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Chapter 1

Introduction

If we should select because of its outstanding social impact just a single inno-

vation among the ones of the past decade, that should be the diffusion of online

social networks. While some social networking services were already active in

the nineties, the capillary diffusion and the sheer number of people involved

has transformed online social networking in an unprecedented revolution. On-

line social networks have altered how people interact, allowing them to stay

in touch with their acquaintances, reconnect with old friends, and establish

new relationships with other people based on hobbies, interests, and friendship

circles.

From a technological perspective, online social networks are mostly based

on sets of web-based services that allow people to present themselves through

a profile, to establish connections with other users in the system and to pub-

lish resources, which are typically available to the users with whom they es-

tablished a connection. Moreover, these systems use common interests and

the natural transitivity of some human relationships to suggest new contacts

with whom to establish a connection. Although some of these aspects already

appeared in other systems, what transformed online social networks in an un-

precedented cultural phenomenon is the unceasing flow of information users

pour in such systems and their overwhelming intent to increase the number of
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their virtual friends and acquaintances.

For our purposes, an Online Social Network (OSN) is defined as a software

system allowing users to have a profile and managing a contact network, i.e.,

an OSN allows users to: (i) construct a profile which represents them in the

system; (ii) create a list of users with whom they share a connection and

(iii) navigate their list of connections and that of their friends [29]. Although

many software systems allowed either to create a profile or to manage a list of

contacts, according to Boyd and Ellison, the first website that presented both

aspects together was SixDegrees.com, created in 1997 [29].

The first “modern” OSNs is Friendster, created in 2002 and spectacularly

failed few years later. In the following years, several of today top OSN were

also started: LinkedIn (2003), MySpace (2003), Last.fm (2003), Flickr (2004),

Facebook (2004, for college students, and 2006, for everyone), and YouTube

(2005).

All the sites together created what can be called the “social network revo-

lution” that changed the way people mean the web, attracting users with very

weak interest in technology, including people that before the social networking

revolution were not even regular users of other popular Internet services and

computers in general [175]. The phenomenon is so widespread that many peo-

ple started using social networking systems to ask questions to other people

instead of querying search engines [134] and in place of regular email.

Although social network analysis is a mature research area by all means,

the diffusion of these software systems among people of all ages, gender, in-

struction and nationality allows for the unprecedented possibility to study

quantitatively large scale social systems. Moreover, the sheer amount of data

available may require novel techniques of analysis.

The virtual nature of the social networks based by the social networking

sites does not facilitate traditional experiments, neither from the ethical nor

from the practical point of view. On the other hand, agent-based modeling

and simulation has been already successfully applied to problems coming from

the social sciences [11, 13, 53–55, 108, 123], and could be profitably used also
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for the online social networks.

However, the tools presently available for agent-based modeling do not offer

specific support for social network models. Moreover, most agent-based models

have been developed in an ad-hoc manner to solve specific problems. On the

other hand, many social network models are not formulated with concurrent

and ultimately agent-based execution in mind.

Therefore, in the present work, we present a unified conceptual framework

to express both novel agent-based and traditional social network models. This

conceptual framework is essentially a meta-model that acts as a template for

other models.

In addition, we develop a domain-specific language to express the mod-

els in an executable way, so that simulations can be performed effortlessly.

The language aims at being expressive and powerful for those skilled in the

art of computing, and yet simple and easy to learn for those with different

backgrounds.

We also develop a software framework that can execute such models in an

agent-oriented context, providing effective support for large networks. More-

over, the framework hides most of the complexity of running the simulations

on remote server-class machines.

Eventually, we validate out approach translating several traditional models

in our meta-model, verifying that the expected features of the models are

maintained.

In Chapter 2 we introduce the basic techniques of social network analysis,

the metrics used to study the networks and some network formation mod-

els. Moreover, we present a review of works where those metrics have been

measured on real online social networks, and compare the models with the

empirical results.

In Chapter 3 we present multi-agent systems as software engineering tools

and discuss how they can be used to support social networking systems. On

the other hand, in Chapter 4 we focus on multi-agent systems as modeling

tools, thus introducing the discipline of agent-based modeling. We also discuss
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the epistemological foundations of the generative approach to science that was

pioneered by agent-based modeling.

In Chapter 5 we discuss several issues regarding the different notion of time

and concurrency of traditional social network models and agent-based models.

We also present some experimental results that show how, under reasonable

assumptions, the traditional models can be easily executed in concurrent sce-

nario. We also introduce our meta-model for expressing traditional and agent-

based models and show how some traditional models presented in Chapter 2

can be expressed in the meta-model.

Our own domain-specific language for agent-based modeling and the agent-

based simulation framework are the subjects of Chapter 6. We discuss the

underlying implementation of agents, the runtime system and the structure of

the simulation, based on the meta-model. We also show the implementation

of a couple on traditional social network models.

In Chapter 7 we apply our tool to the open research problem of creating a

distributed social networking system, in order to better investigate (i) the nec-

essary assumptions under which such system could be successful, and (ii) some

metrics to express quantitatively the notion of “successful”.

Finally, some conclusions are drawn in Chapter 8.
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Social Network Analysis

Social Network Analysis is a discipline that studies topological and structural

features of social networks. A social network is typically defined as a finite

set or sets of actors and the relation or relations defined on them [185]. The

presence of relational information is critical and defining of social networks.

In this context, an actor is essentially any social entity, such as a discrete

individual, a corporate, or collective social unit. The use of the term “actor”

does not imply that the entities have the volition or the ability to act. More-

over, it is not related with the concept of actor in the actor model [3].

The relationships among the actors can be any kind of social tie and es-

tablish a linkage between a pair of actors. Let R be a relationship and x and

y two generic actors. If xRy does not entail yRx, R is directed. If xRy en-

tails that yRx, then R is directed A network with only directed relationships

is called a directed network ; a network with only undirected relationships is

called an undirected network. Typical examples of relationships are (i) evalua-

tions, such as friendhip, respect or trust, (ii) transfers of material or immaterial

resources, such as information, money or diseases, (iii) behavioral interaction,

e.g., sending messages, (iv) formal or biological relationships, such as marriage,

employment or kinship.

In this section we present: (i) the introduction with a brief résumé of the
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historical background of Social Network Analysis (SNA); (ii) a few metrics

and measures used to characterize and study social networks (Section 2.2);

(iii) a selection of models for the simulation of social networks among the

models stemming from modern complex network theory (Section 2.3); (iv) a

summary of metrics measured on real-world social networks (Section 2.4); (v) a

comparison of the results of the analysis of real-world and simulated social

networks, that shows how the simple models do not fully grasp the complexity

of real-world social networks (Section 2.5).

2.1 History of Social Network Analysis

As for the historical background, we note that while the history of online social

networks begins somewhere between the last years of the past century and the

first years of the new millennium, the origins of methods for social network

analysis date a century earlier.

The first clear contribution comes from Gestalt Theory through the work of

social psychologists such as Moreno [133] and Lewin [118,119]. Gestalt theory

focuses on interpreting patterns as systems with properties distinct from those

of their components and that, moreover, determine the nature of such parts.

The natural interpretation of Gestalt Theory in the context of psychology and

sociology is that of focusing on how social environments determine the choices

of individuals.

Moreno was especially interested in the understanding of how psycholog-

ical well-being is related to structural features that he named “social config-

urations” [133]. Such configurations are essentially patterns of friendship and

repulsion among individuals, that as a whole, constitute large-scale “social

aggregates”, such as the whole economy of a country.

Although Moreno’s methods, which pioneered the use of psychotherapy to

understand choices of friendship, questionnaires, controlled observation and

experiments, have an everlasting importance in the general context of sociology

and psychology, for our purposes his most interesting contribution is that of the
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Figure 2.1: Reproduction of Moreno’s original sociogram.

sociogram. The sociogram is related to the main body of Moreno’s research as

a way of representing the formal properties of social configurations; however,

a sociogram is a general concept applicable outside his framework and, in

fact, outside social psychology altogether. A sociogram is essentially a simple

diagram where the points are the social entities and the lines that connect the

points represent social relationships.

Nowadays, it is natural to interpret a sociogram as an instance of the

graph that can be studied by graph theory. However, at that time it was a

relatively novel field of research. The first studies on the subject are due to

L. Euler [58] with his solution of the Seven Bridges of Königsberg problem
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(1735), but the term graph was coined by Sylvester [176] several years after.

The first comprehensive textbook on graph theory, which helped spreading

the discipline, was published only in 1936 [110].

Graph theory was gained greater recognition and several important lines

of research were conducted, such as extremal graph theory and random graph

theory. Extremal graph theory originated from the study of the old four color

problem [191], in which the problem is to determine whether it is true that

any map drawn in the plane may have regions colored with one of four colors,

in such a way that any two regions having a common border have different

colors. The problem, besides having fascinated generations of mathematicians,

has a very clear graph theoretic formulation and rose to greater popularity for

being one of the first formal problems in which computers played a key role

in the proof.

On the other hand, random graph theory started from the early works

of Erdős and Rényi [57] and of Gilbert [81], which were the first to consid-

ered ensembles of graphs instead of individual graphs. Up to that moment,

graphs were individually studied, as is the case of the Königsberg graph. In

other words, they concentrated not on any single graphs but on distribution

probabilities on spaces of graphs with some specific properties. Eventually,

they also played an important role in attracting back to social network anal-

ysis the attention of physicists and computer scientists interested in network

science [140].

However, back to the early years of social network analysis, its mathemat-

ical foundation is essentially due to Cartwright and Haray [89, 90], motivated

by the pioneering topology inspired work of Lewin [118]. Haray is also the

author of an important textbook on graph theory [88] that was instrumental

in spreading the discipline among different areas of research, including social

sciences. Consequently, most of the successive social network analysis uses con-

cepts from graph theory, that, as intuited by Moreno, are extremely suitable

to express social relationships in a quantitative rather than qualitative way.

Social network analysis developed during the following years, and several
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important research directions were undertaken. Some researchers were mainly

interested in positions and roles, i.e., they developed the notion of structural

equivalence and substitutability of individuals within social positions. Such

approaches, usually called “blockmodels”, are essentially clustering techniques

that organize the networks into hierarchical positions. For a detailed discussion

of these ideas, we refer to Chap. 7 of [167].

Another important research area was that of centrality measures. While

blockmodels establish the role of an individual node in a social network, cen-

trality metrics try to assess the importance of the node. Centrality metrics

essentially employ the structure of the network and not the semantic meaning

of the nodes; in fact, most disciplines dealing with graphs have developed their

own notions of centrality. Consider for example:

– centrality in network of citations, authors and journals, which essentially

led to the definition of the various indexes used in bibliometrics; or

– Google PageRank [148] or Kleinberg’s HITS [104] in the context of rank-

ing web-pages according to their link structure.

One of the most important works that dealt with centrality is due to Bear-

den et al. and regards the power and influence of american banks [18]. In fact,

while some researchers were still mainly concerned with networks of individu-

als [84,85], that focused on employment patterns, other turned their attention

towards network of corporations [165,166,168,174]: by the time social network

analysis was a completely different research area from the social psychology

that originated it.

Eventually, the third important area of research developed inside social

network analysis is the study of community structure inside social networks.

Several definitions of “community” have been invented and applied to different

networks. Among the most influential works in this direction, we mention the

ones of Fisher [61] and Wellman [188,189]. For a complete description of these

results, we refer to [185].

Independently from social network analysis, other kinds of networks were

studied in the context of Complex Network Theory (CNT). A complex net-
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work can be tentatively defined as a network with non-trivial topological fea-

tures, i.e., features that are not present in regular lattices or simpler network

structures such as Erdős-Rényi graphs. Among these features, some typical

examples are heavy-tailed degree distributions, high transitivity or, more in

general, unusual structural patterns. The definition and discussion of those

features is presented in Section 2.2.

The definition of complex network is extremely broad because it must en-

compass the variety of studies conducted in the area: the networks studied

were originally from extremely different areas such as biology, telecommunica-

tion engineering and computer science, and complex network analysis provided

a unified tool for their interpretation. The discipline draw a lot of attention

in the late nineties, because among the networks studied there were samples

from the web graph, which was an extremely popular subjects at the time, and

it did not take long before network scientists directed their attention towards

social networks as well.

Among the most cited papers in the field, there are the seminal works by

Watts and Strogatz [186] and Barabási and Albert [16]. Watts and Strogatz

studied both social and non-social networks and provided a unifying model

for the so-called “small-worlds”, i.e., networks where no pair or nodes is really

“distant” and where triangle-shaped paths are frequent. On the other hand,

Barábasi and Albert’s paper introduced a model for scale-free networks, i.e.,

networks with power-law degree distribution, starting the investigation from

a network of web links and a citation graph.

The above mentioned paper, as well as later works created essentially a

parallel social network analysis, because social networks increasingly became a

primary study for network scientists. Eventually, a few years later, the diffusion

of online social networks produced a whole new class of subjects to study that

renewed the interest for complex network theory and, as a consequence, many

book oriented towards a technical, but typically not academical readership,

were published [94,159–161,181].

Contrarily to expectations, the traditional social network analysis and the
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CNT-inspired social network analysis have only recently started to form a

unique discipline: for years the two groups had surprisingly little contact or

cross-fertilization [77]. Nowadays cross-citations are becoming more frequent

and the work of the early sociologists and social network scientists is increas-

ingly known in the complex network circles. Conversely, ideas grown in the

latter field, such as the study of dynamic networks, are starting to attract

more attention from the social network analysts.

2.2 Networks Metrics and Measures

As we discussed at the beginning of the chapter, social network analysis is es-

sentially about studying the topological structure of a network. Since networks

are essentially identified with graphs, to the point we will use the two terms

rather interchangeably, all the algorithms and properties that are studied in

the context of graph theory also make sense in the context of social network

analysis. However, some of these properties have specific social network ana-

lytic meaning in addition to the purely descriptive value that the property has

in the context of graph theory. We generally refer as “metric” to any property

of a social network or graph that is quantitative in nature.

In this section we briefly review some classic metrics which give insight on

the network structure. We consider here only metrics that are among the most

widely studied in network analysis and which can be used to characterize the

structure of a network; we also outline some correlation in the chosen metrics.

The discussion of further advanced analysis techniques such as community or

cluster detection, is beyond the scope of this dissertation.

In this Chapter, the properties taken into account are: (i) average short-

est path length/diameter; (ii) clustering coefficient; (iii) degree distribution;

(iv) assortativity coefficient; (v) navigability.

Before introducing the metrics, we introduce the notation we use. Let G “

pV,Eq be a network. With ApGq we refer to the adjacency matrix of the

analyzed network; we will omit the G every time it is clear from the context,
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and will simply write A.

If u is a node in a directed network:

– the in-degree kinu “
ř

v Avu is the number of incoming edges;

– the out-degree koutu “
ř

v Auv is the number of outgoing edges;

– ku is the sum of the in-degree and the out-degree. For undirected net-

works, the degree ku is the total number of edges of u.

With x¨y we refer to the expected value of a quantity. We usually omit to

indicate the elements participating in the sum, when this is clear from the

context. For example we simply write xky instead of xkiyiPV to refer to the

average degree of the nodes in the network.

In order to compare directed and undirected networks, we ensure that the

directed networks are highly symmetrical. The measure of how symmetric is

an undirected network is called reciprocity (or simply symmetry). If m is the

number of edges in the network and A is the adjacency matrix of the network,

then the reciprocity coefficient is 1
m

ř

uv AuvAvu. The coefficient is trivially

1 for undirected networks. For a directed network, having a high reciprocity

coefficient is important from a sociological point of view, because:

– it tells much on the kind of interactions between the actors in the network

and

– it allows to soundly compare directed and undirected network with re-

gard to other metrics.

Classic metrics in network analysis are the Average Shortest Path Length

(ASPL), the Characteristic Path Length (CPL) and the diameter. Let v and v1

be two vertices in the network, then Lpv, v1q is the length of the shortest path

connecting v to v1 (also called geodesic path). The closeness Li of a node i is the

mean of the geodesic distance between i and all the vertices reachable from it,

that is to say: Li “ xLpi, jqyj . The shortest path length and the characteristic

path length are the mean and the median value of all the Li respectively. The

diameter is the longest geodesic path.

In the context of network analysis the diameter, the CPL and the ASPL are

said to be short if they depend in a logarithmical way on the number of nodes
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in the network. Similarily, a link e “ pu, vq is a shortcut (or long-range link)

in the network G “ pV,Eq if LG1pu, vq " 1 where G1 “ pV,Ezteuq; otherwise

it is a local or short-range link.

Another very important metric in the context of social networks is the clus-

tering coefficient C, which is the mean of all the local clustering coefficients Ci,

where Ci is the fraction of pairs of neighbors of i which are also connected [187].

A different and non equivalent definition is given by Newman [138], where the

clustering coefficient is defined as the fraction of paths pu, v, wq of length two

in a network G “ pV,Eq for which tpu, vq, pv, wq, pw, uqu Ď E holds.

The degree distribution of a network is simply the frequency distribution of

vertex degrees. pk is the fraction of vertices in the network with degree k. If the

network is undirected, then there are two different degree distributions: the in-

degree distribution and the out-degree distribution. Although in principle they

can be very different, in practice in the examined contexts they are very similar

(because the analyzed networks are highly symmetric) and consequently we

simply refer to the degree distribution.

A particularly important distribution in the context of social network anal-

ysis is the power-law distribution. A power-law distribution has the general

form:

pk9k
´γ (2.1)

γ is the exponent or scaling exponent of the distribution.

Depending on the context, a power-law distribution can be also called a

Pareto distribution or a Zipf-law distribution. These distributions have only

minor variations in the way the parameters are expressed.

The more distinguishing features of the power-law distribution are (i) its

left-skewedness, (ii) the fat-tail and (iii) the straight line form in a log-log

plot.

Power-laws are used in many different areas, such as those (i) of genus of

flowering plants [202], (ii) of sizes of cities [171], (iii) of citations, scientific

productivity and journal use [128,156], (iv) and, eventually, of web links [16],

and are believed to denote that a “non trivial” process is involved. As a con-
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sequence, many datasets that looked almost linear on a log-log plot have been

fitted by power-laws, and, even worse, their exponent has been evaluated by

linearly fitting the log-log data. Such procedure is very imprecise [37] and leads

to wrong results, especially considering that other distributions could have fit

the data better.

Other distributions with heavy tail that may be of interest for us, are the

power-law with cutoff or the log-normal distribution (Equations (2.2) and (2.3)

respectively).

fpxq “ x´γ ¨ e´xγ (2.2)

fpxq “ 1?
2πσx

exp

ˆ

´1
2

´

logpx{µq
σ

¯2
˙

(2.3)

However, some processes actually generate a power-law distribution, and

some networks actually have power-law degree distributions. They usually are

called scale-free, because of the scale invariance property of power-law, i.e., if

f is a power-law with exponent γ, fpc ¨xq “ apcxqγ “ cγ ¨axγ “ cγfpxq9fpxq.

Nonetheless, scale-free networks are of particular interest to us because:

(i) of their historical importance, and especially of the fact that many complex

network actually have power-law degree distributions (ii) Cohen proved that

a wide category of scale-free networks have short diameter because they are

scale free [41]. To be more precise, it has been proved that if the network has

a power-law degree distribution of exponent γ, the diameter d is:

d “

$

’

&

’

%

log logN γ P p2, 3q

logN{log logN γ “ 3

logN γ ą 3

(2.4)

Another very important property related to the degree distribution is the

assortativity coefficient r, which is basically the Pearson product-moment cor-

relation coefficient of degree between pairs of linked nodes. A network is as-
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sortative if it has positive assortativity coefficient. The definition of r is:

r “

ř

ijPE

´

Aij ´
kikj
2m

¯

kikj
ř

ijPE

´

kiδij ´
kikj
2m

¯

kikj
(2.5)

The last property of social networks we take into account is the navigability.

We say that a network is navigable if it exists a simple decentralized algorithm

that is able to deliver a message to any node, starting from any node, in poly-

logarithmic number of steps. With “simple” we mean that each node passes

the message to a single neighbor using some ranking function to decide which

one. The ranking function must not encompass global knowledge of the long-

range links. The delivery time of an algorithm is the expected number of steps

required to reach the target, randomly choosing the start and the end node.

2.3 Models for Simulated Networks

In this section we consider some models to generate random graphs which have

been proposed to simulate social networks. Creating models of social network

formation is necessary for improving the understanding of real networks. Cre-

ating models allows for easier study of how individual processes concur in the

formation of a generic social network; considering that in many cases it is usu-

ally not possible to make experiments regarding the formation and evolution

of social networks, the only way to assess the basic hypotheses concerning the

network formation is by using simulated models.

The first and still most studied model of random graphs is the Erdős-Rényi

model (ER) [57, 139]. Gpn, pq is a probability distribution over the set of all

graphs with n nodes. The p parameter indicates that an edge is placed between

any given pair of nodes with probability p. Consequently:

– each individual graph is chosen with probability pmp1´ pqp
n
2q´m;

– the expected value of the number of edges is xmy “
`

n
2

˘

p;

– the expected mean degree is xky “ pn´ 1qp;

– the expected diameter is log n;
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– the degree distribution tends to a Poisson distribution for large n;

– the clustering coefficient is given by C “ xky{pn´ 1q.

Another very important model is the Strogatz-Watts model (SW) [187]. The

model starts with a closed linear structure where each node is connected with

κ neighbours and then the local connections are rewired to remote nodes with

probability p. The rewired connections are usually shortcuts. p is a parameter

governing the transition from the very regular lattice (p “ 0, no rewiring)

to Gpn, p̂q, where p̂ “ nκ{2
`

n
2

˘

. In this model, the mean degree is exactly κ.

