
 

 

 

 
 

UNIVERSITA’ DEGLI STUDI DI PARMA 
 

Dottorato di ricerca in Fisiopatologia Sistemica 
 

Ciclo XXIV 
 

 
 
 
 

 

 

 

Morphological, ultrastructural and immunohistochemical identification of 
cardiac lymphatic vessels and their functional role in cardiomyopathies 

 
 
 
 
 
 

 
 

Coordinatore: 
Chiar.mo Prof. Enrico Maria Silini 
 
Tutor: 
Chiar.mo Prof. Federico Quaini 
 

 
 
 
 

 
 
Dottorando: Dott. Stefano Cavalli 
 

 
 

 



 
INDEX 

 

 

 

 

 

 

 
RIASSUNTO ............................................................................................................................................ 1 

INTRODUCTION...................................................................................................................................... 6 

The lymphatic vasculature ....................................................................................................................... 7 

The cardiac lymphatic system ................................................................................................................ 12 

PDGFR Signaling and lymphangiogenesis .............................................................................................. 14 

Hypertrophic Obstructive Cardiomyopathy ............................................................................................ 15 

Anticancer drug cardiotoxicity ............................................................................................................... 16 

Aim ......................................................................................................................................................... 18 

MATERIAL AND METHODS ................................................................................................................... 20 

Human tissue samples ........................................................................................................................... 21 

Experimental models .............................................................................................................................. 22 

Animal model of myocardial infarction (MI) .......................................................................................... 22 

Animal model of Doxorubicin induced cardiomyopathy ........................................................................ 23 

Animal model of IM induced cardiomyopathy ....................................................................................... 23 

Anatomical parameters ......................................................................................................................... 24 

Theoretical water content ...................................................................................................................... 24 

Immunohistochemical analysis .............................................................................................................. 25 

Ultrastructural and immunoelectron microscopic (ImmunoGold) detection of lymphatic vessels ........ 26 

Fluorescence micro-lymphangiography ................................................................................................. 27 

RESULTS ............................................................................................................................................... 29 

Characterization of lymphatic vasculature in normal human tissues .................................................... 30 

Characterization of lymphatic vasculature in the normal rat heart ....................................................... 33 

Characterization of lymphatic vasculature in the pathologic rat heart ................................................. 35 

DISCUSSION ......................................................................................................................................... 39 

Future perspectives ................................................................................................................................ 43 

FIGURES AND LEGENDS ........................................................................................................................ 45 

REFERENCES ......................................................................................................................................... 55 



 
Riassunto 

 

 

 

1 

 

RIASSUNTO 

 

 

Il sistema linfatico consiste in una fitta rete di capillari e vasi che vanno a formare un 

circolo aperto e monodirezionale parallelo a quello sanguigno. Tra le sue più importanti 

funzioni figurano l’assorbimento degli acidi grassi ed il mantenimento dell’omeostasi 

tissutale mediante drenaggio di liquidi e proteine plasmatiche fuoriuscite dai capillari 

sanguigni nei tessuti. Il circolo linfatico, attraverso le stazioni linfonodali, svolge anche 

un ruolo determinante nel trasporto delle cellule immunitarie, garantendo la 

sorveglianza immunologica e permettendo alle cellule immunitarie di raggiungere 

velocemente il sito di danno. Lo studio della circolazione linfatica è sempre più 

importante in oncologia, visto il suo coinvolgimento nei meccanismi di migrazione 

delle cellule neoplastiche che portano allo sviluppo di metastasi.  

Lo studio dei vasi linfatici è stato per lungo tempo ostacolato dalla difficoltà nella loro 

identificazione e distinzione dai vasi sanguigni. La recente scoperta di marcatori come 

Podoplanina (PDPN), “lymphatic vessel endothelial hyaluronan receptor 1” (Lyve-1) e 

“Prospero- related homeobox 1”(Prox-1), che sono espressi specificamente in cellule 

endoteliali linfatiche, ha notevolmente favorito il loro studio istologico in tutti i distretti 

dell’organismo, compreso il cuore. Infatti, anche se la prima descrizione dei vasi 

linfatici nel cuore risale a circa tre secoli fa, solo di recente è stato rivalutato il loro 

ruolo sia nel mantenimento dell’omeostasi del tessuto interstiziale che in condizioni 

patologiche. Restano ancora da chiarire i meccanismi che regolano la linfangiogenesi a 

livello cardiaco ed i fattori di crescita coinvolti.  

Il più rilevante sistema di regolazione della linfangiogenesi si sviluppa sull’asse VEGF-

C/VEGFR-3, ma anche altri fattori di crescita si sono dimostrati capaci di stimolare la 
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crescita di vasi linfatici. Ad esempio il “Plateled derived growth factor” (PDGF) è un 

fattore di crescita da tempo conosciuto per la sua azione pro-angiogenica e il suo 

coinvolgimento nei meccanismi di reclutamento di cellule vascolari murali come i 

periciti. Recentemente è stata provata la sua importanza anche nell’induzione della 

linfangiogenesi tumorale. 

La prima fase di questo lavoro consiste nella caratterizzazione immunofenotipica, 

strutturale ed ultrastrutturale dei vasi linfatici in diversi organi umani e murini. Sezioni 

istologiche, ottenute sia da campioni autoptici umani che da organi isolati da modelli 

sperimentali, sono state analizzate tramite tecnica immunoistochimica in fluorescenza 

per verificare l’espressione dei più importanti markers linfatici. I markers risultati più 

specifici e maggiormente espressi sono quindi stati selezionati per valutare fenotipo, 

densità e distribuzione del sistema linfatico.  

La distribuzione dei vasi linfatici nel cuore umano e murino risulta simile. Questi si 

concentrano principalmente nelle regioni subepicardiche e negli spazi interstiziali che 

circondano arterie e vene. Un piccolo numero di capillari linfatici si ritrova nelle parti 

più profonde del muscolo cardiaco tra i cardiomiociti. 

La successiva analisi mediante microscopia elettronica ci ha permesso di analizzare le 

caratteristiche ultrastrutturali associate ai vasi linfatici, non facilmente rilevabili con 

altre metodiche. I vasi linfatici mostrano una parete molto sottile rispetto ai vasi 

sanguigni, una membrana basale assente o discontinua e frequenti interruzioni del 

monostrato endoteliale, conosciute come fenestrature. Un'ulteriore conferma della 

natura linfatica dei vasi analizzati è stata ottenuta tramite tecnica Immunogold con 

anticorpi specifici per il Lyve-1. 

Le tecniche precedentemente descritte ci hanno permesso di ottenere informazioni 
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esclusivamente bidimensionali, mentre l’architettura vascolare all’interno dell’organo è 

tridimensionale. Per superare questo limite tecnico è stato quindi messa a punto una 

nuova tecnica, denominata micro-linfangiografia in fluorescenza. In seguito 

all’iniezione di due traccianti fluorescenti, l’intero spessore del ventricolo di ratto viene 

analizzato al microscopio confocale. La tecnica permette di ottenere ricostruzioni 

tridimensionali della rete di vasi linfatici all’interno dell’organo. 

Nella fase successiva del lavoro sono stati valutati gli aspetti funzionali del 

sistema linfatico cardiaco. Il tessuto cardiaco è stato analizzato sia nelle condizioni 

normali, sia nelle condizioni conseguenti allo sviluppo di diverse cardiomiopatie. 

Ognuna delle cardiomiopatie analizzate è scatenata da un diverso agente eziologico.  

Nella cardiomiopatia ipertrofica ostruttiva (HOCM) è la mutazione di geni codificanti 

per proteine sarcomeriche a determinare lo sviluppo di ipertrofia settale accompagnata 

da disfunzione diastolica. Il danno ischemico è invece la causa scatenante della più 

comune cardiomiopatia di origine estrinseca, ovvero l’infarto del miocardio (MI). La 

cardiotossicità risulta infine tra i principali effetti avversi conseguenti al trattamento con 

diversi farmaci antitumorali come Doxorubicina e Imatinib . Il primo farmaco fa parte 

della famiglia delle antracicline, e come tale determina un effetto cardiotossico 

ampiamenente studiato e conosciuto. L’Imatinib è invece un inibitore dei recettori 

tirosina-chinasici (TKI) e rappresenta uno dei più grandi successi della medicina per 

quel che riguarda la cura delle neoplasie, approvato per il trattamento della leucemia 

mieloide cronica e dei tumori gastrointestinali. Tra i principali target dell’IM figurano 

recettori di grande importanza per la regolazione dell’angiogenesi nonché della 

linfangiogenesi, come il c-kit, il PDGFR e il VEGFR-3. 

