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Abstract 

Porcine circovirus type 2 (PCV2) has been identified as the main causative agent of the 

postweaning multisystemic wasting syndrome (PMWS), one of the major swine diseases 

worldwide that is commonly referred, together with other relevant porcine diseases related to 

PCV2, as belonging to the porcine circovirus associated diseases (PCVD). 

The most important strategy to prevent and control PCV2 associated diseases, apart from 

management procedures and control of coinfections, is the vaccination of piglets or sows and 

gilts. Nowadays there are three commercial PCV2 vaccines available; even if their efficacy in 

reducing the viremia burden and viral-induced specific lymphoid lesions has been proved, the 

mechanisms by which they are able to elicit protective immunity have not been thoroughly 

clarified. Besides the development of humoral immunity that is generally characterised by the 

detection of total anti-PCV2 and virus-neutralizing antibodies, the mechanisms that allow the 

adaptive cell-mediated immune response to control PCV2 infection and the related diseases 

have not been clearly elucidated, particularly under field conditions. 

The present Thesis investigated the efficacy of a one-dose porcine circovirus 2 (PCV2) 

subunit vaccine based on the PCV2 Cap protein expressed in a baculovirus system in two 

different farms (farm1 and 2) at which a history of porcine circovirus-associated disease 

(PCVD) was present. Morbidity, mortality, average daily weight gain, carcass weight, PCV2 

load in serum and vaccine immunogenicity, in terms of PCV2-specific antibodies,                   

PCV2-specific IFN-γ secreting cell frequencies and mRNA expression profiles of relevant 

pro-inflammatory and immune cytokines, were assessed. Serology to potential coinfections 

due to porcine reproductive and respiratory syndrome virus (PRRSV) and                        

Mycoplasma hyopneumoniae (M. hyo.) was also carried out.  

A double-blind, randomised, and controlled field trial was performed distributing 818 piglets 

in two treatment groups. At inclusion (weaning at 21±3 days of age), 408 animals received a 

2-ml intramuscular dose of Porcilis PCV® (vaccinated group) suspended in a tocopherol-based 

adjuvant (Diluvac Forte®). Controls (410 piglets) received 2 ml of the same adjuvant alone 

intramuscularly. Weights were recorded at inclusion and at 12 and 26 weeks of age, and the 

average daily weight gain (ADWG) was calculated. The carcass weights of the pigs from farm 

2 were recorded at slaughter (274 day-old pigs). All dead animals (died or culled) underwent 

autopsy to classify them as PMWS-affected or not. At each farm, blood samples were 

collected for serologic and cellular studies aimed at investigating the humoral                          

(ELISA determination of PCV2-antibody titres in serum) and cell-mediated (ELISpot assay 
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for the measurement of the PCV2-specific IFN-γ secreting cell frequencies in PBMC) 

immune response of pigs.  

The analyses of the present Thesis showed that vaccination with a single dose of a PCV2 Cap 

vaccine had beneficial effects against the PCVD, and especially PMWS. The vaccination 

reduced the mortality rate and morbidity, PCV2 viremia and viral load, and improved 

productive performances (e.g. ADWG: +70 g/day between 12 and 26 weeks of age when 

viremia and the specific disease occurred) as well as carcass weight at slaughter age                        

(+4.5 kg). These effects were associated with virologic and clinical protection derived from 

the immunogenicity of the vaccine measured as activation of both humoral and a cellular 

immune responses. In this regard, ELISA quantification of PCV2-specific antibodies showed 

seroconversion (with exception of pigs with a titre of maternally derived antibodies >8 log2) 

and long lasting protective immunity in all vaccinated pigs. Furthermore, the increased 

frequency of IFN-γ secreting cells that was detected by the ELISpot assay during the                   

post-vaccination period demonstrated the capability of a single dose of the PCV2 Cap-based 

vaccine to induce a virus-specific cell-mediated immune response. During the post-exposure 

period, vaccinated animals rapidly and efficiently counteracted virus spread since both 

humoral and cell-mediated immunity were associated with absent or low viremia and less 

severe clinical signs.  

In addition, in order to obtain more thorough information about the mechanisms of cellular 

immune reactivity, the evaluation of expression patterns of relevant pro-inflammatory               

(IL-8, TNF-α, IL-1β) and immune (IFN-γ, IL-10) cytokines was carried out.  

Cytokine modulation and course of viremia were assessed in 10 PCV2-vaccinated and                                      

20 non-vaccinated pigs from farm 1. These analyses were performed by reverse 

transcriptional-quantitative PCR (RT-qPCR) before the onset of PCV2 viremia (16 weeks of 

age), upon PCV2 infection and after the onset of PMWS clinical signs (19 and 22 weeks of 

age, respectively). The cytokine response was evaluated with regards to evident clinical signs 

related to PMWS and course of viremia, grouping the animals into three groups: 1) vaccinated 

(PCV2-vac) pigs; 2) unvaccinated spontaneously infected/non-PMWS-affected (Ctrl) pigs;             

3) unvaccinated spontaneously infected/PMWS-affected (Ctrl-PMWS+) pigs.  

Moreover, in order to establish an association between cytokine expression and viremia 

burden, each of the above mentionated groups was analysed dividing the animals in three 

different subgroups based on viremia: non-viremic pigs (NV), pigs with viremia <106 (V<106) 

and pigs with viremia ≥106 (V≥106) viral genome copy number / ml of serum. 



 

III 

Higher IL-8, TNF-α and IFN-γ levels were detected in the PCV2-vac group, testifying a more 

efficient immune responsiveness, especially when compared to the Ctrl-PMWS+ group.  

In Ctrl-PMWS+ pigs, lower IFN-γ at 19 weeks of age was associated with high IL-10 at                

19 weeks of age and low levels of pro-inflammatory cytokines at 22 weeks of age, namely     

IL-8 and TNF-α, a condition likely correlated with the onset of the disease.  

Contrarily, at 19 weeks of age, PCV2-vac and Ctrl pigs showed lower IL-10 expression, 

together with higher IFN-γ levels than the Ctrl-PMWS+ animals. At 22 weeks of age, 

vaccinated animals maintained higher levels of the pro-inflammatory cytokines. 

These evidences support that the outcome of PMWS could be associated with a reduction of 

the innate/pro-inflammatory response. Overall, the results show a different cytokine 

modulation in vaccinated and unvaccinated-infected pigs also developing PMWS. Vaccinated 

pigs coped with infection showing low or absent viremia burden, absence of PMWS disease 

and stronger inflammatory response and cellular IFN-γ-related reactivity. 
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Riassunto 

Il Circovirus suino di tipo 2 (PCV2) è stato identificato come il principale agente eziologico 

della sindrome da deperimento post-svezzamento del suino (PMWS), una delle patologie del 

suino maggiormente diffuse in tutto il mondo, comunemente indicata, insieme ad altre 

patologie legate all’infezione da PCV2, come facente parte delle malattie associate al 

circovirus suino (PCVD).  

La strategia più importante per controllare e prevenire le malattie associate a PCV2, oltre alle 

procedure di gestione e controllo delle coinfezioni, è la vaccinazione dei suinetti o delle scrofe 

e delle scrofette. Tre sono i vaccini commerciali oggi disponibili; anche se è stata dimostrata 

la loro efficacia nel ridurre la viremia e le lesioni presenti nei tessuti linfoidi indotte dal virus, 

i meccanismi attraverso i quali questi vaccini sono in grado di indurre un’immunità protettiva 

non sono ancora stati completamente chiariti. 

A parte lo sviluppo di una risposta immunitaria di tipo umorale generalmente caratterizzata 

dalla presenza di anticorpi totali e anticorpi virus neutralizzanti PCV2-specifici, i meccanismi 

che permettono all’immunità adattativa cellulo-mediata di controllare l’infezione data da 

PCV2 e le malattie ad essa associate non sono stati completamente compresi, specialmente in 

condizioni di campo. 

In questo lavoro di Tesi è stata valutata l’efficacia di un vaccino monodose verso PCV2, 

basato sulla proteina capsidica Cap del virus espressa in un sistema baculovirus, 

somministrato in due diversi allevamenti (allevamento 1 e 2) con anamnesi di malattia 

associata a circovirus suino di tipo 2 (PCVD). 

Sono stati considerati parametri quali morbilità, mortalità, incremento ponderale giornaliero, 

peso della carcassa, titolo di PCV2 nel siero e immunogenicità del vaccino in termini di 

anticorpi specifici verso PCV2, di frequenza di cellule secernenti IFN-γ PCV2-specifiche e di 

livelli d’espressione genica di importanti citochine pro-infiammatorie e immunitarie. Sono 

state inoltre effettuate analisi sierologiche verso potenziali coinfezioni sostenute da virus della 

sindrome riproduttiva e respiratoria del suino (PRRSV) e Mycoplasma hyopneumoniae                 

(M. hyo.).  

È stata condotta una prova di campo in doppio-cieco, randomizzata e con gruppo di controllo 

distribuendo 818 suineti in due gruppi di trattamento. All’inizio della prova (giorno dello 

svezzamento: 21±3 giorni di età), 408 suinetti (gruppo vaccinato) hanno ricevuto una dose di 

vaccino Porcilis PCV®, risospeso in adiuvante a base di tocoferolo (Diluvac Forte®), per via 

intramuscolare (2 ml). Gli animali controllo (410 suinetti) hanno ricevuto 2 ml di solo 
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adiuvante per via intramuscolare. L’aumento ponderale giornaliero (ADWG) è stato calcolato 

misurando il peso degli animali all’inizio della prova, a 12 e a 16 settimane di età. I pesi delle 

carcasse dei suini dell’allevamento 2 sono stati registrati al momento della macellazione             

(274 giorni di vita). Tutti gli animali morti (morti o abbattuti) sono stati sottoposti ad autopsia 

per essere classificati come animali affetti o non affetti da PMWS.  

In ciascun allevamento sono stati prelevati campioni di sangue per effettuare indagini 

sierologiche e della componente immunitaria cellulare. La risposte immunitarie umorali e 

cellulo-mediate dei suini sono state valutate rispettivamente mediante ELISA, per rilevare il 

titolo degli anticorpi PCV2-specifici nel siero, e tecnica ELISpot, per misurare la frequenza 

delle cellule secernenti IFN-γ PCV2-specifiche nelle PBMC.  

I risultati riportati nella presente Tesi suggeriscono che una singola dose di vaccino basato 

sulla proteina Cap di PCV2 sia efficace contro l’insorgenza delle PCVD e in particolare della 

PMWS.  

La vaccinazione ha ridotto il tasso di mortalità e morbilità, la viremia specifica per PCV2 e la 

carica virale, portando a un miglioramento delle performance produttive (es. ADWG:                     

70 g/giorno tra 12 e 26 settimane di età, quando si registra l’insorgenza di viremia e malattia 

ad essa associata) e del peso della carcassa alla macellazione (+4,5 kg). Questi effetti sono 

stati associati alla protezione dall’infezione e dal manifestarsi di sintomatologia clinica 

determinata dall’immunogenicità del vaccino, misurata come attivazione della risposta 

immunitaria umorale e cellulo-mediata. A questo proposito, la quantificazione mediante 

tecnica ELISA degli anticorpi PCV2-specifici ha dimostrato sieroconversione (fatta eccezione 

per i suini con titolo di anticorpi di derivazione materna >8 log2) e immunità protettiva di 

lunga durata in tutti i suini vaccinati.  

Inoltre, l’aumentata frequenza delle cellule secernenti IFN-γ PCV2-specifiche, quantificata 

mediante tecnica ELISpot durante il periodo post-vaccinazione, ha dimostrato la capacità di 

una singola dose di vaccino basato sulla proteina Cap di PCV2 di indurre una risposta 

immunitaria cellulo-mediata virus-specifica.  

Durante il periodo post-esposizione gli animali vaccinati hanno contrastato efficacemente e 

rapidamente la replicazione virale; l’immunità umorale e cellulo-mediata sono risultate infatti 

associate ad una bassa o assente viremia e segni clinici di minor gravità. 

Inoltre, al fine di ottenere informazioni più approfondite sui meccanismi di reattività 

immunitaria cellulare, sono stati valutati i profili d’espressione di importanti citochine                

pro-infiammatorie (IL-8, TNF-α, IL-1β) e immunitarie (IFN-γ, IL-10). La modulazione 
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dell’espressione citochinica e il corso della viremia sono state valutate in 10 animali vaccinati 

contro PCV2 e 20 animali non vaccinati dell’allevamento 1. Queste analisi sono state 

effettuate mediante PCR quantitativa Retro Trascizionale (RT-qPCR) prima dell'insorgenza 

della viremia associata a PCV2 (16 settimane di età) e a seguito dell'infezione da PCV2 e la 

comparsa di sintomatologia clinica da PMWS (19 e 22 settimane di età). 

La risposta citochinica è stata valutata tenendo in considerazione gli evidenti segni clinici 

relativi alla PMWS e al corso della viremia, suddividendo gli animali in tre gruppi: 1) suini 

vaccinati (PCV2-vac); 2) suini non vaccinati spontaneamente infettati/non affetti da PMWS 

(Ctrl); 3) suini non vaccinati spontaneamente infettati/affetti da PMWS (Ctrl-PMWS+). 

Inoltre, per determinare un’associazione tra l’espressione delle citochine e l’andamento della 

viremia, ciascuno dei gruppi sopracitati è stato analizzato dividendo gli animali in tre diversi 

sottogruppi definiti sulla base del titolo virale (numero di copie di genoma virale/ ml di siero): 

suini non viremici (NV), suini con viremia<106 (V<106) e suini con viremia ≥106 (V≥106). 

Gli alti livelli di IL-8, TNF-α e IFN-γ rilevati nel gruppo PCV2-vac indicano che questi 

animali hanno mostrato una responsività immunitaria più efficiente, specialmente se 

confrontati al gruppo di animali Ctrl-PMWS+. 

Nei suini Ctrl-PMWS+, rispetto agli altri gruppi sperimentali, sono stati osservati livelli più 

ridotti di IFN-γ a 19 settimane di età, associati a più elevati livelli di IL-10 a                             

19 settimane di età e ad una più ridotta espressione di citochine pro-infiammatorie a 22 

settimane di età, in particolare IL-8 e TNF-α, condizione probabilmente correlata 

all’insorgenza della malattia. Al contrario, a 19 settimane di età, i suini dei gruppi PCV2-vac 

e Ctrl hanno mostrato una più bassa espressione di IL-10 e maggiori livelli di IFN-γ rispetto 

agli animali Ctrl-PMWS+. A 22 settimane di età gli animali vaccinati hanno mantenuto livelli 

di citochine pro-infiammatorie più elevati. 

Questi dati supportano l’ipotesi che l'esito della PMWS potrebbe essere associato ad una 

riduzione della risposta immunitaria innata/pro-infiammatoria. Complessivamnete, i risultati 

mostrano una diversa modulazione citochinica tra i suini vaccinati e non vaccinati infetti da 

PCV2 che sviluppano PMWS. I suini vaccinati combattono l'infezione mostrando ridotta o 

assente viremia, assenza di PMWS e una risposta infiammatoria e reattività cellulare associata 

all’IFN-γ più intense. 
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1.1 Porcine circovirus type 2 (PCV2)  
 

1.1.1 PCV2 history  

Porcine circovirus (PCV) was first detected in 1974 as a virus morphologically similar to a 

picornavirus, contaminating the porcine kidney cell line PK-15 (ATTC-CCL33)                        

(Tischer et al., 1974). This contaminant agent was subsequently demonstrated to be a circular 

single-stranded DNA (ssDNA) virus that was accordingly named porcine circovirus (PCV) 

(Tischer et al., 1982). Since the virus induced an antibody response but no disease in the pig 

population, it was defined as non-pathogenic (Tischer et al., 1986; Dulac and Afshar, 1989; 

Allan et al., 1994). 

 
Postweaning multisystemic wasting syndrome (PMWS) is a multifactorial disease that was 

first reported in North America in 1991 (Clark, 1997; Harding, 1997); since then, this disease 

has affected the swine industry worldwide. The clinical signs of this syndrome include weight 

loss, severe growth retardation and death in weaned piglets; PMWS is also characterized by a 

multiorgan disease including lymphadenopathy, respiratory dysfunction, hepatitis, 

splenomegaly and gastric ulcers (Clark, 1997; Harding, 1997), lymphocyte depletion, 

monocytic infiltration in lymphoid tissues and high amounts of viruses in these lesions 

(Segalés et al. 2002).  

After the isolation of a PCV-like agent from tissues of PMWS-affected pigs, both in                 

North America and Europe (Allan et al., 1998b; Ellis et al., 1998), the non-pathogenic PK-15 

cell culture-derived virus and the circovirus isolated from PMWS-affected pigs were 

compared. Nucleotide sequence analyses revealed significant genetic differences between 

viruses (Allan et al., 1998a), less than 80% of sequence identity (Meehan et al., 1998); 

because of that they were divided into two types: the non pathogenic PCV type 1 (PCV1) and 

the virus associated with clinical disease, that is PCV type 2 (PCV2) (Hamel et al., 1998; 

Meehan et al., 1998).  
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1.1.2 Taxonomy 

Both PCV1 and PCV2 belong to the Circoviridae family (Todd et al. 2005; Opriessnig et al. 

2007) that is composed of icosahedrical, small, non-enveloped ssDNA viruses infecting 

vertebrates (Lukert et al., 1995). Viruses within the Circoviridae family, based of their 

morphology and genomic organization, are divided in two genera: Circovirus and Gyrovirus 

(Todd et al. 2005; Opriessnig et al. 2007).  

Circovirus genus includes Porcine circovirus type 1 and type 2 and, according to the 

International Committee for the Taxonomy of Viruses (ICTV), other known avian viruses 

such as Beak and feather disease virus (Ritchie et al., 1989), Canary circovirus (Phenix et al., 

2001), Duck circovirus (Hattermann et al., 2003), Finch circovirus (Shivaprasad et al., 2004), 

Goose circovirus (Todd et al., 2001), Gull circovirus (Smyth et al., 2006), Pigeon circovirus 

(Woods et al., 1993), Starling circovirus (Johne et al., 2006) and Swan circovirus                     

(Halami et al., 2008).  

The genus Gyrovirus, that differs from circovirus for its negative sense genome and its large 

virions (Gelderblom et al., 1989; Gillespie et al., 2009), contains only Chicken anaemia virus 

(CAV) (Todd et al., 2005; Opriessnig et al., 2007).  

 

 

1.1.3 Genotypes 

Several phylogenetic analyses have demonstrated that PCV2 isolates from different 

geographical origins can be divided into 2 distinctive genogroups (Larochelle et al., 2002; 

Mankertz et al., 2000; Olvera et al., 2007). In some studies a stronger association of certain 

PCV2 genogroups with the PCVD onset (Grau- Roma et al., 2008; Timmusk et al., 2008) has 

been described whereas other reports have stated that there is no direct relationship between 

the development of PMWS and the infection by a specific genogroup of PCV2                         

(Allan et al., 2007; Olvera et al., 2007). The difficulty to identify pathogenic differences 

between genotypes has been recently attributed to the presence of a conserved decoy epitope 

in the C-terminal region of the PCV2 capsid protein (Trible and Rowland, 2011). 