The other metrics are rather hard to derive for this model, however, a minor

variant of this model has been analyzed analytically [27, 137, 142]. In this

variant the shortcuts are added without removing the local connections. To be

more precise, for each link in the lattice a shortcut is added with probability

p. Consequently the average number σ of long-range links each node gains is

pκ according to the distribution:

pσ “ e´pκ
ppκqσ

σ!
(2.6)

The average shortest path length is logarithmic with the size of the net-

work, at least for large networks and the clustering coefficient is:

C “
3pκ´ 2q

4pκ´ 1q ` 8κp` 4κp2
(2.7)

The third model considered here is due to Kleinberg [105, 106] who used

ideas somewhat similar to the previous ones, although starting from a different

regular structure. In the paper the starting structure is a nˆn 2D grid where

each node is connected to some neighbors and shortcuts are also added. All the

links are directed. In this model any node u has a position in the grid, which

determines its two coordinates ux and uy. Let dpu, vq “ |ux ´ vx| ` |uy ´ vy|

is the Manhattan distance between nodes u and v in the grid. There are three

parameters p ě 1, q ě 0 and α ě 0 that essentially govern the number of

short and long range links of every node: each node u is: (i) connected with

every other node v ‰ u such that dpu, vq ď p and (ii) has q other long range
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links. A long range link starting from u has endpoint v with a probability

proportional to dpu, vq´α.

The coefficient α determines the functional dependency of the diameter

from the size of the network [41,143]:

– if α P r0, ks then the diameter is Θplog nq;

– if α P pk, 2kq then the diameter is poly-logarithmic;

– if α ą 2k then the diameter is polynomial;

– for α “ 2k the diameter length is still an open problem.

The clustering coefficient is naturally quite high (coming from a very regular

structure).

However, the most interesting property of this model is that the generated

networks are navigable and that the delivery time T of any decentralized simple

algorithm in the 2D grid based model is:

T “

$

’

&

’

%

Ω
`

np2´αq{3
˘

if 0 ď α ă 2

Θ
`

log2 n
˘

if α “ 2

Ω
`

npα´2q{pα´1q
˘

if α ą 2

(2.8)

These results have been proven by Kleinberg [105]. This model has been ex-

tended to use a k-dimensional mesh as a starting structure. Similar results

have been given for the k-dimensional grid models, where α “ 2 is substituted

by α “ k.

The group model [107] is not a generative one, but it is meant to be used

to make any network navigable adding some shortcuts and can also be used

to attempt a formal proof of the navigability of a given network. The process

starts creating a finite family S over the set of nodes V satisfying the following

conditions for some λ P p0, 1q and β ą 1: (i) V P S; (ii) Si P S and |Si| ě 2

such that v P Si, then there exists Sj P S such that Sj Ă Si and |Sj | ě

minpλg, g´ 1q; (iii) if a) Si, Sj , Sk . . . are in S, b) have size at most q and c) v

is in their intersection, then their union has size at most qβ.

The sets in S are called groups. These conditions hold taking as the groups

the balls determined by the Manhattan distance on the k-dimensional grid, for
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example. Let qpu, vq be the size of the minimum group in S containing both u

and v. A group-based model with structure S, exponent α and out-degree m is a

network where for each node u a shortcut to v has been added with probability

proportional to fpqpu, vqq and fpxq — xα and the process is repeated for m

times.

An additional result proved is that for a network pV,Eq, given an arbitrary

finite family S of sets over V satisfying properties (i), (ii) and (iii), there is

a decentralised algorithm with poly-logarithmic delivery time in the group-

based model with structure S, exponent α “ 1 and out-degree m “ c log2 n

for a sufficiently large constant c [107]. Kleinberg also gave negative results for

the existence of such algorithm for both α ă 1 and α ą 1. Most other metrics

depends on the underlying network structure.

Popular models to generate scale-free networks are the ones based on pref-

erential attachment (PA), where links are added more often to nodes with

higher degree. In this family of methods the network is generated through

multiple steps. At each step some edges and links are added or removed ac-

cording to some rules that vary from model to model. A popular model of this

family is the Barabási-Albert model (BA) [16]. The BA model starts with n0

nodes and no edges. At each step a new node with m random links is added.

The m links are directed towards node with probability proportional to their

degree. The BA model generates only networks whose degree distribution is a

power-law with exponent 3, on the other hand other preferential-attachment

models yield scale-free networks with any exponent.

Duchon and Hanusse [50] proved that being scale-free with a degree γ ą 2

implies having a short (poly-logarithmic) diameter. Considering that the di-

ameter is an upper bound of the geodesic paths in the network, the results

also bounds the characteristic path length. No such results are available on

navigability, it is however reasonable to use the meta-models to add such a

property.

The basic PA process or the BA model do not generate networks with high

clustering coefficient. For example, it has been empirically found that for a BA
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graph C „ n´0.75. No analytical method to compute C for the BA model [6]

is available.

A method to increase the clustering coefficient is mingling PA steps with

triadic closure (TC) steps. During the TC step, if a link between u and v was

added in the PA step, then it is added also a link between u and a random

neighbour w of v. This model yields networks with high clustering coefficient

and has been extensively studied [93,177].

Another model in the family of PA models is the biased preferential attach-

ment [112]. The set of nodes V is partitioned in three sets P , I and L. These

sets represent the different macro-behavioral categories of users the authors

have found in existing social networking system:

– P stands for passive and are the kind of users that enter the system when

invited but usually do not invite new users themselves, nor actively seek

their acquaintances in the system;

– I stands for inviters, the kind of users who actively invite new users in

the system and tend to be at the center of a small cluster;

– L stands for linkers and are the kind of users that mainly seek their real

life friends in the system and link to them.

At each new step (i) a new node is added to the network and is assigned to one

of the three sets according to a distribution of probability p; (ii) ε ą 0 edges

are added to the network. Essentially both p and ε are parameters that can

be tuned; there is also a third parameter γ. Dβ is a probability distribution

such that for each node u:

Dβ
u9

$

’

&

’

%

pβ ` 1q ¨ pku ` 1q u P L

ku ` 1 u P I

0 otherwise

(2.9)

The ε edges are added according the following rule: for each edge pu, vq, u

is chosen with distribution D0 and (i) if u P I, v is a new node and is as-

signed to P ; (ii) if u P L, v is chosen according to Dγ . No analytical results

about the network metrics are presently known. However, the procedure re-

produces parameters measured in two real social networks (Yahoo360 and
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Flickr) [112]. Consequently we expect that, at least for some choice of pa-

rameters, the method yields a network with high clustering coefficient, short

diameter and power-law degree distribution.

The last model we review is called transitive linking [43]. The model is

somewhat similar to the PA model with the addition of the TC step. However,

the model also accounts for the possibility that nodes leave the network. In

every step of the method two things occur: (i) a random node is chosen, and it

introduces two other nodes that are linked to it, resulting in a new link (this

is the transitive linking, in short TL); (ii) with probability p a node is chosen

and removed from the network and its edges are removed as well and replaced

with another node with one random edge. If the node chosen in (i) does

not have two edges, then it introduces himself to another random node. The

parameter p dictates how often someone is removed from the social network

and is assumed to be much smaller than 1.

When p ! 1 the TL dominates the process and the degree distribution is

essentially a power-law with a cutoff for larger k, as nodes have finite lifetime.

For larger values of p the two different processes concur to form an exponen-

tial degree distribution, while for p « 1 the degree distribution is essentially

Poisson distribution. For p ! 1 the clustering coefficient is rather large and

can be determined with the relation 1 ´ C “ ppxky ´ 1q; as p decreases xky

grows. For example, for p “ 0.01, xky “ 49.1 and C “ 0.52. The authors also

calculated that:

ASPL «
logpn{ xkyq

log
´

xk2y´xky
xky

¯ ` 1. (2.10)

2.4 Analysis of Real-World Social Networks

In the early studies on social networks, the first step was the long manual

gathering of data regarding the social network itself, using interviews or other

ad-hoc methods. Consequently the social networks were relatively small and

biases could be introduced by the sampling methods.
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Table 2.1: Basic metrics for a selection of online social networks. The table is
organized in subtables where the data are separated depending on the extent
of the sampling of each OSN. When in the original paper a datum is missing,
we placed “n.a.” (not available) in the table. In the table we used some symbols
(˛, ˛, :, ;, ‹, ˝) to indicate that some datum needed further commenting. The
symbols are explained hereafter: p:q the degree distribution has two different
regions, one resembling a power-law with cutoff and exponent γ “ 4 and
one with exponent γ “ 1; the crossover occurs between k “ 103 and k “ 104;
p;q for nodes with degree less than 300, the degree distribution is approximated
by a power-law of exponent γă300 “ 1.32 while that of nodes with degree
greater than 300 is approximated by a power-law of exponent γě300 “ 3.38;
p‹q average between the in-degree and the out-degree distribution power-law
exponent; p˛q the out-degree distribution is a power-law with exponent 2.276
up to nodes whose degree is less than 10000, the nodes with higher out-degree
are slightly more frequent than what a power-law would predict; p˛q the degree
distributions have a flatter head than power-laws and sharp cut in the tail;
p˝q the authors report degree distributions only as graphs.

OSN Refs. Users Links xky C CPL d γ

Full or nearly full sample

Club Nexus [1] 2.5 K 10 K 8.2 0.17 4 13 n.a.

Cyworld [4] 12 M 191 M 31.6 0.16 3.2 16 :

Cyworld T [4] 92 K 0.7 M 15.3 0.32 7.2 n.a. n.a.
LiveJournal [130] 5 M 77 M 17 0.33 5.9 20 1.62‹

Sample more than 20% of the whole network

Flickr [130] 1.8 M 22 M 12.2 0.31 5.7 27 1.76‹

Twitter [113] 41 M 1.7 B n.a. n.a. 4 4.12 2.27˛

Sample around 10% of the whole network

Orkut [130] 3 M 223 M 106 0.17 4.3 9 1.50

Sample ă 1% of the whole network

Orkut [4] 100 K 1.5 M 30.2 0.3 3.8 n.a. 3.7

Sample % n.a.

Youtube [130] 1.1 M 5 M 4.29 0.14 5.1 21 1.81‹

Facebook [82] 1 M n.a. n.a. 0.16 n.a. n.a. ;

FB H [136] 51 K 116 K n.a. 0.41 n.a. 29 ˝

FB GL [136] 277 K 600 K n.a. 0.31 n.a. 45 ˝

BrightKite [164] 54 K 213 K 7.88 0.18 4.7 n.a. ˛

FourSquare [164] 58 K 351 K 12 0.26 4.6 n.a. ˛

LiveJournal [164] 993 K 29.6 M 29.9 0.18 4.9 n.a. ˛

Twitter [100] 87 K 829 K 18.9 0.11 n.a. 6 2.4‹

Twitter [164] 409 K 183 M 447 0.20 2.8 n.a. ˛

.
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With the widespread use of social networking systems by huge amount of

people, it became possible to study social networks of unprecedented size. In

this section we review a number of papers analyzing different online social

networks (OSN) and in Table 2.1 we have gathered metrics from some pa-

pers [1,2,4,82,100,113,130,136,164] where existing social networks have been

measured [23]. The main results that can be deduced from the inspection of

Table 2.1 are commented below. Comparing the metrics of such networks with

the ones predicted by the models presented in Section 2.3 may give insight on

which processes are actually present in online social networks. Such analysis

is the subject of the next Section.

While some researchers had access to the full body of data from the an-

alyzed online social network, most of them had still to resort to sampling

techniques and consequently we reported the percentage of the sampled social

network. Therefore, the table is organized in subtables where the data are

separated depending of the extent of the sampling of each social network. For

further details on the sampling techniques we refer to the original papers.

In principle, sampling can introduce the same biases typical of earlier stud-

ies, and probably some of the studies we reviewed suffered this problem. The

biases may be the reason why different studies on the same OSN yield differ-

ent values on the same metrics. However, some general trends are confirmed

by most of the studies we reviewed, and the general structure of online social

networks appears not dissimilar to that of off-line social networks.

In fact, sociologists have known since a long time that social networks are

highly clustered and OSNs show high clustering as well, see, for example [84].

Like off-line social networks, OSNs have a relatively high clustering coefficient

C, orders of magnitude higher than that of random graphs. The actual value

of the coefficient exhibits a large variability. Moreover it appears that this

coefficient varies much for the same network depending on the sample used

and how it was gathered. For example, Ahn et al. measured that the clustering

coefficient for Orkut is 0.31 [4], while according to Mislove et al. [130] it is 0.17.

Moreover, clustering coefficient is not uniform for nodes of different degree: in
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Cyworld the nodes with degree k ă 500 have a high local clustering coefficient,

while friends of nodes with higher degree are not tightly clustered [4]. This

contributes to the relatively small global clustering coefficient.

We also argue that different kinds of social networks may well have different

clustering coefficients; e.g., it is entirely possible that a real life based social

network such as Facebook or Cyworld may have a lower clustering coefficient

than an information-based social network such as Twitters. In fact, the Twitter

network may be too atypical to be considered a “social” network [113]. In fact,

we have a broader definition of social network, essentially encompassing all the

networks stemming from relations between humans or human-created entities,

such as companies; thus, in any case we consider the Twitter network a social

network, even with different topological qualities.

Social networks have short CPL and online social networks present the

same trend, confirming the intuition that they actually are small-worlds; al-

most all measured values of CPL vary between 4 and 6, which is consistent

with expected values for small-world networks of comparable size [1, 130]. In

the case of Twitter, the CPL is exceptionally small, especially considering the

size of the sample analyzed [113]. It is also interesting that studies taking into

account the evolution of such social networks point out that the CPL varies

in time: typically there is a period when the distance between users increases

(which occurs when many new users join) and then when the network becomes

more dense the CPL and diameter fall [4, 112,115,116].

Some of the analyzed OSNs clearly present a power-law degree distribution;

however, the coefficient differ greatly and some OSNs have the coefficient γ of

the power-law smaller than 2 [1, 4, 112,130].

Moreover, we may well say that most of the reviewed networks do not

clearly present a power-law degree distribution. For example, Cyworld [4] and

Facebook [82] have power-law like behavior on limited degree ranges. Alas,

the degree distribution is not scale free and is not a power-law. Twitter [113]

more closely resembles a power-law. However, it has many more nodes in

the region k ą 105; the authors claim it may be due to a large number of
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celebrities participating in the social networking system. But this is exactly

the kind of event that model designers should accurately consider and be able

to reproduce, even if it contrasts with the uniformity of nodes we implicitly

assumed.

The samples collected by Scellato et al. [164] show a rather flat head and

a sharp cut in the tail. The authors claim that the effect can be a cause of

the samples being obtained with snowball sampling, which is known to under-

represent low degree nodes, while the sharp cut may indicate that the degree

distribution is a power-law with cutoff.

2.5 Analysis of Simulated Social Network Models

In this Section we compare the models described in Section 2.3 with the real

online social networks described in Section 2.4. The models fail to catch some

aspect of real world social networks, especially considering how different is the

structure of the various OSNs we reviewed in Section 2.4. However, the results

are encouraging in the sense that the simplified models miss some process that

is actually present in social networks, not that the processes that are part of

the models are not present themselves. Probably the most striking result is

that the networks presented do not have a power-law degree distribution and,

consequently, the “choice” of friends cannot follow preferential attachment

alone. The degree distribution is nonetheless “fat-tailed” and some prefererial-

attachment-like process is likely involved.

It is not surprising that the Erdős-Rényi model fails to describe social

networks: from a sociological point of view, it would be awkward to think

people establishing relationships purely by chance, regardless of affinity and

geographical distance. The expected degree distribution of generated networks

also deviates from that of the networks analyzed in Section 2.4: they have

heavy tailed distributions instead of a Poisson distribution. Moreover, the

average number of connections a person has in a social process does not depend

on the size of the network [51]. However, if we used the ER model with a
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constant average degree, C Ñ 0 as nÑ8.

The SW model was introduced to cope with the shortcomings of the Erdős-

Rényi model, in particular the very low clustering coefficient. In the SW model

for a very large interval of p values the resulting graph is both highly clustered

(like the starting lattice) and shows short characteristic path length like ER

random graphs. However, the degree distribution is Poisson and is very differ-

ent from the distributions found in real social networks, which usually have

right skewed degree distributions [141].

Classic preferential attachment models fail to yield highly clustered graphs

in most their variants and are consequently unsuitable to model a social net-

work. Indeed, the models have been developed to explain the metrics of ci-

tation networks. However, many variations on the original model which have

a rather high clustering coefficient have been proposed in order to explicitly

model social networks.

For example, the biased preferential attachment model [112] was built from

the ground to reproduce some metrics of real world social networks. In fact,

the model does not only yield a static social network with realistic properties:

the entire generation process reproduces the formation of the real network.

The transitive linking model also looks very promising. People is far more

likely to make friends with friend of friends [84]. The importance of adding

explicit triadic closure steps has also been proved by Leskovec et al. [115],

where the authors showed that regular PA, without steps adding local links

between friends of friends failed to model real social networks. Moreover, node

death (or inactivity, for the less dramatically inclined readers) moves the de-

gree distribution from a pure power-law to a power-law with cutoff. The other

metrics are also compatible with the experimental data of Section 2.4.

In fact, we have chosen few metrics in order to simplify the analysis. How-

ever, at the present time, these simple metrics are enough to rule out many

network generation models and to question the remaining ones, as well as giv-

ing insight on which parts may need adjustment. Moreover, from studies such

as [4, 112, 115,117] it is clear that OSN are constituted by distinct areas with
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very different topological structure and we believe that this should be taken

into account.

In the present study we are only concerned with the metrics of the final

network, with little focus on the metrics along the process itself, while [112]

and [115, 117] deal with processes that reproduce OSN metrics during the

whole formation process. We decided to consider only the static analysis of the

resulting network because: (i) many models are not meant as proper processes,

since what looks like a process is in fact only an algorithmic description; (ii) it

is particularly difficult to sample large social networks over long periods of

time and consequently there is less data on the issue. Moreover, we are mostly

interested in performing simulations on the final network. Nonetheless, it is

worth noting how processes which are inspired by actual human behavior [43,

93,112,177] are some of the most promising models.

2.6 Conclusions

In this Chapter we described the history and the main subject of social network

analysis. Social network analysis is the main tool we use to study networks

for various purposes, such as the feasibility of the the approach for creating a

distributed social networking system that we we discuss in Chapter 7.

Moreover, we introduced some of the models that are at the basis of the

construction of the meta-model for simulating processes over network pre-

sented in Chapter 5, and subsequently, we compared the features of the net-

works they generate with those of real online social networks. Such models

offer interesting insights regarding the basic processes that drive the forma-

tion and evolution of networks, but fail to describe other laws that are likely to

be present. Moving towards agent-based modeling (Chapter 4) could provide

models that can more easily cope with the complexity of human interactions

and more faithfully describe the processes involved.
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Multi-Agent Systems

3.1 Introduction to Multi-Agent Systems

Software engineering is the discipline that studies in a systematic and rigorous

way the problem of designing, developing and, successively, maintaining soft-

ware. Software (i) does not usually exist independently of hardware and (ii) is

created to solve specific problems. As a consequence, from one side, software

evolves to fulfil our necessities and, on the other, to better exploit the hard-

ware infrastructures available. Software engineering develops new methods in

order to cope with such evolution.

In the last twenty years, several trends in software can be clearly observed:

(i) ubiquity, (ii) interconnection, (iii) intelligence, (iv) delegation, and (v) hu-

man orientation [194].

As for ubiquity, computer-grade computational capabilities appeared in

several devices such as mobile phones or music players. Moreover, many electric

appliances have capabilities to interact with computers in several ways.

The trend towards interconnection is even more evident. Not many years

ago, connection to the internet was an option for few people. On the other

hand, nowadays, it is not uncommon to own several devices that are always

connected, which synchronize data with the cloud. In fact, many software
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systems are created with the assumption of ubiquitous connectivity.

Another important trend is that of creating increasingly “intelligent” and

complex systems and to delegate them important tasks. Autonomous machines

manage, for example, airplanes, telephone grids, power-plants, medical appli-

ances, weapon systems, and economic markets.

Eventually, as user interfaces moved from the command line oriented de-

signs of the seventies to the graphical user interfaces of the nineties, they

are presently evolving towards even more declarative and intuitive paradigms,

such as multi-touch or vocal interfaces.

One of the most interesting answers given by software engineering to the

necessities we framed are Multi-agent Systems. A Multi-agent System (MAS)

is a system composed of multiple intelligent agents interacting within an en-

vironment. However, the development of multi-agent systems should not be

traced entirely inside the software engineering community, and, in fact, they

originated from the confluence of different research areas, such as distributed

systems, artificial intelligence, game theory and social sciences [194]. In fact,

all those aspects are important to face the challenges that developing modern

software poses.

The inherent interconnection among systems requires techniques from the

distributed systems area, because multi-agent systems are distributed systems

and should be understood and conceived as such. Even if all the agents operate

in the same computational environment, concurrent execution and communi-

cation can only be solved using techniques from such domain.

However, since MAS may be constituted by non-necessarily cooperating

units, also techniques from game theory in general (and mechanism design

specifically) are required. Eventually, since the network of interconnected de-

vices essentially creates an artificial society, insight from the social sciences

becomes precious.

Moreover, since we want software to autonomously take decisions and solve

tasks, techniques from game theory and artificial intelligence must be used.

Eventually, in order to create more intuitive and declarative interfaces, nat-
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ural language must be understood, perhaps even spoken language, which are

problems typically studied in artificial intelligence.

