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Chapter 1

Overview of Photovoltaic systems

1.1 Introduction

The increasing demand for electrical power, along with the decreasing stock of tra-

ditional energy sources, has caused a growing interest towards microgeneration from

renewable power sources.

In particular, photovoltaic energy (PV) has witnessed an increasing attention and

the scientific community has concentrated its efforts in order to develop innovative

solutions for the integration of PV systems into the existing distribution grid.

PV systems can be mainly classified into two categories: stand-alone or grid-

connected. The first topology is suited for remote locations where the PV panels

power a local load, while grid-connected systems work in conjunction with the exist-

ing electrical grid.

Obviously, considering the highly discontinuous output of a PV field during a

day, in a stand-alone system suitable electric energy storage must be provided. More-

over, when the accumulators are fully charged, no more power can be extracted from

the panels. A grid-connected system does not suffer from these drawbacks, as the

maximum power available from the field can be continuously transferred to the grid.

Considering that the majority of the systems is of the grid-connected kind, a lot of re-

search was done in this field. For this reason, this thesis is focused on grid-connected
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converters for PV systems.

1.2 Grid-connected PV systems

The earlier designs of PV grid-connected inverters featured a full-bridge topology

coupled to the mains with a line frequency transformer (Fig. 1.1a). The transformer

guarantees the galvanic isolation between the PV field and the grid, simplifies the out-

put filter design and the compliance with the electromagnetic interference (EMI) in-

ternational regulations. However, converters embedding a line frequency transformer

are bulky and the transformer accounts for 1-2% of the power losses.

For these reasons, researchers have been active in studying solutions for the re-

moval of the line frequency transformer, in order to pursue the maximum efficiency

without increasing the converter cost.

The main issue that arises when the line frequency transformer is removed is due

to the presence of a parasitic capacitance between the metal frame of the panel and

the photovoltaic cells. The value of the capacitance varies with the ambient condi-

tions and with the panel technology. The typical value can range from 100 nF/kWp

for crystalline silicon to 1 µF/kWp for thin-film panels. This implies that a com-

mon mode current (i.e., ground leakage current) can flow into the resonant circuit

composed of the line conductors, the earth connection of the MV/LV distribution

transformer and the parasitic capacitance of the PV field [1].

If a simple full-bridge is employed without any transformer coupling or specific

modulation strategy, the high-frequency common mode voltage variations at the con-

verter output cause unacceptable levels of ground leakage current, that generate EMI,

reduce the safety of the system and cause the disconnection of the converter due to

the Residual Current Device (RCD) [2].

In order to solve the problem, two approaches were pursued: the transformer-

less (Fig. 1.1b) converter and the high-frequency transformer (Fig. 1.2) converter. In

the latter kind of topology, a high-frequency transformer is employed to transfer the

power from the PV panels to a DC/AC converter. Different choices for the converter

are possible: in [3] a soft-switching DC/DC converter feeds a full-bridge VSI and in



1.2. Grid-connected PV systems 3

[4] a resonant DC/DC converter is followed by a current source inverter.

DC
V grid

v
DC

V grid
v

LF
Transformer

( )b( )a

Figure 1.1: Line-frequency transformer (a) and transformerless (b) inverter.

grid
v

DCV

HF
Transformer

Figure 1.2: High-frequency transformer inverter architecture [3].

While the high-frequency transformer converter still guarantees the galvanic iso-

lation and is suitable for every kind of PV source, even for those panels that require

the grounding of the positive or the negative terminal, the transformerless approach

does not feature any transformer nor the galvanic isolation.

Transformerless inverters are usually designed for a precise panel technology.

For crystal and polycrystalline silicon, the main issue is the common mode voltage

variations at the converter output. In any case, for thin-film photovoltaic panels, it

is almost mandatory to employ insulated topologies, due to specific requirement of

the panel technology. In the following chapters several solutions are presented and

analyzed.
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1.3 Control of a grid-connected Photovoltaic Inverter

A grid-connected converter is a complex system and the power electronics topology

represents only the front-end with the electrical grid. In order to effectively harvest

the energy from the PV field and transfer it to the grid, a specific control system must

be implemented.

The comprehensive control system is reported in Fig. 1.3 and each component of

the subsystem will be analyzed in the following section.

PWM

Voltage

Controller

MPPT

*

DCV

Current

Controller

*

grid
i

ˆ
gridi

ˆ
DC

V

m

PV
Inverter

gate signals

PV

PLL
θ

gridv

Figure 1.3: Block scheme of the control of a single-stage PV inverter.

1.3.1 Grid synchronization

The main task to be performed by a grid-connected PV inverter is to inject active

power into the grid. In order to complete this task, a synchronization mechanism must

be implemented. While the simple strategy of measuring the time between consecu-

tive zero-crossings of the grid voltage may be theoretically sufficient, more complex

solutions must be employed to comply with the international regulations.
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PLL in a stationary reference frame

The first approach to detect the grid voltage angle is to employ a simple Phase Locked

Loop (PLL), presented in the scheme of Fig. 1.4. The basic principle is that the dif-

ference between the input and output angle can be estimated by the multiplication

and subsequent filtering of two sinusoidal signals. Considering vgrid = Vg sinθi, it

follows that the input of the Low Pass Filter (LPF) is Vg sinθi cosθ , that equals to

0.5Vg (sin(θi −θ)+ sin(θi +θ)) by applying the Werner formulas.

LPF
1

s

cos

θgrid
v ω

Figure 1.4: Block scheme of the PLL in stationary reference frame.

As a matter of fact sin(θi − θ) can be linearized as θi − θ , and the integrator

followed by the trigonometric function can be considered the model of a Voltage

Controlled Oscillator (VCO), leading back to the scheme of the well-known PLL.

The main drawback of this topology is the design of the LPF in order to achieve

good tracking performance. In fact, a first order LPF would lead to a marked phase

error, for this reason different structures of PLL are chosen.

Transport delay PLL

In a three-phase system, the use of the Clarke transformation allows to create a

quadrature system and realize the PLL in a synchronous reference frame (d-q PLL)

with the Park transformation. This kind of PLL is very simple to design, allows zero

steady state tracking error and very good dynamic performances. However, its appli-

cation to a single phase system is not straightforward. While it is true that a fictitious

quadrature signal can be generated by delaying the grid voltage by a quarter of period,
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this remains true only for a specific frequency, i.e., in case of frequency deviations a

tracking error appears.

This drawback was solved in [5], where a modified Park transform was employed.

Basically, the trigonometric functions of the Park transforms are not computed di-

rectly, but the cosine is obtained as a delayed version of the computed sine of the

angle, see Fig. 1.5. Tn represents the nominal value of the grid voltage period.

gridv

sin

PI

2

nT s

e

π
−

θωqV
1

s

2

nT s

e

π
−

Figure 1.5: Block scheme of the transport delay PLL.

Considering the grid voltage vgrid =Vg sinθi, with θi = ωit +Φ0 the input of the

PI regulator can be written as:

Vq =−Vg sinθi sin(θ −ωiTn/4)+Vg sinθ sin(θi −ωiTn/4)

=Vg sin(ωiTn/4)(sinθi cosθ − sinθ cosθi)

=Vg sin(ωiTn/4)sin(θi −θ)

(1.1)

Equation (1.1) shows that even if ωiTn/4 6= π/2, i.e., the grid frequency varies,

the phase error is compensated. Obviously, the presence of a delay line limits the

dynamic performances. Moreover, it can be shown that this structures presents two

points of stability, the one where θ = θi and the one where θ =−θi.

This fact must be taken into account and the sign of the grid pulsation must be

checked to ensure that the PLL is locked on the stable point with ω > 0.
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SOGI-FLL

A possible solution to employ a standard d-q PLL in a single phase grid was presented

in [6]. The basic idea is to realize a system able to generate the quadrature version of

a given input signal while tracking the frequency.

The core of the system is the Second Order Generalized Integrator (SOGI), that is

a second order transfer function with a resonance peak tuned to a specific frequency.

The block scheme is presented in Fig. 1.6.

1

s

1

s

fv
qv

ffω

'ω

k
gridv

1

s

−Γ

FLL

v
ε

Figure 1.6: Block scheme of the SOGI-FLL.

Neglecting the Frequency-Locked-Loop (FLL) and considering a fixed ω ′, the

transfer function between the outputs v f , vq and the input vgrid can be expressed as:







D(s) =
v f (s)

vgrid(s)
= kω ′s

s2+2kω ′s+ω ′2

Q(s) =
vq(s)

vgrid(s)
= kω ′2

s2+2kω ′s+ω ′2
(1.2)

As it can be seen from the transfer functions (Fig. 1.7), v f represents a filtered

version of the input signal, while vq lags the input signal by π/2. The value ω ′ repre-

sents the resonance frequency, while the bandwidth of the filter is determined by the

value k.

