorescent Cavitand for Illicit Drugs Sensing  

81 

 

All the results presented so far indicate that XVII can be an efficient 

chemosensor for this family of analytes in aqueous solution. In particular, the 

presence of MDMA can be clearly identified by looking at the intensity of the 

excimeric emission and, as additional signal, by the analyses of the excited state 

lifetime. In all other cases the presence of the drug can be identified looking at 

the increase of the intensity of the monomeric band, with possibility to use the 

excimer band, through a ratiometric approach, to avoid any calibration needs. 

4.3.4  Towards a Fluorescent Sensor Surface 

In the last paragraphs we reported the molecular recognition properties of the 

fluorescent chemosensor towards a series of N-methylated illicit drug 

molecules. Furthermore we demonstrated that the transduction mode based on 

the monomer-excimer dual luminescence of pyrene is highly reliable in 

chemical sensing. In order to take full advantage of its particular features, the 

fluorescent receptor XVII should be grafted onto a surface, moving the binding 

properties from the solution to the surface.  

Silicon is an attractive inorganic platform to deposited organic monolayers as it 

is possible to make robust and durable devices by forming stable Si-C covalent 

bonds. Recently, our research group has reported a protocol for the covalent 

assembly of cavitand molecules on silicon surface.49 The process is the 

photochemical hydrosilylation50 and it requires an hydrogenated silicon surface 

and at least one terminal alkene in the organic molecules to be attached. The 

extension of this procedure to the grafting of phosphonate cavitands on silicon 

has been reported, using Tiiii cavitands equipped with ω-decene feet 

(Tiiii[C10H19, H, Ph]).51 

The next step in the illicit drug sensing will be the functionalization of a silicon 

surface with the fluorescent chemosensor previously tested. The fluorescent 

receptor (XVII) was derivatized with four terminal alkene at the lower rim in 

particular four decene feet. The target molecule Tiiii [C10H19, H, (2 Ph, 2 hexyl-

pyrene)], (XX) is illustrated in Figure 4.19.  
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Figure 4.19  Tiiii [C10H19, H, (2 Ph, 2 hexyl-pyrene)], XX. 

The target cavitand XX was prepared using the same procedure previously 

explained for the cavitand XVII. The diphosphonate resorcinarene decene feet 

XIX was synthesized from tetraphosphonate cavitand Tiiii [C10H19, H, Ph] by 

an excision reaction with catechol and potassium carbonate in DMF (Scheme 

4.5). Then the resorcinarene XIX was bridged with phosphonic dichloride XVI 

using N-methyl pyrrolidine as templating agent. The crude was purified by 

silica gel chromatography giving the cavitand Tiiii [C10H19, H, (2 Ph, 2 hexyl-

pyrene)], (XX) with a 3.5% overall yield. As expected the 31P NMR spectrum 

shows two singlet resonances at 24.8 and 9.8 ppm that confirms the presence of 

phosphonate groups linked to alkyl and phenyl groups respectively, both of 

them oriented inward with respect to the cavity. The photochemical grafting of 

this cavitand on silicon is ongoing  
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Scheme 4.5  Synthesis of Tiiii [C10H19, H, (2 Ph, 2 hexyl-pyrene)], XX: i) Catechol, 

K2CO3, DMF, 85 °C, 5 h, 78%; l) XVI, N-methylpyrrolidine, toluene/CHCl3, 80 °C, 48 

h, 9%. 

4.4  Conclusions 

In summary, a new pyrene-functionalized cavitand has been synthesized to 

detect illicit drugs. This chemosensor merges the complexation properties of the 

Tiiii cavitand with the unique luminescent properties of the pyrene excimer 

that acts as transducer element. As a consequence we boosted the selectivity of 

the cavitand introducing steric hindrance as an additional discrimination point. 

The sensor has been tested with four different illicit drugs containing N-

methylated groups and three interferent molecules. The fluorescence 

experiments demonstrated that the drugs depleted the excimer emission due to 

their steric hindrance. Particularly appealing is the response towards MDMA. 

This molecule showed the stronger effect due to the combination of its steric 

hindrance and an efficient electron-transfer process involving the aromatic 

units of the pyrene groups and the MDMA molecule. By contrast the 

interferents like glycine, glucose and sarcosine did not change the emission of 

the excimer. Although sarcosine is complexed by the cavitand, it does not bring 

apart the pyrene groups since it does not possess a bulky group in its skeleton.  

 

 

 

 



Chapter 4 
 

84 

 

4.5  Acknowledgments 

Special thanks to Dr. Damiano Genovese, Dr. Luca Petrizza, Dr. Enrico 

Rampazzo and Prof. Luca Prodi from Department of Chemistry “G. Ciamician”, 

University of Bologna and Dr. Elisa Biavardi from Department of Chemistry, 

University of Parma for fluorescent measurements. 

  



Fluorescent Cavitand for Illicit Drugs Sensing  

85 

 

4.6  Experimental Section 

Tiiii [C10H19, H, Ph] was synthesized according to a published procedure.52 

 

4-(pyren-1-yl)butyl methanesulfonate (II) 

A mixture of I (1 g, 3.64 mmol), triethylamine (10.1 mL, 72.8 mmol), mesyl 

chloride (2.81 m, 36.4 mmol) in dichloromethane was stirred at room 

temperature for 4 hours. The reaction mixture was quenched with saturated 

NH4Cl solution and diluted with ethyl acetate. The organic layer was extracted 

twice with water, brine and dried over MgSO4. The yellow solid was used 

without characterizations and further purification in the next step. 

 

1-(6-iodobutyl)pyrene (III) 

To a solution of II in acetone, NaI (5.4 g, 36.4 mmol) was added. After 4 hours 

of stirring at reflux the solution was allowed to cool at room temperature and 

the white solid was filtered off. The resulting solution was dried  under reduced 

pressure and the crude was purified by silica gel column chromatography 

(hexane:ethyl acetate 95:5) to give pure III as white solid (1.38 g, 3.64 mmol, 

quantitative yield). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.27 (d, J= 8 Hz, 1H, ArH), 8.20-8.08 (m, 

4H, PyH), 8.06-7.96 (m, 3H, PyH), 7.86 (d, J= 8 Hz, 1H, PyH) 3.40-3.34 (m, 2H, 

PyCH2), 3.29-3.22 (m, 2H, CH2I), 2.05-1.93 (m, 4H, PyCH2CH2CH2CH2I); ESI-

MS: mass peak was not found. 

 

Diethyl (6-(pyren-1-yl)butyl)phosphonate (IV) 

III (1.38 g, 3.64 mmol) was suspended in triethyl phosphite (6.2 mL, 36.4 mmol). 

The reaction was conducted at the microwave reactor using the follow 

parameters: microwave power 300 W, 200 °C, stirring high, reaction time 2 h. 

The solution was allowed to cool at room temperature and dried under reduced 

pressure. The crude was purified by silica gel column chromatography (ethyl 

acetate:dichloromethane 1:9) to afford pure IV as white solid (1.29 g, 3.27 mmol, 

90%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 8.15 (d, J=9 Hz 1H, PyH), 8.11-7.97 (m, 

4H, PyH), 7.97-7.88 (m, 4H, PyH), 7.75 (d, J=3 Hz 1H, PyH), 4.17-3.97 (m, 4H, 

P(O)OCH2CH3), 3.26 (t, 2H, J=6 Hz, PyCH2CH2), 1.95-1.68 (m, 6H, 

PyCH2CH2CH2CH2P(O)), 1.29 (t, J=6 Hz, 6H, P(O)OCH2CH3); 31P{1H}NMR 

(CDCl3, 161.9 MHz): δ (ppm) = 28.8 (s, P=O); ESI-MS: mass peak was not 

found. 
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(6-(pyren-1-yl)butyl)phosphonic acid (V) 

IV (1.29 g, 3.27 mmol) was suspended in HCl 37% (5 mL). The reaction was 

conducted at the microwave reactor using the follow parameters: microwave 

power 300 W, 95 °C, stirring high, reaction time 2 h. The solution was allowed 

to cool at room temperature and the gray solid was recovered by suction 

filtration to give pure V (1.04 g, 3.1 mmol, 95%). 
1H NMR (DMSO-d6, 400 MHz): δ (ppm) = 8.35 (d, J= 8 Hz, 1H, PyH), 8.30-7.99 

(m, 7H, PyH), 7.93 (d, J= 8 Hz, 1H, PyH), 3.32 (t, 2H, J=8 Hz, PyCH2CH2), 1.90-

1.77 (m, 2H, CH2CH2P(O)), 1.70-1.46 (m, 4H, PyCH2CH2CH2CH2P(O)); 
31P{1H}NMR (DMSO-d6, 161.9 MHz): δ (ppm) = 26.3 (s, P=O); ESI-MS: m/z 361 

[M+Na]+. 

 

(6-(pyren-1-yl)butyl)phosphonic dichloride (VI) 

To a solution of V (0.281 g, 0.83 mmol) in dry DCM, oxalyl chloride (0.25 mL, 3 

mmol) and two drops of dry DMF were added under nitrogen atmosphere. The 

green solution was stirred for 4 hours at room temperature then the solvent was 

removed under vacuo and the green solid was used without further purification 

in the next step. 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.27-7.78 (m, 9H, PyH), 3.40 (t, 2H, J=8 

Hz, PyCH2CH2), 2.72-2.57 (m, 2H, CH2CH2P(O)), 2.11-1.91 (m, 4H, 

PyCH2CH2CH2CH2P(O)); 31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 50.4 (s, 

P=O); ESI-MS: mass peak was not found. 

 

Diphosphonate resorcinarene (VIII) 

Tetraphosphonate cavitand VII (0.86 g, 0.75 mmol) was dissolved in dry DMF 

then cathecol (0.165 g, 1.5 mmol) and K2CO3 (1.03 g, 7.5 mmol) were added. The 

mixture was stirred at 80 °C for 5 hours and quenched by addition of an acidic 

solution (HCl 10%). The resulting solid was recovered by suction filtration. 