The two phylogenetic groups, depending on the author, have been commonly referred as 

PCV2a and PCV2b in North America and PCV2 group 1 (included in the PCVb group) and 

PCV2 group 2 (included in the PCVa group) in Europe. In addition, some North American 

laboratories, based on predicted restriction fragment length polymorphism (RFLP) patterns, 
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grouped the virus into two RFLP patterns designated as 422 and 321. Isolates with the RFLP 

pattern 422 typically cluster into PCV2a (PCV2 group 2), whereas isolates with a 321 RFLP 

pattern can be either PCV2a (PCV2 group 2) or PCV2b (PCV2 group 1) (Olvera et al., 2007; 

Opriessnig T. et al., 2007).  

Nowadays the North American nomenclature is officially accepted and the two clusters are 

designated as PCV2a and PCV2b (Gagnon et al., 2007; Segalés et al., 2008); PCV2a contains 

a genome of 1.767 nucleotides (nt) and can be divided into 3 clusters (1A–1C), while PCV2b 

is characterised by a 1.768 nt genome and can be divided into 5 clusters (2A–2E)                       

(Olvera et al., 2007; Gillespie et al., 2009). The existence of discrete antigenic differences 

between different PCV2 genetic clusters has been described in a recent study that performed 

epitopes’ competition analysis using a panel of universal and cluster-specific mAbs                        

(Saha et al., 2011). 

Several epidemiological studies worldwide have reported that PCV2b is becoming 

predominant in many countries, underling a genotype switch of virus from PCV2a 

(circulating with prevalence in the 1990’s) to this major group (Trible and Rowland, 2011). A 

new PCV2 genogroup, PCV2c has been recently detected in Denmark in archived serum 

samples from non-clinical pigs collected in 1980, 1987 and 1990; furthermore, it has been 

demonstrated that this genogroup is more closely related to PCV2b (95%) than PCV2a (91- 

93.6%) as sequence homology (Dupont et al. 2008; Opriessing et al. 2010).  

 

 

1.1.4 Molecular characteristics  

Porcine circoviruses (PCVs) are the smallest viruses infecting mammalian cells, being 

characterised by an icosahedral, non-enveloped virion particle of 17±1.3 nm of diameter 

(Tischer et al., 1982) that contains a covalently closed circular ssDNA genome with a size of 

1759 bp and 1768 bp for PCV1 and PCV2 respectively (Meehan et al., 1998). PCVs, as the 

other Circoviruses, replicate via rolling circle replication (RCR) so, after the infection of the 

cells, their ssDNA is converted into a intermediate dsDNA, called replicative form (RT). 

During this phase of the viral life cycle, the genome has an ambisense organization and genes 

encoded by both the positive and negative strands (Cheung 2006; Meehan et al., 1997) 

(Fig.1). 
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Figure 1. PCV2 and PCV1 genomes (adapted from Gillespie J. et al., 2009)  

 

 

This arrangement creates two intergenic regions, a shorter one between the 3’-ends of the     

Rep and Cap gene and a larger one between their 5’-ends, the latter comprising the origin of 

viral genome replication (Finsterbusch T. and Mankertz A., 2009). The origin of replication 

(OR) is characterized by a putative stem–loop structure with a nonamer in its apex and 

hexamer motifs, contiguous to the stem–loop, which serve as binding site for the replicases 

(Mankertz et al., 1997; Finsterbusch T. and Mankertz A., 2009) (Fig. 2).  

PCV2 replication starts when Rep protein binds these hexamer repeats (Mankertz et al., 2004) 

and, since PCV2 is dependent on cellular DNA polymerases, meanwhile the Rep proteins 

nick and join the nucleotide segments at the initiation and termination of the cycle, the 

cellular polymerase synthesizes DNA (Cheung 2006; Steinfeldt et al., 2006). 
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Figure 2. A linear representation of the PCV genome (upper part); the two major ORF, rep and cap, 
three motifs conserved in RCR enzymes (I–III), a dNTP-binding domain (P) within the rep gene and 
the ORF3 (grey boxes) are indicated. The lower part shows a comparison of the two origin regions of 
PCV1 and PCV2; the hexamer repeats 1–4 (open boxes), the conserved nonamer sequence within the 
single-stranded loop of the hairpin (grey box) and the nicking site (arrow) are indicated              
(Finsterbusch T. and Mankertz A., 2009). 
 

 

PCV2 genome contains several potential open reading frames (ORFs) larger than 200 nt, 

however only three of them have been demonstrated to be functionally expressed:                      

ORF1 (Rep), ORF2 (Cap) and ORF3 (Hamel et al., 1998; Segalés et al., 2005; Liu et al., 

2005). ORF1 is located on the positive strand, clockwise oriented and encodes for the viral 

replication proteins Rep and Rep’ which are 314 and 178 amino acids (aa) in length, 

respectively (Mankertz et al., 1998; Cheung, 2003b). ORF2 is situated on the negative strand, 

counterclockwise oriented, and encodes for the capsid protein Cap which is the major 

structural protein and the main antigenic determinant of the virus (Mankertz et al., 2000; 

Nawagitgul et al., 2000). ORF3 is completely overlapped with the ORF1 gene, located in the 

negative strand and counterclockwise oriented, it encodes for a protein that has been 

characterized as an inducer of apoptosis (Liu et al., 2005; Liu et al., 2007). Several recent 

studies have shown that the ORF3 protein might play a role in viral replication and induction 
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of immunosuppression (Karuppannan et al., 2009); indeed it has been proved, both in 

BALB/c mice (Liu J. et al., 2006) and in specific-pathogen-free (SPF) piglets, that the knock-

out of ORF3 reduces PCV2 pathogenicity (Karuppannan, A. K., 2009). The non pathogenic 

PCV1 also has a third open reading frame but its function has still to be characterised 

(Chaiyakul M. et al., 2010). 

 

 

1.1.5 PCV2-associated diseases 

All the recognized syndromes associated with PCV2 infection can be nowadays designated by 

two similar terms: PCVD (porcine circovirus diseases), proposed in 2002 by Allan and                 

co-workers and still predominantly used in Europe, and PCVAD (porcine circovirus 

associated diseases), introduced by the American Association of Swine Veterinarians 

(AASV) in 2006 and used mainly in North America. At present there is still no consensus 

with regard to the disease nomenclature and both acronyms are accepted.  

PCV2 is the primary causative agent of the syndromes included in PCVD but many other 

common pathogens are involved in their onset; the different forms can be accomplished by 

observation of characteristic lesions in the intestines, lungs, and lymphoid tissue                 

(Opriessnig et al., 2007).  

PCV2 has been associated with subclinical diseases or other clinical manifestations such as 

postweaning multisystemic wasting syndrome (PMWS), PCV2-Associated Enteritis, PCV2-

Associated Pneumonia, PCV2-Associated Reproductive Failure, Porcine Dermatitis and 

Nephropathy Syndrome (PDNS) and PCV2-Associated Neuropathy (Gillespie et al., 2009).  

The syndromes associated with PCV2, besides PMWS, are the following: 

 

- Subclinical infections characterised by the absence of evidence of clinical disease although 

PCV2 is present. In vivo study on PCV2-inoculated pigs have shown that PCV2 lesions can 

be limited to 1 or 2 lymph nodes without causing any apparent clinical problems              

(Opriessnig et al., 2004; Opriessnig et al., 2006a); cases of necrotising lymphadenitis 

(Opriessnig et al., 2006a; Kim et al., 2005) or decrease in vaccine efficacy have also been 

reported in healthy PCV2-infected pigs (Opriessnig et al., 2006b).  
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- PCV2-Associated Enteritis affects piglets from 8 to 16 weeks of age inducing increased 

mortality, diarrhea and severe growth retardation: this syndrome is similar in clinical signs to 

ileitis associated with Lawsonia intracellularis infection but an histopathological study can 

distinguish between the two diseases; animals affected by PCV2-Associated Enteritis are 

indeed characterised at necroscopy by an enlargement of mesenteric lymph nodes, thickening 

of intestinal mucosa (Jensen et al., 2006), distinctive PCV2 lesions in Peyer’s patches but not 

in other lymph nodes and granulomatous entheritis detectable by means of microscopical 

analysis. 

 

- PCV2-Associated Pneumonia occurs in pigs from 8 to 26 weeks of age and its 

symptomatology includes reduced feed efficiency and growth rate, anorexia, fever, cough, 

and dyspnea (Gillespie et al., 2009); histopathological studies on diseased pigs show 

lymphohistiocytic to granulomatous bronchointerstitial pneumonia with necrotizing and 

ulcerative bronchiolitis and bronchiolar fibrosis characterised by abundant PCV2 antigen in 

the lesions. This evidence suggest that PCV2 may play a role in the Porcine Respiratory 

Disease Complex (PRDC) in which also Porcine Reproductive and Respiratory Syndrome 

Virus (PRRSV) are involved (Sorden, 1999; Sorden et al., 2000; Gillespie et al., 2009). 

 

- PCV2-Associated Reproductive Failure damage herds of gilt startups or new populations 

(Mikami et al., 2005) inducing clinical manifestations as increased abortion, still births, foetal 

mummies, and pre-weaning mortalities; a non-suppurative to necrotizing or fibrosing 

myocarditis has been also found in histopathological lesions of stillborn and neonatal pigs 

(Mikami et al., 2005; Opriessnig et al., 2007). It has been proved that the time of infection 

determines the clinical course of the disease: several studies have demonstrated that fetuses 

experimentally intrauterine infected in an earlier phase of gestation (57 weeks of gestation) 

present higher viral load and lesions as edema, enlarged liver and congestion, than those 

infected in a later phase (75 and 92 days of gestation) (Sanchez et al., 2001); it has been also 

shown that late term infections (86, 92, and 93 days of gestation) can cause an increase in 

reproductive abnormalities (Johnson et al., 2002; Gillespie et al., 2009). 

 

- Porcine Dermatitis and Nephropathy Syndrome (PDNS) was first described in the 

United Kingdom in 1993 (Smith et al., 1993) and was associated with PCV2 only later, in 

2000 (Rossel et al., 2000). Many pathogens including PRRSV and bacteria such as 
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Pasteurella multocida, Streptococcus suis type 1 and 2, among others, have been implicated 

in the etiology of disease (Lainson et al., 2002; Thomson et al., 2002). PDNS is not always 

associated with PCV2, in several studies it was indeed experimentally reproduced with 

PRRSV and TTV in PCV2-free pigs (Krakowka et al., 2008). 

This disease mostly affects growing pigs but can also occur in recently weaned and feeder 

pigs from 1.5 to 4 months of age (Smith et al., 1993; Thibault et al., 1998); PDNS is clinically 

characterized by an acute onset of multifocal and well circumscribed skin lesions                      

(raised purple progressing to multifocal raised red scabs with black centers most prominent on 

the rear legs), fever, and lethargy and is often fatal within 3 days of development                       

(Done et al., 2001; Duran et al., 1997; Chae, 2005). Macroscopically, the kidney appears 

enlarged and having pale cortex with multiple red circular haemorrhagic cortical foci (Ramos-

Vara et al., 1997). Microscopically, the most significant lesion is the severe, fibrinoid, 

necrotizing vasculitis in the dermis, subcutis, lymph nodes, stomach, spleen, liver and kidney 

which can be associated with dermal and epidermal necrosis and necrotizing and fibrinous 

glomerulonephritis.  

 

- PCV2-Associated Neuropathy causes in pigs congenital tremors and a nonsuppurative 

menigoencaphalitis associated with demyelination of the brain and spinal cord                        

(Larochelle et al., 2002; Pensaert et al., 2004; Correa et al., 2007). PCV2 infection has also 

been associated with cerebellar lymphohistiocytic vasculitis or with lymphohistiocytic 

meningitis (Correa et al., 2007) but even today the role played by this virus in this kind of 

diseases  has still to be clarified. 
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1.2 Postweaning multisystemic wasting syndrome (PMWS) 

The most significant manifestation of PCVAD is the postweaning multisystemic wasting 

syndrome (PMWS). Since the 1990s, porcine circovirus type 2 (PCV2) has been considered 

the causative agent of this disease, even if the majority of infections caused by PCV2 are 

sub-clinical, and only a small proportion of PCV2-infected pigs develops the clinical form of 

disease. PMWS is considered a multifactorial disease and the fully clinical expression of this 

syndrome is indeed due to the co-presence of PCV2 and pathogens such as porcine 

reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine 

parvovirus (PPV), Haemophilus parasuis, Actinobacillus pleuropneumoniae,              

Streptococcus suis and Mycoplasma hyopneumoniae (Chae, 2004). 

 

 

1.2.1 Epidemiology 

PMWS was described for the first time in a Canadian high-health-status herd in 1991 and was 

later recognized worldwide (Allan and Ellis, 2000) being associated with major losses in 

Europe (Harding et al., 2000; Opriessing et al., 2008). In 1996, both in British and French 

farms, there were cases of wasting and high losses in growing pigs (Madec et al., 2004)                

and PCV2 was isolated from the animals and the disease was later defined as PMWS.  

Cases of PMWS were retrospectively identified in archived serum and tissues samples from 

1962 in Germany (Jacobsen et al., 2009), 1969 in Belgium (Sanchez et al., 2001a), 1970                

in the United Kingdom (Grierson et al., 2004), 1973 in Ireland (Walker et al., 2000) and 1985 

in Canada and Spain (Magar et al., 2000; Rodríguez-Arrioja et al., 2003).  

During the following decade, PMWS spread over the world becoming a considerable 

economic problem in many pig-producing countries. In fact, PCV2 infection is so widespread 

today that it is almost impossible to find seronegative farms in epidemiology studies                   

(Grau-Roma et al., 2009). PMWS morbidity is associated with the development of clinical 

manifestations of disease and ranges between 4% and 30%, being (although) up to 60% in 

some herds (Segalés and Domingo, 2002). PMWS prevalence generally ranges from 4% to 

30% and mortality ranges from 4% to 20%, but can reach 50% (Allan and Ellis 2000;  

Harding and Clark, 1997; Segalés and Domingo, 2002).  
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1.2.2 Clinical features  

PCV2 infection can occur during the whole pig productive life, but PMWS usually affects 

animals from 8 to 16 weeks of age (Sibila et al., 2004; Grau-Roma et al., 2009).  

However, PMWS has been shown to occur at different ages in the United States                         

(from 7 to16 weeks of age) and Europe (from 5 to 12 weeks of age) (Allan and Ellis 2000; 

Segalés and Domingo, 2002) due to different management and vaccination practices. 

Clinical signs of this disease include wasting with progressive weight loss (Fig. 3), lethargy, 

dark-colored diarrhea, and paleness or jaundice that may occur at a different degree                

(Segalés et al., 2005; Allan and Ellis 2000; Gillespie J. et al., 2009). The earliest symptoms 

are weight loss, ill-thrift, pale skin, and rough hair; dyspnea, tachypnea, anemia, diarrhea, and 

jaundice generally appear in the latest phases of the disease, in some cases coming with 

coughing and gastric ulceration (Opriessnig et al., 2007; Gillespie J. et al., 2009). 

Gross lesions of PMWS commonly include pale and enlarged lymph nodes                        

(superficial inguinal, submandibular, mesenteric and mediastininal), mottled and firm lungs 

that fail to collapse (Allan and Ellis, 2000) and, in chronic cases, kidneys with white streaks 

or spots (Rosell et al., 1999). The histopathological analysis of PMWS lesions displays a 

generalised lymphoadenopathy with infiltration of histiocytic cells and multinucleated giant 

cells and characterised by pronounced depletion of lymphocytes. These findings are unique 

and allow to distinguish this syndrome from other wasting manifestations.  

 

 
Figure 3. Pigs suffering from PMWS (A) compared to a healthy pig of the same age (B)                
(Opriessnig et al., 2007). 

A 

B 
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The lymphatic system can be involved at different levels by the disease. Based on that, a 

scoring system has been defined to evaluate the severity of the disease. This estimation 

system allow to assign scores from 0 to 9 ranking the severity of lesions, the amount of PCV2 

antigen and the distribution of lesions in seven indicative lymphoid tissues such as the 

tracheobronchial lymph nodes, the mesenteric lymph nodes, the mediastinal lymph nodes, the 

superficial inguinal lymph nodes, the external iliac lymph nodes, the tonsils, and the spleen 

(Opriessnig at al., 2004; Gillespie et al., 2009). 

In case of PMWS the immune system of pigs can be strongly compromised and this can 

increase the probability to be subjected to secondary infections (Segalés et al., 2005). 

 

 

1.2.3 Diagnosis  

PCV2 induces several clinical signs that are also shared by other pig diseases; for this reason 

a diagnosis of a specific syndrome is not easy to define. The presence of PCV2 genome in 

serum and the observation of a diseased status of pigs is not enough to define a PCVD case.  

It has been established that to make a diagnosis of PCVD, in addition to clinical signs, PCV2 

antigen has to be necessarily found in more than one lymphoid tissue, or one lymphoid tissue 

and one other organ such as the lungs, liver, kidney or intestine, or in two organs                    

(Gillespie et al., 2009). 

More specifically, to categorise PMWS cases, Segalés and co-workers suggested in 2005             

the following criteria: 

1) clinical signs compatible with PMWS (growth retardation and wasting); 

2) moderate to severe histopathological lesions characterized by lymphocyte depletion 

together with granulomatous inflammation; 

3) moderate to high amount of PCV2 genome/antigen within lesions.  

 
Tests such as polymerase chain reaction, in situ hybridization (ISH) and 

immunohistochemistry (IHC) are considered the optimal techniques to detect PCV2 antigen 

or nucleic acid and make a diagnosis of PMWS (Opriessnig et al., 2007). Serological tests 

such as IPMA (immunoperoxidase monolayer assay) or SN (seroneutralisation) are useful to 

identify an infectious state but not enough to substitute histopathological evaluations and PCR 

analysis (Allan et al., 1998b; Grierson et al., 2004; Allan et al., 2000; Gillespie et al., 2009). 
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Seropositivity to PCV2 can be found in many clinically healthy pigs and the status of 

subclinical infection is commonly set when low amounts of PCV2 are detected in blood 

and/or tissues, associated with no or minimal lesions. The cut-off generally considered to 

distinguish between PMWS-diseased pigs and sub-clinically infected pigs is 107 PCV2 DNA 

copies/ml of serum (Opriessnig et al., 2007). 

Currently, there is no field test for the diagnosis of PMWS, but to identify and manage its 

outbreaks within a herd it is important to determine whether the disease is a significant or a 

sporadic problem. It has been defined that there is an important herd problem if the following 

conditions are observed (Segales J., 2006; Gillespie et al., 2009): 

1) significant increased postweaning mortality that is equal or higher than the mean 

historical mortality plus 1.66 times the standard deviation. If historical data are not 

available, a herd problem can be described when the postweaning mortality exceeds 

the national or regional level by 50% or more; 

2) confirmation of PMWS in individual cases.  

 

 

1.2.4 Pathogenesis 

In case of PCV2 infection there are significant differences between sub-clinical and               

PMWS-affected pigs; current evidence support a central role for immunodepression in the 

pathogenesis of PMWS.  

In pigs that develop PMWS, the highest amount of PCV2 is found in the cytoplasm of 

monocyte and machrophage lineage cells (Rosell et al., 1999; Sanchez et al., 2004).  

The virus can infect these cells without an active replication for a long period of time                

(Gilpin et al., 2003; Vincent et al., 2003). The capability of PCV2 to induce functional 

impairment of in vitro cultured dendritic cells (DC) has been also described (Vincent et al., 

2005); this underlines the ability of the virus to interfere with innate and virus-specific 

immune responses.  