The Frequency Locked Loop (FLL) dynamically tunes the resonance frequency

ω ′ of the SOGI. The mechanism resides in the transfer functions εv(s)/vgrid(s) and



8 Chapter 1. Overview of Photovoltaic systems

−80

−60

−40

−20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
0

10
1

10
2

10
3

10
4

10
5

−90

−45

0

45

90

P
h
a
s
e
 (

d
e
g
)

 

 

Bode Diagram

Frequency  (rad/s)

k=0.1

k=1

k=10

(a) D(s)

−150

−100

−50

0

50

M
a
g
n
it
u
d
e
 (

d
B

)

10
0

10
1

10
2

10
3

10
4

10
5

−180

−135

−90

−45

0

P
h
a
s
e
 (

d
e
g
)

 

 

Bode Diagram

Frequency  (rad/s)

k=0.1

k=1

k=10

(b) Q(s)

Figure 1.7: Frequency response of the SOGI filters.

Q(s). It can be shown from the magnitude and phase responses that these two latter

signals are in phase only when ω ′ matches the input frequency. For this reason, a

simple integrative controller of gain −Γ is used to track the frequency.

This topology implies an increase in the computational load, as a d-q PLL must

be cascaded to the SOGI in order to reconstruct the grid voltage angle. Moreover,

the bandwidth of the system can not be selected too narrow, as it would delay the

dynamic response.

1.3.2 Control of the current injected into the grid

Independently from the hardware architecture, a VSI can synthesize a fundamental

output voltage by high frequency switching. In order to reduce the switching har-

monics, an output filter must be employed. The design of the output filter for grid-

connected inverters is well studied in literature [7].

While an inductive (L) filter represent a simple solution, usually it cannot achieve

satisfying performance in term of harmonic reduction unless a large inductance value

is chosen. For this reason a LC or LCL filter is generally employed.

Fig. 1.8 represents the model of the VSI (with output voltage Vout) coupled to the

grid with a LCL filter. The inductor Lgrid represents the lumped inductance of the

grid for a LC filter, but it could also include the inductance of the additional inductor
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in case of a LCL filter. In the model also the wire resistances and the ESR of the

filter capacitor are considered. It must be said that R f could also represent an actual

resistor connected in series with the capacitor to dampen the resonance.

For the control, the grid voltage vgrid represents a disturbance, while the value

vPCC represents the actual voltage at the Point of Common Coupling (PCC), where

the VSI is connected.

f
L

L
R

f
R

fC

gridRgrid
L

grid
v

PCC
v

out
V

grid
i

Figure 1.8: Model of the grid-connected converter with a LC filter.

Depending on the rated power of the converter different filter parameters are cho-

sen in order to comply with the regulations that limit the THD of the output current.

The Bode response of the plant is shown in Fig. 1.9. The parameters were C f = 1µF ,

R f = 1Ω, L f = 1mH, Rl = 0.1Ω, Rg = 0.25Ω and L f = [20,1000]µH. A wide varia-

tion of the grid impedance is considered, as this value is affected by a great variability.

The transfer function Y (s) = igrid(s)/Vout(s) can be expressed as:

Y (s) =
sC f R f +1

C f L f Lgs3+C f (L f R f +L f Rg+LgR f +LgRL)s2+(L f +Lg+C f (R f Rg+R f RL+RgRL))s+Rg+RL

(1.3)

This transfer function presents a marked resonance peak at ωres =
√

L f +Lgrid

C f L f Lgrid
. The

design of the LCL filter usually starts by choosing the value of the filter inductor L f

in order to fulfill a first requirement for the output current ripple. The capacitor value

is limited by the amount of reactive power that it absorbs, and it is used to further
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Figure 1.9: Bode response of the Plant with different values of the parameters.

reduce the current ripple. The resonance peak should be located between the grid

frequency and half the sampling frequency. While it is true that the damping resistor

R f can be adopted to prevent the instability of the closed-loop system, a large value

increases the power losses.

Several solutions for grid current controllers are analyzed [8].

Proportional Integral (PI)

A simple solution is to employ a standard PI regulator, in the form:

GPI(s) = KP +
KI

s
(1.4)

The main issue of this current regulator is the finite gain at the grid frequency.

In fact, the use of a simple PI regulator cannot guarantee a good tracking of the

reference signal. As a consequence, errors in the grid current magnitude and phase

will appear. This problem can be reduced by increasing the gain of the regulator,

obviously reducing the control phase margin and rendering the system potentially



1.3. Control of a grid-connected Photovoltaic Inverter 11

unstable.

Proportional Resonant (PR)

The steady state error at the grid frequency of the simple PI regulator is a serious

issue, as also the power factor of the output current cannot be controlled with preci-

sion.

The Proportional Resonant (PR) controller can overcome this problem, by de-

signing a second order controller with infinite gain at the grid frequency, as in (1.5).

In an actual implementation, some degree of damping must be introduced in the sys-

tem. This damping factor, k, regulates the gain of the resonant filter, as shown in Fig.

1.10.

GPR(s) = KI

ω2
grid

s2 +ω2
grid

≃ KI

ω2
grid

s2 +2kωgrids+ω2
grid

(1.5)
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Figure 1.10: Bode response of the PR controller with different damping factors.

The steady state performance of this controller depends on the choice of the

damping factor, that cannot be chosen too low in order to avoid system instability.
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Despite this problem, this controller is widely adopted when harmonic compensa-

tion is needed, as multiple PR controllers tuned to the fundamental harmonics can be

added together.

In the field of resonant controllers, the repetitive control was also considered for

actual implementations in grid-connected VSI [9]. The repetitive controller can be

viewed as positive feedback system with a delay line, that leads to the expression:

Grep(s) =
Krep

1− e−Tns
(1.6)

This controller shows infinite gain at the frequency 1/(Tn), i.e., the nominal grid

frequency, and its harmonics. Obviously, a specific compensator must be designed in

order to ensure the system stability.

PI in synchronous reference frame

In a three phase system the synchronous current control in the d-q reference frame is

widely adopted. However, its application to a single phase system needs the genera-

tion of a fictitious quadrature system, as already explained in section 1.3.1.

Fig. 1.11 shows a possible implementation of the d-q grid current control. A delay

block is employed to generate the quadrature current signal, and a simple PI for each

axis is employed. Obviously, only one output of the Park inverse transform is chosen

as output voltage Vout . Depending on the convention chosen for the PLL, the active

power axis can be either the direct or the quadrature one.

This controller exhibits excellent steady state performance and possibility to con-

trol active or reactive power. However, the presence of a delay line negatively affects

its dynamic performance.

Deadbeat controller

The deadbeat controller is a model-based discrete control which aims at obtaining

zero steady state error in a finite number of sampling intervals.

The basic idea is to write the difference equation that governs the system’s dy-

namics, and to calculate the exact value of the controlled variable which allows to
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Figure 1.11: Block scheme of the d-q current control for a single phase VSI.

reach the given set-point.

For example, considering the system in Fig. 1.8, the equations that characterize

the system are:















RLiL f
+L f

diL f

dt
= Vout − vPCC

vPCC = vC f
+R fC f

dvCf

dt

igrid = iL f
−C f

dvCf

dt

(1.7)

The simplest form of the deadbeat control is to control the filter inductor current

iL f
, considering only the first equation. In this case discretizing the derivative with a

sampling time Ts the following equation can be obtained:

RLiL f
[k]+L f

iL f
[k+1]− iL f

[k]

Ts

=Vout [k]− vPCC[k] (1.8)

This means that, in order to control the inductor current so that iL f
[k+1] = i∗[k+

1], where i∗[k+ 1] is the current set-point at the sampling instant k+ 1, the inverter

needs to output the voltage:

Vout [k] = vPCC[k]+RLiL f
[k]+L f

i∗[k+1]− iL f
[k]

Ts

(1.9)
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From (1.9) the control needs to know the desired current one sample time ahead:

i∗[k+1].

However, the control is complicated by the fact that a PWM inverter operates

intrinsically with a time delay of one step, so it is not possible to control the inductor

current at the next sample time. An additional sampling interval is needed to take

into account this delay and all the variables at the next sampling interval must be

predicted.

In fact, Vout [k] at the instant k was decided at the previous step, so the control must

calculate the value Vout [k+ 1], that can be obtained shifting into the future equation

(1.9). The same equation can be employed to predict iL f
[k+1].

The final form of the deadbeat controller, including the delay in the PWM inverter

is given by (1.10)







iL f
[k+1] = Ts

L f

(

Vout [k]− vPCC[k]−RLiL f
[k]

)

+ iL f
[k]

Vout [k+1] = vPCC[k+1]+RLiL f
[k+1]+L f

i∗[k+2]−iL f
[k+1]

Ts

(1.10)

To implement the control in (1.10) it is necessary to predict the values vPCC[k+1]

and i∗[k+2]. Different approaches are feasible, i.e. circular buffers to predict periodic

signals or data interpolations. The way the predictions are calculated affects in a

marked way the performance of the control [10].

Moreover, the deadbeat control needs a good knowledge of the system model,

and errors in the system parameters affect the set-point tracking and can also lead to

the instability of the control.