Purification by silica gel column chromatography (dichloromethane:ethanol 

95:5) afforded the pure product VIII as white solid (0.5 g, 0.56 mmol, 75%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 9.55 (s, 4H, ArOH), 8.14-8.08 (m, 4H, 

ArHo), 7.70-7.68 (m, 2H, ArHp), 7.62-7.57 (m, 4H, ArHm), 7.11 (s, 4H, ArH), 6.69 

(s, 4H, ArH), 4.80 (t, J=8 Hz 2H, ArCH), 4.28 (t, J=8 Hz, 2H, ArCH), 2.38-2.36 (m, 

4H, CH2CH2CH3), 2.05-2.03 (m, 4H, CH2CH2CH3), 1.61-1.55 (m, 4H, 

CH2CH2CH3), 1.24-1.13 (m, 10H, CH2CH2CH3), 0.93-0.85 (m, 6H, CH2CH2CH3); 
31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 6.28 (s, P=O); ESI-MS: m/z 902 

[M+H]+, 924 [M+Na]+. 
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Tiiii [C3H7, H, (2 Ph, 2 butyl-pyrene)] (IX) 

VIII (0.25 g, 0.27 mmol) was dissolved in dry toluene and N-methylpirrolidine 

(0.28 mL, 2.7 mmol). Then VI (0.311 g, 0.83 mmol) was dissolved in a mixture 

1:1 of anhydrous toluene/chloroform and added dropwise to the resorcinarene 

solution. The dark green mixture was stirred at 80 °C for 48 hours. The reaction 

was allowed to cool at room temperature, the residual dark solid was filtered 

off and the solvent was removed under vacuo. The crude was purified by silica 

gel column chromatography (dichloromethane:ethanol 95:5) to give the pure 

product IX as yellowish solid (0.04 g, 0.027 mmol, 10%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.28 (d, J=12 Hz, 2H, PyH), 8.17-7.94 (m, 

18H, PyH, P(O)ArHo), 7.89 (d, J=8 Hz, 2H, PyH), 7.72-7.64 (m, 2H, P(O)ArHp), 

7.62-7.53 (m, 4H, P(O)ArHm), 7.42 (s, 4H, ArH), 6.88 (s, 4H, ArH), 4.80 (t, J=8 Hz, 

2H, ArCH), 4.59 (t, J=8 Hz, 2H, ArCH), 3.49-3.35 (m, 4H, CH2Py), 2.29-1.96 (m, 

20H, PyCH2CH2CH2CH2P(O), ArCHCH2CH2CH3), 1.53-1.31 (m, 8H, 

ArCHCH2CH2CH3), 1.10 (t, J=8 Hz, ArCHCH2CH2CH3), 1.03 (t, J=8 Hz, 

ArCHCH2CH2CH3); 31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 25.1 (s, P=O 

(buthyl-Py)), 10.5 (s, P=O(Ph)); ESI-MS: m/z 1528 [M+Na]+; MALDI TOF-TOF: 

calcd. for C92H84O12P4 1504.4913 Da, found: 1504.3596 Da. 

 

6-(pyren-1-yl)hex-5-yn-1-ol (X) 

A mixture of THF/DIPA (1/1) was degassed 3 times with freeze pump thaw 

technique followed by addition of bromo-pyrene (1 g, 3.55 mmol), 5-hexyn-1-ol 

(0.47 mL, 4.26 mmol), Pd tetrakis(triphenylphosphine) (0.205 g, 0.17 mmol) and 

CuI (0.067 g, 0.355 mmol). The reaction mixture was stirred for 12 hours at 50 °C  

and then filtered. Ethyl acetate was added into the solution and extracted twice 

with saturated NH4Cl solution and brine, dried with anhydrous MgSO4 and 

evaporated under reduced pressure to yield a brown oil. The crude was 

purified by silica gel column chromatography (hexane:ethyl acetate 6:4) to 

afford the desired product X as yellow oil (0.72 g, 2.41 mmol, 68%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 8.56 (d, J=8 Hz, 1H, PyH), 8.23-8.00 (m, 

8H, PyH), 3.81 (t, J=6 Hz, 2H, CH2OH), 2.73 (t, J=6 Hz, 2H, CH2C≡C), 1.92-1.89 

(m, 4H, CH2CH2OH); 13C NMR (CDCl3, 100 MHz): δ (ppm) = 135.2, 131.8, 131.2, 

131, 130.6, 129.6, 128, 127.7, 127.2, 126.1, 125.5, 125.34, 125.33, 124.4, 124.3, 118.6, 

95.9, 80.1, 61.9, 31.7 16.5; ESI-MS: m/z 299.4 [M+H]+, 321.4 [M+Na]+, 337.4 

[M+K]+. 
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6-(pyren-1-yl)hexan-1-ol (XI) 

X (0.72 g, 2.41 mmol) was dissolved in THF and Pd/C (catalytic amount) was 

added. The mixture was sealed in a Parr reaction bottle and mounted in a 

shaker hydrogenation apparatus. The air inside the bottle was removed by 

flushing with hydrogen and a 4 bar of hydrogen pressure was applied. The 

bottle was shaken for 12 hours at room temperature. The Pd/C was filtered off 

and the solvent removed in vacuo yielded the desired product XI as white solid 

(0.68 g, 2.27 mmol, 94%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.30 (d, J=8 Hz, 1H, ArH), 8.15-7.99 (m, 

7H, PyH), 7.88 (d, J=8 Hz, 1H, PyH), 3.66 (t, J=6 Hz, 2H, CH2OH), 3.36 (t, J=6 

Hz, 2H, CH2Py), 1.90 (m, 4H, CH2CH2OH); 13C NMR (CDCl3, 100 MHz): δ 

(ppm) = 137.1, 131.4, 130.9, 129.7, 128.6, 127.5, 127.2, 127.1, 126.5, 125.7, 125, 

124.8, 124.7, 124.6, 123.4, 62.9, 33.5, 32.7, 31.8, 29.5, 25.7; ESI-MS: m/z 303.5 

[M+H]+, 325.2 [M+Na]+, 341.2 [M+K]+. 

 

6-(pyren-1-yl)hexyl 4-methylbenzenesulfonate (XII) 

The synthesis was carried out as compound II and used in the next step 

without characterization and further purification.  

 

1-(6-iodohexyl)pyrene (XIII) 

The synthesis and purification were carried out as compound III (0.93 g, 2.25 

mmol, quantitative). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.30 (d, J=12 Hz, 1H, PyH), 8.21-8.19 (m, 

4H, PyH), 8.06-7.97 (m, 3H, PyH), 7.89 (d, J=8 Hz, 1H, PyH), 3.67 (t, J=8 Hz, 2H, 

CH2Py), 3.37 (t, J=8 Hz, 2H, CH2I), 1.96-1.84 (m, 2H, CH2CH2I), 1.67-1.39 (m, 6H, 

PyCH2CH2CH2CH2CH2CH2I); ESI-MS: mass peak was not found. 

 

Diethyl (6-(pyren-1-yl)hexyl)phosphonate (XIV) 

The synthesis and purification were carried out as compound IV (0.8 g, 1.91 

mmol, 85%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.26 (d, J=8 Hz, 1H, PyH), 8.18-7.93 (m, 

7H, PyH), 7.85 (d, J=8 Hz, 1H, PyH), 4.15-3.99 (m, 4H, CH2O), 3.33 (t, J=6 Hz, 

2H, CH2CH2Py), 1.92-1.79 (m, 2H, CH2CH2P(O)), 1.79-1.53 (m, 4H, 

PyCH2CH2CH2CH2CH2CH2P(O)), 1.53-1.42 (m, 4H, 

PyCH2CH2CH2CH2CH2CH2P(O)), 1.36-1.24 (m, 6H, CH3CH2O); 31P{1H}NMR 

(CDCl3, 161.9 MHz): δ (ppm) = 27.9 (s, P=O); ESI-MS: m/z 423.3 [M+H]+, 445.3 

[M+Na]+, 461.2 [M+K]+. 
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(6-(pyren-1-yl)hexyl)phosphonic acid (XV) 

The synthesis and purification were carried out as compound V (0.67 g, 1.83 

mmol, 96%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.35 (d, J=8 Hz 1H, PyH), 8.30-8.00 (m, 

7H, PyH), 7.95 (d, J=8 Hz, 1H, PyH), 3.33 (t, J=6 Hz, 2H, CH2CH2Py), 1.83-1.69 

(m, 2H, CH2CH2P(O)), 1.60-1.33 (m, 8H, PyCH2CH2CH2CH2CH2CH2P(O)); 
31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 26.9 (s, P=O); ESI-MS: m/z 389.4 

[M+Na]+, 405.2 [M+K]+. 

 

(6-(pyren-1-yl)hexyl)phosphonic dichloride (XVI) 

The synthesis and purification were carried out as compound VI and used 

without further purification. 
31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 51 (s, P=O). 

 

Tiiii [C3H7, H, (2 Ph, 2 hexyl-pyrene)] (XVII) 

The synthesis and purification were carried out as compound VII (0.045 g, 0.028 

mmol, 12%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.17 (d, J=12 Hz, 2H, PyH), 8.08-7.81 (m, 

18H, PyH, P(O)ArHo), 7.76 (d, J=8 Hz, 2H, PyH), 7.59-7.51 (m, 2H, P(O)ArHp), 

7.49-7.37 (m, 4H, P(O)ArHm), 7.18 (s, 4H, ArH), 6.74 (s, 4H, ArH), 4.67 (m, 2H, 

ArCH), 4.50 (t, J=8 Hz, 2H, ArCH), 3.30-3.18 (m, 4H, CH2Py), 2.11-1.95 (m, 4H, 

CH2P(O)), 2.53-2.18 (m, 8H, ArCHCH2CH2CH3), 1.86-1.69 (m, 8H, 

PyCH2CH2CH2CH2CH2CH2P(O)), 1.51-1.40 (m, 8H, 

PyCH2CH2CH2CH2CH2CH2P(O)), 1.40-1.22 (m, 8H, ArCHCH2CH2CH3), 1.06-

0.86 (m, ArCHCH2CH2CH3); 31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 24.4 

(s, P=O(hexyl-Py)), 9.3 (s, P=O(Ph)); ESI-MS: m/z 803.5 [M+Na]2+, 1584 

[M+Na]+, 1600 [M+K]+; MALDI TOF-TOF: calcd. for C96H92O12P4 1560.5539 Da, 

found: 1560.5441 Da. 

 

Diphosphonate resorcinarene decene feet (XIX) 

Tetraphosphonate cavitand XVIII (0.7 g, 0.44 mmol) was dissolved in dry DMF 

then cathecol (0.1 g, 0.88 mmol) and K2CO3 (0.3 g, 2.21 mmol) were added. The 

mixture was stirred at 80 °C for 5 hours and quenched by addition of an acidic 

solution (HCl 10%). The resulting solid was recovered by suction filtration. 

Purification by silica gel column chromatography (dichloromethane:ethanol 

95:5) afforded the pure product XIX as white solid (0.44 g, 0.34 mmol, 78%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 9.49 (s, 4H, ArOH), 8.15-7.99 (dd, 4H, 

ArHo), 7.71-7.62 (m, 2H, ArHp), 7.61-7.50 (m, 4H, ArHm), 7.05 (s, 4H, ArH), 6.64 
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(s, 4H, ArH), 5.90-5.69 (m, 4H, CH=CH2), 5.04-4.85 (m, 8H, CH=CH2), 4.72 (t, 

J=8 Hz, 2H, ArCH), 4.28 (t, J=8 Hz, 2H, ArCH), 2.40-2.23 (m, 4H, 

CH2(CH2)7CH=CH2), 2.09-1.92 (m, 12H, CH2(CH2)7CH=CH2, CH2CH=CH2), 

1.65-1.05 (m, 56H, CH2(CH2)7CH=CH2); 31P{1H}NMR (CDCl3, 161.9 MHz): δ 

(ppm) = 6.32 (s, P=O); ESI-MS: m/z 1286 [M+H]+, 1308 [M+Na]+. 