It has been displayed that PCV2 is not able to encode for its own polymerase and its 

replication depends on host’s nuclear polymerases (Tischer et al., 1987). For this reason it is 

possible to identify cells that support replication of PCV2 by evaluating the presence of Rep, 

the PCV2 replication associated protein, in the nucleus of the cell (Rovira et al., 2002). Earlier 

studies have demonstrated the presence of nuclear PCV2 in epithelial cells of PMWS-affected 

pigs, proposing these cells as candidate for primary PCV2 infection (Rossel et al., 1999).  
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Studies on experimentally PCV2-inoculated pigs have proven viral replication in lymphocytes 

from PBMC and bronchial lymph nodes by measuring Cap mRNA levels in the cells                    

(Yu et al., 2007a). The subpopulations of leukocytes that support PCV2 replication are 

prevalently circulating T cells, both CD4+ and CD8+, and in a lower proportion                                

B lymphocytes; PBMC-derived monocytes do not seem to sustain viral replication                        

(Yu et al., 2007b; Lefebvre et al., 2008b; Lin et al., 2008). 

PMWS is characterised by lymphocyte and follicular dendritic cell depletion from follicular 

regions, together with increased numbers of histiocytic cells (Chianini et al., 2003).  

It is still unknown whether the lymphocyte depletion is due to reduced production in the bone 

marrow, reduced proliferation in secondary lymphoid tissues, or increased loss of 

lymphocytes in the bone marrow, peripheral blood, or secondary lymphoid tissues via                

virus-induced necrosis or apoptosis (Opriessnig et al., 2007). A reduction of B and T 

lymphocytes, especially CD8+ cells, has been also reported in blood circulation; at the same 

time, an increased number of circulating neutrophils and monocytes determine a reversal of 

the normal ratio of lymphocytes/neutrophils (Nielsen et al., 2003; Segales et al., 2001). 

Infection studies have not clarified yet this phenomenon. 

An experimental PCV2 infection study showed that at 7 days post-PCV2 infection the 

lymphocyte depletion has already started, whereas maximal depletion of both B and T cell 

subsets, followed by a huge or total loss of NK cells, occurs later, at 21 days post-infection 

(Nielsen et al., 2003).   

Humoral immunity seems to play a very important role in controlling and resolving viremia 

(Fort et al., 2007; Opriessnig et al., 2008b). In sub-clinical animals, an efficient humoral 

response is frequently associated with long-lasting viremia, low concentration of virus at 

lymphoid tissue, and no significant changes in the status of the immune system                          

(Allan et al., 1999a; Resendes et al., 2004a). On the contrary, weak humoral responses can be 

related to increased viral replication, resulting in the severe lymphoid lesions and 

immunosuppressive status characteristic of PMWS (Bolin et al., 2001). 

 
Several experimental and field studies supported the multifactorial nature of PMWS and 

highlighted that not all pigs that are infected by PCV2 develop clinical PCVAD.  

The outcome of this syndrome can be influenced by several factors that can be grouped in 

four main areas: virus, host, coinfections, and immune modulation (Opriessnig et al., 2007). 

The accurate mechanism by which these factors cooperate determining the onset of the 
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disease in PCV2-infected pigs are not completely been elucidated yet. A schematic diagram 

involving factors influencing the onset of PMWS and PCV2 infection progression/outcome is 

shown in Figure 4. 

 

 

 

Figure 4. Scheme of the current understanding of the progression of porcine circovirus type 2 (PCV2) 
infection and clinical outcome (Opriessnig et al., 2007).  
 

 

 

1.2.5 Intervention strategies 

Since the first economically significant appearance of PMWS in the 1990s, control measures 

have been focused on the control of risk factors involved in the progression of the disease, but 

have been accomplished with several problems mostly related to the lack of knowledge of the 

full aetiology and epidemiology of the disease and the absence of commercial vaccines.  

The first strategy to control PMWS by adjustments of housing and management routines in 

affected farms were proposed by Madec and co-workers in 2001; they elaborated a 20-point 

plan of recommendations essentially focused to reduce overall stress and improve hygiene 

and infection status within the herd. Due to difficulties in application on large commercial 

units, the Madec’s principles have been later refined into four rules: 1) limiting pig-pig 

contact, 2) reduction of physiological stress, 3) good hygiene conditions improving 

disinfection and cleaning procedures, and 4) good nutrition (Muirhead, 2002).  

5-30% 
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The implementation of Madec’s plan as a guideline for the control of postweaning mortality 

in PMWS affected farms proved to be efficacious in reducing the PMWS-associated losses 

(Allan and McNeilly, 2006; Segalés et al., 2005). 

 

 

1.2.6 Vaccine development and vaccination 

Vaccination against PCV2 represents an important strategy to control PMWS in pig herds. 

For this reason there is active interest in the development of vaccines able to prevent or limit 

the PCV2-associated diseases. Nowadays, several commercial products are used in the herds 

and all of them are based on PCV2a genotypes that have been demonstrated to provide                  

cross-protection also to PCV2b (Fort et al., 2008, 2009; Segalés et al., 2009).  

Nowadays, three commercially vaccines are available against PCV2: 

• CIRCOVAC
® 

(Merial) was the first vaccine on the market; it has been extensively 

used in Europe but it has been also available in Canada. It is an inactivated PCV2,            

oil-adjuvanted vaccine for use in sows and gilts 2-4 weeks prior to farrowing 

(Charreyre et al., 2005; Gillespie et al., 2009) that is given as two injections                       

IM (intramuscular administration) 3-4 weeks apart and completed at least 2 weeks 

before breeding and once at each subsequent gestation (Opriessnig et al., 2007).  

The active immunisation on these breeding-aged animals is used to induce passive 

immunisation to the offspring by means of colostrum transfer.  

 

The other two commercial products use different approaches for establishing protective 

immunity against PCV2. They are recombinant vaccines designed for use in growing pigs,              

at about 3-4 weeks of age.  

 

• Ingelvac CircoFLEX
®
 is a capsid-based subunit vaccine based on the product of the 

ORF2 expressed in a baculovirus system; it is administered as a single dose IM in 

piglets from 2 weeks of age. The immunity of the treated animals starts about 2 weeks 

after vaccination remaining protective at least for further 17 weeks. A significant 

decrease in mortality in vaccinated pigs compared to unvaccinated pigs was reported 

on 4 different Canadian finishing sites (Desrosier et al., 2007; Gillespie et al., 2009). 
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• The vaccine from Intervet/Schering-Plough/Merck is also a capsid-based subunit 

vaccine expressed in a baculovirus, it is designated as Porcilis PCV
®
in Europe and 

Asia and Circumvent PCV
 ®

 in the United States and Canada (Gillespie et al., 2009).  

 

Porcilis PCV 
®
 can be administered to 3-day-old and older piglets, following a double 

dose IM protocol (at 3-5 days and 3 weeks of age) or given as a single dose IM at                     

3 weeks of age; Circumvent
®
 is given to 3-week-old and older piglets and is 

administered as a single dose at 3 weeks of age. Both of them induce protective 

immunity that remains active from 2 to 22 weeks after vaccination; studies including 

35,000 pigs on 21 different farms showed that mortality of vaccinated pigs is reduced 

by 77.5% when compared to unvaccinated pigs (Grau et al., 2007; Gillespie et al., 

2009). 

 

 

1.2.7 Effectiveness of vaccination 

The effectiveness of the vaccines available against PCV2 has been widely evaluated in several 

studies. Due to the poor clinical manifestation in piglets infected by PCV2 only, some studies 

have also evaluated the responses in animals co-infected by two or three porcine pathogens. 

Experimental co-infection try to reproduce herd field conditions in which numerous 

pathogens, more frequently PRRSV and Mycoplasma Hyopneumoniae, contribute to PCVD 

outbreak (Beach and Meng, 2011). In this regard it has been found that the presence of 

PRRSV can increase the severity of PCV2-related clinical signs, inducing a wide spread of 

the virus by oronasal and faecal excretions (Allan et al., 2000; Rovira et al., 2002;                         

Sinha et al., 2011). Contrarily, a large number of vaccines against PCV2 have demonstrated to 

induce neutalising antibody (NA) secretion, reduced viral load and lymphoid lesions in cases 

of PCV2 infection but also in the presence of SIV (swine influenza virus) or PRRSV  

(Opriessnig et al., 2009) coinfections.  

The vaccination of boars by using Suvaxyn PCV2 one dose, followed by infection with PCV2 

or Mycoplasma, seems to prevent serious clinical manifestation, reduce viral titres in the 

blood and virus excretion by faeces and semen with respect to an unvaccinated control group 

(Opriessnig et al., 2011). Boars vaccination does not alter semen characteristics and is proved 

to be a good practice to reduce vertical PCV2 transmission. 
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In addition, sow and gilt vaccination has been reported to increase the number of live born 

pigs and the number of pigs per sow per year, reducing the number of mummies per sow 

(Thacker et al., 2008). It is relevant to highlight that the vaccination of sows is not able to 

completely eliminate viral transmission by colostrum or prevent intrauterine infection but is 

however important to increase productive parameters of the herds (Beach and Meng, 2011).  

 

Several studies have demonstrated the efficacy of PCV2 vaccination; in a infection study, 

vaccine treatment of piglets from a PRDC group reduced the mean viral titre from 83% to 

55% and its duration overtime, improving average daily weight gain (ADWG) (Fachinger et 

al., 2008). In another study, vaccination of piglets from a PMWS/PCVD farm showed a             

50% reduction of mortality and a 9.3 % increase of ADWG (Horlen et al., 2008).  

The efficacy of a subunit vaccine containing PCV2 capsid protein has been also proven after 

experimental infection with four different PCV2 isolates of the two genotypes (PCV2a and 

PCV2b) (Fort et al., 2008). 

 

Therefore, after vaccination of growing pigs, under experimental conditions, it has been 

observed a reduction of viremia, lymphoid lesions and amount of PCV2 DNA in tissues, 

oronasal and fecal PCV2 excretion and specific IgM, IgG and NA production, as well as 

cross-protection to both PCV2a and PCV2b (Fenaux et al., 2004; Fort et al., 2008;               

Opriessnig et al., 2008c). Under field conditions, increases of ADWG and percentage of lean 

meat, improvement of feed conversion index and reductions of mortality have been observed 

(Fachinger et al., 2008; Horlen et al., 2008; Kixmoller et al., 2008; Cline et al., 2008;               

King et al., 2008; Opriessnig et al., 2008a, 2008b; Tacker et al., 2008; Desrosiers et al., 2009;                        

Segalés et al., 2009; Martelli et al., 2011), together with increased numbers of PCV2-specific 

IFN-γ secreting cells (IFN-γ SC) suggesting the presence of effector and/or memory T cells 

(Fort et al., 2009; Lyoo et al., 2011).  
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1.3. PCV2 and the immune system 

The specific immune response that develops in pigs after infection by PCV2 is crucial and 

strongly influences the outcome of infection. The animals that develop PMWS often appear to 

be immunosuppressed and unable to eliminate the virus from the blood circulation.  

In the final phase of the clinical manifestation, infected-diseased pigs show extensive 

lymphoid lesions and altered cytokine expression patterns in PBMC and lymphoid organs due 

to their ineffective immune response (Kekarainen et al., 2010).  

Not always PCV2 infection determines the outbreak of clinical signs and immunological 

disorders; in fact, there are asymptomatic animals that show higher virus-specific and 

neutralising antibody titres than PMWS-affected animals. The mechanisms by which PCV2 

can affect the immune responses have not been completely elucidated but recent studies have 

pointed out virus interaction with macrophages and plasmacytoid dendritic cells and the role 

of viral DNA in regulation of immune cell functions. 

 

 

1.3.1 Interaction between PCV2 and immune cells  

In infected animals, cells of the monocytic lineage, including monocytes, macrophages and 

dendritic cells (DC), are most frequently associated to intracellular detection of PCV2 which 

however does not seem to replicate in such cells (Gilpin et al., 2003; Vincent et al., 2003). 

These cells accumulate viral antigen and DNA for extended periods of time, but since viral 

replication is inefficient, they are thought to play a major role in viral persistence and 

transmission (Gilpin et al., 2003; Vincent et al., 2003; Pérez-Martín et al., 2007). 

 

Dendritic cells 

In dendritic cells (DC) the presence of live PCV2 particles leads to different effects depending 

on the cell subpopulation. 

In myeloid dendritic cells (mDC) the virus does not appear to be detrimental to cell survival 

and does not interfere with their maturation; in vitro studies on mDC infected with PCV2 

have indeed proven that the cell expression of major histocompatibility complex (MHC) class 

I and II or cluster of differentiation (CD) 80/86 is not altered by the virus, even after exposure 

to IFN-α and tumor necrosis factor TNF-α (Vincent et al., 2005; Vincent et al., 2003).  
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In the same studies the antigen presenting and processing ability of mDC was reported not to 

be compromised by the infection.  

On the contrary, the interaction of PCV2 with plasmocitoid dendritic cells (pDC), also called 

Natural Interferon Producing cells (NIPC), induces impaired responsiveness to danger signals, 

inhibits interferon (IFN)-α and tumor necrosis factor (TNF)-α production and interferes with 

NIPC maturation as well as paracrine maturation of mDC (Vincent et al., 2005). 

The virus seems not to be transmitted from DC to lymphocytes; this may be a viral strategy to 

escape the host’s immune defence and disseminate exploiting the circulation of DC                

(Vincent et al., 2003). Since asymptomatic piglets produce anti-PCV2 antibodies    

(Krakowka et al., 2002; Ladekjaer-Mikkelsen et al., 2002; Nielsen et al., 2003; Steiner et al., 

2009) and cytotoxic responses (Steiner et al., 2009), the presence of PCV2 in DC does not 

always impair their immunobiological interaction with lymphocytes (Kekarainen et al., 2010). 

 

Monocytes and macrophages 

In vitro and ex vivo studies on the early immune responses following PCV2 infection have 

determined that also monocytes, monocyte-derived macrophages (MdM) and alveolar 

macrophages (AM) are able to internalize PCV2 (Gilpin et al., 2003; Kekarainen et al., 2010); 

in particular, AM phagocyte the virus but, as for DC, viral replication is not strongly 

detectable (Chang et al., 2006). The microbicidal and phagocytic functions of macrophages 

seem to be influenced by PCV2; in addition, increased production of pro-inflammatory 

cytokines such as interleukin (IL)-8 and TNF-α as well as the up-regulation of               

macrophage-derived chemotactic factor-II (AMCF-II), granulocyte colony-stimulating factor 

(G-CSF) and monocyte chemotactic protein-1 (MCP-1) have been reported                               

(Chang et al., 2006; Kekarainen et al., 2010).  

It was also suggested that the PCV2-mediated alteration of AM functionality can support 

opportunistic and secondary pulmonary infections. 

 

Peripheral Blood Mononuclear Cells (PBMC) 

The lymphopenia observed in PMWS-affected pigs is likely due to an indirect effect 

promoted by PCV2 infection in DC and macrophages (Kekarainen et al., 2010). In response 

to recall antigen (PCV2), PBMC from diseased pigs can respond by an increased production 

of IL-10 and IFN-γ compared to PBMC from infected healthy pigs, and display an impaired 

ability to produce IL-4, IL-2 and IFN-γ upon stimulation with antigen (porcine pseudorabies 
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virus; PRV), mitogen (phytohaemagglutinin; PHA) or superantigen (staphylococcal 

enterotoxin B; SEB) (Darwich et al., 2003a; Kekarainen et al., 2008b). Moreover, Kekarainen 

and co-workers (2008b) reported that PCV2 is able to modulate the specific immune 

responses developed by pigs to other pathogens. They showed that IL-12, IFN-α, IFN-γ and 

IL-2 recall responses of PBMC after pseudorabies virus stimulation were down-regulated by 

PCV2, underling that the decreased production of IL-12, IFN-α and IFN-γ could be due to the 

release of PCV2-induced IL-10 by PBMC, CD172a+ cells and bone-marrow derived DC 

(BMDC). 

 

Immune regulatory role for PCV2 DNA 

An immune regulatory role for PCV2 DNA was described for the first time in a study focused 

on the evaluation of the ability of various subpopulations of porcine DC to endocytose PCV2 

from infected PK15A cell lysates (Vincent et al., 2003). Viral genomic ssDNA (Vincent et al., 

2005) and dsDNA replicative intermediates endocytosed from the infected cell lysates 

(Vincent et al., 2007) were found in DC. Vincent et al. (2007) theorised that these DNA 

elements can interact with endosomal toll-like receptors (TLR) or cytosolic helicases inducing 

impairment of cytokines produced by pDC. These findings suggested the presence of DNA 

sequences in the PCV2 genome capable to interfere with DC and immune defences.  

Several CpG motifs have been characterised in PCV2 genome revealing synthetic 

oligodeoxynucleotides (ODN) sequences able to modulate cytokine production of porcine 

PBMC cultures by induction or inhibition (Hasslung Wikström et al., 2003; Kekarainen et al., 

2008a). The effect of these ODN was also analysed on porcine PBMC recall responses and 

cytokine production by BMDC (Kekarainen et al., 2008a; Kekarainen et al., 2010).  

It has been found that some ODN induce a decrease in the IFN-α response of BMDC upon 

PRV stimulation. The majority of the inhibitory ODN is located within the Rep region of the 

PCV2 genome but none of them, conversely to the whole virus, have been demonstrated to 

induce IL-10 production in PBMC (Kekarainen et al., 2008b). However, the presence of ODN 

in PBMC cultures appeared to decrease the IFN-γ or IL-2 responses to recall antigens 

(Kekarainen et al., 2010). 
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1.3.2 Humoral response 

Immunity against PCV2 in piglets can be transmitted as maternal antibodies by the sow. This 

passive immunity has been demonstrated to protect from PMWS onset in a dose-dependent 

manner (Rose et al., 2007). Colustrum administration is an important practice to induce 

protection of the offspring but also the PCV2 infection status of the sow has been 

demonstrated to be crucial. With regards to these evidence Calsamiglia et al. (2007) showed 

that, from sows with low levels of PCV2 antibodies, there is a higher percentage of piglets 

that result PMWS-affected. Nevertheless, it is important to remind that the presence of PCV2 

antibodies is not necessarily protective because not all antibodies are neutralizing upon PCV2 

infection. 

 

In experimentally infected pigs, seroconversion commonly occurs between 14 and 28 days 

post-inoculation (dpi) (Allan et al., 1999a; Balasch et al., 1999; Krakowka et al., 2001;  

Meerts et al., 2005; Segalés et al., 2005). More specifically, several studies have observed that 

PMWS-affected pigs seroconvert later (Fort et al., 2007; Meerts et al., 2006;                             

Bolin et al., 2001; Okuda et al., 2003), or show a weak response characterised by lower 

antibody titres at 21 dpi than in subclinically PCV2-infected animals (Meerts et al., 2006; 

Kekarainen et al., 2010).  

The different immunoglobulin isotypes follow the course of total antibody titres                       

(Meerts et al., 2006); in PCV2-subclinically infected pigs also the titres of virus neutralising 

antibodies (NA) follow this course (Meerts et al., 2006; Fort et al., 2007). Contrarily, the 

impaired humoral response of diseased pigs is characterised by decreased production of total 

antibodies and low levels of NA that subsequently result in a higher viral load                             

(Fort et al., 2007; Meerts et al., 2005).  

 

Under field conditions, the first protection against PCV2 is represented by passive immunity 

transferred by the sow; this protection lasts during the lactating and nursery periods and is 

depleted by the end of nursery and the beginning of fattening periods (Rodriguez-Arrioja et 

al., 2002; Rose et al., 2002; Larochelle et al., 2003). Active seroconversion to PCV2 usually 

occurs between 7-12 weeks of age (Segalés et al., 2005) and anti-PCV2 antibodies generally 

last until at least 28 weeks of age (Rodriguez-Arrioja et al., 2002). An impaired humoral 

response may extend the period between the decline of maternal immunity and the onset of 
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active seroconversion in piglets, thus increasing the probability to develop PMWS upon 

PCV2 infection.  