As a consequence of the mixed origins of multi-agent systems, there is

little consensus on the main defining features. For example, there is not even

a single definition of an agent – see, for example, [79, 162, 195]; however, all

definitions agree that an agent is essentially a special software component that:

(i) has autonomy, in the sense that it operates without the direct intervention

of humans or others and has control over its actions and internal state, and

(ii) provides an interoperable interface to an arbitrary system, i.e., has clearly

distinguishable boundaries that define what is part of the agent and what is

outside.

Another defining feature of agents is “intelligence”, though in this context

it has a different meaning of that used in the context of game-theory1. In

the context of multi-agent systems intelligence is usually defined in terms of

autonomous properties; we expect intelligent agents to be: (i) reactive, because

it perceives its environment, and responds in a timely fashion to changes that

occur in the environment; (ii) pro-active, because it does not simply act in

response to its environment, and it is able to exhibit goal-directed behavior by

taking the initiative; and (iii) social, because it is able to interact with other

agents (and humans) in order to satisfy its design objectives.

Multi-agent systems are generally considered appropriate for modeling

complex, distributed systems, even if such a multiplicity naturally introduces

the possibility of having different agents with potentially conflicting goals.

Agents may decide to cooperate for mutual benefit, or they may compete to

serve their own interests. Agents use their social ability to exhibit flexible coor-

dination behaviors that make them able to both cooperate for the achievement

of shared goals or to compete on the acquisition of resources and tasks. Agents

have the ability of coordinating their behaviors into coherent global actions.

Another important area of multi-agent systems is that of modeling and

1An agent is intelligent if it knows everything that we know about the game and it can
make any inferences about the situation that we can make. [135]
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simulation: the use of MAS is especially appropriate for the modeling of sys-

tems that are characterized by a high degree of localization and distribution

and dominated by discrete decisions. In particular, the use of such an approach

gave important results in social science because it allows a very useful means

for studying social phenomena by providing a natural way of representing and

simulating both the behavior of individuals or groups of individuals and their

interactions that concur to the global behavior [11, 53, 55]. The discussion of

agent-based modeling and simulation is the main topic of Chapter 4.

Over the years, MAS researchers have developed a wide body of mod-

els, techniques and methodologies for developing complex distributed sys-

tems, have realized several effective software development tools, and have con-

tributed to the realization of several successful applications. However, even if

today’s software systems are more and more characterized by a distributed

and multi-actor nature, that lends itself to be modeled and realized taking

advantage of multi-agent techniques and technologies, very few space in soft-

ware development is given to the use of such techniques and technologies.

Researchers have proposed several explanations of the low adoption of multi-

agent techniques [30,46,125,126,190].

A detailed discussion of such reasons is beyond the scope of this disser-

tation; however, we believe that one of the most important reasons is that

software developers usually have limited knowledge about MAS technologies

and solutions, and, moreover, the multi-disciplinary approach of MAS is itself

a limiting factor in its adoptions, since many MAS techniques require specific

training in the field.

Essentially, many multi-agent approaches are too sophisticated and hard

to understand and to be used outside the research community. To support

this thesis, we notice how Agent-based Modeling (ABM) is a very successful

branch of MAS research and in ABM several advanced issues are not present.

For example, in ABM agents usually have limited intelligence and autonomy

[49] and, moreover, ABM targets essentially researchers, albeit not necessarily

coming from the main disciplines originating MAS.
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The reaction of the MAS community has been the creation of a wide range

of tools which take into consideration the necessities of the industry, essentially

moving from systems with heavyweight agents to systems with heterogeneous

and hybrid agents [21, 74, 153]. The discussion of such classes of agents is the

subject of Section 3.2.

3.2 Evolution of Multi-Agent Systems

The definition of “software agent” covers a wide variety of computer programs,

ranging from so-called “heavyweight agents”, with higher internal complexity

and cognitive capabilities, to so-called “lightweight agents”, with simple or

no internal state and exposing mainly reactive behavior. Between the two

extremes there is a continuous spectrum of different types of software agents,

with some features taken by both main types: (i) deriving from different agent

theories, for the description of the mental states of agents; (ii) implementing

different agent architectures, which guide the development of real systems

from abstract theories, and (iii) featuring different programming constructs

or specialized languages.

Heavyweights, intentional agents. According to various cognitive the-

ories, software agents can be usefully described in terms of the intentional

stance, i.e., on the basis of their mental attitudes, such as knowledge, beliefs,

wants etc. The mental attitudes could be about facts in general, but in some

cases they could also regard other agent attitudes, thus allowing for higher or-

der reasoning. There is not a single theory for describing the cognitive model of

software agents. Traditional AI studies led to various mental models that have

been refined and applied to software agents. One of the most widely accepted

theories describes agents in terms of their BDI [158]. Mainly during the 1980s,

there has been a shift of researchers’ attention from monolithic intelligent

systems to Distributed Artificial Intelligence. Wooldridge [193], in particular,

developed some logic theories for describing Multi-Agent Systems. In those
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systems, communication plays a fundamental role. The speech act theory, de-

riving from previous studies conducted by Austin [9], Searle [169], Cohen and

Perrault [40], Cohen and Levesque [39], has often been applied to MAS, be-

cause it allows to associate message performatives and message contents with

the mental state of agents. According to this theory, agent communications

are essentially pragmatic actions, performed with the intention of procuring

some change in their world. Among the various types of speech acts, probably

the most easily distinguished are directives, e.g., for request messages, and

representatives, e.g., for inform messages. Various frameworks for BDI agents

have been realized, including Jason [28], JACK [192] and Jadex [155].

Lightweight, swarming agents. Lightweight agents are developed essen-

tially in contrast with traditional AI and cognitive theories in general. The

principal question was the applicability of cognitive theories to concrete prob-

lems, with highly uncertain and changing perceptions about the world, and

multifaceted data, which easily become unmanageable through a cognitive ap-

proach, as reasoning typically requires an exponential complexity versus the

size of the problem. The theory behind the lightweight approach to develop-

ing multi-agent systems derives from various research works and in particular

from the famous and provocative “subsumption architecture” proposed by

Brooks [32]. In lightweight MAS, in fact, intelligence is not supposed to exist

in the symbolic reasoning of agents, but it emerges as the result of the continu-

ous perceptions and reactions of multiple simple agents, possibly coordinating

their actions without explicit and direct exchange of knowledge.

Intermediate agents. Between those two contrasting approaches, various

practical systems are modeled using software agents that are neither fully in-

tentional entities with cognitive capabilities, neither purely reactive entities,

without any internal state. Among these systems, many are designed in terms

of a Finite State Machine (FSM). The internal status of agents determines the

kind of behaviours it exposes [36]. The single behaviors can range in complexity
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from symbolic representation and reasoning systems to much simpler stimulus-

response rules. Among these systems, MANA [114] and EINSTein [79], behave

on the basis of matrix multiplications, with a vector of weights representing

the dynamical “personality”, i.e. the effect of environmental stimuli on agents.

On the other hand, more complex systems [149, 151] are based on uncertain

knowledge. Those propositions are represented as the nodes of a Bayesian net-

work and processing consists in propagating evidence across the network; thus,

they combine symbolic and numeric processing. Also in Agentcities, a large

international research project advancing agent technologies, many deployed

agents exploited the semantics of the Agent Communication Language (ACL)

proposed by the FIPA for high-level service composition, yet they based their

internal operation on the intrinsic FSM model of JADE behaviours [154]. Be-

ing other parts of the project developed according to a BDI model, the overall

system was quite variegated, with respect to both agent technologies and mod-

els, but with all parts adhering to FIPA specifications for interoperability.

Heterogeneous systems. Various research works highlight the advantages

and issues of integrating swarming and intentional agents. Parunak et al. [149]

describe various experiences in projects of this kind, with quite different re-

quirements and architectures. In TacAir-Soar and delegate MAS, they propose

a delegation from heavyweight agents to lightweight agents, whose result are

either taken into account as a whole, or considered individually. In Transitional

Agents and Ant CAFÉ, they propose to dedicate heavyweight agents to the in-

teraction with users, while assigning pre-assembled tasks to lightweight agents.

In another presented projects, instead, they follow a quite unconventional ap-

proach of using heavyweight agents as problem-solvers for producing basic

results, and swarming agents for their final integration. The idea of heteroge-

neous agent systems was already envisioned in early works on software agents.

For example, Genesereth proposes the idea of an ACL (KQML, specifically) as

an interoperability tool for the integration of heterogeneous systems [79]. More

specifically, with heterogeneous agent systems we mean the integration of ar-
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bitrarily different agent models, not necessarily sharing a single language or

communication medium. Apart from the communication issues among agents

expecting intentional messages and agents interacting through a sense-react

cycle, Parunak et al. [149] highlight other integration issues. In particular, they

cite internal issues, i.e. designing different agents, but are able to deal with

their tasks, and system issues, i.e. dedicate the various types of agents to the

most appropriate tasks. Nevertheless, the authors highlight the advantages of

mixing the two kinds of agents, thus exploiting both the high level intentional

behaviours of BDI agents and the scalability of swarming agents to the size of

practical problems.

3.3 MAADE

After considering the state of the art in MAS, Poggi and coworkers [73] de-

veloped MAADE, a software framework created to simplify the realization of

distributed, pervasive and adaptive applications, merging the client-server and

the autonomous agent paradigms.

The idea is that developers with a background in MAS can use MAADE

to create with little effort systems where lightweight and heavyweight agents

coexist. However, MAADE can also be used by developers without specific

MAS background to create distributed systems using the agents simply as a

concurrency primitive.

MAADE allows the realization of systems based on two types of processes:

(i) agents, either cognitive or not, and (ii) servers. Agents and servers can be

distributed on a (heterogeneous) network of computational nodes (from now

called runtime nodes), connected using different protocols, and still constitute

a single application.

An agent is an active process with reactive and pro-active behavior. How-

ever, not necessarily both aspects are used in the same agent. Pro-active behav-

ior means that agents can autonomously start the execution of tasks. Agents

run either in their own thread of execution, or rely on a thread-pool. They



3.3. MAADE 35

perform tasks sending synchronous and asynchronous messages to both servers

and other agents.

Servers, on the other hand, have only reactive behavior, similarly to servers

in the standard client-server paradigm. However, they can compose services

offered by other servers and agents in order to fulfil the requests. Servers are

also the more suitable components to provide services to external applications,

exposing appropriate public interfaces.

Agent Model

In MAADE, an agent has a unique identifier in the system, a type and a be-

havior, which determines its actions and reactions. A registry of all the agents

in the application exists and can be queried according to type or for a given

identifier. Moreover, an agent can advertise a description of its capabilities

and the registry can be queried accordingly.

An agent can interact with the other agents through the exchange of mes-

sages based on one of the following three types of communication:

– synchronous communication, the agent sends a message to another agent

and waits for its answer;

– asynchronous communication, the agent sends a message to another

agent, performs some actions and then waits for its answer;

– one-way communication, the agent sends a message to another agent,

but it does not wait for an answer.

In fact, agents do not exchange messages unmediated. Each agent is asso-

ciated with a mailer that: (i) receives the incoming messages from the other

mailers, (ii) buffers the incoming messages until the agent is ready to receive

them, and (iii) forwards the outgoing messages to the appropriate agents.

Each mailer has two lists of message filters: the elements of the first list,

called input message filters, are applied to the input messages and the others,

called output message filters, are applied to the output messages. Figure 3.1

shows the flow of the messages from the input message filters to the output
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Input filters

Mailer

Agent behavior

Output filters

Output message

Input message

Figure 3.1: Simplified representation of the agent model.

message filters). When a new message arrives or must be sent, the message

filters of the appropriate list are applied to it in sequence until a message filter

fails; therefore, such a message is stored in the input queue or is sent only if

all the message filters have success.

As for the formal definition, a message filter is a composition filter [26]

whose primary scope is to define the constraints on the reception/sending of

messages; however, it can also be used for manipulating messages (e.g., their

encryption and decryption) and for the implementation of replication and

logging services.

The same mechanism used by message filters to decide whether they should

process any given message is also used by the agent to query the mailer for

specific messages that it may need to complete its task.
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fig.4.2bFigure 3.2: Exchange of messages in a distributed system.

Agent Communication

MAADE does not mandate a specific ACL, but allows the use of one of the

ACLs provided by the environment. The current release provides: (i) an imple-

mentation of the FIPA ACL [66], (ii) a simple language, called MACL, which

supports the typical request-response interaction, (iii) the possibility to im-

plement another well-known ACL (e.g., KQML [60]), and (iv) the possibility

to define new ACLs.

This solution allows the implementation of both “standard” multi-agent

systems based, for example, on FIPA ACL, which allows the interoperability

with other multi-agent systems, and “specialized” multi-agent systems where a

“custom” ACL can, for example, reduce the development cost and/or improve

the performances.

Agents can also communicate with agents in different runtime nodes. The

communication is mediated by the distributors of the respective nodes. MAADE

is agnostic with respect to the communication technology used by distributors;
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support is provided out of the box for Java RMI [152], JMS [132] and MINA2

communication technologies. In Figure 3.2 we summarize the functionality

provided by distributors.

3.4 Multi-Agent Systems for Social Networks

In this Section we review the state of the art regarding the creation of MAS

to support social networking applications [24, 71] and we draw connections

between the literature and our work, described in Chapter 7. The works that

deal with ABM of social networks are discussed in Section 4.4. Here we consider

two categories of MAS: (i) systems that essentially implement some feature

typical of OSN and (ii) platforms, middle-wares or frameworks that support

OSNs.

As for the first category, the most widely studied aspect that is present in

modern OSN is that of expert-finding, referral, or matchmaking. Such features

are specifically part of work-related OSN, such as LinkedIn, or dating systems,

which can be considered the direct ancestors of all modern OSNs [29].

A seminal work in this area is ReferralWeb [101,102], an interactive MAS

that “reconstructs” a social network from data available on the web. In the

reconstructed network two people are connected if their names appear in close

proximity in a web page or if there is a documented co-authorship relationship.

A ReferralWeb user can (i) require the referral chain between himself and a

named individual , (ii) search an expert in a given topic, providing a maximum

distance, or (iii) request a list of documents written by people “close” to a

specified expert.

A detailed discussion of agent-based algorithms providing answers to simi-

lar queries is presented by Yu et al. [198–201], and discussed in an experimental

context.

ReferralWeb is truly an innovative system, considering that it somewhat

provided some of the features that made systems such as LinkedIn popular. In

2http://mina.apache.org/

http://mina.apache.org/
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fact, while modern social networking systems require their users to manually

insert the information about themselves and OSN providers are investing large

amounts of money for tools that somewhat automate the process3, the MAS

provides such features since the beginning.

Another ReferralWeb contemporary system, Yenta [63–65], provides some-

what complimentary features. Yenta uses agents to implement a full-fledged

match-making system, i.e., a system to help people with similar interests to

get in touch. Yenta did not use web-pages to gather information, preferring to

scan mails, documents and usenet posts instead.

Similar features are provided by modern social networking platforms, al-

beit with a slightly different focus: nowadays people are mostly interested in

socializing with “real-life acquaintances”, on the other hand, in the nineties,

people used internet to interact with others on the basis of common interests.

An important aspect of Yenta was that a multi-agent approach was adopted

not only for efficiency reasons, i.e., for distributing the computation among the

many nodes involved in the network, but also for privacy concerns. Foner [65]

felt that it could be unlikely that users would grant full trust to a third party

entity and give it their documents, so that it could analyze them and answer

with a list of possible connections. Agents, on the other hand, can run on

the local machine, so that the full documents is not disclosed and only the

few pieces of information necessary for establishing the connection could be

exchanged. We have also studied a similar problem and reached a similar

conclusion on the suitability of agents for the task [68].

Although history proved Foner wrong regarding the dispositions of users

towards privacy, in that apparently most people do not seem to care about

the confidentiality of the data they provide until some incident occurs, he was

absolutely right in that users should have been concerned with such issues.

For similar reasons, we created our own distributed privacy-aware OSN [72].

In more recent years, other works considered the development of multi-

3http://www.eweek.com/c/a/Messaging-and-Collaboration/
LinkedIn-Buys-Rapportive-Gmail-Contact-Plugin-208870/

http://www.eweek.com/c/a/Messaging-and-Collaboration/LinkedIn-Buys-Rapportive-Gmail-Contact-Plugin-208870/
http://www.eweek.com/c/a/Messaging-and-Collaboration/LinkedIn-Buys-Rapportive-Gmail-Contact-Plugin-208870/
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agent recommender systems. For example, Gursel et al. [86] applied the ideas

to photo searching and recommendations for the popular social networking

system flickr.com. Other works used MAS technologies in social networking

contexts. Walter et al. present a model of a recommender system based on

social networks, autonomous agents and trust relationships [184]. The aim is

to both reach information not available in close nodes and filter information to

be processed. The system is analyzed with varying network density, preference

heterogeneity and knowledge sparseness.

Although, many MAS focus on specific aspects of OSNs, virtually no major

social networking platform is based entirely on multi-agent systems. Even in

the contexts where the relatively lower operative costs could ease the adoption

of the systems [22], agent-based solutions are not widely adopted.

Among the research works, MAgNet [17] is a multi-agent system built

using JADE [20] and FOAF [31]. It is a prototype application providing social

oriented services to mobile users, i.e. defining groups of users and arranging

group events.

Another distributed social networking system was being built in Japan

roughly 10 years earlier. Hattori et al. [91] deal with network communities

and not specifically with social networks; however, their definition of network

community as a collection of personal units, community agent(s), and the set

of relations between them, is in fact also a definition for a social network.

Hattori et al. system is composed of many personal units, each consisting

of a user and a personal agent. Each personal agent helps the user by gath-

ering and exchanging information, visualizing contexts, and recommending or

assisting the user in making a choice. All the agents in the system cooperate

and act as a unit, with the users being the central figures. The community

agents have the function of providing shared information, knowledge, or con-

texts within the community and act as mediators for informal communications

between people.

The ideas expressed in the paper have been implemented in a first version

of a prototype called “Community Organizer”. The main difference between
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the prototype and the system described so far is that the actual system has just

one (essentially centralized) community agent, which essentially means the im-

plemented system was a centralized system. On the other hand, Shine (SHared

INternet Environment) [197] is a fully Peer-to-Peer (P2P) framework for net-

work community support. The framework also provides design guidelines and

enables different applications to share program components and cooperate and

features a peer-to-peer architecture through which personal agents can flexibly

form communities where users can exchange information with peer agents.

Not dissimilarly from “Community Organizer”, Shine provides a personal

agent to each user and several core modules compose each agent: Person

database, plan execution module and communication module. In addition,

one or more applications are installed in each agent. These applications pro-

vide their services to the user using functionalities of the core modules via an

API.

All considered, we feel there is a huge disproportion in the number of MAS

that implement specific aspects of OSN and those that implement the whole

system. On the other hand, many non agent-based distributed systems are be-

ing created [5, 33, 34, 42, 72, 75, 83]. While some aspects of a full-fledged social

networking platform are suitable for agent-based programming, for other as-

pects the advantages are relatively minor and more traditional techniques are

as successful. All considered, probably the most promising route is developing

hybrid systems in which agents are used where they can shine and other tech-

niques are used were agency is not necessary. We adopted a similar approach

for our own work [72]





Chapter 4

Agent-based Modeling and

Simulation

ABM is a very powerful technique that has been applied increasingly often in

the last years in a variety of different contexts. Examples of those contexts

are (i) social sciences [11,13,53–55,108,123], (ii) economy [8,14,56], and mar-

keting [146], (iii) epidemics and medicine [15,35,62], (iv) archeology [45,109],

and (v) warfare [92,97,131].

However, agent-based modeling is more than a simulation technique that is

appropriate for inherently complex problems: agent-based modeling is a cogni-

tive approach to science. In Section 4.1, this point of view and the epistemolog-

ical foundations of agent-based modeling are laid out; agent-based modeling is

also compared with traditional equation-based modeling. After discussing in

Section 4.2 how agent-based models should be designed, in Section 4.3 agent-

based modeling is discussed in the context of social sciences and then, in

Section 4.4, some successful agent based models related to social networks are

presented. Eventually, in Section 4.5 the more popular tools for agent-based

simulation are compared. These tools will be compared with the one developed

in this work in Chapter 6.
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4.1 Epistemological foundations of Agent-based

Modeling

In ABM the subject of the modeling is described in terms of a collection of

autonomous decision-making unit, called agents, that are grouped together to

form an agent-based model. Each agent individually assesses the situation and

makes its own decision. A model consists of a group of agents, their individual

behaviors and their mutual relationships.

The ideas behind agent-based modeling are rather simple: the decision

process is decentralized and distributed among the simulated unit, which are

basically given the same information their real counterparts have. Moreover,

the interactions among the agents tend to be simple and somewhat limited.

Simpler interactions are usually easier to factor out from the system to model

and, moreover, often agents formally act under the hypothesis of bounded

rationality [170], i.e., they are limited (i) by the information they have, (ii) by

their cognitive abilities, and (iii) by the finite amount of time available to

reach a decision.

Nonetheless, self-organization, patterns, structures and behaviors that have

not been explicitly programmed arise from the individual interactions. In fact,

emergence is one of the most peculiar features of ABM. Essentially, the whole

point of ABM is studying the emergence of the macro-level features of interest

from the explicitly programmed micro-level interactions.

The intuitive notion of emergence, i.e., the manifestation of some property

that seems to appear spontaneously in the system, is not hard to grasp and

is quite a fascinating idea. Consequently, the notion has been often abused in

contexts where it is not appropriate and, most of the times, is not defined at

all. Researchers, such as Epstein and Axtell [56], and Axerlrod [10] frame the

context of emergence defining an emergent phenomenon as a stable macro-

scopic pattern arising from the local interactions of the agents.