 

Tiiii [C10H19, H, (2 Ph, 2 hexyl-pyrene)] (XX) 

XIX (0.21 g, 0.16 mmol) was dissolved in dry toluene and N-methylpirrolidine 

(0.16 mL, 1.5 mmol). Then XVI (0.15 g, 0.41 mmol) was dissolved in a mixture 

1:1 of anhydrous toluene/chloroform and added dropwise to the resorcinarene 

solution. The dark green mixture was stirred at 80 °C for 48 hours. The reaction 

was allowed to cool at room temperature, the residual dark solid was filtered 

off and the solvent was removed under vacuo. The crude was purified by silica 

gel column chromatography (dichloromethane:ethanol 93:7) to give the pure 

product XX as yellowish solid (0.03 g, 0.015 mmol, 9%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.28 (d, J=12 Hz, 2H, PyH), 8.21-7.93 (m, 

18H, PyH, P(O)ArHo), 7.87 (d, J=8 Hz, 2H, PyH), 7.70-7.62 (m, 2H, P(O)ArHp), 

7.60-7.49 (m, 4H, P(O)ArHm), 7.44 (s, 4H, ArH), 6.87 (s, 4H, ArH), 5.90-5.75 (m, 

4H, CH=CH2), 5.07-4.88 (m, 8H, CH=CH2), 4.80-4.68 (m, 2H, ArCH), 4.64-4.50 

(m, 2H, ArCH), 3.41-3.27 (m, 4H, CH2Py), 2.51-2.27 (m, 8H, 

CH2(CH2)7CH=CH2), 2.22-1.94 (m, 20H, CH2P(O), 

PyCH2CH2CH2CH2CH2CH2P(O)), CH2CH=CH2), 1.95-1.76 (m, 8H, 

PyCH2CH2CH2CH2CH2CH2P(O), 1,64-1.09 (m, 56H, CH2(CH2)7CH=CH2); 
31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 24.8 (s, P=O(hexyl-Py)), 9.8 (s, 

P=O(Ph)); MALDI TOF-TOF: calcd. for C124H140O12P4Na 1967,9193 Da, found: 

1967,9193 Da. 

 

Fluorescence measurements 

1) Preparation of the suspension: 0.5 mL of a 0.03 mM acetonitrile solution of 

cavitand were added to 25 mL of an aqueous suspension of NPs (6 x 10-7 M) 

under vigorous stirring. The pH is moderately acidic (HCl 10-4M) to ensure the 

protonated state of guest analytes. The suspension was the stirred for few 

minutes and sonicated, and found to be stable for at least two days under 

standard conditions. The signal obtained, particularly in terms of monomer to 

excimer ratio, was quite reproducible (~10% variations) among different 

preparations. 
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2) Photophysical measurements: absorption spectra and fluorescence spectra 

were taken with a Perkin Elmer Lambda 45 spectrophotometer and a Perkin 

Elmer Lambda 60 spectrofluorimeter respectively. Lifetimes were measured 

with an Edinburgh FLS920 equipped with a photomultiplier Hamamatsu R928P 

and connected to a PCS900 PC card used for the TCSPC. Absorption spectra 

allowed to quantify the number of cavitands per NP, assuming the molar 

extinction coefficient of pyrene does not change (ε= 54000 at λ=330 nm). This 

assumption is supported by the structured shape of the absorption spectrum, 

analogous to what is observed for diluted pyrene solutions. 
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5.1  State of the Art 

Vesicles are enclosed structures dispersed into and filled with a liquid solvent, 

typically water.1 These hollow aggregates are usually composed of a flexible 

bilayer membrane of natural or synthetic amphiphiles. Vesicles assume in 

general a spherical shape but, due to their flexibility, they can be unilamellar, 

multilamellar or oligovescicular.2 

During the years these objects have gained the interest of scientists as they 

represent the simplest model of a living cell with a membrane wall. 

Furthermore, they can have appealing and promising applications in 

drug/gene delivery systems,3 nanoreactors4 and in the field of delivery vehicles 

since these materials can easily trap hydrophilic molecules in their cavity full of 

water, such as therapeutics. Moreover the bilayer membrane (called vesicle 

wall) can sequester hydrophobic guests like dye molecules in order to assist the 

imaging of these structures. In addition, the hydrophilic corona could be 

modified with particular functionalities to conjugate biologically active 

macromolecules, thereby altering the vesicle’s interaction with the surrounding 

environment. 

Conventionally, vesicles are constructed by self-assembly of amphiphiles, 

molecules that contains a hydrophobic tail and a hydrophilic head connected by 

covalent bonds. When amphiphiles are dissolved in water, the hydrophobic 

parts tend to aggregate while the hydrophilic units favor to stay in water, 

generating aggregates with various nanostructures, such as vesicles. 

In contrast to common amphiphiles, supramphiphiles refers to molecules that 

are linked by non covalent dynamic interactions.5 It should be pointed out that 

there are two order of self-assembly in this approach: the first one is the 

formation of the supramphiphiles, followed by the second order assembly in 

which these aggregates function as building blocks for constructing highly 

order aggregates. Both types of self-assembly should be careful studied in order 

to develop functional materials that present appealing properties.6 Fabrication 

of vesicles using supramolecular approach presents several advantages, for 

example the time consuming covalent synthesis and the purification processes 

can be avoided to some extent and the amphiphilicity of the building block can 

be easily tuned. 

Until now numerous kinds of weak interactions have been used to build 

supramolecular amphiphiles including hydrogen bondings, charge transfer and 
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π-π interactions.7 However there are only few reports on the formation of 

supramolecular vesicles from amphiphiles based on host-guest interactions.8  

With this strategy a fine tuning of the functionalities and of the stimuli-

responsiveness behavior of the soft materials would be possible, resulting from 

the facile introduction of different chemical moieties on host or guest molecules. 

Thanks to their ability to form water soluble architectures, receptors like 

cucurbiturils, cyclodextrins and sulfonatocalixarenes are the most used host 

molecules for the formation of vesicles. In addition, such macrocycles have been 

shown to be very biocompatible,9 which is essential for application in the fields 

of biotechnology and medicine.10 

Cucurbit[n]urils are a family of macrocyclic receptors that presents a 

hydrophobic cavity similar to cyclodextrins which can be used to incorporate 

guest molecules with high binding affinities in aqueous media.11 

Kim et al.12 firstly explored cucurbit[8]uril (from now on referred to as CB[8]) as 

building block for supramolecular amphiphiles by harnessing its capability to 

act as ”supramolecular handcuff” to join two molecules together. As shown in 

Figure 5.1 in the presence of CB[8] the electron poor viologen (substituted with 

different alkyl chains) and the electron rich 2,6-dihydroxynaphtalene can form a 

charge transfer complex inside the cavity of the host. This supramolecular 

amphiphile, composed by a large polar head group and a hydrophobic tail, 

displays new aggregation behavior in water because it assemblies in vesicle-like 

aggregates, as observed by dynamic light scattering (DLS), transmission 

electron microscopy (TEM) and scanning electron microscopy (SEM). Since the 

ternary complex is stabilized by an electron donor-acceptor pair, they 

demonstrated that the vesicle could be collapsed by using redox chemistry, 

upon addition of cerium (IV) ammonium nitrate. 
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Figure 5.1  Supramolecular amphiphile assembly based on charge-transfer interaction. 

A natural step forward in the fabrication of smart vesicles would be embedding 

these materials with multiple functional sites with the purpose of enable 

biocompatible and responsive properties. As above mentioned, these tasks 

could be solved using host-guest chemistry. 

The system of Kim et al. has been boosted by Scherman et al.,13 reporting the 

preparation of supramolecular peptide amphiphiles by host-guest complexation 

of a pyrene-functionalized peptide and a viologen lipid with CB[8] (Figure 5.2). 

The formation of the supramolecular ternary complex was observed by 

fluorescence spectroscopy since the pyrene experienced a fluorescence 

quenching upon the inclusion in the cavity of the CB[8]. The assembly of 

supramolecular vesicles from the non-covalent amphiphiles was also 

demonstrated by several techniques like DLS and TEM. Being covered by three 

lysine molecules, a well known cell penetrating peptides (CPP),14 the vesicles 

were easily taken up by HeLa cells and responded to multiple external trigger 

that modulated the citotoxicity of the supramolecular system. 
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Figure 5.2  First and second order self-assembly of supramolecular peptide amphiphile 

vesicle. 

5.2  Introduction 

The results reported by Scherman’s group have opened a new avenue toward 

the formation of multifunctional vesicles through hierarchical self-assembly in 

aqueous media. The derivatization of the two guests of the ternary complex has 

allowed to decorate the surface of the supramolecular aggregates with new 

specific functionalities. 

Herein we describe the self-assembly of differently charged supramolecular 

vesicles driven by the formation of a ternary complex that acted as a 

supramolecular amphiphile. The building blocks used in this work were: CB[8], 

an hydrophilic block and an hydrophobic moiety. The cucurbituril receptor 

(Figure 5.3b) guided the organization of the other two components into an 

amphiphilic ternary complex (see Figure 5.2). The hydrophobic block is 

composed by a n-heptadecane alkyl chain attached to the first guest of the 

CB[8], the methyl-viologen group (Figure 5.3a). The hydrophilic unit is formed 

by two different peptide sequences, both of them containing three molecules of 
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glycine linked to three molecules of lysine (K) and three molecules of glutamic 

acid (E), these two sequences are linked to a pyrene group that acted as second 

guest in the ternary complex (Figure 5.3c). 

 

Figure 5.3  Building blocks of the supramolecular amphiphiles: a) MV-lipid; b) CB[8]; c) 

Pyrene-imidazole-peptides. 

The three molecules of K and E, being positively and negatively charged at pH 

7 in water, impart different charges on the inner core and on the surface of the 

vesicles. The role of the charges in the self-assembly process was investigated in 

an effort to understand whether they can affect either the morphology or the 

size of the supramolecular vesicles. The hierarchical self-assembly was followed 

by different complementary techniques namely: fluorescence spectroscopy, 

DLS, TEM and environmental scanning electron microscopy (ESEM). 

5.3  Results and Discussion 

5.3.1  Synthesis of the Hydrophilic and Hydrophobic Blocks 

The hydrophilic blocks, as previously explained, are composed by the pyrene 

imidazolium group connected to a peptide sequence through an amide bond.  

 

Figure 5.4  a) Py-Im-GGGKKK; b) Py-Im-GGGEEE. 

The sequences of amino acids were designed in order to place a spacer between 

the guest of the CB[8] and the fraction of the peptide that contains the 

information to be introduced on the surface of the vesicles (Figure 5.4). 
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These two molecules were synthesized connecting covalently two different 

building blocks: the carboxylic acid containing the pyrene group and the 

hexapeptide sequences. 

The two peptides were easily prepared by Solid Phase Peptide Synthesis (SPPS) 

using standard Fmoc protocols and they were both characterized by RP-HPLC 

and ESI-MS to ensure their purity (see Experimental Section). 

The other part of the target molecule, the 1-(carboxymethyl)-3-(pyren-1-

ylmethyl)-1H-imidazol-3-ium bromide (V), was synthesized in five steps and 

with a 49% overall yield (Scheme 5.1). The imidazole group was inserted on the 

1-(bromomethyl)pyrene (II) through a nucleophilic substitution. Then the 

imidazole was functionalized with a methyl acetate group which was 

hydrolyzed straightforwardly in the next step with sodium hydroxide. The salt 

was treated with hydrochloridric acid recovering the carboxylic acid (V) 

quantitatively. 

 

Scheme 5.1  Synthesis of 1-(carboxymethyl)-3-(pyren-1-ylmethyl)-1H-imidazol-3-

ium bromide (V): a) PBr3, Toluene, r.t., 3 h, 90%; b) Imidazole/K2CO3, THF, reflux, 24 

h, 60%; c) Methyl-bromo-acetate, toluene, reflux, 12 h; 92%; d) 1) NaOH 10%, reflux, 2 

h, 2) HCl 37%, quantitative (over two steps). 