Lo studio di campioni derivanti da miectomie chirurgiche di pazienti affetti da HCM ha 
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messo in evidenza una forte risposta linfangiogenica all’interno dell’organo. I risultati 

dell’analisi immunoistochimica indicano una sensibile riduzione del numero di capillari 

sanguigni, in termini di densità (numero di vasi per unità di area analizzata). Questa 

alterazione del letto vascolare sanguigno risulta semplice da giustificare se si tiene conto 

di quelle che sono le principali caratteristiche istomorfologiche della malattia, ovvero la 

fibrosi interstiziale, l’aumento della dimensione dei miociti ed il loro disarray. Il 

comportamento del sistema linfatico ha però un andamento completamente diverso. Si 

osserva un aumento marcato della densità dei vasi linfatici sia a livello dello spesso 

strato di tessuto fibrotico presente nel versante subendocardico, sia a livello dei tessuti 

muscolari cardiaci più profondi. L’aumento in termini di densità è accompagnato da un 

altrettanto marcato incremento dell’indice proliferativo che è stato misurato andando a 

quantificare i livelli di espressione nucleare di proteine specifiche del ciclo cellulare e 

della mitosi. 

Nella risposta dell’organo ad un insulto ischemico come l’infarto, è stato osservato un 

significativo aumento del numero dei vasi linfatici. Questo aumento risulta differito 

rispetto alla risposta angiogenica e funzionalmente associato alle diverse fasi di 

maturazione della cicatrice fibrotica.  

Anche nella cardiotossicità indotta da DOXO si registra un aumento di densità della 

componente linfatica associata alla marcata deposizione di collagene tipica di questa 

cardiopatia.  

Un comportamento completamente diverso si osserva invece nella cardiotossicità 

indotta da IM. Il cuore degli animali trattati con il farmaco mostra, in associazione ad 

una forte riduzione dei vasi linfatici, un aumento nel contenuto relativo di acqua. Il 

trattamento con il farmaco è quindi in grado di alterare la funzione di drenaggio del 



 
Riassunto 

 

 

 

5 

 

miocardio contribuendo allo sviluppo della disfunzione dell’organo. A livello 

ultrastrutturale, abbiamo inoltre potuto documentare in microscopia elettronica 

un’estesa compromissione dei mitocondri nei vasi sanguigni e linfatici. 

In conclusione i dati ottenuti dimostrano che, in ognuna delle condizioni 

patologiche analizzate, il sistema linfatico risulta importante nella risposta del cuore ai 

diversi insulti subiti ed assume un ruolo determinante per il suo rimodellamento. 

L’interferenza nei meccanismi linfangiogenici può determinare un’alterazione 

dell’omeostasi tissutale e quindi contribuire negativamente allo sviluppo di cardiopatie 
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THE LYMPHATIC VASCULATURE 

 

 The lymphatic system comprises a one way, open-ended complex network of 

capillaries, precollecting and collecting trunks, ducts and lymph nodes. It is involved in 

transport of tissue fluids, extravasated plasma proteins and cells back into the blood 

circulation. Lymph is formed when interstitial fluids enter the terminal lymphatic 

capillaries that drain the lymph to larger contractile lymphatics, which possess valves as 

well as a smooth muscle wall and are called the collecting lymphatics
1
. As the 

collecting lymph vessel accumulates lymph from more and more capillaries in its 

course, it becomes larger and represents the afferent lymph vessel as it enters a lymph 

node. Here the lymph percolates through the lymph node tissue and is removed by the 

efferent lymph vessel. An efferent lymph vessel may directly drain into one of the large 

lymph ducts (right or thoracic), or may empty into another lymph node as its afferent 

lymph vessel
2
. Both lymph ducts return the lymph to the blood stream by emptying into 

the subclavian veins
3
. 

In spite of these connections and the close juxtaposition of lymphatic vessels 

with vein and arteries, this system is anatomically and entirely separated from the blood 

circulatory system. Anatomically, lymphatic vessels differ from blood ones in several 

ways. The lymphatic capillaries are made up of a single-cell layer of endothelial cells 

that form a thin-walled, fenestrated and blinded vessel lacking pericytes and a 

continuous basal lamina.  

The presence of specific junctional proteins between endothelial cells of initial 

lymphatics has been recently described. The endothelium of initial lymphatics contains 

vascular endothelial cadherin (VE-cadherin) and platelet endothelial cell adhesion 

molecule-1 (PECAM-1). These proteins are typical of both adherens junctions and tight 
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junctions and are partially colocalized at the borders of oak leaf-shaped endothelial cells 

to form discontinuous, button-like junctions (buttons) structurally different from the 

zipper-like junctions (zippers). Regions between buttons in initial lymphatics are 

openings where fluid can enter without repetitive formation and dissolution of 

intercellular junctions
4
. 

Lymphatic capillaries also possess anchoring filaments, specialized extracellular 

fibrillar structures linking lymphatic endothelial cells (LECs) to the extracellular matrix, 

which also help to maintain the patency of the vessels in conditions of high interstitial 

pressure or inflammatory state, facilitating the uptake of fluid, macromolecules and 

cells
5,6,7

. The lymphatic system, unlike the blood lacks a central pump. The force 

driving the lymph is generated by the contraction of smooth muscle cells laying on the 

collecting vessels, by respiratory movements and by squeezing of skeletal muscle 

contraction
8
. Lymphatic pre-collecting and collecting trunks have a different structure 

than lymphatic capillaries: in addition to their large diameter they are surrounded by a 

muscular wall and by the presence of internal valves prevent the retrograde flow of 

lymph fluid. 

The main role of the lymphatic vascular system is the maintenance of tissue fluid 

pressure homeostasis by draining excess interstitial fluid leaking from blood capillaries. 

Furthermore, the lymphatic system plays a central role in the immune reactions 

allowing the circulation of immune cells to and from the lymph nodes. Lymphatic 

system for example is the migration way of antigen-presenting cells (APCs), such as 

dendritic cells, from tissues to lymph nodes in immune surveillance. Recently 

ymphatics have gained relevance in oncology because they are also routes for spreading 

cancer cells 
9,10,11

. The lymphatic system may be also implicated in drainage and 
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clearance of toxic substances from tissues. Finally, the lymphatic vessels in the intestine 

is involved in the dietary fat (lipids and fat-soluble vitamins A, E, D and K) absorption 

and subsequent transport to the circulatory system.  

Although the function and structure of lymphatic vessels are partially defined, its 

embryonic development is still partially known. Two alternative mechanisms have been 

proposed to explain the origin of the lymphatic system. The most widely accepted view 

was proposed by Florence Sabin in the 1902, indicating that lymphatic vessels originate 

from a primitive lymph sacs generated by endothelial cells, which sprout from the 

cardinal vein during the early stages of development. Lymphatic vessels grow out 

“centrifugally” from these sacs
12

. In contrast, an alternative model proposes an 

autonomous origin of the lymphatic system from mesenchymal precursor cells. By this 

hypothesis, lymphatic vessels evolve independently from the embryonic vein and the 

connections between two vascular systems are established during a later phase of 

development
13

.  

The investigation of lymphatic vessels has been long hampered by the difficulty 

in their identification and distinction from blood vessels, particularly from venules. 

Moreover, when lymphatics are not filled with lymph, they tend to collapse and may 

become impossible to recognize. The recent discovery of several lymphatic endothelial 

cell-specific markers that consistently and specifically reacts with lymphatic 

endothelium, has made histological study of lymphatic vessels feasible. The first marker 

expressed in the initial stage of lymphatic development is “lymphatic vessel endothelial 

hyaluronan receptor 1”(Lyve-1)
14

. This marker is an integral membrane glycoprotein, 

homolog of the hyaluronan receptor CD44
15

. Lyve-1 is expressed in a subpopulation of 

endothelial cells localized in the cardinal vein in the early stage of lymphatic 
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development. In adults, the expression of Lyve-1 is extended to liver sinusoids, some 

lung blood vessels, high endothelial venules and active tissue macrophages
16

. However, 

Lyve-1 does not seem to be essential for the lymphatic system since transgenic mice 

lacking this protein exhibit a normal development of lymphatic vessels and immune cell 

trafficking
17

. 