We care to stress the part where in the definition the cause of the phe-

nomenon is given in the interactions of the agents: for example, let us consider
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a simulation of the migrations of birds around the world. A careful modeler

would encode the global wind patterns of each region of interest, perhaps

in the environment, see Section 4.2. According to Thorup et al. [179] older

birds of prey are better at correcting the wind drift than juvenile ones. An

agent-based simulation could easily take into account the individual abilities

to correct wind drifts. However, if the simulation showed some large scale ef-

fect, e.g., that there are different wintering areas for juveniles and elder birds,

such phenomenon could not be called “emergent”, because it does not arise

from the interactions of the agents, but only on their “individual features”.

On the other hand, in the classic ant colony optimization problem, where

a minimum path between the colony and a source of food is found, it is the

interaction of the ants by leaving appropriate pheromone that elaborates a

short path. That is an emergent effect: the minimizing effect is not encoded

in the ant “program”, it emerges from their interaction.

Another important consideration with emergence, is that perfect knowl-

edge of the micro-level interactions does not allow to predict macroscopic

structure, so emergece cannot be usually predicted. However, agent-based

models specified in terms of micro-level interactions can be executed so that

the macro-level structure can be actually observed.

In fact, agent-based modeling is more than just a modeling and simula-

tion technique. Agent-based modeling is an epistemological paradigm shift is

the way science is done. Traditional sciences usually follow (i) a deductive ap-

proach, where phenomena explanations are deduced from more general rules,

assumed correct, (ii) an inductive approach, where the explanations are in-

ferred from repeated observations, or, perhaps, (iii) a combination of the two.

On the other hand, the question of the scientist using ABM is:

“How could the decentralized local interactions of heterogeneous

autonomous agents generate the given regularity?” [53]

Epstein proposes to use the term generative to characterize this approach.

He also discusses the epistemological soundness of the proposed approach [53].

A full discussion of the subject, even if fascinating, is beyond the scope of this
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work. For our purposes, it is sufficient to say that in the generative method,

demonstration obtained with ABM is taken as a necessary condition. In other

words, if the agent-based model did not generate the desired phenomenon, then

the modeled interactions do not explain the phenomenon itself. However, if the

modeled interactions generate the expected emergent behavior, then they are

only a candidate explanation. If more than one candidate explanations exist,

additional care should be exercised to determine which explanation is the most

tenable, typically considering the plausibility of the explanation and resorting

to the same ideas used when proposing a hypothesis in inductive science, e.g.,

Ockham’s razor.

Another important consideration regarding the relations between agent-

based models and the propositions we can derive from their execution shall be

made. Let M be an agent-based model and let v be a tuple of parameters that

are suitable for M to be run and let V be the set of the suitable tuples. Example

of such parameters can be the number of units to be simulated, positions of

objects in the simulation or a relevant parameter determining the behavior

of some agents. Then we indicate with Mpvq the result of running model M

with starting parameters v. Moreover, let P pxq be a proposition on the result

of the simulation, so that P pMpvqq is either true or false and let P pMpv̂qq

be true. The question is which components of v̂ can be varied and how much

without making P false. This kind of problems arises quite often in different

forms: (i) does a given phenomenon arise only for populations above/below a

given threshold?; (ii) in which range of a given parameter α a certain property

emerges?; (iii) before how much time does it emerge?; (iv) after how much

time does it disappear, if it does?

Some instances of the problem are essentially non-existent in equation-

based modeling. A lot of research has been made on solving differential equa-

tions depending on some initial parameters, and, excluding problems inherent

with the complexity of the model itself, are well studied problems. Similarly,

it may be easier to determine if a given property is present eventually, both

in the case when the population goes to infinity or when time goes to infin-
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ity. However, other problems are harder with equations: e.g., studying finite

but non-statical populations or studying transient properties that appear but

eventually disappear.

The key difference is that, for an agent-based model, the execution con-

stitutes the “solution”, and, as a consequence, the modeler can easily inspect

the whole dynamic history of the system. This property of ABM is especially

relevant in the context of social sciences, where many interesting processes

are known to reach equilibrium only after disproportionately large amounts of

time [14].

Although studying the system at the equilibrium remains an interesting

problem, real societies are generally in the turbulent step before the equilib-

rium is reached and, moreover, perturbing factors are likely to emerge after

a while, so that analysis cannot consider too large period of times without

modeling the insurgence of such factors.

Another problem is that some concepts are very hard to consider in equa-

tion based modeling altogether. For example, “rational behavior” or any other

kind of decision process that results in non-continuous variations of the agent

externally perceivable state are very hard to model. Moreover, the notion of

environment and position also increases the number of variables to consider

and, potentially, introduces constraints on the problem. Eventually, model-

ing heterogeneous units with equations is a generally hard problem, because

“individuality” is inherently hard to model.

All these factors together define an ample category of problems where ABM

is not necessarily superior to equation-based modeling, but certainly is easier

to develop.

4.2 Structuring Agent-based Models

In this Section we describe the main features of an agent-based model. A

generic agent-based model has three main elements: (a) a set of agents, with

their individual attributes (from now on referred to as state) and behavior ;
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(b) a set of agent relationships and interactions, that is essentially defined by

a topology ; and (c) the agent environment.

As the agents described in Chapter 3, agents in ABM have the capability

to act autonomously. However, the notion of autonomy in ABM is significantly

different to that considered in Chapter 3. In fact, there is a distinction between

being autonomous and simulating an autonomous being; typically simulation

have rules concerning time-flow, for example, that impose constraints on the

agents that are no longer completely autonomous. Drogul [49] arrives to the

conclusion that agent-based modeling is not agent-based programming in the

sense discussed in Chapter 3.

Regardless of their autonomy level, agents can modify the environment

and communicate with the other agent. An agent is essentially self-contained

and has a boundary that clearly indicates what is part of the agent and what

is not. Moreover, any change to an agent internal state is mediated by the

agent itself.

Features often present in ABM are adaptivity, goal-directedness and het-

erogeneity. Adaptivity is essentially the capacity of the agent to change its

own behavior according to external stimuli. A goal-directed agent may seem

similar to an adaptive agent, since (i) it evaluates its performance according

to given criteria, and (ii) it modifies its behavior to meet the goals. However,

the difference is that it could only be able to vary some parameters and it

does not necessarily have the ability (i) to reason about the rules governing its

behavior and (ii) to possibly change them. On the other hand, being adaptive

does not mean having goals to pursue. An agent can also be both adaptive and

goal directed. As for heterogeneity, in many simulations, agent have different

behaviors, different goals, different parameters and abilities. They are, in fact,

different individuals.

An important design principle in ABM is that information should be local

to the individual agents. There are no central authorities or repositories of

knowledge. Moreover, the agents interact only with their neighbors according

to the underlying topology.
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Some ABMs imply a grid topology or other regular structures that clearly

define the neighborhood. Other simulations use a more general network topol-

ogy to determine the neighborhood relationships. Eventually, some of the most

complex models have a virtual “real” environment determining the topology.

The agents are free to roam in the environment and position their relative

position determines the notion of neighborhood.

An example of such complex model is the Artificial Anasazi project [45].

The project goal is to reproduce spatial and demographic features of the

Anasazi population from about A.D. 800 to 1300. In the model, the agents rep-

resented individual households, and the environment was reconstructed from

paleoenvironmental records.

The environment is an important element in agent-based simulations, con-

sidering that it provides not only the conditions under which an agent exists,

but it also provides, as communication environment, principles, processes and

structures that enable information exchange among agents. When agents in-

teract in a coordinate manner, it becomes a social environment [147].

As for the topology, different models have radically different notions of en-

vironment. An environment typically bidirectionally interacts with the agents

and is essentially stateful. Environments range from simple means of com-

munication, like, for example, that of ant colony simulations, or have a more

crucial role, like the already mentioned Anasazi model.

In fact, we are mostly interested in ABM for social networks and, then, a

few propositions are in order. The first is that a terminological ambiguity arises

between the agent relationships mentioned in the (b) item at the beginning of

the Section, that we call system-level relationships henceforth, and the actual

relationships that are in the social network (network-level relationships or

links). Although agents that are linked in the network do also have a system

level relationship (i.e., being linked in the network), the opposite does not

hold.

The second issue to discuss is the nature of the environment topology,

which is either (i) a fully-connected graph where each agent can communicate



50 Chapter 4. Agent-based Modeling and Simulation

with any other agent, as is the case, for example, of network formation models,

or (ii) the social network itself, that determines the communication channels

among the agents.

As a consequence, even though proper agent-based models should allow

only “local” (according to the environment, i.e., neighborhood relation ac-

cording to the topology), for many interesting simulations it is required to

allow direct communication among non-neighboring agents. Simulations in-

volving weak links [84] are a typical example, in that weak link formation is

not easily simulated with only local interactions.

Eventually, we think that from the agent-oriented perspective, the true en-

vironment for any social network simulation is a representation of the network

itself, because agents exist only as nodes situated the network; moreover, for

most processes the network is also the vehicle for information spreading and,

eventually, the social environment where agents meet.

4.3 Agent-Based Modeling for Social Simulations

Even simple models can exhibit complex behavior patterns and can provide

valuable information about the dynamics of the real-world system they simu-

late. In addition, models are often important for the unanticipated behaviors

they allow to emerge.

Agent-Based Social Simulation (ABSS) [120] is an application field that

has rapidly grown over the past few years as a specialized instantiation of

ABM. With no loss of generality, we can say that ABSS is about using models

of societies of agents, transferring such models to running software, observ-

ing the behaviors of the realized societies, and translating, if possible, such

observations into quantitative data meant to support statistical analysis.

ABSS is well-founded on an epistemological level by the assumption that

synthetic data enables the construction of theories that can be used to tackle

real problems. ABSS does not simply try to reproduce phenomena that are
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met in the real world; it also creates virtual scenarios that can give relevant

understanding of related, yet possibly not observable, real world situations.

From a theoretical point of view, ABSS relies on the integration of several

well known and appreciated theories, e.g., the theories of dynamic systems,

of cellular automata, and obviously the theories of agents and multi-agent

systems. ABSS uses such theories to formally characterize how diverse concepts

used to describe social phenomena, e.g., individuals, groups and coalitions,

interact and it enables the formal study of emergent phenomena.

Unlike rational decision theory, which is still often used to formally char-

acterize social phenomena, ABSS is based on the following assumptions on

agents:

– Heterogeneity: they are all different behaviorally;

– Complexity: they all have internal knowledge and regulatory mechanisms

with varying degrees of complexity;

– Adaptability: they are capable of learning on the basis of external events;

– Flexibility: they are capable of a diversified response to variations in

the external conditions, and they are capable of desisting from useless

and/or (self-)destructive behavior;

– Versatility: they possess a strategy and complex rules that enhance the

agents’ efficiency and multipurpose nature.

From a methodological standpoint, ABSS is an exploratory-experimental

technique based on a computational approach that aims at: (i) providing a

rapid and efficient demonstration of the properties and performances of an ar-

tificial system; (ii) displaying in silico the effects of an artificial world including

dynamic manipulation of the system’s characteristics and the recording of the

effects of such changes.

4.4 ABMs of Social Networks: state of the art

In this Section we review in a brief and yet formal way some agent-based

models relative to social networks; we selected the models because of their
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close relation to some of the most important aspects of ABM we discussed in

this Chapter and we develop in our approach, presented in Chapter 5

The first model deals with social network formation using a game theoretic

approach. The original analysis was performed analytically computing the

stable states of the system [99]. The model has been later formulated as an

ABM [95] and some additional facts were discovered that completed the study

of the model.

The second model considered describes a bi-modal network of develop-

ers and open source projects. The most interesting aspect is that the agent-

behavior has been specified directly using really observed micro-level interac-

tions. Equation based modeling, for example, would have required additional

work in singling out the general laws from the raw data.

Then, we review a seminal work that used social networks to improve the

performance of a then popular P2P network. In order to assess the effectiveness

of the proposed method, the authors performed extensive simulations. The

main link with our own work is the usage of simulations to experimentally

evaluate the design of P2P systems without needing a large number of users

to adopt the proposed systems (Chapter 7).

Subsequently, we briefly considers the issue of trust management in social

networks using agent-based modeling. Finally, we reconnect to the problem of

referral systems we already discussed in Section 3.4 in the engineering context

of multi-agent systems. In this case, however, agents are not only a software

engineering technique, but a tool to assess the effectiveness of algorithms in

various contexts.

Utility based model for network formation

In Section 4.1 we discussed at length of the different approach and results

that can be expected using either ABM or equation-based modeling. Here we

show how when the two approaches are combined, interesting results can be

achieved.
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A clear example of the stress on dynamic properties of agent-based simu-

lations with respect to traditional mathematical analysis can be found in the

contributions (both theoretical and practical) that Hummon [95] made in the

field of modeling social network formation using game theoretic techniques.

In Section 2.3 we reviewed some social network formation models that

evolved a social network using random processes. An alternative approach

is that of specifying a utility function that should be maximized during the

network formation process. Here the term utility is used in the sense of game

theory: the process is essentially formulated as a game where the nodes are

the players and their moves are (i) the creation or (ii) the severing of any

edge.

More formally, let V be a set of players and let G “ pV,Eq be a network

of players. These players can establish a connection with any other player,

and we say they are immediately connected. E is the set of such immediate

connections. Connections are symmetric. A player cannot form a connection

with himself.

If there is a path of length k between i and j, then
`

Ak
˘

ij
ą 0; if for any

k ą 1
`

Ak
˘

ij
ą 0, then i and j are indirectly connected.

A network G “ pV,Eq is efficient relative to the profile of utility functions

pui, . . . , unq if:

UpGq “
ÿ

i

uipGq ě
ÿ

i

uipG
1q “ UpG1q (4.1)

for any G1 “ pV,E1q. Efficiency is essentially an optimality property.

Let b : t1, . . . , n ´ 1u Ñ R be the net benefit that a player receives from

(indirect) connections as a function of distance between the players. Let lij

be the shortest path length between the players i and j. Let ki be the degree

of player i, i.e., the number of his connections, and let c be a constant. The

distance-based utility model is one in which a player’s utility is:

ui “
ÿ

i‰j

bplijq ´ kic if there is a path between i and j (4.2)
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Figure 4.1: Optimality transition of utility functions for three networks shapes
(5 nodes) (see Theorem 1). The thick solid line represents the best achievable
utility value.

We also require the following conditions to be true:

bpkq ą bpk ` 1q ą 0 @k P t1, . . . u (4.3a)

c ą 0 (4.3b)

b P C2 (4.3c)

This model was originally proposed by Jackson and Wolinsky [99] to in-

vestigate the formation of social and economic networks from the economical

point of view of the “utility” that people receive from being connected with

other people. Their main results are summarized in the following theorem and

are visually presented in Figure 4.1.
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Theorem 1 (Jackson-Wolinsky). The unique efficient network structure in

the distance-based utility model is:

1. the complete network if bp2q ă bp1q ´ c

2. a star encompassing all nodes if bp1q ´ bp2q ă c ă bp1q ` n´2
2 bp2q

3. the empty network if bp1q ` n´2
2 bp2q ă c.

Theorem 1 determines the optimal network for any value of the cost factor

c. However, the question whether a society is actually able to converge in

such network structures remain unanswered. On the other hand, Hummon

[95] created a multi-agent simulation based on the same model model. The

formation of a link requires the consent of both parties involved, but the

severance can be done unilaterally. Essentially, this means that any tie must

not decrease the utility of any involved actor. Ideally, the network would evolve

into an optimal shape according to the specified value of c.

Since Hummon was able to study the system dynamically, he was able to

observe that under a wide range of parameter values, group structures first

form star-like structures and then they may transform to other more complete

structures. This is coherent with observation in human groups.

However, an even more important result was the discovery of some equi-

libria not present in the theoretical analysis of Jackson and Wolinksy. This

discrepancy is studied and explained by Doreian and by Xie [47,48,196]. Such

equilibria are not Pareto efficient, thus are not considered by Theorem 1,

nonetheless the agents have no way to move towards another state. The issue

is that agents can only take greedy decisions because of bounded rational-

ity [170]: in order to evolve the system towards a more efficient equilibrium

the agents would require global knowledge of the system and the ability to

plan the evolution globally.

This result is especially relevant because while Theorem 1 identifies the

optimal network configurations, the agent-based simulation tries to achieve

an optimal configuration from the bottom up. The new equilibria found by

Hummon indicate that without a global plan, as is the case in real societies,

the optimal configurations are not always achieved.
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A social network of open source developers

Another archetypal example of multi-agent simulation used to understand so-

cial networks can be found in the work of Madey et al. [124]. Here the social

network taken into account is the collaboration network of open source and free

software developers on Sourceforge1. The considered social network consists of

a collection of global virtual self-organizing teams of software developers. Two

developers are linked if they are members of the same project; this means that

each project yields a group.

The empirical collected data spans over more than 24 months of snapshot

data of developers and project statistics between January 2001 and May 2003.

The number of projects considered is over 120.000. Each developer and project

has a unique id. Developers and projects also have a degree: for a developer, it

is the number of project he contributed to, for projects it is the number of con-

tributors. It appears that both degrees follow power-law distributions. Growth

of projects and the number of participating developers has been extracted in

order to parameterize simulation with reasonable values.

Each developer has been modeled with an agent. The agents can create,

join or abandon a project each day or continue their current collaborations.

The probability for each of these actions has been calculated from the orig-

inal corpus of data. The original simulation has been performed using the

Swarm toolkit [129] (a brief review of Swarm and other agent-based simula-

tion systems used in the field of social network systems is given later in this

chapter). The simulation has been run with different behavioral patterns of

the developers and the model was improved in multiple steps in order to better

approximate the real data, until the model was actually able to simulate the

real process.

1www.sourceforge.net

www.sourceforge.net
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P2P Systems using SN to improve performance

A completely different agent-based simulation using social networks is de-

scribed by Upadrashta et al. [183]. The authors notice how the then-popular

Gnutella peer-to-peer system is inefficient with regards to the number of mes-

sages exchanged between nodes to perform queries. Their claim is that the

phenomenon is due to the fact that the nodes do not remember who has in-

terest similar to theirs and consequently is more likely to host files of interest.

In order to prove their claim, they constructed an agent-based simulation,

where each agent stands for a network node. Each agent constructs a model of

his social network based on the answers it received from previous queries. The

constructed social network is then employed to preferentially query agents,

which are believed to possess the required file with a higher probability. The

simulation proved that their claim was correct, since social network directed

query have been observed to be much more efficient in terms of exchanged

messages.

This example shows how agent-based simulations may be of interest to

unveil or to better substantiate laws that rule the behavior of complex social

networks.

Trust network simulation

The concepts of reputation and trust are hot topics in multi-agent systems.

Dealing with open systems where agents come from heterogeneous sources, it is

important to develop models of trust in a similar way to what people actually

do in real life. For the general problem of trust and reputation in distributed

settings we refer to the work of Huynh, Jennings and Shadbolt [96]. Instead,

we focus on the approach described in [163]. The authors combine different

dimensions of reputation. In this Section we are mostly concerned with the

individual dimension and the social dimension. The individual dimension of

reputation is related to the actual interactions between two agents. However,

in open system it is very easy for two agents to have never interacted before. In
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this case, the only mean to compute the reputation is using each agent social

network. Perhaps agent a does not know anything about agent c, but knows

agent b who does. This way the social network is used to attribute reputation

values to unknown agents. An experimentation tool called Regret based on

the aforementioned ideas is considered at the end of the paper.

Referral system simulations

In Section 3.4 we discussed how multi-agent systems have been used to success-

fully implement referral systems. The distributed nature of MAS is well-suited

to search for expertise in open and dynamic contexts. A related question is the

choice of algorithms to propagate the query in order to receive an appropriate

answer, quickly and without flooding the network.

Agents can also be helpful doubling their role as simulation entities and

components of a multi-agent system. In other words, it is possible to create

a simulations were agents model the behavior of software agents. Zhang and

Ackerman [204] created such model in order to investigate the performance of

search algorithms in the referral context.

Among the reviewed algorithms we find the classical Breadth First Search

(BFS), as well as the “best-connected” heuristic (BCS) suggested by Adamic

and Adar [2], and Yu and Singh algorithm [201] and described in Section 3.4.

The parameters taken into account were the success rate (very high with

every algorithm), the number of agents “bothered” with each query, the length

of the average query path and the labor distribution (that is to say the num-

ber of times each agent has been bothered). The simulation was performed

both with and without “weak-ties”. The results showed that in a corporate

environment (the Enron body of emails was employed for the simulation) the

BCS strategy was very successful.
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4.5 Tools for Agent-based Modeling

While many agent-based models use ad hoc systems created on top of agent

based platforms such as Jade, the cost is often considered prohibitive and

dedicated toolkits are used. This Section presents the state of the art of agent-

based modeling toolkits. Our own project is presented in Chapter 6.

The first reviewed toolkit is Swarm [129], which is also the oldest system

chronologically. In Swarm the model consists of a collection of independent

agents interacting via discrete events. A collection of agents plus a schedule

constitutes a swarm. A swarm is also an agent and in this case the agent’s

behavior is determined by the emergent phenomena of the agents inside its

warm. There is no limit to the level of nesting. Each swarm agent can also

“own” swarms, that is to say that it can make decision based on simulations

he performs. In order to set up the simulation, the researcher must write

the behavior of the single agents, i.e., write Objective-C classes describing the

agent, with methods describing the available actions. The actual agents are the

instances of the classes. Moreover, Swarm offers “probe” facilities in order to

observe each aspect of the computation. Swarm also has a Java layer allowing

the use of Java to write the agents.

Another important simulation toolkit is MASON [121]. Mason is described

by the authors as a fast, easily extensible, discrete-event multi-agent simulation

toolkit in Java, designed to serve as the basis for a wide range of multi-agent

simulation tasks ranging from swarm robotics to machine learning to social

complexity environments. A comparison among Mason, Swarm and RePast

is also available in their paper [121].It is worth noting that MASON has a

specific module to perform social network analysis.