Subsequently, the two target molecules Py-Im-GGGKKK and Py-Im-GGGEEE 

were prepared using solid phase synthesis. As illustrated in Scheme 5.2, while 

the peptide was still kept on the resin, the Fmoc group was removed with a 

solution of piperidine in DMF (20% v/v). Then the amine group was reacted 

twice for 24 h with the carboxylic acid V using the HATU/DIPEA catalytic 

system, monitoring the consumption of the amine group with the Kaiser test.15 

Afterwards, the target molecule was cleaved from the resin using a proper 
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cleavage cocktail and the crude peptide was purified by RP-HPLC (the same 

procedure was used to synthesize Py-Im-GGGEEE, see Experimental Section). 

 

Scheme 5.2  Synthesis of Py-Im-GGGKKK. 

The hydrophobic part of the ternary complex was easily synthesized in two 

steps in a 31% overall yield (Scheme 5.3). The starting material 4,4’-bipyridine 

was methylated in the first step with methyl iodide. Afterwards the mono-

cationic 4,4’-bipyridinium was treated with octadecyl bromide affording the 

methyl-octadecyl viologen di-cationic first guest VIII with a 32% overall yield. 

 

Scheme 5.3  Synthesis of 1-methyl-1'-octadecyl-[4,4'-bipyridine]-1,1'-diium (VIII): 

e) MeI, DCM, reflux, 2 h, 45%; f) 1-bromo-octadecane, ACN, reflux, 48 h, 70%. 

5.3.2  Fluorescence Spectroscopy Measurements 

The pyrene part of the hydrophilic block represents not only a guest for the 

CB[8] receptor but also a fluorescent probe for the formation proof of the 

ternary complex. In fact the emission spectra show (Figures 5.5 and 5.6) a 

fluorescence quenching of the pyrene group as a result of the formation of an 

electron donor-acceptor complex between pyrene and viologen moieties, inside 

the cavity of CB[8] (red line). As a control experiment CB[7] was used instead of 
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CB[8]. Its smaller cavity does not allow the formation of the ternary complex as 

witnessed by the slight change of the fluorescence emission of the pyrene 

moiety (blue line). 

 

Figure 5.5  Emission spectra of: black line) Py-Im-GGGKKK (25 μM, H2O); red line) 

ternary complex; blue line) Py-Im-GGGKKK, MV with CB[7]. 

 

Figure 5.6  Emission spectra of: black line) Py-Im-GGGEEE (25 μM, H2O); red line) 

ternary complex; blue line) Py-Im-GGGEEE, MV with CB[7]. 

As illustrated in Figure 5.5 and 5.6, we observed for both the peptide sequences 

a quenching of the pyrene emission, proving the formation of a ternary complex 

inside the CB[8] cavity. 
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5.3.3  Light Scattering Measurements 

In order to study the size of the vesicles in water we performed a series of DLS 

experiments. The spectra in Figure 5.7 shows that both vesicles present a 

monodisperse system and they revealed an average size of (180 ± 80) nm for the 

positively charged vesicles (Figure 5.7a) and (492 ± 120) nm for the negatively 

charged vesicles (Figure 5.7b). These data confirm our hypothesis that the 

different charges located on the core and on surface of the vesicles have an 

influence on the size of the supramolecular aggregates. 

 
Figure 5.7  DLS measurements (three separate measurements were taken for the same 

sample), 25 μM, H2O, 25 °C): a) Py-Im-GGGKKK +MV + CB[8]; b) Py-Im-GGGEEE 

+MV + CB[8]. 

To validate our assumption that the vesicles are charged on the surface, a series 

of zeta-potential (ζ) measurements were performed. The zeta-potential analysis 

is a technique for determining the surface charge of nanoparticles in solution. 

Nanoparticles that have a surface charge attract a thin layer of ions of opposite 

charge to the nanoparticle surface. This double layer of ions travels with the 

nanoparticles as it diffuses throughout the solution. The electric potential at the 

boundary of the double layer is known as the zeta-potential.16 

a) b) 



Supramolecular Vesicles Based on CB[8] 

107 

 

 

Figure 5.8  Zeta-potential measurements (three separate measurements were taken for 

the same sample), 25 μM, H2O, 25 °C): a) Py-Im-GGGKKK +MV + CB[8]; b) Py-Im-

GGGEEE +MV + CB[8]. 

The spectra in Figure 5.8a and 5.8b evidence the formation of positively and 

negatively charged species, in fact values of (39 ± 6) mV and (-10 ± 4) mV were 

found according to the polarity of the hydrophobic block used in the ternary 

complex. From the two potentials data it appears that the charge density on the 

cationic vesicles is higher with respect to the anionic one.  

5.3.4  Transmission Electron Microscopy Measurements 

To demonstrate that the hierarchical self-assembly process led to the formation 

of supramolecular vesicles a series of electron microscopy experiments were 

carried out. 

The TEM images in Figure 5.9 and 5.10 highlight the formation of vesicles with 

a size that is in agreement with the average diameter obtained from DLS. To 

what concern the positively charged vesicles aggregates of about 100 nm was 

observed, while for the negatively charged vesicles larger aggregates were 

observed ranging from 200 to 400 nm. 

a) b) 
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Figure 5.9  TEM image of vesicle formed by Py-Im-GGGKKK, MV, CB[8] obtained on 

copper/carbon grid, staining effectuated with uranyl acetate 2% (w/w) in water. 

 

Figure 5.10  TEM image of vesicle formed by Py-Im-GGGEEE, MV, CB[8]  obtained on 

copper/carbon grid, staining effectuated with uranyl acetate 2% (w/w) in water. 

5.3.5  Environmental Scanning Electron Microscopy (ESEM) 

Measurements 

To further help elucidating the morphology of the supramolecular aggregates 

ESEM images were collected. This technique allows the imaging of wet 

specimens in their natural state as a results of the gaseous environment in the 

specimen chamber, hence, in contrast of SEM, high vacuum, electrical 

conductivity and sample preparation are unnecessary. The most commonly 

used gas in the specimen chamber is water vapor, thus ESEM has the ability to 

obtain high quality images of hydrated samples and it is particular attractive for 

supramolecular aqueous soft materials. 

Both ESEM images reported in Figure 5.11 and 5.12 show spherical aggregates 

providing more evidence of the formation of the vesicle structure. From the first 

image (Figure 5.11, negatively charged vesicles) we observed spheres, whose 

size is in agreement with the data found with DLS and TEM. Moreover larger 
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vesicles of about 1-2 μm were detected. This behavior could be explained by the 

association of the vesicles with each other, which is similar to the process of cell 

fusion in biology. In the second ESEM image (Figure 5.12 positively charged 

vesicles) smaller vesicles ranging from 100 to 300 nm were observed that are in 

agreement with DLS and TEM results.  

 

Figure 5.11  ESEM image of vesicles (25 μM) formed by Py-Im-GGGEEE, MV, CB[8]. 

 

Figure 5.12  ESEM image of vesicles (25 μM) formed by Py-Im-GGGKKK, MV, CB[8]. 
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5.3.6  Catanionic Vesicles Self-Assembly 

From the previous results we inferred that the self-assembly process between 

the three building blocks generated supramolecular vesicles and the different 

charges located on the hydrophilic block can alter the size of these aggregates. 

Having synthesized two hydrophobic blocks positively and negatively charged, 

we decided to study whether mixing together these two blocks with CB[8] and 

MV, we could assemble a particular type of aggregates called catanionic 

vesicles.17 These types of vesicles result from the mixture of cationic and anionic 

surfactants and were inspired by mimicking phospholipids, amphiphilic 

molecules that are the major components of the membrane cell as they can form 

lipid bilayers and vesicles (Figure 5.13). 

 

Figure 5.13  Catanionic vesicles self-assembly: a) phosholipid based vesicles; b) 

cucurbit[8]uril based vesicles 
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In this perspective, we investigated whether mixing different ratio of 

hydrophilic blocks we can control the charge of the vesicles and, as 

consequence, their size. In particular, we chosen three different Py-Im-

GGGKKK/Py-Im-GGGEEE molar ratios and specifically: 1/1, 75/25, 25/75. 

Figure 5.14 shows the DLS measurement of the various aggregates. 

Interestingly, by changing the ratio of the hydrophilic molecules we obtained 

supramolecular aggregates with different sizes. 

 

 

Figure 5.14  DLS measurements (three separate measurements were taken for the same 

sample), 25 μM, water, 25 °C) of PyEEE+PyKKK (X,Y), MV, CB[8]: a) X= 1, Y= 1 (181 

± 67) nm; b) X= 75, Y= 25 (248 ± 73) nm; c) X= 25, Y= 75 (280 ± 89) nm. 

a) b) 

c) 
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Figure 5.15  Average diameters from DLS measurements PyEEE+PyKKK (X,Y), MV, 

CB[8]. 

The vesicles containing a 1/1 ratio (Figure 5.14a) of the hydrophilic block 

present the smaller size (181 ± 67) nm, behavior that could be explained 

invoking the strong electrostatic interactions between the anionic and cationic 

hydrophilic blocks. These strong interactions could reduce the head-group area 

promoting a dense packing of surfactant molecules in the aggregates. For the 

75/25 and 25/75 ratio the diameters of the aggregates are (248 ± 73) nm and 

(280 ± 89) nm respectively (Figure 5.14b,c). 

In addition to DLS measurements we reported the zeta-potential experiments of 

the three supramolecular aggregates. The results depicted in Figure 5.16 are in 

agreement with the polarity of the aggregates. In detail, the vesicle with 1:1 

molar ratio of hydrophilic blocks has no overall charge, while a small positive 

and negative charge was observed for the other two vesicles. 
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Figure 5.16  Zeta-potential measurements (three separate measurements were taken for 

the same sample), 25 μM, water, 25 °C)  of PyEEE+PyKKK (X,Y), MV, CB[8] (25 μM, 

water, 25 °C): a) X= 1, Y= 1 (3 ± 4.8) mV; b) X= 75, Y= 25 (-1.8 ± 3.5) mV; c) X= 25, 

Y= 75 (7.9 ± 4.5) mV. 

5.4  Conclusions 

In summary we have reported the self-assembly of supramolecular vesicles 

positively and negatively charged driven by the formation of a ternary complex 

based on CB[8]. The two types of vesicles present the same spherical 

morphology but different size as demonstrated with several technique like DLS, 

TEM and ESEM. These data underscore the influence of the types of charges on 

the size of the vesicles. In addition the two peptides have been used to assemble 

catanionic aggregates. Although microscopy experiment should be performed 

to proof the presence of spherical vesicles, DLS data confirmed the formation of 

aggregates with different sizes. 

  

a) b) 

c) 
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5.6  Experimental Section 

Cucurbit[8]uril and cucurbit[7]uril (CB[8] and CB[7]) were synthesized 

according to a published procedure.18 The following compounds were bought 

from AGTC Bioproducts at peptide synthesis purity grade: (L)-Fmoc-Gly-OH, 

(L)-Fmoc-Lys-(Pbf)-OH, (L)-Fmoc-Glu(OtBu)-OH and O-(benzotriazol- 1-yl)-

N,N,N’,N’-tetramethyluronium hexafluorophosphate (HBTU), 

dichloromethane (DCM), dimethyl formamide (DMF). Water was obtained 

from a Synergy UV Ultrapure water system (18.2 MΩ cm at 25 °C). 

 

1-(bromomethyl)pyrene (II) 

A suspension of 1-pyrenemethanol I (4 g, 17.2 mmol) in toluene was cooled to 0 

°C followed by addition of phosphorous tribromide (2 mL, 22.3 mmol). The 

mixture was stirred at 0 °C for 1 hour and then warmed to room temperature. 