Among the complex network regulated by Vascular Endothelial Growth Factors 

(VEGFs), the receptor 3 (VEGFR-3), is specific for lymphangiogenic factors VEGF-C 

and VEGF-D
18,19

. During the early stage of development, this receptor is highly 

expressed in the blood vascular endothelial cells, but after mid-gestation it is expressed 

only by lymphatic endothelial cells. Genetic manipulation of VEGFR-3 affects 

lymphatic development. All VEGFR-3 knock-out mice die in utero of cardiac failure 

before lymphatic vessels formation
20,21

. The expression of this receptor is a key element 

involved in the establishment of LECs identity and is tightly related to another 

important lymphatic marker: the “Prospero- related homeobox 1”(Prox-1). Prox-1 is a 

transcription factor strictly required for the specification of LECs since it is expressed 

during all stage of development only in lymphatic vessels
22,23

. Prox1 is initially 

expressed by a subpopulation of cells in the cardinal vein
24

. Its activation induces the 

expression of LECs-specific genes like Podoplanin and VEGFR-3 and downregulates 

genes involved in blood endothelial cells (BECs) specification
25

. Lyve-1
pos

/Prox-1
pos

 

cells are able to bud off from cardinal vein in a polarized manner. Subsequently, these 

budding LEC progenitors proliferate and migrate to form the embryonic lymph sac and 

lymphatic vascular network. Total or partial inactivation of Prox1 result in a lymphatic 

hypoplasia and a general failure in LECs differentiation with a complete lack of 

lymphatic vasculature in the absence of defects of the blood stream
22

. Moreover, the 
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temporal inactivation of Prox1 alters the phenotypic commitment into mature LECs and 

reverts them to BECs identity
26

. These data prove the importance of prox-1 expression 

for LECs specification and maintenance, not only during the embryonic development 

but also in the adult life. After the formation of lymph sacs, the Lyve-1
pos

/Prox-1
pos

 cells 

begin to form a capillary network.  

In this stage cells express another marker, the mucin-type transmenbrane 

glycoprotein, Podoplanin (Pdpn). Pdpn null mice die at birth due to respiratory failure 

and have defects in lymphatic but not in blood vessel pattern formation. These defects 

are associated with diminished lymph transport, congenital lymphoedema and dilation 

of lymphatic vessels
27,28

. Pdpn may contribute to LECs adhesion and migration, and 

may induce proper connections between superficial and deep lymphatic plexuses. 

 

Tab 1: Markers of lymphatic (LEC) and blood vascular endothelial (BEC) cells  

Marker Molecular function LEC BEC References 

PROX-1 Transcription factor ++ - 21 

Pdpn 
Transmembrane 

glycoprotein 
++ - 24 

CD31 Adhesion molecule + ++ Albeda
29

 

CD34 Adhesion molecule - (+)
a 

++ Young
30

 

CD44 Hyaluronan receptor - + Kriehuber
31

 

LYVE-1 Hyaluronan receptor ++ - 12, 13 

VEGFR-

3 

Tyrosine kinase 

receptor 
++ - (+)

b 
17 

 

a 
 CD34 expression has been also detected on LECs

  

b
 VEGFR-3 expression has been observed in tumor-associated blood vessels
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THE CARDIAC LYMPHATIC SYSTEM
 

Although the description of the presence of lymphatics in the heart has been 

reported over three century ago, their role and function in normal and pathologic states 

are still largely unclear due to the intrinsic technical difficulty to study the cardiac 

lymph flow and lymphatic vessels. The recent identification of lymphatic endothelial 

cell-specific markers, the generation of new animal models and lymphatic vascular 

imaging technology led to a reevaluation of the importance of cardiac lymphatic 

vasculature in the control of heart function. The principal role of the cardiac lymphatic 

system appears to be restricted to the maintenance of tissue fluid homeostasis, although 

an active role also in immune responses to inflammatory state and in cardiac failure has 

recently emerged. A series of observations allowed to correlate the interruption of the 

lymphatic flow with significant anatomic and functional changes of the heart
32,33

. The 

first technique to identify cardiac lymphatics utilized the injection of a dye
34

. Initial 

studies based on this technique were able to identify and describe the lymphatic system 

organization in the heart. Cardiac lymphatic vessels have been found in several aspects 

of the cardiac wall including the subepicardium, mid-myocardium and 

subendocardium
35,36

. The principal limitation of this technique is that only “non 

contracting” lymphatic vessels are detectable whereas collapsed vessels cannot be filled 

by the dye
37

. 

In the mammalian heart, two forms of cardiac lymphatic vasculature have been 

described: the lymphatic capillary plexus and the collecting lymphatic vessels. The 

lymphatic capillary plexus is present in the mid-myocardium and subendocardium 

where it lies parallel to the endocardial surface. The collecting lymphatic vessels can be 

seen in the subepicardium where they join into single or multiple collecting trunks. 
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These structures proceed toward mediastinal lymphatic vessels and then merge into 

subclavian vein, completing the lymph flow circuit. The cardiac lymph flow is 

controlled by active and passive lymphatic pumping. The active part is generated by 

spontaneous contraction of muscle cells of the collecting vessel wall but has a limited 

capacity to drain large quantity of fluid. In contrast, other forces related to cardiac 

muscle contraction that probably represents the major way of draining lymph fluid drive 

passive lymphatic flow
38,39

. 

A series of recent promising research studies have underlined the beneficial 

effect of active lymph drainage on heart function, especially in cardiac pathologies. 

Analyzing autoptic tissues of the human heart, Ishikawa et al. have tried to elucidate the 

role of the lymphatic system in the entire process of tissue repair and scar formation 

after myocardial infarction (MI)
40

. According to this study, lymphangiogenesis takes 

place after blood vessel angiogenesis and may be involved mainly in the maturation of 

fibrotic tissue and in the definition of scar formation through the drainage of excessive 

proteins and fluids. Specifically, lymphatic vessels are absent in the early stages of scar 

formation, in which blood capillaries prevail to decrease thereafter with the progression 

of the infarct. In parallel, lymphatic vessels begin to appear in the peripheral area near 

the infarct. Subsequently, they appear as dilated structures in the peripheral area and 

with capillary features in the central area of granulation tissue. Later in the completion 

of myocardial infarction, lymphatic density increases during the final stage of scar 

formation. These results demonstrate that active drainage of fluids and removal of the 

end products of cellular damage by lymphatics play an important role in the 

determination of tissue response to an acute ischemic insult. 
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PDGFR SIGNALING AND LYMPHANGIOGENESIS 

PDGFRs are surface tyrosine kinase receptors for members of the platelet-

derived growth factor (PDGF) family. These receptors are involved in many biological 

functions such as cell proliferation, differentiation, growth and tissue development. 

Autocrine activation of PDGFR signaling pathway is also implicated in a variety of  

diseases including cancer
41

. There are two forms of the PDGF-R, alpha and beta, each 

encoded by a different gene
42

.  This receptor is expressed by perivascular mesenchymal 

cells, likely representing vascular mural cell progenitors (vSMC and pericytes). In 

particular, PDGFR beta () is strongly expressed in tip cells of the angiogenic sprouts 

and in the endotelium of growing arteries at sites where pericytes are actively recruited 

and vSMC population is expanding
43,44

.  

It should be emphasized that PDGF-B and PDGFR- knock-out mice exhibit 

hemorrhagic and edematous phenotypes in early embryos due to defective development 

and recruitment of vascular mural cells (pericytes and SMC) onto blood vessels. PDGF 

receptors have been localized on blood vessel endothelial cells, suggesting a direct role 

of PDGFs on angiogenesis
45

. However, recent studies suggest that members of the 

PDGF family including PDGF-AA, -AB and -BB are able to induce lymphatic vessel 

growth in the mouse cornea
46

. The mechanism of this PDGF induced 

lymphangiogenesis is not still clear, although an indirect participation of the VEGF-C/-

D/VEGFR-3 signaling pathway has been proposed. Thus, PDGF combined with their 

receptors constitute a very important system regulating both angiogenesis and 

lymphangiogenesis. 
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HYPERTROPHIC OBSTRUCTIVE CARDIOMYOPATHY 

Hypertrophic cardiomyophathy (HCM) is a primary cardiac disorder characterized by 

asymmetrical hypertrophy of the left ventricle in the absence of conditions that could 

lead to an hemodynamic overload (aortic stenosis, hypertension, thyroid disease).
47

  

Since its initial description in 1958, this pathology has generated intense 

investigation.
48,49,50,51,52 

HCM is a congenital cardiac disorder inherited as an autosomal 

dominant trait and its genetic basis are well defined. Most of the genes involved, encode 

for proteins linked to the contractile unit of the cardiomyocyte.
53,54,55,56,57

 

The complexity of this disorder is remarkable by a heterogeneous clinical presentations, 

ranging from no symptoms to severe heart failure and sudden cardiac death.
58

  

To date, the molecular steps linking the genetic mutation to the clinical phenotype 

remain still undiscovered. 

About 30-50% of individuals with HCM demonstrate an obstruction to the left 

ventricular outflow caused by asymmetric septal hypertrophy. 

The obstructive variant of HCM, Hypertrophic obstructive cardiomyopathy (HOCM) is 

also historically known as idiopathic hypertrophic subaortic stenosis (IHSS) and 

asymmetric septal hypertrophy (ASH).  

Surgical septal myectomy is reserved for those patients who, despite drug 

therapy, still show severe symptoms with a marked obstruction of the septum and an 

unacceptable lifestyle.
59
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ANTICANCER DRUG CARDIOTOXICITY 

Several chemotherapeutic drugs have been implicated in cardiotoxicity. In 

particular, anthracyclines have been clearly identified as a cardiotoxic agent, however 

also Tyrosine Kinase Inhibitors (TKIs)
60

 have been shown to induce cardiovascular 

events. 