Robust control

The robust control theory is applied in order to guarantee the stability of feedback

controls with uncertain systems.

As a matter of fact, as shown in Fig. 1.9, the current control is affected by a

certain amount of uncertainty, so the robust control theory appears to be an attractive

solution. In [11] a robust controller for a grid-connected inverter with a LCL filter

was designed with the Robust Control Toolbox of MATLAB.
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The first step to design a robust controller is to model the uncertainty of the

system, modeling the system as an average model with a multiplicative uncertainty ,

i.e. (1.11).

Y (s) = Y (s)(1+∆(s)) (1.11)

In fact, several controllers can be designed for a reference plant, but in order for

the system to be stable with respect to parameters variation, specific characteristics

of the controller must be considered.

( )Y s
grid

i

( )s∆

( )G s
outV

*

gridi

Figure 1.12: Scheme of the controller with the system affected by multiplicative un-

certainty.

( )s∆

( ) ( )G s Y s

Figure 1.13: Autonomous system employed to study the asymptotic stability.

Considering 1.12, the stability problem can be assessed considering the autonomous

system (with null setpoint) of 1.13. The Small gain theorem states that: If G(s)Y (s)
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and ∆(s) are stable, system of 1.13 is asymptotically stable if:

‖ GY ∆ ‖< 1 (1.12)

That is equivalent to say:

σ
(

G( jω)Y ( jω)∆( jω)
)

< 1 (1.13)

where σ represents the singular value for a multivariable transfer function. In

the case of Single-Input Single-Output system the singular value is equivalent to the

maximum absolute value of the transfer function over the frequency range.

It follows that the robust stability is guaranteed if

σ
(

G( jω)Y ( jω)
)

<
1

∆( jω)
(1.14)

In other words, the maximum amount of uncertainty of the system limits the

maximum gain (therefore the performance) of the feedback system. Usually it is im-

portant to shape the robust controller in order to guarantee specific characteristic, i.e.

high gain in the frequency range of interest. In fact, the transfer function can incor-

porate specific weighing filters.

For this reason a mixed sensitivity problem is generally formulated and con-

trollers with fairly good characteristics can be designed [11].

The main drawback of this kind of design is that too wide variations of the pa-

rameters compromise excessively the performance of the designed controller.

1.3.3 Maximum Power Point Tracking

The current control represents the basic functionality of the grid-connected inverter.

In fact, depending on the system architecture, one or more control loops are needed

in order to achieve the full functionality.

In particular, for a single-stage DC/AC inverter, the DC Link is directly connected

to the photovoltaic field, and it is mandatory to control the DC Link voltage.

The control of the DC Link voltage can be realized controlling the current injected

into the grid. The DC Link voltage then follows the well-known characteristic of the
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photovoltaic cell, that can be derived by the equivalent circuit of a PV cell (Fig. 1.14),

where the voltage-current characteristic can be expressed, for silicon PV cells, as:

I = Ipv − I0

(

e
q(V+RsI)

nkT −1
)

(1.15)

In equation (1.15), Ipv represents the current due to the photoelectric effect (vari-

able with the solar irradiance), the diode D models the p-n junction and Rp and Rs

the parallel and series resistance of the cell. The current drained by the parasitic re-

sistance was neglected.

The series-parallel connection of multiple PV cells leads to a PV module, and the

PV system installers design the connection of multiple PV panels in order to match

the requirement of the grid-connected inverter.

For example, Fig. 1.15 represents a typical voltage-current characteristic of a 3.8

kW PV field.

pvI

pR

s
R

V

I

D

Figure 1.14: Equivalent circuit of a PV cell.

In order to maximize the energy harvested from the PV field, it is important that

the inverter makes the PV field to work at its maximum power point. Fig. 1.16 shows

the voltage-power characteristic of the PV field described by Fig. 1.15. It is obvious

that the operating point V=400 V corresponds to the maximum available power in

these operating conditions.

So, the comprehensive control of a PV inverter must implement, in addition to

the basic current controller, also a DC Link controller, whose set-point is generated

by a specific algorithm that tries to track the MPP in every working condition. This

was depicted in Fig. 1.3.
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Figure 1.15: Voltage-Current characteristic of a PV field.

The situation is complicated by the fact that the solar irradiance is always varying,

due to the variable weather conditions or partial shading of the PV field.

In order to work in the optimum point, a Maximum Power Point Tracking (MPPT)

[12], [13] algorithm must be implemented in the inverter.

In the following some MPPT algorithms are shown, a review of the different

MPPT techniques can be found in [14].

Off-line MPPT methods

These methods rely on the off-line calculation of the optimum control law. Generally,

they can achieve good dynamic performance in terms of system response, but they

rely on the good knowledge of the system parameters and usually do not take into

account the cases where multiple local maxima are present in the PV characteristic

(typically during partial shading of the PV field).

The Curve Fitting Method is based on the observation that the maximum power

points at different irradiance conditions can be calculated (or mapped) in order to

obtain an optimum curve which links the PV voltage and the power that must be

drawn from the field.
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Figure 1.16: Voltage-Power characteristic of a PV field.

The Fractional Short Circuit Current/Fractional Open Circuit Voltage method

relies on the fact that the MPP current or voltage follows in first approximation a

linear law. By measuring at different time instants the open circuit voltage or short

circuit current the MPP law can be updated.

On-line MPPT methods

These algorithms search for the optimum operating point continuously and they do

not rely only on precalculated characteristics.

The Perturb and Observe (P&O) algorithm is one of the most employed due to

the ease of implementation and the fact that it requires very little tuning. It is based on

the continuous perturbation of the system operating point in the attempt to move the

system towards the increasing power. In steady-state conditions, the algorithm oscil-

lates around the maximum power point, inverting the sign of the perturbation at every

sampling interval. This behavior also represents the main drawback of this method,

as in order to achieve good MPP tracking the perturbation must be sufficiently high,

but the higher the perturbation, the higher the oscillation around the MPP at steady

state, and consequently the lower the MPP tracking efficiency.



20 Chapter 1. Overview of Photovoltaic systems

In order to solve the drawback of the P&O method various approaches where

investigated, where basically the magnitude of the perturbation is adapted in order to

obtain good tracking performance with little steady-state oscillation.



Chapter 2

State of the art of transformerless

PV Inverters

2.1 Transformerless Full-Bridge topologies

In this section the full-bridge solutions that address the problem of high-frequency

common mode voltage variations are analyzed.

Fig. 2.1 shows a full-bridge converter powered by a PV source. Assuming the

negative side of the DC Link as the reference potential, vA0 and vB0 can be defined as

the outputs of the full-bridge. The common mode voltage can be expressed as (2.1),

while the differential voltage is the difference between the two potentials (2.2).

vcm =
vA0 + vB0

2
(2.1)

vd = vA0 − vB0 (2.2)

In order to explain the cause of the common mode current, the full-bridge can

be modeled as a differential and a common mode voltage sources, as in Fig. 2.2.

In the same figure also the grid impedance is shown (Rgrid and Lgrid), along with

the parasitic resistance RL of the filter inductor L f and the filter capacitor (C f with a
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Figure 2.1: Full-bridge inverter with PV DC source.

series resistance R f , usually employed to damp the resonance of the differential mode

circuit).

For completeness, if the filter inductors are not of equal value, another component

of the ground leakage current appears. Usually this contribution is lower than the one

due to the common mode variations at the converter output.

This schematic leads to the conclusion that the parasitic capacitance of the photo-

voltaic filed forms a resonant common mode circuit, with a resonant frequency equal

to:

fr =
1

2π
√

(

L f +Lgrid

)

Cp

(2.3)

As L f is usually much greater than the grid inductance, the resonance frequency

depends on the filter inductance and on the parasitic capacitance value. However, even

for a particular PV field, the value of capacitance depends on ambient conditions, so

the result is that the resonance frequency can present very wide variations.

As a matter of fact, when the differential output voltage of the full-bridge, vd , is

not zero, one of the output voltages of the full-bridge will be connected to the DC

Link voltage, VDC, while the other will be connected at the negative side of the DC
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Figure 2.2: Model of the full-bridge converter.

Link. The common mode voltage at the output will simply be equal to vcm =VDC/2.

During the current freewheeling, depending on the sign of the current, the differ-

ential voltage can be either zero (three level PWM) or ±VDC (bipolar modulation).

While with the bipolar modulation the common mode voltage is always vcm =VDC/2,

in the three level PWM it can be either VDC or 0V depending on the configuration of

the transistors.

With this premise, it is obvious that the bipolar modulation strategy (two level

output voltage) is ideally suitable for PV inverters. However, its poorer energy effi-

ciency, high output current ripple and common mode voltage variations (during the

mandatory dead-times between the commutations) make its application very limited.

For this reason, three level inverters are nowadays the most widely adopted solution,

although they require specific strategies for the common mode output voltage.

In the following different three level inverters are analyzed. All of them employ

different strategies to keep the common mode voltage to a constant level vcm =VDC/2.