Saturated Na2CO3 solution was added slowly and the organic phase was 

washed with water, brine and dried over Mg2SO4. The filtrate was concentrated 

to minimum volume and the yellow needle like solid II was collected and dried 

by suction filtration (4.5 g, 15.3 mmol, 90%). 
1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.36 (d, 1H, J=8, ArH), 8.25-8.18 (m, 3H, 

ArH), 8.11-7.97 (m, 5H, ArH), 5.24 (s, 2H, BrCH2); ESI-MS: mass peak was not 

found. 

 

1-(pyren-1-ylmethyl)-1H-imidazole (III) 

Imidazole (1.15 g, 17 mmol) and K2CO3 (1.7 g, 12.7 mmol) were mixed in 100 

mL of THF with stirring for 10 minutes. Then II (2.5 g, 8.5 mmol) was added 

into the reaction mixture and heated to reflux for 24 hours. The insoluble was 

filtered off and the solvent removed under vacuum. The residual was dissolved 

in DCM and washed with water and treated with HCl 2N. The precipitate was 

filtered and washed with NaOH/NaHCO3 solution to give pure III as white 

solid (1.4 g, 4.96 mmol, 60%). 
1H NMR (DMSO-d6, 400 MHz): δ (ppm) = 8.43 (d, 1H, J=8, ArH), 8.32-8.20 (m, 

4H, ArH), 8.12 (q, J=8 Hz, 2H, ArH), 8.04 (t, J=8 Hz, 1H, ArH), 7.88 (s, 1H, 

CHImid), 7.81 (d, J=8 Hz, 1H, ArH), 7.19 (s, 1H, CHImid), 6.88 (s, 1H, CHImid), 5.94 

(s, 2H, CH2); ESI-MS: m/z 283 [M+H]+. 
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1-(2-methoxy-2-oxoethyl)-3-(pyren-1-ylmethyl)-1H-imidazol-3-ium bromide 

(IV) 

III (1.4 g, 5 mmol) was suspended in 180 mL of toluene, followed by addition of 

methyl bromo acetate (1.5 g, 10 mmol) slowly. The reaction mixture was 

refluxed overnight. After cooling to room temperature the precipitate was 

filtered and washed with toluene. The compound IV was obtained as white 

solid (2.09 g, 4.6 mmol, 92%). 
1H NMR (CD3CN, 400 MHz): δ (ppm) = 8.82 (s, 1H, CHImid), 8.28-7.98 (m, 9H, 

ArH), 7.46 (s, 1H, CHImid), 7.39 (s, 1H, CHImid), 6.08 (s, 2H, CH2), 4.93 (s, 2H, 

CH2), 3.63 (s, 3H, OCH3); ESI-MS: m/z 355 [M-Br]+. 

 

1-(carboxymethyl)-3-(pyren-1-ylmethyl)-1H-imidazol-3-ium bromide (V) 

IV (2 g, 4.6 mmol) was suspended in 150 mL of NaOH 1M, the solution was 

refluxed for 2 hours. The reaction mixture was allowed to cool at room 

temperature and HCl 37% was added slowly. The precipitate was filtered and 

washed with water to give V as white solid (1.9 g, 4.6 mmol, quantitative yield). 
1H NMR (DMSO-d6, 400 MHz): δ (ppm) = 9.15 (s, 1H, CHImid), 8.42 (d, J=8 Hz, 

1H, ArH), 8.36-8.23 (m, 4H, ArH), 8.18 (q, J=8 Hz, 2H, ArH), 8.10-8.00 (m, 2H, 

ArH), 7.78 (s, 1H, CHImid), 7.65 (s, 1H, CHImid), 6.21 (s, 2H, CH2), 4.80 (s, 2H, 

CH2); ESI-MS: mass peak was not found. 

 

1-methyl-[4,4'-bipyridin]-1-ium iodide (VII) 

A solution of 4,4’-bipyridine (3 g, 19.2 mmol) and iodomethane (1.55 g, 25 

mmol) in DCM was stirred at reflux for 2 hours. After cooling to room 

temperature the precipitate was filtered and washed with ethyl acetate. The 

crude product was crystallized from methanol affording VII as yellow solid (2.6 

g, 8.7 mmol, 45%). 
1H NMR (D2O, 400 MHz): δ (ppm) = 8.84 (d, J=8 Hz, 2H, ArH), 8.71 (d, J=4 Hz, 

2H, ArH), 8.32 (d, J=8 Hz, 2H, ArH), 7.85 (d, J=4 Hz, 2H, ArH), 4.38 (s, 3H, 

CH3); ESI-MS: mass peak was not found. 

 

1-methyl-1'-octadecyl-[4,4'-bipyridine]-1,1'-diium (VIII) 

A solution of methyl bipyridyl (1 g, 3.35 mmol) and 1-bromo-octadecane (5 g, 15 

mmol) in ACN was refluxed for 48 hours. The precipitate was filtered and 

washed with DCM. The crude product was crystallized from methanol 

affording VIII as orange solid (1.47 g, 2.34 mmol, 70%). 
1H NMR (DMSO-d6, 400 MHz): δ (ppm) = 9.39 (d, J=8 Hz, 2H, ArH), 9.29 (d, J=8 

Hz, 2H, ArH), 8.77 (dd, 4H, ArH), 8.18 (q, J=8 Hz, 2H, ArH), 4.69 (t, J=8 Hz, 2H, 
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ArH), 4.45 (s, 3H, CH3), 2.03-1.90 (m, 2H, CH2), 1.27 (s, 28H, (CH2)14), 0.85 (t, J=8 

Hz, 3H, CH3); ESI-MS: mass peak was not found 

 

Peptide synthesis 

Solid phase peptide synthesis was performed on a Liberty Microwave Peptide 

Synthesizer (CEM Corporation) using Fmoc-strategy and Nova Rink amide 

resin 0.59 mM/g as solid support for 0.1 mmol scale. The Fmoc group was 

removed in each step with 20% (v/v) piperidine in DMF for 3 min using a 

microwave power of 45W. The maximum temperature was set to 75°C. The 

coupling step was performed with 5 equiv. of Fmoc protected amino acid in 

DMF (0.2 M), 4.5 equiv. of HBTU in DMF (0.45 M) and 10 equiv. of DIPEA in 

NMP (2 M). All couplings were performed for 10 min at 25 W at a maximum 

temperature of 75°C. Following completion of the sequence a small amount of 

the peptide was released from the resin for checking its purity by treatment 

with TFA/thioanisole/phenol/water/1,2-ethanedithiol (EDT) (82.5/5/5/5/2.5, 

v/v/v/v/v) at room temperature for 3 h. The crude peptide was precipitated in 

cold Et2O and centrifuged for 4 times at 4 °C, using 4000 rpm over 5 min before 

being lyophilized and stored as a white powder. Peptide purity was verified by 

HPLC analysis on a Varian 940-LC and ESI-MS. The analytical column used 

was a reversed phase Agilent Eclipse plus C18 5 μm 4.6x150 mm column. The 

gradient applied was from A:B 95:5 to 100% B in 30 min, where A was water 

(0.1% TFA) and B was acetonitrile (0.1% TFA). The UV-Vis trace was followed 

at 220 nm. HPLC eluition time: Fmoc-GGGKKK 13.2 min, Fmoc-GGGEEE 14.5 

min (Figure 5.17 and 5.18); ESI-MS: Fmoc-GGGKKK m/z 398.3 [M+H]2+, 795.5 

[M+H]+, 818.5 [M+Na]+; Fmoc-GGGEEE m/z 797.5 [M+H]+, 820.5 [M+Na]+. 
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Figure 5.17  HPLC trace Fmoc-GGGKKK. 

 

 

Figure 5.18  HPLC trace Fmoc-GGGEEE. 

Synthesis of Py-Im-GGGKKK and Py-Im-GGGEEE 

The Fmoc group of the peptides was removed with 20% (v/v) piperidine in 

DMF for 2 times for 3 min. The peptides were coupled twice with V using 

HATU/DIPEA catalyst system for 24 hours. Finally, the peptides were cleaved 

from the resin using TFA/phenol/water/thioanisole/EDT (82.5/5/5/5/2.5, 

v/v/v/v/v) at room temperature for 3 hours. The crude peptides were 

precipitated in cold Et2O and centrifuged for 4 up to 6 times at 4 °C, using 4000 

rpm over 5 min before being lyophilized. Afterwards they were purified on a 
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Varian 940-LC using a reversed phase semipreparative Zorbax C18 5 μm 

9.4x250 mm column. The gradient applied was from A:B 95:5 to 100% B in 30 

min, where A was water (0.1% TFA) and B was acetonitrile (0.1% TFA). HPLC 

eluition time: Fmoc-GGGKKK 13.2 min, Fmoc-GGGEEE 14.5 min (Figure 5.19 

and 5.20); MALDI: Py-Im-GGGKKK calcd. for C46H63N12O7 895,4937 Da found 

895,3568 Da; Py-Im-GGGEEE calcd. for C43H48N9O13 898,3366 Da found 898,0761 

Da. 

 

Figure 5.19  HPLC trace Py-Im-GGGKKK. 

 

Figure 5.20  HPLC trace Py-Im-GGGEEEE. 

Light scattering measurements 

Electrophoretic mobilities and size distribution were determined at 25 °C with a 

Zetasizer Nano ZS (Malvern Instruments) operating with a 4 mW HeNe laser 

(632.8 nm), a detector positioned at the scattering angle of 173° and a 

temperature-control jacket for the cuvette. For the zetapotential measurements, 
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the samples with volume 0.75 ml were loaded in folded capillary zeta-potential 

cells with integral gold electrodes. Three measurements consisting of 100 runs 

with duration 10 s were performed for every sample. The mobility was 

converted to zeta-potential (ζ) using the Helmholtz–Smoluchowski relation. 

 

TEM measurements  

Transmission electron microscopy (TEM) characterization was carried out by a 

JEOL 2000FX TEM under an accelerating voltage of 200 kV. Samples were 

prepared by applying one drop of the vesicles solution onto a carbon coated 

copper TEM grid and incubated for 5 minutes. This solution was wicked off and 

the vesicles were stained with 10 μL of 2% (w/v) uranyl acetate water solution. 

The solution was air dried overnight. 

 

ESEM measurements 

ESEM experiments were performed on a Environmental Scanning Electron 

Microscope QuantaTM 250 FEG (FEI Company). 
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6.1  State of the Art 

One of the main challenges in supramolecular chemistry is gaining better 

insights on the mechanism of molecular recognition in water. This is a key step 

to achieve advanced applications of supramolecular chemistry in biology. 

Natural receptors such as enzymes and antibodies show strong and selective 

host-guest complexation in water through weak intermolecular bonds towards 

the binding partners. These natural systems provide the inspiration for the 

design of artificial receptors that can be used as modern tools to investigate 

biological processes. Although several different water soluble macrocyclic 

receptors have been synthesized, good hosts for many organic guests and 

biological macromolecules have not yet been found.1 In fact a common problem 

that must be faced is solubility in water, hence limiting the type of building 

blocks that can be used for the synthesis of good receptors. Moreover special 

attention has to be paid to avoid, minimize or exploit the strong involvement of 

water in non-covalent processes.2 

In general, applications of synthetic supramolecular receptors in biology have 

to fulfill particular requirements:3 

a)  supramolecular interactions in biological systems typically occur in the 

μM to pM regime, analogously synthetic hosts should feature similar 

interactions strength; 

b)  complexes based only on a single type of interaction such as 

hydrophobic or ionic bonds would lead to unselective interactions with 

biological matter. In order to guarantee an high selectivity, recognition 

motifs are preferably based on two or more weak intermolecular forces; 

c) supramolecular systems should incorporate biomarkers for 

bioconjugation, which is crucial for applications in biological systems. 