Anthracyclines are one of the most active anti-neoplastic drugs against 

hematologic
61

 and solid
62

 tumors, however, their cardiotoxic adverse effects such as 

cardiomyopathy and symptomatic Congestive Heart Failure (CHF) have limited their 

clinical use. Doxorubicin (DOXO) is a member of anthracyclines family. The 

mechanism of action of DOXO is complex and still somewhat unclear, although is 

known that DOXO interact with DNA by intercalation and inhibition of macromolecular 

biosyntesis. In particular, DOXO stabilizes topoisomerase II complex after its breaking 

action on the DNA chain for replication. This event prevents the DNA double helix 

from being resealed and thereby stopping the process of replication. Like other 

chemotherapeutic agents, DOXO do not possess a specific activity on cancer cells, but 

also affects normal cells, leading to severe side effect. Moreover, anthracyclines are 

known for causing cardiotoxicity that most often manifests many years after treatment. 

Cardiotoxicity may be due to different deleterious events in cardiac muscle cells, which 

include interference with the ryanodine receptors of the sarcoplasmic reticulum, free 

radical formation or severe metabolic dearrangement. 

TKIs represent a decisive turning point in the modern medicine, since they 

specifically interfere with the proliferation/apoptosis pathways of neoplastic cells, and 

their introduction gained a formidable increase in survival rates of patients affected by 

specific cancer. Tyrosine kinases play a critical role in the modulation of growth factor 
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signaling. Activated forms of these enzymes can cause increases in tumor cell 

proliferation and growth, induce anti-apoptotic effects, and promote angiogenesis and 

metastasis. Because all these effects are initiated by receptor tyrosine kinase activation 

(also caused by somatic mutation), these enzymes are key targets for inhibitors. TKIs 

are examples of the recent trend toward targeting multiple receptor kinases, such as 

Vascular Endothelial Growth Factor (VEGF) receptor 1–3, Platelets Derived Growth 

Factor (PDGF) receptor α/β, KIT, FMS-related tyrosine kinase 3 (FLT3), colony-

stimulating factor 1 receptor (CSF1R) and rearranged during transfection (RET) 

receptor tyrosine kinases.
63

 Although this class of drugs directly aims oncogenic 

pathways, the clinical use of TKIs resulted in alteration of cardiac function. Although 

TKIs toxic effect seems to be manageable and reversible at a short- or mid- term follow-

up, the development of late cardiovascular sequelae is more than a speculative 

possibility. Unfortunately, differences between pediatric, adult, and elderly patients and 

the lack of uniform modality in detecting and reporting cardiac events makes adequate 

estimates even more difficult
64,65

. Thus, it seems to be necessary to deepen our 

understanding on the mechanisms of cardiotoxicity, whose explanation have been so far 

ambiguous.  
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AIM 

The aim of our study was to characterize the cardiac lymphatic system and to 

evaluate its role in four different pathological conditions .  

To obtain background information, our ability to detect lymphatic vessels was 

extensively challenged by studying human and animal tissues with immunofluorescence 

and confocal microscopy. Moreover, fluorescence micro-lymphangiography on whole 

mount preparations of the heart and skin from rats were employed to define by confocal 

microscopy the lymphatic architecture and 3D reconstruction. Additional studies were 

performed to characterize ultrastructural aspects of lymphatics by Transmission 

Electron Microscopy (TEM) implemented by immunogold labelling.  

The first pathological study was performed in a mouse model of myocardial 

infarction (MI), to ascertain the role of lymphangiogenesis in the entire process of 

myocardial repair and scar formation.  

Then we tested lymphatics behavior in hypertrophic obstructive cardiomyopathy 

(HOCM), a genetically defined cardiomyopathy also resulting, through different 

mechanisms, in collagen deposition and fibrotic scarring. 

Subsequently,  we focused our attention on Imatinib Mesylate (IM) (Gleevec©, 

Novartis, Basel, Switzerland) a small-molecule TKIs, whose introduction revolutionized 

the treatment and the survival rate of Chronic Myeloid Leukemia (CML) and other 

types of tumors
66,67

. Our interest has been specifically addressed to IM because it 

possesses a potent activity against c-KIT and PDGFR, tyrosine kinase receptors 

involved in lymphangiogenesis and closely related to the phenotype of Cardiac 

Progenitor Cells (CPCs). In a rat model of IM induced cardiomyopathy we attempted to 

demonstrate that impairment of lymphangiogenesis may affect cardiac structure and 
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function.  

Finally, to assess whether inhibition of lymphatics was a specific effect of TKI 

or a common mechanism implicated in cardiotoxicity, the analysis of lymphatic 

structures was conducted in a model of DOXO induced cardiomyopathy. 
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Human tissue samples  

 Normal human myocardial and skin samples were collected from archive 

material of autopsies performed by the Department of Pathology, University of Parma. 

Only cases devoid of cardiovascular or cutaneous diseases were included in this study. 

Tissue specimens obtained within 24-48 hours after death, were embedded in paraffin 

and 5 m histological sections were obtained for the immunohistochemical analysis of 

lymphatic vessels. 

Lung tissue was collected from patients affected by lung cancer and undergoing 

lung resections, enrolled after informed consent to the employment of biologic samples 

for research purpose. Transported under sterile condition to the Department of 

Pathologic Anatomy, samples were dissected under hood at laminar flow.  

Portions of healthy lung tissue were sampled by the medical staff ensuring the priority 

of their use for diagnostic purposes. The correct sampling procedure was confirmed by 

the subsequent histologic analysis. 

Left ventricular myocardial fragments were obtained from 31 patients affected 

by HOCM undergoing septal myotomy-myectomy.  

Hypertrophic heart specimens were obtained from patients with aortic stenosis 

(AoS) undergoing valve replacement for rheumatic disease or degenerative 

calcification. Myectomies collected were the waste material of outflow tract releasing 

surgical interventions.  

All collected samples were formalin fixed and paraffin embedded for 

morphometric analysis and immunohistochemistry.  
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Experimental models 

 The study population consisted of male Wistar rats (Rattus norvegicus, IM 

model), Female Fischer 344 rats (DOXO model) and male CD1 mice (MI model) breed 

in our departmental animal facility. Animals were kept in unisexual groups of four 

individuals from weaning (4wk after birth) until the onset of the experiments, in a 

temperature-controlled room at 22–24 °C, with the light on between 7.00 AM and 7.00 

PM. The bedding of the cages consisted of wood shavings, and food and water were 

freely available. The investigation was approved by the Veterinary Animal Care and 

Use Committee of the University of Parma and conformed with the National Ethical 

Guidelines (Italian Ministry of Health; D.L.vo 116, January 27, 1992) and the Guide for 

the Care and Use of Laboratory Animals (NIH publication no. 85–23, revised 1996). 

 

Animal model of myocardial infarction (MI) 

 MI was induced in male CD1 mice weighing 35-40g (Charles River, Comerio, 

Italia) by permanent ligation of left anterior descending artery using a 6 to 0 silk suture. 

Sham-operated animals underwent a similar procedure without ligation.  

 Each animal was anaesthetized with a solution of Xilazine (2.5mg/Kg) and 

Ketamine (50mg/Kg.) and the surgery was performed with mechanical ventilation. 

(volume: 8-9 mL/g; frequency: 165/min). After autonomous respiratory recovery, 

animals were placed in the cage alone. Mortality observed after surgery was less than 

10%. 
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Animal model of Doxorubicin induced cardiomyopathy 

 Female Fischer 344 rats (n=160) at 3 months of age (body weight 180±10 g) 

received DOXO in six equal intraperitoneal injections of 2.5 mg/kg b.w over a period of 

2 weeks to reach a cumulative dose of 15 mg/kg b.w. .Control rats (CTRL) were 

injected with the vehicle alone (lactose, 75 mg/kg in saline) in the same regimen as 

DOXO. Animals were sacrificed at 3 weeks after the first injection. 

DOXO solution was obtained by dissolution of powder (Pharmacia-Upjohn, Milan, 

Italy) in vehicle solution (1% lactose in sterile saline) at a concentration of 0.15 mg/ ml.  

 

Animal model of IM induced cardiomyopathy 

 Thirty four 8 wk old rats, weighing 200 - 250 g were divided into three groups. 

(1) IM50 (n=8), animals subjected to intra-peritoneal (i.p.) injections of 50mg/kg IM 

three times a week for three weeks; (2) IM100 (n=10), animals subjected to i.p. 

injections of 100mg/kg IM three times a week for three weeks; (3) CTRL (n=8), 

animals injected with equal volume of saline and taken as control. Rats were 

anesthetized with droperidol + fentanyl citrate (Leptofen, Farmitalia-Carlo Erba, Milan, 

Italy; 1.5mg/kg im) which we have found to induce negligible changes in cardiovascular 

parameters when telemetrically recorded in conscious animals (unpublished data). 