It has also been showed that the titres of anti-PCV2 IgM overtime, in contrast with the course 

of IgG1, IgG2 and IgA antibodies, remain lower in diseased pigs than in subclinical infected 

animals (Meerts et al., 2006). 

 

In case of PCV2 infection, the adaptive humoral immune responses play a crucial role in 

determining whether or not the outbreak of PMWS occurs despite other immune mechanisms 

are required to obtain complete viral clearance. 

 

 

1.3.3 Cell-mediated immune responses 

The role of adaptive cell-mediated responses in controlling PCV2 infection is still less studied 

compared to humoral responses (Kekarainen et al., 2010). However, the few studies that have 

already been performed provide relevant information. On gnotobiotic experimentally infected 

pigs, it has been demonstrated that the treatment with cyclosporine A (CyA)                                   

(i.e. an immunosuppressing agent), before PCV2 inoculation determines an increase of viral 

replication (Krakowka et al., 2002; Meerts et al., 2005). The IFN-γ mRNA expression levels 

in PBMC from these PCV2-inoculated animals resulted to be correlated with viral replication 

and immunosuppressed status induced by CyA, suggesting that a higher expression of IFN-γ 

can help pigs be less susceptible to PCV2 replication (Meerts et al., 2005). 

Other studies have analysed the development of IFN-γ secreting cells (IFN-γ SC) in either 

conventional colostrum-fed pigs infected with PCV2 alone (Fort et al., 2009a) or in 

colostrum-fed specific pathogen free (SPF) pigs infected with PCV2 together with Porcine 

parvovirus as a potential triggering factor for PMWS development (Steiner et al., 2009). 

Caesarean-derived colostrum deprived (CD/CD) pigs infected with PCV2 along with 

lipopolysaccharide (LPS) (Fort et al., 2009a) have also been analysed (Kekarainen et al., 

2010). The results of these three studies underline the key role of IFN-γ SC in developing the 

anti-PCV2 adaptive cellular response.  

 
It has been found that vaccination treatements are effective in reducing PCV2 load in the 

blood, concomitantly with the development of a virus-specific humoral response, especially 

mediated by NA both in field (Kixmoller et al., 2008) and experimental (Opriessnig et al., 
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2008c) infection models. In addiction, it has been shown the onset of a cellular response in 

terms of PCV2-specific IFN-γ SC in pigs vaccinated with a PCV2 sub-unit vaccine, 

experimentally infected (Fort et al., 2009b). Thus, we can assume that if at least one of these 

responses fails, viral clearance will be impaired, and the risk of developing PMWS can 

increase. However, the cell-mediated responses of pigs to PCV2 infection, although in cases 

of previous vaccination, have still to be thoroughly investigated. 

 

 

1.3.4 PCV2 modulation of cytokine profiles 

Cytokine mRNA expression profiles can be important to characterise the host’s immune 

responses that occur upon viral infections, therefore pro-inflammatory and immune cytokine 

production has been recently investigated in different PMWS and infection models (Chae et 

al., 2011; Kekarainen et al., 2008a, 2010). With regards to lymphoid tissues, increased levels 

of IL-10 mRNA expression were found in the thymus and decreased levels of IL-4 and IL-2 

were detected in tonsils and spleen from PMWS-affected pigs (Darwich et al., 2003b).  

Opposed results were described for IFN-γ: low mRNA expression levels were detected in 

inguinal and tracheo-bronchial lymph nodes whereas high expression was shown in tonsils 

(Darwich et al., 2003b; Zhang et al., 2010). 

An increase of IL-10, together with slight increases in IL-8, IFN-γ and TNF-α and a decrease 

in IL-2 and IL-4 mRNA levels, were also detected in PBMC from PCV2 naturally infected 

pigs (Sipos et al., 2004).  

Significantly higher expression of IL-10 was found in PCV2-infected lymphoid tissues 

compared to uninfected control tissues (Doster et al., 2010); furthermore, serum IL-10 was 

detected in pigs developing severe PMWS and the increased expression of this cytokine has 

been reported to be correlated with viremia in subclinically PCV2-infected pigs (Stevenson et 

al., 2006).  

Increased serum levels of the acute phase proteins (APP) haptoglobin, pig major acute phase 

protein (pig-MAP), C-reactive protein (CRP), serum amyloid A (SAA) and albumin were also 

reported in PMWS-affected pigs (Parra et al., 2006; Stevenson et al., 2006; Segalés et al., 

2004). 
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The production of cytokines and the balance between pro-inflammatory, pro-immune and 

regulatory cytokines play a pivotal role in eliciting the innate response as well as in priming 

and coordinating the adaptive immune response.  

For this reason the study of cytokines appears to be an important tool to evaluate the cellular 

immune response against PCV2. The above mentioned evidence suggest a severe 

immunosuppression in PMWS-affected pigs but the mechanisms determining the 

immunological impairment, that is not detectable in subclinically infected animals, are still 

poorly understood (Kekarainen et al., 2010). 



 

 

CHAPTER 2. 
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Management strategies, control of coinfections and vaccination are at present the measures by 

which PMWS and Porcine Circovirus Diseases (PCVD) are controlled. 

Nowadays PCV2 vaccination represents one of the major strategies to overcome PCV2 

infections in the herds and therefore several commercial vaccines are available.  

All PCV2 vaccines currently available on the market have been tested under field conditions 

resulting to be effective and helpful in decreasing mortality and cull rates and significantly 

improving the average daily weight gain (ADWG), concomitantly with decreasing the 

frequency of coinfections in herds affected with PMWS (Cline et al., 2008; Desrosiers et al., 

2009; Fachinger et al., 2008; Horlen et al., 2008; King et al., 2008; Kixmoller et al., 2008; 

Opriessnig et al., 2008b,c; Tacker et al., 2008; Segalés et al., 2009; Pérez-Martin, 2010).  

Even if PCV2 vaccines are effective in reducing the viremia burden and viral-induced specific 

lymphoid lesions, the mechanisms by which they are able to elicit protective immunity are not 

thoroughly known (Fachinger et al., 2008; Fort et al., 2008; Horlen et al., 2008). 

However, since PCV2 can evade immune surveillance and PCV2 infection is often associated 

with co-infections in the field (e.g. porcine reproductive and respiratory syndrome virus - 

PRRSV, Mycoplasma hyopenumoniae - M. hyo.), it is not easy to obtain a complete resolution 

of the disease.  

Therefore, the improvement of vaccine formulations and administration strategies represents 

one of the main areas of interest in PCV2 vaccinology. 

The activation of the host’s immune response has been proved to be one of the primary 

factors modulating the progression of the disease. Several studies have shown the importance 

of the antibody response, especially that mediated by neutralizing antibodies (NA), in coping 

with infection. Also the cell-mediated immune response seems to play a key role in 

preventing viral replication and counteract viral diffusion, despite many immune mechanisms 

which sustain virus clearance and the resolution of infection are still unclear                            

(Fenaux et al., 2004b; Kixmoller et al., 2008; Fort et al., 2009a, 2009b; Steiner et al., 2009; 

Pérez-Martin et al., 2010). 

For these reasons, several studies have been performed to investigate the mechanisms by 

which PCV2 can elude the immune defences in pigs and to develop new vaccination 

strategies aimed at inducing efficient immune activation and immune protection upon 

infection. The effects of vaccination treatments are related to total and neutralising antibody 

responses as well as to cell-mediated immunity (Larochelle et al., 2003; Fort et al., 2008, 

2009a; Kixmoller et al., 2008; Opriessnig et al., 2008b, 2008c).  
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The humoral immunity to PCV2 infection were characterised, by most of the published 

reports, through the detection of total anti-PCV2 antibodies, showing seroconversion that 

occurs either in subclinically or non-PMWS infected and PMWS-affected pigs (Rodrıiguez-

Arrioja et al., 2000; Sibila et al., 2004; Grau-Roma et al., 2009).  

On the other hand, the role and mechanisms of the adaptive cell-mediated immune response 

in controlling PCV2 infection and the related diseases have not been clearly elucidated, 

particularly under field conditions. Previous reports based on laboratory trials describe that 

viral clearance may be mediated by cell-mediated immunity, measured by the number of 

PCV2-specific interferon-γ (IFN-γ) secreting cells (SC), together with neutralising antibodies 

(Fort et al., 2009a, 2009b) and that the load and the extent of viral replication may influence 

the intensity of the cell-mediated immune response. 

Specifically PCV2 vaccines showed to induce an intense antibody and cellular responses but 

data regarding the immune responses under field conditions and underlying vaccine-induced 

protection are still incomplete.These aspects are worth investigating under field conditions 

both in diseased pigs naturally infected by PCV2 in the presence of coinfections and in 

vaccinated animals showing no or few clinical signs.  

Furthermore, the modulation of cytokine patterns are important to categorize the host immune 

responses that occur during viral infections; for successful resolution of infection, efficient 

activation of innate/inflammatory and acquired immunity is required to block pathogen 

replication and invasion, as well as to promote tissue clearance of the pathogens and/or 

infected cells. The production of pro-inflammatory cytokines (IL-1β, TNF-α, IL-8) and the 

balance between pro-immune (IFN-γ) and regulatory (IL-10) cytokines play a pivotal role in 

eliciting the innate response as well as in priming and coordinating the adaptive immune 

response. However, if production is impaired, the innate response will be delayed and 

inefficient in clearing the pathogen (Borghetti et al., 2010). 

Therefore, pro-inflammatory and immune cytokine production has been investigated in 

different PMWS and infection models. Increased levels of IL-10 mRNA expression were 

found in the thymus and decreased levels of IL-4 and IL-2 were detected in the tonsils and 

spleen from PMWS-affected pigs (Sipos et al., 2004). Contrary results were described for 

IFN-γ: low mRNA expression levels were detected in inguinal and tracheobronchial lymph 

nodes whereas high expression was shown in the tonsils (Darwich et al., 2003b; Zhang et al., 

2010). An increase of IL-10, together with slight increases of IL-8, IFN-γ and TNF-α and a 

decrease of IL-2 and IL-4 mRNA levels, were also detected in PBMC from naturally                 
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PCV2-infected pigs (Sipos et al., 2004). Furthermore, serum IL-10 was associated with 

subclinically PCV2-infected pigs or pigs developing severe PMWS (Stevenson et al., 2006). 

A significantly higher expression of IL-10 was also found in PCV2-infected lymphoid tissues 

compared to uninfected control tissues (Doster et al. 2010). 

Cytokine secretion may play a key role in evaluating the cellular immune response against 

PCV2, but the cytokine modulation investigated so far in different organs has not provided 

univocal results likely due to different working conditions.  

Taking into account the above mentioned features, the aim of the present thesis is to 

investigate the efficacy of PCV2 vaccination under field conditions in vaccinated and 

unvaccinated pigs upon PCV2 natural infection and associated PCVD in terms of clinical 

protection and development of the humoral and cell-mediated immune response.  

 

The specific objectives of the present study are the following: 

 

1. the evaluation of the efficacy of a one-dose PCV2 subunit vaccine based on the 

PCV2 Cap protein expressed in a baculovirus system (Porcilis PCV®) at two 

different farms where PCVD was present, in terms of clinical protection;  

2. the assessment of the vaccine immunogenicity in vaccinated and unvaccinated pigs 

exposed to PCV2 natural infection in terms of development of humoral (total  

PCV2-specific antibodies) and cell-mediated (PCV2-specific IFN-γ secreting cells) 

immune responses;  

3. the quantitative modulation of pro-inflammatory and immune cytokines in 

vaccinated and unvaccinated pigs exposed to natural PCV2 infection, in relation to 

the onset of PCV2 viremia burden and PMWS clinical signs. 

 
The results regarding the evaluation of PCV2 vaccine efficacy as clinical protection and 

humoral and cell-mediated immune responses were published in Martelli P., Ferrari L., 

Morganti M., De Angelis E., Bonilauri P., Guazzetti S., Caleffi A., Borghetti P. Veterinary 

Microbiology. 2011; 149(3-4): 339-351. 

 
The data concerning the study of cytokine immune modulation were submitted to the journal 

“Comparative Immunology, Microbiology and Infectious Diseases” as Borghetti P., Morganti 

M., Ferrari L., De Angelis E., Saleri R., Cavalli V., Corradi A., Martelli P. Modulation of   

pro-inflammatory and immune cytokines in PBMC of vaccinated and unvaccinated pigs 

exposed to porcine circovirus type 2 (PCV2) natural infection (submitted, 2011).  
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3.1. Materials and methods 

3.1.1. Selection of farms 

The study was conducted in the Northern part of Italy at two farms with history of PMWS.  

In both herds, at approximately 15-20 weeks of age, clinical signs of PWMS characterised by 

wasting, respiratory signs and growth retardation were mainly associated with a marked 

increase in the mortality rate. The diagnosis fulfilled the internationally accepted disease case 

definition, including clinical signs, gross lesions, histopathologic findings, and presence of 

PCV2 in lymphoid lesions (Segale´ s et al., 2005). Seropositivity to PCV2 in all categories of 

animals (replacement gilts, sows, nursery pigs, growers, and fatteners) was demonstrated. 

Before the start of the study, 5 wasted pigs were autopsied at each farm and the diagnosis was 

reconfirmed.  

FARM 1 was a 900-sow farrow-to-finish herd that, in the previous year, experienced a                  

6% and an 8% mortality rate in the nursery and fattening periods, respectively. This farm was 

seronegative for Aujeszky’s disease virus (ADV) and seropositive for PRRSV,                              

M. hyopneumoniae and A. pleuropneumoniae. Low titres of antibodies at haemagglutination 

inhibition (HI) to SIV were obtained from some samples and were not informative.  

FARM 2  was a three-site farm with 1850 sows experiencing a 2% and a 10% mortality rate in 

the nursery and fattening periods, respectively. Seropositivity to PRRSV and                                  

M. hyopneumoniae and seronegativity to ADV were found.  

Sows of both herds were vaccinated for Aujeszky’s disease (3 times/year), porcine parvovirus 

and erysipelas (both at mid-lactation). Piglets were vaccinated for Aujeszky’s disease 

according to the National Control Program. 

 

The protocols and results of the evaluation of PCV2 vaccine efficacy as clinical protection 

and humoral and cell-mediated immune responses are published in Martelli P., Ferrari L., 

Morganti M.,  De Angelis E., Bonilauri P., Guazzetti S., Caleffi A., Borghetti P. Veterinary  

Microbiology. 2011; 149(3-4): 339-351. 
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3.1.2. Animals and experimental design 

This study was a double-blind, randomised, controlled field trial performed according to the 

principles of ‘‘Good Clinical Practice’’ and included 818 piglets (males and females). The 

day before inclusion, piglets were identified, double ear-tagged and assigned to two treatment 

groups [unvaccinated = placebo/control (group A) and PCV2-vaccinated (group B)] as they 

came to hand sequentially (A–B–A–B–A–B...). The sequential allocation was continued over 

the litters. The identification of the sow and the date of birth of the piglets were recorded. 

At inclusion (weaning: 21±3 days of age), vaccinated animals (group B) received one dose of 

a commercial PCV2a-based subunit vaccine (Porcilis PCV1 - Intervet/Schering-Plough 

Animal Health, Boxmeer, The Netherlands) containing the PCV2 capsid (Cap) protein 

expressed in a baculovirus system suspended in an α-tocopherol(+ liquid paraffin)-based 

adjuvant administered intramuscularly (2 ml) in the right neck muscle according to the 

manufacturer’s recommendations. The same amount of adjuvant was injected into the same 

anatomic location in control unvaccinated pigs (group A).  

The administration of vaccine and placebo was performed using a double-blind fashion 

system for both farms. Animals of both groups were injected at weaning and moved to the 

nursery units. Table 1 lists the details of the studied animals at the time of inclusion.  

 

 

Table 1. Details of the animals under study at the time of inclusion. Group A: placebo/control pigs; 
group B: PCV2-vaccinated pigs. 
 

                       Farm 1           

     Group A 

 

Group B 

                      Farm 2 

      Group A 

 

Group B 
 

Pigs at inclusion 
 

206  205 204  203 

 
Males–females 

 
97–109  112–93 109–95  108–95 

 
Total pigs 

 
 411   407  

 
Litters 

 
 43   40  

 
Weighed at inclusion 

 
206  205 204  203 

 
Bled at inclusion 

 
22  22 22  22 
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After weaning, pigs from both treatment groups were kept in mixed groups until the end of 

the trial, when animals were sent to the slaughterhouse (at approximately 9 months of age).  

Treatments, housing, husbandry, and feeding were conformed to the European Union 

Guidelines and identical for both experimental groups at each farm. At each accommodation 

change, pigs were commingled according to usual farm procedures.  

Pigs were clinically monitored on a weekly basis from the administration of vaccine or 

placebo until slaughter. From one week post-vaccination, pigs were monitored daily for 

vaccination reactions. Individual live body weights of all animals enrolled in the study were 

measured the day before inclusion and at 12 and 26 weeks of age. The average daily weight 

gain (ADWG) was calculated based on the ADWG of animals being alive at the end of each 

weighing period. Carcass weight was recorded at the slaughterhouse in pigs from farm 2.  

If concomitant treatments (injections) were used, the number of animals treated within each 

group and the duration of treatment were recorded. The number of relapsed animals 

(retreatments) were also considered. The number of injections was used as a parameter to 

evaluate morbidity .  

Dead animals or those that had to be euthanised for reasons of animal welfare were recorded 

daily.  

In both herds, at inclusion (day of vaccination, 3 weeks of age), blood samples were collected 

from 2 piglets of each pluriparous sow litter: one for each treatment group, up to 44                       

(22 piglets for each treatment group). These piglets were identified by a progressively 

numbered ear tag.  

 

Moreover, in piglets from FARM 1, blood samples were taken at 4 [+1 week post-

vaccination (PV)], 5 (+2 weeks PV), 6 (+3 weeks PV), 7 (+4 weeks PV), 9 (+6 weeks PV),   

12 (+9 weeks PV), 15 (+12 weeks PV), 16 (+13 weeks PV), 17 (+14 weeks PV),                                

18 (+15 weeks PV), 19 (+16 weeks PV), 20 (+17 weeks PV), 22 (+19 weeks PV),                           

26 (+23 weeks PV), and 35 (+32 weeks PV) weeks of age.  

 

In FARM 2, blood samples were collected at vaccination (3 weeks of age), at 4 (+1 week 

PV), 6 (+3 weeks PV), 12 (+9 weeks PV), 16 (+13 weeks PV), 18 (+15 weeks PV),                         

20 (+17 weeks PV), 22 (+19 weeks PV), 24 (+21 weeks PV), 26 (+23 weeks PV), and                   

35 (+32 weeks PV) weeks of age. 
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3.1.3. Evaluation of gross pathology, histopathology, and immunohistochemistry  

The objective of the pathologic studies was to establish the PMWS diagnosis in all pigs from 

both farms that died, those needing euthanasia, and runts during the entire study period. These 

pigs underwent gross pathologic examination and histopathology within 24 hours.  

Samples from inguinal, mesenteric and mediastinic lymph nodes were removed from 

necropsied pigs and fixed in 10% buffered formalin. Fixed samples were processed for 

routine histopathology and 5-µm thick sections were stained with hematoxylin and eosin to be 

examined for lesions compatible with PMWS.  