They can be further divided into two kinds: the ones that fix the output of the full-

bridge to a known potential with active clamping, and the ones that rely on the tran-

sient behavior to achieve the same objective.
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It must be said that the reduction of the common mode output voltage is not

the only way that can be pursued to reduce the ground leakage currents. In fact, it

is sufficient to ensure that high-frequency voltage variations do not happen over the

photovoltaic field parasitic capacitance, such as with Neutral Point Clamped (NPC)

architectures. Some recent advances are reported in the last part of the chapter as

well.

For completeness, it must be said that the common mode current at the output of

a three level (unipolar PWM) inverter can be addressed also with a specific output

filter, as in [15], see Fig. 2.3.
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Figure 2.3: Passive filter for ground leakage current reduction in a full-bridge inverter.

However, as it was widely shown, controlling the common mode voltage with a

proper topology and PWM strategy allows to strongly reduce the switching losses of

the power devices. The solution proposed in [15] is very simple and effective, but its

energy efficiency will be similar to a standard three-level full-bridge.

2.1.1 Topologies that do not fix vA0 and vB0 during freewheeling

In Fig. 2.4 a full-bridge is shown along with two additional blocks that perform the

disconnection from the grid during the freewheeling phases. These solutions differ in

the way they provide the zero voltage at the output of the full-bridge.
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Figure 2.4: Full-bridge with AC decoupling (HERIC) and DC decoupling (H5)

blocks.

With the DC decoupling, called H5 topology and employed in converters sold by

SMA, the turn on of the upper full-bridge switches provide the zero voltage, while

the additional switch disconnects the converter from the grid. The peculiarity of this

solution is that the freewheeling takes places only in the upper part of the full-bridge,

so only one additional transistor is necessary to realize the decoupling.

The AC decoupling is called Highly Efficient Reliable Inverter Concept (HERIC)

and is employed in Sunways converters. The zero voltage output is obtained by turn-

ing on the additional devices in the AC-side, short circuiting the grid, while all the

devices of the full-bridge are turned off.

In fact, when supplying the zero output voltages, in both solutions the voltages

vA0 and vB0 remain floating and the correct operation relies on the symmetry of the

commutations. In unbalanced conditions, vcm drifts from the desired value and higher

leakage currents arise.

A modification of the standard full-bridge topology was proposed in [16]. Fig.

2.5 illustrates the scheme for this inverter. The upper (T1 and T2) and the lower (T5

and T6) devices are commutated in order to supply the DC link voltage. In particular,

T1 and T6 share the same PWM signal, as T2 and T5.

The middle devices (T3 and T4) select the polarity of the output voltage. Consid-
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ering the positive half cycle, T4 is kept on, T1 and T6 commutate at high frequency

while the other devices are off.
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Figure 2.5: H6-type topology proposed in [16]

In the case of positive half cycle two configurations are possible:

1. T1 and T6 on (D1 off): vA0 =VDC, vB0 = 0, vcm =VDC/2.

2. T1 and T6 off (D1 on): vA0 = vB0 =VDC/2, vcm =VDC/2.

During the grid negative half cycle the circuit behavior is dual: T3 on, T4 off,

whereas T2, T5 and D2 commutate at the PWM switching frequency.

It is important to highlight that this topology, as in the case of H5 and HERIC,

does not actively control the common mode voltage during the freewheeling, so high

leakage current can arise in asymmetric conditions.

A novel topology was recently presented in [17] and its architecture is reported in

Fig. 2.6. This topology is studied in order to avoid the conduction of the antiparallel

diodes of the devices.

For example during the positive half cycle two configurations are possible:
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Figure 2.6: Topology proposed in [17].

1. T1 and T3 on (T5 off): vA0 =VDC, vB0 = 0, vcm =VDC/2.

2. T1 and T3 off (T5 on): vA0 = vB0 =VDC/2, vcm =VDC/2.

The drawback of this topology is the increased number of devices, the need for

two inductors and the inability to handle reactive power. However, as MOSFETs with

slow body diode can be employed, this solution can lead to very high efficiencies.

2.1.2 Topologies that fix vA0 and vB0 during freewheeling

An immediate approach to control the common mode voltage during the freewheeling

was to modify the H5 topology, by adding a diode connected between the midpoint

of the DC Link and the high-side of the full-bridge. This topology was proposed in

[18] and is reported in Fig. 2.7. The PWM scheme is exactly the same of H5.

The main drawback of this solution is that the DC Link voltage must be equally

divided between the capacitors C1 and C2, otherwise the ground leakage current in-

creases. As a matter of fact, if a diode is added to the midpoint, the unidirectional

current flow will cause a drift in the mid-point voltage, unless countermeasures are

employed, i.e. a resistive divider or an additional converter in order to balance the

mid-point. Moreover, an uncontrolled drift of the mid-point voltage poses a serious

threat to safety, as usually if the DC-Link is composed of series capacitors, the volt-
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Figure 2.7: Topology proposed in [18]

age rating of the single capacitor is lower than the maximum DC-Link voltage. These

solutions obviously deteriorate the efficiency of the converter and add complexity.

Another solution based on a modification of an existing topology was proposed

in [19], see Fig. 2.8. In this topology, the bidirectional switch in addition to the full-

bridge was realized with a diode bridge rectifier and an additional device, hence the

name HB-ZVR (H-Bridge Zero Voltage Rectifier).

The modulation strategy is very similar to HERIC. Considering the positive half

cycle, T1 and T4 commutate at high frequency supplying the DC-Link voltage to the

output, while T5 switches complementary to supply the zero voltage.

By connecting the source of the additional device to the mid-point it is ensured

that vA0 and vB0 are clamped to VDC/2 when supplying the zero voltage. An additional

diode is inserted in the current path to prevent the short circuit of the capacitors.

As in the previous case, it is extremely important to control the mid-point voltage,

otherwise high ground leakage current will arise. This task is made difficult by the

presence of the diode, that present the same problem as in [18]. The balancing of the

voltage across the DC Link capacitors was not addressed in [19].

A full-bridge topology with a modified DC Decoupling block was proposed in

[20], where two devices are added in series to the DC Link rails. Two diodes are con-
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Figure 2.8: Topology proposed in [19]

nected between the high and low sides of the full-bridge and the mid-point voltage,

see Fig. 2.9.

This particular topology employs the decoupling transistors, T5 and T6, to supply

the DC Link voltage to the output, while the full-bridge devices are used to select the

polarity and to give a freewheeling path for the grid current. For example, during the

positive half cycle, T1 and T4 are always on. During the active phase T5 and T6 are

switched on, while during the freewheeling the DC decoupling is turned off, and the

zero voltage is provided by the turn on of T2 and T3. As a matter of fact, during the

freewheeling phase the full-bridge is completely short-circuited, and the grid current

should divide into the two possible paths given by the high and low side freewheeling.

The additional diodes clamp the common mode voltage to VDC/2. Again, the

balance of the DC Link capacitors is not addressed in [20].

Based on the same topology, the Unipolar Transformerless (UniTL) PWM was

proposed in [21]. In this solution, the full-bridge is driven by a standard three-level

unipolar PWM with the freewheeling that happens in both the high and low sides of

the full-bridge. The DC decoupling transistors are switched off alternately to detach

the converter from the grid during both freewheeling phases. In this way it is pos-
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sible to obtain an output voltage main harmonic at twice the switching frequency,

differently from all the other topologies previously analyzed.

2.1.3 Topologies that employ the ground connection

As anticipated, if the earth potential is connected to a fixed voltage with respect to the

PV cell, no high frequency voltage variations happen over the parasitic capacitance.

In [22] a particular structure of parallel buck converters is employed to ensure

that, during each half cycle of the grid voltage, the neutral conductor is connected

either to the high or low side of the DC Link, see Fig. 2.10. While this can reduce

greatly the ground leakage current, special care must be taken at the zero-crossing of

the grid voltage.

Another topology which exploits the ground connection to reduce the ground

leakage current was proposed in [23] and is presented in Fig. 2.11. The principle

of operation resides in the fact that during the whole grid voltage period the neutral

conductor is connected to the negative side of the DC Link, ensuring low values of

ground leakage current.

During the positive half wave, T1 and T3 are on, while T4 and T5 commutate
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Figure 2.10: Topology proposed in [22].

at high frequency to synthesize the correct output voltage. The flying capacitor is

connected in parallel with the DC Link. During the negative half wave, T5 is kept

on, while T1, T2 and T3 realize the high frequency switching. In particular, when T1

and T3 are on, the configuration is the same as the positive half wave, and the zero

voltage is provided. When T2 switches on, T1 and T3 turn off, and the output voltage

is equal to the opposite of the DC voltage of the flying capacitor.

In [23] the aspect regarding the current stress of the flying capacitor is also taken

into account, and some guidelines are provided to choose the capacitance values.
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Chapter 3

State of the art of Multilevel

Inverter topologies

3.1 Introduction

Multilevel converters ensure a better reconstruction of the output waveform, allow

to reduce the size of output filters and increase the converter efficiency. Research on

multilevel converters has been going on for several years [24], but only recently they

have been applied to PV converters [25, 26, 27].