Finally, hemodynamic data were invasively collected and the heart of each animal was 

perfusion fixed for morphometric and immunohistochemical studies. 

 IM 100 mg capsules were a gentle gift of the Department of Hemathology, 

representing discarded material from patient’s drug withdrawal. The capsules were 

dissolved with prolonged stirring in sterile water previously adjusted at ph=2 with 10N 

HCl and then, before the injection, re-adjusted at pH=6,2 with sodium hydroxide 
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(NaOH) 10N. The suspension was finally filtered to obtain a sterile solution devoid of 

solid particles and stored in aliquots at -80 °C. At the time of administration the drug 

was diluted according to the desired concentration and to a volume of injection ranging 

from a minimum of 0.7 to a maximum of 1.2 ml.  

 

Anatomical parameters  

 The hearts of anesthetized animals were arrested in diastole by injection of 5 ml 

cadmium chloride solution (100 mmol, iv) and the myocardial vasculature shortly 

perfused at a physiological pressure with a heparinized PBS-solution, followed by 

perfusion with 10% formalin solution. The heart was then excised and placed in 

formalin solution (10%) for 24 hours. 

 Then, the right ventricle (RV) and the left ventricle (LV) inclusive of the septum 

were separated. Subsequently, the heart was sliced in three 1-mm thick transversal 

sections, at the basal, equatorial and apical levels of the ventricle. Afterwards, the 

sections were embedded in paraffin. Five-μm thick slices were finally cut from the 

equatorial portion of the LV free wall for morphometric and immunohistochemical 

studies. 

 

Theoretical water content 

 Hearts harvested from IM treated and control rats were cleaned from other 

tissues, major vessels and from excess water and blood. Subsequently, the entire atria 

and fragments of the septum, left and right ventricles were separately weighed. 

Thereafter, tissues were weighed after dehydration, achieved by several microwave 

heating cycles until non changes in weight of each individual tissue fragment was 
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measured. The wet weight to dry weight ratio was then computed and theoretical water 

content was obtained. 

 

Immunohistochemical analysis 

 Five-micrometer-thick sections obtained both from human samples and from 

each group of animals were analyzed under fluorescence microscopy to determine the 

effects induced by the different cardiopathies on lymphatic and blood vessel density. 

Sections were incubated with lymphatic specific primary antibodies: polyclonal rabbit 

to LYVE1, (cod.ab14917, Abcam, Cambridge UK) Polyclonal rabbit to Prox1 (cod 

DP6501PX, Acris Herford Germany); monoclonal mouse to D2-40, (cod CM266, 

Biocare, Concord USA). For the identification of blood vessels, monoclonal mouse 

anti--smooth muscle actin antibody, (cod a5228, Sigma St. Louis, MO) and polyclonal 

rabbit anti-von Willebrand factor (vWF, cod F3520, Sigma St. Louis, MO ) were used. 

Myocytes were identified by staining the same sections with monoclonal mouse anti--

sarcomeric actin antibody (anti--SARC; cod.a2172, Sigma St. Louis, MO). Mitotic 

cells were recognized by the nuclear expression of the phosphorylated form of histone 

H3 (Ph-H3, cod.06-755, Millipore Corporation, Billerica, MA, USA, ). 

Tissue sections were incubated, respectively, with the primary antibodies followed by 

conjugated specific secondary antibodies.  

FITC, TRITC-, Cy5- conjugated anti-mouse, anti-rabbit secondary antibodies (Jackson 

Laboratory, Baltimore, PA, USA) were used to detect simultaneously the different 

epitopes. Nuclei were recognized by DAPI (4’,6-diamidine-2-phenyndole, Sigma St. 

Louis, MO) staining. 
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Ultrastructural and immunoelectron microscopic (ImmunoGold) detection of 

lymphatic vessels 

 Hearts harvested from normal and IM treated rats were analyzed by transmission 

electron microscopy (TEM) to detect structural and subcellular alterations involving 

lymphatic vasculature.  

 For ultrastructural analysis, the specimens of interest were fixed in 2.5% 

gluteraldehyde for 6 h. The tissues were then postfixed in 1% osmium tetroxide (OsO4) 

and dehydrated by increasing concentrations of alcohol. Following this procedure, 

samples were washed with propylene oxide and embedded in epoxy resin embedding 

media. Sections of 0.5 m thickness were stained with methylene blue and safranin to 

select morphologically the field of interest. Subsequently, ultrathin sections were 

collected on a 300-mesh copper grid and, after staining with uranyl acetate and lead 

citrate, were qualitatively examined under a transmission electron microscope (Philips 

EM 208S). 

 For ImmunoGold detection the grids were incubated for 10 min in sodium 

periodate, a saturated solution necessary for the etching. After a series of washing the 

grids were incubated with Na-borohydride for 5 min and TBS pH 8 for 10 min; 

afterward sections were saturated with BSA 2% for 30 min an then incubated at 4°C 

overnight with the primary antibody polyclonal rabbit anti-LYVE1, (cod.ab14917, 

Abcam Cambridge, UK). Grids were rinsed for 3 × 5 min in TBS (ph 8) and BSA for 10 

min and then incubated for 1 hr with goat anti-rabbit IgG conjugated with 10 nm gold 

particles (EMGAR10, BBI, United Kingdom) diluted 1:10 in TBS (pH 8.2). After 

rinsing for 2 × 5 min in TBS (pH 8.2) and distilled water (dH20), grids were contrasted 

with 4% uranyl acetate in 50% ethanol and lead citrate, for 20 and 10 min, respectively. 
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Negative controls consisted of samples in which the immunoreaction was performed in 

with the use of an indifferent primary antibody. Although the immunogold methodology 

has been utilized by our Pathology laboratory since at least 2 decades, its specificty was 

tested in our preparations by using an antibody highly expressed in the myocardium 

such as a-smooth muscle actin followed by goat anti-mouse IgG conjugated with 10 nm 

gold particles. 

 

Fluorescence micro-lymphangiography 

 Lymphatic and blood vessel microvascular tridimensional architecture was 

studied by double-label whole-mount confocal microscopy. 

Wistar Rats were anesthetized with droperidol + fentanyl citrate (Leptofen, Farmitalia-

Carlo Erba, Milan, Italy; 1.5mg/kg im), and the jugular vein was catheterized by a PE50 

polypropilen cannula. One ml of the fluorescent vascular tracer BSA-FITC (66 kDa; 30 

mg/ rat, Sigma, St. Louis, MO) was injected intravenously. Rats were sacrificed 2 hours 

later, 3 minutes after 1 ml intravenous injection of a second fluorescent dye, Dextran-

TRITC (160 kDa; 15 mg/rat, Sigma, St. Louis, MO ), which served as a blood marker. 

Time interval from first injection to sacrifice is enough to allow BSA-FITC leakage 

from vascular bed to interstitium and then to lymphatic vessels. Delayed injection of the 

second tracer otherwise impede the same route confining Dextran-TRITC into blood 

vessels. Thus, blood vessels are labeled with both dyes, whereas draining lymphatics are 

labeled only by the green fluorescence of FITC. 

 Samples of the skin and heart were removed and fixed overnight in 4% 

paraformaldehyde. To decrease light scattering during imaging, tissues were optically 

cleared as described below. Briefly, specimens were processed in 20-ml plastic vials 
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and using a tissue rotator. The tissue was first washed extensively in PBS to remove 

paraformaldehyde. Specimens were then dehydrated with successive 15-min washes 

through a graded methanol (MeOH) series (25%, 50%, 75%, 95% and 100% v/v in 

distilled water). Tissue was cleared using Murray's clear (BABB), a solution of 1 part 

benzyl alcohol to 2 benzyl benzoate (v/v) (both from Sigma-Aldrich, St. Louis, MO). 

Specimens were run through a series of 3:1, 1:1 and 1:3 (v/v) MeOH: BABB and left in 

100% BABB for one week, until the tissue was transparent.  

 Specimens were examined using the Axiovert 200M inverted microscope (Carl 

Zeiss, Jena, Germany), integrated with the confocal system LSM 510 Meta scan head. 

Cleared whole-mount tissues mounted into a special Plexiglas chamber, were examined 

under 10× and 20× air objectives lenses. Images were scanned in fluorescence modes. 

Serial optical sections were recorded beginning at the top surface of the specimen, and 

the resultant stacks were rendered in three dimensions using AxioVision© (Carl Zeiss 

Imaging Solutions) and Huygens© (Scientific Volume Imaging) software to examine 

the 3D nature of the vascular network. 
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CHARACTERIZATION OF LYMPHATIC VASCULATURE IN NORMAL HUMAN 

TISSUES 

Several normal fetal and adult human tissue samples were examined to evaluate 

the specific expression of lymphatic endothelial cell markers. Histological sections were 

collected from autopsies and analyzed by immunofluorescence. 