NetLogo [180] is a multi-agent programming language and modeling en-

vironment for simulating natural and social phenomena. NetLogo can be de-

scribed as Logo with agents, which are akin to the famous Logo turtle; the

programmer can specify the behavior of the turtles and there are special ob-

server agents, which can both observe emergent behaviors and issue commands
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to the turtles. NetLogo comes with a wide selection of pre-built modules.

NetLogo focuses on the 2-dimensional grid topology, which is useful for

many simulations, but not particularly relevant in our domain. While it is

possible to simulate a different topology, many of the powerful features of the

toolkit are created with the 2D grid topology in mind.

Another problem we have found with NetLogo is that the visualization

of models tends to leak in the rest of the model. Moreover, the visualization

features are closely related to the idea of moving turtles on the grid, which

feels awkward in case of social networks. For example in the demonstrative

models about social networks provided with NetLogo, node-turtles “walk” on

the grid while the simulation progresses just to present a visualization of the

social network. On the other hand, if visualization is required, social network

analysis packages (e.g., NetworkX [87]) offer easier to use, more efficient and

more scalable alternatives.

Eventually, although we agree that agent-based simulations benefit from

a custom language, we feel that the NetLogo language lacks: (i) many in-

teresting features found in general purpose languages that may be useful to

implement algorithms and (ii) useful libraries (e.g., proper social network anal-

ysis toolkits, statistical toolkits). In fact, using network analytic or statistical

techniques is hardly uncommon inside a model, and many of these algorithms

may well be as complicated to implement as the simulation itself, especially

considering that NetLogo is also aimed at non-programmers. An extension to

NetLogo [178] allows to communicate with an R2 process to perform analysis,

but we think that easier solutions can be provided using just one language.

RePast [144] is another agent-based simulator. RePast was initially a li-

brary of Java classes interacting and simplifying Swarm, and now has grown

to an independent toolkit, with its own class library, visual modeler and visu-

alizers. RePast agents can be written in Java, C# or a Python-like language.

RePast is especially strong in its support for networks (and specifically social

networks).

2http://www.r-project.org/

http://www.r-project.org/
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Currently, RePast evolved in RePast Symphony [145]. RePast Symphony

models can be written in Java, which remains the main implementation lan-

guage, using flowcharts or in Groovy. Moreover, there is a NetLogo inspired

language called ReLogo, that is essentially a internal domain specific language

implemented in Groovy. For a discussion of domain specific languages, we refer

to Section 6.2. ReLogo is created with the 2D Grid in mind that was made

popular by NetLogo and according to Lytinen [122], it does not interoperate

well with the rest of the RePast framework.

To conclude, Mason, RePast, and Swarm are mostly libraries or frameworks

for general purpose languages (Java for Mason and RePast and Objective-C or

Java for Swarm) and this is a clear advantage when interfacing with external

libraries (e.g., the statistics or network analytic packages we already men-

tioned), to the point that RePast, for example, already provides integration

with Jung, a popular Java library for network and graph analysis. However,

the integration layer is, in our opinion, very basic, although user friendly.

All considered, those systems are relatively difficult to learn because they

have rich and elaborate API [157]. Simulations are software projects typically

split in more files and require quite a lot of boilerplate code, since they are

written in Java (or Objective-C). We feel that although such complexity is

needed to cope with the general case of agent-based simulations, restricting

the domain greatly helps in keeping things relatively simple and allows for

simpler tools. Moreover, the integration with different libraries, when not al-

ready provided, may be not as easy for people without a strong programming

background, especially because correctly hooking into a complex framework is

not particularly easy task.

This considerations suggested us the development of a new tool for ABM

that we named PyNetSYM and that is described in Chapter 6.





Chapter 5

Social Network Simulations as

Multi-Agent Systems

In the last sixty years of research, several models have been proposed to ex-

plain (i) the formation and (ii) the evolution of networks, or, more in general,

(iii) various kinds of processes over networks.

Such models have been developed and studied by researchers coming from

many different areas, such as computer science, economics, natural sciences,

meteorology, medicine, pure or applied mathematics, sociology and statistics.

As a consequence, a lot of material exists on the subject and it is beyond the

scope of this work to review and analyze it thoroughly; we refer to Jackson

for the economic and game-theoretic point of view [98], and to Snijders for

a complete review of the state of art of statistical models [173]; in Section

2.3, we focus on the methods and models originated in computer, natural and

physical sciences.

Several agent-based models have also been successfully developed in order

to study specific problems that, because of either (i) the complexity of the

agent to agent interactions, or (ii) the richness of the underlying environment,

were relatively impervious to analysis using traditional techniques [8, 14, 15,

35,45,56,62,92,97,109,131,146].
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However, because of the specialization required for the problems, most

of the agent-bases models are not general. On the other hand, many of the

traditional models focus on elementary interactions that are often part of

several different processes, and, consequently, the effects of these elementary

interactions have been thoroughly studied.

We believe that such interactions should be introduced as basic building

blocks even for agent-based models, enriched with more “agent-ness” when

it is the case. However, several assumptions that are perfectly legitimate in

a stochastic process are not well rendered in an agent-based model. More-

over, many considerations that we derive from the conversion from traditional

stochastic to agent-based models are similar to the ones that should be made

by implementing the stochastic model in a generic non agent-based concurrent

environment.

In Sections 5.1 and 5.2 we focus on the description of the issues we found

in interpreting the traditional models as agent-based ones; we also present

a novel meta-model that we singled out from the study of several stochastic

models; our meta-model can be used to (i) easily convert stochastic models to

agent-based, and (ii) easily devise new fully agent-based models with minimal

effort. In Section 5.3 we show some interesting experimental results on our

approach to the transition. Eventually, in Section 5.4 we fit some popular

models meta-model as examples.

5.1 Towards Agent-based Models

The models presented in Section 2.3 and many other important network mod-

els, such as SIR/SI epidemic models [150], are successful in modeling the de-

sired macro-level phenomenon using only micro-level interactions. From the

epistemological point of view, they are kin to agent-based models; however,

they are formulated as stochastic Markov processes, and make very strong as-

sumptions, such as (i) uniformity of node behavior, (ii) lack of memory, and,

consequently, (iii) also uniformity of behavior in time.
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As for uniformity, these models assume that all the nodes behave accord-

ing to the same probability distribution (or to a small set of probability dis-

tributions, that entirely encompass the node behavior). The problem of lack

of memory is that what occurs at each step si of the simulation essentially

depends only on the state of the network at step si´1, disregarding how the

network arrived in that state. Moreover, most of the studied properties are de-

rived mathematically at the thermodynamic limit, even if the real populations

are typically too small to be discussed by using thermodynamic arguments.

Part of the issue is also that the processes that drive real social networks

are likely to be far more complex than those employed in the models, and

we do not really want to assume that the premises we adopted for the sake

of mathematical tractability are actually true in real (and finite-sized) pop-

ulations. However, some of the individual micro-level interactions have been

observed in human societies (preferential attachment, transitive linking) and

are a realistic element of human interactions.

On the other hand, agent-based models can express the variety of human

behavior and heterogeneity more easily. Moreover, agent-based models natu-

rally deal with finite-sized population, and, in fact, can only deal with finite-

sized populations, so that properties at thermodynamic limits may only be

approximated. Eventually, as we discussed in Section 4.1, agent-based mod-

els can be studied during the whole system evolution, and not only at the

equilibrium.

Unfortunately, each agent-based model tends to be an ad-hoc construc-

tion specifically tailored for a research problem, which yields advantages and

disadvantages. As a consequence, no agent-based model has been extensively

studied as the traditional models and, because of its nature, is probably imper-

vious to general studies. Moreover, a thorough study of an agent-based model

is not even meaningful outside the specific phenomenon it was tailor-made to

model. In this sense, many of the traditional models are, in essence, far more

general and could be used in many different fields.

All considered, we think it is interesting to devise procedures to fit the well-
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Figure 5.1: Interaction diagram of the main agents in the meta-model.

studied stochastic models in an agent-based scenario. Consequently it becomes

possible to start from well studied building blocks and gradually remove some

or all the assumptions that were originally made, and, eventually, adding novel

features or combining more basic interactions to form richer processes.

A meta-model for agent-based models of social networks

In order to simplify (i) the creation of new agent-based models and (ii) the

adaptation of traditional models into agent-based ones, we designed a con-

ceptual framework that separates the various concerns and allows to write

simulations with few lines of code [25,70].

Analyzing the traditional models described in Section 2.3 as well as some

other non-generative network processes, such as the infection diffusion models

described by Pastor-Satorras and Vespignani [150], we singled out a meta-

model that is suitable to implement said models as agent-based models. The

meta-model also allows for features typical of agent-based models to be intro-

duced gradually and to added to the agent-based variants of the traditional

models.

Since in many simulations the nodes do not have a pro-active, goal-directed

behavior, but, instead, perform actions when required by the model, we pro-
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vide the meta-model with a Clock and a special agent called Activator. The

Clock beats the time, which is discrete. At each step, the Activator selects

(i) which nodes to activate, and (ii) decides whether nodes shall be destroyed,

or (iii) created, negotiating the eventuality with the NodeManager. The nodes

execute actions after receiving the activation message. However, if the model

is fully agent-oriented, they can also perform actions autonomously, without

waiting for activation. The nodes can also leave the simulation, require the

creation of other agents, and send messages to the other nodes. The general

structure of the execution phase is presented in Figure 5.1.

In essence, a simulation is fully described providing the specifications of:

(i) the selection process of the groups of nodes to create, activate or destroy,

which is performed by the Activator agent; (ii) the behavior of the nodes

themselves Notice that the general structure does not change significantly

even when introducing some agent-ness in the simulations, e.g., introducing

goal-directed behavior.

The problem of time in distributed systems

In order to implement the stochastic models as agent-based, care must be

taken, as it occurs in any generically concurrent implementation. In fact, in

order to properly study inherently large scale social phenomena such as social

networking sites or, more generally, social media, it is extremely desirable to

distribute the computations, and to move towards massively concurrent im-

plementations. As a consequence, the considerations we draw in this Chapter

apply to both agent-based computing and, more generally, to high-performance

distributed computing.

In fact, the notion and representation of time is a very crucial difference

between stochastic models and agent-based models. Time in stochastic mod-

els is represented as the flow of discrete, strictly sequential and distinct steps,

and during each step all the events are instantaneous and similarly the con-

sequences of their actions are immediate. With “event” we indicate anything

that is relevant for the model, such as taking a decision in a given world state,
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or establishing a new link. If the model has its notion of time, model-time ad-

vancement is an “event” itself; in fact, in the case of consequences that occur

at a later time, are events both (i) the actual occurrence and (ii) the fact that

in a later time the consequence is bound to occur.

On the other hand, time is a very delicate matter in agent-based systems

and in distributed systems in general. In fact, in a distributed system it is

completely impossible to define a unique (linear) global time [3]. Each agent

in the system has only a local time and can order the events which occur locally

or, in other words, its own state changes. Such changes can be endogenously

generated (e.g., because it is advancing in the execution of its program) or

exogenous. In the latter case, the change can be only triggered by the recep-

tion of a message. However, the local orderings are not completely unrelated.

In fact, the causal relationships between events occurring at different agents

produce a partial order of events, the activation order.

It is worth noting that the lack of a natural total ordering among the

events does not imply that a system cannot enforce a specific total ordering.

Consider for example Cook’s hardware modification machine [52] or, more

simply, a system where a “global synchronizer” controls each and every step

of the other agents that consequently have to wait for its permission to perform

any action. It is not hard to see that such a system relates every two events

with a causal relation, so the activation order is total. However, the price is

that such an entirely synchronous system does not present the benefits of a

distributed systems.

5.2 Concurrency Issues in ABM

In Section 5.1 we discussed the problem of time in distributed systems. In

this section we assume a more practical point of view on the matter and

show to what extent the theoretical problem concretely affects a simulation.

Eventually, we discuss the BA model in a concurrent context and present some

results from an experimental evaluation.
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The models described in Section 2.3 were intended for computer simulation

from the start, albeit they were not agent-based. In fact, some of them have

been only studied by means of simulation (BPA [112] and TL [43]), while others

were subject to analytic study only at a second time (WS [187]). Eventually,

some properties were never formally proved, such as the expected clustering

coefficient of networks generated with the BA model.

The models were implemented using some imperative or, in some instances,

object oriented language and did not assume to be run in heavily concurrent

scenarios. In such languages, there is a causal relationship among all the exe-

cuted program lines and consequently the “activation order” is total.

On the other hand, agent-based languages or frameworks allow for both

asynchronous and synchronous communication. If synchronous communication

is not provided out of the box, it can be easily simulated using asynchronous

communication. With synchronous communication, both the sender and the

receiver must be ready to communicate before a message can be sent, or, in

practice, the sender waits that the receiver actually receives the communi-

cation. In other words, the “send” operation is blocking. With asynchronous

communication a message is simply sent to the receiver without further atten-

tion from the sender, that proceeds with its activities.

First, we have to consider the concurrency environment where the simu-

lation is run. The simplest case is when a single executor is available (e.g.,

single-core single computer) and when concurrency is achieved using either

preemptive or cooperative-multitasking. From our point of view, it matters

little whether the concurrent execution primitive is an operating system pro-

cess, an operating system thread or a lightweight in-process thread.

Another basic issue is whether a message handler is interruptible or not.

The distinction is especially relevant if only one executor is available: in this

case, uninterruptible handlers guarantee that the state of the world does not

change during the execution of the handler because nothing external to the

handler can occur before the handler terminated. The Actor Model, for ex-

ample, assumes that the handlers are not interruptible [3]. Uninterruptible
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handlers allow for easier reasoning on the formal properties of the system and

are not considered a serious parallelism-limiting issue, because, in general, the

handlers can be kept brief. In a cooperative lightweight threading scenario it

is very natural to implement uninterruptible handlers: the agent simply relin-

quishes control when it finishes to process a message it has previously received.

However, care should be taken in the case of preemptive multitasking.

A more general case is when multiple executors are available: as a con-

sequence, a higher amount of concurrency is available as well. Moreover, the

multiple executors could be distributed on different machines, potentially in

different physical locations. This may be the case for very large scale sim-

ulations. With multiple executors, the properties deriving from cooperative

multitasking are somewhat weaker, because in the case of multiple machines

more than one handler is executed at a time.

In this situation, every time an asynchronous message is sent, the successive

action performed by the agent may be executed in a world state where such

message has been: (i) received and processed (either entirely or partially),

(ii) received but not processed or, potentially, (iii) not even received. There

are two main implications:

– the message sender cannot predict the state of the world at the moment

in which the recipient is going to process the message;

– the message sender cannot assume that the receiver actually received the

message it just sent, nor has guarantees when it will occur.

From our point of view, it means that when we translate a sequential model

into an agent-based one, any “decision” that follows an asynchronous send

operation can find the world in a different state from that of the corresponding

sequential model.

Barabàsi-Albert model: a case study

In order to clarify this issue, we make some considerations regarding the dif-

ferent notion of time implicit in the Barabàsi-Albert Model (BA Model) [16],

and the one in an agent-based variant of the same model. We opted for the
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Barabàsi-Albert (BA) model for its simplicity and because it yields networks

with power-law degree distribution with exponent γ “ 3, which is both a very

distinctive feature and a feature that is easy to measure. Since the only prim-

itive interaction operating in a BA model is that of preferential attachment

and, since that process yields networks with said degree distributions, we can

measure whether concurrency is interfering with the preferential attachment,

once the model is executed in a concurrent environment.

Although the model is really easy to understand, we point out some de-

tails that are not important in the “traditional” scenario, but that become

extremely relevant in the concurrent setting. In the BA model, at each step:

– all the targets are chosen together, or at least, before that the network

is modified (the two strategies are indistinguishable in the mathematical

model), and

– when node ti`1 (i.e., the node created at time ti`1) is created, node ti

has already been connected with all its target agents. The choices at step

ti`1 according to the degree distribution including the new links created

at step ti.

In other words, let Cij be the time when node ti chooses its j-th target

and let M i
j be the time when the system is actually updated so that i and

its j-th target ipjq are linked. In fact, there are also the times (a) Sij , when

the message is actually sent, and (b) Rij when node ipjq receives the message.

The multiple causal relation Cij ă Sij ă Rij ă M i
j holds. However, the Ss and

the Rs times are not necessary for our analysis. Cs are read operations, Ms

are write operations. In the original BA Model (n steps, m edges per node,

henceforth indicated with BApn,mq) the following relations are true:
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1: class Node(Agent):
2: handler act():
3: ts Ð tu

4: while |ts| ă m :
5: t Ð pa(graph)
6: if t R ts :
7: ts Ð tsY ttu

8: for t in ts :
9: send(t, "link-to")

10:

11: class Activator(Agent):
12: handler run():
13: for s in 1 . . . pn´m0q :
14: node Ð create-node()
15: send(node, "act")

Figure 5.2: Agent-Based Barabàsi-Albert Model.

Cij ă Cik @i P t1, . . . , nu, if j ă k (5.1)

M i
j ă M i

k @i P t1, . . . , nu, if j ă k (5.2)

Cij ă M i
j @i P t1, . . . , nu, @j P t1, . . . ,mu (5.3)

Cij1 ă M i
j2 @i P t1, . . . , nu, @pj1, j2q P t1, . . . ,mu

2, j1 ‰ j2 (5.4)

M i
j1 ă Ci`1j2

@i P t1, . . . , nu, @pj1, j2q P t1, . . . ,mu
2, j1 ‰ j2 (5.5)

Equation 5.1 is trivially true. Considering that the model is meant sequen-

tially executed in an imperative language, also Equation 5.2 is trivially true.

Equation 5.3 expresses the causal relation between the choice of a node as the

recipient of a link and the creation of that link. Equation 5.4 indicates that in

a single step all the targets are chosen before any link is added to the network.

Equation 5.5 states that before processing step i ` 1, all the links decided in

step i must have been created.

In Figure 5.2 we present how a program implementing the model could

look like in an agent-based pseudo-language. The “pa” procedure on line 5

returns a node according to preferential attachment. In fact, depending on

the semantics of the operations and from the guarantees made by the system,
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some of the equation may not be true anymore.

For the sake of simplicity, suppose we are in the one-executor, uninterrupt-

ible handlers scenario. In this situation, once a handler is executed, no opera-

tions outside the handler occur. Nonetheless, even in this simple case, some of

the equation can be violated. When a node processes the "act" message, it

choses its targets according to preferential attachment and then it sends them

the message. Since in this case the handlers are uninterruptible, we know that

before any of these messages is processed, all of them have been sent. However,

there is no reason why the "link-to" messages should be processed exactly

in the same order in which the targets were chosen. This technically violates

Equation 5.2; nonetheless, it has little impact on the generated network.

The problem is that, in general Equation 5.5 can be also be violated,

because the Activator sends all the "act" messages together and when a node

t processes its "act" message, there are no guarantees that the "link-to"

messages sent by the previously created nodes have already been processed.

The consequences could be far more severe: in the worse case, we can

assume that all the "act" messages are processed before any "link-to"

message is. In other words, it could be that Ck˚ ă M j
˚ for all k and j. If

every selection is made before the nodes get the links, each node selects its

targets among the nodes created before it that still have the same degree and

consequently the preferential attachment selection degenerates in a random

selection. Barabasi et al. proved that the latter creates a completely different

degree distribution altogether and, effectively, it would not be a BA process

anymore [16].

With the implementation provided in Figure 5.2, Equation 5.3 and Equa-

tion 5.4 are always true, even with interruptible handlers. However, in some

circumstances a different implementation could be more desirable. In Fig-

ure 5.3 we show such an alternative implementation. Suppose for example

that we have multiple executors: a simulation system could use one thread to

deliver the messages to the recipients (perhaps residing on a different machine)

and another to actually run the agent. The preferential attachment selection



74 Chapter 5. Social Network Simulations as MAS

1: class Node(Agent):
2: handler act():
3: targets Ð tu

4: while |targets| ă m :
5: target Ð pa(graph)
6: if target R targets :
7: targets Ð targetsY ttargetu
8: send(target, "link-to")

Figure 5.3: Alternative implementation of BA nodes.

is pretty expensive with large networks and if all the choices are made before

any message is delivered, CPU time is used less efficiently than immediately

delivering each message, which is taken care of by another thread on another

CPU/core, and proceed with the following choice.

However, in this scenario Equation 5.4 is clearly violated. On the other

hand, the improved efficiency could outweigh the correctness violation. Intu-

itively, as long as not “too many links” are created before all the choices are

made, the resulting network still has the desired properties. While it is not

hard to prove that, with a reasonably fair scheduler, the extreme situations

described in the case of the violation of Equation 5.5 are almost impossible,

it is much harder:

– to prove that concurrency does not slightly modify the model behavior

as in the case just described,

– if it does so, to estimate the introduced bias, and

– to give explicit conditions on the scheduling algorithm such that net-

works generated with the agent-based concurrent model are indistin-

guishable from networks created with the sequential generator.

However, such eventualities can have ill effects in the long terms on the quality

of the results. As a consequence, we feel that there is a very strong need to

investigate the effects of concurrency in traditional processes. Considering the

difficulty of doing so analytically, we decided to uses experimental evaluations

in controlled settings.
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5.3 Experimental evaluation of Concurrency Issues

in Agent-based Simulations

In the previous Section, we showed how concurrent agent-based code can vi-

olate some assumption implicitly made in a traditional model. Although it is

possible to limit concurrency in a way that such violations do not occur, it

would mean to renounce to many of the advantages offered by agent-based

systems. Moreover, considering that we want to create fully agent-based mod-

els that only occasionally use some ideas from the traditional models, such

limitations would be unacceptable. Eventually, enforcing some guarantees is

simply impossible in a truly distributed “grid” or “cloud” environment.