The basic idea is that the DC Link voltage can be split across different capacitors,

that can provide intermediate voltage levels between the reference potential and the

DC Link voltage [28]. Numerous solutions for multilevel inverters are present in

literature; in the following a review of the state of the art is reported, with reference

to a five-level output voltage. However, most of the topologies could be extended to

a greater number of output voltage levels.

As the focus of this work is on single phase (i.e. not high voltage) photovoltaic

systems, only some of the numerous ideas presented in literature are reported.
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3.2 Half-bridge Neutral Point Clamped (NPC)

This topology consists of a NPC leg composed of eight transistors in series. The

diodes provide the clamping of the DC Link capacitors, synthesizing multiple output

voltage levels [28].

The diode-clamped solution (Fig. 3.1a) needs several components (series diodes),

and presents serious issues with the balancing of the DC Link capacitors, limiting

practically its applications to reactive power compensators [29]. Even in this latter

application, this kind of converter presents the need of a balancing system for the

DC Link capacitors i.e., external circuitry [30], that increases the complexity of the

converter, or modified PWM strategies, which present various drawbacks [31, 32].
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Figure 3.1: Five-level NPC Inverters: diode clamped (a) and flying capacitor (b).

The flying capacitor solution (Fig. 3.1b) allows to exchange even active power

and it is suitable for grid-connected inverters. Anyway, a balancing system for the

DC Link capacitors is mandatory.

These converters offer multiple switches configurations which can supply the
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same voltage to the load, allowing the development of strategies that balance the

charge between the DC Link capacitors [33]. Even for a five-level converter, multiple

voltages need to be monitored and the balancing strategy is not trivial.

Moreover, with this kind of topologies (diode-clamped or flying capacitors), the

frequency of the output current ripple is at the switching frequency. Despite the need

for twice the DC Link voltage, if compared to full-bridge topologies, the half-bridge

NPC is ideal for transformerless photovoltaic converters, as it allows to obtain very

low ground leakage currents. In [34] a NPC half-bridge was applied to a three-level

photovoltaic inverter, but the principle remains valid even for a greater number of

voltage levels.

3.3 Cascaded full-bridge

Multilevel output voltage can be provided by connecting in series multiple full-bridge

structures [28], as in Fig. 3.2.

1DC
V

2DC
V
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gridv

f
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outV

Figure 3.2: Cascaded full-bridge with independent power supplies.
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Several independent DC sources are needed for the correct operation i.e., multiple

PV strings [35] or transformers followed by diode rectifiers. Another approach is to

employ the transformer not to create the DC supplies but to connect same full-bridge

structures with the same DC supply [36]. Indeed, this represents the major drawback

of this topology [37].

Multiple PWM strategies are available for the cascaded full-bridge: carrier based

modulations [38] or space-vector approaches [39, 40].

Anyway, eight devices are needed, and there are always four devices conducting.

3.4 NPC full-bridge

The NPC single-phase full-bridge converter of Fig. 3.3 allows to obtain a multilevel

output voltage with a reduced complexity with respect to the NPC half-bridge, as it

can be employed as a substitute of the full-bridge. A strong point of this architecture

is that multiple DC sources are not needed.
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Figure 3.3: NPC full-bridge five-level inverter.

However, for more than five-level output voltage this topology would encounter

the same limits described in section 3.2.
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3.5 Hybrid five-level topologies

In a hybrid topology, the DC Link voltage is not distributed between multiple struc-

tures. Usually, a simple two level half-bridge is employed to change the polarity of

the output voltage, while a multilevel structure synthesizes the multiple output volt-

age levels. In this way, the devices of the two level half-bridge must sustain the whole

DC Link voltage. Some hybrid topologies for five-level converters were presented in

[41, 42], but only the one presented in [43] (Fig. 3.4) was applied to a photovoltaic

source [44, 45].

In this proposal, a bidirectional switch (realized with an IGBT and four diodes) is

added to a standard full-bridge topology. The additional switch connects the midpoint

of the DC Link to the converter output. The same topology was also extended to a

seven-level output voltage in [46].
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Figure 3.4: Five-level full-bridge topology proposed in [43].





Chapter 4

Novel Nine Level transformerless

Inverter

4.1 Introduction

As described in chapter 3.3, cascaded full-bridge solutions need a separate power

supply for each full-bridge section [47]. The way these supply are generated and the

voltage ratio between them lead to different solutions: [48, 49, 50, 51].

The purpose of this chapter is to describe the development of a nine level cas-

caded full-bridge converter suitable for PV transformerless systems.

4.2 Architecture of the converter

The basic structure is composed of two cascaded full-bridges, the former supplied

by the PV generator and the latter supplied by a flying capacitor. Since there are no

particular constraints on the ratio between the two voltages, for the sake of simplicity

it is assumed that the voltage on the flying capacitor is always lower than the DC

source. For this reason, the PV-fed full-bridge is named High-Voltage Full-Bridge

(HVFB), while the other full-bridge is named Low-Voltage Full-Bridge (LVFB), see

Fig. 4.1.
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Cascading full-bridge structure is often employed in high-voltage converters, as

the DC Link voltage can be equally divided upon each full-bridge structure, and

devices with lower breakdown voltage requirement can be chosen. However, if the

same DC voltage is chosen for each full-bridge, only a five-level output voltage can

be achieved.

A way to increase the number of voltage levels and to reduce the switching har-

monic distortion is to choose a different voltage for each DC supply. In [52] different

choices are proposed, in particular, if the DC voltage supplies are chosen in a geo-

metric progression of ratio 3, 3n equally-spaced output voltage levels can be achieved

with n full-bridge structures.

If the minimum switching harmonics are pursued, the best choice is to chose the

voltage across the flying capacitor equal to one-third of the DC Link voltage, i.e.,

Vf c = VDC/3. With this first approach, different zones can be identified depending

on the output voltage demand: Vout , that represents the average of Vout in a switching

period.

There are several possible ways to provide the same Vout with the available volt-

ages, in this work it was chosen to switch between adjacent voltage levels, to mini-

mize the switching ripple and reduce the switching loss. In this way, the zones of Fig.

4.2 are identified. In the zones identified by the + sign the flying capacitor voltage is

added to the HVFB output, while in the zones identified by the − sign it is subtracted.

Fig. 4.2 is realized under the assumption that Vf c < 0.5VDC, otherwise the levels

are positioned in a different way, see Fig. 4.3 for reference. It is important to note

that the operating zones are the same as the previous case, only the voltage order is

changed. This choice allows to switch between non-adjacent level, and in the follow-

ing it will be explained that this choice has certain benefits.

The PWM strategy is shown in TABLE 4.1. In particular, one leg of the HVFB

commutates at line frequency, while the other presents high-frequency switching be-

havior only in Zone 2, where the flying capacitor voltage is regulated (see section

4.3). Most of the switching is condensed in one leg of the LVFB, while the other

operates at a multiple of the line frequency.

The fact that no high-frequency switching is required in one leg of each full-
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Figure 4.1: Cascaded full-bridge with flying capacitor.

bridge makes possible to employ MOSFETs with a very low on-state resistance, in

order to increase the converter efficiency. In fact, the intrinsic body diode of the power

MOSFET does not offer good dynamic performance, as a trade-off exists between

the on-state resistance and the reverse recovery time. The power IGBTs do not suffer

from this problem, as they do not present an intrinsic body diode, and a high perfor-

mance diode can be embedded in the same package. For this reason, while it is true

that MOSFETs offer low on-state resistance, their application should be avoided for

hard-switching converters.

4.3 Flying Capacitor Voltage Regulation

While the balancing of the flying capacitor in a converter that does not need to transfer

active power, such as shunt active filters, is an easy task, and can be realized by

controlling small amounts of active power [53], this is not the case of a PV inverter.

In fact, although the recent international regulation impose that new designs of

grid-connected inverters must be able to provide specific amount of reactive power,
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Figure 4.3: Operating zones of the proposed PWM modulation when Vf c > 0.5VDC.

the main task remains to transfer power into the grid with unity power factor. The situ-

ation becomes more critical considering that the DC Link voltage is always changing

due to the variable weather condition and the MPPT algorithm, thus a reliable control

of the flying capacitor voltage is mandatory.

The balancing of the flying capacitor is possible by using different switching

patterns that lead to the same averaged output voltage. As it is evident, with the the

choice Vf c = VDC/3, there are no redundant states that can output the same voltage

level with a different switch configuration. As a consequence, switching between

non-adjacent level must occur (level skipping) to achieve the balancing of Vf c.