 

Fetal and Adult Lung 

In the fetal lung, Pdpn is not exclusively expressed by lymphatic vessels, but is 

also present in type I pneumocytes precursors. In agreement with this finding, terminal 

bronchiolar profiles resulted Pdpn positive (Fig 1A). We also observed that the number 

of lymphatic vessels change during lung development (data not shown). In the 

canalicular phase the tissue shows the highest amount of lymphatics to progressively 

decrease thereafter.  

In adult lung a large amount of pulmonary Pdpn positive lymphatic vessels are 

located in association with bronchovascular bundles. Their presence within the lobule, 

the deeper part of the lung parenchyma, has been debated for years, particularly in 

regard to the presence or absence of true alveolar lymphatics
68697071

. Our study give a 

clear answer to this discussion, indeed we found small lymphatics also in interalveolar 

areas (Fig 1B). In addition, the connective tissue of the visceral pleura seem particularly 

rich in lymphatics. Quantitative overall estimation of the tissue indicates an average 

lymphatic density of 2,75 ± 1,1/mm
2
. 

In all lung developmental stages, from fetal to adulthood, lymphatic vessels are 

well distinguishable from blood vasculature, because the expression of Pdpn is not 

accompanied by the blood endothelial cell marker vWF (Fig 1A,B). 
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Fetal and Adult Heart 

IHC analysis of fetal human hearts demonstrated that Pdpn is exclusively 

expressed by lymphatics and Pdpn negative blood vessels are positive for vWF. 

Lymphatic vessels are mainly located in the perivascular interstitium adjacent to 

coronary artery and veins of the subepicardium. The typical perivascular distribution of 

lymphatics in the apical region of a normal fetal heart is shown in Figure 2. Lymphatics 

also show different morphologic features respect to blood vessels: the wall is thinner, 

the lumen is irregular and at time collapsed.  

A similar pattern of expression of lymphatics and blood vessel markers is 

present in the adult heart (Fig 3). Interestingly, it appears that in the heart fluid drainage 

mainly occurs in the pericardial region, which exhibits high density of large size 

lymphatic vessels. 

 

Adult Skin 

 Lymphatic vessels are also extensively present in the skin and are known to 

participate in a variety of physiological and pathological processes such as wound 

healing, inflammatory reaction, lymphoedema and scleroderma
727374

. Most of the 

lymphatic vessels have a patent lumen delineated by a tortuous and irregular profile. 

Some lymphatic vessels are completely or partially collapsed.  

 IHC analysis shows that human lymphatic vessels are consistently and intensely 

stained by Pdpn. Low intensity cross-reactivity was only found in some epithelial cells 

particularly in the basal layer of sebaceous glands. At variance with blood vessels, the 

endothelium and the subendothelial layer is negative for the vascular endothelial marker 

vWF. Blood vessels never show reactivity to Pdpn (Fig 4 A,B). Importantly, the specific 
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transcription factor for lymphatic commitment, Prox-1, is expressed in all endothelial 

cell nuclei lining lymphatic vessels (Fig 4 C,D).  
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CHARACTERIZATION OF LYMPHATIC VASCULATURE IN THE NORMAL 

RAT HEART 

 

Immunohistochemistry 

In agreement with previous observations made on the human heart, in the normal 

rat heart, lymphatic vessels are predominantly located in the subepicardium and in 

interstitial spaces surrounding arteries and veins (fig 5A,D,E). A small amount of thin 

lymphatic capillaries can be less frequently found between cardiomyocytes (Fig 5B). 

The quantitative estimation indicates that average lymphatic density is 2,66 ± 0.18 

/mm
2
, however the highest incidence of lymphatics was measured in the 

epimyocardium, where the density reaches values of 6,88 ± 0.53 /mm
2
. Moreover, 

lymphatic vessels located in the latter region exhibit a larger luminal area compared 

with that found in vessels of the endo-and mid-myocardium. We did not observed 

lymphatic collectors surrounded by muscular layer in any of the hearts analysed in the 

present investigation (Fig 5D,E). The IHC analysis indicates that endothelial cells of 

lymphatics present in the normal rat heart express all the lymphatic markers LYVE-1, 

Pdpn and PROX-1 and none of them express the blood endothelial marker vWF (Fig 

5A-E). 

 

Ultrastructural and ImmunoGold detection of lymphatic vessels by TEM 

TEM analysis of the normal rat heart allowed us to identify lymphatic vessels 

and to evaluate their specific ultrastructural features. Lymphatic vessels are often found 

in proximity of blood vessels and at time between cardiomyocytes (Fig 6A). The 

lymphatic wall is thinner with respect to blood vessels and capillaries. Basal lamina is 
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absent or at best discontinuous. In addition, interruption of the endothelial cell layer, 

due to the presence of fenestrations, is clearly documented (Fig 6 B).  

ImmunoGold detection of LYVE1 expression revealed a specific presence of this 

protein in the cytoplasm and its extensions of lymphatics (Fig.6C). Furthermore, we 

observed that LYVE1 is not exclusively localized in transmembrane position (Fig 6C-

D), but is also present in the extracellular space in proximity of transcytosis vesicles. 

 

Fluorescence micro-lymphangiography on Whole Mount Preparations  

Histological studies are usually restricted to bi-dimensional analysis, limiting the 

possibility to define the three-dimensional pattern of the microvascular network of the 

heart. In order to overcome this limitation, a whole mount micro-lymphangiography 

was performed on the rat skin and heart. After in vivo double labeling by infusion of 

fluorescent tracers (BSA-FITC and TRITC-dextran), whole rat ventricular wall samples 

were first subjected to a clearing procedure and then scanned by confocal microscope. 

This method allows to distinguish double-stained blood vessels (yellow fluorescence) 

from green fluorescent stained lymphatics that are only perfused by BSA-FITC. The 

imaging of whole mount thick samples of the skin clearly define the intricate network of 

blood and lymphatic vessels of this tissue (Fig 7A).  

In the ventricular myocardium, images obtained by fluorescence micro-

lymphangiography confirm the lymphatic location observed by the bi-dimensional 

approach. Most of BSA-FITC fluorescent lymphatic vessels run parallel to blood 

vessels, in the interstitium immediately adjacent to their wall (Fig 7B). Thin lymphatic 

capillaries can be found to a less extent between cardiomyocytes (Fig 7C). 
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CHARACTERIZATION OF LYMPHATIC VASCULATURE IN THE 

PATHOLOGIC RAT HEART 

 

Myocardial infarction 

 To confirm the role of the lymphatic system in heart failure, as reported by 

Ishikawa et al.
37

, in an experimental model we studied the effect of myocardial 

infarction on blood arterioles and on lymphatic vessels. 

 Seven days after coronary occlusion, in the acute remodeling phase, the number 

of SMA
pos

 arterioles in the infarct region results significantly increased. With the 

progression of scar maturation the number of arterioles slowly revert to normal values. 

Indeed, 21 days after induction of MI, when the lesion is replaced by mature scar tissue, 

arteriolar density is not significantly different with respect to normal myocardial (Fig 

8B). At variance with these findings, lymphangiogenesis is not significantly activated 

one week after MI induction. The number of lymphatic vessels begin to rise in the 

infarct region during the last stage of scar formation, with a functionally relevant delay 

respect blood vessels (Fig 8C). 

 These results sustain the hypothesis that lymphatics are involved in fluids 

drainage and removal of inflammatory cells within necrotic tissues. Therefore, the 

lymphatic system, promoting scar maturation, play an essential role in the final 

assessment of myocardial remodeling after MI. 
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Genetically Determined and Pressure Overload Human Cardiac Hypertrophy 

The histologic specimens of human HOCM myectomies stained with Masson’s 

Trichrome exhibited well defined disease features such as myofiber disarray, and 

myocardial fibrosis. Hypertrophic and dismorphic cardiomyocytes appeared to be 

alternated with areas occupied by small size cells. Further analysis of fibrotic tissue 

showed different type of collagen accumulation. Widening of the interstitial space 

between myofibers and perivascular collagen accumulations were clearly detected in 

HOCM myocardium. In addition, a large band of fibrotic scar was present in the 

endocardium. An example of a low power microscopic field of a whole HOCM 

myectomy is documented in Figure 9A. Fibrous septa taking origin from the 

endocardial scar and extending to surround myocardial layers of hypertrophic 

cardiomyocytes were apparent. Thus, the collagen network in the HOCM heart is 

morphologically abnormal and increased in size compared with structurally normal 

hearts. 

In the presence of such histomorphological pattern a strong rarefaction of vascular 

structures was expected, but only immunohistochemical detection of vWF positive 

capillaries showed a statistically relevant reduction in terms of density (number of 

vessel per mm
2
 of analyzed tissue, Fig9C). The lymphatic behavior is totally different. 