Among biological macromolecules, proteins are the most studied because they 

are virtually involved in all biological processes. In particular protein surface 

recognition by small molecules represents a big challenge in life sciences as this 

would allow many types of applications, namely: controlling protein-protein 

interactions,4 biosensors5 and protein crystallization.6 Supramolecular host-

guest systems constitute a new molecular strategy for selective and reversible 

control of proteins and their interactions. Several water soluble receptors have 

been employed to recognize protein elements such as cucurbiturils,7 

cyclodextrins,8 calixarenes9 and crown ethers.10 
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A recent breakthrough in protein surface recognition has been done by Urbach 

et al.,11 reporting the binding of human insulin by a cucurbit[7]uril (CB[7]) 

receptor. Isothermal titration calorimetry (ITC) and fluorescence spectroscopy 

experiments demonstrated that CB[7] binds insulin, through N-terminal Phe 

residue, with an association constant of 1.5 x 106 M-1. The crystal structure of the 

CB[7] insulin complex confirmed that binding occurs at N-Phe residue and that 

the N-terminus unfolds to enable the binding process (Figure 6.1). 

 

Figure 6.1  Molecular recognition of insulin by CB[7]. 

Another interesting paper in the field of bio-supramolecular chemistry has been 

the work of Crowley et al.,12 in which they presented high resolution crystal 

structure of the complex between the tetra-sulfonato-calix[4]arene and the 

cytocrome c protein. The crystal structure reveals that the host binds multiple 

sites of the protein surface and in particular only the lysine moieties. All the 

lysine residues are complexed in the same way, with their methylene chain 

deeply inserted into the calixarene cavity and the ammonium functionality 

placed between two sulfonate anions (Figure 6.2). The crystallographic 

information is strongly supported by NMR data in solution. Knowing which 

are the interactions involved in the recognition process is extremely important 

for designing new calixarenes that have specific affinity towards a target 

protein. 

A further appealing aspect observed by the Authors is that the calixarene 

mediates protein-protein interactions by virtue of its apolar surface. In fact, 
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interactions of the calixarene benzene rings with non polar residues on the 

protein surface coupled to the hydrophobic effect improved the interaction 

among proteins, facilitating crystallization. 

This study must be considered a milestone in the field of bio-supramolecular 

chemistry, because for the first time a crystal structure that clarifies how a small 

synthetic complexing agent interacts with the proteins domain, and which 

aminoacids are involved in the process has been obtained. Although there are 

no direct application of this complex, it represent a valuable model for future 

design of artificial receptors targeting proteins surface. Moreover it has been 

proven that small molecules host can disguise the surface of proteins, having 

profound consequences in protein-protein interactions, and thus potential 

applications in drug discovery and medicinal diagnostic.13 

 

Figure 6.2  One of the crystal structures of the supramolecular bio-complex. 

This work underlies the fact that cationic groups play a critical role in protein-

protein interactions, and molecular recognition of this group by synthetic 

scaffold could provide new insights in the chemical investigations of biological 

macromolecules. 

Lysine in particular is involved in the process of gene regulation through 

hystone methylation. Hystones are the proteins around which DNA coils and 

its chemical modifications14 (acetylation, methylation, phosphorylation) 
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regulate DNA-based events such as gene transcription and DNA repair. 

Histones are methylated on lysine or arginine residues by histone 

methyltransferases (Figure 6.3). Nature has evolved a special motif for 

recognizing the methylation state of lysine, called the “aromatic cage”. It is a 

preorganized collection of aromatic amino acids residues that coordinate to 

create a desolvated π-electronic rich pocket, occasionally containing an adjacent 

anionic residue. Taking inspiration from nature, researchers have explored the 

possibility to use chemical approaches to recognize methylated lysine using a 

synthetic pocket.15 

 

Figure 6.3  Methylation states of lysine. 

6.2  Introduction 

So far the most employed synthetic host for cationic groups recognition, has 

been the tetranionic p-sulfonatocalix[4]arene. This receptor, featuring a 

multiaromatic cavity, presents high affinity toward trimethyl-lysine moiety,16 

hence it is a promising tool to study the histone methylation. However the other 

two methylation states of the lysine group are complexed with a low 

association constant, therefore other macrocycles should be used to perform the 

detection of the mono- and di- methylated lysine. 

Recently, the Dalcanale’s group developed a molecular receptor based on a 

resorcinarene bridged with phosphonate groups (see Chapter 1). The resulting 

tetraphosphonate cavitand (Tiiii) offers remarkable complexation capabilities 

toward charged N-methylammonium species,17 exhibiting a high Ka value, 

about 4 x 105 M-1 in methanol.18 This property makes tetraphosphonate 

cavitands an interesting candidate for the detection of different methylation 

states of lysine. However, an extensive study of the complexation properties of 

the tetraphosphonate cavitand in water have never been carried out because of 

its inherent hydrophobicity.  
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The presence of a multi-aromatic cavity and four phenyl groups at the upper 

rim renders very challenging to induce water solubility in tetraphosphonate 

cavitands. We envisioned that a water soluble cavitand could be obtained in the 

following way:  

I. introducing water soluble functionalities at the lower rim; 

II. reducing the hydrophobicity at the upper rim, substituting the phenyl 

groups with small alkyl chain. 

A common approach to enhance solubility in water consists in attaching 

ionizable functional groups. This solution is inappropriate for work spanning a 

wide range of pH and can prevent binding of charged guests.19 Alternatively 

water solubility can be achieved with neutral hydrophilic functional groups 

such as oligoethyleneglycols20 or carbohydrates.21 

Herein we describe a series of synthetic approaches towards water soluble 

tetraphosphonate cavitands, using the two aforementioned methods: reducing 

the lipophilicity at the upper rim and functionalize the lower rim with four 

carbohydrate moieties through azide-alkyne click reaction (Figure 6.4). 

 

Figure 6.4  Target molecules. 

We decided to link the four carbohydrate groups with the triazole unit through 

the Cu(I)-catalyzed Huisgen 1,3-dipolar reaction.22 This reaction requires simple 

conditions, readily available starting materials and reagents, the use of benign 



Water Soluble Cavitands  
 

129 

 

or easily removable solvents, and simple product isolation. In order to explore 

the feasibility of the CuAAC reaction, the Tiiii cavitand that bears four phenyl 

groups at the upper rim was functionalized at the lower rim with glucose and 

lactose. In a second attempt, the hydrophobicity of the upper rim was reduced 

by using a cavitand with four ethyl substituents on the P=O bridges. With this 

two different chemical derivations we surmised the formation of a water 

soluble tetraphosphonate cavitand. 

6.3  Results and Discussion 

With the purpose of investigate the practicability of the click reaction on the 

cavitand scaffold, we first synthesized the TSiiii bearing four glucose groups at 

the lower rim (VII, Scheme 6.1). This route was chosen because the P=S group 

is more manageable during the synthesis by virtue of its low polar nature, 

moreover it can be easily oxidized to P=O group afterwards. 

The TSiiii cavitand VII was prepared in six steps with a 46% overall yield, 

starting from the hydroxyl footed silyl cavitand (I). The key steps in the 

synthesis were: the introduction of the azide moiety at the lower rim of the 

cavitand after the bridging reaction and the click reaction of V with propargyl 

glucose peracetate.24 In the first step of the synthesis the hydroxyl groups of the 

silyl cavitand were replaced with chloride groups in a quantitative way. After 

removal of the silyl protecting groups by HF, the resulting resorcinarene III 

was bridged with dichlorophenylphosphine. The tetraphosphonite intermediate 

was oxidized in situ with sulfur, which proceeded with retention of 

configuration at the phosphorous centre, leading to IV. The tetra-azide, which 

was readily synthesized in high yield from IV and sodium azide, was then 

subjected to the CuAAC reaction with propargyl glucose peracetate using 

toluene/chloroform as solvent and [(EtO)3PCuI] as catalyst.23 

The 1H NMR of VI shows the singlet at about 7.68 ppm diagnostic for the 

formation of the triazole linker, and the characteristic pattern of the glucose 

group from 5.5 and 3.5 ppm (Figure 6.5). Finally, the product VI was treated 

with sodium methoxide for 2 hours and quenched with amberlite proton 

exchange resin to give the desired tetrakis(β-D-glucopyranosyl) 

tetraphosphotionate cavitand VII quantitatively. The compound VII resulted 

not soluble in water, but only in methanol as confirmed by 1H NMR spectrum. 

The P=S group, as above mentioned, can be interconverted into a P=O group by 

a mixture of H2O2/acetone which forms acetone peroxide, a strong oxidizing 

agent. In our case the overnight oxidation of compound VI at 75 °C gave the 
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tetraphosphonate cavitand VIII, as confirmed by the 31P NMR shift from 78.8 

ppm to 11.6 ppm and by MALDI spectrometry although the 1H NMR spectra 

was not perfectly pure. Attempts to purify the compound failed due to the 

presence of large amount of by-products. 

 

Scheme 6.1  Synthesis of Tiiii [glucose peracetate, CH3, Ph], VIII and TSiiii [glucose, 

CH3, Ph], VII: a) SOCl2, 1,1,2,2-tetrachloroethane, 90 °C, 12 h, 93%; b) HF, DMF, 55 °C, 

12 h, quantitative; c) 1) PhPCl2, Py, 75 °C, 3 h; 2) S8, 2 h, 70% (over two steps); d) NaN3, 

DMF, 50 °C, 16 h, 86%; e) Glucose propargyl peracetate, [(EtO)3PCuI], DIPEA, 

toluene/CHCl3, 80 °C, 70%; f) 1) MeOH/Na, 2 h, r.t.; 2) Dowex IR-120, r.t., 1 h, 

quantitative (over two steps); g) Acetone/H2O2, toluene, 75 °C, 24 h. 
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Figure 6.5  1H NMR spectra of VI in CDCl3. 

Taking into account the lack of water solubility of compound VII, the amount 

of hydroxyl groups were increased attaching four lactose moieties using the 

same click procedure (Scheme 6.2). For this purpose the tetra-azide cavitand V 

was reacted with propargyl lactose peracetate24 to give the corresponding 

cavitand X. Also in this case the acetyl protecting groups of compound X were 

removed with sodium metoxide, unfortunately product XI resulted not soluble 

in water but only in DMSO. 

The oxidation of the P=S group to P=O was tested using the mixture hydrogen 

peroxide/acetone, but the MALDI-TOF spectra showed only the peak of the 

starting material proving that in this case the reaction does not work. The 

reaction was already problematic for VIII, increasing the number of sugar 

moieties from four to eight, makes the P=S oxidation ineffective.  

 

 

1H Triazole 
Glucose pattern 
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Scheme 6.2  Synthesis of TSiiii [lactose, CH3, Ph], XI and Tiiii [lactose peracetate, 

CH3, Ph], XII: h) Lactose propargyl peracetate, [(EtO)3PCuI], DIPEA, toluene/CHCl3, 80 

°C, 65%; i) 1) MeOH/Na, 2 h, r.t.; 2) Dowex IR-120, r.t., 1 h, quantitative (over two steps); 

l) Acetone/H2O2, toluene, 75 °C, 24 h, the reaction does not work. 