The voltage control happens during Zones 2. Fig. 4.4 and Fig. 4.5 show the choice
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Table 4.1: Description of the converter operating zones

Zone Output Voltage On Devices Off Devices Switching Devices

Zone 3- −VDC −Vf c ↔−VDC T2, T3, T7 T1, T4, T8 T5, T6

Zone 3+ −VDC ↔−VDC +Vf c T2, T3, T8 T1, T4, T7 T5, T6

Zone 2+ −VDC +Vf c ↔ 0 T3, T7 T4, T8 T1, T2, T5, T6

Zone 2- −VDC ↔−Vf c T3, T7 T4, T8 T1, T2, T5, T6

Zone 1- −Vf c ↔ 0 T1, T3, T7 T2, T4, T8 T5, T6

Zone 1+ 0 ↔Vf c T2, T4, T8 T1, T3, T7 T5, T6

Zone 2+ Vf c ↔VDC T4, T8 T3, T7 T1, T2, T5, T6

Zone 2- 0 ↔VDC −Vf c T4, T7 T3, T8 T1, T2, T5, T6

Zone 3- VDC −Vf c ↔VDC T1, T4, T7 T2, T3, T8 T5, T6

Zone 3+ VDC ↔VDC +Vf c T1, T4, T8 T2, T3, T7 T5, T6

of the operating zones under the hypothesis of positive grid current. In fact, if Vf c is

added to the output voltage, the result will be a discharge of the flying capacitor, on

the contrary, if Vf c is subtracted, the output current will charge the capacitor. In these

latter figures a solid line accounts for a low-frequency devices in on-state, no line in

case of off-state.
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Figure 4.4: Flying capacitor charge.

The strategy previously described allows to charge or discharge the flying capac-

itor during operation in Zone 2. However, this fact does not imply that the cumulative

effect of the other zones allows the long-time control of the flying capacitor voltage.
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Figure 4.5: Flying capacitor discharge.

To this aim, extensive simulations regarding the theoretical behavior of the power

converter operating under different supply voltage conditions were performed. De-

pending on the operating zone and on the current magnitude, the average current

charging the flying capacitor during a grid voltage period can be evaluated. In the

following analysis a sinusoidal voltage of amplitude vgrid = 230
√

2 was considered.

A voltage sweep of both the DC Link and flying capacitor voltages was performed

and the average current of the flying capacitor was evaluated in the following cases:

1. The configurations that lead to a charge of the flying capacitor (Fig. 4.4) are

always chosen, and the average charging current I+f c is evaluated.

2. The configurations that lead to a discharge of the flying capacitor (Fig. 4.5) are

always chosen and the average charging current I−f c is evaluated.

If I+f c is positive and I−f c is negative it means that with the combination (VDC,Vf c)

the flying capacitor voltage is fully controllable. Otherwise it can happen I+f c < 0

(the flying capacitor cannot be charged) or I−f c > 0 (the flying capacitor cannot be

discharged). As I+f c > I−f c, the cases above cover all the possibilities.

It is important to note that the magnitude of the grid current is not important, as it

affects only the absolute value of I+f c and I−f c and not the sign. Moreover, the analysis

is based on the duty cycles, so the results hold for every pair (VDC/vgrid ,Vf c/vgrid).

Fig. 4.6 reports the results of the simulations. Only the points where VDC > Vf c
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(as hypothesized) and VDC +Vf c > vgrid (the converter can control the grid current)

are significant.

The white area delimited by the bottom and right edges of the plot and the grey

area represents the condition of full controllability of Vf c, the black area represents

the condition I−f c > 0 and the grey area I+f c < 0. For this set of simulations a sinusoidal

grid current with unity power factor was considered.

V
DC

 [V]

V
fc

 [
V

]

Unity Power Factor

200 250 300 350 400 450 500 550 600
50

100

150

200

250

300

350

400

Figure 4.6: Flying capacitor control behavior with unity power factor.

From the results of Fig. 4.6 these consideration can be done:

• If the converter enters the black area, Vf c will rapidly rise (the point of opera-

tion will move upwards in the graph) until entering the white area.

• If the converter enters the grey area, Vf c will decrease (the point of operation

will move downwards in the graph) until entering the white area.
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Figure 4.7: Flying capacitor control behavior with different values of power factor.

• Even if the balancing control fails, Vf c is limited by the grey area.

• The white area between the black and the grey one represents a stable operating

condition of the converter.

4.4 Application to transformerless photovoltaic converters

A peculiar characteristic of the modulation strategy is that particular care must be

taken when commutating T3 and T4. In fact, the leg formed by T3 and T4 is directly

connected to the neutral conductor. This means that during the commutation high cur-

rents will circulate in the neutral conductor due to the panels’ parasitic capacitance.

For this reason, a specific transient circuit (TC) was developed to aid the com-

mutation of the grid-frequency leg. The comprehensive schematic of the proposed

converter, including the parasitic capacitance, is shown in Fig. 4.8.

Considering for example a transition from the positive half-cycle to the negative

one, it means that the transistor T4 must open while T3 must be closed. In order to

prevent high surge currents, the current is deviated from the full-bridge transistors

T1-T4, and the bidirectional switch T9 is closed. In this situation, the full-bridge

is completely switched off, and the HVFB acts as a short-circuit due to T9. The
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potential of the parasitic capacitor remains floating, and is still at the previous value

vground = 0V .

Then, the low-power MOSFET M1 is switched on, charging with a first order

transient the parasitic capacitance Cp through the resistance RT , see Fig. 4.9 and Fig.

4.10.

When the transient ends, it is safe to switch on the transistors T4 and T2 and to

switch off the bidirectional switch T9.

In other words, the parasitic capacitance is always charged through RT , and the

current peaks are acceptable. This can be done because while the HVFB supplies the

zero voltage, the current can be controlled with the switching of the LVFB.

The power loss of the transient circuit can be evaluated with the well-known for-
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Figure 4.9: Transient Circuit (TC)

mula Ptc =CpV 2
DC fgrid , which amounts to 1-2 W with the usual values of the parasitic

capacitance (100-200 nF). It is important to note that the transient circuit does not

increase the power losses, as the power Ptc would be dissipated by the transistors T3

or T4 with high current peaks.

Since in grid-connected operation the modulation index is always very similar

to the grid voltage even with power factor different from unity, the same switching

strategy works even when the current is not in phase with the grid voltage.

Considering TABLE 4.1, the relationship between the output voltage and the duty

cycle d is:

Vout = dV 1
out +(1−d)V 2

out (4.1)

Where V 1
out and V 2

out represent the output voltage values depending on the operat-

ing zone, considering V 1
out <V 2

out . This means that is possible to synthesize the desired

voltage by selecting a duty cycle

d =
V 2

out −Vout

V 2
out −V 1

out

(4.2)
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Figure 4.10: Transient Circuit example waveforms.

4.5 DC Voltage independent modulation

As the DC Link voltage changes due to the variability of the solar irradiance, the

operation of the converter must not be affected. In fact, it is easy to derive the duty

cycles in case of fixed voltage ratio between VDC and Vf c, otherwise the computation

has to be done on-line.

This kind of approach employs the measurement of the DC voltage in order to

synthesize, in the next PWM cycle, the desired value. The on-line calculation of the

duty cycle was already explored in [40], and in this thesis it is customized to the

modulation strategy.

4.6 Simulation Results

Extensive simulation results concerning grid current distortion and ground leakage

current were performed in order to highlight the characteristic of the proposed con-

verter and modulation strategy.

The tool employed for the simulation was the PLECS toolbox in a Simulink en-



50 Chapter 4. Novel Nine Level transformerless Inverter

vironment.

The first set of simulations aimed at evaluating the quality of the grid current

under different conditions of DC voltage ratio. For the simulations it was chosen

VDC = 300V , L f = 1.5mH, vgrid = 230VRMS, fgrid = 50Hz, C f c = 1mF . The injected

grid current was 8.5ARMS (corresponding to 2 kW of electric power). The switching

frequency was fsw = 20kHz. A simple PI regulator was employed as the current con-

troller, and for the flying capacitor voltage a hysteresis controller with a window of

±5V was chosen.

Fig. 4.11 and Fig. 4.12 show the behavior of the converter when the setpoint of

Vf c is regulated at 180 V. Fig. 4.11 show the grid voltage and current. The resulting

current THD is 3.2%. Fig. 4.12 highlights some aspect of the operation of the con-

verter, in particular the output voltage and the separate voltages of the full-bridges

and the flying capacitor voltages. It is clear that the high-frequency switching of the

HVFB is limited to zone 2, and that the hysteresis controller is able to regulate the

voltage of the flying capacitor.
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Figure 4.11: Grid voltage and current with Vf c = 180V .
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Figure 4.12: Converter output voltage, HVFB and LVFB output voltages and Flying

capacitor voltage with Vf c = 180V .

In the following simulations, the same waveforms of Fig. 4.11 and Fig. 4.12 are

reported for different values of Vf c. It is important to note that the THD gradually

decreases with the flying capacitor voltage, due to the reduced output voltage ripple.

In fact, with Vf c = 150V (Fig. 4.13 and Fig. 4.14) the THD is 2.9%, while with

Vf c = 100V (Fig. 4.15 and Fig. 4.16) the THD is 2.6%.