The intricate myocardial remodeling observed in HOCM hearts was associated with a 

20 fold increment of lymphatic vessel density in the fibrotic scar (data not shown) and a 

weaker but statistically significant 2,5 fold rise in the myocardium (Fig 9E).  

In HOCM myectomies, immunohistochemical detection of ph-H3 showed high degrees 

of cell proliferation of all myocardial cell populations, including lymphatic endothelial 

cells, of which mitotic index reach 14% and 35% in myocardium and fibrotic scar 
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respectively (Fig 9F).  

Hypertrophic heart specimens obtained from patients with aortic stenosis (AoS) were 

compared to HOCM. Similar increase in capillary and lymphatic vessels were found in 

term of density (Fig 9C-E). However, proliferative indexes of lymphatic endothelial 

cells were more than 20-fold higher in HOCM myocardium with respect to AoS. These 

observations suggest that genetically determined cardiac remodeling in HOCM patients 

is disease specific and characterized by active lymphangiogenesis. 

 

DOXO induced cardiomyopathy 

 The mechanism of toxicity of DOXO is still unclear and there are no evidence 

about the direct involvement of angiogenesis and lymphangiogenesis. In experimental 

rats, treatment with DOXO for two weeks induces dilated cardiomyopathy, heart failure 

and death. The cardiomyopathy is characterized by multiple foci of inflammatory 

damage resulting in scattered focal deposition of collagen. The analysis of lymphatic 

structures conducted in this model of DOXO induced cardiomyopathy shows a 2-fold 

increase in vessel density (Fig 10A). Similar to the observations made in the MI model, 

lymphatic vessel density rises according to collagen deposition and for the 

establishment of myocardial fibrosis.  

 Therefore, in DOXO induced toxic insult on the heart, the lymphatic system also 

promotes replacement of the damaged myocardium by fibrotic tissues.  
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IM induced cardiomyopathy 

As a consequence of three weeks of IM treatment, rats develop a pronounced 

cardiomyopathy. IM impairs cardiac function and produces a restrictive type of LV 

remodeling. Gross structural composition does not significantly change after IM 

treatment; the fractional volume of cardiac muscle is not heavily affected and no 

significant myocardial fibrosis is observed.  

When the ratio of cardiac wet to dry weight is measured, compared to control 

values, an increase of “theoretical” water content in treated hearts is observed, 

especially with 100 mg/kg doses of IM (Fig 10C).  

To evaluate the effect of IM on cardiac lymphatic system, the morphometric 

measurement of lymphatics was assessed by immunofluorescence. The quantitative 

estimation indicates that both 50 mg/kg and 100 mg/kg doses of IM induce a nearly 

70% reduction of lymphatic vasculature (Fig 10B).  

Ultrastructural detection and Immunogold staining of cardiac tissue by TEM 

indicate high levels of damage in lymphatic endothelial cells as a result of IM treatment. 

Significant alterations of subcellular structures were observed both in lymphatic and 

blood vessels of IM treated hearts. In lymphatic endothelial cells we detected specific 

marker of cellular stress, such the presence of swollen and degraded mitochondria and, 

occasionally, cytoplasmic accumulation of degradation products (Fig 10 D-E).  

These data support the hypothesis that lymphatics are involved in normal fluids 

drainage and that the lack of their function may contribute to the development of IM 

related cardiomyopathy. 
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The importance of lymphatic system in the drainage of fluids and toxic 

metabolites in normal and pathological states of the organism is known, but studies of 

lymphatic vessels only lately became histological feasible, due to the recent discovery 

of several lymphatic endothelial cell-specific markers. 

Even if little is known about the role and function of the lymphatic system in the 

heart, the recent identification of lymphatic endothelial cell-specific markers, the 

generation of transgenic “lymphatic-regulated” animal models and advanced lymphatic 

vascular imaging technologies led to a reevaluation of the importance of cardiac 

lymphatic vasculature in the control of heart function. A series of recent promising 

research studies have underlined the effect of active lymph drainage on heart function, 

especially in cardiac pathologies. Evidence that ischemic insults, like MI, can affect the 

lymphatic vasculature indicates its central role in the replacement of damaged 

myocardium by fibrotic tissue 
37

.  

Significant information of our study is provided by the characterization of the 

lymphatic vasculature in mouse, rat, adult and fetal human samples. Notably, several 

methodologies, such as IHC, fluorescence micro-lymphangiography on whole mount 

preparations and TEM analysis were employed to elucidate the role of lymphatics. 

The immunohistochemical analysis allowed us to define the lymphatic 

distribution in myocardial tissues. We consistently observed the location of large 

lymphatic vessels in the epicardial region of the heart, especially in the perivascular 

interstitium. On the other hand, lymphatic capillaries were mostly found in the 

myocardial parenchyma surrounding cardiomyocytes. On the contrary to that reported 

by the literature, we were not able to detect collecting lymphatic vessels surrounded by 

a small layer of smooth muscle cells. A possible explanation of this finding is that the 
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squeezing action produced by cardiomyocyte contraction during the cardiac cycle is 

sufficient to drain fluids and to pump out the lymph from internal lymphatic capillaries 

to collector ducts that are located in the extracardiac region. 

The results of 2D analysis by IHC were confirmed by fluorescence micro-

lymphangiography on whole mount preparations of the heart and skin. The 3D 

reconstruction of lymphatic and blood vasculature allowed us to observe the actual 

morphology and organization of both vascular systems in vivo. By this approach, 

lymphatic vessels were found to run parallel to blood ones, confirming the perivascular 

distribution documented by IHC. In addition, the typical tortuous aspect of lymphatics 

was clearly visible by the 3D confocal reconstruction of the vascular network in the 

skin. Thus, microlymphangiography can be easily applied to understand the 

pathophysiologic implication of cardiac lymphatics in heart failure. 

Finally, TEM combined with Immunogold was used to detect the lymphatic 

vasculature and to analyze the ultrastructural features of lymphatic endothelial cells. In 

the normal heart, TEM identification of lymphatic vessels is facilitated by the evidence 

of typical sub-cellular features, such as fenestration and discontinuation of basal lamina, 

not easily detectable by other methodologies. In addition, Lyve-1 expression highlighted 

by Immunogold gave us further confidence about the real lymphatic nature of the 

observed vessel. Observations obtained in normal hearts by TEM confirmed the pattern 

of lymphatics distribution as shown by IHC and micro-lymphangiography. However in 

IM-induced cardiomyopathy, we observed ultrastructural damages on myocardial 

lymphatic endothelial cells. High incidence of swollen and degraded mitochondria and 

intense accumulation of degradation products in the cytoplasm of lymphatics were 

present. 
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In order to expand our knowledge and to elucidate the role of cardiac 

lymphatics, the lymphatic system in a mouse model of MI, in human myectomies of 

HOCM affected patients and in cardiomyopathies induced by drugs such as DOXO or 

IM were analyzed here. 

Our observations confirm that the lymphatic system, promoting scar maturation, 

plays an essential role in the final assessment of myocardial remodeling after MI.  

In HOCM patients the genetic defined cardiac remodeling observed in our study 

is disease specific and characterized by active lymphangiogenesis. Progressive septal 

tickening and collagen accumulation in HOCM myocardium is supported by a dense 

network of actively proliferating lymphatic vessels. 

Further information earned by our study indicate that the integrity and density of 

lymphatic vessels in DOXO or IM induced cardiomyopathy are differently affected, 

confirming how these structures could be involved in the assessment of different 

pathologic states of the organ. 

DOXO related cardiomyopathy was characterized by changes in lymphatics 

mimicking MI. In this specific cardiomyopathy, lymphatic vessels increase as a result of 

myocardial damage, in order to drain fluid and toxic metabolites from focal area of 

injury and to gradually favour the replacement of necrotic tissue by fibrosis.  

At variance with these results, in IM related cardiomyopathy, myocardial 

lymphatic density is reduced and theoretical water content in treated hearts appears to 

be increased. Both these two phenomena may participate to the pathogenetic mechanism 

of cardiac dysfunction produced by IM and may be inversely related if the principal role 

of cardiac lymphatics in the drainage of fluids is considered. 
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Future perspectives 

Our results suggest an active responsive role of lymphatic system in all the analyzed 

pathological condition, with the exception of IM induced cardiomyopathy. The observed 

tickening of lymphatic web has a “buffer effect” on myocardial microenvironment, 

improving dead cell clearance, waste material drainage and collagen deposition. 

On the other hand, water content increase caused by the strong inhibitory effect of IM 

treatment on myocardial lymphangiogenesis could be a key event in the onset of IM 

induced cardiomyopathy. Myocardial edema is one of the typical feature of human 

myocarditis associated with diastolic dysfunction
75

, conduction disturbances
76

, 

microvascular compression
77

 and tissue swelling.
78

 

It has been clearly documented that c-Kit
pos

 Cardiac Progenitor cells (CPCs) 

play a central role in the control of cardiac homeostasis. Failure of CPC function may 

inevitably lead to a sequence of cellular events culminating in cardiac failure.  