The diagnosis of PMWS was made when all three criteria of the accepted international 

individual case definition for the disease were present, that are: 1) clinical signs, mainly 

including wasting; 2) moderate-to-severe lymphoid lesions; 3) moderate-to-high amounts of 

PCV2 in those lesions.  

The amount of PCV2 in tissue samples was also assessed by real-time quantitative PCR 

(qPCR) using the methods reported by Olvera et al. (2004).  

Immunohistochemistry for detection of PCV2-specific antigen was performed on formalin-

fixed and paraffin embedded sections of inguinal, mediastinal, and mesenteric lymph nodes 

using a rabbit polyclonal antiserum (Sorden, 2000). PCV2 antigen scoring was performed by 

a pathologist in a blind manner using the score range in accordance with Opriessnig et al. 

(2004). 

 

 

3.1.4. Extraction and qPCR detection of PCV2 DNA from tissue samples and serum 

In order to detect and quantify the PCV2 DNA by PCR, DNA was firstly extracted from                 

200 µl of serum or 200 µl of 1:10 phosphate-buffered saline (PBS) homogenate of lymph 

node tissue, by using TRIzol LS (Invitrogen, San Diego, CA,USA) following the 

manufacturer’s instructions. The DNA obtained was suspended in 50 µl of 

diethylpyrocarbonate (DEPC)-treated water. Real-time qPCR was carried out using a 

LightCycler 1.5 (Roche, Basel-CH). Real-time qPCR was performed using primers and 

probes according to Olvera et al. (2004). Results of the qPCR were expressed as number of 

PCV2 genome copies per milliliter of serum or gram of tissue. 
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Table 2. Properties, sequence and localisation of primers and probes designed for the PCV2               
real-time PCR by primer express (Olvera et al., 2004).  
 

 Tm (◦C) %GC  bp Sequences (5’→ 3’) Location in  
PCV2 genome 

PCV2 F 60 63 19 CCAGGAGGGCGTTGTGACT 1535 → 1553 

PCV2 R 59 55 20 CGCTACCGTTGGAGAAGGAA 1633 → 1614 

PCV2 P 68 52 25 AATGGCATCTTCAACACCCGCCTCT 1612 → 1592 

 
PCV2 F = primer forward, PCV2 R = primer reverse, PCV2 P = probe, Tm = melting temperature. 
 

 

 

3.1.5. Serology 
 
3.1.5.1. PCV2-specific antibody titres 

The anti-PCV2 antibody titres in sera were determined using a blocking enzyme-linked 

immunosorbent assay (ELISA). The wells of microtitre plates were coated overnight at 2-8°C 

with baculovirus-expressed PCV2 ORF2 antigen. Subsequently, the plates were washed and 

blocked with casein buffer at 37°C for 1 h. After washing, serial 4-fold dilutions of the test 

sera were added. An internal standard serum and a positive and negative standard serum were 

run in parallel in each plate. The sera were incubated for 1 h at 37°C and the plates were then 

washed before the addition of a PCV2-specific biotinylated monoclonal antibody (mAb). 

After 1 h incubation at 37°C, plates were washed again and incubated for 45 min at 37°C with 

avidin-labeled horseradish peroxidase (APO; DAKO A/S, Glostrup, Denmark). After 

washing, a 3,3’,5,5’-tetramethylbenzidine (TMB) substrate solution was added and incubated 

for 15 min. at room temperature. The reaction was stopped by the addition of 4 N sulphuric 

acid and the extinction was read in a photometer fitted with a 450-nm filter                           

(Titertek Multiscan Plus MK 11 – Titertek Instruments Inc., Huntsville, AL, USA) within              

15 min. after the reaction was stopped. The raw data were processed and titres were calculated 

using the Multi-calc program with a cut-off extinction value set at 50% blocking. The cut-off 

extinction was calculated from the positive and negative standard serum and titres were 

expressed as log2. 
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3.1.5.2. Antibody titres to other infectious agents 

The presence of antibodies to PRRSV and sample/positive (S/P) ratios were determined using 

a commercially available ELISA kit (HerdChek1 Porcine Reproductive and Respiratory 

Syndrome Antibody Test Kit, IDEXX Laboratories, Westbrook, ME, USA) according to the 

manufacturer’s instructions. The Herd Check1 test bases the sample classification on the S/P 

ratio, which is defined as (sample O.D. - negative control O.D.) / (positive control O.D.- 

negative control O.D.). Sample to positive control ratios ≥ 0.4 were considered positive. 

Antibodies to M. hyopneumoniae were evaluated by a commercially available ELISA test 

(Herd Check1 M. hyopneumoniae, IDEXX Laboratories). The presence of antibodies to gE 

glycoprotein of ADV was measured using a commercially available ELISA kit [HerdChek1 

PRV g1 (gE) test kit, IDEXX Laboratories] according to the manufacturer’s instructions.  

A commercial ELISA kit (CHEKIT-APP-Apx IV ELISA test kit, IDEXX Laboratories) was 

used for the detection of antibodies against A. pleuropneumoniae. Serology to swine influenza 

virus (SIV) was performed by using HI. 

 

 

3.1.6. ELISpot for determination of PCV2-specific IFN-γ secreting cells (SC) 

An IFN-γ ELISpot assay was performed according to Martelli et al. (2009) in order to 

evaluate the frequencies of IFN-γ SC in the peripheral blood of pigs from farm 1. 

The assay was performed in MultiScreen®
HTS-IP plates (MSIPS4510 – Millipore) coated with 

10 µg/ml anti-pig IFN-γ mAb (P2G10, BD, Biosciences, Franklinlakes, NJ, USA) at 4°C 

overnight. After incubation, plates were washed with sterile PBS and blocked with                  

RPMI-1640 supplemented with 10% foetal bovine serum (FBS) for 2 h at 37°C, 5% CO2.  

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient using a 

Histopaque-1.077® solution and plated at 2 x 105 cells/well in RPMI-1640 + 10% FBS.  

For the ex vivo antigen recall, a whole PCV2 strain (I12/11) at 0.1 multiplicity of infection 

(MOI) was used as stimulus, in RPMI-1640 + 10% FBS, for 20 h at 37°C, 5% CO2; the SC 

response was also evaluated at 0.05 and 0.25 MOI. In all samples, PBMC were > 98% viable 

as confirmed by Trypan blue exclusion. Afterward, cells were removed by washing with PBS 

+ 0.05% Tween-20 (PBST) and the plates were incubated for 1 h at 37°C with 0.5 µg/ml              

anti-pig IFN-γ biotin-labeled mAb (P2C11, BD). After washing, plates were incubated with 

1:750 alkaline phosphatise (AP)-conjugated anti-biotin mAb in PBS + 0.5% BSA for 1 h at 

37°C. Plates were finally incubated for 7 min. with a BCIP/NBT solution (BioRad, Hercules, 
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CA, USA) in order to let spots develop and the reaction was stopped with distilled water. The 

frequencies of PCV2-specific IFN-γ SC were determined using an AID® ELISpot Reader 

(AID ® ELISpot Software v.3.5). As a positive control, 1 x 105 PBMC/well were incubated 

with phytohemagglutinin (PHA, 10 µg/ml); as a negative control, 2 x 105 PBMC were 

incubated in the absence of antigen (mock stimulus: supernatant of non-PCV2-infected PK-15 

cells). The background values (number of spots in negative control wells) were subtracted 

from the respective counts of the stimulated cells and the immune responses were expressed 

as number of IFN-γ SC per million PBMC (IFN-γ SC/106 PBMC).  

The IFN-γ SC responses were also classified as responsiveness categories on the basis of the 

responses observed in the present study and with regards to categories reported in literature 

(Fort et al, 2009b; Ferrari et al., 2011).  

Specifically the responsiveness categories identified were: 

• 0-40 IFN-γ SC/106 PBMC = no-poor 

• 45-100 IFN-γ SC/106 PBMC = low 

• 105-200 IFN-γ SC/106 PBMC = intermediate 

• 205-400 IFN-γ SC/106 PBMC = high 

• ≥ 405 IFN-γ SC/106 PBMC = very high 

 

Particularly, the range for the “no-poor” category was determined based on the responses 

observed in unvaccinated animals throughout the post-vaccination period and data in 

literature (Pérez-Martin et al., 2010).  

 

 

3.1.7. Evaluation of cytokine gene expression  

Blood samples collected from 10 PCV2-vaccinated and 20 non-vaccinated pigs were used as 

source of swine peripheral blood mononuclear cells (PBMC) in order to determine mRNA 

expression levels of relevant pro-inflammatory and pro-immune cytokines.  

At the end of the trial, taking into consideration the time of the onset of viremia and the 

appearance of clinical signs, blood samples taken at 16 (before infection and the desease 

onset), 19 and 22 weeks of age (during PCV2 viremia and disease outcome) were used for the 

quantification of cytokine expression. 

For the purposes of this study, the thirty sampled pigs were attributed to three different 

groups: 1) non vaccinated and spontaneously PCV2 infected animals (N = 5) that showed 
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over clinical signs attributable to PMWS (Ctrl-PMWS+); 2) non-vaccinated and 

spontaneously PCV2 infected animals (N = 15) that did not develop PMWS (Ctrl);                             

3) vaccinated pigs (N = 10) that were not infected and did not develop PMWS (PCV2-vac).  

Moreover, to establish an association between cytokine expression and viremia burden, each 

of the above mentionated groups was analysed dividing the animals in three different 

subgroups based on viremia: non-viremic pigs (NV), pigs with viremia <106 (V<106) and pigs 

with viremia ≥106 (V≥106) viral genome copy number / ml of serum. 

 

 

3.1.7.1 Isolation of PBMC and extraction of total RNA 

mRNA expression levels of relevant pro-inflammatory (IL-8, TNF-α, IL-1β) and immune 

(IFN-γ, IL-10) cytokines were determined in swine peripheral blood mononuclear cells 

(PBMC) after isolation by density gradient using Histopaque-1077® (Sigma) and total RNA 

extraction by TRI-reagent® (Ambion) according to the manufacturer’s instructions; purity and 

concentration were assessed by UV spectrophotometry at 260/280 and 260 nm respectively 

(GeneQuant Pro®, Amersham Pharmacia Biotech-GE Healthcare Life Sciences, Little 

Chalfont, UK). 

 

 

3.1.7.2. RNA reverse transcription (RT) 

Total RNA (1 µg) was reverse transcripted using a High-capacity cDNA Reverse 

Transcription kit (Applied Biosystems). The reverse transcription was performed by using a 

StepOne™ thermocycler (Applied Biosystems, StepOne software v. 2.1) and, according to the 

manufacturer's established procedures, under the following thermal conditions: 10 min.                  

at 25°C, 120 min. at 37°C followed by 5 min. at 85°C and a pre-storage at 4°C. All cDNA 

samples were stored at -20°C until PCR was performed. 

 

 

3.1.7.3 Quantification of cytokine mRNA by quantitative PCR 

The obtained cDNA was used (20 ng) as a template for real-time PCR (qPCR) performed by 

using a StepOne™ thermocycler (Applied Biosystems, StepOne software v. 2.1). The cDNA 

(20 ng/20 µl) was amplified in duplicate with Fast SYBR® Green Master Mix (Applied 

Biosystems) along with specific sets of primers at optimized concentrations.  
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The primers were designed based on published gene sequences (Royaee et al., 2004; 

Meissonnier et al., 2008; von der Hardt et al., 2004) or by using Primer Express® software for 

primer design (purchased from MWG). Details of each primer set for detection of cytokine 

gene expression are reported in Table 3. 

The reference gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was selected as 

endogenous control according to Fisher et al. (2006) and Borghetti et al. (2010).  

Samples were kept at 95°C for 20 sec. (hold step) to allow DNA polymerase activation and 

then subjected to 40 cycles constituted of a denaturation step at 95°C for 3 sec. followed by an 

annealing/extension step at 60°C for 30 sec. (Applied Biosystems “ Fast”  real-time PCR 

protocol). Fluorescence due to SYBR® Green incorporation was acquired at the end of the 

extension step. A no-template control was included in each experiment.  

A melting curve analysis for specific amplification control was performed (from 60°C to 

95°C) at the end of the amplification cycles.  

 

Table 3. Details of the primer sequences of pig pro-inflammatory (IL-8, TNF-α, IL-1β) and immune 
(IFN-γ, IL-10) cytokines used for quantitative SYBR® Green real-time PCR. GAPDH gene was used 
as endogenous control gene. 
 

Gene  
Primer sequence 

(forward – reverse) 

Concentration 
(nM) 

 

Amplified 
product  

(bp) 
for 5’-CCGTGTCAACATGACTTCCAA-3’ 300 IL-8 

(Royaee et al., 2004) rev 5’-GCCTCACAGAGAGCTGCAGAA-3’ 300 

 
75 

for 5’-ACTGCACTTCGAGGTTATCGG-3’ 300 TNF-α 

(Meissonnier et al., 2008) rev 5’-GGCGACGGGCTTATCTGA-3’ 300 

 
118 

for 5’-ATGCTGAAGGCTCTCCACCTC-3’ 300 IL-1 β 

(von der Hardt et al., 2004) rev 5’-TTGTTGCTATCATCTCCTTGCAC-3’ 300 

 
89 

for 5’-TGGTAGCTCTGGGAAACTGAATG-3’ 300 IFN-γ 

(Royaee et al., 2004) rev 5’-GGCTTTGCGCTGGATCTG-3’ 300 

 
79 

for 5’-TGAGAACAGCTGCATCCACTTC-3’ 300 IL-10 

(Royaee et al., 2004) rev 5’-TCTGGTCCTTCGTTTGAAAGAAA-3’ 300 

 
114 

for 5’-GGTGAAGGTCGGAGTGAACG-3’ 300 GAPDH 

(Primer Express) rev 5’-GCCAGAGTTAAAAGCAGCCCT-3’ 300 

 
70 

 

Data were analyzed according to the 2-∆∆Ct method; in the present experiment the expression 

levels of each cytokine, normalized to the GAPDH cDNA amount and expressed as relative 

quantities (RQ), were calculated with regards to some PCV2-vaccinated uninfected animals 
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early in the post-exposure (PE) period. In order to apply the 2-∆∆Ct method, because of the 

required normalisation step, it was necessary to first assess that the efficiency of the cytokine 

primers was comparable to that of the housekeeping gene. In this regard, a concentration 

range for each primer pair was tested by serial dilution of a cDNA sample in which both the 

housekeeping and target genes could be easily amplified. Only primers showing a comparable 

amplification efficiency to that of GAPDH were used. 

 

 

3.1.8. Statistical analysis 

To estimate the effect of vaccination on the probability of a pig of becoming viremic, a mixed 

effect logistic regression model was fitted to take into account the non independence of the 

repeated measures on the same subjects and the effect of the sow (litter effect). These two 

variables were treated as ‘‘random effects’’ in the model, whereas the effect of the farm (two 

levels), sex, time, and treatment and their interactions were considered as ‘‘fixed effects’’. 

The effect of the time x treatment interaction was highly significant (P = 0.0146), indicating 

that these results are not attributable to chance alone. The package ‘‘lme4’’was used (Bates 

and Sarkar, 2007; lme4: linear mixed effects models using S4 classes, R package version 

0.999375-32). To estimate the effect of vaccination on the probability of a pig suffering from 

PCVD and being lost, considering the competing risks of dying or being lost from other 

causes, a stratified Cox proportional hazard model was fitted, according to Putter et al. (2007) 

and Therneau and Grambsch (2000). The model accounted also for the ‘‘cluster’’ effect of the 

sow (‘‘litter effect’’) because piglets from the same litter are expected to have similar clinical 

histories. The effect of the vaccination on weight gain was evaluated within a mixed effects 

model, given the hierarchical structure of the experiment (Pinheiro and Bates, 2000).  

Vaccine efficacy was measured by the proportion of cases that it prevented, comparing 

disease outcome in the treated versus control groups. Efficacy was presented here as one-risk 

ratio (the so-called preventive fraction), which gives the risk in the vaccinated group as a 

proportion of the risk in the control group (Kirkwood and Sterne, 2003).  

Humoral and cellular immunity, determined as titres of anti-PCV2 antibodies and frequencies 

of IFN-γ SC respectively and also quantitative data of cytokine gene expression were 

statistically evaluated by using ANOVA (analysis of variance) and Dunnett’s test in order to 

highlight differences between treatment groups and changes over time within the same group 

throughout the experiment. The significance level was set to p<0.05. 
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3.2. Results 
 
3.2.1. Morbidity and mortality evaluation: reduction in PCV2-vaccinated animals 

In both herds, clinical signs potentially compatible with PMWS were mainly observed during 

the fourth and fifth month after vaccination (weeks 16-23 PV).  

Morbidity was quantified by recording the number of individual antimicrobial treatments 

(injections) during the duration of the experiment. Unvaccinated animals received more 

injections than PCV2-vaccinated throughout the study (Fig. 5); according to the statistical 

analysis using a Poisson model, the differences between groups were significant (P < 0.0001). 

Specifically, animals belonging to group A (placebo/ controls) are expected to receive 30% 

more injections as compared to vaccinated pigs [95% confidence interval (CI95%): 16-50%]. 

Pathologic and virologic investigations were carried out to categorise dead pigs, animals 

needing euthanasia, and runt non-marketable pigs (lost pigs) as PMWS or non-PMWS, using 

the recognised diagnostic criteria. Before the onset of viremia, the mortality rates in both 

groups were comparable and all dead animals were not affected by PMWS. 
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Figure 5. Course of morbidity (injections/pigs) in placebo/control (group A) and PCV2-vaccinated 
(Group B) animals (Poisson model; P < 0.0001). 
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At 15-16 weeks of age and onward in both herds, mortality was associated with PCR 

positivity to PCV2 and with macroscopic and microscopic lesions referred as PMWS using 

the pathologic criteria. The details of the occurrence of mortality categorised as PMWS or 

non-PMWS on a weekly basis at both farms are shown in figure 6.  

 

 

 

Figure 6. Losses due to PMWS and non-PMWS in PCV2-vaccinated and placebo/control pigs of farm 
1 (top) and farm 2 (bottom). Legend: PMWS C: control pigs diagnosed as PMWS-affected;                    
NON PMWS C: control pigs not affected by PMWS; PMWS V: vaccinated pigs diagnosed as                     
PMWS-affected; NON PMWS V: vaccinated pigs not affected by PMWS. 
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After the onset of PCV2 viremia, pigs belonging to the group of animals that had to be 

euthanised or removed because they were runts, were removed from the study because of 

wasting (15 vs. 0 pigs; placebo/control vs. vaccinated), growth retardation (12 vs. 3 pigs, 

respectively), locomotory disorders (4 vs. 5 pigs, respectively), and intestinal torsions (1 vs. 2, 

respectively).  

Before the onset of viremia, total losses were 7.3% and 7.8% and after PCV2 viremia 9.02% 

and 0.2%, respectively in the placebo/control and vaccinated groups. Overall, considering 

both herds for the study duration, total losses (dead, euthanised, and runts) were 16.03% and 

8.0% in the placebo/control and vaccinated groups, respectively. The estimated hazard ratio 

for losses related to PMWS in group B (vaccinated animals) compared to group A 

(placebo/control) was 0.082 (CI95%: 0.030-0.229; P< 0.0001; Fig. 7). 