The hydrophobicity of the cavitand can be decreased also by changing the 

bridging groups at the upper rim of the resorcinarene. For this purpose a 

tetraphosphonate cavitand functionalized with four ethyl groups at the upper 

rim and that bears four lactose groups at the lower rim was synthesized 

(Scheme 6.3). We hypothesized that the combination of a lower lipophilicity at 

the top of the cavitand and the presence of four lactose groups at the lower rim 

could increase the water solubility of the receptor. 

The pathway is similar to the previous one: after removal of the silyl protecting 

groups by HF, the resulting resorcinarene III was bridged with the 

commercially available dichloroethylphosphine. The tetraphosphonite 

intermediate was oxidized in situ with sulfur, which proceeded with retention 

of configuration at phosphorous centre leading to XIII. The 31P NMR spectra 

showed a singlet resonance at 92.2 ppm that is correlated to the presence of four 

phosphonate groups at the upper rim functionalized with ethyl moieties. 

Afterward, the tetra-chloride cavitand was reacted with sodium azide to give 

the tetra-azide cavitand XIV which was subjected to the CuAAC click reaction 
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with propargyl lactose peracetate using toluene as solvent and [(EtO)3PCuI] as 

catalyst. The cavitand XV was characterized with 1H and 31P NMR. The acetyl 

protecting groups were removed as previously seen. The 31P NMR of the 

cavitand XVI showed a peak at about 92.3 ppm while the 1H NMR showed a  

confused and broad spectra without the presence of the signal of the cavitand. 

Moreover the MALDI spectra did not show either the peak of the target 

molecule or the starting material, indicating that the reaction does not lead to 

the desired product. 

 

Scheme 6.3  Synthesis of Tiiii [lactose, CH3, CH2CH3], XVI: m) 1) CH3CH2PCl2, Py, 75 °C, 

3 h; 2) H2O2, 1 h, 51% (over two steps); n) NaN3, DMF, 50 °C, 16 h, 79%;o) lactose 

propargyl peracetate X, [(EtO)3PCuI], DIPEA, Toluene/CHCl3, 80 °C, 93%; p) 1) 

MeOH/Na, 2 h, r.t.; 2) Dowex IR-120, r.t., 1 h, the reaction does not work. 

6.4  Conclusions 

Mimicry of biological process involves the study of recognition properties of 

synthetic receptors in water. In this chapter we have reported different attempts 

to make neutral water soluble tetraphosphonate cavitands. They comprise the 

introduction of hydrophilic moieties such as carbohydrates groups and the 

functionalization of the upper rim of the receptor with a less hydrophobic 

functional groups. The presence of four glucose or lactose groups at lower rim 

is not sufficient to solubilize the Tiiii cavitand (with four phenyl groups at the 
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upper rim). To tackle this problem we have functionalized the cavitand with 

four lactose group at the upper rim. Unfortunately the oxidation of the four P=S 

groups to P=O as last step is not compatible with the sugars at the lower rim. 

The P=O introduction must be moved at the beginning of the synthetic scheme. 

As a general comment, the introduction of neutral hydrophilic substituents only 

at the lower rim is not sufficient to impart water solubility to the whole 

cavitand. Therefore, in the design of a neutral water soluble cavitand also the 

introduction of hydrophilic groups at the upper rim must be planned.  
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6.6  Experimental Section 

The propargyl glucose peracetate and propargyl lactose peracetate were 

prepared following reported procedures.24 Compound II and III were already 

prepared in the group. 

Tetrachloro silylcavitand (II). 

To a solution of tetrahydroxy footed silylcavitand (0.5 g, 0.499 mmol) in dry 

1,1,2,2-tetrachloroethane, few drops of DMF were added. The suspension was 

cooled to 0°C and thionyl chloride was slowly added (361 µL, 4.99 mmol,). The 

resulting suspension was stirred for 12h at 90 °C. The solvent was evaporated; 

the residue was dissolved in chloroform, washed with water and dried over 

MgSO4. After evaporating the solvent the crude product was purified by silica 

gel column chromatography (hexane:ethyl acetate 8:2) to give the desired 

product as brownish solid (0.72 g, 0.464 mmol, 93%).  
1H NMR (CDCl3, 400 MHz): δ (ppm) = 7.24 (s, 4H, ArH), 4.69 (t, 4H, J= 8 Hz, 

ArCH), 3.68 (t, 8H, J= 8 Hz, CH2CH2Cl), 2.50-2.38 (m, 8H, CH2CH2CH2Cl), 1.98 

(s, 12H, ArCH3), 1.92-1.76 (m, 8H, CH2CH2CH2Cl), 0.59 (s, 12H, SiCH3,out), -0.61 

(s, 12H, SiCH3,in). 

 

Tetrachloro resorcinarene (III) 

An aqueous 36% HF solution (150 µL) was added to II (0.58 g, 0.538 mmol) 

dissolved in DMF. The suspension was stirred overnight at 55 °C. The product 

was precipitated by adding water to the reaction mixture. The white solid was 

collected by suction filtration. (0.45 g, 0.53 mmol, quantitative yield).  
1H NMR (Acetone-d6, 400 MHz): δ (ppm) = 7.90 (m, 6H, ArOH), 7.33 (s, 4H, 

ArH), 4.29 (t, 4H, J= 8 Hz, ArCH), 3.50 (t, 8H, J= 8 Hz, CH2CH2Cl), 2.37-2.26 (m, 

8H, CH2CH2CH2Cl), 1.91 (s, 12H, ArCH3), 1.65-1.55 (m, 8H, CH2CH2CH2Cl). 

 

Cavitand TSiiii [C3H6Cl, CH3, Ph] (IV) 

To a solution of resorcinarene III (0.255 g, 0.3 mmol) in dry pyridine, 

dichlorophenylphosphine (185 µL, 1.35 mmol) was added dropwise, under 

argon atmosphere. The solution was stirred at 60 °C for 1 h. Sulfur (0.61 g, 0.24 

mmol) was added and the mixture was heated at 50°C for 2 h. The solvent was 

removed under vacuo and the solid was washed and sonicated with water, then 

filtered and dried. The crude product was purified by silica gel column 

chromatography (hexane:ethyl acetate 6:4) affording IV as white solid (0.275 g, 

0.195 mmol, 65%) 
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1H NMR (CDCl3, 400 MHz): δ (ppm) = 8.21-8.06 (m, 8H, P(S)ArHo), 7.75 (s, 4H, 

ArH), 7.65-7.44 (m, 12H, P(S)ArHm, P(S)ArHp), 4.70 (t, 4H, J= 8 Hz, ArCH), 3.59 

(t, 8H, J= 8 Hz, CH2CH2Cl), 2.62-2.44 (m, 8H, CH2CH2CH2Cl), 1.91 (s, 12H, 

ArCH3), 1.82-1.64 (m, 8H, CH2CH2CH2Cl); 31P{1H}NMR (CDCl3, 161.9 MHz): δ 

(ppm) = 75.2 (s, P=S); ESI-MS: m/z 1422 [M+K]+. 

 

Cavitand TSiiii [C3H6N3, CH3, Ph] (V) 

To a solution IV (0,25 g, 0.178 mmol) in DMF, sodium azide was added (0.12 

mg, 1.78 mmol). The solution was stirred overnight at 55 °C for 12h. Then the 

solvent was evaporated and the crude was suspended in water and filtered 

affording V as a brown solid (0,25 g, 0.178 mmol, quantitative yield).  
1H NMR (CDCl3, 300 MHz): δ (ppm) = 8.30-8.15 (m, 8H, P(O)ArHo), 7.70-7.50 

(m, 12H, P(O)ArHp, P(O)ArHm), 7.24 (s, 8H, ArH); 4.75 (t, J=8 Hz 4H, ArCH), 

3.47 (t, 2H, J= 6.2 Hz CH2CH2N3), 2.51-2.35 (m, 8H, CH2CH2CH2N3), 2.12 (s, 

12H, ArCH3), 1.81-1.65 (m, 8H, CH2CH2CH2N3); 31P{1H}NMR (CDCl3, 161.9 

MHz): δ (ppm) = 75.5 (s, P=S); ESI-MS: m/z 1468 [M+K]+. 

 

Cavitand TSiiii [C3H6-glucose-peracetate, CH3, Ph] (VI) 

A mixture of toluene/CHCl3 (1:1) and DIPEA (210 µL, 1.18 mmol) was 

degassed 3 times with freeze pump thaw technique followed by addition of V 

(0.17 g, 0.12 mmol), propargyl glucose peracetate (0.23 g, 0.59 mmol) and the 

copper catalyst [(EtO)3PCuI] (0.04 g, 0.059 mmol). The reaction mixture was 

stirred at 80 °C for 12h. Evaporation of the solvent yielded a crude that was 

purified by silica gel column chromatography (ethyl acetate) giving VI as white 

solid (0.245 g, 0.084 mmol, 70%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 8.27-8.07 (m, 8H, P(O)ArHo), 7.68 (s, 4H, 

Htriazole), 7.65-7.46 (m, 12H, P(O)ArHp, P(O)ArHm), 7.24 (s, 4H, ArH), 5.25-5.14 

(m, 4H, H3,glu), 5.14-4.88 (m, 12H, H2,4,glu, ArCH), 4.86-4.63 (m, 12H, H1,glu, 

CH2O), 4.56 (t, 8H, CH2,triazole), 4.32-4.04 (m, 8H, H6,glu), 3..81-369 (m, 4H, H5,glu), 

2.54-2.31 (m, 8H, CH2CH2N), 2.14-1.82 (m, 68H, ArCH3, CH2CH2CH2N, 

OCOCH3); 31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 75.8 (s, P=S); MALDI 

TOF-TOF: calcd. for C136H152N12O48P4S4Na exact mass: 2995.7553, found: 

2995.7760. 

 

Cavitand TSiiii [C3H6-glucose, CH3, Ph] (VII) 

To a suspension of VI (0.03 g, 0.01 mmol ) in methanol a cold solution of 

sodium in methanol (pH 9-10) was added dropwise. The mixture was stirred at 

room temperature for 2h until all the starting material was hydrolyzed. The 
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reaction was quenched by addition of Amberlite IR-120 resin. After 1h the resin 

was removed by suction filtration and the solvent was evaporated under 

reduced pressure affording the tetra glucose-cavitand VII as white solid (0,023 

g., 0.01 mmol, quantitative yield). 
1H NMR (MeOD, 300 MHz): δ (ppm) = 8.33-8.18 (m, 8H, P(O)ArHo), 8.17-8.04 

(m, 4H, Htriazole), 7.75-7.55 (m, 12H, P(O)ArHp, P(O)ArHm), 7.47 (s, 4H, ArH), 

5.11-4.69 (m, 12H, H2,3,4,glu, ArCH), 4.40 (d, 4H, H1,glu), 4.71-4.50 (t, 8H, 

CH2,triazole), 3.97-3.55 (m, 8H, H6,glu), 3.41-3.13 (m, 4H, H5,glu), 2.58-2.35 (m, 8H, 

CH2CH2N), 2.10 (s, 12H, ArCH3), 2.00-1.89 (m, 8H, CH2CH2CH2N); 31P{1H}NMR 

(MeOD, 161.9 MHz): δ (ppm) = 78.8 (s, P=S); MALDI TOF-TOF: calcd. for 

C104H120N12O32P4S4Na exact mass: 2323.5863, found: 2323.5902. 