During these simulations only a first order filter and a rather low switching fre-

quency were employed. In fact, the THD could be further reduced by modifying these

two design parameters.

The performance of the proposed modulation strategy and TC were evaluated

by simulating the PV parasitic capacitor with a capacitance connected between the

neutral conductor and the negative side of the DC Link. It is worth noting that the

parasitic capacitance is distributed between the positive and negative poles of the DC

Link, but it is irrelevant to the analysis, as in the equivalent common mode circuit the

DC Link is short-circuited.
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Figure 4.13: Grid voltage and current with Vf c = 150V .

Fig. 4.17 shows the voltage and current across the parasitic capacitance (Cp =

200nF , with Rground = 2Ω, that represents the worst case scenario for a 2kWp system)

in the ideal case of grid with zero impedance. The current spikes are due to the TC

(with RT = 750Ω), the additional current spikes are due to the commutations of the

grid frequency leg before the end of the transient. As a matter of fact, with ideal

devices and ideal grid, even a small voltage transient across a capacitance leads to

high current spikes.

In these conditions no common mode filters are used, and the output filter consists

only of a single inductance on the phase conductor. The ground leakage current is

iground = 25mARMS.

If the grid is not ideal, a ground leakage current appears due to the common mode

voltage variations. In Fig. 4.18 a grid impedance of Rgrid = 0.1Ω and Lgrid = 10µH

was considered. The ground leakage current is iground = 47mARMS.

As a matter of fact the proposed topology suffers from the same drawback of
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Figure 4.14: Converter output voltage, HVFB and LVFB output voltages and Flying

capacitor voltage with Vf c = 150V .

the NPC solutions, with the increase of ground leakage current due to the transient

circuit operation. This means that the problem of the ground leakage current can be

addressed by using the same solutions applicable to the NPC converters, i.e. common

mode filters.

In the example of Fig. 4.19 a small common mode filter (with Lcm = 2mH) was

employed and the TC resistor was increased RT = 1.5kΩ. In these conditions, the

ground leakage current is reduced to iground = 30mARMS.
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Figure 4.15: Grid voltage and current with Vf c = 100V .
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Figure 4.16: Converter output voltage, HVFB and LVFB output voltages and Flying

capacitor voltage with Vf c = 100V .
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Figure 4.17: Ground voltage and current with ideal grid, iground = 25mARMS.
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Figure 4.18: Ground voltage and current with non ideal grid, iground = 47mARMS.
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Figure 4.19: Ground voltage and current with non ideal grid and simple common

mode filter, iground = 30mARMS.
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4.7 Nine Level converter prototype

In order to test the proposed converter, a prototype was designed and built. The proto-

type must be completely stand-alone, it includes the CPU, that implements the control

and the modulation, both full-bridges and the transient circuit, the sensors, the power

supply for the logic and analog circuits and the output filter. Due to the complexity of

the design and the number of components involved, three boards were designed: the

control board, the power board and the output stage board.

4.7.1 Control board

The control board is a daughter board for the Power one. It was designed to fit in a

DIM100 socket in order to change the CPU without redesigning the power circuits.

The control board embeds the DSC TMS320F28335, a 150MHz, 32bit processor by

Texas Instruments. The high number of PWM channels (12) and Analog to Digital

Converter Channels (16) along with the floating point unit make it possible to imple-

ment complex algorithms.

Along with the CPU, the control board embeds the voltage regulator (3.3V for

the peripherals and 1.9V for the core) and the protection circuit for the ADC.

The complete schematic and PCB are found in Appendices A1.1 and A1.2.

4.7.2 Power board

The power board incorporates the active devices, the DC Links, the driving circuits

and the DSP socket with I/O circuitry.

DSP Socket

The Power card embeds the DSP socket with additional I/O circuits. The socket con-

veys to the DSP the analog signals, the 5V power supply and the various I/O and

PWM ports that operate the converter.

As I/O interfaces, the Power board embeds a 10 bit Digital to Analog Converter

(DAC) TLV5631, a RS485 transciever SN75LBC182D and various general purpose
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connectors. The complete schematic is found in appendix A1.3.

Gate drivers

In order to have a very flexible control on every power device, the gate driver circuit

is composed of an optocoupler and an insulated power supply for every power device.

The chosen optocoupler is the Allegro ACPL-J313. The insulated power supply

is generated by the IC MAX256 that drives a 1:2 transformer followed by a voltage

multiplier. The schematic is illustrated in Fig. 4.20. The PWM signal is generated

by the DSP and it enters in a AND gate with the signal generated by the fault cir-

cuit. The fault circuit is a latch that, in case of overcurrent, forces to zero its output,

consequently disabling all the logic gates.

1:2

5V

L78L15
220nF

1µF

15V

5V

PWM

FAULTn

ENABLE

Figure 4.20: Gate driver circuit with insulated power supply.

The logic gates are in open drain configuration. In this way the current absorbed

by the photodiodes is given by the 5V power supply and not by the logic gates itself.

This, however, poses a problem in case of malfunctioning or non-uniform turn on of

the devices. As a matter of fact, if the logic gate is not powered, every photodiode

is conducting due to the pull-up resistor. For this reason, every cathode of the gate
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drivers is connected to the collector of a BJT. Only if the BJT is polarized it is possible

to turn on the gate drivers.

The complete schematic of the 11 gate drivers is reported in appendix A1.4.

Power section

The power section embeds the two full-bridges and the transient circuit. In order to

prevent overvoltages, turn-off RC snubbers are present in every controlled device.

The power section features also a relay that connects the flying capacitor to the

DC link through a power resistor. In this way it is possible to charge the flying capac-

itor to a particular voltage, as the chosen power resistor allows a fairly slow charge.

The DC link voltages are measured by a circuit (reported in Fig. 4.21) that em-

ploys a linear optocoupler, the Avago HCNR201. The two operational amplifiers act

as a voltage to current and as current to voltage converters. The feedback controls

the LED embedded in the optocoupler to force the photodiodes to work in the linear

region.

LED

PD1 PD2

HCNR201
15VDC

V

GND
Power

GND
Analog

To ADC

Figure 4.21: Circuit employed to measure the DC Link voltages with the optolinear

coupler.

The complete schematic of the power section is reported in appendix A1.5, and

the complete PCB of the power board is shown in appendix A1.6.
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4.7.3 Output Stage Board

Power supply

In order to generate all the supply voltages needed for the converter, a flyback based

on the IC TOP257-PN was designed. Fig. 4.22 shows an example of the general

flyback circuit. The controller incorporates an active switch used to drive the primary

of the transformer. The DC supply is obtained by a simple diode bridge rectifier,

allowing it to be used with DC or AC sources.

An optocoupler carries the feedback signal of the controlled output voltage (5V)

to the TOP257-PN.

Figure 4.22: Example circuit of the flyback converter from the TOP257-PN datasheet.

Appendix A1.7 shows the complete shcematic of the realized flyback converter.

Along with the regulated 5V, additional windings for the +17V and -17V (used by the

analog circuits) were added to the design. Also an auxiliary winding for the operation

of the TOP257-PN and an isolated +15V are present. It is important to note that the

5V is the only output regulated by the flyback controller, the other outputs can vary

their voltage depending on the duty cycle variations of the IC due to varying load.

For this reason, to ensure the stability of the power supplies, the unregulated outputs

are followed by linear regulators.
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Output filter

The output filter connects the active devices to the grid and includes the sensors

needed for the grid current control. Fig. 4.23 shows the basic schematic of the output

filter. The capacitor C f is the grid current filter capacitor. A couple of relays insulate

the converter from the grid which is coupled to the converter with a filter composed

of a two stage common mode inductor and Cx-Cy capacitors. An LEM CKSR-25NP

is employed as a current transducer and a voltage transformer is used to measure the

grid voltage.

x
C

y
C

yC

y
C

y
C

fC cm
L cm

L

Converter 

side Grid side

gridi

gridv

Figure 4.23: Schematic of the output filter.

In order to comply with the regulations that supervise the grid connection of

photovoltaic inverters, the so called "intrinsic safety" is needed. In other words, the

connection of the converter to the grid must be prevented if the grid voltage is absent.

In this way, it is impossible for the grid to be energized even in case of a malfunction

of the converter logic.

In this project a specific circuit was developed. A diode bridge rectifier is added

at the output of the voltage transformer employed to sense the grid voltage, and the

rectified voltage is connected to the base of a BJT. This latter transistor is connected

in series to the winding of the relay, and if kept off, it prevents the energization of the

relay winding, and consequently the connection to the grid.
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Figure 4.24: Intrinsic safety circuit.

As explained in 4.2 it is mandatory for the correct operation of the converter that

the line-switching frequency leg of the HVFB is connected to the neutral conductor.

For this reason the converter must check if the grid is correctly connected before

starting the operation.