 
 

 

Figure 7. Probability of a pig in the placebo/control (A) and PCV2-vaccinated (B) groups to be lost 
because of PCVD and other causes according to the estimated hazard risk over time, in both farms. 
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Under the conditions of this study, according to a stratified Cox proportional hazard model 

accounting for the non independence of repeated measurement of the same subject and the 

effect of the sow (litter effect) and for the competing risks of dying from other causes, the 

probability of a pig vaccinated with a single dose of the test vaccine at 3 weeks of age 

suffering from PCVD/PMWS was 12 times less than an unvaccinated control pig. The overall 

efficacy of the vaccine administered, expressed as preventive fraction was 0.918                        

(CI95%: 0.771-0.970). The preventive fraction represents and provides the proportion of cases 

that can be prevented by vaccination compared to the unvaccinated population.  

 

 

3.2.2. ADWG and carcass weight at slaughterhouse  

The ADWG is a parameter used to measure the effect of PMWS either in acute or in 

subclinical cases.  

Table 4 shows the ADWG in vaccinated and placebo/control animals for the intervals among 

the three different weighing time points. Significant differences in the ADWG between the 

treatment groups were not observed during the first time period (3-12 weeks of age), whereas 

they were observed during the subsequent time period (12-26 weeks), when the vaccinated 

animals had 70 g/day higher weight gain than placebo/control animals (P< 0.001).  

Moreover, the proportion of animals whose body weight was at least 25% lower than the 

mean body weight of the respective treatment group at 26 weeks of age was 6.5% and 2.6% in 

placebo/control and vaccinated groups, respectively. Carcass weights in pigs from farm 2 

were recorded at the slaughterhouse, as shown in Table 4. In vaccinated animals, the average 

carcass weight was 4.5 kg higher than in placebo/controls (P < 0.012). 

 

Table 4. ADWG in PCV2-vaccinated (group B) and placebo/control (group A) for two intervals 
between three different weighing time points during two study periods and carcass weight at slaughter. 
 

ADG (g) A B Diff. P value 

3-12 weeks of age 481 478 +3 > 0.05 

12-26 weeks of age 811 881 -70 < 0.001 

CARCASS (kg) * 140.5 145.0 +4.5 < 0.012 

 

            *carcass weight with head left on 
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3.2.3. PCV2 genome detection and viremia calculation 

The course of PCV2 viremia at both farms is shown in figure 8. 

A rapid onset of viremia was observed at 16-17 weeks of age at both farms. 

In placebo/control animals of farm 1, peak levels of 95-100% of PCR-positive blood samples 

were reached when animals were 20-22 weeks old. A decline of PCR positivity was detected 

at 26 weeks. The majority of samples with high viral loads (>106 DNA copies/ml of serum) 

were observed at 19-22 weeks of age (Fig. 8a), and 70% of the animals had at least one blood 

sample with a viral load >107 DNA copies/ml.  

Contrarily, in the vaccinated group, the proportion of viremic pigs was significantly lower 

compared to the placebo/control group; between weeks 19 and 22 of age, 40% of the animals 

were viremic, with a viral load never >106 DNA copies/ml serum (Fig. 8a).  

At farm 2, the peak of viremia was observed at 18-20 weeks of age with 95% PCR-positive 

pigs; pigs with a high viral load ranged from 55% to 60% (Fig. 8b). A viral burden >107 DNA 

copies/ml was detected in 42% of blood samples from the controls. 

In the vaccinated group only one blood sample was PCR positive at 18 weeks of age, with a 

low viral burden (<106 DNA copies/ml; Fig. 8b). 

 

 

(a) 
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Figure 8. Course of viremia over time in placebo/control and PCV2-vaccinated pigs of farm 1 (a) and 
farm 2 (b). Data are expressed as number of PCV2 DNA copies/ml of serum. 
 

 

The present data clearly indicate that vaccination against PCV2 induced a statistically 

significant reduction of the viral load in the blood and of the proportion of viremic animals for 

both farms in this study (P < 0.001). 

 

 

3.2.4. Serology 
 
3.2.4.1. Production of specific antibodies following PCV2 vaccination and infection 

The course of serology for PCV2 at both farms is shown in figure 9.  

At inclusion (vaccination day), due to residual maternally derived antibodies (MDA), pigs of 

both placebo/control and PCV2-vaccinated groups showed comparable levels of ELISA 

antibodies (5.95 and 6.69 log2, respectively). The difference was not statistically significant.  

After vaccination, PCV2-specific antibody titres progressively declined in placebo/control 

animals, whereas a significant increase was observed in vaccinated pigs. Starting at 2 weeks 

PV, the differences between the two groups were statistically significant. Animals in the 

vaccinated groups showed a continuous increase of total antibody titres, reaching a peak of 

ELISA antibodies at 6-9 weeks PV, with an average geometric mean ranging from                        

(b) 
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12 to 13 log2. From this time point on, the levels of total antibodies in vaccinated groups 

slightly decreased even if never below a geometric mean of 6 log2.  

At the last time point of blood sampling before the onset of viremia, the placebo/control 

animals from farm 1 showed a geometric mean of total antibodies under the cut-off for 

positivity (set at 2 log2), while this parameter was a little over the limit (3.4 log2) in 

placebo/control pigs of farm 2. In approximately 10% of the sampled population, the antibody 

titres at inclusion were higher than 8 log2. In vaccinated animals these titres showed neither an 

increase as a consequence of vaccination nor a decline but maintained a steady course over 

time.  

In the placebo/control group, the decline of maternally derived antibodies in animals with a 

titre higher than 8 log2 reached low levels within 10 weeks approximately (data not shown). 

At both farms, after the onset of PCV2 viremia, seroconversion occurred within 2-3 weeks in 

placebo/control or vaccinated groups so that at 20-22 weeks of age the antibody levels in both 

groups were comparable (11-12 log2). At 26 and 35 weeks of age, vaccinated animals had 

lower geometric mean antibody titres than that in placebo/control pigs because of a 

continuing increase of antibodies in the latter group of animals. At the last sampling time 

point of this trial (35 weeks of age), total ELISA antibodies were above the titre of 10 log2            

in both treatment groups. 
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Figure 9. Course of the serologic response to PCV2 (anti-PCV2 antibodies) at farm 1 and farm 2 from 
inclusion (3 weeks of age) to the end of the trial (data are expressed as log2 of the geometric mean 
titres, GMT). 
 

 

 

3.2.4.2. Antibody response to other infections 

Serologic investigations performed to monitor the most frequently occurring infections in the 

herds (PRRSV and M. hyopneumoniae) found that the prevalence of PRRSV infection was 

100% at 12 weeks of age in pigs from farm 1 concomitantly with M. hyopneumoniae 

seroconversion. For this latter pathogen, seroprevalence continued to increase in the 

subsequent period.  

At farm 2, at 12 weeks of age, pigs of both groups were positive (100%) for PRRSV and still 

negative for M. hyopneumoniae. Seroconversion to M. hyopneumoniae started to be detected 

after 15 weeks of age (data not shown). At both farms, low titres of antibodies at HI to            

Swine Influenza Virus were detected in some samples and were not informative. 
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3.2.5. Levels of IFN-γ secreting cells detected by ELISpot assay in response to PCV2-

vaccination and infection 

 

3.2.5.1. ELISpot assay: antigen recall with 0.1 MOI of PCV2 

After vaccination, PCV2-vaccinated animals showed an increased level of PCV2-specific 

IFN-γ SC at 2 weeks PV and reached a peak with a mean value of 120 IFN-γ SC/106 PBMC  

1 week later. The mean values remained the same until 9 weeks of age (Fig. 10).  

In the same period, at 2-3 weeks after vaccination, the number of animals with a progressively 

higher individual IFN-γ response increased (Tab. 5).  

In pigs from the placebo/control group the number of PCV2-specific IFN-γ SC remained at 

basal levels (<20 PCV2-specific IFN-γ SC) for the entire post-vaccination period (Fig. 10) 

and no significant individual differences were found (Fig. 10). After the occurrence of the 

infection at 15-16 weeks of age, vaccinated animals showed an erratic course in the number of 

PCV2-specific IFN-γ SC with moderate individual increases ranging from 40 to 60 IFN-γ-SC 

on average (Fig. 10).  

 

 

Figure 10. IFN-γ PCV2-specific SC levels in placebo/control and PCV2-vaccinated animals after 
vaccination at 3 weeks of age (a = placebo/control; b = vaccinated) and after natural exposure to PCV2 
(c = placebo/control; d = vaccinated). 
 
 

weeks of age 
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Oppositely, in unvaccinated pigs, IFN-γ SC showed a significant increase (P < 0.01)                     

with mean values of 196 and 244 IFN-γ SC at 19 and 20 weeks of age, respectively.                   

The mean values remained at high levels (140 IFN-γ SC) until 26 weeks of age (Fig. 10).  

 
The ELISpot IFN-γ SC response after vaccination (PV period) and after exposure to PCV2 

natural infection (PE period) of a representative PCV2-vaccinated and an unvaccinated 

natural infected pig is shown in figure 11. 
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Figure 11. PCV2-specific IFN-γ ELISpot response of a representative PCV2-vaccinated and an 
unvaccinated pig in the post-vaccination (a) and in the post-exposure period (b). The number of spots 
corresponds to the number of IFN-γsecreting cells / 2x105 PBMC.  
 

 

It is worth noting that the IFN-γ-SC response was characterised by a high inter-individual 

variability, with some pigs showing a very high PCV2-specific secretion (high responders; 

Table 6). 

In order to better evaluate the ex vivo PCV2-specific responses within the same experimental 

group, ELISpot results related to farm 1 were also analysed by grouping animals in 

responsiveness categories. 
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As shown in Table 5, the PCV2-vaccinated group showed an increasing percentage of more 

highly responsive animals to the ex vivo recall PCV2 I12/11 strain overtime. In fact, after                   

5 weeks of age (2 weeks post-vaccination) 30-40% of vaccinated animals responded to the 

stimulus with more than 105 IFN-γ SC/106 PBMC, mounting responses categorised in this 

study as intermediate, high and very high. At 7 and 8 weeks of age, 10% of vaccinated pigs 

showed a higher response to more than 405 IFN-γ SC/106 PBMC. On the contrary, 

unvaccinated animals showed absent or minimal responses, between 0 and 40 SC/106 PBMC, 

having however the majority of pigs showing a response between 0 and 20 SC/106 PBMC to 

the ex vivo stimulation at each experimental point.  

During the post-exposure period (Table 6), the majority of vaccinated pigs showed a cellular 

response lower than 100 SC/106 PBMC; only 10% and 20% of animals showed an 

intermediate response at 17 and 21 weeks of age respectively.  

The animals from the placebo/control group responded, instead, increasing the IFN-γ SC 

frequency. In this group, the highest numbers of IFN-γ SC were reached between                        

19 and 21 weeks of age, with a maximum (20% of pigs showing more than 405 IFN-γ SC/106 

PBMC) at 20 weeks.  

 

Table 5. IFN-γ responsiveness categories in PCV2-vaccinated and placebo/control pigs in the post-
vaccination period. Values are reported as percentage of animals within the group. SC: secreting cells. 
 

Responsiveness categories (IFN-γ SC / 106 PBMC)  
PCV2-VACCINATED 

 0-40 45-100 105-200 205-400 ≥ 405 
weeks of age (PV period) no-poor low intermediate high  very high 

3 100 0 0 0 0 
4 90 10 0 0 0 
5 40 20 30 10 0 
6 30 30 20 20 0 
7 40 20 30 0 10 
9 50 20 10 10 10 
      

0-40      
PLACEBO/CONTROL 

 0-40 45-100 105-200 205-400 ≥ 405 
weeks of age (PV period) no-poor low intermediate high very high 

3 100 0 0 0 0 
4 100 0 0 0 0 
5 100 0 0 0 0 
6 100 0 0 0 0 
7 100 0 0 0 0 
9 100 0 0 0 0 
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Table 6. IFN-γ responsiveness categories in PCV2-vaccinated and placebo/control pigs in the post-
exposure period. Values are reported as percentage of animals within the group. SC: secreting cells. 
 

Responsiveness categories (IFN-γ SC / 106 PBMC)  
PCV2-VACCINATED 

 
 0-40 45-100 105-200 205-400 ≥ 405 

weeks of age (PE period) no-poor low intermediate high  very high 
15 50 50 0 0 0 
16 60 40 0 0 0 
17 40 50 10 0 0 
18 70 30 0 0 0 
19 10 90 0 0 0 
20 90 10 0 0 0 
22 40 40 20 0 0 
26 60 40 0 0 0 

      
 

PLACEBO/CONTROL 
 
 0-40 45-100 105-200 205-400 ≥ 405 

weeks of age (PE period) no-poor low intermediate high very high 
15 75 25 0 0 0 
16 80 20 0 0 0 
17 45 55 0 0 0 
18 50 40 10 0 0 
19 30 40 20 0 10 
20 35 10 20 15 20 
22 10 35 45 5 5 
26 5 45 20 30 0 

 

 

 

3.2.5.2. ELISpot assay: comparison of three different PCV2-specific stimulations  

In order to evaluate the influence of the amount of viral antigen (whole PCV2) used for the      

ex vivo antigenic recall on the identification and extent of the PCV2-specific IFN-γ SC 

response detected by the ELISpot assays, PBMC were stimulated with also 0.05 and 0.25 

MOI, in addition to 0.1 MOI as reported above.  

During the post-vaccination period, upon re-stimulation with each virus-to-cell ratio (MOI) 

tested, vaccinated pigs showed a significant response as IFN-γ SC starting from 2 weeks PV 

(Fig. 12). Contrarily, unvaccinated pigs did not show any significant response at any MOI 

throughout the PV period. The course of the IFN-γ secreting cells over time detectable after 

recall with 0.1 MOI of virus was confirmed in both experimental groups also using a lower 

(0.05 MOI) and a higher (0.25 MOI) amount of virus. Specifically, re-stimulation with               

0.25 MOI showed a peak response at 3 weeks PV (6 weeks of age) with the highest mean 

value of about 200 IFN-γ SC/106 PBMC. The cellular response in vaccinated animals was 

clearly influenced by the ex vivo antigenic stimulus in a dose-dependent manner.  
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Figure 12. PCV2-specific IFN-γ secreting cell responses of PCV2-vaccinated (PCV2-vac) and 
placebo/control (Plac/Ctrl) pigs stimulated with 0.05, 0.1 and 0.25 MOI during the post-vaccination 
(PV) period. Values are expressed as mean values.  

 

 

In the post-exposure period, the ELISpot results obtained with 0.1 MOI of virus were 

confirmed both at 0.05 and 0.25 MOI (Fig. 13). In fact, at each MOI used for the ex vivo              

re-stimulation, the placebo/control pigs showed higher frequencies of IFN-γ SC than the 

PCV2-vaccinated animals between 19 and 26 weeks of age. The most intense cellular 

response were detected at 19-20 weeks of age.  

Despite high individual variability was observed, the response detected only in the 

unvaccinated group appeared to be influenced by the amount of virus antigen used for                      

re-stimulation in a dose-dependent manner. Vaccinated animals showed a lower and more 

steady (not influenced by the antigen amount) response throughout the PE period. 
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Figure 13. Comparison of the frequencies of PCV2-specific IFN-γ secreting cells of PCV2-vaccinated 
(PCV2-vac) and placebo/control (Plac/Ctrl) pigs detected upon ex vivo re-stimulated with 0.05, 0.1              
or 0.25 MOI during the post-exposure (PE) period. Values are expressed as mean values. 
 

 

 

3.2.6. Cytokine mRNA expression 

The evaluation of pro-inflammatory and immune cytokine mRNA expression was carried out 

in PBMC from PCV2-vaccinated pigs and from unvaccinated pigs that showed or did not 

show PCV2 infection and the related disease. During infection, some statistically significant 

changes of the investigated cytokines were observed between groups. The mRNA cytokine 

expression was studied by using the RT-qPCR technique. The performed PCR reactions 

provided target-specific amplification in all samples with minimal, not significant or absent 

signals related to primer dimer amplification. Each single amplification experiment was 

evaluated by monitoring amplification curves (Fig. 14) and melting profiles to exclude               

non-specific amplification (e.g. contamination by genomic DNA) or primer dimer negative 

effects (Fig. 15). 
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Figure 14. Representative amplification curves of GAPDH, IL-8 and IL-1β obtained by using        
Fast SYBR® Green Master Mix (Applied Biosystems). Target genes = IL-8 and IL-1β;               
housekeeping gene = GAPDH. Pink curves correspond to no template control (NTC) fluorescence 
signals. 
 
 

 
 

Figure 15. Representative melting curves of GAPDH, IL-8 and IL-1β obtained by using                    
Fast SYBR® Green Master Mix (Applied Biosystems). Target genes = IL-8 and IL-1β;               
housekeeping gene = GAPDH. Pink curves correspond to no template control (NTC). 
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IL-8 mRNA expression levels showed significantly higher values in vaccinated animals than 

in the two unvaccinated groups at 22 weeks of age (p<0.05; Fig. 16). TNF-α expression 

increased in vaccinated animals at 19 and especially at 22 weeks of age (p<0.05; Fig. 17). 

Conversely, for IL-1β, the comparison of mRNA expression levels between the three groups 

did not show any statistically significant difference at any of the considered time points              

(Fig. 18). 

 

             

Figure 16. Relative mRNA expression of the pro-inflammatory cytokine IL-8 in PBMC of vaccinated 
(PCV2-vac) and unvaccinated non-PMWS-affected (Ctrl) or PMWS-affected (Ctrl-PMWS+) pigs 
exposed to PCV2 natural infection. Data, obtained by RT-qPCR (2-∆∆Ct method), are shown as               
mean values ± standard deviation. (*): p<0.05. 
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Figure 17. Relative mRNA expression of the pro-inflammatory cytokine TNF-α in PBMC of 
vaccinated (PCV2-vac) and unvaccinated non-PMWS-affected (Ctrl) or PMWS-affected                          
(Ctrl-PMWS+) pigs exposed to PCV2 natural infection. Data, obtained by RT-qPCR (2-∆∆Ct method), 
are shown as mean values ± standard deviation. (*): p<0.05. 
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Figure 18. Relative mRNA expression of the pro-inflammatory cytokine IL-1β in PBMC of 
vaccinated (PCV2-vac) and unvaccinated non-PMWS-affected (Ctrl) or PMWS-affected                          
(Ctrl-PMWS+) pigs exposed to PCV2 natural infection. Data, obtained by RT-qPCR (2-∆∆Ct method), 
are shown as mean values ± standard deviation. (*): p<0.05. 
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The expression of IFN-γ was statistically higher in vaccinated animals both at 19 and                    

22 weeks of age compared to the Ctrl-PMWS+ and Ctrl groups (Fig.19). Interestingly,                      

a progressive decrease of IFN-γ expression was found in all experimental groups 

concomitantly with PCV2 infection. 

At 19 weeks of age, Ctrl-PMWS+ animals had a significantly higher level of IL-10                   

(p<0.05, Fig. 20) than the other two groups while no relevant differences were found between 

groups at the end of the study.  
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Figure 19. Relative mRNA expression of the pro-immune cytokine IFN-γ in PBMC of vaccinated 
(PCV2-vac) and unvaccinated non-PMWS-affected (Ctrl) or PMWS-affected (Ctrl-PMWS+) pigs 
exposed to PCV2 natural infection. Data, obtained by RT-qPCR (2-∆∆Ct method), are shown as                
mean values ± standard deviation. (*): p<0.05. 
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Figure 20. Relative mRNA expression of the regulatory cytokine IL-10 in PBMC of vaccinated 
(PCV2-vac) and unvaccinated non-PMWS-affected (Ctrl) or PMWS-affected (Ctrl-PMWS+) pigs 
exposed to PCV2 natural infection. Data, obtained by RT-qPCR (2-∆∆Ct method), are shown as                 
mean values ± standard deviation. (*): p<0.05. 
 