 

Cavitand Tiiii [C3H6-glucose peracetate, CH3, Ph] (VIII) 

To a solution of VII (0.03 g, 0.01 mmol ) in toluene a solution of H2O2 35% (0.65 

mL, 6.66 mmol) in acetone was added dropwise. The mixture was stirred at 75 

°C for 24h. The reaction was quenched by addition of H2O. The aqueous phase 

was extracted with CH2Cl2. The organic phase was evaporated yielding 

compound VIII as yellow solid. 
31P{1H}NMR (MeOD, 161.9 MHz): δ (ppm) = 11.6 (s, P=O); MALDI TOF-TOF: 

calcd. for C136H152N12O52P4Na exact mass: 2931.8467, found: 2931.8511. 

 

Cavitand TSiiii [C3H6-lactose-peracetate, CH3, Ph] (X) 

A mixture of toluene/CHCl3 (1:1) and DIPEA (245 µL, 1.39 mmol) was 

degassed 3 times with freeze pump thaw technique followed by addition of V 

(0.2 g, 0.139 mmol), propargyl lactose peracetate (0.471 g, 0.699 mmol) and the 

copper catalyst [(EtO)3PCuI] (0.05 g, 0.069 mmol). The reaction mixture was 

stirred at 80 °C for 48h. Evaporation of the solvent yielded a crude that was 

purified by silica gel column chromatography (ethyl acetate:ethanol 98:2) giving 

X as white solid (0.346 g, 0.083 mmol, 60%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 8.27-8.12 (m, 8H, P(O)ArHo), 7.68 (s, 4H, 

Htriazole), 7.65-7.50 (m, 12H, P(O)ArHp, P(O)ArHm), 7.28 (s, 4H, ArH), 5.40-5.33 

(m, 4H, H1,lact), 5.24-5.00 (m, 8H, H4’,3,lact), 5.00-4.86 (m, 12H, H2,2’,lact, ArCH), 

4.85-4.64 (m, 12H, H3’,lact, CH2O), 4.64-4.46 (m, 16H, H6,1’,lact, CH2,triazole), 4.21-4.03 

(m, 12H, H6,6,6’,lact), 3.98-3.76 (m, 8H, H4,5’,lact), 3.73-3.61 (m, 4H, H5,lact), 2.52-2.38 

(m, 8H, CH2CH2N), 2.22-1.91 (m, 104H, ArCH3, CH2CH2CH2N, OCOCH3); 
31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 75.3 (s, P=S); MALDI TOF-TOF: 

calcd. for C184H216N12NaO80P4S4 exact mass: 4148,0933, found: 4148,1033. 
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Cavitand TSiiii [C3H6-lactose, CH3, Ph] (XI) 

To a suspension of X (0.03 g, 0.007 mmol ) in methanol a cold solution of 

sodium in methanol (pH 9-10) was added dropwise. The mixture was stirred at 

room temperature for 2h until all the starting material was hydrolyzed. The 

reaction was quenched by addition of Amberlite IR120 resin. After 1h the resin 

was removed by suction filtration and the solvent was evaporated under 

reduced pressure affording the tetra lactose-cavitand XI as white solid (0,023 g, 

0.007 mmol, quantitative yield). 
1H NMR (DMSO-d6, 300 MHz): δ (ppm) = 8.25-8.13 (m, 12H, P(O)ArHo, 

Htriazole), 7.83-7.61 (m, 16H, P(O)ArHp, P(O)ArHm, ArH), 5.40-5.33 (m, 4H, 

H1,lact), 5.24-5.01 (m, 8H, H4’,3,lact), 5.01-4.82 (m, 12H, H2,2’,lact, ArCH), 4.85-4.64 (m, 

12H, H3’,lact, CH2O), 4.60-4.45 (m, 16H, H6,1’,lact, CH2,triazole), 4.21-4.03 (m, 12H, 

H6,6,6’,lact), 3.98-3.76 (m, 8H, H4,5’,lact), 3.73-3.61 (m, 4H, H5,lact), 2.50-2.38 (m, 8H, 

CH2CH2N), 2.08-1.75 (m, 20H, ArCH3, CH2CH2CH2N); 31P{1H}NMR (MeOD, 

161.9 MHz): δ (ppm) = 74.7 (s, P(S)); MALDI TOF-TOF: calcd. for 

C128H160N12O52P4S4Na exact mass: 2971,7975, found: 2971.8011. 

 

Cavitand TSiiii [C3H6Cl, CH3, CH2CH3] (XIII) 

To a solution of resorcinarene III (0.4 g, 0.47 mmol) in dry pyridine, 

dichloroehtylphosphine (200 µL, 1.93 mmol) was added dropwise, under argon 

atmosphere. The solution was stirred at 60 °C for 1 h. Sulfur (0.12 g, 0.47 mmol) 

was added and the mixture was heated at 50°C for 2 h. The solvent was 

removed under vacuo and the solid was washed and sonicated with water, then 

filtered and dried. The crude product was purified by silica gel column 

chromatography (dichloromethane) affording IV as white solid (0.289 g, 0.47 

mmol, 51%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 7.14 (s, 4H, ArH), 4.51 (t, 4H, J= 7.4 Hz, 

ArCH), 3.72 (t, 8H, J= 7.1 Hz, CH2CH2Cl), 2.44-2.39 (m, 16H, CH2CH2CH2Cl, 

CH3CH2P), 2.11 (s, 12H, ArCH3), 1.86-1.83 (m, 8H, CHCH2CH2CH2Cl), 1.52-1.43 

(m, 12H, CH3CH2P); 31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 92.2 (s, P=S); 

ESI-MS: m/z 1212 [M+H]+, 1234 [M+Na]+, 1250 [M+K]+. 

 

Cavitand TSiiii [C3H6N3, CH3, CH2CH3] (XIV) 

To a solution XIII (0,29 g, 0.24 mmol) in DMF, sodium azide was added (0.18 

mg, 0.28 mmol). The solution was stirred overnight at 55 °C for 12h. Then the 
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solvent was evaporated and the crude was suspended in water and filtered 

affording XIV as a brown solid (0,234 g, 0.189 mmol, 79%).  
1H NMR (CDCl3, 400 MHz): δ (ppm) = 7.10 (s, 4H, ArH), 4.55 (t, 4H, J= 7.4 Hz , 

ArCH), 3.43 (t, 8H, J= 7.1 Hz, CH2CH2N3), 2.45-2.35 (m, 16H, CH2CH2CH2Cl, 

CH3CH2P), 2.11 (s, 12H, ArCH3), 1.70-1.61 (m, 8H, CHCH2CH2CH2Cl), 1.53-1.43 

(m, 12H, CH3CH2P); 31P{1H}NMR (CDCl3, 161.9 MHz): δ (ppm) = 92.4 (s, P=S); 

ESI-MS: m/z 1238 [M+H]+, 1260 [M+Na]+. 

 

Cavitand TSiiii [C3H6-lactose-peracetate, CH3, CH2CH3] (XV) 

A mixture of toluene/DIPEA (1/1) (140 µL, 0.8 mmol) was degassed 3 times 

with freeze pump thaw technique followed by addition of XIV (0.1 g, 0.08 

mmol), propargyl lactose peracetate (0.245 g, 0.36 mmol) and the copper 

catalyst [(EtO)3PCuI] (0.027 g, 0.04 mmol). The reaction mixture was stirred at 

80 °C for 48h. Evaporation of the solvent yielded a crude that was purified by 

silica gel column chromatography (dichloromethane:methanol 98:2) giving XV 

as white solid (0.288 g, 0.074 mmol, 93%). 
1H NMR (CDCl3, 300 MHz): δ (ppm) = 7.56 (s, 4H, Htriazole), 6.99 (s, 4H, ArH), 

5.28 (d, J= 5 Hz, 4H, H1,lact), 5.16-4.98 (m, 8H, H4’,3,lact), 4.95-4.76 (m, 12H, H2,2’,lact, 

ArCH), 4.75-4.53 (m, 8H, H3’,lact, ArCH), 4.52-4.36 (m, 16H, H6,1’,lact, CH2triazole), 

4.15-3.93 (m, 12H, H6,6,6’,lact), 3.88-3.67 (m, 8H, H4,5’,lact), 3.64-3.52 (m, 4H, H5,lact), 

2.41-2.14 (m, 16H, CH2CH2CH2N, CH3CH2P), 2.15-1.76 (m, 104H, ArCH3, 

CH2CH2CH2N, OCOCH3), 1.45-1.28 (m, 12H, CH3CH2P); 31P{1H}NMR (CDCl3, 

161.9 MHz): δ (ppm) = 92.4 (s, P=S); MALDI TOF-TOF: calcd. for 

C168H216N12O80P4S4Na exact mass: 3956.0934, found: 3956.0605. 
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Materials 

All reagents and chemicals were obtained from commercial sources and used 

without further purification. Dry pyridine (supplied from Aldrich) was distilled 

over KOH and stored over 3 Å molecular sieves under Ar or used as received 

(pyridine absolute, over molecular sieves, H2O ≤ 0.005%). Dichloromethane 

(purchased from Aldrich) was dried by distillation over CaH2 according 

standard procedures and stored over 3 Å molecular sieves under Ar. 

Anhydrous chloroform (supplied from Aldrich) was prepared washing it twice 

with water and passed through a column of basic alumina oxide (supplied from 

Fluka) then it was distilled over CaH2 and stored over 4 Å molecular sieves 

under Ar. Anhydrous toluene (supplied from Aldrich) was distilled over CaH2 

and stored over 4 Å molecular sieves under Ar. Dry DMF (DMF purissim. ≥ 

99.5%(GC)) was provided by Aldrich and stored over 4 Å molecular sieves 

under Ar. Dry diethyl ether (diethyl ether purum ≥ 99.8%(GC), over molecular 

sieves) was purchased from Fluka and used as received. 

Silica column chromatography was performed using silica gel 60 (Fluka 230-400 

mesh ASTM), or silica gel 60 (MERCK 70-230 mesh).  

Methods 

 NMR Measurements 

1H NMR spectra were obtained using a Bruker AVANCE 300 (300 MHz) or a 

Bruker AVANCE 400 (400 MHz) spectrometer. All chemical shifts (δ) were 

reported in ppm relative to the proton resonances resulting from incomplete 

deuteration of the NMR solvents. 31P NMR spectra were obtained using a 

Bruker AVANCE-400 (161.9 MHz) spectrometer. All chemical shifts (δ) were 

recorded in ppm relative to external 85% H3PO4 at 0.00 ppm. 

 MS Measurements 

(Chapters 2-3-4-6): Electrospray ionization ESI-MS experiments were performed 

on a Waters ZMD spectrometer equipped with an electrospray interface. Exact 

masses were determined using a LTQ ORBITRAP XL Thermo spectrometer 

equipped with an electrospray interface. MALDI was performed on a AB SCIEX 

MALDI TOF-TOF 4800 Plus (matrix, α–cyano-4-hydroxycinnamic acid). 

(Chapter 5): ESI-MS was performed on a Thermo Scientific LTQ Orbitrap Velos 

mass spectrometer with an electrospray ion source in the positive ion mode. 
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