The direct effect of IM on CPCs through the inhibition of c-Kit receptor 

signaling was in part demonstrated by our preliminary studies on treated CPC growth. 

CPC ability to differentiate toward lymphatic phenotype was documented by the 

observation that a small fraction of freshly isolated CPCs cultured in standard 

conditions express the nuclear transcription factor Prox-1, a specific marker of 

lymphatic endothelial cells. Thus, an intrinsic commitment toward lymphatic 

differentiation was confirmed by the increased rate of Prox-1 expression after growing 

CPCs in MV2 conditioned medium. An additional supporting finding was the 

demonstration of a spontaneous tube formation on MATRIGEL
TM

 (BD, New Jersey, 

USA) by CPCs that was comparable with commercial human lymphatic cell line 

(HDLEC). To our knowledge, these data may open new ways for the understanding of 
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the origin of cardiac lymphatic system and its role in physiologic and pathological states 

of the heart. 

Importantly, we show here that TK inhibition by IM exerts a negative effect on 

the ability of CPC to acquire a lymphatic phenotype in the presence of specific 

lymphangiogenic growth factors. Moreover, functional assays were able to document 

that IM hampered tube formation in vitro by CPCs comparable with the commercially 

available HDLEC cell line. A direct interference of TKI on PDGFR pathway is likely to 

be operative in the deleterious effects of IM on lymphatics. PDGF and its receptor 

system are fundamental for the regulation of angiogenesis including 

lymphangiogenesis. In agreement with this contention, however, when the incidence of 

PDGFRpos cells was measured in myocardial tissues, IM treated hearts had a lower 

content of this cell population (data not shown). 

We advanced the hypothesis that CPCs may be involved not only in 

cardiomyogenesis and angiogenesis, but also in cardiac lymphangiogenesis.  

The possibility of preventing cardiomyopathies by modulation of the lymphatic 

system may open new therapeutic options to unravel an unsolved clinical issue. 
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Figure 1. HUMAN LUNG. (A)Immunofluorescence image of a section of the human fetal lung in the 

canalicular phase of lung development stages. (B) Section of human adult lung showing small lymphatics 

in interalveolar areas. (A and B) Endothelial profiles are detected by the red fluorescence of vWF and 

lymphatic vessels by the green fluorescence for Pdpn antibody staining. Pdpn is also detected in the type I 

pneumocytes precursors in the terminal bronchiole (white arrowheads) 

 

Scale bars 100 M  
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Figure 2. HUMAN FETAL HEART. Immunofluorescence image of the subepicardium in human fetal 

hearts. Pdpn expression (green fluorescence) is exclusively detected in lymphatic vessels typically located 

in perivascular spaces around coronary vessels whose lumen is identified by vWF expression (red 

fluorescence). Yellowish fluorescence corresponds to the autofluorescence of red blood cells that are 

present only in the lumen of blood vessels. Scale bar 100 M 

 

 

Figure 3. ADULT HUMAN HEART. Section of the epicardium of an adult human heart documenting 

by immunofluorescence the distinction between endothelial cells lining lymphatic vessels, labelled by 

Pdpn (green fluorescence) and those of a blood vessel (asterisk) labelled by vWF (red fluorescence). Red 

blood cells are recognized by autofluorescence in the lumen of the blood vessel. Large yellowish 

fluorescent spots correspond to phagocytic cells and small orange dots to lipofucsins. Scale bar 100 M 
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Figure 4. HUMAN SKIN. A-D: lymphatics are shown by the green fluorescence of Pdpn and blood 

vessels by vWF (red fluorescence) in the dermal aspect of the human skin. C-D: In association to pdpn, 

lymphatic endothelial cells nuclei express the specific transcription factor Prox-1 (white fluorescence). 

Microscopic images taken in B and D represent higher magnification of A and C, respectively, 

documenting the lack of double immunofluorescence in the same vessel. Scale bar A 250M; C 100M 
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Figure 5. ADULT RAT HEART. A: low magnification of a cross section of the left ventricle (LV) of 

the rat heart as shown after immunofluorescence labelling of cardiomyocytes by a-sarcomeric actin (red 

fluorescence). Areas included in white rectangles are shown at higher magnifications in B and C, 

respectively, and document the typical distribution of lymphatic vessels labelled by Pdpn (green 

fluorescence) in the perivascular interstitium of the epicardium. The expression of the nuclear 

transcription factor Prox-1 (white fluorescence) by nuclei of lymphatic endothelial cells is better 

appreciable in C. D-E: lymphatics are shown by immunofluorescent labelling of the lymphatic marker 

Lyve-1 (green fluorescence) whereas arteries by a-smooth muscle actin (red fluorecence). Small 

lymphatic profiles can also lie in the interstitium between cardiomyocytes (E).                                     

Scale bar A 1mm; B 50 M; D 100M; E 25 M 

A C B 

D E 
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Figure 6. ULTRASTRUCTURAL AND IMMUNOGOLD DETECTION OF LYMPHATICS IN 

THE NORMAL RAT HEART. A: a lymphatic vessel located between cardiomyocytes (CM). A 

characteristic fenestrations of the endothelial cell layer is shown in figure B. C-D: immunogold using the 

specific lymphatic marker Lyve-1. Immunoreactivity for Lyve-1 is shown by small dark round dots 

(arrowheads) mostly located along the cytoplasmic extensions of lymphatic endothelial cells and in 

transmembrane position. 

* lymphatic lumen 
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Figure 7. FLUORESCENCE MICRO-LYMPHANGIOGRAPHY ON WHOLE MOUNT 

PREPARATIONS OF THE RAT HEART AND SKIN. A: section of the rat skin showing by 

yellowish fluorescence a large (diameter approximately 100 mm) blood vessel and its branching as 

defined by the double fluorescence of FITC-BSA and TRITC-Dextran. Two lymphatics showing the 

typical irregular profile are recognized by the green fluorescence due to the selective perfusion by FITC-

BSA. B and C: 3D reconstruction of the microcirculation in two sections of the left ventricle of an adult 

rat heart. Blood vessels (yellow fluorescence) show both injected dyes whereas lymphatics are perfused 

only by BSA-FITC tracer (green fluorescence). A large coronary vessel appears predominantly, although 

not uniquely, perfused by Dextran. Most larger lymphatics run parallel to blood vessels (B) and some 

lymphatic capillaries are detectable between cardiomyocytes (C). Scale bar : 100 M  
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Figure 8. EFFECT OF MYOCARDIAL INFARCTION ON VASCULAR STRUCTURES. A: image 

of vascular components in the infarcted rat heart by immunofluorescence. Lymphatic vessels are detected 

by Lyve-1 (green fluorescence), whereas arterioles by specific anti -SMA antibody (red fluorescence).B 

and C: bar graphs showing arteriolar and lymphatic density one week and 21 days after MI. Only 

arteriolar density significantly increases at 7 days, while lymphatic vessels are unchanged. After three 

weeks, corresponding to the completion of scar, lymphatic density results 6-fold higher than control while 

arteriolar density decrease to control (CTRL) values. Scale bar  50 M 

* p<0.05vs CTRL 

** p<0.05vs 7 days 
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Figure 9. EFFECT OF HOCM VASCULAR STRUCTURES. A: Low power view of a section of the 

entire myectomy obtained from a HOCM patient and stained with Masson’s Trichrome. The fibrotic 

tissue (bluish) involves a thick endocardial area from which collagen bundles seems to branch in 

interstitial septa separating myofibers (reddish). B and C: Immunohistochemical detection of vWF 

positive capillaries (red staining in B) showed a statistically relevant reduction in terms of density in both 

hypertrophic groups. D: Proliferating lymphatic vessels are detected by double staining of Pdpn (red 

fluorescence) and PhH3 (green fluorescence) E: Lymphatic vessel density showed a statistically 

significant 2,5 fold rise in the myocardium of HOCM and AoS. F: Mitotic Index of Cardiac lymphatics. 

In AoS the percentage of doubling lymphatic endothelial cells remain under 1% without significant 

differences respect control myocardium. In HOCM myectomies lymphatic mitotic index reach 14% and 

35% in myocardium and fibrotic scar respectively. Scale Bars: B 50m; D 25m 
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Figure 10. EFFECT OF DOXO AND IM TREATMENTS ON LYMPHATIC VESSELS OF THE 

RAT HEART. A: DOXO-induced cardiomyopathy is characterized by increased lymphatic density. B: 

IM- induced cardiomyopathic heart shows a significant reduction of lymphatic vessels coupled with an 

increased “theoretical” water content (C). D and E: TEM images documenting the presence of swollen 

and degrated mitochondria (D) and cytoplasmic accumulation of degradation products (E) in the 

lymphatic endothelial cells. 
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