 

 

3.2.6.2. Course of viremia over time 

Serum samples of vaccinated and unvaccinated Ctrl or Ctrl-PMWS+ pigs were analysed by 

real-time qPCR to detect PCV2 DNA. The course of PCV2 viremia is shown in figure 21.  

The onset of viremia was observed in both groups after 16 weeks of age; the highest levels of 

PCR-positive animals and viral load were reached when animals were 19 weeks old whereas a 

decrease was found at 22 weeks of age.  

The mean values of viremia in vaccinated pigs (Fig. 21) remained significantly lower 

(p<0.01) than the values of the control groups, both at 19 and 22 weeks of age. Moreover, in 

vaccinated pigs, a small percentage of animals (20% and 30% at 19 and 22 weeks of age, 

respectively) resulted viremic and the viral burden always remained <106 DNA copies/ml of 

serum (Fig. 22a).  

In the control PMWS+ group, the proportion of viremic animals with high viral load                   

(≥106 DNA copies/ml) was 100% at 19 weeks, and 33.3% became low viremic                   

(<106 DNA copies/ml) at 22 weeks of age (Fig. 22c).  
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In the Ctrl group, the percentage of viremic pigs increased from 19 to 22 weeks of age, 

showing 43.7% and 62.5% of animals with a high viral burden respectively (Fig. 22b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Course of viremia over time vaccinated (PCV2-vac) and unvaccinated PMWS-free (Ctrl) 
or PMWS-affected (Ctrl-PMWS+) pigs exposed to PCV2 natural infection. Data are expressed as 
mean values ± standard deviation of the number of PCV2 DNA copies/ml of serum.                           
Different superscript letters indicate a statistical difference (p < 0.05). 
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Figure 22. Percentage of PCV2-specific viremic pigs in vaccinated (PCV2-vac) (a) and unvaccinated 
PMWS-free (Ctrl) (b) or PMWS-affected (Ctrl-PMWS+) animals (c). Data are calculated before the 
onset (16 weeks of age) and during the outcome of the disease (19 and 22 weeks of age). 

(c) 

(b) 
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3.2.6.3. Association between cytokine mRNA expression and viral load in the blood 

Pro-inflammatory and immune cytokine mRNA expression was also evaluated in relation to 

the viremia burden. 

According to the amount of PCV2 in serum, three different subgroups were considered in 

order to have further information about the cytokine kinetics both in vaccinated and 

unvaccinated PCV2 groups as previoulsy stated (PCV2-vac, Ctrl-PMWS+ and Ctrl):                   

non-viremic pigs (NV), pigs with viremia <106 PCV2 DNA copies/ml of serum (V<106 ),  

and pigs with viremia ≥106 PCV2 DNA copies/ml of serum (V≥106).  

 

Table 7 shows the modulation of cytokine levels observed between all subgroups of each 

experimental group (PCV2-vac, Ctrl, Ctrl-PMWS+) over time. 

Comparing IFN-γ expression in relation to the extent of viremia between groups                        

(PCV2-vac; Ctrl-PMWS+ and Ctrl) over time (Table 7), despite a decreasing trend of this 

cytokine from 16 to 22 weeks of age in all considered groups, in PCV2-vac animals IFN-γ did 

not show differences between the newly constituted subgroups both at 19 and 22 weeks of 

age. Nevertheless, these animals maintained higher expression levels compared to the 

subgroups in Ctrl and Ctrl-PMWS+ animals. Particularly, PCV2-vac animals even with low 

viremia (V<106) had higher IFN-γ expression than highly viremic pigs in both Ctrl groups at 

22 weeks of age (p<0.05). 

IL-10 mRNA expression appeared to increase in relation to the occurrence of infection and in 

relation to the extent of viremia (Table 7); particularly, highly viremic (V≥106) animals of the 

Ctrl-PMWS+ group showed an early increase (19 weeks of age) of this cytokine compared to 

PCV2-vac animals and Ctrl groups.  
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Table 7. Levels of immune cytokine mRNA expression in PBMC of vaccinated (PCV2-vac)                      
and unvaccinated PMWS-free (Ctrl) or PMWS-affected (Ctrl-PMWS) pigs exposed to PCV2 natural 
infection in the post-exposure period.  
 

weeks of age Cytokines Groups Subgroups 

of viremia           16                        19                     22 

NV 2.1± 0.9a 1.1 ± 0.4b 0.7 ± 0.4b 

V<10^6 - 1.0 ± 0.9a 1.0 ± 0.8a 

 

PCV2-Vac  
V≥10^6 - - - 

NV 1.4 ± 0.7a 0.4 ± 0.2b - 

V<10^6 - 1.0 0.4 ± 0.2b 

 

Ctrl 
V≥10^6 - 0.6 ± 0.2a 0.3 ± 0.1a 

NV 1.2 ± 0.7  - - 

V<10^6 - - 0.4 

 

 

 

IFN-γ 

 

Ctrl-PMWS+ 
V≥10^6 - 0.6 ± 0.5 0.4 ± 0.1a 

NV 1.3 ± 0.5a 1.0 ± 0.6a 1.4 ± 0.5a 

V<10^6 - 0.6 ± 0.1a 2.5 ± 0.7b 

 

PCV2-Vac 
V≥10^6 - - - 

NV 1.5 ± 0.6a 0.8 ± 0.5b - 

V<10^6 - 0.8 2.1 ± 0.4b 

 

Ctrl 
V≥10^6 - 0.7 ± 0.4a 2.1 ± 0.6b 

NV 1.6 ± 1.1 - - 

V<10^6 - - 1.8 

 

 

 

IL-10 

 

Ctrl-PMWS+ 
V≥10^6 - 2.4 ± 2.3a 1.6 ± 0.7a 

 
Values are expressed as mean ± S.D. of the cytokine mRNA expression (arbitrary units were 
calculated with the 2-∆∆CT method). ( - ) indicates no value of gene expression since no pigs belonged 
to the specific subgroup of viremia at that time point. Different superscript letters indicate a statistical 
difference (p < 0.05) between time points within the same subgroups of viremia. 
 

 

As shown in Table 8, the expression levels of IL-8 and IL-1β increased between 19 and 22 

weeks of age in each subgroup of viremia of both PCV2-vac and Ctrl animals but not in the 

Ctrl-PMWS+ group. 
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Table 8. Levels of pro-inflammatory cytokine mRNA expression in PBMC of vaccinated (PCV2-vac) 
and unvaccinated PMWS-free (Ctrl) or PMWS-affected (Ctrl-PMWS) pigs exposed to PCV2 natural 
infection in the post-exposure period.  
 

weeks of age Cytokines Groups Subgroups 

of viremia 16                          19                      22 

NV 2.8 ± 2.0a  5.5 ± 2.9a  18.9 ± 4.0b 

V<10^6 - 1.0 ± 1.1a 15.7 ± 4.8b 

 

PCV2-Vac 

V≥10^6 - - - 

NV 3.7 ± 3.0a  3.7 ± 2.6a - 

V<10^6 - 9.7 12.7 ± 5.9a 

 

Ctrl 
V≥10^6 - 1.3 ± 0.6a 9.9 ± 4.0b 

NV 1.6 ± 0.4a - - 

V<10^6 - - 8.7 

 

 

 

 

IL-8 

 

Ctrl-PMWS+ 
V≥10^6 - 6.3 ± 6.2a 7.2 ± 2.7a 

NV 1.9 ± 0.6a 1.2 ± 0.7a  1.9 ± 0.8a  

V<10^6 - 0.5 ± 0.1a  2.2 ± 0.9a  

 

PCV2-Vac 
V≥10^6 - - - 

NV 1.6 ± 0.5a 1.0 ± 0.7a - 

V<10^6 - 0.7 1.3 ± 1.1a 

 

Ctrl 
V≥10^6 - 0.5 ± 0.1a 1.0 ± 0.5a 

NV 1.3 ± 0.4a - - 

V<10^6 - - 1.8 

 

 

 

 

TNF-α 

 

Ctrl-PMWS+ 
V≥10^6 - 0.8 ± 0.4a 1.0 ± 0.2a 

NV 1.6 ± 0.9a 1,6 ± 1.1a 5.7 ± 2.9b 

V<10^6 - 0.4 ± 0.5a 4.2 ± 0.5b 

 

PCV2-Vac 
V≥10^6 - - - 

NV 2.3 ± 1.5a 2.5 ± 1.3a - 

V<10^6 - 1.3 6.6 ± 2.4a 

 

Ctrl 
V>10^6 - 0.6 ± 0.5a 3.4 ± 1.5b 

NV 0.9 ± 0.5a - - 

V<10^6 - - 0.7 

 

 

 

 

IL-1 β 

 

Ctrl-PMWS+ 
V>10^6 - 2.7 ± 2a 3.6 ± 0.4b 

 
Values are expressed as mean ± S.D. of the cytokine mRNA expression (arbitrary units were 
calculated with the 2-∆∆Ct method). ( - ) indicates no value of gene expression since no pigs belonged 
to the specific subgroup of viremia at that time point. Different superscript letters indicate a statistical 
difference (p < 0.05) between time points within the same subgroups of viremia. 
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In particular, between 19 and 22 weeks, a statistically significant higher levels of IL-8 were 

detected in non-viremic (NV) PCV2-vaccinated compared to highly viremic (V≥106) control 

pigs and control PMWS+; in the same period, and particularly at 22 weeks of age, all 

subgroups of PCV2 vaccinated pigs showed higher levels of IL-1β compared to the highly 

viremic (V≥106) pigs of the Ctrl groups, TNF-α showed a similar trend to increase between 19 

and 22 weeks of age in PCV2 vaccinated group in respect to control viremic pigs but not if 

compared to PMWS pigs at 22 weeks. 

Overall, in Ctrl-PMWS+ pigs, lower IFN-γ at 19 weeks of age was associated with high IL-10 

and subsequently, at 22 weeks of age, is evident a reduction of pro-inflammatory cytokines, 

namely IL-8 and IL-1β (Table 7 and 8).  

Contrarily, the PCV2-vaccinated pigs, despite an increase of IL-10 from 19 to 22 weeks, 

showed higher levels of these pro-inflammatory cytokines at 22 weeks of age (Tables 7       

and 8). 
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The present Thesis reports a study performed to characterize the humoral and cell-mediated 

immune response upon PCV2 vaccination and natural infection, evaluating the efficacy of a 

one-dose of a commercial PCV2a sub-type based subunit vaccine containing the capsid 

protein expressed in a baculovirus system (Porcilis PCV®) in vaccinated and unvaccinated 

pigs subsequently exposed to PCV2 natural infection.  

The trial was performed at two large farms where the exposure of the animals to various 

pathogens such as PCV, PRRSV, M. hyopneumoniae, and commonly detected bacteria was 

the classical predisposing condition for PCVD (Kawashima et al., 2007). Under the 

conditions of this study, PCV2 infection was detected during the fifth month of age, a period 

in which also the onset of the clinical signs related to PCVD occurred in both herds.  

The test vaccine, administered intramuscularly with a single dose at 3 weeks of age, 

consistently reduced clinical signs attributed to PCVD as well as mortality, PCV2 viral load 

and viremia. Furthermore vaccinated animals showed a different response of                       

pro-inflammatory and immune cytokines upon PCV2-natural infection.  

Despite the vaccine used in this field trial and the schedule of administration had been tested 

under laboratory conditions (Fort et al., 2009a), no peer-reviewed paper has described its 

efficacy under field conditions.  

This study pointed out the effects of a PCV2 vaccine on farms with the presence of PCVD 

during the fattening period in animals aged 4-5 months, in line with the disease history in both 

farms. The effects of vaccination involved clinical signs and productivity (decreased numbers 

of pigs needing intramuscular therapy, improvement of ADWG, and decreased mortality) and 

PCV2 viral load in target organs of dead animals and in the blood of sampled pigs in amounts 

and duration of viremia.  

Serology demonstrated that PCV2 infection occurred in combination with other pathogens, 

namely, PRRSV and M. hyopneumoniae, in both herds. Morbidity was measured recording, 

throughout the study, the number of individual treatments in unvaccinated and vaccinated 

animals and was significantly higher in the placebo/control group. According to the statistical 

model applied (Poisson model), unvaccinated animals were expected to receive on average 

30% more injections than vaccinated pigs.  

The efficacy of the vaccine under investigation was also evaluated by the comparison of 

ADWG. Before the onset of PCV2 viremia and associated diseases (from 3 to 12 weeks of 

age) no differences in ADWG were recorded. Conversely, when PCV2 viremia and PCVD 

occurred (from 12 to 26 weeks of age), the ADWG in vaccinated pigs was 70 g/day higher 
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than in controls as a result of the protective effect induced by vaccination. This result is 

improved compared to evidences reported in previous studies (Fachinger et al., 2008; Horlen 

et al., 2008; Kixmoller et al.,2008; Segale´ s et al., 2009). At 26 weeks of age 6.5% and 2.6% 

of animals from placebo/control and vaccinated groups, respectively, had a body weight at 

least 25% lower than the mean body weight of the respective treatment group.  

The overall mortality at both farms was reduced by vaccination; the statistically significant 

differences were related to a decreased number of pigs suffering from PMWS and showing 

specific lesions in target tissues. In fact, PMWS was the cause of death only for 1 of 408 

vaccinated pigs. The results show that a pig vaccinated with a single dose of Porcilis PCV®           

at 3 weeks of age had a probability of dying from PMWS 12 times less than that of                         

an unvaccinated control pig.  

Furthermore, the similar ADWG and mortality rates in both treatment groups within the first 

9 weeks after vaccination indicate that the vaccine does not negatively influence the health 

status of the animals and suggests that the vaccine is well tolerated. All the improved 

parameters are associated with a significant reduction in the proportion of infected pigs and in 

the viral load in the blood. 

To categorise pigs as subclinically infected, suspected, and diseased for PCV2-associated 

diseases, was used a classification based on the amount of PCV2 load in the blood, namely 

<106, between 106 and 107, and >107 DNA copies/ml, respectively (Olvera et al., 2004; 

Opriessniget al., 2007). During the period of PCV2 infection that occurs between 16 and 26 

weeks of age, high viral loads in serum (>107 DNA copies/ml) were detected in a high 

number of placebo/control pigs, whereas in vaccinated pigs the duration of viremia and the 

viral load were markedly lower. In fact, in the placebo/control group the 70% and 42% of 

pigs, for farms 1 and 2 respectively, showed an amount of PCV2 in the blood ≥107 DNA 

copies/ml. Conversely, none of the vaccinated pigs had a viral load in the blood as high as this 

level; it always was <106 DNA copies/ml. The ability to diminish both the proportion of 

infected pigs as well as the viral load of infected animals is one of the better-documented 

feature of PCV2 piglet vaccination under field conditions (Fachinger et al., 2008;                      

Horlen et al., 2008; Kixmoller et al., 2008).  

The reduced number of PCV2-positive pigs and of the viral load in vaccinated pigs is 

associated with the improved ADWG and reduced mortality. qPCR can be performed on 

samples from live animals; for this reason it is the most practical tool to monitor the efficacy 

of a vaccine treatment (Segales et al., 2010).  
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Quantitative PCR analysis showed that all tested animals were PCV2 negative at the time of 

vaccination so that the antibody titres detected were most likely of maternal origin.  

However, a prompt seroconversion is induced by the use of this PCV2-specific vaccine on 

piglets, independently of the level of MDA when the titres of ELISA antibodies are below an 

observed threshold of 8 log2 (approximately 90% of vaccinated pigs). Over this level, 

observed in approximately 10% of the vaccinated population, the antibody titres showed 

neither an increase as a consequence of vaccination nor a decline, but maintained a steady 

course over time. Thus, at the time of infection (>16-17 weeks of age) all vaccinated pigs, 

independently from the level of antibodies at vaccination, were protected showing an ELISA 

titre >6 log2.  

Conversely, placebo/control pigs presented either MDA <8 log2 or high levels (>8 log2)                   

at inclusion, and showed a gradually declining course that reached low levels within a few 

weeks. The high proportion of viremic pigs (100% and 95%, respectively, from farms 1 and 

2) and the incidence of clinical signs and mortality supported that, during the late infection 

phase, none of the control animals was protected. 

Using the conditions of this study, we suggest that it is possible to set two different thresholds 

of ELISA antibodies. In pigs with titre of MDA is >8 log2 seroconversion to vaccination does 

not occur; however, when infection occurred, these animals resulted protected and showed 

ELISA titres >6 log2. Conversely, in controls, the highest titres of MDA decline similarly so 

that, at later exposure to PCV2, the ELISA titres are <6 log2 and the animals are completely 

susceptible to infection with a high viral load. 

These results confirm that high MDA titres do not interfere with the effect of a single dose of 

the vaccine under investigation (Fort et al., 2008, 2009b; Opriessnig et al., 2008b) and that the 

vaccine is suitable for immunization of seropositive piglets, conferring clinical and virologic 

protection even if infection occurs very late after vaccination (≥4-5 months).  

In contrast to the results reported by Kixmoller et al. (2008), the significant increase of 

ELISA antibody titres in vaccinated animals from 3 weeks PV allows the use of this serologic 

investigation, and particularly seroconversion at two subsequent sampling time points, as a 

reliable tool to evaluate vaccine compliance differentiating vaccinated and controls before 

infection. However, the very low number of vaccinated animals becoming infected does not 

allow to assess a correlation between ELISA titres and clinical and virological protection. It is 

important to point out that under the conditions of this study, PCVD lasted at least until 26 

weeks of age and accordingly, the high increase of weight gain in vaccinated animals 
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compared to placebo/controls indicates that: a) PCVD have devastating effects if they occur at 

late time points (which is more and more often the case under field conditions), b) passively 

acquired maternal derived antibodies are not protecting at this age, c) this vaccine provides a 

long lasting protective immunity. 

The protective immunity induced by commercial PCV2 vaccines has been already 

investigated in terms of development of an effective humoral response, whereas the role of 

cell-mediated immunity has not been yet clarified. Fort and co-workers demonstrated, in some 

laboratory studies (2008, 2009b), that during the course of PCV2 infection pigs develop             

cell-mediated immunity specific to the virus and suggested that the development of       

PCV2-specific IFN-γ SC might contribute together with neutralising antibodies to viral 

clearance. 

 

In the present Thesis, we described disease under field conditions where coinfections are 

present and investigated the cell-mediated immune response after PCV2 vaccination and 

subsequent infection. Under laboratory conditions, experimentally challenged pigs do not 

show the specific PCV2-associated diseases, whereas under field conditions coinfections as 

well as other intrinsic or extrinsic factors exacerbate the disease.  

In this study the cell-mediated immunity specific for PCV2 vaccination/infection was 

determined as PCV2 specific IFN-γ Secereting Cells (SC) by means ELISpot assay.  

ELISpot assays detect a significant increase of the frequency of IFN-γ SC already at 2 weeks 

after vaccination, demonstrating that a single dose of the PCV2 Cap-based vaccine induces a 

virus-specific cell-mediated immune response.  

This evidence also suggests that cell-mediated responses play an important role in       

vaccine-induced protection, since the protective effect of PCV2 antibodies is titre dependent 

and the induction of a humoral response alone might not assure full protection against PCV2 

infection (Blanchard et al., 2003; Opriessnig et al., 2009; Fort et al.,2009b). 

A marked increase of IFN-γ SC was shown by control pigs after the onset of infection, and at 

the end of the observation period, their high levels of IFN-γ SC were also associated with a 

reduction of viremia. This demonstrates that cell-mediated responses is involved in the 

adaptive immunity that pigs develop over the course of the spontaneous PCV2 infection.  