In this Section we fully embrace the generative point of view of agent-based

modeling and we experimentally evaluate the impact of the different concur-

rency environments using an agent-based model similar to the one presented in

Figure 5.3, based on the meta-model described in Section 5.1. In environments

with limited concurrency, the meta-model is completely equivalent to the one

of Figure 5.2, however, increasing concurrency could introduce more visible bi-

ases. We repeated the experiments with several software frameworks that we

built around the meta-model. The data presented here, comes from the sim-

ulation using PyNetSYM, whose design and implementation are the subjects

of Chapter 6. When the tools are set to operate with the same concurrency

semantics, no discernible differences can be found in the result.

Our first experiment is conducted in the first scenario described in Sec-

tion 5.2, that is to say single-executor, uninterruptible handlers. In this sce-

nario, Equation 5.5 is not true and a particularly biased scheduler could make

the preferential attachment process degenerate into an uniform selection. In

order to see whether the default schedulers are fair enough to avoid such even-

tualities, we experimentally compare the networks created using agent-based

variant of the BA model with those created using a sequential implementa-

tion. Specifically, as the sequential implementation, we used a library function

contained in the network analysis package NetworkX.
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Table 5.1: Comparison between networks created according to agent-based
and traditional Barabàsi-Albert models (denoted by the label “Sequential”).
Several networks have been generated with different sizes (n) and number of
starting edges per node (m). We compare the clustering coefficient C, the
characteristic path length CPL and the γ exponent of a power-law fitting the
degree distribution of networks generated with an agent-based simulator and
using a sequential implementation of the BA model. We also report the val-
ues for the clustering coefficient and the CPL computed using the theoretical
formulas derived at the thermodynamic limit (with the label “Analytical”).
Unsurprisingly, the latter are not very accurate for the small networks consid-
ered here.

Conditions Agent-Based Sequential Analytical

n m C CPL γ C CPL γ C CPL

1000 5 3.25e-02 3 2.7 4.21e-02 3 2.8 5.62e-03 3.6
1000 8 4.93e-02 2.7 2.8 5.48e-02 2.7 2.8 5.62e-03 3.6
1000 11 5.89e-02 2.6 2.9 6.16e-02 2.6 2.8 5.62e-03 3.6
1000 20 9.00e-02 2.2 2.9 9.79e-02 2.2 2.9 5.62e-03 3.6
5000 5 8.37e-03 3.6 2.9 1.06e-02 3.5 2.9 1.68e-03 4
5000 8 1.36e-02 3.1 2.8 1.65e-02 3 2.9 1.68e-03 4
5000 11 1.82e-02 2.9 2.9 2.02e-02 2.9 2.9 1.68e-03 4
5000 20 2.86e-02 2.7 2.9 3.00e-02 2.7 2.9 1.68e-03 4
10000 5 5.66e-03 3.7 2.9 6.46e-03 3.7 2.9 1.00e-03 4.1
10000 8 8.17e-03 3.3 3 9.71e-03 3.3 2.8 1.00e-03 4.1
10000 11 1.08e-02 3 2.9 1.17e-02 3 2.9 1.00e-03 4.1
10000 20 1.69e-02 2.8 2.9 1.76e-02 2.8 2.9 1.00e-03 4.1
50000 5 1.30e-03 4.3 3 1.92e-03 4.1 2.9 2.99e-04 4.5
50000 8 2.16e-03 3.7 3 2.77e-03 3.7 2.9 2.99e-04 4.5
50000 11 2.77e-03 3.5 3 3.33e-03 3.4 2.9 2.99e-04 4.5
50000 20 4.78e-03 3 3 5.02e-03 3 2.9 2.99e-04 4.5
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In Table 5.1 we report some results: we generated networks of different

sizes (n) and with different starting number of edges per node (m) with both

tools and found out that the clustering coefficient C and the characteristic

path length CPL are significantly close one to each other (typically they differ

by less than 10%). We also compared the values with those predicted by the

purely analytic methods described in Section 2.3: such methods assume a

network of infinite size and are very rough estimators of what occurs in large

but not huge networks, and, in fact, underestimate the clustering coefficient

of an order of magnitude and also overestimate the average path length.

The most defining feature of the Barabàsi-Albert model is that it yields net-

works whose degree distribution is a power-law with exponent γ “ 3, even for

such small networks. Consequently, we decided to test the degree distributions

generated with our tool and with NetworkX using the techniques discussed by

Clauset [37]; their γ coefficients are, as predicted by analytical means, close to

3. In Figure 5.4 we report the degree distributions fpkq (upper panel) and the

complementary cumulative distribution functions Spkq “ 1 ´
ř

fpkq (lower

panel) of the two networks. The agent-based variant do not seem to introduce

relevant biases in the degree-distribution of the generated networks.

Another interesting question is whether the possibility to interrupt the

message handlers changes the model behavior. The possibility to interrupt

handlers means that the actions of multiple nodes may be mingled and gener-

ally could make more extreme the effects of concurrency. In fact, we studied

the results of simulations where the agents had and had not interruptible han-

dlers respectively, and we found out that, the generated networks are mostly

indistinguishable. In Figure 5.5 we plotted the degree distributions and the

CCDFs. The two degree distributions are extremely similar and both have the

theoretically predicted exponent, evaluated with the method described in [37].

Apparently, interrupting the handlers and consequently allowing the “choices”

in a potentially different network state does not seem to affect the outcomes:

the scheduler is appropriately designed.



78 Chapter 5. Social Network Simulations as MAS

5.4 Agent-based adaptation of traditional models

In this Section, we show how the traditional models can be adapted to agent-

based models using the meta-model we just introduced. It is worth noting

that all the generation models have explicitly or implicitly a notion of “time”,

in the sense that in the BA, Transitive Linking (TL) and Biased Preferential

Attachment (BPA) models the generation algorithm is already presented in

a step-wise way. However, also for WS it is easy to interpret the rewiring

procedure that occurs on each node as a single step of the global rewiring

process; the main difference is that in BA, TL and BPA the number of steps

is independent of the size of the model (although not all combinations of

network size and number of steps produce meaningful networks), while in

Watts-Strogatz (WS) the number of steps would be a function of the network

size.

As a consequence, all these models can be easily fitted in the meta-model

we described. For example, let us consider the BA and the WS models. In the

BA model, there are a fixed number of steps and at each step a new node-agent

is created and subsequently activated. When activated it chooses m targets

according to preferential attachment and sends them a link-to message. The

semantics of the model is that such messages are always accepted and this

causes a new link to be created.

In the original formulation of the WS model, for every node, we rewire

each link with probability p. In the agent-based formulation:

– the activator activates each node in the network in sequence and

– each agent, when activated, rewires each of its connections with proba-

bility p.

One of the advantages of out approach is that, starting from this basic struc-

ture, variations of the WS model could be developed where the rewiring process

is not governed by probability, but by other criteria, such as similarity between

agents.

A second advantage is that, as the traditional models become more com-
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plicated, the corresponding agent-based model usually does not increase in

complexity. For example, when some of the more advanced generation models,

like the BPA model, want to account for different, although coarse grained,

node behavior, they introduce different sets of nodes and use set membership

to distinguish among the nodes. Such models usually become too complex to

be analytically analyzed. Moreover, this approach quickly becomes infeasible

when the number of the different behaviors increases.

On the other hand, the same idea can be easily followed in agent-based

model, due to the agent-based nature itself. To further explain the same ex-

ample, in the agent-based variant of the BPA model we simply create three

different behaviors to react to activation:

– a passive agent (which represent a node in P ) simply refuses to act;

– an inviter agent (a node in I) “invites a new agent”, that is to say, it

asks the simulation engine to create a new agent;

– a linker tries to link to an existing node in the network with preference

to “popular” agents.

There are some immediate advantages: (i) implementing new behaviors is

relatively trivial and simply executing the simulation their impact is assessed;

and (ii) in the agent-based version each agent could change its behavior dur-

ing the simulation when appropriate conditions occur. The latter point is

extremely important: for example, in the real world “inviters” do not have

an unlimited number of friends to invite and at a given point in time inviters

should become either linkers or passive nodes (or perhaps acquire a whole new

behavior).

As the last example, we propose the TL model. The idea here is that at

each step an agent is activated and, depending on the number of connections

it has, it either introduces:

– two friends one to the other; or

– to another random node.

At each step a node is chosen and with probability p it is removed and

replaced with a new agent with one random link. Probably the more revealing
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symptom of the non agent-based origin of the TL model is the choice to model

only the simultaneous circumstance that an agent leaves the network and an-

other enters with a single event occurring with probability p. This assumption

is quite unrealistic when modeling social networks, because people leaving or

joining the network are mostly independent events. However it makes analytic

study much easier because the number of nodes in the network is constant.
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Figure 5.4: Comparison between the sequential and the agent-based implemen-
tation of the BA model with 100000 nodes and 11 starting edges per node. The
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Chapter 6

Design and Implementation of

an Agent-Based Simulation

Framework for Online Social

Networks

In the last two decades, ABM was widely adopted as a research tool in the

fields of social and political sciences, as we discussed in Chapter 4, since multi-

agent systems are especially appropriate to model systems (i) where complex

features arise from repeated relatively simple interactions, and (ii) dominated

by discrete decisions. In particular, ABM gave important results in social

science because it represents and simulates not only the behavior of individuals

or groups of individuals but also their interactions that concur to the emergent

behavior [12,53].

In parallel with the theoretical development of ABM a number of soft-

ware platforms were developed to ease the task of running the simulations;

among these the most popular are Swarm [129], Mason [121], RePast [145]

and NetLogo [180], which, however are not specifically tailored for social net-
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work simulations.

In this Chapter, instead, we introduce a different kind of ABM tool that we

specifically created for network generation and general processes over networks

[69]. The tool we propose does not aim at being a general purpose agent-based

modeling tool, thus remaining a relatively simple software system, whereas it is

extensible where it really matters (e.g., supporting different representations for

networks, from simple memory-based ones to pure disk-based storage for huge

simulations). Its theoretical foundations lie deep in the generative approach

to science that we discussed in Section 4.1 and in the meta-model that we

developed in Section 5.1.

From a more practical point of view, the social network simulation system

we propose has the following defining goals: (i) it must support both small

and large networks; (ii) simulations shall be effortlessly run on remote ma-

chines; (iii) it must be easy to use, even for people without a strong program-

ming background; (iv) deploying a large simulation should not be significantly

harder than deploying a small one.

In our approach, the simulation system has four main components that can

be modified independently: (i) the user interface, (ii) the simulation engine,

(iii) the simulation model and (iv) the network database. The simulation

model needs to be specified for each simulation and is the only part that

has to be completely written by the user. Its specification is partly declar-

ative and partly object-oriented. The user interface is responsible for taking

input from the user, e.g., simulation parameters or information on the analysis

to perform, and is specified declaratively. The simulation engine defines the

concurrency model of the simulation, the scheduling strategies of the agents

and the communication model among the agents. The network database actu-

ally holds a representation of the social network; it may be in-memory or on

persistent storage, depending on the size of the simulation. Multiple network

database implementations are provided and the framework can be extended

with additional ones.

Large scale simulations typically require more resources than those avail-
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able on a desktop-class machine and, consequently, need to be deployed on

external more powerful machines or clusters. In order to simplify the opera-

tion, we designed our system so that a simulation can be entirely specified in

a single file that can be easily copied or even sent by email.

Considering that the simulations are frequently run on remote machines,

we opted for a command line interface, because a traditional GUI becomes

more complex in this scenario. An added benefit is that batch executions are

also greatly simplified. We also support read-eval-print-loop (REPL) interac-

tion to dynamically interact with the simulation.

In order to allow people without a strong programming background to

easily write simulations, we decided to create a Domain-Specific Language

(DSL). A Domain-Specific Language (DSL) is a language providing syntactic

constructs over a semantic model tailored towards a specific domain (e.g.,

building software). The idea is that DSLs offer significant gains in productivity,

because they allow the developers to write code that looks more natural with

respect to the problem at hand than the code written in a general-purpose

language with a suitable library.

DSLs are usually categorized in internal and external : an external DSL

is a new language that is compiled or interpreted (e.g., makefile),while an

internal DSL is represented within the syntax of a general-purpose language,

essentially using the compiler/interpreter and runtime of the host language.

Mernik et al. discuss the issue thoroughly [127].

Traditionally, DSLs were sparingly used to solve engineering problems.

Nowadays, with the widespread diffusion of very expressive languages such

as Python, Ruby, Haskell or Scala the general attitude towards DSLs has

changed ( [67,80]), especially because writing internal DSLs in such languages

significantly lowers the developing costs to a point that is comparable to an

API based solution [111].

Consequently, we decided to develop an internal DSL over a very high level

programming language, in order to provide an environment that is friendly

enough for scientists without strong programming background, without being
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limiting for the others. Moreover, the internal DSL approach greatly simplifies

external library usage, since all the libraries available for the host language are

available for the DSL as well, and we think that accessing high quality scientific

libraries and using an expressive language are both features of paramount

importance.

In Section 6.1 we describe the runtime system of the simulation framework

from the point of view of agent-based and distributed systems, in Section

6.2 and Section 6.3 we present the DSL design and the concurrency model,

respectively. We also show how some well-known models are implemented in

our toolkit at the end of Section 6.2. Eventually, in Section 6.4 we draw some

conclusions.

6.1 PyNetSYM runtime system

The social network simulation system we propose, PyNetSYM (PYthon NET-

work Simulation-analYsis-Method), has an elaborate runtime system that sup-

ports the execution of simulations providing only brief specifications. The na-

ture of these specifications is described in Section 6.2. In this Section we de-

scribe (i) the various components that support the simulation, and (ii) the

general structure of the simulation execution. We also discuss general seman-

tic properties of the simulation engine as a concurrent system.

Simulation Engine

The central element of the runtime system is the agent, since the elements un-

der simulations and several infrastructure components of the runtime system

are implemented as agents. In the following we describe the design character-

istics of PyNetSYM agents.

For our purposes an agent is a bounded unit with its own thread of exe-

cution. By bounded we mean that there is a clear separation between what is

inside the agent and what is outside the agent. Agents have their own state,

and access to that state is mediated by the agent itself. All the communication
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among the agents occurs through message passing; each agent has a mailbox

where the incoming messages are stored, and a unique identifier that is used

to address the messages.

Agents also perceive and modify the environment. Our agents are not nec-

essarily autonomic or goal-directed. Since they are used as a computational

primitive, we need a lower-level specification that can be enriched to provide

“real” agents but which does not place unnecessary overhead on the system.

The communication primitive is the send command. When an agent y

executes the command send(x, "m"), (i) a message mtu is created, (ii) it is

delivered in the mailbox of x, and (iii) an empty placeholder is immediately

returned to y as the return value of the send call, so that r “ sendpx,"m"q

is a valid command. When x processes mtu, its method m is invoked and the

return value is placed in r.

Send provides both the semantics of synchronous and asynchronous mes-

saging. In the following cases, the semantics is that of an asynchronous mes-

sage: (i) send was invoked just as send(x, "m"), so that the return value is

simply ignored, or (ii) send was called as r “ sendpx,"m"q, but the caller

ignores the return value r.

On the other hand, the caller y can force the retrieval of the value of r and

wait until mtu is processed. In this case, y is blocked and control is given to

another agent; y will be activated again after the value of r has been supplied

by x. This is essentially the semantics of a synchronous message passing. Agent

y can also check without blocking whether the value of r is ready; another

possibility is trying to get the value blocking for a limted amount of time.

Messages with parameters can be sent with either:

sendpx,"m", p1 “ v1, . . . , pn “ vnq (6.1)

r “ sendpx,"m", p1 “ v1, . . . , pn “ vnq (6.2)

In these cases the message mtp1 “ v1, . . . , pn “ vnu is delivered to x and the m

method of x is invoked with actual parameters v1, . . . , vn passed to the formal

arguments p1, . . . , pn of the method.
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The default behavior of the agents is waiting for the arrival of the messages

and then processing the incoming messages with the appropriate handlers.

However, full agent behavior (autonomous, goal-oriented, and pro-active) can

be implemented either supplying a different behavior or augmenting the de-

fault with pro-activeness.

Another important design decision regarding the system semantics is whether

to implement cooperative or preemptive multi-tasking. Several popular lan-

guages and platform chose preemptive multi-tasking because in general pur-

pose systems the probability and the risks of a misbehaving application con-

suming all the CPU time is too high. However, for a simulation oriented plat-

form, such risks are minimal and we opted for cooperative multi-tasking be-

cause it allows a more deterministic control of complex time sequences.

As a consequence, in PyNetSYM a method handling a message can only

voluntarily “give up” the execution for a while, either explicitly going to sleep

or by requesting a blocking operation. In all other situations, when an agent

starts processing a message, it continues until termination. This property is

analogue to the semantics of the Actor Model [3] and simplifies formal reason-

ing on the system. Moreover, from the point of view of the emergent properties

of the simulation it has little impact [25].

When an agent has an empty mailbox, it can choose to be removed from

main memory and have its state saved on secondary storage. If the stored

agent is subsequently sent a message, it is restored in main memory from the

saved state. This behavior is extremely convenient considering that for most

social network topologies, a small fraction of agents is responsible for the vast

majority of the links. Since in most processes over networks the agents with

few links are seldom activated, we can save memory keeping them in secondary

storage and do not lose much CPU time.

Another important memory-related issue is the storage of the network

itself. A possible solution is completely distributing the knowledge of the net-

work among the agents, so that each agent only knows its neighbors and the

network must be reconstructed from their interactions. However, several net-
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work processes could not be implemented efficiently in this scenario, because

several elementary operations would involve too much communication among

the agents. Consequently, we prefer to maintain a global view of the network.

From the point of view of ABM, the decision is consistent with the interpre-

tation of the network as the environment, as: (i) agents can interact with it

by creating or destroying links, and (ii) the agents behavior is influenced by

the network in several process dependent ways.

This view is presented as a software component that we call network

database and that provides a unified interface that agents can use to modify

and query the network state. We provide multiple implementations in order

to be able to balance the various trade-offs. Some implementations are RAM

based, and their main advantage is to provide more efficient accesses when

the network is not excessively large; others are backed with various secondary-

storage based solutions, which results in slower operations, but allows for sim-

ulations on larger networks.

As a general comment, it should be said that, although PyNetSYM pro-

vides an interface to the actual representation, memory and CPU issues re-

main. Let us consider two different network representations that are reasonable

extremes regarding RAM usage. While the NetworkX library provides many

useful algorithms and has a thorough support for edge and node attributes, a

network of order n “ 106 and size m „ 10 ¨ n occupies 4-5 GB of RAM when

represented as a NetworkX graph. On the other hand, the same network, rep-

resented as a sparse matrix occupies less than 2 MB; however, with the latter

approach the attributes are much harder to manage. Different situations have

different trade-offs and consequently we are working to make the choice of

underlying representation as transparent as possible.

Moreover, depending on the actual network process, some implementations

are more appropriate than others, because they are optimized for certain op-

erations that occur frequently in the process or choice.
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Simulation structure

The actual simulation is divided in two distinct phases (i) setup and (ii) ex-

ecution. During the first phase (setup), the system is initialized so that it

reaches the initial configuration specified by the simulation. First, various in-

frastructural agents (e.g., Activator, NodeManager) are created and started,

so that they are ready to receive messages, and the Clock (if present) is also

created, but not started.

Later during this phase, the Configurator agent instructs the NodeManager

to (i) create the initial nodes in the network, (ii) to give them instructions to

establish the connections they are meant to have at t0, and (iii) to provide

them with any other initial information that the simulation may require .

The NodeManager is generally responsible for (i) creating the new agent-

nodes, passing them the appropriate initialization parameters and (ii) moni-

toring them, so that their termination (exceptional or not) is managed.

We created different Configurator agents for the most frequent needs, that

are (i) reading an initial network specification from disk and setting the sys-

tem up accordingly, or (ii) creating n node-agents of a given kind. When

reading network specifications from file, we support (i) popular file formats

for exchanging networks, such as GraphML or Pajek, (ii) networks saved as

sparse matrices in HDF5 files, and (iii) networks stored in various DBMS, such

as MongoDB.

After configuring the simulation, (i) the Configurator agent terminates,

and (ii) if present, the Clock agent starts, marking the transition to the exe-

cution phase, or (iii) the node-agents are otherwise notified that the simulation

begins.

During the execution phase the node-agents perform the simulation accord-

ing to their behavior. Although from a theoretical point of view such behavior

can be completely autonomous and do not rely on an external time schedule,

in practice most network generation models and generic processes over net-

works can be described in terms of a relatively simple meta-model as the one
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we described in Section 5.1.

6.2 Defining a Domain-Specific Language for

network simulations

At the beginning of this Chapter, we mentioned the advantages of a DSL in

terms of ease of development for both programmers and non-programmers

because of the increased language expressivity. In this Section we describe the

general structure of our DSL, which is an internal DSL hosted by Python. We

also present some examples.

Our choice of language was motivated by the following features: (i) focus

in readability; (ii) ease of use; (iii) availability of useful libraries for scientific

computations and consequently (iv) widespread adoption in many scientific ar-

eas; (v) solid choice of concurrency frameworks and frameworks for distributed

or GPU based computing; (vi) powerful REPL implementations (vii) advanced

metaprogramming capabilities, which we extensively use to improve the ex-

pressiveness of the DSL. The host language is almost an implementation

detail, since other object oriented high level languages such as Ruby or Scala

could have provided the same features.

Here we review some aspects of the Python language that are significantly

different from static languages such as Java or C++:

(a) class A(B) means that class A is a subclass of class B.