In fact, the correct connection can be checked by measuring the difference of

potential between the presumed neutral conductor and earth, as in the MV/LV trans-

former the neutral conductor is earth-connected. This operation, however, is not triv-

ial, as, in order to be compliant with the international regulations, the converter must

pass the electric safety tests. One of these consists in applying a 3kV DC voltage

between earth and the line conductors. For this reason a simple transformer cannot

be employed to measure the voltage difference.

In the converter developed for this thesis, a relay was employed to connect an

optocoupler between the presumed neutral and earth. If enough current is circulating,

it means that the phase and neutral conductor are swapped, and the phototransistor

will conduct. The output of the phototransistor is connected with a low pass filter

to the ADC of the DSP, which will prevent the converter from starting if the wrong

connection is detected.

The complete schematics of the output filter are reported in appendix A1.8, and
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Earth

Neutral

Relay

Optocoupler

To ADC

Figure 4.25: Circuit for the phase-neutral detection.

the PCB is reported in appendix A1.9.

Fig. 4.26 presents a picture of the boards. The layout of the screws was realized to

stack the output board on the top of the power board. Fig. 4.27 shows the completed

result.
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Figure 4.26: Picture of the prototype with the boards separated.

Figure 4.27: Picture of the prototype with the stacked boards.
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4.8 Experimental results

A specific test bed was realized in order to test the performance of the realized inverter

in terms of ground leakage current and current distortion. Fig. 4.28 shows a scheme

of this test bed. The nine level inverter was connected to a DC source and directly

connected to the grid.

grid
v

p
C

fLDC
V

groundi
groundv

outV

gridi

Nine Level Inverter

f
C

Figure 4.28: Experimental test bed.

Different tests were performed with different values of power factor to show the

correct operation regardless the phase displacement of the output current with respect

to the grid voltage. For these tests, 2kW output (igrid = 8.5ARMS) power was chosen.

The grid voltage was vgrid = 230VRMS. The current control chosen was the PI in

synchronous reference frame, due to the very low steady state error. The control is

executed at fs = 20kHz, as in the simulations. Even the other parameters remain the

same.

Fig. 4.29 and Fig. 4.30 show the output voltage and current of the converter when

Vf c = 0.5VDC. As a matter of fact, seven output voltage levels are correctly synthe-

sized with unity power factor or PF=0.85 (Fig. 4.31 and Fig. 4.32).

In Fig. 4.33 and Fig. 4.34 the previous tests were repeated with Vf c = 0.33VDC,

allowing to obtain a nine level output voltage.
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Figure 4.29: Converter output voltage and current with Vf c = 0.5VDC and unity power

factor.

Nine level output voltages can also be realized when Vf c = 0.66VDC. Fig. 4.35,

4.36, 4.37, 4.38 show the behavior of the converter with different power factors.

From the analysis of the experimental results, it is clear that the balancing mech-

anism of the DC voltages allows to control very well the flying capacitor voltage.

Also several points of the controllability area of Fig. 4.6 were experimentally tested.

A very good agreement of the simulations and the experiments was witnessed, al-

though differences appear due to the distortion in the grid voltage.

The distortion of the grid voltage, that is clear in the above oscilloscope captures,

is one of the main causes of the grid current distortion. In fact, the d-q current con-

trol presents infinite gain only at the grid frequency. As the grid voltage presents a

marked third harmonic content, low frequency oscillation happens due to the finite

bandwidth.

Moreover, it can be said that the current distortion when Vf c = 0.33VDC is greater

than the case when Vf c = 0.66VDC. This is due to the effect of the dead times between

the commutation of the full-bridge legs. As it was shown in literature, narrow pulses
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Figure 4.30: HVFB and LVFB output voltages with Vf c = 0.5VDC and unity power

factor.

lead to a greater current distortion. When operating at Vf c = 0.33VDC, the output

is represented by nine level adjacent level, i.e. the maximum energy efficiency and

the minimum high-frequency current distortion. However, for each operating zone,

the duty cycles reach the 0% or 100% when entering and exiting the zone. As a

consequence, crossover distortion appears.

When operating at Vf c = 0.66VDC, the zone choice allows to never employ ex-

treme values of duty cycles and the crossover distortion is greatly reduced.

As a comparison, the same waveforms of the previous test are reported in the case

of a unipolar three-level converter in Fig. 4.39. For this test, the DC Link was VDC =

400V and all the other parameters were kept the same (i.e., switching frequency,

output filter, current controller).

Finally, the operation of the transient circuit was evaluated with a parasitic ca-

pacitance of 200nF connected between the virtual earth and the negative pole of the

DC Link, as shown in Fig. 4.28. The same parameters of the simulation were cho-

sen, except for the impedance of the neutral conductor. The results of Fig. 4.40 are
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Figure 4.31: Converter output voltage and current with Vf c = 0.5VDC and PF=0.85.

in agreement with the simulations of Fig. 4.19, leading to a ground leakage current

of about 31 mA. Although the waveform of iground appears with higher values than

the simulations, in fact it is the disturbances linked with the probe when the HVFB

is switching. If the waveform was magnified, it would be clear that that disturbance

has a negligible RMS. Anyway, further tuning and common mode filter design can

reduce the ground leakage current.

As reference, Fig. 4.41 shows the common mode voltage in the case of unipolar

PWM. As expected, vcm presents high frequency common mode voltage variations,

that render impossible its straightforward application to transformerless inverters.

Finally, some efficiency and THD results are reported in TABLE 4.2. For the

proposed topology it was chosen the case VDC = 300V and Vf c = 150V , while for the

unipolar PWM it was VDC = 400V . As a matter of fact, although the unipolar PWM

test conditions are advantageous (inferior total DC Link voltage and frequency of the

output current ripple twice the switching one), the THD performance are lower with

respect to the proposed topology.

While the high-frequency content is similar due to the particular test conditions,
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Figure 4.32: HVFB and LVFB output voltages with Vf c = 0.5VDC and PF=0.85.

the mandatory dead times have a greater effect, as the voltage at which the commu-

tations happen is greater and the voltage loss due to dead times is higher. This leads

to more low frequency distortion.

The efficiency of the proposed architecture is higher than the unipolar solution,

despite having four devices always in conduction. In these tests even for the proposed

converter all IGBTs were chosen as power devices. If MOSFETs with slow body

diode were to be employed, it is estimated that the efficiency could grow by 1 %.

Table 4.2: Efficiency η and THD experimental measures

Architecture 1 kW η 2 kW η 2 kW THD

Proposed Topology 0.975 0.968 4.17 %

Unipolar PWM 0.969 0.966 6.91 %



4.8. Experimental results 71

Figure 4.33: Converter output voltage and current with Vf c = 0.33VDC and unity

power factor.

Figure 4.34: HVFB and LVFB output voltages with Vf c = 0.33VDC and unity power

factor.
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Figure 4.35: Converter output voltage and current with Vf c = 0.66VDC and unity

power factor.

Figure 4.36: HVFB and LVFB output voltages with Vf c = 0.66VDC and unity power

factor.
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Figure 4.37: Converter output voltage and current with Vf c = 0.66VDC and PF=0.85.

Figure 4.38: HVFB and LVFB output voltages with Vf c = 0.66VDC and PF=0.85.
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Figure 4.39: Grid current and voltage in case of unipolar PWM and PF=0.1.

Figure 4.40: Common mode voltage at the output of the converter in case of unipolar

PWM.
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Figure 4.41: Common mode voltage at the output of the converter in case of unipolar

PWM.





Chapter 5

Conclusions

In this thesis several topologies of transformerless grid-connected inverters and mul-

tilevel converters were analyzed, highlighting drawbacks and strengths. A novel con-

verter was proposed and evaluated in terms of grid current quality and ground leakage

current.

The proposed converter relies on the well known cascaded full-bridge topology,

where one of the full-bridges is supplied by a flying capacitor. An appropriate PWM

strategy was developed to reduce the switching losses and the ground leakage current,

that represent a problem of paramount importance in PV-fed grid-connected power

converters.

The key characteristics of the realized inverter are:

• Up to nine level output voltage waveform, that allows to reduce the output

current ripple due to the switching.

• Extended power factor operations.

• Arbitrary DC voltage ratio with unaffected ability to synthesize the desired

output voltage. In fact, even when during a transient the converter enters an

unstable flying capacitor voltage area, the output voltage generation is unaf-

fected.
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• Intrinsic boost capabilities, as the charging of the flying capacitor extends the

input voltage sufficient to control the grid current.

• Possibility to employ MOSFETs with slow body diode to reduce the conduc-

tion losses.

• The Transient Circuit allows to keep low levels of ground leakage current.

The proposed solution presents some drawbacks:

• The topology presents an increased component count with respect to the state

of the art.

• During the active phase, there are always four devices conducting, limiting the

maximum obtainable efficiency.

• The continuous power transfer between the HVFB and LVFB can reduce the

lifetime of the flying capacitor.

Simulations and experimental results show that the proposed converter allows to

obtain very good performance regarding grid current distortion and can represent a

feasible solution for PV-fed inverter systems.
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