According to Fort et al. (2009b), our result suggest that the IFN-γ SC response may be related 

to viral replication. Thus, in vaccinated pigs, as a consequence of the primary activation by 

vaccination, the number of these cells was rather low or at residual levels (ranging from                   
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40 to 60 IFN-γ SC/106 PBMC on average) and the PCV2 viral load remained low or absent 

overtime.  

Conversely, controls pigs had a higher frequency of IFN-γ SC, concomitantly with the 

increase of PCV2 antibodies and the exhibition of high levels of viremia and disease 

consistent with PCV2 replication. During the post-exposure period, the animals of the 

placebo/control group that showed the highest numbers of IFN-γ secreting cells (≥405 IFN-γ 

SC/ 106 PBMC at 20 weeks of age) were the ones that showed the highest levels of viremia.  

This association was observed in the majority of unvaccinated animals; an exception was 

shown by unvaccinated animals that died in which the constantly low levels of IFN-γ SC 

testify that the cell-mediated response was not efficiently triggered by antigen recognition and 

PCV2 replication (together with secondary co-infections) was not efficiently counteracted by 

the IFN-γ response.  

Contrarily, vaccinated pigs presented low levels of IFN-γ SC paralleled by absent or low 

viremia; these results suggest that the IFN-γ SC responses of these animals may act more 

efficiently and/or other efficient immune mechanisms, including virus-neutralizing antibodies, 

fast counteract virus spread before the need of further clonal proliferation of virus-specific 

IFN-γ secreting memory cells. 

The observed high response in controls with high viral load can be explained by the fact that 

the IFN-γ SC response develops against both Cap and Rep proteins, in fact, the intensity of 

the generated response differs using either the Cap protein or the whole PCV2 as ex vivo 

stimulus. The stimulation of PBMC with the whole virus can induce higher IFN-γ responses 

than with the Cap protein, suggesting that infected animals in which PCV2 is replicating 

might respond strongly to other viral components different from the Cap protein (Fort et al., 

2009a). It is worth noting that the cellular responses detected by using the ELISpot assay 

proved to be increased by using increasing amounts of virus for the ex vivo stimulation.  

Under the conditions of the present study, we cannot exclude that the interaction of PCV2 and 

the adaptive immunity might be modulated by coinfections, with effects on viral replication 

and load in vivo and on the onset of the clinical evidence in vivo.  

Based on these observations, even if further studies are required to elucidate the inner 

mechanisms used by cell-mediated immunity to complete viral clearance and its major 

antigenic target proteins, it seems that the development of the PCV2-specific cell-mediated 

response might help contrasting progression of PCV2 infection. 
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The knowledge on the activity of immune mediators such as cytokines and of lymphocyte cell 

subpopulations is the basis of vaccine strategies and protocols aimed at controlling the related 

diseases. The production of pro-inflammatory cytokines and the balance between pro-immune 

and regulatory cytokines play a pivotal role in stimulating the innate response and priming 

and substaining the adaptive immune response.  

This study investigated also the changes in the expression of pro-inflammatory (IL-8,                

TNF-α, IL-1β) and immune (IFN-γ, IL-10) cytokines in vaccinated and unvaccinated pigs, at 

specific time points of the post-exposure period. The obtained results were analysed in 

relation to the appearance of PMWS clinical signs and PCV2 specific viremia. 

As it is a field study and there are other infections, namely PRRS, it is worth to note that 

PRRV infection has occurred before the onset of PCV2 viremia as demonstrated by the high 

seroprevalence (100%) of PRRSV antibodies observed at 12 weeks of age and by the negative 

results obtained by PCR performed on the frozen samples at 16 and 19 weeks of age. 

Consequently, it’s rational to consider that between 19 and 22 weeks of age the probability to 

have a PRRSV infected animal is very reduced and that the major/unique infecting agent able 

to modulate the cytokine expression is PCV2. 

IL-8 is a chemokine involved in early inflammation and its primary function is the 

recruitment of inflammatory cells, especially neutrophils, by chemotaxis.  

At the early phase of infection, the mRNA expression of this pro-inflammatory cytokine was 

not significantly different between animals that subsequently developed PMWS                         

(Ctrl-PMWS+) and PCV2-vac or Ctrl group, whereas its up-regulation was observed in 

PCV2-vaccinated pigs later after PCV2 natural exposure (22 weeks of age). This could 

sustain a more efficient innate response against infection in immunized animals compared to 

controls: in fact, the IL-8 higher levels were associated with absent or minimal viral load. 

Conversely, in unvaccinated animals IL-8 expression showed a lower increase during 

infection, particularly in high viremic and diseased pigs. The values obtained in the late phase 

of infection (22 weeks of age) could parallel with the findings of lower IL-8 levels in 

lymphoid tissues at more advanced stages of the disease and increased lesions (Darwich et al., 

2003a, 2003b). 

TNF-α is a crucial pro-inflammatory cytokine that mediate local and systemic effetcs and play 

a crucial role in the innate immune response.  
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The level of TNF-α remained lower in the two unvaccinated groups (Ctrl and Ctrl-PMWS+) 

especially at 22 weeks, thus supporting a reduced efficiency of the inflammatory/innate 

immune response.  

With regards to the pro-inflammatory cytokine IL-1β, both the results in the vaccinated group 

over time and in animals categorized on the basis of PCV2 viremia burden, showed a trend to 

increase. As previously demonstrated by in vitro stimulation experiments (Darwich et al., 

2003a), the exposure to PCV2 can stimulate the secretion of IL-1β in vaccinated and healthy 

control pigs confirming their capability to react against PCV2 infection through effective 

inflammatory mechanisms.  

IFN-γ is a pro-immune cytokine mainly produced by Th1, cytotoxic T lymphocytes (CTL) 

and natural killer (NK) cells which plays a key role in the immune response against virus 

infections involving both innate and specific mechanisms; this cytokine sustains the activation 

of macrophages and stimulation of MHC type I and co-stimulatory molecule production in the 

differentiation of CD4+ naïve T helper cells into Th1 cells and also in the inhibition of                

Th2 cell proliferation. 

The evaluation of IFN-γ expression plays a very important role in the study of the immune 

response because it is responsible for the regulation and amplification of the antiviral 

response. The higher levels of IFN-γ in the vaccinated animals could support a higher 

immune reactivity to the infection able to rapidly and efficiently contrast viremia and the 

related occurrence of the disease. 

Indeed, the association between viral titre in serum samples and IFN-γ increase, as well as 

IFN-γ secreting cell frequency, underlined the relevance of cellular activation and antibody 

humoral reaction against PCV2 replication (Fort et al., 2009a, 2009b; Martelli et al., 2011; 

Meerts et al., 2005). Contrarely, reduced IFN-γ expression levels were found both in PBMC 

(Sipos et al., 2004; Shi et al., 2010; Darwich et al., 2003a) and in lymphoid tissues                

(Darwich et al., 2003b) of PMWS-affected animals.  

IL-10 is a regulatory cytokine, produced primarily by monocytes and to a lesser extent by 

lymphocytes, as immunosuppressive and anti-inflammatory molecule. It negatively inhibits 

macrophages and can inhibit the synthesis of pro-inflammatory cytokines such as IFN-γ,                

IL-2, TNF-α and GM-CSF (Meerts et al., 2005; Crisci et al., 2010). The antagonist immune 

cytokines, IFN-γ and IL-10, showed opposite levels in the early phase of PCV2 infection. 

In accordance with Darwich et al. (2008), control PMWS-affected animals (Ctrl-PMWS+) 

showed the highest IL-10 levels at the peak of viremia (19 weeks of age), likely supporting a 



Chapter 4                                                                                                    Discussion and Conclusions 

75 

potential inibithory effect on the production of Th1 cytokines, such as IFN-γ                                    

(Shi et al., 2010). Indeed, the increased expression and production of IL-10 in tissues and 

PBMC were found both in the study of single infection and in PCV2-PRRSV coinfection 

cases (Doster et al., 2010; Shi et al., 2010; Darwich et al., 2003a). During PCV2 infection and 

the PCVD, IL-10 is mainly secreted by macrophage-monocyte and dendritic cell lineage but 

also by T cell clones, which have been impaired by a prolonged antigen stimulation; indeed 

PCV2 is able to stimulate the IL-10 release from PBMC and tissues (Darwich et al., 2003b; 

Kekarainen et al., 2008b; Crisci et al., 2010). 

In our study, Ctrl-PMWS+ animals showed significantly higher IL-10 expression levels 

compared to the other two groups at 19 weeks. On the contrary, in vaccinated-exposed 

animals, IFN-γ expression remained at higher levels at both post-exposure time points                  

(19 and 22 weeks of age), and this could testify a protective effect of vaccination. Because of 

the present data, is not possible to define a statistical correlation beteween IL-10 and IFN-γ 

changes, we cannot assume that IL-10 had a clear immunosuppressive role influencing the 

pathogenesis of PCV2 infection and the PMWS outcome.  

Anyway, taken together, all these information highlight that a different modulation of the 

cytokine profiles between animals vaccined with a PCV2 Cap protein-based vaccine and 

unvaccinated animals occurs. Particularly, in the case of these study, under natural conditions 

of PCV2 infection and PMWS outcome, cytokine modulation can indicate some 

immunoregulatory mechanism involving a reduction of early proinflammatory response as a 

condition that could influence the outcome of the PMWS disease.  

Besides, vaccinated pigs, in addition to low viremia burden and absence of PMWS disease, 

showed stronger cellular IFN-γ-related reactivity as well as an effective expression of                   

pro-inflammatory/innate cytokines (namely IL-8 and IL-1β) after the occurrence of the 

natural infection (week 19-20 to 22) contrarily to what is shown in PMWS-affected animals. 

 

In conclusion, the study reported in the present thesis demonstrates that the vaccination with 

a single dose of a PCV2 Cap vaccine against PCVD induces beneficial effect under field 

conditions.  

- The similarity between ADWG and mortality rates observed in both experimental 

groups within the first 9 weeks after vaccination, considered together with the absence 

of local reactions and the reduced number of injections in vaccinated animals as 

compared to placebo/controls in the same time period, support the hypothesis that the 
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vaccine does not negatively influence the health status of the animals and is well 

tolerated.  

- The vaccination reduces the mortality rate, morbidity, PCV2 viremia and viral load, 

and improves productive performances, namely, daily weight gain as well as carcass 

weight at the time of slaughter.  

- The immunogenicity of the tested vaccine is mainly determined by induction of either 

humoral (PCV2-specific total antibodies) or cellular immune response (PCV2-specific 

IFN-γ SC and some pro-inflammatory and immune cytokines patterns in PBMC) and 

results in virologic and clinical protection. 

Particularly, the evaluation of time-related expression changes of proinflammatory and 

immune cytokines showed some interesting results but their assessment as markers of 

infection and outcome of the PCV2 related diseases needs further studies.  

 

 

 

 

 

Marina Morganti 
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In 2009-2011, Dr. MARINA MORGANTI  attended the doctoral course in                  

“Experimental and Comparative Immunology and Immunopathology” of University of Parma 

(Parma, Italy), performing research activities at the Unit of General Pathology and Veterinary 

Pathological Anatomy of the Department of Animal Health, Faculty of Veterinary Medicine, 

coordinated by Prof. Attilio Corradi.  

She worked as a Ph.D. student in the group headed by Prof. Paolo Borghetti, supervised by 

Dr. Luca Ferrari and Dr. Elena de Angelis, in collaboration with Prof. Paolo Martelli, 

Coordinator of the Unit of Internal Medicine, Department of Animal Health, especially with 

regards to the evaluation of vaccine efficacy and clinical signs upon PCV2 natural infection. 

 

In 2009 (first year of the Ph.D. course), Dr. Morganti dealt with the isolation, 

immunophenotyping and study of the cell-mediated immune response (after in vitro 

stimulation) of lymphocytes from peripheral blood of pigs PCV2-vaccinated.  

She also collaborated with the research group headed by Prof. Angelo Borghetti                             

(Unit of Molecular Pathology and Immunology, Department of Experimental Medicine, 

University of Parma), dealing with the following topics: 

- development of chitosan tubular prosthesis and evaluation of their potential application in 

replacement surgery of the biliary tract; 

- study of the pro-apoptotic activity of bisphosphonate drugs on cells of cholangiocarcinoma; 

- biological characterization of ozonated oils in models derived from epithelial and 

mesenchymal cells. 

 

In 2010 (second year), Dr. Morganti worked especially on the cell-mediated immune 

response in PCV2-vaccinated and unvaccinated pigs, subsequently exposed to PCV2 natural 

infection. The evaluation of pro-inflammatory and immune cytokine expression levels was 

performed in mononuclear cells isolated from peripheral blood (PBMC) by using quantitative 

RT-PCR. Intracellular staining coupled with flow cytometry was performed to determinate 

the fraction of IFN-γ-positive cells in PBMC, after in vitro stimulation with PCV2.  

 

From 01/08/2010 to 31/01/2011 Dr. Morganti attended the Laboratory of Immunology, 

Faculty of Veterinary Medicine of University of Ghent (Ghent, Belgium), coordinated by 

Prof. Eric Cox whose work has long been focused on the study of the immune response to 

infection by enterotoxigenic Escherichia coli F4+ (ETEC F4+) in swine. 
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During this period of internship she was mainly involved in: 

- Isolation of pigs immune cells from blood and jejunal lamina propria followed analysis of 

aminopeptidase-N (receptor for ETEC F4 fimbriae) expression and activation status of 

antigen-presenting cells by flow cytometry directly or after in vitro stimulation.  

- Study of the endocytosis mechanisms of aminopeptidase N in an experimental model using 

ST (Swine Testis) cells grown in trans-well systems by ELISA and immunocytochemistry. 

- Transfection experiments to obtain a porcine cell line stably expressing aminopeptidase-N     

to use as experimental model. 

 

In 2011 (third year ) Dr. Marina Morganti worked on the following research projects: 

• Study of the humoral and cell-mediated immune response in pigs simultaneously 

vaccinated against PCV2 and PRRSV and subsequently exposed to natural infection by 

both viruses. Comparison of double vaccination with single vaccinations (PCV2 or 

PRRSV alone) and unvaccinated animals.  

- ELISPOT assays were performed to evaluate the number of virus-specific IFN-γ 

secreting cells in PBMC; 

- quantitative RT-PCR experiments were performed to study the expression levels of 

pro-inflammatory and immune cytokines such as TNF-α and IL-10, respectively. 

- ELISA were performed to evaluate seroconversion to PCV2 and PRRSV and the 

levels of virus-specific IgG and IgM antibodies over time.  

- Viremia burden was determined by quantitative real-time PCR in serum and fecal 

samples. 

• Study of the cell-mediated immune response in PCV2-vaccinated and unvaccinated pigs, 

subsequently exposed to PCV2 natural infection. The expression levels of several                    

pro-inflammatory and immune cytokines were evaluated by using quantitative RT-PCR; 

the number of PCV2-specific IFN-γ producing cells in PBMC was determined after                    

in vitro-ex vivo stimulation by intracellular staining and ELISpot assay.  

• Assessment of cytokine patterns in PBMC of pigs vaccinated and unvaccinated against 

PRRSV and subsequently exposed to natural infection by a heterologous strain, after                 
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in vitro stimulation with different PRRSV isolates. Following the in vitro stimulation, 

cytokine expression was assessed in PBMC by semi-quantitative RT-PCR and cytokine 

release was quantified by ELISA in the supernatants of cultured cells. The number of 

IFN-γ secreting cells in PBMC ex vivo re-stimulated with PRRSV strains was also 

measured. 

 
 

Congresses 
 

1) “ Modulazione di citochine pro-infiammatorie e immunitarie in PBMC di suini vaccinati e 

non vaccinati esposti a infezione naturale da circovirus tipo 2 del suino (PCV2)” .              

Ferrari L., Morganti M., Borghetti P., De Angelis E., Martelli P. Proceedings of the 

Società Italiana di Patologia ed Allevamento dei Suini (SIPAS), XXXVII Annual Meeting 

– Piacenza, 24-25 March 2011, 266-276 (ISBN 978-88-903311-3-8). 

 

2) “ Pro-inflammatory and immune cytokines in PBMC of vaccinated and unvaccinated pigs 

exposed to porcine circovirus type 2 (PCV2) natural infection” . Ferrari L., Morganti M., 

Borghetti P., De Angelis E., Martelli P. Proceedings of the 3rd European Symposium on 

Porcine Health Management (ESPHM) – Espoo, Finland, 25-27 May 2011, 21. 

 

3) “ Evaluation of cytokines and immunomodulatory hormones in pigs vaccinated against 

PRRSV and naturally exposed to a heterologous field isolate” . Ferrari L., Borghetti P., 

Morganti M., Martelli P. International PRRS Symposium (IPRRS Symposium) – Chicago, 

USA, 2-3 December 2011, 31. 

 

4) “ Immune reactivity is associated with clinical protection upon vaccination with a 

modified-live PRRSV-1 vaccine and subsequent exposure to natural infection by a field 

strain” . Ferrari L., Borghetti P., Morganti M., Martelli P. International PRRS Symposium 

(IPRRS Symposium) – Chicago, USA, 2-3 December 2011, 32. 

 

5) “ Different cytokine patterns in ex vivo stimulated PBMC are related to the PRRSV 

isolate” . Ferrari L., Borghetti P., De Angelis E., Morganti M., Saleri R., Martelli P. 2011 

International PRRS Symposium (IPRRS Symposium) – Chicago, USA, 2-3 December 

2011, 33. 
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Publications 
 

1) Romani A.A., Desenzani S., Morganti M.M. , La Monica S., Borghetti A.F.,               

Soliani P., 2009. Zoledronic acid determines S-phase arrest but fails to induce 

apoptosis in cholangiocarcinoma cells. Biochem Pharmacol. 78(2): 133-141. 

 

2) Romani A.A., Desenzani S., Morganti M.M. , Baroni M.C., Borghetti A.F., Soliani P., 

2010. The BH3-mimetic ABT-737 targets the apoptotic machinery in 

cholangiocarcinoma cell lines resulting in synergistic interactions with zoledronic 

acid. Cancer Chemotherapy and Pharmacology. 67(3): 557-567. 

 

3) Borghetti P., Saleri R., Ferrari L., Morganti M. , De Angelis E., Franceschi V., 

Bottarelli E., Martelli P., 2010. Cytokine expression, glucocorticoid and growth 

hormone changes after porcine reproductive and respiratory syndrome virus              

(PRRSV-1) infection in vaccinated and unvaccinated naturally exposed pigs. 

Comparative immunology, microbiology and infectious diseases. 34(2): 143-155. 

 

4) Martelli P., Ferrari L., Morganti M.,  De Angelis E., Bonilauri P., Guazzetti S., Caleffi 

A., Borghetti P., 2011. One dose of a porcine circovirus 2 subunit vaccine induces 

humoral and cell-mediated immunity and protects against porcine circovirus-

associated disease under field conditions. Vet. Microbiol. 149(3-4): 339-351. 
 

 

 

Articles on revision 
 

1) Borghetti P., Morganti M ., Ferrari L., De Angelis E., Saleri R., Cavalli V.,                

Corradi A., Martelli P., 2011. Modulation of pro-inflammatory and immune cytokines 

in PBMC of vaccinated and unvaccinated pigs exposed to porcine circovirus type 2 

(PCV2) natural infection. Comparative Immunology, Microbiology and Infectious 

Diseases (CIMID) (2011, submitted). 
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