(b) Methods are defined with the def keyword. For clarity, we differentiate

among methods and message handlers; the latter are introduced with the

handler keyword, even though this keyword is not part of Python’s syn-

tax.

(c) The explicitly specified formal parameter “self” is the object the method

is invoked on.

(d) Methods can be invoked with named parameters.

(e) Set (ta, bu) and hash-map (tk : "v", . . .u) literals are available.
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(f) Everything defined directly in the class body becomes a class attribute. A

callable defined in the class body is a method.

(g) Classes are first class objects: when called, are factories.

(h) Classes can be defined inside other classes; in this case, they are “at-

tributes” of the enclosing class. As a consequence, an inner class can be

invoked as a method of the enclosing class and returns the appropriate

instance object.

(i) The send(x, "m") command discussed in Section 6.1 becomes a method

defined in the Agent class and, as such, is invoked with self.send(x, "m").

As described in Section 6.1, our simulations have two distinct logical ele-

ments:

1. the essentially imperative/object oriented description of the agents be-

havior (e.g., the nodes and the Activator agent)

2. the mostly declarative description of the simulation itself and of the

simulation options specification.

Regarding the imperative/object oriented part, it suffices to say that the

nodes and the Activator agent are implemented as subclasses of Agent, which

means they are essentially Python objects with agent semantics provided by

PyNetSYM and discussed in Section 6.1. Their behavior is thus specified using

the host language (Python) for maximum expressivity.

The other logical element defining a model is the Simulation class. A Sim-

ulation is not an agent and is essentially the executable specification of the

simulation that collates together all the other elements. A Simulation object

has a run method that is called to execute the simulation. When run is called,

both (i) command line arguments and (ii) actual parameters directly passed

into run are taken into account, i.e., it processes the “simulation options”

field and creates a command line parser that can parse command line options

according to the specification

The specification is a list of allowed options, each with its name, default

value and the function to convert the string value as specified in the command

line to the proper value. For example, the following specification would let
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the simulation accept two options, option1 and option2 ; the first option has

default value 1.0 and is of type float, the second has 1 as the default value and

is an integer:

command_line_options = (

(’--option1’, {’default’: 0.0’, ’type’: float}),

(’--option2’, {’default’: 1, ’type’: int}))

Moreover, a help message is automatically constructed from the options,

and is displayed if the simulation is run with the "--help" option. Such

message lists the various options and, if a documentation string was provided

in the specification, also their meaning.

When a simulation is executed, it always instantiates some objects and

agents that fill pre-determined roles, such as the network database, the Con-

figurator agent, the Activator agent, or the Clock agent.

Additionally, the behavior of simulations can be declaratively customized.

If the body of the Simulation subclass has an attribute in the form role type,

it is used as the factory for the object in question in place of the default

implementation. For example, a different Activator can be requested with the

activator type option.

A subset of the simulation options is passed to the constructors of ob-

jects and agents instantiated by Simulation. The subset is determined in

the following order: (i) inspecting the “options” attribute in the object class

definition, (ii) using an attribute named role options defined in the Simula-

tion class, and (iii) performing introspection on the names of the parameters

of the object/agent constructor. Additionally, the Simulation class has an

additional agents attribute, where additional “roles” can be defined.

If the configuration is wrong or incomplete (e.g., because of a missing or

wrongly typed parameter), the simulation fails as early as possible, ideally at

“compile time” (i.e., when classes are evaluated).
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1: class SIR Activator(pynetsym.Activator):
2: handler infected(self, node):
3: self.infected nodes = self.infected nodes.add(node)

4: handler not infected(self, node):
5: self.infected nodes = self.infected nodes.remove(node)

6: def nodes to activate(self):
7: return self.infected nodes

Figure 6.1: SIR model Activator implementation.

8: class SIR Node(pynetsym.Node):
9: handler initialize(self, state):

10: self.state = state
11: if state == "I" :
12: self.send(Activator.name, "infected", node=self.id)

13: handler infect(self, state):
14: if self.state == "S" :
15: self.state = "I"
16: self.send(Activator.name, "infected", node=self.id)

17: handler activate(self):
18: if state == "I" :
19: for each node in self.neighbors()
20: if random.random() ă self.infection rate :
21: self.send(node, "infect")

22: if random.random() ă self.recovery rate :
23: self.state = "R"
24: self.send(Activator.name, "not infected", node=self.id)

Figure 6.2: SIR model node implementation.

SIR model

In this Subsection we present the implementation of the Susceptible-Infected-

Recovered (SIR) model in our DSL. The SIR model was originally proposed to

study the outbreak of contagious illnesses in a closed population over time [103]

and was subsequently adapted as a social network process [150]. For our pur-

poses, the SIR model is the network adapted variant. In this form, each node

has three possible states: susceptible (S), infected (I) and recovered (R), hence
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25: class SIR Simulation(pynetsym.Simulation):
26: simulation options“ t
27: ("--infection-rate", t"default" : 1.,"type" : floatuq,
28: ("--recovery-rate", t"default" : .4,"type" : floatuq,
29: ("--initial-infected-fraction",
30: t"default" : .01,"type" : floatuqu

31: activator type = SIR Activator
32: activator options = tu

33: class configurator type(pynetsym.NXGraphConfigurator):
34: node type = SIR Node
35: node options“ t
36: "infection rate",
37: "recovery rate",
38: "initial infected fraction" u

39: def initialize nodes(self):
40: infected nodes = random.sample(
41: len(self.node identifiers) * self.initial infected rate)

42: for each node in self.node identifiers
43: if node in infected nodes :
44: self.send(node, "initialize", state="I")
45: else:
46: self.send(node, "initialize", state="S")

Figure 6.3: SIR model Simulation specification.

the SIR name. The system starts with a given ratio r of infected patients, and

each infected patient can recover with probability γ. Moreover, each infected

patient infects each of its neighbors with probability β.

We fit the SIR model to our meta-model so that, at each step, the Activator

agent only activates infected nodes (Figure 6.1, lines 6–7). Susceptible and

recovered nodes do not need to take action. Consequently, when a node is

infected, it sends a message to the activator to inform it that it is infected

and, similarly, when it recovers, it sends a message indicating its recovery.

When an infected node is activated, it tries to spread the disease among its

neighbors sending them messages. Afterwards, it may recover with a given

probability.
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Figure 6.4: Time evolution of the fraction of susceptible, infected and recovered
nodes as functions of the number of steps according to the PyNetSYM agent-
based simulation of the SIR model. The starting network is a Gp105, 120q
network, the starting parameters are β “ 1.0, γ “ 0.4, r “ 0.01. The solid
lines are guides for the eye.

In the implementation with PyNetSYM the simulation has three initial

parameters: the infection rate β, the recovery rate γ and the initial fraction of

infected nodes r. The declaration of the simulation options is given in lines 26–

30 of Figure 6.3.

An additional starting parameter is the shape of the network. The initial

configuration of the network is read from a file, hence we use NXGraphCon-

figurator (line 33 of Figure 6.3), that (i) reads files in any format supported

by NetworkX, and (ii) it creates the appropriate nodes along with their con-

nections. The type of the nodes and the simulation options they require

are specified with the node type and node attribute of the Configurator re-

spectively. Eventually, initialize nodes is a special method of the Configurator

agent which is called after the nodes have been created to provide them with
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additional setup. In this case, it randomly selects which nodes start infected.

In Figs. 6.1 and 6.2 the implementation of the SIR nodes and of the SIR

Activator are shown. Essentially, their behavior is that described when dis-

cussing how to fit the SIR model to the meta-model.

In Figure 6.4 we plot the evolution of the fraction of susceptible, infected

and recovered nodes as functions of the elapsed number of steps as given by the

PyNetSYM simulations of the SIR model. The starting network is an Erdős-

Rényi graph Gp105, 120q [57], i.e., a random graph where each of the 105 nodes

has 120 random edges. The 1% of the nodes starts as infected (r “ 0.01) and

the parameters here are infection rate β “ 1.0 and recovery rate γ “ 0.4.

Barabàsi-Albert model

In Figure 6.5 we show the code for a simulation implementing the BA model [16].

Line numbers reported in this Subsection refer to Figure 6.5. The BA model

starts with n0 nodes and no edges. At each step a new node with m random

links is added. The m links are directed towards nodes with a probability

proportional to their degree, this strategy is called preferential attachment.

In Lines 16–23 the simulation configuration is specified. Line 17 specifies

that the BA Activator (defined in lines 9–15) is the activator to be used.

Classes can be stored in variables like any other object.

Lines 18–20 specify the command line options, their default values and the

type of the parameters. When values for some options are not specified in the

command line, the default value is used.

The BasicConfigurator (Lines 21–23) reads the value n0 of the simulation

option "--network-size" and requests to the NodeManager the creation

of n0 nodes of type specified by the node type attribute

In Lines 1–8 and 9–15 there are the specifications for the nodes and the

activator respectively. The nodes are specified providing a handler for the

activatetu message. Moreover, in the Node class we defined handlers for the

link totsourceu message, so that the graph is updated with the information.
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1: class BA Node(pynetsym.Node):
2: handler activate(self):
3: targets = set()
4: while len(targets) ă self.starting edges :
5: target = self.graph.preferential attachment()
6: if target not in targets :
7: targets.add(target)
8: self.send(target, "link to", source=self.id)

9: class BA Activator(pynetsym.Activator):
10: options = t"starting edges"u
11: handler tick(self):
12: answ = self.send(NodeManager.name
13: "create node", cls=BA Node,
14: parameters= rself.starting edgessq

15: self.send(answ.get(), "activate")

16: class BA Simulation(pynetsym.Simulation):
17: activator type = BA Activator
18: simulation options“ t
19: (network size, t"default": 100, "type": intuq,
20: (starting edges, t"default": 5, "type": intuqu

21: class configurator type(BasicConfigurator):
22: node type = BA Node
23: node options “ t"starting edges"u

Figure 6.5: BA model simulation implementation.

The Activator accepts a ticktu message from the clock. In Line 11 the Ac-

tivator sends the Node-Manager: (i) the class of the agent to create in the

“cls” parameter and (ii) the arguments to pass to their constructor with the

“parameters” parameter. This is a synchronous call, because the Activator

blocks waiting for the identifier of the newly created agent. Then, it immedi-

ately sends an activatetu message to the new agent (line 15).

6.3 PyNetSYM Concurrency Approach

In Section 6.1 we defined the runtime model of our simulation framework.

Essentially, we assumed that agents do have their own thread of control, but
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Table 6.1: Comparison between Greenlet and thread efficiency: the main agent
spawns a new agent and sends it a message with the numeric value of the
number of agents to spawn, then it waits for a message on its own queue.
When the other agent receives a message with value n, each secondary agent:
(i) spawns a new agent and sends it a message with the value n´ 1 if n ‰ 0;
(ii) on the other hand, if n “ 0, it means that all the agents have been created
and sends a message to the main thread. Notice that the agents do not exist all
at the same time: once they have received and sent a message, they terminate.

# items Thread execution (s) Greenlet execution (s)

1 ¨ 102 0.022 0.002
5 ¨ 102 0.110 0.009
1 ¨ 103 0.224 0.018
1 ¨ 104 2.168 0.180
1 ¨ 105 21.85 1.796
1 ¨ 106 223.3 18.24

did not specify how concurrency was implemented. The traditional approach

in agent-based frameworks is to implement concurrency mainly with threads

and to provide cooperative multitasking as an option [19].

Instead, we decided to use gevent1, a networking and concurrency frame-

work that uses coroutines to implement cooperative tasks, called “greenlets”

in the gevent lingo. Coroutines are a generalization of subroutines allowing

multiple entry points for suspending and resuming execution at certain lo-

cations [44]. Gevent also provides the greenlets scheduler. Frameworks such

as gevent are popular for writing programs with very high concurrency, since

greenlets: (i) are less expensive to create and to destroy; and (ii) do not use

memory structures in kernel space. In fact, greenlets live entirely in the user-

space, thus context switches between different greenlets are inexpensive as

well.

In Table 6.1 we report execution times of a simple benchmark performed

with a different number of threads/greenlets. It is easy to see how the greenlet

based solutions are roughly ten times faster than the corresponding thread-

1http://www.gevent.org

http://www.gevent.org
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based ones. Further comparisons between greenlet and thread performances

can be found in the literature [78].

The better performance of greenlets is particularly relevant in our case,

because in ABM it is frequent to support millions of concurrent agents, and,

since greenlets use no kernel resources, their number is limited only by the

amount of available RAM. Moreover, experience suggests that a modern op-

erating system supports few thousand threads. Although thread pools offer

a viable, albeit more complex solution, cooperative multitasking, as provided

by greenlets, gives a finer grained control over scheduling and concurrency in

general.

6.4 Conclusion

In this Chapter, we have presented PyNetSYM, a novel language and run-

time for network specific simulations. PyNetSYM is built for the generative

approach [53] to science typical of Agent-based Modeling (ABM). We be-

lieve there is a strong need for tools that are both: (i) easy to use (especially

for people with little programming background but with a significant exper-

tise in other disciplines, such as social sciences) and (ii) able to tackle large

scale simulations, using remote high-performance machines and potentially

distributing the computation on multiple servers. Therefore, while our primary

goal is maintaining our toolkit simple and easy to use, efficiency is our second

priority, since nowadays there is a wide interest on networks of huge size.

Specifically, we created PyNetSYM: (i) to easily support both small and

huge networks, using either in-memory and on-disk network representations,

and (ii) to be as easy to be used both on personal machines or on remote

servers.

We designed PyNetSYM so that all the entities, both the infrastructural

ones and those under simulation, are agents: defining the network simulation

is essentially a matter of specifying (i) the behavior of the nodes and (ii) a few

additional simulation parameters (e.g., storage strategy and user-customizable
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options).

Given the merits of Domain-Specific Languages (DSLs) in general, and

specifically the ones concerning how to make development easier both for pro-

grammers and non programmers alike, we decided to create a DSL to drive

PyNetSYM simulations, so that it is possible to write programs that are

machine-executable, high-level formulations of the problem to solve. Specif-

ically, our DSL is an internal DSL over Python.

As PyNetSYM provides the simulation engine, the simulation can be writ-

ten in a simple file using our DSL. Thus, PyNetSYM models are very easy

to deploy (copying around a single file is sufficient) and can also be effort-

lessly shared between researchers. Moreover, PyNetSYM models can also be

written and executed interactively from a REPL, a feature that is extremely

useful when exploring the results of a simulation, because it makes possible to

interactively and dynamically perform analysis and visualize data.

We also implemented some classic processes over networks (generation

models, infection/information diffusion processes) with PyNetSYM and found

that the resulting programs are readable and fluent; in fact, they are very simi-

lar to a pseudo-code formulation of the models, even though they are efficiently

executable.

We also used PyNetSYM to simulate the behavior of users in a novel fully

distributed social networking platform, in order to understand the condition

under which the information propagates to the intended recipients. The results

are presented in Chapter 7.

Our results show that our approach is successful in providing a friendly

and easy to use environment to perform agent-based simulations over social

networks. Agent-based simulation is a powerful conceptual modeling tool for

social network simulations and with the present work we contribute a natural

and expressive way to specify social network simulations using a DSL.





Chapter 7

Agent-based Models of

Distributed Social

Networking Systems

A rather recent research trend is that of distributed social networking sys-

tems [5, 33, 34, 42, 72, 75, 76, 83]. The proponents of such systems put forward

several reasons for their creation, among which the most important are:

– the demanding terms of service, essentially asking their users a non-

exclusive, transferable, sub-licensable, royalty-free, worldwide license to

use content that they submit [59,182]

– the fact that service providers can provide a-priori or a-posteriori cen-

sorship of the data submitted and may be forced for legal reasons: (i) to

perform such actions and (ii) to disclose all the information they have,

no matter how private

– general privacy concerns related to the use that service providers can

make with the data, especially considering the terms of service, and the

fact that the data can be used for commercial reasons.

There are two main categories of decentralized and distributed social net-

works: federated and P2P. In a federated system multiple entities cooperate
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to provide the service and each of them gives access to the whole system to

a subset of the total users. On the other hand, in a P2P system, every par-

ticipant is both a user and a system provider at the same time. However,

purely P2P system can have issues with data availability, i.e., post from very

badly connected users can be difficult to obtain. Consequently P2P system

may introduce “super-nodes” with a role akin to that of a federated provider.

We developed a novel P2P micro-blogging platform that we called Blo-

gracy [72]. We built Blogracy upon the Bittorrent file-sharing protocol [38],

and rely on the built-in Bittorrent Distributed Hash Table (DHT) to locate

information. As such, Blogracy is entirely distributed and does not require any

centralized infrastructure.

However, it is possible that it suffers of the same data availability issues

that some P2P systems experience. In order to understand whether Blogracy

can provide a satisfactory user experience, without considering the unlikely

eventuality of a large scale deployment, we resort to modeling and simulation

by taking advantage of the modeling framework that we created as part of our

research and that we described in Chapter 6. In Section 7.1 we describe the

models and in Section 7.2 we discuss some metrics we propose to assess whether

the system could be successful. In Section 7.3 the results of the simulation are

presented and some conclusions are drawn.

7.1 Agent-based model of a P2P OSN

In a centralized social networking system, when a user creates a new resource,

e.g., a post, it sends the resource to the remote system, where (i) it is stored,

and (ii) it can be retrieved by other users at a later time. In constrast, in a

P2P OSN there is no centralized storage. The resources are shared among the

system users, and when someone requires a resource, the peers that already

own it should provide it.

Similarly to what occurs in regular P2P system, a serious issue with OSN

is the availability of the resources, which are available only if some of the
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peers that previously downloaded them are active. The availability of popular

resources is usually good, because if several users own the resource, some of

them is likely to be sharing it. On the other hand, rare resources may be

difficult to obtain.

In order to improve availability, several mechanisms are created to encour-

age users to keep sharing the resources they obtained [203]. The most popular

P2P systems, Bittorrent and eMule, have reputation-based strategies that re-

ward users for letting their peers download resources that they have previously

downloaded. As a consequence, users tend to cooperate and re-share [7].

If a P2P OSN is based on existing P2P systems, as is the case of Blo-

gracy [72], such mechanisms are already in place. It is also reasonable to

assume that users reshare recently generated resources obtained from their

friends, especially considering that such behavior is necessary also to speed-up

their own networking experience.

Another strategy that may improve the availability of the resources in P2P

OSNs is the introduction of “supernodes” that are always active, so that these

nodes can act as buffers for otherwise not very popular resources, improving

the overall system performance. Considering that most resources in an OSN

are text or relatively small images, the effort required for providing such su-

pernodes is relatively mild. Moreover, it is possible to reward users engaging

in such behavior, without externally providing the service.

Nonetheless, it is an interesting question whether P2P OSN could be suc-

cessful in practice, i.e., whether the various resources that OSN users generate

are actually obtainable by their friends. Therefore, we propose several models

to asses the feasibility of our approach in building a P2P OSN.

In order to better understand the system behavior, we started creating a

very simple model. The users of the OSN are modeled as nodes in a graph

where there is a link from node x to node y if x is interested in the messages

created by y. This is essentially a “follows” relation. The network is not as-

sumed to vary, because we simulate only relatively brief timespan, so that the

effects of the network variations are negligible.
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At each step ti of the simulation:

1. Each node writes a new message with probability pw; if a node writes,

it is added to the set of nodes that are active at step ti (Act ptiq).

2. Each node reads posts from its neighbors with probability pr. The read-

ing nodes are also added to the list of nodes active at step ti.

3. Each active node:

a) requires the list of unread messages from each of its active neigh-

bors,

b) marks which neighbors it has seen during step ti; this fact is used

to retrieve only messages that have not been read yet.

Moreover, we account for a fraction r of “supernodes” that are always

active. The supernodes do not necessarily create posts at each step: the writing

behavior is governed by the same probability pw of every other node. We

consider two strategies to attribute the supernode status: (i) according to a

uniform distribution, (ii) proportionally to the node degree, that hereafter will

be termed as “ran” and “pa”, respectively.

In this simple model, the only nodes that are able to provide a resource (a

message) to those requesting it are the message creators. We call this model

“read-and-forget” (RAF), because we are essentially assuming that the follow-

ers immediately delete the content they retrieved after reading it.

On the other hand, in a P2P system, once a peer downloads a resource,

it reshares it. In our case, this would potentially make the resource available

even in steps when the resource creator is not active.

In order to model this second scenario, which we call “read-and-share”

(RAS), we add to the model a fourth step:

4. Each active node

a) compiles a list of neighbors that are not active at step ti;

b) it queries its active neighbors for messages from the non active

neighbors.

In this model, each node saves all the messages it received. This assump-

tion is not unrealistic considering that we model only relatively brief periods
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of time, during which a real system would cache the retrieved messages to

improve repeated readings in any case.

7.2 Quality metrics

In this Section, we discuss some metrics that can be used to assess the system

performance. Be M a message, then Tc pMq is the step of the simulation when

the message was created and C pMq is its creator. With N pxq we denote the

set of the neighbors of node x and with kx its degree. Consequently, N pC pMqq

is the set of the recipients of message M , and kCpMq “ |N pC pMqq |.

We indicate with R pM,yq the step when the node y receives the message

M , with y P N pC pMqq. If y never receives M , R pM,yq “ 8.

Let L pM,yq be the reception lag of message M by node y, let Lµ pMq be

the mean reception lag for message M and Lmax pMq the maximum reception

lag:

L pM,yq “ R pM,yq ´ Tc pMq (7.1)

Lµ pMq “
1

kCpMq

ÿ

yPNpCpMqq

R pM,yq ´ Tc pMq (7.2)

Lmax pMq “ max
yPNpCpMqq

R pM,yq ´ Tc pMq (7.3)

The distributions of Lµ p¨q and Lmax p¨q provide us with important infor-

mation regarding the system performance. If on average the messages have

low reception lags, it means that the users interested in a given post are likely

to receive it timely and the system performance is good. Moreover, if also the

maximum lags experienced are not too high, it means that also the worse case

is acceptable.

However, if a node y receives a post M after a large number of steps, there

are two factors that contribute to the large value of L pM,yq:

– it was difficult to find another node that could share the message, which

is an issue of low availability and ultimately a problem with the system;

and
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– the receiving node did not connect for a long time, so that, in fact, the

message would have been available for download earlier, it was just the

downloader that was not online.

The latter factor is not an issue with the system, and users are not going to

complain, because, from their point of view, the only perceivable lags are those

originated by the first factor. In order to evaluate the respective contributions

of the two factors, another metric is more suitable.

Let OR pM,yq be the optimum reception step for message M by node y,

i.e., the first step after the creation of M when y became available. In formulas,

τ pyq be the set of steps when y was available, then:

OR pM,yq “ mintt P τ pyq : t ą Tc pMqu (7.4)

In other words, OR pM,yq is the step in which y would have received the mes-

sage had it been accessible from a centralized and always connected repository.

“Optimum” here means that y could not have received the message earlier,

since y itself was not connected.

Using OR p¨q instead of Tc p¨q, it becomes possible to define a different set

of metrics, which are: (i) the optimum reception lag OL pM,yq of message

M by node y, (ii) the mean optimum reception lag OLµ pMq for message M ,

and (iii) the maximum optimum reception lag OLmax pMq. The meaning of

“optimum” is the same explained in the previous paragraph. In formulas:

OL pM,yq “ R pM,yq ´OR pM,yq (7.5)

OLµ pMq “
1

kCpMq

ÿ

yPNpCpMqq

pR pM,yq ´OR pM,yqq (7.6)

OLmax pMq “ max
yPNpCpMqq

pR pM,yq ´OR pM,yqq (7.7)

7.3 Simulation Results and Conclusions

Analysis of the Simulation Parameters

As discussed in the previous Section, the starting parameters for a model are:
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– the network that defines the follows relations;

– the probability pw to write a post at each step;

– the probability pr to read messages;

– the fraction of supernodes r, which ranges from 0.0 (no supernodes) to

1.0 (all supernodes);

– the supernode status assignment strategy, whether the supernode status

is assigned uniformly or with a bias towards highly connected nodes

(“ran” or “pa”).

We discussed two models: in the first one, the nodes “forget” a resource as

soon as they receive it (RAF), in the second, they keep sharing every resource

that they receive (RAS). We already argued that the latter behavior is not

unrealistic provided that we simulate the system for relatively brief timespans.

A few considerations regarding the various simulation parameters are in

order. Our main starting network is a random network generated with the

Holme and Kim [93] algorithm, briefly discussed in Chapter 2. Essentially,

the Holme and Kim algorithm is a preferential attachment process with an

additional triadic closure step to increase the clustering coefficient. Networks

generated with this algorithm have a power-law degree distribution and high

clustering coefficient. Therefore, they are a suitable starting point for our mod-

els. We generated networks with 1000 nodes, 50 starting edges for new node,

plus 20% probability to add a triadic closure. Consequently the generated net-

works have clustering coefficient C “ 0.2 which is a realistic value according

to the analysis made in Chapter 2.

We also run the simulation with larger networks, but the results do not

change significantly. This can be explained considering that in our model all

the interactions involve only neighbors and do not propagate through the

network. Consequently, the non-local properties or the scale of the networks

have little impact on the outcome.

In order to attribute realistic values to pw and pr, we considered Twitter

usage patterns. In Twitter the average number of post per user per day is

almost 1. We assume that each step of our simulation engine corresponds to
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15 minutes of real time. Considering the model and the 1 step to 15 minutes

correspondence, the number of post each node generates in a day is a random

variate with binomial distribution Bpn, pwq, where n “ 24 ¨ 4 is the number

of steps in a day. Since the expected value of Bpn, pwq is n ¨ pw and since we

want it to be equal to 1, we set pw “
1
96 . Our simulations typically last 100

steps (roughly 1 day) and data is collected in sequences of 10 simulations, so

that we can take average values.

More accurate models can take into account that there is a rather strong

correlation between node degree and the number of generated posts 1, i.e.,

very active users tend to have more followers. However, such condition would

simply make the models predict a better performance with respect to our

model, because if more messages come from very active users, such messages

are also easier to be downloaded. Consequently, if our simplified model show

that the system could be successful, then the system would only be more

successful in practice.

Attributing a realistic value to pr is harder, since there are no precise

statistics on how often users read the posts. It is however known that users

visit social networking sites several times a day [172]. Therefore, we tried

different values and the simulation results do not change considerably and

then we somewhat arbitrarily set pr “
6
96 , i.e., we assume that users visit the

site 6 times per day on average.

The ratio of supernodes in the system is r. There are multiple reasons why

a user has supernode behavior. In our case, since Blogracy runs over Bittorrent

applications that can also be used for regular filesharing, it is reasonable to

assume that some users would not only use Blogracy, but also the underlying

P2P platform, so they would want to be always connected anyway. Another

kind of supernodes could be a few purposely created nodes that act in a way

similar to the federated servers in a federated social networking system.

It is worth noting that r “ 1 would be the ideal condition when everyone is

online at the same time, so no reception lag would occur at all. We performed

1http://www.sysomos.com/insidetwitter/

http://www.sysomos.com/insidetwitter/
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r xLµy xOLµy xLmaxy xOLmaxy

0 155.6 142.8 638.65 572.16
0.1 129.7 117.9 583.57 517.63
0.25 94.29 84.43 483.17 419.13
0.5 43.42 36.85 325.21 267.29

Table 7.1: Mean values xLµy, xOLµy, xLmaxy and xOLmaxy of Lµ, OLµ, Lmax

and OLmax, respectively, calculated by using the RAF model and the “ran”
status assignment to supernodes.

simulations with values of r equal to 0, 0.1, 0.25 and 0.5. We do not expect

0.5 to be a realistic value, but it was interesting to see the impact of such a

high ratio.

Finally, we should discuss the reasons of the supernode status assignment

strategy. The simplest strategy (“ran”) we account for is choosing the supern-

odes according to a random distribution. Such strategy models the fact that

supernode status depends on some variable that is unrelated to any node fea-

ture. The other strategy (“pa”), instead, assumes that highly connected nodes

are more likely to be supernodes. The last strategy is based on the fact that

supernodes introduced by system operators would probably have very high de-

grees, because several users would like to link them to potentially improve the

diffusion of their posts. Similarly, in real micro-blogging platforms we observed

that well connected accounts are also more active.

RAF model

Here we comment some of the simulations based on the RAF model and the

“ran” strategy. Let us consider the distribution of mean optimum reception

lags OLµ (Figure 7.1) for different values of r.

We can see that with r “ 0 the distribution is essentially a normal distri-

bution with mean µ „ 140 and σ „ 40. On the other hand, with r ą 0 some

nodes act as supernodes and consequently the messages they create are always

available for download. The distribution essentially becomes bimodal, with a
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Figure 7.1: Distribution of the mean optimum reception lag OLµ for different
values of the supernode fraction r, calculated by using the “RAF” model and
the “ran” status assignment to supernodes. See text.

fraction r0 „ r of messages that are received immediately after being created

and the other 1´ r0 arrival times that are still roughly gaussian.

This fact can be explained considering that if r is the fraction of supern-

odes and the message creation rate is not correlated with supernode status,

the expected ratio of messages generated by supernodes is also r, and those

messages have no lag.

As it can be seen in Figure 7.2, the mean value of OLµ decreases with

increasing r. Part of this is because of the r0 „ r fraction of nodes with

OLµ pMq “ 0, part is because of the mean of the rest of the Gaussian-like
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Figure 7.2: Mean values xLµy and xOLµy of Lµ and OLµ as functions of the
supernode fraction r, calculated by using the RAF model and the “ran” status
assignment to supernodes.

component in Figure 7.1 shifts leftwards for progressively high values of r.

As we can see, a system where only the original post author shares a

resource, like in the RAF model, would not provide a satisfactory experience.

The mean values for Lµ, Lmax, OLµ and OLmax are reported in Table 7.1.

Even with extreme and unrealistic values of supernodes, under the 1 step =

15 minutes conversion, a user would on average see the messages of his friends

after a whole day, and, for some messages, he could have to wait as long as

almost 3 days.
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Figure 7.3: Distribution of the mean optimum reception lag OLµ for different
values of the supernode fraction r, calculated by using the RAS model and the
“ran” status assignment to supernodes. See text. The solid lines are guides for
the eye.

RAS model

In Figure 7.3 we report the degree distribution of the mean optimum lag values

for simulations of the RAS model and random supernode status assignment

(“ran”).

In the RAS model, the impact of the peers resharing the resources they

acquired is enormous: even with r “ 0, the mean of the mean of xOLµy drops

from the „ 142 steps of the RAF model to only 12, i.e., 4 hours considering 1

step = 15 minutes.
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Figure 7.4: Mean values xLµy and xOLµy of Lµ and OLµ as functions of the
supernode fraction r, calculated by using the RAS model and the “ran” status
assignment to supernodes.

When we consider positive values of r, even a moderate ratio of supernodes

(r “ 0.1) makes xOLµy drop by an order of magnitude. In Figure 7.4 the effect

of r on the system is represented concisely studying xOLµy: each time we

increase r by a factor of 2, xOLµy decreases of an order of magnitude.

Moreover, already at r “ 0.25 the system performance is near optimal, as

users receive 90% of the messages in one step or less. We consider this kind of

performance highly satisfactory.
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Figure 7.5: Mean values xOLµy of OLµ as functions of the supernode fraction
r, calculated by using the RAS and RAF models and the “ran” and “pa”
status assignment to supernodes. The tags “ras” and “raf” refer to the RAS
and RAF models, respectively.

The effects of preferential assignment of supernode status

In Section 7.1 we mentioned that we could allocate supernodes with two dif-

ferent strategies:

– uniformly choosing the nodes (random assignment, “ran”);

– choosing the nodes with a probability proportional to their degree (pref-

erential assignment, “pa”).

The simulation results presented up to this point used models that chose uni-

formly the supernodes (“ran”). In this Subsection, we evaluate the impact of

the preferential assignment strategy (“pa”).

In Figure 7.5 and Table 7.2 we gathered the results of simulations of models

that use both the random assignment (ran) and the preferential assignment

(pa) approaches. We do not report values for r “ 0 as in this case there would
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RAF xOLµy RAS xOLµy

r ran pa pa/ran ran pa pa/ran

0.1 117.9 111.1 0.94 1.82 1.37 0.75
0.25 84.43 73.54 0.87 0.42 0.14 0.33
0.5 36.85 28.86 0.78 0.02 0.01 0.45

Table 7.2: Mean values xOLµy of OLµ as functions of the supernode fraction r,
calculated by using the RAS and RAF models and the “ran” and “pa” status
assignment to supernodes. “pa/ran” are the ratios between xOLµy calculated
using the “pa” and “ran” statuses, respectively, for both the RAF and RAS
models.

be no supernodes. In the case of the RAF model, the effects of “pa” are almost

negligible for most values of r considered, and they start being noticeable only

at relatively high values of r.

On the other hand, in the RAS model, the improvements are already rel-

evant for r “ 0.1 and become massive for r “ 0.25. These results are not

unexpected, as supernodes in RAS models are really the pillars of information

sharing, and allocating the status to nodes with high degree greatly improves

the number of messages they can share.

If in the real system there is correlation between the degree of the nodes

and the supernode status, as we deem plausible and likely, our model predicts

that with 10% of nodes acting as supernodes, almost 70% of the messages are

received in 1 step or less and more than 80% in 2 steps or less. With 25%

of supernodes, 90% of the messages are received istantaneously (0 steps) and

97% in 1 step or less. Such results are extremely satisfactory.

The effects of different network topologies

All the simulations performed so far used graphs generated by the Holme and

Kim algorithm [93], with the following parameters: 1000 nodes, 50 starting

edges per node, 0.2 probability to add a triadic closure step. These networks

have a high clustering coefficient and a fat tailed degree distribution, i.e., they

have a relatively high chance of having several nodes with an extremely high
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Algorithm xky C

HK(1000, 50, 0.2) 93.5 0.20
BA(1000, 50) 95.0 0.17
WS(1000, 95, 0.41) 94.0 0.20
ER(1000, 0.095) 94.7 0.095

Table 7.3: Expected values of average degree xky and clustering coefficient C
for networks generated according to the HK, BA, WS and ER algorithms. The
starting parameters are choosen so that the networks generated have the same
number of nodes and the same expected number of edges ( 47000). Averages
over 100 runs.

degree.

In order to understand how the topological features of the starting net-

work affect the simulation, we performed simulations with starting networks

generated according to different models. To assess the individual importance

of fat tailed degree distributions, one set of simulations starts with networks

generated according to the BA model with 1000 nodes and 50 starting edges

per nodes. The Holme and Kim (HK) model was derived by the BA model by

only adding the triadic closure step.

The BA model is known to yield networks with a relatively low cluster-

ing coefficient, as discussed in Chapter 2. In particular, with the theoretical

analysis of the BA model at the thermodynamic limit, the expected cluster-

ing coefficient is only 0.005. In fact, experience shows that for relatively small

networks such as the ones we are discussing, it is much better to use simula-

tions to find out the expected clustering coefficient, that we measured as 0.17

(mean of 100 simulations). This value, although smaller than that of networks

generated by the HK model, is nonetheless rather high.

In order to assess the importance of the fat tail that is typical of both the

BA and the HK models, we also performed simulations starting with networks

generated according to the WS model. Such networks have a high clustering

coefficient, but have a significantly lower ratio of very high degree nodes com-

pared to the networks generated with either the HK or the BA models. We
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model strategy r HK BA WS ER

RAF

pa

0 143.0 142.5 143.0 143.4
0.1 111.0 112.3 115.4 115.9
0.25 73.54 73.38 82.47 80.89
0.5 28.86 29.41 35.98 35.40

ran

0 142.8 144.0 144.0 142.5
0.1 117.9 112.9 122.7 117.5
0.25 84.43 79.4 76.6 84.12
0.5 36.85 32.4 30.7 37.10

RAS

pa

0 12.3 20.2 16.8 26.2
0.1 1.37 4.83 5.29 6.85
0.25 0.13 1.01 1.60 1.31
0.5 0.01 0.21 0.20 0.09

ran

0 12.1 19.7 16.9 25.9
0.1 1.82 6.94 5.83 7.84
0.25 0.41 2.09 1.54 1.68
0.5 0.02 0.28 0.26 0.10

Table 7.4: Mean values xOLµy of optimum reception lags OLµ resulting from
simulations carried out using the HK, BA, WS and ER algorithms, with the
RAF and RAS models, with the “pa” and “ran” strategies and with different
values of the supernode fraction r.

chose the initial parameters for the WS model in order yield networks that

have the same number of nodes and roughly the same number of edges of the

networks generated with the other algorithms.

Eventually, as a control test, we performed simulations starting with net-

works generated according to the Erdős-Rényi (ER) random graph model

GNP p1000, 0.095q [57]. As can be seen from Table 7.3, such networks have

the same expected average degree xky as that of the networks generated with

the WS model. Moreover, random graphs do not have a fat tail, but, as op-

posed to the high clustering coefficient typical of the WS networks, they have

a very low clustering coefficient.

In Table 7.4 and Figure 7.6 we gathered all the results for our simulations

carried out using the HK, BA, WS and ER algorithms, with the RAF and

RAS models, with the “pa” and “ran” strategies and with different values of

the supernode fraction r. Results concerning the RAF model, both using the
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Figure 7.6: Mean values xOLµy of optimum reception lags OLµ resulting from
simulations carried out using the HK, BA, WS and ER algorithms, with the
RAF and RAF models, with the “pa” and “ran” strategies as functions of the
supernode fraction r.
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“ran” or the “pa” strategy, are significantly similar regardless of the network.

On the other hand, with the RAS model several differences show up. First,

we notice how simulations starting with HK networks give more favorable re-

sults than those starting with BA networks. Moreover, increasing r has a more

positive effect on simulations starting with HK networks than on simulations

starting with BA networks. This fact suggests that an even marginally higher

clustering coefficient is an important factor.

However, clustering coefficient alone is not the only topological feature that

has a positive effect on the simulation results. Given our parameter choices,

the networks generated with the WS algorithm have an expected clustering

coefficient similar to those generated with the HK algorithm. Nonetheless,

simulations of the RAS model starting with WS networks give less favorable

results than those starting with HK networks; for example, with r “ 0.1 and

“pa”, the average optimum lag takes almost 4 times longer in the WS case.

Eventually, we compared the results of simulations starting with WS net-

works to those of simulations starting with a random graph with similar aver-

age node degree, and we found out that systems starting with random graphs

perform slightly worse than those starting with BA and WS networks for small

positive values of r.

Our opinion is that although a higher clustering coefficient greatly enhances

performance when the starting network has a fat tailed degree distribution, i.e.,

when there is a relatively high chance to have nodes with extremely high de-

gree, the presence of such nodes is just as important. In fact, the two features,

when taken separately, do not yield huge benefits over completely unstruc-

tured networks such as random graphs. On the other hand, their combination,

which occurs in HK networks guarantees a much better overall performance.





Chapter 8

Conclusions

With the pervasive diffusion of social networking systems in everybody’s daily

lives, social scientists have the unprecedented possibility to study quantita-

tively large social systems. Moreover, since the social networking revolution

crossed age, gender and nationality boundaries, insight on some real life be-

haviors can be obtained from the analysis of the online structures.

However, researchers still lack effective ways to perform proper experi-

ments, because the virtual nature of online social networks does not remove

ethical issues in interfering with the systems. As a consequence, modeling and

simulation in general, and, specifically, agent-based modeling and simulation

are going to have an increasing relevance.

Considering (i) the lack of specific support for social networks in agent-

based simulation toolkits, and (ii) the respective advantages of the highly spe-

cialized agent-based models and the more general traditional ones, we devel-

oped a unified conceptual framework for agent-based modeling and simulation

of social networks.

First, we singled out a meta-model from the critical analysis of the several

agent-based and traditional models developed in the literature. Such meta-

model can be used:

– to convert traditional models into agent-based, concurrent models,
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– to merge in the same model some aspects of traditional stochastic models

and more pro-active elements, typical of agent-based modeling, and

– to express full-fledged agent-based models.

As a second step, we developed a domain-specific language that allows

to express models conforming to our meta-model in an executable way. Our

language is implemented as an internal domain-specific language embedded in

a high-level general-purpose language. This approach allows us to provide a

very expressive language that can be used productively by researchers with a

strong background in computing, but that does not forgo simplicity, in order

to be profitably used by researchers with different backgrounds.

Moreover, with our approach, it is extremely simple to call external li-

braries. Several high quality scientific and statistical libraries are available,

which, in turn, are built over highly optimized C and Fortran code.

In the third step, for executing the models written in our domain-specific

language, we developed a software framework that provides runtime support

for the simulations. The runtime system is an effective agent-based platform

that is used both (i) to run the simulation units which are part of the model,

and (ii) to implement the various software components that support the sim-

ulation execution.

The social network simulation framework we propose has the following

defining features: (i) it supports both small and large networks; (ii) simulations

can be effortlessly run on remote machines; (iii) it is easy to use, even for people

without a strong programming background; (iv) deploying a large simulation

is not significantly harder than deploying a small one.

The system is highly configurable, so that it offers the possibility to choose

the most appropriate components for each model, considering the specific al-

gorithmic requirements. For example, the underlying network representation

can be fine-tuned both (i) in terms of data structures (e.g., sparse adjacency

matrices or adjacency lists), and (ii) from the point of view of data storage

(e.g., RAM-based, file-based, or interfacing one of the several DBMS that we

support).
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Moreover, several strategies are used to minimize the memory footprint of

the simulations. In general, our design leans the memory vs. CPU trade-off

towards memory, because our experience showed that memory is a much more

critical resource when performing large scale simulations.

Then, we validated our approach adapting several traditional models to

our meta-model and implementing them in the domain-specific language. We

carefully compared the results of the simulations with the theoretical features

studied in the literature. Our results show that our approach is successful in

providing a friendly and easy environment to perform agent-based simulations

over social networks; such simulations are of interest both to develop models

and to study the results of the models themselves. We remind here that agent-

based simulations are powerful conceptual modeling tools for social network

simulations, which have relevant advantages over the traditional ones.

Eventually, considering the satisfactory results we obtained, we applied our

framework to the still open problem of creating an entirely distributed social

networking system, which, as compared to the centralized ones, yields relevant

advantages as far as privacy and resilience are concerned. We developed several

models to help us in the understanding of the many issues that a P2P social

networking system would have when deployed, and specifically the well-known

issue of the availability of rare resources. Through simulation, we found some

criteria for the design of distributed social networks and some operation con-

ditions which may result in a satisfactory user experience in terms of reduced

delays in the propagation of information. Consequently, we are developing a

distributed social networking system optimized by means of the results of our

simulations.





Appendix A

Acronyms

ABM Agent-based Modeling

ASPL Average Shortest Path Length

ACL Agent Communication Language

BA Barabàsi-Albert

BFS Breadth First Search

BPA Biased Preferential Attachment

CNT Complex Network Theory

CPL Characteristic Path Length

DHT Distributed Hash Table

DSL Domain-Specific Language

ER Erdős-Rényi

HK Holme and Kim

MAS Multi-agent System

OSN Online Social Network

P2P Peer-to-Peer

SIR Susceptible-Infected-Recovered

SNA Social Network Analysis

TL Transitive Linking

WS Watts-Strogatz
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